Science.gov

Sample records for predict task-induced bold

  1. Toddler Inhibitory Control, Bold Response to Novelty, and Positive Affect Predict Externalizing Symptoms in Kindergarten

    PubMed Central

    Buss, Kristin A.; Kiel, Elizabeth J.; Morales, Santiago; Robinson, Emily

    2013-01-01

    Poor inhibitory control and bold-approach have been found to predict the development of externalizing behavior problems in young children. Less research has examined how positive affect may influence the development of externalizing behavior in the context of low inhibitory control and high approach. We used a multimethod approach to examine how observed toddler inhibitory control, bold-approach, and positive affect predicted externalizing outcomes (observed, adult- and self-reported) in additive and interactive ways at the beginning of kindergarten. 24-month-olds (N = 110) participated in a laboratory visit and 84 were followed up in kindergarten for externalizing behaviors. Overall, children who were low in inhibitory control, high in bold-approach, and low in positive affect at 24-months of age were at greater risk for externalizing behaviors during kindergarten. PMID:25018589

  2. Micro- and macroturbulence predictions from CO5BOLD 3D stellar atmospheres .

    NASA Astrophysics Data System (ADS)

    Steffen, M.; Caffau, E.; Ludwig, H.-G.

    We present an overview of the current status of our efforts to derive the microturbulence and macroturbulence parameters (xi_mic and xi_mac) from the CIFIST grid of CO5BOLD 3D model atmospheres as a function of the basic stellar parameters T_{eff}, log g, and [M/H]. The latest results for the Sun and Procyon show that the derived microturbulence parameter depends significantly on the numerical resolution of the underlying 3D simulation, confirming that `low-resolution' models tend to underestimate the true value of xi_mic . Extending the investigation to 12 further simulations with different T_{eff}, log g, and [M/H], we obtain a first impression of the predicted trend of xi_mic over the Hertzsprung-Russell diagram: in agreement with empirical evidence, microturbulence increases towards higher effective temperature and lower gravity. The metallicity dependence of xi_mic must be interpreted with care, since it also reflects the deviation between the 1D and 3D photospheric temperature stratifications that increases systematically towards lower [M/H].

  3. Hippocampal BOLD response during category learning predicts subsequent performance on transfer generalization.

    PubMed

    Fera, Francesco; Passamonti, Luca; Herzallah, Mohammad M; Myers, Catherine E; Veltri, Pierangelo; Morganti, Giuseppina; Quattrone, Aldo; Gluck, Mark A

    2014-07-01

    To test a prediction of our previous computational model of cortico-hippocampal interaction (Gluck and Myers [1993, 2001]) for characterizing individual differences in category learning, we studied young healthy subjects using an fMRI-adapted category-learning task that has two phases, an initial phase in which associations are learned through trial-and-error feedback followed by a generalization phase in which previously learned rules can be applied to novel associations (Myers et al. [2003]). As expected by our model, we found a negative correlation between learning-related hippocampal responses and accuracy during transfer, demonstrating that hippocampal adaptation during learning is associated with better behavioral scores during transfer generalization. In addition, we found an inverse relationship between Blood Oxygenation Level Dependent (BOLD) activity in the striatum and that in the hippocampal formation and the orbitofrontal cortex during the initial learning phase. Conversely, activity in the dorsolateral prefrontal cortex, orbitofrontal cortex and parietal lobes dominated over that of the hippocampal formation during the generalization phase. These findings provide evidence in support of theories of the neural substrates of category learning which argue that the hippocampal region plays a critical role during learning for appropriately encoding and representing newly learned information so that that this learning can be successfully applied and generalized to subsequent novel task demands. PMID:24142480

  4. Cortical Network Models of Firing Rates in the Resting and Active States Predict BOLD Responses

    PubMed Central

    Bennett, Maxwell R.; Farnell, Les; Gibson, William G.; Lagopoulos, Jim

    2015-01-01

    Measurements of blood oxygenation level dependent (BOLD) signals have produced some surprising observations. One is that their amplitude is proportional to the entire activity in a region of interest and not just the fluctuations in this activity. Another is that during sleep and anesthesia the average BOLD correlations between regions of interest decline as the activity declines. Mechanistic explanations of these phenomena are described here using a cortical network model consisting of modules with excitatory and inhibitory neurons, taken as regions of cortical interest, each receiving excitatory inputs from outside the network, taken as subcortical driving inputs in addition to extrinsic (intermodular) connections, such as provided by associational fibers. The model shows that the standard deviation of the firing rate is proportional to the mean frequency of the firing when the extrinsic connections are decreased, so that the mean BOLD signal is proportional to both as is observed experimentally. The model also shows that if these extrinsic connections are decreased or the frequency of firing reaching the network from the subcortical driving inputs is decreased, or both decline, there is a decrease in the mean firing rate in the modules accompanied by decreases in the mean BOLD correlations between the modules, consistent with the observed changes during NREM sleep and under anesthesia. Finally, the model explains why a transient increase in the BOLD signal in a cortical area, due to a transient subcortical input, gives rises to responses throughout the cortex as observed, with these responses mediated by the extrinsic (intermodular) connections. PMID:26659399

  5. High-resolution BOLD fMRI measurements of local orientation-dependent contextual modulation show a mismatch between predicted V1 output and local BOLD response

    PubMed Central

    Schumacher, Jennifer F.; Olman, Cheryl A.

    2010-01-01

    The blood oxygenation level-dependent (BOLD) functional MRI response to suppressive neural activity has not been tested on a fine spatial scale. Using Gabor patches placed in the near periphery, we precisely localized individual regions of interest in primary visual cortex and measured the response at a range of contrasts in two different contexts: with parallel and with orthogonal flanking Gabor patches. Psychophysical measurements confirmed strong suppression of the target Gabor response when flanked by parallel Gabors. However, the BOLD response to the target with parallel flankers decreased as the target contrast increased, which contradicts psychophysical estimates of local neural activity. PMID:20382175

  6. A simple solution for model comparison in bold imaging: the special case of reward prediction error and reward outcomes

    PubMed Central

    Erdeniz, Burak; Rohe, Tim; Done, John; Seidler, Rachael D.

    2013-01-01

    Conventional neuroimaging techniques provide information about condition-related changes of the BOLD (blood-oxygen-level dependent) signal, indicating only where and when the underlying cognitive processes occur. Recently, with the help of a new approach called “model-based” functional neuroimaging (fMRI), researchers are able to visualize changes in the internal variables of a time varying learning process, such as the reward prediction error or the predicted reward value of a conditional stimulus. However, despite being extremely beneficial to the imaging community in understanding the neural correlates of decision variables, a model-based approach to brain imaging data is also methodologically challenging due to the multicollinearity problem in statistical analysis. There are multiple sources of multicollinearity in functional neuroimaging including investigations of closely related variables and/or experimental designs that do not account for this. The source of multicollinearity discussed in this paper occurs due to correlation between different subjective variables that are calculated very close in time. Here, we review methodological approaches to analyzing such data by discussing the special case of separating the reward prediction error signal from reward outcomes. PMID:23882174

  7. Choice from non-choice: Predicting consumer preferences from BOLD signals obtained during passive viewing

    PubMed Central

    Levy, Ifat; Lazzaro, Stephanie C.; Rutledge, Robb B.; Glimcher, Paul W.

    2011-01-01

    Decision-making is often viewed as a two-stage process, where subjective values are first assigned to each option and then the option of the highest value is selected. Converging evidence suggests that these subjective values are represented in the striatum and medial prefrontal cortex (MPFC). A separate line of evidence suggests that activation in the same areas represents the values of rewards even when choice is not required, as in classical conditioning tasks. However, it is unclear whether the same neural mechanism is engaged in both cases. To address this question we measured brain activation with fMRI while human subjects passively viewed individual consumer goods. We then sampled activation from predefined regions of interest and used it to predict subsequent choices between the same items made outside of the scanner. Our results show that activation in the striatum and MPFC in the absence of choice predicts subsequent choices, suggesting that these brain areas represent value in a similar manner whether or not choice is required. PMID:21209196

  8. Emotional Intelligence, Personality, and Task-Induced Stress

    ERIC Educational Resources Information Center

    Matthews, Gerald; Emo, Amanda K.; Funke, Gregory; Zeidner, Moshe; Roberts, Richard D.; Costa, Paul T.; Schulze, Ralf

    2006-01-01

    Emotional intelligence (EI) may predict stress responses and coping strategies in a variety of applied settings. This study compares EI and the personality factors of the Five Factor Model (FFM) as predictors of task-induced stress responses. Participants (N = 200) were randomly assigned to 1 of 4 task conditions, 3 of which were designed to be…

  9. Bold Books for Teenagers

    ERIC Educational Resources Information Center

    Gallo, Don

    2005-01-01

    "Bold Books for Teenagers" provides dynamic, informative viewpoints on important issues in publishing and teaching contemporary literature, especially literature for adolescents. Reviews of young adult literature also appear in this column. This article examines how English teachers can help students explore their interests without promoting any…

  10. BOLD MRI of the Kidneys

    PubMed Central

    Li, Lu-Ping; Halter, Sarah; Prasad, Pottumarthi V.

    2008-01-01

    Synopsis Oxygenation status plays a major role in renal physiology and pathophysiology and hence has attracted considerable attention in recent years. While much of the early work and a significant amount of present work is based on invasive methods or ex vivo analysis and hence restricted to animal models, BOLD (blood oxygen level dependent) MRI has been shown to extend these findings to humans. BOLD MRI is most useful in monitoring effects of physiological or pharmacological maneuvers. Several teams around the world have demonstrated reproducible data and have illustrated several useful applications. Studies supporting the use of renal BOLD MRI in characterizing disease with prognostic value have also been reported. Here, an overview of the current state-of-the art of renal BOLD MRI is provided. PMID:18926426

  11. Task-induced fatigue states and simulated driving performance.

    PubMed

    Matthews, Gerald; Desmond, Paula A

    2002-04-01

    States of fatigue are implicated in driver impairment and motor vehicle accidents. This article reports two studies investigating two possible mechanisms for performance impairment: (1) loss of attentional resources; and (2) active regulation of matching effort to task demands. The first hypothesis predicts that fatigue effects will be accentuated by high task demands, but the second hypothesis predicts that fatigue effects will be strongest in "underload" conditions. In two studies, drivers performed a stimulated driving task, in which task demands were manipulated by varying road curvature. In a "fatigue induction" condition, the early part of the drive was occupied by performance of a demanding secondary task concurrently with driving, after which the concurrent task ceased. Post-induction driving performance was compared with a control condition in which drivers were not exposed to the induction. In both studies, the fatigue induction elicited various subjective fatigue and stress symptoms, and also raised reported workload. Fatigue effects on vehicle control and signal detection were assessed during and after the fatigue induction. The fatigue induction increased heading error, reduced steering activity, and, in the second study, reduced perceptual sensitivity on a secondary detection task. These effects were confined to driving on straight rather than on curved road sections, consistent with the effort regulation hypothesis. The second study showed that fatigue effects were moderated by a motivational manipulation. Results are interpreted within a control model, such that task-induced fatigue may reduce awareness of performance impairment, rather than reluctance or inability to mobilize compensatory effort following detection of impairment. PMID:12047065

  12. Reading Rate, Readability and Variations in Task-Induced Processing.

    ERIC Educational Resources Information Center

    Coke, Esther U.

    This study examined the adaptability of reading rate to passage difficulty under different conditions of task-induced processing. Sixteen experimental passages varying in subject matter and ranging from 85 to 171 words were selected from a set of 32 texts rated for comprehensibility. The eight easiest and eight hardest texts were selected. Another…

  13. Task-Induced Deactivation and the “Resting” State

    PubMed Central

    Binder, Jeffrey R.

    2011-01-01

    Task-induced decreases in blood flow and the widespread use of “resting” baselines produced unexpected and discrepant results in early cognitive imaging studies, especially in language comprehension experiments. Here I describe from a personal perspective some of the events and thought processes leading to the first hypothesis-driven fMRI study of the “resting” state. PMID:21979380

  14. Quantifying the microvascular origin of BOLD-fMRI from first principles with two-photon microscopy and an oxygen-sensitive nanoprobe.

    PubMed

    Gagnon, Louis; Sakadžić, Sava; Lesage, Frédéric; Musacchia, Joseph J; Lefebvre, Joël; Fang, Qianqian; Yücel, Meryem A; Evans, Karleyton C; Mandeville, Emiri T; Cohen-Adad, Jülien; Polimeni, Jonathan R; Yaseen, Mohammad A; Lo, Eng H; Greve, Douglas N; Buxton, Richard B; Dale, Anders M; Devor, Anna; Boas, David A

    2015-02-25

    The blood oxygenation level-dependent (BOLD) contrast is widely used in functional magnetic resonance imaging (fMRI) studies aimed at investigating neuronal activity. However, the BOLD signal reflects changes in blood volume and oxygenation rather than neuronal activity per se. Therefore, understanding the transformation of microscopic vascular behavior into macroscopic BOLD signals is at the foundation of physiologically informed noninvasive neuroimaging. Here, we use oxygen-sensitive two-photon microscopy to measure the BOLD-relevant microvascular physiology occurring within a typical rodent fMRI voxel and predict the BOLD signal from first principles using those measurements. The predictive power of the approach is illustrated by quantifying variations in the BOLD signal induced by the morphological folding of the human cortex. This framework is then used to quantify the contribution of individual vascular compartments and other factors to the BOLD signal for different magnet strengths and pulse sequences. PMID:25716864

  15. From uncertainty to reward: BOLD characteristics differentiate signaling pathways

    PubMed Central

    2009-01-01

    Background Reward value and uncertainty are represented by dopamine neurons in monkeys by distinct phasic and tonic firing rates. Knowledge about the underlying differential dopaminergic pathways is crucial for a better understanding of dopamine-related processes. Using functional magnetic resonance blood-oxygen level dependent (BOLD) imaging we analyzed brain activation in 15 healthy, male subjects performing a gambling task, upon expectation of potential monetary rewards at different reward values and levels of uncertainty. Results Consistent with previous studies, ventral striatal activation was related to both reward magnitudes and values. Activation in medial and lateral orbitofrontal brain areas was best predicted by reward uncertainty. Moreover, late BOLD responses relative to trial onset were due to expectation of different reward values and likely to represent phasic dopaminergic signaling. Early BOLD responses were due to different levels of reward uncertainty and likely to represent tonic dopaminergic signals. Conclusions We conclude that differential dopaminergic signaling as revealed in animal studies is not only represented locally by involvement of distinct brain regions but also by distinct BOLD signal characteristics. PMID:20028546

  16. "Extreme Bold" in the Faculty Ranks

    ERIC Educational Resources Information Center

    Kuusisto, Stephen

    2013-01-01

    Boldness, defense, and the necessity of talking back remain as central to life with disability in one's time as in Francis Bacon's age. "Therefore all deformed persons are extreme bold," Bacon wrote, "first, as in their own defence, as being exposed to scorn, but in process of time, by a general habit." Perhaps no word carries more weight in the…

  17. The Relationship between Fearfulness, GABA+, and Fear-Related BOLD Responses in the Insula

    PubMed Central

    Lipp, Ilona; Evans, C. John; Lewis, Caroline; Murphy, Kevin; Wise, Richard G.; Caseras, Xavier

    2015-01-01

    The inhibitory neurotransmitter GABA plays a crucial role in anxiety and fear, but its relationship to brain activation during fear reactions is not clear. Previous studies suggest that GABA agonists lead to an attenuation of emotion-processing related BOLD signals in the insula. The aim of this study was to investigate the relationship between GABA concentration and fear-related BOLD responses in this region. In 44 female participants with different levels of fearfulness, GABA concentration in the left insula was measured using a GABA+ MRS acquisition during rest; additionally, BOLD signals were obtained during performance of a fear provocation paradigm. Fearfulness was not associated with GABA+ in the left insula, but could predict fear-related BOLD responses in a cluster in the left anterior insula. The BOLD signal change in this cluster did not correlate with GABA+ concentration. However, we found a significant positive correlation between GABA+ concentration and fear-related BOLD responses in a different cluster that included parts of the left insula, amygdala and putamen. Our findings indicate that low insular GABA concentration is not a predisposition for fearfulness, and that several factors influence whether a correlation between GABA and BOLD can be found. PMID:25811453

  18. The Need for Bold Thinking.

    PubMed

    Lowi-Young, Mimi; DuBois-Wing, Gwen

    2016-01-01

    Amol Verma and Sacha Bhatia's (2016) paper presents policy recommendations that merit serious consideration on a system-wide level. While they make compelling arguments about why provincial governments are ideally suited to adapt Triple Aim innovation, we are concerned that the current health system climate limits this possibility. In our commentary, we present our thoughts about the authors' admittedly aspirational goals and the realities of the pan-Canadian healthcare system. We commence our commentary by confirming our agreement about the potential inherent within the Triple Aim framework. Second, we argue how important progress can take place that may not reflect a provincial-wide system. Next, we maintain that a learning health system is an essential ingredient to advancing Triple Aim and other health system-wide improvements. Third, we wonder whether the stewardship role of government is real and possible. Finally, we question the concept of our current health system's readiness for system change. While we have raised some questions about Verma and Bhatia's thinking around provincial adoption of the Triple Aim, we applaud their ideas. We believe that transformation in provincial health systems requires bold thinking. PMID:27009585

  19. A hemodynamic model for layered BOLD signals.

    PubMed

    Heinzle, Jakob; Koopmans, Peter J; den Ouden, Hanneke E M; Raman, Sudhir; Stephan, Klaas Enno

    2016-01-15

    High-resolution blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) at the sub-millimeter scale has become feasible with recent advances in MR technology. In principle, this would enable the study of layered cortical circuits, one of the fundaments of cortical computation. However, the spatial layout of cortical blood supply may become an important confound at such high resolution. In particular, venous blood draining back to the cortical surface perpendicularly to the layered structure is expected to influence the measured responses in different layers. Here, we present an extension of a hemodynamic model commonly used for analyzing fMRI data (in dynamic causal models or biophysical network models) that accounts for such blood draining effects by coupling local hemodynamics across layers. We illustrate the properties of the model and its inversion by a series of simulations and show that it successfully captures layered fMRI data obtained during a simple visual experiment. We conclude that for future studies of the dynamics of layered neuronal circuits with high-resolution fMRI, it will be pivotal to include effects of blood draining, particularly when trying to infer on the layer-specific connections in cortex--a theme of key relevance for brain disorders like schizophrenia and for theories of brain function such as predictive coding. PMID:26484827

  20. Differences in aggression, activity and boldness between native and introduced populations of an invasive crayfish

    USGS Publications Warehouse

    Pintor, L.M.; Sih, A.; Bauer, M.L.

    2008-01-01

    Aggressiveness, along with foraging voracity and boldness, are key behavioral mechanisms underlying the competitive displacement and invasion success of exotic species. However, do aggressiveness, voracity and boldness of the invader depend on the presence of an ecologically similar native competitor in the invaded community? We conducted four behavioral assays to compare aggression, foraging voracity, threat response and boldness to forage under predation risk of multiple populations of exotic signal crayfish Pacifastacus leniusculus across its native and invaded range with and without a native congener, the Shasta crayfish P. fortis. We predicted that signal crayfish from the invaded range and sympatric with a native congener (IRS) should be more aggressive to outcompete a close competitor than populations from the native range (NR) or invaded range and allopatric to a native congener (IRA). Furthermore, we predicted that IRS populations of signal crayfish should be more voracious, but less bold to forage under predation risk since native predators and prey likely possess appropriate behavioral responses to the invader. Contrary to our predictions, results indicated that IRA signal crayfish were more aggressive towards conspecifics and more voracious and active foragers, yet also bolder to forage under predation risk in comparison to NR and IRS populations, which did not differ in behavior. Higher aggression/voracity/ boldness was positively correlated with prey consumption rates, and hence potential impacts on prey. We suggest that the positive correlations between aggression/voracity/boldness are the result of an overall aggression syndrome. Results of stream surveys indicated that IRA streams have significantly lower prey biomass than in IRS streams, which may drive invading signal crayfish to be more aggressive/voracious/bold to acquire resources to establish a population. ?? 2008 The Authors.

  1. BOLD and its connection to dopamine release in human striatum: a cross-cohort comparison.

    PubMed

    Lohrenz, Terry; Kishida, Kenneth T; Montague, P Read

    2016-10-01

    Activity in midbrain dopamine neurons modulates the release of dopamine in terminal structures including the striatum, and controls reward-dependent valuation and choice. This fluctuating release of dopamine is thought to encode reward prediction error (RPE) signals and other value-related information crucial to decision-making, and such models have been used to track prediction error signals in the striatum as encoded by BOLD signals. However, until recently there have been no comparisons of BOLD responses and dopamine responses except for one clear correlation of these two signals in rodents. No such comparisons have been made in humans. Here, we report on the connection between the RPE-related BOLD signal recorded in one group of subjects carrying out an investment task, and the corresponding dopamine signal recorded directly using fast-scan cyclic voltammetry in a separate group of Parkinson's disease patients undergoing DBS surgery while performing the same task. The data display some correspondence between the signal types; however, there is not a one-to-one relationship. Further work is necessary to quantify the relationship between dopamine release, the BOLD signal and the computational models that have guided our understanding of both at the level of the striatum.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. PMID:27574306

  2. Boldness and its relation to psychopathic personality: Prototypicality analyses among forensic mental health, criminal justice, and layperson raters.

    PubMed

    Sörman, Karolina; Edens, John F; Smith, Shannon Toney; Clark, John W; Kristiansson, Marianne; Svensson, Olof

    2016-06-01

    Research on psychopathic personality has been dominated by a focus on criminality and social deviance, but some theoretical models argue that certain putatively adaptive features are important components of this construct. In 3 samples (forensic mental health practitioners, probation officers and a layperson community sample), we investigated adaptive traits as conceptualized in the Triarchic model of psychopathy (Patrick et al., 2009), specifically the relevance of boldness to construals of psychopathic personality. Participants completed prototypicality ratings of psychopathic traits, including 3 items created to tap components of boldness (Socially bold, Adventurous, Emotionally stable), and they also rated a series of attitudinal statements (e.g., perceived correlates of being psychopathic, moral judgments about psychopaths). The composite Boldness scale was rated as moderately to highly prototypical among forensic mental health practitioners and probation officers and positively associated with other theoretically relevant domains of psychopathy. Across samples, higher composite Boldness ratings predicted greater endorsement of adaptive traits (e.g., social skills) as characteristic of psychopathy. For the individual items, Socially bold was rated as highly prototypical and was associated with theoretically relevant correlates. Adventurous also was seen as prototypical, though to a lesser degree. Only forensic mental health practitioners endorsed Emotionally stable as characteristic of psychopathy. Our results provide partial support for the contention that the boldness concept is viewed as an important component of psychopathy, particularly among professionals who work directly with offender populations. (PsycINFO Database Record PMID:26844911

  3. Sources of systematic error in calibrated BOLD based mapping of baseline oxygen extraction fraction.

    PubMed

    Blockley, Nicholas P; Griffeth, Valerie E M; Stone, Alan J; Hare, Hannah V; Bulte, Daniel P

    2015-11-15

    Recently a new class of calibrated blood oxygen level dependent (BOLD) functional magnetic resonance imaging (MRI) methods were introduced to quantitatively measure the baseline oxygen extraction fraction (OEF). These methods rely on two respiratory challenges and a mathematical model of the resultant changes in the BOLD functional MRI signal to estimate the OEF. However, this mathematical model does not include all of the effects that contribute to the BOLD signal, it relies on several physiological assumptions and it may be affected by intersubject physiological variability. The aim of this study was to investigate these sources of systematic error and their effect on estimating the OEF. This was achieved through simulation using a detailed model of the BOLD signal. Large ranges for intersubject variability in baseline physiological parameters such as haematocrit and cerebral blood volume were considered. Despite this the uncertainty in the relationship between the measured BOLD signals and the OEF was relatively low. Investigations of the physiological assumptions that underlie the mathematical model revealed that OEF measurements are likely to be overestimated if oxygen metabolism changes during hypercapnia or cerebral blood flow changes under hyperoxia. Hypoxic hypoxia was predicted to result in an underestimation of the OEF, whilst anaemic hypoxia was found to have only a minimal effect. PMID:26254114

  4. BOLD Subjective Value Signals Exhibit Robust Range Adaptation

    PubMed Central

    Cox, Karin M.

    2014-01-01

    Many theories of decision making assume that choice options are assessed along a common subjective value (SV) scale. The neural correlates of SV are widespread and reliable, despite the wide variation in the range of values over which decisions are made (e.g., between goods worth a few dollars, in some cases, or hundreds of dollars, in others). According to adaptive coding theories (Barlow, 1961), an efficient value signal should exhibit range adaptation, such that neural activity maintains a fixed dynamic range, and the slope of the value response varies inversely with the range of values within the local context. Although monkey data have demonstrated range adaptation in single-unit correlates of value (Padoa-Schioppa, 2009; Kobayashi et al., 2010), whether BOLD value signals exhibit similar range adaptation is unknown. To test for this possibility, we presented human participants with choices between a fixed immediate and variable delayed payment options. Across two conditions, the delayed options' SVs spanned either a narrow or wide range. SV-tracking activity emerged in the posterior cingulate, ventral striatum, anterior cingulate, and ventromedial prefrontal cortex. Throughout this network, we observed evidence consistent with the predictions of range adaptation: the SV response slope increased in the narrow versus wide range, with statistically significant slope changes confirmed for the posterior cingulate and ventral striatum. No regions exhibited a reliably increased BOLD activity range in the wide versus narrow condition. Our observations of range adaptation present implications for the interpretation of BOLD SV responses that are measured across different contexts or individuals. PMID:25471589

  5. A protocol for use of medetomidine anesthesia in rats for extended studies using task-induced BOLD contrast and resting-state functional connectivity

    PubMed Central

    Pawela, Christopher P.; Biswal, Bharat B.; Hudetz, Anthony G.; Schulte, Marie L.; Li, Rupeng; Jones, Seth R.; Cho, Younghoon R.; Matloub, Hani S.; Hyde, James S.

    2009-01-01

    The α2-adrenoreceptor agonist, medetomidine, which exhibits dose-dependent sedative effects and is gaining acceptance in small-animal functional magnetic resonance imaging (fMRI), has been studied. Rats were examined on the bench using the classic tail-pinch method with three infusion sequences: 100 μg/kg/hr, 300 μg/kg/hr, or 100 μg/kg/hr followed by 300 μg/kg/hr. Stepping the infusion rate from 100 to 300 μg/kg/hr after 2.5 hours resulted in a prolonged period of approximately level sedation that cannot be achieved by a constant infusion of either 100 or 300 μg/kg/hr. By stepping the infusion dosage, experiments as long as six hours are possible. Functional MRI experiments were carried out on rats using a frequency dependent electrical stimulation protocol—namely, forepaw stimulation at 3, 5, 7, and 10 Hz. Each rat was studied for a four-hour period, divided into two equal portions. During the first portion, rats were started at a 100 μg/kg/hr constant infusion. During the second portion, four secondary levels of infusion were used: 100, 150, 200, and 300 μg/kg/hr. The fMRI response to stimulation frequency was used as an indirect measure of modulation of neuronal activity through pharmacological manipulation. The frequency response to stimulus was attenuated at the lower secondary infusion dosages 100 or 150 μg/kg/hr but not at the higher secondary infusion dosages 200 or 300 μg/kg/hr. Parallel experiments with the animal at rest were carried out using both electroencephalogram (EEG) and functional connectivity MRI (fcMRI) methods with consistent results. In the secondary infusion period using 300 μg/kg/hr, resting-state functional connectivity is enhanced. PMID:19285560

  6. Interpreting BOLD: towards a dialogue between cognitive and cellular neuroscience.

    PubMed

    Hall, Catherine N; Howarth, Clare; Kurth-Nelson, Zebulun; Mishra, Anusha

    2016-10-01

    Cognitive neuroscience depends on the use of blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to probe brain function. Although commonly used as a surrogate measure of neuronal activity, BOLD signals actually reflect changes in brain blood oxygenation. Understanding the mechanisms linking neuronal activity to vascular perfusion is, therefore, critical in interpreting BOLD. Advances in cellular neuroscience demonstrating differences in this neurovascular relationship in different brain regions, conditions or pathologies are often not accounted for when interpreting BOLD. Meanwhile, within cognitive neuroscience, the increasing use of high magnetic field strengths and the development of model-based tasks and analyses have broadened the capability of BOLD signals to inform us about the underlying neuronal activity, but these methods are less well understood by cellular neuroscientists. In 2016, a Royal Society Theo Murphy Meeting brought scientists from the two communities together to discuss these issues. Here, we consolidate the main conclusions arising from that meeting. We discuss areas of consensus about what BOLD fMRI can tell us about underlying neuronal activity, and how advanced modelling techniques have improved our ability to use and interpret BOLD. We also highlight areas of controversy in understanding BOLD and suggest research directions required to resolve these issues.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. PMID:27574302

  7. {bold E}{parallel}{bold B} energy-mass spectrograph for measurement of ions and neutral atoms

    SciTech Connect

    Funsten, H.O.; McComas, D.J.; Scime, E.E.

    1997-01-01

    Real-time measurement of plasma composition and energy is an important diagnostic in fusion experiments. The Thomson parabola spectrograph described here utilizes an electric field parallel to a magnetic field ({bold E}{parallel}{bold B}) and a two-dimensional imaging detector to uniquely identify the energy-per-charge and mass-per-charge distributions of plasma ions. An ultrathin foil can be inserted in front of the {bold E}{parallel}{bold B} filter to convert neutral atoms to ions, which are subsequently analyzed using the {bold E}{parallel}{bold B} filter. Since helium exiting an ultrathin foil does not form a negative ion and hydrogen isotopes do, this spectrograph allows unique identification of tritium ions and neutrals even in the presence of a large background of {sup 3}He. {copyright} {ital 1997 American Institute of Physics.}

  8. Multisite Reliability of Cognitive BOLD Data

    PubMed Central

    Brown, Gregory G.; Mathalon, Daniel H.; Stern, Hal; Ford, Judith; Mueller, Bryon; Greve, Douglas N.; McCarthy, Gregory; Voyvodic, Jim; Glover, Gary; Diaz, Michele; Yetter, Elizabeth; Burak Ozyurt, I.; Jorgensen, Kasper W.; Wible, Cynthia G.; Turner, Jessica A.; Thompson, Wesley K.; Potkin, Steven G.

    2010-01-01

    Investigators perform multi-site functional magnetic resonance imaging studies to increase statistical power, to enhance generalizability, and to improve the likelihood of sampling relevant subgroups. Yet undesired site variation in imaging methods could off-set these potential advantages. We used variance components analysis to investigate sources of variation in the blood oxygen level dependent (BOLD) signal across four 3T magnets in voxelwise and region of interest (ROI) analyses. Eighteen participants traveled to four magnet sites to complete eight runs of a working memory task involving emotional or neutral distraction. Person variance was more than 10 times larger than site variance for five of six ROIs studied. Person-by-site interactions, however, contributed sizable unwanted variance to the total. Averaging over runs increased between-site reliability, with many voxels showing good to excellent between-site reliability when eight runs were averaged and regions of interest showing fair to good reliability. Between-site reliability depended on the specific functional contrast analyzed in addition to the number of runs averaged. Although median effect size was correlated with between-site reliability, dissociations were observed for many voxels. Brain regions where the pooled effect size was large but between-site reliability was poor were associated with reduced individual differences. Brain regions where the pooled effect size was small but between-site reliability was excellent were associated with a balance of participants who displayed consistently positive or consistently negative BOLD responses. Although between-site reliability of BOLD data can be good to excellent, acquiring highly reliable data requires robust activation paradigms, ongoing quality assurance, and careful experimental control. PMID:20932915

  9. Antioxidants safeguard telomeres in bold chicks

    PubMed Central

    Kim, Sin-Yeon; Velando, Alberto

    2015-01-01

    Telomeres are sensitive to damage induced by oxidative stress, and thus it is expected that dietary antioxidants may support the maintenance of telomere length in animals, particularly those with a fast rate of life (e.g. fast metabolism, activity and growth). We tested experimentally the effect of antioxidant supplements on telomere length during early development in wild gull chicks with natural individual variations in behaviour pattern and growth rate. Proactive chicks had shorter telomeres than reactive chicks, but the penalty for the bold behaviour pattern was reduced by antioxidant supplementation. Chicks growing faster had longer telomeres during early growth, suggesting that inherited quality supports a fast life history. PMID:25948570

  10. Antioxidants safeguard telomeres in bold chicks.

    PubMed

    Kim, Sin-Yeon; Velando, Alberto

    2015-05-01

    Telomeres are sensitive to damage induced by oxidative stress, and thus it is expected that dietary antioxidants may support the maintenance of telomere length in animals, particularly those with a fast rate of life (e.g. fast metabolism, activity and growth). We tested experimentally the effect of antioxidant supplements on telomere length during early development in wild gull chicks with natural individual variations in behaviour pattern and growth rate. Proactive chicks had shorter telomeres than reactive chicks, but the penalty for the bold behaviour pattern was reduced by antioxidant supplementation. Chicks growing faster had longer telomeres during early growth, suggesting that inherited quality supports a fast life history. PMID:25948570

  11. Event-related dynamics of glutamate and BOLD effects measured using functional magnetic resonance spectroscopy (fMRS) at 3T in a repetition suppression paradigm.

    PubMed

    Apšvalka, Dace; Gadie, Andrew; Clemence, Matthew; Mullins, Paul G

    2015-09-01

    Proton MR spectroscopy ((1)H-MRS) complements other brain research methods by providing measures of neurometabolites noninvasively in a localized brain area. Improvements in MR scanner technologies, and data acquisition and analysis methods should allow functional (1)H-MRS (fMRS) to measure neurometabolite concentration changes during task-induced brain activation. The aim of the current study was to further develop event-related fMRS at 3T to investigate glutamate dynamics in response to repetition suppression. A secondary aim was to investigate the relationship between blood-oxygen-level-dependent (BOLD) responses and glutamate dynamics in the same paradigm at the same time. A novel approach of interleaved water-suppressed (metabolite) and unsuppressed (water) fMRS was used to simultaneously detect the event-related dynamics of glutamate and BOLD signal to repetition suppression in the lateral occipital cortex of thirteen (N=13) volunteers. On average, (1)H-MRS-visible glutamate increased after novel visual stimuli presentations by 12% and decreased by 11-13% on repeated compared to novel presentations. The BOLD signal, as measured by water peak amplitude changes, showed significant difference between Task and Rest trials, and, on a GLM based analysis of the time series, demonstrated a significant difference between the novel and repeated trials, however appeared to be decoupled from the glutamate response as no correlation was found between the two. These results are the first demonstration that reductions in neuronal activity typical of repetition suppression effects are reflected by reduced glutamatergic and BOLD measures, that glutamate and BOLD responses may not be coupled as previously thought, and that these changes and relationships can be measured simultaneously using event-related fMRS at 3T. PMID:26072254

  12. 17 CFR 232.307 - Bold face type.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Bold face type. 232.307 Section 232.307 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION REGULATION S-T-GENERAL RULES AND REGULATIONS FOR ELECTRONIC FILINGS Preparation of Electronic Submissions § 232.307 Bold face type. (a) Provisions requiring...

  13. 17 CFR 232.307 - Bold face type.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 3 2014-04-01 2014-04-01 false Bold face type. 232.307 Section 232.307 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION REGULATION S-T... face type. (a) Provisions requiring presentation of information in bold face type shall be satisfied...

  14. 17 CFR 232.307 - Bold face type.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 2 2011-04-01 2011-04-01 false Bold face type. 232.307 Section 232.307 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION REGULATION S-T... face type. (a) Provisions requiring presentation of information in bold face type shall be satisfied...

  15. 17 CFR 232.307 - Bold face type.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 2 2012-04-01 2012-04-01 false Bold face type. 232.307 Section 232.307 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION REGULATION S-T... face type. (a) Provisions requiring presentation of information in bold face type shall be satisfied...

  16. 17 CFR 232.307 - Bold face type.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 2 2013-04-01 2013-04-01 false Bold face type. 232.307 Section 232.307 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION REGULATION S-T... face type. (a) Provisions requiring presentation of information in bold face type shall be satisfied...

  17. Abnormal Striatal BOLD Responses to Reward Anticipation and Reward Delivery in ADHD

    PubMed Central

    Furukawa, Emi; Bado, Patricia; Tripp, Gail; Mattos, Paulo; Wickens, Jeff R.; Bramati, Ivanei E.; Alsop, Brent; Ferreira, Fernanda Meireles; Lima, Debora; Tovar-Moll, Fernanda; Sergeant, Joseph A.; Moll, Jorge

    2014-01-01

    Altered reward processing has been proposed to contribute to the symptoms of attention deficit hyperactivity disorder (ADHD). The neurobiological mechanism underlying this alteration remains unclear. We hypothesize that the transfer of dopamine release from reward to reward-predicting cues, as normally observed in animal studies, may be deficient in ADHD. Functional magnetic resonance imaging (fMRI) was used to investigate striatal responses to reward-predicting cues and reward delivery in a classical conditioning paradigm. Data from 14 high-functioning and stimulant-naïve young adults with elevated lifetime symptoms of ADHD (8 males, 6 females) and 15 well-matched controls (8 males, 7 females) were included in the analyses. During reward anticipation, increased blood-oxygen-level-dependent (BOLD) responses in the right ventral and left dorsal striatum were observed in controls, but not in the ADHD group. The opposite pattern was observed in response to reward delivery; the ADHD group demonstrated significantly greater BOLD responses in the ventral striatum bilaterally and the left dorsal striatum relative to controls. In the ADHD group, the number of current hyperactivity/impulsivity symptoms was inversely related to ventral striatal responses during reward anticipation and positively associated with responses to reward. The BOLD response patterns observed in the striatum are consistent with impaired predictive dopamine signaling in ADHD, which may explain altered reward-contingent behaviors and symptoms of ADHD. PMID:24586543

  18. Identifying Childhood Characteristics that Underlie Pre-Morbid Risk for Substance Use Disorders: Socialization and Boldness

    PubMed Central

    Hicks, Brian M.; Iacono, William G.; McGue, Matt

    2013-01-01

    Utilizing a longitudinal twin study (N = 2510), we identified the child characteristics present prior to initiation of substance use that best predicted later substance use disorders. Two independent traits accounted for the majority of pre-morbid risk: socialization (conformity to rules and conventional values) and boldness (sociability and social assurance, stress resilience, and thrill seeking). Low socialization was associated with disruptive behavior disorders, parental externalizing disorders, and environmental adversity, and exhibited moderate genetic (.45) and shared environmental influences (.30). Boldness was highly heritable (.71) and associated with less internalizing distress and environmental adversity. Together, these traits exhibited robust associations with adolescent and young adult substance use disorders (R = .48 and .50, respectively), and incremental prediction over disruptive behavior disorders, parental externalizing disorders, and environmental adversity. Results were replicated in an independent sample. Socialization and boldness offer a novel conceptualization of underlying risk for substance use disorders that has the potential to improve prediction and theory with implications for basic research, prevention, and intervention. PMID:24280373

  19. Luminance contrast of a visual stimulus modulates the BOLD response more than the cerebral blood flow response in the human brain.

    PubMed

    Liang, Christine L; Ances, Beau M; Perthen, Joanna E; Moradi, Farshad; Liau, Joy; Buracas, Giedrius T; Hopkins, Susan R; Buxton, Richard B

    2013-01-01

    The blood oxygenation level dependent (BOLD) response measured with functional magnetic resonance imaging (fMRI) depends on the evoked changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO(2)) in response to changes in neural activity. This response is strongly modulated by the CBF/CMRO(2) coupling relationship with activation, defined as n, the ratio of the fractional changes. The reliability of the BOLD signal as a quantitative reflection of underlying physiological changes depends on the stability of n in response to different stimuli. The effect of visual stimulus contrast on this coupling ratio was tested in 9 healthy human subjects, measuring CBF and BOLD responses to a flickering checkerboard at four visual contrast levels. The theory of the BOLD effect makes a robust prediction-independent of details of the model-that if the CBF/CMRO(2) coupling ratio n remains constant, then the response ratio between the lowest and highest contrast levels should be higher for the BOLD response than the CBF response because of the ceiling effect on the BOLD response. Instead, this response ratio was significantly lower for the BOLD response (BOLD response: 0.23 ± 0.13, mean ± SD; CBF response: 0.42 ± 0.18; p=0.0054). This data is consistent with a reduced dynamic range (strongest/weakest response ratio) of the CMRO(2) response (~1.7-fold) compared to that of the CBF response (~2.4-fold) as luminance contrast increases, corresponding to an increase of n from 1.7 at the lowest contrast level to 2.3 at the highest contrast level. The implication of these results for fMRI studies is that the magnitude of the BOLD response does not accurately reflect the magnitude of underlying physiological processes. PMID:22963855

  20. Anatomical and functional assemblies of brain BOLD oscillations

    PubMed Central

    Baria, Alexis T.; Baliki, Marwan N.; Parrish, Todd; Apkarian, A. Vania

    2011-01-01

    Brain oscillatory activity has long been thought to have spatial properties, the details of which are unresolved. Here we examine spatial organizational rules for the human brain oscillatory activity as measured by blood oxygen level-dependent (BOLD). Resting state BOLD signal was transformed into frequency space (Welch’s method), averaged across subjects, and its spatial distribution studied as a function of four frequency bands, spanning the full bandwidth of BOLD. The brain showed anatomically constrained distribution of power for each frequency band. This result was replicated on a repository dataset of 195 subjects. Next, we examined larger-scale organization by parceling the neocortex into regions approximating Brodmann Areas (BAs). This indicated that BAs of simple function/connectivity (unimodal), vs. complex properties (transmodal), are dominated by low frequency BOLD oscillations, and within the visual ventral stream we observe a graded shift of power to higher frequency bands for BAs further removed from the primary visual cortex (increased complexity), linking frequency properties of BOLD to hodology. Additionally, BOLD oscillation properties for the default mode network demonstrated that it is composed of distinct frequency dependent regions. When the same analysis was performed on a visual-motor task, frequency-dependent global and voxel-wise shifts in BOLD oscillations could be detected at brain sites mostly outside those identified with general linear modeling. Thus, analysis of BOLD oscillations in full bandwidth uncovers novel brain organizational rules, linking anatomical structures and functional networks to characteristic BOLD oscillations. The approach also identifies changes in brain intrinsic properties in relation to responses to external inputs. PMID:21613505

  1. Bold, Sedentary Fathead Minnows Have More Parasites.

    PubMed

    Pan, Tiffany; Gladen, Kelsey; Duncan, Elizabeth C; Cotner, Sehoya; Cotner, James B; McEwen, Daniel C; Wisenden, Brian D

    2016-08-01

    Parasites that rely on trophic transmission can manipulate the behavior of an intermediate host to compromise the host's antipredator competence and increase the probability of reaching the next host. Selection for parasite manipulation is diminished when there is significant risk of host death to causes other than consumption by a suitable definitive host for the parasite. Consequently, behavioral manipulation by parasites can be expected to be subtle. Ornithodiplostomum ptychocheilus (Op) is a trematode parasite that has a bird-snail-fish host life cycle. Fathead minnows are a common intermediate host of Op, where metacercariae encyst in the minnow brain. In this study, we report a link between metacercarial intensity and behavior in fathead minnows. In the field, we found that roaming distance by free-living minnows over 24 h was negatively correlated with parasite intensity. In the laboratory, we found that boldness in an open field test was positively correlated with parasite intensity. These parasite-induced behavioral changes may render infected minnows more susceptible to predators, which would serve to facilitate trophic transmission of parasites to the bird host. PMID:27093037

  2. Age, sex and reproductive status affect boldness in dogs.

    PubMed

    Starling, Melissa J; Branson, Nicholas; Thomson, Peter C; McGreevy, Paul D

    2013-09-01

    Boldness in dogs is believed to be one end of the shy-bold axis, representing a super-trait. Several personality traits fall under the influence of this super-trait. Previous studies have found that boldness is affected by breed and breed groups, influences performance in sporting dogs, and is affected in some cases by the sex of the dogs. This study investigated the effects of dog age, sex and reproductive status on boldness in dogs by way of a dog personality survey circulated amongst Australian dog owners. Age had a significant effect on boldness (F=4.476; DF=16,758; P<0.001), with boldness decreasing with age in years. Males were bolder than females (F=19.219; DF=1,758; P<0.001) and entire dogs were bolder than neutered dogs (F=4.330; DF=1,758; P<0.038). The study indicates how behaviour may change in adult dogs as they age and adds to the literature on how sex and reproductive status may affect personality in dogs. PMID:23778256

  3. Sex and boldness explain individual differences in spatial learning in a lizard

    PubMed Central

    Carazo, Pau; Noble, Daniel W. A.; Chandrasoma, Dani; Whiting, Martin J.

    2014-01-01

    Understanding individual differences in cognitive performance is a major challenge to animal behaviour and cognition studies. We used the Eastern water skink (Eulamprus quoyii) to examine associations between exploration, boldness and individual variability in spatial learning, a dimension of lizard cognition with important bearing on fitness. We show that males perform better than females in a biologically relevant spatial learning task. This is the first evidence for sex differences in learning in a reptile, and we argue that it is probably owing to sex-specific selective pressures that may be widespread in lizards. Across the sexes, we found a clear association between boldness after a simulated predatory attack and the probability of learning the spatial task. In contrast to previous studies, we found a nonlinear association between boldness and learning: both ‘bold’ and ‘shy’ behavioural types were more successful learners than intermediate males. Our results do not fit with recent predictions suggesting that individual differences in learning may be linked with behavioural types via high–low-risk/reward trade-offs. We suggest the possibility that differences in spatial cognitive performance may arise in lizards as a consequence of the distinct environmental variability and complexity experienced by individuals as a result of their sex and social tactics. PMID:24619443

  4. Predictors of dyspnea prevalence: Results from the BOLD study

    PubMed Central

    Grønseth, Rune; Vollmer, William M.; Hardie, Jon A.; Ólafsdóttir, Inga Sif; Lamprecht, Bernd; Buist, A. Sonia; Gnatiuc, Louisa; Gulsvik, Amund; Johannessen, Ane; Enright, Paul

    2014-01-01

    Dyspnea is a cardinal symptom for cardiorespiratory diseases. No study has assessed worldwide variation in dyspnea prevalence or predictors of dyspnea. We used cross-sectional data from population-based samples in 15 countries of the BOLD study to estimate prevalence of dyspnea in the full sample as well as in an a priori defined low-risk group (few risk factors or dyspnea-associated diseases). Dyspnea was defined by the modified Medical Research Council questions. We used ordered logistic regression analysis to study the association of dyspnea with site, sex, age, education, smoking habits, low/high BMI, self-reported disease, and spirometry results. Of the 9,484 participants, 27% reported any dyspnea. In the low-risk subsample (N=4,329), 16% reported some dyspnea. In multivariate analyses, all covariates were correlated to dyspnea, but only 13% of dyspnea variation was explained. Women reported more dyspnea than men (odds ratio ≈ 2.1). When forced vital capacity (FVC) fell below 60% of predicted, dyspnea was much more likely. There was considerable geographical variation in dyspnea, even when we adjusted for known risk factors and spirometry results. We were only able to explain 13% of dyspnea variation. PMID:24176991

  5. Hemodynamic Nonlinearities Affect BOLD fMRI Response Timing and Amplitude

    PubMed Central

    de Zwart, Jacco A; van Gelderen, Peter; Jansma, J Martijn; Fukunaga, Masaki; Bianciardi, Marta; Duyn, Jeff H

    2009-01-01

    The interpretation of functional Magnetic Resonance Imaging (fMRI) studies based on Blood Oxygen-Level Dependent (BOLD) contrast generally relies on the assumption of a linear relationship between evoked neuronal activity and fMRI response. While nonlinearities in this relationship have been suggested by a number of studies, it remains unclear to what extent they relate to the neurovascular response and are therefore inherent to BOLD-fMRI. Full characterization of potential vascular nonlinearities is required for accurate inferences about the neuronal system under study. To investigate the extent of vascular nonlinearities, evoked activity was studied in humans with BOLD-fMRI (n=28) and Magnetoencephalography (MEG) (n=5). Brief (600-800 ms) rapidly repeated (1 Hz) visual stimuli were delivered using a stimulation paradigm that minimized neuronal nonlinearities. Nevertheless, BOLD-fMRI experiments showed substantial remaining nonlinearities. The smallest stimulus separation (200-400 ms) resulted in significant response broadening (15-20% amplitude decrease; 10-12% latency increase; 6-14% duration increase) with respect to a linear prediction. The substantial slowing and widening of the response in the presence of preceding stimuli suggests a vascular rather than neuronal origin to the observed non-linearity. This was confirmed by the MEG data, which showed no significant neuro-electric nonlinear interactions between stimuli as little as 200 ms apart. The presence of substantial vascular nonlinearities has important implications for rapid event-related studies by fMRI and other imaging modalities that infer neuronal activity from hemodynamic parameters. PMID:19520175

  6. Biophysical Modeling of Phase Changes in BOLD fMRI

    PubMed Central

    Feng, Zhaomei; Caprihan, Arvind; Blagoev, Krastan B.; Calhoun, Vince D

    2009-01-01

    In BOLD fMRI, stimulus related phase changes have been repeatedly observed in humans. However, virtually all fMRI processing utilizes the magnitude information only, while ignoring the phase. This results in an unnecessary loss of physiological information and signal-to-noise efficiency. A widely held view is that the BOLD phase change is zero for a voxel containing randomly orientated blood vessels and that phase changes are only due to the presence of large vessels. Based on a previously developed theoretical model, we show through simulations and experimental human BOLD fMRI data that a non-zero phase change can be present in a region with randomly oriented vessels. Using simulations of the model, we first demonstrate that a spatially distributed susceptibility results in a non-zero phase distribution. Next, experimental data in a finger-tapping experiment show consistent bipolar phase distribution across multiple subjects. This model is then used to show that in theory a bipolar phase distribution can also be produced by the model. Finally, we show that the model can produce a bipolar phase pattern consistent with that observed in the experimental data. Understanding of the mechanisms behind the experimentally observed phase changes in BOLD fMRI would be an important step forward and will enable biophysical model based methods for integrating the phase and magnitude information in BOLD fMRI experiments. PMID:19426815

  7. BOLD Variability is Related to Dopaminergic Neurotransmission and Cognitive Aging.

    PubMed

    Guitart-Masip, Marc; Salami, Alireza; Garrett, Douglas; Rieckmann, Anna; Lindenberger, Ulman; Bäckman, Lars

    2016-05-01

    Dopamine (DA) losses are associated with various aging-related cognitive deficits. Typically, higher moment-to-moment brain signal variability in large-scale patterns of voxels in neocortical regions is linked to better cognitive performance and younger adult age, yet the physiological mechanisms regulating brain signal variability are unknown. We explored the relationship among adult age, DA availability, and blood oxygen level-dependent (BOLD) signal variability, while younger and older participants performed a spatial working memory (SWM) task. We quantified striatal and extrastriatal DA D1 receptor density with [(11)C]SCH23390 and positron emission tomography in all participants. We found that BOLD variability in a neocortical region was negatively related to age and positively related to SWM performance. In contrast, BOLD variability in subcortical regions and bilateral hippocampus was positively related to age and slower responses, and negatively related to D1 density in caudate and dorsolateral prefrontal cortex. Furthermore, BOLD variability in neocortical regions was positively associated with task-related disengagement of the default-mode network, a network whose activation needs to be suppressed for efficient SWM processing. Our results show that age-related DA losses contribute to changes in brain signal variability in subcortical regions and suggest a potential mechanism, by which neocortical BOLD variability supports cognitive performance. PMID:25750252

  8. Magnitude and phase behavior of multiresolution BOLD signal

    PubMed Central

    Chen, Zikuan; Calhoun, Vince D.

    2010-01-01

    High spatial resolution fMRI provides a more precise estimate of brain activity than low resolution fMRI. The magnitude and phase parts of the BOLD signals are impacted differently by changes in the scan resolution. In this paper, we report on a numerical simulation to show the impact of spatial resolution upon the complex-valued BOLD signal in terms of magnitude and phase variation. We generate realistic capillary networks in cortex voxels, calculate the BOLD-induced magnetic field disturbance and the complex BOLD signals for the voxel and its subvoxels, and thereby characterize the magnitude and phase behaviors across multiple grid resolutions. Our results show that: 1) at higher spatial resolution there is greater spatial variation in the phase of the BOLD signal as compared to its magnitude; 2) the spatial variation of the phase signal monotonically increases with respect to spatial resolution while for the magnitude the spatial variation may reach a maximum at some resolution level; 3) voxels containing large capillaries have higher phase spatial variation than those with smaller capillaries; 4) the amplitude spatial variation at a resolution level increases with respect to relaxation time whereas the phase variation is generally unaffected. PMID:20890375

  9. Hypoxia in Prostate Cancer: Correlation of BOLD-MRI With Pimonidazole Immunohistochemistry-Initial Observations

    SciTech Connect

    Hoskin, Peter J. . E-mail: peterhoskin@nhs.net; Carnell, Dawn M.; Taylor, N. Jane; Smith, Rowena E.; Stirling, J. James; Daley, Frances M.; Saunders, Michele I.; Bentzen, Soren M.; Collins, David J.; D'Arcy, James A.; Padhani, Anwar P.

    2007-07-15

    Purpose: To investigate the ability of blood oxygen level-dependent (BOLD) MRI to depict clinically significant prostate tumor hypoxia. Methods and Materials: Thirty-three patients with prostate carcinoma undergoing radical prostatectomy were studied preoperatively, using gradient echo sequences without and with contrast medium enhancement, to map relative tissue oxygenation according to relaxivity rates and relative blood volume (rBV). Pimonidazole was administered preoperatively, and whole-mount sections of selected tumor-bearing slices were stained for pimonidazole fixation and tumor and nontumor localization. Histologic and imaging parameters were independently mapped onto patient prostate outlines. Using 5-mm grids, 861 nontumor grid locations were compared with 237 tumor grids (with >50% tumor per location) using contingency table analysis with respect to the ability of imaging to predict pimonidazole staining. Results: Twenty patients completed the imaging and histologic protocols. Pimonidazole staining was found in 33% of nontumor and in 70% of tumor grids. The sensitivity of the MR relaxivity parameter R{sub 2}* in depicting tumor hypoxia was high (88%), improving with the addition of low rBV information (95%) without changing specificity (36% and 29%, respectively). High R{sub 2}* increased the positive predictive value for hypoxia by 6% (70% to 76%); conversely, low R{sub 2}* decreased the likelihood of hypoxia being present by 26% (70% to 44%) and by 41% (71% to 30%) when combined with rBV information. Conclusion: R{sub 2}* maps from BOLD-MRI have high sensitivity but low specificity for defining intraprostatic tumor hypoxia. This together with the negative predictive value of 70% when combined with blood volume information makes BOLD-MRI a potential noninvasive technique for mapping prostatic tumor hypoxia.

  10. Relationship between BOLD amplitude and pattern classification of orientation-selective activity in the human visual cortex.

    PubMed

    Tong, Frank; Harrison, Stephenie A; Dewey, John A; Kamitani, Yukiyasu

    2012-11-15

    Orientation-selective responses can be decoded from fMRI activity patterns in the human visual cortex, using multivariate pattern analysis (MVPA). To what extent do these feature-selective activity patterns depend on the strength and quality of the sensory input, and might the reliability of these activity patterns be predicted by the gross amplitude of the stimulus-driven BOLD response? Observers viewed oriented gratings that varied in luminance contrast (4, 20 or 100%) or spatial frequency (0.25, 1.0 or 4.0 cpd). As predicted, activity patterns in early visual areas led to better discrimination of orientations presented at high than low contrast, with greater effects of contrast found in area V1 than in V3. A second experiment revealed generally better decoding of orientations at low or moderate as compared to high spatial frequencies. Interestingly however, V1 exhibited a relative advantage at discriminating high spatial frequency orientations, consistent with the finer scale of representation in the primary visual cortex. In both experiments, the reliability of these orientation-selective activity patterns was well predicted by the average BOLD amplitude in each region of interest, as indicated by correlation analyses, as well as decoding applied to a simple model of voxel responses to simulated orientation columns. Moreover, individual differences in decoding accuracy could be predicted by the signal-to-noise ratio of an individual's BOLD response. Our results indicate that decoding accuracy can be well predicted by incorporating the amplitude of the BOLD response into simple simulation models of cortical selectivity; such models could prove useful in future applications of fMRI pattern classification. PMID:22917989

  11. Bold Diagrammatic Monte Carlo for Fermionic and Fermionized Systems

    NASA Astrophysics Data System (ADS)

    Svistunov, Boris

    2013-03-01

    In three different fermionic cases--repulsive Hubbard model, resonant fermions, and fermionized spins-1/2 (on triangular lattice)--we observe the phenomenon of sign blessing: Feynman diagrammatic series features finite convergence radius despite factorial growth of the number of diagrams with diagram order. Bold diagrammatic Monte Carlo technique allows us to sample millions of skeleton Feynman diagrams. With the universal fermionization trick we can fermionize essentially any (bosonic, spin, mixed, etc.) lattice system. The combination of fermionization and Bold diagrammatic Monte Carlo yields a universal first-principle approach to strongly correlated lattice systems, provided the sign blessing is a generic fermionic phenomenon. Supported by NSF and DARPA

  12. Opposing relationships of BMI with BOLD and dopamine D2/3 receptor binding potential in the dorsal striatum.

    PubMed

    Cosgrove, Kelly P; Veldhuizen, Maria G; Sandiego, Christine M; Morris, Evan D; Small, Dana M

    2015-04-01

    Findings from clinical and preclinical studies converge to suggest that increased adiposity and/or exposure to a high fat diet are associated with alterations in dorsal striatal (DS) circuitry. In humans there is a reliable inverse relationship between body mass index (BMI) and response to palatable food consumption in the dorsal striatum (DS). Positron emission tomography (PET) studies also suggest altered DS dopamine type 2/3 receptor (D2R/D3R) availability in obesity; however, the direction of the association is unclear. It is also not clear whether dopamine receptor levels contribute to the lower blood oxygen level dependent (BOLD) response because PET studies have targeted the morbidly obese and, functional magnetic resonance imaging (fMRI) studies rarely include individuals with BMIs in this range. Therefore we examined whether the fMRI BOLD response in the DS to milkshake is associated with D2R/D3R availability measured with [(11) C]PHNO and PET in individuals with BMI ranging from healthy weight to moderately obese. Twenty-nine subjects participated in the fMRI study, 12 in the [(11) C]PHNO PET study, 8 of whom also completed the fMRI study. As predicted there was a significant negative association between DS BOLD response to milkshake and BMI. In contrast, BMI was positively associated with D2R/D3R availability. Dorsal striatal BOLD response was unrelated to D2R/D3R availability. Considered in the context of the larger literature our results suggest the existence of a non-linear relationship between D2R/D3R availability and BMI. Additionally, the altered BOLD responses to palatable food consumption observed in obesity are not clearly related to D2R/D3R receptor availability. Using [(11) C]PHNO and PET brain imaging techniques we show that body mass index was positively associated with D2R/D3R availability in the dorsal striatum, but that functional MR BOLD response was unrelated to D2R/D3R availability. These results suggest the existence of a nonlinear

  13. Opposing relationships of BMI with BOLD and dopamine D2/3 receptor binding potential in the dorsal striatum

    PubMed Central

    Cosgrove, Kelly P.; Veldhuizen, Maria G.; Sandiego, Christine M.; Morris, Evan D.; Small, Dana M.

    2015-01-01

    Findings from clinical and preclinical studies converge to suggest that increased adiposity and/or exposure to a high fat diet are associated with alterations in dorsal striatal (DS) circuitry. In humans there is a reliable inverse relationship between body mass index (BMI) and response to palatable food consumption in the dorsal striatum (DS). Positron emission tomography (PET) studies also suggest altered DS dopamine type 2/3 receptor (D2R/D3R) availability in obesity; however, the direction of the association is unclear. It is also not clear whether dopamine receptor levels contribute to the lower blood oxygen level dependent (BOLD) response because PET studies have targeted the morbidly obese and, functional magnetic resonance imaging (fMRI) studies rarely include individuals with BMIs in this range. Therefore we examined whether the fMRI BOLD response in the DS to milkshake is associated with D2R/D3R availability measured with [11C]PHNO and PET in individuals with BMI ranging from healthy weight to moderately obese. Twenty-nine subjects participated in the fMRI study, twelve in the [11C]PHNO PET study, eight of whom also completed the fMRI study. As predicted there was a significant negative association between DS BOLD response to milkshake and BMI. In contrast, BMI was positively associated with D2R/D3R availability. Dorsal striatal BOLD response was unrelated to D2R/D3R availability. Considered in the context of the larger literature our results suggest the existence of a non-linear relationship between D2R/D3R availability and BMI. Additionally, the altered BOLD responses to palatable food consumption observed in obesity are not clearly related to D2R/D3R receptor availability. PMID:25664726

  14. Neurophysiological investigation of spontaneous correlated and anticorrelated fluctuations of the BOLD signal

    PubMed Central

    Keller, Corey J.; Bickel, Stephan; Honey, Christopher J.; Groppe, David M.; Entz, Laszlo; Craddock, R. Cameron; Lado, Fred A.; Kelly, Clare; Milham, Michael; Mehta, Ashesh D.

    2013-01-01

    Analyses of intrinsic fMRI BOLD signal fluctuations reliably reveal correlated and anticorrelated functional networks in the brain. Since the BOLD signal is an indirect measure of neuronal activity, and anticorrelations can be introduced by preprocessing steps such as global signal regression (GSR), the neurophysiological significance of correlated and anticorrelated BOLD fluctuations is a source of debate. Here, we address this question by examining the correspondence between the spatial organization of correlated BOLD fluctuations and correlated fluctuations in electrophysiological high gamma power (HGP) signals recorded directly from the cortical surface of 5 patients. We demonstrate that both positive and negative BOLD correlations have neurophysiological correlates reflected in fluctuations of spontaneous neuronal activity. Although applying GSR to BOLD signals results in some BOLD anticorrelations that are not apparent in the ECoG data, it enhances the neuronal-hemodynamic correspondence overall. Together, these findings provide support for the neurophysiological fidelity of BOLD correlations and anticorrelations. PMID:23575832

  15. Evidence that the negative BOLD response is neuronal in origin: a simultaneous EEG-BOLD-CBF study in humans.

    PubMed

    Mullinger, K J; Mayhew, S D; Bagshaw, A P; Bowtell, R; Francis, S T

    2014-07-01

    Unambiguous interpretation of changes in the BOLD signal is challenging because of the complex neurovascular coupling that translates changes in neuronal activity into the subsequent haemodynamic response. In particular, the neurophysiological origin of the negative BOLD response (NBR) remains incompletely understood. Here, we simultaneously recorded BOLD, EEG and cerebral blood flow (CBF) responses to 10 s blocks of unilateral median nerve stimulation (MNS) in order to interrogate the NBR. Both negative BOLD and negative CBF responses to MNS were observed in the same region of the ipsilateral primary sensorimotor cortex (S1/M1) and calculations showed that MNS induced a decrease in the cerebral metabolic rate of oxygen consumption (CMRO2) in this NBR region. The ∆CMRO2/∆CBF coupling ratio (n) was found to be significantly larger in this ipsilateral S1/M1 region (n=0.91±0.04, M=10.45%) than in the contralateral S1/M1 (n=0.65±0.03, M=10.45%) region that exhibited a positive BOLD response (PBR) and positive CBF response, and a consequent increase in CMRO2 during MNS. The fMRI response amplitude in ipsilateral S1/M1 was negatively correlated with both the power of the 8-13 Hz EEG mu oscillation and somatosensory evoked potential amplitude. Blocks in which the largest magnitude of negative BOLD and CBF responses occurred therefore showed greatest mu power, an electrophysiological index of cortical inhibition, and largest somatosensory evoked potentials. Taken together, our results suggest that a neuronal mechanism underlies the NBR, but that the NBR may originate from a different neurovascular coupling mechanism to the PBR, suggesting that caution should be taken in assuming the NBR simply represents the neurophysiological inverse of the PBR. PMID:24632092

  16. Task effects on BOLD signal correlates of implicit syntactic processing.

    PubMed

    Caplan, David

    2010-07-01

    BOLD signal was measured in sixteen participants who made timed font change detection judgments in visually presented sentences that varied in syntactic structure and the order of animate and inanimate nouns. Behavioral data indicated that sentences were processed to the level of syntactic structure. BOLD signal increased in visual association areas bilaterally and left supramarginal gyrus in the contrast of sentences with object- and subject-extracted relative clauses without font changes in which the animacy order of the nouns biased against the syntactically determined meaning of the sentence. This result differs from the findings in a non-word detection task (Caplan et al, 2008a), in which the same contrast led to increased BOLD signal in the left inferior frontal gyrus. The difference in areas of activation indicates that the sentences were processed differently in the two tasks. These differences were further explored in an eye tracking study using the materials in the two tasks. Issues pertaining to how parsing and interpretive operations are affected by a task that is being performed, and how this might affect BOLD signal correlates of syntactic contrasts, are discussed. PMID:20671983

  17. FY 2011 Federal Budget Process Begins with Bold Proposal

    ERIC Educational Resources Information Center

    Karolak, Eric

    2010-01-01

    The federal government's annual budget process was kick-started this year with a bold proposal that has implications for anyone who provides child care. But keeping child care front and center in Washington will take a lot of effort in 2010. On February 1, the Administration released the Budget Proposal for Federal Fiscal Year 2011. It calls for…

  18. Task effects on BOLD signal correlates of implicit syntactic processing

    PubMed Central

    Caplan, David

    2010-01-01

    BOLD signal was measured in sixteen participants who made timed font change detection judgments in visually presented sentences that varied in syntactic structure and the order of animate and inanimate nouns. Behavioral data indicated that sentences were processed to the level of syntactic structure. BOLD signal increased in visual association areas bilaterally and left supramarginal gyrus in the contrast of sentences with object- and subject-extracted relative clauses without font changes in which the animacy order of the nouns biased against the syntactically determined meaning of the sentence. This result differs from the findings in a non-word detection task (Caplan et al, 2008a), in which the same contrast led to increased BOLD signal in the left inferior frontal gyrus. The difference in areas of activation indicates that the sentences were processed differently in the two tasks. These differences were further explored in an eye tracking study using the materials in the two tasks. Issues pertaining to how parsing and interpretive operations are affected by a task that is being performed, and how this might affect BOLD signal correlates of syntactic contrasts, are discussed. PMID:20671983

  19. The Boldest New Idea? An End to Bold Ideas

    ERIC Educational Resources Information Center

    Rothstein, Richard

    2011-01-01

    The past two decades have proven that bold, single-factor reform ideas have little power to change the face of education. Pundits and policymakers would have schools and school systems make grand changes to accommodate the reform idea du jour--and then profess the incompetence of schools and teachers when those changes prove less than effective.…

  20. BOLD sensitivity and SNR characteristics of parallel imaging-accelerated single-shot multi-echo EPI for fMRI.

    PubMed

    Bhavsar, Saurabh; Zvyagintsev, Mikhail; Mathiak, Klaus

    2014-01-01

    Echo-planar imaging (EPI) is a standard procedure in functional magnetic resonance imaging (fMRI) for measuring changes in the blood oxygen level-dependent (BOLD) signal associated with neuronal activity. The images obtained from fMRI with EPI, however, exhibit signal dropouts and geometric distortions. Parallel imaging (PI), due to its short readout, accelerates image acquisition and might reduce dephasing in phase-encoding direction. The concomitant loss of signal-to-noise ratio (SNR) might be compensated through single-shot multi-echo EPI (mEPI). We systematically compared the temporal SNR and BOLD sensitivity of single echoes (TE=15, 45, and 75ms) and contrast-optimized mEPI with and without PI and mEPI-based denoising. Audio-visual stimulation under natural viewing conditions activated distributed neural networks. Heterogeneous SNR, noise gain, and sensitivity maps emerged. In single echoes, SNR and BOLD sensitivity followed the predicted dependency on echo time (TE) and were reduced under PI. However, the combination of echoes with mEPI recovered the quality parameters and increased BOLD signal changes at circumscribed fronto-polar and deep brain structures. We suggest applying PI only in combination with mEPI to reduce imaging artifacts and conserve BOLD sensitivity. PMID:23954488

  1. A Novel Method for Integrating MEG and BOLD fMRI Signals With the Linear Convolution Model in Human Primary Somatosensory Cortex

    PubMed Central

    Nangini, Cathy; Tam, Fred; Graham, Simon J.

    2016-01-01

    Characterizing the neurovascular coupling between hemodynamic signals and their neural origins is crucial to functional neuroimaging research, even more so as new methods become available for integrating results from different functional neuroimaging modalities. We present a novel method to relate magnetoencephalography (MEG) and BOLD fMRI data from primary somatosensory cortex within the context of the linear convolution model. This model, which relates neural activity to BOLD signal change, has been widely used to predict BOLD signals but typically lacks experimentally derived measurements of neural activity. In this study, an fMRI experiment is performed using variable-duration (≤1 s) vibrotactile stimuli applied at 22 Hz, analogous to a previously published MEG study (Nangini et al., [2006]: Neuroimage 33:252–262), testing whether MEG source waveforms from the previous study can inform the convolution model and improve BOLD signal estimates across all stimulus durations. The typical formulation of the convolution model in which the input is given by the stimulus profile is referred to as Model 1. Model 2 is based on an energy argument relating metabolic demand to the postsynaptic currents largely responsible for the MEG current dipoles, and uses the energy density of the estimated MEG source waveforms as input to the convolution model. It is shown that Model 2 improves the BOLD signal estimates compared to Model 1 under the experimental conditions implemented, suggesting that MEG energy density can be a useful index of hemodynamic activity. PMID:17290370

  2. Boldness by habituation and social interactions: a model.

    PubMed

    Oosten, Johanneke E; Magnhagen, Carin; Hemelrijk, Charlotte K

    2010-04-01

    Most studies of animal personality attribute personality to genetic traits. But a recent study by Magnhagen and Staffan (Behav Ecol Sociobiol 57:295-303, 2005) on young perch in small groups showed that boldness, a central personality trait, is also shaped by social interactions and by previous experience. The authors measured boldness by recording the duration that an individual spent near a predator and the speed with which it fed there. They found that duration near the predator increased over time and was higher the higher the average boldness of other group members. In addition, the feeding rate of shy individuals was reduced if other members of the same group were bold. The authors supposed that these behavioral dynamics were caused by genetic differences, social interactions, and habituation to the predator. However, they did not quantify exactly how this could happen. In the present study, we therefore use an agent-based model to investigate whether these three factors may explain the empirical findings. We choose an agent-based model because this type of model is especially suited to study the relation between behavior at an individual level and behavioral dynamics at a group level. In our model, individuals were either hiding in vegetation or feeding near a predator, whereby their behavior was affected by habituation and by two social mechanisms: social facilitation to approach the predator and competition over food. We show that even if we start the model with identical individuals, these three mechanisms were sufficient to reproduce the behavioral dynamics of the empirical study, including the consistent differences among individuals. Moreover, if we start the model with individuals that already differ in boldness, the behavioral dynamics produced remained the same. Our results indicate the importance of previous experience and social interactions when studying animal personality empirically. PMID:20351762

  3. Matched-filter acquisition for BOLD fMRI.

    PubMed

    Kasper, Lars; Haeberlin, Maximilian; Dietrich, Benjamin E; Gross, Simon; Barmet, Christoph; Wilm, Bertram J; Vannesjo, S Johanna; Brunner, David O; Ruff, Christian C; Stephan, Klaas E; Pruessmann, Klaas P

    2014-10-15

    We introduce matched-filter fMRI, which improves BOLD (blood oxygen level dependent) sensitivity by variable-density image acquisition tailored to subsequent image smoothing. Image smoothing is an established post-processing technique used in the vast majority of fMRI studies. Here we show that the signal-to-noise ratio of the resulting smoothed data can be substantially increased by acquisition weighting with a weighting function that matches the k-space filter imposed by the smoothing operation. We derive the theoretical SNR advantage of this strategy and propose a practical implementation of 2D echo-planar acquisition matched to common Gaussian smoothing. To reliably perform the involved variable-speed trajectories, concurrent magnetic field monitoring with NMR probes is used. Using this technique, phantom and in vivo measurements confirm reliable SNR improvement in the order of 30% in a "resting-state" condition and prove robust in different regimes of physiological noise. Furthermore, a preliminary task-based visual fMRI experiment equally suggests a consistent BOLD sensitivity increase in terms of statistical sensitivity (average t-value increase of about 35%). In summary, our study suggests that matched-filter acquisition is an effective means of improving BOLD SNR in studies that rely on image smoothing at the post-processing level. PMID:24844745

  4. BOLD delay times using group delay in sickle cell disease

    NASA Astrophysics Data System (ADS)

    Coloigner, Julie; Vu, Chau; Bush, Adam; Borzage, Matt; Rajagopalan, Vidya; Lepore, Natasha; Wood, John

    2016-03-01

    Sickle cell disease (SCD) is an inherited blood disorder that effects red blood cells, which can lead to vasoocclusion, ischemia and infarct. This disease often results in neurological damage and strokes, leading to morbidity and mortality. Functional Magnetic Resonance Imaging (fMRI) is a non-invasive technique for measuring and mapping the brain activity. Blood Oxygenation Level-Dependent (BOLD) signals contain also information about the neurovascular coupling, vascular reactivity, oxygenation and blood propagation. Temporal relationship between BOLD fluctuations in different parts of the brain provides also a mean to investigate the blood delay information. We used the induced desaturation as a label to profile transit times through different brain areas, reflecting oxygen utilization of tissue. In this study, we aimed to compare blood flow propagation delay times between these patients and healthy subjects in areas vascularized by anterior, middle and posterior cerebral arteries. In a group comparison analysis with control subjects, BOLD changes in these areas were found to be almost simultaneous and shorter in the SCD patients, because of their increased brain blood flow. Secondly, the analysis of a patient with a stenosis on the anterior cerebral artery indicated that signal of the area vascularized by this artery lagged the MCA signal. These findings suggest that sickle cell disease causes blood propagation modifications, and that these changes could be used as a biomarker of vascular damage.

  5. Recent social conditions affect boldness repeatability in individual sticklebacks

    PubMed Central

    Jolles, Jolle Wolter; Aaron Taylor, Benjamin; Manica, Andrea

    2016-01-01

    Animal personalities are ubiquitous across the animal kingdom and have been shown both to influence individual behaviour in the social context and to be affected by it. However, little attention has been paid to possible carryover effects of social conditions on personality expression, especially when individuals are alone. Here we investigated how the recent social context affected the boldness and repeatability of three-spined sticklebacks, Gasterosteus aculeatus, during individual assays. We housed fish either solitarily, solitarily part of the time or socially in groups of four, and subjected them twice to a risk-taking task. The social conditions had a large effect on boldness repeatability, with fish housed solitarily before the trials showing much higher behavioural repeatability than fish housed socially, for which repeatability was not significant. Social conditions also had a temporal effect on the boldness of the fish, with only fish housed solitarily taking more risks during the first than the second trial. These results show that recent social conditions can thus affect the short-term repeatability of behaviour and obfuscate the expression of personality even in later contexts when individuals are alone. This finding highlights the need to consider social housing conditions when designing personality studies and emphasizes the important link between animal personality and the social context by showing the potential role of social carryover effects. PMID:26949265

  6. Positive Allosteric Modulator of GABA Lowers BOLD Responses in the Cingulate Cortex

    PubMed Central

    Walter, Susanna A.; Forsgren, Mikael; Lundengård, Karin; Simon, Rozalyn; Torkildsen Nilsson, Maritha; Söderfeldt, Birgitta; Lundberg, Peter; Engström, Maria

    2016-01-01

    Knowledge about the neural underpinnings of the negative blood oxygen level dependent (BOLD) responses in functional magnetic resonance imaging (fMRI) is still limited. We hypothesized that pharmacological GABAergic modulation attenuates BOLD responses, and that blood concentrations of a positive allosteric modulator of GABA correlate inversely with BOLD responses in the cingulate cortex. We investigated whether or not pure task-related negative BOLD responses were co-localized with pharmacologically modulated BOLD responses. Twenty healthy adults received either 5 mg diazepam or placebo in a double blind, randomized design. During fMRI the subjects performed a working memory task. Results showed that BOLD responses in the cingulate cortex were inversely correlated with diazepam blood concentrations; that is, the higher the blood diazepam concentration, the lower the BOLD response. This inverse correlation was most pronounced in the pregenual anterior cingulate cortex and the anterior mid-cingulate cortex. For subjects with diazepam plasma concentration > 0.1 mg/L we observed negative BOLD responses with respect to fixation baseline. There was minor overlap between cingulate regions with task-related negative BOLD responses and regions where the BOLD responses were inversely correlated with diazepam concentration. We interpret that the inverse correlation between the BOLD response and diazepam was caused by GABA-related neural inhibition. Thus, this study supports the hypothesis that GABA attenuates BOLD responses in fMRI. The minimal overlap between task-related negative BOLD responses and responses attenuated by diazepam suggests that these responses might be caused by different mechanisms. PMID:26930498

  7. Positive Allosteric Modulator of GABA Lowers BOLD Responses in the Cingulate Cortex.

    PubMed

    Walter, Susanna A; Forsgren, Mikael; Lundengård, Karin; Simon, Rozalyn; Torkildsen Nilsson, Maritha; Söderfeldt, Birgitta; Lundberg, Peter; Engström, Maria

    2016-01-01

    Knowledge about the neural underpinnings of the negative blood oxygen level dependent (BOLD) responses in functional magnetic resonance imaging (fMRI) is still limited. We hypothesized that pharmacological GABAergic modulation attenuates BOLD responses, and that blood concentrations of a positive allosteric modulator of GABA correlate inversely with BOLD responses in the cingulate cortex. We investigated whether or not pure task-related negative BOLD responses were co-localized with pharmacologically modulated BOLD responses. Twenty healthy adults received either 5 mg diazepam or placebo in a double blind, randomized design. During fMRI the subjects performed a working memory task. Results showed that BOLD responses in the cingulate cortex were inversely correlated with diazepam blood concentrations; that is, the higher the blood diazepam concentration, the lower the BOLD response. This inverse correlation was most pronounced in the pregenual anterior cingulate cortex and the anterior mid-cingulate cortex. For subjects with diazepam plasma concentration > 0.1 mg/L we observed negative BOLD responses with respect to fixation baseline. There was minor overlap between cingulate regions with task-related negative BOLD responses and regions where the BOLD responses were inversely correlated with diazepam concentration. We interpret that the inverse correlation between the BOLD response and diazepam was caused by GABA-related neural inhibition. Thus, this study supports the hypothesis that GABA attenuates BOLD responses in fMRI. The minimal overlap between task-related negative BOLD responses and responses attenuated by diazepam suggests that these responses might be caused by different mechanisms. PMID:26930498

  8. Investigating the source of BOLD nonlinearity in human visual cortex in response to paired visual stimuli.

    PubMed

    Zhang, Nanyin; Zhu, Xiao-Hong; Chen, Wei

    2008-11-01

    Several studies have demonstrated significant nonlinearity in the blood-oxygenation-level-dependent (BOLD) signal. Completely understanding the nature of this nonlinear behavior is important in the interpretation of the BOLD signal. However, this task is hindered by the uncertainty of the source of BOLD nonlinearity which could come from neuronal and/or vascular origin. The obscurity of this issue not only impedes accurate modeling of BOLD nonlinearity, but also limits generalization of the conclusions regarding BOLD nonlinearity. To examine this issue, we eliminated nonlinear contributions from the neuronal response and selectively study BOLD nonlinearity under only the vascular effect by employing a paired-stimulus paradigm composed of two ultra-short visual stimuli separated by a variable inter-stimulus interval (ISI). ISIs chosen were long enough (> or = 1s) to ensure invariant neuronal activity to all stimuli. Under this circumstance, we still observed significant nonlinearity in the BOLD signal reflected by a progressive recovery of BOLD response to the second stimuli as ISI gets longer and delayed BOLD onset latency. These nonlinear behaviors identified in the BOLD signal originate entirely from the vascular responses as the neuronal responses to all stimuli are identical. More importantly, we found that BOLD nonlinearity became much less significant after we removed activated pixels from large vessels. These finds reveal that the dominant component, if not all, of the source of BOLD nonlinearity comes from large-vessel hemodynamic response. They also suggest a possible mechanism to improve the spatial specificity of gradient-echo BOLD signal for fMRI mapping based on the characteristics of vascular refractoriness. PMID:18657623

  9. LTE Model Atmospheres: MARCS, ATLAS and CO5BOLD

    NASA Astrophysics Data System (ADS)

    Bonifacio, P.; Caffau, E.; Ludwig, H.-G.; Steffen, M.

    2012-04-01

    In this talk, we review the basic assumptions and physics covered by classical 1D LTE model atmospheres. We will focus on ATLAS and MARCS models of F-G-K stars and describe what resources are available through the web, both in terms of codes and model-atmosphere grids. We describe the advances made in hydrodynamical simulations of convective stellar atmospheres with the CO5BOLD code and what grids and resources are available, with a prospect of what will be available in the near future.

  10. Crossing the Implementation Chasm: A Proposal for Bold Action

    PubMed Central

    Lorenzi, Nancy M.; Novak, Laurie L.; Weiss, Jacob B.; Gadd, Cynthia S.; Unertl, Kim M.

    2008-01-01

    As health care organizations dramatically increase investment in information technology (IT) and the scope of their IT projects, implementation failures become critical events. Implementation failures cause stress on clinical units, increase risk to patients, and result in massive costs that are often not recoverable. At an estimated 28% success rate, the current level of investment defies management logic. This paper asserts that there are “chasms” in IT implementations that represent risky stages in the process. Contributors to the chasms are classified into four categories: design, management, organization, and assessment. The American College of Medical Informatics symposium participants recommend bold action to better understand problems and challenges in implementation and to improve the ability of organizations to bridge these implementation chasms. The bold action includes the creation of a Team Science for Implementation strategy that allows for participation from multiple institutions to address the long standing and costly implementation issues. The outcomes of this endeavor will include a new focus on interdisciplinary research and an inter-organizational knowledge base of strategies and methods to optimize implementations and subsequent achievement of organizational objectives. PMID:18308985

  11. The relationship between time to peak of fMRI-BOLD responses and difficulty of a task suggests neuronal origins to the BOLD contrast

    NASA Astrophysics Data System (ADS)

    Alonso, Benito De Celis

    2012-10-01

    Functional magnetic resonance imaging (fMRI) and its blood oxygen level contrast (BOLD) was used to study the response of the vibrissa system of rodents to different combinations of bilateral stimulations. We found that difficult tasks to perform, associated with longer neuronal periods, were correlated with larger times to peak (ttp) for the BOLD signal. This delay depended on number of vibrissa stimulated and the region of brain studied. By contrast, delay was not affected by which hemisphere was stimulated.

  12. BOLD fMRI Correlation Reflects Frequency-Specific Neuronal Correlation.

    PubMed

    Hipp, Joerg F; Siegel, Markus

    2015-05-18

    The brain-wide correlation of hemodynamic signals as measured with BOLD fMRI is widely studied as a proxy for integrative brain processes. However, the relationship between hemodynamic correlation structure and neuronal correlation structure remains elusive. We investigated this relation using BOLD fMRI and spatially co-registered, source-localized MEG in resting humans. We found that across the entire cortex BOLD correlation reflected the co-variation of frequency-specific neuronal activity. Resolving the relation between electrophysiological and hemodynamic correlation structures locally in cortico-cortical connection space, we found that this relation was subject specific and even persisted on the centimeter scale. At first sight, this relation was strongest in the alpha to beta frequency range (8-32 Hz). However, correcting for differences in signal-to-noise ratios across electrophysiological frequencies, we found that the relation extended over a broad frequency range from 2 to 128 Hz. Moreover, we found that the frequency with the tightest link to BOLD correlation varied across cortico-cortical space. For every cortico-cortical connection, we show which specific correlated oscillations were most related to BOLD correlations. Our work provides direct evidence for the neuronal origin of BOLD correlation structure. Moreover, our work suggests that, across the brain, BOLD correlation reflects correlation of different types of neuronal network processes and that frequency-specific electrophysiological correlation provides information about large-scale neuronal interactions complementary to BOLD fMRI. PMID:25936551

  13. Frontal cortex BOLD signal changes in premanifest Huntington disease

    PubMed Central

    Ferraro, Stefania; Piacentini, Sylvie; Mandelli, Maria L.; Bertolino, Nicola; Ghielmetti, Francesco; Epifani, Francesca; Nigri, Anna; Taroni, Franco; Bruzzone, Maria G.; Donato, Stefano Di; Savoiardo, Mario; Mariotti, Caterina; Grisoli, Marina

    2014-01-01

    Objective: To identify a possible functional imaging biomarker sensitive to the earliest neural changes in premanifest Huntington disease (preHD), allowing early therapeutic approaches aimed at preventing or delaying clinical onset. Methods: Sixteen preHD and 18 healthy participants were submitted to anatomical acquisitions and functional MRI (fMRI) acquisitions during the execution of the exogenous covert orienting of attention task. Due to strong a priori hypothesis, all fMRI correlation analyses were restricted to the following: (1) the frontal oculomotor cortex identified by the means of a prosaccadic task, comprising frontal eye fields and supplementary frontal eye fields; and (2) the data collected during inhibition of return, a phenomenon occurring during the executed task. In preHD, multiple regression analysis was performed between fMRI data and the probability to develop the disease in the next 5 years (p5HD). Moreover, mean blood oxygen level–dependent (BOLD) signal changes in the frontal oculomotor cortex and striatal volumes were linearly correlated with p5HD. Results: In preHD, multiple regression analysis showed that clusters of activity strongly correlated with p5HD in the right frontal oculomotor cortex. Importantly, mean BOLD signal changes of this region correlated with p5HD (r2 = 0.52). Among the considered striatal volumes, a modest correlation (r2 = 0.29) was observed in the right putamen and p5HD. Conclusion: fMRI activations in the right-frontal oculomotor cortex during inhibition of return can be considered a possible functional imaging biomarker in preHD. PMID:24898924

  14. BOLD signal and functional connectivity associated with loving kindness meditation.

    PubMed

    Garrison, Kathleen A; Scheinost, Dustin; Constable, R Todd; Brewer, Judson A

    2014-05-01

    Loving kindness is a form of meditation involving directed well-wishing, typically supported by the silent repetition of phrases such as "may all beings be happy," to foster a feeling of selfless love. Here we used functional magnetic resonance imaging to assess the neural substrate of loving kindness meditation in experienced meditators and novices. We first assessed group differences in blood oxygen level-dependent (BOLD) signal during loving kindness meditation. We next used a relatively novel approach, the intrinsic connectivity distribution of functional connectivity, to identify regions that differ in intrinsic connectivity between groups, and then used a data-driven approach to seed-based connectivity analysis to identify which connections differ between groups. Our findings suggest group differences in brain regions involved in self-related processing and mind wandering, emotional processing, inner speech, and memory. Meditators showed overall reduced BOLD signal and intrinsic connectivity during loving kindness as compared to novices, more specifically in the posterior cingulate cortex/precuneus (PCC/PCu), a finding that is consistent with our prior work and other recent neuroimaging studies of meditation. Furthermore, meditators showed greater functional connectivity during loving kindness between the PCC/PCu and the left inferior frontal gyrus, whereas novices showed greater functional connectivity during loving kindness between the PCC/PCu and other cortical midline regions of the default mode network, the bilateral posterior insula lobe, and the bilateral parahippocampus/hippocampus. These novel findings suggest that loving kindness meditation involves a present-centered, selfless focus for meditators as compared to novices. PMID:24944863

  15. Data-driven optimization and evaluation of 2D EPI and 3D PRESTO for BOLD fMRI at 7 Tesla: I. Focal coverage.

    PubMed

    Barry, Robert L; Strother, Stephen C; Gatenby, J Christopher; Gore, John C

    2011-04-01

    Blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) is commonly performed using 2D single-shot echo-planar imaging (EPI). However, single-shot EPI at 7 Tesla (T) often suffers from significant geometric distortions (due to low bandwidth (BW) in the phase-encode (PE) direction) and amplified physiological noise. Recent studies have suggested that 3D multi-shot sequences such as PRESTO may offer comparable BOLD contrast-to-noise ratio with increased volume coverage and decreased geometric distortions. Thus, a four-way group-level comparison was performed between 2D and 3D acquisition sequences at two in-plane resolutions. The quality of fMRI data was evaluated via metrics of prediction and reproducibility using NPAIRS (Non-parametric Prediction, Activation, Influence and Reproducibility re-Sampling). Group activation maps were optimized for each acquisition strategy by selecting the number of principal components that jointly maximized prediction and reproducibility, and showed good agreement in sensitivity and specificity for positive BOLD changes. High-resolution EPI exhibited the highest z-scores of the four acquisition sequences; however, it suffered from the lowest BW in the PE direction (resulting in the worst geometric distortions) and limited spatial coverage, and also caused some subject discomfort through peripheral nerve stimulation (PNS). In comparison, PRESTO also had high z-scores (higher than EPI for a matched in-plane resolution), the highest BW in the PE direction (producing images with superior geometric fidelity), the potential for whole-brain coverage, and no reported PNS. This study provides evidence to support the use of 3D multi-shot acquisition sequences in lieu of single-shot EPI for ultra high field BOLD fMRI at 7T. PMID:21232613

  16. Chronic obstructive pulmonary disease mortality and prevalence: the associations with smoking and poverty—a BOLD analysis

    PubMed Central

    Burney, Peter; Jithoo, Anamika; Kato, Bernet; Janson, Christer; Mannino, David; Niżankowska-Mogilnicka, Ewa; Studnicka, Michael; Tan, Wan; Bateman, Eric; Koçabas, Ali; Vollmer, William M; Gislason, Thorarrin; Marks, Guy; Koul, Parvaiz A; Harrabi, Imed; Gnatiuc, Louisa; Buist, Sonia

    2014-01-01

    Background Chronic obstructive pulmonary disease (COPD) is a commonly reported cause of death and associated with smoking. However, COPD mortality is high in poor countries with low smoking rates. Spirometric restriction predicts mortality better than airflow obstruction, suggesting that the prevalence of restriction could explain mortality rates attributed to COPD. We have studied associations between mortality from COPD and low lung function, and between both lung function and death rates and cigarette consumption and gross national income per capita (GNI). Methods National COPD mortality rates were regressed against the prevalence of airflow obstruction and spirometric restriction in 22 Burden of Obstructive Lung Disease (BOLD) study sites and against GNI, and national smoking prevalence. The prevalence of airflow obstruction and spirometric restriction in the BOLD sites were regressed against GNI and mean pack years smoked. Results National COPD mortality rates were more strongly associated with spirometric restriction in the BOLD sites (<60 years: men rs=0.73, p=0.0001; women rs=0.90, p<0.0001; 60+ years: men rs=0.63, p=0.0022; women rs=0.37, p=0.1) than obstruction (<60 years: men rs=0.28, p=0.20; women rs=0.17, p<0.46; 60+ years: men rs=0.28, p=0.23; women rs=0.22, p=0.33). Obstruction increased with mean pack years smoked, but COPD mortality fell with increased cigarette consumption and rose rapidly as GNI fell below US$15 000. Prevalence of restriction was not associated with smoking but also increased rapidly as GNI fell below US$15 000. Conclusions Smoking remains the single most important cause of obstruction but a high prevalence of restriction associated with poverty could explain the high ‘COPD’ mortality in poor countries. PMID:24353008

  17. The importance of the negative blood-oxygenation-level-dependent (BOLD) response in the somatosensory cortex.

    PubMed

    Klingner, Carsten M; Brodoehl, Stefan; Witte, Otto W

    2015-01-01

    In recent years, multiple studies have shown task-induced negative blood-oxygenation-level-dependent responses (NBRs) in multiple brain regions in humans and animals. Converging evidence suggests that task-induced NBRs can be interpreted in terms of decreased neuronal activity. However, the vascular and metabolic dynamics and functional importance of the NBR are highly debated. Here, we review studies investigating the origin and functional importance of the NBR, with special attention to the somatosensory cortex. PMID:26057216

  18. The role of social attraction and its link with boldness in the collective movements of three-spined sticklebacks

    PubMed Central

    Jolles, Jolle W.; Fleetwood-Wilson, Adeline; Nakayama, Shinnosuke; Stumpe, Martin C.; Johnstone, Rufus A.; Manica, Andrea

    2015-01-01

    Social animals must time and coordinate their behaviour to ensure the benefits of grouping, resulting in collective movements and the potential emergence of leaders and followers. However, individuals often differ consistently from one another in how they cope with their environment, a phenomenon known as animal personality, which may affect how individuals use coordination rules and requiring them to compromise. Here we tracked the movements of pairs of three-spined sticklebacks, Gasterosteus aculeatus, separated by a transparent partition that allowed them to observe and interact with one another in a context containing cover. Individuals differed consistently in their tendency to approach their partner's compartment during collective movements. The strength of this social attraction was positively correlated with the behavioural coordination between members of a pair but was negatively correlated with an individual's tendency to lead. Social attraction may form part of a broader behavioural syndrome as it was predicted by the boldness of an individual, measured in isolation prior to the observation of pairs, and by the boldness of the partner. We found that bolder fish, and those paired with bolder partners, tended to approach their partner's compartment less closely. These findings provide important insights into the mechanisms that govern the dynamics and functioning of social groups and the emergence and maintenance of consistent behavioural differences. PMID:25598543

  19. Analysis of Neural-BOLD Coupling Through Four Models of the Neural Metabolic Demand

    PubMed Central

    Tyler, Christopher W.; Likova, Lora T.; Nicholas, Spero C.

    2015-01-01

    The coupling of the neuronal energetics to the blood-oxygen-level-dependent (BOLD) response is still incompletely understood. To address this issue, we compared the fits of four plausible models of neurometabolic coupling dynamics to available data for simultaneous recordings of the local field potential and the local BOLD response recorded from monkey primary visual cortex over a wide range of stimulus durations. The four models of the metabolic demand driving the BOLD response were: direct coupling with the overall LFP; rectified coupling to the LFP; coupling with a slow adaptive component of the implied neural population response; and coupling with the non-adaptive intracellular input signal defined by the stimulus time course. Taking all stimulus durations into account, the results imply that the BOLD response is most closely coupled with metabolic demand derived from the intracellular input waveform, without significant influence from the adaptive transients and nonlinearities exhibited by the LFP waveform. PMID:26696806

  20. BOLD fractional contribution to resting-state functional connectivity above 0.1 Hz.

    PubMed

    Chen, Jingyuan E; Glover, Gary H

    2015-02-15

    Blood oxygen level dependent (BOLD) spontaneous signals from resting-state (RS) brains have typically been characterized by low-pass filtered timeseries at frequencies ≤ 0.1 Hz, and studies of these low-frequency fluctuations have contributed exceptional understanding of the baseline functions of our brain. Very recently, emerging evidence has demonstrated that spontaneous activities may persist in higher frequency bands (even up to 0.8 Hz), while presenting less variable network patterns across the scan duration. However, as an indirect measure of neuronal activity, BOLD signal results from an inherently slow hemodynamic process, which in fact might be too slow to accommodate the observed high-frequency functional connectivity (FC). To examine whether the observed high-frequency spontaneous FC originates from BOLD contrast, we collected RS data as a function of echo time (TE). Here we focus on two specific resting state networks - the default-mode network (DMN) and executive control network (ECN), and the major findings are fourfold: (1) we observed BOLD-like linear TE-dependence in the spontaneous activity at frequency bands up to 0.5 Hz (the maximum frequency that can be resolved with TR=1s), supporting neural relevance of the RSFC at a higher frequency range; (2) conventional models of hemodynamic response functions must be modified to support resting state BOLD contrast, especially at higher frequencies; (3) there are increased fractions of non-BOLD-like contributions to the RSFC above the conventional 0.1 Hz (non-BOLD/BOLD contrast at 0.4-0.5 Hz is ~4 times that at <0.1 Hz); and (4) the spatial patterns of RSFC are frequency-dependent. Possible mechanisms underlying the present findings and technical concerns regarding RSFC above 0.1 Hz are discussed. PMID:25497686

  1. Functional connectivity in BOLD and CBF data: Similarity and reliability of resting brain networks

    PubMed Central

    Jann, Kay; Gee, Dylan G.; Kilroy, Emily; Schwab, Simon; Smith, Robert X.; Cannon, Tyrone D.; Wang, Danny J.J.

    2014-01-01

    Resting-state functional connectivity (FC) fMRI (rs-fcMRI) offers an appealing approach to mapping the brain’s intrinsic functional organization. Blood oxygen level dependent (BOLD) and arterial spin labeling (ASL) are the two main rs-fcMRI approaches to assess alterations in brain networks associated with individual differences, behavior and psychopathology. While the BOLD signal is stronger with a higher temporal resolution, ASL provides quantitative, direct measures of the physiology and metabolism of specific networks. This study systematically investigated the similarity and reliability of resting brain networks (RBNs) in BOLD and ASL. A 2 × 2 × 2 factorial design was employed where each subject underwent repeated BOLD and ASL rs-fcMRI scans on two occasions on two MRI scanners respectively. Both independent and joint FC analyses revealed common RBNs in ASL and BOLD rs-fcMRI with a moderate to high level of spatial overlap, verified by Dice Similarity Coefficients. Test–retest analyses indicated more reliable spatial network patterns in BOLD (average modal Intraclass Correlation Coefficients: 0.905 ± 0.033 between-sessions; 0.885 ± 0.052 between-scanners) than ASL (0.545 ± 0.048; 0.575 ± 0.059). Nevertheless, ASL provided highly reproducible (0.955 ± 0.021; 0.970 ± 0.011) network-specific CBF measurements. Moreover, we observed positive correlations between regional CBF and FC in core areas of all RBNs indicating a relationship between network connectivity and its baseline metabolism. Taken together, the combination of ASL and BOLD rs-fcMRI provides a powerful tool for characterizing the spatiotemporal and quantitative properties of RBNs. These findings pave the way for future BOLD and ASL rs-fcMRI studies in clinical populations that are carried out across time and scanners. PMID:25463468

  2. Test-Retest Stability of Calibrated BOLD-fMRI in HIV− and HIV+ Subjects

    PubMed Central

    Ances, Beau; Vaida, Florin; Ellis, Ronald; Buxton, Richard

    2010-01-01

    Subject performance, scanner hardware, or biological factors can affect single session neuroimaging measures. Stability studies using calibrated blood oxygenation level dependent functional magnetic resonance imaging (BOLD-fMRI) have been performed in health but not disease. We utilized calibrated BOLD-fMRI to determine the effects of HIV on neurovascular coupling. 6 clinically stable HIV-infected patients (HIV+) and 10 seronegative controls (HIV−) were scanned at two separate sessions approximately 3 months apart. Both mild hypercapnia (5% CO2) exposure and a visual functional activation task were performed. Intra-class correlation coefficients (ICC) and inter-subject variance were determined for calibrated BOLD-fMRI measures (baseline cerebral blood flow (CBF), functional CBF, BOLD, and cerebral metabolic rate of oxygen consumption (CMRO2) changes) for HIV+ and HIV− subjects. The two groups did not differ in age, sex, or education. HIV+ subjects had lower mean baseline CBF (p <0.04, Cohen’s d=−1.07) and functional BOLD responses (p< 0.001, Cohen’s d=−2.47) and a trend towards a decrease in mean functional CBF responses (p= 0.07, Cohen’s d=−0.92) despite similar mean functional CMRO2 changes (p= 0.71, Cohen’s d=0.19). The stability of each calibrated BOLD-fMRI measure, as assessed by ICC, was significantly lower for HIV+ subjects. In addition, HIV+ participants had greater inter-subject variability for baseline CBF (p <0.02), functional BOLD (p< 0.001), CBF (p< 0.001), and CMRO2 (p< 0.002) responses. Our results demonstrate that calibrated BOLD-fMRI measures have excellent stability within healthy controls. In contrast, these values have greater variability in clinically stable HIV+ subjects and may reflect alterations in coupling between CBF and CMRO2 with disease. PMID:20932922

  3. Development of BOLD signal hemodynamic responses in the human brain

    PubMed Central

    Arichi, Tomoki; Fagiolo, Gianlorenzo; Varela, Marta; Melendez-Calderon, Alejandro; Allievi, Alessandro; Merchant, Nazakat; Tusor, Nora; Counsell, Serena J.; Burdet, Etienne; Beckmann, Christian F.; Edwards, A. David

    2012-01-01

    In the rodent brain the hemodynamic response to a brief external stimulus changes significantly during development. Analogous changes in human infants would complicate the determination and use of the hemodynamic response function (HRF) for functional magnetic resonance imaging (fMRI) in developing populations. We aimed to characterize HRF in human infants before and after the normal time of birth using rapid sampling of the Blood Oxygen Level Dependent (BOLD) signal. A somatosensory stimulus and an event related experimental design were used to collect data from 10 healthy adults, 15 sedated infants at term corrected post menstrual age (PMA) (median 41 + 1 weeks), and 10 preterm infants (median PMA 34 + 4 weeks). A positive amplitude HRF waveform was identified across all subject groups, with a systematic maturational trend in terms of decreasing time-to-peak and increasing positive peak amplitude associated with increasing age. Application of the age-appropriate HRF models to fMRI data significantly improved the precision of the fMRI analysis. These findings support the notion of a structured development in the brain's response to stimuli across the last trimester of gestation and beyond. PMID:22776460

  4. Repetition suppression: a means to index neural representations using BOLD?

    PubMed

    Barron, Helen C; Garvert, Mona M; Behrens, Timothy E J

    2016-10-01

    Understanding how the human brain gives rise to complex cognitive processes remains one of the biggest challenges of contemporary neuroscience. While invasive recording in animal models can provide insight into neural processes that are conserved across species, our understanding of cognition more broadly relies upon investigation of the human brain itself. There is therefore an imperative to establish non-invasive tools that allow human brain activity to be measured at high spatial and temporal resolution. In recent years, various attempts have been made to refine the coarse signal available in functional magnetic resonance imaging (fMRI), providing a means to investigate neural activity at the meso-scale, i.e. at the level of neural populations. The most widely used techniques include repetition suppression and multivariate pattern analysis. Human neuroscience can now use these techniques to investigate how representations are encoded across neural populations and transformed by relevant computations. Here, we review the physiological basis, applications and limitations of fMRI repetition suppression with a brief comparison to multivariate techniques. By doing so, we show how fMRI repetition suppression holds promise as a tool to reveal complex neural mechanisms that underlie human cognitive function.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. PMID:27574308

  5. To Boldly Go: Practical Career Advice for Young Scientists

    NASA Astrophysics Data System (ADS)

    Fiske, P.

    1998-05-01

    Young scientists in nearly every field are finding the job market of the 1990's a confusing and frustrating place. Ph.D. supply is far larger than that needed to fill entry-level positions in "traditional" research careers. More new Ph.D. and Master's degree holders are considering a wider range of careers in and out of science, but feel ill-prepared and uninformed about their options. Some feel their Ph.D. training has led them to a dead-end. I present a thorough and practical overview to the process of career planning and job hunting in the 1990's, from the perspective of a young scientist. I cover specific steps that young scientists can take to broaden their horizons, strengthen their skills, and present their best face to potential employers. An important part of this is the realization that most young scientists possess a range of valuable "transferable skills" that are highly sought after by employers in and out of science. I will summarize the specifics of job hunting in the 90's, including informational interviewing, building your network, developing a compelling CV and resume, cover letters, interviewing, based on my book "To Boldly Go: A Practical Career Guide for Scientists". I will also identify other resources available for young scientists. Finally, I will highlight individual stories of Ph.D.-trained scientists who have found exciting and fulfilling careers outside the "traditional" world of academia.

  6. Effects of anesthesia on BOLD signal and neuronal activity in the somatosensory cortex.

    PubMed

    Aksenov, Daniil P; Li, Limin; Miller, Michael J; Iordanescu, Gheorghe; Wyrwicz, Alice M

    2015-11-01

    Most functional magnetic resonance imaging (fMRI) animal studies rely on anesthesia, which can induce a variety of drug-dependent physiological changes, including depression of neuronal activity and cerebral metabolism as well as direct effects on the vasculature. The goal of this study was to characterize the effects of anesthesia on the BOLD signal and neuronal activity. Simultaneous fMRI and electrophysiology were used to measure changes in single units (SU), multi-unit activity (MUA), local field potentials (LFP), and the blood oxygenation level-dependent (BOLD) response in the somatosensory cortex during whisker stimulation of rabbits before, during and after anesthesia with fentanyl or isoflurane. Our results indicate that anesthesia modulates the BOLD signal as well as both baseline and stimulus-evoked neuronal activity, and, most significantly, that the relationship between the BOLD and electrophysiological signals depends on the type of anesthetic. Specifically, the behavior of LFP observed under isoflurane did not parallel the behavior of BOLD, SU, or MUA. These findings suggest that the relationship between these signals may not be straightforward. BOLD may scale more closely with the best measure of the excitatory subcomponents of the underlying neuronal activity, which may vary according to experimental conditions that alter the excitatory/inhibitory balance in the cortex. PMID:26104288

  7. Functional MRI during sleep: BOLD signal decreases and their electrophysiological correlates.

    PubMed

    Czisch, Michael; Wehrle, Renate; Kaufmann, Christian; Wetter, Thomas C; Holsboer, Florian; Pollmächer, Thomas; Auer, Dorothee P

    2004-07-01

    Prominent local decreases in blood oxygenation level (BOLD) can be observed by functional magnetic resonance imaging (fMRI) upon acoustic stimulation during sleep. The goal of this study was to further characterize this BOLD signal decrease with respect to corresponding neurophysiological phenomena using a simultaneous electroencephalography (EEG)/fMRI approach in sleeping human subjects. Healthy volunteers were subjected to acoustic stimulation during non-rapid eye movement (NREM) sleep. On the basis of statistical parametric maps, the correlations between the fMRI response (both amplitude and extent of the BOLD response) and the concomittant changes in the EEG (delta power and K-complexes) were calculated. Amplitude and extent of the stimulus-induced negative BOLD effect correlated positively with measures of EEG synchronization, namely an increase in the number of K-complexes and EEG delta power. Stimulus-induced BOLD decreases were most prominent during light (stage 2) NREM sleep and disappeared during slow wave sleep, indicating an influence of the baseline degree of hyperpolarization. Our observations provide first evidence that 'negative' BOLD signal changes during human sleep are associated with electrophysiological indicators of altered neuronal activity. Increased number of K-complexes and delta power reflecting hyperpolarization suggests true cortical deactivation upon stimulus presentation. This sleep stage-dependent deactivation might serve to protect the brain from arousing stimuli, particularly during the light phases of sleep shortly after sleep onset. PMID:15233766

  8. Quantitative BOLD: Mapping of Human Cerebral Deoxygenated Blood Volume and Oxygen Extraction Fraction: Default State

    PubMed Central

    He, Xiang; Yablonskiy, Dmitriy A.

    2014-01-01

    Since Ogawa et al. (Proc Natl Acad Sci USA 1990;87:9868–9872) made the fundamental discovery of blood oxygenation level-dependent (BOLD) contrast in MRI, most efforts have been directed toward the study of dynamic BOLD (i.e., temporal changes in the MRI signal during changes in brain activity). However, very little progress has been made in elucidating the nature of BOLD contrast during the resting or baseline state of the brain, which is important for understanding normal human performance because it accounts for most of the enormous energy budget of the brain. It is also crucial for deciphering the consequences of baseline-state impairment by cerebral vascular diseases. The objective of this study was to develop a BOLD MR-based method that allows quantitative evaluation of tissue hemodynamic parameters, such as the blood volume, deoxyhemoglobin concentration, and oxygen extraction fraction (OEF). The proposed method, which we have termed quantitative BOLD (qBOLD), is based on an MR signal model that incorporates prior knowledge about brain tissue composition and considers signals from gray matter (GM), white matter (WM), cerebrospinal fluid (CSF), and blood. A 2D gradient-echo sampling of spin-echo (GESSE) pulse sequence is used for the acquisition of the MRI signal. The method is applied to estimate the hemodynamic parameters of the normal human brain in the baseline state. PMID:17191227

  9. Individual boldness is linked to protective shell shape in aquatic snails

    PubMed Central

    Ahlgren, Johan; Chapman, Ben B.; Nilsson, P. Anders; Brönmark, Christer

    2015-01-01

    The existence of consistent individual differences in behaviour (‘animal personality’) has been well documented in recent years. However, how such individual variation in behaviour is maintained over evolutionary time is an ongoing conundrum. A well-studied axis of animal personality is individual variation along a bold–shy continuum, where individuals differ consistently in their propensity to take risks. A predation-risk cost to boldness is often assumed, but also that the reproductive benefits associated with boldness lead to equivalent fitness outcomes between bold and shy individuals over a lifetime. However, an alternative or complementary explanation may be that bold individuals phenotypically compensate for their risky lifestyle to reduce predation costs, for instance by investing in more pronounced morphological defences. Here, we investigate the ‘phenotypic compensation’ hypothesis, i.e. that bold individuals exhibit more pronounced anti-predator defences than shy individuals, by relating shell shape in the aquatic snail Radix balthica to an index of individual boldness. Our analyses find a strong relationship between risk-taking propensity and shell shape in this species, with bolder individuals exhibiting a more defended shell shape than shy individuals. We suggest that this supports the ‘phenotypic compensation’ hypothesis and sheds light on a previously poorly studied mechanism to promote the maintenance of personality variation among animals. PMID:25904320

  10. Complex relationship between BOLD signal and synchronization/desynchronization of human brain MEG oscillations.

    PubMed

    Winterer, Georg; Carver, Frederick W; Musso, Francesco; Mattay, Venkata; Weinberger, Daniel R; Coppola, Richard

    2007-09-01

    Functional magnetic resonance imaging (fMRI) depends on the coupling of cerebral blood flow, energy demand, and neural activity. The precise nature of this interaction, however, is poorly understood. A positive correlation between BOLD-response and cortically generated local field potentials, which reflect the weighted average of synchronized dentrosomatic components of pyramidal synaptic signals, has been demonstrated. Likewise, positive BOLD-responses have been reported in conjunction with scalp-recorded synchronized electromagnetic activity by a number of groups. However, it is not yet clear how the opposite electromagnetic pattern, i.e. cortical desynchronization, is related to the BOLD signal. To address this question, we conducted a combined event-related fMRI and 275 sensor whole-head MEG study during identical visual two-choice reaction time task conditions in 10 human subjects. We found complex sequences of MEG-synchronization and desynchronization across a wide frequency range in the visual and motor area in close correspondence with "locales" of positive BOLD-responses. These results indicate that a correspondence of positive BOLD-responses is not exclusively found for cortical synchronization but also for desynchronization, suggesting that the relationship between BOLD signals and electromagnetic activity might be more complex than previously thought. PMID:17133396

  11. Bold, smart, dangerous and evil: perceived correlates of core psychopathic traits among jury panel members.

    PubMed

    Edens, John F; Clark, John; Smith, Shannon Toney; Cox, Jennifer; Kelley, Shannon E

    2013-05-01

    Relatively few studies have investigated how laypersons perceive psychopathy, what factors they believe to be commonly associated with this disorder, or what rater personality characteristics might predict perceived psychopathic traits of the target person. An ethnically diverse sample of 285 US community members attending jury duty reviewed a case vignette regarding a capital murder trial and then rated (1) their perceptions of the defendant's psychopathic characteristics loosely based on trait indicators from the Psychopathy Checklist-Revised; (2) other characteristics of the defendant that might be associated with psychopathy (e.g. intelligence, violence potential); and (3) their own personality, using a very brief measure of Five Factor traits. Multivariate regression analyses indicated that participant ratings of psychopathy pertaining to the defendant were strongly associated with ratings on measures of his perceived boldness (i.e. social dominance and fearlessness), intelligence, violence potential, and perceptions that he was 'evil'. Big Five personality characteristics of the layperson raters, however, were only modestly associated with their ratings of psychopathy for the defendant. We review these results in terms of the potential stigmatization of individuals labelled as 'psychopaths' in forensic settings. PMID:24343940

  12. Steady-state BOLD Response to Higher-order Cognition Modulates Low-Frequency Neural Oscillations.

    PubMed

    Wang, Yi-Feng; Dai, Gang-Shu; Liu, Feng; Long, Zhi-Liang; Yan, Jin H; Chen, Hua-Fu

    2015-12-01

    Steady-state responses (SSRs) reflect the synchronous neural oscillations evoked by noninvasive and consistently repeated stimuli at the fundamental or harmonic frequencies. The steady-state evoked potentials (SSEPs; the representative form of the SSRs) have been widely used in the cognitive and clinical neurosciences and brain-computer interface research. However, the steady-state evoked potentials have limitations in examining high-frequency neural oscillations and basic cognition. In addition, synchronous neural oscillations in the low frequency range (<1 Hz) and in higher-order cognition have received a little attention. Therefore, we examined the SSRs in the low frequency range using a new index, the steady-state BOLD responses (SSBRs) evoked by semantic stimuli. Our results revealed that the significant SSBRs were induced at the fundamental frequency of stimuli and the first harmonic in task-related regions, suggesting the enhanced variability of neural oscillations entrained by exogenous stimuli. The SSBRs were independent of neurovascular coupling and characterized by sensorimotor bias, an indication of regional-dependent neuroplasticity. Furthermore, the amplitude of SSBRs may predict behavioral performance and show the psychophysiological relevance. Our findings provide valuable insights into the understanding of the SSRs evoked by higher-order cognition and how the SSRs modulate low-frequency neural oscillations. PMID:26284992

  13. Increased BOLD signal in the fusiform gyrus during implicit emotion processing in anorexia nervosa☆

    PubMed Central

    Fonville, Leon; Giampietro, Vincent; Surguladze, Simon; Williams, Steven; Tchanturia, Kate

    2013-01-01

    Background The behavioural literature in anorexia nervosa (AN) has suggested impairments in psychosocial functioning and studies using facial expression processing tasks (FEPT) have reported poorer recognition and slower identification of emotions. Methods Functional magnetic resonance imaging (fMRI) was used alongside a FEPT, depicting neutral, mildly happy and happy faces, to examine the neural correlates of implicit emotion processing in AN. Participants were instructed to specify the gender of the faces. Levels of depression, anxiety, obsessive–compulsive symptoms and eating disorder behaviour were obtained and principal component analysis (PCA) was performed to acquire uncorrelated variables. Results fMRI analysis revealed a greater blood-oxygenation level dependent (BOLD) response in AN in the right fusiform gyrus to all facial expressions. This response showed a linear increase with the happiness of the facial expression and was found to be stronger in those not taking medication. PCA analysis revealed a single component indicating a greater level of general clinical symptoms. Conclusion Neuroimaging findings would suggest that alterations in implicit emotion processing in AN occur during early perceptual processing of social signals and illustrate greater engagement on the FEPT. The lack of separate components using PCA suggests that the questionnaires used might not be suited as predictive measures. PMID:24501698

  14. Influence of BOLD Contributions to Diffusion fMRI Activation of the Visual Cortex

    PubMed Central

    Williams, Rebecca J.; Reutens, David C.; Hocking, Julia

    2016-01-01

    Reliance on the hemodynamic response as a surrogate marker of neural activity imposes an intrinsic limit on the spatial specificity of functional MRI. An alternative approach based on diffusion-weighted functional MRI (DfMRI) has been reported as a contrast less reliant on hemodynamic effects, however current evidence suggests that both hemodynamic and unique neural sources contribute to the diffusion signal. Here we compare activation patterns obtained with the standard blood oxygenation level-dependent (BOLD) contrast to DfMRI in order to gain a deeper understanding of how the BOLD proportion contributes to the observable diffusion signal. Both individual and group-level activation patterns obtained with DfMRI and BOLD to a visual field stimulation paradigm were analyzed. At the individual level, the DfMRI contrast showed a strong, positive relationship between the volumes of cortex activated in response to quadrant- and hemi-field visual stimulation. This was not observed in the corresponding BOLD experiment. Overall, the DfMRI response indicated less between-subject variability, with random effects analyses demonstrating higher statistical values at the peak voxel for DfMRI. Furthermore, the spatial extent of the activation was more restricted to the primary visual region for DfMRI than BOLD. However, the diffusion signal was sensitive to the hemodynamic response in a manner dependent on experimental manipulation. It was also limited by its low signal-to-noise ratio (SNR), demonstrating lower sensitivity than BOLD. Together these findings both support DfMRI as a contrast that bears a closer spatial relationship to the underlying neural activity than BOLD, and raise important caveats regarding its utilization. Models explaining the DfMRI signal change need to consider the dynamic vascular contributions that may vary with neural activity. PMID:27445654

  15. White matter microstructure contributes to age-related declines in task-induced deactivation of the default mode network.

    PubMed

    Brown, Christopher A; Hakun, Jonathan G; Zhu, Zude; Johnson, Nathan F; Gold, Brian T

    2015-01-01

    Task-induced deactivations within the brain's default mode network (DMN) are thought to reflect suppression of endogenous thought processes to support exogenous goal-directed task processes. Older adults are known to show reductions in deactivation of the DMN compared to younger adults. However, little is understood about the mechanisms contributing to functional dysregulation of the DMN in aging. Here, we explored the relationships between functional modulation of the DMN and age, task performance and white matter (WM) microstructure. Participants were 117 adults ranging from 25 to 83 years old who completed an fMRI task switching paradigm, including easy (single) and difficult (mixed) conditions, and underwent diffusion tensor imaging (DTI). The fMRI results revealed an age by condition interaction (β = -0.13, t = -3.16, p = 0.002) such that increasing age affected deactivation magnitude during the mixed condition (β = -0.29, t = -3.24 p = 0.002) but not the single condition (p = 0.58). Additionally, there was a WM by condition interaction (β = 0.10, t = 2.33, p = 0.02) such that decreasing WM microstructure affected deactivation magnitude during the mixed condition (β = 0.30, t = 3.42 p = 0.001) but not the single condition (p = 0.17). Critically, mediation analyses indicated that age-related reductions in WM microstructure accounted for the relationship between age and DMN deactivation in the more difficult mixed condition. These findings suggest that age-related declines in anatomical connectivity between DMN regions contribute to functional dysregulation within the DMN in older adults. PMID:26500549

  16. White matter microstructure contributes to age-related declines in task-induced deactivation of the default mode network

    PubMed Central

    Brown, Christopher A.; Hakun, Jonathan G.; Zhu, Zude; Johnson, Nathan F.; Gold, Brian T.

    2015-01-01

    Task-induced deactivations within the brain’s default mode network (DMN) are thought to reflect suppression of endogenous thought processes to support exogenous goal-directed task processes. Older adults are known to show reductions in deactivation of the DMN compared to younger adults. However, little is understood about the mechanisms contributing to functional dysregulation of the DMN in aging. Here, we explored the relationships between functional modulation of the DMN and age, task performance and white matter (WM) microstructure. Participants were 117 adults ranging from 25 to 83 years old who completed an fMRI task switching paradigm, including easy (single) and difficult (mixed) conditions, and underwent diffusion tensor imaging (DTI). The fMRI results revealed an age by condition interaction (β = −0.13, t = −3.16, p = 0.002) such that increasing age affected deactivation magnitude during the mixed condition (β = −0.29, t = −3.24 p = 0.002) but not the single condition (p = 0.58). Additionally, there was a WM by condition interaction (β = 0.10, t = 2.33, p = 0.02) such that decreasing WM microstructure affected deactivation magnitude during the mixed condition (β = 0.30, t = 3.42 p = 0.001) but not the single condition (p = 0.17). Critically, mediation analyses indicated that age-related reductions in WM microstructure accounted for the relationship between age and DMN deactivation in the more difficult mixed condition. These findings suggest that age-related declines in anatomical connectivity between DMN regions contribute to functional dysregulation within the DMN in older adults. PMID:26500549

  17. Dopamine-induced dissociation of BOLD and neural activity in macaque visual cortex.

    PubMed

    Zaldivar, Daniel; Rauch, Alexander; Whittingstall, Kevin; Logothetis, Nikos K; Goense, Jozien

    2014-12-01

    Neuromodulators determine how neural circuits process information during cognitive states such as wakefulness, attention, learning, and memory. fMRI can provide insight into their function and dynamics, but their exact effect on BOLD responses remains unclear, limiting our ability to interpret the effects of changes in behavioral state using fMRI. Here, we investigated the effects of dopamine (DA) injections on neural responses and haemodynamic signals in macaque primary visual cortex (V1) using fMRI (7T) and intracortical electrophysiology. Aside from DA's involvement in diseases such as Parkinson's and schizophrenia, it also plays a role in visual perception. We mimicked DAergic neuromodulation by systemic injection of L-DOPA and Carbidopa (LDC) or by local application of DA in V1 and found that systemic application of LDC increased the signal-to-noise ratio (SNR) and amplitude of the visually evoked neural responses in V1. However, visually induced BOLD responses decreased, whereas cerebral blood flow (CBF) responses increased. This dissociation of BOLD and CBF suggests that dopamine increases energy metabolism by a disproportionate amount relative to the CBF response, causing the reduced BOLD response. Local application of DA in V1 had no effect on neural activity, suggesting that the dopaminergic effects are mediated by long-range interactions. The combination of BOLD-based and CBF-based fMRI can provide a signature of dopaminergic neuromodulation, indicating that the application of multimodal methods can improve our ability to distinguish sensory processing from neuromodulatory effects. PMID:25456449

  18. Systemic Low-Frequency Oscillations in BOLD Signal Vary with Tissue Type

    PubMed Central

    Tong, Yunjie; Hocke, Lia M.; Lindsey, Kimberly P.; Erdoğan, Sinem B.; Vitaliano, Gordana; Caine, Carolyn E.; Frederick, Blaise deB.

    2016-01-01

    Blood-oxygen-level dependent (BOLD) signals are widely used in functional magnetic resonance imaging (fMRI) as a proxy measure of brain activation. However, because these signals are blood-related, they are also influenced by other physiological processes. This is especially true in resting state fMRI, during which no experimental stimulation occurs. Previous studies have found that the amplitude of resting state BOLD is closely related to regional vascular density. In this study, we investigated how some of the temporal fluctuations of the BOLD signal also possibly relate to regional vascular density. We began by identifying the blood-bound systemic low-frequency oscillation (sLFO). We then assessed the distribution of all voxels based on their correlations with this sLFO. We found that sLFO signals are widely present in resting state BOLD signals and that the proportion of these sLFOs in each voxel correlates with different tissue types, which vary significantly in underlying vascular density. These results deepen our understanding of the BOLD signal and suggest new imaging biomarkers based on fMRI data, such as amplitude of low-frequency fluctuation (ALFF) and sLFO, a combination of both, for assessing vascular density. PMID:27445680

  19. Improving the precision of fMRI BOLD signal deconvolution with implications for connectivity analysis.

    PubMed

    Bush, Keith; Cisler, Josh; Bian, Jiang; Hazaroglu, Gokce; Hazaroglu, Onder; Kilts, Clint

    2015-12-01

    An important, open problem in neuroimaging analyses is developing analytical methods that ensure precise inferences about neural activity underlying fMRI BOLD signal despite the known presence of confounds. Here, we develop and test a new meta-algorithm for conducting semi-blind (i.e., no knowledge of stimulus timings) deconvolution of the BOLD signal that estimates, via bootstrapping, both the underlying neural events driving BOLD as well as the confidence of these estimates. Our approach includes two improvements over the current best performing deconvolution approach; 1) we optimize the parametric form of the deconvolution feature space; and, 2) we pre-classify neural event estimates into two subgroups, either known or unknown, based on the confidence of the estimates prior to conducting neural event classification. This knows-what-it-knows approach significantly improves neural event classification over the current best performing algorithm, as tested in a detailed computer simulation of highly-confounded fMRI BOLD signal. We then implemented a massively parallelized version of the bootstrapping-based deconvolution algorithm and executed it on a high-performance computer to conduct large scale (i.e., voxelwise) estimation of the neural events for a group of 17 human subjects. We show that by restricting the computation of inter-regional correlation to include only those neural events estimated with high-confidence the method appeared to have higher sensitivity for identifying the default mode network compared to a standard BOLD signal correlation analysis when compared across subjects. PMID:26226647

  20. Linear and Nonlinear Relationships between Visual Stimuli, EEG and BOLD fMRI Signals

    PubMed Central

    Liu, Zhongming; Rios, Cristina; Zhang, Nanyin; Yang, Lin; Chen, Wei; He, Bin

    2010-01-01

    In the present study, the cascaded interactions between stimuli and neural and hemodynamic responses were modeled using linear systems. These models provided the theoretical hypotheses that were tested against the electroencephalography (EEG) and blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) data recorded from human subjects during prolonged periods of repeated visual stimuli with a variable setting of the inter-stimulus-interval (ISI) and visual contrast. Our results suggest that 1) neural response is nonlinear only when ISI<0.2 s, 2) BOLD response is nonlinear with an exclusively vascular origin when 0.25BOLD effect size and the integrated power of event-related synaptic current activity, after modeling and taking into account the vascular refractory effect. These conclusions offer important insights into the origins of BOLD nonlinearity and the nature of neurovascular coupling, and suggest an effective means to quantitatively interpret the BOLD signal in terms of neural activity. The validated cross-modal relationship between fMRI and EEG may provide a theoretical basis for the integration of these two modalities. PMID:20079854

  1. Deficient aversive-potentiated startle and the triarchic model of psychopathy: The role of boldness.

    PubMed

    Esteller, Àngels; Poy, Rosario; Moltó, Javier

    2016-05-01

    This study examined the contribution of the phenotypic domains of boldness, meanness, and disinhibition of the triarchic conceptualization of psychopathy (Patrick, Fowles, & Krueger, 2009) to deficient aversive-potentiated startle in a mixed-gender sample of 180 undergraduates. Eyeblink responses to noise probes were recorded during a passive picture-viewing task (erotica, neutral, threat, and mutilation). Deficient threat vs. neutral potentiation was uniquely related to increased boldness scores, thus suggesting that the diminished defensive reaction to aversive stimulation is specifically linked to the charm, social potency and venturesomeness features of psychopathy (boldness), but not to features such as callousness, coldheartedness and cruelty traits (meanness), even though both phenotypes theoretically share the same underlying low-fear disposition. Our findings provide further evidence of the differential association between distinct psychopathy components and deficits in defensive reactivity and strongly support the validity of the triarchic model of psychopathy in disentangling the etiology of this personality disorder. PMID:27033014

  2. Developmental changes of BOLD signal correlations with global human EEG power and synchronization during working memory.

    PubMed

    Michels, Lars; Lüchinger, Rafael; Koenig, Thomas; Martin, Ernst; Brandeis, Daniel

    2012-01-01

    In humans, theta band (5-7 Hz) power typically increases when performing cognitively demanding working memory (WM) tasks, and simultaneous EEG-fMRI recordings have revealed an inverse relationship between theta power and the BOLD (blood oxygen level dependent) signal in the default mode network during WM. However, synchronization also plays a fundamental role in cognitive processing, and the level of theta and higher frequency band synchronization is modulated during WM. Yet, little is known about the link between BOLD, EEG power, and EEG synchronization during WM, and how these measures develop with human brain maturation or relate to behavioral changes. We examined EEG-BOLD signal correlations from 18 young adults and 15 school-aged children for age-dependent effects during a load-modulated Sternberg WM task. Frontal load (in-)dependent EEG theta power was significantly enhanced in children compared to adults, while adults showed stronger fMRI load effects. Children demonstrated a stronger negative correlation between global theta power and the BOLD signal in the default mode network relative to adults. Therefore, we conclude that theta power mediates the suppression of a task-irrelevant network. We further conclude that children suppress this network even more than adults, probably from an increased level of task-preparedness to compensate for not fully mature cognitive functions, reflected in lower response accuracy and increased reaction time. In contrast to power, correlations between instantaneous theta global field synchronization and the BOLD signal were exclusively positive in both age groups but only significant in adults in the frontal-parietal and posterior cingulate cortices. Furthermore, theta synchronization was weaker in children and was--in contrast to EEG power--positively correlated with response accuracy in both age groups. In summary we conclude that theta EEG-BOLD signal correlations differ between spectral power and synchronization and that

  3. Arterial spin tagging fMRI in continuous overt speech production compared to BOLD technique

    NASA Astrophysics Data System (ADS)

    Kemeny, Stefan; Ye, Frank; Braun, Allen

    2003-05-01

    Conventional BOLD fMRI has limited use in overt speech paradigms, due to movement and susceptibility artifacts. Our study used an arterial spin-tagging (AST) sequence to quantify focal brain activation in a continuous speech task. Furthermore, we compared the results to conventional BOLD fMRI. The ASSIST sequence was used to obtain transverse perfusion images of the brain, acquired on a 1.5T GE-Signa scanner. Three conditions were alternated in a block design: generation of complete sentences, nonsense syllables and rest with continuous and overt speech production. For 4 normal volunteers, task-related perfusion maps with quantified rCBF and rCBV values were calculated and activations were mapped to the MNI brain. The same paradigm was scanned with BOLD contrast fMRI in separate, independent scans and data from 6 subjects were analyzed using SPM99. Using the AST sequence, we could reliably identify focal brain activation in an overt continuous speech paradigm, and the activations observed were consistent with previous PET studies. We found differential activation at increasing levels of speech production with a focus in the left insula and opercular IFG related to the production of sentences at a syntactic level as opposed to nonsense syllable production. The BOLD technique failed to identify some of these activation foci, possibly due to decreased SNR and artifacts.

  4. A cortical vascular model for examining the specificity of the laminar BOLD signal.

    PubMed

    Markuerkiaga, Irati; Barth, Markus; Norris, David G

    2016-05-15

    Blood oxygenation level dependent (BOLD) functional MRI has been used for inferring layer specific activation in humans. However, intracortical veins perpendicular to the cortical surface are suspected to degrade the laminar specificity as they drain blood from the microvasculature and BOLD signal is carried over from lower to upper cortical layers on its way to the pial surface. In this work, a vascular model of the cortex is developed to investigate the laminar specificity of the BOLD signal for Spin Echo (SE) and Gradient Echo (GE) following the integrative model presented by Uludağ et al. (2009). The results of the simulation show that the laminar point spread function (PSF) of the BOLD signal presents similar features across all layers. The PSF for SE is highly localised whereas for GE there is a flat tail running to the pial surface, with amplitude less than a quarter of the response from the layer itself. Consequently the GE response at any layer will also contain a contribution accumulated from all lower layers. PMID:26952195

  5. Spatio-Temporal Information Analysis of Event-Related BOLD Responses

    PubMed Central

    Alpert, Galit Fuhrmann; Handwerker, Dan; Sun, Felice T.; D’Esposito, Mark; Knight, Robert T.

    2009-01-01

    A new approach for analysis of event related fMRI (BOLD) signals is proposed. The technique is based on measures from information theory and is used both for spatial localization of task related activity, as well as for extracting temporal information regarding the task dependent propagation of activation across different brain regions. This approach enables whole brain visualization of voxels (areas) most involved in coding of a specific task condition, the time at which they are most informative about the condition, as well as their average amplitude at that preferred time. The approach does not require prior assumptions about the shape of the hemodynamic response function (HRF), nor about linear relations between BOLD response and presented stimuli (or task conditions). We show that relative delays between different brain regions can also be computed without prior knowledge of the experimental design, suggesting a general method that could be applied for analysis of differential time delays that occur during natural, uncontrolled conditions. Here we analyze BOLD signals recorded during performance of a motor learning task. We show that during motor learning, the BOLD response of unimodal motor cortical areas precedes the response in higher-order multimodal association areas, including posterior parietal cortex. Brain areas found to be associated with reduced activity during motor learning, predominantly in prefrontal brain regions, are informative about the task typically at significantly later times. PMID:17188515

  6. Using High Spatial Resolution to Improve BOLD fMRI Detection at 3T

    PubMed Central

    Claise, Béatrice; Jean, Betty

    2015-01-01

    For different functional magnetic resonance imaging experiments using blood oxygenation level-dependent (BOLD) contrast, the acquisition of T2*-weighted scans at a high spatial resolution may be advantageous in terms of time-course signal-to-noise ratio and of BOLD sensitivity when the regions are prone to susceptibility artifacts. In this study, we explore this solution by examining how spatial resolution influences activations elicited when appetizing food pictures are viewed. Twenty subjects were imaged at 3 T with two different voxel volumes, 3.4 μl and 27 μl. Despite the diminution of brain coverage, we found that high-resolution acquisition led to a better detection of activations. Though known to suffer to different degrees from susceptibility artifacts, the activations detected by high spatial resolution were notably consistent with those reported in published activation likelihood estimation meta-analyses, corresponding to taste-responsive regions. Furthermore, these regions were found activated bilaterally, in contrast with previous findings. Both the reduction of partial volume effect, which improves BOLD contrast, and the mitigation of susceptibility artifact, which boosts the signal to noise ratio in certain regions, explained the better detection noted with high resolution. The present study provides further evidences that high spatial resolution is a valuable solution for human BOLD fMRI, especially for studying food-related stimuli. PMID:26550990

  7. Bold Dreams and Big Questions: The Future of Astronomy in the 21st and NSF's Role

    NASA Astrophysics Data System (ADS)

    Turner, M. S.

    2005-12-01

    This is a special time in astronomy: Astronomers know much about the Universe, but understand much less. Profound questions can be formulated and the tools are at hand to answer them. I will discuss my vision of this future as well as NSF's role in realizing the bold dreams and answering the big questions.

  8. Female mating preference for bold males in the guppy, Poecilia reticulata.

    PubMed

    Godin, J G; Dugatkin, L A

    1996-09-17

    Although females prefer to mate with brightly colored males in numerous species, the benefits accruing to such females are virtually unknown. According to one hypothesis of sexual selection theory, if the expression of costly preferred traits in males (such as conspicuous colors) is proportional to the male's overall quality or reveals his quality, a well-developed trait should indicate good condition and/or viability for example. A female choosing such a male would therefore stand to gain direct or indirect fitness benefits, or both. Among potential phenotypic indicators of an individual's quality are the amount and brightness of its carotenoid-based colors and its boldness, as measured by its willingness to risk approaching predators without being killed. Here, we show experimentally that in the Trinidadian guppy (Poecilia reticulata) the visual conspicuousness of the color pattern of males correlates positively with boldness toward, and with escape distance from, a cichlid fish predator. Bold individuals are thus more informed about nearby predators and more likely to survive encounters with them. Mate-choice experiments showed that females prefer colorful males as mates, but prefer bolder males irrespective of their coloration when given the opportunity to observe their behavior toward a potential fish predator. By preferentially mating with colorful males, female guppies are thus choosing on average, relatively bold, and perhaps more viable, individuals. In doing so, and to the extent that viability is heritable, they potentially gain indirect fitness benefits by producing more viable offspring than otherwise. PMID:11607706

  9. Discerning Professional Identity and Becoming Bold, Socially Responsible Teacher-Leaders

    ERIC Educational Resources Information Center

    Collay, Michelle

    2006-01-01

    This essay reviews the powerful influence of professional identity in shaping how school leaders perceive their work. I review factors that mold teacher professional identity, implications for educational leadership pedagogy, and supports and barriers for teacher leaders to consider in their quest to more fully enact bold, socially responsible…

  10. BOLD Response to Semantic and Syntactic Processing during Hypoglycemia Is Load-Dependent

    ERIC Educational Resources Information Center

    Schafer, Robin J.; Page, Kathleen A.; Arora, Jagriti; Sherwin, Robert; Constable, R. Todd

    2012-01-01

    This study investigates how syntactic and semantic load factors impact sentence comprehension and BOLD signal under moderate hypoglycemia. A dual session, whole brain fMRI study was conducted on 16 healthy participants using the glucose clamp technique. In one session, they experienced insulin-induced hypoglycemia (plasma glucose at [image…

  11. The relationship between oscillatory EEG activity and the laminar-specific BOLD signal.

    PubMed

    Scheeringa, René; Koopmans, Peter J; van Mourik, Tim; Jensen, Ole; Norris, David G

    2016-06-14

    Electrophysiological recordings in animals have indicated that visual cortex γ-band oscillatory activity is predominantly observed in superficial cortical layers, whereas α- and β-band activity is stronger in deep layers. These rhythms, as well as the different cortical layers, have also been closely related to feedforward and feedback streams of information. Recently, it has become possible to measure laminar activity in humans with high-resolution functional MRI (fMRI). In this study, we investigated whether these different frequency bands show a differential relation with the laminar-resolved blood-oxygen level-dependent (BOLD) signal by combining data from simultaneously recorded EEG and fMRI from the early visual cortex. Our visual attention paradigm allowed us to investigate how variations in strength over trials and variations in the attention effect over subjects relate to each other in both modalities. We demonstrate that γ-band EEG power correlates positively with the superficial layers' BOLD signal and that β-power is negatively correlated to deep layer BOLD and α-power to both deep and superficial layer BOLD. These results provide a neurophysiological basis for human laminar fMRI and link human EEG and high-resolution fMRI to systems-level neuroscience in animals. PMID:27247416

  12. Vascular Origins of BOLD and CBV fMRI Signals: Statistical Mapping and Histological Sections Compared.

    PubMed

    Kennerley, Aneurin J; Mayhew, John E; Redgrave, Peter; Berwick, Jason

    2010-01-01

    Comparison of 3T blood oxygenation level dependent (BOLD) and cerebral blood volume (CBV) activation maps to histological sections enables the spatial discrimination of functional magnetic resonance imaging (fMRI) signal changes into different vascular compartments. We use a standard gradient echo-echo planar imaging technique to measure BOLD signal changes in the somatosensory cortex in response to whisker stimulation. Corresponding changes in CBV were estimated following the infusion of a super-paramagnetic contrast agent. We imaged in a tangential imaging plane that covered the cortical surface. Images were associated with post mortem histological sections showing both the surface vasculature and cytochrome oxidase stained whisker barrel cortex. We found a significant BOLD signal change in the large draining veins which occurred in the absence of a corresponding CBV change. Results suggest that in the venous drainage system, ~3mm distant from the area of activity, there is a robust change in blood oxygen saturation with little or no volume change. CBV changes are localised over the somatosensory barrel cortex and overlying arterial supply, supporting the theory that CBV changes are greater in the arterial than in the venous vasculature. This work investigating BOLD signal and underlying hemodynamics provides more information on the vascular origins of these important neuroimaging signals. PMID:20563253

  13. Female mating preference for bold males in the guppy, Poecilia reticulata.

    PubMed Central

    Godin, J G; Dugatkin, L A

    1996-01-01

    Although females prefer to mate with brightly colored males in numerous species, the benefits accruing to such females are virtually unknown. According to one hypothesis of sexual selection theory, if the expression of costly preferred traits in males (such as conspicuous colors) is proportional to the male's overall quality or reveals his quality, a well-developed trait should indicate good condition and/or viability for example. A female choosing such a male would therefore stand to gain direct or indirect fitness benefits, or both. Among potential phenotypic indicators of an individual's quality are the amount and brightness of its carotenoid-based colors and its boldness, as measured by its willingness to risk approaching predators without being killed. Here, we show experimentally that in the Trinidadian guppy (Poecilia reticulata) the visual conspicuousness of the color pattern of males correlates positively with boldness toward, and with escape distance from, a cichlid fish predator. Bold individuals are thus more informed about nearby predators and more likely to survive encounters with them. Mate-choice experiments showed that females prefer colorful males as mates, but prefer bolder males irrespective of their coloration when given the opportunity to observe their behavior toward a potential fish predator. By preferentially mating with colorful males, female guppies are thus choosing on average, relatively bold, and perhaps more viable, individuals. In doing so, and to the extent that viability is heritable, they potentially gain indirect fitness benefits by producing more viable offspring than otherwise. PMID:11607706

  14. Mapping Transient Hyperventilation Induced Alterations with Estimates of the Multi-Scale Dynamics of BOLD Signal

    PubMed Central

    Kiviniemi, Vesa; Remes, Jukka; Starck, Tuomo; Nikkinen, Juha; Haapea, Marianne; Silven, Olli; Tervonen, Osmo

    2009-01-01

    Temporal blood oxygen level dependent (BOLD) contrast signals in functional MRI during rest may be characterized by power spectral distribution (PSD) trends of the form 1/fα. Trends with 1/f characteristics comprise fractal properties with repeating oscillation patterns in multiple time scales. Estimates of the fractal properties enable the quantification of phenomena that may otherwise be difficult to measure, such as transient, non-linear changes. In this study it was hypothesized that the fractal metrics of 1/f BOLD signal trends can map changes related to dynamic, multi-scale alterations in cerebral blood flow (CBF) after a transient hyperventilation challenge. Twenty-three normal adults were imaged in a resting-state before and after hyperventilation. Different variables (1/f trend constant α, fractal dimension Df, and, Hurst exponent H) characterizing the trends were measured from BOLD signals. The results show that fractal metrics of the BOLD signal follow the fractional Gaussian noise model, even during the dynamic CBF change that follows hyperventilation. The most dominant effect on the fractal metrics was detected in grey matter, in line with previous hyperventilation vaso-reactivity studies. The α was able to differentiate also blood vessels from grey matter changes. Df was most sensitive to grey matter. H correlated with default mode network areas before hyperventilation but this pattern vanished after hyperventilation due to a global increase in H. In the future, resting-state fMRI combined with fractal metrics of the BOLD signal may be used for analyzing multi-scale alterations of cerebral blood flow. PMID:19636388

  15. Whole brain 3D T2-weighted BOLD fMRI at 7T

    PubMed Central

    Hua, Jun; Qin, Qin; van Zijl, Peter C. M.; Pekar, James J.; Jones, Craig K.

    2014-01-01

    Purpose A new acquisition scheme for T2-weighted spin-echo BOLD fMRI is introduced. Methods It employs a T2-preparation module to induce BOLD contrast, followed by a single-shot 3D fast gradient-echo readout with short TE. It differs from most spin-echo BOLD sequences in that BOLD contrast is generated before the readout, which eliminates the “dead time” due to long TE required for T2 contrast, and substantially improves acquisition efficiency. This approach, termed “3D T2prep-GRE”, was implemented at 7T with a typical spatial (2.5×2.5×2.5mm3) and temporal (TR=2.3s) resolution for fMRI and whole-brain coverage (55 slices), and compared with the widely used 2D spin-echo EPI sequence. Results In fMRI experiments of simultaneous visual/motor activities, 3D T2prep-GRE showed minimal distortion and little signal dropout across the whole brain. Its lower power deposition allowed greater spatial coverage (55 versus 17 slices with identical TR, resolution and power level), temporal SNR (60% higher) and CNR (35% higher) efficiency than 2D spin-echo EPI. It also showed smaller T2* contamination. Conclusion This approach is expected to be useful for ultra-high field fMRI, especially for regions near air cavities. The concept of using T2-preparation to generate BOLD contrast can be combined with many other sequences at any field strength. PMID:24338901

  16. Variability of the Relationship between Electrophysiology and BOLD-fMRI across Cortical Regions in Humans

    PubMed Central

    Conner, Christopher R.; Ellmore, Timothy M.; Pieters, Thomas A.; DiSano, Michael A.; Tandon, Nitin

    2012-01-01

    The relationship between blood oxygenation level-dependent (BOLD) functional MRI (fMRI) signal and the underlying neural electrical activity in humans is a topic of intense interest to systems neuroscience. This relationship has generally been assumed to be invariant regardless of the brain region and the cognitive task being studied. We critically evaluated these assumptions by comparing the BOLD-fMRI response with local field potential (LFP) measurements during visually cued common noun and verb generation in 11 humans in whom 1210 subdural electrodes were implanted. As expected, power in the mid-gamma band (60 –120 Hz) correlated positively (r2 = 0.16, p < 10−16) and power in the beta band (13–30 Hz) correlated negatively (r2 = 0.09, p < 10−16) with the BOLD signal change. Beta and mid-gamma band activity independently explain different components of the observed BOLD signal. Importantly, we found that the location (i.e., lobe) of the recording site modulates the relationship between the electrocorticographic (ECoG) signal and the observed fMRI response (p < 10−16, F21,1830 = 52.7), while the type of language task does not. Across all brain regions, ECoG activity in the gamma and beta bands explains 22% of the fMRI response, but if the lobar location is considered, 28% of the variance can be explained. Further evaluation of this relationship at the level of individual gyri provides additional evidence of differences in the BOLD-LFP relationship by cortical locus. This spatial variability in the relationship between the fMRI signal and neural activity carries implications for modeling of the hemodynamic response function, an essential step for interregional fMRI comparisons. PMID:21900564

  17. Neurochemical and BOLD responses during neuronal activation measured in the human visual cortex at 7 Tesla.

    PubMed

    Bednařík, Petr; Tkáč, Ivan; Giove, Federico; DiNuzzo, Mauro; Deelchand, Dinesh K; Emir, Uzay E; Eberly, Lynn E; Mangia, Silvia

    2015-04-01

    Several laboratories have consistently reported small concentration changes in lactate, glutamate, aspartate, and glucose in the human cortex during prolonged stimuli. However, whether such changes correlate with blood oxygenation level-dependent functional magnetic resonance imaging (BOLD-fMRI) signals have not been determined. The present study aimed at characterizing the relationship between metabolite concentrations and BOLD-fMRI signals during a block-designed paradigm of visual stimulation. Functional magnetic resonance spectroscopy (fMRS) and fMRI data were acquired from 12 volunteers. A short echo-time semi-LASER localization sequence optimized for 7 Tesla was used to achieve full signal-intensity MRS data. The group analysis confirmed that during stimulation lactate and glutamate increased by 0.26 ± 0.06 μmol/g (~30%) and 0.28 ± 0.03 μmol/g (~3%), respectively, while aspartate and glucose decreased by 0.20 ± 0.04 μmol/g (~5%) and 0.19 ± 0.03 μmol/g (~16%), respectively. The single-subject analysis revealed that BOLD-fMRI signals were positively correlated with glutamate and lactate concentration changes. The results show a linear relationship between metabolic and BOLD responses in the presence of strong excitatory sensory inputs, and support the notion that increased functional energy demands are sustained by oxidative metabolism. In addition, BOLD signals were inversely correlated with baseline γ-aminobutyric acid concentration. Finally, we discussed the critical importance of taking into account linewidth effects on metabolite quantification in fMRS paradigms. PMID:25564236

  18. A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation

    NASA Technical Reports Server (NTRS)

    Strangman, Gary; Culver, Joseph P.; Thompson, John H.; Boas, David A.; Sutton, J. P. (Principal Investigator)

    2002-01-01

    Near-infrared spectroscopy (NIRS) has been used to noninvasively monitor adult human brain function in a wide variety of tasks. While rough spatial correspondences with maps generated from functional magnetic resonance imaging (fMRI) have been found in such experiments, the amplitude correspondences between the two recording modalities have not been fully characterized. To do so, we simultaneously acquired NIRS and blood-oxygenation level-dependent (BOLD) fMRI data and compared Delta(1/BOLD) (approximately R(2)(*)) to changes in oxyhemoglobin, deoxyhemoglobin, and total hemoglobin concentrations derived from the NIRS data from subjects performing a simple motor task. We expected the correlation with deoxyhemoglobin to be strongest, due to the causal relation between changes in deoxyhemoglobin concentrations and BOLD signal. Instead we found highly variable correlations, suggesting the need to account for individual subject differences in our NIRS calculations. We argue that the variability resulted from systematic errors associated with each of the signals, including: (1) partial volume errors due to focal concentration changes, (2) wavelength dependence of this partial volume effect, (3) tissue model errors, and (4) possible spatial incongruence between oxy- and deoxyhemoglobin concentration changes. After such effects were accounted for, strong correlations were found between fMRI changes and all optical measures, with oxyhemoglobin providing the strongest correlation. Importantly, this finding held even when including scalp, skull, and inactive brain tissue in the average BOLD signal. This may reflect, at least in part, the superior contrast-to-noise ratio for oxyhemoglobin relative to deoxyhemoglobin (from optical measurements), rather than physiology related to BOLD signal interpretation.

  19. BOLD Responses in Human Primary Visual Cortex are Insensitive to Substantial Changes in Neural Activity.

    PubMed

    Swettenham, J B; Muthukumaraswamy, S D; Singh, K D

    2013-01-01

    The relationship between blood oxygenation level dependent-functional magnetic resonance imaging (BOLD-fMRI) and magnetoencephalography (MEG) metrics were explored using low-level visual stimuli known to elicit a rich variety of neural responses. Stimuli were either perceptually isoluminant red/green or luminance-modulated black/yellow square-wave gratings with spatial frequencies of 0.5, 3, and 6 cycles per degree. Neural responses were measured with BOLD-fMRI (3-tesla) and whole head MEG. For all stimuli, the BOLD response showed bilateral activation of early visual cortex that was greater in the contralateral hemisphere. There was variation between individuals but weak, or no evidence, of amplitude dependence on either spatial frequency or the presence of luminance contrast. In contrast, beamformer analysis of MEG data showed activation in contralateral early visual cortex and revealed: (i) evoked responses with stimulus-dependent amplitude and latency; (ii) gamma and high-beta oscillations, with spatial frequency dependent peaks at approximately 30 and 50 Hz, but only for luminance-modulated gratings; (iii) The gamma and beta oscillations appeared to show different spatial frequency tuning profiles; (iv) much weaker gamma and beta responses, and at higher oscillation frequencies, for isoluminant compared to luminance-modulated gratings. The results provide further evidence that the relationship between the fMRI-BOLD response and cortical neural activity is complex, with BOLD-fMRI being insensitive to substantial changes in neural activity. All stimuli were clearly visible to participants and so the paucity of gamma oscillations to isoluminant stimuli is inconsistent with theories of their role in conscious visual perception. PMID:23482840

  20. Is behavioral variation along the bold-shy continuum associated with variation in the stress axis in zebrafish?

    PubMed

    Oswald, Mary E; Drew, Robert E; Racine, Matt; Murdoch, Gordon K; Robison, Barrie D

    2012-01-01

    We tested whether boldness is associated with attenuation of the physiological stress response in behaviorally selected lines of zebrafish Danio rerio. We measured three component behaviors of boldness: cortisol levels under control and stressed conditions, growth rate, and expression of key genes linked to the hypothalamic-pituitary-interrenal axis in the brain. Surprisingly, bold animals did not differ from shy animals with respect to cortisol levels. However, significant differences between these animals in the expression of glucocorticoid receptors and genes that regulate production of stress hormones indicate that there may still be a relationship between bold behavior and the stress axis. Perhaps the most surprising result of this study was the degree of sexual dimorphism: female zebrafish were bolder than male zebrafish, had significantly lower levels of cortisol, and differed significantly in the expression of several genes in the brain. Our data indicate that a bold behavioral type is associated with transcriptional attenuation of stress axis genes, but we do not yet know whether evolution along the bold-shy continuum is attributable to genetic changes in the stress axis. The bold and shy zebrafish lines will be valuable tools for additional research into the relationship between stress and behavior and the mechanisms regulating sexual dimorphism in these traits. PMID:23099468

  1. Inefficient Preparatory fMRI-BOLD Network Activations Predict Working Memory Dysfunctions in Patients with Schizophrenia.

    PubMed

    Baenninger, Anja; Diaz Hernandez, Laura; Rieger, Kathryn; Ford, Judith M; Kottlow, Mara; Koenig, Thomas

    2016-01-01

    Patients with schizophrenia show abnormal dynamics and structure of temporally -coherent networks (TCNs) assessed using fMRI, which undergo adaptive shifts in preparation for a cognitively demanding task. During working memory (WM) tasks, patients with schizophrenia show persistent deficits in TCNs as well as EEG indices of WM. Studying their temporal relationship during WM tasks might provide novel insights into WM performance deficits seen in schizophrenia. Simultaneous EEG-fMRI data were acquired during the performance of a verbal Sternberg WM task with two load levels (load 2 and load 5) in 17 patients with schizophrenia and 17 matched healthy controls. Using covariance mapping, we investigated the relationship of the activity in the TCNs before the memoranda were encoded and EEG spectral power during the retention interval. We assessed four TCNs - default mode network (DMN), dorsal attention network (dAN), left and right working memory networks (WMNs) - and three EEG bands - theta, alpha, and beta. In healthy controls, there was a load-dependent inverse relation between DMN and frontal midline theta power and an anti-correlation between DMN and dAN. Both effects were not significantly detectable in patients. In addition, healthy controls showed a left-lateralized load-dependent recruitment of the WMNs. Activation of the WMNs was bilateral in patients, suggesting more resources were recruited for successful performance on the WM task. Our findings support the notion of schizophrenia patients showing deviations in their neurophysiological responses before the retention of relevant information in a verbal WM task. Thus, treatment strategies as neurofeedback -targeting prestates could be beneficial as task performance relies on the preparatory state of the brain. PMID:27047395

  2. Inefficient Preparatory fMRI-BOLD Network Activations Predict Working Memory Dysfunctions in Patients with Schizophrenia

    PubMed Central

    Baenninger, Anja; Diaz Hernandez, Laura; Rieger, Kathryn; Ford, Judith M.; Kottlow, Mara; Koenig, Thomas

    2016-01-01

    Patients with schizophrenia show abnormal dynamics and structure of temporally ­coherent networks (TCNs) assessed using fMRI, which undergo adaptive shifts in preparation for a cognitively demanding task. During working memory (WM) tasks, patients with schizophrenia show persistent deficits in TCNs as well as EEG indices of WM. Studying their temporal relationship during WM tasks might provide novel insights into WM performance deficits seen in schizophrenia. Simultaneous EEG-fMRI data were acquired during the performance of a verbal Sternberg WM task with two load levels (load 2 and load 5) in 17 patients with schizophrenia and 17 matched healthy controls. Using covariance mapping, we investigated the relationship of the activity in the TCNs before the memoranda were encoded and EEG spectral power during the retention interval. We assessed four TCNs – default mode network (DMN), dorsal attention network (dAN), left and right working memory networks (WMNs) – and three EEG bands – theta, alpha, and beta. In healthy controls, there was a load-dependent inverse relation between DMN and frontal midline theta power and an anti-correlation between DMN and dAN. Both effects were not significantly detectable in patients. In addition, healthy controls showed a left-lateralized load-dependent recruitment of the WMNs. Activation of the WMNs was bilateral in patients, suggesting more resources were recruited for successful performance on the WM task. Our findings support the notion of schizophrenia patients showing deviations in their neurophysiological responses before the retention of relevant information in a verbal WM task. Thus, treatment strategies as neurofeedback ­targeting prestates could be beneficial as task performance relies on the preparatory state of the brain. PMID:27047395

  3. Load Modulation of BOLD Response and Connectivity Predicts Working Memory Performance in Younger and Older Adults

    ERIC Educational Resources Information Center

    Nagel, Irene E.; Preuschhof, Claudia; Li, Shu-Chen; Nyberg, Lars; Backman, Lars; Lindenberger, Ulman; Heekeren, Hauke R.

    2011-01-01

    Individual differences in working memory (WM) performance have rarely been related to individual differences in the functional responsivity of the WM brain network. By neglecting person-to-person variation, comparisons of network activity between younger and older adults using functional imaging techniques often confound differences in activity…

  4. Increased BOLD Activation to Predator Stressor in Subiculum and Midbrain of Amphetamine-Sensitized Maternal Rats

    PubMed Central

    Febo, Marcelo; Pira, Ashley S.

    2011-01-01

    Amphetamine, which is known to cause sensitization, potentiates the hormonal and neurobiological signatures of stress and may also increase sensitivity to stress-inducing stimuli in limbic areas. Trimethylthiazoline (5 μL TMT) is a chemical constituent of fox feces that evokes innate fear and activates the neuronal and hormonal signatures of stress in rats. We used blood oxygen level dependent (BOLD) MRI to test whether amphetamine sensitization (1 mg/kg, i.p. X 3 days) in female rats has a lasting effect on the neural response to a stress-evoking stimulus, the scent of a predator, during the postpartum period. The subiculum and dopamine-enriched midbrain VTA/SN of amphetamine-sensitized, but not control mothers showed a greater BOLD signal response to predator odor than a control putrid scent. The greater responsiveness of these two brain regions following stimulant sensitization might impact neural processing in response to stressors in the maternal brain. PMID:21134359

  5. Increased BOLD activation to predator stressor in subiculum and midbrain of amphetamine-sensitized maternal rats.

    PubMed

    Febo, Marcelo; Pira, Ashley S

    2011-03-25

    Amphetamine, which is known to cause sensitization, potentiates the hormonal and neurobiological signatures of stress and may also increase sensitivity to stress-inducing stimuli in limbic areas. Trimethylthiazoline (5μL TMT) is a chemical constituent of fox feces that evokes innate fear and activates the neuronal and hormonal signatures of stress in rats. We used blood oxygen level dependent (BOLD) MRI to test whether amphetamine sensitization (1mg/kg, i.p. ×3days) in female rats has a lasting effect on the neural response to a stress-evoking stimulus, the scent of a predator, during the postpartum period. The subiculum and dopamine-enriched midbrain VTA/SN of amphetamine-sensitized but not control mothers showed a greater BOLD signal response to predator odor than a control putrid scent. The greater responsiveness of these two brain regions following stimulant sensitization might impact neural processing in response to stressors in the maternal brain. PMID:21134359

  6. Bold-line Monte Carlo and the nonequilibrium physics of strongly correlated many-body systems

    NASA Astrophysics Data System (ADS)

    Cohen, Guy

    2015-03-01

    This talk summarizes real time bold-line diagrammatic Monte-Carlo approaches to quantum impurity models, which make significant headway against the sign problem by summing over corrections to self-consistent diagrammatic expansions rather than a bare diagrammatic series. When the bold-line method is combined with reduced dynamics techniques both local single-time properties and two time correlators such as Green functions can be computed at very long timescales, enabling studies of nonequilibrium steady state behavior of quantum impurity models and creating new solvers for nonequilibrium dynamical mean field theory. This work is supported by NSF DMR 1006282, NSF CHE-1213247, DOE ER 46932, TG-DMR120085 and TG-DMR130036, and the Yad Hanadiv-Rothschild Foundation.

  7. Spiral-in/out BOLD fMRI for increased SNR and reduced susceptibility artifacts.

    PubMed

    Glover, G H; Law, C S

    2001-09-01

    BOLD fMRI is hampered by dropout of signal in the orbitofrontal and parietal brain regions due to magnetic field gradients near air-tissue interfaces. This work reports the use of spiral-in trajectories that begin at the edge of k-space and end at the origin, and spiral in/out trajectories in which a spiral-in readout is followed by a conventional spiral-out trajectory. The spiral-in trajectory reduces the dropout and increases the BOLD contrast. The spiral-in and spiral-out images can be combined in several ways to simultaneously achieve increased signal-to-noise ratio (SNR) and reduced dropout artifacts. Activation experiments employing an olfaction task demonstrate significantly increased activation volumes due to reduced dropout, and overall increased SNR in all regions. PMID:11550244

  8. Fourier power, subjective distance, and object categories all provide plausible models of BOLD responses in scene-selective visual areas

    PubMed Central

    Lescroart, Mark D.; Stansbury, Dustin E.; Gallant, Jack L.

    2015-01-01

    Perception of natural visual scenes activates several functional areas in the human brain, including the Parahippocampal Place Area (PPA), Retrosplenial Complex (RSC), and the Occipital Place Area (OPA). It is currently unclear what specific scene-related features are represented in these areas. Previous studies have suggested that PPA, RSC, and/or OPA might represent at least three qualitatively different classes of features: (1) 2D features related to Fourier power; (2) 3D spatial features such as the distance to objects in a scene; or (3) abstract features such as the categories of objects in a scene. To determine which of these hypotheses best describes the visual representation in scene-selective areas, we applied voxel-wise modeling (VM) to BOLD fMRI responses elicited by a set of 1386 images of natural scenes. VM provides an efficient method for testing competing hypotheses by comparing predictions of brain activity based on encoding models that instantiate each hypothesis. Here we evaluated three different encoding models that instantiate each of the three hypotheses listed above. We used linear regression to fit each encoding model to the fMRI data recorded from each voxel, and we evaluated each fit model by estimating the amount of variance it predicted in a withheld portion of the data set. We found that voxel-wise models based on Fourier power or the subjective distance to objects in each scene predicted much of the variance predicted by a model based on object categories. Furthermore, the response variance explained by these three models is largely shared, and the individual models explain little unique variance in responses. Based on an evaluation of previous studies and the data we present here, we conclude that there is currently no good basis to favor any one of the three alternative hypotheses about visual representation in scene-selective areas. We offer suggestions for further studies that may help resolve this issue. PMID:26594164

  9. Pitfalls in Fractal Time Series Analysis: fMRI BOLD as an Exemplary Case

    PubMed Central

    Eke, Andras; Herman, Peter; Sanganahalli, Basavaraju G.; Hyder, Fahmeed; Mukli, Peter; Nagy, Zoltan

    2012-01-01

    This article will be positioned on our previous work demonstrating the importance of adhering to a carefully selected set of criteria when choosing the suitable method from those available ensuring its adequate performance when applied to real temporal signals, such as fMRI BOLD, to evaluate one important facet of their behavior, fractality. Earlier, we have reviewed on a range of monofractal tools and evaluated their performance. Given the advance in the fractal field, in this article we will discuss the most widely used implementations of multifractal analyses, too. Our recommended flowchart for the fractal characterization of spontaneous, low frequency fluctuations in fMRI BOLD will be used as the framework for this article to make certain that it will provide a hands-on experience for the reader in handling the perplexed issues of fractal analysis. The reason why this particular signal modality and its fractal analysis has been chosen was due to its high impact on today’s neuroscience given it had powerfully emerged as a new way of interpreting the complex functioning of the brain (see “intrinsic activity”). The reader will first be presented with the basic concepts of mono and multifractal time series analyses, followed by some of the most relevant implementations, characterization by numerical approaches. The notion of the dichotomy of fractional Gaussian noise and fractional Brownian motion signal classes and their impact on fractal time series analyses will be thoroughly discussed as the central theme of our application strategy. Sources of pitfalls and way how to avoid them will be identified followed by a demonstration on fractal studies of fMRI BOLD taken from the literature and that of our own in an attempt to consolidate the best practice in fractal analysis of empirical fMRI BOLD signals mapped throughout the brain as an exemplary case of potentially wide interest. PMID:23227008

  10. Early suppressive mechanisms and the negative BOLD response in human visual cortex

    PubMed Central

    Wade, Alex R.; Rowland, Jess

    2010-01-01

    Functional magnetic resonance imaging (fMRI) studies of early sensory cortex often measure stimulus-driven increases in the blood oxygenation level-dependent (BOLD) signal. However, these positive responses are frequently accompanied by reductions in the BOLD signal in adjacent regions of cortex. Although this negative BOLD response (NBR) is thought to result from neuronal suppression, the precise relationship between local activity, suppression and perception remains unknown. By measuring BOLD signals in human primary visual cortex while varying the baseline contrast levels in the region affected by the NBR, we tested three physiologically-plausible computational models of neuronal modulation which could explain this phenomenon: a subtractive model, a response gain model and a contrast gain model. We also measured the ability of isoluminant contrast to generate an NBR. We show that the NBR can be modeled as a pathway-specific contrast gain modulation that is strongest outside the fovea. We found a similar spatial bias in a psychophysical study using identical stimuli, although these data indicated a response- rather than a contrast-gain mechanism. We reconcile these findings by proposing 1) that the NBR is associated with a long-range suppressive mechanism that hyperpolarizes a subset of magnocellularly-driven neurons at the input to V1; 2) that this suppression is broadly-tuned to match the spatial features of the mask region; 3) that increasing the baseline contrast in the suppressed region drives all neurons in the input layer, reducing the relative contribution of the suppressing subpopulation in the fMRI signal. PMID:20371821

  11. A NO way to BOLD? Dietary nitrate alters the hemodynamic response to visual stimulation.

    PubMed

    Aamand, Rasmus; Dalsgaard, Thomas; Ho, Yi-Ching Lynn; Møller, Arne; Roepstorff, Andreas; Lund, Torben E

    2013-12-01

    Neurovascular coupling links neuronal activity to vasodilation. Nitric oxide (NO) is a potent vasodilator, and in neurovascular coupling NO production from NO synthases plays an important role. However, another pathway for NO production also exists, namely the nitrate-nitrite-NO pathway. On this basis, we hypothesized that dietary nitrate (NO3-) could influence the brain's hemodynamic response to neuronal stimulation. In the present study, 20 healthy male participants were given either sodium nitrate (NaNO3) or sodium chloride (NaCl) (saline placebo) in a crossover study and were shown visual stimuli based on the retinotopic characteristics of the visual cortex. Our primary measure of the hemodynamic response was the blood oxygenation level dependent (BOLD) response measured with high-resolution functional magnetic resonance imaging (0.64×0.64×1.8 mm) in the visual cortex. From this response, we made a direct estimate of key parameters characterizing the shape of the BOLD response (i.e. lag and amplitude). During elevated nitrate intake, corresponding to the nitrate content of a large plate of salad, both the hemodynamic lag and the BOLD amplitude decreased significantly (7.0±2% and 7.9±4%, respectively), and the variation across activated voxels of both measures decreased (12.3±4% and 15.3±7%, respectively). The baseline cerebral blood flow was not affected by nitrate. Our experiments demonstrate, for the first time, that dietary nitrate may modulate the local cerebral hemodynamic response to stimuli. A faster and smaller BOLD response, with less variation across local cortex, is consistent with an enhanced hemodynamic coupling during elevated nitrate intake. These findings suggest that dietary patterns, via the nitrate-nitrite-NO pathway, may be a potential way to affect key properties of neurovascular coupling. This could have major clinical implications, which remain to be explored. PMID:23827330

  12. Repeated BOLD-fMRI imaging of deep brain stimulation responses in rats.

    PubMed

    Chao, Tzu-Hao Harry; Chen, Jyh-Horng; Yen, Chen-Tung

    2014-01-01

    Functional magnetic resonance imaging (fMRI) provides a picture of the global spatial activation pattern of the brain. Interest is growing regarding the application of fMRI to rodent models to investigate adult brain plasticity. To date, most rodent studies used an electrical forepaw stimulation model to acquire fMRI data, with α-chloralose as the anesthetic. However, α-chloralose is harmful to animals, and not suitable for longitudinal studies. Moreover, peripheral stimulation models enable only a limited number of brain regions to be studied. Processing between peripheral regions and the brain is multisynaptic, and renders interpretation difficult and uncertain. In the present study, we combined the medetomidine-based fMRI protocol (a noninvasive rodent fMRI protocol) with chronic implantation of an MRI-compatible stimulation electrode in the ventroposterior (VP) thalamus to repetitively sample thalamocortical responses in the rat brain. Using this model, we scanned the forebrain responses evoked by the VP stimulation repeatedly of individual rats over 1 week. Cortical BOLD responses were compared between the 2 profiles obtained at day1 and day8. We discovered reproducible frequency- and amplitude-dependent BOLD responses in the ipsilateral somatosensory cortex (S1). The S1 BOLD responses during the 2 sessions were conserved in maximal response amplitude, area size (size ratio from 0.88 to 0.91), and location (overlap ratio from 0.61 to 0.67). The present study provides a long-term chronic brain stimulation protocol for studying the plasticity of specific neural circuits in the rodent brain by BOLD-fMRI. PMID:24825464

  13. Electrophysiological correlates of the BOLD signal for EEG-informed fMRI

    PubMed Central

    Murta, Teresa; Leite, Marco; Carmichael, David W; Figueiredo, Patrícia; Lemieux, Louis

    2015-01-01

    Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are important tools in cognitive and clinical neuroscience. Combined EEG–fMRI has been shown to help to characterise brain networks involved in epileptic activity, as well as in different sensory, motor and cognitive functions. A good understanding of the electrophysiological correlates of the blood oxygen level-dependent (BOLD) signal is necessary to interpret fMRI maps, particularly when obtained in combination with EEG. We review the current understanding of electrophysiological–haemodynamic correlates, during different types of brain activity. We start by describing the basic mechanisms underlying EEG and BOLD signals and proceed by reviewing EEG-informed fMRI studies using fMRI to map specific EEG phenomena over the entire brain (EEG–fMRI mapping), or exploring a range of EEG-derived quantities to determine which best explain colocalised BOLD fluctuations (local EEG–fMRI coupling). While reviewing studies of different forms of brain activity (epileptic and nonepileptic spontaneous activity; cognitive, sensory and motor functions), a significant attention is given to epilepsy because the investigation of its haemodynamic correlates is the most common application of EEG-informed fMRI. Our review is focused on EEG-informed fMRI, an asymmetric approach of data integration. We give special attention to the invasiveness of electrophysiological measurements and the simultaneity of multimodal acquisitions because these methodological aspects determine the nature of the conclusions that can be drawn from EEG-informed fMRI studies. We emphasise the advantages of, and need for, simultaneous intracranial EEG–fMRI studies in humans, which recently became available and hold great potential to improve our understanding of the electrophysiological correlates of BOLD fluctuations. PMID:25277370

  14. Teacherpreneurs: a bold brand of teacher leadership for 21st-century teaching and learning.

    PubMed

    Berry, Barnett

    2013-04-19

    Challenges facing our public schools demand a bold brand of teacher leadership. Teacherpreneurs, effective teachers who teach students regularly but also incubate and execute the kinds of policies and pedagogies students deserve, represent a new culture of training and ingenuity. Teachers who lead outside the classroom but do not lose their connection to students are best positioned to develop and disseminate best policies and practices for 21st-century teaching and learning. PMID:23599480

  15. Repeated BOLD-fMRI Imaging of Deep Brain Stimulation Responses in Rats

    PubMed Central

    Chao, Tzu-Hao Harry; Chen, Jyh-Horng; Yen, Chen-Tung

    2014-01-01

    Functional magnetic resonance imaging (fMRI) provides a picture of the global spatial activation pattern of the brain. Interest is growing regarding the application of fMRI to rodent models to investigate adult brain plasticity. To date, most rodent studies used an electrical forepaw stimulation model to acquire fMRI data, with α-chloralose as the anesthetic. However, α-chloralose is harmful to animals, and not suitable for longitudinal studies. Moreover, peripheral stimulation models enable only a limited number of brain regions to be studied. Processing between peripheral regions and the brain is multisynaptic, and renders interpretation difficult and uncertain. In the present study, we combined the medetomidine-based fMRI protocol (a noninvasive rodent fMRI protocol) with chronic implantation of an MRI-compatible stimulation electrode in the ventroposterior (VP) thalamus to repetitively sample thalamocortical responses in the rat brain. Using this model, we scanned the forebrain responses evoked by the VP stimulation repeatedly of individual rats over 1 week. Cortical BOLD responses were compared between the 2 profiles obtained at day1 and day8. We discovered reproducible frequency- and amplitude-dependent BOLD responses in the ipsilateral somatosensory cortex (S1). The S1 BOLD responses during the 2 sessions were conserved in maximal response amplitude, area size (size ratio from 0.88 to 0.91), and location (overlap ratio from 0.61 to 0.67). The present study provides a long-term chronic brain stimulation protocol for studying the plasticity of specific neural circuits in the rodent brain by BOLD-fMRI. PMID:24825464

  16. Laminar analysis of 7 T BOLD using an imposed spatial activation pattern in human V1

    PubMed Central

    Polimeni, Jonathan R.; Fischl, Bruce; Greve, Douglas N.; Wald, Lawrence L.

    2010-01-01

    With sufficient image encoding, high-resolution fMRI studies are limited by the biological point-spread of the hemodynamic signal. The extent of this spread is determined by the local vascular distribution and by the spatial specificity of blood flow regulation, as well as by measurement parameters that (i) alter the relative sensitivity of the acquisition to activation-induced hemodynamic changes and (ii) determine the image contrast as a function of vessel size. In particular, large draining vessels on the cortical surface are a major contributor to both the BOLD signal change and to the spatial bias of the BOLD activation away from the site of neuronal activity. In this work, we introduce a laminar surface-based analysis method and study the relationship between spatial localization and activation strength as a function of laminar depth by acquiring 1 mm isotropic, single-shot EPI at 7 T and sampling the BOLD signal exclusively from the superficial, middle, or deep cortical laminae. We show that highly-accelerated EPI can limit image distortions to the point where a boundary-based registration algorithm accurately aligns the EPI data to the surface reconstruction. The spatial spread of the BOLD response tangential to the cortical surface was analyzed as a function of cortical depth using our surface-based analysis. Although sampling near the pial surface provided the highest signal strength, it also introduced the most spatial error. Thus, avoiding surface laminae improved spatial localization by about 40% at a cost of 36% in z-statistic, implying that optimal spatial resolution in functional imaging of the cortex can be achieved using anatomically-informed spatial sampling to avoid large pial vessels. PMID:20460157

  17. Functional MRI during hyperbaric oxygen: Effects of oxygen on neurovascular coupling and BOLD fMRI signals.

    PubMed

    Cardenas, Damon P; Muir, Eric R; Huang, Shiliang; Boley, Angela; Lodge, Daniel; Duong, Timothy Q

    2015-10-01

    Hyperbaric oxygen (HBO) therapy is used to treat a number of ailments. Improved understanding of how HBO affects neuronal activity, cerebral blood flow (CBF) and blood-oxygenation-level dependent (BOLD) changes could shed light on the role of oxygen in neurovascular coupling and help guide HBO treatments. The goal of this study was to test two hypotheses: i) activation-induced CBF fMRI response is not dependent on hemoglobin deoxygenation, and ii) activation-induced BOLD fMRI is markedly attenuated under HBO. CBF and BOLD fMRI of forepaw stimulation in anesthetized rats under HBO at 3 atmospheres absolute (ATA) were compared with normobaric air. Robust BOLD and CBF fMRI were detected under HBO. Inflow effects and spin-density changes did not contribute significantly to the BOLD fMRI signal under HBO. Analysis of the T2(⁎)-weighted signal at normobaric air and 1, 2 and 3ATA oxygen in the tissue and the superior sagittal sinus showed a strong dependence on increasing inhaled [O2]. Spontaneous electrophysiological activity and evoked local-field potentials were reduced under HBO. The differences between normobaric air and HBO in basal and evoked electrical activity could not fully account for the strong BOLD responses under HBO. We concluded that activation-induced CBF regulation in the brain does not operate through an oxygen-sensing mechanism and that stimulus-evoked BOLD responses and the venous T2(⁎)-weighted signals still have room to increase under 3ATA HBO. To our knowledge, this is the first fMRI study under HBO, providing insights into the effects of HBO on neural activity, neurovascular coupling, tissue oxygenation, and the BOLD signal. PMID:26143203

  18. Prospective active marker motion correction improves statistical power in BOLD fMRI

    PubMed Central

    Ooi, Melvyn B.; Goldman, Robin I.; Krueger, Sascha; Thomas, William J.; Sajda, Paul; Brown, Truman R.

    2013-01-01

    Group level statistical maps of blood oxygenation level dependent (BOLD) signals acquired using functional magnetic resonance imaging (fMRI) have become a basic measurement for much of systems, cognitive and social neuroscience. A challenge in making inferences from these statistical maps is the noise and potential confounds that arise from the head motion that occurs within and between acquisition volumes. This motion results in the scan plane being misaligned during acquisition, ultimately leading to reduced statistical power when maps are constructed at the group level. In most cases, an attempt is made to correct for this motion through the use of retrospective analysis methods. In this paper, we use a prospective active marker motion correction (PRAMMO) system that uses radio frequency markers for real-time tracking of motion, enabling on-line slice plane correction. We show that the statistical power of the activation maps is substantially increased using PRAMMO compared to conventional retrospective correction. Analysis of our results indicates that the PRAMMO acquisition reduces the variance without decreasing the signal component of the BOLD (beta). Using PRAMMO could thus improve the overall statistical power of fMRI based BOLD measurements, leading to stronger inferences of the nature of processing in the human brain. PMID:23220430

  19. Clinical utility of BOLD fMRI in preoperative work-up of epilepsy

    PubMed Central

    Ganesan, Karthik; Ursekar, Meher

    2014-01-01

    Surgical techniques have emerged as a viable therapeutic option in patients with drug refractory epilepsy. Pre-surgical evaluation of epilepsy requires a comprehensive, multiparametric, and multimodal approach for precise localization of the epileptogenic focus. Various non-invasive techniques are available at the disposal of the treating physician to detect the epileptogenic focus, which include electroencephalography (EEG), video-EEG, magnetic resonance imaging (MRI), functional MRI including blood oxygen level dependent (BOLD) techniques, single photon emission tomography (SPECT), and 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET). Currently, non-invasive high-resolution MR imaging techniques play pivotal roles in the preoperative detection of the seizure focus, and represent the foundation for successful epilepsy surgery. BOLD functional magnetic resonance imaging (fMRI) maps allow for precise localization of the eloquent cortex in relation to the seizure focus. This review article focuses on the clinical utility of BOLD (fMRI) in the pre-surgical work-up of epilepsy patients. PMID:24851002

  20. fMRI at High Spatial Resolution: Implications for BOLD-Models

    PubMed Central

    Goense, Jozien; Bohraus, Yvette; Logothetis, Nikos K.

    2016-01-01

    As high-resolution functional magnetic resonance imaging (fMRI) and fMRI of cortical layers become more widely used, the question how well high-resolution fMRI signals reflect the underlying neural processing, and how to interpret laminar fMRI data becomes more and more relevant. High-resolution fMRI has shown laminar differences in cerebral blood flow (CBF), volume (CBV), and neurovascular coupling. Features and processes that were previously lumped into a single voxel become spatially distinct at high resolution. These features can be vascular compartments such as veins, arteries, and capillaries, or cortical layers and columns, which can have differences in metabolism. Mesoscopic models of the blood oxygenation level dependent (BOLD) response therefore need to be expanded, for instance, to incorporate laminar differences in the coupling between neural activity, metabolism and the hemodynamic response. Here we discuss biological and methodological factors that affect the modeling and interpretation of high-resolution fMRI data. We also illustrate with examples from neuropharmacology and the negative BOLD response how combining BOLD with CBF- and CBV-based fMRI methods can provide additional information about neurovascular coupling, and can aid modeling and interpretation of high-resolution fMRI. PMID:27445782

  1. fMRI at High Spatial Resolution: Implications for BOLD-Models.

    PubMed

    Goense, Jozien; Bohraus, Yvette; Logothetis, Nikos K

    2016-01-01

    As high-resolution functional magnetic resonance imaging (fMRI) and fMRI of cortical layers become more widely used, the question how well high-resolution fMRI signals reflect the underlying neural processing, and how to interpret laminar fMRI data becomes more and more relevant. High-resolution fMRI has shown laminar differences in cerebral blood flow (CBF), volume (CBV), and neurovascular coupling. Features and processes that were previously lumped into a single voxel become spatially distinct at high resolution. These features can be vascular compartments such as veins, arteries, and capillaries, or cortical layers and columns, which can have differences in metabolism. Mesoscopic models of the blood oxygenation level dependent (BOLD) response therefore need to be expanded, for instance, to incorporate laminar differences in the coupling between neural activity, metabolism and the hemodynamic response. Here we discuss biological and methodological factors that affect the modeling and interpretation of high-resolution fMRI data. We also illustrate with examples from neuropharmacology and the negative BOLD response how combining BOLD with CBF- and CBV-based fMRI methods can provide additional information about neurovascular coupling, and can aid modeling and interpretation of high-resolution fMRI. PMID:27445782

  2. Fluoxetine exposure impacts boldness in female Siamese fighting fish, Betta splendens.

    PubMed

    Dzieweczynski, Teresa L; Kane, Jessica L; Campbell, Brennah A; Lavin, Lindsey E

    2016-01-01

    The present study examined the effects of the selective serotonin reuptake inhibitor, fluoxetine, on the behavior of female Siamese fighting fish, Betta splendens, in three different boldness assays (Empty Tank, Novel Environment, Social Tendency). When females were unexposed to fluoxetine, boldness was consistent within a context and correlated across assays. Fluoxetine exposure affected behavior within and among individuals on multiple levels. Exposure reduced overall boldness levels, made females behave in a less consistent manner, and significantly reduced correlations over time and across contexts. Fluoxetine exerted its effects on female Betta splendens behavior in a dose-dependent fashion and these effects persisted even after females were housed in clean water. If fluoxetine exposure impacts behaviors such as exploration that are necessary to an individual’s success, this may yield evolutionary consequences. In conclusion, the results show that fluoxetine exposure alters behavior beyond the level of overall response and highlights the importance of studying the behavioral effects of inadvertent pharmaceutical exposure in multiple contexts and with different dosing regimes. PMID:26462842

  3. Dose-dependent fluoxetine effects on boldness in male Siamese fighting fish.

    PubMed

    Dzieweczynski, Teresa L; Campbell, Brennah A; Kane, Jessica L

    2016-03-01

    As the use of pharmaceuticals and personal care products (PPCPs) continues to rise, these compounds enter the environment in increasing frequency. One such PPCP, fluoxetine, has been found in detectable amounts in aquatic ecosystems worldwide, where it may interfere with the behavior of exposed organisms. Fluoxetine exposure has been found to influence boldness and exploration in a range of fish species; however, how it might alter behavior in multiple contexts or over time is rarely examined. To this end, the effects of fluoxetine on boldness over time were studied in male Siamese fighting fish. Three different groups of males (0, 0.5 and 5 µg l(-1) fluoxetine) were tested in multiple boldness assays (empty tank, novel environment and shoal) once a week for 3 weeks to collect baseline measures and then at three different time points post-exposure. The effects of these varying exposure amounts on behavior were then examined for overall response, consistency and across-context correlations. Unexposed males were bolder in all contexts, were more consistent within a context, and had stronger between-context correlations than exposed males. Fluoxetine had dose-dependent effects on behavior, as males that received the higher dose exhibited greater behavioral effects. This study stresses the potential fitness consequences of fluoxetine exposure and suggests that examining behavioral effects of PPCPs under different dosing regimens and in multiple contexts is important to gain an increased understanding of how exposure affects behavior. PMID:26985051

  4. Fourier modeling of the BOLD response to a breath-hold task: Optimization and reproducibility.

    PubMed

    Pinto, Joana; Jorge, João; Sousa, Inês; Vilela, Pedro; Figueiredo, Patrícia

    2016-07-15

    Cerebrovascular reactivity (CVR) reflects the capacity of blood vessels to adjust their caliber in order to maintain a steady supply of brain perfusion, and it may provide a sensitive disease biomarker. Measurement of the blood oxygen level dependent (BOLD) response to a hypercapnia-inducing breath-hold (BH) task has been frequently used to map CVR noninvasively using functional magnetic resonance imaging (fMRI). However, the best modeling approach for the accurate quantification of CVR maps remains an open issue. Here, we compare and optimize Fourier models of the BOLD response to a BH task with a preparatory inspiration, and assess the test-retest reproducibility of the associated CVR measurements, in a group of 10 healthy volunteers studied over two fMRI sessions. Linear combinations of sine-cosine pairs at the BH task frequency and its successive harmonics were added sequentially in a nested models approach, and were compared in terms of the adjusted coefficient of determination and corresponding variance explained (VE) of the BOLD signal, as well as the number of voxels exhibiting significant BOLD responses, the estimated CVR values, and their test-retest reproducibility. The brain average VE increased significantly with the Fourier model order, up to the 3rd order. However, the number of responsive voxels increased significantly only up to the 2nd order, and started to decrease from the 3rd order onwards. Moreover, no significant relative underestimation of CVR values was observed beyond the 2nd order. Hence, the 2nd order model was concluded to be the optimal choice for the studied paradigm. This model also yielded the best test-retest reproducibility results, with intra-subject coefficients of variation of 12 and 16% and an intra-class correlation coefficient of 0.74. In conclusion, our results indicate that a Fourier series set consisting of a sine-cosine pair at the BH task frequency and its two harmonics is a suitable model for BOLD-fMRI CVR measurements

  5. Removing motion and physiological artifacts from intrinsic BOLD fluctuations using short echo data.

    PubMed

    Bright, Molly G; Murphy, Kevin

    2013-01-01

    Differing noise variance across study populations has been shown to cause artifactual group differences in functional connectivity measures. In this study, we investigate the use of short echo time functional MRI data to correct for these noise sources in blood oxygenation level dependent (BOLD)-weighted time series. A dual-echo sequence was used to simultaneously acquire data at both a short (TE=3.3 ms) and a BOLD-weighted (TE=35 ms) echo time. This approach is effectively "free," using dead-time in the pulse sequence to collect an additional echo without affecting overall scan time or temporal resolution. The proposed correction method uses voxelwise regression of the short TE data from the BOLD-weighted data to remove noise variance. In addition to a typical resting state scan, non-compliant behavior associated with patient groups was simulated via increased head motion or physiological fluctuations in 10 subjects. Short TE data showed significant correlations with the traditional motion-related and physiological noise regressors used in current connectivity analyses. Following traditional preprocessing, the extent of significant additional variance explained by the short TE data regressors was significantly correlated with the average head motion across the scan in the resting data (r(2)=0.93, p<0.0001). The reduction in data variance following the inclusion of short TE regressors was also correlated with scan head motion (r(2)=0.48, p=0.027). Task-related data were used to demonstrate the effects of the short TE correction on BOLD activation time series with known temporal structure; the size and strength of the activation were significantly decreased, but it is not clear whether this reflects BOLD contamination in the short TE data or correlated changes in blood volume. Finally, functional connectivity maps of the default mode network were constructed using a seed correlation approach. The effects of short TE correction and low-pass filtering on the resulting

  6. Sex-Differences and Temporal Consistency in Stickleback Fish Boldness

    PubMed Central

    King, Andrew J.; Fürtbauer, Ines; Mamuneas, Diamanto; James, Charlotte; Manica, Andrea

    2013-01-01

    Behavioural traits that co-vary across contexts or situations often reflect fundamental trade-offs which individuals experience in different contexts (e.g. fitness trade-offs between exploration and predation risk). Since males tend to experience greater variance in reproductive success than females, there may be considerable fitness benefits associated with “bolder” behavioural types, but only recently have researchers begun to consider sex-specific and life-history strategies associated with these. Here we test the hypothesis that male three-spined sticklebacks (Gasterosteus aculeatus) show high risk but potentially high return behaviours compared to females. According to this hypothesis we predicted that male fish would show greater exploration of their environment in a foraging context, and be caught sooner by an experimenter than females. We found that the time fish spent out of cover exploring their environment was correlated over two days, and males spent significantly more time out of cover than females. Also, the order in which fish were net-caught from their holding aquarium by an experimenter prior to experiments was negatively correlated with the time spent out of cover during tests, and males tended to be caught sooner than females. Moreover, we found a positive correlation between the catch number prior to our experiments and nine months after, pointing towards consistent, long-term individual differences in behaviour. PMID:24324664

  7. A BOLD Perspective on Age-Related Neurometabolic-Flow Coupling and Neural Efficiency Changes in Human Visual Cortex.

    PubMed

    Hutchison, Joanna Lynn; Shokri-Kojori, Ehsan; Lu, Hanzhang; Rypma, Bart

    2013-01-01

    Age-related performance declines in visual tasks have been attributed to reductions in processing efficiency. The neural basis of these declines has been explored by comparing the blood-oxygen-level-dependent (BOLD) index of neural activity in older and younger adults during visual task performance. However, neural activity is one of many factors that change with age and lead to BOLD signal differences. We investigated the origin of age-related BOLD changes by comparing blood flow and oxygen metabolic constituents of BOLD signal. Subjects periodically viewed flickering annuli and pressed a button when detecting luminance changes in a central fixation cross. Using magnetic resonance dual-echo arterial spin labeling and CO2 ingestion, we observed age-equivalent (i.e., similar in older and younger groups) fractional cerebral blood flow (ΔCBF) in the presence of age-related increases in fractional cerebral metabolic rate of oxygen (ΔCMRO2). Reductions in ΔCBF responsiveness to increased ΔCMRO2 in elderly led to paradoxical age-related BOLD decreases. Age-related ΔCBF/ΔCMRO2 ratio decreases were associated with reaction times, suggesting that age-related slowing resulted from less efficient neural activity. We hypothesized that reduced vascular responsiveness to neural metabolic demand would lead to a reduction in ΔCBF/ΔCMRO2. A simulation of BOLD relative to ΔCMRO2 for lower and higher neurometabolic-flow coupling ratios (approximating those for old and young, respectively) indicated less BOLD signal change in old than young in relatively lower CMRO2 ranges, as well as greater BOLD signal change in young compared to old in relatively higher CMRO2 ranges. These results suggest that age-comparative studies relying on BOLD signal might be misinterpreted, as age-related BOLD changes do not merely reflect neural activity changes. Age-related declines in neurometabolic-flow coupling might lead to neural efficiency reductions that can adversely affect visual task

  8. Decoding neural events from fMRI BOLD signal: A comparison of existing approaches and development of a new algorithm

    PubMed Central

    Bush, Keith; Cisler, Josh

    2013-01-01

    Neuroimaging methodology predominantly relies on the blood oxygenation level dependent (BOLD) signal. While the BOLD signal is a valid measure of neuronal activity, variance in fluctuations of the BOLD signal are not only due to fluctuations in neural activity. Thus, a remaining problem in neuroimaging analyses is developing methods that ensure specific inferences about neural activity that are not confounded by unrelated sources of noise in the BOLD signal. Here, we develop and test a new algorithm for performing semi-blind (i.e., no knowledge of stimulus timings) deconvolution of the BOLD signal that treats the neural event as an observable, but intermediate, probabilistic representation of the system’s state. We test and compare this new algorithm against three other recent deconvolution algorithms under varied levels of autocorrelated and Gaussian noise, hemodynamic response function (HRF) misspecification, and observation sampling rate (i.e., TR). Further, we compare the algorithms’ performance using two models to simulate BOLD data: a convolution of neural events with a known (or misspecified) HRF versus a biophysically accurate balloon model of hemodynamics. We also examine the algorithms’ performance on real task data. The results demonstrated good performance of all algorithms, though the new algorithm generally outperformed the others (3.0% improvement) under simulated resting state experimental conditions exhibiting multiple, realistic confounding factors (as well as 10.3% improvement on a real Stroop task). The simulations also demonstrate that the greatest negative influence on deconvolution accuracy is observation sampling rate. Practical and theoretical implications of these results for improving inferences about neural activity from fMRI BOLD signal are discussed. PMID:23602664

  9. Bold ideas shortlisted for future ESA science projects

    NASA Astrophysics Data System (ADS)

    2000-03-01

    nature of empty space. Quantum theory implies that even a perfect vacuum is not really empty but seethes with short-lived particles and forces. Half a century ago, the Dutch physicist Hendrik Casimir predicted that this hidden nature of the vacuum should reveal itself by a novel force between two metal plates. The proposal is to measure the Casimir force between superconducting surfaces a hundredth of a millimetre apart, a million times more accurately than has been done on the ground. Finally, one of the proposed projects is astronomical. EDDINGTON would take up a station far from the Earth and use a 1-metre telescope with a wide field of view to examine stars for oscillations and passing planets. Oscillations due to sound waves have already revealed many features of the Sun's interior, allowing astrophysicists to check their theories about how stars work, in the nearest case. Now astronomers are beginning to use the same method in other stars, and EDDINGTON would apply it to 50,000 stars of many different kinds. It would also check 700,000 stars for the presence of planets, revealed by a dip in the brightness of a star when a planet passes in front of it. In addition to the above mentioned proposals, SSAC recommended to study three proposals for accommodation on the International Space Station (ISS): * EUSO, study of the cosmic neutrinos and extremely high energy cosmic rays, * LOBSTER, an imaging all-sky X-Ray monitor; MOSS, studying the physics of superconducting ultra-stable microwave oscillators. "As is always the case, these exciting proposals give us an embarrassment of riches," comments Roger Bonnet, ESA's director of science. "That's thanks to the vigour and imagination of Europe's space science community".

  10. Role of 3T multiparametric-MRI with BOLD hypoxia imaging for diagnosis and post therapy response evaluation of postoperative recurrent cervical cancers

    PubMed Central

    Mahajan, Abhishek; Engineer, Reena; Chopra, Supriya; Mahanshetty, Umesh; Juvekar, S.L.; Shrivastava, S.K.; Desekar, Naresh; Thakur, M.H.

    2015-01-01

    Objectives To assess the diagnostic value of multiparametric-MRI (MPMRI) with hypoxia imaging as a functional marker for characterizing and detecting vaginal vault/local recurrence following primary surgery for cervical cancer. Methods With institutional review board approval and written informed consent 30 women (median age: 45 years) from October 2009 to March 2010 with previous operated carcinoma cervix and suspected clinical vaginal vault/local recurrence were examined with 3.0T-MRI. MRI imaging included conventional and MPMRI sequences [dynamic contrast enhanced (DCE), diffusion weighted (DW), 1H-MR spectroscopy (1HMRS), blood oxygen level dependent hypoxia imaging (BOLD)]. Two radiologists, blinded to pathologic findings, independently assessed the pretherapy MRI findings and then correlated it with histopathology findings. Sensitivity, specificity, positive predictive value, negative predictive value and their confidence intervals were calculated. The pre and post therapy conventional and MPMRI parameters were analyzed and correlated with response to therapy. Results Of the 30 patients, there were 24 recurrent tumors and 6 benign lesions. The accuracy of diagnosing recurrent vault lesions was highest at combined MPMRI and conventional MRI (100%) than at conventional-MRI (70%) or MPMRI (96.7%) alone. Significant correlation was seen between percentage tumor regression and pre-treatment parameters such as negative enhancement integral (NEI) (p = 0.02), the maximum slope (p = 0.04), mADC value (p = 0.001) and amount of hypoxic fraction on the pretherapy MRI (p = 0.01). Conclusion Conventional-MR with MPMRI significantly increases the diagnostic accuracy for suspected vaginal vault/local recurrence. Post therapy serial MPMRI with hypoxia imaging follow-up objectively documents the response. MPMRI and BOLD hypoxia imaging provide information regarding tumor biology at the molecular, subcellular, cellular and tissue levels and this information may be used

  11. Dictionary-Driven Ischemia Detection From Cardiac Phase-Resolved Myocardial BOLD MRI at Rest.

    PubMed

    Bevilacqua, Marco; Dharmakumar, Rohan; Tsaftaris, Sotirios A

    2016-01-01

    Cardiac Phase-resolved Blood-Oxygen-Level Dependent (CP-BOLD) MRI provides a unique opportunity to image an ongoing ischemia at rest. However, it requires post-processing to evaluate the extent of ischemia. To address this, here we propose an unsupervised ischemia detection (UID) method which relies on the inherent spatio-temporal correlation between oxygenation and wall motion to formalize a joint learning and detection problem based on dictionary decomposition. Considering input data of a single subject, it treats ischemia as an anomaly and iteratively learns dictionaries to represent only normal observations (corresponding to myocardial territories remote to ischemia). Anomaly detection is based on a modified version of One-class Support Vector Machines (OCSVM) to regulate directly the margins by incorporating the dictionary-based representation errors. A measure of ischemic extent (IE) is estimated, reflecting the relative portion of the myocardium affected by ischemia. For visualization purposes an ischemia likelihood map is created by estimating posterior probabilities from the OCSVM outputs, thus obtaining how likely the classification is correct. UID is evaluated on synthetic data and in a 2D CP-BOLD data set from a canine experimental model emulating acute coronary syndromes. Comparing early ischemic territories identified with UID against infarct territories (after several hours of ischemia), we find that IE, as measured by UID, is highly correlated (Pearson's r=0.84) with respect to infarct size. When advances in automated registration and segmentation of CP-BOLD images and full coverage 3D acquisitions become available, we hope that this method can enable pixel-level assessment of ischemia with this truly non-invasive imaging technique. PMID:26292338

  12. The Relevance of Interictal Bold Changes to Lateralize Seizure Focus Using Simultaneous EEG-fMRI

    PubMed Central

    Mangalore, Sandhya; Bharath, Rose Dawn; Upadhyay, Neeraj; Chaitanya, Ganne; Panda, Rajanikanth; Gupta, AK; Chandra, P Satish; Rao, Malla Bhaskar; Mahadevan, Anita

    2015-01-01

    Background and Purpose: The main challenge in assessing patients with epilepsy is the localization of neuronal networks involved in seizure generation and the lateralization of seizure onset. Electro encephalogram-functional magnetic resonance imaging (EEG-fMRI) is a noninvasive multimodal imaging technique for epilepsies where the data is acquired based on the interictal epileptiform discharges (IED). Since this is a new technique, the specificity for lateralizing epileptic focus is yet to be established. The peak blood oxygen level dependent (BOLD) signal in an interictal recording is known to correlate with seizure onset focus. In this study we are proposing a simple and practical method without the need for high end post processing techniques of fmri data. The peak BOLD signal derived from EEG-fMRI aids to lateralise seizure focus in a given cerebral lobe (region of interest, ROI). This is a very useful tool in a clinical setting on a given individual clinical case, when other modalities may be conflicting or inconclusive. Methods: We analyzed simultaneous EEG-fMRI of 10 different types of refractory epilepsy. The lateralization index was calculated from the statistical significant clusters obtained between the different ROI and results were validated with other modalities. Results: Lateralization of seizure focus corroborated well in temporal and extratemporal lobe epilepsy, reflex epilepsy and lesional epilepsy. The only drawback of EEG-fMRI in our study was if insignificant BOLD changes were associated with the given IED. Conclusions: EEG-fMRI can be helpful additional tool in the pre-surgical work-up of refractory epilepsy particularly when lateralization with other modalities is conflicting or inconclusive. PMID:26819937

  13. Test-retest reliability of evoked heat stimulation BOLD fMRI.

    PubMed

    Upadhyay, Jaymin; Lemme, Jordan; Anderson, Julie; Bleakman, David; Large, Thomas; Evelhoch, Jeffrey L; Hargreaves, Richard; Borsook, David; Becerra, Lino

    2015-09-30

    To date, the blood oxygenated-level dependent (BOLD) functional magnetic resonance imaging (fMRI) technique has enabled an objective and deeper understanding of pain processing mechanisms embedded within the human central nervous system (CNS). In order to further comprehend the benefits and limitations of BOLD fMRI in the context of pain as well as the corresponding subjective pain ratings, we evaluated the univariate response, test-retest reliability and confidence intervals (CIs) at the 95% level of both data types collected during evoked stimulation of 40°C (non-noxious), 44°C (mildly noxious) and a subject-specific temperature eliciting a 7/10 pain rating. The test-retest reliability between two scanning sessions was determined by calculating group-level interclass correlation coefficients (ICCs) and at the single-subject level. Across the three stimuli, we initially observed a graded response of increasing magnitude for both VAS (visual analog score) pain ratings and fMRI data. Test-retest reliability was observed to be highest for VAS pain ratings obtained during the 7/10 pain stimulation (ICC=0.938), while ICC values of pain fMRI data for a distribution of CNS structures ranged from 0.5 to 0.859 (p<0.05). Importantly, the upper and lower confidence interval CI bounds reported herein could be utilized in subsequent trials involving healthy volunteers to hypothesize the magnitude of effect required to overcome inherent variability of either VAS pain ratings or BOLD responses evoked during innocuous or noxious thermal stimulation. PMID:26072245

  14. Distinct BOLD Activation Profiles Following Central and Peripheral Oxytocin Administration in Awake Rats

    PubMed Central

    Ferris, Craig F.; Yee, Jason R.; Kenkel, William M.; Dumais, Kelly Marie; Moore, Kelsey; Veenema, Alexa H.; Kulkarni, Praveen; Perkybile, Allison M.; Carter, C. Sue

    2015-01-01

    A growing body of literature has suggested that intranasal oxytocin (OT) or other systemic routes of administration can alter prosocial behavior, presumably by directly activating OT sensitive neural circuits in the brain. Yet there is no clear evidence that OT given peripherally can cross the blood–brain barrier at levels sufficient to engage the OT receptor. To address this issue we examined changes in blood oxygen level-dependent (BOLD) signal intensity in response to peripheral OT injections (0.1, 0.5, or 2.5 mg/kg) during functional magnetic resonance imaging (fMRI) in awake rats imaged at 7.0 T. These data were compared to OT (1 μg/5 μl) given directly to the brain via the lateral cerebroventricle. Using a 3D annotated MRI atlas of the rat brain segmented into 171 brain areas and computational analysis, we reconstructed the distributed integrated neural circuits identified with BOLD fMRI following central and peripheral OT. Both routes of administration caused significant changes in BOLD signal within the first 10 min of administration. As expected, central OT activated a majority of brain areas known to express a high density of OT receptors, e.g., lateral septum, subiculum, shell of the accumbens, bed nucleus of the stria terminalis. This profile of activation was not matched by peripheral OT. The change in BOLD signal to peripheral OT did not show any discernible dose–response. Interestingly, peripheral OT affected all subdivisions of the olfactory bulb, in addition to the cerebellum and several brainstem areas relevant to the autonomic nervous system, including the solitary tract nucleus. The results from this imaging study do not support a direct central action of peripheral OT on the brain. Instead, the patterns of brain activity suggest that peripheral OT may interact at the level of the olfactory bulb and through sensory afferents from the autonomic nervous system to influence brain activity. PMID:26441574

  15. Study protocol: The back pain outcomes using longitudinal data (BOLD) registry

    PubMed Central

    2012-01-01

    Background Back pain is one of the most important causes of functional limitation, disability, and utilization of health care resources for adults of all ages, but especially among older adults. Despite the high prevalence of back pain in this population, important questions remain unanswered regarding the comparative effectiveness of commonly used diagnostic tests and treatments in the elderly. The overall goal of the Back pain Outcomes using Longitudinal Data (BOLD) project is to establish a rich, sustainable registry to describe the natural history and evaluate prospectively the effectiveness, safety, and cost-effectiveness of interventions for patients 65 and older with back pain. Methods/design BOLD is enrolling 5,000 patients ≥ 65 years old who present to a primary care physician with a new episode of back pain. We are recruiting study participants from three integrated health systems (Kaiser-Permanente Northern California, Henry Ford Health System in Detroit and Harvard Vanguard Medical Associates/ Harvard Pilgrim Health Care in Boston). Registry patients complete validated, standardized measures of pain, back pain-related disability, and health-related quality of life at enrollment and 3, 6 and 12 months later. We also have available for analysis the clinical and administrative data in the participating health systems’ electronic medical records. Using registry data, we will conduct an observational cohort study of early imaging compared to no early imaging among patients with new episodes of back pain. The aims are to: 1) identify predictors of early imaging and; 2) compare pain, functional outcomes, diagnostic testing and treatment utilization of patients who receive early imaging versus patients who do not receive early imaging. In terms of predictors, we will examine patient factors as well as physician factors. Discussion By establishing the BOLD registry, we are creating a resource that contains patient-reported outcome measures as well as

  16. BOLD fMRI study of ultrahigh frequency encoding in the inferior colliculus.

    PubMed

    Gao, Patrick P; Zhang, Jevin W; Chan, Russell W; Leong, Alex T L; Wu, Ed X

    2015-07-01

    Many vertebrates communicate with ultrahigh frequency (UHF) vocalizations to limit auditory detection by predators. The mechanisms underlying the neural encoding of such UHF sounds may provide important insights for understanding neural processing of other complex sounds (e.g. human speeches). In the auditory system, sound frequency is normally encoded topographically as tonotopy, which, however, contains very limited representation of UHFs in many species. Instead, electrophysiological studies suggested that two neural mechanisms, both exploiting the interactions between frequencies, may contribute to UHF processing. Neurons can exhibit excitatory or inhibitory responses to a tone when another UHF tone is presented simultaneously (combination sensitivity). They can also respond to such stimulation if they are tuned to the frequency of the cochlear-generated distortion products of the two tones, e.g. their difference frequency (cochlear distortion). Both mechanisms are present in an early station of the auditory pathway, the midbrain inferior colliculus (IC). Currently, it is unclear how prevalent the two mechanisms are and how they are functionally integrated in encoding UHFs. This study investigated these issues with large-view BOLD fMRI in rat auditory system, particularly the IC. UHF vocalizations (above 40kHz), but not pure tones at similar frequencies (45, 55, 65, 75kHz), evoked robust BOLD responses in multiple auditory nuclei, including the IC, reinforcing the sensitivity of the auditory system to UHFs despite limited representation in tonotopy. Furthermore, BOLD responses were detected in the IC when a pair of UHF pure tones was presented simultaneously (45 & 55kHz, 55 & 65kHz, 45 & 65kHz, 45 & 75kHz). For all four pairs, a cluster of voxels in the ventromedial side always showed the strongest responses, displaying combination sensitivity. Meanwhile, voxels in the dorsolateral side that showed strongest secondary responses to each pair of UHF pure tones

  17. BOLD VENTURE COMPUTATION SYSTEM for nuclear reactor core analysis, Version III

    SciTech Connect

    Vondy, D.R.; Fowler, T.B.; Cunningham, G.W. III.

    1981-06-01

    This report is a condensed documentation for VERSION III of the BOLD VENTURE COMPUTATION SYSTEM for nuclear reactor core analysis. An experienced analyst should be able to use this system routinely for solving problems by referring to this document. Individual reports must be referenced for details. This report covers basic input instructions and describes recent extensions to the modules as well as to the interface data file specifications. Some application considerations are discussed and an elaborate sample problem is used as an instruction aid. Instructions for creating the system on IBM computers are also given.

  18. Resting state BOLD fMRI for pre-surgical planning

    PubMed Central

    Kamran, Mudassar; Hacker, Carl D; Allen, Monica G; Mitchell, Timothy J; Leuthardt, Eric C; Snyder, Abraham Z; Shimony, Joshua S

    2014-01-01

    SYNOPSIS Resting state functional MRI (rsfMRI) measures spontaneous fluctuations in the BOLD signal and can be used to elucidate the brain’s functional organization. It can be used to simultaneously assess multiple distributed resting state networks. Unlike task fMRI, rsfMRI does not require task performance and thus can be performed in any subject that can obtain an MRI scan. In this article we present a brief introduction of rsfMRI processing methods followed by a detailed discussion on the use of rsfMRI in pre-surgical planning. Example cases are provided to highlight the strengths and limitations of the technique. PMID:25441506

  19. Coupling Mechanism and Significance of the BOLD Signal: A Status Report

    PubMed Central

    Hillman, Elizabeth M.C.

    2014-01-01

    Functional magnetic resonance imaging (fMRI) provides a unique view of the working human mind. The blood-oxygen-level-dependent (BOLD) signal, detected in fMRI, reflects changes in deoxyhemoglobin driven by localized changes in brain blood flow and blood oxygenation, which are coupled to underlying neuronal activity by a process termed neurovascular coupling. Over the past 10 years, a range of cellular mechanisms, including astrocytes, pericytes, and interneurons, have been proposed to play a role in functional neurovascular coupling. However, the field remains conflicted over the relative importance of each process, while key spatiotemporal features of BOLD response remain unexplained. Here, we review current candidate neurovascular coupling mechanisms and propose that previously overlooked involvement of the vascular endothelium may provide a more complete picture of how blood flow is controlled in the brain. We also explore the possibility and consequences of conditions in which neurovascular coupling may be altered, including during postnatal development, pathological states, and aging, noting relevance to both stimulus-evoked and resting-state fMRI studies. PMID:25032494

  20. Rapid three-dimensional functional magnetic resonance imaging of the initial negative BOLD response

    NASA Astrophysics Data System (ADS)

    Lindquist, Martin A.; Zhang, Cun-Hui; Glover, Gary; Shepp, Lawrence

    2008-03-01

    Functional MRI is most commonly used to study the local changes in blood flow that accompanies neuronal activity. In this work we introduce a new approach towards acquiring and analyzing fMRI data that instead provides the potential to study the initial oxygen consumption in the brain that accompanies activation. As the oxygen consumption is closer in timing to the underlying neuronal activity than the subsequent blood flow, this approach promises to provide more precise information about the location and timing of activity. Our approach is based on using a new single shot 3D echo-volumar imaging sequence which samples a small central region of 3D k-space every 100 ms, thereby giving a low spatial resolution snapshot of the brain with extremely high temporal resolution. Explicit and simple rules for implementing the trajectory are provided, together with a straightforward reconstruction algorithm. Using our approach allows us to effectively study the behavior of the brain in the time immediately following activation through the initial negative BOLD response, and we discuss new techniques for detecting the presence of the negative response across the brain. The feasibility and efficiency of the approach is confirmed using data from a visual-motor task and an auditory-motor-visual task. The results of these experiments provide a proof of concept of our methodology, and indicate that rapid imaging of the initial negative BOLD response can serve an important role in studying cognition tasks involving rapid mental processing in more than one region.

  1. Phase based venous suppression in resting-state BOLD GE-fMRI.

    PubMed

    Curtis, Andrew T; Hutchison, R Matthew; Menon, Ravi S

    2014-10-15

    Resting-state functional MRI (RS-fMRI) is a widely used method for inferring connectivity between brain regions or nodes. As with task-based fMRI, the spatial specificity of the connectivity maps can be distorted by the strong biasing effect of the BOLD signal in macroscopic veins. In RS-fMRI this effect is exacerbated by the temporal coherences of physiological origin between large veins that are widely distributed in the brain. In gradient echo based EPI, used for the vast majority of RS-fMRI, macroscopic veins that carry BOLD-related changes exhibit a strong phase response. This allows for post-processing identification and removal of venous signals using a phase regressor technique. Here, we employ this approach to suppress macrovascular venous contributions in high-field whole-brain RS-fMRI data sets, resulting in significant changes to both the spatial localization of the networks and the correlations between the network nodes. These effects were observed at both the individual and group analysis level, suggesting that venous contamination is a confounding factor for RS-fMRI studies even at relatively low image resolutions. Suppression of the macrovascular signal using the phase regression approach may therefore help to better identify, delineate, and interpret the true structure of large-scale brain networks. PMID:24907484

  2. Resting state BOLD functional connectivity at 3T: spin echo versus gradient echo EPI.

    PubMed

    Chiacchiaretta, Piero; Ferretti, Antonio

    2015-01-01

    Previous evidence showed that, due to refocusing of static dephasing effects around large vessels, spin-echo (SE) BOLD signals offer an increased linearity and promptness with respect to gradient-echo (GE) acquisition, even at low field. These characteristics suggest that, despite the reduced sensitivity, SE fMRI might also provide a potential benefit when investigating spontaneous fluctuations of brain activity. However, there are no reports on the application of spin-echo fMRI for connectivity studies at low field. In this study we compared resting state functional connectivity as measured with GE and SE EPI sequences at 3T. Main results showed that, within subject, the GE sensitivity is overall larger with respect to that of SE, but to a less extent than previously reported for activation studies. Noteworthy, the reduced sensitivity of SE was counterbalanced by a reduced inter-subject variability, resulting in comparable group statistical connectivity maps for the two sequences. Furthermore, the SE method performed better in the ventral portion of the default mode network, a region affected by signal dropout in standard GE acquisition. Future studies should clarify if these features of the SE BOLD signal can be beneficial to distinguish subtle variations of functional connectivity across different populations and/or treatments when vascular confounds or regions affected by signal dropout can be a critical issue. PMID:25749359

  3. BOLD fMRI and DTI in strabismic amblyopes following occlusion therapy.

    PubMed

    Gupta, Shikha; Kumaran, Senthil S; Saxena, Rohit; Gudwani, Sunita; Menon, Vimala; Sharma, Pradeep

    2016-08-01

    Evaluation of brain cluster activation using the functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) was sought in strabismic amblyopes. In this hospital-based case-control cross-sectional study, fMRI and DTI were conducted in strabismic amblyopes before initiation of any therapy and after visual recovery following the administration of occlusion therapy. FMRI was performed in 10 strabismic amblyopic subjects (baseline group) and in 5 left strabismic amblyopic children post-occlusion therapy after two-line visual improvement. Ten age-matched healthy children with right ocular dominance formed control group. Structural and functional MRI was carried out on 1.5T MR scanner. The visual task consisted of 8 Hz flickering checkerboard with red dot and occasional green dot. Blood-oxygen-level-dependent (BOLD) fMRI was analyzed using statistical parametric mapping and DTI on NordicIce (NordicNeuroLab) softwares. Reduced occipital activation was elicited when viewing with the amblyopic eye in amblyopes. An 'ipsilateral to viewing eye' pattern of calcarine BOLD activation was observed in controls and left amblyopes. Activation of cortical areas associated with visual processing differed in relation to the viewing eye. Following visual recovery on occlusion therapy, enhanced activity in bilateral hemispheres in striate as well as extrastriate regions when viewing with either eye was seen. Improvement in visual acuity following occlusion therapy correlates with hemodynamic activity in amblyopes. PMID:26659010

  4. Nonlinear Bayesian estimation of BOLD signal under non-Gaussian noise.

    PubMed

    Khan, Ali Fahim; Younis, Muhammad Shahzad; Bajwa, Khalid Bashir

    2015-01-01

    Modeling the blood oxygenation level dependent (BOLD) signal has been a subject of study for over a decade in the neuroimaging community. Inspired from fluid dynamics, the hemodynamic model provides a plausible yet convincing interpretation of the BOLD signal by amalgamating effects of dynamic physiological changes in blood oxygenation, cerebral blood flow and volume. The nonautonomous, nonlinear set of differential equations of the hemodynamic model constitutes the process model while the weighted nonlinear sum of the physiological variables forms the measurement model. Plagued by various noise sources, the time series fMRI measurement data is mostly assumed to be affected by additive Gaussian noise. Though more feasible, the assumption may cause the designed filter to perform poorly if made to work under non-Gaussian environment. In this paper, we present a data assimilation scheme that assumes additive non-Gaussian noise, namely, the e-mixture noise, affecting the measurements. The proposed filter MAGSF and the celebrated EKF are put to test by performing joint optimal Bayesian filtering to estimate both the states and parameters governing the hemodynamic model under non-Gaussian environment. Analyses using both the synthetic and real data reveal superior performance of the MAGSF as compared to EKF. PMID:25691911

  5. Functional and developmental significance of amplitude variance asymmetry in the BOLD resting-state signal.

    PubMed

    Davis, Ben; Jovicich, Jorge; Iacovella, Vittorio; Hasson, Uri

    2014-05-01

    It is known that the brain's resting-state activity (RSA) is organized in low frequency oscillations that drive network connectivity. Recent research has also shown that elements of RSA described by high-frequency and nonoscillatory properties are non-random and functionally relevant. Motivated by this research, we investigated nonoscillatory aspects of the blood-oxygen-level-dependent (BOLD) RSA using a novel method for characterizing subtle fluctuation dynamics. The metric that we develop quantifies the relative variance of the amplitude of local-maxima and local-minima in a BOLD time course (amplitude variance asymmetry; AVA). This metric reveals new properties of RSA activity, without relying on connectivity as a descriptive tool. We applied the AVA analysis to data from 3 different participant groups (2 adults, 1 child) collected from 3 different centers. The analyses show that AVA patterns a) identify 3 types of RSA profiles in adults' sensory systems b) differ in topology and pattern of dynamics in adults and children, and c) are stable across magnetic resonance scanners. Furthermore, children with higher IQ demonstrated more adult-like AVA patterns. These findings indicate that AVA reflects important and novel dimensions of brain development and RSA. PMID:23329729

  6. Influence of EEG electrodes on the BOLD fMRI signal.

    PubMed

    Bonmassar, G; Hadjikhani, N; Ives, J R; Hinton, D; Belliveau, J W

    2001-10-01

    Measurement of the EEG during fMRI scanning can give rise to image distortions due to magnetic susceptibility, eddy currents or chemical shift artifacts caused by certain types of EEG electrodes, cream, leads, or amplifiers. Two different creams were tested using MRS and T2* measurements, and we found that the one with higher water content was superior. This study introduces an index that quantifies the influence of EEG equipment on the BOLD fMRI signal. This index can also be used more generally to measure the changes in the fMRI signal due to the presence of any type of device inside (or outside) of the field of view (e.g., with fMRI and diffuse optical tomography, infrared imaging, transcranial magnetic stimulation, ultrasound imaging, etc.). Quantitative noise measurements are hampered by the normal variability of functional activation within the same subject and by the different slice profiles obtained when inserting a subject multiple times inside a MR imaging system. Our measurements account for these problems by using a matched filtering of cortical surface maps of functional activations. The results demonstrate that the BOLD signal is not influenced by the presence of EEG electrodes when using a properly constructed MRI compatible recording cap. PMID:11500994

  7. Sustained Negative BOLD Response in Human fMRI Finger Tapping Task

    PubMed Central

    Liu, Yadong; Shen, Hui; Zhou, Zongtan; Hu, Dewen

    2011-01-01

    In this work, we investigated the sustained negative blood oxygen level-dependent (BOLD) response (sNBR) using functional magnetic resonance imaging during a finger tapping task. We observed that the sNBR for this task was more extensive than has previously been reported. The cortical regions involved in sNBR are divided into the following three groups: frontal, somatosensory and occipital. By investigating the spatial structure, area, amplitude, and dynamics of the sNBR in comparison with those of its positive BOLD response (PBR) counterpart, we made the following observations. First, among the three groups, the somatosensory group contained the greatest number of activated voxels and the fewest deactivated voxels. In addition, the amplitude of the sNBR in this group was the smallest among the three groups. Second, the onset and peak time of the sNBR are both larger than those of the PBR, whereas the falling edge time of the sNBR is less than that of the PBR. Third, the long distance between most sNBR foci and their corresponding PBR foci makes it unlikely that they share the same blood supply artery. Fourth, the couplings between the sNBR and its PBR counterpart are distinct among different regions and thus should be investigated separately. These findings imply that the origin of most sNBR foci in the finger-tapping task is much more likely to be neuronal activity suppression rather than “blood steal.” PMID:21887329

  8. Sustained negative BOLD response in human fMRI finger tapping task.

    PubMed

    Liu, Yadong; Shen, Hui; Zhou, Zongtan; Hu, Dewen

    2011-01-01

    In this work, we investigated the sustained negative blood oxygen level-dependent (BOLD) response (sNBR) using functional magnetic resonance imaging during a finger tapping task. We observed that the sNBR for this task was more extensive than has previously been reported. The cortical regions involved in sNBR are divided into the following three groups: frontal, somatosensory and occipital. By investigating the spatial structure, area, amplitude, and dynamics of the sNBR in comparison with those of its positive BOLD response (PBR) counterpart, we made the following observations. First, among the three groups, the somatosensory group contained the greatest number of activated voxels and the fewest deactivated voxels. In addition, the amplitude of the sNBR in this group was the smallest among the three groups. Second, the onset and peak time of the sNBR are both larger than those of the PBR, whereas the falling edge time of the sNBR is less than that of the PBR. Third, the long distance between most sNBR foci and their corresponding PBR foci makes it unlikely that they share the same blood supply artery. Fourth, the couplings between the sNBR and its PBR counterpart are distinct among different regions and thus should be investigated separately. These findings imply that the origin of most sNBR foci in the finger-tapping task is much more likely to be neuronal activity suppression rather than "blood steal." PMID:21887329

  9. Investigation of the electrophysiological correlates of negative BOLD response during intermittent photic stimulation: An EEG-fMRI study.

    PubMed

    Maggioni, Eleonora; Zucca, Claudio; Reni, Gianluigi; Cerutti, Sergio; Triulzi, Fabio M; Bianchi, Anna M; Arrigoni, Filippo

    2016-06-01

    Although the occurrence of concomitant positive BOLD responses (PBRs) and negative BOLD responses (NBRs) to visual stimuli is increasingly investigated in neuroscience, it still lacks a definite explanation. Multimodal imaging represents a powerful tool to study the determinants of negative BOLD responses: the integration of functional Magnetic Resonance Imaging (fMRI) and electroencephalographic (EEG) recordings is especially useful, since it can give information on the neurovascular coupling underlying this complex phenomenon. In the present study, the brain response to intermittent photic stimulation (IPS) was investigated in a group of healthy subjects using simultaneous EEG-fMRI, with the main objective to study the electrophysiological mechanisms associated with the intense NBRs elicited by IPS in extra-striate visual cortex. The EEG analysis showed that IPS induced a desynchronization of the basal rhythm, followed by the instauration of a novel rhythm driven by the visual stimulation. The most interesting results emerged from the EEG-informed fMRI analysis, which suggested a relationship between the neuronal rhythms at 10 and 12 Hz and the BOLD dynamics in extra-striate visual cortex. These findings support the hypothesis that NBRs to visual stimuli may be neuronal in origin rather than reflecting pure vascular phenomena. Hum Brain Mapp 37:2247-2262, 2016. © 2016 Wiley Periodicals, Inc. PMID:26987932

  10. Comparison between subjects with long- and short-allele carriers in the BOLD signal within amygdala during emotional tasks

    NASA Astrophysics Data System (ADS)

    Hadi, Shamil; Siadat, Mohamad R.; Babajani-Feremi, Abbas

    2012-03-01

    Emotional tasks may result in a strong blood oxygen level-dependent (BOLD) signal in the amygdala in 5- HTTLRP short-allele. Reduced anterior cingulate cortex (ACC)-amygdala connectivity in short-allele provides a potential mechanistic account for the observed increase in amygdala activity. In our study, fearful and threatening facial expressions were presented to two groups of 12 subjects with long- and short-allele carriers. The BOLD signals of the left amygdala of each group were averaged to increase the signal-to-noise ratio. A Bayesian approach was used to estimate the model parameters to elucidate the underlying hemodynamic mechanism. Our results showed a positive BOLD signal in the left amygdala for short-allele individuals, and a negative BOLD signal in the same region for long-allele individuals. This is due to the fact that short-allele is associated with lower availability of serotonin transporter (5-HTT) and this leads to an increase of serotonin (5-HT) concentration in the cACC-amygdala synapse.

  11. Spikes, BOLD, Attention and Awareness: A comparison of electrophysiology and fMRI signals in V1

    PubMed Central

    Boynton, Geoffrey M.

    2014-01-01

    Early fMRI studies comparing results from fMRI and electrophysiology experiments supports the notion that the blood oxygen level dependent (BOLD) signal reliably follows the spiking activity of an underlying neuronal population averaged across a small region in space and a brief period in time. However, more recent studies focusing on higher-level cognitive factors such as attention and visual awareness report striking discrepancies between the fMRI response in humans and electrophysiological signals in macaque early visual areas. Four hypotheses are discussed that can explain the discrepancies between the two methods: (1) the BOLD signal follows local field potential (LFP) signals closer than spikes, and the only the LFP is modulated by top-down factors, (2) the BOLD signal is reflecting electrophysiological signals that are occurring later in time due to feedback delay, (3) the BOLD signal is more sensitive than traditional electrophysiological methods due to massive pooling by the hemodynamic coupling process, and finally (4) there is no real discrepancy, and instead weak but reliable effects on firing rates may be obscured by to differences in experimental design and interpretation of results across methods. PMID:22199162

  12. Comparison between end-tidal CO2 and respiration volume per time for detecting BOLD signal fluctuations during paced hyperventilation

    PubMed Central

    Vogt, Keith M.; Ibinson, James W.; Schmalbrock, Petra; Small, Robert H.

    2011-01-01

    Respiratory motion and capnometry monitoring were performed during blood oxygen level dependent (BOLD) functional magnetic resonance imaging (FMRI) of the brain while a series of paced hyperventilation tasks were performed that caused significant hypocapnia. Respiration volume per time (RVT) and end-tidal carbon dioxide (ETCO2) were determined and compared for their ability to explain BOLD contrast changes in the data. A 35% decrease in ETCO2 was observed along with corresponding changes in RVT. A best-fit ETCO2 response function, with an average initial peak delay time of 12 s, was empirically determined. ETCO2 data convolved with this response function was more strongly and prevalently correlated to BOLD signal changes than RVT data convolved with the corresponding respiration response function. The results suggest that ETCO2 better models BOLD signal fluctuations in FMRI experiments with significant transient hypocapnia. This is due to hysteresis in the ETCO2 response when moving from hypocapnia to normocapnia, compared to moving from normocapnia to hypocapnia. PMID:21908130

  13. Negligible fronto-parietal BOLD activity accompanying unreportable switches in bistable perception

    PubMed Central

    Brascamp, Jan; Blake, Randolph; Knapen, Tomas

    2015-01-01

    The human brain's executive systems play a vital role in deciding and selecting among actions. Selection among alternatives also occurs in the perceptual domain, for instance when perception switches between interpretations during perceptual bistability. Whether executive systems also underlie this functionality remains debated, with known fronto-parietal concomitants of perceptual switches being variously interpreted as reflecting the switches' cause, or as reflecting their consequences. We developed a paradigm where the two eyes receive different inputs and perception demonstrably switches between these inputs, yet where switches themselves are so inconspicuous as to become unreportable, minimizing their executive consequences. Fronto-parietal fMRI BOLD responses that accompany perceptual switches were similarly minimized in this paradigm, indicating that these reflect the switches' consequences rather than their cause. We conclude that perceptual switches do not always rely on executive brain areas, and that processes responsible for selection among alternatives may operate outside of the brain's executive systems. PMID:26436901

  14. Pathfinder technologies for bold new missions. [U.S. research and development program for space exploration

    NASA Technical Reports Server (NTRS)

    Sadin, Stanley R.; Rosen, Robert

    1987-01-01

    Project Pathfinder is a proposed U.S. Space Research and Technology program intended to enable bold new missions of space exploration. Pathfinder continues the advancement of technological capabilities and extends the foundation established under the Civil Space Technology Initiative, CSTI. By filling critical technological gaps, CSTI enhances access to Earth orbit and supports effective operations and science missions therein. Pathfinder, with a longer-term horizon, looks to a future that builds on Shuttle and Space Station and addresses technologies that support a range of exploration missions including: a return to the Moon to build an outpost; piloted missions to Mars; and continued scientific exploration of Earth and the other planets. The program's objective is to develop, within reasonable time frames, those emerging and innovative technologies that will make possible both new and enhanced missions and system concepts.

  15. A statistical approach for segregating cognitive task stages from multivariate fMRI BOLD time series.

    PubMed

    Demanuele, Charmaine; Bähner, Florian; Plichta, Michael M; Kirsch, Peter; Tost, Heike; Meyer-Lindenberg, Andreas; Durstewitz, Daniel

    2015-01-01

    Multivariate pattern analysis can reveal new information from neuroimaging data to illuminate human cognition and its disturbances. Here, we develop a methodological approach, based on multivariate statistical/machine learning and time series analysis, to discern cognitive processing stages from functional magnetic resonance imaging (fMRI) blood oxygenation level dependent (BOLD) time series. We apply this method to data recorded from a group of healthy adults whilst performing a virtual reality version of the delayed win-shift radial arm maze (RAM) task. This task has been frequently used to study working memory and decision making in rodents. Using linear classifiers and multivariate test statistics in conjunction with time series bootstraps, we show that different cognitive stages of the task, as defined by the experimenter, namely, the encoding/retrieval, choice, reward and delay stages, can be statistically discriminated from the BOLD time series in brain areas relevant for decision making and working memory. Discrimination of these task stages was significantly reduced during poor behavioral performance in dorsolateral prefrontal cortex (DLPFC), but not in the primary visual cortex (V1). Experimenter-defined dissection of time series into class labels based on task structure was confirmed by an unsupervised, bottom-up approach based on Hidden Markov Models. Furthermore, we show that different groupings of recorded time points into cognitive event classes can be used to test hypotheses about the specific cognitive role of a given brain region during task execution. We found that whilst the DLPFC strongly differentiated between task stages associated with different memory loads, but not between different visual-spatial aspects, the reverse was true for V1. Our methodology illustrates how different aspects of cognitive information processing during one and the same task can be separated and attributed to specific brain regions based on information contained in

  16. Consistency in boldness, activity and exploration at different stages of life

    PubMed Central

    2013-01-01

    Background Animals show consistent individual behavioural patterns over time and over situations. This phenomenon has been referred to as animal personality or behavioural syndromes. Little is known about consistency of animal personalities over entire life times. We investigated the repeatability of behaviour in common voles (Microtus arvalis) at different life stages, with different time intervals, and in different situations. Animals were tested using four behavioural tests in three experimental groups: 1. before and after maturation over three months, 2. twice as adults during one week, and 3. twice as adult animals over three months, which resembles a substantial part of their entire adult life span of several months. Results Different behaviours were correlated within and between tests and a cluster analysis showed three possible behavioural syndrome-axes, which we name boldness, exploration and activity. Activity and exploration behaviour in all tests was highly repeatable in adult animals tested over one week. In animals tested over maturation, exploration behaviour was consistent whereas activity was not. Voles that were tested as adults with a three-month interval showed the opposite pattern with stable activity but unstable exploration behaviour. Conclusions The consistency in behaviour over time suggests that common voles do express stable personality over short time. Over longer periods however, behaviour is more flexible and depending on life stage (i.e. tested before/after maturation or as adults) of the tested individual. Level of boldness or activity does not differ between tested groups and maintenance of variation in behavioural traits can therefore not be explained by expected future assets as reported in other studies. PMID:24314274

  17. Pre-stimulus BOLD-network activation modulates EEG spectral activity during working memory retention.

    PubMed

    Kottlow, Mara; Schlaepfer, Anthony; Baenninger, Anja; Michels, Lars; Brandeis, Daniel; Koenig, Thomas

    2015-01-01

    Working memory (WM) processes depend on our momentary mental state and therefore exhibit considerable fluctuations. Here, we investigate the interplay of task-preparatory and task-related brain activity as represented by pre-stimulus BOLD-fluctuations and spectral EEG from the retention periods of a visual WM task. Visual WM is used to maintain sensory information in the brain enabling the performance of cognitive operations and is associated with mental health. We tested 22 subjects simultaneously with EEG and fMRI while performing a visuo-verbal Sternberg task with two different loads, allowing for the temporal separation of preparation, encoding, retention and retrieval periods. Four temporally coherent networks (TCNs)-the default mode network (DMN), the dorsal attention, the right and the left WM network-were extracted from the continuous BOLD data by means of a group ICA. Subsequently, the modulatory effect of these networks' pre-stimulus activation upon retention-related EEG activity in the theta, alpha, and beta frequencies was analyzed. The obtained results are informative in the context of state-dependent information processing. We were able to replicate two well-known load-dependent effects: the frontal-midline theta increase during the task and the decrease of pre-stimulus DMN activity. As our main finding, these two measures seem to depend on each other as the significant negative correlations at frontal-midline channels suggested. Thus, suppressed pre-stimulus DMN levels facilitated later task related frontal midline theta increases. In general, based on previous findings that neuronal coupling in different frequency bands may underlie distinct functions in WM retention, our results suggest that processes reflected by spectral oscillations during retention seem not only to be "online" synchronized with activity in different attention-related networks but are also modulated by activity in these networks during preparation intervals. PMID:25999828

  18. MDMA (Ecstasy) association with impaired fMRI BOLD thalamic coherence and functional connectivity*

    PubMed Central

    Salomon, Ronald M.; Karageorgiou, John; Dietrich, Mary S.; McLellan, Jessica Y.; Charboneau, Evonne J.; Blackford, Jennifer U.; Cowan, Ronald L.

    2011-01-01

    Background MDMA exposure is associated with chronic serotonergic dysfunction in preclinical and clinical studies. A recent functional magnetic resonance imaging (fMRI) comparison of past MDMA users to non-MDMA-using controls revealed increased spatial extent and amplitude of activation in the supplementary motor area during motor tasks (Karageorgiou et al., 2009). Blood oxygenation level dependent (BOLD) data from that study were reanalyzed for intraregional coherence and for inter-regional temporal correlations between time series, as functional connectivity. Methods Fourteen MDMA users and ten controls reporting similar non-MDMA abuse performed finger taps during fMRI. Fourteen motor pathway regions plus a pontine raphé region were examined. Coherence was expressed as percent of voxels positively correlated with an intraregional index voxel. Functional connectivity was determined using wavelet correlations. Results Intraregional thalamic coherence was significantly diminished at low frequencies in MDMA users compared to controls (p=0.009). Inter-regional functional connectivity was significantly weaker for right thalamo - left caudate (p=0.002), right thalamo - left thalamus (p=0.007), right caudate - right postcentral (p=0.007) and right supplementary motor area - right precentral gyrus (p=0.011) region pairs compared to controls. When stratified by lifetime exposure, significant negative associations were observed between cumulative MDMA use and functional connectivity in seven other region-pairs, while only one region-pair showed a positive association. Conclusions Reported prior MDMA use was associated with deficits in BOLD intraregional coherence and inter-regional functional connectivity, even among functionally robust pathways involving motor regions. This suggests that MDMA use is associated with long-lasting effects on brain neurophysiology beyond the cognitive domain. PMID:21807471

  19. A statistical approach for segregating cognitive task stages from multivariate fMRI BOLD time series

    PubMed Central

    Demanuele, Charmaine; Bähner, Florian; Plichta, Michael M.; Kirsch, Peter; Tost, Heike; Meyer-Lindenberg, Andreas; Durstewitz, Daniel

    2015-01-01

    Multivariate pattern analysis can reveal new information from neuroimaging data to illuminate human cognition and its disturbances. Here, we develop a methodological approach, based on multivariate statistical/machine learning and time series analysis, to discern cognitive processing stages from functional magnetic resonance imaging (fMRI) blood oxygenation level dependent (BOLD) time series. We apply this method to data recorded from a group of healthy adults whilst performing a virtual reality version of the delayed win-shift radial arm maze (RAM) task. This task has been frequently used to study working memory and decision making in rodents. Using linear classifiers and multivariate test statistics in conjunction with time series bootstraps, we show that different cognitive stages of the task, as defined by the experimenter, namely, the encoding/retrieval, choice, reward and delay stages, can be statistically discriminated from the BOLD time series in brain areas relevant for decision making and working memory. Discrimination of these task stages was significantly reduced during poor behavioral performance in dorsolateral prefrontal cortex (DLPFC), but not in the primary visual cortex (V1). Experimenter-defined dissection of time series into class labels based on task structure was confirmed by an unsupervised, bottom-up approach based on Hidden Markov Models. Furthermore, we show that different groupings of recorded time points into cognitive event classes can be used to test hypotheses about the specific cognitive role of a given brain region during task execution. We found that whilst the DLPFC strongly differentiated between task stages associated with different memory loads, but not between different visual-spatial aspects, the reverse was true for V1. Our methodology illustrates how different aspects of cognitive information processing during one and the same task can be separated and attributed to specific brain regions based on information contained in

  20. Boldness towards novelty and translocation success in captive-raised, orphaned Tasmanian devils.

    PubMed

    Sinn, David L; Cawthen, Lisa; Jones, Susan M; Pukk, Chrissy; Jones, Menna E

    2014-01-01

    Translocation of endangered animals is common, but success is often variable and/or poor. Despite its intuitive appeal, little is known with regards to how individual differences amongst translocated animals influence their post-release survival, growth, and reproduction. We measured consistent pre-release responses to novelty in a familiar environment (boldness; repeatability=0.55) and cortisol response in a group of captive-reared Tasmanian devils, currently listed as "Endangered" by the IUCN. The devils were then released at either a hard- or soft-release site within their mothers' population of origin, and individual growth, movement, reproduction (females only), and survival across 2-8 months post-release was measured. Sex, release method, cohort, behavior, and cortisol response did not affect post-release growth, nor did these factors influence the home range size of orphan devils. Final linear distances moved from the release site were impacted heavily by the release cohort, but translocated devils' movement overall was not different from that in the same-age wild devils. All orphan females of reproductive age were subsequently captured with offspring. Overall survival rates in translocated devils were moderate (∼42%), and were not affected by devil sex, release method, cohort, release weight, or pre-release cortisol response. Devils that survived during the study period were, however, 3.5 times more bold than those that did not (effect size r=0.76). Our results suggest that conservation managers may need to provide developmental conditions in captivity that promote a wide range of behaviors across individuals slated for wild release. PMID:24375492

  1. Test-retest Stability Analysis of Resting Brain Activity Revealed by BOLD fMRI

    PubMed Central

    Li, Zhengjun; Kadivar, Aniseh; Pluta, John; Dunlop, John; Wang, Ze

    2012-01-01

    Purpose To assess test-retest stability of four fMRI-derived resting brain activity metrics: the seed-region-based functional connectivity (SRFC), independent component analysis (ICA)-derived network-based FC (NTFC), regional homogeneity (ReHo), and the amplitude of low frequency fluctuation (ALFF). Methods Simulations were used to assess the sensitivity of SRFC, ReHo, and ALFF to noise interference. Repeat resting blood-oxygen-level-dependent (BOLD) fMRI were acquired from 32 healthy subjects. The intra-class correlation coefficient (ICC) was used to assess the stability of the 4 metrics. Results Random noise yielded small random SRFC, small but consistent ReHo and ALFF. A neighborhood size greater than 20 voxels should be used for calculating ReHo in order to reduce the noise interference. Both the anterior cingulate cortex (ACC) and posterior cingulate cortex (PCC)-based SRFC were reproducible in more spatially extended regions than ICA NTFC. The two regional spontaneous brain activity (SBA) measures, ReHo and ALFF, showed test-retest reproducibility in almost the whole grey matter. Conclusion SRFC, ReHo, and ALFF are robust to random noise interference. The neighborhood size for calculating ReHo should be larger than 20 voxels. ICC>0.5 and cluster size>11 should be used to assess the ICC maps for ACC/PCC SRFC, ReHo and ALFF. BOLD fMRI-based SBA can be reliably measured using ACC/PCC SRFC, ReHo and ALFF after two months. PMID:22535702

  2. Pre-stimulus BOLD-network activation modulates EEG spectral activity during working memory retention

    PubMed Central

    Kottlow, Mara; Schlaepfer, Anthony; Baenninger, Anja; Michels, Lars; Brandeis, Daniel; Koenig, Thomas

    2015-01-01

    Working memory (WM) processes depend on our momentary mental state and therefore exhibit considerable fluctuations. Here, we investigate the interplay of task-preparatory and task-related brain activity as represented by pre-stimulus BOLD-fluctuations and spectral EEG from the retention periods of a visual WM task. Visual WM is used to maintain sensory information in the brain enabling the performance of cognitive operations and is associated with mental health. We tested 22 subjects simultaneously with EEG and fMRI while performing a visuo-verbal Sternberg task with two different loads, allowing for the temporal separation of preparation, encoding, retention and retrieval periods. Four temporally coherent networks (TCNs)—the default mode network (DMN), the dorsal attention, the right and the left WM network—were extracted from the continuous BOLD data by means of a group ICA. Subsequently, the modulatory effect of these networks' pre-stimulus activation upon retention-related EEG activity in the theta, alpha, and beta frequencies was analyzed. The obtained results are informative in the context of state-dependent information processing. We were able to replicate two well-known load-dependent effects: the frontal-midline theta increase during the task and the decrease of pre-stimulus DMN activity. As our main finding, these two measures seem to depend on each other as the significant negative correlations at frontal-midline channels suggested. Thus, suppressed pre-stimulus DMN levels facilitated later task related frontal midline theta increases. In general, based on previous findings that neuronal coupling in different frequency bands may underlie distinct functions in WM retention, our results suggest that processes reflected by spectral oscillations during retention seem not only to be “online” synchronized with activity in different attention-related networks but are also modulated by activity in these networks during preparation intervals. PMID

  3. Global signal modulation of single-trial fMRI response variability: Effect on positive vs negative BOLD response relationship.

    PubMed

    Mayhew, S D; Mullinger, K J; Ostwald, D; Porcaro, C; Bowtell, R; Bagshaw, A P; Francis, S T

    2016-06-01

    In functional magnetic resonance imaging (fMRI), the relationship between positive BOLD responses (PBRs) and negative BOLD responses (NBRs) to stimulation is potentially informative about the balance of excitatory and inhibitory brain responses in sensory cortex. In this study, we performed three separate experiments delivering visual, motor or somatosensory stimulation unilaterally, to one side of the sensory field, to induce PBR and NBR in opposite brain hemispheres. We then assessed the relationship between the evoked amplitudes of contralateral PBR and ipsilateral NBR at the level of both single-trial and average responses. We measure single-trial PBR and NBR peak amplitudes from individual time-courses, and show that they were positively correlated in all experiments. In contrast, in the average response across trials the absolute magnitudes of both PBR and NBR increased with increasing stimulus intensity, resulting in a negative correlation between mean response amplitudes. Subsequent analysis showed that the amplitude of single-trial PBR was positively correlated with the BOLD response across all grey-matter voxels and was not specifically related to the ipsilateral sensory cortical response. We demonstrate that the global component of this single-trial response modulation could be fully explained by voxel-wise vascular reactivity, the BOLD signal standard deviation measured in a separate resting-state scan (resting state fluctuation amplitude, RSFA). However, bilateral positive correlation between PBR and NBR regions remained. We further report that modulations in the global brain fMRI signal cannot fully account for this positive PBR-NBR coupling and conclude that the local sensory network response reflects a combination of superimposed vascular and neuronal signals. More detailed quantification of physiological and noise contributions to the BOLD signal is required to fully understand the trial-by-trial PBR and NBR relationship compared with that of

  4. Hemodynamic scaling of fMRI-BOLD signal: validation of low-frequency spectral amplitude as a scalability factor.

    PubMed

    Biswal, Bharat B; Kannurpatti, Sridhar S; Rypma, Bart

    2007-12-01

    Functional magnetic resonance imaging blood-oxygenation-level-dependent (fMRI-BOLD) signal representing neural activity may be optimized by discriminating MR signal components related to neural activity and those related to intrinsic properties of the cortical vasculature. The objective of this study was to reduce the hemodynamic change independent of neural activity to obtain a scaled fMRI-BOLD response using two factors, namely, low-frequency spectral amplitude (LFSA) and breath-hold amplitude (BHA). Ten subjects (age range, 22-38 years) were scanned during four task conditions: (a) rest while breathing room air, (b) bilateral finger tapping while breathing room air, (c) rest during a partial inspirational breath-hold, and (d) rest during moderate hypercapnia (breathing 5% CO2, 20% O2 and 75% N2). In all subjects who breathed 5% CO2, regions with significant BOLD response during breath-hold correlated significantly with the percent signal increase during 5% CO2 inhalation. Finger-tapping-induced responses in the motor cortex were diminished to a similar extent after scaling using either LFSA or BHA. Inter- and intrasubject variation in the amplitude of the BOLD signal response reduced after hemodynamic scaling using LFSA or BHA. The results validated the hemodynamic amplitude scaling using LFSA with the earlier established BHA. LFSA free from motor-task contamination can be used to calibrate the fMRI-BOLD response in lieu of BHA or hypercapnia to minimize intra- and intersubject variation arising from vascular anatomy and vasodilative capacity. PMID:17482411

  5. Blood pressure changes induced by arterial blood withdrawal influence bold signal in anesthesized rats at 7 Tesla: implications for pharmacologic mri.

    PubMed

    Kalisch, R; Elbel, G K; Gössl, C; Czisch, M; Auer, D P

    2001-10-01

    Functional magnetic resonance imaging (fMRI) using the blood oxygenation level-dependent (BOLD) contrast is now increasingly applied for measuring drug effects on brain activity. A possible confound in pharmacologic fMRI (phMRI) is that the BOLD signal may be sensitive to systemic cardiovascular or respiratory parameters, which can themselves be modulated by a drug. To assess whether abrupt changes in arterial blood pressure (BP) as may be observed in phMRI experiments influence the BOLD signal, a hemorrhage model was studied in anesthesized rats at 7 T using spin-echo EPI. BP and BOLD signal time courses were found to be significantly correlated (P < 0.01). This effect was detected under the three different anesthetic regimens employed (isoflurane, halothane, and propofol). The regional pattern of BP-BOLD correlations was heterogeneous and may reflect vascular density. In physiological terms, a BOLD decrease during a decrease in BP may result from an increase in mostly venous cerebral blood volume (CBV) as an autoregulatory response to maintain cerebral blood flow (CBF) during decreased perfusion pressure. The observed influence of BP on BOLD may complicate qualitative and quantitative description of drug effects. PMID:11554808

  6. Comparison of regional skeletal muscle tissue oxygenation in college athletes and sedentary control subjects using quantitative BOLD MR imaging.

    PubMed

    Stacy, Mitchel R; Caracciolo, Christopher M; Qiu, Maolin; Pal, Prasanta; Varga, Tyler; Constable, Robert Todd; Sinusas, Albert J

    2016-08-01

    Blood oxygen level-dependent (BOLD) magnetic resonance (MR) imaging permits noninvasive assessment of tissue oxygenation. We hypothesized that BOLD imaging would allow for regional evaluation of differences in skeletal muscle oxygenation between athletes and sedentary control subjects, and dynamic BOLD responses to ischemia (i.e., proximal cuff occlusion) and reactive hyperemia (i.e., rapid cuff deflation) would relate to lower extremity function, as assessed by jumping ability. College football athletes (linemen, defensive backs/wide receivers) were compared to sedentary healthy controls. BOLD signal of the gastrocnemius, soleus, anterior tibialis, and peroneus longus was assessed for peak hyperemic value (PHV), time to peak (TTP), minimum ischemic value (MIV), and time to recovery (TTR). Significantly higher PHVs were identified in athletes versus controls for the gastrocnemius (linemen, 15.8 ± 9.1%; defensive backs/wide receivers, 17.9 ± 5.1%; controls, 7.4 ± 3.5%), soleus (linemen, 25.9 ± 11.5%; backs/receivers, 22.0 ± 9.4%; controls, 12.9 ± 5.8%), and anterior tibialis (linemen, 12.8 ± 5.3%; backs/receivers, 12.6 ± 3.9%; controls, 7.7 ± 4.0%), whereas no differences in PHV were found for the peroneus longus (linemen, 14.1 ± 6.9%; backs/receivers, 11.7 ± 4.6%; controls, 9.0 ± 4.9%). In all subject groups, the gastrocnemius and soleus muscles exhibited the lowest MIVs during cuff occlusion. No differences in TTR were found between muscles for any subject group. PHV of the gastrocnemius muscle was significantly and positively related to maximal vertical (r = 0.56, P = 0.002) and broad jump (r = 0.47, P = 0.01). These results suggest that BOLD MR imaging is a useful noninvasive tool for evaluating differences in tissue oxygenation of specific muscles between active and sedentary individuals, and peak BOLD responses may relate to functional capacity. PMID:27535483

  7. Back pain in seniors: the Back pain Outcomes using Longitudinal Data (BOLD) cohort baseline data

    PubMed Central

    2014-01-01

    Background Back pain represents a substantial burden globally, ranking first in a recent assessment among causes of years lived with disability. Though back pain is widely studied among working age adults, there are gaps with respect to basic descriptive epidemiology among seniors, especially in the United States. Our goal was to describe how pain, function and health-related quality of life vary by demographic and geographic factors among seniors presenting to primary care providers with new episodes of care for back pain. Methods We examined baseline data from the Back pain Outcomes using Longitudinal Data (BOLD) registry, the largest inception cohort to date of seniors presenting to a primary care provider for back pain. The sample included 5,239 patients ≥ 65 years old with a new primary care visit for back pain at three integrated health systems (Northern California Kaiser-Permanente, Henry Ford Health System [Detroit], and Harvard Vanguard Medical Associates [Boston]). We examined differences in patient characteristics across healthcare sites and associations of patient sociodemographic and clinical characteristics with baseline patient-reported measures of pain, function, and health-related quality of life. Results Patients differed across sites in demographic and other characteristics. The Detroit site had more African-American patients (50%) compared with the other sites (7-8%). The Boston site had more college graduates (68%) compared with Detroit (20%). Female sex, lower educational status, African-American race, and older age were associated with worse functional disability as measured by the Roland-Morris Disability Questionnaire. Except for age, these factors were also associated with worse pain. Conclusions Baseline pain and functional impairment varied substantially with a number of factors in the BOLD cohort. Healthcare site was an important factor. After controlling for healthcare site, lower education, female sex, African-American race

  8. Negative BOLD response and serotonin concentration within rostral subgenual portion of the anterior cingulate cortex for long-allele carriers during perceptual processing of emotional tasks

    NASA Astrophysics Data System (ADS)

    Hadi, Shamil M.; Siadat, Mohamad R.; Babajani-Feremi, Abbas

    2012-03-01

    We investigated the effect of synaptic serotonin concentration on hemodynamic responses. The stimuli paradigm involved the presentation of fearful and threatening facial expressions to a set of 24 subjects who were either5HTTLPR long- or short-allele carriers (12 of each type in each group). The BOLD signals of the rACC from subjects of each group were averaged to increase the signal-to-noise ratio. We used a Bayesian approach to estimate the parameters of the underlying hemodynamic model. Our results, during this perceptual processing of emotional task, showed a negative BOLD signal in the rACC in the subjects with long-alleles. In contrast, the subjects with short-alleles showed positive BOLD signals in the rACC. These results suggest that high synaptic serotonin concentration in the rACC inhibits neuronal activity in a fashion similar to GABA, and a consequent negative BOLD signal ensues.

  9. Co-localization between the BOLD response and epileptiform discharges recorded by simultaneous intracranial EEG-fMRI at 3 T

    PubMed Central

    Aghakhani, Yahya; Beers, Craig A.; Pittman, Daniel J.; Gaxiola-Valdez, Ismael; Goodyear, Bradley G.; Federico, Paolo

    2015-01-01

    Objectives Simultaneous scalp EEG-fMRI can identify hemodynamic changes associated with the generation of interictal epileptiform discharges (IEDs), and it has the potential of becoming a standard, non-invasive technique for pre-surgical assessment of patients with medically intractable epilepsy. This study was designed to assess the BOLD response to focal IEDs recorded via simultaneous intracranial EEG-functional MRI (iEEG-fMRI). Methods Twelve consecutive patients undergoing intracranial video EEG monitoring were recruited for iEEG-fMRI studies at 3 T. Depth, subdural strip, or grid electrodes were implanted according to our standard clinical protocol. Subjects underwent 10–60 min of continuous iEEG-fMRI scanning. IEDs were marked, and the most statistically significant clusters of BOLD signal were identified (Z-score 2.3, p value < 0.05). We assessed the concordance between the locations of the BOLD response and the IED. Concordance was defined as a distance <1.0 cm between the IED and BOLD response location. Negative BOLD responses were not studied in this project. Results Nine patients (7 females) with a mean age of 31 years (range 22–56) had 11 different types of IEDs during fMR scanning. The IEDs were divided based on the location of the active electrode contact into mesial temporal, lateral temporal, and extra-temporal. Seven (5 left) mesial temporal IED types were recorded in 5 patients (110–2092 IEDs per spike location). Six of these IEDs had concordant BOLD response in the ipsilateral mesial temporal structures, <1 cm from the most active contact. One of the two subjects with left lateral temporal IEDs had BOLD responses concordant with the location of the most active contact, as well other ipsilateral and contralateral sites. Notably, the remaining two subjects with extratemporal discharges showed no BOLD signal near the active electrode contact. Conclusions iEEG-fMRI is a feasible and low-risk method for assessment of hemodynamic changes

  10. Quantitative mapping of cerebrovascular reactivity using resting-state BOLD fMRI: Validation in healthy adults.

    PubMed

    Golestani, Ali M; Wei, Luxi L; Chen, J Jean

    2016-09-01

    In conventional neuroimaging, cerebrovascular reactivity (CVR) is quantified primarily using the blood-oxygenation level-dependent (BOLD) functional MRI (fMRI) signal, specifically, as the BOLD response to intravascular carbon dioxide (CO2) modulations, in units of [%ΔBOLD/mmHg]. While this method has achieved wide appeal and clinical translation, the tolerability of CO2-related tasks amongst patients and the elderly remains a challenge in more routine and large-scale applications. In this work, we propose an improved method to quantify CVR by exploiting intrinsic fluctuations in CO2 and corresponding changes in the resting-state BOLD signal (rs-qCVR). Our rs-qCVR approach requires simultaneous monitoring of PETCO2, cardiac pulsation and respiratory volume. In 16 healthy adults, we compare our quantitative CVR estimation technique to the prospective CO2-targeting based CVR quantification approach (qCVR, the "standard"). We also compare our rs-CVR to non-quantitative alternatives including the resting-state fluctuation amplitude (RSFA), amplitude of low-frequency fluctuation (ALFF) and global-signal regression. When all subjects were pooled, only RSFA and ALFF were significantly associated with qCVR. However, for characterizing regional CVR variations within each subject, only the PETCO2-based rs-qCVR measure is strongly associated with standard qCVR in 100% of the subjects (p≤0.1). In contrast, for the more qualitative CVR measures, significant within-subject association with qCVR was only achieved in 50-70% of the subjects. Our work establishes the feasibility of extracting quantitative CVR maps using rs-fMRI, opening the possibility of mapping functional connectivity and qCVR simultaneously. PMID:27177763

  11. Pattern changes of EEG oscillations and BOLD signals associated with temporal lobe epilepsy as revealed by a working memory task

    PubMed Central

    2014-01-01

    Background It is known that the abnormal neural activity in epilepsy may be associated to the reorganization of neural circuits and brain plasticity in various ways. On that basis, we hypothesized that changes in neuronal circuitry due to epilepsy could lead to measurable variations in patterns of both EEG and BOLD signals in patients performing some cognitive task as compared to what would be obtained in normal condition. Thus, the aim of this study was to compare the cerebral areas involved in EEG oscillations versus fMRI signal patterns during a working memory (WM) task in normal controls and patients with refractory mesial temporal lobe epilepsy (MTLE) associated with hippocampal sclerosis (HS). The study included six patients with left MTLE-HS (left-HS group) and seven normal controls (control group) matched to the patients by age and educational level, both groups undergoing a blocked design paradigm based on Sternberg test during separated EEG and fMRI sessions. This test consisted of encoding and maintenance of a variable number of consonant letters on WM. Results EEG analysis for the encoding period revealed the presence of theta and alpha oscillations in the frontal and parietal areas, respectively. Likewise, fMRI showed the co-occurrence of positive and negative BOLD signals in both brain regions. As for the maintenance period, whereas EEG analysis revealed disappearance of theta oscillation, fMRI showed decrease of positive BOLD in frontal area and increase of negative BOLD in the posterior part of the brain. Conclusions Generally speaking, these patterns of electrophysiological and hemodynamic signals were observed for both control and left-HS groups. However, the data also revealed remarkable differences between these groups that are consistent with the hypothesis of reorganization of brain circuitry associated with epilepsy. PMID:24766708

  12. Measurement of oxygen extraction fraction (OEF): An optimized BOLD signal model for use with hypercapnic and hyperoxic calibration.

    PubMed

    Merola, Alberto; Murphy, Kevin; Stone, Alan J; Germuska, Michael A; Griffeth, Valerie E M; Blockley, Nicholas P; Buxton, Richard B; Wise, Richard G

    2016-04-01

    Several techniques have been proposed to estimate relative changes in cerebral metabolic rate of oxygen consumption (CMRO2) by exploiting combined BOLD fMRI and cerebral blood flow data in conjunction with hypercapnic or hyperoxic respiratory challenges. More recently, methods based on respiratory challenges that include both hypercapnia and hyperoxia have been developed to assess absolute CMRO2, an important parameter for understanding brain energetics. In this paper, we empirically optimize a previously presented "original calibration model" relating BOLD and blood flow signals specifically for the estimation of oxygen extraction fraction (OEF) and absolute CMRO2. To do so, we have created a set of synthetic BOLD signals using a detailed BOLD signal model to reproduce experiments incorporating hypercapnic and hyperoxic respiratory challenges at 3T. A wide range of physiological conditions was simulated by varying input parameter values (baseline cerebral blood volume (CBV0), baseline cerebral blood flow (CBF0), baseline oxygen extraction fraction (OEF0) and hematocrit (Hct)). From the optimization of the calibration model for estimation of OEF and practical considerations of hypercapnic and hyperoxic respiratory challenges, a new "simplified calibration model" is established which reduces the complexity of the original calibration model by substituting the standard parameters α and β with a single parameter θ. The optimal value of θ is determined (θ=0.06) across a range of experimental respiratory challenges. The simplified calibration model gives estimates of OEF0 and absolute CMRO2 closer to the true values used to simulate the experimental data compared to those estimated using the original model incorporating literature values of α and β. Finally, an error propagation analysis demonstrates the susceptibility of the original and simplified calibration models to measurement errors and potential violations in the underlying assumptions of isometabolism

  13. Acute Nicotine Administration Increases BOLD fMRI Signal in Brain Regions Involved in Reward Signaling and Compulsive Drug Intake in Rats

    PubMed Central

    Alexander, Jon C.; Perez, Pablo D.; Bauzo-Rodriguez, Rayna; Hall, Gabrielle; Klausner, Rachel; Guerra, Valerie; Zeng, Huadong; Igari, Moe; Febo, Marcelo

    2015-01-01

    Background: Acute nicotine administration potentiates brain reward function and enhances motor and cognitive function. These studies investigated which brain areas are being activated by a wide range of doses of nicotine, and if this is diminished by pretreatment with the nonselective nicotinic receptor antagonist mecamylamine. Methods: Drug-induced changes in brain activity were assessed by measuring changes in the blood oxygen level dependent (BOLD) signal using an 11.1-Tesla magnetic resonance scanner. In the first experiment, nicotine naïve rats were mildly anesthetized and the effect of nicotine (0.03–0.6mg/kg) on the BOLD signal was investigated for 10min. In the second experiment, the effect of mecamylamine on nicotine-induced brain activity was investigated. Results: A high dose of nicotine increased the BOLD signal in brain areas implicated in reward signaling, such as the nucleus accumbens shell and the prelimbic area. Nicotine also induced a dose-dependent increase in the BOLD signal in the striato-thalamo-orbitofrontal circuit, which plays a role in compulsive drug intake, and in the insular cortex, which contributes to nicotine craving and relapse. In addition, nicotine induced a large increase in the BOLD signal in motor and somatosensory cortices. Mecamylamine alone did not affect the BOLD signal in most brain areas, but induced a negative BOLD response in cortical areas, including insular, motor, and somatosensory cortices. Pretreatment with mecamylamine completely blocked the nicotine-induced increase in the BOLD signal. Conclusions: These studies demonstrate that acute nicotine administration activates brain areas that play a role in reward signaling, compulsive behavior, and motor and cognitive function. PMID:25552431

  14. Complexity of spontaneous BOLD activity in default mode network is correlated with cognitive function in normal male elderly: a multiscale entropy analysis.

    PubMed

    Yang, Albert C; Huang, Chu-Chung; Yeh, Heng-Liang; Liu, Mu-En; Hong, Chen-Jee; Tu, Pei-Chi; Chen, Jin-Fan; Huang, Norden E; Peng, Chung-Kang; Lin, Ching-Po; Tsai, Shih-Jen

    2013-02-01

    The nonlinear properties of spontaneous fluctuations in blood oxygen level-dependent (BOLD) signals remain unexplored. We test the hypothesis that complexity of BOLD activity is reduced with aging and is correlated with cognitive performance in the elderly. A total of 99 normal older and 56 younger male subjects were included. Cognitive function was assessed using Cognitive Abilities Screening Instrument and Wechsler Digit Span Task. We employed a complexity measure, multiscale entropy (MSE) analysis, and investigated appropriate parameters for MSE calculation from relatively short BOLD signals. We then compared the complexity of BOLD signals between the younger and older groups, and examined the correlation between cognitive test scores and complexity of BOLD signals in various brain regions. Compared with the younger group, older subjects had the most significant reductions in MSE of BOLD signals in posterior cingulate gyrus and hippocampal cortex. For older subjects, MSE of BOLD signals from default mode network areas, including hippocampal cortex, cingulate cortex, superior and middle frontal gyrus, and middle temporal gyrus, were found to be positively correlated with major cognitive functions, such as attention, orientation, short-term memory, mental manipulation, and language. MSE from subcortical regions, such as amygdala and putamen, were found to be positively correlated with abstract thinking and list-generating fluency, respectively. Our findings confirmed the hypothesis that complexity of BOLD activity was correlated with aging and cognitive performance based on MSE analysis, and may provide insights on how dynamics of spontaneous brain activity relates to aging and cognitive function in specific brain regions. PMID:22683008

  15. Ketamine and fMRI BOLD signal: distinguishing between effects mediated by change in blood flow versus change in cognitive state.

    PubMed

    Abel, Kathryn M; Allin, Matthew P G; Kucharska-Pietura, Katarzyna; Andrew, Chris; Williams, Steve; David, Anthony S; Phillips, Mary L

    2003-02-01

    No human fMRI studies have examined ketamine effects on the BOLD signal change associated with cognitive task performance. We wished to distinguish between effects on 1) cerebral blood flow, with resultant change in BOLD signal; and 2) cognition and neural mechanisms underlying BOLD signal change associated with task performance. Eight right-handed men (mean age 28.75 years) received ketamine or saline i.v. in a randomized, double-blind manner (bolus 0.23 mg/kg; 0.5 mg/kg over 45 min to a maximum 1 hr). Subjects viewed 10 alternating 30-sec blocks of faces with neutral expressions and a fixation cross and discriminated gender of faces. Gradient echo echoplanar images were acquired on a GE Signa 1.5 T Neurovascular system. One hundred T2-weighted images depicting BOLD contrast were acquired over 5 min (for each task) at each of 14 near-axial noncontiguous 7-mm thick planes. Ketamine significantly increased dissociative phenomena and negative symptoms, but did not affect performance of the gender discrimination task. Significant BOLD signal change was demonstrated predominantly in occipitotemporal cortex with both ketamine and placebo. Only two clusters in middle occipital gyrus (BA 18) and precentral gyrus (BA 4) showed significantly decreased BOLD signal change during ketamine compared to placebo. BOLD signal change was not significantly greater in any region during ketamine. Our findings demonstrate subtle rather than major differences between the effects of ketamine and placebo upon the BOLD signal change during perception of face-non face contrast. We suggest that they represent task-dependent effects of the drug/placebo, rather than task-independent effects of the drug per se, and indicate that the effects of ketamine on cerebral blood flow are predominantly focal and task-dependent, rather than global and task-independent. PMID:12518293

  16. High estrogen and chronic haloperidol lead to greater amphetamine-induced BOLD activation in awake, amphetamine-sensitized female rats.

    PubMed

    Madularu, Dan; Kulkarni, Praveen; Yee, Jason R; Kenkel, William M; Shams, Waqqas M; Ferris, Craig F; Brake, Wayne G

    2016-06-01

    The ovarian hormone estrogen has been implicated in schizophrenia symptomatology. Low levels of estrogen are associated with an increase in symptom severity, while exogenous estrogen increases the efficacy of antipsychotic medication, pointing at a possible interaction between estrogen and the dopaminergic system. The aim of this study is to further investigate this interaction in an animal model of some aspects of schizophrenia using awake functional magnetic resonance imaging. Animals receiving 17β-estradiol and haloperidol were scanned and BOLD activity was assessed in response to amphetamine. High 17β-estradiol replacement and chronic haloperidol treatment showed increased BOLD activity in regions of interest and neural networks associated with schizophrenia (hippocampal formations, habenula, amygdala, hypothalamus etc.), compared with low, or no 17β-estradiol. These data show that chronic haloperidol treatment has a sensitizing effect, possibly on the dopaminergic system, and this effect is dependent on hormonal status, with high 17β-estradiol showing the greatest BOLD increase. Furthermore, these experiments further support the use of imaging techniques in studying schizophrenia, as modeled in the rat, but can be extended to addiction and other disorders. PMID:27154458

  17. Amplitude of Sensorimotor Mu Rhythm Is Correlated with BOLD from Multiple Brain Regions: A Simultaneous EEG-fMRI Study

    PubMed Central

    Yin, Siyang; Liu, Yuelu; Ding, Mingzhou

    2016-01-01

    The mu rhythm is a field oscillation in the ∼10Hz range over the sensorimotor cortex. For decades, the suppression of mu (event-related desynchronization) has been used to index movement planning, execution, and imagery. Recent work reports that non-motor processes, such as spatial attention and movement observation, also desynchronize mu, raising the possibility that the mu rhythm is associated with the activity of multiple brain regions and systems. In this study, we tested this hypothesis by recording simultaneous resting-state EEG-fMRI from healthy subjects. Independent component analysis (ICA) was applied to extract the mu components. The amplitude (power) fluctuations of mu were estimated as a time series using a moving-window approach, which, after convolving with a canonical hemodynamic response function (HRF), was correlated with blood-oxygen-level-dependent (BOLD) signals from the entire brain. Two main results were found. First, mu power was negatively correlated with BOLD from areas of the sensorimotor network, the attention control network, the putative mirror neuron system, and the network thought to support theory of mind. Second, mu power was positively correlated with BOLD from areas of the salience network, including anterior cingulate cortex and anterior insula. These results are consistent with the hypothesis that sensorimotor mu rhythm is associated with multiple brain regions and systems. They also suggest that caution should be exercised when attempting to interpret mu modulation in terms of a single brain network. PMID:27499736

  18. Visual, Auditory, and Cross Modal Sensory Processing in Adults with Autism: An EEG Power and BOLD fMRI Investigation.

    PubMed

    Hames, Elizabeth' C; Murphy, Brandi; Rajmohan, Ravi; Anderson, Ronald C; Baker, Mary; Zupancic, Stephen; O'Boyle, Michael; Richman, David

    2016-01-01

    Electroencephalography (EEG) and blood oxygen level dependent functional magnetic resonance imagining (BOLD fMRI) assessed the neurocorrelates of sensory processing of visual and auditory stimuli in 11 adults with autism (ASD) and 10 neurotypical (NT) controls between the ages of 20-28. We hypothesized that ASD performance on combined audiovisual trials would be less accurate with observable decreased EEG power across frontal, temporal, and occipital channels and decreased BOLD fMRI activity in these same regions; reflecting deficits in key sensory processing areas. Analysis focused on EEG power, BOLD fMRI, and accuracy. Lower EEG beta power and lower left auditory cortex fMRI activity were seen in ASD compared to NT when they were presented with auditory stimuli as demonstrated by contrasting the activity from the second presentation of an auditory stimulus in an all auditory block vs. the second presentation of a visual stimulus in an all visual block (AA2-VV2).We conclude that in ASD, combined audiovisual processing is more similar than unimodal processing to NTs. PMID:27148020

  19. Visual, Auditory, and Cross Modal Sensory Processing in Adults with Autism: An EEG Power and BOLD fMRI Investigation

    PubMed Central

    Hames, Elizabeth’ C.; Murphy, Brandi; Rajmohan, Ravi; Anderson, Ronald C.; Baker, Mary; Zupancic, Stephen; O’Boyle, Michael; Richman, David

    2016-01-01

    Electroencephalography (EEG) and blood oxygen level dependent functional magnetic resonance imagining (BOLD fMRI) assessed the neurocorrelates of sensory processing of visual and auditory stimuli in 11 adults with autism (ASD) and 10 neurotypical (NT) controls between the ages of 20–28. We hypothesized that ASD performance on combined audiovisual trials would be less accurate with observable decreased EEG power across frontal, temporal, and occipital channels and decreased BOLD fMRI activity in these same regions; reflecting deficits in key sensory processing areas. Analysis focused on EEG power, BOLD fMRI, and accuracy. Lower EEG beta power and lower left auditory cortex fMRI activity were seen in ASD compared to NT when they were presented with auditory stimuli as demonstrated by contrasting the activity from the second presentation of an auditory stimulus in an all auditory block vs. the second presentation of a visual stimulus in an all visual block (AA2-VV2).We conclude that in ASD, combined audiovisual processing is more similar than unimodal processing to NTs. PMID:27148020

  20. Amplitude of Sensorimotor Mu Rhythm Is Correlated with BOLD from Multiple Brain Regions: A Simultaneous EEG-fMRI Study.

    PubMed

    Yin, Siyang; Liu, Yuelu; Ding, Mingzhou

    2016-01-01

    The mu rhythm is a field oscillation in the ∼10Hz range over the sensorimotor cortex. For decades, the suppression of mu (event-related desynchronization) has been used to index movement planning, execution, and imagery. Recent work reports that non-motor processes, such as spatial attention and movement observation, also desynchronize mu, raising the possibility that the mu rhythm is associated with the activity of multiple brain regions and systems. In this study, we tested this hypothesis by recording simultaneous resting-state EEG-fMRI from healthy subjects. Independent component analysis (ICA) was applied to extract the mu components. The amplitude (power) fluctuations of mu were estimated as a time series using a moving-window approach, which, after convolving with a canonical hemodynamic response function (HRF), was correlated with blood-oxygen-level-dependent (BOLD) signals from the entire brain. Two main results were found. First, mu power was negatively correlated with BOLD from areas of the sensorimotor network, the attention control network, the putative mirror neuron system, and the network thought to support theory of mind. Second, mu power was positively correlated with BOLD from areas of the salience network, including anterior cingulate cortex and anterior insula. These results are consistent with the hypothesis that sensorimotor mu rhythm is associated with multiple brain regions and systems. They also suggest that caution should be exercised when attempting to interpret mu modulation in terms of a single brain network. PMID:27499736

  1. Solar Chemical Abundances Determined with a CO5BOLD 3D Model Atmosphere

    NASA Astrophysics Data System (ADS)

    Caffau, E.; Ludwig, H.-G.; Steffen, M.; Freytag, B.; Bonifacio, P.

    2011-02-01

    In the last decade, the photospheric solar metallicity as determined from spectroscopy experienced a remarkable downward revision. Part of this effect can be attributed to an improvement of atomic data and the inclusion of NLTE computations, but also the use of hydrodynamical model atmospheres seemed to play a role. This "decrease" with time of the metallicity of the solar photosphere increased the disagreement with the results from helioseismology. With a CO 5 BOLD 3D model of the solar atmosphere, the CIFIST team at the Paris Observatory re-determined the photospheric solar abundances of several elements, among them C, N, and O. The spectroscopic abundances are obtained by fitting the equivalent width and/or the profile of observed spectral lines with synthetic spectra computed from the 3D model atmosphere. We conclude that the effects of granular fluctuations depend on the characteristics of the individual lines, but are found to be relevant only in a few particular cases. 3D effects are not responsible for the systematic lowering of the solar abundances in recent years. The solar metallicity resulting from this analysis is Z=0.0153, Z/ X=0.0209.

  2. Acute Alcohol Effects on Contextual Memory BOLD Response: Differences Based on Fragmentary Blackout History

    PubMed Central

    Wetherill, Reagan R.; Schnyer, David M.; Fromme, Kim

    2011-01-01

    Background Contextual memory, or memory for source details, is an important aspect of episodic memory and has been implicated in alcohol-induced fragmentary blackouts (FB). Little is known, however, about how neural functioning during contextual memory processes may differ between individuals with and without a history of fragmentary blackouts. This study examined whether neural activation during a contextual memory task differed by history of fragmentary blackout and acute alcohol consumption. Methods Twenty-four matched individuals with (FB+; n = 12) and without (FB−; n = 12) a history of FBs were recruited from a longitudinal study of alcohol use and behavioral risks and completed a laboratory beverage challenge followed by two functional magnetic resonance imaging (fMRI) sessions under no alcohol and alcohol [breath alcohol concentration (BrAC) = 0.08%] conditions. Task performance and brain hemodynamic activity during a block design contextual memory task were examined across 48 fMRI sessions. Results Groups demonstrated no differences in performance on the contextual memory task, yet exhibited different brain response patterns after alcohol intoxication. A significant FB group by beverage interaction emerged in bilateral dorsolateral prefrontal cortex and posterior parietal cortex with FB− individuals showing greater BOLD response after alcohol exposure (p < .05). Conclusions Alcohol had differential effects on neural activity for FB+ and FB− individuals during recollection of contextual information, perhaps suggesting a neurobiological mechanism associated with alcohol-induced fragmentary blackouts. PMID:22420742

  3. The impact of COPD on health status: findings from the BOLD study

    PubMed Central

    Janson, Christer; Marks, Guy; Buist, Sonia; Gnatiuc, Louisa; Gislason, Thorarinn; McBurnie, Mary Ann; Nielsen, Rune; Studnicka, Michael; Toelle, Brett; Benediktsdottir, Bryndis; Burney, Peter

    2013-01-01

    The aim of this study was to describe the impact of chronic obstructive pulmonary disease (COPD) on health status in the Burden of Obstructive Lung Disease (BOLD) populations. We conducted a cross-sectional, general population-based survey in 11 985 subjects from 17 countries. We measured spirometric lung function and assessed health status using the Short Form 12 questionnaire. The physical and mental health component scores were calculated. Subjects with COPD (post-bronchodilator forced expiratory volume in 1 s/forced vital capacity <0.70, n = 2269) had lower physical component scores (44±10 versus 48±10 units, p<0.0001) and mental health component scores (51±10 versus 52±10 units, p = 0.005) than subjects without COPD. The effect of reported heart disease, hypertension and diabetes on physical health component scores (-3 to -4 units) was considerably less than the effect of COPD Global Initiative for Chronic Obstructive Lung Disease grade 3 (-8 units) or 4 (-11 units). Dyspnoea was the most important determinant of a low physical and mental health component scores. In addition, lower forced expiratory volume in 1 s, chronic cough, chronic phlegm and the presence of comorbidities were all associated with a lower physical health component score. COPD is associated with poorer health status but the effect is stronger on the physical than the mental aspects of health status. Severe COPD has a greater negative impact on health status than self-reported cardiovascular disease and diabetes. PMID:23722617

  4. Case-finding options for COPD: Results from the BOLD Study

    PubMed Central

    Jithoo, Anamika; Enright, Paul; Burney, Peter; Buist, A Sonia; Bateman, Eric D; Tan, Wan C; Studnicka, Michael; Mejza, Filip; Gillespie, Suzanne; Vollmer, William M

    2012-01-01

    Aim To compare strategies for COPD case-finding using data from the Burden of Obstructive Lung Disease (BOLD) study. Methods Population-based samples of adults aged ≥40 years (n= 9390) from 14 countries completed a questionnaire and spirometry. We compared the screening efficiency of different staged algorithms that used questionnaire data and/or PEF to identify persons at risk for COPD and hence needing confirmatory spirometry. Separate algorithms were fitted for moderate/severe COPD and for severe COPD. We estimated the cost of each algorithm in 1000 people. Results For moderate/severe COPD, use of questionnaire data alone permitted high sensitivity (97%), but required confirmatory spirometry on 80% of participants. Use of PEF only required confirmatory spirometry in only 19-22% of subjects with 83-84% sensitivity. For severe COPD, use of PEF achieved 91-93% sensitivity, requiring confirmatory spirometry in <9% of participants. Cost analysis suggested that a staged screening algorithm using only PEF initially, followed by confirmatory spirometry as needed, was the most cost-effective case finding strategy. Conclusion Our results support the use of PEF as a simple, cost-effective initial screening tool for conducting COPD case-finding in adults ≥40 years. These findings should be validated in real-world settings such as the primary care environment. PMID:22743668

  5. Progression to deep sleep is characterized by changes to BOLD dynamics in sensory cortices

    PubMed Central

    Davis, Ben; Tagliazucchi, Enzo; Jovicich, Jorge; Laufs, Helmut; Hasson, Uri

    2016-01-01

    Sleep has been shown to subtly disrupt the spatial organization of functional connectivity networks in the brain, but in a way that largely preserves the connectivity within sensory cortices. Here we evaluated the hypothesis that sleep does impact sensory cortices, but through alteration of activity dynamics. We therefore examined the impact of sleep on hemodynamics using a method for quantifying non-random, high frequency signatures of the blood-oxygen-level dependent (BOLD) signal (amplitude variance asymmetry; AVA). We found that sleep was associated with the elimination of these dynamics in a manner that is restricted to auditory, motor and visual cortices. This elimination was concurrent with increased variance of activity in these regions. Functional connectivity between regions showing AVA during wakefulness maintained a relatively consistent hierarchical structure during wakefulness and N1 and N2 sleep, despite a gradual reduction of connectivity strength as sleep progressed. Thus, sleep is related to elimination of high frequency non-random activity signatures in sensory cortices that are robust during wakefulness. The elimination of these AVA signatures conjointly with preservation of the structure of functional connectivity patterns may be linked to the need to suppress sensory inputs during sleep while still maintaining the capacity to react quickly to complex multimodal inputs. PMID:26724779

  6. BOLD Response Selective to Flow-Motion in Very Young Infants

    PubMed Central

    Tosetti, Michela; Morrone, Maria Concetta

    2015-01-01

    In adults, motion perception is mediated by an extensive network of occipital, parietal, temporal, and insular cortical areas. Little is known about the neural substrate of visual motion in infants, although behavioural studies suggest that motion perception is rudimentary at birth and matures steadily over the first few years. Here, by measuring Blood Oxygenated Level Dependent (BOLD) responses to flow versus random-motion stimuli, we demonstrate that the major cortical areas serving motion processing in adults are operative by 7 wk of age. Resting-state correlations demonstrate adult-like functional connectivity between the motion-selective associative areas, but not between primary cortex and temporo-occipital and posterior-insular cortices. Taken together, the results suggest that the development of motion perception may be limited by slow maturation of the subcortical input and of the cortico-cortical connections. In addition they support the existence of independent input to primary (V1) and temporo-occipital (V5/MT+) cortices very early in life. PMID:26418729

  7. To boldly climb: behavioural and cognitive differences in migrating European glass eels

    PubMed Central

    Podgorniak, T.; Blanchet, S.; De Oliveira, E.; Daverat, F.; Pierron, F.

    2016-01-01

    European eel (Anguilla anguilla) is a catadromous fish species that received substantial attention as its population has markedly declined in the last three decades. The possible causes of this decline include habitat fragmentation factors such as dams and weirs. In some cases, these obstacles are equipped with fish friendly passage devices that may select young eels according to their climbing behaviour. We tested how individual climbing tendency was related to the event of fishway passage experienced in the field and classified fish climbing profiles as climbing ‘leaders’, ‘followers’, ‘finishers’ and ‘no climbers’. Moreover, we analysed the brain transcription level of genes related to neurogenesis and synaptic plasticity and compared it to climbing profiles. We found that fish from the upstream segments of an impounded river had a higher climbing propensity. Their behaviour was also more repeatable throughout the whole test than the obstacle-naive fish from the downstream segment. Moreover, we found that boldly climbing ‘leaders’ had lower levels of transcription of synapse-related genes than the climbing ‘followers’. These differences could be related to coping styles of fish, where proactive ‘leaders’ express a routine and risky behaviour, whereas reactive fish need an environmental assessment before exploratory behaviour. Our study showed that differences in climbing propensity exist in glass eels separated by water obstacles. Moreover, eels could adopt climbing different strategies according to the way they deal with environmental stress and to the cognitive abilities they possess. PMID:26909192

  8. To boldly climb: behavioural and cognitive differences in migrating European glass eels.

    PubMed

    Podgorniak, T; Blanchet, S; De Oliveira, E; Daverat, F; Pierron, F

    2016-01-01

    European eel (Anguilla anguilla) is a catadromous fish species that received substantial attention as its population has markedly declined in the last three decades. The possible causes of this decline include habitat fragmentation factors such as dams and weirs. In some cases, these obstacles are equipped with fish friendly passage devices that may select young eels according to their climbing behaviour. We tested how individual climbing tendency was related to the event of fishway passage experienced in the field and classified fish climbing profiles as climbing 'leaders', 'followers', 'finishers' and 'no climbers'. Moreover, we analysed the brain transcription level of genes related to neurogenesis and synaptic plasticity and compared it to climbing profiles. We found that fish from the upstream segments of an impounded river had a higher climbing propensity. Their behaviour was also more repeatable throughout the whole test than the obstacle-naive fish from the downstream segment. Moreover, we found that boldly climbing 'leaders' had lower levels of transcription of synapse-related genes than the climbing 'followers'. These differences could be related to coping styles of fish, where proactive 'leaders' express a routine and risky behaviour, whereas reactive fish need an environmental assessment before exploratory behaviour. Our study showed that differences in climbing propensity exist in glass eels separated by water obstacles. Moreover, eels could adopt climbing different strategies according to the way they deal with environmental stress and to the cognitive abilities they possess. PMID:26909192

  9. BOLD data representing activation and connectivity for rare no-go versus frequent go cues.

    PubMed

    Meffert, Harma; Hwang, Soonjo; Nolan, Zachary T; Chen, Gang; Blair, James R

    2016-06-01

    The neural circuitry underlying response control is often studied using go/no-go tasks, in which participants are required to respond as fast as possible to go cues and withhold from responding to no-go stimuli. In the current task, response control was studied using a fully counterbalanced design in which blocks with a low frequency of no-go cues (75% go, 25% no-go) were alternated with blocks with a low frequency of go cues (25% go, 75% no-go); see also "Segregating attention from response control when performing a motor inhibition task: Segregating attention from response control" [1]. We applied a whole brain corrected, paired t-test to the data assessing for regions differentially activated by low frequency no-go cues relative to high frequency go cues. In addition, we conducted a generalized psychophysiological interaction analysis on the data using a right inferior frontal gyrus seed region. This region was identified through the BOLD response t-test and was chosen because right inferior gyrus is highly implicated in response inhibition. PMID:26955650

  10. Oxygen spectral line synthesis: 3D non-LTE with CO5BOLD hydrodynamical model atmospheres.

    NASA Astrophysics Data System (ADS)

    Prakapavičius, D.; Steffen, M.; Kučinskas, A.; Ludwig, H.-G.; Freytag, B.; Caffau, E.; Cayrel, R.

    In this work we present first results of our current project aimed at combining the 3D hydrodynamical stellar atmosphere approach with non-LTE (NLTE) spectral line synthesis for a number of key chemical species. We carried out a full 3D-NLTE spectrum synthesis of the oxygen IR 777 nm triplet, using a modified and improved version of our NLTE3D package to calculate departure coefficients for the atomic levels of oxygen in a CO5BOLD 3D hydrodynamical solar model atmosphere. Spectral line synthesis was subsequently performed with the Linfor3D code. In agreement with previous studies, we find that the lines of the oxygen triplet produce deeper cores under NLTE conditions, due to the diminished line source function in the line forming region. This means that the solar oxygen IR 777 nm lines should be stronger in NLTE, leading to negative 3D NLTE-LTE abundance corrections. Qualitatively this result would support previous claims for a relatively low solar oxygen abundance. Finally, we outline several further steps that need to be taken in order to improve the physical realism and numerical accuracy of our current 3D-NLTE calculations.

  11. Barcroft's bold assertion: All dwellers at high altitudes are persons of impaired physical and mental powers.

    PubMed

    West, John B

    2016-03-01

    Barcroft's bold assertion that everyone at high altitude has physical and mental impairment compared with sea level was very provocative. It was a result of the expedition that he led to Cerro de Pasco in Peru, altitude 4300 m. Although it is clear that newcomers to high altitude have reduced physical powers, some people believe that this does not apply to permanent residents who have been at high altitude for generations. The best evidence supports Barcroft's contention, although permanent residents often perform better than acclimatized lowlanders. Turning to neuropsychological function, newcomers to high altitude certainly have some impairment, and there is evidence that the same applies to highlanders. However the notion that permanent residents are impaired is anathema to many people. For example the eminent Peruvian physician Carlos Monge took great exception to Barcroft's remark and even attributed it to the fact that Barcroft was suffering from acute mountain sickness when he made it! Monge referred to 'climatic aggression', by which he meant the negative consequences of the inevitable hypoxia of high altitude. Recent technological advances such as oxygen enrichment of room air can overcome this 'aggression'. This might be useful in some settings at high altitude such as a nursery where newborn babies are cared for, and possibly operating rooms where the surgeon's dexterity may be enhanced. Other situations might be dormitories, conference rooms, and perhaps some school rooms. These constitute possible ways by which the effects of Barcroft's assertion might be countered. PMID:25962370

  12. Progression to deep sleep is characterized by changes to BOLD dynamics in sensory cortices.

    PubMed

    Davis, Ben; Tagliazucchi, Enzo; Jovicich, Jorge; Laufs, Helmut; Hasson, Uri

    2016-04-15

    Sleep has been shown to subtly disrupt the spatial organization of functional connectivity networks in the brain, but in a way that largely preserves the connectivity within sensory cortices. Here we evaluated the hypothesis that sleep does impact sensory cortices, but through alteration of activity dynamics. We therefore examined the impact of sleep on hemodynamics using a method for quantifying non-random, high frequency signatures of the blood-oxygen-level dependent (BOLD) signal (amplitude variance asymmetry; AVA). We found that sleep was associated with the elimination of these dynamics in a manner that is restricted to auditory, motor and visual cortices. This elimination was concurrent with increased variance of activity in these regions. Functional connectivity between regions showing AVA during wakefulness maintained a relatively consistent hierarchical structure during wakefulness and N1 and N2 sleep, despite a gradual reduction of connectivity strength as sleep progressed. Thus, sleep is related to elimination of high frequency non-random activity signatures in sensory cortices that are robust during wakefulness. The elimination of these AVA signatures conjointly with preservation of the structure of functional connectivity patterns may be linked to the need to suppress sensory inputs during sleep while still maintaining the capacity to react quickly to complex multimodal inputs. PMID:26724779

  13. Internal representations for face detection: an application of noise-based image classification to BOLD responses.

    PubMed

    Nestor, Adrian; Vettel, Jean M; Tarr, Michael J

    2013-11-01

    What basic visual structures underlie human face detection and how can we extract such structures directly from the amplitude of neural responses elicited by face processing? Here, we address these issues by investigating an extension of noise-based image classification to BOLD responses recorded in high-level visual areas. First, we assess the applicability of this classification method to such data and, second, we explore its results in connection with the neural processing of faces. To this end, we construct luminance templates from white noise fields based on the response of face-selective areas in the human ventral cortex. Using behaviorally and neurally-derived classification images, our results reveal a family of simple but robust image structures subserving face representation and detection. Thus, we confirm the role played by classical face selective regions in face detection and we help clarify the representational basis of this perceptual function. From a theory standpoint, our findings support the idea of simple but highly diagnostic neurally-coded features for face detection. At the same time, from a methodological perspective, our work demonstrates the ability of noise-based image classification in conjunction with fMRI to help uncover the structure of high-level perceptual representations. PMID:22711230

  14. Shy birds play it safe: personality in captivity predicts risk responsiveness during reproduction in the wild.

    PubMed

    Cole, Ella F; Quinn, John L

    2014-05-01

    Despite a growing body of evidence linking personality to life-history variation and fitness, the behavioural mechanisms underlying these relationships remain poorly understood. One mechanism thought to play a key role is how individuals respond to risk. Relatively reactive and proactive (or shy and bold) personality types are expected to differ in how they manage the inherent trade-off between productivity and survival, with bold individuals being more risk-prone with lower survival probability, and shy individuals adopting a more risk-averse strategy. In the great tit (Parus major), the shy-bold personality axis has been well characterized in captivity and linked to fitness. Here, we tested whether 'exploration behaviour', a captive assay of the shy-bold axis, can predict risk responsiveness during reproduction in wild great tits. Relatively slow-exploring (shy) females took longer than fast-exploring (bold) birds to resume incubation after a novel object, representing an unknown threat, was attached to their nest-box, with some shy individuals not returning within the 40 min trial period. Risk responsiveness was consistent within individuals over days. These findings provide rare, field-based experimental evidence that shy individuals prioritize survival over reproductive investment, supporting the hypothesis that personality reflects life-history variation through links with risk responsiveness. PMID:24829251

  15. Individual differences in nicotine dependence, withdrawal symptoms, and sex predict transient fMRI-BOLD responses to smoking cues.

    PubMed

    McClernon, Francis J; Kozink, Rachel V; Rose, Jed E

    2008-08-01

    Exposure to smoking cues increases craving for cigarettes and can precipitate relapse. Whereas brain imaging studies have identified a distinct network of brain regions subserving the processing of smoking cues, little is known about the influence of individual difference factors and withdrawal symptoms on brain cue reactivity. Multiple regression analysis was used to evaluate relations between individual difference factors and withdrawal symptoms and event-related blood oxygen level-dependent responses to visual smoking cues in a sample of 30 smokers. Predictors were self-report nicotine dependence (Fagerström test of nicotine dependence, FTND), prescan withdrawal symptoms (craving and negative affect), and sex. The unique variance of each predictor was examined after controlling for each of the others. Positive associations were observed between FTND and reactivity to cues in right anterior cingulate and orbitofrontal cortex (OFC) whereas negative associations were observed between prescan craving and reactivity in ventral striatum. Higher negative affect or being male was associated with greater reactivity in left hippocampus and left OFC. Women exhibited greater cue reactivity than men in regions including the cuneus and left superior temporal gyrus. Individual difference factors and withdrawal symptoms were uniquely associated with brain reactivity to smoking cues in regions subserving reward, affect, attention, motivation, and memory. These findings provide further evidence that reactivity to conditioned drug cues is multiply determined and suggest that smoking cessation treatments designed to reduce cue reactivity focus on each of these variables. PMID:17987060

  16. Cerebral Asymmetry of fMRI-BOLD Responses to Visual Stimulation

    PubMed Central

    Hougaard, Anders; Jensen, Bettina Hagström; Amin, Faisal Mohammad; Rostrup, Egill; Hoffmann, Michael B.; Ashina, Messoud

    2015-01-01

    Hemispheric asymmetry of a wide range of functions is a hallmark of the human brain. The visual system has traditionally been thought of as symmetrically distributed in the brain, but a growing body of evidence has challenged this view. Some highly specific visual tasks have been shown to depend on hemispheric specialization. However, the possible lateralization of cerebral responses to a simple checkerboard visual stimulation has not been a focus of previous studies. To investigate this, we performed two sessions of blood-oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) in 54 healthy subjects during stimulation with a black and white checkerboard visual stimulus. While carefully excluding possible non-physiological causes of left-to-right bias, we compared the activation of the left and the right cerebral hemispheres and related this to grey matter volume, handedness, age, gender, ocular dominance, interocular difference in visual acuity, as well as line-bisection performance. We found a general lateralization of cerebral activation towards the right hemisphere of early visual cortical areas and areas of higher-level visual processing, involved in visuospatial attention, especially in top-down (i.e., goal-oriented) attentional processing. This right hemisphere lateralization was partly, but not completely, explained by an increased grey matter volume in the right hemisphere of the early visual areas. Difference in activation of the superior parietal lobule was correlated with subject age, suggesting a shift towards the left hemisphere with increasing age. Our findings suggest a right-hemispheric dominance of these areas, which could lend support to the generally observed leftward visual attentional bias and to the left hemifield advantage for some visual perception tasks. PMID:25985078

  17. Chronic Airflow Obstruction in a Black African Population: Results of BOLD Study, Ile-Ife, Nigeria.

    PubMed

    Obaseki, Daniel O; Erhabor, Gregory E; Gnatiuc, Louisa; Adewole, Olufemi O; Buist, Sonia A; Burney, Peter G

    2016-01-01

    Global estimates suggest that Chronic Obstructive Pulmonary Disease (COPD) is emerging as a leading cause of death in developing countries but there are few spirometry-based general population data on its prevalence and risk factors in sub-Saharan Africa. We used the Burden of Obstructive Lung Disease (BOLD) protocol to select a representative sample of adults aged 40 years and above in Ile-Ife, Nigeria. All the participants underwent spirometry and provided information on smoking history, biomass and occupational exposures as well as diagnosed respiratory diseases and symptoms. Chronic Airflow Obstruction (CAO) was defined as the ratio of post-bronchodilator (BD) one second Forced Expiratory Volume (FEV1) to Forced Vital Capacity (FVC) below the lower limit of normal (LLN) of the population distribution for FEV1/FVC. The overall prevalence of obstruction (post-BD FEV1/FVC < LLN) was 7.7% (2.7% above LLN) using Global Lung Function Initiative (GLI) equations. It was associated with few respiratory symptoms; 0.3% reported a previous doctor-diagnosed chronic bronchitis, emphysema or COPD. Independent predictors included a lack of education (OR 2.5, 95% CI: 1.0, 6.4) and a diagnosis of either TB (OR 23.4, 95% CI: 2.0, 278.6) or asthma (OR 35.4, 95%CI: 4.9, 255.8). There was no association with the use of firewood or coal for cooking or heating. The vast majority of this population (89%) are never smokers. We conclude that the prevalence of CAO is low in Ile-Ife, Nigeria and unrelated to biomass exposure. The key independent predictors are poor education, and previous diagnosis of tuberculosis or asthma. PMID:26451840

  18. Graph network analysis of immediate motor-learning induced changes in resting state BOLD

    PubMed Central

    Sami, S.; Miall, R. C.

    2013-01-01

    Recent studies have demonstrated that following learning tasks, changes in the resting state activity of the brain shape regional connections in functionally specific circuits. Here we expand on these findings by comparing changes induced in the resting state immediately following four motor tasks. Two groups of participants performed a visuo-motor joystick task with one group adapting to a transformed relationship between joystick and cursor. Two other groups were trained in either explicit or implicit procedural sequence learning. Resting state BOLD data were collected immediately before and after the tasks. We then used graph theory-based approaches that include statistical measures of functional integration and segregation to characterize changes in biologically plausible brain connectivity networks within each group. Our results demonstrate that motor learning reorganizes resting brain networks with an increase in local information transfer, as indicated by local efficiency measures that affect the brain's small world network architecture. This was particularly apparent when comparing two distinct forms of explicit motor learning: procedural learning and the joystick learning task. Both groups showed notable increases in local efficiency. However, a change in local efficiency in the inferior frontal and cerebellar regions also distinguishes between the two learning tasks. Additional graph analytic measures on the “non-learning” visuo-motor performance task revealed reversed topological patterns in comparison with the three learning tasks. These findings underscore the utility of graph-based network analysis as a novel means to compare both regional and global changes in functional brain connectivity in the resting state following motor learning tasks. PMID:23720616

  19. To Boldly Go: America's Next Era in Space. The Universe Now and Beyond

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Dr. France Cordova, NASA's Chief Scientist opened this, the third session in the NASA Administrator's Seminar Series, by asking the following question: 'What would be a bold and aspiring agenda for America's next era in space?' It aimed at answering the following questions: What do we know about the universe? How do we know it? (Dr. Cordova also mentioned that the first seminar was about the definition of cellular life and how to recognize it, and featured as speakers, Dr. Lynn Margoles and Dr. Leslie Orgle.) Administrator Daniel S. Goldin was introduced; he welcomed the attendees, and remarked that NASA personnel have a critical need to explain to Congress and the public why a space program is important. Congress and the public pay for the space programs. Therefore the programs' importance cannot remain in the sole domain of scientists. The first speaker, Dr. Vera Ruben of the Department of Terrestrial Magnetism at the Carnegie Institute of Washington, was introduced as an art historian expert in cosmology and an observational astronomer. Dr. Ruben brought up a number of questions regarding the substance, location, and origin of dark matter, radiation, galaxies, and the lumpy structure of galaxies in space, as well as the age and density of our universe. The next speaker was Dr. Bohdan Paczynski, a theoretical astrophysicist from Princeton University's Department of Astrophysical Sciences. The final speaker, Dr. Linda Schale is a cosmologist from the University of Texas at Austin. She was said to be a 'paleontologist of the human mind' who tries 'to understand mechanisms people use to understand the world'. The concluding discussion centered on why NASA scientists don t communicate better with people who are not highly educated. This is a big concern because to continue its work, NASA needs to communicate the importance of its goals to the average person. Additional information is included in the original extended abstract.

  20. BOLD fMRI in awake prairie voles: A platform for translational social and affective neuroscience.

    PubMed

    Yee, J R; Kenkel, W M; Kulkarni, P; Moore, K; Perkeybile, A M; Toddes, S; Amacker, J A; Carter, C S; Ferris, C F

    2016-09-01

    The advancement of neuroscience depends on continued improvement in methods and models. Here, we present novel techniques for the use of awake functional magnetic resonance imaging (fMRI) in the prairie vole (Microtus ochrogaster) - an important step forward in minimally-invasive measurement of neural activity in a non-traditional animal model. Imaging neural responses in prairie voles, a species studied for its propensity to form strong and selective social bonds, is expected to greatly advance our mechanistic understanding of complex social and affective processes. The use of ultra-high-field fMRI allows for recording changes in region-specific activity throughout the entire brain simultaneously and with high temporal and spatial resolutions. By imaging neural responses in awake animals, with minimal invasiveness, we are able to avoid the confound of anesthesia, broaden the scope of possible stimuli, and potentially make use of repeated scans from the same animals. These methods are made possible by the development of an annotated and segmented 3D vole brain atlas and software for image analysis. The use of these methods in the prairie vole provides an opportunity to broaden neuroscientific investigation of behavior via a comparative approach, which highlights the ethological relevance of pro-social behaviors shared between voles and humans, such as communal breeding, selective social bonds, social buffering of stress, and caregiving behaviors. Results using these methods show that fMRI in the prairie vole is capable of yielding robust blood oxygen level dependent (BOLD) signal changes in response to hypercapnic challenge (inhaled 5% CO2), region-specific physical challenge (unilateral whisker stimulation), and presentation of a set of novel odors. Complementary analyses of repeated restraint sessions in the imaging hardware suggest that voles do not require acclimation to this procedure. Taken together, awake vole fMRI represents a new arena of neurobiological

  1. Increased sensitivity of fast BOLD fMRI with a subject-specific hemodynamic response function and application to epilepsy.

    PubMed

    Proulx, Sébastien; Safi-Harb, Mouna; Levan, Pierre; An, Dongmei; Watanabe, Satsuki; Gotman, Jean

    2014-06-01

    Activation detection in functional Magnetic Resonance Imaging (fMRI) typically assumes the hemodynamic response to neuronal activity to be invariant across brain regions and subjects. Reports of substantial variability of the morphology of blood-oxygenation-level-dependent (BOLD) responses are accumulating, suggesting that the use of a single generic model of the expected response in general linear model (GLM) analyses does not provide optimal sensitivity due to model misspecification. Relaxing assumptions of the model can limit the impact of hemodynamic response function (HRF) variability, but at a cost on model parsimony. Alternatively, better specification of the model could be obtained from a priori knowledge of the HRF of a given subject, but the effectiveness of this approach has only been tested on simulation data. Using fast BOLD fMRI, we characterized the variability of hemodynamic responses to a simple event-related auditory-motor task, as well as its effect on activation detection with GLM analyses. We show the variability to be higher between subjects than between regions and variation in different regions to correlate from one subject to the other. Accounting for subject-related variability by deriving subject-specific models from responses to the task in some regions lead to more sensitive detection of responses in other regions. We applied the approach to epilepsy patients, where task-derived patient-specific models provided additional information compared to the use of a generic model for the detection of BOLD responses to epileptiform activity identified on scalp electro-encephalogram (EEG). This work highlights the importance of improving the accuracy of the model for detecting neuronal activation with fMRI, and the fact that it can be done at no cost to model parsimony through the acquisition of independent a priori information about the hemodynamic response. PMID:24582920

  2. The hypnotic zolpidem increases the synchrony of BOLD signal fluctuations in widespread brain networks during a resting paradigm

    PubMed Central

    Licata, Stephanie C.; Nickerson, Lisa D.; Lowen, Steven B.; Trksak, George H.; MacLean, Robert R.; Lukas, Scott E.

    2013-01-01

    Networks of brain regions having synchronized fluctuations of the blood oxygen level-dependent functional magnetic resonance imaging (BOLD fMRI) time-series at rest, or “resting state networks” (RSNs), are emerging as a basis for understanding intrinsic brain activity. RSNs are topographically consistent with activity-related networks subserving sensory, motor, and cognitive processes, and studying their spontaneous fluctuations following acute drug challenge may provide a way to understand better the neuroanatomical substrates of drug action. The present within-subject double-blind study used BOLD fMRI at 3T to investigate the functional networks influenced by the non-benzodiazepine hypnotic zolpidem (Ambien®). Zolpidem is a positive modulator of γ-aminobutyric acidA (GABAA) receptors, and engenders sedative effects that may be explained in part by how it modulates intrinsic brain activity. Healthy participants (n= 12) underwent fMRI scanning 45 min after acute oral administration of zolpidem (0, 5, 10, or 20 mg), and changes in BOLD signal were measured while participants gazed at a static fixation point (i.e., at rest). Data were analyzed using group independent component analysis (ICA) with dual regression and results indicated that compared to placebo, the highest dose of zolpidem increased functional connectivity within a number of sensory, motor, and limbic networks. These results are consistent with previous studies showing an increase in functional connectivity at rest following administration of the positive GABAA receptor modulators midazolam and alcohol, and suggest that investigating how zolpidem modulates intrinsic brain activity may have implications for understanding the etiology of its powerful sedative effects. PMID:23296183

  3. BOLD signal in insula is differentially related to cardiac function during compassion meditation in experts vs. novices

    PubMed Central

    Lutz, Antoine; Greischar, Lawrence L.; Perlman, David; Davidson, Richard J.

    2010-01-01

    The brain and the cardiovascular system influence each other during the processing of emotion. The study of the interactions of these systems during emotion regulation has been limited in human functional neuroimaging, despite its potential importance for physical health. We have previously reported that mental expertise in cultivation of compassion alters the activation of circuits linked with empathy and theory of mind in response to emotional stimuli. Guided by the finding that heart rate increases more during blocks of compassion meditation than neutral states, especially for experts, we examined the interaction between State (compassion vs. neutral) and Group (novice, expert) on the relation between heart rate and BOLD signal during presentation of emotional sounds presented during each state. Our findings revealed that BOLD signal in the right middle insula showed a significantly stronger association with heart rate (HR) across state and group. This association was stronger in the left middle/ posterior insula when experts were compared to novices. The positive coupling of HR and BOLD was higher within the compassion state than within the neutral state in the dorsal anterior cingulate cortex for both groups, underlining the role of this region in the modulation of bodily arousal states. This state effect was stronger for experts than novices in somato-sensory cortices and the right inferior parietal lobule (group by state interaction). These data confirm that compassion enhances the emotional and somatosensory brain representations of others' emotions, and that this effect is modulated by expertise. Future studies are needed to further investigate the impact of compassion training on these circuits. PMID:19426817

  4. Characterization of regional heterogeneity in cerebrovascular reactivity dynamics using novel hypocapnia task and BOLD fMRI.

    PubMed

    Bright, Molly G; Bulte, Daniel P; Jezzard, Peter; Duyn, Jeff H

    2009-10-15

    We offer a new method for characterizing the magnitude and dynamics of the vascular response to changes in arterial gas tensions using non-invasive blood oxygenation level-dependent functional magnetic resonance imaging (BOLD fMRI) and paradigms appropriate for clinical settings. A novel respiratory task, "Cued Deep Breathing" (CDB), consisting of two consecutive cycles of cued breaths, has been developed to cause transient hypocapnia, and consequently a strong, short-lived BOLD signal decrease. Data from CDB hypocapnia paradigms and traditional breath-holding hypercapnia paradigms were analyzed on a voxel-wise basis to map regional heterogeneity in magnitude and timing parameters. The tasks caused comparable absolute BOLD percent signal changes (approximately 0.5-3.0% in gray matter) and both datasets suggested consistent regional heterogeneity in the response timing: parts of the basal ganglia, particularly the putamen, and bilateral areas of medial cortex reached their maximum signal change several seconds earlier than remaining cortical gray matter voxels. This phenomenon and a slightly delayed response in posterior cortical regions were present in group-maps of ten healthy subjects. An auxiliary experiment in different subjects measured end-tidal CO2 changes associated with the new CDB task and quantitatively compared the resulting reactivity maps with those acquired using a traditional hypercapnia challenge of 4% CO2 gas inspiration. The CDB task caused average end-tidal CO2 decreases between 6.0+/-1.1 and 10.5+/-2.6 mm Hg, with levels returning to baseline after approximately three breaths, giving evidence that the task indeed causes transient mild hypocapnia. Similarity between resulting reactivity maps suggest CDB offers an alternative method for mapping cerebrovascular reactivity. PMID:19450694

  5. Relative changes of cerebral arterial and venous blood volumes during increased cerebral blood flow: implications for BOLD fMRI.

    PubMed

    Lee, S P; Duong, T Q; Yang, G; Iadecola, C; Kim, S G

    2001-05-01

    Measurement of cerebral arterial and venous blood volumes during increased cerebral blood flow can provide important information regarding hemodynamic regulation under normal, pathological, and neuronally active conditions. In particular, the change in venous blood volume induced by neural activity is one critical component of the blood oxygenation level-dependent (BOLD) signal because BOLD contrast is dependent only on venous blood, not arterial blood. Thus, relative venous and arterial blood volume (rCBV) and cerebral blood flow (rCBF) in alpha-chlorolase-anesthetized rats under hypercapnia were measured by novel diffusion-weighted (19)F NMR following an i.v. administration of intravascular tracer, perfluorocarbons, and continuous arterial spin labeling methods, respectively. The relationship between rCBF and total rCBV during hypercapnia was rCBV(total) = rCBF(0.40), which is consistent with previous PET measurement in monkeys. This relationship can be linearized in a CBF range of 50-130 ml/100 g/min as DeltarCBV(total)/ DeltarCBF = 0.31 where DeltarCBV and DeltarCBF represent rCBV and rCBF changes. The average arterial volume fraction was 0.25 at a basal condition with CBF of approximately 60 ml/100 g/min and increased up to 0.4 during hypercapnia. The change in venous rCBV was 2-fold smaller than that of total rCBV (DeltarCBV(vein)/DeltarCBF = 0.15), while the arterial rCBV change was 2.5 times larger than that of total rCBV (DeltarCBV(artery)/DeltarCBF = 0.79). These NMR results were confirmed by vessel diameter measurements with in vivo videomicroscopy. The absolute venous blood volume change contributes up to 36% of the total blood volume change during hypercapnia. Our findings provide a quantitative physiological model of BOLD contrast. PMID:11323805

  6. BOLD-based Techniques for Quantifying Brain Hemodynamic and Metabolic Properties – Theoretical Models and Experimental Approaches

    PubMed Central

    Yablonskiy, Dmitriy A.; Sukstanskii, Alexander L.; He, Xiang

    2012-01-01

    Quantitative evaluation of brain hemodynamics and metabolism, particularly the relationship between brain function and oxygen utilization, is important for understanding normal human brain operation as well as pathophysiology of neurological disorders. It can also be of great importance for evaluation of hypoxia within tumors of the brain and other organs. A fundamental discovery by Ogawa and co-workers of the BOLD (Blood Oxygenation Level Dependent) contrast opened a possibility to use this effect to study brain hemodynamic and metabolic properties by means of MRI measurements. Such measurements require developing theoretical models connecting MRI signal to brain structure and functioning and designing experimental techniques allowing MR measurements of salient features of theoretical models. In our review we discuss several such theoretical models and experimental methods for quantification brain hemodynamic and metabolic properties. Our review aims mostly at methods for measuring oxygen extraction fraction, OEF, based on measuring blood oxygenation level. Combining measurement of OEF with measurement of CBF allows evaluation of oxygen consumption, CMRO2. We first consider in detail magnetic properties of blood – magnetic susceptibility, MR relaxation and theoretical models of intravascular contribution to MR signal under different experimental conditions. Then, we describe a “through-space” effect – the influence of inhomogeneous magnetic fields, created in the extravascular space by intravascular deoxygenated blood, on the MR signal formation. Further we describe several experimental techniques taking advantage of these theoretical models. Some of these techniques - MR susceptometry, and T2-based quantification of oxygen OEF – utilize intravascular MR signal. Another technique – qBOLD – evaluates OEF by making use of through-space effects. In this review we targeted both scientists just entering the MR field and more experienced MR researchers

  7. Streamlining the use of BOLD specimen data to record species distributions: a case study with ten Nearctic species of Microgastrinae (Hymenoptera: Braconidae)

    PubMed Central

    Penev, Lyubomir; Ratnasingham, Sujeevan; Smith, M. Alex; Sones, Jayme; Telfer, Angela; deWaard, Jeremy R.; Hebert, Paul D. N.

    2014-01-01

    Abstract The Barcode of Life Data Systems (BOLD) is designed to support the generation and application of DNA barcode data, but it also provides a unique source of data with potential for many research uses. This paper explores the streamlining of BOLD specimen data to record species distributions – and its fast publication using the Biodiversity Data Journal (BDJ), and its authoring platform, the Pensoft Writing Tool (PWT). We selected a sample of 630 specimens and 10 species of a highly diverse group of parasitoid wasps (Hymenoptera: Braconidae, Microgastrinae) from the Nearctic region and used the information in BOLD to uncover a significant number of new records (of locality, provinces, territories and states). By converting specimen information (such as locality, collection date, collector, voucher depository) from the BOLD platform to the Excel template provided by the PWT, it is possible to quickly upload and generate long lists of "Material Examined" for papers discussing taxonomy, ecology and/or new distribution records of species. For the vast majority of publications including DNA barcodes, the generation and publication of ancillary data associated with the barcoded material is seldom highlighted and often disregarded, and the analysis of those data sets to uncover new distribution patterns of species has rarely been explored, even though many BOLD records represent new and/or significant discoveries. The introduction of journals specializing in – and streamlining – the release of these datasets, such as the BDJ, should facilitate thorough analysis of these records, as shown in this paper. PMID:25473326

  8. Study of the spatial correlation between neuronal activity and BOLD fMRI responses evoked by sensory and channelrhodopsin-2 stimulation in the rat somatosensory cortex

    PubMed Central

    Li, Nan; van Zijl, Peter; Thakor, Nitish; Pelled, Galit

    2014-01-01

    In this work we combined optogenetics tools with high-resolution blood oxygenation level dependent functional MRI (BOLD fMRI), electrophysiology, and optical imaging of cerebral blood flow (CBF), to study the spatial correlation between the hemodynamic responses and neuronal activity. We first investigated the spatial and temporal characteristics of BOLD fMRI and the underlying neuronal responses evoked by sensory stimulations at different frequencies. The results demonstrated that under dexmedetomidine anesthesia, BOLD fMRI and neuronal activity in the rat primary somatosensory cortex (S1) have different frequency - dependency and distinct laminar activation profiles. We the found that localized activation of channelrhodopsin-2 (ChR2) expressed in neurons throughout the cortex induced neuronal responses that were confined to the light stimulation S1 region (<500 μm) with distinct laminar activation profile. However, the spatial extent of the hemodynamic responses measured by CBF and BOLD fMRI induced by both ChR2 and sensory stimulation were greater than 3 mm. These results suggest that due to the complex neurovascular coupling it is challenging to determine specific characteristics of the underlying neuronal activity exclusively from the BOLD fMRI signals. PMID:24443233

  9. Coupling of fMRI and NIRS measurements in the study of negative BOLD response to intermittent photic stimulation.

    PubMed

    Maggioni, E; Molteni, E; Arrigoni, F; Zucca, C; Reni, G; Triulzi, F M; Bianchi, A M

    2013-01-01

    Functional Magnetic Resonance Imaging (fMRI) in combination with Near Infrared Spectroscopy (NIRS) is finding widespread use in the analysis of brain function. While most of the studies deal with the detection of positive responses, here we focus on negative responses to visual stimulation. In a group fMRI study on Intermittent Photic Stimulation (IPS) we detected a sustained Negative BOLD Response (NBR) in the extrastriate visual cortex. To confirm and better characterize NBR, we repeated the same protocol during NIRS recordings. In this paper we show fMRI results and demonstrate the NBR on the basis of NIRS findings. PMID:24109953

  10. MEG and fMRI Fusion for Non-Linear Estimation of Neural and BOLD Signal Changes

    PubMed Central

    Plis, Sergey M.; Calhoun, Vince D.; Weisend, Michael P.; Eichele, Tom; Lane, Terran

    2010-01-01

    The combined analysis of magnetoencephalography (MEG)/electroencephalography and functional magnetic resonance imaging (fMRI) measurements can lead to improvement in the description of the dynamical and spatial properties of brain activity. In this paper we empirically demonstrate this improvement using simulated and recorded task related MEG and fMRI activity. Neural activity estimates were derived using a dynamic Bayesian network with continuous real valued parameters by means of a sequential Monte Carlo technique. In synthetic data, we show that MEG and fMRI fusion improves estimation of the indirectly observed neural activity and smooths tracking of the blood oxygenation level dependent (BOLD) response. In recordings of task related neural activity the combination of MEG and fMRI produces a result with greater signal-to-noise ratio, that confirms the expectation arising from the nature of the experiment. The highly non-linear model of the BOLD response poses a difficult inference problem for neural activity estimation; computational requirements are also high due to the time and space complexity. We show that joint analysis of the data improves the system's behavior by stabilizing the differential equations system and by requiring fewer computational resources. PMID:21120141

  11. Using an achiasmic human visual system to quantify the relationship between the fMRI BOLD signal and neural response

    PubMed Central

    Bao, Pinglei; Purington, Christopher J; Tjan, Bosco S

    2015-01-01

    Achiasma in humans causes gross mis-wiring of the retinal-fugal projection, resulting in overlapped cortical representations of left and right visual hemifields. We show that in areas V1-V3 this overlap is due to two co-located but non-interacting populations of neurons, each with a receptive field serving only one hemifield. Importantly, the two populations share the same local vascular control, resulting in a unique organization useful for quantifying the relationship between neural and fMRI BOLD responses without direct measurement of neural activity. Specifically, we can non-invasively double local neural responses by stimulating both neuronal populations with identical stimuli presented symmetrically across the vertical meridian to both visual hemifields, versus one population by stimulating in one hemifield. Measurements from a series of such doubling experiments show that the amplitude of BOLD response is proportional to approximately 0.5 power of the underlying neural response. Reanalyzing published data shows that this inferred relationship is general. DOI: http://dx.doi.org/10.7554/eLife.09600.001 PMID:26613411

  12. The fMRI BOLD response to unisensory and multisensory smoking cues in nicotine-dependent adults.

    PubMed

    Cortese, Bernadette M; Uhde, Thomas W; Brady, Kathleen T; McClernon, F Joseph; Yang, Qing X; Collins, Heather R; LeMatty, Todd; Hartwell, Karen J

    2015-12-30

    Given that the vast majority of functional magnetic resonance imaging (fMRI) studies of drug cue reactivity use unisensory visual cues, but that multisensory cues may elicit greater craving-related brain responses, the current study sought to compare the fMRI BOLD response to unisensory visual and multisensory, visual plus odor, smoking cues in 17 nicotine-dependent adult cigarette smokers. Brain activation to smoking-related, compared to neutral, pictures was assessed under cigarette smoke and odorless odor conditions. While smoking pictures elicited a pattern of activation consistent with the addiction literature, the multisensory (odor+picture) smoking cues elicited significantly greater and more widespread activation in mainly frontal and temporal regions. BOLD signal elicited by the multisensory, but not unisensory cues, was significantly related to participants' level of control over craving as well. Results demonstrated that the co-presentation of cigarette smoke odor with smoking-related visual cues, compared to the visual cues alone, elicited greater levels of craving-related brain activation in key regions implicated in reward. These preliminary findings support future research aimed at a better understanding of multisensory integration of drug cues and craving. PMID:26475784

  13. MEG and fMRI Fusion for Non-Linear Estimation of Neural and BOLD Signal Changes.

    PubMed

    Plis, Sergey M; Calhoun, Vince D; Weisend, Michael P; Eichele, Tom; Lane, Terran

    2010-01-01

    The combined analysis of magnetoencephalography (MEG)/electroencephalography and functional magnetic resonance imaging (fMRI) measurements can lead to improvement in the description of the dynamical and spatial properties of brain activity. In this paper we empirically demonstrate this improvement using simulated and recorded task related MEG and fMRI activity. Neural activity estimates were derived using a dynamic Bayesian network with continuous real valued parameters by means of a sequential Monte Carlo technique. In synthetic data, we show that MEG and fMRI fusion improves estimation of the indirectly observed neural activity and smooths tracking of the blood oxygenation level dependent (BOLD) response. In recordings of task related neural activity the combination of MEG and fMRI produces a result with greater signal-to-noise ratio, that confirms the expectation arising from the nature of the experiment. The highly non-linear model of the BOLD response poses a difficult inference problem for neural activity estimation; computational requirements are also high due to the time and space complexity. We show that joint analysis of the data improves the system's behavior by stabilizing the differential equations system and by requiring fewer computational resources. PMID:21120141

  14. Oxygenation in cervical cancer and normal uterine cervix assessed using blood oxygenation level-dependent (BOLD) MRI at 3T.

    PubMed

    Hallac, Rami R; Ding, Yao; Yuan, Qing; McColl, Roderick W; Lea, Jayanthi; Sims, Robert D; Weatherall, Paul T; Mason, Ralph P

    2012-12-01

    Hypoxia is reported to be a biomarker for poor prognosis in cervical cancer. However, a practical noninvasive method is needed for the routine clinical evaluation of tumor hypoxia. This study examined the potential use of blood oxygenation level-dependent (BOLD) contrast MRI as a noninvasive technique to assess tumor vascular oxygenation at 3T. Following Institutional Review Board-approved informed consent and in compliance with the Health Insurance Portability and Accountability Act, successful results were achieved in nine patients with locally advanced cervical cancer [International Federation of Gynecology and Obstetrics (FIGO) stage IIA to IVA] and three normal volunteers. In the first four patients, dynamic T₂*-weighted MRI was performed in the transaxial plane using a multi-shot echo planar imaging sequence whilst patients breathed room air followed by oxygen (15 dm³/min). Later, a multi-echo gradient echo examination was added to provide quantitative R₂* measurements. The baseline T₂*-weighted signal intensity was quite stable, but increased to various extents in tumors on initiation of oxygen breathing. The signal in normal uterus increased significantly, whereas that in the iliacus muscle did not change. R₂* responded significantly in healthy uterus, cervix and eight cervical tumors. This preliminary study demonstrates that BOLD MRI of cervical cancer at 3T is feasible. However, more patients must be evaluated and followed clinically before any prognostic value can be determined. PMID:22619091

  15. A behavioral view on chimpanzee personality: exploration tendency, persistence, boldness, and tool-orientation measured with group experiments.

    PubMed

    Massen, Jorg J M; Antonides, Alexandra; Arnold, Anne-Marie K; Bionda, Thomas; Koski, Sonja E

    2013-09-01

    Human and nonhuman animals show personality: temporal and contextual consistency in behavior patterns that vary among individuals. In contrast to most other species, personality of chimpanzees, Pan troglodytes, has mainly been studied with non-behavioral methods. We examined boldness, exploration tendency, persistence and tool-orientation in 29 captive chimpanzees using repeated experiments conducted in an ecologically valid social setting. High temporal repeatability and contextual consistency in all these traits indicated they reflected personality. In addition, Principal Component Analysis revealed two independent syndromes, labeled exploration-persistence and boldness. We found no sex or rank differences in the trait scores, but the scores declined with age. Nonetheless, there was considerable inter-individual variation within age-classes, suggesting that behavior was not merely determined by age but also by dispositional effects. In conclusion, our study complements earlier rating studies and adds new traits to the chimpanzee personality, thereby supporting the existence of multiple personality traits among chimpanzees. We stress the importance of ecologically valid behavioral research to assess multiple personality traits and their association, as it allows inclusion of ape studies in the comparison of personality structures across species studied behaviorally, and furthers our attempts to unravel the causes and consequences of animal personality. PMID:23649750

  16. The role of font size and font style in younger and older adults' predicted and actual recall performance.

    PubMed

    Price, Jodi; McElroy, Kelsey; Martin, Nicholas J

    2016-01-01

    We examined how font sizes (18pt., 48 pt.) and font styles (regular, italic, bold) influenced younger and older adults' judgments of learning (JOLs) and recall. In Experiment 1 younger adults gave higher JOLs and obtained higher recall than older adults. However, JOLs and recall varied for both age groups as a function of font size and font style manipulations despite a tendency for both groups to predict higher recall for items in large and in regular and italic styles than for small and bold fonts and achieve higher recall for regular than italic or bold items. No age differences were found in relative accuracy, with near-perfect calibration in absolute accuracy for younger and older adults. Experiment 2 presented a description of Experiment 1 and asked participants to predict recall for the various font size/style combinations. Younger and older adults predicted higher recall for large than small font items, regardless of font style, and higher recall for bold than regular or italic styles, regardless of font size. Memory predictions did not align across experiments, suggesting that memory beliefs combine with processing fluency to affect JOLs and recall. PMID:26513175

  17. BOLD fMRI of C-Fiber Mediated Nociceptive Processing in Mouse Brain in Response to Thermal Stimulation of the Forepaws

    PubMed Central

    Bosshard, Simone C.; Stuker, Florian; von Deuster, Constantin; Schroeter, Aileen; Rudin, Markus

    2015-01-01

    Functional magnetic resonance imaging (fMRI) in rodents enables non-invasive studies of brain function in response to peripheral input or at rest. In this study we describe a thermal stimulation paradigm using infrared laser diodes to apply noxious heat to the forepaw of mice in order to study nociceptive processing. Stimulation at 45 and 46°C led to robust BOLD signal changes in various brain structures including the somatosensory cortices and the thalamus. The BOLD signal amplitude scaled with the temperature applied but not with the area irradiated by the laser beam. To demonstrate the specificity of the paradigm for assessing nociceptive signaling we administered the quaternary lidocaine derivative QX-314 to the forepaws, which due to its positive charge cannot readily cross biological membranes. However, upon activation of TRPV1 channels following the administration of capsaicin the BOLD signal was largely abolished, indicative of a selective block of the C-fiber nociceptors due to QX-314 having entered the cells via the now open TRPV1 channels. This demonstrates that the cerebral BOLD response to thermal noxious paw stimulation is specifically mediated by C-fibers. PMID:25950440

  18. Patterns of Cortical Oscillations Organize Neural Activity into Whole-Brain Functional Networks Evident in the fMRI BOLD Signal

    PubMed Central

    Whitman, Jennifer C.; Ward, Lawrence M.; Woodward, Todd S.

    2013-01-01

    Recent findings from electrophysiology and multimodal neuroimaging have elucidated the relationship between patterns of cortical oscillations evident in EEG/MEG and the functional brain networks evident in the BOLD signal. Much of the existing literature emphasized how high-frequency cortical oscillations are thought to coordinate neural activity locally, while low-frequency oscillations play a role in coordinating activity between more distant brain regions. However, the assignment of different frequencies to different spatial scales is an oversimplification. A more informative approach is to explore the arrangements by which these low- and high-frequency oscillations work in concert, coordinating neural activity into whole-brain functional networks. When relating such networks to the BOLD signal, we must consider how the patterns of cortical oscillations change at the same speed as cognitive states, which often last less than a second. Consequently, the slower BOLD signal may often reflect the summed neural activity of several transient network configurations. This temporal mismatch can be circumvented if we use spatial maps to assess correspondence between oscillatory networks and BOLD networks. PMID:23504590

  19. Patterns of Cortical Oscillations Organize Neural Activity into Whole-Brain Functional Networks Evident in the fMRI BOLD Signal.

    PubMed

    Whitman, Jennifer C; Ward, Lawrence M; Woodward, Todd S

    2013-01-01

    Recent findings from electrophysiology and multimodal neuroimaging have elucidated the relationship between patterns of cortical oscillations evident in EEG/MEG and the functional brain networks evident in the BOLD signal. Much of the existing literature emphasized how high-frequency cortical oscillations are thought to coordinate neural activity locally, while low-frequency oscillations play a role in coordinating activity between more distant brain regions. However, the assignment of different frequencies to different spatial scales is an oversimplification. A more informative approach is to explore the arrangements by which these low- and high-frequency oscillations work in concert, coordinating neural activity into whole-brain functional networks. When relating such networks to the BOLD signal, we must consider how the patterns of cortical oscillations change at the same speed as cognitive states, which often last less than a second. Consequently, the slower BOLD signal may often reflect the summed neural activity of several transient network configurations. This temporal mismatch can be circumvented if we use spatial maps to assess correspondence between oscillatory networks and BOLD networks. PMID:23504590

  20. Linear aspects of transformation from interictal epileptic discharges to BOLD fMRI signals in an animal model of occipital epilepsy.

    PubMed

    Mirsattari, Seyed M; Wang, Zheng; Ives, John R; Bihari, Frank; Leung, L Stan; Bartha, Robert; Menon, Ravi S

    2006-05-01

    Epileptic disorders manifest with seizures and interictal epileptic discharges (IEDs). The hemodynamic changes that accompany IEDs are poorly understood and may be critical for understanding epileptogenesis. Despite a known linear coupling of the neurovascular elements in normal brain tissues, previous simultaneous electroencephalography (EEG)-functional magnetic resonance imaging (fMRI) studies have shown variable correlations between epileptic discharges and blood oxygenation level-dependent (BOLD) response, partly because most previous studies assumed particular hemodynamic properties in normal brain tissue. The occurrence of IEDs in human subjects is unpredictable. Therefore, an animal model with reproducible stereotyped IEDs was developed by the focal injection of penicillin into the right occipital cortex of rats anesthetized with isoflurane. Simultaneous EEG-fMRI was used to study the hemodynamic changes during IEDs. A hybrid of temporal independent component analysis (ICA) of EEG and spatial ICA of fMRI data was used to correlate BOLD fMRI signals with IEDs. A linear autoregression with exogenous input (ARX) model was used to estimate the hemodynamic impulse response function (HIRF) based on the data from simultaneous EEG-fMRI measurement. Changes in the measured BOLD signal from the right primary visual cortex and bilateral visual association cortices were consistently coupled to IEDs. The linear ARX model was applied here to confirm that a linear transform can be used to study the correlation between BOLD signal and its corresponding neural activity in this animal model of occipital epilepsy. PMID:16414283

  1. Using a novel source-localized phase regressor technique for evaluation of the vascular contribution to semantic category area localization in BOLD fMRI

    PubMed Central

    Vu, An T.; Gallant, Jack L.

    2015-01-01

    Numerous studies have shown that gradient-echo blood oxygen level dependent (BOLD) fMRI is biased toward large draining veins. However, the impact of this large vein bias on the localization and characterization of semantic category areas has not been examined. Here we address this issue by comparing standard magnitude measures of BOLD activity in the Fusiform Face Area (FFA) and Parahippocampal Place Area (PPA) to those obtained using a novel method that suppresses the contribution of large draining veins: source-localized phase regressor (sPR). Unlike previous suppression methods that utilize the phase component of the BOLD signal, sPR yields robust and unbiased suppression of large draining veins even in voxels with no task-related phase changes. This is confirmed in ideal simulated data as well as in FFA/PPA localization data from four subjects. It was found that approximately 38% of right PPA, 14% of left PPA, 16% of right FFA, and 6% of left FFA voxels predominantly reflect signal from large draining veins. Surprisingly, with the contributions from large veins suppressed, semantic category representation in PPA actually tends to be lateralized to the left rather than the right hemisphere. Furthermore, semantic category areas larger in volume and higher in fSNR were found to have more contributions from large veins. These results suggest that previous studies using gradient-echo BOLD fMRI were biased toward semantic category areas that receive relatively greater contributions from large veins. PMID:26578868

  2. Alterations in task-induced activity and resting-state fluctuations in visual and DMN areas revealed in long-term meditators.

    PubMed

    Berkovich-Ohana, Aviva; Harel, Michal; Hahamy, Avital; Arieli, Amos; Malach, Rafael

    2016-07-15

    Recently we proposed that the information contained in spontaneously emerging (resting-state) fluctuations may reflect individually unique neuro-cognitive traits. One prediction of this conjecture, termed the "spontaneous trait reactivation" (STR) hypothesis, is that resting-state activity patterns could be diagnostic of unique personalities, talents and life-styles of individuals. Long-term meditators could provide a unique experimental group to test this hypothesis. Using fMRI we found that, during resting-state, the amplitude of spontaneous fluctuations in long-term mindfulness meditation (MM) practitioners was enhanced in the visual cortex and significantly reduced in the DMN compared to naïve controls. Importantly, during a visual recognition memory task, the MM group showed heightened visual cortex responsivity, concomitant with weaker negative responses in Default Mode Network (DMN) areas. This effect was also reflected in the behavioral performance, where MM practitioners performed significantly faster than the control group. Thus, our results uncover opposite changes in the visual and default mode systems in long-term meditators which are revealed during both rest and task. The results support the STR hypothesis and extend it to the domain of local changes in the magnitude of the spontaneous fluctuations. PMID:27109713

  3. Disruption of Performance in the 5-Choice Serial Reaction Time Task Induced by Administration of NMDA Receptor Antagonists: Relevance to Cognitive Dysfunction in Schizophrenia

    PubMed Central

    Amitai, Nurith; Markou, Athina

    2010-01-01

    Schizophrenia patients suffer from cognitive impairments that are not satisfactorily treated by currently available medications. Cognitive dysfunction in schizophrenia encompasses deficits in several cognitive modalities that can be differentially responsive to different medications and are likely to be mediated by different neurobiological substrates. Translational animal models of cognitive deficits with relevance to schizophrenia are critical for gaining insights into the mechanisms underlying these impairments and developing more effective treatments. The 5-choice serial reaction time task (5-CSRTT) is a cognitive task used in rodents that allows simultaneous assessment of several cognitive modalities, including attention, response inhibition, cognitive flexibility, and processing speed. Administration of N-methyl-D-aspartate (NMDA) glutamate receptor antagonists disrupts multiple 5-CSRTT performance measures in a way that mirrors various cognitive deficits exhibited by schizophrenia patients. Some of these disruptions are partially attenuated by antipsychotic medications that exhibit partial effectiveness on cognitive dysfunction in schizophrenia, suggesting that the model has predictive validity. Examination of the effects of pharmacological manipulations on 5-CSRTT performance disruptions induced by NMDA antagonists have implicated a range of brain regions, neurotransmitter systems, and specific receptor subtypes in schizophrenia-like impairment of different cognitive modalities. Thus, disruption of 5-CSRTT performance by NMDA antagonists represents a valuable tool for exploring the neurobiological bases of cognitive dysfunction in schizophrenia. PMID:20488434

  4. Is domestication driven by reduced fear of humans? Boldness, metabolism and serotonin levels in divergently selected red junglefowl (Gallus gallus).

    PubMed

    Agnvall, Beatrix; Katajamaa, Rebecca; Altimiras, Jordi; Jensen, Per

    2015-09-01

    Domesticated animals tend to develop a coherent set of phenotypic traits. Tameness could be a central underlying factor driving this, and we therefore selected red junglefowl, ancestors of all domestic chickens, for high or low fear of humans during six generations. We measured basal metabolic rate (BMR), feed efficiency, boldness in a novel object (NO) test, corticosterone reactivity and basal serotonin levels (related to fearfulness) in birds from the fifth and sixth generation of the high- and low-fear lines, respectively (44-48 individuals). Corticosterone response to physical restraint did not differ between selection lines. However, BMR was higher in low-fear birds, as was feed efficiency. Low-fear males had higher plasma levels of serotonin and both low-fear males and females were bolder in an NO test. The results show that many aspects of the domesticated phenotype may have developed as correlated responses to reduced fear of humans, an essential trait for successful domestication. PMID:26382075

  5. Is domestication driven by reduced fear of humans? Boldness, metabolism and serotonin levels in divergently selected red junglefowl (Gallus gallus)

    PubMed Central

    Agnvall, Beatrix; Katajamaa, Rebecca; Altimiras, Jordi; Jensen, Per

    2015-01-01

    Domesticated animals tend to develop a coherent set of phenotypic traits. Tameness could be a central underlying factor driving this, and we therefore selected red junglefowl, ancestors of all domestic chickens, for high or low fear of humans during six generations. We measured basal metabolic rate (BMR), feed efficiency, boldness in a novel object (NO) test, corticosterone reactivity and basal serotonin levels (related to fearfulness) in birds from the fifth and sixth generation of the high- and low-fear lines, respectively (44–48 individuals). Corticosterone response to physical restraint did not differ between selection lines. However, BMR was higher in low-fear birds, as was feed efficiency. Low-fear males had higher plasma levels of serotonin and both low-fear males and females were bolder in an NO test. The results show that many aspects of the domesticated phenotype may have developed as correlated responses to reduced fear of humans, an essential trait for successful domestication. PMID:26382075

  6. Modeling of region-specific fMRI BOLD neurovascular response functions in rat brain reveals residual differences that correlate with the differences in regional evoked potentials.

    PubMed

    Pawela, Christopher P; Hudetz, Anthony G; Ward, B Douglas; Schulte, Marie L; Li, Rupeng; Kao, Dennis S; Mauck, Matthew C; Cho, Younghoon R; Neitz, Jay; Hyde, James S

    2008-06-01

    The response of the rat visual system to flashes of blue light has been studied by blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI). The BOLD temporal response is dependent on the number of flashes presented and demonstrates a refractory period that depends on flash frequency. Activated brain regions included the primary and secondary visual cortex, superior colliculus (SC), dorsal lateral geniculate (DLG), and lateral posterior nucleus (LP), which were found to exhibit differing temporal responses. To explain these differences, the BOLD neurovascular response function was modeled. A second-order differential equation was developed and solved numerically to arrive at region-specific response functions. Included in the model are the light input from the diode (duty cycle), a refractory period, a transient response following onset and cessation of stimulus, and a slow adjustment to changes in the average level of the signal. Constants in the differential equation were evaluated for each region by fitting the model to the experimental BOLD response from a single flash, and the equation was then solved for multiple flashes. The simulation mimics the major features of the data; however, remaining differences in the frequency dependence of the response between the cortical and subcortical regions were unexplained. We hypothesized that these discrepancies were due to regional-specific differences in neuronal response to flash frequency. To test this hypothesis, cortical visual evoked potentials (VEPs) were recorded using the same stimulation protocol as the fMRI. Cortical VEPs were more suppressed than subcortical VEPs as flash frequency increased, supporting our hypothesis. This is the first report that regional differences in neuronal activation to the same stimulus lead to differential BOLD activation. PMID:18406628

  7. SU-E-J-223: A BOLD Contrast Imaging Sequence to Evaluate Oxygenation Changes Due to Breath Holding for Breast Radiotherapy: A Pilot Study

    SciTech Connect

    Adamson, J; Chang, Z; Cai, J; Palta, M; Horton, J; Yin, F; Blitzblau, R

    2015-06-15

    Purpose: To develop a robust MRI sequence to measure BOLD breath hold induced contrast in context of breast radiotherapy. Methods: Two sequences were selected from prior studies as candidates to measure BOLD contrast attributable to breath holding within the breast: (1) T2* based Gradient Echo EPI (TR/TE = 500/41ms, flip angle = 60°), and (2) T2 based Single Shot Fast Spin Echo (SSFSE) (TR/TE = 3000/60ms). We enrolled ten women post-lumpectomy for breast cancer who were undergoing treatment planning for whole breast radiotherapy. Each session utilized a 1.5T GE MRI and 4 channel breast coil with the subject immobilized prone on a custom board. For each sequence, 1–3 planes of the lumpectomy breast were imaged continuously during a background measurement (1min) and intermittent breath holds (20–40s per breath hold, 3–5 holds per sequence). BOLD contrast was quantified as correlation of changes in per-pixel intensity with the breath hold schedule convolved with a hemodynamic response function. Subtle motion was corrected using a deformable registration algorithm. Correlation with breath-holding was considered significant if p<0.001. Results: The percentage of the breast ROI with positive BOLD contrast measured by the two sequences were in agreement with a correlation coefficient of R=0.72 (p=0.02). While both sequences demonstrated areas with strong BOLD response, the response was more systematic throughout the breast for the SSFSE (T2) sequence (% breast with response in the same direction: 51.2%±0.7% for T2* vs. 68.1%±16% for T2). In addition, the T2 sequence was less prone to magnetic susceptibility artifacts, especially in presence of seroma, and provided a more robust image with little distortion or artifacts. Conclusion: A T2 SSFSE sequence shows promise for measuring BOLD contrast in the context of breast radiotherapy utilizing a breath hold technique. Further study in a larger patient cohort is warranted to better refine this novel technique.

  8. Three-dimensional hydrodynamical CO5BOLD model atmospheres of red giant stars. II. Spectral line formation in the atmosphere of a giant located near the RGB tip

    NASA Astrophysics Data System (ADS)

    Kučinskas, A.; Steffen, M.; Ludwig, H.-G.; Dobrovolskas, V.; Ivanauskas, A.; Klevas, J.; Prakapavičius, D.; Caffau, E.; Bonifacio, P.

    2013-01-01

    Aims: We investigate the role of convection in the formation of atomic and molecular lines in the atmosphere of a red giant star. For this purpose we study the formation properties of spectral lines that belong to a number of astrophysically important tracer elements, including neutral and singly ionized atoms (Li I, N I, O I, Na I, Mg I, Al I, Si I, Si II, S I, K I, Ca I, Ca II, Ti I, Ti II, Cr I, Cr II, Mn I, Fe I, Fe II, Co I, Ni I, Zn I, Sr II, Ba II, and Eu II), and molecules (CH, CO, C2, NH, CN, and OH). Methods: We focus our investigation on a prototypical red giant located close to the red giant branch (RGB) tip (Teff = 3660 K, log g = 1.0, [M/H] = 0.0). We used two types of model atmospheres, 3D hydrodynamical and classical 1D, calculated with the CO5BOLD and LHD stellar atmosphere codes, respectively. Both codes share the same atmospheric parameters, chemical composition, equation of state, and opacities, which allowed us to make a strictly differential comparison between the line formation properties predicted in 3D and 1D. The influence of convection on the spectral line formation was assessed with the aid of 3D-1D abundance corrections, which measure the difference between the abundances of chemical species derived with the 3D hydrodynamical and 1D classical model atmospheres. Results: We find that convection plays a significant role in the spectral line formation in this particular red giant. The derived 3D-1D abundance corrections rarely exceed ± 0.1 dex when lines of neutral atoms and molecules are considered, which is in line with the previous findings for solar-metallicity red giants located on the lower RGB. The situation is different with lines that belong to ionized atoms, or to neutral atoms with high ionization potential. In both cases, the corrections for high-excitation lines (χ > 8 eV) may amount to Δ3D-1D ~ -0.4 dex. The 3D-1D abundance corrections generally show a significant wavelength dependence; in most cases they are smaller in

  9. Linear Discriminant Analysis Achieves High Classification Accuracy for the BOLD fMRI Response to Naturalistic Movie Stimuli.

    PubMed

    Mandelkow, Hendrik; de Zwart, Jacco A; Duyn, Jeff H

    2016-01-01

    Naturalistic stimuli like movies evoke complex perceptual processes, which are of great interest in the study of human cognition by functional MRI (fMRI). However, conventional fMRI analysis based on statistical parametric mapping (SPM) and the general linear model (GLM) is hampered by a lack of accurate parametric models of the BOLD response to complex stimuli. In this situation, statistical machine-learning methods, a.k.a. multivariate pattern analysis (MVPA), have received growing attention for their ability to generate stimulus response models in a data-driven fashion. However, machine-learning methods typically require large amounts of training data as well as computational resources. In the past, this has largely limited their application to fMRI experiments involving small sets of stimulus categories and small regions of interest in the brain. By contrast, the present study compares several classification algorithms known as Nearest Neighbor (NN), Gaussian Naïve Bayes (GNB), and (regularized) Linear Discriminant Analysis (LDA) in terms of their classification accuracy in discriminating the global fMRI response patterns evoked by a large number of naturalistic visual stimuli presented as a movie. Results show that LDA regularized by principal component analysis (PCA) achieved high classification accuracies, above 90% on average for single fMRI volumes acquired 2 s apart during a 300 s movie (chance level 0.7% = 2 s/300 s). The largest source of classification errors were autocorrelations in the BOLD signal compounded by the similarity of consecutive stimuli. All classifiers performed best when given input features from a large region of interest comprising around 25% of the voxels that responded significantly to the visual stimulus. Consistent with this, the most informative principal components represented widespread distributions of co-activated brain regions that were similar between subjects and may represent functional networks. In light of these

  10. Feeding Behaviour, Swimming Activity and Boldness Explain Variation in Feed Intake and Growth of Sole (Solea solea) Reared in Captivity

    PubMed Central

    Mas-Muñoz, Julia; Komen, Hans; Schneider, Oliver; Visch, Sander W.; Schrama, Johan W.

    2011-01-01

    The major economic constraint for culturing sole (Solea solea) is its slow and variable growth. The objective was to study the relationship between feed intake/efficiency, growth, and (non-) feeding behaviour of sole. Sixteen juveniles with an average (SD) growth of 2.7 (1.9) g/kg0.8/d were selected on their growth during a 4-week period in which they were housed communally with 84 other fish. Selected fish were housed individually during a second 4-week period to measure individual feed intake, growth, and behaviour. Fish were hand-fed three times a day during the dark phase of the day until apparent satiation. During six different days, behaviour was recorded twice daily during 3 minutes by direct observations. Total swimming activity, frequency of burying and of escapes were recorded. At the beginning and end of the growth period, two sequential behavioural tests were performed: “Novel Environment” and “Light Avoidance”. Fish housed individually still exhibited pronounced variation in feed intake (CV = 23%), growth (CV = 25%) and behavior (CV = 100%). Differences in feed intake account for 79% of the observed individual differences in growth of sole. Fish with higher variation in feed intake between days and between meals within days had significantly a lower total feed intake (r = −0.65 and r = −0.77) and growth. Active fish showed significantly higher feed intake (r = 0.66) and growth (r = 0.58). Boldness during both challenge tests was related to fast growth: (1) fish which reacted with a lower latency time to swim in a novel environment had significantly higher feed intake (r = −0.55) and growth (r = −0.66); (2) fish escaping during the light avoidance test tended to show higher feed intake (P<0.1) and had higher growth (P<0.05). In conclusion, feeding consistency, swimming activity in the tank, and boldness during behavioral tests are related to feed intake and growth of sole in captivity. PMID:21738651

  11. Linear Discriminant Analysis Achieves High Classification Accuracy for the BOLD fMRI Response to Naturalistic Movie Stimuli

    PubMed Central

    Mandelkow, Hendrik; de Zwart, Jacco A.; Duyn, Jeff H.

    2016-01-01

    Naturalistic stimuli like movies evoke complex perceptual processes, which are of great interest in the study of human cognition by functional MRI (fMRI). However, conventional fMRI analysis based on statistical parametric mapping (SPM) and the general linear model (GLM) is hampered by a lack of accurate parametric models of the BOLD response to complex stimuli. In this situation, statistical machine-learning methods, a.k.a. multivariate pattern analysis (MVPA), have received growing attention for their ability to generate stimulus response models in a data-driven fashion. However, machine-learning methods typically require large amounts of training data as well as computational resources. In the past, this has largely limited their application to fMRI experiments involving small sets of stimulus categories and small regions of interest in the brain. By contrast, the present study compares several classification algorithms known as Nearest Neighbor (NN), Gaussian Naïve Bayes (GNB), and (regularized) Linear Discriminant Analysis (LDA) in terms of their classification accuracy in discriminating the global fMRI response patterns evoked by a large number of naturalistic visual stimuli presented as a movie. Results show that LDA regularized by principal component analysis (PCA) achieved high classification accuracies, above 90% on average for single fMRI volumes acquired 2 s apart during a 300 s movie (chance level 0.7% = 2 s/300 s). The largest source of classification errors were autocorrelations in the BOLD signal compounded by the similarity of consecutive stimuli. All classifiers performed best when given input features from a large region of interest comprising around 25% of the voxels that responded significantly to the visual stimulus. Consistent with this, the most informative principal components represented widespread distributions of co-activated brain regions that were similar between subjects and may represent functional networks. In light of these

  12. Propofol-Induced Frontal Cortex Disconnection: A Study of Resting-State Networks, Total Brain Connectivity, and Mean BOLD Signal Oscillation Frequencies.

    PubMed

    Guldenmund, Pieter; Gantner, Ithabi S; Baquero, Katherine; Das, Tushar; Demertzi, Athena; Boveroux, Pierre; Bonhomme, Vincent; Vanhaudenhuyse, Audrey; Bruno, Marie-Aurélie; Gosseries, Olivia; Noirhomme, Quentin; Kirsch, Muriëlle; Boly, Mélanie; Owen, Adrian M; Laureys, Steven; Gómez, Francisco; Soddu, Andrea

    2016-04-01

    Propofol is one of the most commonly used anesthetics in the world, but much remains unknown about the mechanisms by which it induces loss of consciousness. In this resting-state functional magnetic resonance imaging study, we examined qualitative and quantitative changes of resting-state networks (RSNs), total brain connectivity, and mean oscillation frequencies of the regional blood oxygenation level-dependent (BOLD) signal, associated with propofol-induced mild sedation and loss of responsiveness in healthy subjects. We found that detectability of RSNs diminished significantly with loss of responsiveness, and total brain connectivity decreased strongly in the frontal cortex, which was associated with increased mean oscillation frequencies of the BOLD signal. Our results suggest a pivotal role of the frontal cortex in propofol-induced loss of responsiveness. PMID:26650183

  13. Layer-specific BOLD activation in awake monkey V1 revealed by ultra-high spatial resolution functional magnetic resonance imaging

    PubMed Central

    Chen, Gang; Wang, Feng; Gore, John C.; Roe, Anna W.

    2012-01-01

    The laminar structure of the cortex has previously been explored both in non-human primates and human subjects using high-resolution functional magnetic resonance imaging (fMRI). However, whether the spatial specificity of the blood-oxygenation-level-dependent (BOLD) fMRI is sufficiently high to reveal lamina specific organization in the cortex reliably is still unclear. In this study we demonstrate for the first time the detection of such layer-specific activation in awake monkeys at the spatial resolution of 200×200×1000 µm3 in a vertical 4.7T scanner. Results collected in trained monkeys are high in contrast-to-noise ratio and low in motion artifacts. Isolation of laminar activation was aided by choosing the optimal slice orientation and thickness using a novel pial vein pattern analysis derived from optical imaging. We found the percent change of GE-BOLD signal is the highest at a depth corresponding to layer IV. Changes in the middle layers (layer IV) were 30% greater than changes in the top layers (layers I–III), and 32% greater than the bottom layers (layers V/VI). The laminar distribution of BOLD signal correlates well with neural activity reported in the literature. Our results suggest the high intrinsic spatial resolution of GE-BOLD signal is sufficient for mapping sub-millimeter functional structures in awake monkeys. This degree of spatial specificity will be useful for mapping both laminar activations and columnar structures in the cerebral cortex. PMID:22960152

  14. The absence of task-related increases in BOLD signal does not equate to absence of task-related brain activation

    PubMed Central

    Xu, Jiansong; Calhoun, Vince D.; Potenza, Marc N.

    2015-01-01

    Most fMRI studies employ general-linear-model-based analyses (GLMBA) of BOLD signal changes to identify regions that are active (or not) during specific cognitive processes. However, alternate analytic approaches (like independent component analysis) may identify more complex patterns of activation, including in regions not implicated in GLM-BA of the same data. In our opinion, fMRI findings revealed by a GLM-BA cannot exclude any brain regions from contributing to specific cognitive processes. PMID:25445055

  15. Comparison of fMRI BOLD response patterns by electrical stimulation of the ventroposterior complex and medial thalamus of the rat.

    PubMed

    Yang, Pai-Feng; Chen, You-Yin; Chen, Der-Yow; Hu, James W; Chen, Jyh-Horng; Yen, Chen-Tung

    2013-01-01

    The objective of this study was to compare the functional connectivity of the lateral and medial thalamocortical pain pathways by investigating the blood oxygen level-dependent (BOLD) activation patterns in the forebrain elicited by direct electrical stimulation of the ventroposterior (VP) and medial (MT) thalamus. An MRI-compatible stimulation electrode was implanted in the VP or MT of α-chloralose-anesthetized rats. Electrical stimulation was applied to the VP or MT at various intensities (50 µA to 300 µA) and frequencies (1 Hz to 12 Hz). BOLD responses were analyzed in the ipsilateral forelimb region of the primary somatosensory cortex (iS1FL) after VP stimulation and in the ipsilateral cingulate cortex (iCC) after MT stimulation. When stimulating the VP, the strongest activation occurred at 3 Hz. The stimulation intensity threshold was 50 µA and the response rapidly peaked at 100 µA. When stimulating the MT, The optimal frequency for stimulation was 9 Hz or 12 Hz, the stimulation intensity threshold was 100 µA and we observed a graded increase in the BOLD response following the application of higher intensity stimuli. We also evaluated c-Fos expression following the application of a 200-µA stimulus. Ventroposterior thalamic stimulation elicited c-Fos-positivity in few cells in the iS1FL and caudate putamen (iCPu). Medial thalamic stimulation, however, produced numerous c-Fos-positive cells in the iCC and iCPu. The differential BOLD responses and c-Fos expressions elicited by VP and MT stimulation indicate differences in stimulus-response properties of the medial and lateral thalamic pain pathways. PMID:23826146

  16. BOLD effect: new aspects of the hemodynamic response through combination of fMRI and optical recording in the barrel cortex of the gerbil

    NASA Astrophysics Data System (ADS)

    Hess, Andreas; Stiller, Detelf; Scheich, Henning

    2000-04-01

    Functional MRI (fMRI) is a non-invasive technique widely used to map brain-functions. Nevertheless, its hemodynamic basis and spatial precision with which fMRI reflects sites of neuronal activity are not completely understood. We therefore combined fMRI, based on the blood oxygenation level dependent (BOLD) effect, with optical recording of intrinsic signals (ORIS), a technique, which has a better spatial and temporal resolution. Furthermore, ORIS can distinguish between localized changes in deoxyhemoglobin, and more widespread changes in cerebral blood volume/flow. In gerbils hemodynamic responses over the contralateral barrel cortex were studied with both methods, using identical stimulation of a single vibrissae and identical integration and correlation analysis strategies. Analysis of integration maps and of the spatial distribution and temporal correlation with the block-design of vibrissal stimulation revealed that the BOLD signal, at the site of neuronal activation, does not reflect a depletion of deoxyhemoglobin, as generally assumed. Instead, its positive polarity is likely due to an increase in cerebral blood volume (CBV) whose highly dynamic effect on the BOLD signal exceeds that of the increase in deoxyhemoglobin remaining elevated during prolonged stimulation. This is so, because we show, that blood flow does wash out deoxyhemoglobin but at a rate which is to decrease the deoxyhemoglobin concentration in the voxel below resting level. The wash out causes an accumulation of deoxyhemoglobin in the draining venous side, but at a time window which can be clearly distinguished from the specific activity by applying an analysis strategy based on correlation functions. Therefore, draining veins do not appear as confounding problem. This knowledge could be useful to model the BOLD effect more accurately and improve the spatial resolution of fMRI.

  17. Comparison of fMRI BOLD Response Patterns by Electrical Stimulation of the Ventroposterior Complex and Medial Thalamus of the Rat

    PubMed Central

    Yang, Pai-Feng; Chen, You-Yin; Chen, Der-Yow; Hu, James W.; Chen, Jyh-Horng; Yen, Chen-Tung

    2013-01-01

    The objective of this study was to compare the functional connectivity of the lateral and medial thalamocortical pain pathways by investigating the blood oxygen level-dependent (BOLD) activation patterns in the forebrain elicited by direct electrical stimulation of the ventroposterior (VP) and medial (MT) thalamus. An MRI-compatible stimulation electrode was implanted in the VP or MT of α-chloralose-anesthetized rats. Electrical stimulation was applied to the VP or MT at various intensities (50 µA to 300 µA) and frequencies (1 Hz to 12 Hz). BOLD responses were analyzed in the ipsilateral forelimb region of the primary somatosensory cortex (iS1FL) after VP stimulation and in the ipsilateral cingulate cortex (iCC) after MT stimulation. When stimulating the VP, the strongest activation occurred at 3 Hz. The stimulation intensity threshold was 50 µA and the response rapidly peaked at 100 µA. When stimulating the MT, The optimal frequency for stimulation was 9 Hz or 12 Hz, the stimulation intensity threshold was 100 µA and we observed a graded increase in the BOLD response following the application of higher intensity stimuli. We also evaluated c-Fos expression following the application of a 200-µA stimulus. Ventroposterior thalamic stimulation elicited c-Fos-positivity in few cells in the iS1FL and caudate putamen (iCPu). Medial thalamic stimulation, however, produced numerous c-Fos-positive cells in the iCC and iCPu. The differential BOLD responses and c-Fos expressions elicited by VP and MT stimulation indicate differences in stimulus-response properties of the medial and lateral thalamic pain pathways. PMID:23826146

  18. 2-PMPA, a NAAG peptidase inhibitor, attenuates magnetic resonance BOLD signals in brain of anesthetized mice: evidence of a link between neuron NAAG release and hyperemia.

    PubMed

    Baslow, Morris H; Dyakin, Victor V; Nowak, Karen L; Hungund, Basalingappa L; Guilfoyle, David N

    2005-01-01

    N-acetylaspartylglutamate (NAAG), a dipeptide derivative of N-acetylaspartate (NAA) and glutamate (Glu), is present in neurons. Upon neurostimulation, NAAG is exported to astrocytes where it activates a specific metabotropic Glu surface receptor (mGluR3), and is then hydrolyzed by an astrocyte-specific enzyme, NAAG peptidase, liberating Glu, which can then be taken up by the astrocyte. NAAG is a selective mGluR3 agonist, one of several mGluRs that, when activated, triggers Ca2+ waves that spread to astrocytic endfeet in contact with the vascular system, where a secondary release of vasoactive agents induces a focal hyperemic response providing increased oxygen and nutrient availability to the stimulated neurons. Changes in blood oxygen levels can be assessed in vivo using a blood oxygenation level-dependent (BOLD) magnetic resonance imaging technique that reflects a paramagnetic effect of deoxyhemoglobin. In this study we used the competitive NAAG peptidase inhibitor 2-(phosphonomethyl) pentanedioic acid (2-PMPA) as a probe to interrupt the NAAG-mGluR3- Glu-astrocyte Ca2+ activation sequence. Using this probe, we investigated the relationship between release of the endogenous neuropeptide NAAG and brain blood oxygenation levels, as measured by changes in BOLD signals. In an anesthetized mouse, using an overtly nontoxic dose of 2-PMPA of 250 mg/kg i.p., there was an initial global BOLD signal increase of about 3% above control, lasting about 4 min, followed by a decrease from control of about 4%, sustained over a 32.5-min period of the drug test procedure. Similar changes, but of reduced magnitude and duration, were observed at a dose of 167 mg/kg. The 2-PMPA-induced decreases in BOLD signals appear to indicate that blood deoxyhemoglobin is elevated when endogenous NAAG cannot be hydrolyzed, thus linking the efflux of NAAG from neurons and its hydrolysis by astrocytes to hyperemic oxygenation responses in brain. PMID:15968081

  19. Reproducing the Hemoglobin Saturation Profile, a Marker of the Blood Oxygenation Level Dependent (BOLD) fMRI Effect, at the Microscopic Level.

    PubMed

    Hadjistassou, Constantinos; Moyle, Keri; Ventikos, Yiannis

    2016-01-01

    The advent of functional MRI in the mid-1990s has catalyzed progress pertaining to scientific discoveries in neuroscience. With the prospect of elucidating the physiological aspect of the Blood Oxygenation Level Dependent (BOLD) effect we present a computational capillary-tissue system capable of mapping venous hemoglobin saturation- a marker of the BOLD hemodynamic response. Free and facilitated diffusion and convection for hemoglobin and oxygen are considered in the radial and axial directions. Hemoglobin reaction kinetics are governed by the oxyhemoglobin dissociation curve. Brain activation, mimicked by dynamic transitions in cerebral blood velocity (CBv) and oxidative metabolism (CMRO2), is simulated by normalized changes in m = (ΔCBv/CBv)/(ΔCMRO2/CMRO2) of values 2, 3 and 4. Venous hemoglobin saturation profiles and peak oxygenation results, for m = 2, based upon a 50% and a 25% increase in CBv and CMRO2, respectively, lie within physiological limits exhibiting excellent correlation with the BOLD signal, for short-duration stimuli. Our analysis suggests basal CBv and CMRO2 values of 0.6 mm/s and 200 μmol/100g/min. Coupled CBv and CMRO2 responses, for m = 3 and m = 4, overestimate peak hemoglobin saturation, confirming the system's responsiveness to changes in hematocrit, CBv and CMRO2. Finally, factoring in neurovascular effects, we show that no initial dip will be observed unless there is a time delay in the onset of increased CBv relative to CMRO2. PMID:26939128

  20. Reproducing the Hemoglobin Saturation Profile, a Marker of the Blood Oxygenation Level Dependent (BOLD) fMRI Effect, at the Microscopic Level

    PubMed Central

    Hadjistassou, Constantinos; Moyle, Keri; Ventikos, Yiannis

    2016-01-01

    The advent of functional MRI in the mid-1990s has catalyzed progress pertaining to scientific discoveries in neuroscience. With the prospect of elucidating the physiological aspect of the Blood Oxygenation Level Dependent (BOLD) effect we present a computational capillary-tissue system capable of mapping venous hemoglobin saturation— a marker of the BOLD hemodynamic response. Free and facilitated diffusion and convection for hemoglobin and oxygen are considered in the radial and axial directions. Hemoglobin reaction kinetics are governed by the oxyhemoglobin dissociation curve. Brain activation, mimicked by dynamic transitions in cerebral blood velocity (CBv) and oxidative metabolism (CMRO2), is simulated by normalized changes in m = (ΔCBv/CBv)/(ΔCMRO2/CMRO2) of values 2, 3 and 4. Venous hemoglobin saturation profiles and peak oxygenation results, for m = 2, based upon a 50% and a 25% increase in CBv and CMRO2, respectively, lie within physiological limits exhibiting excellent correlation with the BOLD signal, for short-duration stimuli. Our analysis suggests basal CBv and CMRO2 values of 0.6 mm/s and 200 μmol/100g/min. Coupled CBv and CMRO2 responses, for m = 3 and m = 4, overestimate peak hemoglobin saturation, confirming the system’s responsiveness to changes in hematocrit, CBv and CMRO2. Finally, factoring in neurovascular effects, we show that no initial dip will be observed unless there is a time delay in the onset of increased CBv relative to CMRO2. PMID:26939128

  1. Individual differences in boldness influence patterns of social interactions and the transmission of cuticular bacteria among group-mates.

    PubMed

    Keiser, Carl N; Pinter-Wollman, Noa; Augustine, David A; Ziemba, Michael J; Hao, Lingran; Lawrence, Jeffrey G; Pruitt, Jonathan N

    2016-04-27

    Despite the importance of host attributes for the likelihood of associated microbial transmission, individual variation is seldom considered in studies of wildlife disease. Here, we test the influence of host phenotypes on social network structure and the likelihood of cuticular bacterial transmission from exposed individuals to susceptible group-mates using female social spiders (Stegodyphus dumicola). Based on the interactions of resting individuals of known behavioural types, we assessed whether individuals assorted according to their behavioural traits. We found that individuals preferentially interacted with individuals of unlike behavioural phenotypes. We next applied a green fluorescent protein-transformed cuticular bacterium,Pantoeasp., to individuals and allowed them to interact with an unexposed colony-mate for 24 h. We found evidence for transmission of bacteria in 55% of cases. The likelihood of transmission was influenced jointly by the behavioural phenotypes of both the exposed and susceptible individuals: transmission was more likely when exposed spiders exhibited higher 'boldness' relative to their colony-mate, and when unexposed individuals were in better body condition. Indirect transmission via shared silk took place in only 15% of cases. Thus, bodily contact appears key to transmission in this system. These data represent a fundamental step towards understanding how individual traits influence larger-scale social and epidemiological dynamics. PMID:27097926

  2. The 5 R’s: An Emerging Bold Standard for Conducting Relevant Research in a Changing World

    PubMed Central

    Peek, C. J.; Glasgow, Russell E.; Stange, Kurt C.; Klesges, Lisa M.; Purcell, E. Peyton; Kessler, Rodger S.

    2014-01-01

    Research often fails to find its way into practice or policy in a timely way, if at all. Given the current pressure and pace of health care change, many authors have recommended different approaches to make health care research more relevant and rapid. An emerging standard for research, the “5 R’s” is a synthesis of recommendations for care delivery research that (1) is relevant to stakeholders; (2) is rapid and recursive in application; (3) redefines rigor; (4) reports on resources required; and (5) is replicable. Relevance flows from substantive ongoing participation by stakeholders. Rapidity and recursiveness occur through accelerated design and peer reviews followed by short learning/implementation cycles through which questions and answers evolve over time. Rigor is the disciplined conduct of shared learning within the specific changing situations in diverse settings. Resource reporting includes costs of interventions. Replicability involves designing for the factors that may affect subsequent implementation of an intervention or program in different contexts. These R’s of the research process are mutually reinforcing and can be supported by training that fosters collaborative and reciprocal relationships among researchers, implementers, and other stakeholders. In sum, a standard is emerging for research that is both rigorous and relevant. Consistent and bold application will increase the value, timeliness, and applicability of the research enterprise. PMID:25354409

  3. Thirty minute transcutaneous electric acupoint stimulation modulates resting state brain activities: a perfusion and BOLD fMRI study.

    PubMed

    Jiang, Yin; Hao, Ying; Zhang, Yue; Liu, Jing; Wang, Xiaoying; Han, Jisheng; Fang, Jing; Zhang, Jue; Cui, Cailian

    2012-05-31

    Increasing neuroimaging studies have focused on the sustained after effects of acupuncture, especially for the changes of brain activities in rest. However, short-period stimuli have mostly been chosen in these works. The present study aimed to investigate how the resting state brain activities in healthy subjects were modulated by relatively long-period (30 min) acupuncture, a widely used modality in clinical practice. Transcutaneous electric acupoint stimulation (TEAS) or intermittent minimal TEAS (MTEAS) were given for 30 min to 40 subjects. Functional MRI (fMRI) data were collected including the pre-stimulation resting state and the post-stimulation resting state, using dual-echo arterial spin labeling (ASL) techniques, representing both cerebral blood flow (CBF) signals and blood oxygen-dependent level (BOLD) signals simultaneously. Following 30 min TEAS, but not MTEAS, the mean global CBF decreased, and a significant decrease of regional CBF was observed in SI, insula, STG, MOG and IFG. Functional connectivity analysis showed more secure and spatially extended connectivity of both the DMN and SMN after 30 min TEAS. Our results implied that modulation of the regional brain activities and network connectivity induced by thirty minute TEAS may associate with the acupuncture-related therapeutic effects. Furthermore, the resting state regional CBF quantified by ASL perfusion fMRI may serve as a potential biomarker in future acupuncture studies. PMID:22541167

  4. Left fusiform BOLD responses are inversely related to word-likeness in a one-back task

    PubMed Central

    Wang, Xiaojuan; Yang, Jianfeng; Shu, Hua; Zevin, Jason D.

    2011-01-01

    Although its precise functional contribution to reading remains unclear, there is broad consensus that activity in the left mid-fusiform gyrus is highly sensitive to written words and word-like stimuli. In the current study, we take advantage of a particularity of the Chinese writing system in order to manipulate word-likeness parametrically, from real characters, to pseudo-characters that vary in whether they contain phonological and semantic cues, to artificial stimuli with varying surface similarity to real characters. In a one-back task, BOLD activity in the left mid-fusiform was inversely related to word-likeness, such that the least activity was observed in response to real characters, and the greatest to artificial stimuli that violate the orthotactic constraints of the writing system. One possible explanation for this surprising result is that the short-term memory demands of the one-back task put more pressure on the visual system when other sources of information cannot be used to aid in detecting repeated stimuli. For real characters and, to a lesser extent for pseudo-characters, information about meaning and pronunciation can contribute to performance, whereas artificial stimuli are entirely dependent on visual information. Consistent with this view, functional connectivity analyses revealed a strong positive relationship between left mid-fusiform and other visual areas, whereas areas typically involved in phonological and semantic processing for text were negatively correlated with this region. PMID:21216293

  5. Pulsed currents carried by whistlers. IX. {bold {ital In situ}} measurements of currents disrupted by plasma erosion

    SciTech Connect

    Urrutia, J.M.; Stenzel, R.L.

    1997-01-01

    In a magnetized laboratory plasma described in the companion paper [Stenzel and Urrutia, Phys. Plasmas {bold 4}, 26 (1997)], a large positive voltage step (V{gt}kT{sub e}/e) is applied to electrodes. The current front propagates in the whistler mode in the parameter regime of electron magnetohydrodynamics. The topology of the current density is that of nested helices. Large transient currents in excess of the electron saturation current can be drawn. A transient radial electric field associated with the current rise, excites a compressional, large amplitude, radially outgoing sound wave, which leaves the current channel depleted of plasma. The current collapses due to the density erosion. Electric field reversal excites a rarefaction wave which leads to a partial density and current recovery. Periodic plasma inflow and outflow cause the current to undergo strong relaxation oscillations at a frequency determined by the electrode diameter and the sound speed. In addition, a broad spectrum of microinstabilities is observed in regions of high current density. For drift velocities approaching the thermal speed, the spectrum extends beyond the ion plasma frequency ({omega}{sub pi}) up to the electron plasma frequency ({omega}{sub pe}). Correlation measurements above {omega}{sub pi} reveal modes propagating along the electron drift at speeds above the sound speed but well below the electron drift speed. {copyright} {ital 1997 American Institute of Physics.}

  6. "Becoming Bold": Alcohol use and sexual exploration among Black and Latino young men who have sex with men (YMSM)

    PubMed Central

    Mutchler, Matt G.; McDavitt, Bryce; Gordon, Kristie K.

    2013-01-01

    Alcohol use is correlated with unprotected sex, which may place YMSM who use alcohol with sex at increased risk for contracting HIV. However, little is known about how this link develops. This study used qualitative interviews to explore how alcohol became associated with sex and sexual risk among YMSM. We purposively sampled 20 Black and 20 Latino YMSM (N=40), ages 21–24, who used substances (alcohol, marijuana, and crystal methamphetamine) with sex. Interviews focused on participants’ personal histories to trace how these associations developed for each individual. Drawing on sexual script, emotion regulation, and alcohol expectancy theories, analyses followed a modified grounded theory approach. Participants stated that alcohol enabled them to engage in sexual behaviors with men that they wanted to try, allowing them to be more “bold,” overcome stigma about homosexuality, and feel increased comfort with their sexual desires and identities. The use of alcohol during sex was helpful to some of the participants, but could also lead to sexual risk behaviors. Intervention programs seeking to reduce alcohol misuse and sexual risk should take into account how YMSM conceptualize associations between alcohol and sex. These programs may be more effective if they provide support for sexual identity exploration. PMID:23730733

  7. Correlation between amygdala BOLD activity and frontal EEG asymmetry during real-time fMRI neurofeedback training in patients with depression.

    PubMed

    Zotev, Vadim; Yuan, Han; Misaki, Masaya; Phillips, Raquel; Young, Kymberly D; Feldner, Matthew T; Bodurka, Jerzy

    2016-01-01

    Real-time fMRI neurofeedback (rtfMRI-nf) is an emerging approach for studies and novel treatments of major depressive disorder (MDD). EEG performed simultaneously with an rtfMRI-nf procedure allows an independent evaluation of rtfMRI-nf brain modulation effects. Frontal EEG asymmetry in the alpha band is a widely used measure of emotion and motivation that shows profound changes in depression. However, it has never been directly related to simultaneously acquired fMRI data. We report the first study investigating electrophysiological correlates of the rtfMRI-nf procedure, by combining the rtfMRI-nf with simultaneous and passive EEG recordings. In this pilot study, MDD patients in the experimental group (n = 13) learned to upregulate BOLD activity of the left amygdala using an rtfMRI-nf during a happy emotion induction task. MDD patients in the control group (n = 11) were provided with a sham rtfMRI-nf. Correlations between frontal EEG asymmetry in the upper alpha band and BOLD activity across the brain were examined. Average individual changes in frontal EEG asymmetry during the rtfMRI-nf task for the experimental group showed a significant positive correlation with the MDD patients' depression severity ratings, consistent with an inverse correlation between the depression severity and frontal EEG asymmetry at rest. The average asymmetry changes also significantly correlated with the amygdala BOLD laterality. Temporal correlations between frontal EEG asymmetry and BOLD activity were significantly enhanced, during the rtfMRI-nf task, for the amygdala and many regions associated with emotion regulation. Our findings demonstrate an important link between amygdala BOLD activity and frontal EEG asymmetry during emotion regulation. Our EEG asymmetry results indicate that the rtfMRI-nf training targeting the amygdala is beneficial to MDD patients. They further suggest that EEG-nf based on frontal EEG asymmetry in the alpha band would be compatible with the amygdala

  8. Correlation between amygdala BOLD activity and frontal EEG asymmetry during real-time fMRI neurofeedback training in patients with depression

    PubMed Central

    Zotev, Vadim; Yuan, Han; Misaki, Masaya; Phillips, Raquel; Young, Kymberly D.; Feldner, Matthew T.; Bodurka, Jerzy

    2016-01-01

    Real-time fMRI neurofeedback (rtfMRI-nf) is an emerging approach for studies and novel treatments of major depressive disorder (MDD). EEG performed simultaneously with an rtfMRI-nf procedure allows an independent evaluation of rtfMRI-nf brain modulation effects. Frontal EEG asymmetry in the alpha band is a widely used measure of emotion and motivation that shows profound changes in depression. However, it has never been directly related to simultaneously acquired fMRI data. We report the first study investigating electrophysiological correlates of the rtfMRI-nf procedure, by combining the rtfMRI-nf with simultaneous and passive EEG recordings. In this pilot study, MDD patients in the experimental group (n = 13) learned to upregulate BOLD activity of the left amygdala using an rtfMRI-nf during a happy emotion induction task. MDD patients in the control group (n = 11) were provided with a sham rtfMRI-nf. Correlations between frontal EEG asymmetry in the upper alpha band and BOLD activity across the brain were examined. Average individual changes in frontal EEG asymmetry during the rtfMRI-nf task for the experimental group showed a significant positive correlation with the MDD patients' depression severity ratings, consistent with an inverse correlation between the depression severity and frontal EEG asymmetry at rest. The average asymmetry changes also significantly correlated with the amygdala BOLD laterality. Temporal correlations between frontal EEG asymmetry and BOLD activity were significantly enhanced, during the rtfMRI-nf task, for the amygdala and many regions associated with emotion regulation. Our findings demonstrate an important link between amygdala BOLD activity and frontal EEG asymmetry during emotion regulation. Our EEG asymmetry results indicate that the rtfMRI-nf training targeting the amygdala is beneficial to MDD patients. They further suggest that EEG-nf based on frontal EEG asymmetry in the alpha band would be compatible with the amygdala

  9. Risk factors for COPD spirometrically defined from the lower limit of normal in the BOLD project

    PubMed Central

    Hooper, R; Burney, P; Vollmer, W M; McBurnie, M; Gislason, T; Tan, W C; Jithoo, A; Kocabas, A; Welte, T; Buist, A S

    2012-01-01

    Background Chronic obstructive pulmonary disease (COPD) is predicted to become the third commonest cause of death and disability worldwide by 2020. Methods The prevalence of COPD defined by the lower limit of normal was estimated using high quality spirometry in surveys of 14 populations aged 40 years and over. The strength and consistency of associations were assessed using random effects meta-analysis. Findings Pack-years of smoking were associated with risk of COPD at each site. After adjusting for this effect, we still observed significant associations of COPD risk with age (Odds Ratio (OR): 1.52/10 years (95%CI: 1.35,1.71), body mass index (OR: 0.50 in obese compared with normal weight (95%CI: 0.37, 0.67)), level of education (OR: 0.76/stage of education completed (95%CI: 0.67, 0.87)), hospitalisation with a respiratory problem before age 10 years (OR: 2.35 (95%CI: 1.42, 3.91)), passive cigarette smoke exposure (OR: 1.24 (95%CI: 1.05, 1.47)), tuberculosis (OR: 1.78 (95%CI: 1.17, 2.72)), and a family history of COPD (OR: 1.50 (95%CI: 1.159, 1.90)). Interpretation Although smoking is the most important risk factor for COPD, other risk factors are also important. More research is required to elucidate relevant risk factors in low and middle-income countries where the greatest impact of COPD will occur. PMID:22183479

  10. To Boldly Go: America's Next Era in Space. Machine Consciousness and the Exploration of Space

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Dr. France Cordova, NASA's Chief Scientist, chaired this meeting, another part of the NASA Administrator's Seminar Series. She introduced Administrator Daniel S. Goldin, who welcomed the attendees, and noted that the two speakers have a running feud regarding the possibility of creating robots that can 'think'. Dr. Cordova then introduced the first speaker, Dr. Roger Penrose of the Mathematical Institute at Oxford in the U.K. His primary interests are in mathematics, physics, information systems technology, and artificial intelligence. He thinks that robots cannot be made to 'think' and that consciousness is not computable. Dr. Hans Moravec, who spoke next, has opinions and activities that are related to, but substantially different from those of Dr. Penrose. Dr. Moravec believes that he can build a robot that can act based on the deductions that it will make. To mimic human thinking capabilities, he figures that a robot ultimately will need to be able to handle ten trillion computations per second. He predicts that his goal of building a 'thinking' robot will be met in the 2030-2040 time period. He pointed out that he already has built a car that successfully drove itself from Washington, DC to San Diego, CA. He commented that a human being, was ready to take over driving the car, if necessary, but there was no need. The robots envisioned by Dr. Moravec would not only be able to 'think', but also would have human-like emotions, and ultimately would be able to reproduce. The discussion that followed raised questions about the morality of sending human-like robots into outer space. Also a concern was expressed that human-like robots might perceive humans as a threat and become dangerous to people.

  11. BOLD responses in the superior colliculus and lateral geniculate nucleus of the rat viewing an apparent motion stimulus.

    PubMed

    Lau, Condon; Zhang, Jevin W; Xing, Kyle K; Zhou, Iris Y; Cheung, Matthew M; Chan, Kevin C; Wu, Ed X

    2011-10-01

    In rats, the superior colliculus (SC) is a main destination for retinal ganglion cells and is an important subcortical structure for vision. Electrophysiology studies have observed that many SC neurons are highly sensitive to moving objects, but complementary non-invasive functional imaging studies with larger fields of view have been rarely conducted. In this study, BOLD fMRI is used to measure the SC and nearby lateral geniculate nucleus' (LGN) hemodynamic responses, in normal adult Sprague Dawley (SD) rats, during a dynamic visual stimulus similar to those used in long-range apparent motion studies. The stimulation paradigm consists of four light spots arranged in a linear array and turned on and off sequentially at different rates to create five effective speeds of motion (7, 14, 41, 82, and 164°/s across the visual field). Stationary periods (same light spot always on) are interleaved between the moving periods. The speed response function (SRF), the hemodynamic response amplitude at each speed tested, is measured. Significant responses are observed in the SC and LGN at all speeds. In the SC, the SRF increases monotonically from 7 to 82°/s. The minimum response amplitude occurs at 164°/s. The results suggest that the SC is sensitive to slow moving visual stimuli but the hemodynamic response is reduced at higher speeds. In the LGN, the SRF exhibits a similar trend to that of the SC, but response amplitude during 7°/s stimulation is comparable to that during 164°/s stimulation. These findings are in good agreement with previous electrophysiology studies conducted on albino rats like the SD strain. This work represents the first fMRI study of stimulus speed dependence in the SC and is also the first fMRI study of motion responsiveness in the rat. PMID:21741483

  12. Effects of Severing the Corpus Callosum on Electrical and BOLD Functional Connectivity and Spontaneous Dynamic Activity in the Rat Brain

    PubMed Central

    Magnuson, Matthew E.; Thompson, Garth J.; Pan, Wen-Ju

    2014-01-01

    Abstract Functional networks, defined by synchronous spontaneous blood oxygenation level-dependent (BOLD) oscillations between spatially distinct brain regions, appear to be essential to brain function and have been implicated in disease states, cognitive capacity, and sensing and motor processes. While the topographical extent and behavioral function of these networks has been extensively investigated, the neural functions that create and maintain these synchronizations remain mysterious. In this work callosotomized rodents are examined, providing a unique platform for evaluating the influence of structural connectivity via the corpus callosum on bilateral resting state functional connectivity. Two experimental groups were assessed, a full callosotomy group, in which the corpus callosum was completely sectioned, and a sham callosotomy group, in which the gray matter was sectioned but the corpus callosum remained intact. Results indicated a significant reduction in interhemispheric connectivity in the full callosotomy group as compared with the sham group in primary somatosensory cortex and caudate-putamen regions. Similarly, electrophysiology revealed significantly reduced bilateral correlation in band limited power. Bilateral gamma Band-limited power connectivity was most strongly affected by the full callosotomy procedure. This work represents a robust finding indicating the corpus callosum's influence on maintaining integrity in bilateral functional networks; further, functional magnetic resonance imaging (fMRI) and electrophysiological connectivity share a similar decrease in connectivity as a result of the callosotomy, suggesting that fMRI-measured functional connectivity reflects underlying changes in large-scale coordinated electrical activity. Finally, spatiotemporal dynamic patterns were evaluated in both groups; the full callosotomy rodents displayed a striking loss of bilaterally synchronous propagating waves of cortical activity. PMID:24117343

  13. One pair of hands is not like another: caudate BOLD response in dogs depends on signal source and canine temperament

    PubMed Central

    Cook, Peter F.; Spivak, Mark

    2014-01-01

    Having previously used functional MRI to map the response to a reward signal in the ventral caudate in awake unrestrained dogs, here we examined the importance of signal source to canine caudate activation. Hand signals representing either incipient reward or no reward were presented by a familiar human (each dog’s respective handler), an unfamiliar human, and via illustrated images of hands on a computer screen to 13 dogs undergoing voluntary fMRI. All dogs had received extensive training with the reward and no-reward signals from their handlers and with the computer images and had minimal exposure to the signals from strangers. All dogs showed differentially higher BOLD response in the ventral caudate to the reward versus no reward signals, and there was a robust effect at the group level. Further, differential response to the signal source had a highly significant interaction with a dog’s general aggressivity as measured by the C-BARQ canine personality assessment. Dogs with greater aggressivity showed a higher differential response to the reward signal versus no-reward signal presented by the unfamiliar human and computer, while dogs with lower aggressivity showed a higher differential response to the reward signal versus no-reward signal from their handler. This suggests that specific facets of canine temperament bear more strongly on the perceived reward value of relevant communication signals than does reinforcement history, as each of the dogs were reinforced similarly for each signal, regardless of the source (familiar human, unfamiliar human, or computer). A group-level psychophysiological interaction (PPI) connectivity analysis showed increased functional coupling between the caudate and a region of cortex associated with visual discrimination and learning on reward versus no-reward trials. Our findings emphasize the sensitivity of the domestic dog to human social interaction, and may have other implications and applications pertinent to the training

  14. Enhancement of temporal resolution and BOLD sensitivity in real-time fMRI using multi-slab echo-volumar imaging.

    PubMed

    Posse, Stefan; Ackley, Elena; Mutihac, Radu; Rick, Jochen; Shane, Matthew; Murray-Krezan, Cristina; Zaitsev, Maxim; Speck, Oliver

    2012-05-15

    In this study, a new approach to high-speed fMRI using multi-slab echo-volumar imaging (EVI) is developed that minimizes geometrical image distortion and spatial blurring, and enables nonaliased sampling of physiological signal fluctuation to increase BOLD sensitivity compared to conventional echo-planar imaging (EPI). Real-time fMRI using whole brain 4-slab EVI with 286 ms temporal resolution (4mm isotropic voxel size) and partial brain 2-slab EVI with 136 ms temporal resolution (4×4×6 mm(3) voxel size) was performed on a clinical 3 Tesla MRI scanner equipped with 12-channel head coil. Four-slab EVI of visual and motor tasks significantly increased mean (visual: 96%, motor: 66%) and maximum t-score (visual: 263%, motor: 124%) and mean (visual: 59%, motor: 131%) and maximum (visual: 29%, motor: 67%) BOLD signal amplitude compared with EPI. Time domain moving average filtering (2s width) to suppress physiological noise from cardiac and respiratory fluctuations further improved mean (visual: 196%, motor: 140%) and maximum (visual: 384%, motor: 200%) t-scores and increased extents of activation (visual: 73%, motor: 70%) compared to EPI. Similar sensitivity enhancement, which is attributed to high sampling rate at only moderately reduced temporal signal-to-noise ratio (mean: -52%) and longer sampling of the BOLD effect in the echo-time domain compared to EPI, was measured in auditory cortex. Two-slab EVI further improved temporal resolution for measuring task-related activation and enabled mapping of five major resting state networks (RSNs) in individual subjects in 5 min scans. The bilateral sensorimotor, the default mode and the occipital RSNs were detectable in time frames as short as 75 s. In conclusion, the high sampling rate of real-time multi-slab EVI significantly improves sensitivity for studying the temporal dynamics of hemodynamic responses and for characterizing functional networks at high field strength in short measurement times. PMID:22398395

  15. Enhancement of Temporal Resolution and BOLD Sensitivity in Real-Time fMRI using Multi-Slab Echo-Volumar Imaging

    PubMed Central

    Posse, Stefan; Ackley, Elena; Mutihac, Radu; Rick, Jochen; Shane, Matthew; Murray-Krezan, Cristina; Zaitsev, Maxim; Speck, Oliver

    2012-01-01

    In this study, a new approach to high-speed fMRI using multi-slab echo-volumar imaging (EVI) is developed that minimizes geometrical image distortion and spatial blurring, and enables nonaliased sampling of physiological signal fluctuation to increase BOLD sensitivity compared to conventional echo-planar imaging (EPI). Real-time fMRI using whole brain 4-slab EVI with 286 ms temporal resolution (4 mm isotropic voxel size) and partial brain 2-slab EVI with 136 ms temporal resolution (4×4×6 mm3 voxel size) was performed on a clinical 3 Tesla MRI scanner equipped with 12-channel head coil. Four-slab EVI of visual and motor tasks significantly increased mean (visual: 96%, motor: 66%) and maximum t-score (visual: 263%, motor: 124%) and mean (visual: 59%, motor: 131%) and maximum (visual: 29%, motor: 67%) BOLD signal amplitude compared with EPI. Time domain moving average filtering (2 s width) to suppress physiological noise from cardiac and respiratory fluctuations further improved mean (visual: 196%, motor: 140%) and maximum (visual: 384%, motor: 200%) t-scores and increased extents of activation (visual: 73%, motor: 70%) compared to EPI. Similar sensitivity enhancement, which is attributed to high sampling rate at only moderately reduced temporal signal-to-noise ratio (mean: − 52%) and longer sampling of the BOLD effect in the echo-time domain compared to EPI, was measured in auditory cortex. Two-slab EVI further improved temporal resolution for measuring task-related activation and enabled mapping of five major resting state networks (RSNs) in individual subjects in 5 min scans. The bilateral sensorimotor, the default mode and the occipital RSNs were detectable in time frames as short as 75 s. In conclusion, the high sampling rate of real-time multi-slab EVI significantly improves sensitivity for studying the temporal dynamics of hemodynamic responses and for characterizing functional networks at high field strength in short measurement times. PMID:22398395

  16. Characterization of the blood-oxygen level-dependent (BOLD) response in cat auditory cortex using high-field fMRI.

    PubMed

    Brown, Trecia A; Joanisse, Marc F; Gati, Joseph S; Hughes, Sarah M; Nixon, Pam L; Menon, Ravi S; Lomber, Stephen G

    2013-01-01

    Much of what is known about the cortical organization for audition in humans draws from studies of auditory cortex in the cat. However, these data build largely on electrophysiological recordings that are both highly invasive and provide less evidence concerning macroscopic patterns of brain activation. Optical imaging, using intrinsic signals or dyes, allows visualization of surface-based activity but is also quite invasive. Functional magnetic resonance imaging (fMRI) overcomes these limitations by providing a large-scale perspective of distributed activity across the brain in a non-invasive manner. The present study used fMRI to characterize stimulus-evoked activity in auditory cortex of an anesthetized (ketamine/isoflurane) cat, focusing specifically on the blood-oxygen-level-dependent (BOLD) signal time course. Functional images were acquired for adult cats in a 7 T MRI scanner. To determine the BOLD signal time course, we presented 1s broadband noise bursts between widely spaced scan acquisitions at randomized delays (1-12 s in 1s increments) prior to each scan. Baseline trials in which no stimulus was presented were also acquired. Our results indicate that the BOLD response peaks at about 3.5s in primary auditory cortex (AI) and at about 4.5 s in non-primary areas (AII, PAF) of cat auditory cortex. The observed peak latency is within the range reported for humans and non-human primates (3-4 s). The time course of hemodynamic activity in cat auditory cortex also occurs on a comparatively shorter scale than in cat visual cortex. The results of this study will provide a foundation for future auditory fMRI studies in the cat to incorporate these hemodynamic response properties into appropriate analyses of cat auditory cortex. PMID:23000258

  17. Transient and sustained BOLD signal time courses affect the detection of emotion-related brain activation in fMRI.

    PubMed

    Paret, Christian; Kluetsch, Rosemarie; Ruf, Matthias; Demirakca, Traute; Kalisch, Raffael; Schmahl, Christian; Ende, Gabriele

    2014-12-01

    A tremendous amount of effort has been dedicated to unravel the functional neuroanatomy of the processing and regulation of emotion, resulting in a well-described picture of limbic, para-limbic and prefrontal regions involved. Studies applying functional magnetic resonance imaging (fMRI) often use the block-wise presentation of stimuli with affective content, and conventionally model brain activation as a function of stimulus or task duration. However, there is increasing evidence that regional brain responses may not always translate to task duration and rather show stimulus onset-related transient time courses. We assume that brain regions showing transient responses cannot be detected in block designs using a conventional fMRI analysis approach. At the same time, the probability of detecting these regions with conventional analyses may be increased when shorter stimulus timing or a more intense stimulation during a block is used. In a within-subject fMRI study, we presented aversive pictures to 20 healthy subjects and investigated the effect of experimental design (i.e. event-related and block design) on the detection of brain activation in limbic and para-limbic regions of interest of emotion processing. In addition to conventional modeling of sustained activation during blocks of stimulus presentation, we included a second response function into the general linear model (GLM), suited to detect transient time courses at block onset. In the conventional analysis, several regions like the amygdala, thalamus and periaqueductal gray were activated irrespective of design. However, we found a positive BOLD response in the anterior insula (AI) in event-related but not in block-design analyses. GLM analyses suggest that this difference may result from a transient response pattern which cannot be captured by the conventional fMRI analysis approach. Our results indicate that regions with a transient response profile like the AI can be missed in block designs if analyses

  18. Another kind of 'BOLD Response': answering multiple-choice questions via online decoded single-trial brain signals.

    PubMed

    Sorger, Bettina; Dahmen, Brigitte; Reithler, Joel; Gosseries, Olivia; Maudoux, Audrey; Laureys, Steven; Goebel, Rainer

    2009-01-01

    The term 'locked-in'syndrome (LIS) describes a medical condition in which persons concerned are severely paralyzed and at the same time fully conscious and awake. The resulting anarthria makes it impossible for these patients to naturally communicate, which results in diagnostic as well as serious practical and ethical problems. Therefore, developing alternative, muscle-independent communication means is of prime importance. Such communication means can be realized via brain-computer interfaces (BCIs) circumventing the muscular system by using brain signals associated with preserved cognitive, sensory, and emotional brain functions. Primarily, BCIs based on electrophysiological measures have been developed and applied with remarkable success. Recently, also blood flow-based neuroimaging methods, such as functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS), have been explored in this context. After reviewing recent literature on the development of especially hemodynamically based BCIs, we introduce a highly reliable and easy-to-apply communication procedure that enables untrained participants to motor-independently and relatively effortlessly answer multiple-choice questions based on intentionally generated single-trial fMRI signals that can be decoded online. Our technique takes advantage of the participants' capability to voluntarily influence certain spatio-temporal aspects of the blood oxygenation level-dependent (BOLD) signal: source location (by using different mental tasks), signal onset and offset. We show that healthy participants are capable of hemodynamically encoding at least four distinct information units on a single-trial level without extensive pretraining and with little effort. Moreover, real-time data analysis based on simple multi-filter correlations allows for automated answer decoding with a high accuracy (94.9%) demonstrating the robustness of the presented method. Following our 'proof of concept', the

  19. To boldly go....

    PubMed Central

    McKinlay, J B; Marceau, L D

    2000-01-01

    The threshold of the new millennium offers an opportunity to celebrate remarkable past achievements and to reflect on promising new directions for the field of public health. Despite historic achievements, much will always remain to be done (this is the intrinsic nature of public health). While every epoch has its own distinct health challenges, those confronting us today are unlike those plaguing public health a century ago. The perspectives and methods developed during the infectious and chronic disease eras have limited utility in the face of newly emerging challenges to public health. In this paper, we take stock of the state of public health in the United States by (1) describing limitations of conventional US public health, (2) identifying different social philosophies and conceptions of health that produce divergent approaches to public health, (3) discussing institutional resistance to change and the subordination of public health to the authority of medicine, (4) urging a move from risk factorology to multilevel explanations that offer different types of intervention, (5) noting the rise of the new "right state" with its laissez-faire attitude and antipathy toward public interventions, (6) arguing for a more ecumenical approach to research methods, and (7) challenging the myth of a value-free public health. PMID:10630133

  20. Neither Broad nor Bold

    ERIC Educational Resources Information Center

    Peterson, Paul E.

    2012-01-01

    Children raised in families with higher incomes score higher on math and reading tests. But is parental income the "cause" of a child's success? Or is the connection between income and achievement largely a symptom of something else: genetic heritage, parental skill, or a supportive educational setting? The Broader, Bolder Approach to Education, a…

  1. Washington's Bold Reformer

    ERIC Educational Resources Information Center

    Schachter, Ron

    2008-01-01

    For more than a year, the debate, press coverage, and buzz in Washington, D.C., have swirled over whether someone so different--and so relatively inexperienced--can deliver sweeping change. And presidential hopeful Barack Obama hasn't been the only one receiving that kind of unrelenting scrutiny. This article describes Michelle Rhee who became…

  2. To boldly go

    SciTech Connect

    Clamp, A.

    1995-12-31

    A little power source that runs on a plutonium isotope is helping unlock the secrets of our solar system. Voyagers 1 and 2 have been transmitting data to Earth since 1977, thanks to their long-lived, plutonium-powered radioisotope thermoelectric generators (RTGs). The RTGs providing power to other missions are reviewed, including: (1) the Galileo mission to Jupiter, (2) the Ulysses mission to orbit the Sun`s polar regions, (3) the Huygens probe of Saturn`s largest moon, and (4) the Cassini probe of Saturn`s rings.

  3. Bay Mills' Bold Approach

    ERIC Educational Resources Information Center

    Freedman, Eric

    2011-01-01

    It's a long, long way from Bay Mills Community College, near the shores of frigid Lake Superior, to Detroit. But distance, time and demographics aside, the school and the city are united by Bay Mills' status as the nation's only tribally controlled college that authorizes quasi-public schools, known officially as public school academies. And it's…

  4. Indices of adrenal deficiency involved in brain plasticity and functional control reorganization in hemodialysis patients with polysulfone membrane: BOLD-fMRI study.

    PubMed

    Belaïch, Rachida; Boujraf, Saïd; Benzagmout, Mohammed; Maaroufi, Mustapha; Housni, Abdelkhalek; Batta, Fatima; Tizniti, Siham; Magoul, Rabia; Sqalli, Tarik

    2016-06-01

    This work purpose was to estimate the implication of suspected adrenal function deficiencies, which was influenced by oxidative stress (OS) that are generating brain plasticity, and reorganization of the functional control. This phenomenon was revealed in two-hemodialysis patients described in this paper. Blood oxygenation level dependent functional magnetic resonance imaging (BOLD-fMRI) revealed a significant activation of the motor cortex. Hemodialysis seems to originate an inflammatory state of the cerebral tissue reflected by increased OS, while expected to decrease since hemodialysis eliminates free radicals responsible for OS. Considering adrenal function deficiencies, sensitivity to OS and assessed hyponatremia and hypercalcemia, adrenal function deficiencies is strongly suspected in both patients. This probably contributes to amplify brain plasticity and a reorganization of functional control after hemodialysis that is compared to earlier reported studies. Brain plasticity and functional control reorganization was revealed by BOLD-fMRI with a remarkable sensitivity. Brain plastic changes are originated by elevated OS associating indices of adrenal function deficiencies. These results raise important issues about adrenal functional deficiencies impact on brain plasticity in chronic hemodialysis-patients. This motivates more global studies of plasticity induced factors in this category of patients including adrenal functional deficiencies and OS. PMID:27301905

  5. Continuous EEG-fMRI in Pre-Surgical Evaluation of a Patient with Symptomatic Seizures: Bold Activation Linked to Interictal Epileptic Discharges Caused by Cavernoma.

    PubMed

    Avesani, M; Formaggio, E; Milanese, F; Baraldo, A; Gasparini, A; Cerini, R; Bongiovanni, L G; Pozzi Mucelli, R; Fiaschi, A; Manganotti, P

    2008-04-01

    We used continuous electroencephalography-functional magnetic resonance imaging (EEG-fMRI) to identify the linkage between the "epileptogenic" and the "irritative" area in a patient with symptomatic epilepsy (cavernoma, previously diagnosed and surgically treated), i.e. a patient with a well known "epileptogenic area", and to increase the possibility of a non invasive pre-surgical evaluation of drug-resistant epilepsies. A compatible MRI system was used (EEG with 29 scalp electrodes and two electrodes for ECG and EMG) and signals were recorded with a 1.5 Tesla MRI scanner. After the recording session and MRI artifact removal, EEG data were analyzed offline and used as paradigms in fMRI study. Activation (EEG sequences with interictal slow-spiked-wave activity) and rest (sequences of normal EEG) conditions were compared to identify the potential resulting focal increase in BOLD signal and to consider if this is spatially linked to the interictal focus used as a paradigm and to the lesion. We noted an increase in the BOLD signal in the left neocortical temporal region, laterally and posteriorly to the poro-encephalic cavity (residual of cavernoma previously removed), that is around the "epileptogenic area". In our study "epileptogenic" and "irritative" areas were connected with each other. Combined EEG-fMRI may become routine in clinical practice for a better identification of an irritative and lesional focus in patients with symptomatic drug-resistant epilepsy. PMID:24256824

  6. Consistent inter-individual differences in common marmosets (Callithrix jacchus) in Boldness-Shyness, Stress-Activity, and Exploration-Avoidance.

    PubMed

    Šlipogor, Vedrana; Gunhold-de Oliveira, Tina; Tadić, Zoran; Massen, Jorg J M; Bugnyar, Thomas

    2016-09-01

    The study of animal personality, defined as consistent inter-individual differences in correlated behavioral traits stable throughout time and/or contexts, has recently become one of the fastest growing areas in animal biology, with study species ranging from insects to non-human primates. The latter have, however, only occasionally been tested with standardized experiments. Instead their personality has usually been assessed using questionnaires. Therefore, this study aimed to test 21 common marmosets (Callithrix jacchus) living in three family groups, in five different experiments, and their corresponding controls. We found that behavioral differences between our animals were not only consistent over time, but also across different contexts. Moreover, the consistent behaviors formed a construct of four major non-social personality components: Boldness-Shyness in Foraging, Boldness-Shyness in Predation, Stress-Activity, and Exploration-Avoidance. We found no sex or age differences in these components, but our results did reveal differences in Exploration-Avoidance between the three family groups. As social environment can have a large influence on behavior of individuals, our results may suggest group-level similarity in personality (i.e., "group personality") in common marmosets, a species living in highly cohesive social groups. Am. J. Primatol. 78:961-973, 2016. © 2016 Wiley Periodicals, Inc. PMID:27286098

  7. Influences of a DRD2 polymorphism on updating of long-term memory representations and caudate BOLD activity: magnification in aging.

    PubMed

    Persson, Jonas; Rieckmann, Anna; Kalpouzos, Grégoria; Fischer, Håkan; Bäckman, Lars

    2015-04-01

    A number of genetic polymorphisms are related to individual differences in cognitive performance. Striatal dopamine (DA) functions, associated with cognitive performance, are linked to the TaqIA polymorphism of the DRD2/ANKK1 gene. In humans, presence of an A1 allele of the DRD2/ANKK1-TaqIA polymorphism is related to reduced density of striatal DA D2 receptors. The resource-modulation hypothesis assumes that aging-related losses of neurochemical and structural brain resources modulate the extent to which genetic variations affect cognitive functioning. Here, we tested this hypothesis using functional MRI during long-term memory (LTM) updating in younger and older carriers and noncarriers of the A1-allele of the TaqIa polymorphism. We demonstrate that older A1-carriers have worse memory performance, specifically during LTM updating, compared to noncarriers. Moreover, A1-carriers exhibited less blood oxygen level-dependent (BOLD) activation in left caudate nucleus, a region critical to updating. This effect was only seen in older adults, suggesting magnification of genetic effects on functional brain activity in aging. Further, a positive relationship between caudate BOLD activation and updating performance among non-A1 carriers indicated that caudate activation was behaviorally relevant. These results demonstrate a link between the DRD2/ANKK1-TaqIA polymorphism and neurocognitive deficits related to LTM updating, and provide novel evidence that this effect is magnified in aging. PMID:25486867

  8. Utility of GenBank and the Barcode of Life Data Systems (BOLD) for the identification of forensically important Diptera from Belgium and France.

    PubMed

    Sonet, Gontran; Jordaens, Kurt; Braet, Yves; Bourguignon, Luc; Dupont, Eréna; Backeljau, Thierry; De Meyer, Marc; Desmyter, Stijn

    2013-12-30

    Fly larvae living on dead corpses can be used to estimate post-mortem intervals. The identification of these flies is decisive in forensic casework and can be facilitated by using DNA barcodes provided that a representative and comprehensive reference library of DNA barcodes is available. We constructed a local (Belgium and France) reference library of 85 sequences of the COI DNA barcode fragment (mitochondrial cytochrome c oxidase subunit I gene), from 16 fly species of forensic interest (Calliphoridae, Muscidae, Fanniidae). This library was then used to evaluate the ability of two public libraries (GenBank and the Barcode of Life Data Systems - BOLD) to identify specimens from Belgian and French forensic cases. The public libraries indeed allow a correct identification of most specimens. Yet, some of the identifications remain ambiguous and some forensically important fly species are not, or insufficiently, represented in the reference libraries. Several search options offered by GenBank and BOLD can be used to further improve the identifications obtained from both libraries using DNA barcodes. PMID:24453564

  9. Utility of GenBank and the Barcode of Life Data Systems (BOLD) for the identification of forensically important Diptera from Belgium and France

    PubMed Central

    Sonet, Gontran; Jordaens, Kurt; Braet, Yves; Bourguignon, Luc; Dupont, Eréna; Backeljau, Thierry; De Meyer, Marc; Desmyter, Stijn

    2013-01-01

    Abstract Fly larvae living on dead corpses can be used to estimate post-mortem intervals. The identification of these flies is decisive in forensic casework and can be facilitated by using DNA barcodes provided that a representative and comprehensive reference library of DNA barcodes is available. We constructed a local (Belgium and France) reference library of 85 sequences of the COI DNA barcode fragment (mitochondrial cytochrome c oxidase subunit I gene), from 16 fly species of forensic interest (Calliphoridae, Muscidae, Fanniidae). This library was then used to evaluate the ability of two public libraries (GenBank and the Barcode of Life Data Systems – BOLD) to identify specimens from Belgian and French forensic cases. The public libraries indeed allow a correct identification of most specimens. Yet, some of the identifications remain ambiguous and some forensically important fly species are not, or insufficiently, represented in the reference libraries. Several search options offered by GenBank and BOLD can be used to further improve the identifications obtained from both libraries using DNA barcodes. PMID:24453564

  10. Moderating Effect of Working Memory Capacity on Acute Alcohol Effects on BOLD Response During Inhibition and Error Monitoring in Male Heavy Drinkers

    PubMed Central

    Claus, Eric D.; Hendershot, Christian S.

    2014-01-01

    Rationale While alcohol intoxication is known to increase disinhibited behavior, the degree to which disinhibition occurs appears to depend on a number of factors including executive functioning ability. However, the neural mechanisms by which individual differences in executive functioning lead to variable degrees of disinhibition remain unclear. Objectives The aim of the current study was to examine the neural mechanisms by which individual differences in WM capacity moderate alcohol-induced disinhibition. Methods Seventeen heavy drinking males participated in a within-subjects design in which two sessions were completed: an alcohol session (.82g/kg) and a control session. Participants completed a Go/No-go task while undergoing functional magnetic resonance imaging (fMRI) after ingestion of the control or alcohol beverage. WM capacity was measured using an operation span task. Results Significant interactions of session and WM capacity emerged in contrasts examining successful response inhibition within superior temporal gyrus and unsuccessful inhibition in regions within the default mode network. In all cases, individuals with low WM capacity demonstrated a relative decrease in blood oxygen level dependent (BOLD) response during the alcohol compared to control session whereas the high WM capacity group demonstrated relative increases in BOLD response in the alcohol compared to control session. Conclusions Low WM capacity appears to be associated with decreased neural response to signals indicating a need for behavioral control, an effect that may lead to increased difficulty with inhibiting responses and increased negative consequences from alcohol intoxication. PMID:25127927

  11. Monitoring of the tumor response to nano-graphene oxide-mediated photothermal/photodynamic therapy by diffusion-weighted and BOLD MRI

    NASA Astrophysics Data System (ADS)

    Cao, Jianbo; An, Hengqing; Huang, Xinglu; Fu, Guifeng; Zhuang, Rongqiang; Zhu, Lei; Xie, Jin; Zhang, Fan

    2016-05-01

    Photothermal therapy (PTT) and photodynamic therapy (PDT) are promising cancer treatment modalities. Because each modality has its own set of advantages and limitations, there has been interest in developing methods that can co-deliver the two regimens for enhanced tumor treatment. Among the efforts, nano-graphene oxide-mediated phototherapies have recently attracted much attention. Nano-graphene oxide has a broad absorbance spectrum and can be loaded with photosensitizers, such as chlorin e6, with high efficiency. Chlorin e6-loaded and PEGylated nano-graphene (GO-PEG-Ce6) can be excited at 660 nm, 808 nm, or both, to induce PDT, PTT, or PDT/PTT combination. Despite the potential of the treatments, there is a lack of a diagnostic tool which can monitor their therapeutic response in a non-invasive and prognostic manner; such an ability is urgently needed for the transformation and translation of the technologies. In this study, we performed diffusion-weighted and blood oxygenation level dependent (BOLD) magnetic resonance imaging (MRI) after GO-PEG-Ce6-mediated PTT, PDT, or PTT/PDT. We found that after efficient PTT, there is a significant increase of the tumor apparent diffusion coefficient (ADC) value in diffusion-weighted imaging (DWI) maps; meanwhile, an efficient PDT led to an increase of in BOLD images. In both the cases, the amplitude of the increase was correlated with the treatment outcomes. More interestingly, a synergistic treatment efficacy was observed when the PTT/PDT combination was applied, and the combination was associated with a greater ADC and increase than when either modality was used alone. In particular, the PTT/PDT condition that induced the most dramatic short-term increase of the ADC value (>70%) caused the most effective tumor control in the long-run, with 60% of the treated animals being tumor-free after 60 days. These results suggest the great promise of the combination of DWI and BOLD MRI as a tool for accurate monitoring and prognosis

  12. Monitoring of the tumor response to nano-graphene oxide-mediated photothermal/photodynamic therapy by diffusion-weighted and BOLD MRI.

    PubMed

    Cao, Jianbo; An, Hengqing; Huang, Xinglu; Fu, Guifeng; Zhuang, Rongqiang; Zhu, Lei; Xie, Jin; Zhang, Fan

    2016-05-21

    Photothermal therapy (PTT) and photodynamic therapy (PDT) are promising cancer treatment modalities. Because each modality has its own set of advantages and limitations, there has been interest in developing methods that can co-deliver the two regimens for enhanced tumor treatment. Among the efforts, nano-graphene oxide-mediated phototherapies have recently attracted much attention. Nano-graphene oxide has a broad absorbance spectrum and can be loaded with photosensitizers, such as chlorin e6, with high efficiency. Chlorin e6-loaded and PEGylated nano-graphene (GO-PEG-Ce6) can be excited at 660 nm, 808 nm, or both, to induce PDT, PTT, or PDT/PTT combination. Despite the potential of the treatments, there is a lack of a diagnostic tool which can monitor their therapeutic response in a non-invasive and prognostic manner; such an ability is urgently needed for the transformation and translation of the technologies. In this study, we performed diffusion-weighted and blood oxygenation level dependent (BOLD) magnetic resonance imaging (MRI) after GO-PEG-Ce6-mediated PTT, PDT, or PTT/PDT. We found that after efficient PTT, there is a significant increase of the tumor apparent diffusion coefficient (ADC) value in diffusion-weighted imaging (DWI) maps; meanwhile, an efficient PDT led to an increase of in BOLD images. In both the cases, the amplitude of the increase was correlated with the treatment outcomes. More interestingly, a synergistic treatment efficacy was observed when the PTT/PDT combination was applied, and the combination was associated with a greater ADC and increase than when either modality was used alone. In particular, the PTT/PDT condition that induced the most dramatic short-term increase of the ADC value (>70%) caused the most effective tumor control in the long-run, with 60% of the treated animals being tumor-free after 60 days. These results suggest the great promise of the combination of DWI and BOLD MRI as a tool for accurate monitoring and prognosis

  13. Response to {open_quotes}Comment on {open_quote}Reversible work of formation of an embryo of a new phase within a uniform macroscopic mother phase{close_quote}thinsp{close_quotes} [J. Chem. Phys. {bold 111}, 3769 (1999)

    SciTech Connect

    Debenedetti, P.G.; Reiss, H.

    1999-08-01

    External constraints are necessary in order to calculate the energetics of embryo formation when the embryo is not a critical nucleus. The expression for the reversible work of formation obtained in by Debenedetti and Reiss [J. Chem. Phys. {bold 108}, 5498 (1998)] is rigorous and valid regardless of the relative densities of the embryo and mother phase. {copyright} {ital 1999 American Institute of Physics.}

  14. Modulation of cognitive control levels via manipulation of saccade trial-type probability assessed with event-related BOLD fMRI.

    PubMed

    Pierce, Jordan E; McDowell, Jennifer E

    2016-02-01

    Cognitive control supports flexible behavior adapted to meet current goals and can be modeled through investigation of saccade tasks with varying cognitive demands. Basic prosaccades (rapid glances toward a newly appearing stimulus) are supported by neural circuitry, including occipital and posterior parietal cortex, frontal and supplementary eye fields, and basal ganglia. These trials can be contrasted with complex antisaccades (glances toward the mirror image location of a stimulus), which are characterized by greater functional magnetic resonance imaging (MRI) blood oxygenation level-dependent (BOLD) signal in the aforementioned regions and recruitment of additional regions such as dorsolateral prefrontal cortex. The current study manipulated the cognitive demands of these saccade tasks by presenting three rapid event-related runs of mixed saccades with a varying probability of antisaccade vs. prosaccade trials (25, 50, or 75%). Behavioral results showed an effect of trial-type probability on reaction time, with slower responses in runs with a high antisaccade probability. Imaging results exhibited an effect of probability in bilateral pre- and postcentral gyrus, bilateral superior temporal gyrus, and medial frontal gyrus. Additionally, the interaction between saccade trial type and probability revealed a strong probability effect for prosaccade trials, showing a linear increase in activation parallel to antisaccade probability in bilateral temporal/occipital, posterior parietal, medial frontal, and lateral prefrontal cortex. In contrast, antisaccade trials showed elevated activation across all runs. Overall, this study demonstrated that improbable performance of a typically simple prosaccade task led to augmented BOLD signal to support changing cognitive control demands, resulting in activation levels similar to the more complex antisaccade task. PMID:26609113

  15. Correcting for Blood Arrival Time in Global Mean Regression Enhances Functional Connectivity Analysis of Resting State fMRI-BOLD Signals

    PubMed Central

    Erdoğan, Sinem B.; Tong, Yunjie; Hocke, Lia M.; Lindsey, Kimberly P.; deB Frederick, Blaise

    2016-01-01

    Resting state functional connectivity analysis is a widely used method for mapping intrinsic functional organization of the brain. Global signal regression (GSR) is commonly employed for removing systemic global variance from resting state BOLD-fMRI data; however, recent studies have demonstrated that GSR may introduce spurious negative correlations within and between functional networks, calling into question the meaning of anticorrelations reported between some networks. In the present study, we propose that global signal from resting state fMRI is composed primarily of systemic low frequency oscillations (sLFOs) that propagate with cerebral blood circulation throughout the brain. We introduce a novel systemic noise removal strategy for resting state fMRI data, “dynamic global signal regression” (dGSR), which applies a voxel-specific optimal time delay to the global signal prior to regression from voxel-wise time series. We test our hypothesis on two functional systems that are suggested to be intrinsically organized into anticorrelated networks: the default mode network (DMN) and task positive network (TPN). We evaluate the efficacy of dGSR and compare its performance with the conventional “static” global regression (sGSR) method in terms of (i) explaining systemic variance in the data and (ii) enhancing specificity and sensitivity of functional connectivity measures. dGSR increases the amount of BOLD signal variance being modeled and removed relative to sGSR while reducing spurious negative correlations introduced in reference regions by sGSR, and attenuating inflated positive connectivity measures. We conclude that incorporating time delay information for sLFOs into global noise removal strategies is of crucial importance for optimal noise removal from resting state functional connectivity maps. PMID:27445751

  16. Audience preferences are predicted by temporal reliability of neural processing

    PubMed Central

    Dmochowski, Jacek P.; Bezdek, Matthew A.; Abelson, Brian P.; Johnson, John S.; Schumacher, Eric H.; Parra, Lucas C.

    2014-01-01

    Naturalistic stimuli evoke highly reliable brain activity across viewers. Here we record neural activity from a group of naive individuals while viewing popular, previously-broadcast television content for which the broad audience response is characterized by social media activity and audience ratings. We find that the level of inter-subject correlation in the evoked encephalographic responses predicts the expressions of interest and preference among thousands. Surprisingly, ratings of the larger audience are predicted with greater accuracy than those of the individuals from whom the neural data is obtained. An additional functional magnetic resonance imaging study employing a separate sample of subjects shows that the level of neural reliability evoked by these stimuli covaries with the amount of blood-oxygenation-level-dependent (BOLD) activation in higher-order visual and auditory regions. Our findings suggest that stimuli which we judge favourably may be those to which our brains respond in a stereotypical manner shared by our peers. PMID:25072833

  17. Climate prediction and predictability

    NASA Astrophysics Data System (ADS)

    Allen, Myles

    2010-05-01

    Climate prediction is generally accepted to be one of the grand challenges of the Geophysical Sciences. What is less widely acknowledged is that fundamental issues have yet to be resolved concerning the nature of the challenge, even after decades of research in this area. How do we verify or falsify a probabilistic forecast of a singular event such as anthropogenic warming over the 21st century? How do we determine the information content of a climate forecast? What does it mean for a modelling system to be "good enough" to forecast a particular variable? How will we know when models and forecasting systems are "good enough" to provide detailed forecasts of weather at specific locations or, for example, the risks associated with global geo-engineering schemes. This talk will provide an overview of these questions in the light of recent developments in multi-decade climate forecasting, drawing on concepts from information theory, machine learning and statistics. I will draw extensively but not exclusively from the experience of the climateprediction.net project, running multiple versions of climate models on personal computers.

  18. Distinct BOLD fMRI Responses of Capsaicin-Induced Thermal Sensation Reveal Pain-Related Brain Activation in Nonhuman Primates

    PubMed Central

    Asad, Abu Bakar Ali; Seah, Stephanie; Baumgartner, Richard; Feng, Dai; Jensen, Andres; Manigbas, Elaine; Henry, Brian; Houghton, Andrea; Evelhoch, Jeffrey L.; Derbyshire, Stuart W. G.; Chin, Chih-Liang

    2016-01-01

    Background Approximately 20% of the adult population suffer from chronic pain that is not adequately treated by current therapies, highlighting a great need for improved treatment options. To develop effective analgesics, experimental human and animal models of pain are critical. Topically/intra-dermally applied capsaicin induces hyperalgesia and allodynia to thermal and tactile stimuli that mimics chronic pain and is a useful translation from preclinical research to clinical investigation. Many behavioral and self-report studies of pain have exploited the use of the capsaicin pain model, but objective biomarker correlates of the capsaicin augmented nociceptive response in nonhuman primates remains to be explored. Methodology Here we establish an aversive capsaicin-induced fMRI model using non-noxious heat stimuli in Cynomolgus monkeys (n = 8). BOLD fMRI data were collected during thermal challenge (ON:20 s/42°C; OFF:40 s/35°C, 4-cycle) at baseline and 30 min post-capsaicin (0.1 mg, topical, forearm) application. Tail withdrawal behavioral studies were also conducted in the same animals using 42°C or 48°C water bath pre- and post- capsaicin application (0.1 mg, subcutaneous, tail). Principal Findings Group comparisons between pre- and post-capsaicin application revealed significant BOLD signal increases in brain regions associated with the ‘pain matrix’, including somatosensory, frontal, and cingulate cortices, as well as the cerebellum (paired t-test, p<0.02, n = 8), while no significant change was found after the vehicle application. The tail withdrawal behavioral study demonstrated a significant main effect of temperature and a trend towards capsaicin induced reduction of latency at both temperatures. Conclusions These findings provide insights into the specific brain regions involved with aversive, ‘pain-like’, responses in a nonhuman primate model. Future studies may employ both behavioral and fMRI measures as translational biomarkers to gain

  19. Eye dominance predicts fMRI signals in human retinotopic cortex.

    PubMed

    Mendola, Janine D; Conner, Ian P

    2007-02-27

    There have been many attempts to define eye dominance in normal subjects, but limited consensus exists, and relevant physiological data is scarce. In this study, we consider two different behavioral methods for assignment of eye dominance, and how well they predict fMRI signals evoked by monocular stimulation. Sighting eye dominance was assessed with two standard tests, the Porta Test, and a 'hole in hand' variation of the Miles Test. Acuity dominance was tested with a standard eye chart and with a computerized test of grating acuity. We found limited agreement between the sighting and acuity methods for assigning dominance in our individual subjects. We then compared the fMRI response generated by dominant eye stimulation to that generated by non-dominant eye, according to both methods, in 7 normal subjects. The stimulus consisted of a high contrast hemifield stimulus alternating with no stimulus in a blocked paradigm. In separate scans, we used standard techniques to label the borders of visual areas V1, V2, V3, VP, V4v, V3A, and MT. These regions of interest (ROIs) were used to analyze each visual area separately. We found that percent change in fMRI BOLD signal was stronger for the dominant eye as defined by the acuity method, and this effect was significant for areas located in the ventral occipital territory (V1v, V2v, VP, V4v). In contrast, assigning dominance based on sighting produced no significant interocular BOLD differences. We conclude that interocular BOLD differences in normal subjects exist, and may be predicted by acuity measures. PMID:17194544

  20. Earthquake prediction

    NASA Technical Reports Server (NTRS)

    Turcotte, Donald L.

    1991-01-01

    The state of the art in earthquake prediction is discussed. Short-term prediction based on seismic precursors, changes in the ratio of compressional velocity to shear velocity, tilt and strain precursors, electromagnetic precursors, hydrologic phenomena, chemical monitors, and animal behavior is examined. Seismic hazard assessment is addressed, and the applications of dynamical systems to earthquake prediction are discussed.

  1. P300 amplitude variation is related to ventral striatum BOLD response during gain and loss anticipation: An EEG and fMRI experiment

    PubMed Central

    Pfabigan, Daniela M.; Seidel, Eva-Maria; Sladky, Ronald; Hahn, Andreas; Paul, Katharina; Grahl, Arvina; Küblböck, Martin; Kraus, Christoph; Hummer, Allan; Kranz, Georg S.; Windischberger, Christian; Lanzenberger, Rupert; Lamm, Claus

    2014-01-01

    The anticipation of favourable or unfavourable events is a key component in our daily life. However, the temporal dynamics of anticipation processes in relation to brain activation are still not fully understood. A modified version of the monetary incentive delay task was administered during separate functional magnetic resonance imaging (fMRI) and electroencephalogram (EEG) sessions in the same 25 participants to assess anticipatory processes with a multi-modal neuroimaging set-up. During fMRI, gain and loss anticipation were both associated with heightened activation in ventral striatum and reward-related areas. EEG revealed most pronounced P300 amplitudes for gain anticipation, whereas CNV amplitudes distinguished neutral from gain and loss anticipation. Importantly, P300, but not CNV amplitudes, were correlated to neural activation in the ventral striatum for both gain and loss anticipation. Larger P300 amplitudes indicated higher ventral striatum blood oxygen level dependent (BOLD) response. Early stimulus evaluation processes indexed by EEG seem to be positively related to higher activation levels in the ventral striatum, indexed by fMRI, which are usually associated with reward processing. The current results, however, point towards a more general motivational mechanism processing salient stimuli during anticipation. PMID:24718288

  2. Regional placental blood oxygen level dependent (BOLD) changes with gestational age in normally developing pregnancies using long duration R2* mapping in utero

    NASA Astrophysics Data System (ADS)

    Dighe, Manjiri; Kim, Yun Jung; Seshamani, Sharmishtaa; Blazejewska, Ania I.; Mckown, Susan; Caucutt, Jason; Gatenby, Christopher; Studholme, Colin

    2016-03-01

    The aim of this study was to examine the use of R2* mapping in maternal and fetal sub-regions of the placenta with the aim of providing a reference for blood oxygenation levels during normative development. There have been a number of MR relaxation studies of placental tissues in-utero, but none have reported R2* value changes with age, or examined differences in sub-regions of the placenta. Here specialized long-duration Multi-frame R2* imaging was used to create a stable estimate for R2* values in different placental regions in healthy pregnant volunteers not imaged for clinical reasons. 27 subjects were recruited and scanned up to 3 times during their pregnancy. A multi-slice dual echo EPI based BOLD acquisition was employed and repeated between 90 and 150 times over 3 to 5 minutes to provide a high accuracy estimate of the R2* signal level. Acquisitions were also repeated in 13 cases within a visit to evaluate reproducibility of the method in a given subject. Experimental results showed R2* measurements were highly repeatable within a visit with standard deviation of (0.76). Plots of all visits against gestational age indicated clear correlations showing decreases in R2* with age. This increase was consistent was also consistent over time in multiple visits of the same volunteer during their pregnancy. Maternal and fetal regional changes with gestational age followed the same trend with increase in R2* over the gestational age.

  3. The bold and the fearless among us: elevated psychopathic traits and levels of anxiety and fear are associated with specific aberrant driving behaviors.

    PubMed

    Panayiotou, Georgia

    2015-06-01

    In spite of the well-documented connection between personality traits like impulsivity, sensation seeking and fearlessness with aberrant driving behaviors, scarce research exists to examine the association between risky and aggressive driving and psychopathic characteristics, which encompass the above traits. The present investigation examines in two studies the association between specific sub-types of driving misconduct, i.e., unintentional mistakes and deliberate rule violations with psychopathic characteristics, with a focus on the role of levels of fear and anxiety in aberrant driving. Findings support the hypotheses that fearlessness, i.e., the bold, unemotional aspect of psychopathic traits, characterizes drivers who engage in frequent deliberate driving code violations, whereas the more impulsive/antisocial aspect of psychopathy, associated with higher levels of fear and anxiety, is more characteristic of drivers who engage in unintentional mistakes. Fearless features are also associated with higher self-reported driving misconduct and accidents. Study 2 conceptually replicated this finding by showing that mistakes are positively related to high sensitivity to punishment, while violations are negatively related to it. Findings are discussed in light of psychopathy theory and in relation to prevention and intervention. PMID:25819475

  4. The valuation system: A coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value

    PubMed Central

    Bartra, Oscar; McGuire, Joseph T.; Kable, Joseph W.

    2013-01-01

    Numerous experiments have recently sought to identify neural signals associated with the subjective value (SV) of choice alternatives. Theoretically, SV assessment is an intermediate computational step during decision making, in which alternatives are placed on a common scale to facilitate value-maximizing choice. Here we present a quantitative, coordinate-based meta-analysis of 206 published fMRI studies investigating neural correlates of SV. Our results identify two general patterns of SV-correlated brain responses. In one set of regions, both positive and negative effects of SV on BOLD are reported at above-chance rates across the literature. Areas exhibiting this pattern include anterior insula, dorsomedial prefrontal cortex, dorsal and posterior striatum, and thalamus. The mixture of positive and negative effects potentially reflects an underlying U-shaped function, indicative of signal related to arousal or salience. In a second set of areas, including ventromedial prefrontal cortex and anterior ventral striatum, positive effects predominate. Positive effects in the latter regions are seen both when a decision is confronted and when an outcome is delivered, as well as for both monetary and primary rewards. These regions appear to constitute a "valuation system," carrying a domain-general SV signal and potentially contributing to value-based decision making. PMID:23507394

  5. Hand gestures as visual prosody: BOLD responses to audio-visual alignment are modulated by the communicative nature of the stimuli.

    PubMed

    Biau, Emmanuel; Morís Fernández, Luis; Holle, Henning; Avila, César; Soto-Faraco, Salvador

    2016-05-15

    During public addresses, speakers accompany their discourse with spontaneous hand gestures (beats) that are tightly synchronized with the prosodic contour of the discourse. It has been proposed that speech and beat gestures originate from a common underlying linguistic process whereby both speech prosody and beats serve to emphasize relevant information. We hypothesized that breaking the consistency between beats and prosody by temporal desynchronization, would modulate activity of brain areas sensitive to speech-gesture integration. To this aim, we measured BOLD responses as participants watched a natural discourse where the speaker used beat gestures. In order to identify brain areas specifically involved in processing hand gestures with communicative intention, beat synchrony was evaluated against arbitrary visual cues bearing equivalent rhythmic and spatial properties as the gestures. Our results revealed that left MTG and IFG were specifically sensitive to speech synchronized with beats, compared to the arbitrary vision-speech pairing. Our results suggest that listeners confer beats a function of visual prosody, complementary to the prosodic structure of speech. We conclude that the emphasizing function of beat gestures in speech perception is instantiated through a specialized brain network sensitive to the communicative intent conveyed by a speaker with his/her hands. PMID:26892858

  6. Increased BOLD activation in the left parahippocampal cortex after 1 year of medical school: an association with cumulative verbal memory learning.

    PubMed

    Bernier, Michaël; Gauvreau, Claudie; Theriault, Denis; Madrolle, Stéphanie; Lepage, Jean-François; Whittingstall, Kevin

    2016-01-01

    Although several studies have shown left-right hippocampus asymmetry during learning, it is unclear whether such asymmetry also exists for the parahippocampal cortex, a structure within the limbic system that is also involved in memory and learning. Using a common mental navigation task known to activate the bilateral parahippocampal cortex, this study aimed at determining how BOLD activation in these two areas changes after 1 year of medical school, a program characterized by intensive verbal learning. Fifteen first-year medical students participated in this study and underwent two sessions of functional MRI, at a 1-year interval. In the first session, we observed marginal differences between left and right parahippocampal cortex activity. However, 1 year later, left parahippocampal activation significantly increased (+4.7%), whereas the right remained stable. These results bring new information as to how intensive learning can modify regional metabolism in the human brain and how the left parahippocampal region is particularly important for cumulative verbal memory. PMID:26606418

  7. Music reduces pain and increases resting state fMRI BOLD signal amplitude in the left angular gyrus in fibromyalgia patients

    PubMed Central

    Garza-Villarreal, Eduardo A.; Jiang, Zhiguo; Vuust, Peter; Alcauter, Sarael; Vase, Lene; Pasaye, Erick H.; Cavazos-Rodriguez, Roberto; Brattico, Elvira; Jensen, Troels S.; Barrios, Fernando A.

    2015-01-01

    Music reduces pain in fibromyalgia (FM), a chronic pain disease, but the functional neural correlates of music-induced analgesia (MIA) are still largely unknown. We recruited FM patients (n = 22) who listened to their preferred relaxing music and an auditory control (pink noise) for 5 min without external noise from fMRI image acquisition. Resting state fMRI was then acquired before and after the music and control conditions. A significant increase in the amplitude of low frequency fluctuations of the BOLD signal was evident in the left angular gyrus (lAnG) after listening to music, which in turn, correlated to the analgesia reports. The post-hoc seed-based functional connectivity analysis of the lAnG showed found higher connectivity after listening to music with right dorsolateral prefrontal cortex (rdlPFC), the left caudate (lCau), and decreased connectivity with right anterior cingulate cortex (rACC), right supplementary motor area (rSMA), precuneus and right precentral gyrus (rPreG). Pain intensity (PI) analgesia was correlated (r = 0.61) to the connectivity of the lAnG with the rPreG. Our results show that MIA in FM is related to top-down regulation of the pain modulatory network by the default mode network (DMN). PMID:26257695

  8. Fortune favours the bold: a higher predator reduces the impact of a native but not an invasive intermediate predator.

    PubMed

    Barrios-O'Neill, Daniel; Dick, Jaimie T A; Emmerson, Mark C; Ricciardi, Anthony; MacIsaac, Hugh J; Alexander, Mhairi E; Bovy, Helene C

    2014-05-01

    Emergent multiple predator effects (MPEs) might radically alter predictions of predatory impact that are based solely on the impact of individuals. In the context of biological invasions, determining if and how the individual-level impacts of invasive predators relates to their impacts in multiple-individual situations will inform understanding of how such impacts might propagate through recipient communities. Here, we use functional responses (the relationship between prey consumption rate and prey density) to compare the impacts of the invasive freshwater mysid crustacean Hemimysis anomala with a native counterpart Mysis salemaai when feeding on basal cladoceran prey (i) as individuals, (ii) in conspecific groups and (iii) in conspecific groups in the presence of a higher fish predator, Gasterosteus aculeatus. In the absence of the higher predator, the invader consumed significantly more basal prey than the native, and consumption was additive for both mysid species - that is, group consumption was predictable from individual-level consumption. Invaders and natives were themselves equally susceptible to predation when feeding with the higher fish predator, but an MPE occurred only between the natives and higher predator, where consumption of basal prey was significantly reduced. In contrast, consumption by the invaders and higher predator remained additive. The presence of a higher predator serves to exacerbate the existing difference in individual-level consumption between invasive and native mysids. We attribute the mechanism responsible for the MPE associated with the native to a trait-mediated indirect interaction, and further suggest that the relative indifference to predator threat on the part of the invader contributes to its success and impacts within invaded communities. PMID:24117414

  9. Non-Kondo-like electronic structure in the correlated rare-earth hexaboride YbB6

    SciTech Connect

    Neupane, Madhab; Xu, Su -Yang; Alidoust, Nasser; Bian, Guang; Kim, D. J.; Liu, Chang; Belopolski, I.; Chang, T. -R.; Jeng, H. -T.; Durakiewicz, T.; Lin, H.; Bansil, A.; Fisk, Z.; Hasan, M. Z.

    2015-01-07

    Here, we present angle-resolved photoemission studies on the rare-earth-hexaboride YbB6, which has recently been predicted to be a topological Kondo insulator. Our data do not agree with the prediction and instead show that YbB6 exhibits a novel topological insulator state in the absence of a Kondo mechanism. We find that the Fermi level electronic structure of YbB6 has three 2D Dirac cone like surface states enclosing the Kramers’s points, while the f orbital that would be relevant for the Kondo mechanism is ~1 eV below the Fermi level. Our first-principles calculation shows that the topological state that we observe in YbB6 is due to an inversion between Yb d and B p bands. These experimental and theoretical results provide a new approach for realizing novel correlated topological insulator states in rare-earth materials.

  10. Disruption of performance in the five-choice serial reaction time task induced by administration of N-methyl-D-aspartate receptor antagonists: relevance to cognitive dysfunction in schizophrenia.

    PubMed

    Amitai, Nurith; Markou, Athina

    2010-07-01

    Schizophrenia patients suffer from cognitive impairments that are not satisfactorily treated by currently available medications. Cognitive dysfunction in schizophrenia encompasses deficits in several cognitive modalities that can be differentially responsive to different medications and are likely to be mediated by different neurobiological substrates. Translational animal models of cognitive deficits with relevance to schizophrenia are critical for gaining insights into the mechanisms underlying these impairments and developing more effective treatments. The five-choice serial reaction time task (5-CSRTT) is a cognitive task used in rodents that allows simultaneous assessment of several cognitive modalities, including attention, response inhibition, cognitive flexibility, and processing speed. Administration of N-methyl-D-aspartate (NMDA) glutamate receptor antagonists disrupts multiple 5-CSRTT performance measures in a way that mirrors various cognitive deficits exhibited by schizophrenia patients. Some of these disruptions are partially attenuated by antipsychotic medications that exhibit partial effectiveness on cognitive dysfunction in schizophrenia, suggesting that the model has predictive validity. Examination of the effects of pharmacological manipulations on 5-CSRTT performance disruptions induced by NMDA antagonists have implicated a range of brain regions, neurotransmitter systems, and specific receptor subtypes in schizophrenia-like impairment of different cognitive modalities. Thus, disruption of 5-CSRTT performance by NMDA antagonists represents a valuable tool for exploring the neurobiological bases of cognitive dysfunction in schizophrenia. PMID:20488434

  11. Remembering forward: Neural correlates of memory and prediction in human motor adaptation

    PubMed Central

    Scheidt, Robert A; Zimbelman, Janice L; Salowitz, Nicole M G; Suminski, Aaron J; Mosier, Kristine M; Houk, James; Simo, Lucia

    2011-01-01

    We used functional MR imaging (FMRI), a robotic manipulandum and systems identification techniques to examine neural correlates of predictive compensation for spring-like loads during goal-directed wrist movements in neurologically-intact humans. Although load changed unpredictably from one trial to the next, subjects nevertheless used sensorimotor memories from recent movements to predict and compensate upcoming loads. Prediction enabled subjects to adapt performance so that the task was accomplished with minimum effort. Population analyses of functional images revealed a distributed, bilateral network of cortical and subcortical activity supporting predictive load compensation during visual target capture. Cortical regions - including prefrontal, parietal and hippocampal cortices - exhibited trial-by-trial fluctuations in BOLD signal consistent with the storage and recall of sensorimotor memories or “states” important for spatial working memory. Bilateral activations in associative regions of the striatum demonstrated temporal correlation with the magnitude of kinematic performance error (a signal that could drive reward-optimizing reinforcement learning and the prospective scaling of previously learned motor programs). BOLD signal correlations with load prediction were observed in the cerebellar cortex and red nuclei (consistent with the idea that these structures generate adaptive fusimotor signals facilitating cancellation of expected proprioceptive feedback, as required for conditional feedback adjustments to ongoing motor commands and feedback error learning). Analysis of single subject images revealed that predictive activity was at least as likely to be observed in more than one of these neural systems as in just one. We conclude therefore that motor adaptation is mediated by predictive compensations supported by multiple, distributed, cortical and subcortical structures. PMID:21840405

  12. Subcortical BOLD responses during visual sexual stimulation vary as a function of implicit porn associations in women.

    PubMed

    Borg, Charmaine; de Jong, Peter J; Georgiadis, Janniko R

    2014-02-01

    Lifetime experiences shape people's attitudes toward sexual stimuli. Visual sexual stimulation (VSS), for instance, may be perceived as pleasurable by some, but as disgusting or ambiguous by others. VSS depicting explicit penile-vaginal penetration (PEN) is relevant in this respect, because the act of penetration is a core sexual activity. In this study, 20 women without sexual complaints participated. We used functional magnetic resonance imaging and a single-target implicit association task to investigate how brain responses to PEN were modulated by the initial associations in memory (PEN-'hot' vs PEN-disgust) with such hardcore pornographic stimuli. Many brain areas responded to PEN in the same way they responded to disgust stimuli, and PEN-induced brain activity was prone to modulation by subjective disgust ratings toward PEN stimuli. The relative implicit PEN-disgust (relative to PEN-'hot') associations exclusively modulated PEN-induced brain responses: comparatively negative (PEN-disgust) implicit associations with pornography predicted the strongest PEN-related responses in the basal forebrain (including nucleus accumbens and bed nucleus of stria terminalis), midbrain and amygdala. Since these areas are often implicated in visual sexual processing, the present findings should be taken as a warning: apparently their involvement may also indicate a negative or ambivalent attitude toward sexual stimuli. PMID:23051899

  13. The effect of large veins on spatial localization with GE BOLD at 3 T: Displacement, not blurring.

    PubMed

    Olman, Cheryl A; Inati, Souheil; Heeger, David J

    2007-02-01

    We used two different methods of region of interest (ROI) definition to investigate the spatial accuracy of functional magnetic resonance imaging (fMRI) at low and high spatial resolution. The "single-condition localizer" consisted of block alternation between a target stimulus and a mean gray background. The "differential localizer" consisted of block alternation between the target stimulus and another stimulus that filled the complement of the visual field. A separate series of scans, in which the target stimulus was presented briefly with long inter-stimulus intervals, was used to measure the hemodynamic impulse response function (HIRF). As expected, the differential localizer defined more restricted ROIs that better matched the predicted cortical representation of the target stimulus. However, at low resolution (3-mm isotropic) many voxels that responded positively to the target stimulus in the differential protocol responded negatively to the target stimulus in the single-condition localizer and in the HIRF measurements. The localization errors were attributed to voxels near large veins, which were identified based on low mean intensity and high variance. At high resolution (1.2-mm isotropic), the effects of large veins were present, but affected a smaller number of voxels. Thus, the use of differential localizers does not necessarily result in a more accurate indication of the underlying neural activity. Localization errors are reduced at higher spatial resolutions and can be eliminated by identification and removal of voxels dominated by large veins. PMID:17157534

  14. Subcortical BOLD responses during visual sexual stimulation vary as a function of implicit porn associations in women

    PubMed Central

    de Jong, Peter J.; Georgiadis, Janniko R.

    2014-01-01

    Lifetime experiences shape people’s attitudes toward sexual stimuli. Visual sexual stimulation (VSS), for instance, may be perceived as pleasurable by some, but as disgusting or ambiguous by others. VSS depicting explicit penile–vaginal penetration (PEN) is relevant in this respect, because the act of penetration is a core sexual activity. In this study, 20 women without sexual complaints participated. We used functional magnetic resonance imaging and a single-target implicit association task to investigate how brain responses to PEN were modulated by the initial associations in memory (PEN-‘hot’ vs PEN-disgust) with such hardcore pornographic stimuli. Many brain areas responded to PEN in the same way they responded to disgust stimuli, and PEN-induced brain activity was prone to modulation by subjective disgust ratings toward PEN stimuli. The relative implicit PEN-disgust (relative to PEN-‘hot’) associations exclusively modulated PEN-induced brain responses: comparatively negative (PEN-disgust) implicit associations with pornography predicted the strongest PEN-related responses in the basal forebrain (including nucleus accumbens and bed nucleus of stria terminalis), midbrain and amygdala. Since these areas are often implicated in visual sexual processing, the present findings should be taken as a warning: apparently their involvement may also indicate a negative or ambivalent attitude toward sexual stimuli. PMID:23051899

  15. Graphing Predictions

    ERIC Educational Resources Information Center

    Connery, Keely Flynn

    2007-01-01

    Graphing predictions is especially important in classes where relationships between variables need to be explored and derived. In this article, the author describes how his students sketch the graphs of their predictions before they begin their investigations on two laboratory activities: Distance Versus Time Cart Race Lab and Resistance; and…

  16. Predictive Evaluation

    ERIC Educational Resources Information Center

    Scriven, Michael

    2007-01-01

    Noting that there has been extensive discussion of the relation of evaluation to: (1) research; (2) explanations (a.k.a. theory-driven, logic model, or realistic evaluation); and (3) recommendations, the author introduces: (4) prediction. He advocates that unlike the first three concepts, prediction is necessarily part of most kinds of evaluation,…

  17. Cortex-based inter-subject analysis of iEEG and fMRI data sets: application to sustained task-related BOLD and gamma responses.

    PubMed

    Esposito, Fabrizio; Singer, Neomi; Podlipsky, Ilana; Fried, Itzhak; Hendler, Talma; Goebel, Rainer

    2013-02-01

    Linking regional metabolic changes with fluctuations in the local electromagnetic fields directly on the surface of the human cerebral cortex is of tremendous importance for a better understanding of detailed brain processes. Functional magnetic resonance imaging (fMRI) and intra-cranial electro-encephalography (iEEG) measure two technically unrelated but spatially and temporally complementary sets of functional descriptions of human brain activity. In order to allow fine-grained spatio-temporal human brain mapping at the population-level, an effective comparative framework for the cortex-based inter-subject analysis of iEEG and fMRI data sets is needed. We combined fMRI and iEEG recordings of the same patients with epilepsy during alternated intervals of passive movie viewing and music listening to explore the degree of local spatial correspondence and temporal coupling between blood oxygen level dependent (BOLD) fMRI changes and iEEG spectral power modulations across the cortical surface after cortex-based inter-subject alignment. To this purpose, we applied a simple model of the iEEG activity spread around each electrode location and the cortex-based inter-subject alignment procedure to transform discrete iEEG measurements into cortically distributed group patterns by establishing a fine anatomic correspondence of many iEEG cortical sites across multiple subjects. Our results demonstrate the feasibility of a multi-modal inter-subject cortex-based distributed analysis for combining iEEG and fMRI data sets acquired from multiple subjects with the same experimental paradigm but with different iEEG electrode coverage. The proposed iEEG-fMRI framework allows for improved group statistics in a common anatomical space and preserves the dynamic link between the temporal features of the two modalities. PMID:23138047

  18. Age-Related Changes in BOLD Activation Pattern in Phonemic Fluency Paradigm: An Investigation of Activation, Functional Connectivity and Psychophysiological Interactions.

    PubMed

    La, Christian; Garcia-Ramos, Camille; Nair, Veena A; Meier, Timothy B; Farrar-Edwards, Dorothy; Birn, Rasmus; Meyerand, Mary E; Prabhakaran, Vivek

    2016-01-01

    Healthy aging is associated with decline of cognitive functions. However, even before those declines become noticeable, the neural architecture underlying those mechanisms has undergone considerable restructuring and reorganization. During performance of a cognitive task, not only have the task-relevant networks demonstrated reorganization with aging, which occurs primarily by recruitment of additional areas to preserve performance, but the task-irrelevant network of the "default-mode" network (DMN), which is normally deactivated during task performance, has also consistently shown reduction of this deactivation with aging. Here, we revisited those age-related changes in task-relevant (i.e., language system) and task-irrelevant (i.e., DMN) systems with a language production paradigm in terms of task-induced activation/deactivation, functional connectivity, and context-dependent correlations between the two systems. Our task fMRI data demonstrated a late increase in cortical recruitment in terms of extent of activation, only observable in our older healthy adult group, when compared to the younger healthy adult group, with recruitment of the contralateral hemisphere, but also other regions from the network previously underutilized. Our middle-aged individuals, when compared to the younger healthy adult group, presented lower levels of activation intensity and connectivity strength, with no recruitment of additional regions, possibly reflecting an initial, uncompensated, network decline. In contrast, the DMN presented a gradual decrease in deactivation intensity and deactivation extent (i.e., low in the middle-aged, and lower in the old) and similar gradual reduction of functional connectivity within the network, with no compensation. The patterns of age-related changes in the task-relevant system and DMN are incongruent with the previously suggested notion of anti-correlation of the two systems. The context-dependent correlation by psycho-physiological interaction

  19. Age-Related Changes in BOLD Activation Pattern in Phonemic Fluency Paradigm: An Investigation of Activation, Functional Connectivity and Psychophysiological Interactions

    PubMed Central

    La, Christian; Garcia-Ramos, Camille; Nair, Veena A.; Meier, Timothy B.; Farrar-Edwards, Dorothy; Birn, Rasmus; Meyerand, Mary E.; Prabhakaran, Vivek

    2016-01-01

    Healthy aging is associated with decline of cognitive functions. However, even before those declines become noticeable, the neural architecture underlying those mechanisms has undergone considerable restructuring and reorganization. During performance of a cognitive task, not only have the task-relevant networks demonstrated reorganization with aging, which occurs primarily by recruitment of additional areas to preserve performance, but the task-irrelevant network of the “default-mode” network (DMN), which is normally deactivated during task performance, has also consistently shown reduction of this deactivation with aging. Here, we revisited those age-related changes in task-relevant (i.e., language system) and task-irrelevant (i.e., DMN) systems with a language production paradigm in terms of task-induced activation/deactivation, functional connectivity, and context-dependent correlations between the two systems. Our task fMRI data demonstrated a late increase in cortical recruitment in terms of extent of activation, only observable in our older healthy adult group, when compared to the younger healthy adult group, with recruitment of the contralateral hemisphere, but also other regions from the network previously underutilized. Our middle-aged individuals, when compared to the younger healthy adult group, presented lower levels of activation intensity and connectivity strength, with no recruitment of additional regions, possibly reflecting an initial, uncompensated, network decline. In contrast, the DMN presented a gradual decrease in deactivation intensity and deactivation extent (i.e., low in the middle-aged, and lower in the old) and similar gradual reduction of functional connectivity within the network, with no compensation. The patterns of age-related changes in the task-relevant system and DMN are incongruent with the previously suggested notion of anti-correlation of the two systems. The context-dependent correlation by psycho

  20. Three-dimensional hydrodynamical CO5BOLD model atmospheres of red giant stars. III. Line formation in the atmospheres of giants located close to the base of the red giant branch

    NASA Astrophysics Data System (ADS)

    Dobrovolskas, V.; Kučinskas, A.; Steffen, M.; Ludwig, H.-G.; Prakapavičius, D.; Klevas, J.; Caffau, E.; Bonifacio, P.

    2013-11-01

    Aims: We utilize state-of-the-art three-dimensional (3D) hydrodynamical and classical 1D stellar model atmospheres to study the influence of convection on the formation properties of various atomic and molecular spectral lines in the atmospheres of four red giant stars, located close to the base of the red giant branch, RGB (Teff ≈ 5000 K, log g = 2.5), and characterized by four different metallicities, [M/H] = 0.0, -1.0, -2.0, -3.0. Methods: The role of convection in the spectral line formation is assessed with the aid of abundance corrections, i.e., the differences in abundances predicted for a given equivalent width of a particular spectral line with the 3D and 1D model atmospheres. The 3D hydrodynamical and classical 1D model atmospheres used in this study were calculated with the CO5BOLD and 1D LHD codes, respectively. Identical atmospheric parameters, chemical composition, equation of state, and opacities were used with both codes, therefore allowing a strictly differential analysis of the line formation properties in the 3D and 1D models. Results: We find that for lines of certain neutral atoms, such as Mg i, Ti i, Fe i, and Ni i, the abundance corrections strongly depend both on the metallicity of a given model atmosphere and the line excitation potential, χ. While abundance corrections for all lines of both neutral and ionized elements tend to be small at solar metallicity (≤±0.1 dex), for lines of neutral elements with low ionization potential and low-to-intermediate χ they quickly increase with decreasing metallicity, reaching in their extremes -0.6 to -0.8 dex. In all such cases the large abundance corrections are due to horizontal temperature fluctuations in the 3D hydrodynamical models. Lines of neutral elements with higher ionization potentials (Eion ≳ 10 eV) generally behave very similarly to lines of ionized elements characterized by low ionization potentials (Eion ≲ 6 eV). In the latter case, the abundance corrections are small

  1. Earthquake prediction

    SciTech Connect

    Ma, Z.; Fu, Z.; Zhang, Y.; Wang, C.; Zhang, G.; Liu, D.

    1989-01-01

    Mainland China is situated at the eastern edge of the Eurasian seismic system and is the largest intra-continental region of shallow strong earthquakes in the world. Based on nine earthquakes with magnitudes ranging between 7.0 and 7.9, the book provides observational data and discusses successes and failures of earthquake prediction. Derived from individual earthquakes, observations of various phenomena and seismic activities occurring before and after earthquakes, led to the establishment of some general characteristics valid for earthquake prediction.

  2. Successful Predictions

    NASA Astrophysics Data System (ADS)

    Pierrehumbert, R.

    2012-12-01

    In an observational science, it is not possible to test hypotheses through controlled laboratory experiments. One can test parts of the system in the lab (as is done routinely with infrared spectroscopy of greenhouse gases), but the collective behavior cannot be tested experimentally because a star or planet cannot be brought into the lab; it must, instead, itself be the lab. In the case of anthropogenic global warming, this is all too literally true, and the experiment would be quite exciting if it weren't for the unsettling fact that we and all our descendents for the forseeable future will have to continue making our home in the lab. There are nonetheless many routes though which the validity of a theory of the collective behavior can be determined. A convincing explanation must not be a"just-so" story, but must make additional predictions that can be verified against observations that were not originally used in formulating the theory. The field of Earth and planetary climate has racked up an impressive number of such predictions. I will also admit as "predictions" statements about things that happened in the past, provided that observations or proxies pinning down the past climate state were not available at the time the prediction was made. The basic prediction that burning of fossil fuels would lead to an increase of atmospheric CO2, and that this would in turn alter the Earth's energy balance so as to cause tropospheric warming, is one of the great successes of climate science. It began in the lineage of Fourier, Tyndall and Arrhenius, and was largely complete with the the radiative-convective modeling work of Manabe in the 1960's -- all well before the expected warming had progressed far enough to be observable. Similarly, long before the increase in atmospheric CO2 could be detected, Bolin formulated a carbon cycle model and used it to predict atmospheric CO2 out to the year 2000; the actual values come in at the high end of his predicted range, for

  3. Reading Rate, Readability, and Variations in Task-Induced Processing

    ERIC Educational Resources Information Center

    Coke, Esther U.

    1976-01-01

    This study explored the hypothesis that task variables account for previous findings that reading rate is unaffected by readability. The findings suggest that when appropriate reading tasks are chosen, reading rate can be used to infer underlying processes in reading. (Author/DEP)

  4. Task-Induced Strategic Processing in L2 Text Comprehension

    ERIC Educational Resources Information Center

    Horiba, Yukie

    2013-01-01

    Strategic text processing was investigated for English as a foreign language learners who processed and recalled a text when they read for expression, for image, and for critique. The results indicated that, although the amount of content recall (i.e., products of comprehension) was similar, the relative contributions of second language (L2)…

  5. Task induced modulation of neural oscillations in electrophysiological brain networks.

    PubMed

    Brookes, M J; Liddle, E B; Hale, J R; Woolrich, M W; Luckhoo, H; Liddle, P F; Morris, P G

    2012-12-01

    In recent years, one of the most important findings in systems neuroscience has been the identification of large scale distributed brain networks. These networks support healthy brain function and are perturbed in a number of neurological disorders (e.g. schizophrenia). Their study is therefore an important and evolving focus for neuroscience research. The majority of network studies are conducted using functional magnetic resonance imaging (fMRI) which relies on changes in blood oxygenation induced by neural activity. However recently, a small number of studies have begun to elucidate the electrical origin of fMRI networks by searching for correlations between neural oscillatory signals from spatially separate brain areas in magnetoencephalography (MEG) data. Here we advance this research area. We introduce two methodological extensions to previous independent component analysis (ICA) approaches to MEG network characterisation: 1) we show how to derive pan-spectral networks that combine independent components computed within individual frequency bands. 2) We show how to measure the temporal evolution of each network with millisecond temporal resolution. We apply our approach to ~10h of MEG data recorded in 28 experimental sessions during 3 separate cognitive tasks showing that a number of networks could be identified and were robust across time, task, subject and recording session. Further, we show that neural oscillations in those networks are modulated by memory load, and task relevance. This study furthers recent findings on electrodynamic brain networks and paves the way for future clinical studies in patients in which abnormal connectivity is thought to underlie core symptoms. PMID:22906787

  6. Progress towards understanding and predicting convection heat transfer in the turbine gas path

    NASA Technical Reports Server (NTRS)

    Simoneau, Robert J.; Simon, Frederick F.

    1992-01-01

    A new era is drawing in the ability to predict convection heat transfer in the turbine gas path. We feel that the technical community now has the capability to mount a major assault on this problem, which has eluded significant progress for a long time. We hope to make a case for this bold statement by reviewing the state of the art in three major heat transfer, configuration-specific experiments, whose data have provided the big picture and guided both the fundamental modeling research and the code development. Following that, we review progress and directions in the development of computer codes to predict turbine gas path heat transfer. Finally, we cite examples and make observations on the more recent efforts to do all this work in a simultaneous, interactive, and more synergistic manner. We conclude with an assessment of progress, suggestions for how to use the current state of the art, and recommendations for the future.

  7. Reduced Striatal Responses to Reward Prediction Errors in Older Compared with Younger Adults

    PubMed Central

    Schuck, Nicolas W.; Nystrom, Leigh E.; Cohen, Jonathan D.

    2013-01-01

    We examined whether older adults differ from younger adults in how they learn from rewarding and aversive outcomes. Human participants were asked to either learn to choose actions that lead to monetary reward or learn to avoid actions that lead to monetary losses. To examine age differences in the neurophysiological mechanisms of learning, we applied a combination of computational modeling and fMRI. Behavioral results showed age-related impairments in learning from reward but not in learning from monetary losses. Consistent with these results, we observed age-related reductions in BOLD activity during learning from reward in the ventromedial PFC. Furthermore, the model-based fMRI analysis revealed a reduced responsivity of the ventral striatum to reward prediction errors during learning in older than younger adults. This age-related reduction in striatal sensitivity to reward prediction errors may result from a decline in phasic dopaminergic learning signals in the elderly. PMID:23761885

  8. ENSO predictability

    NASA Astrophysics Data System (ADS)

    Larson, Sarah Michelle

    The overarching goal of this work is to explore seasonal El Nino -- Southern Oscillation (ENSO) predictability. More specifically, this work investigates how intrinsic variability affects ENSO predictability using a state-of-the-art climate model. Topics related to the effects of systematic model errors and external forcing are not included in this study. Intrinsic variability encompasses a hierarchy of temporal and spatial scales, from high frequency small-scale noise-driven processes including coupled instabilities to low frequency large-scale deterministic climate modes. The former exemplifies what can be considered intrinsic "noise" in the climate system that hinders predictability by promoting rapid error growth whereas the latter often provides the slow thermal ocean inertia that supplies the coupled ENSO system with predictability. These two ends of the spectrum essentially provide the lower and upper bounds of ENSO predictability that can be attributed to internal variability. The effects of noise-driven coupled instabilities on sea surface temperature (SST) predictability in the ENSO region is quantified by utilizing a novel coupled model methodology paired with an ensemble approach. The experimental design allows for rapid growth of intrinsic perturbations that are not prescribed. Several cases exhibit sufficiently rapid growth to produce ENSO-like final states that do not require a previous ENSO event, large-scale wind trigger, or subsurface heat content precursor. Results challenge conventional ENSO theory that considers the subsurface precursor as a necessary condition for ENSO. Noise-driven SST error growth exhibits strong seasonality and dependence on the initialization month. A dynamical analysis reveals that much of the error growth behavior is linked to the seasonal strength of the Bjerknes feedback in the model, indicating that the noise-induced perturbations grow via an ENSO-like mechanism. The daily error fields reveal that persistent

  9. Dropout Prediction.

    ERIC Educational Resources Information Center

    Curtis, Jonathan; And Others

    Secondary school students who drop out of school are put at great social and economic disadvantage. If potential dropouts can be identified early, prevention may be possible. To construct a prediction model which, through readily available school information, will aid in the identification of students likely to drop out, schools in the Austin,…

  10. Bold Books for Innovative Teaching

    ERIC Educational Resources Information Center

    Gallo, Don

    2004-01-01

    The ways in which Teri Lesesne, an author, selects the best book from the hundreds of books published each year are discussed. The importance of understanding the needs of the readers and the curriculum is explained.

  11. Curiosity: How to Boldly Go...

    NASA Technical Reports Server (NTRS)

    Pyrzak, Guy

    2013-01-01

    Operating a one-ton rover on the surface of Mars requires more than just a joystick and an experiment. With 10 science instruments, 17 cameras, a radioisotope thermoelectric generator and lasers, Curiosity is the largest and most complex rover NASA has sent to Mars. Combined with a 1 way light time of 4 to 20 minutes and a distributed international science and engineering team, it takes a lot of work to operate this mega-rover. The Mars Science Lab's operations team has developed an organization and process that maximizes science return and safety of the spacecraft. These are the voyages of the rover Curiosity, its 2 year mission, to determine the habitability of Gale Crater, to understand the role of water, to study the climate and geology of Mars.

  12. Be Bold ... Be Enrollment Rich

    ERIC Educational Resources Information Center

    Perna, Mark C.

    2004-01-01

    In this paper, marketing specialist Mark Perna offers advice on how career and technical schools can market themselves and their programs. To become "enrollment rich," he suggests the following: (1) develop a brand plan--something that separates your organization from competitors in the mind of the community; (2) deliver the message--the community…

  13. A Bold New Math Class

    ERIC Educational Resources Information Center

    Khan, Salman; Slavitt, Elizabeth

    2013-01-01

    Summit San Jose is part of the Summit Public Schools network, a group of charter schools in California's Bay Area. In 2011, when Summit San Jose first opened its new high school with a cohort of 9th graders, the teachers decided to pilot Khan Academy. At the time, they had piloted their math resources and platform with five classrooms in Los…

  14. Non-Invasive Magnetic Resonance Imaging in Rats for Prediction of the Fate of Grafted Kidneys from Cardiac Death Donors

    PubMed Central

    Kaimori, Jun-Ya; Iwai, Satomi; Hatanaka, Masaki; Teratani, Takumi; Obi, Yoshitsugu; Tsuda, Hidetoshi; Isaka, Yoshitaka; Yokawa, Takashi; Kuroda, Kagayaki; Ichimaru, Naotsugu; Okumi, Masayoshi; Yazawa, Koji; Rakugi, Hiromi; Nonomura, Norio; Takahara, Shiro; Kobayashi, Eiji

    2013-01-01

    The main objective of this study was to assess cardiac death (CD) kidney grafts before transplantation to determine whether blood oxygen level-dependent (BOLD) and diffusion MRI techniques can predict damage to these grafts after transplantation. We assessed CD kidney tissue by BOLD and diffusion MRI. We also examined pathological and gene expression changes in CD kidney grafts before and after transplantation. Although there was significantly more red cell congestion (RCC) in the inner stripe of the outer medulla (IS) in both 1 h after cardiac death (CD1h) and CD2h kidneys destined for grafts before transplantation compared with CD0h (p<0.05), CD2h, but not CD1h, kidney grafts had significantly different RCC in the IS 2 days after transplantation (p<0.05). Consistent with these pathological findings, tissue plasminogen activator (tPA) gene expression was increased only in the cortex and medulla of CD2h kidney grafts after transplantation. BOLD MRI successfully and non-invasively imaged and quantified RCC in the IS in both CD1h and CD2h kidney grafts (p<0.05). Diffusion MRI also non-invasively assessed increased the apparent diffusion coefficient in the IS and decreased it in the outer stripe (OS) of CD2h grafts, in concordance with interstitial edema in the IS and tubule cellular edema in the OS. These two types of edema in the outer medulla could explain the prolonged RCC in the IS only of CD2h kidney grafts, creating part of a vicious cycle inhibiting red cells coming out of capillary vessels in the IS. Perfusion with University of Wisconsin solution before MRI measurements did not diminish the difference in tissue damage between CD1h and CD2h kidney grafts. BOLD and diffusion MRI, which are readily available non-invasive tools for evaluating CD kidney grafts tissue damage, can predict prolonged organ damage, and therefore the outcome, of transplanted CD kidney grafts. PMID:23667641

  15. Platelet Serotonin Transporter Function Predicts Default-Mode Network Activity

    PubMed Central

    Kasess, Christian H.; Meyer, Bernhard M.; Hofmaier, Tina; Diers, Kersten; Bartova, Lucie; Pail, Gerald; Huf, Wolfgang; Uzelac, Zeljko; Hartinger, Beate; Kalcher, Klaudius; Perkmann, Thomas; Haslacher, Helmuth; Meyer-Lindenberg, Andreas; Kasper, Siegfried; Freissmuth, Michael; Windischberger, Christian; Willeit, Matthäus; Lanzenberger, Rupert; Esterbauer, Harald; Brocke, Burkhard; Moser, Ewald; Sitte, Harald H.; Pezawas, Lukas

    2014-01-01

    Background The serotonin transporter (5-HTT) is abundantly expressed in humans by the serotonin transporter gene SLC6A4 and removes serotonin (5-HT) from extracellular space. A blood-brain relationship between platelet and synaptosomal 5-HT reuptake has been suggested, but it is unknown today, if platelet 5-HT uptake can predict neural activation of human brain networks that are known to be under serotonergic influence. Methods A functional magnetic resonance study was performed in 48 healthy subjects and maximal 5-HT uptake velocity (Vmax) was assessed in blood platelets. We used a mixed-effects multilevel analysis technique (MEMA) to test for linear relationships between whole-brain, blood-oxygen-level dependent (BOLD) activity and platelet Vmax. Results The present study demonstrates that increases in platelet Vmax significantly predict default-mode network (DMN) suppression in healthy subjects independent of genetic variation within SLC6A4. Furthermore, functional connectivity analyses indicate that platelet Vmax is related to global DMN activation and not intrinsic DMN connectivity. Conclusion This study provides evidence that platelet Vmax predicts global DMN activation changes in healthy subjects. Given previous reports on platelet-synaptosomal Vmax coupling, results further suggest an important role of neuronal 5-HT reuptake in DMN regulation. PMID:24667541

  16. Deep brain stimulation induces BOLD activation in motor and non-motor networks: An fMRI comparison study of STN and EN/GPi DBS in large animals

    PubMed Central

    Min, Hoon-Ki; Hwang, Sun-Chul; Marsh, Michael P.; Kim, Inyong; Knight, Emily; Striemer, Bryan; Felmlee, Joel P.; Welker, Kirk M.; Blaha, Charles D.; Chang, Su-Youne; Bennet, Kevin E.; Lee, Kendall H.

    2012-01-01

    The combination of deep brain stimulation (DBS) and functional MRI (fMRI) is a powerful means of tracing brain circuitry and testing the modulatory effects of electrical stimulation on a neuronal network in vivo. The goal of this study was to trace DBS-induced global neuronal network activation in a large animal model by monitoring the blood oxygenation level-dependent (BOLD) response on fMRI. We conducted DBS in normal anesthetized pigs, targeting the subthalamic nucleus (STN) (n=7) and the entopeduncular nucleus (EN), the non-primate analogue of the primate globus pallidus interna (n=4). Using a normalized functional activation map for group analysis and the application of general linear modeling across subjects, we found that both STN and EN DBS significantly increased BOLD activation in the ipsilateral sensorimotor network (FDR < 0.001). In addition, we found differential, target-specific, non-motor network effects. In each group the activated brain areas showed a distinctive correlation pattern forming a group of network connections. Results suggest that the scope of DBS extends beyond an ablation-like effect and that it may have modulatory effects not only on circuits that facilitate motor function but also on those involved in higher cognitive and emotional processing. Taken together, our results show that the swine model for DBS fMRI, which conforms to human implanted DBS electrode configurations and human neuroanatomy, may be a useful platform for translational studies investigating the global neuromodulatory effects of DBS. PMID:22967832

  17. Interpreting Zcbold" (3900bold" ) and Zcbold" (4025bold" )/Zcbold" (4020bold" ) as charged tetraquark states

    NASA Astrophysics Data System (ADS)

    Deng, Chengrong; Ping, Jialun; Huang, Hongxia; Wang, Fan

    2014-09-01

    In the framework of the color flux-tube model with a four-body confinement potential, the lowest charged tetraquark states [Qq][Q¯'q¯'](Q=c,b,q=u,d,s) are studied by using the variational method, the Gaussian expansion method. The results indicate that some compact resonance states with three-dimensional spatial structures can be formed. These states cannot decay into two color singlet mesons Qq¯' and Q¯'q through the breakdown and recombination of color flux tubes but into QQ¯' and qq¯'. The four-body confinement potential is a crucial dynamical mechanism for the formation of these compact resonance states. The decay process is similar to that of a compound nucleus but due to the multibody color confinement. The newly observed charged states Zc(3900) and Zc(4025)/Zc(4020) can be interpreted as the S-wave tetraquark states [cu][c¯d¯] with quantum numbers IJP=11+ and 12+, respectively.

  18. Three-dimensional hydrodynamical CO5BOLD model atmospheres of red giant stars. IV. Oxygen diagnostics in extremely metal-poor red giants with infrared OH lines

    NASA Astrophysics Data System (ADS)

    Dobrovolskas, V.; Kučinskas, A.; Bonifacio, P.; Caffau, E.; Ludwig, H.-G.; Steffen, M.; Spite, M.

    2015-04-01

    Context. Although oxygen is an important tracer of Galactic chemical evolution, measurements of its abundance in the atmospheres of the oldest Galactic stars are still scarce and rather imprecise. This is mainly because only a few spectral lines are available for the abundance diagnostics. At the lowest end of the metallicity scale, oxygen can only be measured in giant stars and in most of cases such measurements rely on a single forbidden [O i] 630 nm line that is very weak and frequently blended with telluric lines. Although molecular OH lines located in the ultraviolet and infrared could also be used for the diagnostics, oxygen abundances obtained from the OH lines and the [O i] 630 nm line are usually discrepant to a level of ~ 0.3-0.4 dex. Aims: We study the influence of convection on the formation of the infrared (IR) OH lines and the forbidden [O i] 630 nm line in the atmospheres of extremely metal-poor (EMP) red giant stars. Our ultimate goal is to clarify whether a realistic treatment of convection with state-of-the-art 3D hydrodynamical model atmospheres may help to bring the oxygen abundances obtained using the two indicators into closer agreement. Methods: We used high-resolution (R = 50 000) and high signal-to-noise ratio (S/N ≈ 200-600) spectra of four EMP red giant stars obtained with the VLT CRIRES spectrograph. For each EMP star, 4-14 IR OH vibrational-rotational lines located in the spectral range of 1514-1548 and 1595-1632 nm were used to determine oxygen abundances by employing standard 1D local thermodynamic equilibrium (LTE) abundance analysis methodology. We then corrected the 1D LTE abundances obtained from each individual OH line for the 3D hydrodynamical effects, which was done by applying 3D-1D LTE abundance corrections that were determined using 3D hydrodynamical CO5BOLD and 1D hydrostatic LHD model atmospheres. Results: We find that the influence of convection on the formation of [O i] 630 nm line in the atmospheres of EMP giants

  19. Probing neuronal activation by functional quantitative susceptibility mapping under a visual paradigm: A group level comparison with BOLD fMRI and PET.

    PubMed

    Özbay, Pinar Senay; Warnock, Geoffrey; Rossi, Cristina; Kuhn, Felix; Akin, Burak; Pruessmann, Klaas Paul; Nanz, Daniel

    2016-08-15

    Dynamic changes of brain-tissue magnetic susceptibility provide the basis for functional MR imaging (fMRI) via T2*-weighted signal-intensity modulations. Promising initial work on a detection of neuronal activity via quantitative susceptibility mapping (fQSM) has been published but consistently reported on ill-understood positive and negative activation patterns (Balla et al., 2014; Chen and Calhoun, 2015a). We set out to (i) demonstrate that fQSM can exploit established fMRI data acquisition and processing methods and to (ii) better describe aspects of the apparent activation patterns using fMRI and PET as standards of reference. Under a standardized visual-stimulation paradigm PET and 3-T gradient-echo EPI-based fQSM, fMRI data from 9 healthy volunteers were acquired and analyzed by means of Independent Component Analysis (ICA) at subject level and, for the first time, at group level. Numbers of activated (z-score>2.0) voxels were counted and their mean z-scores calculated in volumes of interest (occipital lobe (Nocc_lobe), segmented occipital gray-matter (NGM_occ_lobe), large veins (Nveins)), and in occipital-lobe voxels commonly activated in fQSM and fMRI component maps. Common but not entirely congruent regions of apparent activation were found in the occipital lobe in z-score maps from all modalities, fQSM, fMRI and PET, with distinct BOLD-negatively correlated regions in fQSM data. At subject-level, Nocc_lobe, NGM_occ_lobe and their mean z-scores were significantly smaller in fQSM than in fMRI, but their ratio, NGM_occ_lobe/Nocc_lobe, was comparable. Nveins did not statistically differ and the ratio Nveins/NGM_occ_lobe as well as the mean z-scores were higher for fQSM than for fMRI. In veins and immediate vicinity, z-score maps derived from both phase and fQSM-data showed positive and negative lobes resembling dipole shapes in simulated field and phase maps with no correlate in fMRI or PET data. Our results show that standard fMRI tools can directly be used

  20. Adaptive Prediction Error Coding in the Human Midbrain and Striatum Facilitates Behavioral Adaptation and Learning Efficiency.

    PubMed

    Diederen, Kelly M J; Spencer, Tom; Vestergaard, Martin D; Fletcher, Paul C; Schultz, Wolfram

    2016-06-01

    Effective error-driven learning benefits from scaling of prediction errors to reward variability. Such behavioral adaptation may be facilitated by neurons coding prediction errors relative to the standard deviation (SD) of reward distributions. To investigate this hypothesis, we required participants to predict the magnitude of upcoming reward drawn from distributions with different SDs. After each prediction, participants received a reward, yielding trial-by-trial prediction errors. In line with the notion of adaptive coding, BOLD response slopes in the Substantia Nigra/Ventral Tegmental Area (SN/VTA) and ventral striatum were steeper for prediction errors occurring in distributions with smaller SDs. SN/VTA adaptation was not instantaneous but developed across trials. Adaptive prediction error coding was paralleled by behavioral adaptation, as reflected by SD-dependent changes in learning rate. Crucially, increased SN/VTA and ventral striatal adaptation was related to improved task performance. These results suggest that adaptive coding facilitates behavioral adaptation and supports efficient learning. PMID:27181060

  1. Quantitative comparisons on hand motor functional areas determined by resting state and task BOLD fMRI and anatomical MRI for pre-surgical planning of patients with brain tumors

    PubMed Central

    Hou, Bob L.; Bhatia, Sanjay; Carpenter, Jeffrey S.

    2016-01-01

    For pre-surgical planning we present quantitative comparison of the location of the hand motor functional area determined by right hand finger tapping BOLD fMRI, resting state BOLD fMRI, and anatomically using high resolution T1 weighted images. Data were obtained on 10 healthy subjects and 25 patients with left sided brain tumors. Our results show that there are important differences in the locations (i.e., > 20 mm) of the determined hand motor voxels by these three MR imaging methods. This can have significant effect on the pre-surgical planning of these patients depending on the modality used. In 13 of the 25 cases (i.e., 52%) the distances between the task-determined and the rs-fMRI determined hand areas were more than 20 mm; in 13 of 25 cases (i.e., 52%) the distances between the task-determined and anatomically determined hand areas were > 20 mm; and in 16 of 25 cases (i.e., 64%) the distances between the rs-fMRI determined and anatomically determined hand areas were more than 20 mm. In just three cases, the distances determined by all three modalities were within 20 mm of each other. The differences in the location or fingerprint of the hand motor areas, as determined by these three MR methods result from the different underlying mechanisms of these three modalities and possibly the effects of tumors on these modalities. PMID:27069871

  2. Alpha and gamma oscillation amplitudes synergistically predict the perception of forthcoming nociceptive stimuli

    PubMed Central

    Tu, Yiheng; Tan, Ao; Peng, Weiwei; Hung, Yeung Sam; Moayedi, Massieh; Iannetti, Gian Domenico

    2015-01-01

    Abstract Ongoing fluctuations of intrinsic cortical networks determine the dynamic state of the brain, and influence the perception of forthcoming sensory inputs. The functional state of these networks is defined by the amplitude and phase of ongoing oscillations of neuronal populations at different frequencies. The contribution of functionally different cortical networks has yet to be elucidated, and only a clear dependence of sensory perception on prestimulus alpha oscillations has been clearly identified. Here, we combined electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) in a large sample of healthy participants to investigate how ongoing fluctuations in the activity of different cortical networks affect the perception of subsequent nociceptive stimuli. We observed that prestimulus EEG oscillations in the alpha (at bilateral central regions) and gamma (at parietal regions) bands negatively modulated the perception of subsequent stimuli. Combining information about alpha and gamma oscillations predicted subsequent perception significantly more accurately than either measure alone. In a parallel experiment, we found that prestimulus fMRI activity also modulated the perception of subsequent stimuli: perceptual ratings were higher when the BOLD signal was higher in nodes of the sensorimotor network and lower in nodes of the default mode network. Similar to what observed in the EEG data, prediction accuracy was improved when the amplitude of prestimulus BOLD signals in both networks was combined. These findings provide a comprehensive physiological basis to the idea that dynamic changes in brain state determine forthcoming behavioral outcomes. Hum Brain Mapp 37:501–514, 2016. © 2015 Wiley Periodicals, Inc. PMID:26523484

  3. Prediction processes during multiple object tracking (MOT): involvement of dorsal and ventral premotor cortices

    PubMed Central

    Atmaca, Silke; Stadler, Waltraud; Keitel, Anne; Ott, Derek V M; Lepsien, Jöran; Prinz, Wolfgang

    2013-01-01

    Background The multiple object tracking (MOT) paradigm is a cognitive task that requires parallel tracking of several identical, moving objects following nongoal-directed, arbitrary motion trajectories. Aims The current study aimed to investigate the employment of prediction processes during MOT. As an indicator for the involvement of prediction processes, we targeted the human premotor cortex (PM). The PM has been repeatedly implicated to serve the internal modeling of future actions and action effects, as well as purely perceptual events, by means of predictive feedforward functions. Materials and methods Using functional magnetic resonance imaging (fMRI), BOLD activations recorded during MOT were contrasted with those recorded during the execution of a cognitive control task that used an identical stimulus display and demanded similar attentional load. A particular effort was made to identify and exclude previously found activation in the PM-adjacent frontal eye fields (FEF). Results We replicated prior results, revealing occipitotemporal, parietal, and frontal areas to be engaged in MOT. Discussion The activation in frontal areas is interpreted to originate from dorsal and ventral premotor cortices. The results are discussed in light of our assumption that MOT engages prediction processes. Conclusion We propose that our results provide first clues that MOT does not only involve visuospatial perception and attention processes, but prediction processes as well. PMID:24363971

  4. Encoding of Sensory Prediction Errors in the Human Cerebellum

    PubMed Central

    Schlerf, John; Ivry, Richard B.; Diedrichsen, Jörn

    2015-01-01

    A central tenet of motor neuroscience is that the cerebellum learns from sensory prediction errors. Surprisingly, neuroimaging studies have not revealed definitive signatures of error processing in the cerebellum. Furthermore, neurophysiologic studies suggest an asymmetry, such that the cerebellum may encode errors arising from unexpected sensory events, but not errors reflecting the omission of expected stimuli. We conducted an imaging study to compare the cerebellar response to these two types of errors. Participants made fast out-and-back reaching movements, aiming either for an object that delivered a force pulse if intersected or for a gap between two objects, either of which delivered a force pulse if intersected. Errors (missing the target) could therefore be signaled either through the presence or absence of a force pulse. In an initial analysis, the cerebellar BOLD response was smaller on trials with errors compared with trials without errors. However, we also observed an error-related decrease in heart rate. After correcting for variation in heart rate, increased activation during error trials was observed in the hand area of lobules V and VI. This effect was similar for the two error types. The results provide evidence for the encoding of errors resulting from either the unexpected presence or unexpected absence of sensory stimulation in the human cerebellum. PMID:22492047

  5. Resting spontaneous activity in the default mode network predicts performance decline during prolonged attention workload.

    PubMed

    Gui, Danyang; Xu, Sihua; Zhu, Senhua; Fang, Zhuo; Spaeth, Andrea M; Xin, Yuanyuan; Feng, Tingyong; Rao, Hengyi

    2015-10-15

    After continuous and prolonged cognitive workload, people typically show reduced behavioral performance and increased feelings of fatigue, which are known as "time-on-task (TOT) effects". Although TOT effects are pervasive in modern life, their underlying neural mechanisms remain elusive. In this study, we induced TOT effects by administering a 20-min continuous psychomotor vigilance test (PVT) to a group of 16 healthy adults and used resting-state blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to examine spontaneous brain activity changes associated with fatigue and performance. Behaviorally, subjects displayed robust TOT effects, as reflected by increasingly slower reaction times as the test progressed and higher self-reported mental fatigue ratings after the 20-min PVT. Compared to pre-test measurements, subjects exhibited reduced amplitudes of low-frequency fluctuation (ALFF) in the default mode network (DMN) and increased ALFF in the thalamus after the test. Subjects also exhibited reduced anti-correlations between the posterior cingulate cortex (PCC) and right middle prefrontal cortex after the test. Moreover, pre-test resting ALFF in the PCC and medial prefrontal cortex (MePFC) predicted subjects' subsequent performance decline; individuals with higher ALFF in these regions exhibited more stable reaction times throughout the 20-min PVT. These results support the important role of both task-positive and task-negative networks in mediating TOT effects and suggest that spontaneous activity measured by resting-state BOLD fMRI may be a marker of mental fatigue. PMID:26196666

  6. Making detailed predictions makes (some) predictions worse

    NASA Astrophysics Data System (ADS)

    Kelly, Theresa F.

    In this paper, we investigate whether making detailed predictions about an event makes other predictions worse. Across 19 experiments, 10,895 participants, and 415,960 predictions about 724 professional sports games, we find that people who made detailed predictions about sporting events (e.g., how many hits each baseball team would get) made worse predictions about more general outcomes (e.g., which team would win). We rule out that this effect is caused by inattention or fatigue, thinking too hard, or a differential reliance on holistic information about the teams. Instead, we find that thinking about game-relevant details before predicting winning teams causes people to give less weight to predictive information, presumably because predicting details makes information that is relatively useless for predicting the winning team more readily accessible in memory and therefore incorporated into forecasts. Furthermore, we show that this differential use of information can be used to predict what kinds of games will and will not be susceptible to the negative effect of making detailed predictions.

  7. Downstream prediction using a nonlinear prediction method

    NASA Astrophysics Data System (ADS)

    Adenan, N. H.; Noorani, M. S. M.

    2013-11-01

    The estimation of river flow is significantly related to the impact of urban hydrology, as this could provide information to solve important problems, such as flooding downstream. The nonlinear prediction method has been employed for analysis of four years of daily river flow data for the Langat River at Kajang, Malaysia, which is located in a downstream area. The nonlinear prediction method involves two steps; namely, the reconstruction of phase space and prediction. The reconstruction of phase space involves reconstruction from a single variable to the m-dimensional phase space in which the dimension m is based on optimal values from two methods: the correlation dimension method (Model I) and false nearest neighbour(s) (Model II). The selection of an appropriate method for selecting a combination of preliminary parameters, such as m, is important to provide an accurate prediction. From our investigation, we gather that via manipulation of the appropriate parameters for the reconstruction of the phase space, Model II provides better prediction results. In particular, we have used Model II together with the local linear prediction method to achieve the prediction results for the downstream area with a high correlation coefficient. In summary, the results show that Langat River in Kajang is chaotic, and, therefore, predictable using the nonlinear prediction method. Thus, the analysis and prediction of river flow in this area can provide river flow information to the proper authorities for the construction of flood control, particularly for the downstream area.

  8. Predicting evolutionary dynamics

    NASA Astrophysics Data System (ADS)

    Balazsi, Gabor

    We developed an ordinary differential equation-based model to predict the evolutionary dynamics of yeast cells carrying a synthetic gene circuit. The predicted aspects included the speed at which the ancestral genotype disappears from the population; as well as the types of mutant alleles that establish in each environmental condition. We validated these predictions by experimental evolution. The agreement between our predictions and experimental findings suggests that cellular and population fitness landscapes can be useful to predict short-term evolution.

  9. Area-Specific Information Processing in Prefrontal Cortex during a Probabilistic Inference Task: A Multivariate fMRI BOLD Time Series Analysis

    PubMed Central

    Demanuele, Charmaine; Kirsch, Peter; Esslinger, Christine; Zink, Mathias; Meyer-Lindenberg, Andreas; Durstewitz, Daniel

    2015-01-01

    Introduction Discriminating spatiotemporal stages of information processing involved in complex cognitive processes remains a challenge for neuroscience. This is especially so in prefrontal cortex whose subregions, such as the dorsolateral prefrontal (DLPFC), anterior cingulate (ACC) and orbitofrontal (OFC) cortices are known to have differentiable roles in cognition. Yet it is much less clear how these subregions contribute to different cognitive processes required by a given task. To investigate this, we use functional MRI data recorded from a group of healthy adults during a “Jumping to Conclusions” probabilistic reasoning task. Methods We used a novel approach combining multivariate test statistics with bootstrap-based procedures to discriminate between different task stages reflected in the fMRI blood oxygenation level dependent signal pattern and to unravel differences in task-related information encoded by these regions. Furthermore, we implemented a new feature extraction algorithm that selects voxels from any set of brain regions that are jointly maximally predictive about specific task stages. Results Using both the multivariate statistics approach and the algorithm that searches for maximally informative voxels we show that during the Jumping to Conclusions task, the DLPFC and ACC contribute more to the decision making phase comprising the accumulation of evidence and probabilistic reasoning, while the OFC is more involved in choice evaluation and uncertainty feedback. Moreover, we show that in presumably non-task-related regions (temporal cortices) all information there was about task processing could be extracted from just one voxel (indicating the unspecific nature of that information), while for prefrontal areas a wider multivariate pattern of activity was maximally informative. Conclusions/Significance We present a new approach to reveal the different roles of brain regions during the processing of one task from multivariate activity patterns

  10. Predictive modeling of complications.

    PubMed

    Osorio, Joseph A; Scheer, Justin K; Ames, Christopher P

    2016-09-01

    Predictive analytic algorithms are designed to identify patterns in the data that allow for accurate predictions without the need for a hypothesis. Therefore, predictive modeling can provide detailed and patient-specific information that can be readily applied when discussing the risks of surgery with a patient. There are few studies using predictive modeling techniques in the adult spine surgery literature. These types of studies represent the beginning of the use of predictive analytics in spine surgery outcomes. We will discuss the advancements in the field of spine surgery with respect to predictive analytics, the controversies surrounding the technique, and the future directions. PMID:27286683

  11. Predicting Achievement and Motivation.

    ERIC Educational Resources Information Center

    Uguroglu, Margaret; Walberg, Herbert J.

    1986-01-01

    Motivation and nine other factors were measured for 970 students in grades five through eight in a study of factors predicting achievement and predicting motivation. Results are discussed. (Author/MT)

  12. Battery Life Predictive Model

    Energy Science and Technology Software Center (ESTSC)

    2009-12-31

    The Software consists of a model used to predict battery capacity fade and resistance growth for arbitrary cycling and temperature profiles. It allows the user to extrapolate from experimental data to predict actual life cycle.

  13. Predicting Scholars' Scientific Impact

    PubMed Central

    Mazloumian, Amin

    2012-01-01

    We tested the underlying assumption that citation counts are reliable predictors of future success, analyzing complete citation data on the careers of scientists. Our results show that i) among all citation indicators, the annual citations at the time of prediction is the best predictor of future citations, ii) future citations of a scientist's published papers can be predicted accurately ( for a 1-year prediction, ) but iii) future citations of future work are hardly predictable. PMID:23185311

  14. Ongoing Activity in Temporally Coherent Networks Predicts Intra-Subject Fluctuation of Response Time to Sporadic Executive Control Demands

    PubMed Central

    Nozawa, Takayuki; Sugiura, Motoaki; Yokoyama, Ryoichi; Ihara, Mizuki; Kotozaki, Yuka; Miyauchi, Carlos Makoto; Kanno, Akitake; Kawashima, Ryuta

    2014-01-01

    Can ongoing fMRI BOLD signals predict fluctuations in swiftness of a person’s response to sporadic cognitive demands? This is an important issue because it clarifies whether intrinsic brain dynamics, for which spatio-temporal patterns are expressed as temporally coherent networks (TCNs), have effects not only on sensory or motor processes, but also on cognitive processes. Predictivity has been affirmed, although to a limited extent. Expecting a predictive effect on executive performance for a wider range of TCNs constituting the cingulo-opercular, fronto-parietal, and default mode networks, we conducted an fMRI study using a version of the color–word Stroop task that was specifically designed to put a higher load on executive control, with the aim of making its fluctuations more detectable. We explored the relationships between the fluctuations in ongoing pre-trial activity in TCNs and the task response time (RT). The results revealed the existence of TCNs in which fluctuations in activity several seconds before the onset of the trial predicted RT fluctuations for the subsequent trial. These TCNs were distributed in the cingulo-opercular and fronto-parietal networks, as well as in perceptual and motor networks. Our results suggest that intrinsic brain dynamics in these networks constitute “cognitive readiness,” which plays an active role especially in situations where information for anticipatory attention control is unavailable. Fluctuations in these networks lead to fluctuations in executive control performance. PMID:24901995

  15. Nonlinear Combustion Instability Prediction

    NASA Technical Reports Server (NTRS)

    Flandro, Gary

    2010-01-01

    The liquid rocket engine stability prediction software (LCI) predicts combustion stability of systems using LOX-LH2 propellants. Both longitudinal and transverse mode stability characteristics are calculated. This software has the unique feature of being able to predict system limit amplitude.

  16. Prediction in Multiple Regression.

    ERIC Educational Resources Information Center

    Osborne, Jason W.

    2000-01-01

    Presents the concept of prediction via multiple regression (MR) and discusses the assumptions underlying multiple regression analyses. Also discusses shrinkage, cross-validation, and double cross-validation of prediction equations and describes how to calculate confidence intervals around individual predictions. (SLD)

  17. Towards a Predictive Theory of Malaria: Connections to Spatio-temporal Variability of Climate and Hydrology

    NASA Astrophysics Data System (ADS)

    Endo, N.; Eltahir, E. A. B.

    2015-12-01

    Malaria transmission is closely linked to climatology, hydrology, environment, and the biology of local vectors. These factors interact with each other and non-linearly influence malaria transmission dynamics, making prediction and prevention challenging. Our work attempts to find a universality in the multi-dimensional system of malaria transmission and to develop a theory to predict emergence of malaria given a limited set of environmental and biological inputs.A credible malaria transmission dynamics model, HYDREMATS (Bomblies et al., 2008), was used under hypothetical settings to investigate the role of spatial and temporal distribution of vector breeding pools. HYDREMATS is a mechanistic model and capable of simulating the basic reproduction rate (Ro) without bold assumptions even under dynamic conditions. The spatial distribution of pools is mainly governed by hydrological factors; the impact of pool persistence and rainy season length on malaria transmission were investigated. Also analyzed was the impact of the temporal distribution of pools relative to human houses. We developed non-dimensional variables combining the hydrological and biological parameters. Simulated values of Ro from HYDREMATS are presented in a newly-introduced non-dimensional plane, which leads to a some-what universal theory describing the condition for sustainable malaria transmission. The findings were tested against observations both from the West Africa and the Ethiopian Highland, representing diverse hydroclimatological conditions. Predicated Ro values from the theory over the two regions are in good agreement with the observed malaria transmission data.

  18. Testing earthquake predictions

    NASA Astrophysics Data System (ADS)

    Luen, Brad; Stark, Philip B.

    2008-01-01

    Statistical tests of earthquake predictions require a null hypothesis to model occasional chance successes. To define and quantify 'chance success' is knotty. Some null hypotheses ascribe chance to the Earth: Seismicity is modeled as random. The null distribution of the number of successful predictions - or any other test statistic - is taken to be its distribution when the fixed set of predictions is applied to random seismicity. Such tests tacitly assume that the predictions do not depend on the observed seismicity. Conditioning on the predictions in this way sets a low hurdle for statistical significance. Consider this scheme: When an earthquake of magnitude 5.5 or greater occurs anywhere in the world, predict that an earthquake at least as large will occur within 21 days and within an epicentral distance of 50 km. We apply this rule to the Harvard centroid-moment-tensor (CMT) catalog for 2000-2004 to generate a set of predictions. The null hypothesis is that earthquake times are exchangeable conditional on their magnitudes and locations and on the predictions - a common "nonparametric" assumption in the literature. We generate random seismicity by permuting the times of events in the CMT catalog. We consider an event successfully predicted only if (i) it is predicted and (ii) there is no larger event within 50 km in the previous 21 days. The P-value for the observed success rate is <0.001: The method successfully predicts about 5% of earthquakes, far better than 'chance' because the predictor exploits the clustering of earthquakes - occasional foreshocks - which the null hypothesis lacks. Rather than condition on the predictions and use a stochastic model for seismicity, it is preferable to treat the observed seismicity as fixed, and to compare the success rate of the predictions to the success rate of simple-minded predictions like those just described. If the proffered predictions do no better than a simple scheme, they have little value.

  19. Subgenual cingulate cortical activity predicts the efficacy of electroconvulsive therapy.

    PubMed

    Argyelan, M; Lencz, T; Kaliora, S; Sarpal, D K; Weissman, N; Kingsley, P B; Malhotra, A K; Petrides, G

    2016-01-01

    Electroconvulsive therapy (ECT) is the most effective treatment for depression, yet its mechanism of action is unknown. Our goal was to investigate the neurobiological underpinnings of ECT response using longitudinally collected resting-state functional magnetic resonance imaging (rs-fMRI) in 16 patients with treatment-resistant depression and 10 healthy controls. Patients received bifrontal ECT 3 times a week under general anesthesia. We acquired rs-fMRI at three time points: at baseline, after the 1st ECT administration and after the course of the ECT treatment; depression was assessed with the Hamilton Depression Rating Scale (HAM-D). The primary measure derived from rs-fMRI was fractional amplitude of low frequency fluctuation (fALFF), which provides an unbiased voxel-wise estimation of brain activity. We also conducted seed-based functional connectivity analysis based on our primary findings. We compared treatment-related changes in HAM-D scores with pre- and post-treatment fALFF and connectivity measures. Subcallosal cingulate cortex (SCC) demonstrated higher BOLD signal fluctuations (fALFF) at baseline in depressed patients, and SCC fALFF decreased over the course of treatment. The baseline level of fALFF of SCC predicted response to ECT. In addition, connectivity of SCC with bilateral hippocampus, bilateral temporal pole, and ventromedial prefrontal cortex was significantly reduced over the course of treatment. These results suggest that the antidepressant effect of ECT may be mediated by downregulation of SCC activity and connectivity. SCC function may serve as an important biomarker of target engagement in the development of novel therapies for depression that is resistant to treatment with standard medications. PMID:27115120

  20. Context predicts word order processing in Broca's region.

    PubMed

    Kristensen, Line Burholt; Engberg-Pedersen, Elisabeth; Wallentin, Mikkel

    2014-12-01

    The function of the left inferior frontal gyrus (L-IFG) is highly disputed. A number of language processing studies have linked the region to the processing of syntactical structure. Still, there is little agreement when it comes to defining why linguistic structures differ in their effects on the L-IFG. In a number of languages, the processing of object-initial sentences affects the L-IFG more than the processing of subject-initial ones, but frequency and distribution differences may act as confounding variables. Syntactically complex structures (like the object-initial construction in Danish) are often less frequent and only viable in certain contexts. With this confound in mind, the L-IFG activation may be sensitive to other variables than a syntax manipulation on its own. The present fMRI study investigates the effect of a pragmatically appropriate context on the processing of subject-initial and object-initial clauses with the IFG as our ROI. We find that Danish object-initial clauses yield a higher BOLD response in L-IFG, but we also find an interaction between appropriateness of context and word order. This interaction overlaps with traditional syntax areas in the IFG. For object-initial clauses, the effect of an appropriate context is bigger than for subject-initial clauses. This result is supported by an acceptability study that shows that, given appropriate contexts, object-initial clauses are considered more appropriate than subject-initial clauses. The increased L-IFG activation for processing object-initial clauses without a supportive context may be interpreted as reflecting either reinterpretation or the recipients' failure to correctly predict word order from contextual cues. PMID:25000525

  1. Subgenual cingulate cortical activity predicts the efficacy of electroconvulsive therapy

    PubMed Central

    Argyelan, M; Lencz, T; Kaliora, S; Sarpal, D K; Weissman, N; Kingsley, P B; Malhotra, A K; Petrides, G

    2016-01-01

    Electroconvulsive therapy (ECT) is the most effective treatment for depression, yet its mechanism of action is unknown. Our goal was to investigate the neurobiological underpinnings of ECT response using longitudinally collected resting-state functional magnetic resonance imaging (rs-fMRI) in 16 patients with treatment-resistant depression and 10 healthy controls. Patients received bifrontal ECT 3 times a week under general anesthesia. We acquired rs-fMRI at three time points: at baseline, after the 1st ECT administration and after the course of the ECT treatment; depression was assessed with the Hamilton Depression Rating Scale (HAM-D). The primary measure derived from rs-fMRI was fractional amplitude of low frequency fluctuation (fALFF), which provides an unbiased voxel-wise estimation of brain activity. We also conducted seed-based functional connectivity analysis based on our primary findings. We compared treatment-related changes in HAM-D scores with pre- and post-treatment fALFF and connectivity measures. Subcallosal cingulate cortex (SCC) demonstrated higher BOLD signal fluctuations (fALFF) at baseline in depressed patients, and SCC fALFF decreased over the course of treatment. The baseline level of fALFF of SCC predicted response to ECT. In addition, connectivity of SCC with bilateral hippocampus, bilateral temporal pole, and ventromedial prefrontal cortex was significantly reduced over the course of treatment. These results suggest that the antidepressant effect of ECT may be mediated by downregulation of SCC activity and connectivity. SCC function may serve as an important biomarker of target engagement in the development of novel therapies for depression that is resistant to treatment with standard medications. PMID:27115120

  2. Predicting Predictable about Natural Catastrophic Extremes

    NASA Astrophysics Data System (ADS)

    Kossobokov, Vladimir

    2015-04-01

    By definition, an extreme event is rare one in a series of kindred phenomena. Usually (e.g. in Geophysics), it implies investigating a small sample of case-histories with a help of delicate statistical methods and data of different quality, collected in various conditions. Many extreme events are clustered (far from independent) and follow fractal or some other "strange" distribution (far from uniform). Evidently, such an "unusual" situation complicates search and definition of reliable precursory behaviors to be used for forecast/prediction purposes. Making forecast/prediction claims reliable and quantitatively probabilistic in the frames of the most popular objectivists' viewpoint on probability requires a long series of "yes/no" forecast/prediction outcomes, which cannot be obtained without an extended rigorous test of the candidate method. The set of errors ("success/failure" scores and space-time measure of alarms) and other information obtained in such a control test supplies us with data necessary to judge the candidate's potential as a forecast/prediction tool and, eventually, to find its improvements. This is to be done first in comparison against random guessing, which results confidence (measured in terms of statistical significance). Note that an application of the forecast/prediction tools could be very different in cases of different natural hazards, costs and benefits that determine risks, and, therefore, requires determination of different optimal strategies minimizing reliable estimates of realistic levels of accepted losses. In their turn case specific costs and benefits may suggest a modification of the forecast/prediction tools for a more adequate "optimal" application. Fortunately, the situation is not hopeless due to the state-of-the-art understanding of the complexity and non-linear dynamics of the Earth as a Physical System and pattern recognition approaches applied to available geophysical evidences, specifically, when intending to predict

  3. Solar Cycle Prediction

    NASA Technical Reports Server (NTRS)

    Pesnell, William Dean

    2011-01-01

    Solar cycle predictions are needed to plan long-term space missions; just like weather predictions are needed to plan your next vacation. Fleets of satellites circle the Earth collecting many types of science data, protecting astronauts, and relaying information. All of these satellites are sensitive at some level to solar cycle effects. Predictions of drag on LEO spacecraft are one of the most important. Launching a satellite with less propellant can mean a higher orbit, but unanticipated solar activity and increased drag can make that a Pyrrhic victory. Energetic events at the Sun can produce crippling radiation storms that endanger all assets in space. Testing solar dynamo theories by quantitative predictions of what will happen in 5-20 years is the next arena for solar cycle predictions. I will describe the current state of solar cycle predictions and anticipate how those predictions could be made more accurate in the future.

  4. A simple predictive model of chemical potentials: H sub 2 ( sup 1. Sigma. sub g ) and Li sub 2 ( sup 1. Sigma. sub g )

    SciTech Connect

    Tang, K.T.; Toennies, J.P. ); Meyer, W. )

    1991-07-15

    A simple model for van der Waals potentials presented earlier (J. Chem. Phys. {bold 80}, 3726 (1984)) has been extended to describe chemical bonds by including the exchange-dispersion term of Herring and Flicker. For H{sub 2}, the {sup 1}{Sigma} ground state potential is predicted in excellent agreement with the accurately known {ital ab} {ital initio} potential, the well depth being reproduced to within 0.6%. New two configuration self-consistent-field (SCF) calculations for the {sup 1}{Sigma} and the {sup 3}{Sigma} states of Li{sub 2} have made it possible to test the model for this system as well. Here the discrepancy is only 3% in the well depth for the {sup 1}{Sigma} Li{sub 2} potential.

  5. Predictive systems ecology

    PubMed Central

    Evans, Matthew R.; Bithell, Mike; Cornell, Stephen J.; Dall, Sasha R. X.; Díaz, Sandra; Emmott, Stephen; Ernande, Bruno; Grimm, Volker; Hodgson, David J.; Lewis, Simon L.; Mace, Georgina M.; Morecroft, Michael; Moustakas, Aristides; Murphy, Eugene; Newbold, Tim; Norris, K. J.; Petchey, Owen; Smith, Matthew; Travis, Justin M. J.; Benton, Tim G.

    2013-01-01

    Human societies, and their well-being, depend to a significant extent on the state of the ecosystems that surround them. These ecosystems are changing rapidly usually in response to anthropogenic changes in the environment. To determine the likely impact of environmental change on ecosystems and the best ways to manage them, it would be desirable to be able to predict their future states. We present a proposal to develop the paradigm of predictive systems ecology, explicitly to understand and predict the properties and behaviour of ecological systems. We discuss the necessary and desirable features of predictive systems ecology models. There are places where predictive systems ecology is already being practised and we summarize a range of terrestrial and marine examples. Significant challenges remain but we suggest that ecology would benefit both as a scientific discipline and increase its impact in society if it were to embrace the need to become more predictive. PMID:24089332

  6. Pyroshock prediction procedures

    NASA Astrophysics Data System (ADS)

    Piersol, Allan G.

    2002-05-01

    Given sufficient effort, pyroshock loads can be predicted by direct analytical procedures using Hydrocodes that analytically model the details of the pyrotechnic explosion and its interaction with adjacent structures, including nonlinear effects. However, it is more common to predict pyroshock environments using empirical procedures based upon extensive studies of past pyroshock data. Various empirical pyroshock prediction procedures are discussed, including those developed by the Jet Propulsion Laboratory, Lockheed-Martin, and Boeing.

  7. Predictability of Conversation Partners

    NASA Astrophysics Data System (ADS)

    Takaguchi, Taro; Nakamura, Mitsuhiro; Sato, Nobuo; Yano, Kazuo; Masuda, Naoki

    2011-08-01

    Recent developments in sensing technologies have enabled us to examine the nature of human social behavior in greater detail. By applying an information-theoretic method to the spatiotemporal data of cell-phone locations, [C. Song , ScienceSCIEAS0036-8075 327, 1018 (2010)] found that human mobility patterns are remarkably predictable. Inspired by their work, we address a similar predictability question in a different kind of human social activity: conversation events. The predictability in the sequence of one’s conversation partners is defined as the degree to which one’s next conversation partner can be predicted given the current partner. We quantify this predictability by using the mutual information. We examine the predictability of conversation events for each individual using the longitudinal data of face-to-face interactions collected from two company offices in Japan. Each subject wears a name tag equipped with an infrared sensor node, and conversation events are marked when signals are exchanged between sensor nodes in close proximity. We find that the conversation events are predictable to a certain extent; knowing the current partner decreases the uncertainty about the next partner by 28.4% on average. Much of the predictability is explained by long-tailed distributions of interevent intervals. However, a predictability also exists in the data, apart from the contribution of their long-tailed nature. In addition, an individual’s predictability is correlated with the position of the individual in the static social network derived from the data. Individuals confined in a community—in the sense of an abundance of surrounding triangles—tend to have low predictability, and those bridging different communities tend to have high predictability.

  8. Solar Cycle Predictions

    NASA Technical Reports Server (NTRS)

    Pesnell, William Dean

    2012-01-01

    Solar cycle predictions are needed to plan long-term space missions; just like weather predictions are needed to plan the launch. Fleets of satellites circle the Earth collecting many types of science data, protecting astronauts, and relaying information. All of these satellites are sensitive at some level to solar cycle effects. Predictions of drag on LEO spacecraft are one of the most important. Launching a satellite with less propellant can mean a higher orbit, but unanticipated solar activity and increased drag can make that a Pyrrhic victory as you consume the reduced propellant load more rapidly. Energetic events at the Sun can produce crippling radiation storms that endanger all assets in space. Solar cycle predictions also anticipate the shortwave emissions that cause degradation of solar panels. Testing solar dynamo theories by quantitative predictions of what will happen in 5-20 years is the next arena for solar cycle predictions. A summary and analysis of 75 predictions of the amplitude of the upcoming Solar Cycle 24 is presented. The current state of solar cycle predictions and some anticipations how those predictions could be made more accurate in the future will be discussed.

  9. Predicting cancer outcome

    SciTech Connect

    Gardner, S N; Fernandes, M

    2005-03-24

    We read with interest the paper by Michiels et al on the prediction of cancer with microarrays and the commentary by Ioannidis listing the potential as well as the limitations of this approach (February 5, p 488 and 454). Cancer is a disease characterized by complex, heterogeneous mechanisms and studies to define factors that can direct new drug discovery and use should be encouraged. However, this is easier said than done. Casti teaches that a better understanding does not necessarily extrapolate to better prediction, and that useful prediction is possible without complete understanding (1). To attempt both, explanation and prediction, in a single nonmathematical construct, is a tall order (Figure 1).

  10. 'To Boldly Go...' Building a Virtual Classroom

    NASA Technical Reports Server (NTRS)

    vandeVen, Ryan W.; Meurders, Mary F. E.

    2008-01-01

    The concept of a Exploration-Based Learning Environment has recently been introduced into the argument that technology can put students back into the field of real learning. IPN has set foot there, where no school has gone before, by actually building a Virtual Classroom.This paper is about our first step towards the Virtual Classroom: Experience-Based Learning by simulations. A field study on the processes involved when going from a regular educational setting to using simulations as part of the educational was done. We discuss eventual pitfalls and the role changes in education for both teacher and pupil, the importance of understanding the psychological process that the pupil goes through and the consequences this has for the guiding staff. Changes are not only necessary to keep up with the change but also to break through the vicious circle of what we call the trend of "Spectacle and Boredom" in education.

  11. Pacific Rim Partnerships: Alaska's Bold Initiative.

    ERIC Educational Resources Information Center

    Parrett, William H.; Calkins, Annie

    1989-01-01

    Describes the Alaska Sister Schools Network, formed in 1985 to create opportunities for Alaskan students to experience more directly the cultural and economic perspectives of their Pacific Rim neighbors. Network organizers go beyond the "pen-pal" approach to encourage three partnership levels: initial acquaintance, curriculum development, and…

  12. The bold legacy of Emil Fischer.

    PubMed

    Goodman, Murray; Cai, Weibo; Smith, Nicole D

    2003-09-01

    A century has passed since Emil Fischer won the Nobel Prize in chemistry. From his first synthesis of glycyl-glycine in 1901 he has been a luminary to peptide chemists over the past 100 years. In this paper, a brief summary of some of the major accomplishments in peptide chemistry will be covered followed by a description of several of our own endeavours in peptide chemistry which arose from the discoveries of the giants of our field. We will include the development of a novel activating agent (DEPBT), the synthesis of a novel building block, alpha-methyl-D-cysteine, its incorporation into biologically active opioids, and conclude with the synthesis of dendritic collagen mimetics. PMID:14552421

  13. Signal for supernova {bold {nu}}{sub {bold {mu}}} and {bold {nu}}{sub {bold {tau}}} neutrinos in water {hacek C}erenkov detectors

    SciTech Connect

    Langanke, K.; Vogel, P.; Kolbe, E. ||

    1996-04-01

    We suggest that photons with energies between 5 and 10 MeV, generated by the ({nu},{nu}{prime}{ital p}{gamma}) and ({nu},{nu}{prime}{ital n}{gamma}) reactions on {sup 16}O, constitute a signal which allows a unique identification of supernova {nu}{sub {mu}} and {nu}{sub {tau}} neutrinos in water {hacek C}erenkov detectors. We calculate the yield of such {gamma} events and estimate that a few hundred of them would be detected in Superkamiokande for a supernova at 10kpc distance. {copyright} {ital 1996 The American Physical Society.}

  14. Visual Mapping Using BOLD fMRI

    PubMed Central

    DeYoe, Edgar A.; Raut, Ryan V.

    2014-01-01

    Synopsis Functional magnetic resonance imaging (fMRI) is used clinically to map visual cortex prior to brain surgery or other invasive treatments in order to achieve an optimal balance between therapeutic effect and the avoidance of post-operative vision deficits. Clinically optimized stimuli, behavioral task, analysis and displays permit identification of cortical subregions supporting high acuity central vision that is critical for reading and other essential visual functions. A novel data display permits instant appreciation of the functional relationship between the pattern of fMRI brain activation and the pattern of vision loss and preservation within the patient’s field of view. Neurovascular uncoupling and its detection in visual cortex are key issues for the interpretation of fMRI results in patients with existing brain pathology. Emerging techniques such as resting state fMRI may facilitate the use of fMRI-based vision mapping with a broader range of patients. PMID:25441501

  15. Bold Leadership Real Reform [Annual Report, 2014

    ERIC Educational Resources Information Center

    American Council of Trustees and Alumni, 2015

    2015-01-01

    Higher education has never been more "front and center"--almost daily we hear about spiraling costs, the lack of academic rigor, and the stifling political correctness on our college campuses. Long before such issues were hot, ACTA [American Council of Trustees and Alumni] was already pointing out these worrisome trends and calling on…

  16. Smart, Bold Reform for Powerful Schools

    ERIC Educational Resources Information Center

    Cahill, Michelle

    2009-01-01

    Over the past 10 years, the author has spent time in hundreds of high schools reviewing data; observing classes; learning about interventions and whole-school reforms; and speaking with principals, teachers, counselors, and students. She has also been a district leader in New York City responsible for high school reform that has achieved promising…

  17. To Boldly Go...Or Not

    ERIC Educational Resources Information Center

    Zavrel, Erik

    2008-01-01

    This public-hearing case study is centered upon the recent decision by President George W. Bush to set NASA's primary goal as a return to the Moon, followed by a mission to Mars. The members on the expert panel are fictitious and the transcript contrived; however, the views expressed in the case study correspond to actual views held by leading…

  18. Project PHOBOS - A bold Soviet mission

    NASA Astrophysics Data System (ADS)

    Kidger, Neville

    1988-07-01

    An overview of the Phobos project is given, including the spacecraft design, propulsion system, flight plan, and scientific objectives and equipment. The main objectives of the Phobos project are to remotely sense the Martian surface and atmosphere, to obtain data from the surface of Phobos, to image the Sun in X-ray, visible and UV wavelengths, and to study the interplanetary medium. The spacecraft's combined braking/correction propulsion system, which consists of an autonomous propulsion system and one central and four peripheral tanks is discussed. Experiments disscussed include the use of laser and ion beam devics to provide data on the isotope and mass composition of the Phobos surface, infrared and gamma-ray spectroscopy to study the thermal and reflective surface properties, a radar complex to probe the surface, and the Hopper, which is designed to provide data on the chemical composition and physical characteristic of the moon's surface.

  19. Cortical localization of phase and amplitude dynamics predicting access to somatosensory awareness.

    PubMed

    Hirvonen, Jonni; Palva, Satu

    2016-01-01

    Neural dynamics leading to conscious sensory perception have remained enigmatic in despite of large interest. Human functional magnetic resonance imaging (fMRI) studies have revealed that a co-activation of sensory and frontoparietal areas is crucial for conscious sensory perception in the several second time-scale of BOLD signal fluctuations. Electrophysiological recordings with magneto- and electroencephalography (MEG and EEG) and intracranial EEG (iEEG) have shown that event related responses (ERs), phase-locking of neuronal activity, and oscillation amplitude modulations in sub-second timescales are greater for consciously perceived than for unperceived stimuli. The cortical sources of ER and oscillation dynamics predicting the conscious perception have, however, remained unclear because these prior studies have utilized MEG/EEG sensor-level analyses or iEEG with limited neuroanatomical coverage. We used a somatosensory detection task, magnetoencephalography (MEG), and cortically constrained source reconstruction to identify the cortical areas where ERs, local poststimulus amplitudes and phase-locking of neuronal activity are predictive of the conscious access of somatosensory information. We show here that strengthened ERs, phase-locking to stimulus onset (SL), and induced oscillations amplitude modulations all predicted conscious somatosensory perception, but the most robust and widespread of these was SL that was sustained in low-alpha (6-10 Hz) band. The strength of SL and to a lesser extent that of ER predicted conscious perception in the somatosensory, lateral and medial frontal, posterior parietal, and in the cingulate cortex. These data suggest that a rapid phase-reorganization and concurrent oscillation amplitude modulations in these areas play an instrumental role in the emergence of a conscious percept. PMID:26485310

  20. Improved nonlinear prediction method

    NASA Astrophysics Data System (ADS)

    Adenan, Nur Hamiza; Md Noorani, Mohd Salmi

    2014-06-01

    The analysis and prediction of time series data have been addressed by researchers. Many techniques have been developed to be applied in various areas, such as weather forecasting, financial markets and hydrological phenomena involving data that are contaminated by noise. Therefore, various techniques to improve the method have been introduced to analyze and predict time series data. In respect of the importance of analysis and the accuracy of the prediction result, a study was undertaken to test the effectiveness of the improved nonlinear prediction method for data that contain noise. The improved nonlinear prediction method involves the formation of composite serial data based on the successive differences of the time series. Then, the phase space reconstruction was performed on the composite data (one-dimensional) to reconstruct a number of space dimensions. Finally the local linear approximation method was employed to make a prediction based on the phase space. This improved method was tested with data series Logistics that contain 0%, 5%, 10%, 20% and 30% of noise. The results show that by using the improved method, the predictions were found to be in close agreement with the observed ones. The correlation coefficient was close to one when the improved method was applied on data with up to 10% noise. Thus, an improvement to analyze data with noise without involving any noise reduction method was introduced to predict the time series data.

  1. Detecting and Predicting Changes

    ERIC Educational Resources Information Center

    Brown, Scott D.; Steyvers, Mark

    2009-01-01

    When required to predict sequential events, such as random coin tosses or basketball free throws, people reliably use inappropriate strategies, such as inferring temporal structure when none is present. We investigate the ability of observers to predict sequential events in dynamically changing environments, where there is an opportunity to detect…

  2. Stable predictive control horizons

    NASA Astrophysics Data System (ADS)

    Estrada, Raúl; Favela, Antonio; Raimondi, Angelo; Nevado, Antonio; Requena, Ricardo; Beltrán-Carbajal, Francisco

    2012-04-01

    The stability theory of predictive and adaptive predictive control for processes of linear and stable nature is based on the hypothesis of a physically realisable driving desired trajectory (DDT). The formal theoretical verification of this hypothesis is trivial for processes with a stable inverse, but it is not for processes with an unstable inverse. The extended strategy of predictive control was developed with the purpose of overcoming methodologically this stability problem and it has delivered excellent performance and stability in its industrial applications given a suitable choice of the prediction horizon. From a theoretical point of view, the existence of a prediction horizon capable of ensuring stability for processes with an unstable inverse was proven in the literature. However, no analytical solution has been found for the determination of the prediction horizon values which guarantee stability, in spite of the theoretical and practical interest of this matter. This article presents a new method able to determine the set of prediction horizon values which ensure stability under the extended predictive control strategy formulation and a particular performance criterion for the design of the DDT generically used in many industrial applications. The practical application of this method is illustrated by means of simulation examples.

  3. Propeller noise prediction

    NASA Technical Reports Server (NTRS)

    Zorumski, W. E.

    1983-01-01

    Analytic propeller noise prediction involves a sequence of computations culminating in the application of acoustic equations. The prediction sequence currently used by NASA in its ANOPP (aircraft noise prediction) program is described. The elements of the sequence are called program modules. The first group of modules analyzes the propeller geometry, the aerodynamics, including both potential and boundary layer flow, the propeller performance, and the surface loading distribution. This group of modules is based entirely on aerodynamic strip theory. The next group of modules deals with the actual noise prediction, based on data from the first group. Deterministic predictions of periodic thickness and loading noise are made using Farassat's time-domain methods. Broadband noise is predicted by the semi-empirical Schlinker-Amiet method. Near-field predictions of fuselage surface pressures include the effects of boundary layer refraction and (for a cylinder) scattering. Far-field predictions include atmospheric and ground effects. Experimental data from subsonic and transonic propellers are compared and NASA's future direction is propeller noise technology development are indicated.

  4. Predicting the MJO

    NASA Astrophysics Data System (ADS)

    Hendon, H.

    2003-04-01

    Extended range prediction of the Madden Julian Oscillation (MJO) and seasonal prediction of MJO activity are reviewed. Skillful prediction of individual MJO events offers the possibility of forecasting increased risk of cyclone development throughout the global tropics, altered risk of extreme rainfall events in both tropics and extratropics, and displacement of storm tracks with 3-4 week lead times. The level of MJO activity within a season, which affects the mean intensity of the Australian summer monsoon and possibly the evolution of ENSO, may be governed by variations of sea surface temperature that are predictable with lead times of a few seasons. The limit of predictability for individual MJO events is unknown. Empirical-statistical schemes are skillful out to about 3 weeks and have better skill than dynamical forecast models at lead times longer than about 5 days. The dynamical forecast models typically suffer from a poor representation (or complete lack) of the MJO and large initial error. They are better used to ascertain the global impacts of the lack of the MJO rather than for determination of the limit of predictability. Dynamical extended range prediction within a GCM that has a good representation of the MJO indicates potential skill comparable to the empirical schemes. Examples of operational extended range prediction with POAMA, the new coupled seasonal forecast model at the Bureau of Meteorology that also reasonably simulates the MJO, will be presented.

  5. Evaluating prediction uncertainty

    SciTech Connect

    McKay, M.D.

    1995-03-01

    The probability distribution of a model prediction is presented as a proper basis for evaluating the uncertainty in a model prediction that arises from uncertainty in input values. Determination of important model inputs and subsets of inputs is made through comparison of the prediction distribution with conditional prediction probability distributions. Replicated Latin hypercube sampling and variance ratios are used in estimation of the distributions and in construction of importance indicators. The assumption of a linear relation between model output and inputs is not necessary for the indicators to be effective. A sequential methodology which includes an independent validation step is applied in two analysis applications to select subsets of input variables which are the dominant causes of uncertainty in the model predictions. Comparison with results from methods which assume linearity shows how those methods may fail. Finally, suggestions for treating structural uncertainty for submodels are presented.

  6. Error mode prediction.

    PubMed

    Hollnagel, E; Kaarstad, M; Lee, H C

    1999-11-01

    The study of accidents ('human errors') has been dominated by efforts to develop 'error' taxonomies and 'error' models that enable the retrospective identification of likely causes. In the field of Human Reliability Analysis (HRA) there is, however, a significant practical need for methods that can predict the occurrence of erroneous actions--qualitatively and quantitatively. The present experiment tested an approach for qualitative performance prediction based on the Cognitive Reliability and Error Analysis Method (CREAM). Predictions of possible erroneous actions were made for operators using different types of alarm systems. The data were collected as part of a large-scale experiment using professional nuclear power plant operators in a full scope simulator. The analysis showed that the predictions were correct in more than 70% of the cases, and also that the coverage of the predictions depended critically on the comprehensiveness of the preceding task analysis. PMID:10582035

  7. Predictable Books: Captivating Young Readers.

    ERIC Educational Resources Information Center

    Luckner, John

    1990-01-01

    Because prediction plays such a vital role in reading comprehension, predictable books are essential in the teaching of beginning readers. Prediction involves a three-step cycle: sampling, predicting, and confirming. Steps in using predictable books with hearing-impaired students are outlined, and a list of predictable and repetitive books is…

  8. Prediction of bull fertility.

    PubMed

    Utt, Matthew D

    2016-06-01

    Prediction of male fertility is an often sought-after endeavor for many species of domestic animals. This review will primarily focus on providing some examples of dependent and independent variables to stimulate thought about the approach and methodology of identifying the most appropriate of those variables to predict bull (bovine) fertility. Although the list of variables will continue to grow with advancements in science, the principles behind making predictions will likely not change significantly. The basic principle of prediction requires identifying a dependent variable that is an estimate of fertility and an independent variable or variables that may be useful in predicting the fertility estimate. Fertility estimates vary in which parts of the process leading to conception that they infer about and the amount of variation that influences the estimate and the uncertainty thereof. The list of potential independent variables can be divided into competence of sperm based on their performance in bioassays or direct measurement of sperm attributes. A good prediction will use a sample population of bulls that is representative of the population to which an inference will be made. Both dependent and independent variables should have a dynamic range in their values. Careful selection of independent variables includes reasonable measurement repeatability and minimal correlation among variables. Proper estimation and having an appreciation of the degree of uncertainty of dependent and independent variables are crucial for using predictions to make decisions regarding bull fertility. PMID:26791329

  9. Prediction of alumina penetration

    SciTech Connect

    Mandell, D A

    1993-02-01

    The MESA hydrocode was used to predict two-dimensional tests of L/D 10 and L/D 15 tungsten rods impacting AD 90 alumina with a steel backing. The residual penetration into the steel is the measured quantity in these experiments conducted at the Southwest Research Institute (SWR). The interface velocity as a function of time between an alumina target and a lithium fluoride window, impacted by an alumina disk at velocities between 544 m/s and 2329 m/s, was also predicted. These one-dimensional flyer plate experiments were conducted at Sandia National Laboratories using Coors AD 995 alumina. The material strength and fracture models are important in the prediction of ceramic experiments. The models used in these predictions are discussed. The penetrations in the two-dimensional tests were predicted to 11.4 percent or better. In five of the six experiments, the predicted penetration depth was deeper than the measured value. This trend is expected since the calculation is based on ideal conditions. The results show that good agreement between the 1-D flyer plate data and the MESA predictions exists at the lower impact velocities, but the maximum velocity is overpredicted as the flyer plate velocity increases. At a flyer plate velocity of 2329 m/s the code overpredicted the data by 12.3 percent.

  10. Surprise beyond prediction error

    PubMed Central

    Chumbley, Justin R; Burke, Christopher J; Stephan, Klaas E; Friston, Karl J; Tobler, Philippe N; Fehr, Ernst

    2014-01-01

    Surprise drives learning. Various neural “prediction error” signals are believed to underpin surprise-based reinforcement learning. Here, we report a surprise signal that reflects reinforcement learning but is neither un/signed reward prediction error (RPE) nor un/signed state prediction error (SPE). To exclude these alternatives, we measured surprise responses in the absence of RPE and accounted for a host of potential SPE confounds. This new surprise signal was evident in ventral striatum, primary sensory cortex, frontal poles, and amygdala. We interpret these findings via a normative model of surprise. PMID:24700400

  11. Rocket Noise Prediction Program

    NASA Technical Reports Server (NTRS)

    Margasahayam, Ravi; Caimi, Raoul

    1999-01-01

    A comprehensive, automated, and user-friendly software program was developed to predict the noise and ignition over-pressure environment generated during the launch of a rocket. The software allows for interactive modification of various parameters affecting the generated noise environment. Predictions can be made for different launch scenarios and a variety of vehicle and launch mount configurations. Moreover, predictions can be made for both near-field and far-field locations on the ground and any position on the vehicle. Multiple engine and fuel combinations can be addressed, and duct geometry can be incorporated efficiently. Applications in structural design are addressed.

  12. Wind power prediction models

    NASA Technical Reports Server (NTRS)

    Levy, R.; Mcginness, H.

    1976-01-01

    Investigations were performed to predict the power available from the wind at the Goldstone, California, antenna site complex. The background for power prediction was derived from a statistical evaluation of available wind speed data records at this location and at nearby locations similarly situated within the Mojave desert. In addition to a model for power prediction over relatively long periods of time, an interim simulation model that produces sample wind speeds is described. The interim model furnishes uncorrelated sample speeds at hourly intervals that reproduce the statistical wind distribution at Goldstone. A stochastic simulation model to provide speed samples representative of both the statistical speed distributions and correlations is also discussed.

  13. Coating Life Prediction

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Gedwill, M. A.

    1984-01-01

    Hot-section gas-turbine components typically require some form of coating for oxidation and corrosion protection. Efficient use of coatings requires reliable and accurate predictions of the protective life of the coating. Currently engine inspections and component replacements are often made on a conservative basis. As a result, there is a constant need to improve and develop the life-prediction capability of metallic coatings for use in various service environments. The purpose of this present work is aimed at developing of an improved methodology for predicting metallic coating lives in an oxidizing environment and in a corrosive environment.

  14. The embodiment of emotion: language use during the feeling of social emotions predicts cortical somatosensory activity

    PubMed Central

    Saxbe, Darby E.; Yang, Xiao-Fei; Borofsky, Larissa A.

    2013-01-01

    Complex social emotions involve both abstract cognitions and bodily sensations, and individuals may differ on their relative reliance on these. We hypothesized that individuals’ descriptions of their feelings during a semi-structured emotion induction interview would reveal two distinct psychological styles—a more abstract, cognitive style and a more body-based, affective style—and that these would be associated with somatosensory neural activity. We examined 28 participants’ open-ended verbal responses to admiration- and compassion-provoking narratives in an interview and BOLD activity to the same narratives during subsequent functional magnetic resonance imaging scanning. Consistent with hypotheses, individuals’ affective and cognitive word use were stable across emotion conditions, negatively correlated and unrelated to reported emotion strength in the scanner. Greater use of affective relative to cognitive words predicted more activation in SI, SII, middle anterior cingulate cortex and insula during emotion trials. The results suggest that individuals’ verbal descriptions of their feelings reflect differential recruitment of neural regions supporting physical body awareness. Although somatosensation has long been recognized as an important component of emotion processing, these results offer ‘proof of concept’ that individual differences in open-ended speech reflect different processing styles at the neurobiological level. This study also demonstrates SI involvement during social emotional experience. PMID:22798396

  15. Predicting Aircraft Noise Levels

    NASA Technical Reports Server (NTRS)

    Clark, B. J.

    1983-01-01

    Computer program developed for predicting aircraft noise levels either in flight or in ground tests. Noise sources include fan inlet and exhaust jet flap (for powered lift), core (combustor), turbine and airframe. Program written in FORTRAN IV.

  16. Predicting Population Curves.

    ERIC Educational Resources Information Center

    Bunton, Matt

    2003-01-01

    Uses graphs to involve students in inquiry-based population investigations on the Wisconsin gray wolf. Requires students to predict future changes in the wolf population, carrying capacity, and deer population. (YDS)

  17. Chapter VII. Predicting Fertility

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Section 2. Visual and Microscopic Approaches for Differentiating Unfertilized Germinal Discs and Early dead Embryos from Pre-Incubated Blastoderms Section 3. Predicting the Duration of fertility by Counting Sperm in the Outer Perivitelline Layer of Laid Eggs...

  18. Membrane Protein Prediction Methods

    PubMed Central

    Punta, Marco; Forrest, Lucy R.; Bigelow, Henry; Kernytsky, Andrew; Liu, Jinfeng; Rost, Burkhard

    2007-01-01

    We survey computational approaches that tackle membrane protein structure and function prediction. While describing the main ideas that have led to the development of the most relevant and novel methods, we also discuss pitfalls, provide practical hints and highlight the challenges that remain. The methods covered include: sequence alignment, motif search, functional residue identification, transmembrane segment and protein topology predictions, homology and ab initio modeling. Overall, predictions of functional and structural features of membrane proteins are improving, although progress is hampered by the limited amount of high-resolution experimental information available. While predictions of transmembrane segments and protein topology rank among the most accurate methods in computational biology, more attention and effort will be required in the future to ameliorate database search, homology and ab initio modeling. PMID:17367718

  19. Earthquakes: Predicting the unpredictable?

    USGS Publications Warehouse

    Hough, S.E.

    2005-01-01

    The earthquake prediction pendulum has swung from optimism in the 1970s to rather extreme pessimism in the 1990s. Earlier work revealed evidence of possible earthquake precursors: physical changes in the planet that signal that a large earthquake is on the way. Some respected earthquake scientists argued that earthquakes are likewise fundamentally unpredictable. The fate of the Parkfield prediction experiment appeared to support their arguments: A moderate earthquake had been predicted along a specified segment of the central San Andreas fault within five years of 1988, but had failed to materialize on schedule. At some point, however, the pendulum began to swing back. Reputable scientists began using the "P-word" in not only polite company, but also at meetings and even in print. If the optimism regarding earthquake prediction can be attributed to any single cause, it might be scientists' burgeoning understanding of the earthquake cycle.

  20. Prediction of airframe noise

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.; Fratello, D. J.; Hayden, R. E.; Kadman, Y.; Africk, S.

    1975-01-01

    Methods of predicting airframe noise generated by aircraft in flight under nonpowered conditions are discussed. Approaches to predictions relying on flyover data and component theoretical analyses are developed. A nondimensional airframe noise spectrum of various aircraft is presented. The spectrum was obtained by smoothing all the measured spectra to remove any peculiarities due to airframe protrusions, normalizing each spectra by its overall sound pressure level and a characteristics frequency, and averaging the spectra together. A chart of airframe noise sources is included.

  1. Uncertainty quantified trait predictions

    NASA Astrophysics Data System (ADS)

    Fazayeli, Farideh; Kattge, Jens; Banerjee, Arindam; Schrodt, Franziska; Reich, Peter

    2015-04-01

    Functional traits of organisms are key to understanding and predicting biodiversity and ecological change, which motivates continuous collection of traits and their integration into global databases. Such composite trait matrices are inherently sparse, severely limiting their usefulness for further analyses. On the other hand, traits are characterized by the phylogenetic trait signal, trait-trait correlations and environmental constraints, all of which provide information that could be used to statistically fill gaps. We propose the application of probabilistic models which, for the first time, utilize all three characteristics to fill gaps in trait databases and predict trait values at larger spatial scales. For this purpose we introduce BHPMF, a hierarchical Bayesian extension of Probabilistic Matrix Factorization (PMF). PMF is a machine learning technique which exploits the correlation structure of sparse matrices to impute missing entries. BHPMF additionally utilizes the taxonomic hierarchy for trait prediction. Implemented in the context of a Gibbs Sampler MCMC approach BHPMF provides uncertainty estimates for each trait prediction. We present comprehensive experimental results on the problem of plant trait prediction using the largest database of plant traits, where BHPMF shows strong empirical performance in uncertainty quantified trait prediction, outperforming the state-of-the-art based on point estimates. Further, we show that BHPMF is more accurate when it is confident, whereas the error is high when the uncertainty is high.

  2. Sensor image prediction techniques

    NASA Astrophysics Data System (ADS)

    Stenger, A. J.; Stone, W. R.; Berry, L.; Murray, T. J.

    1981-02-01

    The preparation of prediction imagery is a complex, costly, and time consuming process. Image prediction systems which produce a detailed replica of the image area require the extensive Defense Mapping Agency data base. The purpose of this study was to analyze the use of image predictions in order to determine whether a reduced set of more compact image features contains enough information to produce acceptable navigator performance. A job analysis of the navigator's mission tasks was performed. It showed that the cognitive and perceptual tasks he performs during navigation are identical to those performed for the targeting mission function. In addition, the results of the analysis of his performance when using a particular sensor can be extended to the analysis of this mission tasks using any sensor. An experimental approach was used to determine the relationship between navigator performance and the type of amount of information in the prediction image. A number of subjects were given image predictions containing varying levels of scene detail and different image features, and then asked to identify the predicted targets in corresponding dynamic flight sequences over scenes of cultural, terrain, and mixed (both cultural and terrain) content.

  3. Operational Dust Prediction

    NASA Technical Reports Server (NTRS)

    Benedetti, Angela; Baldasano, Jose M.; Basart, Sara; Benincasa, Francesco; Boucher, Olivier; Brooks, Malcolm E.; Chen, Jen-Ping; Colarco, Peter R.; Gong, Sunlin; Huneeus, Nicolas; Jones, Luke; Lu, Sarah; Menut, Laurent; Morcrette, Jean-Jacques; Mulcahy, Jane; Nickovic, Slobodan; Garcia-Pando, Carlos P.; Reid, Jeffrey S.; Sekiyama, Thomas T.; Tanaka, Taichu Y.; Terradellas, Enric; Westphal, Douglas L.; Zhang, Xiao-Ye; Zhou, Chun-Hong

    2014-01-01

    Over the last few years, numerical prediction of dust aerosol concentration has become prominent at several research and operational weather centres due to growing interest from diverse stakeholders, such as solar energy plant managers, health professionals, aviation and military authorities and policymakers. Dust prediction in numerical weather prediction-type models faces a number of challenges owing to the complexity of the system. At the centre of the problem is the vast range of scales required to fully account for all of the physical processes related to dust. Another limiting factor is the paucity of suitable dust observations available for model, evaluation and assimilation. This chapter discusses in detail numerical prediction of dust with examples from systems that are currently providing dust forecasts in near real-time or are part of international efforts to establish daily provision of dust forecasts based on multi-model ensembles. The various models are introduced and described along with an overview on the importance of dust prediction activities and a historical perspective. Assimilation and evaluation aspects in dust prediction are also discussed.

  4. Predicting brain states associated with object categories from fMRI data.

    PubMed

    Behroozi, Mehdi; Daliri, Mohammad Reza

    2014-12-01

    Recently, the multivariate analysis methods have been widely used for predicting the human cognitive states from fMRI data. Here, we explore the possibility of predicting the human cognitive states using a pattern of brain activities associated with thinking about concrete objects. The fMRI signals in conjunction with pattern recognition methods were used for the analysis of cognitive functions associated with viewing of 60 object pictures named by the words in 12 categories. The important step in Multi Voxel Pattern Analysis (MVPA) is feature extraction and feature selection parts. In this study, the new feature selection method (accuracy method) was developed for multi-class fMRI dataset to select the informative voxels corresponding to the objects category from the whole brain voxels. Here the result of three multivariate classifiers namely, Naïve Bayes, K-nearest neighbor and support vector machine, were compared for predicting the category of presented objects from activation BOLD patterns in human whole brain. We investigated whether the multivariate classifiers are capable to find the associated regions of the brain with the visual presentation of categories of various objects. Overall Naïve Bayes classifier perfumed best and it was the best method for extracting features from the whole brain data. In addition, the results of this study indicate that thinking about different semantic categories of objects have an effect on different spatial patterns of neural activation, and so it is possible to identify the category of the objects based on the patterns of neural activation recorded during representation of object line drawing from participants with high accuracy. Finally we demonstrated that the selected brain regions that were informative for object categorization were similar across subjects and this distribution of selected voxels on the cortex may neutrally represent the various object's category properties. PMID:25352153

  5. Reduced fMRI activity predicts relapse in patients recovering from stimulant dependence.

    PubMed

    Clark, Vincent P; Beatty, Gregory K; Anderson, Robert E; Kodituwakku, Piyadassa; Phillips, John P; Lane, Terran D R; Kiehl, Kent A; Calhoun, Vince D

    2014-02-01

    Relapse presents a significant problem for patients recovering from stimulant dependence. Here we examined the hypothesis that patterns of brain function obtained at an early stage of abstinence differentiates patients who later relapse versus those who remain abstinent. Forty-five recently abstinent stimulant-dependent patients were tested using a randomized event-related functional MRI (ER-fMRI) design that was developed in order to replicate a previous ERP study of relapse using a selective attention task, and were then monitored until 6 months of verified abstinence or stimulant use occurred. SPM revealed smaller absolute blood oxygen level-dependent (BOLD) response amplitude in bilateral ventral posterior cingulate and right insular cortex in 23 patients positive for relapse to stimulant use compared with 22 who remained abstinent. ER-fMRI, psychiatric, neuropsychological, demographic, personal and family history of drug use were compared in order to form predictive models. ER-fMRI was found to predict abstinence with higher accuracy than any other single measure obtained in this study. Logistic regression using fMRI amplitude in right posterior cingulate and insular cortex predicted abstinence with 77.8% accuracy, which increased to 89.9% accuracy when history of mania was included. Using 10-fold cross-validation, Bayesian logistic regression and multilayer perceptron algorithms provided the highest accuracy of 84.4%. These results, combined with previous studies, suggest that the functional organization of paralimbic brain regions including ventral anterior and posterior cingulate and right insula are related to patients' ability to maintain abstinence. Novel therapies designed to target these paralimbic regions identified using ER-fMRI may improve treatment outcome. PMID:23015512

  6. Thalamic functional connectivity predicts seizure laterality in individual TLE patients: Application of a biomarker development strategy

    PubMed Central

    Barron, Daniel S.; Fox, Peter T.; Pardoe, Heath; Lancaster, Jack; Price, Larry R.; Blackmon, Karen; Berry, Kristen; Cavazos, Jose E.; Kuzniecky, Ruben; Devinsky, Orrin; Thesen, Thomas

    2014-01-01

    Noninvasive markers of brain function could yield biomarkers in many neurological disorders. Disease models constrained by coordinate-based meta-analysis are likely to increase this yield. Here, we evaluate a thalamic model of temporal lobe epilepsy that we proposed in a coordinate-based meta-analysis and extended in a diffusion tractography study of an independent patient population. Specifically, we evaluated whether thalamic functional connectivity (resting-state fMRI-BOLD) with temporal lobe areas can predict seizure onset laterality, as established with intracranial EEG. Twenty-four lesional and non-lesional temporal lobe epilepsy patients were studied. No significant differences in functional connection strength in patient and control groups were observed with Mann-Whitney Tests (corrected for multiple comparisons). Notwithstanding the lack of group differences, individual patient difference scores (from control mean connection strength) successfully predicted seizure onset zone as shown in ROC curves: discriminant analysis (two-dimensional) predicted seizure onset zone with 85% sensitivity and 91% specificity; logistic regression (four-dimensional) achieved 86% sensitivity and 100% specificity. The strongest markers in both analyses were left thalamo-hippocampal and right thalamo-entorhinal cortex functional connection strength. Thus, this study shows that thalamic functional connections are sensitive and specific markers of seizure onset laterality in individual temporal lobe epilepsy patients. This study also advances an overall strategy for the programmatic development of neuroimaging biomarkers in clinical and genetic populations: a disease model informed by coordinate-based meta-analysis was used to anatomically constrain individual patient analyses. PMID:25610790

  7. Reduced fMRI activity predicts relapse in patients recovering from stimulant dependence

    PubMed Central

    Clark, Vincent P.; Beatty, Gregory; Anderson, Robert E.; Kodituwakku, Piyadassa; Phillips, John; Lane, Terran D.R.; Kiehl, Kent A.; Calhoun, Vince D.

    2012-01-01

    Relapse presents a major problem for patients recovering from stimulant dependence. Here we examined the hypothesis that patterns of brain function obtained at an early stage of abstinence differentiates patients who later relapse vs. those who remain abstinent. Forty-five recently abstinent stimulant-dependent patients were tested using a randomized event-related functional MRI (ER-fMRI) design that was developed in order to replicate a previous ERP study of relapse using a selective attention task, and were then monitored until 6 months of verified abstinence or stimulant use occurred. SPM revealed smaller absolute BOLD response amplitude in bilateral ventral posterior cingulate and right insular cortex in 23 patients positive for relapse to stimulant use compared with 22 who remained abstinent. ER-fMRI data was compared with psychiatric, neuropsychological, demographic, personal- and family- history of drug use in order to form predictive models, and was found to predict abstinence with higher accuracy than any other single measure obtained in this study. Logistic regression using fMRI amplitude in right posterior cingulate and insular cortex predicted abstinence with 77.8% accuracy, which increased to 89.9% accuracy when history of mania was included. Using 10-fold cross-validation, Bayesian logistic regression and multilayer perceptron algorithms provided the highest accuracy of 84.4%. These results, combined with previous studies, suggest that the functional organization of paralimbic brain regions including ventral anterior and posterior cingulate and right insula are related to patients’ ability to maintain abstinence. Novel therapies designed to target these paralimbic regions identified using ER-fMRI may improve treatment outcome. PMID:23015512

  8. Cytomics in predictive medicine

    NASA Astrophysics Data System (ADS)

    Tarnok, Attila; Valet, Guenther K.

    2004-07-01

    Predictive Medicine aims at the detection of changes in patient's disease state prior to the manifestation of deterioration or improvement of the current status. Patient-specific, disease-course predictions with >95% or >99% accuracy during therapy would be highly valuable for everyday medicine. If these predictors were available, disease aggravation or progression, frequently accompanied by irreversible tissue damage or therapeutic side effects, could then potentially be avoided by early preventive therapy. The molecular analysis of heterogeneous cellular systems (Cytomics) by cytometry in conjunction with pattern-oriented bioinformatic analysis of the multiparametric cytometric and other data provides a promising approach to individualized or personalized medical treatment or disease management. Predictive medicine is best implemented by cell oriented measurements e.g. by flow or image cytometry. Cell oriented gene or protein arrays as well as bead arrays for the capture of solute molecules form serum, plasma, urine or liquor are equally of high value. Clinical applications of predictive medicine by Cytomics will include multi organ failure in sepsis or non infectious posttraumatic shock in intensive care, or the pretherapeutic identification of high risk patients in cancer cytostatic. Early individualized therapy may provide better survival chances for individual patient at concomitant cost containment. Predictive medicine guided early reduction or stop of therapy may lower or abrogate potential therapeutic side effects. Further important aspects of predictive medicine concern the preoperative identification of patients with a tendency for postoperative complications or coronary artery disease patients with an increased tendency for restenosis. As a consequence, better patient care and new forms of inductive scientific hypothesis development based on the interpretation of predictive data patterns are at reach.

  9. Aircraft noise prediction

    NASA Astrophysics Data System (ADS)

    Filippone, Antonio

    2014-07-01

    This contribution addresses the state-of-the-art in the field of aircraft noise prediction, simulation and minimisation. The point of view taken in this context is that of comprehensive models that couple the various aircraft systems with the acoustic sources, the propagation and the flight trajectories. After an exhaustive review of the present predictive technologies in the relevant fields (airframe, propulsion, propagation, aircraft operations, trajectory optimisation), the paper addresses items for further research and development. Examples are shown for several airplanes, including the Airbus A319-100 (CFM engines), the Bombardier Dash8-Q400 (PW150 engines, Dowty R408 propellers) and the Boeing B737-800 (CFM engines). Predictions are done with the flight mechanics code FLIGHT. The transfer function between flight mechanics and the noise prediction is discussed in some details, along with the numerical procedures for validation and verification. Some code-to-code comparisons are shown. It is contended that the field of aircraft noise prediction has not yet reached a sufficient level of maturity. In particular, some parametric effects cannot be investigated, issues of accuracy are not currently addressed, and validation standards are still lacking.

  10. Deadbeat Predictive Controllers

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Phan, Minh

    1997-01-01

    Several new computational algorithms are presented to compute the deadbeat predictive control law. The first algorithm makes use of a multi-step-ahead output prediction to compute the control law without explicitly calculating the controllability matrix. The system identification must be performed first and then the predictive control law is designed. The second algorithm uses the input and output data directly to compute the feedback law. It combines the system identification and the predictive control law into one formulation. The third algorithm uses an observable-canonical form realization to design the predictive controller. The relationship between all three algorithms is established through the use of the state-space representation. All algorithms are applicable to multi-input, multi-output systems with disturbance inputs. In addition to the feedback terms, feed forward terms may also be added for disturbance inputs if they are measurable. Although the feedforward terms do not influence the stability of the closed-loop feedback law, they enhance the performance of the controlled system.

  11. Scorecard on weather predictions

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    No matter that several northern and eastern states were pelted by snow and sleet early in March, as far as longterm weather forecasters are concerned, winter ended on February 28. Now is the time to review their winter seasonal forecasts to determine how accurate were those predictions issued at the start of winter.The National Weather Service (NWS) predicted on November 27, 1981, that the winter season would bring colder-than-normal temperatures to the eastern half of the United States, while temperatures were expected to be higher than normal in the westernmost section (see Figure 1). The NWS made no prediction for the middle of the country, labeling the area ‘indeterminate,’ or having the same chance of experiencing above-normal temperatures as below-normal temperatures, explained Donald L. Gilman, chief of the NWS long-range forecasting group.

  12. Predicting the Sunspot Cycle

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    2009-01-01

    The 11-year sunspot cycle was discovered by an amateur astronomer in 1844. Visual and photographic observations of sunspots have been made by both amateurs and professionals over the last 400 years. These observations provide key statistical information about the sunspot cycle that do allow for predictions of future activity. However, sunspots and the sunspot cycle are magnetic in nature. For the last 100 years these magnetic measurements have been acquired and used exclusively by professional astronomers to gain new information about the nature of the solar activity cycle. Recently, magnetic dynamo models have evolved to the stage where they can assimilate past data and provide predictions. With the advent of the Internet and open data policies, amateurs now have equal access to the same data used by professionals and equal opportunities to contribute (but, alas, without pay). This talk will describe some of the more useful prediction techniques and reveal what they say about the intensity of the upcoming sunspot cycle.

  13. PREDICT : A CASE STUDY.

    SciTech Connect

    Kerscher, W. J. III; Booker, J. M.; Meyer, Mary A.

    2001-01-01

    Delphi Automotive Systems and the Los Alamos National Laboratory worked together to develop PREDICT, a new methodology to characterize the reliability of a new product during its development program. Rather than conducting testing after hardware has been built, and developing statistical confidence bands around the results, this updating approach starts with an early reliability estimate characterized by large uncertainty, and then proceeds to reduce the uncertainty by folding in fresh information in a Bayesian framework. A considerable amount of knowledge is available at the beginning of a program in the form of expert judgment which helps to provide the initial estimate. This estimate is then continually updated as substantial and varied information becomes available during the course of the development program. This paper presents a case study of the application of PREDICT, with the objective of further describing the methodology. PREDICT has been honored with an R&D 100 Award presented by R&D Magazine.

  14. Predicting Emergency Department Visits

    PubMed Central

    Poole, Sarah; Grannis, Shaun; Shah, Nigam H.

    2016-01-01

    High utilizers of emergency departments account for a disproportionate number of visits, often for nonemergency conditions. This study aims to identify these high users prospectively. Routinely recorded registration data from the Indiana Public Health Emergency Surveillance System was used to predict whether patients would revisit the Emergency Department within one month, three months, and six months of an index visit. Separate models were trained for each outcome period, and several predictive models were tested. Random Forest models had good performance and calibration for all outcome periods, with area under the receiver operating characteristic curve of at least 0.96. This high performance was found to be due to non-linear interactions among variables in the data. The ability to predict repeat emergency visits may provide an opportunity to establish, prioritize, and target interventions to ensure that patients have access to the care they require outside an emergency department setting. PMID:27570684

  15. Is genetic evolution predictable?

    PubMed

    Stern, David L; Orgogozo, Virginie

    2009-02-01

    Ever since the integration of Mendelian genetics into evolutionary biology in the early 20th century, evolutionary geneticists have for the most part treated genes and mutations as generic entities. However, recent observations indicate that all genes are not equal in the eyes of evolution. Evolutionarily relevant mutations tend to accumulate in hotspot genes and at specific positions within genes. Genetic evolution is constrained by gene function, the structure of genetic networks, and population biology. The genetic basis of evolution may be predictable to some extent, and further understanding of this predictability requires incorporation of the specific functions and characteristics of genes into evolutionary theory. PMID:19197055

  16. Predictive aging of polymers

    NASA Technical Reports Server (NTRS)

    Cuddihy, Edward F. (Inventor); Willis, Paul B. (Inventor)

    1990-01-01

    A method of predicting aging of polymers operates by heating a polymer in the outdoors to an elevated temperature until a change of property is induced. The test is conducted at a plurality of temperatures to establish a linear Arrhenius plot which is extrapolated to predict the induction period for failure of the polymer at ambient temperature. An Outdoor Photo Thermal Aging Reactor (OPTAR) is also described including a heatable platen for receiving a sheet of polymer, means to heat the platen and switching means such as a photoelectric switch for turning off the heater during dark periods.

  17. Predictive aging of polymers

    NASA Technical Reports Server (NTRS)

    Cuddihy, Edward F. (Inventor); Willis, Paul B. (Inventor)

    1989-01-01

    A method of predicting aging of polymers operates by heating a polymer in the outdoors to an elevated temperature until a change of property is induced. The test is conducted at a plurality of temperatures to establish a linear Arrhenius plot which is extrapolated to predict the induction period for failure of the polymer at ambient temperature. An Outdoor Photo Thermal Aging Reactor (OPTAR) is also described including a heatable platen for receiving a sheet of polymer, means to heat the platen, and switching means such as a photoelectric switch for turning off the heater during dark periods.

  18. Predicting elections: child's play!

    PubMed

    Antonakis, John; Dalgas, Olaf

    2009-02-27

    In two experiments, children and adults rated pairs of faces from election races. Naïve adults judged a pair on competence; after playing a game, children chose who they would prefer to be captain of their boat. Children's (as well as adults') preferences accurately predicted actual election outcomes. PMID:19251621

  19. Predicting Intrinsic Motivation

    ERIC Educational Resources Information Center

    Martens, Rob; Kirschner, Paul A.

    2004-01-01

    Intrinsic motivation can be predicted from participants' perceptions of the social environment and the task environment (Ryan & Deci, 2000)in terms of control, relatedness and competence. To determine the degree of independence of these factors 251 students in higher vocational education (physiotherapy and hotel management) indicated the extent to…

  20. Predicting Reasoning from Memory

    ERIC Educational Resources Information Center

    Heit, Evan; Hayes, Brett K.

    2011-01-01

    In an effort to assess the relations between reasoning and memory, in 8 experiments, the authors examined how well responses on an inductive reasoning task are predicted from responses on a recognition memory task for the same picture stimuli. Across several experimental manipulations, such as varying study time, presentation frequency, and the…

  1. Inflation of Conditional Predictions

    ERIC Educational Resources Information Center

    Koriat, Asher; Fiedler, Klaus; Bjork, Robert A.

    2006-01-01

    The authors report 7 experiments indicating that conditional predictions--the assessed probability that a certain outcome will occur given a certain condition--tend to be markedly inflated. The results suggest that this inflation derives in part from backward activation in which the target outcome highlights aspects of the condition that are…

  2. Predicting service life margins

    NASA Technical Reports Server (NTRS)

    Egan, G. F.

    1971-01-01

    Margins are developed for equipment susceptible to malfunction due to excessive time or operation cycles, and for identifying limited life equipment so monitoring and replacing is accomplished before hardware failure. Method applies to hardware where design service is established and where reasonable expected usage prediction is made.

  3. Can You Predict?

    ERIC Educational Resources Information Center

    Brown, William R.

    1977-01-01

    Describes a variation of "the suffocating candle" activity used to develop the process of predicting based on reliable data. Instead of using jars of varying sizes under which the burning time of candles is measured, the same jar is used while the candle is elevated on varying numbers of blocks. (CS)

  4. Predictability of critical transitions.

    PubMed

    Zhang, Xiaozhu; Kuehn, Christian; Hallerberg, Sarah

    2015-11-01

    Critical transitions in multistable systems have been discussed as models for a variety of phenomena ranging from the extinctions of species to socioeconomic changes and climate transitions between ice ages and warm ages. From bifurcation theory we can expect certain critical transitions to be preceded by a decreased recovery from external perturbations. The consequences of this critical slowing down have been observed as an increase in variance and autocorrelation prior to the transition. However, especially in the presence of noise, it is not clear whether these changes in observation variables are statistically relevant such that they could be used as indicators for critical transitions. In this contribution we investigate the predictability of critical transitions in conceptual models. We study the quadratic integrate-and-fire model and the van der Pol model under the influence of external noise. We focus especially on the statistical analysis of the success of predictions and the overall predictability of the system. The performance of different indicator variables turns out to be dependent on the specific model under study and the conditions of accessing it. Furthermore, we study the influence of the magnitude of transitions on the predictive performance. PMID:26651760

  5. Earthquake Prediction is Coming

    ERIC Educational Resources Information Center

    MOSAIC, 1977

    1977-01-01

    Describes (1) several methods used in earthquake research, including P:S ratio velocity studies, dilatancy models; and (2) techniques for gathering base-line data for prediction using seismographs, tiltmeters, laser beams, magnetic field changes, folklore, animal behavior. The mysterious Palmdale (California) bulge is discussed. (CS)

  6. Prediction method abstracts

    SciTech Connect

    1994-12-31

    This conference was held December 4--8, 1994 in Asilomar, California. The purpose of this meeting was to provide a forum for exchange of state-of-the-art information concerning the prediction of protein structure. Attention if focused on the following: comparative modeling; sequence to fold assignment; and ab initio folding.

  7. Prediction in projection.

    PubMed

    Garland, Joshua; Bradley, Elizabeth

    2015-12-01

    Prediction models that capture and use the structure of state-space dynamics can be very effective. In practice, however, one rarely has access to full information about that structure, and accurate reconstruction of the dynamics from scalar time-series data-e.g., via delay-coordinate embedding-can be a real challenge. In this paper, we show that forecast models that employ incomplete reconstructions of the dynamics-i.e., models that are not necessarily true embeddings-can produce surprisingly accurate predictions of the state of a dynamical system. In particular, we demonstrate the effectiveness of a simple near-neighbor forecast technique that works with a two-dimensional time-delay reconstruction of both low- and high-dimensional dynamical systems. Even though correctness of the topology may not be guaranteed for incomplete reconstructions like this, the dynamical structure that they do capture allows for accurate predictions-in many cases, even more accurate than predictions generated using a traditional embedding. This could be very useful in the context of real-time forecasting, where the human effort required to produce a correct delay-coordinate embedding is prohibitive. PMID:26723147

  8. Predictive models in urology.

    PubMed

    Cestari, Andrea

    2013-01-01

    Predictive modeling is emerging as an important knowledge-based technology in healthcare. The interest in the use of predictive modeling reflects advances on different fronts such as the availability of health information from increasingly complex databases and electronic health records, a better understanding of causal or statistical predictors of health, disease processes and multifactorial models of ill-health and developments in nonlinear computer models using artificial intelligence or neural networks. These new computer-based forms of modeling are increasingly able to establish technical credibility in clinical contexts. The current state of knowledge is still quite young in understanding the likely future direction of how this so-called 'machine intelligence' will evolve and therefore how current relatively sophisticated predictive models will evolve in response to improvements in technology, which is advancing along a wide front. Predictive models in urology are gaining progressive popularity not only for academic and scientific purposes but also into the clinical practice with the introduction of several nomograms dealing with the main fields of onco-urology. PMID:23423686

  9. Predictability of critical transitions

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaozhu; Kuehn, Christian; Hallerberg, Sarah

    2015-11-01

    Critical transitions in multistable systems have been discussed as models for a variety of phenomena ranging from the extinctions of species to socioeconomic changes and climate transitions between ice ages and warm ages. From bifurcation theory we can expect certain critical transitions to be preceded by a decreased recovery from external perturbations. The consequences of this critical slowing down have been observed as an increase in variance and autocorrelation prior to the transition. However, especially in the presence of noise, it is not clear whether these changes in observation variables are statistically relevant such that they could be used as indicators for critical transitions. In this contribution we investigate the predictability of critical transitions in conceptual models. We study the quadratic integrate-and-fire model and the van der Pol model under the influence of external noise. We focus especially on the statistical analysis of the success of predictions and the overall predictability of the system. The performance of different indicator variables turns out to be dependent on the specific model under study and the conditions of accessing it. Furthermore, we study the influence of the magnitude of transitions on the predictive performance.

  10. Predicting visibility of aircraft.

    PubMed

    Watson, Andrew; Ramirez, Cesar V; Salud, Ellen

    2009-01-01

    Visual detection of aircraft by human observers is an important element of aviation safety. To assess and ensure safety, it would be useful to be able to be able to predict the visibility, to a human observer, of an aircraft of specified size, shape, distance, and coloration. Examples include assuring safe separation among aircraft and between aircraft and unmanned vehicles, design of airport control towers, and efforts to enhance or suppress the visibility of military and rescue vehicles. We have recently developed a simple metric of pattern visibility, the Spatial Standard Observer (SSO). In this report we examine whether the SSO can predict visibility of simulated aircraft images. We constructed a set of aircraft images from three-dimensional computer graphic models, and measured the luminance contrast threshold for each image from three human observers. The data were well predicted by the SSO. Finally, we show how to use the SSO to predict visibility range for aircraft of arbitrary size, shape, distance, and coloration. PMID:19462007

  11. Brightness predictions for comets

    NASA Astrophysics Data System (ADS)

    Green, Daniel W. E.; Marsden, Brian G.; Morris, Charles S.

    2001-02-01

    Daniel W E Green, Brian G Marsden and Charles S Morris write with the aim of illuminating the issue of cometary light curves and brightness predictions, following the publication in this journal last October of the letter by John McFarland (2000).

  12. Predicted airframe noise levels

    NASA Astrophysics Data System (ADS)

    Raney, J. P.

    1980-09-01

    Calculated values of airframe noise levels corresponding to FAA noise certification conditions for six aircraft are presented. The aircraft are: DC-9-30; Boeing 727-200; A300-B2 Airbus; Lockheed L-1011; DC-10-10; and Boeing 747-200B. The prediction methodology employed is described and discussed.

  13. Predicting Systemic Confidence

    ERIC Educational Resources Information Center

    Falke, Stephanie Inez

    2009-01-01

    Using a mixed method approach, this study explored which educational factors predicted systemic confidence in master's level marital and family therapy (MFT) students, and whether or not the impact of these factors was influenced by student beliefs and their perception of their supervisor's beliefs about the value of systemic practice. One hundred…

  14. Prediction and Guidance.

    ERIC Educational Resources Information Center

    Shimberg, Benjamin

    Problems in the application and misapplication of test scores are discussed. Tests have been used to achieve optimum use of resources rather than optimum development of the individual. Or, they have been used to predict a child's achievement rather than to identify his learning difficulties. This latter use would indicate when and where…

  15. Predicting intrinsic brain activity.

    PubMed

    Craddock, R Cameron; Milham, Michael P; LaConte, Stephen M

    2013-11-15

    Multivariate supervised learning methods exhibit a remarkable ability to decode externally driven sensory, behavioral, and cognitive states from functional neuroimaging data. Although they are typically applied to task-based analyses, supervised learning methods are equally applicable to intrinsic effective and functional connectivity analyses. The obtained models of connectivity incorporate the multivariate interactions between all brain regions simultaneously, which will result in a more accurate representation of the connectome than the ones available with standard bivariate methods. Additionally the models can be applied to decode or predict the time series of intrinsic brain activity of a region from an independent dataset. The obtained prediction accuracy provides a measure of the integration between a brain region and other regions in its network, as well as a method for evaluating acquisition and preprocessing pipelines for resting state fMRI data. This article describes a method for learning multivariate models of connectivity. The method is applied in the non-parametric prediction accuracy, influence, and reproducibility-resampling (NPAIRS) framework, to study the regional variation of prediction accuracy and reproducibility (Strother et al., 2002). The resulting spatial distribution of these metrics is consistent with the functional hierarchy proposed by Mesulam (1998). Additionally we illustrate the utility of the multivariate regression connectivity modeling method for optimizing experimental parameters and assessing the quality of functional neuroimaging data. PMID:23707580

  16. Predicting Visibility of Aircraft

    PubMed Central

    Watson, Andrew; Ramirez, Cesar V.; Salud, Ellen

    2009-01-01

    Visual detection of aircraft by human observers is an important element of aviation safety. To assess and ensure safety, it would be useful to be able to be able to predict the visibility, to a human observer, of an aircraft of specified size, shape, distance, and coloration. Examples include assuring safe separation among aircraft and between aircraft and unmanned vehicles, design of airport control towers, and efforts to enhance or suppress the visibility of military and rescue vehicles. We have recently developed a simple metric of pattern visibility, the Spatial Standard Observer (SSO). In this report we examine whether the SSO can predict visibility of simulated aircraft images. We constructed a set of aircraft images from three-dimensional computer graphic models, and measured the luminance contrast threshold for each image from three human observers. The data were well predicted by the SSO. Finally, we show how to use the SSO to predict visibility range for aircraft of arbitrary size, shape, distance, and coloration. PMID:19462007

  17. PREVAPORATION PERFORMANCE PREDICTION SOFTWARE

    EPA Science Inventory

    The Pervaporation, Performance, Prediction Software and Database (PPPS&D) computer software program is currently being developed within the USEPA, NRMRL. The purpose of the PPPS&D program is to educate and assist potential users in identifying opportunities for using pervaporati...

  18. Predicting rainfall beyond tomorrow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    NOAA’s Climate Prediction Center issues climate precipitation forecasts that offer potential support for water resource managers and farmers and ranchers in New Mexico, but the forecasts are frequently misunderstood and not widely used in practical decision making. The objectives of this newsletter ...

  19. Predicting Major Solar Eruptions

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    Coronal mass ejections (CMEs) and solar flares are two examples of major explosions from the surface of the Sun but theyre not the same thing, and they dont have to happen at the same time. A recent study examines whether we can predict which solar flares will be closely followed by larger-scale CMEs.Image of a solar flare from May 2013, as captured by NASAs Solar Dynamics Observatory. [NASA/SDO]Flares as a Precursor?A solar flare is a localized burst of energy and X-rays, whereas a CME is an enormous cloud of magnetic flux and plasma released from the Sun. We know that some magnetic activity on the surface of the Sun triggers both a flare and a CME, whereas other activity only triggers a confined flare with no CME.But what makes the difference? Understanding this can help us learn about the underlying physical drivers of flares and CMEs. It also might help us to better predict when a CME which can pose a risk to astronauts, disrupt radio transmissions, and cause damage to satellites might occur.In a recent study, Monica Bobra and Stathis Ilonidis (Stanford University) attempt to improve our ability to make these predictions by using a machine-learning algorithm.Classification by ComputerUsing a combination of 6 or more features results in a much better predictive success (measured by the True Skill Statistic; higher positive value = better prediction) for whether a flare will be accompanied by a CME. [Bobra Ilonidis 2016]Bobra and Ilonidis used magnetic-field data from an instrument on the Solar Dynamics Observatory to build a catalog of solar flares, 56 of which were accompanied by a CME and 364 of which were not. The catalog includes information about 18 different features associated with the photospheric magnetic field of each flaring active region (for example, the mean gradient of the horizontal magnetic field).The authors apply a machine-learning algorithm known as a binary classifier to this catalog. This algorithm tries to predict, given a set of features

  20. FKBP5 and Emotional Neglect Interact to Predict Individual Differences in Amygdala Reactivity

    PubMed Central

    White, Michael G.; Bogdan, Ryan; Fisher, Patrick M.; Muñoz, Karen; Williamson, Douglas E.; Hariri, Ahmad R.

    2013-01-01

    Individual variation in physiological responsiveness to stress mediates risk for mental illness and is influenced by both experiential and genetic factors. Common polymorphisms in the human gene for FK506 binding protein 5 (FKBP5), which is involved in transcriptional regulation of the hypothalamic-pituitary-adrenal (HPA) axis, have been shown to interact with childhood abuse and trauma to predict stress-related psychopathology. In the current study, we examined if such gene-environment interaction effects may be related to variability in the threat-related reactivity of the amygdala, which plays a critical role in mediating physiological and behavioral adaptions to stress including modulation of the HPA axis. To this end 139 healthy, Caucasian youth completed a BOLD fMRI probe of amygdala reactivity and self-report assessments of emotional neglect (EN) and other forms of maltreatment. These individuals were genotyped for six FKBP5 polymorphisms (rs7748266, rs1360780, rs9296158, rs3800373, rs9470080, and rs9394309) previously associated with psychopathology and/or HPA axis function. Interactions between each SNP and EN emerged such that risk alleles predicted relatively increased dorsal amygdala reactivity in the context of higher EN, even after correcting for multiple testing. Two different haplotype analyses confirmed this relationship as haplotypes with risk alleles also exhibited increased amygdala reactivity in the context of higher EN. Our results suggest that increased threat-related amygdala reactivity may represent a mechanism linking psychopathology to interactions between common genetic variants affecting HPA axis function and childhood trauma. PMID:22979952

  1. Convergent evidence for hierarchical prediction networks from human electrocorticography and magnetoencephalography.

    PubMed

    Phillips, Holly N; Blenkmann, Alejandro; Hughes, Laura E; Kochen, Silvia; Bekinschtein, Tristan A; Cam-Can; Rowe, James B

    2016-09-01

    We propose that sensory inputs are processed in terms of optimised predictions and prediction error signals within hierarchical neurocognitive models. The combination of non-invasive brain imaging and generative network models has provided support for hierarchical frontotemporal interactions in oddball tasks, including recent identification of a temporal expectancy signal acting on prefrontal cortex. However, these studies are limited by the need to invert magnetoencephalographic or electroencephalographic sensor signals to localise activity from cortical 'nodes' in the network, or to infer neural responses from indirect measures such as the fMRI BOLD signal. To overcome this limitation, we examined frontotemporal interactions estimated from direct cortical recordings from two human participants with cortical electrode grids (electrocorticography - ECoG). Their frontotemporal network dynamics were compared to those identified by magnetoencephalography (MEG) in forty healthy adults. All participants performed the same auditory oddball task with standard tones interspersed with five deviant tone types. We normalised post-operative electrode locations to standardised anatomic space, to compare across modalities, and inverted the MEG to cortical sources using the estimated lead field from subject-specific head models. A mismatch negativity signal in frontal and temporal cortex was identified in all subjects. Generative models of the electrocorticographic and magnetoencephalographic data were separately compared using the free-energy estimate of the model evidence. Model comparison confirmed the same critical features of hierarchical frontotemporal networks in each patient as in the group-wise MEG analysis. These features included bilateral, feedforward and feedback frontotemporal modulated connectivity, in addition to an asymmetric expectancy driving input on left frontal cortex. The invasive ECoG provides an important step in construct validation of the use of neural

  2. High speed transition prediction

    NASA Technical Reports Server (NTRS)

    Gasperas, Gediminis

    1993-01-01

    The main objective of this work period was to develop, maintain and exercise state-of-the-art methods for transition prediction in supersonic flow fields. Basic state and stability codes, acquired during the last work period, were exercised and applied to calculate the properties of various flowfields. The development of a code for the prediction of transition location using a currently novel method (the PSE or Parabolized Stability Equation method), initiated during the last work period and continued during the present work period, was cancelled at mid-year for budgetary reasons. Other activities during this period included the presentation of a paper at the APS meeting in Tallahassee, Florida entitled 'Stability of Two-Dimensional Compressible Boundary Layers', as well as the initiation of a paper co-authored with H. Reed of the Arizona State University entitled 'Stability of Boundary Layers'.

  3. Fan noise prediction assessment

    NASA Technical Reports Server (NTRS)

    Bent, Paul H.

    1995-01-01

    This report is an evaluation of two techniques for predicting the fan noise radiation from engine nacelles. The first is a relatively computational intensive finite element technique. The code is named ARC, an abbreviation of Acoustic Radiation Code, and was developed by Eversman. This is actually a suite of software that first generates a grid around the nacelle, then solves for the potential flowfield, and finally solves the acoustic radiation problem. The second approach is an analytical technique requiring minimal computational effort. This is termed the cutoff ratio technique and was developed by Rice. Details of the duct geometry, such as the hub-to-tip ratio and Mach number of the flow in the duct, and modal content of the duct noise are required for proper prediction.

  4. Predicting catastrophic shifts.

    PubMed

    Weissmann, Haim; Shnerb, Nadav M

    2016-05-21

    Catastrophic shifts are known to pose a serious threat to ecology, and a reliable set of early warning indicators is desperately needed. However, the tools suggested so far have two problems. First, they cannot discriminate between a smooth transition and an imminent irreversible shift. Second, they aimed at predicting the tipping point where a state loses its stability, but in noisy spatial system the actual transition occurs when an alternative state invades. Here we suggest a cluster tracking technique that solves both problems, distinguishing between smooth and catastrophic transitions and to identify an imminent shift in both cases. Our method may allow for the prediction, and thus hopefully the prevention of such transitions, avoiding their destructive outcomes. PMID:26970446

  5. Predictive spark timing method

    SciTech Connect

    Tang, D.L.; Chang, M.F.; Sultan, M.C.

    1990-01-09

    This patent describes a method of determining spark time in a spark timing system of an internal combustion engine having a plurality of cylinders and a spark period for each cylinder in which a spark occurs. It comprises: generating at least one crankshaft position reference pulse for each spark firing event, the reference pulse nearest the next spark being set to occur within a same cylinder event as the next spark; measuring at least two reference periods between recent reference pulses; calculating the spark timing synchronously with crankshaft position by performing the calculation upon receipt of the reference pulse nearest the next spark; predicting the engine speed for the next spark period from at least two reference periods including the most recent reference period; and based on the predicted speed, calculating a spark time measured from the the reference pulse nearest the next spark.

  6. Prediction of Antibody Epitopes.

    PubMed

    Nielsen, Morten; Marcatili, Paolo

    2015-01-01

    Antibodies recognize their cognate antigens in a precise and effective way. In order to do so, they target regions of the antigenic molecules that have specific features such as large exposed areas, presence of charged or polar atoms, specific secondary structure elements, and lack of similarity to self-proteins. Given the sequence or the structure of a protein of interest, several methods exploit such features to predict the residues that are more likely to be recognized by an immunoglobulin. Here, we present two methods (BepiPred and DiscoTope) to predict linear and discontinuous antibody epitopes from the sequence and/or the three-dimensional structure of a target protein. PMID:26424260

  7. Airframe noise prediction evaluation

    NASA Technical Reports Server (NTRS)

    Yamamoto, Kingo J.; Donelson, Michael J.; Huang, Shumei C.; Joshi, Mahendra C.

    1995-01-01

    The objective of this study is to evaluate the accuracy and adequacy of current airframe noise prediction methods using available airframe noise measurements from tests of a narrow body transport (DC-9) and a wide body transport (DC-10) in addition to scale model test data. General features of the airframe noise from these aircraft and models are outlined. The results of the assessment of two airframe prediction methods, Fink's and Munson's methods, against flight test data of these aircraft and scale model wind tunnel test data are presented. These methods were extensively evaluated against measured data from several configurations including clean, slat deployed, landing gear-deployed, flap deployed, and landing configurations of both DC-9 and DC-10. They were also assessed against a limited number of configurations of scale models. The evaluation was conducted in terms of overall sound pressure level (OASPL), tone corrected perceived noise level (PNLT), and one-third-octave band sound pressure level (SPL).

  8. Multivariate respiratory motion prediction

    NASA Astrophysics Data System (ADS)

    Dürichen, R.; Wissel, T.; Ernst, F.; Schlaefer, A.; Schweikard, A.

    2014-10-01

    In extracranial robotic radiotherapy, tumour motion is compensated by tracking external and internal surrogates. To compensate system specific time delays, time series prediction of the external optical surrogates is used. We investigate whether the prediction accuracy can be increased by expanding the current clinical setup by an accelerometer, a strain belt and a flow sensor. Four previously published prediction algorithms are adapted to multivariate inputs—normalized least mean squares (nLMS), wavelet-based least mean squares (wLMS), support vector regression (SVR) and relevance vector machines (RVM)—and evaluated for three different prediction horizons. The measurement involves 18 subjects and consists of two phases, focusing on long term trends (M1) and breathing artefacts (M2). To select the most relevant and least redundant sensors, a sequential forward selection (SFS) method is proposed. Using a multivariate setting, the results show that the clinically used nLMS algorithm is susceptible to large outliers. In the case of irregular breathing (M2), the mean root mean square error (RMSE) of a univariate nLMS algorithm is 0.66 mm and can be decreased to 0.46 mm by a multivariate RVM model (best algorithm on average). To investigate the full potential of this approach, the optimal sensor combination was also estimated on the complete test set. The results indicate that a further decrease in RMSE is possible for RVM (to 0.42 mm). This motivates further research about sensor selection methods. Besides the optical surrogates, the sensors most frequently selected by the algorithms are the accelerometer and the strain belt. These sensors could be easily integrated in the current clinical setup and would allow a more precise motion compensation.

  9. Predicting appointment breaking.

    PubMed

    Bean, A G; Talaga, J

    1995-01-01

    The goal of physician referral services is to schedule appointments, but if too many patients fail to show up, the value of the service will be compromised. The authors found that appointment breaking can be predicted by the number of days to the scheduled appointment, the doctor's specialty, and the patient's age and gender. They also offer specific suggestions for modifying the marketing mix to reduce the incidence of no-shows. PMID:10142384

  10. Predicting Individual Fuel Economy

    SciTech Connect

    Lin, Zhenhong; Greene, David L

    2011-01-01

    To make informed decisions about travel and vehicle purchase, consumers need unbiased and accurate information of the fuel economy they will actually obtain. In the past, the EPA fuel economy estimates based on its 1984 rules have been widely criticized for overestimating on-road fuel economy. In 2008, EPA adopted a new estimation rule. This study compares the usefulness of the EPA's 1984 and 2008 estimates based on their prediction bias and accuracy and attempts to improve the prediction of on-road fuel economies based on consumer and vehicle attributes. We examine the usefulness of the EPA fuel economy estimates using a large sample of self-reported on-road fuel economy data and develop an Individualized Model for more accurately predicting an individual driver's on-road fuel economy based on easily determined vehicle and driver attributes. Accuracy rather than bias appears to have limited the usefulness of the EPA 1984 estimates in predicting on-road MPG. The EPA 2008 estimates appear to be equally inaccurate and substantially more biased relative to the self-reported data. Furthermore, the 2008 estimates exhibit an underestimation bias that increases with increasing fuel economy, suggesting that the new numbers will tend to underestimate the real-world benefits of fuel economy and emissions standards. By including several simple driver and vehicle attributes, the Individualized Model reduces the unexplained variance by over 55% and the standard error by 33% based on an independent test sample. The additional explanatory variables can be easily provided by the individuals.

  11. Predictive Game Theory

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.

    2005-01-01

    Probability theory governs the outcome of a game; there is a distribution over mixed strat.'s, not a single "equilibrium". To predict a single mixed strategy must use our loss function (external to the game's players. Provides a quantification of any strategy's rationality. Prove rationality falls as cost of computation rises (for players who have not previously interacted). All extends to games with varying numbers of players.

  12. Coating life prediction

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.; Gedwill, Michael A.

    1985-01-01

    The investigation combines both experimental studies and numerical modeling to predict coating life in an oxidizing environment. The experimental work provides both input to and verification of two numerical models. The coatings being examined are an aluminide coating on Udimet 700 (U-700), a low-pressure plasma spray (LPPS) Ni-18Co-17Cr-24Al-0.2Y overlay coating also on U- 700, and bulk deposits of the LPPS NiCoCrAlY coating.

  13. Predicting Hurricanes with Supercomputers

    SciTech Connect

    2010-01-01

    Hurricane Emily, formed in the Atlantic Ocean on July 10, 2005, was the strongest hurricane ever to form before August. By checking computer models against the actual path of the storm, researchers can improve hurricane prediction. In 2010, NOAA researchers were awarded 25 million processor-hours on Argonne's BlueGene/P supercomputer for the project. Read more at http://go.usa.gov/OLh

  14. Atmospheric prediction model survey

    NASA Technical Reports Server (NTRS)

    Wellck, R. E.

    1976-01-01

    As part of the SEASAT Satellite program of NASA, a survey of representative primitive equation atmospheric prediction models that exist in the world today was written for the Jet Propulsion Laboratory. Seventeen models developed by eleven different operational and research centers throughout the world are included in the survey. The surveys are tutorial in nature describing the features of the various models in a systematic manner.

  15. Asian summer monsoon rainfall predictability: a predictable mode analysis

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Lee, June-Yi; Xiang, Baoqiang

    2015-01-01

    To what extent the Asian summer monsoon (ASM) rainfall is predictable has been an important but long-standing issue in climate science. Here we introduce a predictable mode analysis (PMA) method to estimate predictability of the ASM rainfall. The PMA is an integral approach combining empirical analysis, physical interpretation and retrospective prediction. The empirical analysis detects most important modes of variability; the interpretation establishes the physical basis of prediction of the modes; and the retrospective predictions with dynamical models and physics-based empirical (P-E) model are used to identify the "predictable" modes. Potential predictability can then be estimated by the fractional variance accounted for by the "predictable" modes. For the ASM rainfall during June-July-August, we identify four major modes of variability in the domain (20°S-40°N, 40°E-160°E) during 1979-2010: (1) El Niño-La Nina developing mode in central Pacific, (2) Indo-western Pacific monsoon-ocean coupled mode sustained by a positive thermodynamic feedback with the aid of background mean circulation, (3) Indian Ocean dipole mode, and (4) a warming trend mode. We show that these modes can be predicted reasonably well by a set of P-E prediction models as well as coupled models' multi-model ensemble. The P-E and dynamical models have comparable skills and complementary strengths in predicting ASM rainfall. Thus, the four modes may be regarded as "predictable" modes, and about half of the ASM rainfall variability may be predictable. This work not only provides a useful approach for assessing seasonal predictability but also provides P-E prediction tools and a spatial-pattern-bias correction method to improve dynamical predictions. The proposed PMA method can be applied to a broad range of climate predictability and prediction problems.

  16. Bacterial start site prediction.

    PubMed

    Hannenhalli, S S; Hayes, W S; Hatzigeorgiou, A G; Fickett, J W

    1999-09-01

    With the growing number of completely sequenced bacterial genes, accurate gene prediction in bacterial genomes remains an important problem. Although the existing tools predict genes in bacterial genomes with high overall accuracy, their ability to pinpoint the translation start site remains unsatisfactory. In this paper, we present a novel approach to bacterial start site prediction that takes into account multiple features of a potential start site, viz., ribosome binding site (RBS) binding energy, distance of the RBS from the start codon, distance from the beginning of the maximal ORF to the start codon, the start codon itself and the coding/non-coding potential around the start site. Mixed integer programing was used to optimize the discriminatory system. The accuracy of this approach is up to 90%, compared to 70%, using the most common tools in fully automated mode (that is, without expert human post-processing of results). The approach is evaluated using Bacillus subtilis, Escherichia coli and Pyrococcus furiosus. These three genomes cover a broad spectrum of bacterial genomes, since B.subtilis is a Gram-positive bacterium, E.coli is a Gram-negative bacterium and P. furiosus is an archaebacterium. A significant problem is generating a set of 'true' start sites for algorithm training, in the absence of experimental work. We found that sequence conservation between P. furiosus and the related Pyrococcus horikoshii clearly delimited the gene start in many cases, providing a sufficient training set. PMID:10446249

  17. Predicting Human Cooperation

    PubMed Central

    Nay, John J.; Vorobeychik, Yevgeniy

    2016-01-01

    The Prisoner’s Dilemma has been a subject of extensive research due to its importance in understanding the ever-present tension between individual self-interest and social benefit. A strictly dominant strategy in a Prisoner’s Dilemma (defection), when played by both players, is mutually harmful. Repetition of the Prisoner’s Dilemma can give rise to cooperation as an equilibrium, but defection is as well, and this ambiguity is difficult to resolve. The numerous behavioral experiments investigating the Prisoner’s Dilemma highlight that players often cooperate, but the level of cooperation varies significantly with the specifics of the experimental predicament. We present the first computational model of human behavior in repeated Prisoner’s Dilemma games that unifies the diversity of experimental observations in a systematic and quantitatively reliable manner. Our model relies on data we integrated from many experiments, comprising 168,386 individual decisions. The model is composed of two pieces: the first predicts the first-period action using solely the structural game parameters, while the second predicts dynamic actions using both game parameters and history of play. Our model is successful not merely at fitting the data, but in predicting behavior at multiple scales in experimental designs not used for calibration, using only information about the game structure. We demonstrate the power of our approach through a simulation analysis revealing how to best promote human cooperation. PMID:27171417

  18. Prediction of psychoacoustic parameters

    NASA Astrophysics Data System (ADS)

    Genuit, Klaus; Fiebig, Andre

    2005-09-01

    Noise is defined as an audible sound which either disturbs the silence, or an intentional sound that listening to leads to annoyance. Thus, it is clearly defined that the assignment of noise cannot be reduced to simple determining objective parameters like the A-weighted SPL. The question whether a sound is judged as noise can only be answered after the transformation from the sound event into an hearing event has been accomplished. The evaluation of noise depends on the physical characteristics of the sound event, on the psychoacoustical features of the human ear as well as on the psychological aspects of men. The subjectively felt noise quality depends not only on the A-weighted sound-pressure level, but also on other psychoacoustical parameters such as loudness, roughness, sharpness, etc. The known methods for the prediction of the spatial A-weighted SPL distribution in dependence on the propagation are not suitable to predict psychoacoustic parameters in an adequate way. Especially, the roughness provoked by modulation or the sharpness generated by an accumulation of high, frequent sound energy cannot offhandedly be predicted as distance dependent.

  19. Prediction in projection

    NASA Astrophysics Data System (ADS)

    Garland, Joshua; Bradley, Elizabeth

    2015-12-01

    Prediction models that capture and use the structure of state-space dynamics can be very effective. In practice, however, one rarely has access to full information about that structure, and accurate reconstruction of the dynamics from scalar time-series data—e.g., via delay-coordinate embedding—can be a real challenge. In this paper, we show that forecast models that employ incomplete reconstructions of the dynamics—i.e., models that are not necessarily true embeddings—can produce surprisingly accurate predictions of the state of a dynamical system. In particular, we demonstrate the effectiveness of a simple near-neighbor forecast technique that works with a two-dimensional time-delay reconstruction of both low- and high-dimensional dynamical systems. Even though correctness of the topology may not be guaranteed for incomplete reconstructions like this, the dynamical structure that they do capture allows for accurate predictions—in many cases, even more accurate than predictions generated using a traditional embedding. This could be very useful in the context of real-time forecasting, where the human effort required to produce a correct delay-coordinate embedding is prohibitive.

  20. Predicting Human Cooperation.

    PubMed

    Nay, John J; Vorobeychik, Yevgeniy

    2016-01-01

    The Prisoner's Dilemma has been a subject of extensive research due to its importance in understanding the ever-present tension between individual self-interest and social benefit. A strictly dominant strategy in a Prisoner's Dilemma (defection), when played by both players, is mutually harmful. Repetition of the Prisoner's Dilemma can give rise to cooperation as an equilibrium, but defection is as well, and this ambiguity is difficult to resolve. The numerous behavioral experiments investigating the Prisoner's Dilemma highlight that players often cooperate, but the level of cooperation varies significantly with the specifics of the experimental predicament. We present the first computational model of human behavior in repeated Prisoner's Dilemma games that unifies the diversity of experimental observations in a systematic and quantitatively reliable manner. Our model relies on data we integrated from many experiments, comprising 168,386 individual decisions. The model is composed of two pieces: the first predicts the first-period action using solely the structural game parameters, while the second predicts dynamic actions using both game parameters and history of play. Our model is successful not merely at fitting the data, but in predicting behavior at multiple scales in experimental designs not used for calibration, using only information about the game structure. We demonstrate the power of our approach through a simulation analysis revealing how to best promote human cooperation. PMID:27171417

  1. PREDICT User's Manual

    SciTech Connect

    YOUNG, LARRY W.; STURGIS, BEVERLY R.

    2002-07-01

    Sandia National Laboratories has developed a Near Real Time Range Safety Analysis Tool named PREDICT that is based upon a probabilistic range safety analysis process. Probabilistic calculations of risk may be used in place of the total containment of potentially hazardous debris during a missile launch operation. Impact probabilities are computed based upon probabilistic density functions, Monte Carlo trajectories of dispersion events, and missile failure scenarios. Impact probabilities are then coupled with current demographics (land populations, commercial and military ship traffic, and aircraft traffic) to produce expected casualty predictions for a particular launch window. Historically, these calculations required days of computer time to finalize. Sandia has developed a process that utilizes the IBM SP machines at the Maui High Performance Computing Center and at the Arctic Region Supercomputing Center to reduce the computation time from days to as little as an hour or two. This analysis tool then allows the Missile Flight Safety Officer to make launch decisions based on the latest information (winds, ship, and aircraft movements) utilizing an intelligent risk management approach. This report provides a user's manual for PREDICT version 3.3.

  2. Eclipse prediction in Mesopotamia.

    NASA Astrophysics Data System (ADS)

    Steele, J. M.

    2000-02-01

    Among the many celestial phenomena observed in ancient Mesopotamia, eclipses, particularly eclipses of the Moon, were considered to be among the astrologically most significant events. In Babylon, by at least the middle of the seventh century BC, and probably as early as the middle of the eighth century BC, astronomical observations were being systematically conducted and recorded in a group of texts which we have come to call Astronomical Diaries. These Diaries contain many observations and predictions of eclipses. The predictions generally include the expected time of the eclipse, apparently calculated quite precisely. By the last three centuries BC, the Babylonian astronomers had developed highly advanced mathematical theories of the Moon and planets. This paper outlines the various methods which appear to have been formulated by the Mesopotamian astronomers to predict eclipses of the Sun and the Moon. It also considers the question of which of these methods were actually used in compiling the Astronomical Diaries, and speculates why these particular methods were used.

  3. Towards Predicting Solar Flares

    NASA Astrophysics Data System (ADS)

    Winter, Lisa; Balasubramaniam, Karatholuvu S.

    2015-04-01

    We present a statistical study of solar X-ray flares observed using GOES X-ray observations of the ~50,000 fares that occurred from 1986 - mid-2014. Observed X-ray parameters are computed for each of the flares, including the 24-hour non-flare X-ray background in the 1-8 A band and the maximum ratio of the short (0.5 - 4 A) to long band (1-8 A) during flares. These parameters, which are linked to the amount of active coronal heating and maximum flare temperature, reveal a separation between the X-, M-, C-, and B- class fares. The separation was quantified and verified through machine-learning algorithms (k nearest neighbor; nearest centroid). Using the solar flare parameters learned from solar cycles 22-23, we apply the models to predict flare categories of solar cycle 24. Skill scores are then used to assess the success of our models, yielding correct predictions for ~80% of M-, C-, and B-class flares and 100% correct predictions for X-flares. We present details of the analysis along with the potential uses of our model in flare forecasting.

  4. [Predictive models for ART].

    PubMed

    Arvis, P; Guivarc'h-Levêque, A; Varlan, E; Colella, C; Lehert, P

    2013-02-01

    A predictive model is a mathematical expression estimating the probability of pregnancy, by combining predictive variables, or indicators. Its development requires three successive phases: formulation of the model, its validation--internal then external--and the impact study. Its performance is assessed by its discrimination and its calibration. Numerous models were proposed, for spontaneous pregnancies, IUI and IVF, but with rather poor results, and their external validation was seldom carried out and was mainly inconclusive. The impact study-consisting in ascertaining whether their use improves medical practice--was exceptionally done. The ideal ART predictive model is a "Center specific" model, helping physicians to choose between abstention, IUI and IVF, by providing a reliable cumulative rate of pregnancy for each option. This tool would allow to rationalize the practices, by avoiding premature, late, or hopeless treatments. The model would also allow to compare the performances between ART Centers based on objective criteria. Today the best solution is to adjust the existing models to one's own practice, by considering models validated with variables describing the treated population, whilst adjusting the calculation to the Center's performances. PMID:23182786

  5. Dopamine reward prediction error coding

    PubMed Central

    Schultz, Wolfram

    2016-01-01

    Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards—an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less reward than predicted (negative prediction error). The dopamine signal increases nonlinearly with reward value and codes formal economic utility. Drugs of addiction generate, hijack, and amplify the dopamine reward signal and induce exaggerated, uncontrolled dopamine effects on neuronal plasticity. The striatum, amygdala, and frontal cortex also show reward prediction error coding, but only in subpopulations of neurons. Thus, the important concept of reward prediction errors is implemented in neuronal hardware. PMID:27069377

  6. Aeroacoustic Prediction Codes

    NASA Technical Reports Server (NTRS)

    Gliebe, P; Mani, R.; Shin, H.; Mitchell, B.; Ashford, G.; Salamah, S.; Connell, S.; Huff, Dennis (Technical Monitor)

    2000-01-01

    This report describes work performed on Contract NAS3-27720AoI 13 as part of the NASA Advanced Subsonic Transport (AST) Noise Reduction Technology effort. Computer codes were developed to provide quantitative prediction, design, and analysis capability for several aircraft engine noise sources. The objective was to provide improved, physics-based tools for exploration of noise-reduction concepts and understanding of experimental results. Methods and codes focused on fan broadband and 'buzz saw' noise and on low-emissions combustor noise and compliment work done by other contractors under the NASA AST program to develop methods and codes for fan harmonic tone noise and jet noise. The methods and codes developed and reported herein employ a wide range of approaches, from the strictly empirical to the completely computational, with some being semiempirical analytical, and/or analytical/computational. Emphasis was on capturing the essential physics while still considering method or code utility as a practical design and analysis tool for everyday engineering use. Codes and prediction models were developed for: (1) an improved empirical correlation model for fan rotor exit flow mean and turbulence properties, for use in predicting broadband noise generated by rotor exit flow turbulence interaction with downstream stator vanes: (2) fan broadband noise models for rotor and stator/turbulence interaction sources including 3D effects, noncompact-source effects. directivity modeling, and extensions to the rotor supersonic tip-speed regime; (3) fan multiple-pure-tone in-duct sound pressure prediction methodology based on computational fluid dynamics (CFD) analysis; and (4) low-emissions combustor prediction methodology and computer code based on CFD and actuator disk theory. In addition. the relative importance of dipole and quadrupole source mechanisms was studied using direct CFD source computation for a simple cascadeigust interaction problem, and an empirical combustor

  7. Congruency between Word Position and Meaning is Caused by Task-Induced Spatial Attention

    PubMed Central

    Pecher, Diane; Van Dantzig, Saskia; Boot, Inge; Zanolie, Kiki; Huber, David E.

    2010-01-01

    We report an experiment that compared two explanations for the effect of congruency between a word's on screen spatial position and its meaning. On one account, congruency is explained by the match between position and a mental simulation of meaning. Alternatively, congruency is explained by the polarity alignment principle. To distinguish between these accounts we presented the same object names (e.g., shark, helicopter) in a sky decision task or an ocean decision task, such that response polarity and typical location were disentangled. Sky decision responses were faster to words at the top of the screen compared to words at the bottom of the screen, but the reverse was found for ocean decision responses. These results are problematic for the polarity principle, and support the claim that spatial attention is directed by mental simulation of the task-relevant conceptual dimension. PMID:21833200

  8. Noise power associated with decreased task-induced variability of brain electrical activity in schizophrenia.

    PubMed

    Molina, Vicente; Bachiller, Alejandro; Suazo, Vanessa; Lubeiro, Alba; Poza, Jesús; Hornero, Roberto

    2016-02-01

    In schizophrenia, both increased baseline metabolic and electroencephalographic (EEG) activities as well as decreased task-related modulation of neural dynamics have been reported. Noise power (NP) can measure the background EEG activity during task performance, and Shannon entropy (SE) is useful for quantifying the global modulation of EEG activity with a high temporal resolution. In this study, we have assessed the possible relationship between increased NP in theta and gamma bands and decreased SE modulation in 24 patients with schizophrenia and 26 controls over the parietal and central regions during a P300 task. SE modulation was calculated as the change from baseline to the active epoch (i.e., 150-550 ms following the target stimulus onset). Patients with schizophrenia displayed statistically significant higher NP values and lower SE modulation than healthy controls. We found a significant association between gamma NP and SE in all of the participants. Specifically, a NP increase in the gamma band was followed by a decrease in SE change. These results support the notion that an excess of gamma activity, unlocked to the task being performed, is accompanied by a decreased modulation of EEG activity in schizophrenia. PMID:25547316

  9. On identified predictive control

    NASA Technical Reports Server (NTRS)

    Bialasiewicz, Jan T.

    1993-01-01

    Self-tuning control algorithms are potential successors to manually tuned PID controllers traditionally used in process control applications. A very attractive design method for self-tuning controllers, which has been developed over recent years, is the long-range predictive control (LRPC). The success of LRPC is due to its effectiveness with plants of unknown order and dead-time which may be simultaneously nonminimum phase and unstable or have multiple lightly damped poles (as in the case of flexible structures or flexible robot arms). LRPC is a receding horizon strategy and can be, in general terms, summarized as follows. Using assumed long-range (or multi-step) cost function the optimal control law is found in terms of unknown parameters of the predictor model of the process, current input-output sequence, and future reference signal sequence. The common approach is to assume that the input-output process model is known or separately identified and then to find the parameters of the predictor model. Once these are known, the optimal control law determines control signal at the current time t which is applied at the process input and the whole procedure is repeated at the next time instant. Most of the recent research in this field is apparently centered around the LRPC formulation developed by Clarke et al., known as generalized predictive control (GPC). GPC uses ARIMAX/CARIMA model of the process in its input-output formulation. In this paper, the GPC formulation is used but the process predictor model is derived from the state space formulation of the ARIMAX model and is directly identified over the receding horizon, i.e., using current input-output sequence. The underlying technique in the design of identified predictive control (IPC) algorithm is the identification algorithm of observer/Kalman filter Markov parameters developed by Juang et al. at NASA Langley Research Center and successfully applied to identification of flexible structures.

  10. Fluctuations, Intermittency and Predictivity

    NASA Astrophysics Data System (ADS)

    Charbonneau, Paul

    This chapter considers the various mechanisms capable of producing amplitude and duration variations in the various dynamo models introduced in Chap. 3 (10.1007/978-3-642-32093-4_3). After a survey of observed and inferred fluctuation patterns of the solar cycle, the effects on the basic cycle of stochastic forcing, dynamical nonlinearities and time delay are considered in turn. The occurrence of intermittency in a subset of these models is then investigated, with an eye on explaining Grand Minima observed in the solar activity record. The chapter closes with a brief discussion of solar cycle prediction schemes based on dynamo models.

  11. Coal extraction - environmental prediction

    SciTech Connect

    C. Blaine Cecil; Susan J. Tewalt

    2002-08-01

    To predict and help minimize the impact of coal extraction in the Appalachian region, the U.S. Geological Survey (USGS) is addressing selected mine-drainage issues through the following four interrelated studies: spatial variability of deleterious materials in coal and coal-bearing strata; kinetics of pyrite oxidation; improved spatial geologic models of the potential for drainage from abandoned coal mines; and methodologies for the remediation of waters discharged from coal mines. As these goals are achieved, the recovery of coal resources will be enhanced. 2 figs.

  12. Age and Stress Prediction

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Genoa is a software product that predicts progressive aging and failure in a variety of materials. It is the result of a SBIR contract between the Glenn Research Center and Alpha Star Corporation. Genoa allows designers to determine if the materials they plan on applying to a structure are up to the task or if alternate materials should be considered. Genoa's two feature applications are its progressive failure simulations and its test verification. It allows for a reduction in inspection frequency, rapid design solutions, and manufacturing with low cost materials. It will benefit the aerospace, airline, and automotive industries, with future applications for other uses.

  13. Predicting Ground Illuminance

    NASA Astrophysics Data System (ADS)

    Lesniak, Michael V.; Tregoning, Brett D.; Hitchens, Alexandra E.

    2015-01-01

    Our Sun outputs 3.85 x 1026 W of radiation, of which roughly 37% is in the visible band. It is directly responsible for nearly all natural illuminance experienced on Earth's surface, either in the form of direct/refracted sunlight or in reflected light bouncing off the surfaces and/or atmospheres of our Moon and the visible planets. Ground illuminance, defined as the amount of visible light intercepting a unit area of surface (from all incident angles), varies over 7 orders of magnitude from day to night. It is highly dependent on well-modeled factors such as the relative positions of the Sun, Earth, and Moon. It is also dependent on less predictable factors such as local atmospheric conditions and weather.Several models have been proposed to predict ground illuminance, including Brown (1952) and Shapiro (1982, 1987). The Brown model is a set of empirical data collected from observation points around the world that has been reduced to a smooth fit of illuminance against a single variable, solar altitude. It provides limited applicability to the Moon and for cloudy conditions via multiplicative reduction factors. The Shapiro model is a theoretical model that treats the atmosphere as a three layer system of light reflectance and transmittance. It has different sets of reflectance and transmittance coefficients for various cloud types.In this paper we compare the models' predictions to ground illuminance data from an observing run at the White Sands missile range (data was obtained from the United Kingdom's Meteorology Office). Continuous illuminance readings were recorded under various cloud conditions, during both daytime and nighttime hours. We find that under clear skies, the Shapiro model tends to better fit the observations during daytime hours with typical discrepancies under 10%. Under cloudy skies, both models tend to poorly predict ground illuminance. However, the Shapiro model, with typical average daytime discrepancies of 25% or less in many cases

  14. Predicting Ground Illuminance

    NASA Astrophysics Data System (ADS)

    Lesniak, Michael V.

    2014-01-01

    Our Sun outputs 3.85 × 1026 W of radiation, of which ≈37% is in the visible band. It is directly responsible for nearly all natural illuminance experienced on Earth's surface, either in the form of direct/refracted sunlight or in reflected light bouncing off the surfaces and/or atmospheres of our Moon and the visible planets. Ground illuminance, defined as the amount of visible light intercepting a unit area of surface (from all incident angles), varies over 7 orders of magnitude from day to night. It is highly dependent on well-modeled factors such as the relative positions of the Sun, Earth, and Moon. It is also dependent on less predictable factors such as local atmospheric conditions and weather. Several models have been proposed to predict ground illuminance, including Brown (1952) and Shapiro (1982, 1987). The Brown model is a set of empirical data collected from observation points around the world that has been reduced to a smooth fit of illuminance against a single variable, solar altitude. It provides limited applicability to the Moon and for cloudy conditions via multiplicative reduction factors. The Shapiro model is a theoretical model that treats the atmosphere as a three layer system of light reflectance and transmittance. It has different sets of reflectance and transmittance coefficients for various cloud types. Ground illuminance data from an observing run at the White Sands missile range were obtained from the United Kingdom Meteorology Office. Based on available weather reports, five days of clear sky observations were selected. These data are compared to the predictions of the two models. We find that neither of the models provide an accurate treatment during twilight conditions when the Sun is at or a few degrees below the horizon. When the Sun is above the horizon, the Shapiro model straddles the observed data, ranging between 90% and 120% of the recorded illuminance. During the same times, the Brown model is between 70% and 90% of the

  15. Timebias corrections to predictions

    NASA Technical Reports Server (NTRS)

    Wood, Roger; Gibbs, Philip

    1993-01-01

    The importance of an accurate knowledge of the time bias corrections to predicted orbits to a satellite laser ranging (SLR) observer, especially for low satellites, is highlighted. Sources of time bias values and the optimum strategy for extrapolation are discussed from the viewpoint of the observer wishing to maximize the chances of getting returns from the next pass. What is said may be seen as a commercial encouraging wider and speedier use of existing data centers for mutually beneficial exchange of time bias data.

  16. Stress Prediction System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA wanted to know how astronauts' bodies would react under various gravitational pulls and space suit weights. Under contract to NASA, the University of Michigan's Center for Ergonomics developed a model capable of predicting what type of stress and what degree of load a body could stand. The algorithm generated was commercialized with the ISTU (Isometric Strength Testing Unit) Functional Capacity Evaluation System, which simulates tasks such as lifting a heavy box or pushing a cart and evaluates the exertion expended. It also identifies the muscle group that limits the subject's performance. It is an effective tool of personnel evaluation, selection and job redesign.

  17. Amygdala response to explicit sad face stimuli at baseline predicts antidepressant treatment response to scopolamine in major depressive disorder.

    PubMed

    Szczepanik, Joanna; Nugent, Allison C; Drevets, Wayne C; Khanna, Ashish; Zarate, Carlos A; Furey, Maura L

    2016-08-30

    The muscarinic antagonist scopolamine produces rapid antidepressant effects in individuals with major depressive disorder (MDD). In healthy subjects, manipulation of acetyl-cholinergic transmission modulates attention in a stimulus-dependent manner. This study tested the hypothesis that baseline amygdalar activity in response to emotional stimuli correlates with antidepressant treatment response to scopolamine and could thus potentially predict treatment outcome. MDD patients and healthy controls performed an attention shifting task involving emotional faces while undergoing functional magnetic resonance imaging (fMRI). We found that blood oxygenation level dependent (BOLD) signal in the amygdala acquired while MDD patients processed sad face stimuli correlated positively with antidepressant response to scopolamine. Amygdalar response to sad faces in MDD patients who did not respond to scopolamine did not differ from that of healthy controls. This suggests that the pre-treatment task elicited amygdalar activity that may constitute a biomarker of antidepressant treatment response to scopolamine. Furthermore, in MDD patients who responded to scopolamine, we observed a post-scopolamine stimulus processing shift towards a pattern demonstrated by healthy controls, indicating a change in stimulus-dependent neural response potentially driven by attenuated cholinergic activity in the amygdala. PMID:27366831

  18. Predictability of Rogue Events

    NASA Astrophysics Data System (ADS)

    Birkholz, Simon; Brée, Carsten; Demircan, Ayhan; Steinmeyer, Günter

    2015-05-01

    Using experimental data from three different rogue wave supporting systems, determinism, and predictability of the underlying dynamics are evaluated with methods of nonlinear time series analysis. We included original records from the Draupner platform in the North Sea as well as time series from two optical systems in our analysis. One of the latter was measured in the infrared tail of optical fiber supercontinua, the other in the fluence profiles of multifilaments. All three data sets exhibit extreme-value statistics and exceed the significant wave height in the respective system by a factor larger than 2. Nonlinear time series analysis indicates a different degree of determinism in the systems. The optical fiber scenario is found to be driven by quantum noise whereas rogue waves emerge as a consequence of turbulence in the others. With the large number of rogue events observed in the multifilament system, we can systematically explore the predictability of such events in a turbulent system. We observe that rogue events do not necessarily appear without a warning, but are often preceded by a short phase of relative order. This surprising finding sheds some new light on the fascinating phenomenon of rogue waves.

  19. Compressor map prediction tool

    NASA Astrophysics Data System (ADS)

    Ravi, Arjun; Sznajder, Lukasz; Bennett, Ian

    2015-08-01

    Shell Global Solutions uses an in-house developed system for remote condition monitoring of centrifugal compressors. It requires field process data collected during operation to calculate and assess the machine's performance. Performance is assessed by comparing live results of polytropic head and efficiency versus design compressor curves provided by the Manufacturer. Typically, these design curves are given for specific suction conditions. The further these conditions on site deviate from those prescribed at design, the less accurate the health assessment of the compressor becomes. To address this specified problem, a compressor map prediction tool is proposed. The original performance curves of polytropic head against volumetric flow for varying rotational speeds are used as an input to define a range of Mach numbers within which the non-dimensional invariant performance curve of head and volume flow coefficient is generated. The new performance curves of polytropic head vs. flow for desired set of inlet conditions are then back calculated using the invariant non-dimensional curve. Within the range of Mach numbers calculated from design data, the proposed methodology can predict polytropic head curves at a new set of inlet conditions within an estimated 3% accuracy. The presented methodology does not require knowledge of detailed impeller geometry such as throat areas, blade number, blade angles, thicknesses nor other aspects of the aerodynamic design - diffusion levels, flow angles, etc. The only required mechanical design feature is the first impeller tip diameter. Described method makes centrifugal compressor surveillance activities more accurate, enabling precise problem isolation affecting machine's performance.

  20. Predicting Alloreactivity in Transplantation

    PubMed Central

    Geneugelijk, Kirsten; Thus, Kirsten Anne; Spierings, Eric

    2014-01-01

    Human leukocyte Antigen (HLA) mismatching leads to severe complications after solid-organ transplantation and hematopoietic stem-cell transplantation. The alloreactive responses underlying the posttransplantation complications include both direct recognition of allogeneic HLA by HLA-specific alloantibodies and T cells and indirect T-cell recognition. However, the immunogenicity of HLA mismatches is highly variable; some HLA mismatches lead to severe clinical B-cell- and T-cell-mediated alloreactivity, whereas others are well tolerated. Definition of the permissibility of HLA mismatches prior to transplantation allows selection of donor-recipient combinations that will have a reduced chance to develop deleterious host-versus-graft responses after solid-organ transplantation and graft-versus-host responses after hematopoietic stem-cell transplantation. Therefore, several methods have been developed to predict permissible HLA-mismatch combinations. In this review we aim to give a comprehensive overview about the current knowledge regarding HLA-directed alloreactivity and several developed in vitro and in silico tools that aim to predict direct and indirect alloreactivity. PMID:24868561

  1. Prediction and predictability of North American seasonal climate variability

    NASA Astrophysics Data System (ADS)

    Infanti, Johnna M.

    Climate prediction on short time-scales such as months to seasons is of broad and current interest in the scientific research community. Monthly and seasonal climate prediction of variables such as precipitation, temperature, and sea surface temperature (SST) has implications for users in the agricultural and water management domains, among others. It is thus important to further understand the complexities of prediction of these variables using the most recent practices in climate prediction. The overarching goal of this dissertation is to determine the important contributions to seasonal prediction skill, predictability, and variability over North America using current climate prediction models and approaches. This dissertation aims to study a variety of approaches to seasonal climate prediction of variables over North America, including both climate prediction systems and methods of analysis. We utilize the North American Multi-Model Ensemble (NMME) System for Intra-Seasonal to Inter-Annual Prediction (ISI) to study seasonal climate prediction skill of North American and in particular for southeast US precipitation. We find that NMME results are often equal to or better than individual model results in terms of skill, as expected, making it a reasonable choice for southeast US seasonal climate predictions. However, climate models, including those involved in NMME, typically overestimate eastern Pacific warming during central Pacific El Nino events, which can affect regions that are influenced by teleconnections, such as the southeast US. Community Climate System Model version 4.0 (CCSM4) hindacasts and forecasts are included in NMME, and we preform a series of experiments that examine contributions to skill from certain drivers of North American climate prediction. The drivers we focus on are sea surface temperatures (SSTs) and their accuracy, land and atmosphere initialization, and ocean-atmosphere coupling. We compare measures of prediction skill of

  2. ON PREDICTION AND MODEL VALIDATION

    SciTech Connect

    M. MCKAY; R. BECKMAN; K. CAMPBELL

    2001-02-01

    Quantification of prediction uncertainty is an important consideration when using mathematical models of physical systems. This paper proposes a way to incorporate ''validation data'' in a methodology for quantifying uncertainty of the mathematical predictions. The report outlines a theoretical framework.

  3. Predictive assessment of reading.

    PubMed

    Wood, Frank B; Hill, Deborah F; Meyer, Marianne S; Flowers, D Lynn

    2005-12-01

    Study 1 retrospectively analyzed neuropsychological and psychoeducational tests given to N=220 first graders, with follow-up assessments in third and eighth grade. Four predictor constructs were derived: (1) Phonemic Awareness, (2) Picture Vocabulary, (3) Rapid Naming, and (4) Single Word Reading. Together, these accounted for 88%, 76%, 69%, and 69% of the variance, respectively, in first, third, and eighth grade Woodcock Johnson Broad Reading and eighth grade Gates-MacGinitie. When Single Word Reading was excluded from the predictors, the remaining predictors still accounted for 71%, 65%, 61%, and 65% of variance in the respective outcomes. Secondary analyses of risk of low outcome showed sensitivities/specificities of 93.0/91.0, and 86.4/84.9, respectively, for predicting which students would be in the bottom 15% and 30% of actual first grade WJBR. Sensitivities/specificities were 84.8/83.3 and 80.2/81.3, respectively, for predicting the bottom 15% and 30% of actual third grade WJBR outcomes; eighth grade outcomes had sensitivities/specificities of 80.0/80.0 and 85.7/83.1, respectively, for the bottom 15% and 30% of actual eighth grade WJBR scores. Study 2 cross-validated the concurrent predictive validities in an N=500 geographically diverse sample of late kindergartners through third graders, whose ethnic and racial composition closely approximated the national early elementary school population. New tests of the same four predictor domains were used, together taking only 15 minutes to administer by teachers; the new Woodcock-Johnson III Broad Reading standard score was the concurrent criterion, whose testers were blind to the predictor results. This cross-validation showed 86% of the variance accounted for, using the same regression weights as used in Study 1. With these weights, sensitivity/specificity values for the 15% and 30% thresholds were, respectively, 91.3/88.0 and 94.1/89.1. These validities and accuracies are stronger than others reported for

  4. Motor degradation prediction methods

    SciTech Connect

    Arnold, J.R.; Kelly, J.F.; Delzingaro, M.J.

    1996-12-01

    Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor`s duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures.

  5. Predicting scheduling success

    NASA Technical Reports Server (NTRS)

    Messing, Fredric

    1993-01-01

    This paper provides an analytical formulation to predict scheduling success for a class of problems frequently referred to as activity scheduling. Space Network communications scheduling is an example of activity scheduling. The principal assumption is that the activity start times are randomly distributed over the available time in the time line. The formulation makes it possible to estimate how much of the demand can be scheduled as a function of the demand, number of resources, activity duration, and activity flexibility. The paper includes computed results for a variety of resource and demand conditions. The results demonstrate that even with highly flexible activities, it is difficult to schedule demand greater than 60 percent of resources without the use of optimization and conflict resolution capabilities in the scheduling system.

  6. Requirements for Predictive Analytics

    SciTech Connect

    Troy Hiltbrand

    2012-03-01

    It is important to have a clear understanding of how traditional Business Intelligence (BI) and analytics are different and how they fit together in optimizing organizational decision making. With tradition BI, activities are focused primarily on providing context to enhance a known set of information through aggregation, data cleansing and delivery mechanisms. As these organizations mature their BI ecosystems, they achieve a clearer picture of the key performance indicators signaling the relative health of their operations. Organizations that embark on activities surrounding predictive analytics and data mining go beyond simply presenting the data in a manner that will allow decisions makers to have a complete context around the information. These organizations generate models based on known information and then apply other organizational data against these models to reveal unknown information.

  7. Predicting mud toxicity

    SciTech Connect

    Bleler, R. )

    1991-10-01

    Acute toxicity of drilling muds is measured in the U.S. by the mysid shrimp test. Drilling muds that fail the test cannot be discharged into the Gulf of Mexico, and such muds and their cuttings must be brought onshore for disposal. Discharge of water-based muds that pass the test is permitted in most instances. Because of the economic implications associated with hauling cuttings and fluids, a model that predicts test results on the basis of mud composition is clearly desirable. This paper focuses on the modeling of mysid shrimp test data. European laboratories use different test species and procedures. It seems plausible to expect, however, that the line of reasoning used here could apply to the modeling of aquatic data on other test species once a sufficient quantity of such data becomes available.

  8. ECLSS predictive monitoring

    NASA Technical Reports Server (NTRS)

    Doyle, Richard J.; Chien, Steve A.

    1991-01-01

    On Space Station Freedom (SSF), design iterations have made clear the need to keep the sensor complement small. Along with the unprecendented duration of the mission, it is imperative that decisions regarding placement of sensors be carefully examined and justified during the design phase. In the ECLSS Predictive Monitoring task, we are developing AI-based software to enable design engineers to evaluate alternate sensor configurations. Based on techniques from model-based reasoning and information theory, the software tool makes explicit the quantitative tradeoffs among competing sensor placements, and helps designers explore and justify placement decisions. This work is being applied to the Environmental Control and Life Support System (ECLSS) testbed at MSFC to assist design personnel in placing sensors for test purposes to evaluate baseline configurations and ultimately to select advanced life support system technologies for evolutionary SSF.

  9. Airframe life prediction

    NASA Technical Reports Server (NTRS)

    Sendeckyj, G. P.

    1992-01-01

    The required research to develop improved life prediction methods for metallic and composite structures under severe thermomechanical loading must include the development of a verified thermoinelastic fracture criterion. There has been much work in this area with many fracture criteria being proposed. Due to the lack of adequate experimental verification none of them are widely accepted. Research must also be performed to develop and implement improved thermoinelasticity theories that properly model large temperature excursions and high temperature gradient. This research is required to provide confidence in the simpler theories currently used for thermoinelastic analysis. Finally, experimental data is needed to define the behavior of and damage accumulation process in thermoinelastic materials. Special emphasis must be placed on understanding failure mode transitions under thermomechanical loading conditions.

  10. Novel Modeling of Task vs. Rest Brain State Predictability Using a Dynamic Time Warping Spectrum: Comparisons and Contrasts with Other Standard Measures of Brain Dynamics.

    PubMed

    Dinov, Martin; Lorenz, Romy; Scott, Gregory; Sharp, David J; Fagerholm, Erik D; Leech, Robert

    2016-01-01

    Dynamic time warping, or DTW, is a powerful and domain-general sequence alignment method for computing a similarity measure. Such dynamic programming-based techniques like DTW are now the backbone and driver of most bioinformatics methods and discoveries. In neuroscience it has had far less use, though this has begun to change. We wanted to explore new ways of applying DTW, not simply as a measure with which to cluster or compare similarity between features but in a conceptually different way. We have used DTW to provide a more interpretable spectral description of the data, compared to standard approaches such as the Fourier and related transforms. The DTW approach and standard discrete Fourier transform (DFT) are assessed against benchmark measures of neural dynamics. These include EEG microstates, EEG avalanches, and the sum squared error (SSE) from a multilayer perceptron (MLP) prediction of the EEG time series, and simultaneously acquired FMRI BOLD signal. We explored the relationships between these variables of interest in an EEG-FMRI dataset acquired during a standard cognitive task, which allowed us to explore how DTW differentially performs in different task settings. We found that despite strong correlations between DTW and DFT-spectra, DTW was a better predictor for almost every measure of brain dynamics. Using these DTW measures, we show that predictability is almost always higher in task than in rest states, which is consistent to other theoretical and empirical findings, providing additional evidence for the utility of the DTW approach. PMID:27242502

  11. Novel Modeling of Task vs. Rest Brain State Predictability Using a Dynamic Time Warping Spectrum: Comparisons and Contrasts with Other Standard Measures of Brain Dynamics

    PubMed Central

    Dinov, Martin; Lorenz, Romy; Scott, Gregory; Sharp, David J.; Fagerholm, Erik D.; Leech, Robert

    2016-01-01

    Dynamic time warping, or DTW, is a powerful and domain-general sequence alignment method for computing a similarity measure. Such dynamic programming-based techniques like DTW are now the backbone and driver of most bioinformatics methods and discoveries. In neuroscience it has had far less use, though this has begun to change. We wanted to explore new ways of applying DTW, not simply as a measure with which to cluster or compare similarity between features but in a conceptually different way. We have used DTW to provide a more interpretable spectral description of the data, compared to standard approaches such as the Fourier and related transforms. The DTW approach and standard discrete Fourier transform (DFT) are assessed against benchmark measures of neural dynamics. These include EEG microstates, EEG avalanches, and the sum squared error (SSE) from a multilayer perceptron (MLP) prediction of the EEG time series, and simultaneously acquired FMRI BOLD signal. We explored the relationships between these variables of interest in an EEG-FMRI dataset acquired during a standard cognitive task, which allowed us to explore how DTW differentially performs in different task settings. We found that despite strong correlations between DTW and DFT-spectra, DTW was a better predictor for almost every measure of brain dynamics. Using these DTW measures, we show that predictability is almost always higher in task than in rest states, which is consistent to other theoretical and empirical findings, providing additional evidence for the utility of the DTW approach. PMID:27242502

  12. Data-Based Predictive Control with Multirate Prediction Step

    NASA Technical Reports Server (NTRS)

    Barlow, Jonathan S.

    2010-01-01

    Data-based predictive control is an emerging control method that stems from Model Predictive Control (MPC). MPC computes current control action based on a prediction of the system output a number of time steps into the future and is generally derived from a known model of the system. Data-based predictive control has the advantage of deriving predictive models and controller gains from input-output data. Thus, a controller can be designed from the outputs of complex simulation code or a physical system where no explicit model exists. If the output data happens to be corrupted by periodic disturbances, the designed controller will also have the built-in ability to reject these disturbances without the need to know them. When data-based predictive control is implemented online, it becomes a version of adaptive control. One challenge of MPC is computational requirements increasing with prediction horizon length. This paper develops a closed-loop dynamic output feedback controller that minimizes a multi-step-ahead receding-horizon cost function with multirate prediction step. One result is a reduced influence of prediction horizon and the number of system outputs on the computational requirements of the controller. Another result is an emphasis on portions of the prediction window that are sampled more frequently. A third result is the ability to include more outputs in the feedback path than in the cost function.

  13. Earthquake prediction with electromagnetic phenomena

    NASA Astrophysics Data System (ADS)

    Hayakawa, Masashi

    2016-02-01

    Short-term earthquake (EQ) prediction is defined as prospective prediction with the time scale of about one week, which is considered to be one of the most important and urgent topics for the human beings. If this short-term prediction is realized, casualty will be drastically reduced. Unlike the conventional seismic measurement, we proposed the use of electromagnetic phenomena as precursors to EQs in the prediction, and an extensive amount of progress has been achieved in the field of seismo-electromagnetics during the last two decades. This paper deals with the review on this short-term EQ prediction, including the impossibility myth of EQs prediction by seismometers, the reason why we are interested in electromagnetics, the history of seismo-electromagnetics, the ionospheric perturbation as the most promising candidate of EQ prediction, then the future of EQ predictology from two standpoints of a practical science and a pure science, and finally a brief summary.

  14. Emerging Approaches in Predictive Toxicology

    PubMed Central

    Zhang, Luoping; McHale, Cliona M.; Greene, Nigel; Snyder, Ronald D.; Rich, Ivan N.; Aardema, Marilyn J.; Roy, Shambhu; Pfuhler, Stefan; Venkatactahalam, Sundaresan

    2016-01-01

    Predictive toxicology plays an important role in the assessment of toxicity of chemicals and the drug development process. While there are several well-established in vitro and in vivo assays that are suitable for predictive toxicology, recent advances in high-throughput analytical technologies and model systems are expected to have a major impact on the field of predictive toxicology. This commentary provides an overview of the state of the current science and a brief discussion on future perspectives for the field of predictive toxicology for human toxicity. Computational models for predictive toxicology, needs for further refinement and obstacles to expand computational models to include additional classes of chemical compounds are highlighted. Functional and comparative genomics approaches in predictive toxicology are discussed with an emphasis on successful utilization of recently developed model systems for high-throughput analysis. The advantages of three-dimensional model systems and stem cells and their use in predictive toxicology testing are also described. PMID:25044351

  15. Testing an earthquake prediction algorithm

    USGS Publications Warehouse

    Kossobokov, V.G.; Healy, J.H.; Dewey, J.W.

    1997-01-01

    A test to evaluate earthquake prediction algorithms is being applied to a Russian algorithm known as M8. The M8 algorithm makes intermediate term predictions for earthquakes to occur in a large circle, based on integral counts of transient seismicity in the circle. In a retroactive prediction for the period January 1, 1985 to July 1, 1991 the algorithm as configured for the forward test would have predicted eight of ten strong earthquakes in the test area. A null hypothesis, based on random assignment of predictions, predicts eight earthquakes in 2.87% of the trials. The forward test began July 1, 1991 and will run through December 31, 1997. As of July 1, 1995, the algorithm had forward predicted five out of nine earthquakes in the test area, which success ratio would have been achieved in 53% of random trials with the null hypothesis.

  16. Predictability in cellular automata.

    PubMed

    Agapie, Alexandru; Andreica, Anca; Chira, Camelia; Giuclea, Marius

    2014-01-01

    Modelled as finite homogeneous Markov chains, probabilistic cellular automata with local transition probabilities in (0, 1) always posses a stationary distribution. This result alone is not very helpful when it comes to predicting the final configuration; one needs also a formula connecting the probabilities in the stationary distribution to some intrinsic feature of the lattice configuration. Previous results on the asynchronous cellular automata have showed that such feature really exists. It is the number of zero-one borders within the automaton's binary configuration. An exponential formula in the number of zero-one borders has been proved for the 1-D, 2-D and 3-D asynchronous automata with neighborhood three, five and seven, respectively. We perform computer experiments on a synchronous cellular automaton to check whether the empirical distribution obeys also that theoretical formula. The numerical results indicate a perfect fit for neighbourhood three and five, which opens the way for a rigorous proof of the formula in this new, synchronous case. PMID:25271778

  17. Perspectives on Forced Predictability

    NASA Technical Reports Server (NTRS)

    Schubert, S.; Chang, Y.; Suarez, M.

    2003-01-01

    This talk addresses the relationships between weather and El Nino/Southern Oscillation (ENSO) and various other low frequency atmospheric variations such as the Pacific/North American pattern. We focus, in particular, on the predictability of extreme wintertime precipitation events over the continental United States. We first examine fifty years of daily precipitation observations and quantify the leading patterns of winter weather variability. These weather systems, familiar to operational weather forecasters, account for many of the major flooding events on the west coast as well as the major winter snowstorms along the east coast. We next examine the statistics of these storm systems with a particular focus on the occurrence of extreme events. The leading weather systems show varying degrees of linkages to low frequency atmospheric variability. We show, for example, that on seasonal time scales the probability of occurrence of certain types of west coast storms is strongly enhanced by El Nino, while it is reduced during winters with an anomalous trough to the west of the dateline. ENSO also has a strong impact on storms that develop over the Gulf of Mexico and affect much of the eastern United States, with enhanced storminess during El Nino, and reduced storminess during La Nina conditions. We conclude with an example of how well current climate models are able to reproduce the basic linkages between weather and low frequency variability.

  18. Seizure Prediction: Methods

    PubMed Central

    Carney, Paul R.; Myers, Stephen; Geyer, James D.

    2011-01-01

    Epilepsy, one of the most common neurological diseases, affects over 50 million people worldwide. Epilepsy can have a broad spectrum of debilitating medical and social consequences. Although antiepileptic drugs have helped treat millions of patients, roughly a third of all patients have seizures that are refractory to pharmacological intervention. The evolution of our understanding of this dynamic disease leads to new treatment possibilities. There is great interest in the development of devices that incorporate algorithms capable of detecting early onset of seizures or even predicting them hours before they occur. The lead time provided by these new technologies will allow for new types of interventional treatment. In the near future, seizures may be detected and aborted before physical manifestations begin. In this chapter we discuss the algorithms that make these devices possible and how they have been implemented to date. We also compare and contrast these measures, and review their individual strengths and weaknesses. Finally, we illustrate how these techniques can be combined in a closed-loop seizure prevention system. PMID:22078526

  19. Probabilistic microcell prediction model

    NASA Astrophysics Data System (ADS)

    Kim, Song-Kyoo

    2002-06-01

    A microcell is a cell with 1-km or less radius which is suitable for heavily urbanized area such as a metropolitan city. This paper deals with the microcell prediction model of propagation loss which uses probabilistic techniques. The RSL (Receive Signal Level) is the factor which can evaluate the performance of a microcell and the LOS (Line-Of-Sight) component and the blockage loss directly effect on the RSL. We are combining the probabilistic method to get these performance factors. The mathematical methods include the CLT (Central Limit Theorem) and the SPC (Statistical Process Control) to get the parameters of the distribution. This probabilistic solution gives us better measuring of performance factors. In addition, it gives the probabilistic optimization of strategies such as the number of cells, cell location, capacity of cells, range of cells and so on. Specially, the probabilistic optimization techniques by itself can be applied to real-world problems such as computer-networking, human resources and manufacturing process.

  20. Pattern Prediction in Stock Market

    NASA Astrophysics Data System (ADS)

    Kaushik, Saroj; Singhal, Naman

    In this paper, we have presented a new approach to predict pattern of the financial time series in stock market for next 10 days and compared it with the existing method of exact value prediction [2, 3, and 4]. The proposed pattern prediction technique performs better than value prediction. It has been shown that the average for pattern prediction is 58.7% while that for value prediction is 51.3%. Similarly, maximum for pattern and value prediction are 100% and 88.9% respectively. It is of more practical significance if one can predict an approximate pattern that can be expected in the financial time series in the near future rather than the exact value. This way one can know the periods when the stock will be at a high or at a low and use the information to buy or sell accordingly. We have used Support Vector Machine based prediction system as a basis for predicting pattern. MATLAB has been used for implementation.