Science.gov

Sample records for predicted g-protein-coupled receptor

  1. Towards predictive docking at aminergic G-protein coupled receptors.

    PubMed

    Jakubík, Jan; El-Fakahany, Esam E; Doležal, Vladimír

    2015-11-01

    G protein-coupled receptors (GPCRs) are hard to crystallize. However, attempts to predict their structure have boomed as a result of advancements in crystallographic techniques. This trend has allowed computer-aided molecular modeling of GPCRs. We analyzed the performance of four molecular modeling programs in pose evaluation of re-docked antagonists / inverse agonists to 11 original crystal structures of aminergic GPCRs using an induced fit-docking procedure. AutoDock and Glide were used for docking. AutoDock binding energy function, GlideXP, Prime MM-GB/SA, and YASARA binding function were used for pose scoring. Root mean square deviation (RMSD) of the best pose ranged from 0.09 to 1.58 Å, and median RMSD of the top 60 poses ranged from 1.47 to 3.83 Å. However, RMSD of the top pose ranged from 0.13 to 7.33 Å and ranking of the best pose ranged from the 1st to 60th out of 60 poses. Moreover, analysis of ligand-receptor interactions of top poses revealed substantial differences from interactions found in crystallographic structures. Bad ranking of top poses and discrepancies between top docked poses and crystal structures render current simple docking methods unsuitable for predictive modeling of receptor-ligand interactions. Prime MM-GB/SA optimized for 3NY9 by multiple linear regression did not work well at 3NY8 and 3NYA, structures of the same receptor with different ligands. However, 9 of 11 trajectories of molecular dynamics simulations by Desmond of top poses converged with trajectories of crystal structures. Key interactions were properly detected for all structures. This procedure also worked well for cross-docking of tested β2-adrenergic antagonists. Thus, this procedure represents a possible way to predict interactions of antagonists with aminergic GPCRs. PMID:26453085

  2. Structure Prediction of the Second Extracellular Loop in G-Protein-Coupled Receptors

    PubMed Central

    Kmiecik, Sebastian; Jamroz, Michal; Kolinski, Michal

    2014-01-01

    G-protein-coupled receptors (GPCRs) play key roles in living organisms. Therefore, it is important to determine their functional structures. The second extracellular loop (ECL2) is a functionally important region of GPCRs, which poses significant challenge for computational structure prediction methods. In this work, we evaluated CABS, a well-established protein modeling tool for predicting ECL2 structure in 13 GPCRs. The ECL2s (with between 13 and 34 residues) are predicted in an environment of other extracellular loops being fully flexible and the transmembrane domain fixed in its x-ray conformation. The modeling procedure used theoretical predictions of ECL2 secondary structure and experimental constraints on disulfide bridges. Our approach yielded ensembles of low-energy conformers and the most populated conformers that contained models close to the available x-ray structures. The level of similarity between the predicted models and x-ray structures is comparable to that of other state-of-the-art computational methods. Our results extend other studies by including newly crystallized GPCRs. PMID:24896119

  3. Prediction of G Protein-Coupled Receptors with SVM-Prot Features and Random Forest

    PubMed Central

    Ju, Ying

    2016-01-01

    G protein-coupled receptors (GPCRs) are the largest receptor superfamily. In this paper, we try to employ physical-chemical properties, which come from SVM-Prot, to represent GPCR. Random Forest was utilized as classifier for distinguishing them from other protein sequences. MEME suite was used to detect the most significant 10 conserved motifs of human GPCRs. In the testing datasets, the average accuracy was 91.61%, and the average AUC was 0.9282. MEME discovery analysis showed that many motifs aggregated in the seven hydrophobic helices transmembrane regions adapt to the characteristic of GPCRs. All of the above indicate that our machine-learning method can successfully distinguish GPCRs from non-GPCRs. PMID:27529053

  4. Prediction of G Protein-Coupled Receptors with SVM-Prot Features and Random Forest.

    PubMed

    Liao, Zhijun; Ju, Ying; Zou, Quan

    2016-01-01

    G protein-coupled receptors (GPCRs) are the largest receptor superfamily. In this paper, we try to employ physical-chemical properties, which come from SVM-Prot, to represent GPCR. Random Forest was utilized as classifier for distinguishing them from other protein sequences. MEME suite was used to detect the most significant 10 conserved motifs of human GPCRs. In the testing datasets, the average accuracy was 91.61%, and the average AUC was 0.9282. MEME discovery analysis showed that many motifs aggregated in the seven hydrophobic helices transmembrane regions adapt to the characteristic of GPCRs. All of the above indicate that our machine-learning method can successfully distinguish GPCRs from non-GPCRs. PMID:27529053

  5. Computational Prediction of Alanine Scanning and Ligand Binding Energetics in G-Protein Coupled Receptors

    PubMed Central

    Boukharta, Lars; Gutiérrez-de-Terán, Hugo; Åqvist, Johan

    2014-01-01

    Site-directed mutagenesis combined with binding affinity measurements is widely used to probe the nature of ligand interactions with GPCRs. Such experiments, as well as structure-activity relationships for series of ligands, are usually interpreted with computationally derived models of ligand binding modes. However, systematic approaches for accurate calculations of the corresponding binding free energies are still lacking. Here, we report a computational strategy to quantitatively predict the effects of alanine scanning and ligand modifications based on molecular dynamics free energy simulations. A smooth stepwise scheme for free energy perturbation calculations is derived and applied to a series of thirteen alanine mutations of the human neuropeptide Y1 receptor and series of eight analogous antagonists. The robustness and accuracy of the method enables univocal interpretation of existing mutagenesis and binding data. We show how these calculations can be used to validate structural models and demonstrate their ability to discriminate against suboptimal ones. PMID:24743773

  6. G-protein-coupled receptor heteromer dynamics

    PubMed Central

    Vilardaga, Jean-Pierre; Agnati, Luigi F.; Fuxe, Kjell; Ciruela, Francisco

    2010-01-01

    G-protein-coupled receptors (GPCRs) represent the largest family of cell surface receptors, and have evolved to detect and transmit a large palette of extracellular chemical and sensory signals into cells. Activated receptors catalyze the activation of heterotrimeric G proteins, which modulate the propagation of second messenger molecules and the activity of ion channels. Classically thought to signal as monomers, different GPCRs often pair up with each other as homo- and heterodimers, which have been shown to modulate signaling to G proteins. Here, we discuss recent advances in GPCR heteromer systems involving the kinetics of the early steps in GPCR signal transduction, the dynamic property of receptor–receptor interactions, and how the formation of receptor heteromers modulate the kinetics of G-protein signaling. PMID:21123619

  7. Prediction of G protein-coupled receptor encoding sequences from the synganglion transcriptome of the cattle tick, Rhipicephalus microplus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cattle tick, Rhipicephalus (Boophilus) microplus, is a pest which causes multiple health complications in cattle. The G-protein coupled receptor (GPCR) super-family presents an interesting target for developing novel tick control methods. However, GPCRs share limited sequence similarity among or...

  8. Prediction of G protein-coupled receptor encoding sequences from the synganglion transcriptome of the cattle tick, Rhipicephalus microplus.

    PubMed

    Guerrero, Felix D; Kellogg, Anastasia; Ogrey, Alexandria N; Heekin, Andrew M; Barrero, Roberto; Bellgard, Matthew I; Dowd, Scot E; Leung, Ming-Ying

    2016-07-01

    The cattle tick, Rhipicephalus (Boophilus) microplus, is a pest which causes multiple health complications in cattle. The G protein-coupled receptor (GPCR) super-family presents a candidate target for developing novel tick control methods. However, GPCRs share limited sequence similarity among orthologous family members, and there is no reference genome available for R. microplus. This limits the effectiveness of alignment-dependent methods such as BLAST and Pfam for identifying GPCRs from R. microplus. However, GPCRs share a common structure consisting of seven transmembrane helices. We present an analysis of the R. microplus synganglion transcriptome using a combination of structurally-based and alignment-free methods which supplement the identification of GPCRs by sequence similarity. TMHMM predicts the number of transmembrane helices in a protein sequence. GPCRpred is a support vector machine-based method developed to predict and classify GPCRs using the dipeptide composition of a query amino acid sequence. These two bioinformatic tools were applied to our transcriptome assembly of the cattle tick synganglion. Together, BLAST and Pfam identified 85 unique contigs as encoding partial or full length candidate cattle tick GPCRs. Collectively, TMHMM and GPCRpred identified 27 additional GPCR candidates that BLAST and Pfam missed. This demonstrates that the addition of structurally-based and alignment-free bioinformatic approaches to transcriptome annotation and analysis produces a greater collection of prospective GPCRs than an analysis based solely upon methodologies dependent upon sequence alignment and similarity. PMID:26922323

  9. Crystallization of G Protein-Coupled Receptors

    PubMed Central

    Salom, David; Padayatti, Pius S.; Palczewski, Krzysztof

    2015-01-01

    Oligomerization is one of several mechanisms that can regulate the activity of G protein-coupled receptors (GPCRs), but little is known about the structure of GPCR oligomers. Crystallography and NMR are the only methods able to reveal the details of receptor–receptor interactions at an atomic level, and several GPCR homodimers already have been described from crystal structures. Two clusters of symmetric interfaces have been identified from these structures that concur with biochemical data, one involving helices I, II, and VIII and the other formed mainly by helices V and VI. In this chapter, we describe the protocols used in our laboratory for the crystallization of rhodopsin and the β2-adrenergic receptor (β2-AR). For bovine rhodopsin, we developed a new purification strategy including a (NH4)2SO4-induced phase separation that proved essential to obtain crystals of photoactivated rhodopsin containing parallel dimers. Crystallization of native bovine rhodopsin was achieved by the classic vapor-diffusion technique. For β2-AR, we developed a purification strategy based on previously published protocols employing a lipidic cubic phase to obtain diffracting crystals of a β2-AR/T4-lysozyme chimera bound to the antagonist carazolol. PMID:24143992

  10. G Protein-Coupled Receptors in Cancer

    PubMed Central

    Bar-Shavit, Rachel; Maoz, Myriam; Kancharla, Arun; Nag, Jeetendra Kumar; Agranovich, Daniel; Grisaru-Granovsky, Sorina; Uziely, Beatrice

    2016-01-01

    Despite the fact that G protein-coupled receptors (GPCRs) are the largest signal-conveying receptor family and mediate many physiological processes, their role in tumor biology is underappreciated. Numerous lines of evidence now associate GPCRs and their downstream signaling targets in cancer growth and development. Indeed, GPCRs control many features of tumorigenesis, including immune cell-mediated functions, proliferation, invasion and survival at the secondary site. Technological advances have further substantiated GPCR modifications in human tumors. Among these are point mutations, gene overexpression, GPCR silencing by promoter methylation and the number of gene copies. At this point, it is imperative to elucidate specific signaling pathways of “cancer driver” GPCRs. Emerging data on GPCR biology point to functional selectivity and “biased agonism”; hence, there is a diminishing enthusiasm for the concept of “one drug per GPCR target” and increasing interest in the identification of several drug options. Therefore, determining the appropriate context-dependent conformation of a functional GPCR as well as the contribution of GPCR alterations to cancer development remain significant challenges for the discovery of dominant cancer genes and the development of targeted therapeutics. PMID:27529230

  11. Signaling through G protein coupled receptors

    PubMed Central

    2009-01-01

    Heterotrimeric G proteins (Gα, Gβ/Gγ subunits) constitute one of the most important components of cell signaling cascade. G Protein Coupled Receptors (GPCRs) perceive many extracellular signals and transduce them to heterotrimeric G proteins, which further transduce these signals intracellular to appropriate downstream effectors and thereby play an important role in various signaling pathways. GPCRs exist as a superfamily of integral membrane protein receptors that contain seven transmembrane α-helical regions, which bind to a wide range of ligands. Upon activation by a ligand, the GPCR undergoes a conformational change and then activate the G proteins by promoting the exchange of GDP/GTP associated with the Gα subunit. This leads to the dissociation of Gβ/Gγ dimer from Gα. Both these moieties then become free to act upon their downstream effectors and thereby initiate unique intracellular signaling responses. After the signal propagation, the GTP of Gα-GTP is hydrolyzed to GDP and Gα becomes inactive (Gα-GDP), which leads to its re-association with the Gβ/Gγ dimer to form the inactive heterotrimeric complex. The GPCR can also transduce the signal through G protein independent pathway. GPCRs also regulate cell cycle progression. Till to date thousands of GPCRs are known from animal kingdom with little homology among them, but only single GPCR has been identified in plant system. The Arabidopsis GPCR was reported to be cell cycle regulated and also involved in ABA and in stress signaling. Here I have described a general mechanism of signal transduction through GPCR/G proteins, structure of GPCRs, family of GPCRs and plant GPCR and its role. PMID:19826234

  12. A novel fractal approach for predicting G-protein-coupled receptors and their subfamilies with support vector machines.

    PubMed

    Nie, Guoping; Li, Yong; Wang, Feichi; Wang, Siwen; Hu, Xuehai

    2015-01-01

    G-protein-coupled receptors (GPCRs) are seven membrane-spanning proteins and regulate many important physiological processes, such as vision, neurotransmission, immune response and so on. GPCRs-related pathways are the targets of a large number of marketed drugs. Therefore, the design of a reliable computational model for predicting GPCRs from amino acid sequence has long been a significant biomedical problem. Chaos game representation (CGR) reveals the fractal patterns hidden in protein sequences, and then fractal dimension (FD) is an important feature of these highly irregular geometries with concise mathematical expression. Here, in order to extract important features from GPCR protein sequences, CGR algorithm, fractal dimension and amino acid composition (AAC) are employed to formulate the numerical features of protein samples. Four groups of features are considered, and each group is evaluated by support vector machine (SVM) and 10-fold cross-validation test. To test the performance of the present method, a new non-redundant dataset was built based on latest GPCRDB database. Comparing the results of numerical experiments, the group of combined features with AAC and FD gets the best result, the accuracy is 99.22% and Matthew's correlation coefficient (MCC) is 0.9845 for identifying GPCRs from non-GPCRs. Moreover, if it is classified as a GPCR, it will be further put into the second level, which will classify a GPCR into one of the five main subfamilies. At this level, the group of combined features with AAC and FD also gets best accuracy 85.73%. Finally, the proposed predictor is also compared with existing methods and shows better performances. PMID:26405954

  13. Topology assessment, G protein-coupled receptor (GPCR) prediction, and in vivo interaction assays to identify plant candidate GPCRs.

    PubMed

    Gookin, Timothy E; Bendtsen, Jannick D

    2013-01-01

    Genomic sequencing has provided a vast resource for identifying interesting genes, but often an exact "gene-of-interest" is unknown and is only described as putatively present in a genome by an observed phenotype, or by the known presence of a conserved signaling cascade, such as that facilitated by the heterotrimeric G-protein. The low sequence similarity of G protein-coupled receptors (GPCRs) and the absence of a known ligand with an associated high-throughput screening system in plants hampers their identification by simple BLAST queries or brute force experimental assays. Combinatorial bioinformatic analysis is useful in that it can reduce a large pool of possible candidates to a number manageable by medium or even low-throughput methods. Here we describe a method for the bioinformatic identification of candidate GPCRs from whole proteomes and their subsequent in vivo analysis for G-protein coupling using a membrane based yeast two-hybrid variant (Gookin et al., Genome Biol 9:R120, 2008). Rather than present the bioinformatic process in a format requiring scripts or computer programming knowledge, we describe procedures here in a simple, biologist-friendly outline that only utilizes the basic syntax of regular expressions. PMID:23913030

  14. patGPCR: A Multitemplate Approach for Improving 3D Structure Prediction of Transmembrane Helices of G-Protein-Coupled Receptors

    PubMed Central

    Wu, Hongjie; Lü, Qiang; Quan, Lijun; Qian, Peide; Xia, Xiaoyan

    2013-01-01

    The structures of the seven transmembrane helices of G-protein-coupled receptors are critically involved in many aspects of these receptors, such as receptor stability, ligand docking, and molecular function. Most of the previous multitemplate approaches have built a “super” template with very little merging of aligned fragments from different templates. Here, we present a parallelized multitemplate approach, patGPCR, to predict the 3D structures of transmembrane helices of G-protein-coupled receptors. patGPCR, which employs a bundle-packing related energy function that extends on the RosettaMem energy, parallelizes eight pipelines for transmembrane helix refinement and exchanges the optimized helix structures from multiple templates. We have investigated the performance of patGPCR on a test set containing eight determined G-protein-coupled receptors. The results indicate that patGPCR improves the TM RMSD of the predicted models by 33.64% on average against a single-template method. Compared with other homology approaches, the best models for five of the eight targets built by patGPCR had a lower TM RMSD than that obtained from SWISS-MODEL; patGPCR also showed lower average TM RMSD than single-template and multiple-template MODELLER. PMID:23554839

  15. Whole proteome identification of plant candidate G-protein coupled receptors in Arabidopsis, rice, and poplar: computational prediction and in-vivo protein coupling

    PubMed Central

    Gookin, Timothy E; Kim, Junhyong; Assmann, Sarah M

    2008-01-01

    Background The classic paradigm of heterotrimeric G-protein signaling describes a heptahelical, membrane-spanning G-protein coupled receptor that physically interacts with an intracellular Gα subunit of the G-protein heterotrimer to transduce signals. G-protein coupled receptors comprise the largest protein superfamily in metazoa and are physiologically important as they sense highly diverse stimuli and play key roles in human disease. The heterotrimeric G-protein signaling mechanism is conserved across metazoa, and also readily identifiable in plants, but the low sequence conservation of G-protein coupled receptors hampers the identification of novel ones. Using diverse computational methods, we performed whole-proteome analyses of the three dominant model plant species, the herbaceous dicot Arabidopsis thaliana (mouse-eared cress), the monocot Oryza sativa (rice), and the woody dicot Populus trichocarpa (poplar), to identify plant protein sequences most likely to be GPCRs. Results Our stringent bioinformatic pipeline allowed the high confidence identification of candidate G-protein coupled receptors within the Arabidopsis, Oryza, and Populus proteomes. We extended these computational results through actual wet-bench experiments where we tested over half of our highest ranking Arabidopsis candidate G-protein coupled receptors for the ability to physically couple with GPA1, the sole Gα in Arabidopsis. We found that seven out of eight tested candidate G-protein coupled receptors do in fact interact with GPA1. We show through G-protein coupled receptor classification and molecular evolutionary analyses that both individual G-protein coupled receptor candidates and candidate G-protein coupled receptor families are conserved across plant species and that, in some cases, this conservation extends to metazoans. Conclusion Our computational and wet-bench results provide the first step toward understanding the diversity, conservation, and functional roles of plant

  16. System and methods for predicting transmembrane domains in membrane proteins and mining the genome for recognizing G-protein coupled receptors

    DOEpatents

    Trabanino, Rene J; Vaidehi, Nagarajan; Hall, Spencer E; Goddard, William A; Floriano, Wely

    2013-02-05

    The invention provides computer-implemented methods and apparatus implementing a hierarchical protocol using multiscale molecular dynamics and molecular modeling methods to predict the presence of transmembrane regions in proteins, such as G-Protein Coupled Receptors (GPCR), and protein structural models generated according to the protocol. The protocol features a coarse grain sampling method, such as hydrophobicity analysis, to provide a fast and accurate procedure for predicting transmembrane regions. Methods and apparatus of the invention are useful to screen protein or polynucleotide databases for encoded proteins with transmembrane regions, such as GPCRs.

  17. G-protein coupled receptor kinases in inflammation and disease

    PubMed Central

    Packiriswamy, Nandakumar; Parameswaran, Narayanan

    2015-01-01

    G-protein coupled receptor kinases (GRKs) are serine/threonine protein kinases originally discovered for their role in G-protein coupled receptor (GPCR) phosphorylation. Recent studies have demonstrated a much broader function for this kinase family including phosphorylation of cytosolic substrates involved in cell signaling pathways stimulated by GPCRs as well as non-GPCRs. In addition, GRKs modulate signaling via phosphorylation-independent functions. Because of these various biochemical functions, GRKs have been shown to affect critical physiological and pathophysiological processes and thus are considered as drug targets in diseases such as heart failure. Role of GRKs in inflammation and inflammatory diseases is an evolving area of research and several studies including work from our lab in the recent years have demonstrated critical role of GRKs in the immune system. In this review we discuss the classical and the newly emerging functions of GRKs in the immune system and their role in inflammation and disease processes. PMID:26226012

  18. Applications of molecular replacement to G protein-coupled receptors

    SciTech Connect

    Kruse, Andrew C.; Manglik, Aashish; Kobilka, Brian K.; Weis, William I.

    2013-11-01

    The use of molecular replacement in solving the structures of G protein-coupled receptors is discussed, with specific examples being described in detail. G protein-coupled receptors (GPCRs) are a large class of integral membrane proteins involved in regulating virtually every aspect of human physiology. Despite their profound importance in human health and disease, structural information regarding GPCRs has been extremely limited until recently. With the advent of a variety of new biochemical and crystallographic techniques, the structural biology of GPCRs has advanced rapidly, offering key molecular insights into GPCR activation and signal transduction. To date, almost all GPCR structures have been solved using molecular-replacement techniques. Here, the unique aspects of molecular replacement as applied to individual GPCRs and to signaling complexes of these important proteins are discussed.

  19. G Protein-Coupled Receptors in Anopheles gambiae

    NASA Astrophysics Data System (ADS)

    Hill, Catherine A.; Fox, A. Nicole; Pitts, R. Jason; Kent, Lauren B.; Tan, Perciliz L.; Chrystal, Mathew A.; Cravchik, Anibal; Collins, Frank H.; Robertson, Hugh M.; Zwiebel, Laurence J.

    2002-10-01

    We used bioinformatic approaches to identify a total of 276 G protein-coupled receptors (GPCRs) from the Anopheles gambiae genome. These include GPCRs that are likely to play roles in pathways affecting almost every aspect of the mosquito's life cycle. Seventy-nine candidate odorant receptors were characterized for tissue expression and, along with 76 putative gustatory receptors, for their molecular evolution relative to Drosophila melanogaster. Examples of lineage-specific gene expansions were observed as well as a single instance of unusually high sequence conservation.

  20. G-Protein/β-Arrestin-Linked Fluctuating Network of G-Protein-Coupled Receptors for Predicting Drug Efficacy and Bias Using Short-Term Molecular Dynamics Simulation

    PubMed Central

    Ichikawa, Osamu; Fujimoto, Kazushi; Yamada, Atsushi; Okazaki, Susumu; Yamazaki, Kazuto

    2016-01-01

    The efficacy and bias of signal transduction induced by a drug at a target protein are closely associated with the benefits and side effects of the drug. In particular, partial agonist activity and G-protein/β-arrestin-biased agonist activity for the G-protein-coupled receptor (GPCR) family, the family with the most target proteins of launched drugs, are key issues in drug discovery. However, designing GPCR drugs with appropriate efficacy and bias is challenging because the dynamic mechanism of signal transduction induced by ligand—receptor interactions is complicated. Here, we identified the G-protein/β-arrestin-linked fluctuating network, which initiates large-scale conformational changes, using sub-microsecond molecular dynamics (MD) simulations of the β2-adrenergic receptor (β2AR) with a diverse collection of ligands and correlation analysis of their G protein/β-arrestin efficacy. The G-protein-linked fluctuating network extends from the ligand-binding site to the G-protein-binding site through the connector region, and the β-arrestin-linked fluctuating network consists of the NPxxY motif and adjacent regions. We confirmed that the averaged values of fluctuation in the fluctuating network detected are good quantitative indexes for explaining G protein/β-arrestin efficacy. These results indicate that short-term MD simulation is a practical method to predict the efficacy and bias of any compound for GPCRs. PMID:27187591

  1. G-Protein/β-Arrestin-Linked Fluctuating Network of G-Protein-Coupled Receptors for Predicting Drug Efficacy and Bias Using Short-Term Molecular Dynamics Simulation.

    PubMed

    Ichikawa, Osamu; Fujimoto, Kazushi; Yamada, Atsushi; Okazaki, Susumu; Yamazaki, Kazuto

    2016-01-01

    The efficacy and bias of signal transduction induced by a drug at a target protein are closely associated with the benefits and side effects of the drug. In particular, partial agonist activity and G-protein/β-arrestin-biased agonist activity for the G-protein-coupled receptor (GPCR) family, the family with the most target proteins of launched drugs, are key issues in drug discovery. However, designing GPCR drugs with appropriate efficacy and bias is challenging because the dynamic mechanism of signal transduction induced by ligand-receptor interactions is complicated. Here, we identified the G-protein/β-arrestin-linked fluctuating network, which initiates large-scale conformational changes, using sub-microsecond molecular dynamics (MD) simulations of the β2-adrenergic receptor (β2AR) with a diverse collection of ligands and correlation analysis of their G protein/β-arrestin efficacy. The G-protein-linked fluctuating network extends from the ligand-binding site to the G-protein-binding site through the connector region, and the β-arrestin-linked fluctuating network consists of the NPxxY motif and adjacent regions. We confirmed that the averaged values of fluctuation in the fluctuating network detected are good quantitative indexes for explaining G protein/β-arrestin efficacy. These results indicate that short-term MD simulation is a practical method to predict the efficacy and bias of any compound for GPCRs. PMID:27187591

  2. G protein-coupled receptors as promising cancer targets.

    PubMed

    Liu, Ying; An, Su; Ward, Richard; Yang, Yang; Guo, Xiao-Xi; Li, Wei; Xu, Tian-Rui

    2016-07-01

    G protein-coupled receptors (GPCRs) regulate an array of fundamental biological processes, such as growth, metabolism and homeostasis. Specifically, GPCRs are involved in cancer initiation and progression. However, compared with the involvement of the epidermal growth factor receptor in cancer, that of GPCRs have been largely ignored. Recent findings have implicated many GPCRs in tumorigenesis, tumor progression, invasion and metastasis. Moreover, GPCRs contribute to the establishment and maintenance of a microenvironment which is permissive for tumor formation and growth, including effects upon surrounding blood vessels, signaling molecules and the extracellular matrix. Thus, GPCRs are considered to be among the most useful drug targets against many solid cancers. Development of selective ligands targeting GPCRs may provide novel and effective treatment strategies against cancer and some anticancer compounds are now in clinical trials. Here, we focus on tumor related GPCRs, such as G protein-coupled receptor 30, the lysophosphatidic acid receptor, angiotensin receptors 1 and 2, the sphingosine 1-phosphate receptors and gastrin releasing peptide receptor. We also summarize their tissue distributions, activation and roles in tumorigenesis and discuss the potential use of GPCR agonists and antagonists in cancer therapy. PMID:27000991

  3. Identification of novel arthropod vector G protein-coupled receptors

    PubMed Central

    2013-01-01

    Background The control of vector-borne diseases, such as malaria, dengue fever, and typhus fever is often achieved with the use of insecticides. Unfortunately, insecticide resistance is becoming common among different vector species. There are currently no chemical alternatives to these insecticides because new human-safe classes of molecules have yet to be brought to the vector-control market. The identification of novel targets offer opportunities for rational design of new chemistries to control vector populations. One target family, G protein-coupled receptors (GPCRs), has remained relatively under explored in terms of insecticide development. Methods A novel classifier, Ensemble*, for vector GPCRs was developed. Ensemble* was validated and compared to existing classifiers using a set of all known GPCRs from Aedes aegypti, Anopheles gambiae, Apis Mellifera, Drosophila melanogaster, Homo sapiens, and Pediculus humanus. Predictions for unidentified sequences from Ae. aegypti, An. gambiae, and Pe. humanus were validated. Quantitative RT-PCR expression analysis was performed on previously-known and newly discovered Ae. aegypti GPCR genes. Results We present a new analysis of GPCRs in the genomes of Ae, aegypti, a vector of dengue fever, An. gambiae, a primary vector of Plasmodium falciparum that causes malaria, and Pe. humanus, a vector of epidemic typhus fever, using a novel GPCR classifier, Ensemble*, designed for insect vector species. We identified 30 additional putative GPCRs, 19 of which we validated. Expression of the newly discovered Ae. aegypti GPCR genes was confirmed via quantitative RT-PCR. Conclusion A novel GPCR classifier for insect vectors, Ensemble*, was developed and GPCR predictions were validated. Ensemble* and the validation pipeline were applied to the genomes of three insect vectors (Ae. aegypti, An. gambiae, and Pe. humanus), resulting in the identification of 52 GPCRs not previously identified, of which 11 are predicted GPCRs, and 19 are

  4. Desensitization of G protein-coupled receptors and neuronal functions.

    PubMed

    Gainetdinov, Raul R; Premont, Richard T; Bohn, Laura M; Lefkowitz, Robert J; Caron, Marc G

    2004-01-01

    G protein-coupled receptors (GPCRs) have proven to be the most highly favorable class of drug targets in modern pharmacology. Over 90% of nonsensory GPCRs are expressed in the brain, where they play important roles in numerous neuronal functions. GPCRs can be desensitized following activation by agonists by becoming phosphorylated by members of the family of G protein-coupled receptor kinases (GRKs). Phosphorylated receptors are then bound by arrestins, which prevent further stimulation of G proteins and downstream signaling pathways. Discussed in this review are recent progress in understanding basics of GPCR desensitization, novel functional roles, patterns of brain expression, and receptor specificity of GRKs and beta arrestins in major brain functions. In particular, screening of genetically modified mice lacking individual GRKs or beta arrestins for alterations in behavioral and biochemical responses to cocaine and morphine has revealed a functional specificity in dopamine and mu-opioid receptor regulation of locomotion and analgesia. An important and specific role of GRKs and beta arrestins in regulating physiological responsiveness to psychostimulants and morphine suggests potential involvement of these molecules in certain brain disorders, such as addiction, Parkinson's disease, mood disorders, and schizophrenia. Furthermore, the utility of a pharmacological strategy aimed at targeting this GPCR desensitization machinery to regulate brain functions can be envisaged. PMID:15217328

  5. Serial femtosecond crystallography datasets from G protein-coupled receptors.

    PubMed

    White, Thomas A; Barty, Anton; Liu, Wei; Ishchenko, Andrii; Zhang, Haitao; Gati, Cornelius; Zatsepin, Nadia A; Basu, Shibom; Oberthür, Dominik; Metz, Markus; Beyerlein, Kenneth R; Yoon, Chun Hong; Yefanov, Oleksandr M; James, Daniel; Wang, Dingjie; Messerschmidt, Marc; Koglin, Jason E; Boutet, Sébastien; Weierstall, Uwe; Cherezov, Vadim

    2016-01-01

    We describe the deposition of four datasets consisting of X-ray diffraction images acquired using serial femtosecond crystallography experiments on microcrystals of human G protein-coupled receptors, grown and delivered in lipidic cubic phase, at the Linac Coherent Light Source. The receptors are: the human serotonin receptor 2B in complex with an agonist ergotamine, the human δ-opioid receptor in complex with a bi-functional peptide ligand DIPP-NH2, the human smoothened receptor in complex with an antagonist cyclopamine, and finally the human angiotensin II type 1 receptor in complex with the selective antagonist ZD7155. All four datasets have been deposited, with minimal processing, in an HDF5-based file format, which can be used directly for crystallographic processing with CrystFEL or other software. We have provided processing scripts and supporting files for recent versions of CrystFEL, which can be used to validate the data. PMID:27479354

  6. Serial femtosecond crystallography datasets from G protein-coupled receptors

    PubMed Central

    White, Thomas A.; Barty, Anton; Liu, Wei; Ishchenko, Andrii; Zhang, Haitao; Gati, Cornelius; Zatsepin, Nadia A.; Basu, Shibom; Oberthür, Dominik; Metz, Markus; Beyerlein, Kenneth R.; Yoon, Chun Hong; Yefanov, Oleksandr M.; James, Daniel; Wang, Dingjie; Messerschmidt, Marc; Koglin, Jason E.; Boutet, Sébastien; Weierstall, Uwe; Cherezov, Vadim

    2016-01-01

    We describe the deposition of four datasets consisting of X-ray diffraction images acquired using serial femtosecond crystallography experiments on microcrystals of human G protein-coupled receptors, grown and delivered in lipidic cubic phase, at the Linac Coherent Light Source. The receptors are: the human serotonin receptor 2B in complex with an agonist ergotamine, the human δ-opioid receptor in complex with a bi-functional peptide ligand DIPP-NH2, the human smoothened receptor in complex with an antagonist cyclopamine, and finally the human angiotensin II type 1 receptor in complex with the selective antagonist ZD7155. All four datasets have been deposited, with minimal processing, in an HDF5-based file format, which can be used directly for crystallographic processing with CrystFEL or other software. We have provided processing scripts and supporting files for recent versions of CrystFEL, which can be used to validate the data. PMID:27479354

  7. G protein-coupled receptors in drug discovery.

    PubMed

    Nambi, Ponnal; Aiyar, Nambi

    2003-04-01

    G protein-coupled receptors (GPCRs) represent one of the most important drug discovery targets such that compounds targeted against GPCRs represent the single largest drug class currently on the market. With the revolutionary advances in human genome sciences and the identification of numerous orphan GPCRs, it is even more important to identify ligands for these orphan GPCRs so that their physiological and pathological roles can be delineated. To this end, major pharmaceutical industries are investing enormous amounts of time and money to achieve this object. This review is a bird's eye view on the various aspects of GPCRs in drug discovery. PMID:15090195

  8. G Protein-Coupled Receptors in Major Psychiatric Disorders

    PubMed Central

    Catapano, Lisa A.; Manji, Husseini K.

    2007-01-01

    Although the molecular mechanisms underlying psychiatric illnesses such as depression, bipolar disorder and schizophrenia remain incompletely understood, there is increasing clinical, pharmacologic, and genetic evidence that G protein-coupled receptors (GPCRs) play critical roles in these disorders and their treatments. This perspectives paper reviews and synthesizes the available data. Dysfunction of multiple neurotransmitter and neuropeptide GPCRs in frontal cortex and limbic-related regions, such as the hippocampus, hypothalamus and brainstem, likely underlies the complex clinical picture that includes cognitive, perceptual, affective and motoric symptoms. The future development of novel agents targeting GPCR signaling cascades remains an exciting prospect for patients refractory to existing therapeutics. PMID:17078926

  9. GPCRDB: an information system for G protein-coupled receptors.

    PubMed

    Isberg, Vignir; Vroling, Bas; van der Kant, Rob; Li, Kang; Vriend, Gert; Gloriam, David

    2014-01-01

    For the past 20 years, the GPCRDB (G protein-coupled receptors database; http://www.gpcr.org/7tm/) has been a 'one-stop shop' for G protein-coupled receptor (GPCR)-related data. The GPCRDB contains experimental data on sequences, ligand-binding constants, mutations and oligomers, as well as many different types of computationally derived data, such as multiple sequence alignments and homology models. The GPCRDB also provides visualization and analysis tools, plus a number of query systems. In the latest GPCRDB release, all multiple sequence alignments, and >65,000 homology models, have been significantly improved, thanks to a recent flurry of GPCR X-ray structure data. Tools were introduced to browse X-ray structures, compare binding sites, profile similar receptors and generate amino acid conservation statistics. Snake plots and helix box diagrams can now be custom coloured (e.g. by chemical properties or mutation data) and saved as figures. A series of sequence alignment visualization tools has been added, and sequence alignments can now be created for subsets of sequences and sequence positions, and alignment statistics can be produced for any of these subsets. PMID:24304901

  10. Crystal Structure of a Lipid G Protein-Coupled Receptor

    SciTech Connect

    Hanson, Michael A; Roth, Christopher B; Jo, Euijung; Griffith, Mark T; Scott, Fiona L; Reinhart, Greg; Desale, Hans; Clemons, Bryan; Cahalan, Stuart M; Schuerer, Stephan C; Sanna, M Germana; Han, Gye Won; Kuhn, Peter; Rosen, Hugh; Stevens, Raymond C

    2012-03-01

    The lyso-phospholipid sphingosine 1-phosphate modulates lymphocyte trafficking, endothelial development and integrity, heart rate, and vascular tone and maturation by activating G protein-coupled sphingosine 1-phosphate receptors. Here, we present the crystal structure of the sphingosine 1-phosphate receptor 1 fused to T4-lysozyme (S1P1-T4L) in complex with an antagonist sphingolipid mimic. Extracellular access to the binding pocket is occluded by the amino terminus and extracellular loops of the receptor. Access is gained by ligands entering laterally between helices I and VII within the transmembrane region of the receptor. This structure, along with mutagenesis, agonist structure-activity relationship data, and modeling, provides a detailed view of the molecular recognition and requirement for hydrophobic volume that activates S1P1, resulting in the modulation of immune and stromal cell responses.

  11. Oligomeric forms of G protein-coupled receptors (GPCRs)

    PubMed Central

    Palczewski, Krzysztof

    2010-01-01

    Oligomerization is a general characteristic of cell membrane receptors that is shared by G protein-coupled receptors (GPCRs) together with their G protein partners. Recent studies of these complexes, both in vivo and in purified reconstituted forms, unequivocally support this contention for GPCRs, perhaps with only rare exceptions. As evidence has evolved from experimental cell lines to more relevant in vivo studies and from indirect biophysical approaches to well defined isolated complexes of dimeric receptors alone and complexed with G proteins, there is an expectation that the structural basis of oligomerization and the functional consequences for membrane signaling will be elucidated. Oligomerization of cell membrane receptors is fully supported by both thermodynamic calculations and the selectivity and duration of signaling required to reach targets located in various cellular compartments. PMID:20538466

  12. Serial Femtosecond Crystallography of G Protein-Coupled Receptors

    PubMed Central

    Liu, Wei; Wacker, Daniel; Gati, Cornelius; Han, Gye Won; James, Daniel; Wang, Dingjie; Nelson, Garrett; Weierstall, Uwe; Katritch, Vsevolod; Barty, Anton; Zatsepin, Nadia A.; Li, Dianfan; Messerschmidt, Marc; Boutet, Sébastien; Williams, Garth J.; Koglin, Jason E.; Seibert, M. Marvin; Wang, Chong; Shah, Syed T.A.; Basu, Shibom; Fromme, Raimund; Kupitz, Christopher; Rendek, Kimberley N.; Grotjohann, Ingo; Fromme, Petra; Kirian, Richard A.; Beyerlein, Kenneth R.; White, Thomas A.; Chapman, Henry N.; Caffrey, Martin; Spence, John C.H.; Stevens, Raymond C.; Cherezov, Vadim

    2014-01-01

    X-ray crystallography of G protein-coupled receptors and other membrane proteins is hampered by difficulties associated with growing sufficiently large crystals that withstand radiation damage and yield high-resolution data at synchrotron sources. Here we used an x-ray free-electron laser (XFEL) with individual 50-fs duration x-ray pulses to minimize radiation damage and obtained a high-resolution room temperature structure of a human serotonin receptor using sub-10 µm microcrystals grown in a membrane mimetic matrix known as lipidic cubic phase. Compared to the structure solved by traditional microcrystallography from cryo-cooled crystals of about two orders of magnitude larger volume, the room temperature XFEL structure displays a distinct distribution of thermal motions and conformations of residues that likely more accurately represent the receptor structure and dynamics in a cellular environment. PMID:24357322

  13. GPCRdb: an information system for G protein-coupled receptors

    PubMed Central

    Isberg, Vignir; Mordalski, Stefan; Munk, Christian; Rataj, Krzysztof; Harpsøe, Kasper; Hauser, Alexander S.; Vroling, Bas; Bojarski, Andrzej J.; Vriend, Gert; Gloriam, David E.

    2016-01-01

    Recent developments in G protein-coupled receptor (GPCR) structural biology and pharmacology have greatly enhanced our knowledge of receptor structure-function relations, and have helped improve the scientific foundation for drug design studies. The GPCR database, GPCRdb, serves a dual role in disseminating and enabling new scientific developments by providing reference data, analysis tools and interactive diagrams. This paper highlights new features in the fifth major GPCRdb release: (i) GPCR crystal structure browsing, superposition and display of ligand interactions; (ii) direct deposition by users of point mutations and their effects on ligand binding; (iii) refined snake and helix box residue diagram looks; and (iii) phylogenetic trees with receptor classification colour schemes. Under the hood, the entire GPCRdb front- and back-ends have been re-coded within one infrastructure, ensuring a smooth browsing experience and development. GPCRdb is available at http://www.gpcrdb.org/ and it's open source code at https://bitbucket.org/gpcr/protwis. PMID:26582914

  14. Regulation of G Protein-Coupled Receptors by Allosteric Ligands

    PubMed Central

    2013-01-01

    Topographically distinct, druggable, allosteric sites may be present on all G protein-coupled receptors (GPCRs). As such, targeting these sites with synthetic small molecules offers an attractive approach to develop receptor-subtype selective chemical leads for the development of novel therapies. A crucial part of drug development is to understand the acute and chronic effects of such allosteric modulators at their corresponding GPCR target. Key regulatory processes including cell-surface delivery, endocytosis, recycling, and down-regulation tightly control the number of receptors at the surface of the cell. As many GPCR therapeutics will be administered chronically, understanding how such ligands modulate these regulatory pathways forms an essential part of the characterization of novel GPCR ligands. This is true for both orthosteric and allosteric ligands. In this Review, we summarize our current understanding of GPCR regulatory processes with a particular focus on the effects and implications of allosteric targeting of GPCRs. PMID:23398684

  15. A Usual G-Protein-Coupled Receptor in Unusual Membranes.

    PubMed

    Chawla, Udeep; Jiang, Yunjiang; Zheng, Wan; Kuang, Liangju; Perera, Suchithranga M D C; Pitman, Michael C; Brown, Michael F; Liang, Hongjun

    2016-01-11

    G-protein-coupled receptors (GPCRs) are the largest family of membrane-bound receptors and constitute about 50% of all known drug targets. They offer great potential for membrane protein nanotechnologies. We report here a charge-interaction-directed reconstitution mechanism that induces spontaneous insertion of bovine rhodopsin, the eukaryotic GPCR, into both lipid- and polymer-based artificial membranes. We reveal a new allosteric mode of rhodopsin activation incurred by the non-biological membranes: the cationic membrane drives a transition from the inactive MI to the activated MII state in the absence of high [H(+)] or negative spontaneous curvature. We attribute this activation to the attractive charge interaction between the membrane surface and the deprotonated Glu134 residue of the rhodopsin-conserved ERY sequence motif that helps break the cytoplasmic "ionic lock". This study unveils a novel design concept of non-biological membranes to reconstitute and harness GPCR functions in synthetic systems. PMID:26633591

  16. Therapeutic antibodies directed at G protein-coupled receptors

    PubMed Central

    Hutchings, Catherine J; Koglin, Markus

    2010-01-01

    G protein-coupled receptors (GPCRs) are one of the most important classes of targets for small molecule drug discovery, but many current GPCRs of interest are proving intractable to small molecule discovery and may be better approached with bio-therapeutics. GPCRs are implicated in a wide variety of diseases where antibody therapeutics are currently used. These include inflammatory diseases such as rheumatoid arthritis and Crohn disease, as well as metabolic disease and cancer. Raising antibodies to GPCRs has been difficult due to problems in obtaining suitable antigen because GPCRs are often expressed at low levels in cells and are very unstable when purified. A number of new developments in overexpressing receptors, as well as formulating stable pure protein, are contributing to the growing interest in targeting GPCRs with antibodies. This review discusses the opportunities for targeting GPCRs with antibodies using these approaches and describes the therapeutic antibodies that are currently in clinical development. PMID:20864805

  17. Human G protein-coupled receptor studies in Saccharomyces cerevisiae.

    PubMed

    Liu, Rongfang; Wong, Winsy; IJzerman, Adriaan P

    2016-08-15

    G protein-coupled receptors (GPCRs) are one of the largest families of membrane proteins, with approximately 800 different GPCRs in the human genome. Signaling via GPCRs regulates many biological processes, such as cell proliferation, differentiation, and development. In addition, many receptors have a pivotal role in immunophysiology. Many hormones and neurotransmitters are ligands for these receptors, and hence it is not surprising that many drugs, either mimicking or blocking the action of the bodily substances, have been developed. It is estimated that 30-40% of current drugs on the market target GPCRs. Further identifying and elucidating the functions of GPCRs will provide opportunities for novel drug discovery, including for immunotherapy. The budding yeast Saccharomyces cerevisiae (S. cerevisiae) is a very important and useful platform in this respect. There are many advantages of using a yeast assay system, as it is cheap, safe and stable; it is also convenient for rapid feasibility and optimization studies. Moreover, it offers a "null" background when studying human GPCRs. New developments regarding human GPCRs expressed in a yeast platform are providing insight into GPCR activation and signaling, and facilitate agonist and antagonist identification. In this review we summarize the latest findings regarding human G-protein-coupled receptors in studies using S. cerevisiae, ever since the year 2005 when we last published a review on this topic. We describe 11 families of GPCRs in detail, while including the principles and developments of each yeast system applied to these different GPCRs and highlight and generalize the experimental findings of GPCR function in these systems. PMID:26920251

  18. O10.08HIGH G-PROTEIN-COUPLED RECEPTORS 65 (GPR65) EXPRESSION PREDICTS A POORER SURGICAL OUTCOME OF GLIOBLASTOMA PATIENTS

    PubMed Central

    Xu, T.; Wang, H.; Yan, Y.; Qin, R.; Jiang, Y.; Lu, Y.; Li, W.; Xia, C.; Chen, J.

    2014-01-01

    OBJECTIVES: To investigate the expression and prognostic value of G-protein-coupled receptors 65 (GPR65, also known as T-cell death-associated gene 8, TDAG8) in glioblastoma patients. METHODS: We determined the expression of GPR65 using immunohistochemistry in tissue microarrays containing 102 GBM samples and 15 normal brain samples. Cumulative survival was calculated by the Kaplan-Meier method and analyzed by the log-rank test. Univariate and multivariate analyses were performed by the stepwise forward Cox regression model. RESULTS: GPR65 protein levels were significantly elevated in glioblastoma tissues compared with those of normal brain tissues for nearly 5 folds (P < 0.001). In addition to standard therapy, patients with high GPR65 protein expression had significantly shorter OS and PFS than those with low GPR65 expression (OS: 14.6 versus 22.6 months or 14.7 versus 22.6 months, p = 0.047 and 0.040, respectively; PFS: 12.5 versus 18.9 months or 12.8 versus 19.0 months, p = 0.089 and p = 0.085, respectively). In multivariate analysis, Cox regression model identified high GPR65 expression as an independent prognostic factor for OS and PFS (Hazard ration [HR] = 1.599 and 1.593; p = 0.037 and 0.034, respectively) of primary GBM patients. No adjuvant radiotherapy, small extent of resection were other three independent risk factors of poor prognosis in glioblastoma patients. CONCLUSION: High GPR65 expression occurs in a significant subset of glioblastoma patients and predicts a poorer outcome. The study identifies a potentially useful molecular marker for the categorization and targeted therapy of glioblastoma.

  19. G Protein-Coupled Receptor Rhodopsin: A Prospectus

    PubMed Central

    Filipek, Sławomir; Stenkamp, Ronald E.; Teller, David C.; Palczewski, Krzysztof

    2006-01-01

    Rhodopsin is a retinal photoreceptor protein of bipartite structure consisting of the transmembrane protein opsin and a light-sensitive chromophore 11-cis-retinal, linked to opsin via a protonated Schiff base. Studies on rhodopsin have unveiled many structural and functional features that are common to a large and pharmacologically important group of proteins from the G protein-coupled receptor (GPCR) superfamily, of which rhodopsin is the best-studied member. In this work, we focus on structural features of rhodopsin as revealed by many biochemical and structural investigations. In particular, the high-resolution structure of bovine rhodopsin provides a template for understanding how GPCRs work. We describe the sensitivity and complexity of rhodopsin that lead to its important role in vision. PMID:12471166

  20. Nanobody stabilization of G protein coupled receptor conformational states

    PubMed Central

    Steyaert, Jan; K Kobilka, Brian

    2011-01-01

    Remarkable progress has been made in the field of G protein coupled receptor (GPCR) structural biology during the past four years. Several obstacles to generating diffraction quality crystals of GPCRs have been overcome by combining innovative methods ranging from protein engineering to lipid-based screens and microdiffraction technology. The initial GPCR structures represent energetically stable inactive-state conformations. However, GPCRs signal through different G protein isoforms or G protein-independent effectors upon ligand binding suggesting the existence of multiple ligand-specific active states. These active-state conformations are unstable in the absence of specific cytosolic signaling partners representing new challenges for structural biology. Camelid single chain antibody fragments (nanobodies) show promise for stabilizing active GPCR conformations and as chaperones for crystallogenesis. PMID:21782416

  1. Lysophospholipids and their G protein-coupled receptors in atherosclerosis.

    PubMed

    Li, Ya-Feng; Li, Rong-Shan; Samuel, Sonia B; Cueto, Ramon; Li, Xin-Yuan; Wang, Hong; Yang, Xiao-Feng

    2016-01-01

    Lysophospholipids (LPLs) are bioactive lipid-derived signaling molecules generated by the enzymatic and chemical processes of regiospecific phospholipases on substrates such as membrane phospholipids (PLs) and sphingolipids (SLs). They play a major role as extracellular mediators by activating G-protein coupled receptors (GPCRs) and stimulating diverse cellular responses from their signaling pathways. LPLs are involved in various pathologies of the vasculature system including coronary heart disease and hypertension. Many studies suggest the importance of LPLs in their association with the development of atherosclerosis, a chronic and severe vascular disease. This paper focuses on the pathophysiological effects of different lysophospholipids on atherosclerosis, which may promote the pathogenesis of myocardial infarction and strokes. Their atherogenic biological activities take place in vascular endothelial cells, vascular smooth muscle cells, fibroblasts, monocytes and macrophages, dendritic cells, T-lymphocytes, platelets, etc. PMID:26709762

  2. GPCRDB: an information system for G protein-coupled receptors.

    PubMed Central

    Horn, F; Weare, J; Beukers, M W; Hörsch, S; Bairoch, A; Chen, W; Edvardsen, O; Campagne, F; Vriend, G

    1998-01-01

    The GPCRDB is a G protein-coupled receptor (GPCR) database system aimed at the collection and dissemination of GPCR related data. It holds sequences, mutant data and ligand binding constants as primary (experimental) data. Computationally derived data such as multiple sequence alignments, three dimensional models, phylogenetic trees and two dimensional visualization tools are added to enhance the database's usefulness. The GPCRDB is an EU sponsored project aimed at building a generic molecular class specific database capable of dealing with highly heterogeneous data. GPCRs were chosen as test molecules because of their enormous importance for medical sciences and due to the availability of so much highly heterogeneous data. The GPCRDB is available via the WWW at http://www.gpcr.org/7tm PMID:9399852

  3. G protein-coupled receptors and the regulation of autophagy

    PubMed Central

    Wauson, Eric M.; Dbouk, Hashem A.; Ghosh, Anwesha B.; Cobb, Melanie H.

    2014-01-01

    Autophagy is an important catabolic cellular process that eliminates damaged and unnecessary cytoplasmic proteins and organelles. Basal autophagy occurs during normal physiological conditions, but the activity of this process can be significantly altered in human diseases. Thus, defining the regulatory inputs and signals that control autophagy is essential. Nutrients are key modulators of autophagy. While autophagy is generally accepted to be regulated in a cell autonomous fashion, recent studies suggest nutrients can modulate autophagy in a systemic manner by inducing the secretion of hormones and neurotransmitters that regulate G protein-coupled receptors (GPCRs). Emerging studies show that GPCRs also regulate autophagy by directly detecting extracellular nutrients. We review the role of GPCRs in autophagy regulation, highlighting their potential as therapeutic drug targets. PMID:24751357

  4. Do plants contain g protein-coupled receptors?

    PubMed

    Taddese, Bruck; Upton, Graham J G; Bailey, Gregory R; Jordan, Siân R D; Abdulla, Nuradin Y; Reeves, Philip J; Reynolds, Christopher A

    2014-01-01

    Whether G protein-coupled receptors (GPCRs) exist in plants is a fundamental biological question. Interest in deorphanizing new GPCRs arises because of their importance in signaling. Within plants, this is controversial, as genome analysis has identified 56 putative GPCRs, including G protein-coupled receptor1 (GCR1), which is reportedly a remote homolog to class A, B, and E GPCRs. Of these, GCR2 is not a GPCR; more recently, it has been proposed that none are, not even GCR1. We have addressed this disparity between genome analysis and biological evidence through a structural bioinformatics study, involving fold recognition methods, from which only GCR1 emerges as a strong candidate. To further probe GCR1, we have developed a novel helix-alignment method, which has been benchmarked against the class A-class B-class F GPCR alignments. In addition, we have presented a mutually consistent set of alignments of GCR1 homologs to class A, class B, and class F GPCRs and shown that GCR1 is closer to class A and/or class B GPCRs than class A, class B, or class F GPCRs are to each other. To further probe GCR1, we have aligned transmembrane helix 3 of GCR1 to each of the six GPCR classes. Variability comparisons provide additional evidence that GCR1 homologs have the GPCR fold. From the alignments and a GCR1 comparative model, we have identified motifs that are common to GCR1, class A, B, and E GPCRs. We discuss the possibilities that emerge from this controversial evidence that GCR1 has a GPCR fold. PMID:24246381

  5. Portraying G Protein-Coupled Receptors with Fluorescent Ligands

    PubMed Central

    2015-01-01

    The thermodynamics of ligand–receptor interactions at the surface of living cells represents a fundamental aspect of G protein-coupled receptor (GPCR) biology; thus, its detailed elucidation constitutes a challenge for modern pharmacology. Interestingly, fluorescent ligands have been developed for a variety of GPCRs in order to monitor ligand–receptor binding in living cells. Accordingly, new methodological strategies derived from noninvasive fluorescence-based approaches, especially fluorescence resonance energy transfer (FRET), have been successfully developed to characterize ligand–receptor interactions. Importantly, these technologies are supplanting more hazardous and expensive radioactive binding assays. In addition, FRET-based tools have also become extremely powerful approaches for visualizing receptor–receptor interactions (i.e., GPCR oligomerization) in living cells. Thus, by means of the synthesis of compatible fluorescent ligands these novel techniques can be implemented to demonstrate the existence of GPCR oligomerization not only in heterologous systems but also in native tissues. Finally, there is no doubt that these methodologies would also be relevant in drug discovery in order to develop new high-throughput screening approaches or to identify new therapeutic targets. Overall, herein, we provide a thorough assessment of all technical and biological aspects, including strengths and weaknesses, of these fluorescence-based methodologies when applied to the study of GPCR biology at the plasma membrane of living cells. PMID:25010291

  6. Model Organisms in G Protein-Coupled Receptor Research.

    PubMed

    Langenhan, Tobias; Barr, Maureen M; Bruchas, Michael R; Ewer, John; Griffith, Leslie C; Maiellaro, Isabella; Taghert, Paul H; White, Benjamin H; Monk, Kelly R

    2015-09-01

    The study of G protein-coupled receptors (GPCRs) has benefited greatly from experimental approaches that interrogate their functions in controlled, artificial environments. Working in vitro, GPCR receptorologists discovered the basic biologic mechanisms by which GPCRs operate, including their eponymous capacity to couple to G proteins; their molecular makeup, including the famed serpentine transmembrane unit; and ultimately, their three-dimensional structure. Although the insights gained from working outside the native environments of GPCRs have allowed for the collection of low-noise data, such approaches cannot directly address a receptor's native (in vivo) functions. An in vivo approach can complement the rigor of in vitro approaches: as studied in model organisms, it imposes physiologic constraints on receptor action and thus allows investigators to deduce the most salient features of receptor function. Here, we briefly discuss specific examples in which model organisms have successfully contributed to the elucidation of signals controlled through GPCRs and other surface receptor systems. We list recent examples that have served either in the initial discovery of GPCR signaling concepts or in their fuller definition. Furthermore, we selectively highlight experimental advantages, shortcomings, and tools of each model organism. PMID:25979002

  7. Structure and function of serotonin G protein-coupled receptors.

    PubMed

    McCorvy, John D; Roth, Bryan L

    2015-06-01

    Serotonin receptors are prevalent throughout the nervous system and the periphery, and remain one of the most lucrative and promising drug discovery targets for disorders ranging from migraine headaches to neuropsychiatric disorders such as schizophrenia and depression. There are 14 distinct serotonin receptors, of which 13 are G protein-coupled receptors (GPCRs), which are targets for approximately 40% of the approved medicines. Recent crystallographic and biochemical evidence has provided a converging understanding of the basic structure and functional mechanics of GPCR activation. Currently, two GPCR crystal structures exist for the serotonin family, the 5-HT1B and 5-HT2B receptor, with the antimigraine and valvulopathic drug ergotamine bound. The first serotonin crystal structures not only provide the first evidence of serotonin receptor topography but also provide mechanistic explanations into functional selectivity or biased agonism. This review will detail the findings of these crystal structures from a molecular and mutagenesis perspective for driving rational drug design for novel therapeutics incorporating biased signaling. PMID:25601315

  8. Structure and Function of Serotonin G protein Coupled Receptors

    PubMed Central

    McCorvy, John D.; Roth, Bryan L.

    2015-01-01

    Serotonin receptors are prevalent throughout the nervous system and the periphery, and remain one of the most lucrative and promising drug discovery targets for disorders ranging from migraine headaches to neuropsychiatric disorders such as schizophrenia and depression. There are 14 distinct serotonin receptors, of which 13 are G protein coupled receptors (GPCRs), which are targets for approximately 40% of the approved medicines. Recent crystallographic and biochemical evidence has provided a converging understanding of the basic structure and functional mechanics of GPCR activation. Currently, two GPCR crystal structures exist for the serotonin family, the 5-HT1B and 5-HT2B receptor, with the antimigraine and valvulopathic drug ergotamine bound. The first serotonin crystal structures not only provide the first evidence of serotonin receptor topography but also provide mechanistic explanations into functional selectivity or biased agonism. This review will detail the findings of these crystal structures from a molecular and mutagenesis perspective for driving rational drug design for novel therapeutics incorporating biased signaling. PMID:25601315

  9. Covalent agonists for studying G protein-coupled receptor activation

    PubMed Central

    Weichert, Dietmar; Kruse, Andrew C.; Manglik, Aashish; Hiller, Christine; Zhang, Cheng; Hübner, Harald; Kobilka, Brian K.; Gmeiner, Peter

    2014-01-01

    Structural studies on G protein-coupled receptors (GPCRs) provide important insights into the architecture and function of these important drug targets. However, the crystallization of GPCRs in active states is particularly challenging, requiring the formation of stable and conformationally homogeneous ligand-receptor complexes. Native hormones, neurotransmitters, and synthetic agonists that bind with low affinity are ineffective at stabilizing an active state for crystallogenesis. To promote structural studies on the pharmacologically highly relevant class of aminergic GPCRs, we here present the development of covalently binding molecular tools activating Gs-, Gi-, and Gq-coupled receptors. The covalent agonists are derived from the monoamine neurotransmitters noradrenaline, dopamine, serotonin, and histamine, and they were accessed using a general and versatile synthetic strategy. We demonstrate that the tool compounds presented herein display an efficient covalent binding mode and that the respective covalent ligand-receptor complexes activate G proteins comparable to the natural neurotransmitters. A crystal structure of the β2-adrenoreceptor in complex with a covalent noradrenaline analog and a conformationally selective antibody (nanobody) verified that these agonists can be used to facilitate crystallogenesis. PMID:25006259

  10. G-Protein Coupled Receptors: Surface Display and Biosensor Technology

    NASA Astrophysics Data System (ADS)

    McMurchie, Edward; Leifert, Wayne

    Signal transduction by G-protein coupled receptors (GPCRs) underpins a multitude of physiological processes. Ligand recognition by the receptor leads to the activation of a generic molecular switch involving heterotrimeric G-proteins and guanine nucleotides. With growing interest and commercial investment in GPCRs in areas such as drug targets, orphan receptors, high-throughput screening of drugs and biosensors, greater attention will focus on assay development to allow for miniaturization, ultrahigh-throughput and, eventually, microarray/biochip assay formats that will require nanotechnology-based approaches. Stable, robust, cell-free signaling assemblies comprising receptor and appropriate molecular switching components will form the basis of future GPCR/G-protein platforms, which should be able to be adapted to such applications as microarrays and biosensors. This chapter focuses on cell-free GPCR assay nanotechnologies and describes some molecular biological approaches for the construction of more sophisticated, surface-immobilized, homogeneous, functional GPCR sensors. The latter points should greatly extend the range of applications to which technologies based on GPCRs could be applied.

  11. Regulation of G protein-coupled receptor export trafficking

    PubMed Central

    Dong, Chunmin; Filipeanu, Catalin M.; Duvernay, Matthew T.; Wu, Guangyu

    2007-01-01

    G protein-coupled receptors (GPCRs) constitute a superfamily of cell-surface receptors which share a common topology of seven transmembrane domains and modulate a variety of cell functions through coupling to heterotrimeric G proteins by responding to a vast array of stimuli. The magnitude of cellular response elicited by a given signal is dictated by the level of GPCR expression at the plasma membrane, which is the balance of elaborately regulated endocytic and exocytic trafficking. This review will cover recent advances in understanding the molecular mechanism underlying anterograde transport of the newly synthesized GPCRs from the endoplasmic reticulum (ER) through the Golgi to the plasma membrane. We will focus on recently identified motifs involved in GPCR exit from the ER and the Golgi, GPCR folding in the ER and the rescue of misfolded receptors from within, GPCR-interacting proteins that modulate receptor cell-surface targeting, pathways that mediate GPCR traffic, and the functional role of export in controlling GPCR signaling. PMID:17074298

  12. Minireview: Nutrient Sensing by G Protein-Coupled Receptors

    PubMed Central

    Wauson, Eric M.; Lorente-Rodríguez, Andrés

    2013-01-01

    G protein-coupled receptors (GPCRs) are membrane proteins that recognize molecules in the extracellular milieu and transmit signals inside cells to regulate their behaviors. Ligands for many GPCRs are hormones or neurotransmitters that direct coordinated, stereotyped adaptive responses. Ligands for other GPCRs provide information to cells about the extracellular environment. Such information facilitates context-specific decision making that may be cell autonomous. Among ligands that are important for cellular decisions are amino acids, required for continued protein synthesis, as metabolic starting materials and energy sources. Amino acids are detected by a number of class C GPCRs. One cluster of amino acid-sensing class C GPCRs includes umami and sweet taste receptors, GPRC6A, and the calcium-sensing receptor. We have recently found that the umami taste receptor heterodimer T1R1/T1R3 is a sensor of amino acid availability that regulates the activity of the mammalian target of rapamycin. This review focuses on an array of findings on sensing amino acids and sweet molecules outside of neurons by this cluster of class C GPCRs and some of the physiologic processes regulated by them. PMID:23820899

  13. Discovery of three novel orphan G-protein-coupled receptors.

    PubMed

    Marchese, A; Sawzdargo, M; Nguyen, T; Cheng, R; Heng, H H; Nowak, T; Im, D S; Lynch, K R; George, S R; O'dowd, B F

    1999-02-15

    We have discovered three novel human genes, GPR34, GPR44, and GPR45, encoding family A G-protein-coupled receptors (GPCRs). The receptor encoded by GPR34 is most similar to the P2Y receptor subfamily, while the receptor encoded by GPR44 is most similar to chemoattractant receptors. The receptor encoded by GPR45 is the mammalian orthologue of a putative lysophosphatidic acid receptor from Xenopus laevis. Partial sequence of GPR34 was discovered during a search of the GenBank database of expressed sequence tags (ESTs). This sequence information was used both to isolate the full-length translational open reading frame from a human genomic library and to assemble a contig from additional GPR34 EST cDNAs. Northern blot and in situ hybridization analyses revealed GPR34 mRNA transcripts in several human and rat brain regions. Also, we used polymerase chain reaction (PCR) to amplify human genomic DNA using degenerate oligonucleotides designed from sequences encoding transmembrane domains 3 and 7 of opioid and somatostatin receptors. Two PCR products partially encoding novel GPCRs, named GPR44 and GPR45, were discovered and used to isolate the full-length translational open reading frames from a human genomic library. Both GPR44 and GPR45 are expressed in the central nervous system and periphery. For chromosomal localization, fluorescence in situ hybridization analysis was performed to assign GPR34 to chromosomes 4p12 and Xp11. 3, GPR44 to chromosome 11q12-q13.3, and GPR45 to chromosome 2q11. 1-q12. PMID:10036181

  14. Interaction of G protein coupled receptors and cholesterol.

    PubMed

    Gimpl, Gerald

    2016-09-01

    G protein coupled receptors (GPCRs) form the largest receptor superfamily in eukaryotic cells. Owing to their seven transmembrane helices, large parts of these proteins are embedded in the cholesterol-rich plasma membrane bilayer. Thus, GPCRs are always in proximity to cholesterol. Some of them are functionally dependent on the specific presence of cholesterol. Over the last years, enormous progress on receptor structures has been achieved. While lipophilic ligands other than cholesterol have been shown to bind either inside the helix bundle or at the receptor-lipid interface, the binding site of cholesterol was either a single transmembrane helix or a groove between two or more transmembrane helices. A clear preference for one of the two membrane leaflets has not been observed. Not surprisingly, many hydrophobic residues (primarily leucine and isoleucine) were found to be involved in cholesterol binding. In most cases, the rough β-face of cholesterol contacted the transmembrane helix bundle rather than the surrounding lipid matrix. The polar hydroxy group of cholesterol was localized near the water-membrane interface with potential hydrogen bonding to residues in receptor loop regions. Although a canonical motif, designated as CCM site, was detected as a specific cholesterol binding site in case of the β2AR, this site was not found to be occupied by cholesterol in other GPCRs possessing the same motif. Cholesterol-receptor interactions can increase the compactness of the receptor structure and are able to enhance the conformational stability towards active or inactive receptor states. Overall, all current data suggest a high plasticity of cholesterol interaction sites in GPCRs. PMID:27108066

  15. Snapin interacts with G-protein coupled receptor PKR2.

    PubMed

    Song, Jian; Li, Jie; Liu, Hua-die; Liu, Wei; Feng, Yong; Zhou, Xiao-Tao; Li, Jia-Da

    2016-01-15

    Mutations in Prokineticin receptor 2 (PKR2), a G-protein-coupled receptor, have been identified in patients with Kallmann syndrome and/or idiopathic hypogonadotropic hypogonadism, characterized by delayed puberty and infertility. In this study, we performed yeast two-hybrid screening by using PKR2 C-terminus (amino acids 333-384) as a bait, and identified Snapin as a novel interaction partner for PKR2. The interaction of Snapin and PKR2 was confirmed in GST pull-down and co-immunoprecipitation studies. We further demonstrated that two α-helix domains in Snapin are required for the interaction. And the interactive motifs of PKR2 were mapped to YFK (343-345) and HWR (351-353), which shared a similar sequence of two aromatic amino acids followed by a basic amino acid. Disruption of Snapin-PKR2 interaction did not affect PKR2 signaling, but increased the ligand-induced degradation, implying a role of Snapin in the trafficking of PKR2. PMID:26687946

  16. G-Protein-Coupled Receptors in Adult Neurogenesis

    PubMed Central

    Doze, Van A.

    2012-01-01

    The importance of adult neurogenesis has only recently been accepted, resulting in a completely new field of investigation within stem cell biology. The regulation and functional significance of adult neurogenesis is currently an area of highly active research. G-protein-coupled receptors (GPCRs) have emerged as potential modulators of adult neurogenesis. GPCRs represent a class of proteins with significant clinical importance, because approximately 30% of all modern therapeutic treatments target these receptors. GPCRs bind to a large class of neurotransmitters and neuromodulators such as norepinephrine, dopamine, and serotonin. Besides their typical role in cellular communication, GPCRs are expressed on adult neural stem cells and their progenitors that relay specific signals to regulate the neurogenic process. This review summarizes the field of adult neurogenesis and its methods and specifies the roles of various GPCRs and their signal transduction pathways that are involved in the regulation of adult neural stem cells and their progenitors. Current evidence supporting adult neurogenesis as a model for self-repair in neuropathologic conditions, adult neural stem cell therapeutic strategies, and potential avenues for GPCR-based therapeutics are also discussed. PMID:22611178

  17. Cell-Free Expression of G Protein-Coupled Receptors.

    PubMed

    Segers, Kenneth; Masure, Stefan

    2015-01-01

    The large-scale production of recombinant G protein-coupled receptors (GPCRs) is one of the major bottlenecks that hamper functional and structural studies of this important class of integral membrane proteins. Heterologous overexpression of GPCRs often results in low yields of active protein, usually due to a combination of several factors, such as low expression levels, protein insolubility, host cell toxicity, and the need to use harsh and often denaturing detergents (e.g., SDS, LDAO, OG, and DDM, among others) to extract the recombinant receptor from the host cell membrane. Many of these problematic issues are inherently linked to cell-based expression systems and can therefore be circumvented by the use of cell-free systems. In this unit, we provide a range of protocols for the production of GPCRs in a cell-free expression system. Using this system, we typically obtain GPCR expression levels of ∼1 mg per ml of reaction mixture in the continuous-exchange configuration. Although the protocols in this unit have been optimized for the cell-free expression of GPCRs, they should provide a good starting point for the production of other classes of membrane proteins, such as ion channels, aquaporins, carrier proteins, membrane-bound enzymes, and even large molecular complexes. PMID:26237676

  18. Surface plasmon resonance applied to G protein-coupled receptors

    PubMed Central

    Locatelli-Hoops, Silvia; Yeliseev, Alexei A.; Gawrisch, Klaus; Gorshkova, Inna

    2013-01-01

    G protein-coupled receptors (GPCR) are integral membrane proteins that transmit signals from external stimuli to the cell interior via activation of GTP-binding proteins (G proteins) thereby mediating key sensorial, hormonal, metabolic, immunological, and neurotransmission processes. Elucidating their structure and mechanism of interaction with extracellular and intracellular binding partners is of fundamental importance and highly relevant to rational design of new effective drugs. Surface plasmon resonance (SPR) has become a method of choice for studying biomolecular interactions at interfaces because measurements take place in real-time and do not require labeling of any of the interactants. However, due to the particular challenges imposed by the high hydrophobicity of membrane proteins and the great diversity of receptor-stimulating ligands, the application of this technique to characterize interactions of GPCR is still in the developmental phase. Here we give an overview of the principle of SPR and analyze current approaches for the preparation of the sensor chip surface, capture and stabilization of GPCR, and experimental design to characterize their interaction with ligands, G proteins and specific antibodies. PMID:24466506

  19. GATA Factor-G-Protein-Coupled Receptor Circuit Suppresses Hematopoiesis

    PubMed Central

    Gao, Xin; Wu, Tongyu; Johnson, Kirby D.; Lahvic, Jamie L.; Ranheim, Erik A.; Zon, Leonard I.; Bresnick, Emery H.

    2016-01-01

    Summary Hematopoietic stem cells (HSCs) originate from hemogenic endothelium within the aorta-gonad-mesonephros (AGM) region of the mammalian embryo. The relationship between genetic circuits controlling stem cell genesis and multi-potency is not understood. A Gata2 cis element (+9.5) enhances Gata2 expression in the AGM and induces the endothelial to HSC transition. We demonstrated that GATA-2 rescued hematopoiesis in +9.5−/− AGMs. As G-protein-coupled receptors (GPCRs) are the most common targets for FDA-approved drugs, we analyzed the GPCR gene ensemble to identify GATA-2-regulated GPCRs. Of the 20 GATA-2-activated GPCR genes, four were GATA-1-activated, and only Gpr65 expression resembled Gata2. Contrasting with the paradigm in which GATA-2-activated genes promote hematopoietic stem and progenitor cell genesis/function, our mouse and zebrafish studies indicated that GPR65 suppressed hematopoiesis. GPR65 established repressive chromatin at the +9.5 site, restricted occupancy by the activator Scl/TAL1, and repressed Gata2 transcription. Thus, a Gata2 cis element creates a GATA-2-GPCR circuit that limits positive regulators that promote hematopoiesis. PMID:26905203

  20. GATA Factor-G-Protein-Coupled Receptor Circuit Suppresses Hematopoiesis.

    PubMed

    Gao, Xin; Wu, Tongyu; Johnson, Kirby D; Lahvic, Jamie L; Ranheim, Erik A; Zon, Leonard I; Bresnick, Emery H

    2016-03-01

    Hematopoietic stem cells (HSCs) originate from hemogenic endothelium within the aorta-gonad-mesonephros (AGM) region of the mammalian embryo. The relationship between genetic circuits controlling stem cell genesis and multi-potency is not understood. A Gata2 cis element (+9.5) enhances Gata2 expression in the AGM and induces the endothelial to HSC transition. We demonstrated that GATA-2 rescued hematopoiesis in +9.5(-/-) AGMs. As G-protein-coupled receptors (GPCRs) are the most common targets for FDA-approved drugs, we analyzed the GPCR gene ensemble to identify GATA-2-regulated GPCRs. Of the 20 GATA-2-activated GPCR genes, four were GATA-1-activated, and only Gpr65 expression resembled Gata2. Contrasting with the paradigm in which GATA-2-activated genes promote hematopoietic stem and progenitor cell genesis/function, our mouse and zebrafish studies indicated that GPR65 suppressed hematopoiesis. GPR65 established repressive chromatin at the +9.5 site, restricted occupancy by the activator Scl/TAL1, and repressed Gata2 transcription. Thus, a Gata2 cis element creates a GATA-2-GPCR circuit that limits positive regulators that promote hematopoiesis. PMID:26905203

  1. G Protein-coupled Estrogen Receptor Protects from Atherosclerosis

    PubMed Central

    Meyer, Matthias R.; Fredette, Natalie C.; Howard, Tamara A.; Hu, Chelin; Ramesh, Chinnasamy; Daniel, Christoph; Amann, Kerstin; Arterburn, Jeffrey B.; Barton, Matthias; Prossnitz, Eric R.

    2014-01-01

    Coronary atherosclerosis and myocardial infarction in postmenopausal women have been linked to inflammation and reduced nitric oxide (NO) formation. Natural estrogen exerts protective effects on both processes, yet also displays uterotrophic activity. Here, we used genetic and pharmacologic approaches to investigate the role of the G protein-coupled estrogen receptor (GPER) in atherosclerosis. In ovary-intact mice, deletion of gper increased atherosclerosis progression, total and LDL cholesterol levels and inflammation while reducing vascular NO bioactivity, effects that were in some cases aggravated by surgical menopause. In human endothelial cells, GPER was expressed on intracellular membranes and mediated eNOS activation and NO formation, partially accounting for estrogen-mediated effects. Chronic treatment with G-1, a synthetic, highly selective small molecule agonist of GPER, reduced postmenopausal atherosclerosis and inflammation without uterotrophic effects. In summary, this study reveals an atheroprotective function of GPER and introduces selective GPER activation as a novel therapeutic approach to inhibit postmenopausal atherosclerosis and inflammation in the absence of uterotrophic activity. PMID:25532911

  2. Alpha-Bulges in G Protein-Coupled Receptors

    PubMed Central

    van der Kant, Rob; Vriend, Gert

    2014-01-01

    Agonist binding is related to a series of motions in G protein-coupled receptors (GPCRs) that result in the separation of transmembrane helices III and VI at their cytosolic ends and subsequent G protein binding. A large number of smaller motions also seem to be associated with activation. Most helices in GPCRs are highly irregular and often contain kinks, with extensive literature already available about the role of prolines in kink formation and the precise function of these kinks. GPCR transmembrane helices also contain many α-bulges. In this article we aim to draw attention to the role of these α-bulges in ligand and G-protein binding, as well as their role in several aspects of the mobility associated with GPCR activation. This mobility includes regularization and translation of helix III in the extracellular direction, a rotation of the entire helix VI, an inward movement of the helices near the extracellular side, and a concerted motion of the cytosolic ends of the helices that makes their orientation appear more circular and that opens up space for the G protein to bind. In several cases, α-bulges either appear or disappear as part of the activation process. PMID:24806342

  3. Agonist-induced changes in RalA activities allows the prediction of the endocytosis of G protein-coupled receptors.

    PubMed

    Zheng, Mei; Zhang, Xiaohan; Guo, Shuohan; Zhang, Xiaowei; Min, Chengchun; Cheon, Seung Hoon; Oak, Min-Ho; Kim, Young Ran; Kim, Kyeong-Man

    2016-01-01

    GTP binding proteins are classified into two families: heterotrimeric large G proteins which are composed of three subunits, and one subunit of small G proteins. Roles of small G proteins in the intracellular trafficking of G protein-coupled receptors (GPCRs) were studied. Among various small G proteins tested, GTP-bound form (G23V) of RalA inhibited the internalization of dopamine D2 receptor independently of the previously reported downstream effectors of RalA, such as Ral-binding protein 1 and PLD. With high affinity for GRK2, active RalA inhibited the GPCR endocytosis by sequestering the GRK2 from receptors. When it was tested for several GPCRs including an endogenous GPCR, lysophosphatidic acid receptor 1, agonist-induced conversion of GTP-bound to GDP-bound RalA, which presumably releases the sequestered GRK2, was observed selectively with the GPCRs which have tendency to undergo endocytosis. Conversion of RalA from active to inactive state occurred by translocation of RGL, a guanine nucleotide exchange factor, from the plasma membrane to cytosol as a complex with Gβγ. These results suggest that agonist-induced Gβγ-mediated conversion of RalA from the GTP-bound form to the GDP-bound form could be a mechanism to facilitate agonist-induced internalization of GPCRs. PMID:26477566

  4. G-protein-coupled receptor kinase 2 terminates G-protein-coupled receptor function in steroid hormone 20-hydroxyecdysone signaling

    PubMed Central

    Zhao, Wen-Li; Wang, Di; Liu, Chun-Yan; Zhao, Xiao-Fan

    2016-01-01

    G-protein-coupled receptors (GPCRs) transmit extracellular signals across the cell membrane. GPCR kinases (GRKs) desensitize GPCR signals in the cell membrane. However, the role and mechanism of GRKs in the desensitization of steroid hormone signaling are unclear. In this study, we propose that GRK2 is phosphorylated by protein kinase C (PKC) in response to induction by the steroid hormone 20-hydroxyecdysone (20E), which determines its translocation to the cell membrane of the lepidopteran Helicoverpa armigera. GRK2 protein expression is increased during the metamorphic stage because of induction by 20E. Knockdown of GRK2 in larvae causes accelerated pupation, an increase in 20E-response gene expression, and advanced apoptosis and metamorphosis. 20E induces translocation of GRK2 from the cytoplasm to the cell membrane via steroid hormone ecdysone-responsive GPCR (ErGPCR-2). GRK2 is phosphorylated by PKC on serine 680 after induction by 20E, which leads to the translocation of GRK2 to the cell membrane. GRK2 interacts with ErGPCR-2. These data indicate that GRK2 terminates the ErGPCR-2 function in 20E signaling in the cell membrane by a negative feedback mechanism. PMID:27412951

  5. G-protein-coupled receptor kinase 2 terminates G-protein-coupled receptor function in steroid hormone 20-hydroxyecdysone signaling.

    PubMed

    Zhao, Wen-Li; Wang, Di; Liu, Chun-Yan; Zhao, Xiao-Fan

    2016-01-01

    G-protein-coupled receptors (GPCRs) transmit extracellular signals across the cell membrane. GPCR kinases (GRKs) desensitize GPCR signals in the cell membrane. However, the role and mechanism of GRKs in the desensitization of steroid hormone signaling are unclear. In this study, we propose that GRK2 is phosphorylated by protein kinase C (PKC) in response to induction by the steroid hormone 20-hydroxyecdysone (20E), which determines its translocation to the cell membrane of the lepidopteran Helicoverpa armigera. GRK2 protein expression is increased during the metamorphic stage because of induction by 20E. Knockdown of GRK2 in larvae causes accelerated pupation, an increase in 20E-response gene expression, and advanced apoptosis and metamorphosis. 20E induces translocation of GRK2 from the cytoplasm to the cell membrane via steroid hormone ecdysone-responsive GPCR (ErGPCR-2). GRK2 is phosphorylated by PKC on serine 680 after induction by 20E, which leads to the translocation of GRK2 to the cell membrane. GRK2 interacts with ErGPCR-2. These data indicate that GRK2 terminates the ErGPCR-2 function in 20E signaling in the cell membrane by a negative feedback mechanism. PMID:27412951

  6. G protein coupled receptors as targets for next generation pesticides.

    PubMed

    Audsley, Neil; Down, Rachel E

    2015-12-01

    There is an on-going need for the discovery and development of new pesticides due to the loss of existing products through the continuing development of resistance, the desire for products with more favourable environmental and toxicological profiles and the need to implement the principles of integrated pest management. Insect G protein coupled receptors (GPCRs) have important roles in modulating biology, physiology and behaviour, including reproduction, osmoregulation, growth and development. Modifying normal receptor function by blocking or over stimulating its actions may either result in the death of a pest or disrupt its normal fitness or reproductive capacity to reduce pest populations. Hence GPCRs offer potential targets for the development of next generation pesticides providing opportunities to discover new chemistries for invertebrate pest control. Such receptors are important targets for pharmaceutical drugs, but are under-exploited by the agro-chemical industry. The octopamine receptor agonists are the only pesticides with a recognized mode of action, as described in the classification scheme developed by the Insecticide Resistance Action Committee, that act via a GPCR. The availability of sequenced insect genomes has facilitated the characterization of insect GPCRs, but the development and utilization of screening assays to identify lead compounds has been slow. Various studies using knock-down technologies or applying the native ligands and/or neuropeptide analogues to pest insects in vivo, have however demonstrated that modifying normal receptor function can have an insecticidal effect. This review presents examples of potential insect neuropeptide receptors that are potential targets for lead compound development, using case studies from three representative pest species, Tribolium castaneum, Acyrthosiphon pisum, and Drosophila suzukii. Functional analysis studies on T. castaneum suggest that GPCRs involved in growth and development (eclosion

  7. Conformational Fluctuations in G-Protein-Coupled Receptors

    NASA Astrophysics Data System (ADS)

    Brown, Michael F.

    2014-03-01

    G-protein-coupled receptors (GPCRs) comprise almost 50% of pharmaceutical drug targets, where rhodopsin is an important prototype and occurs naturally in a lipid membrane. Rhodopsin photoactivation entails 11-cis to all-trans isomerization of the retinal cofactor, yielding an equilibrium between inactive Meta-I and active Meta-II states. Two important questions are: (1) Is rhodopsin is a simple two-state switch? Or (2) does isomerization of retinal unlock an activated conformational ensemble? For an ensemble-based activation mechanism (EAM) a role for conformational fluctuations is clearly indicated. Solid-state NMR data together with theoretical molecular dynamics (MD) simulations detect increased local mobility of retinal after light activation. Resultant changes in local dynamics of the cofactor initiate large-scale fluctuations of transmembrane helices that expose recognition sites for the signal-transducing G-protein. Time-resolved FTIR studies and electronic spectroscopy further show the conformational ensemble is strongly biased by the membrane lipid composition, as well as pH and osmotic pressure. A new flexible surface model (FSM) describes how the curvature stress field of the membrane governs the energetics of active rhodopsin, due to the spontaneous monolayer curvature of the lipids. Furthermore, influences of osmotic pressure dictate that a large number of bulk water molecules are implicated in rhodopsin activation. Around 60 bulk water molecules activate rhodopsin, which is much larger than the number of structural waters seen in X-ray crystallography, or inferred from studies of bulk hydrostatic pressure. Conformational selection and promoting vibrational motions of rhodopsin lead to activation of the G-protein (transducin). Our biophysical data give a paradigm shift in understanding GPCR activation. The new view is: dynamics and conformational fluctuations involve an ensemble of substates that activate the cognate G-protein in the amplified visual

  8. Activation of the A2A adenosine G-protein-coupled receptor by conformational selection.

    PubMed

    Ye, Libin; Van Eps, Ned; Zimmer, Marco; Ernst, Oliver P; Prosser, R Scott

    2016-05-12

    Conformational selection and induced fit are two prevailing mechanisms to explain the molecular basis for ligand-based activation of receptors. G-protein-coupled receptors are the largest class of cell surface receptors and are important drug targets. A molecular understanding of their activation mechanism is critical for drug discovery and design. However, direct evidence that addresses how agonist binding leads to the formation of an active receptor state is scarce. Here we use (19)F nuclear magnetic resonance to quantify the conformational landscape occupied by the adenosine A2A receptor (A2AR), a prototypical class A G-protein-coupled receptor. We find an ensemble of four states in equilibrium: (1) two inactive states in millisecond exchange, consistent with a formed (state S1) and a broken (state S2) salt bridge (known as 'ionic lock') between transmembrane helices 3 and 6; and (2) two active states, S3 and S3', as identified by binding of a G-protein-derived peptide. In contrast to a recent study of the β2-adrenergic receptor, the present approach allowed identification of a second active state for A2AR. Addition of inverse agonist (ZM241385) increases the population of the inactive states, while full agonists (UK432097 or NECA) stabilize the active state, S3', in a manner consistent with conformational selection. In contrast, partial agonist (LUF5834) and an allosteric modulator (HMA) exclusively increase the population of the S3 state. Thus, partial agonism is achieved here by conformational selection of a distinct active state which we predict will have compromised coupling to the G protein. Direct observation of the conformational equilibria of ligand-dependent G-protein-coupled receptor and deduction of the underlying mechanisms of receptor activation will have wide-reaching implications for our understanding of the function of G-protein-coupled receptor in health and disease. PMID:27144352

  9. Functional associations among G protein-coupled neurotransmitter receptors in the human brain

    PubMed Central

    2014-01-01

    Background The activity of neurons is controlled by groups of neurotransmitter receptors rather than by individual receptors. Experimental studies have investigated some receptor interactions, but currently little information is available about transcriptional associations among receptors at the whole-brain level. Results A total of 4950 correlations between 100 G protein-coupled neurotransmitter receptors were examined across 169 brain regions in the human brain using expression data published in the Allen Human Brain Atlas. A large number of highly significant correlations were found, many of which have not been investigated in hypothesis-driven studies. The highest positive and negative correlations of each receptor are reported, which can facilitate the construction of receptor sets likely to be affected by altered transcription of one receptor (such sets always exist, but their members are difficult to predict). A graph analysis isolated two large receptor communities, within each of which receptor mRNA levels were strongly cross-correlated. Conclusions The presented systematic analysis shows that the mRNA levels of many G protein-coupled receptors are interdependent. This finding is not unexpected, since the brain is a highly integrated complex system. However, the analysis also revealed two novel properties of global brain structure. First, receptor correlations are described by a simple statistical distribution, which suggests that receptor interactions may be guided by qualitatively similar processes. Second, receptors appear to form two large functional communities, which might be differentially affected in brain disorders. PMID:24438157

  10. Inhibition of receptor/G protein coupling by suramin analogues.

    PubMed

    Beindl, W; Mitterauer, T; Hohenegger, M; Ijzerman, A P; Nanoff, C; Freissmuth, M

    1996-08-01

    Suramin analogues act as direct antagonists of heterotrimeric G proteins because they block the rate-limiting step of G protein activation (i.e., the dissociation of GDP prebound to the G protein alpha subunit). We have used the human brain A1 adenosine receptor and the rat striatal D2 dopamine receptor, two prototypical Gi/G(o)-coupled receptors, as a model system to test whether the following analogues suppress the receptor-dependent activation of G proteins: 8-(3-nitrobenzamido)-1,3,5-naphthalenetrisulfonic acid (NF007), 8-(3-(3-nitrobenzamido)-benzamido)-1,3,5-naphthalenetrisulfonic acid (NF018); 8,8'-(carbonylbis(imino-3,1-phenylene))bis-(1,3,5-naphthalenetr isulfonic acid) (NF023); 8,8'-(carbonylbis(imino-3,1-phenylene)carbonylimino-(3,1- phenylene)) bis(1,3,5-naphthalenetrisulfonic acid) (NF037); and suramin. Suramin and its analogues inhibit the formation of the agonist-specific ternary complex (agonist/receptor/G protein). This inhibition is (i) quasicompetitive with respect to agonist binding in that it can be overcome by increasing receptor occupancy but (ii) does not result from an interaction of the analogues with the ligand binding pocket of the receptors because the binding of antagonists or of agonists in the absence of functional receptor/G protein interaction is not affected. In addition to suppressing the spontaneous release of GDP from defined G protein alpha subunits, suramin and its analogues reduce receptor-catalyzed guanine nucleotide exchange. The site, to which suramin analogues bind, overlaps with the docking site for the receptor on the G protein alpha subunit. The structure-activity relationships for inhibition of agonist binding to the A1 adenosine receptor (suramin > NF037 > NF023) and of agonist binding to the inhibition D2 dopamine receptor (suramin = NF037 > NF023 > NF018) differ. Thus, NF037 discriminates between the ternary complexes formed by the agonist-liganded D2 dopamine receptors and those formed by the A1 adenosine

  11. Allosteric Modulators of Class B G-Protein-Coupled Receptors

    PubMed Central

    Hoare, Sam R.J

    2007-01-01

    Class B GPCR’s are activated by peptide ligands, typically 30-40 amino acid residues, that are involved in major physiological functions such as glucose homeostasis (glucagon and glucagon-like peptide 1), calcium homeostasis and bone turnover (parathyroid hormone and calcitonin), and control of the stress axis (corticotropin-releasing factor). Peptide therapeutics have been developed targeting these receptors but development of nonpeptide ligands, enabling oral administration, has proved challenging. Allosteric modulation of these receptors provides a potential route to developing nonpeptide ligands that inhibit, activate, or potentiate activation of these receptors. Here the known mechanisms of allosteric modulators targeting Class B GPCR’s are reviewed, particularly nonpeptide antagonists of the corticotropin-releasing factor 1 receptor and allosteric enhancers of the glucagon-like peptide-1 receptor. Also discussed is the potential for antagonist ligands to operate by competitive inhibition of one of the peptide binding sites, analogous to the Charniere mechanism. These mechanisms are then used to discuss potential strategies and management of pharmacological complexity in the future development of allosteric modulators for Class B GPCR’s. PMID:19305799

  12. Computational methods for studying G protein-coupled receptors (GPCRs).

    PubMed

    Kaczor, Agnieszka A; Rutkowska, Ewelina; Bartuzi, Damian; Targowska-Duda, Katarzyna M; Matosiuk, Dariusz; Selent, Jana

    2016-01-01

    The functioning of GPCRs is classically described by the ternary complex model as the interplay of three basic components: a receptor, an agonist, and a G protein. According to this model, receptor activation results from an interaction with an agonist, which translates into the activation of a particular G protein in the intracellular compartment that, in turn, is able to initiate particular signaling cascades. Extensive studies on GPCRs have led to new findings which open unexplored and exciting possibilities for drug design and safer and more effective treatments with GPCR targeting drugs. These include discovery of novel signaling mechanisms such as ligand promiscuity resulting in multitarget ligands and signaling cross-talks, allosteric modulation, biased agonism, and formation of receptor homo- and heterodimers and oligomers which can be efficiently studied with computational methods. Computer-aided drug design techniques can reduce the cost of drug development by up to 50%. In particular structure- and ligand-based virtual screening techniques are a valuable tool for identifying new leads and have been shown to be especially efficient for GPCRs in comparison to water-soluble proteins. Modern computer-aided approaches can be helpful for the discovery of compounds with designed affinity profiles. Furthermore, homology modeling facilitated by a growing number of available templates as well as molecular docking supported by sophisticated techniques of molecular dynamics and quantitative structure-activity relationship models are an excellent source of information about drug-receptor interactions at the molecular level. PMID:26928552

  13. Receptor activity-modifying proteins; multifunctional G protein-coupled receptor accessory proteins.

    PubMed

    Hay, Debbie L; Walker, Christopher S; Gingell, Joseph J; Ladds, Graham; Reynolds, Christopher A; Poyner, David R

    2016-04-15

    Receptor activity-modifying proteins (RAMPs) are single pass membrane proteins initially identified by their ability to determine the pharmacology of the calcitonin receptor-like receptor (CLR), a family B G protein-coupled receptor (GPCR). It is now known that RAMPs can interact with a much wider range of GPCRs. This review considers recent developments on the structure of the complexes formed between the extracellular domains (ECDs) of CLR and RAMP1 or RAMP2 as these provide insights as to how the RAMPs direct ligand binding. The range of RAMP interactions is also considered; RAMPs can interact with numerous family B GPCRs as well as examples of family A and family C GPCRs. They influence receptor expression at the cell surface, trafficking, ligand binding and G protein coupling. The GPCR-RAMP interface offers opportunities for drug targeting, illustrated by examples of drugs developed for migraine. PMID:27068971

  14. Allosteric Activation of a G Protein-coupled Receptor with Cell-penetrating Receptor Mimetics*

    PubMed Central

    Zhang, Ping; Leger, Andrew J.; Baleja, James D.; Rana, Rajashree; Corlin, Tiffany; Nguyen, Nga; Koukos, Georgios; Bohm, Andrew; Covic, Lidija; Kuliopulos, Athan

    2015-01-01

    G protein-coupled receptors (GPCRs) are remarkably versatile signaling systems that are activated by a large number of different agonists on the outside of the cell. However, the inside surface of the receptors that couple to G proteins has not yet been effectively modulated for activity or treatment of diseases. Pepducins are cell-penetrating lipopeptides that have enabled chemical and physical access to the intracellular face of GPCRs. The structure of a third intracellular (i3) loop agonist, pepducin, based on protease-activated receptor-1 (PAR1) was solved by NMR and found to closely resemble the i3 loop structure predicted for the intact receptor in the on-state. Mechanistic studies revealed that the pepducin directly interacts with the intracellular H8 helix region of PAR1 and allosterically activates the receptor through the adjacent (D/N)PXXYYY motif through a dimer-like mechanism. The i3 pepducin enhances PAR1/Gα subunit interactions and induces a conformational change in fluorescently labeled PAR1 in a very similar manner to that induced by thrombin. As pepducins can potentially be made to target any GPCR, these data provide insight into the identification of allosteric modulators to this major drug target class. PMID:25934391

  15. GPCRdb: the G protein-coupled receptor database - an introduction.

    PubMed

    Munk, C; Isberg, V; Mordalski, S; Harpsøe, K; Rataj, K; Hauser, A S; Kolb, P; Bojarski, A J; Vriend, G; Gloriam, D E

    2016-07-01

    GPCRs make up the largest family of human membrane proteins and of drug targets. Recent advances in GPCR pharmacology and crystallography have shed new light on signal transduction, allosteric modulation and biased signalling, translating into new mechanisms and principles for drug design. The GPCR database, GPCRdb, has served the community for over 20 years and has recently been extended to include a more multidisciplinary audience. This review is intended to introduce new users to the services in GPCRdb, which meets three overall purposes: firstly, to provide reference data in an integrated, annotated and structured fashion, with a focus on sequences, structures, single-point mutations and ligand interactions. Secondly, to equip the community with a suite of web tools for swift analysis of structures, sequence similarities, receptor relationships, and ligand target profiles. Thirdly, to facilitate dissemination through interactive diagrams of, for example, receptor residue topologies, phylogenetic relationships and crystal structure statistics. Herein, these services are described for the first time; visitors and guides are provided with good practices for their utilization. Finally, we describe complementary databases cross-referenced by GPCRdb and web servers with corresponding functionality. PMID:27155948

  16. Deletion of G-protein-coupled receptor 55 promotes obesity by reducing physical activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cannabinoid receptor 1 (CB1) is the best-characterized cannabinoid receptor, and CB1 antagonists are used in clinical trials to treat obesity. Because of the wide range of CB1 functions, the side effects of CB1 antagonists pose serious concerns. G-protein-coupled receptor 55 (GPR55) is an atypical c...

  17. Use of Designer G Protein-Coupled Receptors to Dissect Metabolic Pathways.

    PubMed

    Wess, Jürgen

    2016-09-01

    G protein-coupled receptors (GPCRs) regulate virtually all metabolic processes, including glucose and energy homeostasis. Recently, the use of designer GPCRs referred to as designer receptors exclusively activated by designer drug (DREADDs) has made it possible to dissect metabolically relevant GPCR signaling pathways in a temporally and spatially controlled fashion in vivo. PMID:27381463

  18. In silico prediction of the G-protein coupled receptors expressed during the metamorphic molt of Sagmariasus verreauxi (Crustacea: Decapoda) by mining transcriptomic data: RNA-seq to repertoire.

    PubMed

    Buckley, Sean J; Fitzgibbon, Quinn P; Smith, Gregory G; Ventura, Tomer

    2016-03-01

    Against a backdrop of food insecurity, the farming of decapod crustaceans is a rapidly expanding and globally significant source of food protein. Sagmariasus verreauxi spiny lobster, the subject of this study, are decapods of underdeveloped aquaculture potential. Crustacean neuropeptide G-protein coupled receptors (GPCRs) mediate endocrine pathways that are integral to animal fecundity, growth and survival. The potential use of novel biotechnologies to enhance GPCR-mediated physiology may assist in improving the health and productivity of farmed decapod populations. This study catalogues the GPCRs expressed in the early developmental stages, as well as adult tissues, with a view to illuminating key neuropeptide receptors. De novo assembled contiguous sequences generated from transcriptomic reads of metamorphic and post metamorphic S. verreauxi were filtered for seven transmembrane domains, and used as a reference for iterative re-mapping. Subsequent putative GPCR open reading frames (ORFs) were BLAST annotated, categorised, and compared to published orthologues based on phylogenetic analysis. A total of 85 GPCRs were digitally predicted, that represented each of the four arthropod subfamilies. They generally displayed low-level and non-differential metamorphic expression with few exceptions that we examined using RT-PCR and qPCR. Two putative CHH-like neuropeptide receptors were annotated. Three dimensional structural modelling suggests that these receptors exhibit a conserved extracellular ligand binding pocket, providing support to the notion that these receptors co-evolved with their ligands across Decapoda. This perhaps narrows the search for means to increase productivity of farmed decapod populations. PMID:26850661

  19. Activation of family C G-protein-coupled receptors by the tripeptide glutathione.

    PubMed

    Wang, Minghua; Yao, Yi; Kuang, Donghui; Hampson, David R

    2006-03-31

    The Family C G-protein-coupled receptors include the metabotropic glutamate receptors, the gamma-aminobutyric acid, type B (GABAB) receptor, the calcium-sensing receptor (CaSR), which participates in the regulation of calcium homeostasis in the body, and a diverse group of sensory receptors that encompass the amino acid-activated fish 5.24 chemosensory receptor, the mammalian T1R taste receptors, and the V2R pheromone receptors. A common feature of Family C receptors is the presence of an amino acid binding site. In this study, a preliminary in silico analysis of the size and shape of the amino acid binding pocket in selected Family C receptors suggested that some members of this family could accommodate larger ligands such as peptides. Subsequent screening and docking experiments identified GSH as a potential ligand or co-ligand at the fish 5.24 receptor and the rat CaSR. These in silico predictions were confirmed using an [3H]GSH radioligand binding assay and a fluorescence-based functional assay performed on wild-type and chimeric receptors. Glutathione was shown to act as an orthosteric agonist at the 5.24 receptor and as a potent enhancer of calcium-induced activation of the CaSR. Within the mammalian receptors, this effect was specific to the CaSR because GSH neither directly activated nor potentiated other Family C receptors including GPRC6A (the putative mammalian homolog of the fish 5.24 receptor), the metabotropic glutamate receptors, or the GABAB receptor. Our findings reveal a potential new role for GSH and suggest that this peptide may act as an endogenous modulator of the CaSR in the parathyroid gland where this receptor is known to control the release of parathyroid hormone, and in other tissues such as the brain and gastrointestinal tract where the role of the calcium receptor appears to subserve other, as yet unknown, physiological functions. PMID:16455645

  20. Protease-Activated Receptors and other G-Protein-Coupled Receptors: the Melanoma Connection

    PubMed Central

    Rosero, Rebecca A.; Villares, Gabriel J.; Bar-Eli, Menashe

    2016-01-01

    The vast array of G-protein-coupled receptors (GPCRs) play crucial roles in both physiological and pathological processes, including vision, coagulation, inflammation, autophagy, and cell proliferation. GPCRs also affect processes that augment cell proliferation and metastases in many cancers including melanoma. Melanoma is the deadliest form of skin cancer, yet limited therapeutic modalities are available to patients with metastatic melanoma. Studies have found that both chemokine receptors and protease-activated receptors, both of which are GPCRs, are central to the metastatic melanoma phenotype and may serve as potential targets in novel therapies against melanoma and other cancers. PMID:27379162

  1. Spatial and Temporal Aspects of Signaling by G-Protein-Coupled Receptors.

    PubMed

    Lohse, Martin J; Hofmann, Klaus Peter

    2015-09-01

    Signaling by G-protein-coupled receptors is often considered a uniform process, whereby a homogeneously activated proportion of randomly distributed receptors are activated under equilibrium conditions and produce homogeneous, steady-state intracellular signals. While this may be the case in some biologic systems, the example of rhodopsin with its strictly local single-quantum mode of function shows that homogeneity in space and time cannot be a general property of G-protein-coupled systems. Recent work has now revealed many other systems where such simplicity does not prevail. Instead, a plethora of mechanisms allows much more complex patterns of receptor activation and signaling: different mechanisms of protein-protein interaction; temporal changes under nonequilibrium conditions; localized receptor activation; and localized second messenger generation and degradation-all of which shape receptor-generated signals and permit the creation of multiple signal types. Here, we review the evidence for such pleiotropic receptor signaling in space and time. PMID:26184590

  2. Heterotrimeric G Protein-coupled Receptor Signaling in Yeast Mating Pheromone Response*

    PubMed Central

    Alvaro, Christopher G.; Thorner, Jeremy

    2016-01-01

    The DNAs encoding the receptors that respond to the peptide mating pheromones of the budding yeast Saccharomyces cerevisiae were isolated in 1985, and were the very first genes for agonist-binding heterotrimeric G protein-coupled receptors (GPCRs) to be cloned in any organism. Now, over 30 years later, this yeast and its receptors continue to provide a pathfinding experimental paradigm for investigating GPCR-initiated signaling and its regulation, as described in this retrospective overview. PMID:26907689

  3. Recent Progress in Understanding Subtype Specific Regulation of NMDA Receptors by G Protein Coupled Receptors (GPCRs)

    PubMed Central

    Yang, Kai; Jackson, Michael F.; MacDonald, John F.

    2014-01-01

    G Protein Coupled Receptors (GPCRs) are the largest family of receptors whose ligands constitute nearly a third of prescription drugs in the market. They are widely involved in diverse physiological functions including learning and memory. NMDA receptors (NMDARs), which belong to the ionotropic glutamate receptor family, are likewise ubiquitously expressed in the central nervous system (CNS) and play a pivotal role in learning and memory. Despite its critical contribution to physiological and pathophysiological processes, few pharmacological interventions aimed directly at regulating NMDAR function have been developed to date. However, it is well established that NMDAR function is precisely regulated by cellular signalling cascades recruited downstream of G protein coupled receptor (GPCR) stimulation. Accordingly, the downstream regulation of NMDARs likely represents an important determinant of outcome following treatment with neuropsychiatric agents that target selected GPCRs. Importantly, the functional consequence of such regulation on NMDAR function varies, based not only on the identity of the GPCR, but also on the cell type in which relevant receptors are expressed. Indeed, the mechanisms responsible for regulating NMDARs by GPCRs involve numerous intracellular signalling molecules and regulatory proteins that vary from one cell type to another. In the present article, we highlight recent findings from studies that have uncovered novel mechanisms by which selected GPCRs regulate NMDAR function and consequently NMDAR-dependent plasticity. PMID:24562329

  4. Cloning of a putative G-protein-coupled receptor from Arabidopsis thaliana.

    PubMed

    Josefsson, L G; Rask, L

    1997-10-15

    We have cloned and characterized a cDNA from Arabidopsis thaliana that most likely encodes a novel member of the vast superfamily of G-protein-coupled receptor proteins (GPCRs). By taking advantage of amino acid sequence similarities between plant expressed sequence tags (ESTs) and established G-protein-coupled receptor sequences, a probe was obtained which was used for the screening of an Arabidopsis cDNA library. The cDNA which was found is very infrequently represented in the cDNA library, suggesting a low and/or spatially restricted expression. A region of the translated sequence of the cDNA shows the highest similarity to cAMP receptors from the slime mold Dictyostelium discoideum. The same region is also similar to that in members of the animal calcitonin family of receptors. Another region of the putative receptor, however, is similar to sequences of serotonin receptors and other receptors of the so-called rhodopsin family of GPCRs. The rhodopsin family has numerous members in higher vertebrate species. Alignments and phylogenetic analyses of the regions of similarity yielded results in accordance with other evolutionary considerations. Our cDNA thus occurred on a distinct major branch in relation to the rest of the rhodopsin family. In relation to the calcitonin family, our cDNA and cAMP receptors occurred together on a distinct major branch but appear to have diverged from each other shortly after their divergence from the rest of the calcitonin family. Other features further argue for a tentative identification of it as a GPCR. It displays seven discrete and strongly predicted transmembrane domains when analyzed in hydropathy plots. The preferred orientation is with the amino terminus towards the outside. It has one Cys residue in extracellular loop 1 and another in extracellular loop 2. Cys residues in these loops are known to form disulfide bridges in many other GPCRs. Finally, it has several fully conserved amino acids that belong to the most conserved

  5. G protein-coupled receptors: extranuclear mediators for the non-genomic actions of steroids.

    PubMed

    Wang, Chen; Liu, Yi; Cao, Ji-Min

    2014-01-01

    Steroids hormones possess two distinct actions, a delayed genomic effect and a rapid non-genomic effect. Rapid steroid-triggered signaling is mediated by specific receptors localized most often to the plasma membrane. The nature of these receptors is of great interest and accumulated data suggest that G protein-coupled receptors (GPCRs) are appealing candidates. Increasing evidence regarding the interaction between steroids and specific membrane proteins, as well as the involvement of G protein and corresponding downstream signaling, have led to identification of physiologically relevant GPCRs as steroid extranuclear receptors. Examples include G protein-coupled receptor 30 (GPR30) for estrogen, membrane progestin receptor for progesterone, G protein-coupled receptor family C group 6 member A (GPRC6A) and zinc transporter member 9 (ZIP9) for androgen, and trace amine associated receptor 1 (TAAR1) for thyroid hormone. These receptor-mediated biological effects have been extended to reproductive development, cardiovascular function, neuroendocrinology and cancer pathophysiology. However, although great progress have been achieved, there are still important questions that need to be answered, including the identities of GPCRs responsible for the remaining steroids (e.g., glucocorticoid), the structural basis of steroids and GPCRs' interaction and the integration of extranuclear and nuclear signaling to the final physiological function. Here, we reviewed the several significant developments in this field and highlighted a hypothesis that attempts to explain the general interaction between steroids and GPCRs. PMID:25257522

  6. Molecular Evolution of the Transmembrane Domains of G Protein-Coupled Receptors

    PubMed Central

    Fatakia, Sarosh N.; Costanzi, Stefano; Chow, Carson C.

    2011-01-01

    G protein-coupled receptors (GPCRs) are a superfamily of integral membrane proteins vital for signaling and are important targets for pharmaceutical intervention in humans. Previously, we identified a group of ten amino acid positions (called key positions), within the seven transmembrane domain (7TM) interhelical region, which had high mutual information with each other and many other positions in the 7TM. Here, we estimated the evolutionary selection pressure at those key positions. We found that the key positions of receptors for small molecule natural ligands were under strong negative selection. Receptors naturally activated by lipids had weaker negative selection in general when compared to small molecule-activated receptors. Selection pressure varied widely in peptide-activated receptors. We used this observation to predict that a subgroup of orphan GPCRs not under strong selection may not possess a natural small-molecule ligand. In the subgroup of MRGX1-type GPCRs, we identified a key position, along with two non-key positions, under statistically significant positive selection. PMID:22132149

  7. Role and therapeutic potential of G-protein coupled receptors in breast cancer progression and metastases

    PubMed Central

    Singh, Anukriti; Nunes, Jessica J.; Ateeq, Bushra

    2015-01-01

    G-protein-coupled receptors (GPCRs) comprise a large family of cell-surface receptors, which have recently emerged as key players in tumorigenesis, angiogenesis and metastasis. In this review, we discussed our current understanding of the many roles played by GPCRs in general, and particularly Angiotensin II type I receptor (AGTR1), a member of the seven-transmembrane-spanning G-protein coupled receptor superfamily, and its significance in breast cancer progression and metastasis. We have also discussed different strategies for targeting AGTR1, and its ligand Angiotension II (Ang II), which might unravel unique opportunities for breast cancer prevention and treatment. For example, AGTR1 blockers (ARBs) which are already in clinical use for treating hypertension, merit further investigation as a therapeutic strategy for AGTR1-positive cancer patients and may have the potential to prevent Ang II-AGTR1 signalling mediated cancer pathogenesis and metastases. PMID:25981295

  8. Role and therapeutic potential of G-protein coupled receptors in breast cancer progression and metastases.

    PubMed

    Singh, Anukriti; Nunes, Jessica J; Ateeq, Bushra

    2015-09-15

    G-protein-coupled receptors (GPCRs) comprise a large family of cell-surface receptors, which have recently emerged as key players in tumorigenesis, angiogenesis and metastasis. In this review, we discussed our current understanding of the many roles played by GPCRs in general, and particularly Angiotensin II type I receptor (AGTR1), a member of the seven-transmembrane-spanning G-protein coupled receptor superfamily, and its significance in breast cancer progression and metastasis. We have also discussed different strategies for targeting AGTR1, and its ligand Angiotension II (Ang II), which might unravel unique opportunities for breast cancer prevention and treatment. For example, AGTR1 blockers (ARBs) which are already in clinical use for treating hypertension, merit further investigation as a therapeutic strategy for AGTR1-positive cancer patients and may have the potential to prevent Ang II-AGTR1 signalling mediated cancer pathogenesis and metastases. PMID:25981295

  9. Bioinformatics approaches for the classification of G-protein-coupled receptors.

    PubMed

    Gaulton, Anna; Attwood, Teresa K

    2003-04-01

    G-protein-coupled receptors are found abundantly in the human genome, and are the targets of numerous prescribed drugs. However, many receptors remain orphaned (i.e. with unknown ligand specificity), and others remain poorly characterised, with little structural information available. Consequently, there is often a gulf between sequence data and structural and functional knowledge of a receptor. Bioinformatics approaches may offer one approach to bridging this gap. In particular, protein family databases, which distil information from multiple sequence alignments into characteristic signatures, could be used to identify the families to which orphan receptors belong, and might facilitate discovery of novel motifs associated with ligand binding and G-protein-coupling. PMID:12681231

  10. Structure-based drug design for G protein-coupled receptors.

    PubMed

    Congreve, Miles; Dias, João M; Marshall, Fiona H

    2014-01-01

    Our understanding of the structural biology of G protein-coupled receptors has undergone a transformation over the past 5 years. New protein-ligand complexes are described almost monthly in high profile journals. Appreciation of how small molecules and natural ligands bind to their receptors has the potential to impact enormously how medicinal chemists approach this major class of receptor targets. An outline of the key topics in this field and some recent examples of structure- and fragment-based drug design are described. A table is presented with example views of each G protein-coupled receptor for which there is a published X-ray structure, including interactions with small molecule antagonists, partial and full agonists. The possible implications of these new data for drug design are discussed. PMID:24418607

  11. Toward multivalent signaling across G protein-coupled receptors from poly(amidoamine) dendrimers.

    PubMed

    Kim, Yoonkyung; Hechler, Béatrice; Klutz, Athena M; Gachet, Christian; Jacobson, Kenneth A

    2008-02-01

    Activation of the A2A receptor, a G protein-coupled receptor (GPCR), by extracellular adenosine, is antiaggregatory in platelets and anti-inflammatory. Multiple copies of an A2A agonist, the nucleoside CGS21680, were coupled covalently to PAMAM dendrimers and characterized spectroscopically. A fluorescent PAMAM-CGS21680 conjugate 5 inhibited aggregation of washed human platelets and was internalized. We envision that our multivalent dendrimer conjugates may improve overall pharmacological profiles compared to the monovalent GPCR ligands. PMID:18176997

  12. Structural modeling of G-protein coupled receptors: An overview on automatic web-servers.

    PubMed

    Busato, Mirko; Giorgetti, Alejandro

    2016-08-01

    Despite the significant efforts and discoveries during the last few years in G protein-coupled receptor (GPCR) expression and crystallization, the receptors with known structures to date are limited only to a small fraction of human GPCRs. The lack of experimental three-dimensional structures of the receptors represents a strong limitation that hampers a deep understanding of their function. Computational techniques are thus a valid alternative strategy to model three-dimensional structures. Indeed, recent advances in the field, together with extraordinary developments in crystallography, in particular due to its ability to capture GPCRs in different activation states, have led to encouraging results in the generation of accurate models. This, prompted the community of modelers to render their methods publicly available through dedicated databases and web-servers. Here, we present an extensive overview on these services, focusing on their advantages, drawbacks and their role in successful applications. Future challenges in the field of GPCR modeling, such as the predictions of long loop regions and the modeling of receptor activation states are presented as well. PMID:27102413

  13. Current and future G protein-coupled receptor signaling targets for heart failure therapy

    PubMed Central

    Siryk-Bathgate, Ashley; Dabul, Samalia; Lymperopoulos, Anastasios

    2013-01-01

    Although there have been significant advances in the therapy of heart failure in recent decades, such as the introduction of β-blockers and antagonists of the renin–angiotensin–aldosterone system, this devastating disease still carries tremendous morbidity and mortality in the western world. G protein-coupled receptors, such as β-adrenergic and angiotensin II receptors, located in the membranes of all three major cardiac cell types, ie, myocytes, fibroblasts, and endothelial cells, play crucial roles in regulation of cardiac function in health and disease. Their importance is reflected by the fact that, collectively, they represent the direct targets of over one-third of the currently approved cardiovascular drugs used in clinical practice. Over the past few decades, advances in elucidation of the signaling pathways they elicit, specifically in the heart, have led to identification of an increasing number of new molecular targets for heart failure therapy. Here, we review these possible targets for heart failure therapy that have emerged from studies of cardiac G protein-coupled receptor signaling in health and disease, with a particular focus on the main cardiac G protein-coupled receptor types, ie, the β-adrenergic and the angiotensin II type 1 receptors. We also highlight key issues that need to be addressed to improve the chances of success of novel therapies directed against these targets. PMID:24143078

  14. G protein-coupled estrogen receptor-selective ligands modulate endometrial tumor growth.

    PubMed

    Petrie, Whitney K; Dennis, Megan K; Hu, Chelin; Dai, Donghai; Arterburn, Jeffrey B; Smith, Harriet O; Hathaway, Helen J; Prossnitz, Eric R

    2013-01-01

    Endometrial carcinoma is the most common cancer of the female reproductive tract. GPER/GPR30 is a 7-transmembrane spanning G protein-coupled receptor that has been identified as the third estrogen receptor, in addition to ERα and ERβ. High GPER expression is predictive of poor survival in endometrial and ovarian cancer, but despite this, the estrogen-mediated signaling pathways and specific estrogen receptors involved in endometrial cancer remain unclear. Here, employing ERα-negative Hec50 endometrial cancer cells, we demonstrate that GPER mediates estrogen-stimulated activation of ERK and PI3K via matrix metalloproteinase activation and subsequent transactivation of the EGFR and that ER-targeted therapeutic agents (4-hydroxytamoxifen, ICI182,780/fulvestrant, and Raloxifene), the phytoestrogen genistein, and the "ERα-selective" agonist propylpyrazole triol also function as GPER agonists. Furthermore, xenograft tumors of Hec50 cells yield enhanced growth with G-1 and estrogen, the latter being inhibited by GPER-selective pharmacologic antagonism with G36. These results have important implications with respect to the use of putatively ER-selective ligands and particularly for the widespread long-term use of "ER-targeted" therapeutics. Moreover, our findings shed light on the potential mechanisms of SERM/SERD side effects reported in many clinical studies. Finally, our results provide the first demonstration that pharmacological inhibition of GPER activity in vivo prevents estrogen-mediated tumor growth. PMID:24379833

  15. G Protein-Coupled Estrogen Receptor-Selective Ligands Modulate Endometrial Tumor Growth

    PubMed Central

    Petrie, Whitney K.; Dennis, Megan K.; Dai, Donghai; Arterburn, Jeffrey B.; Smith, Harriet O.; Hathaway, Helen J.; Prossnitz, Eric R.

    2013-01-01

    Endometrial carcinoma is the most common cancer of the female reproductive tract. GPER/GPR30 is a 7-transmembrane spanning G protein-coupled receptor that has been identified as the third estrogen receptor, in addition to ERα and ERβ. High GPER expression is predictive of poor survival in endometrial and ovarian cancer, but despite this, the estrogen-mediated signaling pathways and specific estrogen receptors involved in endometrial cancer remain unclear. Here, employing ERα-negative Hec50 endometrial cancer cells, we demonstrate that GPER mediates estrogen-stimulated activation of ERK and PI3K via matrix metalloproteinase activation and subsequent transactivation of the EGFR and that ER-targeted therapeutic agents (4-hydroxytamoxifen, ICI182,780/fulvestrant, and Raloxifene), the phytoestrogen genistein, and the “ERα-selective” agonist propylpyrazole triol also function as GPER agonists. Furthermore, xenograft tumors of Hec50 cells yield enhanced growth with G-1 and estrogen, the latter being inhibited by GPER-selective pharmacologic antagonism with G36. These results have important implications with respect to the use of putatively ER-selective ligands and particularly for the widespread long-term use of “ER-targeted” therapeutics. Moreover, our findings shed light on the potential mechanisms of SERM/SERD side effects reported in many clinical studies. Finally, our results provide the first demonstration that pharmacological inhibition of GPER activity in vivo prevents estrogen-mediated tumor growth. PMID:24379833

  16. G Protein-coupled Receptor Kinase 2–mediated Phosphorylation of Ezrin Is Required for G Protein-coupled Receptor–dependent Reorganization of the Actin Cytoskeleton

    PubMed Central

    Cant, Sarah H.; Pitcher, Julie A.

    2005-01-01

    G protein-coupled receptor kinase 2 (GRK2) phosphorylates and desensitizes activated G protein-coupled receptors (GPCRs). Here, we identify ezrin as a novel non-GPCR substrate of GRK2. GRK2 phosphorylates glutathione S-transferase (GST)-ezrin, but not an ezrin fusion protein lacking threonine 567 (T567), in vitro. These results suggest that T567, the regulatory phosphorylation site responsible for maintaining ezrin in its active conformation, represents the principle site of GRK2-mediated phosphorylation. Two lines of evidence indicate that GRK2-mediated ezrin-radixinmoesin (ERM) phosphorylation serves to link GPCR activation to cytoskeletal reorganization. First, in Hep2 cells muscarinic M1 receptor (M1MR) activation causes membrane ruffling. This ruffling response is ERM dependent and is accompanied by ERM phosphorylation. Inhibition of GRK2, but not rho kinase or protein kinase C, prevents ERM phosphorylation and membrane ruffling. Second, agonist-induced internalization of the β2-adrenergic receptor (β2AR) and M1MR is accompanied by ERM phosphorylation and localization of phosphorylated ERM to receptor-containing endocytic vesicles. The colocalization of internalized β2AR and phosphorylated ERM is not dependent on Na+/H+ exchanger regulatory factor binding to the β2AR. Inhibition of ezrin function impedes β2AR internalization, further linking GPCR activation, GRK activity, and ezrin function. Overall, our results suggest that GRK2 serves not only to attenuate but also to transduce GPCR-mediated signals. PMID:15843435

  17. G protein-coupled odorant receptors underlie mechanosensitivity in mammalian olfactory sensory neurons

    PubMed Central

    Connelly, Timothy; Yu, Yiqun; Grosmaitre, Xavier; Wang, Jue; Santarelli, Lindsey C.; Savigner, Agnes; Qiao, Xin; Wang, Zhenshan; Storm, Daniel R.; Ma, Minghong

    2015-01-01

    Mechanosensitive cells are essential for organisms to sense the external and internal environments, and a variety of molecules have been implicated as mechanical sensors. Here we report that odorant receptors (ORs), a large family of G protein-coupled receptors, underlie the responses to both chemical and mechanical stimuli in mouse olfactory sensory neurons (OSNs). Genetic ablation of key signaling proteins in odor transduction or disruption of OR–G protein coupling eliminates mechanical responses. Curiously, OSNs expressing different OR types display significantly different responses to mechanical stimuli. Genetic swap of putatively mechanosensitive ORs abolishes or reduces mechanical responses of OSNs. Furthermore, ectopic expression of an OR restores mechanosensitivity in loss-of-function OSNs. Lastly, heterologous expression of an OR confers mechanosensitivity to its host cells. These results indicate that certain ORs are both necessary and sufficient to cause mechanical responses, revealing a previously unidentified mechanism for mechanotransduction. PMID:25550517

  18. G Protein-Coupled Receptor Signaling in Stem Cells and Cancer

    PubMed Central

    Lynch, Jennifer R.; Wang, Jenny Yingzi

    2016-01-01

    G protein-coupled receptors (GPCRs) are a large superfamily of cell-surface signaling proteins that bind extracellular ligands and transduce signals into cells via heterotrimeric G proteins. GPCRs are highly tractable drug targets. Aberrant expression of GPCRs and G proteins has been observed in various cancers and their importance in cancer stem cells has begun to be appreciated. We have recently reported essential roles for G protein-coupled receptor 84 (GPR84) and G protein subunit Gαq in the maintenance of cancer stem cells in acute myeloid leukemia. This review will discuss how GPCRs and G proteins regulate stem cells with a focus on cancer stem cells, as well as their implications for the development of novel targeted cancer therapies. PMID:27187360

  19. Engineered G protein coupled receptors reveal independent regulation of internalization, desensitization and acute signaling

    PubMed Central

    Scearce-Levie, Kimberly; Lieberman, Michael D; Elliott, Heather H; Conklin, Bruce R

    2005-01-01

    Background The physiological regulation of G protein-coupled receptors, through desensitization and internalization, modulates the length of the receptor signal and may influence the development of tolerance and dependence in response to chronic drug treatment. To explore the importance of receptor regulation, we engineered a series of Gi-coupled receptors that differ in signal length, degree of agonist-induced internalization, and ability to induce adenylyl cyclase superactivation. All of these receptors, based on the kappa opioid receptor, were modified to be receptors activated solely by synthetic ligands (RASSLs). This modification allows us to compare receptors that have the same ligands and effectors, but differ only in desensitization and internalization. Results Removal of phosphorylation sites in the C-terminus of the RASSL resulted in a mutant that was resistant to internalization and less prone to desensitization. Replacement of the C-terminus of the RASSL with the corresponding portion of the mu opioid receptor eliminated the induction of AC superactivation, without disrupting agonist-induced desensitization or internalization. Surprisingly, removal of phosphorylation sites from this chimera resulted in a receptor that is constitutively internalized, even in the absence of agonist. However, the receptor still signals and desensitizes in response to agonist, indicating normal G-protein coupling and partial membrane expression. Conclusions These studies reveal that internalization, desensitization and adenylyl cyclase superactivation, all processes that decrease chronic Gi-receptor signals, are independently regulated. Furthermore, specific mutations can radically alter superactivation or internalization without affecting the efficacy of acute Gi signaling. These mutant RASSLs will be useful for further elucidating the temporal dynamics of the signaling of G protein-coupled receptors in vitro and in vivo. PMID:15707483

  20. Molecular basis for amino acid sensing by family C G-protein-coupled receptors

    PubMed Central

    Wellendorph, P; Bräuner-Osborne, H

    2009-01-01

    Family C of human G-protein-coupled receptors (GPCRs) is constituted by eight metabotropic glutamate receptors, two γ-aminobutyric acid type B (GABAB1–2) subunits forming the heterodimeric GABAB receptor, the calcium-sensing receptor, three taste1 receptors (T1R1–3), a promiscuous L-α-amino acid receptor G-protein-coupled receptor family C, group 6, subtype A (GPRC6A) and seven orphan receptors. Aside from the orphan receptors, the family C GPCRs are dimeric receptors characterized by a large extracellular Venus flytrap domain which bind the endogenous agonists. Except from the GABAB1–2 and T1R2–3 receptor, all receptors are either activated or positively modulated by amino acids. In this review, we outline mutational, biophysical and structural studies which have elucidated the interaction of the amino acids with the Venus flytrap domains, molecular mechanisms of receptor selectivity and the initial steps in receptor activation. PMID:19298394

  1. A novel subgroup of class I G-protein-coupled receptors.

    PubMed

    Schöneberg, T; Schulz, A; Grosse, R; Schade, R; Henklein, P; Schultz, G; Gudermann, T

    1999-07-01

    Based on structural similarities of an expressed sequence tag with the platelet-activating factor (PAF) receptor a cDNA clone encoding a novel G-protein-coupled receptor (GPCR), named GPR34, was isolated from a human fetal brain cDNA library. Genomic DNA analyses revealed the receptor to be encoded by an intronless single-copy gene at Xp11. 3-11.4. The predicted 381-amino-acid protein disclosed all structural features characteristic of a member of the class I GPCR family. Except an obvious sequence homology in transmembrane domain 6, no further similarities to the PAF receptor or any other known GPCR were found. The corresponding mouse receptor DNA was isolated from a genomic P1 library displaying a 90% amino acid identity compared to the human receptor. Phylogenetic studies showed that GPR34 is preserved among vertebrates, and the existence of GPR34 subtypes was demonstrated. The receptor mRNA is abundantly expressed in human and mouse tissues. In addition to the major 2-kb transcript, a 4-kb transcript was found only in mouse liver and testis. Expression of the human GPR34 in COS-7 cells followed by Western blot studies revealed specific bands of a highly glycosylated protein between 75 and 90 kDa. A number of potential ligands including phospholipids, leukotrienes, hydroxy-eicosatetraenoic acids, nucleotides and peptides were tested in functional assays. Since none of the applied substances led to significant changes in second messenger levels (cAMP and inositol phosphates), the natural ligand and coupling profile of this novel GPCR subgroup remains unknown. PMID:10395919

  2. Ligand Binding Ensembles Determine Graded Agonist Efficacies at a G Protein-coupled Receptor.

    PubMed

    Bock, Andreas; Bermudez, Marcel; Krebs, Fabian; Matera, Carlo; Chirinda, Brian; Sydow, Dominique; Dallanoce, Clelia; Holzgrabe, Ulrike; De Amici, Marco; Lohse, Martin J; Wolber, Gerhard; Mohr, Klaus

    2016-07-29

    G protein-coupled receptors constitute the largest family of membrane receptors and modulate almost every physiological process in humans. Binding of agonists to G protein-coupled receptors induces a shift from inactive to active receptor conformations. Biophysical studies of the dynamic equilibrium of receptors suggest that a portion of receptors can remain in inactive states even in the presence of saturating concentrations of agonist and G protein mimetic. However, the molecular details of agonist-bound inactive receptors are poorly understood. Here we use the model of bitopic orthosteric/allosteric (i.e. dualsteric) agonists for muscarinic M2 receptors to demonstrate the existence and function of such inactive agonist·receptor complexes on a molecular level. Using all-atom molecular dynamics simulations, dynophores (i.e. a combination of static three-dimensional pharmacophores and molecular dynamics-based conformational sampling), ligand design, and receptor mutagenesis, we show that inactive agonist·receptor complexes can result from agonist binding to the allosteric vestibule alone, whereas the dualsteric binding mode produces active receptors. Each agonist forms a distinct ligand binding ensemble, and different agonist efficacies depend on the fraction of purely allosteric (i.e. inactive) versus dualsteric (i.e. active) binding modes. We propose that this concept may explain why agonist·receptor complexes can be inactive and that adopting multiple binding modes may be generalized also to small agonists where binding modes will be only subtly different and confined to only one binding site. PMID:27298318

  3. The repertoire of G-protein-coupled receptors in fully sequenced genomes.

    PubMed

    Fredriksson, Robert; Schiöth, Helgi B

    2005-05-01

    The superfamily of G-protein-coupled receptors (GPCRs) is one of the largest and most studied families of proteins. We created Hidden Markov Models derived from sorted groups of GPCRs from our previous detailed phylogenetic classification of human GPCRs and added several other models derived from receptors not found in mammals. We used these models to search entire Genscan data sets from 13 species whose genomes are nearly completely sequenced. We found more than 5000 unique GPCRs that were divided into 15 main groups, and the largest one, the Rhodopsin family, was subdivided into 13 subclasses. The results show that the main families in the human genome, Glutamate, Rhodopsin, Adhesion, Frizzled, and Secretin, arose before the split of nematodes from the chordate lineage. Moreover, several of the subgroups of the Rhodopsin family arose before the split of the linage leading to vertebrates. We also searched expressed sequence tag (EST) databases and identified more than 20,000 sequences that match GPCRs. Although the GPCRs represent typically 1 to 2% of the Genscan predictions, the ESTs that match GPCRs are typically only 0.01 to 0.001%, indicating that GPCRs in most of the groups are expressed at low levels. We also provide searchable data sets that may be used for annotation and further detailed analysis of the GPCR family. This study provides an extensive overview of the expansion of the gene repertoire for families and subgroups of GPCRs. PMID:15687224

  4. Assessment and Challenges of Ligand Docking into Comparative Models of G-Protein Coupled Receptors

    PubMed Central

    Frimurer, Thomas M.; Meiler, Jens

    2013-01-01

    The rapidly increasing number of high-resolution X-ray structures of G-protein coupled receptors (GPCRs) creates a unique opportunity to employ comparative modeling and docking to provide valuable insight into the function and ligand binding determinants of novel receptors, to assist in virtual screening and to design and optimize drug candidates. However, low sequence identity between receptors, conformational flexibility, and chemical diversity of ligands present an enormous challenge to molecular modeling approaches. It is our hypothesis that rapid Monte-Carlo sampling of protein backbone and side-chain conformational space with Rosetta can be leveraged to meet this challenge. This study performs unbiased comparative modeling and docking methodologies using 14 distinct high-resolution GPCRs and proposes knowledge-based filtering methods for improvement of sampling performance and identification of correct ligand-receptor interactions. On average, top ranked receptor models built on template structures over 50% sequence identity are within 2.9 Å of the experimental structure, with an average root mean square deviation (RMSD) of 2.2 Å for the transmembrane region and 5 Å for the second extracellular loop. Furthermore, these models are consistently correlated with low Rosetta energy score. To predict their binding modes, ligand conformers of the 14 ligands co-crystalized with the GPCRs were docked against the top ranked comparative models. In contrast to the comparative models themselves, however, it remains difficult to unambiguously identify correct binding modes by score alone. On average, sampling performance was improved by 103 fold over random using knowledge-based and energy-based filters. In assessing the applicability of experimental constraints, we found that sampling performance is increased by one order of magnitude for every 10 residues known to contact the ligand. Additionally, in the case of DOR, knowledge of a single specific ligand

  5. Visualizing G protein-coupled receptors in action through confocal microscopy techniques.

    PubMed

    Castillo-Badillo, Jean A; Cabrera-Wrooman, Alejandro; García-Sáinz, J Adolfo

    2014-05-01

    G protein-coupled receptors constitute one of the most abundant entities in cellular communication. Elucidation of their structure and function as well as of their regulation began 30-40 years ago and the advance has markedly increased during the last 15 years. They participate in a plethora of cell functions such as regulation of metabolic fluxes, contraction, secretion, differentiation, or proliferation, and in essentially all activities of our organism; these receptors are targets of a large proportion of prescribed and illegal drugs. Fluorescence techniques have been used to study receptors for many years. The experimental result was usually a two-dimensional (2D) micrograph. Today, the result can be a spatiotemporal (four-dimensional, 4D) movie. Advances in microscopy, fluorescent protein design, and computer-assisted analysis have been of great importance to increase our knowledge on receptor regulation and function and create opportunities for future research. In this review we briefly depict the state of the art of the G protein-coupled receptor field and the methodologies used to study G protein-coupled receptor location, trafficking, dimerization, and other types of receptor-protein interaction. Fluorescence techniques now permit the capture of receptor images with high resolution and, together with a variety of fluorescent dyes that color organelles (such as the plasma membrane or the nucleus) or the cytoskeleton, allow researchers to obtain a much clearer idea of what is taking place at the cellular level. These developments are changing the way we explore cell communication and signal transduction, permitting deeper understanding of the physiological and pathophysiological processes. PMID:24751328

  6. Diversity and impact of rare variants in genes encoding the platelet G protein-coupled receptors.

    PubMed

    Jones, Matthew L; Norman, Jane E; Morgan, Neil V; Mundell, Stuart J; Lordkipanidzé, Marie; Lowe, Gillian C; Daly, Martina E; Simpson, Michael A; Drake, Sian; Watson, Steve P; Mumford, Andrew D

    2015-04-01

    Platelet responses to activating agonists are influenced by common population variants within or near G protein-coupled receptor (GPCR) genes that affect receptor activity. However, the impact of rare GPCR gene variants is unknown. We describe the rare single nucleotide variants (SNVs) in the coding and splice regions of 18 GPCR genes in 7,595 exomes from the 1,000-genomes and Exome Sequencing Project databases and in 31 cases with inherited platelet function disorders (IPFDs). In the population databases, the GPCR gene target regions contained 740 SNVs (318 synonymous, 410 missense, 7 stop gain and 6 splice region) of which 70 % had global minor allele frequency (MAF) < 0.05 %. Functional annotation using six computational algorithms, experimental evidence and structural data identified 156/740 (21 %) SNVs as potentially damaging to GPCR function, most commonly in regions encoding the transmembrane and C-terminal intracellular receptor domains. In 31 index cases with IPFDs (Gi-pathway defect n=15; secretion defect n=11; thromboxane pathway defect n=3 and complex defect n=2) there were 256 SNVs in the target regions of 15 stimulatory platelet GPCRs (34 unique; 12 with MAF< 1 % and 22 with MAF≥ 1 %). These included rare variants predicting R122H, P258T and V207A substitutions in the P2Y12 receptor that were annotated as potentially damaging, but only partially explained the platelet function defects in each case. Our data highlight that potentially damaging variants in platelet GPCR genes have low individual frequencies, but are collectively abundant in the population. Potentially damaging variants are also present in pedigrees with IPFDs and may contribute to complex laboratory phenotypes. PMID:25567036

  7. Diversity and impact of rare variants in genes encoding the platelet G protein-coupled receptors

    PubMed Central

    Jones, Matthew L.; Norman, Jane E.; Morgan, Neil V.; Mundell, Stuart J.; Lordkipanidzé, Marie; Lowe, Gillian C.; Daly, Martina E.; Simpson, Michael A.; Drake, Sian; Watson, Steve P.; Mumford, Andrew D.

    2015-01-01

    Summary Platelet responses to activating agonists are influenced by common population variants within or near G protein-coupled receptor (GPCR) genes that affect receptor activity. However, the impact of rare GPCR gene variants is unknown. We describe the rare single nucleotide variants (SNVs) in the coding and splice regions of 18 GPCR genes in 7,595 exomes from the 1,000-genomes and Exome Sequencing Project databases and in 31 cases with inherited platelet function disorders (IPFDs). In the population databases, the GPCR gene target regions contained 740 SNVs (318 synonymous, 410 missense, 7 stop gain and 6 splice region) of which 70% had global minor allele frequency (MAF) < 0.05%. Functional annotation using six computational algorithms, experimental evidence and structural data identified 156/740 (21%) SNVs as potentially damaging to GPCR function, most commonly in regions encoding the transmembrane and C-terminal intracellular receptor domains. In 31 index cases with IPFDs (Gi-pathway defect n=15; secretion defect n=11; thromboxane pathway defect n=3 and complex defect n=2) there were 256 SNVs in the target regions of 15 stimulatory platelet GPCRs (34 unique; 12 with MAF<1% and 22 with MAF≥1%). These included rare variants predicting R122H, P258T and V207A substitutions in the P2Y12 receptor that were annotated as potentially damaging, but only partially explained the platelet function defects in each case. Our data highlight that potentially damaging variants in platelet GPCR genes have low individual frequencies, but are collectively abundant in the population. Potentially damaging variants are also present in pedigrees with IPFDs and may contribute to complex laboratory phenotypes. PMID:25567036

  8. Increased G Protein-Coupled Receptor Kinase (GRK) Expression in the Anterior Cingulate Cortex in Schizophrenia

    PubMed Central

    Funk, Adam J.; Haroutunian, Vahram; Meador-Woodruff, James H.; McCullumsmith, Robert E.

    2014-01-01

    Background Current pharmacological treatments for schizophrenia target G protein-coupled receptors (GPCRs), including dopamine receptors. Ligand bound GPCRs are regulated by a family of G protein-coupled receptor kinases (GRKs), members of which uncouple the receptor from heterotrimeric G proteins, desensitize the receptor, and induce receptor internalization via the arrestin family of scaffolding and signaling molecules. GRKs initiate the activation of downstream signaling pathways, can regulate receptors and signaling molecules independent of GPCR phosphorylation, and modulate epigenetic regulators like histone deacetylases (HDACs). We hypothesize that expression of GRK proteins are altered in schizophrenia, consistent with previous findings of alterations up and downstream from this family of molecules that facilitate intracellular signaling processes. Methods In this study we measured protein expression via Western blot analysis for GRKs 2, 3, 5, and 6 in the anterior cingulate cortex of patients with schizophrenia (N = 36) and a comparison group (N = 33). To control for antipsychotic treatment we measured these same targets in haloperidol treated vs. untreated rats (N = 10 for both). Results We found increased levels of GRK5 in schizophrenia. No changes were detected in GRK protein expression in rats treated with haloperidol decanoate for 9 months. Conclusion These data suggest that increased GRK5 expression may contribute the the pathophysiology of schizophrenia via abnormal regulation of the cytoskeleton, endocytosis, signaling, GPCRs, and histone modification. PMID:25153362

  9. The Concise Guide to Pharmacology 2013/14: G Protein-Coupled Receptors

    PubMed Central

    Alexander, Stephen PH; Benson, Helen E; Faccenda, Elena; Pawson, Adam J; Sharman, Joanna L; Spedding, Michael; Peters, John A; Harmar, Anthony J

    2013-01-01

    The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. G protein-coupled receptors are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates. PMID:24517644

  10. G-Protein-Coupled Lysophosphatidic Acid Receptors and Their Regulation of AKT Signaling

    PubMed Central

    Riaz, Anjum; Huang, Ying; Johansson, Staffan

    2016-01-01

    A hallmark of G-protein-coupled receptors (GPCRs) is their ability to recognize and respond to chemically diverse ligands. Lysophospholipids constitute a relatively recent addition to these ligands and carry out their biological functions by activating G-proteins coupled to a large family of cell-surface receptors. This review aims to highlight salient features of cell signaling by one class of these receptors, known as lysophosphatidic acid (LPA) receptors, in the context of phosphatidylinositol 3-kinase (PI3K)–AKT pathway activation. LPA moieties efficiently activate AKT phosphorylation and activation in a multitude of cell types. The interplay between LPA, its receptors, the associated Gαi/o subunits, PI3K and AKT contributes to the regulation of cell survival, migration, proliferation and confers chemotherapy-resistance in certain cancers. However, detailed information on the regulation of PI3K–AKT signals induced by LPA receptors is missing from the literature. Here, some urgent issues for investigation are highlighted. PMID:26861299

  11. G-Protein-Coupled Lysophosphatidic Acid Receptors and Their Regulation of AKT Signaling.

    PubMed

    Riaz, Anjum; Huang, Ying; Johansson, Staffan

    2016-01-01

    A hallmark of G-protein-coupled receptors (GPCRs) is their ability to recognize and respond to chemically diverse ligands. Lysophospholipids constitute a relatively recent addition to these ligands and carry out their biological functions by activating G-proteins coupled to a large family of cell-surface receptors. This review aims to highlight salient features of cell signaling by one class of these receptors, known as lysophosphatidic acid (LPA) receptors, in the context of phosphatidylinositol 3-kinase (PI3K)-AKT pathway activation. LPA moieties efficiently activate AKT phosphorylation and activation in a multitude of cell types. The interplay between LPA, its receptors, the associated Gαi/o subunits, PI3K and AKT contributes to the regulation of cell survival, migration, proliferation and confers chemotherapy-resistance in certain cancers. However, detailed information on the regulation of PI3K-AKT signals induced by LPA receptors is missing from the literature. Here, some urgent issues for investigation are highlighted. PMID:26861299

  12. Monitoring endosomal trafficking of the G protein-coupled receptor somatostatin receptor 3

    PubMed Central

    Tower-Gilchrist, Cristy; Styers, Melanie L.; Yoder, Bradley K.; Berbari, Nicolas F.; Sztul, Elizabeth

    2016-01-01

    Endocytic trafficking of G protein-coupled receptors (GPCRs) regulates the number of cell surface receptors available for activation by agonists and serves as one mechanism that controls the intensity and duration of signaling. Deregulation of GPCR-mediated signaling pathways results in a multitude of diseases, and thus extensive efforts have been directed toward understand the pathways and molecular events that regulate endocytic trafficking of these receptors. The general paradigms associated with internalization and recycling, as well as many of the key regulators involved in endosomal trafficking of GPCRs have been identified. This knowledge provides goalposts to facilitate the analysis of endosomal pathways traversed by previously uncharacterized GPCRs. Some of the most informative markers associated with GPCR transit are the Rab members of the Ras-related family of small GTPases. Individual Rabs show high selectivity for distinct endosomal compartments, and thus co-localization of a GPCR with a particular Rab informs on the internalization pathway traversed by the receptor. Progress in our knowledge of endosomal trafficking of GPCRs has been achieved through advances in our ability to tag GPCRs and Rabs with fluorescent proteins and perform live cell imaging of multiple fluorophores, allowing real-time observation of receptor trafficking between subcellular compartments in a cell culture model. PMID:24359959

  13. Spectral methods for study of the G-protein-coupled receptor rhodopsin. II. Magnetic resonance methods

    NASA Astrophysics Data System (ADS)

    Struts, A. V.; Barmasov, A. V.; Brown, M. F.

    2016-02-01

    This article continues our review of spectroscopic studies of G-protein-coupled receptors. Magnetic resonance methods including electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) provide specific structural and dynamical data for the protein in conjunction with optical methods (vibrational, electronic spectroscopy) as discussed in the accompanying article. An additional advantage is the opportunity to explore the receptor proteins in the natural membrane lipid environment. Solid-state 2H and 13C NMR methods yield information about both the local structure and dynamics of the cofactor bound to the protein and its light-induced changes. Complementary site-directed spin-labeling studies monitor the structural alterations over larger distances and correspondingly longer time scales. A multiscale reaction mechanism describes how local changes of the retinal cofactor unlock the receptor to initiate large-scale conformational changes of rhodopsin. Activation of the G-protein-coupled receptor involves an ensemble of conformational substates within the rhodopsin manifold that characterize the dynamically active receptor.

  14. Solubilization of G protein-coupled receptors: a convenient strategy to explore lipid-receptor interaction.

    PubMed

    Chattopadhyay, Amitabha; Rao, Bhagyashree D; Jafurulla, Md

    2015-01-01

    G protein-coupled receptors (GPCRs) are the largest class of molecules involved in signal transduction across cell membranes and are major drug targets. Since GPCRs are integral membrane proteins, their structure and function are modulated by membrane lipids. In particular, membrane cholesterol is an important lipid in the context of GPCR function. Solubilization of integral membrane proteins is a process in which the proteins and lipids in native membranes are dissociated in the presence of a suitable amphiphilic detergent. Interestingly, solubilization offers a convenient approach to monitor lipid-receptor interaction as it results in differential extents of lipid solubilization, thereby allowing to assess the role of specific lipids on receptor function. In this review, we highlight how this solubilization strategy is utilized to decipher novel information about the structural stringency of cholesterol necessary for supporting the function of the serotonin(1A) receptor. We envision that insight in GPCR-lipid interaction would result in better understanding of GPCR function in health and disease. PMID:25950962

  15. Alternative Splicing of G-protein Coupled Receptors: Relevance to Pain Management

    PubMed Central

    Oladosu, Folabomi A.; Maixner, William; Nackley, Andrea G.

    2015-01-01

    Drugs that target G-protein coupled receptors (GPCRs) represent the primary treatment strategy for patients with acute and chronic pain; however, there is substantial individual variability in both the efficacy and adverse side effects associated with these drugs. Variability in drug responses is, in part, due to individuals’ diversity in alternative splicing of pain-relevant GPCRs. GPCR alternative splice variants often exhibit distinct tissue distribution patterns, drug binding properties, and signaling characteristics that may impact disease pathology as well as the size and direction of analgesic effects. Here, we review the importance of GPCRs and their known splice variants to the management of pain. PMID:26250730

  16. Oxytocic plant cyclotides as templates for peptide G protein-coupled receptor ligand design

    PubMed Central

    Koehbach, Johannes; O’Brien, Margaret; Muttenthaler, Markus; Miazzo, Marion; Akcan, Muharrem; Elliott, Alysha G.; Daly, Norelle L.; Harvey, Peta J.; Arrowsmith, Sarah; Gunasekera, Sunithi; Smith, Terry J.; Wray, Susan; Göransson, Ulf; Dawson, Philip E.; Craik, David J.; Freissmuth, Michael; Gruber, Christian W.

    2013-01-01

    Cyclotides are plant peptides comprising a circular backbone and three conserved disulfide bonds that confer them with exceptional stability. They were originally discovered in Oldenlandia affinis based on their use in traditional African medicine to accelerate labor. Recently, cyclotides have been identified in numerous plant species of the coffee, violet, cucurbit, pea, potato, and grass families. Their unique structural topology, high stability, and tolerance to sequence variation make them promising templates for the development of peptide-based pharmaceuticals. However, the mechanisms underlying their biological activities remain largely unknown; specifically, a receptor for a native cyclotide has not been reported hitherto. Using bioactivity-guided fractionation of an herbal peptide extract known to indigenous healers as “kalata-kalata,” the cyclotide kalata B7 was found to induce strong contractility on human uterine smooth muscle cells. Radioligand displacement and second messenger-based reporter assays confirmed the oxytocin and vasopressin V1a receptors, members of the G protein-coupled receptor family, as molecular targets for this cyclotide. Furthermore, we show that cyclotides can serve as templates for the design of selective G protein-coupled receptor ligands by generating an oxytocin-like peptide with nanomolar affinity. This nonapeptide elicited dose-dependent contractions on human myometrium. These observations provide a proof of concept for the development of cyclotide-based peptide ligands. PMID:24248349

  17. G protein-coupled receptor heteromers as new targets for drug development.

    PubMed

    Ferré, Sergi; Navarro, Gemma; Casadó, Vicent; Cortés, Antoni; Mallol, Josefa; Canela, Enric I; Lluís, Carme; Franco, Rafael

    2010-01-01

    We now have a significant amount of experimental evidence that indicates that G protein-coupled receptor (GPCR) oligomerization, including homo- and heteromerization, is a general phenomenon. Receptor heteromers possess unique biochemical characteristics that are demonstrably different from those of its individual units. These properties include allosteric modulation(s) between units, changes in ligand recognition, G protein-coupling and trafficking. The discovery of GPCR oligomers have been related to the parallel discovery and application of a variety of resonance energy transfer (RET) techniques, such as bioluminescence, fluorescence and sequential RET (BRET, FRET and SRET, respectively), time-resolved FRET (T-FRET) and fluorescence recovery after photobleaching (FRAP) microscopy. However, RET techniques are difficult to implement in native tissues. For receptor heteromers, indirect approaches, such as the determination of a unique biochemical characteristic ("biochemical fingerprint"), permit their identification in native tissues and their use as targets for drug development. Dopamine and opioid receptor heteromers are the focus of intense research which is related to the possible multiple applications of their putative ligands in pathological conditions, which include basal ganglia disorders, schizophrenia and drug addiction. PMID:20691958

  18. A constitutively active G-protein-coupled receptor causes mating self-compatibility in the mushroom Coprinus.

    PubMed Central

    Olesnicky, N S; Brown, A J; Dowell, S J; Casselton, L A

    1999-01-01

    In the mushroom Coprinus cinereus, the multiallelic B mating type genes are predicted to encode a large family of seven-transmembrane domain receptors and CaaX-modified pheromones. We have shown that a single amino acid change Q229P in transmembrane domain VI of one receptor confers a self-compatible mating phenotype. Using a heterologous yeast assay, we have demonstrated that this C.cinereus pheromone receptor is a G-protein-coupled receptor and that the Q229P mutation is constitutively activating. A C.cinereus pheromone precursor was processed to an active species specifically in yeast MATa cells and activated the co-expressed wild-type receptor. Yeast cells expressing the wild-type receptor were used to test the activity of synthetic peptides, enabling us to predict the structure of the mature C.cinereus pheromone and to show that the Q229P mutation does not compromise normal receptor function. PMID:10329622

  19. Biased ligands at G-protein-coupled receptors: promise and progress.

    PubMed

    Violin, Jonathan D; Crombie, Aimee L; Soergel, David G; Lark, Michael W

    2014-07-01

    Drug discovery targeting G protein-coupled receptors (GPCRs) is no longer limited to seeking agonists or antagonists to stimulate or block cellular responses associated with a particular receptor. GPCRs are now known to support a diversity of pharmacological profiles, a concept broadly referred to as functional selectivity. In particular, the concept of ligand bias, whereby a ligand stabilizes subsets of receptor conformations to engender novel pharmacological profiles, has recently gained increasing prominence. This review discusses how biased ligands may deliver safer, better tolerated, and more efficacious drugs, and highlights several biased ligands that are in clinical development. Biased ligands targeting the angiotensin II type 1 receptor and the μ opioid receptor illustrate the translation of the biased ligand concept from basic biology to clinical drug development. PMID:24878326

  20. Basic Pharmacological and Structural Evidence for Class A G-Protein-Coupled Receptor Heteromerization

    PubMed Central

    Franco, Rafael; Martínez-Pinilla, Eva; Lanciego, José L.; Navarro, Gemma

    2016-01-01

    Cell membrane receptors rarely work on isolation, often they form oligomeric complexes with other receptor molecules and they may directly interact with different proteins of the signal transduction machinery. For a variety of reasons, rhodopsin-like class A G-protein-coupled receptors (GPCRs) seem an exception to the general rule of receptor–receptor direct interaction. In fact, controversy surrounds their potential to form homo- hetero-dimers/oligomers with other class A GPCRs; in a sense, the field is going backward instead of forward. This review focuses on the convergent, complementary and telling evidence showing that homo- and heteromers of class A GPCRs exist in transfected cells and, more importantly, in natural sources. It is time to decide between questioning the occurrence of heteromers or, alternatively, facing the vast scientific and technical challenges that class A receptor-dimer/oligomer existence pose to Pharmacology and to Drug Discovery. PMID:27065866

  1. The mapping of yeast's G-protein coupled receptor with an atomic force microscope

    NASA Astrophysics Data System (ADS)

    Takenaka, Musashi; Miyachi, Yusuke; Ishii, Jun; Ogino, Chiaki; Kondo, Akihiko

    2015-03-01

    An atomic force microscope (AFM) can measure the adhesion force between a sample and a cantilever while simultaneously applying a rupture force during the imaging of a sample. An AFM should be useful in targeting specific proteins on a cell surface. The present study proposes the use of an AFM to measure the adhesion force between targeting receptors and their ligands, and to map the targeting receptors. In this study, Ste2p, one of the G protein-coupled receptors (GPCRs), was chosen as the target receptor. The specific force between Ste2p on a yeast cell surface and a cantilever modified with its ligand, α-factor, was measured and found to be approximately 250 pN. In addition, through continuous measuring of the cell surface, a mapping of the receptors on the cell surface could be performed, which indicated the differences in the Ste2p expression levels. Therefore, the proposed AFM system is accurate for cell diagnosis.

  2. Cell-Surface Receptors Transactivation Mediated by G Protein-Coupled Receptors

    PubMed Central

    Cattaneo, Fabio; Guerra, Germano; Parisi, Melania; De Marinis, Marta; Tafuri, Domenico; Cinelli, Mariapia; Ammendola, Rosario

    2014-01-01

    G protein-coupled receptors (GPCRs) are seven transmembrane-spanning proteins belonging to a large family of cell-surface receptors involved in many intracellular signaling cascades. Despite GPCRs lack intrinsic tyrosine kinase activity, tyrosine phosphorylation of a tyrosine kinase receptor (RTK) occurs in response to binding of specific agonists of several such receptors, triggering intracellular mitogenic cascades. This suggests that the notion that GPCRs are associated with the regulation of post-mitotic cell functions is no longer believable. Crosstalk between GPCR and RTK may occur by different molecular mechanism such as the activation of metalloproteases, which can induce the metalloprotease-dependent release of RTK ligands, or in a ligand-independent manner involving membrane associated non-receptor tyrosine kinases, such as c-Src. Reactive oxygen species (ROS) are also implicated as signaling intermediates in RTKs transactivation. Intracellular concentration of ROS increases transiently in cells stimulated with GPCR agonists and their deliberated and regulated generation is mainly catalyzed by enzymes that belong to nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family. Oxidation and/or reduction of cysteine sulfhydryl groups of phosphatases tightly controls the activity of RTKs and ROS-mediated inhibition of cellular phosphatases results in an equilibrium shift from the non-phosphorylated to the phosphorylated state of RTKs. Many GPCR agonists activate phospholipase C, which catalyze the hydrolysis of phosphatidylinositol 4,5-bis-phosphate to produce inositol 1,4,5-triphosphate and diacylglicerol. The consequent mobilization of Ca2+ from endoplasmic reticulum leads to the activation of protein kinase C (PKC) isoforms. PKCα mediates feedback inhibition of RTK transactivation during GPCR stimulation. Recent data have expanded the coverage of transactivation to include Serine/Threonine kinase receptors and Toll-like receptors. Herein, we

  3. The Transporter-Opsin-G protein-coupled receptor (TOG) Superfamily

    PubMed Central

    Yee, Daniel C.; Shlykov, Maksim A.; Västermark, Åke; Reddy, Vamsee S.; Arora, Sumit; Sun, Eric I.; Saier, Milton H.

    2013-01-01

    Visual Rhodopsins (VR) are recognized members of the large and diverse family of G protein-coupled receptors (GPCRs), but their evolutionary origin and relationships to other proteins, are not known. In an earlier publication (Shlykov et al., 2012), we characterized the 4-Toulene Sulfonate Uptake Permease (TSUP) family of transmembrane proteins, showing that these 7 or 8 TMS proteins arose by intragenic duplication of a 4 TMS-encoding gene, sometimes followed by loss of a terminal TMS. In this study, we show that the TSUP, GPCR and Microbial Rhodopsin (MR) families are related to each other and to six other currently recognized transport protein families. We designate this superfamily the Transporter-Opsin-G protein-coupled receptor (TOG) Superfamily. Despite their 8 TMS origins, members of most constituent families exhibit 7 TMS topologies that are well conserved, and these arose by loss of either the N-terminal (more frequent) or the C-terminal (less frequent) TMS, depending on the family. Phylogenetic analyses revealed familial relationships within the superfamily and protein relationships within each of the nine families. The statistical analyses leading to the conclusion of homology were confirmed using HMMs, Pfam, and 3D superimpositions. Proteins functioning by dissimilar mechanisms (channels, primary active transporters, secondary active transporters, group translocators and receptors) are interspersed on a phylogenetic tree of the TOG superfamily, suggesting that changes in the transport and energy-coupling mechanisms occurred multiple times during the evolution of this superfamily. PMID:23981446

  4. Selective modulation of wild type receptor functions by mutants of G-protein-coupled receptors.

    PubMed

    Le Gouill, C; Parent, J L; Caron, C A; Gaudreau, R; Volkov, L; Rola-Pleszczynski, M; Stanková, J

    1999-04-30

    Members of the G-protein-coupled receptor (GPCR) family are involved in most aspects of higher eukaryote biology, and mutations in their coding sequence have been linked to several diseases. In the present study, we report that mutant GPCR can affect the functional properties of the co-expressed wild type (WT) receptor. Mutants of the human platelet-activating factor receptor that fail to show any detectable ligand binding (N285I and K298stop) or coupling to a G-protein (D63N, D289A, and Y293A) were co-expressed with the WT receptor in Chinese hamster ovary and COS-7 cells. In this context, N285I and K298stop mutant receptors inhibited 3H-WEB2086 binding and surface expression. Co-transfection with D63N resulted in a constitutively active receptor phenotype. Platelet-activating factor-induced inositol phosphate production in cells transfected with a 1:1 ratio of WT:D63N was higher than with the WT cDNA alone but was abolished with a 1:3 ratio. We confirmed that these findings could be extended to other GPCRs by showing that co-expression of the WT C-C chemokine receptor 2b with a carboxyl-terminal deletion mutant (K311stop), resulted in a decreased affinity and responsiveness to MCP-1. A better understanding of this phenomenon could lead to important tools for the prevention or treatment of certain diseases. PMID:10212233

  5. Function of G-Protein-Coupled Estrogen Receptor-1 in Reproductive System Tumors

    PubMed Central

    Qian, Hongyan; Xuan, Jingxiu; Liu, Yuan; Shi, Guixiu

    2016-01-01

    The G-protein-coupled estrogen receptor-1 (GPER-1), also known as GPR30, is a novel estrogen receptor mediating estrogen receptor signaling in multiple cell types. The progress of estrogen-related cancer is promoted by GPER-1 activation through mitogen-activated protein kinases (MAPK), phosphoinositide 3-kinase (PI3K), and phospholipase C (PLC) signaling pathways. However, this promoting effect of GPER-1 is nonclassic estrogen receptor (ER) dependent manner. In addition, clinical evidences revealed that GPER-1 is associated with estrogen resistance in estrogen-related cancer patients. These give a hint that GPER-1 may be a novel therapeutic target for the estrogen-related cancers. However, preclinical studies also found that GPER-1 activation of its special agonist G-1 inhibits cancer cell proliferation. This review aims to summarize the characteristics and complex functions of GPER-1 in cancers. PMID:27314054

  6. G protein-coupled receptors: walking hand-in-hand, talking hand-in-hand?

    PubMed Central

    Vischer, Henry F; Watts, Anne O; Nijmeijer, Saskia; Leurs, Rob

    2011-01-01

    Most cells express a panel of different G protein-coupled receptors (GPCRs) allowing them to respond to at least a corresponding variety of extracellular ligands. In order to come to an integrative well-balanced functional response these ligand–receptor pairs can often cross-regulate each other. Although most GPCRs are fully capable to induce intracellular signalling upon agonist binding on their own, many GPCRs, if not all, appear to exist and function in homomeric and/or heteromeric assemblies for at least some time. Such heteromeric organization offers unique allosteric control of receptor pharmacology and function between the protomers and might even unmask ‘new’ features. However, it is important to realize that some functional consequences that are proposed to originate from heteromeric receptor interactions may also be observed due to intracellular crosstalk between signalling pathways of non-associated GPCRs. PMID:21244374

  7. Imaging G protein-coupled receptors while quantifying their ligand-binding free-energy landscape.

    PubMed

    Alsteens, David; Pfreundschuh, Moritz; Zhang, Cheng; Spoerri, Patrizia M; Coughlin, Shaun R; Kobilka, Brian K; Müller, Daniel J

    2015-09-01

    Imaging native membrane receptors and testing how they interact with ligands is of fundamental interest in the life sciences but has proven remarkably difficult to accomplish. Here, we introduce an approach that uses force-distance curve-based atomic force microscopy to simultaneously image single native G protein-coupled receptors in membranes and quantify their dynamic binding strength to native and synthetic ligands. We measured kinetic and thermodynamic parameters for individual protease-activated receptor-1 (PAR1) molecules in the absence and presence of antagonists, and these measurements enabled us to describe PAR1's ligand-binding free-energy landscape with high accuracy. Our nanoscopic method opens an avenue to directly image and characterize ligand binding of native membrane receptors. PMID:26167642

  8. β-Arrestin-Selective G Protein-Coupled Receptor Agonists Engender Unique Biological Efficacy in Vivo

    PubMed Central

    Gesty-Palmer, Diane; Yuan, Ling; Martin, Bronwen; Wood, William H.; Lee, Mi-Hye; Janech, Michael G.; Tsoi, Lam C.; Zheng, W. Jim; Maudsley, Stuart

    2013-01-01

    Biased G protein-coupled receptor agonists are orthosteric ligands that possess pathway-selective efficacy, activating or inhibiting only a subset of the signaling repertoire of their cognate receptors. In vitro, d-Trp12,Tyr34-bPTH(7–34) [bPTH(7–34)], a biased agonist for the type 1 PTH receptor, antagonizes receptor-G protein coupling but activates arrestin-dependent signaling. In vivo, both bPTH(7–34) and the conventional agonist hPTH(1–34) stimulate anabolic bone formation. To understand how two PTH receptor ligands with markedly different in vitro efficacy could elicit similar in vivo responses, we analyzed transcriptional profiles from calvarial bone of mice treated for 8 wk with vehicle, bPTH(7–34) or hPTH(1–34). Treatment of wild-type mice with bPTH(7–34) primarily affected pathways that promote expansion of the osteoblast pool, notably cell cycle regulation, cell survival, and migration. These responses were absent in β-arrestin2-null mice, identifying them as downstream targets of β-arrestin2-mediated signaling. In contrast, hPTH(1–34) primarily affected pathways classically associated with enhanced bone formation, including collagen synthesis and matrix mineralization. hPTH(1–34) actions were less dependent on β-arrestin2, as might be expected of a ligand capable of G protein activation. In vitro, bPTH(7–34) slowed the rate of preosteoblast proliferation, enhanced osteoblast survival when exposed to an apoptotic stimulus, and stimulated cell migration in wild-type, but not β-arrestin2-null, calvarial osteoblasts. These results suggest that bPTH(7–34) and hPTH(1–34) affect bone mass in vivo through predominantly separate genomic mechanisms created by largely distinct receptor-signaling networks and demonstrate that functional selectivity can be exploited to change the quality of G protein-coupled receptor efficacy. PMID:23315939

  9. Allosteric Modulation of G Protein Coupled Receptors by Cytoplasmic, Transmembrane and Extracellular Ligands

    PubMed Central

    Yanamala, Naveena; Klein-Seetharaman, Judith

    2010-01-01

    G protein coupled receptors (GPCRs) bind diverse classes of ligands, and depending on the receptor, these may bind in their transmembrane or the extracellular domains, demonstrating the principal ability of GPCRs to bind ligand in either domains. Most recently, it was also observed that small molecule ligands can bind in the cytoplasmic domain, and modulate binding and response to extracellular or transmembrane ligands. Thus, all three domains in GPCRs are potential sites for allosteric ligands, and whether a ligand is allosteric or orthosteric depends on the receptor. Here, we will review the evidence supporting the presence of putative binding pockets in all three domains of GPCRs and discuss possible pathways of communication between these pockets. PMID:24009470

  10. ROLE OF ANTIBODIES IN DEVELOPING DRUGS THAT TARGET G PROTEIN-COUPLED RECEPTOR DIMERS

    PubMed Central

    Hipser, Chris; Bushlin, Ittai; Gupta, Achla; Gomes, Ivone; Devi, Lakshmi A.

    2010-01-01

    G protein-coupled receptors (GPCRs) are important molecular targets in drug discovery. These receptors play a pivotal role in physiological signaling pathways and are targeted by nearly 50% of currently available drugs. Mounting evidence suggests that GPCRs form dimers and various studies have shown that dimerization is necessary for receptor maturation, signaling and trafficking. However, the physiological implications of dimerization in vivo have not been well explored since detection of GPCR dimers in endogenous systems has been a challenging task. One exciting new approach to this challenge is the generation of antibodies against specific GPCR dimers. Such antibodies could be used as tools for characterization of heteromer-specific function, as reagents for their purification, tissue localization and regulation in vivo and as probes for mapping their functional domains. In addition, such antibodies could serve as alternative ligands for GPCR heteromers. Thus, heteromer-specific antibodies represent novel tools for the exploration and manipulation of GPCR dimer pharmacology. PMID:20687183

  11. Direct Modulation of Heterotrimeric G Protein-coupled Signaling by a Receptor Kinase Complex.

    PubMed

    Tunc-Ozdemir, Meral; Urano, Daisuke; Jaiswal, Dinesh Kumar; Clouse, Steven D; Jones, Alan M

    2016-07-01

    Plants and some protists have heterotrimeric G protein complexes that activate spontaneously without canonical G protein-coupled receptors (GPCRs). In Arabidopsis, the sole 7-transmembrane regulator of G protein signaling 1 (AtRGS1) modulates the G protein complex by keeping it in the resting state (GDP-bound). However, it remains unknown how a myriad of biological responses is achieved with a single G protein modulator. We propose that in complete contrast to G protein activation in animals, plant leucine-rich repeat receptor-like kinases (LRR RLKs), not GPCRs, provide this discrimination through phosphorylation of AtRGS1 in a ligand-dependent manner. G protein signaling is directly activated by the pathogen-associated molecular pattern flagellin peptide 22 through its LRR RLK, FLS2, and co-receptor BAK1. PMID:27235398

  12. Identification of an Ascaris G protein-coupled acetylcholine receptor with atypical muscarinic pharmacology.

    PubMed

    Kimber, Michael J; Sayegh, Laura; El-Shehabi, Fouad; Song, Chuanzhe; Zamanian, Mostafa; Woods, Debra J; Day, Tim A; Ribeiro, Paula

    2009-09-01

    Acetylcholine (ACh) is a neurotransmitter/neuromodulator in the nematode nervous system and induces its effects through interaction with both ligand-gated ion channels (LGICs) and G protein-coupled receptors (GPCRs). The structure, pharmacology and physiological importance of LGICs have been appreciably elucidated in model nematodes, including parasitic species where they are targets for anthelmintic drugs. Significantly less, however, is understood about nematode ACh GPCRs, termed GARs (G protein-linked ACh receptors). What is known comes from the free-living Caenorhabditis elegans as no GARs have been characterized from parasitic species. Here we clone a putative GAR from the pig gastrointestinal nematode Ascaris suum with high structural homology to the C. elegans receptor GAR-1. Our GPCR, dubbed AsGAR-1, is alternatively spliced and expressed in the head and tail of adult worms but not in dorsal or ventral body wall muscle, or the ovijector. ACh activated AsGAR-1 in a concentration-dependent manner but the receptor was not activated by other small neurotransmitters. The classical muscarinic agonists carbachol, arecoline, oxotremorine M and bethanechol were also AsGAR-1 agonists but pilocarpine was ineffective. AsGAR-1 activation by ACh was partially antagonized by the muscarinic blocker atropine but pirenzepine and scopolamine were largely ineffective. Certain biogenic amine GPCR antagonists were also found to block AsGAR-1. Our conclusion is that Ascaris possesses G protein-coupled ACh receptors that are homologous in structure to those present in C. elegans, and that although they have some sequence homology to vertebrate muscarinic receptors, their pharmacology is atypically muscarinic. PMID:19327362

  13. Identification of an Ascaris G protein-coupled acetylcholine receptor with atypical muscarinic pharmacology★

    PubMed Central

    Kimber, Michael J.; Sayegh, Laura; El-Shehabi, Fouad; Song, Chuanzhe; Zamanian, Mostafa; Woods, Debra J.; Day, Tim A.; Ribeiro, Paula

    2009-01-01

    Acetylcholine (ACh) is a neurotransmitter/neuromodulator in the nematode nervous system and induces its effects through interaction with both ligand-gated ion channels (LGICs) and G protein-coupled receptors (GPCRs). The structure, pharmacology and physiological importance of LGICs have been appreciably elucidated in model nematodes, including parasitic species where they are targets for anthelmintic drugs. Significantly less, however, is understood about nematode ACh GPCRs, termed GARs (G protein-linked ACh receptors). What is known comes from the free-living Caenorhabditis elegans as no GARs have been characterized from parasitic species. Here we clone a putative GAR from the pig gastrointestinal nematode Ascaris suum with high structural homology to the C. elegans receptor GAR-1. Our GPCR, dubbed AsGAR-1, isalternatively spliced and expressed in the head and tail of adult worms but not in dorsal or ventralbody wall muscle, or the ovijector. ACh activated AsGAR-1 in a concentration-dependent manner but the receptor was not activated by other small neurotransmitters. The classical muscarinic agonists carbachol, arecoline, oxotremorine M and bethanechol were also AsGAR-1 agonists but pilocarpine was ineffective. AsGAR-1 activation by ACh was partially antagonized by the muscarinic blocker atropine but pirenzepine and scopolamine were largely ineffective. Certain biogenic amine GPCR antagonists were also found to block AsGAR-1. Our conclusion is that Ascaris possesses G protein-coupled ACh receptors that are homologous in structure to thosepresent in C. elegans, and that although they have some sequence homology to vertebrate muscarinic receptors, their pharmacology is atypically muscarinic. PMID:19327362

  14. Role of post-translational modifications on structure, function and pharmacology of class C G protein-coupled receptors.

    PubMed

    Nørskov-Lauritsen, Lenea; Bräuner-Osborne, Hans

    2015-09-15

    G protein-coupled receptors are divided into three classes (A, B and C) based on homology of their seven transmembrane domains. Class C is the smallest class with 22 human receptor subtypes including eight metabotropic glutamate (mGlu1-8) receptors, two GABAB receptors (GABAB1 and GABAB2), three taste receptors (T1R1-3), one calcium-sensing (CaS) receptor, one GPCR, class C, group 6, subtype A (GPRC6) receptor, and seven orphan receptors. G protein-coupled receptors undergo a number of post-translational modifications, which regulate their structure, function and/or pharmacology. Here, we review the existence of post-translational modifications in class C G protein-coupled receptors and their regulatory roles, with particular focus on glycosylation, phosphorylation, ubiquitination, SUMOylation, disulphide bonding and lipidation. PMID:25981296

  15. Photomodulation of G Protein-Coupled Adenosine Receptors by a Novel Light-Switchable Ligand

    PubMed Central

    2015-01-01

    The adenosinergic system operates through G protein-coupled adenosine receptors, which have become promising therapeutic targets for a wide range of pathological conditions. However, the ubiquity of adenosine receptors and the eventual lack of selectivity of adenosine-based drugs have frequently diminished their therapeutic potential. Accordingly, here we aimed to develop a new generation of light-switchable adenosine receptor ligands that change their intrinsic activity upon irradiation, thus allowing the spatiotemporal control of receptor functioning (i.e., receptor activation/inactivation dependent on location and timing). Therefore, we synthesized an orthosteric, photoisomerizable, and nonselective adenosine receptor agonist, nucleoside derivative MRS5543 containing an aryl diazo linkage on the N6 substituent, which in the dark (relaxed isomer) behaved as a full adenosine A3 receptor (A3R) and partial adenosine A2A receptor (A2AR) agonist. Conversely, upon photoisomerization with blue light (460 nm), it remained a full A3R agonist but became an A2AR antagonist. Interestingly, molecular modeling suggested that structural differences encountered within the third extracellular loop of each receptor could modulate the intrinsic, receptor subtype-dependent, activity. Overall, the development of adenosine receptor ligands with photoswitchable activity expands the pharmacological toolbox in support of research and possibly opens new pharmacotherapeutic opportunities. PMID:25248077

  16. Modulation of cellular signaling by herpesvirus-encoded G protein-coupled receptors

    PubMed Central

    de Munnik, Sabrina M.; Smit, Martine J.; Leurs, Rob; Vischer, Henry F.

    2015-01-01

    Human herpesviruses (HHVs) are widespread infectious pathogens that have been associated with proliferative and inflammatory diseases. During viral evolution, HHVs have pirated genes encoding viral G protein-coupled receptors (vGPCRs), which are expressed on infected host cells. These vGPCRs show highest homology to human chemokine receptors, which play a key role in the immune system. Importantly, vGPCRs have acquired unique properties such as constitutive activity and the ability to bind a broad range of human chemokines. This allows vGPCRs to hijack human proteins and modulate cellular signaling for the benefit of the virus, ultimately resulting in immune evasion and viral dissemination to establish a widespread and lifelong infection. Knowledge on the mechanisms by which herpesviruses reprogram cellular signaling might provide insight in the contribution of vGPCRs to viral survival and herpesvirus-associated pathologies. PMID:25805993

  17. G-protein coupling and nuclear translocation of the human abscisic acid receptor LANCL2

    PubMed Central

    Fresia, Chiara; Vigliarolo, Tiziana; Guida, Lucrezia; Booz, Valeria; Bruzzone, Santina; Sturla, Laura; Di Bona, Melody; Pesce, Mattia; Usai, Cesare; De Flora, Antonio; Zocchi, Elena

    2016-01-01

    Abscisic acid (ABA), a long known phytohormone, has been recently demonstrated to be present also in humans, where it targets cells of the innate immune response, mesenchymal and hemopoietic stem cells and cells involved in the regulation of systemic glucose homeostasis. LANCL2, a peripheral membrane protein, is the mammalian ABA receptor. We show that N-terminal glycine myristoylation causes LANCL2 localization to the plasmamembrane and to cytoplasmic membrane vesicles, where it interacts with the α subunit of a Gi protein and starts the ABA signaling pathway via activation of adenylate cyclase. Demyristoylation of LANCL2 by chemical or genetic means triggers its nuclear translocation. Nuclear enrichment of native LANCL2 is also induced by ABA treatment. Therefore human LANCL2 is a non-transmembrane G protein-coupled receptor susceptible to hormone-induced nuclear translocation. PMID:27222287

  18. Deciphering the Code to Aminergic G-Protein Coupled Receptor Drug Design

    PubMed Central

    Tan, Edwin S.; Groban, Eli S.; Jacobson, Matthew P.; Scanlan, Thomas S.

    2009-01-01

    Summary The trace amine-associated receptor 1 (TAAR1) is a biogenic amine G-protein coupled receptor (GPCR) that is potently activated by 3-iodothyronamine (1, T1AM) in vitro. Compound 1 is an endogenous derivative of the thyroid hormone thyroxine that rapidly induces hypothermia, anergia, and bradycardia when administered to mice. To explore the role of TAAR1 in mediating the effects of 1, we rationally designed and synthesized rat TAAR1 superagonists and lead antagonists using the rotamer toggle switch model of aminergic GPCR activation. The functional activity of a ligand was found to be correlated to the nature of its interactions with the rotamer switch residues. Allowing the rotamer switch residues to toggle to their active conformation was associated with agonism while interfering with this conformational transition resulted in antagonism. These agonist and antagonist design principles provide a conceptual model for understanding the relationship between the molecular structure of a drug and its pharmacological properties. PMID:18420141

  19. EGFR Transactivation by Peptide G Protein-Coupled Receptors in Cancer.

    PubMed

    Moody, Terry W; Nuche-Berenguer, Bernardo; Nakamura, Taichi; Jensen, Robert T

    2016-01-01

    Lung cancer kills approximately 1.3 million citizens in the world annually. The tyrosine kinase inhibitors (TKI) erlotinib and gefitinib are effective anti-tumor agents especially in lung cancer patients with epidermal growth factor receptor (EGFR) mutations. The goal is to increase the potency of TKI in lung cancer patients with wild type EGFR. G protein-coupled receptors (GPCR) transactivate the wild type EGFR in lung cancer cells. The GPCR can be activated by peptide agonists causing phosphatidylinositol turnover or stimulation of adenylylcyclase. Recently, nonpeptide antagonists were found to inhibit the EGFR transactivation caused by peptides. Nonpeptide antagonists for bombesin (BB), neurotensin (NTS) and cholecystokinin (CCK) inhibit lung cancer growth and increase the cytotoxicity of gefitinib. The results suggest that GPCR transactivation of the EGFR may play an important role in cancer cell proliferation. PMID:25563590

  20. Structural basis for chemokine recognition and activation of a viral G protein-coupled receptor

    SciTech Connect

    Burg, John S.; Ingram, Jessica R.; Venkatakrishnan, A.J.; Jude, Kevin M.; Dukkipati, Abhiram; Feinberg, Evan N.; Angelini, Alessandro; Waghray, Deepa; Dror, Ron O.; Ploegh, Hidde L.; Garcia, K. Christopher

    2015-03-05

    Chemokines are small proteins that function as immune modulators through activation of chemokine G protein-coupled receptors (GPCRs). Several viruses also encode chemokines and chemokine receptors to subvert the host immune response. How protein ligands activate GPCRs remains unknown. We report the crystal structure at 2.9 angstrom resolution of the human cytomegalovirus GPCR US28 in complex with the chemokine domain of human CX3CL1 (fractalkine). The globular body of CX3CL1 is perched on top of the US28 extracellular vestibule, whereas its amino terminus projects into the central core of US28. The transmembrane helices of US28 adopt an active-state-like conformation. Atomic-level simulations suggest that the agonist-independent activity of US28 may be due to an amino acid network evolved in the viral GPCR to destabilize the receptor’s inactive state.

  1. Integrative bioinformatics for functional genome annotation: trawling for G protein-coupled receptors.

    PubMed

    Flower, Darren R; Attwood, Teresa K

    2004-12-01

    G protein-coupled receptors (GPCR) are amongst the best studied and most functionally diverse types of cell-surface protein. The importance of GPCRs as mediates or cell function and organismal developmental underlies their involvement in key physiological roles and their prominence as targets for pharmacological therapeutics. In this review, we highlight the requirement for integrated protocols which underline the different perspectives offered by different sequence analysis methods. BLAST and FastA offer broad brush strokes. Motif-based search methods add the fine detail. Structural modelling offers another perspective which allows us to elucidate the physicochemical properties that underlie ligand binding. Together, these different views provide a more informative and a more detailed picture of GPCR structure and function. Many GPCRs remain orphan receptors with no identified ligand, yet as computer-driven functional genomics starts to elaborate their functions, a new understanding of their roles in cell and developmental biology will follow. PMID:15561589

  2. G-protein coupling and nuclear translocation of the human abscisic acid receptor LANCL2.

    PubMed

    Fresia, Chiara; Vigliarolo, Tiziana; Guida, Lucrezia; Booz, Valeria; Bruzzone, Santina; Sturla, Laura; Di Bona, Melody; Pesce, Mattia; Usai, Cesare; De Flora, Antonio; Zocchi, Elena

    2016-01-01

    Abscisic acid (ABA), a long known phytohormone, has been recently demonstrated to be present also in humans, where it targets cells of the innate immune response, mesenchymal and hemopoietic stem cells and cells involved in the regulation of systemic glucose homeostasis. LANCL2, a peripheral membrane protein, is the mammalian ABA receptor. We show that N-terminal glycine myristoylation causes LANCL2 localization to the plasmamembrane and to cytoplasmic membrane vesicles, where it interacts with the α subunit of a Gi protein and starts the ABA signaling pathway via activation of adenylate cyclase. Demyristoylation of LANCL2 by chemical or genetic means triggers its nuclear translocation. Nuclear enrichment of native LANCL2 is also induced by ABA treatment. Therefore human LANCL2 is a non-transmembrane G protein-coupled receptor susceptible to hormone-induced nuclear translocation. PMID:27222287

  3. Allosteric Optical Control of a Class B G-Protein-Coupled Receptor.

    PubMed

    Broichhagen, Johannes; Johnston, Natalie R; von Ohlen, Yorrick; Meyer-Berg, Helena; Jones, Ben J; Bloom, Stephen R; Rutter, Guy A; Trauner, Dirk; Hodson, David J

    2016-05-01

    Allosteric regulation promises to open up new therapeutic avenues by increasing drug specificity at G-protein-coupled receptors (GPCRs). However, drug discovery efforts are at present hampered by an inability to precisely control the allosteric site. Herein, we describe the design, synthesis, and testing of PhotoETP, a light-activated positive allosteric modulator of the glucagon-like peptide-1 receptor (GLP-1R), a class B GPCR involved in the maintenance of glucose homeostasis in humans. PhotoETP potentiates Ca(2+) , cAMP, and insulin responses to glucagon-like peptide-1 and its metabolites following illumination of cells with blue light. PhotoETP thus provides a blueprint for the production of small-molecule class B GPCR allosteric photoswitches, and may represent a useful tool for understanding positive cooperativity at the GLP-1R. PMID:27059784

  4. From G Protein-coupled Receptor Structure Resolution to Rational Drug Design*

    PubMed Central

    Jazayeri, Ali; Dias, Joao M.; Marshall, Fiona H.

    2015-01-01

    A number of recent technical solutions have led to significant advances in G protein-coupled receptor (GPCR) structural biology. Apart from a detailed mechanistic view of receptor activation, the new structures have revealed novel ligand binding sites. Together, these insights provide avenues for rational drug design to modulate the activities of these important drug targets. The application of structural data to GPCR drug discovery ushers in an exciting era with the potential to improve existing drugs and discover new ones. In this review, we focus on technical solutions that have accelerated GPCR crystallography as well as some of the salient findings from structures that are relevant to drug discovery. Finally, we outline some of the approaches used in GPCR structure based drug design. PMID:26100628

  5. Biased ligands for better cardiovascular drugs: dissecting G-protein-coupled receptor pharmacology.

    PubMed

    DeWire, Scott M; Violin, Jonathan D

    2011-07-01

    Drug discovery efforts targeting G-protein-coupled receptors (GPCR) have been immensely successful in creating new cardiovascular medicines. Currently marketed GPCR drugs are broadly classified as either agonists that activate receptors or antagonists that prevent receptor activation by endogenous stimuli. However, GPCR couple to a multitude of intracellular signaling pathways beyond classical G-protein signals, and these signals can be independently activated by biased ligands to vastly expand the potential for new drugs at these classic targets. By selectively engaging only a subset of a receptor's potential intracellular partners, biased ligands may deliver more precise therapeutic benefit with fewer side effects than current GPCR-targeted drugs. In this review, we discuss the history of biased ligand research, the current understanding of how biased ligands exert their unique pharmacology, and how research into GPCR signaling has uncovered previously unappreciated capabilities of receptor pharmacology. We focus on several receptors to illustrate the approaches taken and discoveries made, and how these are steadily illuminating the intricacies of GPCR pharmacology. Discoveries of biased ligands targeting the angiotensin II type 1 receptor and of separable pharmacology suggesting the potential value of biased ligands targeting the β-adrenergic receptors and nicotinic acid receptor GPR109a highlight the powerful clinical promise of this new category of potential therapeutics. PMID:21737816

  6. Biased signaling through G-protein-coupled PROKR2 receptors harboring missense mutations.

    PubMed

    Sbai, Oualid; Monnier, Carine; Dodé, Catherine; Pin, Jean-Philippe; Hardelin, Jean-Pierre; Rondard, Philippe

    2014-08-01

    Various missense mutations in the gene coding for prokineticin receptor 2 (PROKR2), a G-protein-coupled receptor, have been identified in patients with Kallmann syndrome. However, the functional consequences of these mutations on the different signaling pathways of this receptor have not been studied. We first showed that the wild-type PROKR2 can activate different G-protein subtypes (Gq, Gs, and Gi/o) and recruit β-arrestins in transfected HEK-293 cells. We then examined, for each of these signaling pathways, the effects of 9 mutations that did not significantly impair cell surface targeting or ligand binding of the receptor. Four mutant receptors showing defective Gq signaling (R85C, R85H, R164Q, and V331M) could still recruit β-arrestins on ligand activation, which may cause biased signaling in vivo. Conversely, the R80C receptor could activate the 3 types of G proteins but could not recruit β-arrestins. Finally, the R268C receptor could recruit β-arrestins and activate the Gq and Gs signaling pathways but could not activate the Gi/o signaling pathway. Our results validate the concept that mutations in the genes encoding membrane receptors can bias downstream signaling in various ways, possibly leading to pathogenic and, perhaps in some cases, protective (e.g., R268C) effects. PMID:24830383

  7. Fluorescent Approaches for Understanding Interactions of Ligands with G Protein Coupled Receptors

    PubMed Central

    Sridharan, Rajashri; Zuber, Jeffrey; Connelly, Sara M.; Mathew, Elizabeth; Dumont, Mark E.

    2014-01-01

    G Protein Coupled Receptors (GPCRs) are responsible for a wide variety of signaling responses in diverse cell types. Despite major advances in the determination of structures of this class of receptors, the underlying mechanisms by which binding of different types of ligands specifically elicits particular signaling responses remains unclear. The use of fluorescence spectroscopy can provide important information about the process of ligand binding and ligand dependent conformational changes in receptors, especially kinetic aspects of these processes, that can be difficult to extract from x-ray structures. We present an overview of the extensive array of fluorescent ligands that have been used in studies of GPCRs and describe spectroscopic approaches for assaying binding and probing the environment of receptor-bound ligands with particular attention to examples involving yeast pheromone receptors. In addition, we discuss the use of fluorescence spectroscopy for detecting and characterizing conformational changes in receptors induced by the binding of ligands. Such studies have provided strong evidence for diversity of receptor conformations elicited by different ligands, consistent with the idea that GPCRs are not simple on and off switches. This diversity of states constitutes an underlying mechanistic basis for biased agonism, the observation that different stimuli can produce different responses from a single receptor. It is likely that continued technical advances will allow fluorescence spectroscopy to play an important role in continued probing of structural transitions in GPCRs. PMID:24055822

  8. Discovery of functional monoclonal antibodies targeting G-protein-coupled receptors and ion channels.

    PubMed

    Wilkinson, Trevor C I

    2016-06-15

    The development of recombinant antibody therapeutics is a significant area of growth in the pharmaceutical industry with almost 50 approved monoclonal antibodies on the market in the US and Europe. Despite this growth, however, certain classes of important molecular targets have remained intractable to therapeutic antibodies due to complexity of the target molecules. These complex target molecules include G-protein-coupled receptors and ion channels which represent a large potential target class for therapeutic intervention with monoclonal antibodies. Although these targets have typically been addressed by small molecule approaches, the exquisite specificity of antibodies provides a significant opportunity to provide selective modulation of these target proteins. Given this opportunity, substantial effort has been applied to address the technical challenges of targeting these complex membrane proteins with monoclonal antibodies. In this review recent progress made in the strategies for discovery of functional monoclonal antibodies for these challenging membrane protein targets is addressed. PMID:27284048

  9. The orphan G protein coupled receptor 161 is required for left-right patterning

    PubMed Central

    Leung, TinChung; Humbert, Jasper E.; Stauffer, Anna M.; Giger, Kathryn E.; Chen, Hui; Tsai, Huai-Jen; Wang, Chuan; Mirshahi, Tooraj; Robishaw, Janet D.

    2015-01-01

    Gpr161 (also known as RE2) is an orphan G protein-coupled receptor (GPCR) that is expressed during embryonic development in zebrafish. Determining its biological function has proven difficult due to lack of knowledge regarding its natural or synthetic ligands. Here, we show that targeted knockdown of gpr161 disrupts asymmetric gene expression in the lateral plate mesoderm, resulting in aberrant looping of the heart tube. This is associated with elevated Ca2+ levels in cells lining the Kupffer's vesicle and normalization of Ca2+ levels, by over-expression of ncx1 or pmca RNA, is able to partially rescue the cardiac looping defect in gpr161 knockdown embryos. Taken together, these data support a model in which gpr161 plays an essential role in left-right (L-R) patterning by modulating Ca2+ levels in the cells surrounding the Kupffer's vesicle. PMID:18755178

  10. G protein-coupled receptor 37 is a negative regulator of oligodendrocyte differentiation and myelination

    PubMed Central

    Yang, Hyun-Jeong; Vainshtein, Anna; Maik-Rachline, Galia; Peles, Elior

    2016-01-01

    While the formation of myelin by oligodendrocytes is critical for the function of the central nervous system, the molecular mechanism controlling oligodendrocyte differentiation remains largely unknown. Here we identify G protein-coupled receptor 37 (GPR37) as an inhibitor of late-stage oligodendrocyte differentiation and myelination. GPR37 is enriched in oligodendrocytes and its expression increases during their differentiation into myelin forming cells. Genetic deletion of Gpr37 does not affect the number of oligodendrocyte precursor cells, but results in precocious oligodendrocyte differentiation and hypermyelination. The inhibition of oligodendrocyte differentiation by GPR37 is mediated by suppression of an exchange protein activated by cAMP (EPAC)-dependent activation of Raf-MAPK-ERK1/2 module and nuclear translocation of ERK1/2. Our data suggest that GPR37 regulates central nervous system myelination by controlling the transition from early-differentiated to mature oligodendrocytes. PMID:26961174

  11. Biophysical characterization of G-protein coupled receptor-peptide ligand binding

    PubMed Central

    Langelaan, David N.; Ngweniform, Pascaline; Rainey, Jan K.

    2011-01-01

    G-protein coupled receptors (GPCRs) are ubiquitous membrane proteins allowing intracellular response to extracellular factors that range from photons of light to small molecules to proteins. Despite extensive exploitation of GRCRs as therapeutic targets, biophysical characterization of GPCR-ligand interactions remains challenging. In this minireview, we focus on techniques which have been successfully employed for structural and biophysical characterization of peptide ligands binding to their cognate GPCRs. The techniques reviewed include solution-state nuclear magnetic resonance (NMR) spectroscopy; solid-state NMR; X-ray diffraction; fluorescence spectroscopy and single molecule fluorescence methods; flow cytometry; surface plasmon resonance; isothermal titration calorimetry; and, atomic force microscopy. The goal herein is to provide a cohesive starting point to allow selection of techniques appropriate to the elucidation of a given GPCR-peptide interaction. PMID:21455262

  12. G protein-coupled receptor 183 facilitates endothelial-to-hematopoietic transition via Notch1 inhibition

    PubMed Central

    Zhang, Panpan; He, Qiuping; Chen, Dongbo; Liu, Weixiao; Wang, Lu; Zhang, Chunxia; Ma, Dongyuan; Li, Wei; Liu, Bing; Liu, Feng

    2015-01-01

    In vertebrates, embryonic hematopoietic stem and progenitor cells (HSPCs) are derived from a subset of endothelial cells, the hemogenic endothelium (HE), through the endothelial-to-hematopoietic transition (EHT). Notch signaling is essential for HSPC development during embryogenesis across vertebrates. However, whether and how it regulates EHT remains unclear. Here, we show that G protein-coupled receptor 183 (Gpr183) signaling serves as an indispensable switch for HSPC emergence by repressing Notch signaling before the onset of EHT. Inhibition of Gpr183 significantly upregulates Notch signaling and abolishes HSPC emergence. Upon activation by its ligand 7α-25-OHC, Gpr183 recruits β-arrestin1 and the E3 ligase Nedd4 to degrade Notch1 in specified HE cells and then facilitates the subsequent EHT. Importantly, 7α-25-OHC stimulation promotes HSPC emergence in vivo and in vitro, providing an attractive strategy for enhancing the in vitro generation of functional HSPCs. PMID:26358189

  13. Role of G protein-coupled receptor kinase 2 in tumoral angiogenesis

    PubMed Central

    Rivas, Verónica; Nogués, Laura; Reglero, Clara; Mayor, Federico; Penela, Petronila

    2014-01-01

    Downregulation of G protein-coupled receptor kinase 2 (GRK2) in endothelial cells has recently been identified as a relevant event in the tumoral angiogenic switch. Based on the effects of altering GRK2 dosage in cell and animal models, this kinase appears to act as a hub in key signaling pathways involved in vascular stabilization and remodeling. Accordingly, decreased GRK2 expression in endothelial cells accelerates tumor growth in mice by impairing the pericytes ensheathing the vessels, thereby promoting hypoxia and macrophage infiltration. These results raise new questions regarding the mechanisms by which transformed cells trigger the decrease in GRK2 observed in human breast cancer vessels and how GRK2 modulates the interactions between different cell types that occur in the tumor microenvironment. PMID:27308373

  14. Methuselah/Methuselah-like G protein-coupled receptors constitute an ancient metazoan gene family

    PubMed Central

    de Mendoza, Alexandre; Jones, Jeffery W.; Friedrich, Markus

    2016-01-01

    Inconsistent conclusions have been drawn regarding the phylogenetic age of the Methuselah/Methuselah-like (Mth/Mthl) gene family of G protein-coupled receptors, the founding member of which regulates development and lifespan in Drosophila. Here we report the results from a targeted homolog search of 39 holozoan genomes and phylogenetic analysis of the conserved seven transmembrane domain. Our findings reveal that the Mth/Mthl gene family is ancient, has experienced numerous extinction and expansion events during metazoan evolution, and acquired the current definition of the Methuselah ectodomain during its exceptional expansion in arthropods. In addition, our findings identify Mthl1, Mthl5, Mthl14, and Mthl15 as the oldest Mth/Mthl gene family paralogs in Drosophila. Future studies of these genes have the potential to define ancestral functions of the Mth/Mthl gene family. PMID:26915348

  15. Regulation of Epithelial Morphogenesis by the G-Protein Coupled Receptor Mist and its Ligand Fog*

    PubMed Central

    Manning, Alyssa J.; Peters, Kimberly A.; Peifer, Mark; Rogers, Stephen L.

    2014-01-01

    Epithelial morphogenesis is essential for shaping organs and tissues and for establishment of the three embryonic germ layers during gastrulation. Studies of gastrulation in Drosophila have provided insight into how epithelial morphogenesis is governed by developmental patterning mechanisms. We developed an assay to recapitulate morphogenetic shape changes in individual cultured cells, and used RNAi-based screening to identify Mist, a Drosophila G protein-coupled receptor (GPCR) that transduces signals from the secreted ligand Folded gastrulation (Fog) in cultured cells. Mist functioned in Fog-dependent embryonic morphogenesis, and the transcription factor Snail regulated expression of mist in zygotes. Our data revealed how a cell fate transcriptional program acts through a ligand-GPCR pair to stimulate epithelial morphogenetic shape changes. PMID:24222713

  16. Directed evolution of a G protein-coupled receptor for expression, stability, and binding selectivity

    PubMed Central

    Sarkar, Casim A.; Dodevski, Igor; Kenig, Manca; Dudli, Stefan; Mohr, Anja; Hermans, Emmanuel; Plückthun, Andreas

    2008-01-01

    We outline a powerful method for the directed evolution of integral membrane proteins in the inner membrane of Escherichia coli. For a mammalian G protein-coupled receptor, we arrived at a sequence with an order-of-magnitude increase in functional expression that still retains the biochemical properties of wild type. This mutant also shows enhanced heterologous expression in eukaryotes (12-fold in Pichia pastoris and 3-fold in HEK293T cells) and greater stability when solubilized and purified, indicating that the biophysical properties of the protein had been under the pressure of selection. These improvements arise from multiple small contributions, which would be difficult to assemble by rational design. In a second screen, we rapidly pinpointed a single amino acid substitution in wild type that abolishes antagonist binding while retaining agonist-binding affinity. These approaches may alleviate existing bottlenecks in structural studies of these targets by providing sufficient quantities of stable variants in defined conformational states. PMID:18812512

  17. Atypical regulation of G protein-coupled receptor intracellular trafficking by ubiquitination

    PubMed Central

    Dores, Michael R.; Trejo, JoAnn

    2014-01-01

    G protein-coupled receptor (GPCR) signaling is precisely regulated. After activation, GPCRs are desensitized, internalized and either recycled to the cell surface or sorted to lysosomes for degradation. The main route for GPCR lysosomal sorting requires ubiquitination and the endosomal-sorting complex required for transport (ESCRT). Four distinct ESCRT adaptor protein complexes act sequentially to bind and sort ubiquitinated cargo to lysosomes. Several studies now indicate that alternate pathways exist for GPCR lysosomal sorting that require only some components of the ESCRT and autophagy machinery. While direct GPCR ubiquitination is not required for alternate lysosomal sorting, new evidence suggests that ubiquitin may function indirectly to modulate adaptor protein activity. Here, we discuss the atypical regulation of GPCR lysosomal sorting by ubiquitination. PMID:24680429

  18. Adhesion G protein-coupled receptors in nervous system development and disease.

    PubMed

    Langenhan, Tobias; Piao, Xianhua; Monk, Kelly R

    2016-09-01

    Members of the adhesion G protein-coupled receptor (aGPCR) class have emerged as crucial regulators of nervous system development, with important implications for human health and disease. In this Review, we discuss the current understanding of aGPCR functions during key steps in neural development, including cortical patterning, dendrite and synapse formation, and myelination. We focus on aGPCR modulation of cell-cell and cell-matrix interactions and signalling to control these varied aspects of neural development, and we discuss how impaired aGPCR function leads to neurological disease. We further highlight the emerging hypothesis that aGPCRs can be mechanically activated and the implications of this property in the nervous system. PMID:27466150

  19. The Emerging Mutational Landscape of G-proteins and G-protein Coupled Receptors in Cancer

    PubMed Central

    O’Hayre, Morgan; Vázquez-Prado, José; Kufareva, Irina; Stawiski, Eric W.; Handel, Tracy M.; Seshagiri, Somasekar; Gutkind, J. Silvio

    2014-01-01

    Aberrant expression and activity of G proteins and G protein coupled receptors (GPCRs) are frequently associated with tumorigenesis. Deep sequencing studies show that 4.2% of tumors carry activating mutations in GNAS (encoding Gαs), and that oncogenic activating mutants in genes encoding Gαq family members (GNAQ or GNA11) are present in ~66% and ~6% of melanomas arising in the eye and skin, respectively. Furthermore, nearly 20% of human tumors harbor mutations in GPCRs. Many human cancer-associated viruses also express constitutively active viral GPCRs. These studies indicate that G proteins, GPCRs and their linked signaling circuitry represent novel therapeutic targets for cancer prevention and treatment. PMID:23640210

  20. In vivo determination of the structure of oligomers of a G protein-coupled receptor

    NASA Astrophysics Data System (ADS)

    Rath, Sasmita; Raicu, Valerica

    2009-03-01

    Resonance Energy Transfer (RET) is a process of nonradiative energy transfer between a donor and an acceptor molecule, which is widely used for studies of protein-protein interactions in living cells. Here we report on the results of a spectrally-resolved two-photon microscopy study of image pixel-level RET in yeast cells (S. cerevisiae) expressing a G-protein-coupled receptor called Sterile 2 α factor protein (Ste2P). The number of pixels showing RET were plotted against the RET efficiency to obtain distributions of RET efficiency in the cells. These distributions were simulated with models for plausible geometries and sizes of protein complexes (V. Raicu, 2007, J. Biol. Phys. 33:109--127). From all the models tested we found that a parallelogram-shaped tetramer is the most likely structure for the Ste2p oligomers.

  1. Transcriptional and Functional Characterization of the G Protein-Coupled Receptor Repertoire of Gastric Somatostatin Cells.

    PubMed

    Egerod, Kristoffer L; Engelstoft, Maja S; Lund, Mari L; Grunddal, Kaare V; Zhao, Mirabella; Barir-Jensen, Dominique; Nygaard, Eva B; Petersen, Natalia; Holst, Jens J; Schwartz, Thue W

    2015-11-01

    In the stomach, somatostatin (SST) acts as a general paracrine negative regulator of exocrine secretion of gastric acid and pepsinogen and endocrine secretion of gastrin, ghrelin, and histamine. Using reporter mice expressing red fluorescent protein (RFP) under control of the SST promotor, we have characterized the G protein-coupled receptors expressed in gastric Sst-RFP-positive cells and probed their effects on SST secretion in primary cell cultures. Surprisingly, besides SST, amylin and PYY were also highly enriched in the SST cells. Several receptors found to regulate SST secretion were highly expressed and/or enriched. 1) The metabolite receptors calcium-sensing receptor and free fatty acid receptor 4 (GPR120) functioned as positive and negative regulators, respectively. 2) Among the neurotransmitter receptors, adrenergic receptors α1a, α2a, α2b, and β1 were all highly expressed, with norepinephrine and isoproterenol acting as positive regulators. The muscarinic receptor M3 acted as a positive regulator, whereas M4 was conceivably a negative regulator. 3) Of the hormone receptors, the GLP-1 and GIP receptors, CCKb (stimulated by both CCK and gastrin) and surprisingly the melanocortin MC1 receptor were all positive regulators. 4) The neuropeptide receptors for calcitonin gene-related peptide, adrenomedullin, and vasoactive intestinal peptide acted as positive regulators, no effect was observed using galanin and nociceptin although transcripts for the corresponding receptors appeared highly expressed. 5) The SST receptors 1 and 2 functioned in an autocrine negative feedback loop. Thus, the article provides a comprehensive map of receptors through which SST secretion is regulated by hormones, neurotransmitters, neuropeptides and metabolites that act directly on the SST cells in the gastric mucosa. PMID:26181106

  2. Activation and conformational dynamics of a class B G-protein-coupled glucagon receptor.

    PubMed

    Li, Yang; Sun, Jixue; Li, Dongmei; Lin, Jianping

    2016-05-14

    The human glucagon receptor (GCGR) is a class B G-protein-coupled receptor (GPCR). The GCGR can be activated by glucagon and regulates the release of glucose. The GCGR has been proposed to be an important drug target for type 2 diabetes. Based on the structural model of a full-length glucagon-bound GCGR (glu-GCGR), we performed accelerated molecular dynamics (aMD) simulations, potential of mean force (PMF) calculations, cross-correlation analysis and community network analysis to study the activation mechanism and the conformational dynamics during the activation process. The PMF map depicts three different conformational states of the GCGR: the inactive, intermediate and active states. The activation of the GCGR is characterized by the outward movement of the intracellular side of helix VI. In the active state of the GCGR, the Arg173(2.46)-Ser350(6.41) and Glu245(3.50)-Thr351(6.42) hydrogen bonds break, and the χ1 rotamer of Phe322(5.54) changes from perpendicular to parallel to helix VI. The binding of the agonist glucagon decreases the correlated motions of the extracellular loops (ELCs) and the helices around the glucagon-binding site. During the activation of the GCGR, the connections between the intracellular sides of helices become weaker, and the connections between glucagon and ECLs and the extracellular sides of helices become stronger. These facilitate G-protein coupling on the intracellular side and glucagon binding on the extracellular side, and stabilize the GCGR in the active state. We expect that this study can provide useful information on the activation mechanism of the GCGR and facilitate the future design of GCGR inhibitors. PMID:27094704

  3. G-protein-coupled estrogen receptor-30 gene polymorphisms are associated with uterine leiomyoma risk

    PubMed Central

    Kasap, Burcu; Turhan, Nilgün Öztürk; Edgünlü, Tuba; Duran, Müzeyyen; Akbaba, Eren; Öner, Gökalp

    2016-01-01

    The G-protein-coupled estrogen receptor, GPER-1) is a member of the G-protein-coupled receptor 1 family and is expressed significantly in uterine leiomyomas. To understand the relationship between GPR30 single nucleotide polymorphisms and the risk of leiomyoma, we measured the follicle-stimulating hormone (FSH) and estradiol (E2) levels of 78 perimenopausal healthy women and 111 perimenopausal women with leiomyomas. The participants’ leiomyoma number and volume were recorded. DNA was extracted from whole blood with a GeneJET Genomic DNA Purification Kit. An amplification-refractory mutation system polymerase chain reaction approach was used for genotyping of the GPR30 gene (rs3808350, rs3808351, and rs11544331). The differences in genotype and allele frequencies between the leiomyoma and control groups were calculated using the chi-square (χ2) and Fischer’s exact test. The median FSH level was higher in controls (63 vs. 10 IU/L, p=0.000), whereas the median E2 level was higher in the leiomyoma group (84 vs. 9.1 pg/mL, p=0.000). The G allele of rs3808351 and the GG genotype of both the rs3808350 and rs3808351 polymorphisms and the GGC haplotype increased the risk of developing leiomyoma. There was no significant difference in genotype frequencies or leiomyoma volume. However, the GG genotype of the GPR30 rs3808351 polymorphism and G allele of the GPR30 rs3808351 polymorphism were associated with the risk of having a single leiomyoma. Our results suggest that the presence of the GG genotype of the GPR30 rs3808351 polymorphism and the G allele of the GPR30 rs3808351 polymorphism affect the characteristics and development of leiomyomas in the Turkish population. PMID:26773178

  4. G protein-coupled receptor160 regulates mycobacteria entry into macrophages by activating ERK.

    PubMed

    Yang, Hua; Liu, Haipeng; Chen, Hao; Mo, Haiping; Chen, Jianxia; Huang, Xiaocheng; Zheng, Ruijuan; Liu, Zhonghua; Feng, Yonghong; Liu, Feng; Ge, Baoxue

    2016-09-01

    Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, invades and replicates within susceptible hosts by disturbing host antimicrobial mechanisms. Although G protein-coupled receptors (GPCRs) are involved in most physiological and pathological activities of mammalian cells, the roles of GPCRs in Mtb invasion into host cell remain elusive. Here, we report that GPR160 expression is elevated at both mRNA and protein level in macrophages in response to BCG infection. Both the PiggyBac (PB) transposon-mediated mutation of gpr160 gene in mouse primary macrophages and siRNA-mediated knockdown of GPR160 in the human macrophage cell line THP-1 markedly reduced the entry of green fluorescent protein (GFP) expressing BCG (BCG-GFP), also operative in vivo. BCG infection-induced phosphorylation of ERK1/2 was significantly reduced in gpr160 mutated (gpr160(-/-)) macrophages relative to levels observed in wild type macrophages, while inhibition of ERK by specific inhibitor or knockdown ERK1/2 by specific siRNA markedly reduced entry of BCG. Finally, lower bacteria burdens and attenuated pathological impairments were observed in the lungs of BCG-infected gpr160(-/-) mice. Furthermore, gpr160(-/-) macrophages also exhibits reduced uptake of Escherichia coli and Francisella tularensis. Taken together, these findings suggest an important role of GPR160 in regulating the entry of BCG into macrophages by targeting the ERK signaling pathway. As GPCRs have proven to be successful drug targets in pharmaceutical industry, it's tempting to speculate that compounds targeting GPR160, a G protein-coupled receptor, could intervene in Mtb infection. PMID:27259691

  5. The Significance of G Protein-Coupled Receptor Crystallography for Drug Discovery

    PubMed Central

    Salon, John A.; Lodowski, David T.

    2011-01-01

    Crucial as molecular sensors for many vital physiological processes, seven-transmembrane domain G protein-coupled receptors (GPCRs) comprise the largest family of proteins targeted by drug discovery. Together with structures of the prototypical GPCR rhodopsin, solved structures of other liganded GPCRs promise to provide insights into the structural basis of the superfamily's biochemical functions and assist in the development of new therapeutic modalities and drugs. One of the greatest technical and theoretical challenges to elucidating and exploiting structure-function relationships in these systems is the emerging concept of GPCR conformational flexibility and its cause-effect relationship for receptor-receptor and receptor-effector interactions. Such conformational changes can be subtle and triggered by relatively small binding energy effects, leading to full or partial efficacy in the activation or inactivation of the receptor system at large. Pharmacological dogma generally dictates that these changes manifest themselves through kinetic modulation of the receptor's G protein partners. Atomic resolution information derived from increasingly available receptor structures provides an entrée to the understanding of these events and practically applying it to drug design. Supported by structure-activity relationship information arising from empirical screening, a unified structural model of GPCR activation/inactivation promises to both accelerate drug discovery in this field and improve our fundamental understanding of structure-based drug design in general. This review discusses fundamental problems that persist in drug design and GPCR structural determination. PMID:21969326

  6. Monitoring ligand-mediated internalization of G protein-coupled receptor as a novel pharmacological approach.

    PubMed

    Fukunaga, Shin'ichi; Setoguchi, Shingo; Hirasawa, Akira; Tsujimoto, Gozoh

    2006-12-01

    Agonist activation of a G protein-coupled receptor (GPCR) results in the redistribution of the receptor protein away from the cell surface into internal cellular compartments through a process of endocytosis known as internalization. Visualization of receptor internalization has become experimentally practicable by using fluorescent reagents such as green fluorescent protein (GFP). In this study, we examined whether the ligand-mediated internalization of a GPCR can be exploited for pharmacological evaluations. We acquired fluorescent images of cells expressing GFP-labeled GPCRs and evaluated the ligand-mediated internalization quantitatively by image processing. Using beta2-adrenoceptor and vasopressin V1a receptor as model GPCRs that couple to Gs and Gq, respectively, we first examined whether these GFP-tagged GPCRs exhibited appropriate pharmacology. The rank order of receptor internalization potency for a variety of agonists and antagonists specific to each receptor corresponded well with that previously observed in ligand binding studies. In addition to chemical ligand-induced internalization, this cell-based fluorescence imaging system successfully monitored the internalization of the proton-sensing GPCR TDAG8, and that of the free fatty acid-sensitive GPCR GPR120. The results show that monitoring receptor internalization can be a useful approach for pharmacological characterization of GPCRs and in fishing for ligands of orphan GPCRs. PMID:16978657

  7. Orphan G-protein-coupled receptors: the next generation of drug targets?

    PubMed Central

    Wilson, Shelagh; Bergsma, Derk J; Chambers, Jon K; Muir, Alison I; Fantom, Kenneth G M; Ellis, Catherine; Murdock, Paul R; Herrity, Nicole C; Stadel, Jeffrey M

    1998-01-01

    The pharmaceutical industry has readily embraced genomics to provide it with new targets for drug discovery. Large scale DNA sequencing has allowed the identification of a plethora of DNA sequences distantly related to known G protein-coupled receptors (GPCRs), a superfamily of receptors that have a proven history of being excellent therapeutic targets. In most cases the extent of sequence homology is insufficient to assign these `orphan' receptors to a particular receptor subfamily. Consequently, reverse molecular pharmacological and functional genomic strategies are being employed to identify the activating ligands of the cloned receptors. Briefly, the reverse molecular pharmacological methodology includes cloning and expression of orphan GPCRs in mammalian cells and screening these cells for a functional response to cognate or surrogate agonists present in biological extract preparations, peptide libraries, and complex compound collections. The functional genomics approach involves the use of `humanized yeast cells, where the yeast GPCR transduction system is engineered to permit functional expression and coupling of human GPCRs to the endogenous signalling machinery. Both systems provide an excellent platform for identifying novel receptor ligands. Once activating ligands are identified they can be used as pharmacological tools to explore receptor function and relationship to disease. PMID:9884064

  8. Buried ionizable networks are an ancient hallmark of G protein-coupled receptor activation

    PubMed Central

    Isom, Daniel G.; Dohlman, Henrik G.

    2015-01-01

    Seven-transmembrane receptors (7TMRs) have evolved in prokaryotes and eukaryotes over hundreds of millions of years. Comparative structural analysis suggests that these receptors may share a remote evolutionary origin, despite their lack of sequence similarity. Here we used structure-based computations to compare 221 7TMRs from all domains of life. Unexpectedly, we discovered that these receptors contain spatially conserved networks of buried ionizable groups. In microbial 7TMRs these networks are used to pump ions across the cell membrane in response to light. In animal 7TMRs, which include light- and ligand-activated G protein-coupled receptors (GPCRs), homologous networks were found to be characteristic of activated receptor conformations. These networks are likely relevant to receptor function because they connect the ligand-binding pocket of the receptor to the nucleotide-binding pocket of the G protein. We propose that agonist and G protein binding facilitate the formation of these electrostatic networks and promote important structural rearrangements such as the displacement of transmembrane helix-6. We anticipate that robust classification of activated GPCR structures will aid the identification of ligands that target activated GPCR structural states. PMID:25902551

  9. G protein-coupled receptors as oncogenic signals in glioma: emerging therapeutic avenues

    PubMed Central

    Cherry, Allison E; Stella, Nephi

    2014-01-01

    Gliomas are the most common malignant intracranial tumors. Newly developed targeted therapies for these cancers aim to inhibit oncogenic signals, many of which emanate from receptor tyrosine kinases, including the epidermal growth factor receptor (EGFR) and the vascular endothelial growth factor receptor (VEGFR). Unfortunately, the first generation treatments targeting these oncogenic signals provide little survival benefit in both mouse xenograft models and human patients. The search for new treatment options has uncovered several G protein-coupled receptor (GPCR) candidates and generated a growing interest in this class of proteins as alternative therapeutic targets for the treatment of various cancers, including GBM. GPCRs constitute a large family of membrane receptors that influence oncogenic pathways through canonical and non-canonical signaling. Accordingly, evidence indicates that GPCRs display a unique ability to crosstalk with receptor tyrosine kinases, making them important molecular components controlling tumorigenesis. This review summarizes the current research on GPCR functionality in gliomas and explores the potential of modulating these receptors to treat this devastating disease. PMID:25158675

  10. Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs

    NASA Astrophysics Data System (ADS)

    Dror, Ron O.; Green, Hillary F.; Valant, Celine; Borhani, David W.; Valcourt, James R.; Pan, Albert C.; Arlow, Daniel H.; Canals, Meritxell; Lane, J. Robert; Rahmani, Raphaël; Baell, Jonathan B.; Sexton, Patrick M.; Christopoulos, Arthur; Shaw, David E.

    2013-11-01

    The design of G-protein-coupled receptor (GPCR) allosteric modulators, an active area of modern pharmaceutical research, has proved challenging because neither the binding modes nor the molecular mechanisms of such drugs are known. Here we determine binding sites, bound conformations and specific drug-receptor interactions for several allosteric modulators of the M2 muscarinic acetylcholine receptor (M2 receptor), a prototypical family A GPCR, using atomic-level simulations in which the modulators spontaneously associate with the receptor. Despite substantial structural diversity, all modulators form cation-π interactions with clusters of aromatic residues in the receptor extracellular vestibule, approximately 15Å from the classical, `orthosteric' ligand-binding site. We validate the observed modulator binding modes through radioligand binding experiments on receptor mutants designed, on the basis of our simulations, either to increase or to decrease modulator affinity. Simulations also revealed mechanisms that contribute to positive and negative allosteric modulation of classical ligand binding, including coupled conformational changes of the two binding sites and electrostatic interactions between ligands in these sites. These observations enabled the design of chemical modifications that substantially alter a modulator's allosteric effects. Our findings thus provide a structural basis for the rational design of allosteric modulators targeting muscarinic and possibly other GPCRs.

  11. Allosteric regulation of G protein-coupled receptor activity by phospholipids.

    PubMed

    Dawaliby, Rosie; Trubbia, Cataldo; Delporte, Cédric; Masureel, Matthieu; Van Antwerpen, Pierre; Kobilka, Brian K; Govaerts, Cédric

    2016-01-01

    Lipids are emerging as key regulators of membrane protein structure and activity. These effects can be attributed either to the modification of bilayer properties (thickness, curvature and surface tension) or to the binding of specific lipids to the protein surface. For G protein-coupled receptors (GPCRs), the effects of phospholipids on receptor structure and activity remain poorly understood. Here we reconstituted purified β2-adrenergic receptor (β2R) in high-density lipoparticles to systematically characterize the effect of biologically relevant phospholipids on receptor activity. We observed that the lipid headgroup type affected ligand binding (agonist and antagonist) and receptor activation. Specifically, phosphatidylgycerol markedly favored agonist binding and facilitated receptor activation, whereas phosphatidylethanolamine favored antagonist binding and stabilized the inactive state of the receptor. We then showed that these effects could be recapitulated with detergent-solubilized lipids, demonstrating that the functional modulation occurred in the absence of a bilayer. Our data suggest that phospholipids act as direct allosteric modulators of GPCR activity. PMID:26571351

  12. Modelling the structures of G protein-coupled receptors aided by three-dimensional validation

    PubMed Central

    Dastmalchi, Siavoush; Church, W Bret; Morris, Michael B

    2008-01-01

    Background G protein-coupled receptors (GPCRs) are abundant, activate complex signalling and represent the targets for up to ~60% of pharmaceuticals but there is a paucity of structural data. Bovine rhodopsin is the first GPCR for which high-resolution structures have been completed but significant variations in structure are likely to exist among the GPCRs. Because of this, considerable effort has been expended on developing in silico tools for refining structures of individual GPCRs. We have developed REPIMPS, a modification of the inverse-folding software Profiles-3D, to assess and predict the rotational orientation and vertical position of helices within the helix bundle of individual GPCRs. We highlight the value of the method by applying it to the Baldwin GPCR template but the method can, in principle, be applied to any low- or high-resolution membrane protein template or structure. Results 3D models were built for transmembrane helical segments of 493 GPCRs based on the Baldwin template, and the models were then scored using REPIMPS and Profiles-3D. The compatibility scores increased significantly using REPIMPS because it takes into account the physicochemical properties of the (lipid) environment surrounding the helix bundle. The arrangement of helices in the helix bundle of the 493 models was then altered systematically by rotating the individual helices. For most GPCRs in the set, changes in the rotational position of one or more helices resulted in significant improvement in the compatibility scores. In particular, for most GPCRs, a rotation of helix VII by 240–300° resulted in improved scores. Bovine rhodopsin modelled using this method showed 3.31 Å RMSD to its crystal structure for 198 Cα atom pairs, suggesting the utility of the method even when starting with idealised structures such as the Baldwin template. Conclusion We have developed an in silico tool which can be used to test the validity of, and refine, models of GPCRs with respect to

  13. Lipid G Protein-coupled Receptor Ligand Identification Using β-Arrestin PathHunter™ Assay

    PubMed Central

    Yin, Hong; Chu, Alan; Li, Wei; Wang, Bin; Shelton, Fabiola; Otero, Francella; Nguyen, Deborah G.; Caldwell, Jeremy S.; Chen, Yu Alice

    2009-01-01

    A growing number of orphan G-protein-coupled receptors (GPCRs) have been reported to be activated by lipid ligands, such as lysophosphatidic acid, sphingosine 1-phosphate (S1P), and cannabinoids, for which there are already well established receptors. These new ligand claims are controversial due to either lack of independent confirmations or conflicting reports. We used the β-arrestin PathHunter™ assay system, a newly developed, generic GPCR assay format that measures β-arrestin binding to GPCRs, to evaluate lipid receptor and ligand pairing. This assay eliminates interference from endogenous receptors on the parental cells because it measures a signal that is specifically generated by the tagged receptor and is immediately downstream of receptor activation. We screened a large number of newly “deorphaned” receptors (GPR23, GPR92, GPR55, G2A, GPR18, GPR3, GPR6, GPR12, and GPR63) and control receptors against a collection of ∼400 lipid molecules to try to identify the receptor ligand in an unbiased fashion. GPR92 was confirmed to be a lysophosphatidic acid receptor with weaker responses to farnesyl pyrophosphate and geranylgeranyl diphosphate. The putative cannabinoid receptor GPR55 responded strongly to AM251, rimonabant, and lysophosphatidylinositol but only very weakly to endocannabinoids. G2A receptor was confirmed to be an oxidized free fatty acid receptor. In addition, we discovered that 3,3′-diindolylmethane, a dietary molecule from cruciferous vegetables, which has known anti-cancer properties, to be a CB2 receptor partial agonist, with binding affinity around 1 μm. The anti-inflammatory effect of 3,3′-diindolylmethane in RAW264.7 cells was shown to be partially mediated by CB2. PMID:19286662

  14. Complete Reversible Refolding of a G-Protein Coupled Receptor on a Solid Support.

    PubMed

    Di Bartolo, Natalie; Compton, Emma L R; Warne, Tony; Edwards, Patricia C; Tate, Christopher G; Schertler, Gebhard F X; Booth, Paula J

    2016-01-01

    The factors defining the correct folding and stability of integral membrane proteins are poorly understood. Folding of only a few select membrane proteins has been scrutinised, leaving considerable deficiencies in knowledge for large protein families, such as G protein coupled receptors (GPCRs). Complete reversible folding, which is problematic for any membrane protein, has eluded this dominant receptor family. Moreover, attempts to recover receptors from denatured states are inefficient, yielding at best 40-70% functional protein. We present a method for the reversible unfolding of an archetypal family member, the β1-adrenergic receptor, and attain 100% recovery of the folded, functional state, in terms of ligand binding, compared to receptor which has not been subject to any unfolding and retains its original, folded structure. We exploit refolding on a solid support, which could avoid unwanted interactions and aggregation that occur in bulk solution. We determine the changes in structure and function upon unfolding and refolding. Additionally, we employ a method that is relatively new to membrane protein folding; pulse proteolysis. Complete refolding of β1-adrenergic receptor occurs in n-decyl-β-D-maltoside (DM) micelles from a urea-denatured state, as shown by regain of its original helical structure, ligand binding and protein fluorescence. The successful refolding strategy on a solid support offers a defined method for the controlled refolding and recovery of functional GPCRs and other membrane proteins that suffer from instability and irreversible denaturation once isolated from their native membranes. PMID:26982879

  15. GGA3 Interacts with a G Protein-Coupled Receptor and Modulates Its Cell Surface Export.

    PubMed

    Zhang, Maoxiang; Davis, Jason E; Li, Chunman; Gao, Jie; Huang, Wei; Lambert, Nevin A; Terry, Alvin V; Wu, Guangyu

    2016-01-01

    Molecular mechanisms governing the anterograde trafficking of nascent G protein-coupled receptors (GPCRs) are poorly understood. Here, we have studied the regulation of cell surface transport of α2-adrenergic receptors (α2-ARs) by GGA3 (Golgi-localized, γ-adaptin ear domain homology, ADP ribosylation factor-binding protein 3), a multidomain clathrin adaptor protein that sorts cargo proteins at the trans-Golgi network (TGN) to the endosome/lysosome pathway. By using an inducible system, we demonstrated that GGA3 knockdown significantly inhibited the cell surface expression of newly synthesized α2B-AR without altering overall receptor synthesis and internalization. The receptors were arrested in the TGN. Furthermore, GGA3 knockdown attenuated α2B-AR-mediated signaling, including extracellular signal-regulated kinase 1/2 (ERK1/2) activation and cyclic AMP (cAMP) inhibition. More interestingly, GGA3 physically interacted with α2B-AR, and the interaction sites were identified as the triple Arg motif in the third intracellular loop of the receptor and the acidic motif EDWE in the VHS domain of GGA3. In contrast, α2A-AR did not interact with GGA3 and its cell surface export and signaling were not affected by GGA3 knockdown. These data reveal a novel function of GGA3 in export trafficking of a GPCR that is mediated via a specific interaction with the receptor. PMID:26811329

  16. Complete Reversible Refolding of a G-Protein Coupled Receptor on a Solid Support

    PubMed Central

    Di Bartolo, Natalie; Compton, Emma L. R.; Warne, Tony; Edwards, Patricia C.; Tate, Christopher G.; Schertler, Gebhard F. X.; Booth, Paula J.

    2016-01-01

    The factors defining the correct folding and stability of integral membrane proteins are poorly understood. Folding of only a few select membrane proteins has been scrutinised, leaving considerable deficiencies in knowledge for large protein families, such as G protein coupled receptors (GPCRs). Complete reversible folding, which is problematic for any membrane protein, has eluded this dominant receptor family. Moreover, attempts to recover receptors from denatured states are inefficient, yielding at best 40–70% functional protein. We present a method for the reversible unfolding of an archetypal family member, the β1-adrenergic receptor, and attain 100% recovery of the folded, functional state, in terms of ligand binding, compared to receptor which has not been subject to any unfolding and retains its original, folded structure. We exploit refolding on a solid support, which could avoid unwanted interactions and aggregation that occur in bulk solution. We determine the changes in structure and function upon unfolding and refolding. Additionally, we employ a method that is relatively new to membrane protein folding; pulse proteolysis. Complete refolding of β1-adrenergic receptor occurs in n-decyl-β-D-maltoside (DM) micelles from a urea-denatured state, as shown by regain of its original helical structure, ligand binding and protein fluorescence. The successful refolding strategy on a solid support offers a defined method for the controlled refolding and recovery of functional GPCRs and other membrane proteins that suffer from instability and irreversible denaturation once isolated from their native membranes. PMID:26982879

  17. Detergent-free Isolation of Functional G Protein-Coupled Receptors into Nanometric Lipid Particles.

    PubMed

    Logez, Christel; Damian, Marjorie; Legros, Céline; Dupré, Clémence; Guéry, Mélody; Mary, Sophie; Wagner, Renaud; M'Kadmi, Céline; Nosjean, Olivier; Fould, Benjamin; Marie, Jacky; Fehrentz, Jean-Alain; Martinez, Jean; Ferry, Gilles; Boutin, Jean A; Banères, Jean-Louis

    2016-01-12

    G protein-coupled receptors (GPCRs) are integral membrane proteins that play a pivotal role in signal transduction. Understanding their dynamics is absolutely required to get a clear picture of how signaling proceeds. Molecular characterization of GPCRs isolated in detergents nevertheless stumbles over the deleterious effect of these compounds on receptor function and stability. We explored here the potential of a styrene-maleic acid polymer to solubilize receptors directly from their lipid environment. To this end, we used two GPCRs, the melatonin and ghrelin receptors, embedded in two membrane systems of increasing complexity, liposomes and membranes from Pichia pastoris. The styrene-maleic acid polymer was able, in both cases, to extract membrane patches of a well-defined size. GPCRs in SMA-stabilized lipid discs not only recognized their ligand but also transmitted a signal, as evidenced by their ability to activate their cognate G proteins and recruit arrestins in an agonist-dependent manner. Besides, the purified receptor in lipid discs undergoes all specific changes in conformation associated with ligand-mediated activation, as demonstrated in the case of the ghrelin receptor with fluorescent conformational reporters and compounds from distinct pharmacological classes. Altogether, these data highlight the potential of styrene-maleic stabilized lipid discs for analyzing the molecular bases of GPCR-mediated signaling in a well-controlled membrane-like environment. PMID:26701065

  18. The amphioxus (Branchiostoma floridae) genome contains a highly diversified set of G protein-coupled receptors

    PubMed Central

    2008-01-01

    Background G protein-coupled receptors (GPCRs) are one of the largest families of genes in mammals. Branchiostoma floridae (amphioxus) is one of the species most closely related species to vertebrates. Results Mining and phylogenetic analysis of the amphioxus genome showed the presence of at least 664 distinct GPCRs distributed among all the main families of GPCRs; Glutamate (18), Rhodopsin (570), Adhesion (37), Frizzled (6) and Secretin (16). Surprisingly, the Adhesion GPCR repertoire in amphioxus includes receptors with many new domains not previously observed in this family. We found many Rhodopsin GPCRs from all main groups including many amine and peptide binding receptors and several previously uncharacterized expansions were also identified. This genome has however no genes coding for bitter taste receptors (TAS2), the sweet and umami (TAS1), pheromone (VR1 or VR2) or mammalian olfactory receptors. Conclusion The amphioxus genome is remarkably rich in various GPCR subtypes while the main GPCR groups known to sense exogenous substances (such as Taste 2, mammalian olfactory, nematode chemosensory, gustatory, vomeronasal and odorant receptors) in other bilateral species are absent. PMID:18199322

  19. Cloning of human genes encoding novel G protein-coupled receptors

    SciTech Connect

    Marchese, A.; Docherty, J.M.; Heiber, M.

    1994-10-01

    We report the isolation and characterization of several novel human genes encoding G protein-coupled receptors. Each of the receptors contained the familiar seven transmembrane topography and most closely resembled peptide binding receptors. Gene GPR1 encoded a receptor protein that is intronless in the coding region and that shared identity (43% in the transmembrane regions) with the opioid receptors. Northern blot analysis revealed that GPR1 transcripts were expressed in the human hippocampus, and the gene was localized to chromosome 15q21.6. Gene GPR2 encoded a protein that most closely resembled an interleukin-8 receptor (51% in the transmembrane regions), and this gene, not expressed in the six brain regions examined, was localized to chromosome 17q2.1-q21.3. A third gene, GPR3, showed identity (56% in the transmembrane regions) with a previously characterized cDNA clone from rat and was localized to chromosome 1p35-p36.1. 31 refs., 5 figs., 1 tab.

  20. Receptor-specific in vivo desensitization by the G protein-coupled receptor kinase-5 in transgenic mice.

    PubMed Central

    Rockman, H A; Choi, D J; Rahman, N U; Akhter, S A; Lefkowitz, R J; Koch, W J

    1996-01-01

    Transgenic mice were generated with cardiac-specific overexpression of the G protein-coupled receptor kinase-5 (GRK5), a serine/threonine kinase most abundantly expressed in the heart compared with other tissues. Animals overexpressing GRK5 showed marked beta-adrenergic receptor desensitization in both the anesthetized and conscious state compared with nontransgenic control mice, while the contractile response to angiotensin II receptor stimulation was unchanged. In contrast, the angiotensin II-induced rise in contractility was significantly attenuated in transgenic mice overexpressing the beta-adrenergic receptor kinase-1, another member of the GRK family. These data suggest that myocardial overexpression of GRK5 results in selective uncoupling of G protein-coupled receptors and demonstrate that receptor specificity of the GRKs may be important in determining the physiological phenotype. Images Fig. 1 PMID:8790438

  1. Competing G protein-coupled receptor kinases balance G protein and β-arrestin signaling

    PubMed Central

    Heitzler, Domitille; Durand, Guillaume; Gallay, Nathalie; Rizk, Aurélien; Ahn, Seungkirl; Kim, Jihee; Violin, Jonathan D; Dupuy, Laurence; Gauthier, Christophe; Piketty, Vincent; Crépieux, Pascale; Poupon, Anne; Clément, Frédérique; Fages, François; Lefkowitz, Robert J; Reiter, Eric

    2012-01-01

    Seven-transmembrane receptors (7TMRs) are involved in nearly all aspects of chemical communications and represent major drug targets. 7TMRs transmit their signals not only via heterotrimeric G proteins but also through β-arrestins, whose recruitment to the activated receptor is regulated by G protein-coupled receptor kinases (GRKs). In this paper, we combined experimental approaches with computational modeling to decipher the molecular mechanisms as well as the hidden dynamics governing extracellular signal-regulated kinase (ERK) activation by the angiotensin II type 1A receptor (AT1AR) in human embryonic kidney (HEK)293 cells. We built an abstracted ordinary differential equations (ODE)-based model that captured the available knowledge and experimental data. We inferred the unknown parameters by simultaneously fitting experimental data generated in both control and perturbed conditions. We demonstrate that, in addition to its well-established function in the desensitization of G-protein activation, GRK2 exerts a strong negative effect on β-arrestin-dependent signaling through its competition with GRK5 and 6 for receptor phosphorylation. Importantly, we experimentally confirmed the validity of this novel GRK2-dependent mechanism in both primary vascular smooth muscle cells naturally expressing the AT1AR, and HEK293 cells expressing other 7TMRs. PMID:22735336

  2. Molecular recognition of parathyroid hormone by its G protein-coupled receptor

    SciTech Connect

    Pioszak, Augen A.; Xu, H. Eric

    2008-08-07

    Parathyroid hormone (PTH) is central to calcium homeostasis and bone maintenance in vertebrates, and as such it has been used for treating osteoporosis. It acts primarily by binding to its receptor, PTH1R, a member of the class B G protein-coupled receptor (GPCR) family that also includes receptors for glucagon, calcitonin, and other therapeutically important peptide hormones. Despite considerable interest and much research, determining the structure of the receptor-hormone complex has been hindered by difficulties in purifying the receptor and obtaining diffraction-quality crystals. Here, we present a method for expression and purification of the extracellular domain (ECD) of human PTH1R engineered as a maltose-binding protein (MBP) fusion that readily crystallizes. The 1.95-{angstrom} structure of PTH bound to the MBP-PTH1R-ECD fusion reveals that PTH docks as an amphipathic helix into a central hydrophobic groove formed by a three-layer {alpha}-{beta}-{beta}{alpha} fold of the PTH1R ECD, resembling a hot dog in a bun. Conservation in the ECD scaffold and the helical structure of peptide hormones emphasizes this hot dog model as a general mechanism of hormone recognition common to class B GPCRs. Our findings reveal critical insights into PTH actions and provide a rational template for drug design that targets this hormone signaling pathway.

  3. The allosteric vestibule of a seven transmembrane helical receptor controls G-protein coupling

    PubMed Central

    Bock, Andreas; Merten, Nicole; Schrage, Ramona; Dallanoce, Clelia; Bätz, Julia; Klöckner, Jessica; Schmitz, Jens; Matera, Carlo; Simon, Katharina; Kebig, Anna; Peters, Lucas; Müller, Anke; Schrobang-Ley, Jasmin; Tränkle, Christian; Hoffmann, Carsten; De Amici, Marco; Holzgrabe, Ulrike; Kostenis, Evi; Mohr, Klaus

    2012-01-01

    Seven transmembrane helical receptors (7TMRs) modulate cell function via different types of G proteins, often in a ligand-specific manner. Class A 7TMRs harbour allosteric vestibules in the entrance of their ligand-binding cavities, which are in the focus of current drug discovery. However, their biological function remains enigmatic. Here we present a new strategy for probing and manipulating conformational transitions in the allosteric vestibule of label-free 7TMRs using the M2 acetylcholine receptor as a paradigm. We designed dualsteric agonists as 'tailor-made' chemical probes to trigger graded receptor activation from the acetylcholine-binding site while simultaneously restricting spatial flexibility of the receptor's allosteric vestibule. Our findings reveal for the first time that a 7TMR's allosteric vestibule controls the extent of receptor movement to govern a hierarchical order of G-protein coupling. This is a new concept assigning a biological role to the allosteric vestibule for controlling fidelity of 7TMR signalling. PMID:22948826

  4. The structural basis of arrestin-mediated regulation of G-protein-coupled receptors

    PubMed Central

    Gurevich, Vsevolod V.; Gurevich, Eugenia V.

    2008-01-01

    The 4 mammalian arrestins serve as almost universal regulators of the largest known family of signaling proteins, G-protein-coupled receptors (GPCRs). Arrestins terminate receptor interactions with G proteins, redirect the signaling to a variety of alternative pathways, and orchestrate receptor internalization and subsequent intracellular trafficking. The elucidation of the structural basis and fine molecular mechanisms of the arrestin–receptor interaction paved the way to the targeted manipulation of this interaction from both sides to produce very stable or extremely transient complexes that helped to understand the regulation of many biologically important processes initiated by active GPCRs. The elucidation of the structural basis of arrestin interactions with numerous non-receptor-binding partners is long overdue. It will allow the construction of fully functional arrestins in which the ability to interact with individual partners is specifically disrupted or enhanced by targeted mutagenesis. These “custom-designed” arrestin mutants will be valuable tools in defining the role of various interactions in the intricate interplay of multiple signaling pathways in the living cell. The identification of arrestin-binding sites for various signaling molecules will also set the stage for designing molecular tools for therapeutic intervention that may prove useful in numerous disorders associated with congenital or acquired disregulation of GPCR signaling. PMID:16460808

  5. Evolution of a G protein-coupled receptor response by mutations in regulatory network interactions.

    PubMed

    Di Roberto, Raphaël B; Chang, Belinda; Trusina, Ala; Peisajovich, Sergio G

    2016-01-01

    All cellular functions depend on the concerted action of multiple proteins organized in complex networks. To understand how selection acts on protein networks, we used the yeast mating receptor Ste2, a pheromone-activated G protein-coupled receptor, as a model system. In Saccharomyces cerevisiae, Ste2 is a hub in a network of interactions controlling both signal transduction and signal suppression. Through laboratory evolution, we obtained 21 mutant receptors sensitive to the pheromone of a related yeast species and investigated the molecular mechanisms behind this newfound sensitivity. While some mutants show enhanced binding affinity to the foreign pheromone, others only display weakened interactions with the network's negative regulators. Importantly, the latter changes have a limited impact on overall pathway regulation, despite their considerable effect on sensitivity. Our results demonstrate that a new receptor-ligand pair can evolve through network-altering mutations independently of receptor-ligand binding, and suggest a potential role for such mutations in disease. PMID:27487915

  6. Inhibition of Ebola and Marburg Virus Entry by G Protein-Coupled Receptor Antagonists

    PubMed Central

    Cheng, Han; Lear-Rooney, Calli M.; Johansen, Lisa; Varhegyi, Elizabeth; Chen, Zheng W.; Olinger, Gene G.

    2015-01-01

    ABSTRACT Filoviruses, consisting of Ebola virus (EBOV) and Marburg virus (MARV), are among the most lethal infectious threats to mankind. Infections by these viruses can cause severe hemorrhagic fevers in humans and nonhuman primates with high mortality rates. Since there is currently no vaccine or antiviral therapy approved for humans, there is an urgent need to develop prophylactic and therapeutic options for use during filoviral outbreaks and bioterrorist attacks. One of the ideal targets against filoviral infection and diseases is at the entry step, which is mediated by the filoviral glycoprotein (GP). In this report, we screened a chemical library of small molecules and identified numerous inhibitors, which are known G protein-coupled receptor (GPCR) antagonists targeting different GPCRs, including histamine receptors, 5-HT (serotonin) receptors, muscarinic acetylcholine receptor, and adrenergic receptor. These inhibitors can effectively block replication of both infectious EBOV and MARV, indicating a broad antiviral activity of the GPCR antagonists. The time-of-addition experiment and microscopic studies suggest that GPCR antagonists block filoviral entry at a step following the initial attachment but prior to viral/cell membrane fusion. These results strongly suggest that GPCRs play a critical role in filoviral entry and GPCR antagonists can be developed as an effective anti-EBOV/MARV therapy. IMPORTANCE Infection of Ebola virus and Marburg virus can cause severe illness in humans with a high mortality rate, and currently there is no FDA-approved vaccine or therapeutic treatment available. The 2013-2015 epidemic in West Africa underscores a lack of our understanding in the infection and pathogenesis of these viruses and the urgency of drug discovery and development. In this study, we have identified numerous inhibitors that are known G protein-coupled receptor (GPCR) antagonists targeting different GPCRs. These inhibitors can effectively block replication of

  7. TDAG8 is a proton-sensing and psychosine-sensitive G-protein-coupled receptor.

    PubMed

    Wang, Ju-Qiang; Kon, Junko; Mogi, Chihiro; Tobo, Masayuki; Damirin, Alatangaole; Sato, Koichi; Komachi, Mayumi; Malchinkhuu, Enkhzol; Murata, Naoya; Kimura, Takao; Kuwabara, Atsushi; Wakamatsu, Kaori; Koizumi, Hideki; Uede, Toshimitsu; Tsujimoto, Gozoh; Kurose, Hitoshi; Sato, Takashi; Harada, Akihiro; Misawa, Norihiko; Tomura, Hideaki; Okajima, Fumikazu

    2004-10-29

    T cell death-associated gene 8 (TDAG8) has been reported to be a receptor for psychosine. Ovarian cancer G-protein-coupled receptor 1 (OGR1) and GPR4, G-protein-coupled receptors (GPCRs) closely related to TDAG8, however, have recently been identified as proton-sensing or extracellular pH-responsive GPCRs that stimulate inositol phosphate and cAMP production, respectively. In the present study, we examined whether TDAG8 senses extracellular pH change. In the several cell types that were transfected with TDAG8 cDNA, cAMP was markedly accumulated in response to neutral to acidic extracellular pH, with a peak response at approximately pH 7.0-6.5. The pH effect was inhibited by copper ions and was reduced or lost in cells expressing mutated TDAG8 in which histidine residues were changed to phenylalanine. In the membrane fractions prepared from TDAG8-transfected cells, guanosine 5'-O-(3-thiotriphosphate) binding activity and adenylyl cyclase activity were remarkably stimulated in response to neutral and acidic pH. The concentration-dependent effect of extracellular protons on cAMP accumulation was shifted to the right in the presence of psychosine. The inhibitory psychosine effect was also observed for pH-dependent actions in OGR1- and GPR4-expressing cells but not for prostaglandin E(2)- and sphingosine 1-phosphate-induced actions in any pH in native and sphingosine 1-phosphate receptor-expressing cells. Glucosylsphingosine and sphingosylphosphorylcholine similarly inhibited the pH-dependent action, although to a lesser extent. Psychosine-sensitive and pH-dependent cAMP accumulation was also observed in mouse thymocytes. We concluded that TDAG8 is one of the proton-sensing GPCRs coupling to adenylyl cyclase and psychosine, and its related lysosphingolipids behave as if they were antagonists against protein-sensing receptors, including TDAG8, GPR4, and OGR1. PMID:15326175

  8. Affinity Purification and Characterization of a G-Protein Coupled Receptor, Saccharomyces cerevisiae Ste2p

    SciTech Connect

    Lee, Byung-Kwon; Jung, Kyung-Sik; Son, Cagdas D; Kim, Heejung; Verberkmoes, Nathan C; Arshava, Boris; Naider, Fred; Becker, Jeffrey Marvin

    2007-01-01

    We present a rare example of a biologically active G protein coupled receptor (GPCR) whose purity and identity were verified by mass spectrometry after being purified to near homogeneity from its native system. An overexpression vector was constructed to encode the Saccharomyces cerevisiae GPCR -factor receptor (Ste2p, the STE2 gene product) containing a 9-amino acid sequence of rhodopsin that served as an epitope/affinity tag. In the construct, two glycosylation sites and two cysteine residues were removed to aid future structural and functional studies. The receptor was expressed in yeast cells and was detected as a single band in a western blot indicating the absence of glycosylation. Tests of the epitope-tagged, mutated receptor showed it maintained its full biological activity. For extraction of Ste2p, yeast membranes were solubilized with 0.5 % n-dodecyl maltoside (DM). Approximately 120 g of purified -factor receptor was obtained per liter of culture by single-step affinity chromatography using a monoclonal antibody to the rhodopsin epitope. The binding affinity (Kd) of the purified -factor receptor in DM micelles was 28 nM as compared to Kd = 12.7 nM for Ste2p in cell membranes, and approximately 40 % of the purified receptor was correctly folded as judged by ligand saturation binding. About 50 % of the receptor sequence was retrieved from MALDITOF and nanospray mass spectrometry after CNBr digestion of the purified receptor. The methods described will enable structural studies of the -factor receptor and may provide an efficient technique to purify other GPCRs that have been functionally expressed in yeast.

  9. A Molecular Pharmacologist's Guide to G Protein-Coupled Receptor Crystallography.

    PubMed

    Piscitelli, Chayne L; Kean, James; de Graaf, Chris; Deupi, Xavier

    2015-09-01

    G protein-coupled receptor (GPCR) structural biology has progressed dramatically in the last decade. There are now over 120 GPCR crystal structures deposited in the Protein Data Bank of 32 different receptors from families scattered across the phylogenetic tree, including class B, C, and Frizzled GPCRs. These structures have been obtained in combination with a wide variety of ligands and captured in a range of conformational states. This surge in structural knowledge has enlightened research into the molecular recognition of biologically active molecules, the mechanisms of receptor activation, the dynamics of functional selectivity, and fueled structure-based drug design efforts for GPCRs. Here we summarize the innovations in both protein engineering/molecular biology and crystallography techniques that have led to these advances in GPCR structural biology and discuss how they may influence the resulting structural models. We also provide a brief molecular pharmacologist's guide to GPCR X-ray crystallography, outlining some key aspects in the process of structure determination, with the goal to encourage noncrystallographers to interrogate structures at the molecular level. Finally, we show how chemogenomics approaches can be used to marry the wealth of existing receptor pharmacology data with the expanding repertoire of structures, providing a deeper understanding of the mechanistic details of GPCR function. PMID:26152196

  10. G Protein Coupled Receptors in Embryonic Stem Cells: A Role for Gs-Alpha Signaling

    PubMed Central

    Layden, Brian T.; Newman, Marsha; Chen, Fei; Fisher, Amanda; Lowe, William L.

    2010-01-01

    Background Identification of receptor mediated signaling pathways in embryonic stem (ES) cells is needed to facilitate strategies for cell replacement using ES cells. One large receptor family, largely uninvestigated in ES cells, is G protein coupled receptors (GPCRs). An important role for these receptors in embryonic development has been described, but little is known about GPCR expression in ES cells. Methodology/Principal Findings We have examined the expression profile of 343 different GPCRs in mouse ES cells demonstrating for the first time that a large number of GPCRs are expressed in undifferentiated and differentiating ES cells, and in many cases at high levels. To begin to define a role for GPCR signaling in ES cells, the impact of activating Gs-alpha, one of the major alpha subunits that couples to GPCRs, was investigated. Gs-alpha activation resulted in larger embryoid bodies (EBs), due, in part, to increased cell proliferation and prevented the time-related decline in expression of transcription factors important for maintaining ES cell pluripotency. Significance/Conclusions These studies suggest that Gs-alpha signaling contributes to ES cell proliferation and pluripotency and provide a framework for further investigation of GPCRs in ES cells. PMID:20161705

  11. Not lost in translation: Emerging clinical importance of the G protein-coupled estrogen receptor GPER.

    PubMed

    Barton, Matthias

    2016-07-01

    It has been 20years that the G protein-coupled estrogen receptor (GPER) was cloned as the orphan receptor GPR30 from multiple cellular sources, including vascular endothelial cells. Here, I will provide an overview of estrogen biology and the historical background leading to the discovery of rapid vascular estrogen signaling. I will also review the recent advances in the understanding of the mechanisms underlying GPER function, its role in physiology and disease, some of the currently available GPER-targeting drugs approved for clinical use such as SERMs (selective estrogen receptor modulators) and SERDs (selective estrogen receptor downregulators). Many of currently used drugs such as tamoxifen, raloxifene, or faslodex™/fulvestrant were discovered targeting GPER many years after they had been introduced to the clinics for entirely different purposes. This has important implications for the clinical use of these drugs and their modes of action, which I have termed 'reverse translational medicine'. In addition, environmental pollutants known as 'endocrine disruptors' have been found to bind to GPER. This article also discusses recent evidence in these areas as well as opportunities in translational clinical medicine and GPER research, including medical genetics, personalized medicine, prevention, and its theranostic use. PMID:26921679

  12. Molecular Recognition of Corticotropin releasing Factor by Its G protein-coupled Receptor CRFR1

    SciTech Connect

    Pioszak, Augen A.; Parker, Naomi R.; Suino-Powell, Kelly; Xu, H. Eric

    2009-01-15

    The bimolecular interaction between corticotropin-releasing factor (CRF), a neuropeptide, and its type 1 receptor (CRFR1), a class B G-protein-coupled receptor (GPCR), is crucial for activation of the hypothalamic-pituitary-adrenal axis in response to stress, and has been a target of intense drug design for the treatment of anxiety, depression, and related disorders. As a class B GPCR, CRFR1 contains an N-terminal extracellular domain (ECD) that provides the primary ligand binding determinants. Here we present three crystal structures of the human CRFR1 ECD, one in a ligand-free form and two in distinct CRF-bound states. The CRFR1 ECD adopts the alpha-beta-betaalpha fold observed for other class B GPCR ECDs, but the N-terminal alpha-helix is significantly shorter and does not contact CRF. CRF adopts a continuous alpha-helix that docks in a hydrophobic surface of the ECD that is distinct from the peptide-binding site of other class B GPCRs, thereby providing a basis for the specificity of ligand recognition between CRFR1 and other class B GPCRs. The binding of CRF is accompanied by clamp-like conformational changes of two loops of the receptor that anchor the CRF C terminus, including the C-terminal amide group. These structural studies provide a molecular framework for understanding peptide binding and specificity by the CRF receptors as well as a template for designing potent and selective CRFR1 antagonists for therapeutic applications.

  13. Fluorescent knock-in mice to decipher the physiopathological role of G protein-coupled receptors

    PubMed Central

    Ceredig, Rhian A.; Massotte, Dominique

    2015-01-01

    G protein-coupled receptors (GPCRs) modulate most physiological functions but are also critically involved in numerous pathological states. Approximately a third of marketed drugs target GPCRs, which places this family of receptors in the main arena of pharmacological pre-clinical and clinical research. The complexity of GPCR function demands comprehensive appraisal in native environment to collect in-depth knowledge of receptor physiopathological roles and assess the potential of therapeutic molecules. Identifying neurons expressing endogenous GPCRs is therefore essential to locate them within functional circuits whereas GPCR visualization with subcellular resolution is required to get insight into agonist-induced trafficking. Both remain frequently poorly investigated because direct visualization of endogenous receptors is often hampered by the lack of appropriate tools. Also, monitoring intracellular trafficking requires real-time visualization to gather in-depth knowledge. In this context, knock-in mice expressing a fluorescent protein or a fluorescent version of a GPCR under the control of the endogenous promoter not only help to decipher neuroanatomical circuits but also enable real-time monitoring with subcellular resolution thus providing invaluable information on their trafficking in response to a physiological or a pharmacological challenge. This review will present the animal models and discuss their contribution to the understanding of the physiopathological role of GPCRs. We will also address the drawbacks associated with this methodological approach and browse future directions. PMID:25610398

  14. RTA, a candidate G protein-coupled receptor: cloning, sequencing, and tissue distribution.

    PubMed Central

    Ross, P C; Figler, R A; Corjay, M H; Barber, C M; Adam, N; Harcus, D R; Lynch, K R

    1990-01-01

    Genomic and cDNA clones, encoding a protein that is a member of the guanine nucleotide-binding regulatory protein (G protein)-coupled receptor superfamily, were isolated by screening rat genomic and thoracic aorta cDNA libraries with an oligonucleotide encoding a highly conserved region of the M1 muscarinic acetylcholine receptor. Sequence analyses of these clones showed that they encode a 343-amino acid protein (named RTA). The RTA gene is single copy, as demonstrated by restriction mapping and Southern blotting of genomic clones and rat genomic DNA. Sequence analysis of the genomic clone further showed that the RTA gene has an intron interrupting the region encoding the amino terminus of the protein. RTA RNA sequences are relatively abundant throughout the gut, vas deferens, uterus, and aorta but are only barely detectable (on Northern blots) in liver, kidney, lung, and salivary gland. In the rat brain, RTA sequences are markedly abundant in the cerebellum. RTA is most closely related to the mas oncogene (34% identity), which has been suggested to be a forebrain angiotensin receptor. We cannot detect angiotensin binding to the RTA protein after introducing the cognate cDNA or mRNA into COS cells or Xenopus oocytes, respectively, nor can we detect an electrophysiologic response in the oocyte after application of angiotensin peptides. We conclude that RTA is not an angiotensin receptor; to date, we have been unable to identify its ligand. Images PMID:2109324

  15. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors.

    PubMed

    Alexander, Stephen Ph; Davenport, Anthony P; Kelly, Eamonn; Marrion, Neil; Peters, John A; Benson, Helen E; Faccenda, Elena; Pawson, Adam J; Sharman, Joanna L; Southan, Christopher; Davies, Jamie A

    2015-12-01

    The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.13348/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The Concise Guide is published in landscape format in order to facilitate comparison of related targets. It is a condensed version of material contemporary to late 2015, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in the previous Guides to Receptors & Channels and the Concise Guide to PHARMACOLOGY 2013/14. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and GRAC and provides a permanent, citable, point-in-time record that will survive database updates. PMID:26650439

  16. G-protein coupled receptor-mediated nutrient sensing and developmental control in Aspergillus nidulans.

    PubMed

    Brown, Neil Andrew; Dos Reis, Thaila Fernanda; Ries, Laure Nicolas Annick; Caldana, Camila; Mah, Jae-Hyung; Yu, Jae-Hyuk; Macdonald, Jeffrey M; Goldman, Gustavo Henrique

    2015-10-01

    Nutrient sensing and utilisation are fundamental for all life forms. As heterotrophs, fungi have evolved a diverse range of mechanisms for sensing and taking up various nutrients. Despite its importance, only a limited number of nutrient receptors and their corresponding ligands have been identified in fungi. G-protein coupled receptors (GPCRs) are the largest family of transmembrane receptors. The Aspergillus nidulans genome encodes 16 putative GPCRs, but only a few have been functionally characterised. Our previous study showed the increased expression of an uncharacterised putative GPCR, gprH, during carbon starvation. GprH appears conserved throughout numerous filamentous fungi. Here, we reveal that GprH is a putative receptor involved in glucose and tryptophan sensing. The absence of GprH results in a reduction in cAMP levels and PKA activity upon adding glucose or tryptophan to starved cells. GprH is pre-formed in conidia and is increasingly active during carbon starvation, where it plays a role in glucose uptake and the recovery of hyphal growth. GprH also represses sexual development under conditions favouring sexual fruiting and during carbon starvation in submerged cultures. In summary, the GprH nutrient-sensing system functions upstream of the cAMP-PKA pathway, influences primary metabolism and hyphal growth, while represses sexual development in A. nidulans. PMID:26179439

  17. Homology Modeling, Validation and Dynamics of the G Protein-coupled Estrogen Receptor 1 (GPER-1).

    PubMed

    Bruno, Agostino; Aiello, Francesca; Costantino, Gabriele; Radi, Marco

    2016-09-01

    Estrogens exert their action mainly by binding three receptors, namely estrogen receptors α and β (ERα and ERβ) and GPER-1 (G-protein coupled estrogen receptor 1). While the patho-physiological role of both ERα and ERβ has been deeply investigated, the role of GPER-1 in estrogens' signaling has not been clearly defined yet. Unfortunately, only few GPER-1 selective ligands were discovered so far, and the real efficiency of such compounds is still matter of debate. To better understand the physiological relevance of GPER-1, new selective chemical probes are higly needed. In this scenario, we report herein the generation and validation of a three-dimensional (3-D) GPER-1 homology model by means of docking studies and molecular dynamics simulations. The model thus generated was employed to (i) decipher the structural basis underlying the ability of estrogens and some Selective Estrogen Receptor Modulators (SERMs) to bind GPER-1 and classical ERα and ERβ, and (ii) generate a reliable G1/GPER-1 complex useful in rationalizing the pharmacological profile of G1 reported in the literature. The G1/GPER-1 complex herein reported could be further exploited in drug design approaches aimed at improving the pharmacological profile of G1 or at identifying new chemical entities (NCEs) as potential modulators of GPER-1. PMID:27546037

  18. The G protein-coupled estrogen receptor as a modulator of neoplastic transformation.

    PubMed

    Jacenik, Damian; Cygankiewicz, Adam I; Krajewska, Wanda M

    2016-07-01

    Estrogens play a crucial role in the regulation of physiological and pathophysiological processes. These hormones act through specific receptors, most notably the canonical estrogen receptors α and β (ERα and ERβ) and their truncated forms as well as the G protein-coupled estrogen receptor (GPER). Several studies have shown that GPER is expressed in many normal and cancer cells, including those of the breast, endometrium, ovary, testis and lung. Hormonal imbalance is one possible cause of cancer development. An accumulating body of evidence indicates that GPER is involved in the regulation of cancer cell proliferation, migration and invasion, it may act as a mediator of microRNA, and is believed to modulate the inflammation associated with neoplastic transformation. Furthermore, used in various treatment regimens anti-estrogens such as tamoxifen, raloxifen and fulvestrant (ICI 182.780), antagonists/modulators of canonical estrogen receptors, were found to be GPER agonists. This review presents the current knowledge about the potential role of GPER in neoplastic transformation. PMID:27107933

  19. Analysis of G-Protein Coupled Receptor 30 (GPR30) on Endothelial Inflammation.

    PubMed

    Chakrabarti, Subhadeep; Davidge, Sandra T

    2016-01-01

    The female sex hormone estrogen (the most common form 17-β-estradiol or E2) is known to have both anti-inflammatory and pro-inflammatory effects. Given the diversity of estrogen responses mediated through its three distinct receptors, namely, estrogen receptor α (ERα), ERβ, and the G-protein coupled receptor 30 (GPR30), it is plausible that different receptors have specific modulatory effects on inflammation in different tissues. We have shown that activation of GPR30 exerted anti-inflammatory effects as demonstrated by significant attenuation of tumor necrosis factor (TNF)-mediated upregulation of adhesion molecules in isolated human umbilical vein endothelial cells. Interestingly, estrogen alone had no such effect and blockade of classical ERs restored the anti-inflammatory effect, suggesting that this effect was dependent on GPR30 and opposed to classical ERs. These findings were further validated by the negation of anti-inflammatory GPR30 effects by classical ER agonists. This chapter focuses on multiple pharmacological options to activate GPR30 and the use of TNF activated endothelial cells as a model system for inflammatory response as assessed by adhesion molecule detection through western blotting. PMID:26585160

  20. Differential Requirement of the Extracellular Domain in Activation of Class B G Protein-coupled Receptors.

    PubMed

    Zhao, Li-Hua; Yin, Yanting; Yang, Dehua; Liu, Bo; Hou, Li; Wang, Xiaoxi; Pal, Kuntal; Jiang, Yi; Feng, Yang; Cai, Xiaoqing; Dai, Antao; Liu, Mingyao; Wang, Ming-Wei; Melcher, Karsten; Xu, H Eric

    2016-07-15

    G protein-coupled receptors (GPCRs) from the secretin-like (class B) family are key players in hormonal homeostasis and are important drug targets for the treatment of metabolic disorders and neuronal diseases. They consist of a large N-terminal extracellular domain (ECD) and a transmembrane domain (TMD) with the GPCR signature of seven transmembrane helices. Class B GPCRs are activated by peptide hormones with their C termini bound to the receptor ECD and their N termini bound to the TMD. It is thought that the ECD functions as an affinity trap to bind and localize the hormone to the receptor. This in turn would allow the hormone N terminus to insert into the TMD and induce conformational changes of the TMD to activate downstream signaling. In contrast to this prevailing model, we demonstrate that human class B GPCRs vary widely in their requirement of the ECD for activation. In one group, represented by corticotrophin-releasing factor receptor 1 (CRF1R), parathyroid hormone receptor (PTH1R), and pituitary adenylate cyclase activating polypeptide type 1 receptor (PAC1R), the ECD requirement for high affinity hormone binding can be bypassed by induced proximity and mass action effects, whereas in the other group, represented by glucagon receptor (GCGR) and glucagon-like peptide-1 receptor (GLP-1R), the ECD is required for signaling even when the hormone is covalently linked to the TMD. Furthermore, the activation of GLP-1R by small molecules that interact with the intracellular side of the receptor is dependent on the presence of its ECD, suggesting a direct role of the ECD in GLP-1R activation. PMID:27226600

  1. Allosteric and Biased G Protein-Coupled Receptor Signaling Regulation: Potentials for New Therapeutics

    PubMed Central

    Khoury, Etienne; Clément, Stéphanie; Laporte, Stéphane A.

    2014-01-01

    G protein-coupled receptors (GPCRs) are seven-transmembrane proteins that participate in many aspects of the endocrine function and are important targets for drug development. They transduce signals mainly, but not exclusively, via hetero-trimeric G proteins, leading to a diversity of intracellular signaling cascades. Ligands binding at the hormone orthosteric sites of receptors have been classified as agonists, antagonists, and/or inverse agonists based on their ability to mainly modulate G protein signaling. Accumulating evidence also indicates that such ligands, alone or in combination with other ones such as those acting outside the orthosteric hormone binding sites (e.g., allosteric modulators), have the ability to selectively engage subsets of signaling responses as compared to the natural endogenous ligands. Such modes of functioning have been variously referred to as “functional selectivity” or “ligand-biased signaling.” In this review, we provide an overview of the current knowledge regarding GPCR-biased signaling and their functional regulation with a focus on the evolving concept that receptor domains can also be targeted to allosterically bias signaling, and discuss the usefulness of such modes of regulation for the design of more efficient therapeutics. PMID:24847311

  2. G Protein Coupled Receptor Kinase 3 Regulates Breast Cancer Migration, Invasion, and Metastasis

    PubMed Central

    Billard, Matthew J.; Fitzhugh, David J.; Parker, Joel S.; Brozowski, Jaime M.; McGinnis, Marcus W.; Timoshchenko, Roman G.; Serafin, D. Stephen; Lininger, Ruth; Klauber-Demore, Nancy; Sahagian, Gary; Truong, Young K.; Sassano, Maria F.; Serody, Jonathan S.; Tarrant, Teresa K.

    2016-01-01

    Triple negative breast cancer (TNBC) is a heterogeneous disease that has a poor prognosis and limited treatment options. Chemokine receptor interactions are important modulators of breast cancer metastasis; however, it is now recognized that quantitative surface expression of one important chemokine receptor, CXCR4, may not directly correlate with metastasis and that its functional activity in breast cancer may better inform tumor pathogenicity. G protein coupled receptor kinase 3 (GRK3) is a negative regulator of CXCR4 activity, and we show that GRK expression correlates with tumorigenicity, molecular subtype, and metastatic potential in human tumor microarray analysis. Using established human breast cancer cell lines and an immunocompetent in vivo mouse model, we further demonstrate that alterations in GRK3 expression levels in tumor cells directly affect migration and invasion in vitro and the establishment of distant metastasis in vivo. The effects of GRK3 modulation appear to be specific to chemokine-mediated migration behaviors without influencing tumor cell proliferation or survival. These data demonstrate that GRK3 dysregulation may play an important part in TNBC metastasis. PMID:27049755

  3. The structural evolution of a P2Y-like G-protein-coupled receptor.

    PubMed

    Schulz, Angela; Schöneberg, Torsten

    2003-09-12

    Based on the now available crystallographic data of the G-protein-coupled receptor (GPCR) prototype rhodopsin, many studies have been undertaken to build or verify models of other GPCRs. Here, we mined evolution as an additional source of structural information that may guide GPCR model generation as well as mutagenesis studies. The sequence information of 61 cloned orthologs of a P2Y-like receptor (GPR34) enabled us to identify motifs and residues that are important for maintaining the receptor function. The sequence data were compared with available sequences of 77 rhodopsin orthologs. Under a negative selection mode, only 17% of amino acid residues were preserved during 450 million years of GPR34 evolution. On the contrary, in rhodopsin evolution approximately 43% residues were absolutely conserved between fish and mammals. Despite major differences in their structural conservation, a comparison of structural data suggests that the global arrangement of the transmembrane core of GPR34 orthologs is similar to rhodopsin. The evolutionary approach was further applied to functionally analyze the relevance of common scaffold residues and motifs found in most of the rhodopsin-like GPCRs. Our analysis indicates that, in contrast to other GPCRs, maintaining the unique function of rhodopsin requires a more stringent network of relevant intramolecular constrains. PMID:12835326

  4. Multitarget-directed tricyclic pyridazinones as G protein-coupled receptor ligands and cholinesterase inhibitors.

    PubMed

    Pau, Amedeo; Catto, Marco; Pinna, Giovanni; Frau, Simona; Murineddu, Gabriele; Asproni, Battistina; Curzu, Maria M; Pisani, Leonardo; Leonetti, Francesco; Loza, Maria Isabel; Brea, José; Pinna, Gérard A; Carotti, Angelo

    2015-06-01

    By following a multitarget ligand design approach, a library of 47 compounds was prepared, and they were tested as binders of selected G protein-coupled receptors (GPCRs) and inhibitors of acetyl and/or butyryl cholinesterase. The newly designed ligands feature pyridazinone-based tricyclic scaffolds connected through alkyl chains of variable length to proper amine moieties (e.g., substituted piperazines or piperidines) for GPCR and cholinesterase (ChE) molecular recognition. The compounds were tested at three different GPCRs, namely serotoninergic 5-HT1A, adrenergic α1A, and dopaminergic D2 receptors. Our main goal was the discovery of compounds that exhibit, in addition to ChE inhibition, antagonist activity at 5-HT1A because of its involvement in neuronal deficits typical of Alzheimer's and other neurodegenerative diseases. Ligands with nanomolar affinity for the tested GPCRs were discovered, but most of them behaved as dual antagonists of α1A and 5-HT1A receptors. Nevertheless, several compounds displaying this GPCR affinity profile also showed moderate to good inhibition of AChE and BChE, thus deserving further investigations to exploit the therapeutic potential of such unusual biological profiles. PMID:25924828

  5. IUPHAR-DB: the IUPHAR database of G protein-coupled receptors and ion channels.

    PubMed

    Harmar, Anthony J; Hills, Rebecca A; Rosser, Edward M; Jones, Martin; Buneman, O Peter; Dunbar, Donald R; Greenhill, Stuart D; Hale, Valerie A; Sharman, Joanna L; Bonner, Tom I; Catterall, William A; Davenport, Anthony P; Delagrange, Philippe; Dollery, Colin T; Foord, Steven M; Gutman, George A; Laudet, Vincent; Neubig, Richard R; Ohlstein, Eliot H; Olsen, Richard W; Peters, John; Pin, Jean-Philippe; Ruffolo, Robert R; Searls, David B; Wright, Mathew W; Spedding, Michael

    2009-01-01

    The IUPHAR database (IUPHAR-DB) integrates peer-reviewed pharmacological, chemical, genetic, functional and anatomical information on the 354 nonsensory G protein-coupled receptors (GPCRs), 71 ligand-gated ion channel subunits and 141 voltage-gated-like ion channel subunits encoded by the human, rat and mouse genomes. These genes represent the targets of approximately one-third of currently approved drugs and are a major focus of drug discovery and development programs in the pharmaceutical industry. IUPHAR-DB provides a comprehensive description of the genes and their functions, with information on protein structure and interactions, ligands, expression patterns, signaling mechanisms, functional assays and biologically important receptor variants (e.g. single nucleotide polymorphisms and splice variants). In addition, the phenotypes resulting from altered gene expression (e.g. in genetically altered animals or in human genetic disorders) are described. The content of the database is peer reviewed by members of the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC-IUPHAR); the data are provided through manual curation of the primary literature by a network of over 60 subcommittees of NC-IUPHAR. Links to other bioinformatics resources, such as NCBI, Uniprot, HGNC and the rat and mouse genome databases are provided. IUPHAR-DB is freely available at http://www.iuphar-db.org. PMID:18948278

  6. Evolution of a G protein-coupled receptor response by mutations in regulatory network interactions

    PubMed Central

    Di Roberto, Raphaël B.; Chang, Belinda; Trusina, Ala; Peisajovich, Sergio G.

    2016-01-01

    All cellular functions depend on the concerted action of multiple proteins organized in complex networks. To understand how selection acts on protein networks, we used the yeast mating receptor Ste2, a pheromone-activated G protein-coupled receptor, as a model system. In Saccharomyces cerevisiae, Ste2 is a hub in a network of interactions controlling both signal transduction and signal suppression. Through laboratory evolution, we obtained 21 mutant receptors sensitive to the pheromone of a related yeast species and investigated the molecular mechanisms behind this newfound sensitivity. While some mutants show enhanced binding affinity to the foreign pheromone, others only display weakened interactions with the network's negative regulators. Importantly, the latter changes have a limited impact on overall pathway regulation, despite their considerable effect on sensitivity. Our results demonstrate that a new receptor–ligand pair can evolve through network-altering mutations independently of receptor–ligand binding, and suggest a potential role for such mutations in disease. PMID:27487915

  7. Chaperoning G Protein-Coupled Receptors: From Cell Biology to Therapeutics

    PubMed Central

    Conn, P. Michael

    2014-01-01

    G protein-coupled receptors (GPCRs) are membrane proteins that traverse the plasma membrane seven times (hence, are also called 7TM receptors). The polytopic structure of GPCRs makes the folding of GPCRs difficult and complex. Indeed, many wild-type GPCRs are not folded optimally, and defects in folding are the most common cause of genetic diseases due to GPCR mutations. Both general and receptor-specific molecular chaperones aid the folding of GPCRs. Chemical chaperones have been shown to be able to correct the misfolding in mutant GPCRs, proving to be important tools for studying the structure-function relationship of GPCRs. However, their potential therapeutic value is very limited. Pharmacological chaperones (pharmacoperones) are potentially important novel therapeutics for treating genetic diseases caused by mutations in GPCR genes that resulted in misfolded mutant proteins. Pharmacoperones also increase cell surface expression of wild-type GPCRs; therefore, they could be used to treat diseases that do not harbor mutations in GPCRs. Recent studies have shown that indeed pharmacoperones work in both experimental animals and patients. High-throughput assays have been developed to identify new pharmacoperones that could be used as therapeutics for a number of endocrine and other genetic diseases. PMID:24661201

  8. Responsiveness of G protein-coupled odorant receptors is partially attributed to the activation mechanism

    PubMed Central

    Yu, Yiqun; de March, Claire A.; Ni, Mengjue J.; Adipietro, Kaylin A.; Golebiowski, Jérôme; Matsunami, Hiroaki; Ma, Minghong

    2015-01-01

    Mammals detect and discriminate numerous odors via a large family of G protein-coupled odorant receptors (ORs). However, little is known about the molecular and structural basis underlying OR response properties. Using site-directed mutagenesis and computational modeling, we studied ORs sharing high sequence homology but with different response properties. When tested in heterologous cells by diverse odorants, MOR256-3 responded broadly to many odorants, whereas MOR256-8 responded weakly to a few odorants. Out of 36 mutant MOR256-3 ORs, the majority altered the responses to different odorants in a similar manner and the overall response of an OR was positively correlated with its basal activity, an indication of ligand-independent receptor activation. Strikingly, a single mutation in MOR256-8 was sufficient to confer both high basal activity and broad responsiveness to this receptor. These results suggest that broad responsiveness of an OR is at least partially attributed to its activation likelihood. PMID:26627247

  9. Structural conservation among the rhodopsin-like and other G protein-coupled receptors

    PubMed Central

    Kinoshita, Mikitaka; Okada, Tetsuji

    2015-01-01

    Intramolecular remote coupling within the polypeptide backbones of membrane proteins is difficult to analyze owing to the limited structural information available at the atomic level. Nonetheless, recent progress in the crystallographic study of G protein-coupled receptors (GPCRs) has provided an unprecedented opportunity for understanding the sophisticated architecture of heptahelical transmembrane (7TM) bundles. These 7TM bundles can respond to a wide range of extracellular stimuli while retaining the common function of binding trimeric G proteins. Here we have systematically analyzed select sets of inactive-like 7TM bundles to highlight the structural conservation of the receptors, in terms of intramolecular Cα-Cα distances. Distances with the highest scores were found to be dominated by the intrahelical distances of helix III, regardless of the choice of bundles in the set, indicating that the intracellular half of this helix is highly conserved. Unexpectedly, the distances between the cytoplasmic side of helix I and the extracellular region of helix VI provided the largest contribution to the high score populations among the interhelical pairs in most of the selected sets, including class B, C and frizzled receptors. These findings are expected to be valuable in further studies of GPCRs with unknown structure and of other protein families. PMID:25775952

  10. The G Protein-Coupled Receptor Heterodimer Network (GPCR-HetNet) and Its Hub Components

    PubMed Central

    Borroto-Escuela, Dasiel O.; Brito, Ismel; Romero-Fernandez, Wilber; Di Palma, Michael; Oflijan, Julia; Skieterska, Kamila; Duchou, Jolien; Van Craenenbroeck, Kathleen; Suárez-Boomgaard, Diana; Rivera, Alicia; Guidolin, Diego; Agnati, Luigi F.; Fuxe, Kjell

    2014-01-01

    G protein-coupled receptors (GPCRs) oligomerization has emerged as a vital characteristic of receptor structure. Substantial experimental evidence supports the existence of GPCR-GPCR interactions in a coordinated and cooperative manner. However, despite the current development of experimental techniques for large-scale detection of GPCR heteromers, in order to understand their connectivity it is necessary to develop novel tools to study the global heteroreceptor networks. To provide insight into the overall topology of the GPCR heteromers and identify key players, a collective interaction network was constructed. Experimental interaction data for each of the individual human GPCR protomers was obtained manually from the STRING and SCOPUS databases. The interaction data were used to build and analyze the network using Cytoscape software. The network was treated as undirected throughout the study. It is comprised of 156 nodes, 260 edges and has a scale-free topology. Connectivity analysis reveals a significant dominance of intrafamily versus interfamily connections. Most of the receptors within the network are linked to each other by a small number of edges. DRD2, OPRM, ADRB2, AA2AR, AA1R, OPRK, OPRD and GHSR are identified as hubs. In a network representation 10 modules/clusters also appear as a highly interconnected group of nodes. Information on this GPCR network can improve our understanding of molecular integration. GPCR-HetNet has been implemented in Java and is freely available at http://www.iiia.csic.es/~ismel/GPCR-Nets/index.html. PMID:24830558

  11. G-protein coupled receptor BAI3 promotes myoblast fusion in vertebrates.

    PubMed

    Hamoud, Noumeira; Tran, Viviane; Croteau, Louis-Philippe; Kania, Artur; Côté, Jean-François

    2014-03-11

    Muscle fibers form as a result of myoblast fusion, yet the cell surface receptors regulating this process are unknown in vertebrates. In Drosophila, myoblast fusion involves the activation of the Rac pathway by the guanine nucleotide exchange factor Myoblast City and its scaffolding protein ELMO, downstream of cell-surface cell-adhesion receptors. We previously showed that the mammalian ortholog of Myoblast City, DOCK1, functions in an evolutionarily conserved manner to promote myoblast fusion in mice. In search for regulators of myoblast fusion, we identified the G-protein coupled receptor brain-specific angiogenesis inhibitor (BAI3) as a cell surface protein that interacts with ELMO. In cultured cells, BAI3 or ELMO1/2 loss of function severely impaired myoblast fusion without affecting differentiation and cannot be rescued by reexpression of BAI3 mutants deficient in ELMO binding. The related BAI protein family member, BAI1, is functionally distinct from BAI3, because it cannot rescue the myoblast fusion defects caused by the loss of BAI3 function. Finally, embryonic muscle precursor expression of a BAI3 mutant unable to bind ELMO was sufficient to block myoblast fusion in vivo. Collectively, our findings provide a role for BAI3 in the relay of extracellular fusion signals to their intracellular effectors, identifying it as an essential transmembrane protein for embryonic vertebrate myoblast fusion. PMID:24567399

  12. Tre1, a G Protein-Coupled Receptor, Directs Transepithelial Migration of Drosophila Germ Cells

    PubMed Central

    2003-01-01

    In most organisms, germ cells are formed distant from the somatic part of the gonad and thus have to migrate along and through a variety of tissues to reach the gonad. Transepithelial migration through the posterior midgut (PMG) is the first active step during Drosophila germ cell migration. Here we report the identification of a novel G protein-coupled receptor (GPCR), Tre1, that is essential for this migration step. Maternal tre1 RNA is localized to germ cells, and tre1 is required cell autonomously in germ cells. In tre1 mutant embryos, most germ cells do not exit the PMG. The few germ cells that do leave the midgut early migrate normally to the gonad, suggesting that this gene is specifically required for transepithelial migration and that mutant germ cells are still able to recognize other guidance cues. Additionally, inhibiting small Rho GTPases in germ cells affects transepithelial migration, suggesting that Tre1 signals through Rho1. We propose that Tre1 acts in a manner similar to chemokine receptors required during transepithelial migration of leukocytes, implying an evolutionarily conserved mechanism of transepithelial migration. Recently, the chemokine receptor CXCR4 was shown to direct migration in vertebrate germ cells. Thus, germ cells may more generally use GPCR signaling to navigate the embryo toward their target. PMID:14691551

  13. Allostery at G Protein-Coupled Receptor Homo- and Heteromers: Uncharted Pharmacological Landscapes

    PubMed Central

    Smith, Nicola J.

    2010-01-01

    For many years seven transmembrane domain G protein-coupled receptors (GPCRs) were thought to exist and function exclusively as monomeric units. However, evidence both from native cells and heterologous expression systems has demonstrated that GPCRs can both traffic and signal within higher-order complexes. As for other protein-protein interactions, conformational changes in one polypeptide, including those resulting from binding of pharmacological ligands, have the capacity to alter the conformation and therefore the response of the interacting protein(s), a process known as allosterism. For GPCRs, allosterism across homo- or heteromers, whether dimers or higher-order oligomers, represents an additional topographical landscape that must now be considered pharmacologically. Such effects may offer the opportunity for novel therapeutic approaches. Allosterism at GPCR heteromers is particularly exciting in that it offers additional scope to provide receptor subtype selectivity and tissue specificity as well as fine-tuning of receptor signal strength. Herein, we introduce the concept of allosterism at both GPCR homomers and heteromers and discuss the various questions that must be addressed before significant advances can be made in drug discovery at these GPCR complexes. PMID:21079041

  14. G protein-coupled receptor 35: an emerging target in inflammatory and cardiovascular disease

    PubMed Central

    Divorty, Nina; Mackenzie, Amanda E.; Nicklin, Stuart A.; Milligan, Graeme

    2015-01-01

    G protein-coupled receptor 35 (GPR35) is an orphan receptor, discovered in 1998, that has garnered interest as a potential therapeutic target through its association with a range of diseases. However, a lack of pharmacological tools and the absence of convincingly defined endogenous ligands have hampered the understanding of function necessary to exploit it therapeutically. Although several endogenous molecules can activate GPR35 none has yet been confirmed as the key endogenous ligand due to reasons that include lack of biological specificity, non-physiologically relevant potency and species ortholog selectivity. Recent advances have identified several highly potent synthetic agonists and antagonists, as well as agonists with equivalent potency at rodent and human orthologs, which will be useful as tool compounds. Homology modeling and mutagenesis studies have provided insight into the mode of ligand binding and possible reasons for the species selectivity of some ligands. Advances have also been made in determining the role of the receptor in disease. In the past, genome-wide association studies have associated GPR35 with diseases such as inflammatory bowel disease, type 2 diabetes, and coronary artery disease. More recent functional studies have implicated it in processes as diverse as heart failure and hypoxia, inflammation, pain transduction and synaptic transmission. In this review, we summarize the progress made in understanding the molecular pharmacology, downstream signaling and physiological function of GPR35, and discuss its emerging potential applications as a therapeutic target. PMID:25805994

  15. Scotopic vision in the monkey is modulated by the G protein-coupled receptor 55.

    PubMed

    Bouskila, Joseph; Harrar, Vanessa; Javadi, Pasha; Casanova, Christian; Hirabayashi, Yoshio; Matsuo, Ichiro; Ohyama, Jyunpei; Bouchard, Jean-François; Ptito, Maurice

    2016-01-01

    The endogenous cannabinoid system plays important roles in the retina of mice and monkeys via their classic CB1 and CB2 receptors. We have previously reported that the G protein-coupled receptor 55 (GPR55), a putative cannabinoid receptor, is exclusively expressed in rod photoreceptors in the monkey retina, suggesting its possible role in scotopic vision. To test this hypothesis, we recorded full-field electroretinograms (ERGs) after the intravitreal injection of the GPR55 agonist lysophosphatidylglucoside (LPG) or the selective GPR55 antagonist CID16020046 (CID), under light- and dark-adapted conditions. Thirteen vervet monkeys (Chlorocebus sabaeus) were used in this study: four controls (injected with the vehicle dimethyl sulfoxide, DMSO), four injected with LPG and five with CID. We analyzed amplitudes and latencies of the a-wave (photoreceptor responses) and the b-wave (rod and cone system responses) of the ERG. Our results showed that after injection of LPG, the amplitude of the scotopic b-wave was significantly higher, whereas after the injection of CID, it was significantly decreased, compared to the vehicle (DMSO). On the other hand, the a-wave amplitude, and the a-wave and b-wave latencies, of the scotopic ERG responses were not significantly affected by the injection of either compound. Furthermore, the photopic ERG waveforms were not affected by either drug. These results support the hypothesis that GPR55 plays an instrumental role in mediating scotopic vision. PMID:27485069

  16. G-protein-coupled receptor participates in 20-hydroxyecdysone signaling on the plasma membrane

    PubMed Central

    2014-01-01

    Background Animal steroid hormones are conventionally known to initiate signaling via a genomic pathway by binding to the nuclear receptors. The mechanism by which 20E initiates signaling via a nongenomic pathway is unclear. Results We illustrate that 20E triggered the nongenomic pathway through a plasma membrane G-protein-coupled receptor (named ErGPCR) in the lepidopteran insect Helicoverpa armigera. The transcript of ErGPCR was increased at the larval molting stage and metamorphic molting stage by 20E regulation. Knockdown of ErGPCR via RNA interference in vivo blocked larval–pupal transition and suppressed 20E-induced gene expression. ErGPCR overexpression in the H. armigera epidermal cell line increased the 20E-induced gene expression. Through ErGPCR, 20E modulated Calponin nuclear translocation and phosphorylation, and induced a rapid increase in cytosolic Ca2+ levels. The inhibitors of T-type voltage-gated calcium channels and canonical transient receptor potential calcium channels repressed the 20E-induced Ca2+ increase. Truncation of the N-terminal extracellular region of ErGPCR inhibited its localization on the plasma membrane and 20E-induced gene expression. ErGPCR was not detected to bind with the steroid hormone analog [3H]Pon A. Conclusion These results suggest that ErGPCR participates in 20E signaling on the plasma membrane. PMID:24507557

  17. New insights in the regulation of Rab GTPases by G protein-coupled receptors

    PubMed Central

    Lachance, Véronik; Angers, Stéphane; Parent, Jean-Luc

    2014-01-01

    Cargo-mediated regulation of vesicular transport has received great attention lately. Rab GTPases, forming the largest branch of the Ras GTPase superfamily, regulate almost every step of vesicle-mediated trafficking. Growing evidence suggests that mutations, aberrant expression, and altered post-translational modifications of Rab GTPases are associated with human diseases. However, their regulatory mechanisms and how they are connected to cargo proteins are still poorly understood. Accumulating data indicate that G protein-coupled receptors (GPCRs) directly associate with Rab GTPases and that these interactions dictate receptor trafficking. Yet, it remained unclear whether the receptors could regulate the targeting and activity of Rab GTPases in various cell compartments. It is only in recent years that experimental studies showed that GPCR signaling and interaction with Rab-associated regulatory proteins modulate the localization and activity of Rab GTPases. This research is revealing novel regulatory mechanisms of these small GTPases and should contribute to the progress in effective drug development. Recently published in the Journal of Cell Science, Lachance et al. present a novel role for ubiquitylation of Rab11a by a β2AR/HACE1 complex in regulating Rab11a activity and β2AR trafficking. PMID:24950538

  18. Synthetic FXR agonist GW4064 is a modulator of multiple G protein-coupled receptors.

    PubMed

    Singh, Nidhi; Yadav, Manisha; Singh, Abhishek Kumar; Kumar, Harish; Dwivedi, Shailendra Kumar Dhar; Mishra, Jay Sharan; Gurjar, Anagha; Manhas, Amit; Chandra, Sharat; Yadav, Prem Narayan; Jagavelu, Kumaravelu; Siddiqi, Mohammad Imran; Trivedi, Arun Kumar; Chattopadhyay, Naibedya; Sanyal, Sabyasachi

    2014-05-01

    The synthetic nuclear bile acid receptor (farnesoid X receptor [FXR]) agonist GW4064 is extensively used as a specific pharmacological tool to illustrate FXR functions. We noticed that GW4064 activated empty luciferase reporters in FXR-deficient HEK-293T cells. We postulated that this activity of GW4064 might be routed through as yet unknown cellular targets and undertook an unbiased exploratory approach to identify these targets. Investigations revealed that GW4064 activated cAMP and nuclear factor for activated T-cell response elements (CRE and NFAT-RE, respectively) present on these empty reporters. Whereas GW4064-induced NFAT-RE activation involved rapid intracellular Ca(2+) accumulation and NFAT nuclear translocation, CRE activation involved soluble adenylyl cyclase-dependent cAMP accumulation and Ca(2+)-calcineurin-dependent nuclear translocation of transducers of regulated CRE-binding protein 2. Use of dominant negative heterotrimeric G-protein minigenes revealed that GW4064 caused activation of Gαi/o and Gq/11 G proteins. Sequential pharmacological inhibitor-based screening and radioligand-binding studies revealed that GW4064 interacted with multiple G protein-coupled receptors. Functional studies demonstrated that GW4064 robustly activated H1 and H4 and inhibited H2 histamine receptor signaling events. We also found that MCF-7 breast cancer cells, reported to undergo GW4064-induced apoptosis in an FXR-dependent manner, did not express FXR, and the GW4064-mediated apoptosis, also apparent in HEK-293T cells, could be blocked by selective histamine receptor regulators. Taken together, our results demonstrate identification of histamine receptors as alternate targets for GW4064, which not only necessitates cautious interpretation of the biological functions attributed to FXR using GW4064 as a pharmacological tool but also provides a basis for the rational designing of new pharmacophores for histamine receptor modulation. PMID:24597548

  19. GPCR-ModSim: A comprehensive web based solution for modeling G-protein coupled receptors.

    PubMed

    Esguerra, Mauricio; Siretskiy, Alexey; Bello, Xabier; Sallander, Jessica; Gutiérrez-de-Terán, Hugo

    2016-07-01

    GPCR-ModSim (http://open.gpcr-modsim.org) is a centralized and easy to use service dedicated to the structural modeling of G-protein Coupled Receptors (GPCRs). 3D molecular models can be generated from amino acid sequence by homology-modeling techniques, considering different receptor conformations. GPCR-ModSim includes a membrane insertion and molecular dynamics (MD) equilibration protocol, which can be used to refine the generated model or any GPCR structure uploaded to the server, including if desired non-protein elements such as orthosteric or allosteric ligands, structural waters or ions. We herein revise the main characteristics of GPCR-ModSim and present new functionalities. The templates used for homology modeling have been updated considering the latest structural data, with separate profile structural alignments built for inactive, partially-active and active groups of templates. We have also added the possibility to perform multiple-template homology modeling in a unique and flexible way. Finally, our new MD protocol considers a series of distance restraints derived from a recently identified conserved network of helical contacts, allowing for a smoother refinement of the generated models which is particularly advised when there is low homology to the available templates. GPCR- ModSim has been tested on the GPCR Dock 2013 competition with satisfactory results. PMID:27166369

  20. Single-molecule resolution of G protein-coupled receptor (GPCR) complexes.

    PubMed

    Jonas, Kim C; Huhtaniemi, Ilpo; Hanyaloglu, Aylin C

    2016-01-01

    The organization of G protein-coupled receptors (GPCRs) into dimers and higher-order oligomers has provided a potential mechanistic system in defining complex GPCR responses. Despite being studied for nearly 20 years it has, and still is, been an area of controversy. Although technology has developed to quantitatively measure these associations in real time, identify the structural interfaces and even systems to understand the physiological significance of di/oligomerization, key questions remain outstanding including the role of each individual complex from the monomer to the higher-order oligomer, in their native system. Recently, single-molecule microscopy approaches have provided the tools to directly visualize individual GPCRs in dimers and oligomers, though as with any technological development each have their advantages and limitations. This chapter will describe these recent developments in single-molecule fluorescent microscopy, focusing on our recent application of super-resolution imaging of the GPCR for the luteinizing hormone/chorionic gonadotropin to quantify GPCR monomers and formation of protomers in to dimers and distinct oligomeric forms. We present our approach, considerations, strategy, and challenges to visualize this receptor beyond the light diffraction limit via photoactivated localization microscopy with photoactivatable dyes. The addition of super-resolution approaches to the GPCR "nano-tool kit" will pave the way for novel avenues to answer outstanding questions regarding the existence and significance of these complexes to GPCR signaling. PMID:26928539

  1. Genomic and supragenomic structure of the nucleotide-like G-protein-coupled receptor GPR34.

    PubMed

    Engemaier, Eva; Römpler, Holger; Schöneberg, Torsten; Schulz, Angela

    2006-02-01

    Directed cloning approaches and large-scale sequencing of several vertebrate genomes unveiled many new members of the G-protein-coupled receptor (GPCR) superfamily, among them GPR34. Initial studies showed that GPR34 is an evolutionarily old GPCR structurally related to a group of ADP-like receptors. To gain insight into the genomic organization, regulation of expression, and supragenomic diversification of GPR34 several vertebrate species were analyzed. In contrast to the obviously intronless coding region GPR34 displays an evolutionary preserved 5' noncoding intron-exon structure. Further, an alternatively used cryptic intron was identified within the coding region, which shortens the N terminus by 47 amino acids. Ubiquitous expression of GPR34 is driven by genomic sequences upstream of at least two transcriptional start regions in mouse and rat but only one region in human. In rodents, both promoters are active in all tissues investigated, but the level of activity is tissue-specific. At the translational level, several conserved in-frame AUGs within the first 150 bp of the coding region may serve as start points for translation in human and other mammals. Combinatory mutagenesis and expression of reporter constructs confirmed these multiple translational start points and revealed a preference for the second in-frame AUG in human GPR34. Our data show that multiple translation initiation starts and alternative splicing contribute to the supragenomic diversification of GPR34. PMID:16338117

  2. Select Neuropeptides and their G-Protein Coupled Receptors in Caenorhabditis Elegans and Drosophila Melanogaster

    PubMed Central

    Bendena, William G.; Campbell, Jason; Zara, Lian; Tobe, Stephen S.; Chin-Sang, Ian D.

    2012-01-01

    The G-protein coupled receptor (GPCR) family is comprised of seven transmembrane domain proteins and play important roles in nerve transmission, locomotion, proliferation and development, sensory perception, metabolism, and neuromodulation. GPCR research has been targeted by drug developers as a consequence of the wide variety of critical physiological functions regulated by this protein family. Neuropeptide GPCRs are the least characterized of the GPCR family as genetic systems to characterize their functions have lagged behind GPCR gene discovery. Drosophila melanogaster and Caenorhabditis elegans are genetic model organisms that have proved useful in characterizing neuropeptide GPCRs. The strength of a genetic approach leads to an appreciation of the behavioral plasticity that can result from subtle alterations in GPCRs or regulatory proteins in the pathways that GPCRs control. Many of these invertebrate neuropeptides, GPCRs, and signaling pathway components serve as models for mammalian counterparts as they have conserved sequences and function. This review provides an overview of the methods to match neuropeptides to their cognate receptor and a state of the art account of neuropeptide GPCRs that have been characterized in D. melanogaster and C. elegans and the behaviors that have been uncovered through genetic manipulation. PMID:22908006

  3. Transmembrane signal transduction by peptide hormones via family B G protein-coupled receptors

    PubMed Central

    Culhane, Kelly J.; Liu, Yuting; Cai, Yingying; Yan, Elsa C. Y.

    2015-01-01

    Although family B G protein-coupled receptors (GPCRs) contain only 15 members, they play key roles in transmembrane signal transduction of hormones. Family B GPCRs are drug targets for developing therapeutics for diseases ranging from metabolic to neurological disorders. Despite their importance, the molecular mechanism of activation of family B GPCRs remains largely unexplored due to the challenges in expression and purification of functional receptors to the quantity for biophysical characterization. Currently, there is no crystal structure available of a full-length family B GPCR. However, structures of key domains, including the extracellular ligand binding regions and seven-helical transmembrane regions, have been solved by X-ray crystallography and NMR, providing insights into the mechanisms of ligand recognition and selectivity, and helical arrangements within the cell membrane. Moreover, biophysical and biochemical methods have been used to explore functions, key residues for signaling, and the kinetics and dynamics of signaling processes. This review summarizes the current knowledge of the signal transduction mechanism of family B GPCRs at the molecular level and comments on the challenges and outlook for mechanistic studies of family B GPCRs. PMID:26594176

  4. Synthesis and Characterization of Iodinated Tetrahydroquinolines Targeting the G Protein-coupled Estrogen Receptor GPR30

    PubMed Central

    Ramesh, Chinnasamy; Nayak, Tapan K.; Burai, Ritwik; Dennis, Megan K.; Hathaway, Helen J.; Sklar, Larry A.; Prossnitz, Eric R.; Arterburn, Jeffrey B.

    2010-01-01

    A series of iodo-substituted tetrahydro-3H-cyclopenta[c]quinolines was synthesized as potential targeted imaging agents for the G protein-coupled estrogen receptor GPR30. The affinity and specificity of binding to GPR30 versus the classical estrogen receptors ERα/β and functional responses associated with ligand-binding were determined. Selected iodo-substituted tetrahydro-3H-cyclopenta[c]quinolines exhibited IC50 values lower than 20 nM in competitive binding studies with GPR30-expressing human endometrial cancer cells. These compounds functioned as antagonists of GPR30 and blocked estrogen-induced PI3K activation and calcium mobilization. The tributylstannyl precursors of selected compounds were radiolabeled with 125I using the iodogen method. In vivo biodistribution studies in female ovariectomized athymic (NCr) nu/nu mice bearing GPR30-expressing human endometrial tumors revealed GPR30-mediated uptake of the radiotracer ligands in tumor, adrenal and reproductive organs. Biodistribution and quantitative SPECT/CT studies revealed structurally-related differences in the pharmacokinetic profiles, target tissue uptake and metabolism of the radiolabeled compounds as well as differences in susceptibility to deiodination. The high lipophilicity of the compounds adversely affects the in vivo biodistribution and clearance of these radioligands, and suggests that further optimization of this parameter may lead to improved targeting characteristics. PMID:20041667

  5. Structural insights into biased G protein-coupled receptor signaling revealed by fluorescence spectroscopy

    PubMed Central

    Rahmeh, Rita; Damian, Marjorie; Cottet, Martin; Orcel, Hélène; Mendre, Christiane; Durroux, Thierry; Sharma, K. Shivaji; Durand, Grégory; Pucci, Bernard; Trinquet, Eric; Zwier, Jurriaan M.; Deupi, Xavier; Bron, Patrick; Banères, Jean-Louis; Mouillac, Bernard; Granier, Sébastien

    2012-01-01

    G protein-coupled receptors (GPCRs) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters, representing the largest group of therapeutic targets. Recent studies show that some GPCRs signal through both G protein and arrestin pathways in a ligand-specific manner. Ligands that direct signaling through a specific pathway are known as biased ligands. The arginine-vasopressin type 2 receptor (V2R), a prototypical peptide-activated GPCR, is an ideal model system to investigate the structural basis of biased signaling. Although the native hormone arginine-vasopressin leads to activation of both the stimulatory G protein (Gs) for the adenylyl cyclase and arrestin pathways, synthetic ligands exhibit highly biased signaling through either Gs alone or arrestin alone. We used purified V2R stabilized in neutral amphipols and developed fluorescence-based assays to investigate the structural basis of biased signaling for the V2R. Our studies demonstrate that the Gs-biased agonist stabilizes a conformation that is distinct from that stabilized by the arrestin-biased agonists. This study provides unique insights into the structural mechanisms of GPCR activation by biased ligands that may be relevant to the design of pathway-biased drugs. PMID:22493271

  6. cAMP biosensors applied in molecular pharmacological studies of G protein-coupled receptors.

    PubMed

    Mathiesen, Jesper Mosolff; Vedel, Line; Bräuner-Osborne, Hans

    2013-01-01

    Cyclic adenosine monophosphate (cAMP) is a common second messenger that mediates numerous biological responses. Intracellular cAMP levels are increased by activation of G(s)-coupled G protein-coupled receptors (GPCRs) and decreased by activation of G(i)-coupled GPCRs via the adenylyl cyclase. Many end-point assays for quantifying GPCR-mediated changes in intracellular cAMP levels exist. More recently, fluorescence resonance energy transfer (FRET)-based cAMP biosensors that can quantify intracellular cAMP levels in real time have been developed. These FRET-based cAMP biosensors have been used primarily in single cell FRET microscopy to monitor and visualize changes in cAMP upon GPCR activation. Here, a similar cAMP biosensor with a more efficient mCerulean/mCitrine FRET pair is described for use in the 384-well plate format. After cloning and expression in HEK293 cells, the biosensor is characterized in the 384-well plate format and used for measuring the signaling of the G(s)-coupled β(2)-adrenergic receptor. The procedures described may be applied for other FRET-based biosensors in terms of characterization and conversion to the 384-well plate format. PMID:23374187

  7. Revisiting the homology modeling of G-protein coupled receptors: β1-adrenoceptor as an example.

    PubMed

    Zhu, Mengyuan; Li, Minyong

    2012-06-01

    G-protein coupled receptors (GPCRs) are recognized to constitute the largest family of membrane proteins. Due to the disproportion in the quantity of crystal structures and their amino acid sequences, homology modeling contributes a reasonable and feasible approach to GPCR theoretical coordinates. With the brand new crystal structures resolved recently, herein we deliberated how to designate them as templates to carry out homology modeling in four aspects: (1) various sequence alignment methods; (2) protein weight matrix; (3) different sets of multiple templates; (4) active and inactive state of templates. The accuracy of models was evaluated by comparing the similarity of stereo conformation and molecular docking results between models and the experimental structure of Meleagris gallopavo β(1)-adrenergic receptor (Mg_Adrb1) that we desired to develop as an example. Our results proposed that: (1) Cobalt and MAFFT, two algorithms of sequence alignment, were suitable for single- and multiple-template modeling, respectively; (2) Blosum30 is applicable to align sequences in the case of low sequence identity; (3) multiple-template modeling is not always better than single-template one; (4) the state of template is an influential factor in simulating the GPCR structures as well. PMID:22454032

  8. Constitutive phospholipid scramblase activity of a G protein-coupled receptor

    NASA Astrophysics Data System (ADS)

    Goren, Michael A.; Morizumi, Takefumi; Menon, Indu; Joseph, Jeremiah S.; Dittman, Jeremy S.; Cherezov, Vadim; Stevens, Raymond C.; Ernst, Oliver P.; Menon, Anant K.

    2014-10-01

    Opsin, the rhodopsin apoprotein, was recently shown to be an ATP-independent flippase (or scramblase) that equilibrates phospholipids across photoreceptor disc membranes in mammalian retina, a process required for disc homoeostasis. Here we show that scrambling is a constitutive activity of rhodopsin, distinct from its light-sensing function. Upon reconstitution into vesicles, discrete conformational states of the protein (rhodopsin, a metarhodopsin II-mimic, and two forms of opsin) facilitated rapid (>10,000 phospholipids per protein per second) scrambling of phospholipid probes. Our results indicate that the large conformational changes involved in converting rhodopsin to metarhodopsin II are not required for scrambling, and that the lipid translocation pathway either lies near the protein surface or involves membrane packing defects in the vicinity of the protein. In addition, we demonstrate that β2-adrenergic and adenosine A2A receptors scramble lipids, suggesting that rhodopsin-like G protein-coupled receptors may play an unexpected moonlighting role in re-modelling cell membranes.

  9. Constitutive phospholipid scramblase activity of a G Protein-coupled receptor*

    PubMed Central

    Goren, Michael A.; Morizumi, Takefumi; Menon, Indu; Joseph, Jeremiah S.; Dittman, Jeremy S.; Cherezov, Vadim; Stevens, Raymond C.; Ernst, Oliver P.; Menon, Anant K.

    2014-01-01

    Opsin, the rhodopsin apoprotein, was recently shown to be an ATP-independent flippase (or scramblase) that equilibrates phospholipids across photoreceptor disc membranes in mammalian retina, a process required for disc homeostasis. Here we show that scrambling is a constitutive activity of rhodopsin, distinct from its light-sensing function. Upon reconstitution into vesicles, discrete conformational states of the protein (rhodopsin, a metarhodopsin II-mimic, and two forms of opsin) facilitated rapid (>10,000 phospholipids per protein per second) scrambling of phospholipid probes. Our results indicate that the large conformational changes involved in converting rhodopsin to metarhodopsin II are not required for scrambling, and that the lipid translocation pathway either lies near the protein surface or involves membrane packing defects in the vicinity of the protein. Additionally, we demonstrate that β2-adrenergic and adenosine A2A receptors scramble lipids, suggesting that rhodopsin-like G protein-coupled receptors may play an unexpected moonlighting role in re-modeling cell membranes. PMID:25296113

  10. Studying G protein-coupled receptors: immunoblotting, immunoprecipitation, phosphorylation, surface labeling, and cross-linking protocols.

    PubMed

    Pal, Kasturi; Badgandi, Hemant; Mukhopadhyay, Saikat

    2015-01-01

    Primary cilia are signaling organelles that have been shown to coordinate cellular responses to extracellular cues during physiological processes ranging from organ patterning to cell cycle regulation. A variety of receptors, including G protein-coupled receptors (GPCRs), downstream effectors (adenylyl cyclases), and second messengers, such as calcium, accumulate in the ciliary compartment. Isolation of GPCRs is essential for studying posttranslational modifications, intracellular trafficking, and protein-protein interactions that are important in downstream signaling. However, the presence of multiple hydrophobic transmembrane domains, and the inherent conformational flexibility of GPCRs make their extraction from membranes and solubilization particularly challenging. Here, we describe detailed methods for immunoblotting and immunoprecipitation of GPCRs from whole cell extracts. These methods are applicable for studying other multipass transmembrane proteins (such as adenylyl cyclases). We also describe methods for determining GPCR phosphorylation, surface labeling by biotinylation, and cross-linking to detect transient interactions with other proteins. These methods are amenable for studying both ciliary and nonciliary GPCRs in the context of cellular signaling pathways. PMID:25837398

  11. GPCR-ModSim: A comprehensive web based solution for modeling G-protein coupled receptors

    PubMed Central

    Esguerra, Mauricio; Siretskiy, Alexey; Bello, Xabier; Sallander, Jessica; Gutiérrez-de-Terán, Hugo

    2016-01-01

    GPCR-ModSim (http://open.gpcr-modsim.org) is a centralized and easy to use service dedicated to the structural modeling of G-protein Coupled Receptors (GPCRs). 3D molecular models can be generated from amino acid sequence by homology-modeling techniques, considering different receptor conformations. GPCR-ModSim includes a membrane insertion and molecular dynamics (MD) equilibration protocol, which can be used to refine the generated model or any GPCR structure uploaded to the server, including if desired non-protein elements such as orthosteric or allosteric ligands, structural waters or ions. We herein revise the main characteristics of GPCR-ModSim and present new functionalities. The templates used for homology modeling have been updated considering the latest structural data, with separate profile structural alignments built for inactive, partially-active and active groups of templates. We have also added the possibility to perform multiple-template homology modeling in a unique and flexible way. Finally, our new MD protocol considers a series of distance restraints derived from a recently identified conserved network of helical contacts, allowing for a smoother refinement of the generated models which is particularly advised when there is low homology to the available templates. GPCR- ModSim has been tested on the GPCR Dock 2013 competition with satisfactory results. PMID:27166369

  12. Are G-protein-coupled receptors involved in mediating larval settlement and metamorphosis of coral planulae?

    PubMed

    Tran, Cawa; Hadfield, Michael G

    2012-04-01

    Larvae of the scleractinian coral Pocillopora damicornis are induced to settle and metamorphose by the presence of marine bacterial biofilms, and the larvae of Montipora capitata respond to a combination of filamentous and crustose coralline algae. The primary goal of this study was to better understand metamorphosis of cnidarian larvae by determining what types of receptors and signal-transduction pathways are involved during stimulation of metamorphosis of P. damicornis and M. capitata. Evidence from studies on larvae of hydrozoans suggests that G-protein-coupled receptors (GPCRs) are good candidates. Settlement experiments were conducted in which competent larvae were exposed to neuropharmacological agents that affect GPCRs and their associated signal-transduction pathways, AC/cAMP and PI/DAG/PKC. On the basis of the results of these experiments, we conclude that GPCRs and these pathways do not mediate settlement and metamorphosis in either coral species. Two compounds that had an effect on both species, forskolin and phorbol-12-myristate-13-acetate (TPA), may be acting on other cellular processes not related to GPCRs. This study strengthens our understanding of the underlying physiological mechanisms that regulate metamorphosis in coral larvae. PMID:22589403

  13. G protein-coupled receptor 56 regulates mechanical overload-induced muscle hypertrophy.

    PubMed

    White, James P; Wrann, Christiane D; Rao, Rajesh R; Nair, Sreekumaran K; Jedrychowski, Mark P; You, Jae-Sung; Martínez-Redondo, Vicente; Gygi, Steven P; Ruas, Jorge L; Hornberger, Troy A; Wu, Zhidan; Glass, David J; Piao, Xianhua; Spiegelman, Bruce M

    2014-11-01

    Peroxisome proliferator-activated receptor gamma coactivator 1-alpha 4 (PGC-1α4) is a protein isoform derived by alternative splicing of the PGC1α mRNA and has been shown to promote muscle hypertrophy. We show here that G protein-coupled receptor 56 (GPR56) is a transcriptional target of PGC-1α4 and is induced in humans by resistance exercise. Furthermore, the anabolic effects of PGC-1α4 in cultured murine muscle cells are dependent on GPR56 signaling, because knockdown of GPR56 attenuates PGC-1α4-induced muscle hypertrophy in vitro. Forced expression of GPR56 results in myotube hypertrophy through the expression of insulin-like growth factor 1, which is dependent on Gα12/13 signaling. A murine model of overload-induced muscle hypertrophy is associated with increased expression of both GPR56 and its ligand collagen type III, whereas genetic ablation of GPR56 expression attenuates overload-induced muscle hypertrophy and associated anabolic signaling. These data illustrate a signaling pathway through GPR56 which regulates muscle hypertrophy associated with resistance/loading-type exercise. PMID:25336758

  14. The Evolving Impact of G Protein-Coupled Receptor Kinases in Cardiac Health and Disease

    PubMed Central

    Sato, Priscila Y.; Chuprun, J. Kurt; Schwartz, Mathew; Koch, Walter J.

    2015-01-01

    G protein-coupled receptors (GPCRs) are important regulators of various cellular functions via activation of intracellular signaling events. Active GPCR signaling is shut down by GPCR kinases (GRKs) and subsequent β-arrestin-mediated mechanisms including phosphorylation, internalization, and either receptor degradation or resensitization. The seven-member GRK family varies in their structural composition, cellular localization, function, and mechanism of action (see sect. II). Here, we focus our attention on GRKs in particular canonical and novel roles of the GRKs found in the cardiovascular system (see sects. III and IV). Paramount to overall cardiac function is GPCR-mediated signaling provided by the adrenergic system. Overstimulation of the adrenergic system has been highly implicated in various etiologies of cardiovascular disease including hypertension and heart failure. GRKs acting downstream of heightened adrenergic signaling appear to be key players in cardiac homeostasis and disease progression, and herein we review the current data on GRKs related to cardiac disease and discuss their potential in the development of novel therapeutic strategies in cardiac diseases including heart failure. PMID:25834229

  15. Functional modulation of G-protein coupled receptors during Parkinson disease-like neurodegeneration.

    PubMed

    Jenkins, Bruce G; Zhu, Aijun; Poutiainen, Pekka; Choi, Ji-Kyung; Kil, Kun-Eek; Zhang, Zhaoda; Kuruppu, Darshini; Aytan, Nurgul; Dedeoglu, Alpaslan; Brownell, Anna-Liisa

    2016-09-01

    G-protein coupled dopamine and metabotropic glutamate receptors (mGlu) can modulate neurotransmission during Parkinson's disease (PD)-like neurodegeneration. PET imaging studies in a unilateral dopamine denervation model (6-OHDA) showed a significant inverse correlation of presynaptic mGlu4 and postsynaptic mGlu5 expression in the striatum and rapidly declining mGlu4 and enhanced mGlu5 expression in the hippocampus during progressive degeneration over time. Immunohistochemical studies verified the decreased mGlu4 expression in the hippocampus on the lesion side but did not show difference in mGlu5 expression between lesion and control side. Pharmacological MRI studies showed enhanced hemodynamic response in several brain areas on the lesion side compared to the control side after challenge with mGlu4 positive allosteric modulator or mGlu5 negative allosteric modulator. However, mGlu4 response was biphasic having short enhancement followed by negative response on both sides of brain. Studies in mGlu4 expressing cells demonstrated that glutamate induces cooperative increase in binding of mGlu4 ligands - especially at high glutamate levels consistent with in vivo concentration. This suggests that mGlu allosteric modulators as drug candidates will be highly sensitive to changes in glutamate concentration and hence metabolic state. These experiments demonstrate the importance of the longitudinal imaging studies to investigate temporal changes in receptor functions to obtain individual response for experimental drugs. PMID:26581500

  16. Global Survey of Canonical Aspergillus flavus G Protein-Coupled Receptors

    PubMed Central

    Affeldt, Katharyn J.; Carrig, Joseph; Amare, Meareg

    2014-01-01

    ABSTRACT G protein-coupled receptors (GPCRs) are transmembrane receptors that relay signals from the external environment inside the cell, allowing an organism to adapt to its surroundings. They are known to detect a vast array of ligands, including sugars, amino acids, pheromone peptides, nitrogen sources, oxylipins, and light. Despite their prevalence in fungal genomes, very little is known about the functions of filamentous fungal GPCRs. Here we present the first full-genome assessment of fungal GPCRs through characterization of null mutants of all 15 GPCRs encoded by the aflatoxin-producing fungus Aspergillus flavus. All strains were assessed for growth, development, ability to produce aflatoxin, and response to carbon sources, nitrogen sources, stress agents, and lipids. Most GPCR mutants were aberrant in one or more response processes, possibly indicative of cross talk in downstream signaling pathways. Interestingly, the biological defects of the mutants did not correspond with assignment to established GPCR classes; this is likely due to the paucity of data for characterized fungal GPCRs. Many of the GPCR transcripts were differentially regulated under various conditions as well. The data presented here provide an extensive overview of the full set of GPCRs encoded by A. flavus and provide a framework for analysis in other fungal species. PMID:25316696

  17. Magnificent seven: roles of G protein-coupled receptors in extracellular sensing in fungi

    PubMed Central

    Xue, Chaoyang; Hsueh, Yen-Ping; Heitman, Joseph

    2010-01-01

    G protein-coupled receptors (GPCRs) represent the largest family of transmembrane receptors and are responsible for transducing extracellular signals into intracellular responses that involve complex intracellular-signaling networks. This review highlights recent research advances in fungal GPCRs, including classification, extracellular sensing, and G protein-signaling regulation. The involvement of GPCRs in pheromone and nutrient sensing has been studied extensively over the past decade. Following recent advances in fungal genome sequencing projects, a panoply of GPCR candidates has been revealed and some have been documented to play key roles sensing diverse extracellular signals, such as pheromones, sugars, amino acids, nitrogen sources, and even photons. Identification and deorphanization of additional putative GPCRs may require the development of new research tools. Here, we compare research on GPCRs in fungi with information derived from mammalian systems to provide a useful road map on how to better understand ligand–GPCR–G protein interactions in general. We also emphasize the utility of yeast as a discovery tool for systemic studies of GPCRs from other organisms. PMID:18811658

  18. Constitutive Activity among Orphan Class-A G Protein Coupled Receptors

    PubMed Central

    Martin, Adam L.; Steurer, Michael A.; Aronstam, Robert S.

    2015-01-01

    The purpose of this study was to evaluate the extent of constitutive activity among orphan class-A G protein coupled receptors within the cAMP signaling pathway. Constitutive signaling was revealed by changes in gene expression under control of the cAMP response element. Gene expression was measured in Chinese hamster ovary cells transiently co-transfected with plasmids containing a luciferase reporter and orphan receptor. Criteria adopted for defining constitutive activation were: 1) 200% elevation over baseline reporter gene expression; 2) 40% inhibition of baseline expression; and 3) 40% inhibition of expression stimulated by 3 μM forskolin. Five patterns of activity were noted: 1) inhibition under both baseline and forskolin stimulated expression (GPR15, GPR17, GPR18, GPR20, GPR25, GPR27, GPR31, GPR32, GPR45, GPR57, GPR68, GPR83, GPR84, GPR132, GPR150, GPR176); 2) no effect on baseline expression, but inhibition of forskolin stimulated expression (GPR4, GPR26, GPR61, GPR62, GPR78, GPR101, GPR119); 3) elevation of baseline signaling coupled with inhibition of forskolin stimulated expression (GPR6, GPR12); 4) elevation of baseline signaling without inhibition of forskolin stimulated expression (GPR3, GPR21, GPR52, GPR65); and 5) no effect on expression (GPR1, GPR19, GPR22, GPR34, GPR35, GPR39, GPR63, GPR82, GPR85, GPR87). Constitutive activity was observed in 75% of the orphan class-A receptors examined (30 of 40). This constitutive signaling cannot be explained by simple overexpression of the receptor. Inhibition of cAMP mediated expression was far more common (65%) than stimulation of expression (15%). Orphan receptors that were closely related based on amino acid homology tended to have similar effects on gene expression. These results suggest that identification of inverse agonists may be a fruitful approach for categorizing these orphan receptors and targeting them for pharmacological intervention. PMID:26384023

  19. Constitutive Activity among Orphan Class-A G Protein Coupled Receptors.

    PubMed

    Martin, Adam L; Steurer, Michael A; Aronstam, Robert S

    2015-01-01

    The purpose of this study was to evaluate the extent of constitutive activity among orphan class-A G protein coupled receptors within the cAMP signaling pathway. Constitutive signaling was revealed by changes in gene expression under control of the cAMP response element. Gene expression was measured in Chinese hamster ovary cells transiently co-transfected with plasmids containing a luciferase reporter and orphan receptor. Criteria adopted for defining constitutive activation were: 1) 200% elevation over baseline reporter gene expression; 2) 40% inhibition of baseline expression; and 3) 40% inhibition of expression stimulated by 3 μM forskolin. Five patterns of activity were noted: 1) inhibition under both baseline and forskolin stimulated expression (GPR15, GPR17, GPR18, GPR20, GPR25, GPR27, GPR31, GPR32, GPR45, GPR57, GPR68, GPR83, GPR84, GPR132, GPR150, GPR176); 2) no effect on baseline expression, but inhibition of forskolin stimulated expression (GPR4, GPR26, GPR61, GPR62, GPR78, GPR101, GPR119); 3) elevation of baseline signaling coupled with inhibition of forskolin stimulated expression (GPR6, GPR12); 4) elevation of baseline signaling without inhibition of forskolin stimulated expression (GPR3, GPR21, GPR52, GPR65); and 5) no effect on expression (GPR1, GPR19, GPR22, GPR34, GPR35, GPR39, GPR63, GPR82, GPR85, GPR87). Constitutive activity was observed in 75% of the orphan class-A receptors examined (30 of 40). This constitutive signaling cannot be explained by simple overexpression of the receptor. Inhibition of cAMP mediated expression was far more common (65%) than stimulation of expression (15%). Orphan receptors that were closely related based on amino acid homology tended to have similar effects on gene expression. These results suggest that identification of inverse agonists may be a fruitful approach for categorizing these orphan receptors and targeting them for pharmacological intervention. PMID:26384023

  20. Drug Discovery Opportunities and Challenges at G Protein Coupled Receptors for Long Chain Free Fatty Acids

    PubMed Central

    Holliday, Nicholas D.; Watson, Sarah-Jane; Brown, Alastair J. H.

    2011-01-01

    Discovery of G protein coupled receptors for long chain free fatty acids (FFAs), FFA1 (GPR40) and GPR120, has expanded our understanding of these nutrients as signaling molecules. These receptors have emerged as important sensors for FFA levels in the circulation or the gut lumen, based on evidence from in vitro and rodent models, and an increasing number of human studies. Here we consider their promise as therapeutic targets for metabolic disease, including type 2 diabetes and obesity. FFA1 directly mediates acute FFA-induced glucose-stimulated insulin secretion in pancreatic beta-cells, while GPR120 and FFA1 trigger release of incretins from intestinal endocrine cells, and so indirectly enhance insulin secretion and promote satiety. GPR120 signaling in adipocytes and macrophages also results in insulin sensitizing and beneficial anti-inflammatory effects. Drug discovery has focused on agonists to replicate acute benefits of FFA receptor signaling, with promising early results for FFA1 agonists in man. Controversy surrounding chronic effects of FFA1 on beta-cells illustrates that long term benefits of antagonists also need exploring. It has proved challenging to generate highly selective potent ligands for FFA1 or GPR120 subtypes, given that both receptors have hydrophobic orthosteric binding sites, which are not completely defined and have modest ligand affinity. Structure activity relationships are also reliant on functional read outs, in the absence of robust binding assays to provide direct affinity estimates. Nevertheless synthetic ligands have already helped dissect specific contributions of FFA1 and GPR120 signaling from the many possible cellular effects of FFAs. Approaches including use of fluorescent ligand binding assays, and targeting allosteric receptor sites, may improve further pre-clinical ligand development at these receptors, to exploit their unique potential to target multiple facets of diabetes. PMID:22649399

  1. Mapping physiological G protein-coupled receptor signaling pathways reveals a role for receptor phosphorylation in airway contraction

    PubMed Central

    Bradley, Sophie J.; Iglesias, Max Maza; Kong, Kok Choi; Butcher, Adrian J.; Plouffe, Bianca; Goupil, Eugénie; Bourgognon, Julie-Myrtille; Macedo-Hatch, Timothy; LeGouill, Christian; Russell, Kirsty; Laporte, Stéphane A.; König, Gabriele M.; Kostenis, Evi; Bouvier, Michel; Chung, Kian Fan; Amrani, Yassine; Tobin, Andrew B.

    2016-01-01

    G protein-coupled receptors (GPCRs) are known to initiate a plethora of signaling pathways in vitro. However, it is unclear which of these pathways are engaged to mediate physiological responses. Here, we examine the distinct roles of Gq/11-dependent signaling and receptor phosphorylation-dependent signaling in bronchial airway contraction and lung function regulated through the M3-muscarinic acetylcholine receptor (M3-mAChR). By using a genetically engineered mouse expressing a G protein-biased M3-mAChR mutant, we reveal the first evidence, to our knowledge, of a role for M3-mAChR phosphorylation in bronchial smooth muscle contraction in health and in a disease state with relevance to human asthma. Furthermore, this mouse model can be used to distinguish the physiological responses that are regulated by M3-mAChR phosphorylation (which include control of lung function) from those responses that are downstream of G protein signaling. In this way, we present an approach by which to predict the physiological/therapeutic outcome of M3-mAChR–biased ligands with important implications for drug discovery. PMID:27071102

  2. G-protein-coupled receptors for neurotransmitter amino acids: C-terminal tails, crowded signalosomes.

    PubMed Central

    El Far, Oussama; Betz, Heinrich

    2002-01-01

    G-protein-coupled receptors (GPCRs) represent a superfamily of highly diverse integral membrane proteins that transduce external signals to different subcellular compartments, including nuclei, via trimeric G-proteins. By differential activation of diffusible G(alpha) and membrane-bound G(beta)gamma subunits, GPCRs might act on both cytoplasmic/intracellular and plasma-membrane-bound effector systems. The coupling efficiency and the plasma membrane localization of GPCRs are regulated by a variety of interacting proteins. In this review, we discuss recently disclosed protein interactions found with the cytoplasmic C-terminal tail regions of two types of presynaptic neurotransmitter receptors, the group III metabotropic glutamate receptors and the gamma-aminobutyric acid type-B receptors (GABA(B)Rs). Calmodulin binding to mGluR7 and other group III mGluRs may provide a Ca(2+)-dependent switch for unidirectional (G(alpha)) versus bidirectional (G(alpha) and G(beta)gamma) signalling to downstream effector proteins. In addition, clustering of mGluR7 by PICK1 (protein interacting with C-kinase 1), a polyspecific PDZ (PSD-95/Dlg1/ZO-1) domain containing synaptic organizer protein, sheds light on how higher-order receptor complexes with regulatory enzymes (or 'signalosomes') could be formed. The interaction of GABA(B)Rs with the adaptor protein 14-3-3 and the transcription factor ATF4 (activating transcription factor 4) suggests novel regulatory pathways for G-protein signalling, cytoskeletal reorganization and nuclear gene expression: processes that may all contribute to synaptic plasticity. PMID:12006104

  3. Novel consequences of voltage-dependence to G-protein-coupled P2Y1 receptors

    PubMed Central

    Gurung, I S; Martinez-Pinna, J; Mahaut-Smith, M P

    2008-01-01

    Background and purpose: Emerging evidence suggests that activation of G-protein-coupled receptors (GPCRs) can be directly regulated by membrane voltage. However, the physiological and pharmacological relevance of this effect remains unclear. We have further examined this phenomenon for P2Y1 receptors in the non-excitable megakaryocyte using a range of agonists and antagonists. Experimental approach: Simultaneous whole-cell patch clamp and fura-2 fluorescence recordings of rat megakaryocytes, which lack voltage-gated Ca2+ influx, were used to examine the voltage-dependence of P2Y1 receptor-evoked IP3-dependent Ca2+ mobilization. Results: Depolarization transiently and repeatedly enhanced P2Y1 receptor-evoked Ca2+ mobilization across a wide concentration range of both weak, partial and full, potent agonists. Moreover, the amplitude of the depolarization-evoked [Ca2+]i increase displayed an inverse relationship with agonist concentration, such that the greatest potentiating effect of voltage was observed at near-threshold levels of agonist. Unexpectedly, depolarization also stimulated an [Ca2+]i increase in the absence of agonist during exposure to the competitive antagonists A3P5PS and MRS2179, or the allosteric enhancer 2,2′-pyridylisatogen tosylate. A further effect of some antagonists, particularly suramin, was to enhance the depolarization-evoked Ca2+ responses during co-application of an agonist. Of several P2Y1 receptor inhibitors, only SCH202676, which has a proposed allosteric mechanism of action, could block ADP-induced voltage-dependent Ca2+ release. Conclusions and implications: The ability of depolarization to potentiate GPCRs at near-threshold agonist concentrations represents a novel mechanism for coincidence detection. Furthermore, the induction and enhancement of voltage-dependent GPCR responses by antagonists has implications for the design of therapeutic compounds. PMID:18414379

  4. Ligand-Based Peptide Design and Combinatorial Peptide Libraries to Target G Protein-Coupled Receptors

    PubMed Central

    Gruber, Christian W.; Muttenthaler, Markus; Freissmuth, Michael

    2016-01-01

    G protein-coupled receptors (GPCRs) are considered to represent the most promising drug targets; it has been repeatedly said that a large fraction of the currently marketed drugs elicit their actions by binding to GPCRs (with cited numbers varying from 30–50%). Closer scrutiny, however, shows that only a modest fraction of (~60) GPCRs are, in fact, exploited as drug targets, only ~20 of which are peptide-binding receptors. The vast majority of receptors in the humane genome have not yet been explored as sites of action for drugs. Given the drugability of this receptor class, it appears that opportunities for drug discovery abound. In addition, GPCRs provide for binding sites other than the ligand binding sites (referred to as the “orthosteric site”). These additional sites include (i) binding sites for ligands (referred to as “allosteric ligands”) that modulate the affinity and efficacy of orthosteric ligands, (ii) the interaction surface that recruits G proteins and arrestins, (iii) the interaction sites of additional proteins (GIPs, GPCR interacting proteins that regulate G protein signaling or give rise to G protein-independent signals). These sites can also be targeted by peptides. Combinatorial and natural peptide libraries are therefore likely to play a major role in identifying new GPCR ligands at each of these sites. In particular the diverse natural peptide libraries such as the venom peptides from marine cone-snails and plant cyclotides have been established as a rich source of drug leads. High-throughput screening and combinatorial chemistry approaches allow for progressing from these starting points to potential drug candidates. This will be illustrated by focusing on the ligand-based drug design of oxytocin (OT) and vasopressin (AVP) receptor ligands using natural peptide leads as starting points. PMID:20687879

  5. Consequences of splice variation on Secretin family G protein-coupled receptor function

    PubMed Central

    Furness, Sebastian GB; Wootten, Denise; Christopoulos, Arthur; Sexton, Patrick M

    2012-01-01

    The Secretin family of GPCRs are endocrine peptide hormone receptors that share a common genomic organization and are the subject of a wide variety of alternative splicing. All GPCRs contain a central seven transmembrane domain responsible for transducing signals from the outside of the cell as well as extracellular amino and intracellular carboxyl termini. Members of the Secretin receptor family have a relatively large N-terminus and a variety of lines of evidence support a common mode of ligand binding and a common ligand binding fold. These receptors are best characterized as coupling to intracellular signalling pathways via Gαs and Gαq but are also reported to couple to a multitude of other signalling pathways. The intracellular loops are implicated in regulating the interaction between the receptor and heterotrimeric G protein complexes. Alternative splicing of exons encoding both the extracellular N-terminal domain as well as the extracellular loops of some family members has been reported and as expected these splice variants display altered ligand affinity as well as differential activation by endogenous ligands. Various forms of alternative splicing have also been reported to alter intracellular loops 1 and 3 as well as the C-terminus and as one might expect these display differences in signalling bias towards downstream effectors. These diverse pharmacologies require that the physiological role of these splice variants be addressed but should provide unique opportunities for drug design and development. LINKED ARTICLES This article is part of a themed section on Secretin Family (Class B) G Protein-Coupled Receptors. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.166.issue-1 PMID:21718310

  6. Feeding and the rhodopsin family g-protein coupled receptors in nematodes and arthropods.

    PubMed

    Cardoso, João C R; Félix, Rute C; Fonseca, Vera G; Power, Deborah M

    2012-01-01

    In vertebrates, receptors of the rhodopsin G-protein coupled superfamily (GPCRs) play an important role in the regulation of feeding and energy homeostasis and are activated by peptide hormones produced in the brain-gut axis. These peptides regulate appetite and energy expenditure by promoting or inhibiting food intake. Sequence and function homologs of human GPCRs involved in feeding exist in the nematode roundworm, Caenorhabditis elegans (C. elegans), and the arthropod fruit fly, Drosophila melanogaster (D. melanogaster), suggesting that the mechanisms that regulate food intake emerged early and have been conserved during metazoan radiation. Nematodes and arthropods are the most diverse and successful animal phyla on Earth. They can survive in a vast diversity of environments and have acquired distinct life styles and feeding strategies. The aim of the present review is to investigate if this diversity has affected the evolution of invertebrate GPCRs. Homologs of the C. elegans and D. melanogaster rhodopsin receptors were characterized in the genome of other nematodes and arthropods and receptor evolution compared. With the exception of bombesin receptors (BBR) that are absent from nematodes, a similar gene complement was found. In arthropods, rhodopsin GPCR evolution is characterized by species-specific gene duplications and deletions and in nematodes by gene expansions in species with a free-living stage and gene deletions in representatives of obligate parasitic taxa. Based upon variation in GPCR gene number and potentially divergent functions within phyla we hypothesize that life style and feeding diversity practiced by nematodes and arthropods was one factor that contributed to rhodopsin GPCR gene evolution. Understanding how the regulation of food intake has evolved in invertebrates will contribute to the development of novel drugs to control nematodes and arthropods and the pests and diseases that use them as vectors. PMID:23264768

  7. Structural Basis for Hormone Recognition by the Human CRFR2[alpha] G Protein-coupled Receptor

    SciTech Connect

    Pal, Kuntal; Swaminathan, Kunchithapadam; Xu, H. Eric; Pioszak, Augen A.

    2012-05-09

    The mammalian corticotropin releasing factor (CRF)/urocortin (Ucn) peptide hormones include four structurally similar peptides, CRF, Ucn1, Ucn2, and Ucn3, that regulate stress responses, metabolism, and cardiovascular function by activating either of two related class B G protein-coupled receptors, CRFR1 and CRFR2. CRF and Ucn1 activate both receptors, whereas Ucn2 and Ucn3 are CRFR2-selective. The molecular basis for selectivity is unclear. Here, we show that the purified N-terminal extracellular domains (ECDs) of human CRFR1 and the CRFR2{alpha} isoform are sufficient to discriminate the peptides, and we present three crystal structures of the CRFR2{alpha} ECD bound to each of the Ucn peptides. The CRFR2{alpha} ECD forms the same fold observed for the CRFR1 and mouse CRFR2{beta} ECDs but contains a unique N-terminal {alpha}-helix formed by its pseudo signal peptide. The CRFR2{alpha} ECD peptide-binding site architecture is similar to that of CRFR1, and binding of the {alpha}-helical Ucn peptides closely resembles CRF binding to CRFR1. Comparing the electrostatic surface potentials of the ECDs suggests a charge compatibility mechanism for ligand discrimination involving a single amino acid difference in the receptors (CRFR1 Glu104/CRFR2{alpha} Pro-100) at a site proximate to peptide residue 35 (Arg in CRF/Ucn1, Ala in Ucn2/3). CRFR1 Glu-104 acts as a selectivity filter preventing Ucn2/3 binding because the nonpolar Ala-35 is incompatible with the negatively charged Glu-104. The structures explain the mechanisms of ligand recognition and discrimination and provide a molecular template for the rational design of therapeutic agents selectively targeting these receptors.

  8. G-protein coupled Receptor Kinase 2 is required for rhythmic olfactory responses in Drosophila

    PubMed Central

    Tanoue, Shintaro; Krishnan, Parthasarathy; Chatterjee, Abhishek; Hardin, Paul E.

    2008-01-01

    Summary Background The Drosophila circadian clock controls rhythms in the amplitude of odor-induced electrophysiological responses that peak during the middle of night. These rhythms are dependent on clocks in olfactory sensory neurons (OSNs), which suggests that odorant receptors(ORs) or OR-dependent processes are under clock control. Since responses to odors are initiated by heteromeric OR complexes that form odor-gated and cyclic-nucleotide-activated cation channels, we tested whether regulators of ORs were under circadian clock control. Results The levels of G-protein coupled receptor kinase 2 (Gprk2) mRNA and protein cycle in a circadian clock-dependent manner with a peak around mid-night in antennae. Gprk2 overexpression in OSNs from wild-type or cyc01 flies elicits constant high amplitude electroantennogram (EAG) responses to ethyl acetate, whereas Gprk mutants produce constant low amplitude EAG responses. Odorant receptors (ORs) accumulate to high levels in the dendrites of OSNs around mid-night, and this dendritic localization of ORs is enhanced by Gprk2 at times when ORs are primarily localized in the cell body. Conclusion These results support a model in which circadian clock-dependent rhythms in Gprk2 abundance control the rhythmic accumulation of ORs in OSN dendrites, which in turn control rhythms in olfactory responses. The enhancement of OR function by GPRK2 contrasts with the traditional role of Gprks in desensitizing activated receptors, and suggests that GPRK2 functions through a fundamentally different mechanism to modulate OR activity. PMID:18499458

  9. Feeding and the Rhodopsin Family G-Protein Coupled Receptors in Nematodes and Arthropods

    PubMed Central

    Cardoso, João C.R.; Félix, Rute C.; Fonseca, Vera G.; Power, Deborah M.

    2012-01-01

    In vertebrates, receptors of the rhodopsin G-protein coupled superfamily (GPCRs) play an important role in the regulation of feeding and energy homeostasis and are activated by peptide hormones produced in the brain-gut axis. These peptides regulate appetite and energy expenditure by promoting or inhibiting food intake. Sequence and function homologs of human GPCRs involved in feeding exist in the nematode roundworm, Caenorhabditis elegans (C. elegans), and the arthropod fruit fly, Drosophila melanogaster (D. melanogaster), suggesting that the mechanisms that regulate food intake emerged early and have been conserved during metazoan radiation. Nematodes and arthropods are the most diverse and successful animal phyla on Earth. They can survive in a vast diversity of environments and have acquired distinct life styles and feeding strategies. The aim of the present review is to investigate if this diversity has affected the evolution of invertebrate GPCRs. Homologs of the C. elegans and D. melanogaster rhodopsin receptors were characterized in the genome of other nematodes and arthropods and receptor evolution compared. With the exception of bombesin receptors (BBR) that are absent from nematodes, a similar gene complement was found. In arthropods, rhodopsin GPCR evolution is characterized by species-specific gene duplications and deletions and in nematodes by gene expansions in species with a free-living stage and gene deletions in representatives of obligate parasitic taxa. Based upon variation in GPCR gene number and potentially divergent functions within phyla we hypothesize that life style and feeding diversity practiced by nematodes and arthropods was one factor that contributed to rhodopsin GPCR gene evolution. Understanding how the regulation of food intake has evolved in invertebrates will contribute to the development of novel drugs to control nematodes and arthropods and the pests and diseases that use them as vectors. PMID:23264768

  10. GPCR-Bench: A Benchmarking Set and Practitioners' Guide for G Protein-Coupled Receptor Docking.

    PubMed

    Weiss, Dahlia R; Bortolato, Andrea; Tehan, Benjamin; Mason, Jonathan S

    2016-04-25

    Virtual screening is routinely used to discover new ligands and in particular new ligand chemotypes for G protein-coupled receptors (GPCRs). To prepare for a virtual screen, we often tailor a docking protocol that will enable us to select the best candidates for further screening. To aid this, we created GPCR-Bench, a publically available docking benchmarking set in the spirit of the DUD and DUD-E reference data sets for validation studies, containing 25 nonredundant high-resolution GPCR costructures with an accompanying set of diverse ligands and computational decoy molecules for each target. Benchmarking sets are often used to compare docking protocols; however, it is important to evaluate docking methods not by "retrospective" hit rates but by the actual likelihood that they will produce novel prospective hits. Therefore, docking protocols must not only rank active molecules highly but also produce good poses that a chemist will select for purchase and screening. Currently, no simple objective machine-scriptable function exists that can do this; instead, docking hit lists must be subjectively examined in a consistent way to compare between docking methods. We present here a case study highlighting considerations we feel are of importance when evaluating a method, intended to be useful as a practitioners' guide. PMID:26958710

  11. G Protein-Coupled Receptors Directly Bind Filamin A with High Affinity and Promote Filamin Phosphorylation

    PubMed Central

    2015-01-01

    Although interaction of a few G protein-coupled receptors (GPCRs) with Filamin A, a key actin cross-linking and biomechanical signal transducer protein, has been observed, a comprehensive structure–function analysis of this interaction is lacking. Through a systematic sequence-based analysis, we found that a conserved filamin binding motif is present in the cytoplasmic domains of >20% of the 824 GPCRs encoded in the human genome. Direct high-affinity interaction of filamin binding motif peptides of select GPCRs with the Ig domain of Filamin A was confirmed by nuclear magnetic resonance spectroscopy and isothermal titration calorimetric experiments. Engagement of the filamin binding motif with the Filamin A Ig domain induced the phosphorylation of filamin by protein kinase A in vitro. In transfected cells, agonist activation as well as constitutive activation of representative GPCRs dramatically elicited recruitment and phosphorylation of cellular Filamin A, a phenomenon long known to be crucial for regulating the structure and dynamics of the cytoskeleton. Our data suggest a molecular mechanism for direct GPCR–cytoskeleton coupling via filamin. Until now, GPCR signaling to the cytoskeleton was predominantly thought to be indirect, through canonical G protein-mediated signaling cascades involving GTPases, adenylyl cyclases, phospholipases, ion channels, and protein kinases. We propose that the GPCR-induced filamin phosphorylation pathway is a conserved, novel biochemical signaling paradigm. PMID:26460884

  12. G2A is a proton-sensing G-protein-coupled receptor antagonized by lysophosphatidylcholine.

    PubMed

    Murakami, Naoka; Yokomizo, Takehiko; Okuno, Toshiaki; Shimizu, Takao

    2004-10-01

    G2A (from G2 accumulation) is a G-protein-coupled receptor (GPCR) that regulates the cell cycle, proliferation, oncogenesis, and immunity. G2A shares significant homology with three GPCRs including ovarian cancer GPCR (OGR1/GPR68), GPR4, and T cell death-associated gene 8 (TDAG8). Lysophosphatidylcholine (LPC) and sphingosylphosphorylcholine (SPC) were reported as ligands for G2A and GPR4 and for OGR1 (SPC only), and a glycosphingolipid psychosine was reported as ligand for TDAG8. As OGR1 and GPR4 were reported as proton-sensing GPCRs (Ludwig, M. G., Vanek, M., Guerini, D., Gasser, J. A., Jones, C. E., Junker, U., Hofstetter, H., Wolf, R. M., and Seuwen, K. (2003) Nature 425, 93-98), we evaluated the proton-sensing function of G2A. Transient expression of G2A caused significant activation of the zif 268 promoter and inositol phosphate (IP) accumulation at pH 7.6, and lowering extracellular pH augmented the activation only in G2A-expressing cells. LPC inhibited the pH-dependent activation of G2A in a dose-dependent manner in these assays. Thus, G2A is another proton-sensing GPCR, and LPC functions as an antagonist, not as an agonist, and regulates the proton-dependent activation of G2A. PMID:15280385

  13. Acidic tumor microenvironment and pH-sensing G protein-coupled receptors.

    PubMed

    Justus, Calvin R; Dong, Lixue; Yang, Li V

    2013-01-01

    The tumor microenvironment is acidic due to glycolytic cancer cell metabolism, hypoxia, and deficient blood perfusion. It is proposed that acidosis in the tumor microenvironment is an important stress factor and selection force for cancer cell somatic evolution. Acidic pH has pleiotropic effects on the proliferation, migration, invasion, metastasis, and therapeutic response of cancer cells and the function of immune cells, vascular cells, and other stromal cells. However, the molecular mechanisms by which cancer cells and stromal cells sense and respond to acidic pH in the tumor microenvironment are poorly understood. In this article the role of a family of pH-sensing G protein-coupled receptors (GPCRs) in tumor biology is reviewed. Recent studies show that the pH-sensing GPCRs, including GPR4, GPR65 (TDAG8), GPR68 (OGR1), and GPR132 (G2A), regulate cancer cell metastasis and proliferation, immune cell function, inflammation, and blood vessel formation. Activation of the proton-sensing GPCRs by acidosis transduces multiple downstream G protein signaling pathways. Since GPCRs are major drug targets, small molecule modulators of the pH-sensing GPCRs are being actively developed and evaluated. Research on the pH-sensing GPCRs will continue to provide important insights into the molecular interaction between tumor and its acidic microenvironment and may identify new targets for cancer therapy and chemoprevention. PMID:24367336

  14. Acidic tumor microenvironment and pH-sensing G protein-coupled receptors

    PubMed Central

    Justus, Calvin R.; Dong, Lixue; Yang, Li V.

    2013-01-01

    The tumor microenvironment is acidic due to glycolytic cancer cell metabolism, hypoxia, and deficient blood perfusion. It is proposed that acidosis in the tumor microenvironment is an important stress factor and selection force for cancer cell somatic evolution. Acidic pH has pleiotropic effects on the proliferation, migration, invasion, metastasis, and therapeutic response of cancer cells and the function of immune cells, vascular cells, and other stromal cells. However, the molecular mechanisms by which cancer cells and stromal cells sense and respond to acidic pH in the tumor microenvironment are poorly understood. In this article the role of a family of pH-sensing G protein-coupled receptors (GPCRs) in tumor biology is reviewed. Recent studies show that the pH-sensing GPCRs, including GPR4, GPR65 (TDAG8), GPR68 (OGR1), and GPR132 (G2A), regulate cancer cell metastasis and proliferation, immune cell function, inflammation, and blood vessel formation. Activation of the proton-sensing GPCRs by acidosis transduces multiple downstream G protein signaling pathways. Since GPCRs are major drug targets, small molecule modulators of the pH-sensing GPCRs are being actively developed and evaluated. Research on the pH-sensing GPCRs will continue to provide important insights into the molecular interaction between tumor and its acidic microenvironment and may identify new targets for cancer therapy and chemoprevention. PMID:24367336

  15. Ensemble Activation of G-Protein -Coupled Receptors Revealed by Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Chu, Xiang-Qiang; Perera, Suchithranga; Shrestha, Utsab; Chawla, Udeep; Struts, Andrey; Qian, Shuo; Brown, Michael

    2014-03-01

    Rhodopsin is a G-protein -coupled receptor (GPCR) involved in visual light perception and occurs naturally in a membrane lipid environment. Rhodopsin photoactivation yields cis-trans isomerization of retinal giving equilibrium between inactive Meta-I and active Meta-II states. Does photoactivation lead to a single Meta-II conformation, or do substates exist as described by an ensemble-activation mechanism (EAM)? We use small-angle neutron scattering (SANS) to investigate conformational changes in rhodopsin-detergent and rhodopsin-lipid complexes upon photoactivation. Meta-I state is stabilized in CHAPS-solubilized rhodopsin, while Meta-II is trapped in DDM-solubilized rhodopsin. SANS data are acquired from 80% D2O solutions and at contrast-matching points for both DDM and CHAPS samples. Our experiments demonstrate that for detergent-solubilized rhodopsin, SANS with contrast variation can detect structural differences between the rhodopsin dark-state, Meta-I, Meta-II, and ligand-free opsin states. Dark-state rhodopsin has more conformational flexibility in DDM micelles compared to CHAPS, which is consistent with an ensemble of activated Meta-II states. Furthermore, time-resolved SANS enables study of the time-dependent structural transitions between Meta-I and Meta-II, which is crucial to understanding the ensemble-based activation.

  16. Class II G Protein-Coupled Receptors and Their Ligands in Neuronal Function and Protection

    PubMed Central

    Martin, Bronwen; de Maturana, Rakel Lopez; Brenneman, Randall; Walent, Tom; Mattson, Mark P.; Maudsley, Stuart

    2008-01-01

    G protein-coupled receptors (GPCRs) play pivotal roles in regulating the function and plasticity of neuronal circuits in the nervous system. Among the myriad of GPCRs expressed in neural cells, class II GPCRs which couples predominantly to the Gs–adenylate cyclase–cAMP signaling pathway, have recently received considerable attention for their involvement in regulating neuronal survival. Neuropeptides that activate class II GPCRs include secretin, glucagon-like peptides (GLP-1 and GLP-2), growth hormone-releasing hormone (GHRH), pituitary adenylate cyclase activating peptide (PACAP), corticotropin-releasing hormone (CRH), vasoactive intestinal peptide (VIP), parathyroid hormone (PTH), and calcitonin-related peptides. Studies of patients and animal and cell culture models, have revealed possible roles for class II GPCRs signaling in the pathogenesis of several prominent neurodegenerative conditions including stroke, Alzheimer's, Parkinson's, and Huntington's diseases. Many of the peptides that activate class II GPCRs promote neuron survival by increasing the resistance of the cells to oxidative, metabolic, and excitotoxic injury. A better understanding of the cellular and molecular mechanisms by which class II GPCRs signaling modulates neuronal survival and plasticity will likely lead to novel therapeutic interventions for neurodegenerative disorders. PMID:16052036

  17. Developmental expression of orphan G protein-coupled receptor 50 in the mouse brain.

    PubMed

    Grünewald, Ellen; Tew, Kenneth D; Porteous, David J; Thomson, Pippa A

    2012-06-20

    Mental disorders have a complex etiology resulting from interactions between multiple genetic risk factors and stressful life events. Orphan G protein-coupled receptor 50 (GPR50) has been identified as a genetic risk factor for bipolar disorder and major depression in women, and there is additional genetic and functional evidence linking GPR50 to neurite outgrowth, lipid metabolism, and adaptive thermogenesis and torpor. However, in the absence of a ligand, a specific function has not been identified. Adult GPR50 expression has previously been reported in brain regions controlling the HPA axis, but its developmental expression is unknown. In this study, we performed extensive expression analysis of GPR50 and three protein interactors using rt-PCR and immunohistochemistry in the developing and adult mouse brain. Gpr50 is expressed at embryonic day 13 (E13), peaks at E18, and is predominantly expressed by neurons. Additionally we identified novel regions of Gpr50 expression, including brain stem nuclei involved in neurotransmitter signaling: the locus coeruleus, substantia nigra, and raphe nuclei, as well as nuclei involved in metabolic homeostasis. Gpr50 colocalizes with yeast-two-hybrid interactors Nogo-A, Abca2, and Cdh8 in the hypothalamus, amygdala, cortex, and selected brain stem nuclei at E18 and in the adult. With this study, we identify a link between GPR50 and neurotransmitter signaling and strengthen a likely role in stress response and energy homeostasis. PMID:22860215

  18. Epigenetic regulation of G protein coupled receptor signaling and its implications in psychiatric disorders.

    PubMed

    Dogra, Shalini; Sona, Chandan; Kumar, Ajeet; Yadav, Prem N

    2016-08-01

    G protein-coupled receptors (GPCRs) act as a relay center through which extracellular signals, in the form of neurotransmitters or therapeutics, are converted into an intracellular response, which ultimately shapes the overall response at the tissue and behavioral level. Remarkably in similar ways, epigenetic mechanisms also modulate the expression pattern of a large number of genes in response to the dynamic environment inside and outside of the body, and consequently overall response. Emerging evidences from the pharmacogenomics and preclinical studies clearly suggest that these two distinct mechanisms criss-cross each other in several neurological disorders. At one hand such cross-talks between two distinct mechanisms make disease etiology more challenging to understand, while on the other hand if dealt appropriately, such situations might provide an opportunity to find novel druggable target and strategy for the treatment of complex diseases. In this review article, we have summarized and highlighted the main findings that tie epigenetic mechanisms to GPCR mediated signaling in the pathophysiology of central nervous system (CNS) disorders, including depression, addiction and pain. PMID:27046448

  19. Molecular Mechanism of Selectivity among G Protein-Coupled Receptor Kinase 2 Inhibitors

    SciTech Connect

    Thal, David M.; Yeow, Raymond Y.; Schoenau, Christian; Huber, Jochen; Tesmer, John J.G.

    2012-07-11

    G protein-coupled receptors (GPCRs) are key regulators of cell physiology and control processes ranging from glucose homeostasis to contractility of the heart. A major mechanism for the desensitization of activated GPCRs is their phosphorylation by GPCR kinases (GRKs). Overexpression of GRK2 is strongly linked to heart failure, and GRK2 has long been considered a pharmaceutical target for the treatment of cardiovascular disease. Several lead compounds developed by Takeda Pharmaceuticals show high selectivity for GRK2 and therapeutic potential for the treatment of heart failure. To understand how these drugs achieve their selectivity, we determined crystal structures of the bovine GRK2-G{beta}{gamma} complex in the presence of two of these inhibitors. Comparison with the apoGRK2-G{beta}{gamma} structure demonstrates that the compounds bind in the kinase active site in a manner similar to that of the AGC kinase inhibitor balanol. Both balanol and the Takeda compounds induce a slight closure of the kinase domain, the degree of which correlates with the potencies of the inhibitors. Based on our crystal structures and homology modeling, we identified five amino acids surrounding the inhibitor binding site that we hypothesized could contribute to inhibitor selectivity. However, our results indicate that these residues are not major determinants of selectivity among GRK subfamilies. Rather, selectivity is achieved by the stabilization of a unique inactive conformation of the GRK2 kinase domain.

  20. Expression of Mammalian G Protein-Coupled Receptors in Caenorhabditis elegans

    PubMed Central

    Jastrzebska, Beata; Salom, David; Jin, Hui; Cao, Pengxiu; Sun, Wenyu; Palczewski, Krzysztof; Feng, Zhaoyang

    2014-01-01

    Constituting the largest group of membrane proteins identified in the human genome, G protein-coupled receptors (GPCRs) help control many physiological processes by responding to various stimuli. As targets for more than 40% of all prescribed pharmaceuticals, detailed understanding of GPCR structures is vital for the design and development of more specific medications and improved patient therapies. But structural information for membrane proteins and GPCRs, in particular, is limited despite considerable interest. The major impediment to obtaining sufficient quantities of highly purified GPCRs in their native form for crystallization lies in their low tissue levels, poor yields, and stability. The only exception is rhodopsin, which is abundantly expressed in the eye and stabilized by its covalently bound chromophore, 11-cis-retinal. Expression systems and purification protocols have yet to be developed for all other GPCRs. Here, we present a novel expression system for human GPCRs in Caenorhabditis elegans that produces sufficient amounts of recombinant proteins to allow their biochemical and structural characterization. PMID:23332703

  1. Latest development in drug discovery on G protein-coupled receptors.

    PubMed

    Lundstrom, Kenneth

    2006-10-01

    G protein-coupled receptors (GPCRs) represent the family of proteins with the highest impact from social, therapeutic and economic point of view. Today, more than 50% of drug targets are based on GPCRs and the annual worldwide sales exceeds 50 billion dollars. GPCRs are involved in all major disease areas such as cardiovascular, metabolic, neurodegenerative, psychiatric, cancer and infectious diseases. The classical drug discovery process has relied on screening compounds, which interact favorably with the GPCR of interest followed by further chemical engineering as a mean of improving efficacy and selectivity. In this review, methods for sophisticated chemical library screening procedures will be presented. Furthermore, development of cell-based assays for functional coupling of GPCRs to G proteins will be discussed. Finally, the possibility of applying structure-based drug design will be summarized. This includes the application of bioinformatics knowledge and molecular modeling approaches in drug development programs. The major efforts established through large networks of structural genomics on GPCRs, where recombinantly expressed GPCRs are subjected to purification and crystallization attempts with the intention of obtaining high-resolution structures, are presented as a promising future approach for tailor-made drug development. PMID:17073697

  2. Targeting G protein coupled receptor-related pathways as emerging molecular therapies

    PubMed Central

    Ghanemi, Abdelaziz

    2013-01-01

    G protein coupled receptors (GPCRs) represent the most important targets in modern pharmacology because of the different functions they mediate, especially within brain and peripheral nervous system, and also because of their functional and stereochemical properties. In this paper, we illustrate, via a variety of examples, novel advances about the GPCR-related molecules that have been shown to play diverse roles in GPCR pathways and in pathophysiological phenomena. We have exemplified how those GPCRs’ pathways are, or might constitute, potential targets for different drugs either to stimulate, modify, regulate or inhibit the cellular mechanisms that are hypothesized to govern some pathologic, physiologic, biologic and cellular or molecular aspects both in vivo and in vitro. Therefore, influencing such pathways will, undoubtedly, lead to different therapeutical applications based on the related pharmacological implications. Furthermore, such new properties can be applied in different fields. In addition to offering fruitful directions for future researches, we hope the reviewed data, together with the elements found within the cited references, will inspire clinicians and researchers devoted to the studies on GPCR’s properties. PMID:25972730

  3. Emerging role of G protein-coupled receptors in microvascular myogenic tone.

    PubMed

    Kauffenstein, Gilles; Laher, Ismail; Matrougui, Khalid; Guérineau, Nathalie C; Henrion, Daniel

    2012-07-15

    Blood flow autoregulation results from the ability of resistance arteries to reduce or increase their diameters in response to changes in intravascular pressure. The mechanism by which arteries maintain a constant blood flow to organs over a range of pressures relies on this myogenic response, which defines the intrinsic property of the smooth muscle to contract in response to stretch. The resistance to flow created by myogenic tone (MT) prevents tissue damage and allows the maintenance of a constant perfusion, despite fluctuations in arterial pressure. Interventions targeting MT may provide a more rational therapeutic approach in vascular disorders, such as hypertension, vasospasm, chronic heart failure, or diabetes. Despite its early description by Bayliss in 1902, the cellular and molecular mechanisms underlying MT remain poorly understood. We now appreciate that MT requires a complex mechanotransduction converting a physical stimulus (pressure) into a biological response (change in vessel diameter). Although smooth muscle cell depolarization and a rise in intracellular calcium concentration are recognized as cornerstones of the myogenic response, the role of wall strain-induced formation of vasoactive mediators is less well established. The vascular system expresses a large variety of Class 1 G protein-coupled receptors (GPCR) activated by an eclectic range of chemical entities, including peptides, lipids, nucleotides, and amines. These messengers can function in blood vessels as vasoconstrictors. This review focuses on locally generated GPCR agonists and their proposed contributions to MT. Their interplay with pivotal G(q-11) and G(12-13) protein signalling is also discussed. PMID:22637750

  4. Lysophosphatidylinositol: a novel link between ABC transporters and G-protein-coupled receptors.

    PubMed

    Ruban, Emily L; Ferro, Riccardo; Arifin, Syamsul Ahmad; Falasca, Marco

    2014-10-01

    Lysophosphatidylinositol (LPI) is a well-known bioactive lipid that is able to activate signalling cascades relevant to cell proliferation, migration, survival and tumorigenesis. Our previous work suggested that LPI is involved in cancer progression since it can be released in the medium of Ras-transformed fibroblasts and can function as an autocrine modulator of cell growth. Different research groups have established that LPI is the specific and functional ligand for G-protein-coupled receptor 55 (GPR55) and that this GPR55-LPI axis is able to activate signalling cascades that are relevant for different cell functions. Work in our laboratory has recently unravelled an autocrine loop, by which LPI synthesized by cytosolic phospholipase A₂ (cPLA₂) is pumped out of the cell by ATP-binding cassette (ABC) transporter C1 (ABCC1)/multidrug resistance protein 1 (MRP1), initiating a signalling cascade downstream of GPR55. Our current work suggests that blockade of this pathway may represent a novel strategy to inhibit cancer cell proliferation. PMID:25233417

  5. Self-organized criticality in proteins: Hydropathic roughening profiles of G-protein-coupled receptors

    NASA Astrophysics Data System (ADS)

    Phillips, J. C.

    2013-03-01

    Proteins appear to be the most dramatic natural example of self-organized criticality (SOC), a concept that explains many otherwise apparently unlikely phenomena. Protein conformational functionality is often dominated by long-range hydrophobic or hydrophilic interactions which both drive protein compaction and mediate protein-protein interactions. Superfamily transmembrane G-protein-coupled receptors (GPCRs) are the largest family of proteins in the human genome; their amino acid sequences form the largest database for protein-membrane interactions. While there are now structural data on the heptad transmembrane structures of representatives of several heptad families, here we show how fresh insights into global and some local chemical trends in GPCR properties can be obtained accurately from sequences alone, especially by algebraically separating the extracellular and cytoplasmic loops from transmembrane segments. The global mediation of long-range water-protein interactions occurs in conjunction with modulation of these interactions by roughened interfaces. Hydropathic roughening profiles are defined here solely in terms of amino acid sequences, and knowledge of protein coordinates is not required. Roughening profiles both for GPCR and some simpler protein families display accurate and transparent connections to protein functionality, and identify natural length scales for protein functionality.

  6. Therapeutic implications of peptide interactions with G-protein-coupled receptors in diabetic vasculopathy.

    PubMed

    Carrillo-Sepulveda, M A; Matsumoto, T; Nunes, K P; Webb, R C

    2014-05-01

    The dramatic worldwide increase in the prevalence of diabetes has generated an attempt by the scientific community to identify strategies for its treatment and prevention. Vascular dysfunction is a hallmark of diabetes and frequently leads to the development of atherosclerosis, coronary disease-derived myocardial infarction, stroke, peripheral arterial disease and diabetic 'triopathy' (retinopathy, nephropathy and neuropathy). These vascular complications, developing in an increasingly younger cohort of patients with diabetes, contribute to morbidity and mortality. Despite the development of new anti-diabetic or anti-hyperglycaemic drugs, vascular complications remain to be a problem. This warrants a need for new therapeutic strategies to tackle diabetic vasculopathy. There is a growing body of evidence showing that peptide-binding G-protein-coupled receptors (peptide-binding GPCRs) play an important role in the pathophysiology of vascular dysfunction during diabetes. Thus, in this review, we discuss some of the peptide-binding GPCRs involved in the regulation of vascular function that have potential to be a therapeutic target in the treatment of diabetic vasculopathy. PMID:24640957

  7. G-protein-coupled receptor controls steroid hormone signaling in cell membrane

    PubMed Central

    Wang, Di; Zhao, Wen-Li; Cai, Mei-Juan; Wang, Jin-Xing; Zhao, Xiao-Fan

    2015-01-01

    G-protein-coupled receptors (GPCRs) are involved in animal steroid hormone signaling, but their mechanism is unclear. In this research, we report that a GPCR called ErGPCR-2 controls steroid hormone 20-hydroxyecdysone (20E) signaling in the cell membrane of the lepidopteran insect Helicoverpa armigera. ErGPCR-2 was highly expressed during molting and metamorphosis. 20E, via ErGPCR-2, regulated rapid intracellular calcium increase, protein phosphorylation, gene transcription, and insect metamorphosis. ErGPCR-2 was located in the cell surface and was internalized by 20E induction. GPCR kinase 2 participated in 20E-induced ErGPCR-2 phosphorylation and internalization. The internalized ErGPCR-2 was degraded by proteases to desensitize 20E signaling. ErGPCR-2 knockdown suppressed the entrance of 20E analog [3H] ponasterone A ([3H]Pon A) into the cells. ErGPCR-2 overexpression or blocking of ErGPCR-2 internalization increased the entrance of [3H]Pon A into the cells. However, ErGPCR-2 did not bind to [3H]Pon A. Results suggest that ErGPCR-2 transmits steroid hormone 20E signaling and controls 20E entrance into cells in the cell membrane. PMID:25728569

  8. The role of G protein-coupled receptors in cochlear planar cell polarity.

    PubMed

    Sun, Jinpeng; Zhang, Daolai; Wang, Yanfei; Lin, Hal; Yu, Xiao; Xu, Zhigang

    2016-08-01

    Planar cell polarity (PCP) is defined as the coordinated alignment of cell polarity across the tissue plane, which is important for the integration of cells into tissues. One of the best examples of PCP is in the cochlear epithelium. Several core PCP proteins have been identified to play important roles in PCP regulation, in which these proteins form complexes and associate with the cell membrane asymmetrically, mediating intercellular PCP signal transduction. Among the core PCP proteins are two G protein-coupled receptors (GPCRs), Celsr and Frizzled, both of which have been shown to play important roles in cochlear PCP regulation. Celsr and Frizzled genes are expressed in the cochlear sensory epithelium, and Frizzled1, 2, 3 and 6 show asymmetric localizations on the cell membrane of hair cells or supporting cells. In the animal model, Celsr1, Frizzled2 and Frizzled3/6 mutant or knockout mice have profound cochlear PCP deficits. Downstream of GPCR signaling, Gαi was shown to asymmetrically localize on the apical surface of hair cells, together with LGN and mInsc, Gαi controls cochlear PCP in a cell-autonomous way. Inactivity of Gαi, LGN or mInsc results in PCP deficits in the mouse cochlea. We hypothesize that GPCR-Gαi coupling plays a pivotal role in cochlear PCP regulation via connecting the intercellular PCP signals with cell-autonomous PCP machinery. Further investigations are needed to fully understand the mechanism of cochlear PCP regulation. PMID:26921719

  9. Distinct clathrin-coated pits sort different G protein-coupled receptor cargo.

    PubMed

    Mundell, Stuart J; Luo, Jiansong; Benovic, Jeffrey L; Conley, Pamela B; Poole, Alastair W

    2006-10-01

    Upon activation, many G protein-coupled receptors (GPCRs) internalize by clathrin-mediated endocytosis and are subsequently sorted to undergo recycling or lysosomal degradation. Here we observe that sorting can take place much earlier than previously thought, by entry of different GPCRs into distinct populations of clathrin-coated pit (CCP). These distinct populations were revealed by analysis of two purinergic GPCRs, P2Y(1) and P2Y(12), which enter two populations of CCPs in a mutually exclusive manner. The mechanisms underlying early GPCR sorting involve differential kinase-dependent processes because internalization of P2Y(12) is mediated by GPCR kinases (GRKs) and arrestin, whereas P2Y(1) internalization is GRK- and arrestin-independent but requires protein kinase C. Importantly, the beta(2) adrenoceptor which also internalizes in a GRK-dependent manner also traffics exclusively to P2Y(12)-containing CCPs. Our data therefore reveal distinct populations of CCPs that sort GPCR cargo at the plasma membrane using different kinase-dependent mechanisms. PMID:16899088

  10. GPR55, a G-protein coupled receptor for lysophosphatidylinositol, plays a role in motor coordination.

    PubMed

    Wu, Chia-Shan; Chen, Hongmei; Sun, Hao; Zhu, Jie; Jew, Chris P; Wager-Miller, James; Straiker, Alex; Spencer, Corinne; Bradshaw, Heather; Mackie, Ken; Lu, Hui-Chen

    2013-01-01

    The G-protein coupled receptor 55 (GPR55) is activated by lysophosphatidylinositols and some cannabinoids. Recent studies found prominent roles for GPR55 in neuropathic/inflammatory pain, cancer and bone physiology. However, little is known about the role of GPR55 in CNS development and function. To address this question, we performed a detailed characterization of GPR55 knockout mice using molecular, anatomical, electrophysiological, and behavioral assays. Quantitative PCR studies found that GPR55 mRNA was expressed (in order of decreasing abundance) in the striatum, hippocampus, forebrain, cortex, and cerebellum. GPR55 deficiency did not affect the concentrations of endocannabinoids and related lipids or mRNA levels for several components of the endocannabinoid system in the hippocampus. Normal synaptic transmission and short-term as well as long-term synaptic plasticity were found in GPR55 knockout CA1 pyramidal neurons. Deleting GPR55 function did not affect behavioral assays assessing muscle strength, gross motor skills, sensory-motor integration, motor learning, anxiety or depressive behaviors. In addition, GPR55 null mutant mice exhibited normal contextual and auditory-cue conditioned fear learning and memory in a Pavlovian conditioned fear test. In contrast, when presented with tasks requiring more challenging motor responses, GPR55 knockout mice showed impaired movement coordination. Taken together, these results suggest that GPR55 plays a role in motor coordination, but does not strongly regulate CNS development, gross motor movement or several types of learned behavior. PMID:23565223

  11. The endogenous chromophore of retinal G protein-coupled receptor opsin from the pigment epithelium.

    PubMed

    Hao, W; Fong, H K

    1999-03-01

    The recent identification of nonvisual opsins has revealed an expanding family of vertebrate opsin genes. The retinal pigment epithelium (RPE) and Müller cells contain a blue and UV light-absorbing opsin, the RPE retinal G protein-coupled receptor (RGR, or RGR opsin). The spectral properties of RGR purified from bovine RPE suggest that RGR is conjugated in vivo to a retinal chromophore through a covalent Schiff base bond. In this study, the isomeric structure of the endogenous chromophore of RGR was identified by the hydroxylamine derivatization method. The retinaloximes derived from RGR in the dark consisted predominantly of the all-trans isomer. Irradiation of RGR with 470-nm monochromatic or near-UV light resulted in stereospecific isomerization of the bound all-trans-retinal to an 11-cis configuration. The stereospecificity of photoisomerization of the all-trans-retinal chromophore of RGR was lost by denaturation of the protein in SDS. Under the in vitro conditions, the photosensitivity of RGR is at least 34% that of bovine rhodopsin. These results provide evidence that RGR is bound in vivo primarily to all-trans-retinal and is capable of operating as a stereospecific photoisomerase that generates 11-cis-retinal in the pigment epithelium. PMID:10037690

  12. Isotopic labeling of mammalian G protein-coupled receptors heterologously expressed in Caenorhabditis elegans.

    PubMed

    Salom, David; Cao, Pengxiu; Yuan, Yiyuan; Miyagi, Masaru; Feng, Zhaoyang; Palczewski, Krzysztof

    2015-03-01

    High-resolution structural determination and dynamic characterization of membrane proteins by nuclear magnetic resonance (NMR) require their isotopic labeling. Although a number of labeled eukaryotic membrane proteins have been successfully expressed in bacteria, they lack post-translational modifications and usually need to be refolded from inclusion bodies. This shortcoming of bacterial expression systems is particularly detrimental for the functional expression of G protein-coupled receptors (GPCRs), the largest family of drug targets, due to their inherent instability. In this work, we show that proteins expressed by a eukaryotic organism can be isotopically labeled and produced with a quality and quantity suitable for NMR characterization. Using our previously described expression system in Caenorhabditis elegans, we showed the feasibility of labeling proteins produced by these worms with (15)N,(13)C by providing them with isotopically labeled bacteria. (2)H labeling also was achieved by growing C. elegans in the presence of 70% heavy water. Bovine rhodopsin, simultaneously expressed in muscular and neuronal worm tissues, was employed as the "test" GPCR to demonstrate the viability of this approach. Although the worms' cell cycle was slightly affected by the presence of heavy isotopes, the final protein yield and quality was appropriate for NMR structural characterization. PMID:25461480

  13. Conformational dynamics of a class C G protein-coupled receptor

    PubMed Central

    Vafabakhsh, Reza; Levitz, Joshua; Isacoff, Ehud Y.

    2015-01-01

    G protein-coupled receptors (GPCRs) constitute the largest family of membrane receptors in eukaryotes. Crystal structures have provided insight into GPCR interaction with ligands and G-proteins1,2, but our understanding of the conformational dynamics of activation is incomplete. Metabotropic glutamate receptors (mGluRs) are dimeric class C GPCRs that modulate neuronal excitability, synaptic plasticity, and serve as drug targets for neurological disorders3,4. A “clamshell” ligand-binding domain (LBD), which contains the ligand binding site, is coupled to the transmembrane domain (TMD) via a cysteine rich domain, and LBD closure appears to be the first step in activation5,6. Crystal structures of isolated mGluR LBD dimers led to the suggestion that activation also involves a reorientation of the dimer interface from a “relaxed” to an “active” state7,8, but the relationship between ligand binding, LBD closure and dimer interface rearrangement in activation remains unclear. We used single-molecule fluorescence resonance energy transfer (smFRET) to probe the activation mechanism of full-length mammalian group II mGluRs. We find that the LBDs interconvert between three conformations: resting, activated and a short-lived intermediate state. Orthosteric agonists induce transitions between these conformational states with efficacy determined by occupancy of the active conformation. Unlike mGluR2, mGluR3 displays basal dynamics, which are Ca2+ dependent and lead to basal protein activation. Our results support a general mechanism for the activation of mGluRs in which agonist binding induces closure of the LBDs followed by dimer interface reorientation. Our experimental strategy should be widely applicable to study conformational dynamics in GPCRs and other membrane proteins. PMID:26258295

  14. PEGylated Dendritic Unimolecular Micelles as Versatile Carriers for Ligands of G Protein-Coupled Receptors

    PubMed Central

    Kim, Yoonkyung; Hechler, Béatrice; Gao, Zhan-Guo; Gachet, Christian; Jacobson, Kenneth A.

    2009-01-01

    Despite its widespread application in nanomedicine, poly(ethylene glycol) (PEG) is seldom used for covalent modification of ligands for G protein-coupled receptors (GPCRs) due to potential steric complications. In order to study the influence of PEG chains on the biological activity of GPCR ligands bound to a common macromolecular carrier, we prepared a series of G3 polyamidoamine (PAMAM) dendrimers derivatized with Alexa Fluor 488, varying numbers of PEG550/PEG750/PEG2000, and nucleoside moieties derived from the A2A adenosine receptor (AR) agonist CGS21680 (2-[4-(2-carboxylethyl)phenylethylamino]-5′-N-ethylcarboxamidoadenosine). These dendrimer conjugates were purified by size exclusion chromatography and characterized by 1H NMR and MALDI MS. In radioligand binding assays, some PAMAM-PEG conjugates showed enhanced subtype-selectivity at the human A2A AR compared to monomeric ligands of comparable affinity. The functional potency was measured in the A2A AR-mediated activation of adenylate cyclase and inhibition of ADP-induced platelet aggregation. Interestingly, the dendrimer conjugate 10c bearing 11 PEG750 chains (out of theo. 32 amino end groups) and 14 nucleoside moieties was 5-fold more potent in A2A AR–mediated stimulation of cyclic AMP formation than 10d with four PEG2000 chains and 21 nucleosides, although the binding affinities of these two compounds were similar. Thus, a relatively small (≤10 nm) multivalent ligand 10c modified for water solubility maintained high potency and displayed increased A2A AR binding selectivity over the monomeric nucleosides. Longer PEG chains reduced affinity at the A2A AR. The current study demonstrates the feasiblity of using short PEG chains in the design of carriers that target ligand-receptor interactions. PMID:19785401

  15. PEGylated dendritic unimolecular micelles as versatile carriers for ligands of G protein-coupled receptors.

    PubMed

    Kim, Yoonkyung; Hechler, Béatrice; Gao, Zhan-Guo; Gachet, Christian; Jacobson, Kenneth A

    2009-10-21

    Despite its widespread application in nanomedicine, poly(ethylene glycol) (PEG) is seldom used for covalent modification of ligands for G protein-coupled receptors (GPCRs) due to potential steric complications. In order to study the influence of PEG chains on the biological activity of GPCR ligands bound to a common macromolecular carrier, we prepared a series of G3 polyamidoamine (PAMAM) dendrimers derivatized with Alexa Fluor 488, varying numbers of PEG(550)/PEG(750)/PEG(2000), and nucleoside moieties derived from the A(2A) adenosine receptor (AR) agonist CGS21680 (2-[4-(2-carboxylethyl)phenylethylamino]-5'-N-ethylcarboxamidoadenosine). These dendrimer conjugates were purified by size exclusion chromatography and characterized by (1)H NMR and MALDI MS. In radioligand binding assays, some PAMAM-PEG conjugates showed enhanced subtype-selectivity at the human A(2A) AR compared to monomeric ligands of comparable affinity. The functional potency was measured in the A(2A) AR-mediated activation of adenylate cyclase and inhibition of ADP-induced platelet aggregation. Interestingly, the dendrimer conjugate 10c bearing 11 PEG(750) chains (out of theoretical 32 amino end groups) and 14 nucleoside moieties was 5-fold more potent in A(2A) AR-mediated stimulation of cyclic AMP formation than 10d with 4 PEG(2000) chains and 21 nucleosides, although the binding affinities of these 2 compounds were similar. Thus, a relatively small (≤10 nm) multivalent ligand 10c modified for water solubility maintained high potency and displayed increased A(2A) AR binding selectivity over the monomeric nucleosides. The current study demonstrates the feasibility of using short PEG chains in the design of carriers that target ligand-receptor interactions. PMID:19785401

  16. G protein-coupled estrogen receptor inhibits vascular prostanoid production and activity.

    PubMed

    Meyer, Matthias R; Fredette, Natalie C; Barton, Matthias; Prossnitz, Eric R

    2015-10-01

    Complications of atherosclerotic vascular disease, such as myocardial infarction and stroke, are the most common causes of death in postmenopausal women. Endogenous estrogens inhibit vascular inflammation-driven atherogenesis, a process that involves cyclooxygenase (COX)-derived vasoconstrictor prostanoids such as thromboxane A2. Here, we studied whether the G protein-coupled estrogen receptor (GPER) mediates estrogen-dependent inhibitory effects on prostanoid production and activity under pro-inflammatory conditions. Effects of estrogen on production of thromboxane A(2) were determined in human endothelial cells stimulated by the pro-inflammatory cytokine tumour necrosis factor alpha (TNF-α). Moreover, Gper-deficient (Gper(-/-)) and WT mice were fed a pro-inflammatory diet and underwent ovariectomy or sham surgery to unmask the role of endogenous estrogens. Thereafter, contractions to acetylcholine-stimulated endothelial vasoconstrictor prostanoids and the thromboxane-prostanoid receptor agonist U46619 were recorded in isolated carotid arteries. In endothelial cells, TNF-α-stimulated thromboxane A2 production was inhibited by estrogen, an effect blocked by the GPER-selective antagonist G36. In ovary-intact mice, deletion of Gper increased prostanoid-dependent contractions by twofold. Ovariectomy also augmented prostanoid-dependent contractions by twofold in WT mice but had no additional effect in Gper(-/-) mice. These contractions were blocked by the COX inhibitor meclofenamate and unaffected by the nitric oxide synthase inhibitor l-N(G)-nitroarginine methyl ester. Vasoconstrictor responses to U46619 did not differ between groups, indicating intact signaling downstream of thromboxane-prostanoid receptor activation. In summary, under pro-inflammatory conditions, estrogen inhibits vasoconstrictor prostanoid production in endothelial cells and activity in intact arteries through GPER. Selective activation of GPER may therefore be considered as a novel strategy to

  17. The effects of (-)-epicatechin on endothelial cells involve the G protein-coupled estrogen receptor (GPER).

    PubMed

    Moreno-Ulloa, Aldo; Mendez-Luna, David; Beltran-Partida, Ernesto; Castillo, Carmen; Guevara, Gustavo; Ramirez-Sanchez, Israel; Correa-Basurto, José; Ceballos, Guillermo; Villarreal, Francisco

    2015-10-01

    We have provided evidence that the stimulatory effects of (-)-epicatechin ((-)-EPI) on endothelial cell nitric oxide (NO) production may involve the participation of a cell-surface receptor. Thus far, such entity(ies) has not been fully elucidated. The G protein-coupled estrogen receptor (GPER) is a cell-surface receptor that has been linked to protective effects on the cardiovascular system and activation of intracellular signaling pathways (including NO production) similar to those reported with (-)-EPI. In bovine coronary artery endothelial cells (BCAEC) by the use of confocal imaging, we evidence the presence of GPER at the cell-surface and on F-actin filaments. Using in silico studies we document the favorable binding mode between (-)-EPI and GPER. Such binding is comparable to that of the GPER agonist, G1. By the use of selective blockers, we demonstrate that the activation of ERK 1/2 and CaMKII by (-)-EPI is dependent on the GPER/c-SRC/EGFR axis mimicking those effects noted with G1. We also evidence by the use of siRNA the role that GPER has on mediating ERK1/2 activation by (-)-EPI. GPER appears to be coupled to a non Gαi/o or Gαs, protein subtype. To extrapolate our findings to an ex vivo model, we employed phenylephrine pre-contracted aortic rings evidencing that (-)-EPI can mediate vasodilation through GPER activation. In conclusion, we provide evidence that suggests the GPER as a potential mediator of (-)-EPI effects and highlights the important role that GPER may have on cardiovascular system protection. PMID:26303816

  18. Conformational dynamics of a class C G-protein-coupled receptor.

    PubMed

    Vafabakhsh, Reza; Levitz, Joshua; Isacoff, Ehud Y

    2015-08-27

    G-protein-coupled receptors (GPCRs) constitute the largest family of membrane receptors in eukaryotes. Crystal structures have provided insight into GPCR interactions with ligands and G proteins, but our understanding of the conformational dynamics of activation is incomplete. Metabotropic glutamate receptors (mGluRs) are dimeric class C GPCRs that modulate neuronal excitability, synaptic plasticity, and serve as drug targets for neurological disorders. A 'clamshell' ligand-binding domain (LBD), which contains the ligand-binding site, is coupled to the transmembrane domain via a cysteine-rich domain, and LBD closure seems to be the first step in activation. Crystal structures of isolated mGluR LBD dimers led to the suggestion that activation also involves a reorientation of the dimer interface from a 'relaxed' to an 'active' state, but the relationship between ligand binding, LBD closure and dimer interface rearrangement in activation remains unclear. Here we use single-molecule fluorescence resonance energy transfer to probe the activation mechanism of full-length mammalian group II mGluRs. We show that the LBDs interconvert between three conformations: resting, activated and a short-lived intermediate state. Orthosteric agonists induce transitions between these conformational states, with efficacy determined by occupancy of the active conformation. Unlike mGluR2, mGluR3 displays basal dynamics, which are Ca(2+)-dependent and lead to basal protein activation. Our results support a general mechanism for the activation of mGluRs in which agonist binding induces closure of the LBDs, followed by dimer interface reorientation. Our experimental strategy should be widely applicable to study conformational dynamics in GPCRs and other membrane proteins. PMID:26258295

  19. Enhanced expression of G-protein coupled estrogen receptor (GPER/GPR30) in lung cancer

    PubMed Central

    2012-01-01

    Background G-protein-coupled estrogen receptor (GPER/GPR30) was reported to bind 17β-estradiol (E2), tamoxifen, and ICI 182,780 (fulvestrant) and promotes activation of epidermal growth factor receptor (EGFR)-mediated signaling in breast, endometrial and thyroid cancer cells. Although lung adenocarcinomas express estrogen receptors α and β (ERα and ERβ), the expression of GPER in lung cancer has not been investigated. The purpose of this study was to examine the expression of GPER in lung cancer. Methods The expression patterns of GPER in various lung cancer lines and lung tumors were investigated using standard quantitative real time PCR (at mRNA levels), Western blot and immunohistochemistry (IHC) methods (at protein levels). The expression of GPER was scored and the pairwise comparisons (cancer vs adjacent tissues as well as cancer vs normal lung tissues) were performed. Results Analysis by real-time PCR and Western blotting revealed a significantly higher expression of GPER at both mRNA and protein levels in human non small cell lung cancer cell (NSCLC) lines relative to immortalized normal lung bronchial epithelial cells (HBECs). The virally immortalized human small airway epithelial cell line HPL1D showed higher expression than HBECs and similar expression to NSCLC cells. Immunohistochemical analysis of tissue sections of murine lung adenomas as well as human lung adenocarcinomas, squamous cell carcinomas and non-small cell lung carcinomas showed consistently higher expression of GPER in the tumor relative to the surrounding non-tumor tissue. Conclusion The results from this study demonstrate increased GPER expression in lung cancer cells and tumors compared to normal lung. Further evaluation of the function and regulation of GPER will be necessary to determine if GPER is a marker of lung cancer progression. PMID:23273253

  20. G-protein coupled estrogen receptor (GPER) inhibits final oocyte maturation in common carp, Cyprinus carpio.

    PubMed

    Majumder, Suravi; Das, Sumana; Moulik, Sujata Roy; Mallick, Buddhadev; Pal, Puja; Mukherjee, Dilip

    2015-01-15

    GPR-30, now named as GPER (G protein-coupled estrogen receptor) was first identified as an orphan receptor and subsequently shown to be required for estrogen-mediated signaling in certain cancer cells. Later studies demonstrated that GPER has the characteristics of a high affinity estrogen membrane receptor on Atlantic croaker and zebra fish oocytes and mediates estrogen inhibition of oocyte maturation in these two distantly related teleost. To determine the broad application of these findings to other teleost, expression of GPER mRNA and its involvement in 17β-estradiol mediated inhibition of oocyte maturation in other cyprinid, Cyprinus carpio was investigated. Carp oocytes at pre-vitellogenic, late-vitellogenic and post-vitellogenic stages of development contained GPER mRNA and its transcribed protein with a maximum at late-vitellogenic oocytes. Ovarian follicular cells did not express GPER mRNA. Carp oocytes GPER mRNA was essentially identical to that found in other perciformes and cyprinid fish oocytes. Both spontaneous and 17,20β-dihydroxy-4-pregnen-3-one (17,20β-P)-induced oocyte maturation in carp was significantly decreased when they were incubated with either E2, or GPER agonist G-1. On the other hand spontaneous oocyte maturation was significantly increased when carp ovarian follicles were incubated with an aromatase inhibitor, fadrozole, GPER antagonist, G-15 and enzymatic removal of the ovarian follicle cell layers. This increase in oocyte maturation was partially reversed by co-treatment with E2. Consistent with previous findings with human and fish GPR30, E2 treatment in carp oocytes caused increase in cAMP production and simultaneously decrease in oocyte maturation, which was inhibited by the addition of 17,20β-P. The results suggest that E2 and GPER play a critical role in regulating re-entry in to meiotic cell cycle in carp oocytes. PMID:25485460

  1. Dihydromunduletone Is a Small-Molecule Selective Adhesion G Protein-Coupled Receptor Antagonist.

    PubMed

    Stoveken, Hannah M; Bahr, Laura L; Anders, M W; Wojtovich, Andrew P; Smrcka, Alan V; Tall, Gregory G

    2016-09-01

    Adhesion G protein-coupled receptors (aGPCRs) have emerging roles in development and tissue maintenance and is the most prevalent GPCR subclass mutated in human cancers, but to date, no drugs have been developed to target them in any disease. aGPCR extracellular domains contain a conserved subdomain that mediates self-cleavage proximal to the start of the 7-transmembrane domain (7TM). The two receptor protomers, extracellular domain and amino terminal fragment (NTF), and the 7TM or C-terminal fragment remain noncovalently bound at the plasma membrane in a low-activity state. We recently demonstrated that NTF dissociation liberates the 7TM N-terminal stalk, which acts as a tethered-peptide agonist permitting receptor-dependent heterotrimeric G protein activation. In many cases, natural aGPCR ligands are extracellular matrix proteins that dissociate the NTF to reveal the tethered agonist. Given the perceived difficulty in modifying extracellular matrix proteins to create aGPCR probes, we developed a serum response element (SRE)-luciferase-based screening approach to identify GPR56/ADGRG1 small-molecule inhibitors. A 2000-compound library comprising known drugs and natural products was screened for GPR56-dependent SRE activation inhibitors that did not inhibit constitutively active Gα13-dependent SRE activation. Dihydromunduletone (DHM), a rotenoid derivative, was validated using cell-free aGPCR/heterotrimeric G protein guanosine 5'-3-O-(thio)triphosphate binding reconstitution assays. DHM inhibited GPR56 and GPR114/ADGRG5, which have similar tethered agonists, but not the aGPCR GPR110/ADGRF1, M3 muscarinic acetylcholine, or β2 adrenergic GPCRs. DHM inhibited tethered peptide agonist-stimulated and synthetic peptide agonist-stimulated GPR56 but did not inhibit basal activity, demonstrating that it antagonizes the peptide agonist. DHM is a novel aGPCR antagonist and potentially useful chemical probe that may be developed as a future aGPCR therapeutic. PMID:27338081

  2. Computing highly correlated positions using mutual information and graph theory for G protein-coupled receptors.

    PubMed

    Fatakia, Sarosh N; Costanzi, Stefano; Chow, Carson C

    2009-01-01

    G protein-coupled receptors (GPCRs) are a superfamily of seven transmembrane-spanning proteins involved in a wide array of physiological functions and are the most common targets of pharmaceuticals. This study aims to identify a cohort or clique of positions that share high mutual information. Using a multiple sequence alignment of the transmembrane (TM) domains, we calculated the mutual information between all inter-TM pairs of aligned positions and ranked the pairs by mutual information. A mutual information graph was constructed with vertices that corresponded to TM positions and edges between vertices were drawn if the mutual information exceeded a threshold of statistical significance. Positions with high degree (i.e. had significant mutual information with a large number of other positions) were found to line a well defined inter-TM ligand binding cavity for class A as well as class C GPCRs. Although the natural ligands of class C receptors bind to their extracellular N-terminal domains, the possibility of modulating their activity through ligands that bind to their helical bundle has been reported. Such positions were not found for class B GPCRs, in agreement with the observation that there are not known ligands that bind within their TM helical bundle. All identified key positions formed a clique within the MI graph of interest. For a subset of class A receptors we also considered the alignment of a portion of the second extracellular loop, and found that the two positions adjacent to the conserved Cys that bridges the loop with the TM3 qualified as key positions. Our algorithm may be useful for localizing topologically conserved regions in other protein families. PMID:19262747

  3. PGE(2) induces oenocytoid cell lysis via a G protein-coupled receptor in the beet armyworm, Spodoptera exigua.

    PubMed

    Shrestha, Sony; Stanley, David; Kim, Yonggyun

    2011-11-01

    Eicosanoids mediate cellular and humoral immune responses in the beet armyworm, Spodoptera exigua, including activation of prophenoloxidase (PPO). PPO activation begins with release of its inactive zymogen, PPO, from oenocytoids in response to prostaglandins (PGs). Based on the biomedical literature, we hypothesized that PGs exert their actions via specific G protein-coupled receptor(s) in S. exigua. This study reports a G protein-coupled receptor (Se-hcPGGPCR1) gene, which is expressed in the hemocytes of S. exigua. The Se-hcPGGPCR1 consists of 420 amino acids and belongs to rhodopsin-type GPCRs. The high content of hydrophobic amino acid residues within the Se-hcPGGPCR1 protein is explained by prediction of seven-transmembrane domains that are characteristic of these GPCRs. Except for the eggs, Se-hcPGGPCR1 was expressed in all life stages. During the larval stage, it was expressed in hemocytes and gut, but not in fat body nor in epidermis. Real time quantitative RT-PCR showed that bacterial challenge induced more than 20-fold increases in its expression level. Fluorescence in situ hybridization showed that Se-hcPGGPCR1 was expressed in a specific hemocyte type, the oenocytoids. A specific eicosanoid, PGE(2), significantly induced oenocytoid lysis and increased PO activity in the plasma. In contrast, when Se-hcPGGPCR1 expression was suppressed by RNA interference (RNAi), the oenocytoid lysis and the PO activation in response to PGE(2) were not elevated above basal levels. A binding assay using intracellular calcium mobilization showed that the RNAi-treated hemocytes were significantly less responsive to PGE(2) than the control hemocytes. These results support our hypothesis with the specific finding that PGE(2) acts through Se-hcPGGPCR1 to activate PPO by lysing oenocytoids. PMID:21867708

  4. THE GRK4 SUBFAMILY OF G PROTEIN-COUPLED RECEPTOR KINASES: ALTERNATIVE SPLICING, GENE ORGANIZATION, AND SEQUENCE CONSERVATION

    EPA Science Inventory

    The GRK4 subfamily of G protein-coupled receptor kinases. Alternative splicing, gene organization, and sequence conservation.

    Premont RT, Macrae AD, Aparicio SA, Kendall HE, Welch JE, Lefkowitz RJ.

    Department of Medicine, Howard Hughes Medical Institute, Duke Univer...

  5. Visualization of arrestin recruitment by a G Protein-Coupled Receptor

    PubMed Central

    Reis, Rosana I.; Huang, Li-Yin; Tripathi-Shukla, Prachi; Qian, Jiang; Li, Sheng; Blanc, Adi; Oleskie, Austin N.; Dosey, Anne M.; Su, Min; Liang, Cui-Rong; Gu, Ling-Ling; Shan, Jin-Ming; Chen, Xin; Hanna, Rachel; Choi, Minjung; Yao, Xiao Jie; Klink, Bjoern U.; Kahsai, Alem W.; Sidhu, Sachdev S.; Koide, Shohei; Penczek, Pawel A.; Kossiakoff, Anthony A.; Jr, Virgil L. Woods; Kobilka, Brian K.; Skiniotis, Georgios; Lefkowitz, Robert J.

    2014-01-01

    G Protein Coupled Receptors (GPCRs) are critically regulated by β-arrestins (βarrs), which not only desensitize G protein signaling but also initiate a G protein independent wave of signaling1-5. A recent surge of structural data on a number of GPCRs, including the β2 adrenergic receptor (β2AR)-G protein complex, has provided novel insights into the structural basis of receptor activation6-11. Lacking however has been complementary information on recruitment of βarrs to activated GPCRs primarily due to challenges in obtaining stable receptor-βarr complexes for structural studies. Here, we devised a strategy for forming and purifying a functional β2AR-βarr1 complex that allowed us to visualize its architecture by single particle negative stain electron microscopy (EM) and to characterize the interactions between β2AR and βarr1 using hydrogen-deuterium exchange mass spectrometry (HDXMS) and chemical cross-linking. EM 2D averages and 3D reconstructions reveal bimodal binding of βarr1 to the β2AR, involving two separate sets of interactions, one with the phosphorylated carboxy-terminus of the receptor and the other with its seven-transmembrane core. Areas of reduced HDX together with identification of cross-linked residues suggest engagement of the finger loop of βarr1 with the seven-transmembrane core of the receptor. In contrast, focal areas of increased HDX indicate regions of increased dynamics in both N and C domains of βarr1 when coupled to the β2AR. A molecular model of the β2AR-βarr signaling complex was made by docking activated βarr1 and β2AR crystal structures into the EM map densities with constraints provided by HDXMS and cross-linking, allowing us to obtain valuable insights into the overall architecture of a receptor-arrestin complex. The dynamic and structural information presented herein provides a framework for better understanding the basis of GPCR regulation by arrestins. PMID:25043026

  6. G-protein-coupled receptor for short-chain fatty acids suppresses colon cancer.

    PubMed

    Tang, Yong; Chen, Yakun; Jiang, Hongmei; Robbins, Gregory T; Nie, Daotai

    2011-02-15

    GPR43 is a G-protein-coupled receptor for short-chain fatty acids (SCFAs). Expression of GPR43 is detected in hematopoietic tissues and the large intestine. SCFAs are derived from bacterial fermentation and metabolism of undigested dietary fibers and have been recognized for their cancer prevention activities in the colon. The role of SCFAs, particularly butyrate, in colon cancer therapy has been extensively studied, and its tumor suppressive functions are believed to be due to their intracellular actions, notably inhibition of histone deacetylase. In our study, we show that SCFAs also exert their antitumor effects via receptor GPR43 and that GPR43 is frequently lost in colon cancer cells. Immunohistostaining revealed that GPR43 immunoreactivity was high in normal colon tissues (N = 31) but was markedly reduced or completely lost in most colorectal adenocarcinoma tissues (N = 70) and their corresponding lymph node metastatic adenocarcinomas (N = 38). RT-PCR analysis detected the presence of full length GPR43 mRNA in only one (HT-29) of nine established human colon cancer cell lines. Restoration of GPR43 expression in HCT8 human colonic adenocarcinoma cells induced G0/G1 cell cycle arrest and activated caspases, leading to increased apoptotic cell death after propionate/butyrate treatment. Restored GPR43 expression, coupled with propionate treatment, induced an upregulation of p21 and a decrease in the levels of cyclin D3 and cyclin-dependent kinases (CDKs) 1 and 2, while the CDK4 and CDK6 levels remained unchanged. Our results suggest that GPR43 functions as a tumor suppressor by mediating SCFA-induced cell proliferation inhibition and apoptotic cell death in colon cancer. PMID:20979106

  7. Orphan G protein-coupled receptor GPR116 regulates pulmonary surfactant pool size.

    PubMed

    Bridges, James P; Ludwig, Marie-Gabrielle; Mueller, Matthias; Kinzel, Bernd; Sato, Atsuyasu; Xu, Yan; Whitsett, Jeffrey A; Ikegami, Machiko

    2013-09-01

    Pulmonary surfactant levels within the alveoli are tightly regulated to maintain lung volumes and promote efficient gas exchange across the air/blood barrier. Quantitative and qualitative abnormalities in surfactant are associated with severe lung diseases in children and adults. Although the cellular and molecular mechanisms that control surfactant metabolism have been studied intensively, the critical molecular pathways that sense and regulate endogenous surfactant levels within the alveolus have not been identified and constitute a fundamental knowledge gap in the field. In this study, we demonstrate that expression of an orphan G protein-coupled receptor, GPR116, in the murine lung is developmentally regulated, reaching maximal levels 1 day after birth, and is highly expressed on the apical surface of alveolar type I and type II epithelial cells. To define the physiological role of GPR116 in vivo, mice with a targeted mutation of the Gpr116 locus, Gpr116(Δexon17), were generated. Gpr116(Δexon17) mice developed a profound accumulation of alveolar surfactant phospholipids at 4 weeks of age (12-fold) that was further increased at 20 weeks of age (30-fold). Surfactant accumulation in Gpr116(Δexon17) mice was associated with increased saturated phosphatidylcholine synthesis at 4 weeks and the presence of enlarged, lipid-laden macrophages, neutrophilia, and alveolar destruction at 20 weeks. mRNA microarray analyses indicated that P2RY2, a purinergic receptor known to mediate surfactant secretion, was induced in Gpr116(Δexon17) type II cells. Collectively, these data support the concept that GPR116 functions as a molecular sensor of alveolar surfactant lipid pool sizes by regulating surfactant secretion. PMID:23590306

  8. Identification and Structure-Function Analysis of Subfamily Selective G Protein-Coupled Receptor Kinase Inhibitors

    SciTech Connect

    Homan, Kristoff T.; Larimore, Kelly M.; Elkins, Jonathan M.; Szklarz, Marta; Knapp, Stefan; Tesmer, John J.G.

    2015-02-13

    Selective inhibitors of individual subfamilies of G protein-coupled receptor kinases (GRKs) would serve as useful chemical probes as well as leads for therapeutic applications ranging from heart failure to Parkinson’s disease. To identify such inhibitors, differential scanning fluorimetry was used to screen a collection of known protein kinase inhibitors that could increase the melting points of the two most ubiquitously expressed GRKs: GRK2 and GRK5. Enzymatic assays on 14 of the most stabilizing hits revealed that three exhibit nanomolar potency of inhibition for individual GRKs, some of which exhibiting orders of magnitude selectivity. Most of the identified compounds can be clustered into two chemical classes: indazole/dihydropyrimidine-containing compounds that are selective for GRK2 and pyrrolopyrimidine-containing compounds that potently inhibit GRK1 and GRK5 but with more modest selectivity. The two most potent inhibitors representing each class, GSK180736A and GSK2163632A, were cocrystallized with GRK2 and GRK1, and their atomic structures were determined to 2.6 and 1.85 Å spacings, respectively. GSK180736A, developed as a Rho-associated, coiled-coil-containing protein kinase inhibitor, binds to GRK2 in a manner analogous to that of paroxetine, whereas GSK2163632A, developed as an insulin-like growth factor 1 receptor inhibitor, occupies a novel region of the GRK active site cleft that could likely be exploited to achieve more selectivity. However, neither compound inhibits GRKs more potently than their initial targets. This data provides the foundation for future efforts to rationally design even more potent and selective GRK inhibitors.

  9. G protein-coupled receptors: signalling and regulation by lipid agonists for improved glucose homoeostasis.

    PubMed

    Moran, Brian M; Flatt, Peter R; McKillop, Aine M

    2016-04-01

    G protein-coupled receptors (GPCRs) play a pivotal role in cell signalling, controlling many processes such as immunity, growth, cellular differentiation, neurological pathways and hormone secretions. Fatty acid agonists are increasingly recognised as having a key role in the regulation of glucose homoeostasis via stimulation of islet and gastrointestinal GPCRs. Downstream cell signalling results in modulation of the biosynthesis, secretion, proliferation and anti-apoptotic pathways of islet and enteroendocrine cells. GPR40 and GPR120 are activated by long-chain fatty acids (>C12) with both receptors coupling to the Gαq subunit that activates the Ca(2+)-dependent pathway. GPR41 and GPR43 are stimulated by short-chain fatty acids (C2-C5), and activation results in binding to Gαi that inhibits the adenylyl cyclase pathway attenuating cAMP production. In addition, GPR43 also couples to the Gαq subunit augmenting intracellular Ca(2+) and activating phospholipase C. GPR55 is specific for cannabinoid endogenous agonists (endocannabinoids) and non-cannabinoid fatty acids, which couples to Gα12/13 and Gαq proteins, leading to enhancing intracellular Ca(2+), extracellular signal-regulated kinase 1/2 (ERK) phosphorylation and Rho kinase. GPR119 is activated by fatty acid ethanolamides and binds to Gαs utilising the adenylate cyclase pathway, which is dependent upon protein kinase A. Current research indicates that GPCR therapies may be approved for clinical use in the near future. This review focuses on the recent advances in preclinical diabetes research in the signalling and regulation of GPCRs on islet and enteroendocrine cells involved in glucose homoeostasis. PMID:26739335

  10. Identification and structure-function analysis of subfamily selective G protein-coupled receptor kinase inhibitors.

    PubMed

    Homan, Kristoff T; Larimore, Kelly M; Elkins, Jonathan M; Szklarz, Marta; Knapp, Stefan; Tesmer, John J G

    2015-01-16

    Selective inhibitors of individual subfamilies of G protein-coupled receptor kinases (GRKs) would serve as useful chemical probes as well as leads for therapeutic applications ranging from heart failure to Parkinson's disease. To identify such inhibitors, differential scanning fluorimetry was used to screen a collection of known protein kinase inhibitors that could increase the melting points of the two most ubiquitously expressed GRKs: GRK2 and GRK5. Enzymatic assays on 14 of the most stabilizing hits revealed that three exhibit nanomolar potency of inhibition for individual GRKs, some of which exhibiting orders of magnitude selectivity. Most of the identified compounds can be clustered into two chemical classes: indazole/dihydropyrimidine-containing compounds that are selective for GRK2 and pyrrolopyrimidine-containing compounds that potently inhibit GRK1 and GRK5 but with more modest selectivity. The two most potent inhibitors representing each class, GSK180736A and GSK2163632A, were cocrystallized with GRK2 and GRK1, and their atomic structures were determined to 2.6 and 1.85 Å spacings, respectively. GSK180736A, developed as a Rho-associated, coiled-coil-containing protein kinase inhibitor, binds to GRK2 in a manner analogous to that of paroxetine, whereas GSK2163632A, developed as an insulin-like growth factor 1 receptor inhibitor, occupies a novel region of the GRK active site cleft that could likely be exploited to achieve more selectivity. However, neither compound inhibits GRKs more potently than their initial targets. This data provides the foundation for future efforts to rationally design even more potent and selective GRK inhibitors. PMID:25238254

  11. The prion protein is an agonistic ligand of the G protein-coupled receptor Adgrg6.

    PubMed

    Küffer, Alexander; Lakkaraju, Asvin K K; Mogha, Amit; Petersen, Sarah C; Airich, Kristina; Doucerain, Cédric; Marpakwar, Rajlakshmi; Bakirci, Pamela; Senatore, Assunta; Monnard, Arnaud; Schiavi, Carmen; Nuvolone, Mario; Grosshans, Bianka; Hornemann, Simone; Bassilana, Frederic; Monk, Kelly R; Aguzzi, Adriano

    2016-08-25

    Ablation of the cellular prion protein PrP(C) leads to a chronic demyelinating polyneuropathy affecting Schwann cells. Neuron-restricted expression of PrP(C) prevents the disease, suggesting that PrP(C) acts in trans through an unidentified Schwann cell receptor. Here we show that the cAMP concentration in sciatic nerves from PrP(C)-deficient mice is reduced, suggesting that PrP(C) acts via a G protein-coupled receptor (GPCR). The amino-terminal flexible tail (residues 23-120) of PrP(C) triggered a concentration-dependent increase in cAMP in primary Schwann cells, in the Schwann cell line SW10, and in HEK293T cells overexpressing the GPCR Adgrg6 (also known as Gpr126). By contrast, naive HEK293T cells and HEK293T cells expressing several other GPCRs did not react to the flexible tail, and ablation of Gpr126 from SW10 cells abolished the flexible tail-induced cAMP response. The flexible tail contains a polycationic cluster (KKRPKPG) similar to the GPRGKPG motif of the Gpr126 agonist type-IV collagen. A KKRPKPG-containing PrPC-derived peptide (FT(23-50)) sufficed to induce a Gpr126-dependent cAMP response in cells and mice, and improved myelination in hypomorphic gpr126 mutant zebrafish (Danio rerio). Substitution of the cationic residues with alanines abolished the biological activity of both FT(23-50) and the equivalent type-IV collagen peptide. We conclude that PrP(C) promotes myelin homeostasis through flexible tail-mediated Gpr126 agonism. As well as clarifying the physiological role of PrP(C), these observations are relevant to the pathogenesis of demyelinating polyneuropathies--common debilitating diseases for which there are limited therapeutic options. PMID:27501152

  12. Loss of Gi G-Protein-Coupled Receptor Signaling in Osteoblasts Accelerates Bone Fracture Healing.

    PubMed

    Wang, Liping; Hsiao, Edward C; Lieu, Shirley; Scott, Mark; O'Carroll, Dylan; Urrutia, Ashley; Conklin, Bruce R; Colnot, Celine; Nissenson, Robert A

    2015-10-01

    G-protein-coupled receptors (GPCRs) are key regulators of skeletal homeostasis and are likely important in fracture healing. Because GPCRs can activate multiple signaling pathways simultaneously, we used targeted disruption of G(i) -GPCR or activation of G(s) -GPCR pathways to test how each pathway functions in the skeleton. We previously demonstrated that blockade of G(i) signaling by pertussis toxin (PTX) transgene expression in maturing osteoblastic cells enhanced cortical and trabecular bone formation and prevented age-related bone loss in female mice. In addition, activation of G(s) signaling by expressing the G(s) -coupled engineered receptor Rs1 in maturing osteoblastic cells induced massive trabecular bone formation but cortical bone loss. Here, we test our hypothesis that the G(i) and G(s) pathways also have distinct functions in fracture repair. We applied closed, nonstabilized tibial fractures to mice in which endogenous G(i) signaling was inhibited by PTX, or to mice with activated G(s) signaling mediated by Rs1. Blockade of endogenous G(i) resulted in a smaller callus but increased bone formation in both young and old mice. PTX treatment decreased expression of Dkk1 and increased Lef1 mRNAs during fracture healing, suggesting a role for endogenous G(i) signaling in maintaining Dkk1 expression and suppressing Wnt signaling. In contrast, adult mice with activated Gs signaling showed a slight increase in the initial callus size with increased callus bone formation. These results show that G(i) blockade and G(s) activation of the same osteoblastic lineage cell can induce different biological responses during fracture healing. Our findings also show that manipulating the GPCR/cAMP signaling pathway by selective timing of G(s) and G(i) -GPCR activation may be important for optimizing fracture repair. PMID:25917236

  13. International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G protein-coupled receptors.

    PubMed

    Hamann, Jörg; Aust, Gabriela; Araç, Demet; Engel, Felix B; Formstone, Caroline; Fredriksson, Robert; Hall, Randy A; Harty, Breanne L; Kirchhoff, Christiane; Knapp, Barbara; Krishnan, Arunkumar; Liebscher, Ines; Lin, Hsi-Hsien; Martinelli, David C; Monk, Kelly R; Peeters, Miriam C; Piao, Xianhua; Prömel, Simone; Schöneberg, Torsten; Schwartz, Thue W; Singer, Kathleen; Stacey, Martin; Ushkaryov, Yuri A; Vallon, Mario; Wolfrum, Uwe; Wright, Mathew W; Xu, Lei; Langenhan, Tobias; Schiöth, Helgi B

    2015-01-01

    The Adhesion family forms a large branch of the pharmacologically important superfamily of G protein-coupled receptors (GPCRs). As Adhesion GPCRs increasingly receive attention from a wide spectrum of biomedical fields, the Adhesion GPCR Consortium, together with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification, proposes a unified nomenclature for Adhesion GPCRs. The new names have ADGR as common dominator followed by a letter and a number to denote each subfamily and subtype, respectively. The new names, with old and alternative names within parentheses, are: ADGRA1 (GPR123), ADGRA2 (GPR124), ADGRA3 (GPR125), ADGRB1 (BAI1), ADGRB2 (BAI2), ADGRB3 (BAI3), ADGRC1 (CELSR1), ADGRC2 (CELSR2), ADGRC3 (CELSR3), ADGRD1 (GPR133), ADGRD2 (GPR144), ADGRE1 (EMR1, F4/80), ADGRE2 (EMR2), ADGRE3 (EMR3), ADGRE4 (EMR4), ADGRE5 (CD97), ADGRF1 (GPR110), ADGRF2 (GPR111), ADGRF3 (GPR113), ADGRF4 (GPR115), ADGRF5 (GPR116, Ig-Hepta), ADGRG1 (GPR56), ADGRG2 (GPR64, HE6), ADGRG3 (GPR97), ADGRG4 (GPR112), ADGRG5 (GPR114), ADGRG6 (GPR126), ADGRG7 (GPR128), ADGRL1 (latrophilin-1, CIRL-1, CL1), ADGRL2 (latrophilin-2, CIRL-2, CL2), ADGRL3 (latrophilin-3, CIRL-3, CL3), ADGRL4 (ELTD1, ETL), and ADGRV1 (VLGR1, GPR98). This review covers all major biologic aspects of Adhesion GPCRs, including evolutionary origins, interaction partners, signaling, expression, physiologic functions, and therapeutic potential. PMID:25713288

  14. Large-scale polymorphism discovery in macaque G-protein coupled receptors

    PubMed Central

    2013-01-01

    Background G-protein coupled receptors (GPCRs) play an inordinately large role in human health. Variation in the genes that encode these receptors is associated with numerous disorders across the entire spectrum of disease. GPCRs also represent the single largest class of drug targets and associated pharmacogenetic effects are modulated, in part, by polymorphisms. Recently, non-human primate models have been developed focusing on naturally-occurring, functionally-parallel polymorphisms in candidate genes. This work aims to extend those studies broadly across the roughly 377 non-olfactory GPCRs. Initial efforts include resequencing 44 Indian-origin rhesus macaques (Macaca mulatta), 20 Chinese-origin rhesus macaques, and 32 cynomolgus macaques (M. fascicularis). Results Using the Agilent target enrichment system, capture baits were designed for GPCRs off the human and rhesus exonic sequence. Using next generation sequencing technologies, nearly 25,000 SNPs were identified in coding sequences including over 14,000 non-synonymous and more than 9,500 synonymous protein-coding SNPs. As expected, regions showing the least evolutionary constraint show greater rates of polymorphism and greater numbers of higher frequency polymorphisms. While the vast majority of these SNPs are singletons, roughly 1,750 non-synonymous and 2,900 synonymous SNPs were found in multiple individuals. Conclusions In all three populations, polymorphism and divergence is highly concentrated in N-terminal and C-terminal domains and the third intracellular loop region of GPCRs, regions critical to ligand-binding and signaling. SNP frequencies in macaques follow a similar pattern of divergence from humans and new polymorphisms in primates have been identified that may parallel those seen in humans, helping to establish better non-human primate models of disease. PMID:24119066

  15. Diabetes impairs the vascular effects of aldosterone mediated by G protein-coupled estrogen receptor activation

    PubMed Central

    Ferreira, Nathanne S.; Cau, Stêfany B. A.; Silva, Marcondes A. B.; Manzato, Carla P.; Mestriner, Fabíola L. A. C.; Matsumoto, Takayuki; Carneiro, Fernando S.; Tostes, Rita C.

    2015-01-01

    Aldosterone promotes non-genomic effects in endothelial and vascular smooth muscle cells via activation of mineralocorticoid receptors (MR) and G protein-coupled estrogen receptors (GPER). GPER activation is associated with beneficial/protective effects in the vasculature. Considering that vascular dysfunction plays a major role in diabetes-associated complications, we hypothesized that the beneficial effects mediated by vascular GPER activation, in response to aldosterone, are decreased in diabetes. Mesenteric resistance arteries from female, 14–16 weeks-old, control and diabetic (db/db) mice were used. Phenylephrine (PhE)-induced contractions were greater in arteries from db/db vs. control mice. Aldosterone (10 nM) increased maximal contractile responses to PhE in arteries from control mice, an effect elicited via activation of GPER. Although aldosterone did not increase PhE responses in arteries from db/db mice, blockade of GPER, and MR decreased PhE-induced contractile responses in db/db mesenteric arteries. Aldosterone also reduced the potency of acetylcholine (ACh)-induced relaxation in arteries from both control and db/db mice via MR-dependent mechanisms. GPER antagonism further decreased ACh-induced relaxation in the control group, but did not affect ACh responses in the diabetic group. Aldosterone increased extracellular signal-regulated kinase 1/2 phosphorylation in arteries from control and db/db mice by a GPER-dependent mechanism. GPER, but not MR, gene, and protein expression, determined by RT-PCR and immunoblotting/immunofluorescence assays, respectively, were increased in arteries from db/db mice vs. control arteries. These findings indicate that aldosterone activates both vascular MR and GPER and that the beneficial effects of GPER activation are decreased in arteries from diabetic animals. Our results further elucidate the mechanisms by which aldosterone influences vascular function and contributes to vascular dysfunction in diabetes. Financial

  16. An evolutionary comparison of leucine-rich repeat containing G protein-coupled receptors reveals a novel LGR subtype.

    PubMed

    Van Hiel, Matthias B; Vandersmissen, Hans Peter; Van Loy, Tom; Vanden Broeck, Jozef

    2012-03-01

    Leucine-rich repeat containing G protein-coupled receptors or LGRs are receptors with important functions in development and reproduction. Belonging to this evolutionarily conserved group of receptors are the well-studied glycoprotein hormone receptors and relaxin receptors in mammals, as well as the bursicon receptor, which triggers cuticle hardening and tanning in freshly enclosed insects. In this study, the numerous LGR sequences in different animal phyla are analyzed and compared. Based on these data a phylogenetic tree was generated. This information sheds new light on structural and evolutionary aspects regarding this receptor group. Apart from vertebrates and insects, LGRs are also present in early chordates (Urochordata, Cephalochordata and Hyperoartia) and other arthropods (Arachnida and Branchiopoda) as well as in Mollusca, Echinodermata, Hemichordata, Nematoda, and even in ancient animal life forms, such as Cnidaria and Placozoa. Three distinct types of LGR exist, distinguishable by their number of leucine-rich repeats (LRRs), their type-specific hinge region and the presence or absence of an LDLa motif. Type C LGRs containing only one LDLa (C1 subtype) appear to be present in nearly all animal phyla. We here describe a second subtype, C2, containing multiple LDLa motifs, which was discovered in echinoderms, mollusks and in one insect species (Pediculus humanis corporis). In addition, eight putative LGRs can be predicted from the genome data of the placozoan species Trichoplax adhaerens. They may represent an ancient form of the LGRs, however, more genomic data will be required to confirm this hypothesis. PMID:22100731

  17. Induction of RAGE Shedding by Activation of G Protein-Coupled Receptors

    PubMed Central

    Metz, Verena V.; Kojro, Elzbieta; Rat, Dorothea; Postina, Rolf

    2012-01-01

    The multiligand Receptor for Advanced Glycation End products (RAGE) is involved in various pathophysiological processes, including diabetic inflammatory conditions and Alzheimes disease. Full-length RAGE, a cell surface-located type I membrane protein, can proteolytically be converted by metalloproteinases ADAM10 and MMP9 into a soluble RAGE form. Moreover, administration of recombinant soluble RAGE suppresses activation of cell surface-located RAGE by trapping RAGE ligands. Therefore stimulation of RAGE shedding might have a therapeutic value regarding inflammatory diseases. We aimed to investigate whether RAGE shedding is inducible via ligand-induced activation of G protein-coupled receptors (GPCRs). We chose three different GPCRs coupled to distinct signaling cascades: the V2 vasopressin receptor (V2R) activating adenylyl cyclase, the oxytocin receptor (OTR) linked to phospholipase Cβ, and the PACAP receptor (subtype PAC1) coupled to adenylyl cyclase, phospholipase Cβ, calcium signaling and MAP kinases. We generated HEK cell lines stably coexpressing an individual GPCR and full-length RAGE and then investigated GPCR ligand-induced activation of RAGE shedding. We found metalloproteinase-mediated RAGE shedding on the cell surface to be inducible via ligand-specific activation of all analyzed GPCRs. By using specific inhibitors we have identified Ca2+ signaling, PKCα/PKCβI, CaMKII, PI3 kinases and MAP kinases to be involved in PAC1 receptor-induced RAGE shedding. We detected an induction of calcium signaling in all our cell lines coexpressing RAGE and different GPCRs after agonist treatment. However, we did not disclose a contribution of adenylyl cyclase in RAGE shedding induction. Furthermore, by using a selective metalloproteinase inhibitor and siRNA-mediated knock-down approaches, we show that ADAM10 and/or MMP9 are playing important roles in constitutive and PACAP-induced RAGE shedding. We also found that treatment of mice with PACAP increases the amount of

  18. A Broadly Conserved G-Protein-Coupled Receptor Kinase Phosphorylation Mechanism Controls Drosophila Smoothened Activity

    PubMed Central

    Maier, Dominic; Cheng, Shuofei; Faubert, Denis; Hipfner, David R.

    2014-01-01

    Hedgehog (Hh) signaling is essential for normal growth, patterning, and homeostasis of many tissues in diverse organisms, and is misregulated in a variety of diseases including cancer. Cytoplasmic Hedgehog signaling is activated by multisite phosphorylation of the seven-pass transmembrane protein Smoothened (Smo) in its cytoplasmic C-terminus. Aside from a short membrane-proximal stretch, the sequence of the C-terminus is highly divergent in different phyla, and the evidence suggests that the precise mechanism of Smo activation and transduction of the signal to downstream effectors also differs. To clarify the conserved role of G-protein-coupled receptor kinases (GRKs) in Smo regulation, we mapped four clusters of phosphorylation sites in the membrane-proximal C-terminus of Drosophila Smo that are phosphorylated by Gprk2, one of the two fly GRKs. Phosphorylation at these sites enhances Smo dimerization and increases but is not essential for Smo activity. Three of these clusters overlap with regulatory phosphorylation sites in mouse Smo and are highly conserved throughout the bilaterian lineages, suggesting that they serve a common function. Consistent with this, we find that a C-terminally truncated form of Drosophila Smo consisting of just the highly conserved core, including Gprk2 regulatory sites, can recruit the downstream effector Costal-2 and activate target gene expression, in a Gprk2-dependent manner. These results indicate that GRK phosphorylation in the membrane proximal C-terminus is an evolutionarily ancient mechanism of Smo regulation, and point to a higher degree of similarity in the regulation and signaling mechanisms of bilaterian Smo proteins than has previously been recognized. PMID:25009998

  19. G protein-coupled estrogen receptor 1-mediated effects in the rat myometrium.

    PubMed

    Tica, Andrei A; Dun, Erica C; Tica, Oana S; Gao, Xin; Arterburn, Jeffrey B; Brailoiu, G Cristina; Oprea, Tudor I; Brailoiu, Eugen

    2011-11-01

    G protein-coupled estrogen receptor 1 (GPER), also named GPR30, has been previously identified in the female reproductive system. In this study, GPER expression was found in the female rat myometrium by reverse transcriptase-polymerase chain reaction and immunocytochemistry. Using GPER-selective ligands, we assessed the effects of the GPER activation on resting membrane potential and cytosolic Ca(2+) concentration ([Ca(2+)](i)) in rat myometrial cells, as well as on contractility of rat uterine strips. G-1, a specific GPER agonist, induced a concentration-dependent depolarization and increase in [Ca(2+)](i) in myometrial cells. The depolarization was abolished in Na(+)-free saline. G-1-induced [Ca(2+)](i) increase was markedly decreased by nifedipine, a L-type Ca(2+) channel blocker, by Ca(2+)-free or Na(+)-free saline. Intracellular administration of G-1 produced a faster and transitory increase in [Ca(2+)](i), with a higher amplitude than that induced by extracellular application, supporting an intracellular localization of the functional GPER in myometrial cells. Depletion of internal Ca(2+) stores with thapsigargin produced a robust store-activated Ca(2+) entry; the Ca(2+) response to G-1 was similar to the constitutive Ca(2+) entry and did not seem to involve store-operated Ca(2+) entry. In rat uterine strips, administration of G-1 increased the frequency and amplitude of contractions and the area under the contractility curve. The effects of G-1 on membrane potential, [Ca(2+)](i), and uterine contractility were prevented by pretreatment with G-15, a GPER antagonist, further supporting the involvement of GPER in these responses. Taken together, our results indicate that GPER is expressed and functional in rat myometrium. GPER activation produces depolarization, elevates [Ca(2+)](i) and increases contractility in myometrial cells. PMID:21865584

  20. G protein-coupled estrogen receptor (GPER) regulates mammary tumorigenesis and metastasis

    PubMed Central

    Marjon, Nicole A.; Hu, Chelin

    2014-01-01

    The role of 17β-estradiol (E2) in breast cancer development and tumor growth has traditionally been attributed exclusively to the activation of ERα. Although targeted inhibition of ERα is a successful approach for patients with ERα+ breast cancer, many patients fail to respond or become resistant to anti-estrogen therapy. The discovery of the G protein-coupled estrogen receptor (GPER1) suggested an additional mechanism through which E2 could exert its effects in breast cancer. Studies have demonstrated clinical correlations between GPER expression in human breast tumor specimens and increased tumor size, distant metastasis, and recurrence, as well as established a proliferative role for GPER in vitro; however, direct in vivo evidence has been lacking. To this end, a GPER null mutation [GPER knockout (KO)] was introduced, through interbreeding, into a widely used transgenic mouse model of mammary tumorigenesis [MMTV-PyMT (PyMT)]. Early tumor development, assessed by the extent of hyperplasia and proliferation, was not different between GPER wild-type/PyMT (WT/PyMT) and those mice harboring the GPER null mutation (KO/PyMT). However, by 12-13 weeks of age, tumors from KO/PyMT mice were smaller with decreased proliferation compared to those from WT/PyMT mice. Furthermore, tumors from the KO/PyMT mice were of histologically lower grade compared to tumors from their WT counterparts, suggesting less aggressive tumors in the KO/PyMT mice. Finally, KO/PyMT mice displayed dramatically fewer lung metastases compared to WT/PyMT mice. Combined, these data provide the first in vivo evidence that GPER plays a critical role in breast tumor growth and distant metastasis. PMID:25030371

  1. Bradycardic effects mediated by activation of G protein-coupled estrogen receptor in rat nucleus ambiguus.

    PubMed

    Brailoiu, G Cristina; Arterburn, Jeffrey B; Oprea, Tudor I; Chitravanshi, Vineet C; Brailoiu, Eugen

    2013-03-01

    The G protein-coupled estrogen receptor (GPER) has been identified in several brain regions, including cholinergic neurons of the nucleus ambiguus, which are critical for parasympathetic cardiac regulation. Using calcium imaging and electrophysiological techniques, microinjection into the nucleus ambiguus and blood pressure measurement, we examined the in vitro and in vivo effects of GPER activation in nucleus ambiguus neurons. A GPER selective agonist, G-1, produced a sustained increase in cytosolic Ca(2+) concentration in a concentration-dependent manner in retrogradely labelled cardiac vagal neurons of nucleus ambiguus. The increase in cytosolic Ca(2+) produced by G-1 was abolished by pretreatment with G36, a GPER antagonist. G-1 depolarized cultured cardiac vagal neurons of the nucleus ambiguus. The excitatory effect of G-1 was also identified by whole-cell visual patch-clamp recordings in nucleus ambiguus neurons, in medullary slices. To validate the physiological relevance of our in vitro studies, we carried out in vivo experiments. Microinjection of G-1 into the nucleus ambiguus elicited a decrease in heart rate; the effect was blocked by prior microinjection of G36. Systemic injection of G-1, in addition to a previously reported decrease in blood pressure, also reduced the heart rate. The G-1-induced bradycardia was prevented by systemic injection of atropine, a muscarinic antagonist, or by bilateral microinjection of G36 into the nucleus ambiguus. Our results indicate that GPER-mediated bradycardia occurs via activation of cardiac parasympathetic neurons of the nucleus ambiguus and support the involvement of the GPER in the modulation of cardiac vagal tone. PMID:23104934

  2. G-protein coupled receptor-associated sorting protein 1 (GASP-1), a ubiquitous tumor marker.

    PubMed

    Zheng, Xiaoyi; Chang, Frank; Zhang, Xinmin; Rothman, Vicki L; Tuszynski, George P

    2012-08-01

    Using an innovative "2-D high performance liquid electrophoresis" (2-D HPLE) technology we identified that a specific fragment of G-protein coupled receptor-associated sorting protein 1 (GASP-1) was present in the sera of breast cancer patients and was over-expressed in early and late stage breast tumors (Tuszynski, G.P. et al., 2011). In this study we further investigated the significance of GASP-1 as a tumor marker by investigating the expression GASP-1 in different kinds of tumors as well as in the sera of patients with various cancers. Over expression of GASP-1 was detected in brain, pancreatic, and breast cancers as compared to their respective normal tissues as assessed by immunohistochemical staining of tissue arrays using a "peptide specific" GASP-1 antibody. We found that across these cancers, GASP-1 was expressed approximately 10 fold more in the cancer as compared to normal tissue. The increase in GASP-1 expression was also seen in hyperplastic and inflammatory lesions of breast and pancreatic cancers as compared to normal tissue. GASP-1 was primarily expressed in the tumor epithelium of the epithelial-derived cancers and in the transformed glial cells of the brain tumors. Using a sensitive "competitive ELISA" for GASP-1, we found that sera from patients with brain, liver, breast and lung cancers expressed 4-7 fold more GASP-1 peptide than sera from normal healthy individuals. These studies identify GASP-1 as a potential new serum and tumor biomarker for several cancers and suggest that GASP-1 may be a novel target for development of cancer therapeutics. PMID:22483848

  3. DHA, G-protein coupled receptors and melanoma: Is GPR40 a potential therapeutic target?

    PubMed Central

    Nehra, Deepika; Pan, Amy H.; Le, Hau D.; Fallon, Erica M.; Carlson, Sarah J.; Kalish, Brian T.; Puder, Mark

    2014-01-01

    Purpose To determine the effect of docosahexaenoic acid (DHA) on the growth of human melanoma in vitro and in vivo and to better understand the potential role of the G-protein coupled receptors in mediating this effect. Materials and Methods For in vitro studies, human melanoma and control fibroblast cells were treated with DHA and TAK-875 (selective GPR40 agonist) and a cell viability assay was performed to determine cell counts. A murine subcutaneous xenograft model of human melanoma was used to test the effect of dietary treatment with an omega-3 fatty acid (FA) rich diet compared to an omega-6 FA rich diet on the growth of human melanoma in vivo. A similar animal model was used to test the effect of oral TAK-875 on the growth of established melanoma tumors in vivo. Results DHA has an inhibitory effect on the growth of human melanoma both in vitro and in vivo. Tumors from animals on the omega-3 FA rich diet were 69% smaller in weight (P=0.005) and 76% smaller in volume compared to tumors from animals on the omega-6 FA rich diet. TAK-875 has an inhibitory effect on the growth of human melanoma both in vitro and in vivo. Tumors from animals treated with TAK-875 were 46% smaller in weight (P=0.07), 62% smaller in volume (P=0.03) and grew 77% slower (P=0.04) compared to the placebo group. Conclusion DHA and TAK-875 have a profound and selective inhibitory effect on the growth of human melanoma both in vitro and in vivo. PMID:24576779

  4. [Role of orphan G protein-coupled receptor 55 in diabetic gastroparesis in mice].

    PubMed

    Lin, Xu-Hong; Wei, Dan-Dan; Wang, Hui-Chao; Wang, Bin; Bai, Chun-Yang; Wang, Ya-Qiang; Li, Guo-En; Li, Hui-Ping; Ren, Xue-Qun

    2014-06-25

    The aim of the present study was to explore the role of orphan G protein-coupled receptor 55 (GPR55) in diabetic gastroparesis (DG). Streptozotocin (STZ) was used to mimic the DG model, and the body weight and blood glucose concentration were tested 4 weeks after STZ injection (i.p.). Electrogastrogram and phenolsulfonphthalein test were used for detecting gastric emptying. Motilin (MTL), gastrin (GAS), vasoactive intestinal peptide (VIP), and somatostatin (SS) levels in plasma were determined using radioimmunology. Real-time PCR and Western blot were applied to identify the expression of GPR55 in gastric tissue, and immunohistochemistry was used to detect the distribution. The effect of lysophosphatidylinositol (LPI), an agonist of GPR55, was observed. STZ mice showed increased blood glucose concentration, lower body weight, decreased amplitude of slow wave, and delayed gastric emptying. LPI antagonized these effects of STZ. Compared to the control group, STZ caused significant decreases of MTL and GAS levels (P < 0.01), as well as increases of SS and VIP levels (P < 0.01). The changes of these hormones induced by STZ were counteracted when using LPI. GPR55 located in mice stomach, and it was up-regulated in DG. Although LPI showed no effects on the distribution and expression of GPR55 in normal mice, it could inhibit STZ-induced GPR55 up-regulation. These results suggest GPR55 is involved in the regulation of gastric movement of DG, and may serve as a new target of DG treatment. LPI, an agonist of GPR55, can protect against STZ-induced DG, and the mechanism may involve the change of GPR55 expression and modification of gastrointestinal movement regulating hormones. PMID:24964851

  5. Fulfilling the Promise of "Biased" G Protein-Coupled Receptor Agonism.

    PubMed

    Luttrell, Louis M; Maudsley, Stuart; Bohn, Laura M

    2015-09-01

    The fact that over 30% of current pharmaceuticals target heptahelical G protein-coupled receptors (GPCRs) attests to their tractability as drug targets. Although GPCR drug development has traditionally focused on conventional agonists and antagonists, the growing appreciation that GPCRs mediate physiologically relevant effects via both G protein and non-G protein effectors has prompted the search for ligands that can "bias" downstream signaling in favor of one or the other process. Biased ligands are novel entities with distinct signaling profiles dictated by ligand structure, and the potential prospect of biased ligands as better drugs has been pleonastically proclaimed. Indeed, preclinical proof-of-concept studies have demonstrated that both G protein and arrestin pathway-selective ligands can promote beneficial effects in vivo while simultaneously antagonizing deleterious ones. But along with opportunity comes added complexity and new challenges for drug discovery. If ligands can be biased, then ligand classification becomes assay dependent, and more nuanced screening approaches are needed to capture ligand efficacy across several dimensions of signaling. Moreover, because the signaling repertoire of biased ligands differs from that of the native agonist, unpredicted responses may arise in vivo as these unbalanced signals propagate. For any given GPCR target, establishing a framework relating in vitro efficacy to in vivo biologic response is crucial to biased drug discovery. This review discusses approaches to describing ligand efficacy in vitro, translating ligand bias into biologic response, and developing a systems-level understanding of biased agonism in vivo, with the overall goal of overcoming current barriers to developing biased GPCR therapeutics. PMID:26134495

  6. Chemogenomics knowledgebased polypharmacology analyses of drug abuse related G-protein coupled receptors and their ligands

    PubMed Central

    Xie, Xiang-Qun; Wang, Lirong; Liu, Haibin; Ouyang, Qin; Fang, Cheng; Su, Weiwei

    2013-01-01

    Drug abuse (DA) and addiction is a complex illness, broadly viewed as a neurobiological impairment with genetic and environmental factors that influence its development and manifestation. Abused substances can disrupt the activity of neurons by interacting with many proteins, particularly G-protein coupled receptors (GPCRs). A few medicines that target the central nervous system (CNS) can also modulate DA related proteins, such as GPCRs, which can act in conjunction with the controlled psychoactive substance(s) and increase side effects. To fully explore the molecular interaction networks that underlie DA and to effectively modulate the GPCRs in these networks with small molecules for DA treatment, we built a drug-abuse domain specific chemogenomics knowledgebase (DA-KB) to centralize the reported chemogenomics research information related to DA and CNS disorders in an effort to benefit researchers across a broad range of disciplines. We then focus on the analysis of GPCRs as many of them are closely related with DA. Their distribution in human tissues was also analyzed for the study of side effects caused by abused drugs. We further implement our computational algorithms/tools to explore DA targets, DA mechanisms and pathways involved in polydrug addiction and to explore polypharmacological effects of the GPCR ligands. Finally, the polypharmacology effects of GPCRs-targeted medicines for DA treatment were investigated and such effects can be exploited for the development of drugs with polypharmacophore for DA intervention. The chemogenomics database and the analysis tools will help us better understand the mechanism of drugs abuse and facilitate to design new medications for system pharmacotherapy of DA. PMID:24567719

  7. New insights into structural determinants for prostanoid thromboxane A2 receptor- and prostacyclin receptor-G protein coupling.

    PubMed

    Chakraborty, Raja; Pydi, Sai Prasad; Gleim, Scott; Bhullar, Rajinder Pal; Hwa, John; Dakshinamurti, Shyamala; Chelikani, Prashen

    2013-01-01

    G protein-coupled receptors (GPCRs) interact with heterotrimeric G proteins and initiate a wide variety of signaling pathways. The molecular nature of GPCR-G protein interactions in the clinically important thromboxane A2 (TxA(2)) receptor (TP) and prostacyclin (PGI(2)) receptor (IP) is poorly understood. The TP activates its cognate G protein (Gαq) in response to the binding of thromboxane, while the IP signals through Gαs in response to the binding of prostacyclin. Here, we utilized a combination of approaches consisting of chimeric receptors, molecular modeling, and site-directed mutagenesis to precisely study the specificity of G protein coupling. Multiple chimeric receptors were constructed by replacing the TP intracellular loops (ICLs) with the ICL regions of the IP. Our results demonstrate that both the sequences and lengths of ICL2 and ICL3 influenced G protein specificity. Importantly, we identified a precise ICL region on the prostanoid receptors TP and IP that can switch G protein specificities. The validities of the chimeric technique and the derived molecular model were confirmed by introducing clinically relevant naturally occurring mutations (R60L in the TP and R212C in the IP). Our findings provide new molecular insights into prostanoid receptor-G protein interactions, which are of general significance for understanding the structural basis of G protein activation by GPCRs in basic health and cardiovascular disease. PMID:23109431

  8. New Insights into Structural Determinants for Prostanoid Thromboxane A2 Receptor- and Prostacyclin Receptor-G Protein Coupling

    PubMed Central

    Chakraborty, Raja; Pydi, Sai Prasad; Gleim, Scott; Bhullar, Rajinder Pal; Hwa, John; Dakshinamurti, Shyamala

    2013-01-01

    G protein-coupled receptors (GPCRs) interact with heterotrimeric G proteins and initiate a wide variety of signaling pathways. The molecular nature of GPCR-G protein interactions in the clinically important thromboxane A2 (TxA2) receptor (TP) and prostacyclin (PGI2) receptor (IP) is poorly understood. The TP activates its cognate G protein (Gαq) in response to the binding of thromboxane, while the IP signals through Gαs in response to the binding of prostacyclin. Here, we utilized a combination of approaches consisting of chimeric receptors, molecular modeling, and site-directed mutagenesis to precisely study the specificity of G protein coupling. Multiple chimeric receptors were constructed by replacing the TP intracellular loops (ICLs) with the ICL regions of the IP. Our results demonstrate that both the sequences and lengths of ICL2 and ICL3 influenced G protein specificity. Importantly, we identified a precise ICL region on the prostanoid receptors TP and IP that can switch G protein specificities. The validities of the chimeric technique and the derived molecular model were confirmed by introducing clinically relevant naturally occurring mutations (R60L in the TP and R212C in the IP). Our findings provide new molecular insights into prostanoid receptor-G protein interactions, which are of general significance for understanding the structural basis of G protein activation by GPCRs in basic health and cardiovascular disease. PMID:23109431

  9. Antibody epitopes on g protein-coupled receptors mapped with genetically encoded photoactivatable cross-linkers.

    PubMed

    Ray-Saha, Sarmistha; Huber, Thomas; Sakmar, Thomas P

    2014-03-01

    We developed a strategy for creating epitope maps of monoclonal antibodies (mAbs) that bind to G protein-coupled receptors (GPCRs) containing photo-cross-linkers. Using human CXC chemokine receptor 4 (CXCR4) as a model system, we genetically incorporated the photolabile unnatural amino acid p-azido-l-phenylalanine (azF) at various positions within extracellular loop 2 (EC2). We then mapped the interactions of the azF-CXCR4 variants with mAb 12G5 using targeted loss-of-function studies and photo-cross-linking in whole cells in a microplate-based format. We used a novel variation of a whole cell enzyme-linked immunosorbent assay to quantitate cross-linking efficiency. 12G5 cross-linked primarily to residues 184, 178, and 189 in EC2 of CXCR4. Mapping of the data to the crystal structure of CXCR4 showed a distinct mAb epitope footprint with the photo-cross-linked residues clustered around the loss-of-function sites. We also used the targeted photo-cross-linking approach to study the interaction of human CC chemokine receptor 5 (CCR5) with PRO 140, a humanized mAb that inhibits human immunodeficiency virus-1 cellular entry, and 2D7. The mAbs produced distinct cross-linking patterns on EC2 of CCR5. PRO 140 cross-linked primarily to residues 174 and 175 at the amino-terminal end of EC2, and 2D7 cross-linked mainly to residues 170, 176, and 184. These results were mapped to the recent crystal structure of CCR5 in complex with maraviroc, showing cross-linked residues at the tip of the maraviroc binding crevice formed by EC2. As a strategy for mapping mAb epitopes on GPCRs, our targeted photo-cross-linking method is complementary to loss-of-function mutagenesis results and should be especially useful for studying mAbs with discontinuous epitopes. PMID:24490954

  10. Hematopoietic G-protein-coupled receptor kinase 2 deficiency decreases atherosclerotic lesion formation in LDL receptor-knockout mice

    PubMed Central

    Otten, Jeroen J. T.; de Jager, Saskia C. A.; Kavelaars, Annemieke; Seijkens, Tom; Bot, Ilze; Wijnands, Erwin; Beckers, Linda; Westra, Marijke M.; Bot, Martine; Busch, Matthias; Bermudez, Beatriz; van Berkel, Theo J. C.; Heijnen, Cobi J.; Biessen, Erik A. L.

    2013-01-01

    Leukocyte chemotaxis is deemed instrumental in initiation and progression of atherosclerosis. It is mediated by G-protein-coupled receptors (e.g., CCR2 and CCR5), the activity of which is controlled by G-protein-coupled receptor kinases (GRKs). In this study, we analyzed the effect of hematopoietic deficiency of a potent regulator kinase of chemotaxis (GRK2) on atherogenesis. LDL receptor-deficient (LDLr−/−) mice with heterozygous hematopoietic GRK2 deficiency, generated by bone marrow transplantation (n=15), displayed a dramatic attenuation of plaque development, with 79% reduction in necrotic core and increased macrophage content. Circulating monocytes decreased and granulocytes increased in GRK2+/− chimeras, which could be attributed to diminished granulocyte colony-forming units in bone marrow. Collectively, these data pointed to myeloid cells as major mediators of the impaired atherogenic response in GRK2+/− chimeras. LDLr−/− mice with macrophage/granulocyte-specific GRK2 deficiency (LysM-Cre GRK2flox/flox; n=8) failed to mimic the aforementioned phenotype, acquitting these cells as major responsible subsets for GRK2 deficiency-associated atheroprotection. To conclude, even partial hematopoietic GRK2 deficiency prevents atherosclerotic lesion progression beyond the fatty streak stage, identifying hematopoietic GRK2 as a potential target for intervention in atherosclerosis.—Otten, J. J. T., de Jager, S. C. A., Kavelaars, A., Seijkens, T., Bot, I., Wijnands, E., Beckers, L., Westra, M. M., Bot, M., Busch, M., Bermudez, B., van Berkel, T. J. C., Heijnen, C. J., Biessen, E. A. L. Hematopoietic G-protein-coupled receptor kinase 2 deficiency decreases atherosclerotic lesion formation in LDL receptor-knockout mice. PMID:23047899

  11. PDZ Protein Regulation of G Protein-Coupled Receptor Trafficking and Signaling Pathways.

    PubMed

    Dunn, Henry A; Ferguson, Stephen S G

    2015-10-01

    G protein-coupled receptors (GPCRs) contribute to the regulation of every aspect of human physiology and are therapeutic targets for the treatment of numerous diseases. As a consequence, understanding the myriad of mechanisms controlling GPCR signaling and trafficking is essential for the development of new pharmacological strategies for the treatment of human pathologies. Of the many GPCR-interacting proteins, postsynaptic density protein of 95 kilodaltons, disc large, zona occludens-1 (PDZ) domain-containing proteins appear most abundant and have similarly been implicated in disease mechanisms. PDZ proteins play an important role in regulating receptor and channel protein localization within synapses and tight junctions and function to scaffold intracellular signaling protein complexes. In the current study, we review the known functional interactions between PDZ domain-containing proteins and GPCRs and provide insight into the potential mechanisms of action. These PDZ domain-containing proteins include the membrane-associated guanylate-like kinases [postsynaptic density protein of 95 kilodaltons; synapse-associated protein of 97 kilodaltons; postsynaptic density protein of 93 kilodaltons; synapse-associated protein of 102 kilodaltons; discs, large homolog 5; caspase activation and recruitment domain and membrane-associated guanylate-like kinase domain-containing protein 3; membrane protein, palmitoylated 3; calcium/calmodulin-dependent serine protein kinase; membrane-associated guanylate kinase protein (MAGI)-1, MAGI-2, and MAGI-3], Na(+)/H(+) exchanger regulatory factor proteins (NHERFs) (NHERF1, NHERF2, PDZ domain-containing kidney protein 1, and PDZ domain-containing kidney protein 2), Golgi-associated PDZ proteins (Gα-binding protein interacting protein, C-terminus and CFTR-associated ligand), PDZ domain-containing guanine nucleotide exchange factors (GEFs) 1 and 2, regulator of G protein signaling (RGS)-homology-RhoGEFs (PDZ domain-containing RhoGEF and

  12. Using constitutive activity to define appropriate high-throughput screening assays for orphan g protein-coupled receptors.

    PubMed

    Ngo, Tony; Coleman, James L J; Smith, Nicola J

    2015-01-01

    Orphan G protein-coupled receptors represent an underexploited resource for drug discovery but pose a considerable challenge for assay development because their cognate G protein signaling pathways are often unknown. In this methodological chapter, we describe the use of constitutive activity, that is, the inherent ability of receptors to couple to their cognate G proteins in the absence of ligand, to inform the development of high-throughput screening assays for a particular orphan receptor. We specifically focus on a two-step process, whereby constitutive G protein coupling is first determined using yeast Gpa1/human G protein chimeras linked to growth and β-galactosidase generation. Coupling selectivity is then confirmed in mammalian cells expressing endogenous G proteins and driving accumulation of transcription factor-fused luciferase reporters specific to each of the classes of G protein. Based on these findings, high-throughput screening campaigns can be performed on the already miniaturized mammalian reporter system. PMID:25563179

  13. Overexpression of G-Protein-Coupled Receptor 40 Enhances the Mitogenic Response to Epoxyeicosatrienoic Acids

    PubMed Central

    Ma, Seong Kwon; Wang, Yinqiu; Chen, Jianchun; Zhang, Ming-Zhi; Harris, Raymond C.; Chen, Jian-Kang

    2015-01-01

    The cytochrome P450 epoxygenase-dependent arachidonic acid metabolites, epoxyeicosatrienoic acids (EETs), are potent survival factors and mitogens for renal epithelial cells, but the molecular identity in the cells that initiates the mitogenic signaling of EETs has remained elusive. We screened kidney cell lines for the expression of G-protein-coupled receptor 40 (GPR40) and found that the porcine renal tubular epithelial cell line LLCPKcl4, which has been previously demonstrated to be sensitive to the mitogenic effect of EETs, expresses higher levels of GPR40 mRNA and protein than the human embryonic kidney cell line HEK293. EETs induced only a weak mitogenic EGFR signaling and mild cell proliferation in HEK293 cells. To determine whether GPR40 expression level is what mediates the mitogenic sensitivity of cells to EETs, we created a human GPR40 (hGPR40) cDNA construct and transfected it into HEK293 cells and picked up a number of stable transfectants. We found that GPR40 overexpression in HEK293 cells indeed significantly enhanced EET-induced cell proliferation and markedly augmented EGFR phosphorylation ERK activation, which were inhibited by the EGFR tyrosine kinase inhibitor, AG1478, or the HB-EGF inhibitor, CRM197. EETs significantly enhanced release of soluble HB-EGF, a natural ligand of EGFR, into the culture medium of hGPR40-transfected HEK293 cells, compared to empty vector-transfected cells. In mouse kidneys, markedly higher level of GPR40 protein was found in the cortex and outer stripe of outer medulla compared to the inner stripe of outer medulla and inner medulla. In situ hybridization confirmed that GPR40 mRNA was localized to a subset of renal tubules in the kidney, including the cortical collecting duct. Thus, this study provides the first demonstration that upregulation of GPR40 expression enhances the mitogenic response to EETs and a relatively high expression level of GPR40 is detected in a subset of tubules including cortical collecting ducts

  14. FRPR-4 Is a G-Protein Coupled Neuropeptide Receptor That Regulates Behavioral Quiescence and Posture in Caenorhabditis elegans

    PubMed Central

    York, Neil; Lee, Kun He; Schoofs, Liliane; Raizen, David M.

    2015-01-01

    Neuropeptides signal through G-protein coupled receptors (GPCRs) to regulate a broad array of animal behaviors and physiological processes. The Caenorhabditis elegans genome encodes approximately 100 predicted neuropeptide receptor GPCRs, but in vivo roles for only a few have been identified. We describe here a role for the GPCR FRPR-4 in the regulation of behavioral quiescence and locomotive posture. FRPR-4 is activated in cell culture by several neuropeptides with an amidated isoleucine-arginine-phenylalanine (IRF) motif or an amidated valine-arginine-phenylalanine (VRF) motif at their carboxy termini, including those encoded by the gene flp-13. Loss of frpr-4 function results in a minor feeding quiescence defect after heat-induced cellular stress. Overexpression of frpr-4 induces quiescence of locomotion and feeding as well as an exaggerated body bend posture. The exaggerated body bend posture requires the gene flp-13. While frpr-4 is expressed broadly, selective overexpression of frpr-4 in the proprioceptive DVA neurons results in exaggerated body bends that require flp-13 in the ALA neuron. Our results suggest that FLP-13 and other neuropeptides signal through FRPR-4 and other receptors to regulate locomotion posture and behavioral quiescence. PMID:26571132

  15. Sigma 1 receptor modulation of G-protein-coupled receptor signaling: potentiation of opioid transduction independent from receptor binding.

    PubMed

    Kim, Felix J; Kovalyshyn, Ivanka; Burgman, Maxim; Neilan, Claire; Chien, Chih-Cheng; Pasternak, Gavril W

    2010-04-01

    sigma Ligands modulate opioid actions in vivo, with agonists diminishing morphine analgesia and antagonists enhancing the response. Using human BE(2)-C neuroblastoma cells that natively express opioid receptors and human embryonic kidney (HEK) cells transfected with a cloned mu opioid receptor, we now demonstrate a similar modulation of opioid function, as assessed by guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTP gamma S) binding, by sigma(1) receptors. sigma Ligands do not compete opioid receptor binding. Administered alone, neither sigma agonists nor antagonists significantly stimulated [(35)S]GTP gamma S binding. Yet sigma receptor selective antagonists, but not agonists, shifted the EC(50) of opioid-induced stimulation of [(35)S]GTP gamma S binding by 3- to 10-fold to the left. This enhanced potency was seen without a change in the efficacy of the opioid, as assessed by the maximal stimulation of [(35)S]GTP gamma S binding. sigma(1) Receptors physically associate with mu opioid receptors, as shown by coimmunoprecipitation studies in transfected HEK cells, implying a direct interaction between the proteins. Thus, sigma receptors modulate opioid transduction without influencing opioid receptor binding. RNA interference knockdown of sigma(1) in BE(2)-C cells also potentiated mu opioid-induced stimulation of [(35)S]GTP gamma S binding. These modulatory actions are not limited to mu and delta opioid receptors. In mouse brain membrane preparations, sigma(1)-selective antagonists also potentiated both opioid receptor and muscarinic acetylcholine receptor-mediated stimulation of [(35)S]GTP gamma S binding, suggesting a broader role for sigma receptors in modulating G-protein-coupled receptor signaling. PMID:20089882

  16. σ1 Receptor Modulation of G-Protein-Coupled Receptor Signaling: Potentiation of Opioid Transduction Independent from Receptor Binding

    PubMed Central

    Kim, Felix J.; Kovalyshyn, Ivanka; Burgman, Maxim; Neilan, Claire; Chien, Chih-Cheng

    2010-01-01

    σ Ligands modulate opioid actions in vivo, with agonists diminishing morphine analgesia and antagonists enhancing the response. Using human BE(2)-C neuroblastoma cells that natively express opioid receptors and human embryonic kidney (HEK) cells transfected with a cloned μ opioid receptor, we now demonstrate a similar modulation of opioid function, as assessed by guanosine 5′-O-(3-[35S]thio)triphosphate ([35S]GTPγS) binding, by σ1 receptors. σ Ligands do not compete opioid receptor binding. Administered alone, neither σ agonists nor antagonists significantly stimulated [35S]GTPγS binding. Yet σ receptor selective antagonists, but not agonists, shifted the EC50 of opioid-induced stimulation of [35S]GTPγS binding by 3- to 10-fold to the left. This enhanced potency was seen without a change in the efficacy of the opioid, as assessed by the maximal stimulation of [35S]GTPγS binding. σ1 Receptors physically associate with μ opioid receptors, as shown by coimmunoprecipitation studies in transfected HEK cells, implying a direct interaction between the proteins. Thus, σ receptors modulate opioid transduction without influencing opioid receptor binding. RNA interference knockdown of σ1 in BE(2)-C cells also potentiated μ opioid-induced stimulation of [35S]GTPγS binding. These modulatory actions are not limited to μ and δ opioid receptors. In mouse brain membrane preparations, σ1-selective antagonists also potentiated both opioid receptor and muscarinic acetylcholine receptor-mediated stimulation of [35S]GTPγS binding, suggesting a broader role for σ receptors in modulating G-protein-coupled receptor signaling. PMID:20089882

  17. Monocyte chemoattractant protein-1-induced CCR2B receptor desensitization mediated by the G protein-coupled receptor kinase 2

    PubMed Central

    Aragay, A. M.; Mellado, M.; Frade, J. M. R.; Martin, A. M.; Jimenez-Sainz, M. C.; Martinez-A, C.; Mayor, F.

    1998-01-01

    Monocyte chemoattractant protein 1 (MCP-1) is a member of the chemokine cytokine family, whose physiological function is mediated by binding to the CCR2 and CCR4 receptors, which are members of the G protein-coupled receptor family. MCP-1 plays a critical role in both activation and migration of leukocytes. Rapid chemokine receptor desensitization is very likely essential for accurate chemotaxis. In this report, we show that MCP-1 binding to the CCR2 receptor in Mono Mac 1 cells promotes the rapid desensitization of MCP-1-induced calcium flux responses. This desensitization correlates with the Ser/Thr phosphorylation of the receptor and with the transient translocation of the G protein-coupled receptor kinase 2 (GRK2, also called β-adrenergic kinase 1 or βARK1) to the membrane. We also demonstrate that GRK2 and the uncoupling protein β-arrestin associate with the receptor, forming a macromolecular complex shortly after MCP-1 binding. Calcium flux responses to MCP-1 in HEK293 cells expressing the CCR2B receptor were also markedly reduced upon cotransfection with GRK2 or the homologous kinase GRK3. Nevertheless, expression of the GRK2 dominant-negative mutant βARK-K220R did not affect the initial calcium response, but favored receptor response to a subsequent challenge by agonists. The modulation of the CCR2B receptor by GRK2 suggests an important role for this kinase in the regulation of monocyte and lymphocyte response to chemokines. PMID:9501202

  18. The patent situation concerning the treatment of diseases associated with autoantibodies directed against G-protein-coupled receptors.

    PubMed

    Haberland, Annekathrin; Wallukat, Gerd; Schimke, Ingolf

    2013-03-01

    Agonist-like autoantibodies against receptors of the G-protein-coupled signal cascade have been identified as the pathogenic principle for a variety of diseases, especially those of the heart and vascular system. Consequently, the elimination or neutralization of such autoantibodies is an advised goal for causal therapeutic intervention. This article provides a short, noncomplete overview about remarkable developmental strategies and technical solutions for the therapy of diseases, associated with G-protein-coupled receptor autoantibodies. According to the immunoglobulin nature of the therapeutic target, several strategies are possible, such as the use of the autoantibody epitope sequences as competitors or binding molecules for specific autoantibody-elimination by apheresis. Complete immunoglobulin elimination, as is currently being tested in autoantibody-positive cardiomyopathy patients, would be a nonspecific solution as would the use of immunosuppressant agents. The use of autoantibody-binding molecules on an aptamer basis for neutralization or elimination is a newly developed specific therapeutic option. PMID:24237028

  19. Analysis of Drug Design for a Selection of G Protein-Coupled Neuro- Receptors Using Neural Network Techniques.

    PubMed

    Agerskov, Claus; Mortensen, Rasmus M; Bohr, Henrik G

    2015-01-01

    A study is presented on how well possible drug-molecules can be predicted with respect to their function and binding to a selection of neuro-receptors by the use of artificial neural networks. The ligands investigated in this study are chosen to be corresponding to the G protein-coupled receptors µ-opioid, serotonin 2B (5-HT2B) and metabotropic glutamate D5. They are selected due to the availability of pharmacological drug-molecule binding data for these receptors. Feedback and deep belief artificial neural network architectures (NNs) were chosen to perform the task of aiding drugdesign. This is done by training on structural features, selected using a "minimum redundancy, maximum relevance"-test, and testing for successful prediction of categorized binding strength. An extensive comparison of the neural network performances was made in order to select the optimal architecture. Deep belief networks, trained with greedy learning algorithms, showed superior performance in prediction over the simple feedback NNs. The best networks obtained scores of more than 90 % accuracy in predicting the degree of binding drug molecules to the mentioned receptors and with a maximal Matthew`s coefficient of 0.925. The performance of 8 category networks (8 output classes for binding strength) obtained a prediction accuracy of above 60 %. After training the networks, tests were done on how well the systems could be used as an aid in designing candidate drug molecules. Specifically, it was shown how a selection of chemical characteristics could give the lowest observed IC50 values, meaning largest bio-effect pr. nM substance, around 0.03-0.06 nM. These ligand characteristics could be total number of atoms, their types etc. In conclusion, deep belief networks trained on drug-molecule structures were demonstrated as powerful computational tools, able to aid in drug-design in a fast and cheap fashion, compared to conventional pharmacological techniques. PMID:26463104

  20. Structure of Human G Protein-Coupled Receptor Kinase 2 in Complex with the Kinase Inhibitor Balanol

    SciTech Connect

    Tesmer, John J.G.; Tesmer, Valerie M.; Lodowski, David T.; Steinhagen, Henning; Huber, Jochen

    2010-07-19

    G protein-coupled receptor kinase 2 (GRK2) is a pharmaceutical target for the treatment of cardiovascular diseases such as congestive heart failure, myocardial infarction, and hypertension. To better understand how nanomolar inhibition and selectivity for GRK2 might be achieved, we have determined crystal structures of human GRK2 in complex with G{beta}{gamma} in the presence and absence of the AGC kinase inhibitor balanol. The selectivity of balanol among human GRKs is assessed.

  1. Integrated Approaches for Genome-wide Interrogation of the Druggable Non-olfactory G Protein-coupled Receptor Superfamily*

    PubMed Central

    Roth, Bryan L.; Kroeze, Wesley K.

    2015-01-01

    G-protein-coupled receptors (GPCRs) are frequent and fruitful targets for drug discovery and development, as well as being off-targets for the side effects of a variety of medications. Much of the druggable non-olfactory human GPCR-ome remains under-interrogated, and we present here various approaches that we and others have used to shine light into these previously dark corners of the human genome. PMID:26100629

  2. Phenotypic Regulation of the Sphingosine 1-Phosphate Receptor Miles Apart by G Protein-Coupled Receptor Kinase 2

    PubMed Central

    2016-01-01

    The evolutionarily conserved DRY motif at the end of the third helix of rhodopsin-like, class-A G protein-coupled receptors (GPCRs) is a major regulator of receptor stability, signaling activity, and β-arrestin-mediated internalization. Substitution of the DRY arginine with histidine in the human vasopressin receptor results in a loss-of-function phenotype associated with diabetes insipidus. The analogous R150H substitution of the DRY motif in zebrafish sphingosine-1 phosphate receptor 2 (S1p2) produces a mutation, miles apart m93 (milm93), that not only disrupts signaling but also impairs heart field migration. We hypothesized that constitutive S1p2 desensitization is the underlying cause of this strong zebrafish developmental defect. We observed in cell assays that the wild-type S1p2 receptor is at the cell surface whereas in distinct contrast the S1p2 R150H receptor is found in intracellular vesicles, blocking G protein but not arrestin signaling activity. Surface S1p2 R150H expression could be restored by inhibition of G protein-coupled receptor kinase 2 (GRK2). Moreover, we observed that β-arrestin 2 and GRK2 colocalize with S1p2 in developing zebrafish embryos and depletion of GRK2 in the S1p2 R150H miles apart zebrafish partially rescued cardia bifida. The ability of reduced GRK2 activity to reverse a developmental phenotype associated with constitutive desensitization supports efforts to genetically or pharmacologically target this kinase in diseases involving biased GPCR signaling. PMID:25555130

  3. Transactivation of Epidermal Growth Factor Receptor by G Protein-Coupled Receptors: Recent Progress, Challenges and Future Research

    PubMed Central

    Wang, Zhixiang

    2016-01-01

    Both G protein-coupled receptors (GPCRs) and receptor-tyrosine kinases (RTKs) regulate large signaling networks, control multiple cell functions and are implicated in many diseases including various cancers. Both of them are also the top therapeutic targets for disease treatment. The discovery of the cross-talk between GPCRs and RTKs connects these two vast signaling networks and complicates the already complicated signaling networks that regulate cell signaling and function. In this review, we focus on the transactivation of epidermal growth factor receptor (EGFR), a subfamily of RTKs, by GPCRs. Since the first report of EGFR transactivation by GPCR, significant progress has been made including the elucidation of the mechanisms underlying the transactivation. Here, we first provide a basic picture for GPCR, EGFR and EGFR transactivation by GPCR. We then discuss the progress made in the last five years and finally provided our view of the future challenge and future researches needed to overcome these challenges. PMID:26771606

  4. Structural and biophysical characterisation of G protein-coupled receptor ligand binding using resonance energy transfer and fluorescent labelling techniques.

    PubMed

    Ward, Richard J; Milligan, Graeme

    2014-01-01

    The interaction between ligands and the G protein-coupled receptors (GPCRs) to which they bind has long been the focus of intensive investigation. The signalling cascades triggered by receptor activation, due in most cases to ligand binding, are of great physiological and medical importance; indeed, GPCRs are targeted by in excess of 30% of small molecule therapeutic medicines. Attempts to identify further pharmacologically useful GPCR ligands, for receptors with known and unknown endogenous ligands, continue apace. In earlier days direct assessment of such interactions was restricted largely to the use of ligands incorporating radioactive isotope labels as this allowed detection of the ligand and monitoring its interaction with the GPCR. This use of such markers has continued with the development of ligands labelled with fluorophores and their application to the study of receptor-ligand interactions using both light microscopy and resonance energy transfer techniques, including homogenous time-resolved fluorescence resonance energy transfer. Details of ligand-receptor interactions via X-ray crystallography are advancing rapidly as methods suitable for routine production of substantial amounts and stabilised forms of GPCRs have been developed and there is hope that this may become as routine as the co-crystallisation of serine/threonine kinases with ligands, an approach that has facilitated widespread use of rapid structure-based ligand design. Conformational changes involved in the activation of GPCRs, widely predicted by biochemical and biophysical means, have inspired the development of intramolecular FRET-based sensor forms of GPCRs designed to investigate the events following ligand binding and resulting in a signal propagation across the cell membrane. Finally, a number of techniques are emerging in which ligand-GPCR binding can be studied in ways that, whilst indirect, are able to monitor its results in an unbiased and integrated manner. This article is part

  5. A novel human gene encoding a G-protein-coupled receptor (GPR15) is located on chromosome 3

    SciTech Connect

    Heiber, M.; Marchese, A.; O`Dowd, B.F.

    1996-03-05

    We used sequence similarities among G-protein-coupled receptor genes to discover a novel receptor gene. Using primers based on conserved regions of the opioid-related receptors, we isolated a PCR product that was used to locate the full-length coding region of a novel human receptor gene, which we have named GPR15. A comparison of the amino acid sequence of the receptor gene, which we have named GPR15. A comparison of the amino acid sequence of the receptor encoded by GPR15 with other receptors revealed that it shared sequence identity with the angiotensin II AT1 and AT2 receptors, the interleukin 8b receptor, and the orphan receptors GPR1 and AGTL1. GPR15 was mapped to human chromosome 3q11.2-q13.1. 12 refs., 2 figs.

  6. The Adhesion G Protein-Coupled Receptor GPR56/ADGRG1 Is an Inhibitory Receptor on Human NK Cells.

    PubMed

    Chang, Gin-Wen; Hsiao, Cheng-Chih; Peng, Yen-Ming; Vieira Braga, Felipe A; Kragten, Natasja A M; Remmerswaal, Ester B M; van de Garde, Martijn D B; Straussberg, Rachel; König, Gabriele M; Kostenis, Evi; Knäuper, Vera; Meyaard, Linde; van Lier, René A W; van Gisbergen, Klaas P J M; Lin, Hsi-Hsien; Hamann, Jörg

    2016-05-24

    Natural killer (NK) cells possess potent cytotoxic mechanisms that need to be tightly controlled. Here, we explored the regulation and function of GPR56/ADGRG1, an adhesion G protein-coupled receptor implicated in developmental processes and expressed distinctively in mature NK cells. Expression of GPR56 was triggered by Hobit (a homolog of Blimp-1 in T cells) and declined upon cell activation. Through studying NK cells from polymicrogyria patients with disease-causing mutations in ADGRG1, encoding GPR56, and NK-92 cells ectopically expressing the receptor, we found that GPR56 negatively regulates immediate effector functions, including production of inflammatory cytokines and cytolytic proteins, degranulation, and target cell killing. GPR56 pursues this activity by associating with the tetraspanin CD81. We conclude that GPR56 inhibits natural cytotoxicity of human NK cells. PMID:27184850

  7. Extracellular acidification activates ovarian cancer G-protein-coupled receptor 1 and GPR4 homologs of zebra fish

    SciTech Connect

    Mochimaru, Yuta; Azuma, Morio; Oshima, Natsuki; Ichijo, Yuta; Satou, Kazuhiro; Matsuda, Kouhei; Asaoka, Yoichi; Nishina, Hiroshi; Nakakura, Takashi; Mogi, Chihiro; Sato, Koichi; Okajima, Fumikazu; Tomura, Hideaki

    2015-02-20

    Mammalian ovarian G-protein-coupled receptor 1 (OGR1) and GPR4 are identified as a proton-sensing G-protein-coupled receptor coupling to multiple intracellular signaling pathways. In the present study, we examined whether zebra fish OGR1 and GPR4 homologs (zOGR1 and zGPR4) could sense protons and activate the multiple intracellular signaling pathways and, if so, whether the similar positions of histidine residue, which is critical for sensing protons in mammalian OGR and GPR4, also play a role to sense protons and activate the multiple signaling pathways in the zebra fish receptors. We found that extracellular acidic pH stimulated CRE-, SRE-, and NFAT-promoter activities in zOGR1 overexpressed cells and stimulated CRE- and SRE- but not NFAT-promoter activities in zGPR4 overexpressed cells. The substitution of histidine residues at the 12th, 15th, 162th, and 264th positions from the N-terminal of zOGR1 with phenylalanine attenuated the proton-induced SRE-promoter activities. The mutation of the histidine residue at the 78th but not the 84th position from the N-terminal of zGPR4 to phenylalanine attenuated the proton-induced SRE-promoter activities. These results suggest that zOGR1 and zGPR4 are also proton-sensing G-protein-coupled receptors, and the receptor activation mechanisms may be similar to those of the mammalian receptors. - Highlights: • Zebra fish OGR1 and GPR4 homologs (zOGR1, zGPR4) are proton-sensing receptors. • The signaling pathways activated by zOGR1 and zGPR4 are different. • Histidine residues critical for sensing protons are conserved.

  8. Structural, signalling and regulatory properties of the group I metabotropic glutamate receptors: prototypic family C G-protein-coupled receptors.

    PubMed Central

    Hermans, E; Challiss, R A

    2001-01-01

    In 1991 a new type of G-protein-coupled receptor (GPCR) was cloned, the type 1a metabotropic glutamate (mGlu) receptor, which, despite possessing the defining seven-transmembrane topology of the GPCR superfamily, bore little resemblance to the growing number of other cloned GPCRs. Subsequent studies have shown that there are eight mammalian mGlu receptors that, together with the calcium-sensing receptor, the GABA(B) receptor (where GABA is gamma-aminobutyric acid) and a subset of pheromone, olfactory and taste receptors, make up GPCR family C. Currently available data suggest that family C GPCRs share a number of structural, biochemical and regulatory characteristics, which differ markedly from those of the other GPCR families, most notably the rhodopsin/family A GPCRs that have been most widely studied to date. This review will focus on the group I mGlu receptors (mGlu1 and mGlu5). This subgroup of receptors is widely and differentially expressed in neuronal and glial cells within the brain, and receptor activation has been implicated in the control of an array of key signalling events, including roles in the adaptative changes needed for long-term depression or potentiation of neuronal synaptic connectivity. In addition to playing critical physiological roles within the brain, the mGlu receptors are also currently the focus of considerable attention because of their potential as drug targets for the treatment of a variety of neurological and psychiatric disorders. PMID:11672421

  9. Extracellular acidification activates ovarian cancer G-protein-coupled receptor 1 and GPR4 homologs of zebra fish.

    PubMed

    Mochimaru, Yuta; Azuma, Morio; Oshima, Natsuki; Ichijo, Yuta; Satou, Kazuhiro; Matsuda, Kouhei; Asaoka, Yoichi; Nishina, Hiroshi; Nakakura, Takashi; Mogi, Chihiro; Sato, Koichi; Okajima, Fumikazu; Tomura, Hideaki

    2015-02-20

    Mammalian ovarian G-protein-coupled receptor 1 (OGR1) and GPR4 are identified as a proton-sensing G-protein-coupled receptor coupling to multiple intracellular signaling pathways. In the present study, we examined whether zebra fish OGR1 and GPR4 homologs (zOGR1 and zGPR4) could sense protons and activate the multiple intracellular signaling pathways and, if so, whether the similar positions of histidine residue, which is critical for sensing protons in mammalian OGR and GPR4, also play a role to sense protons and activate the multiple signaling pathways in the zebra fish receptors. We found that extracellular acidic pH stimulated CRE-, SRE-, and NFAT-promoter activities in zOGR1 overexpressed cells and stimulated CRE- and SRE- but not NFAT-promoter activities in zGPR4 overexpressed cells. The substitution of histidine residues at the 12th, 15th, 162th, and 264th positions from the N-terminal of zOGR1 with phenylalanine attenuated the proton-induced SRE-promoter activities. The mutation of the histidine residue at the 78th but not the 84th position from the N-terminal of zGPR4 to phenylalanine attenuated the proton-induced SRE-promoter activities. These results suggest that zOGR1 and zGPR4 are also proton-sensing G-protein-coupled receptors, and the receptor activation mechanisms may be similar to those of the mammalian receptors. PMID:25576873

  10. Beyond Standard Molecular Dynamics: Investigating the Molecular Mechanisms of G Protein-Coupled Receptors with Enhanced Molecular Dynamics Methods

    PubMed Central

    Johnston, Jennifer M.

    2014-01-01

    The majority of biological processes mediated by G Protein-Coupled Receptors (GPCRs) take place on timescales that are not conveniently accessible to standard molecular dynamics (MD) approaches, notwithstanding the current availability of specialized parallel computer architectures, and efficient simulation algorithms. Enhanced MD-based methods have started to assume an important role in the study of the rugged energy landscape of GPCRs by providing mechanistic details of complex receptor processes such as ligand recognition, activation, and oligomerization. We provide here an overview of these methods in their most recent application to the field. PMID:24158803

  11. Discovery of selective probes and antagonists for G-protein-coupled receptors FPR/FPRL1 and GPR30.

    PubMed

    Arterburn, Jeffrey B; Oprea, Tudor I; Prossnitz, Eric R; Edwards, Bruce S; Sklar, Larry A

    2009-01-01

    Recent technological advances in flow cytometry provide a versatile platform for high throughput screening of compound libraries coupled with high-content biological testing and drug discovery. The G protein-coupled receptors (GPCRs) constitute the largest class of signaling molecules in the human genome with frequent roles in disease pathogenesis, yet many examples of orphan receptors with unknown ligands remain. The complex biology and potential for drug discovery within this class provide strong incentives for chemical biology approaches seeking to develop small molecule probes to facilitate elucidation of mechanistic pathways and enable specific manipulation of the activity of individual receptors. We have initiated small molecule probe development projects targeting two distinct families of GPCRs: the formylpeptide receptors (FPR/FPRL1) and G protein-coupled estrogen receptor (GPR30). In each case the assay for compound screening involved the development of an appropriate small molecule fluorescent probe, and the flow cytometry platform provided inherently biological rich assays that enhanced the process of identification and optimization of novel antagonists. The contributions of cheminformatics analysis tools, virtual screening, and synthetic chemistry in synergy with the biomolecular screening program have yielded valuable new chemical probes with high binding affinity, selectivity for the targeted receptor, and potent antagonist activity. This review describes the discovery of novel small molecule antagonists of FPR and FPRL1, and GPR30, and the associated characterization process involving secondary assays, cell based and in vivo studies to define the selectivity and activity of the resulting chemical probes. PMID:19807662

  12. The repertoire of olfactory C family G protein-coupled receptors in zebrafish: candidate chemosensory receptors for amino acids

    PubMed Central

    Alioto, Tyler S; Ngai, John

    2006-01-01

    Background Vertebrate odorant receptors comprise at least three types of G protein-coupled receptors (GPCRs): the OR, V1R, and V2R/V2R-like receptors, the latter group belonging to the C family of GPCRs. These receptor families are thought to receive chemosensory information from a wide spectrum of odorant and pheromonal cues that influence critical animal behaviors such as feeding, reproduction and other social interactions. Results Using genome database mining and other informatics approaches, we identified and characterized the repertoire of 54 intact "V2R-like" olfactory C family GPCRs in the zebrafish. Phylogenetic analysis – which also included a set of 34 C family GPCRs from fugu – places the fish olfactory receptors in three major groups, which are related to but clearly distinct from other C family GPCRs, including the calcium sensing receptor, metabotropic glutamate receptors, GABA-B receptor, T1R taste receptors, and the major group of V2R vomeronasal receptor families. Interestingly, an analysis of sequence conservation and selective pressure in the zebrafish receptors revealed the retention of a conserved sequence motif previously shown to be required for ligand binding in other amino acid receptors. Conclusion Based on our findings, we propose that the repertoire of zebrafish olfactory C family GPCRs has evolved to allow the detection and discrimination of a spectrum of amino acid and/or amino acid-based compounds, which are potent olfactory cues in fish. Furthermore, as the major groups of fish receptors and mammalian V2R receptors appear to have diverged significantly from a common ancestral gene(s), these receptors likely mediate chemosensation of different classes of chemical structures by their respective organisms. PMID:17156446

  13. Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling.

    PubMed

    Lohse, Martin J; Nuber, Susanne; Hoffmann, Carsten

    2012-04-01

    Fluorescence and bioluminescence resonance energy transfer (FRET and BRET) techniques allow the sensitive monitoring of distances between two labels at the nanometer scale. Depending on the placement of the labels, this permits the analysis of conformational changes within a single protein (for example of a receptor) or the monitoring of protein-protein interactions (for example, between receptors and G-protein subunits). Over the past decade, numerous such techniques have been developed to monitor the activation and signaling of G-protein-coupled receptors (GPCRs) in both the purified, reconstituted state and in intact cells. These techniques span the entire spectrum from ligand binding to the receptors down to intracellular second messengers. They allow the determination and the visualization of signaling processes with high temporal and spatial resolution. With these techniques, it has been demonstrated that GPCR signals may show spatial and temporal patterning. In particular, evidence has been provided for spatial compartmentalization of GPCRs and their signals in intact cells and for distinct physiological consequences of such spatial patterning. We review here the FRET and BRET technologies that have been developed for G-protein-coupled receptors and their signaling proteins (G-proteins, effectors) and the concepts that result from such experiments. PMID:22407612

  14. G protein-coupled receptor 30 is an estrogen receptor in the plasma membrane

    SciTech Connect

    Funakoshi, Takeshi; Yanai, Akie; Shinoda, Koh; Kawano, Michio M.; Mizukami, Yoichi . E-mail: mizukami@yamaguchi-u.ac.jp

    2006-08-04

    Recently, GPR30 was reported to be a novel estrogen receptor; however, its intracellular localization has remained controversial. To investigate the intracellular localization of GPR30 in vivo, we produced four kinds of polyclonal antibodies for distinct epitopes on GPR30. Immunocytochemical observations using anti-GPR30 antibody and anti-FLAG antibody show that FLAG-GPR30 localizes to the plasma membrane 24 h after transfection. Treatment with estrogen (17{beta}-estradiol or E2) causes an elevation in the intracellular Ca{sup 2+} concentration ([Ca{sup 2+}]{sub i}) within 10 s in HeLa cells expressing FLAG-GPR30. In addition, E2 induces the translocation of GPR30 from the plasma membrane to the cytoplasm by 1 h after stimulation. Immunohistochemical analysis shows that GPR30 exists on the cell surface of CA2 pyramidal neuronal cells. The images on transmission electron microscopy show that GPR30 is localized to a particular region associated with the plasma membranes of the pyramidal cells. These data indicate that GPR30, a transmembrane receptor for estrogen, is localized to the plasma membrane of CA2 pyramidal neuronal cells of the hippocampus in rat brain.

  15. Note: Magnetic targeting for enhancement of the activation efficiency of G protein-coupled receptor with a two-pair coil system

    NASA Astrophysics Data System (ADS)

    Cao, Quanliang; Han, Xiaotao; Chun, Lei; Liu, Jianfeng; Li, Liang

    2016-01-01

    Insufficient contact of drug with target cells is a primary reason for limited efficiency of G protein-coupled receptor activation. To overcome this limitation, a simple approach based on magnetic targeting for enhancing drug delivery towards the cell surfaces using magnetic nanoparticles and a two-pair coil system consisting of Helmholtz and Maxwell coils was reported. As a proof of the concept, comparative experiments on G protein-coupled receptor activation process were carried out and results show that the efficiency of G protein-coupled receptor activation can be increased about 6 times in the experiments with the aid of the proposed magnetic targeting system.

  16. Classification of G-protein coupled receptors based on support vector machine with maximum relevance minimum redundancy and genetic algorithm

    PubMed Central

    2010-01-01

    Background Because a priori knowledge about function of G protein-coupled receptors (GPCRs) can provide useful information to pharmaceutical research, the determination of their function is a quite meaningful topic in protein science. However, with the rapid increase of GPCRs sequences entering into databanks, the gap between the number of known sequence and the number of known function is widening rapidly, and it is both time-consuming and expensive to determine their function based only on experimental techniques. Therefore, it is vitally significant to develop a computational method for quick and accurate classification of GPCRs. Results In this study, a novel three-layer predictor based on support vector machine (SVM) and feature selection is developed for predicting and classifying GPCRs directly from amino acid sequence data. The maximum relevance minimum redundancy (mRMR) is applied to pre-evaluate features with discriminative information while genetic algorithm (GA) is utilized to find the optimized feature subsets. SVM is used for the construction of classification models. The overall accuracy with three-layer predictor at levels of superfamily, family and subfamily are obtained by cross-validation test on two non-redundant dataset. The results are about 0.5% to 16% higher than those of GPCR-CA and GPCRPred. Conclusion The results with high success rates indicate that the proposed predictor is a useful automated tool in predicting GPCRs. GPCR-SVMFS, a corresponding executable program for GPCRs prediction and classification, can be acquired freely on request from the authors. PMID:20550715

  17. A Hybrid Approach to Structure and Function Modeling of G Protein-Coupled Receptors.

    PubMed

    Latek, Dorota; Bajda, Marek; Filipek, Sławomir

    2016-04-25

    The recent GPCR Dock 2013 assessment of serotonin receptor 5-HT1B and 5-HT2B, and smoothened receptor SMO targets, exposed the strengths and weaknesses of the currently used computational approaches. The test cases of 5-HT1B and 5-HT2B demonstrated that both the receptor structure and the ligand binding mode can be predicted with the atomic-detail accuracy, as long as the target-template sequence similarity is relatively high. On the other hand, the observation of a low target-template sequence similarity, e.g., between SMO from the frizzled GPCR family and members of the rhodopsin family, hampers the GPCR structure prediction and ligand docking. Indeed, in GPCR Dock 2013, accurate prediction of the SMO target was still beyond the capabilities of most research groups. Another bottleneck in the current GPCR research, as demonstrated by the 5-HT2B target, is the reliable prediction of global conformational changes induced by activation of GPCRs. In this work, we report details of our protocol used during GPCR Dock 2013. Our structure prediction and ligand docking protocol was especially successful in the case of 5-HT1B and 5-HT2B-ergotamine complexes for which we provide one of the most accurate predictions. In addition to a description of the GPCR Dock 2013 results, we propose a novel hybrid computational methodology to improve GPCR structure and function prediction. This computational methodology employs two separate rankings for filtering GPCR models. The first ranking is ligand-based while the second is based on the scoring scheme of the recently published BCL method. In this work, we prove that the use of knowledge-based potentials implemented in BCL is an efficient way to cope with major bottlenecks in the GPCR structure prediction. Thereby, we also demonstrate that the knowledge-based potentials for membrane proteins were significantly improved, because of the recent surge in available experimental structures. PMID:26978043

  18. Live Cell Bioluminescence Imaging in Temporal Reaction of G Protein-Coupled Receptor for High-Throughput Screening and Analysis.

    PubMed

    Hattori, Mitsuru; Ozawa, Takeaki

    2016-01-01

    G protein-coupled receptors (GPCRs) are notable targets of basic therapeutics. Many screening methods have been established to identify novel agents for GPCR signaling in a high-throughput manner. However, information related to the temporal reaction of GPCR with specific ligands remains poor. We recently developed a bioluminescence method for the quantitative detection of the interaction between GPCR and β-arrestin using split luciferase complementation. To monitor time-course variation of the interactions, a new imaging system contributes to the accurate evaluation of drugs for GPCRs in a high-throughput manner. PMID:27424906

  19. G protein-coupled receptors: from ligand identification to drug targets. 14-16 October 2002, San Diego, CA, USA.

    PubMed

    Chantry, David

    2003-05-01

    IBC advertised their seventh annual symposium on G protein-coupled receptors (GPCRs) under the heading 'GPCRs still the best drug targets' and, at the end of the 3-day meeting which took place at the Hilton San Diego Resort (October 14-16 2002), it seemed like an appropriate description. The meeting brought together researchers from a wide range of disciplines, and from both academia and industry, to discuss recent advances in GPCR biology, pharmacology and drug design. This review will cover the main themes that emerged during the meeting, with an emphasis on those areas that impact drug discovery. PMID:14610927

  20. Matrix Metalloproteinase and G Protein Coupled Receptors: Co-conspirators in the pathogenesis of autoimmune disease and cancer

    PubMed Central

    Eck, Sarah M.; Blackburn, Jessica S.; Schmucker, Adam C.; Burrage, Peter S.; Brinckerhoff, Constance E.

    2009-01-01

    Similarities in the pathologies of autoimmune diseases and cancer have been noted for at least 30 years. Inflammatory cytokines and growth factors mediate cell proliferation, and proteinases, especially the collagenase, Matrix Metalloproteinase-1 (MMP-1), contribute to disease progression by remodeling the extracellular matrix and modulating the microenvironment. This review focuses on two cancers (melanoma and breast) and on the autoimmune disorder, rheumatoid arthritis (RA), and discusses the activated stromal cells found in these diseases. MMP-1 was originally thought to function only to degrade interstitial collagens, but recent studies have revealed novel roles for MMP-1 involving the G protein-coupled receptors: the chemokine receptor, CXCR-4, and Protease Activated Receptor-1 (PAR-1). Cooperativity between MMP-1 and CXCR4/SDF-1 signaling influences the behavior of activated fibroblasts in both RA and cancer. Further, MMP-1 is a vital part of an autocrine/paracrine MMP-1/PAR-1 signal transduction axis, a function that amplifies its potential to remodel the matrix and to modify cell behavior. Finally, new therapeutic agents directed at MMP-1 and G protein-coupled receptors are emerging. Even though these agents are more specific in their targets than past therapies, these targets are often shared between RA and cancer, underscoring fundamental similarities between autoimmune disorders and some cancers. PMID:19800199

  1. Characterization of gprK Encoding a Putative Hybrid G-Protein-Coupled Receptor in Aspergillus fumigatus.

    PubMed

    Jung, Mun-Gu; Kim, Sung Su; Yu, Jae-Hyuk; Shin, Kwang-Soo

    2016-01-01

    The G-protein-coupled receptor (GPCR) family represents the largest and most varied collection of membrane embedded proteins that are sensitized by ligand binding and interact with heterotrimeric G proteins. Despite their presumed critical roles in fungal biology, the functions of the GPCR family members in the opportunistic human pathogen Aspergillus fumigatus are largely unknown, as only two (GprC and GprD) of the 15 predicted GPCRs have been studied. Here, we characterize the gprK gene, which is predicted to encode a hybrid GPCR with both 7-transmembrane and regulator of G-protein signaling (RGS) domains. The deletion of gprK causes severely impaired asexual development coupled with reduced expression of key developmental activators. Moreover, ΔgprK results in hyper-activation of germination even in the absence of carbon source, and elevated expression and activity of the protein kinase A PkaC1. Furthermore, proliferation of the ΔgprK mutant is restricted on the medium when pentose is the sole carbon source, suggesting that GprK may function in external carbon source sensing. Notably, the absence of gprK results in reduced tolerance to oxidative stress and significantly lowered mRNA levels of the stress-response associated genes sakA and atfA. Activities of catalases and SODs are severely decreased in the ΔgprK mutant, indicating that GprK may function in proper activation of general stress response. The ΔgprK mutant is also defective in gliotoxin (GT) production and slightly less virulent toward the greater wax moth, Galleria mellonella. Transcriptomic studies reveal that a majority of transporters are down-regulated by ΔgprK. In summary, GprK is necessary for proper development, GT production, and oxidative stress response, and functions in down-regulating the PKA-germination pathway. PMID:27584150

  2. G protein-coupled receptor signalling in the cardiac nuclear membrane: evidence and possible roles in physiological and pathophysiological function

    PubMed Central

    Tadevosyan, Artavazd; Vaniotis, George; Allen, Bruce G; Hébert, Terence E; Nattel, Stanley

    2012-01-01

    G protein-coupled receptors (GPCRs) play key physiological roles in numerous tissues, including the heart, and their dysfunction influences a wide range of cardiovascular diseases. Recently, the notion of nuclear localization and action of GPCRs has become more widely accepted. Nuclear-localized receptors may regulate distinct signalling pathways, suggesting that the biological responses mediated by GPCRs are not solely initiated at the cell surface but may result from the integration of extracellular and intracellular signalling pathways. Many of the observed nuclear effects are not prevented by classical inhibitors that exclusively target cell surface receptors, presumably because of their structures, lipophilic properties, or affinity for nuclear receptors. In this topical review, we discuss specifically how angiotensin-II, endothelin, β-adrenergic and opioid receptors located on the nuclear envelope activate signalling pathways, which convert intracrine stimuli into acute responses such as generation of second messengers and direct genomic effects, and thereby participate in the development of cardiovascular disorders. PMID:22183719

  3. Red fluorescent turn-on ligands for imaging and quantifying G protein-coupled receptors in living cells.

    PubMed

    Karpenko, Iuliia A; Kreder, Rémy; Valencia, Christel; Villa, Pascal; Mendre, Christiane; Mouillac, Bernard; Mély, Yves; Hibert, Marcel; Bonnet, Dominique; Klymchenko, Andrey S

    2014-02-10

    Classical fluorescence-based approaches to monitor ligand-protein interactions are generally hampered by the background signal of unbound ligand, which must be removed by tedious washing steps. To overcome this major limitation, we report here the first red fluorescent turn-on probes for a G protein-coupled receptor (oxytocin receptor) at the surface of living cells. The peptide ligand carbetocin was conjugated to one of the best solvatochromic (fluorogenic) dyes, Nile Red, which turns on emission when reaching the hydrophobic environment of the receptor. We showed that the incorporation of hydrophilic octa(ethylene glycol) linker between the pharmacophore and the dye minimized nonspecific interaction of the probe with serum proteins and lipid membranes, thus ensuring receptor-specific turn-on response. The new ligand was successfully applied for background-free imaging and quantification of oxytocin receptors in living cells. PMID:24449564

  4. The G Protein-coupled Receptor P2Y14 Influences Insulin Release and Smooth Muscle Function in Mice*

    PubMed Central

    Meister, Jaroslawna; Le Duc, Diana; Ricken, Albert; Burkhardt, Ralph; Thiery, Joachim; Pfannkuche, Helga; Polte, Tobias; Grosse, Johannes; Schöneberg, Torsten; Schulz, Angela

    2014-01-01

    UDP sugars were identified as extracellular signaling molecules, assigning a new function to these compounds in addition to their well defined role in intracellular substrate metabolism and storage. Previously regarded as an orphan receptor, the G protein-coupled receptor P2Y14 (GPR105) was found to bind extracellular UDP and UDP sugars. Little is known about the physiological functions of this G protein-coupled receptor. To study its physiological role, we used a gene-deficient mouse strain expressing the bacterial LacZ reporter gene to monitor the physiological expression pattern of P2Y14. We found that P2Y14 is mainly expressed in pancreas and salivary glands and in subpopulations of smooth muscle cells of the gastrointestinal tract, blood vessels, lung, and uterus. Among other phenotypical differences, knock-out mice showed a significantly impaired glucose tolerance following oral and intraperitoneal glucose application. An unchanged insulin tolerance suggested altered pancreatic islet function. Transcriptome analysis of pancreatic islets showed that P2Y14 deficiency significantly changed expression of components involved in insulin secretion. Insulin secretion tests revealed a reduced insulin release from P2Y14-deficient islets, highlighting P2Y14 as a new modulator of proper insulin secretion. PMID:24993824

  5. Structural Basis for Receptor Activity-Modifying Protein-Dependent Selective Peptide Recognition by a G Protein-Coupled Receptor.

    PubMed

    Booe, Jason M; Walker, Christopher S; Barwell, James; Kuteyi, Gabriel; Simms, John; Jamaluddin, Muhammad A; Warner, Margaret L; Bill, Roslyn M; Harris, Paul W; Brimble, Margaret A; Poyner, David R; Hay, Debbie L; Pioszak, Augen A

    2015-06-18

    Association of receptor activity-modifying proteins (RAMP1-3) with the G protein-coupled receptor (GPCR) calcitonin receptor-like receptor (CLR) enables selective recognition of the peptides calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) that have diverse functions in the cardiovascular and lymphatic systems. How peptides selectively bind GPCR:RAMP complexes is unknown. We report crystal structures of CGRP analog-bound CLR:RAMP1 and AM-bound CLR:RAMP2 extracellular domain heterodimers at 2.5 and 1.8 Å resolutions, respectively. The peptides similarly occupy a shared binding site on CLR with conformations characterized by a β-turn structure near their C termini rather than the α-helical structure common to peptides that bind related GPCRs. The RAMPs augment the binding site with distinct contacts to the variable C-terminal peptide residues and elicit subtly different CLR conformations. The structures and accompanying pharmacology data reveal how a class of accessory membrane proteins modulate ligand binding of a GPCR and may inform drug development targeting CLR:RAMP complexes. PMID:25982113

  6. Structural Basis for Receptor Activity-Modifying Protein-Dependent Selective Peptide Recognition by a G Protein-Coupled Receptor

    PubMed Central

    Booe, Jason M.; Walker, Christopher S.; Barwell, James; Kuteyi, Gabriel; Simms, John; Jamaluddin, Muhammad A.; Warner, Margaret L.; Bill, Roslyn M.; Harris, Paul W.; Brimble, Margaret A.; Poyner, David R.; Hay, Debbie L.; Pioszak, Augen A.

    2015-01-01

    Summary Association of receptor activity-modifying proteins (RAMP1-3) with the G protein-coupled receptor (GPCR) calcitonin receptor-like receptor (CLR) enables selective recognition of the peptides calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) that have diverse functions in the cardiovascular and lymphatic systems. How peptides selectively bind GPCR:RAMP complexes is unknown. We report crystal structures of CGRP analog-bound CLR:RAMP1 and AM-bound CLR:RAMP2 extracellular domain heterodimers at 2.5 and 1.8 Å resolutions, respectively. The peptides similarly occupy a shared binding site on CLR with conformations characterized by a β-turn structure near their C termini rather than the α-helical structure common to peptides that bind related GPCRs. The RAMPs augment the binding site with distinct contacts to the variable C-terminal peptide residues and elicit subtly different CLR conformations. The structures and accompanying pharmacology data reveal how a class of accessory membrane proteins modulate ligand binding of a GPCR and may inform drug development targeting CLR:RAMP complexes. PMID:25982113

  7. Functional Importance of a Structurally Distinct Homodimeric Complex of the Family B G Protein-Coupled Secretin Receptor

    PubMed Central

    Gao, Fan; Harikumar, Kaleeckal G.; Dong, Maoqing; Lam, Polo C.-H.; Sexton, Patrick M.; Christopoulos, Arthur; Bordner, Andrew; Abagyan, Ruben; Miller, Laurence J.

    2009-01-01

    Oligomerization of G protein-coupled receptors has been described, but its structural basis and functional importance have been inconsistent. Here, we demonstrate that the agonist occupied wild-type secretin receptor is predominantly in a guanine nucleotide-sensitive high-affinity state and exhibits negative cooperativity, whereas the monomeric receptor is primarily in a guanine nucleotide-insensitive lower affinity state. We previously demonstrated constitutive homodimerization of this receptor through the lipid-exposed face of transmembrane (TM) IV. We now use cysteine-scanning mutagenesis of 14 TM IV residues, bioluminescence resonance energy transfer (BRET), and functional analysis to map spatial approximations and functional importance of specific residues in this complex. All, except for three helix-facing mutants, trafficked to the cell surface, where secretin was shown to bind and elicit cAMP production. Cells expressing complementary-tagged receptors were treated with cuprous phenanthroline to establish disulfide bonds between spatially approximated cysteines. BRET was measured as an indication of receptor oligomerization and was repeated after competitive disruption of oligomers with TM IV peptide to distinguish covalent from noncovalent associations. Although all constructs generated a significant BRET signal, this was disrupted by peptide in all except for single-site mutants replacing five residues with cysteine. Of these, covalent stabilization of receptor homodimers through positions of Gly243, Ile247, and Ala250 resulted in a GTP-sensitive high-affinity state of the receptor, whereas the same procedure with Ala246 and Phe240 mutants resulted in a GTP-insensitive lower affinity state. We propose the existence of a functionally important, structurally specific high-affinity dimeric state of the secretin receptor, which may be typical of family B G protein-coupled receptors. PMID:19429716

  8. LiCABEDS II. Modeling of ligand selectivity for G-protein-coupled cannabinoid receptors.

    PubMed

    Ma, Chao; Wang, Lirong; Yang, Peng; Myint, Kyaw Z; Xie, Xiang-Qun

    2013-01-28

    The cannabinoid receptor subtype 2 (CB2) is a promising therapeutic target for blood cancer, pain relief, osteoporosis, and immune system disease. The recent withdrawal of Rimonabant, which targets another closely related cannabinoid receptor (CB1), accentuates the importance of selectivity for the development of CB2 ligands in order to minimize their effects on the CB1 receptor. In our previous study, LiCABEDS (Ligand Classifier of Adaptively Boosting Ensemble Decision Stumps) was reported as a generic ligand classification algorithm for the prediction of categorical molecular properties. Here, we report extension of the application of LiCABEDS to the modeling of cannabinoid ligand selectivity with molecular fingerprints as descriptors. The performance of LiCABEDS was systematically compared with another popular classification algorithm, support vector machine (SVM), according to prediction precision and recall rate. In addition, the examination of LiCABEDS models revealed the difference in structure diversity of CB1 and CB2 selective ligands. The structure determination from data mining could be useful for the design of novel cannabinoid lead compounds. More importantly, the potential of LiCABEDS was demonstrated through successful identification of newly synthesized CB2 selective compounds. PMID:23278450

  9. Directed evolution of G protein-coupled receptors in yeast for higher functional production in eukaryotic expression hosts

    PubMed Central

    Schütz, Marco; Schöppe, Jendrik; Sedlák, Erik; Hillenbrand, Matthias; Nagy-Davidescu, Gabriela; Ehrenmann, Janosch; Klenk, Christoph; Egloff, Pascal; Kummer, Lutz; Plückthun, Andreas

    2016-01-01

    Despite recent successes, many G protein-coupled receptors (GPCRs) remained refractory to detailed molecular studies due to insufficient production yields, even in the most sophisticated eukaryotic expression systems. Here we introduce a robust method employing directed evolution of GPCRs in yeast that allows fast and efficient generation of receptor variants which show strongly increased functional production levels in eukaryotic expression hosts. Shown by evolving three different receptors in this study, the method is widely applicable, even for GPCRs which are very difficult to express. The evolved variants showed up to a 26-fold increase of functional production in insect cells compared to the wild-type receptors. Next to the increased production, the obtained variants exhibited improved biophysical properties, while functional properties remained largely unaffected. Thus, the presented method broadens the portfolio of GPCRs accessible for detailed investigations. Interestingly, the functional production of GPCRs in yeast can be further increased by induced host adaptation. PMID:26911446

  10. Directed evolution of G protein-coupled receptors in yeast for higher functional production in eukaryotic expression hosts.

    PubMed

    Schütz, Marco; Schöppe, Jendrik; Sedlák, Erik; Hillenbrand, Matthias; Nagy-Davidescu, Gabriela; Ehrenmann, Janosch; Klenk, Christoph; Egloff, Pascal; Kummer, Lutz; Plückthun, Andreas

    2016-01-01

    Despite recent successes, many G protein-coupled receptors (GPCRs) remained refractory to detailed molecular studies due to insufficient production yields, even in the most sophisticated eukaryotic expression systems. Here we introduce a robust method employing directed evolution of GPCRs in yeast that allows fast and efficient generation of receptor variants which show strongly increased functional production levels in eukaryotic expression hosts. Shown by evolving three different receptors in this study, the method is widely applicable, even for GPCRs which are very difficult to express. The evolved variants showed up to a 26-fold increase of functional production in insect cells compared to the wild-type receptors. Next to the increased production, the obtained variants exhibited improved biophysical properties, while functional properties remained largely unaffected. Thus, the presented method broadens the portfolio of GPCRs accessible for detailed investigations. Interestingly, the functional production of GPCRs in yeast can be further increased by induced host adaptation. PMID:26911446

  11. Isolation of a novel G protein-coupled receptor (GPR4) localized to chromosome 19q13.3.

    PubMed

    Mahadevan, M S; Baird, S; Bailly, J E; Shutler, G G; Sabourin, L A; Tsilfidis, C; Neville, C E; Narang, M; Korneluk, R G

    1995-11-01

    We present the cloning and sequencing of the human gene for a novel G-protein coupled receptor (GPR4), from the critical myotonic dystrophy (DM) region on chromosome 19q13.3. The homologous porcine gene was isolated and sequenced as well. The genes of both species are intronless and contain an open reading frame encoding a protein of 362 amino acids. In human, two isoforms of GPR4 are expressed, differing in their 3' untranslated region due to the use of alternate polyadenylation signals and measuring approximately 2.8 and 1.8 kb, respectively. Northern blot analysis showed that GPR4 is widely expressed, with higher levels in kidney, heart, and especially lung, where it is at least fivefold greater than in other tissues. Sequence analysis suggests that GPR4 is a peptide receptor and shares strongest homologies with purinergic receptors and receptors for angiotensin II, platelet activating factor, thrombin, and bradykinin. PMID:8595909

  12. Activation Biosensor for G Protein-Coupled Receptors: A FRET-Based m1 Muscarinic Activation Sensor That Regulates Gq

    PubMed Central

    Chang, Seungwoo; Ross, Elliott M.

    2012-01-01

    We describe the design, construction and validation of a fluorescence sensor to measure activation by agonist of the m1 muscarinic cholinergic receptor, a prototypical class I Gq-coupled receptor. The sensor uses an established general design in which Förster resonance energy transfer (FRET) from a circularly permuted CFP mutant to FlAsH, a selectively reactive fluorescein, is decreased 15–20% upon binding of a full agonist. Notably, the sensor displays essentially wild-type capacity to catalyze activation of Gαq, and the purified and reconstituted sensor displays appropriate regulation of affinity for agonists by Gq. We describe the strategies used to increase the agonist-driven change in FRET while simultaneously maintaining regulatory interactions with Gαq, in the context of the known structures of Class I G protein-coupled receptors. The approach should be generally applicable to other Class I receptors which include numerous important drug targets. PMID:23029161

  13. The G protein-coupled receptor subset of the dog genome is more similar to that in humans than rodents

    PubMed Central

    Haitina, Tatjana; Fredriksson, Robert; Foord, Steven M; Schiöth, Helgi B; Gloriam, David E

    2009-01-01

    Background The dog is an important model organism and it is considered to be closer to humans than rodents regarding metabolism and responses to drugs. The close relationship between humans and dogs over many centuries has lead to the diversity of the canine species, important genetic discoveries and an appreciation of the effects of old age in another species. The superfamily of G protein-coupled receptors (GPCRs) is one of the largest gene families in most mammals and the most exploited in terms of drug discovery. An accurate comparison of the GPCR repertoires in dog and human is valuable for the prediction of functional similarities and differences between the species. Results We searched the dog genome for non-olfactory GPCRs and obtained 353 full-length GPCR gene sequences, 18 incomplete sequences and 13 pseudogenes. We established relationships between human, dog, rat and mouse GPCRs resolving orthologous pairs and species-specific duplicates. We found that 12 dog GPCR genes are missing in humans while 24 human GPCR genes are not part of the dog GPCR repertoire. There is a higher number of orthologous pairs between dog and human that are conserved as compared with either mouse or rat. In almost all cases the differences observed between the dog and human genomes coincide with other variations in the rodent species. Several GPCR gene expansions characteristic for rodents are not found in dog. Conclusion The repertoire of dog non-olfactory GPCRs is more similar to the repertoire in humans as compared with the one in rodents. The comparison of the dog, human and rodent repertoires revealed several examples of species-specific gene duplications and deletions. This information is useful in the selection of model organisms for pharmacological experiments. PMID:19146662

  14. Trichoderma G protein-coupled receptors: functional characterisation of a cAMP receptor-like protein from Trichoderma atroviride

    PubMed Central

    2010-01-01

    Gα subunits act to regulate vegetative growth, conidiation, and the mycoparasitic response in Trichoderma atroviride. To extend our knowledge on G protein signalling, we analysed G protein-coupled receptors (GPCRs). As the genome sequence of T. atroviride is not publicly available yet, we carried out an in silico exploration of the genome database of the close relative T. reesei. Twenty genes encoding putative GPCRs distributed over eight classes and additional 35 proteins similar to the Magnaporthe grisea PTH11 receptor were identified. Subsequently, four T. atroviride GPCR-encoding genes were isolated and affliated to the cAMP receptor-like family by phylogenetic and topological analyses. All four genes showed lowest expression on glycerol and highest mRNA levels upon carbon starvation. Transcription of gpr3 and gpr4 responded to exogenously added cAMP and the shift from liquid to solid media. gpr3 mRNA levels also responded to the presence of fungal hyphae or cellulose membranes. Further characterisation of mutants bearing a gpr1-silencing construct revealed that Gpr1 is essential for vegetative growth, conidiation and conidial germination. Four genes encoding the first GPCRs described in Trichoderma were isolated and their expression characterized. At least one of these GPCRs is important for several cellular processes, supporting the fundamental role of G protein signalling in this fungus. PMID:18836726

  15. Shc adaptor proteins are key transducers of mitogenic signaling mediated by the G protein-coupled thrombin receptor.

    PubMed Central

    Chen, Y; Grall, D; Salcini, A E; Pelicci, P G; Pouysségur, J; Van Obberghen-Schilling, E

    1996-01-01

    The serine protease thrombin activates G protein signaling systems that lead to Ras activation and, in certain cells, proliferation. Whereas the steps leading to Ras activation by G protein-coupled receptors are not well defined, the mechanisms of Ras activation by receptor tyrosine kinases have recently been elucidated biochemically and genetically. The present study was undertaken to determine whether common signaling components are used by these two distinct classes of receptors. Here we report that the adaptor protein Shc, is phosphorylated on tyrosine residues following stimulation of the thrombin receptor in growth-responsive CCL39 fibroblasts. Shc phosphorylation by thrombin or the thrombin receptor agonist peptide is maximal by 15 min and persists for > or = 2 h. Following thrombin stimulation, phosphorylated Shc is recruited to Grb2 complexes. One or more pertussis toxin-insensitive proteins appear to mediate this effect, since (i) pertussis toxin pre-treatment of cells does not blunt the action of thrombin and (ii) Shc phosphorylation on tyrosine can be stimulated by the muscarinic m1 receptor. Shc phosphorylation does not appear to involve protein kinase C, since the addition of 4-beta-phorbol-12,13-dibutyrate has no effect. Rather, thrombin-induced Shc phosphorylation is enhanced in cells depleted of phorbol ester-sensitive protein kinase C isoforms. Expression of mutant Shc proteins defective in Grb2 binding displays a dominant-negative effect on thrombin-stimulated p44 MAP kinase activation, gene induction and cell growth. From these data, we conclude that Shc represents a crucial point of convergence between signaling pathways activated by receptor tyrosine kinases and G protein-coupled receptors. Images PMID:8605873

  16. Increased expression of the proton-sensing G protein-coupled receptor Gpr65 during retinal degeneration.

    PubMed

    Ail, D; Rüfenacht, V; Caprara, C; Samardzija, M; Kast, B; Grimm, C

    2015-08-20

    The retina is a metabolically highly active tissue that is sensitive to pH changes. Blinding diseases of the retina are often characterized by degeneration of photoreceptor cells altering the acid-base homeostasis of the tissue microenvironment and by an accompanying inflammatory response. GPR4, GPR65 and GPR68 are G protein-coupled receptors that aid cells to sense and survive conditions of acidic pH and inflammatory cells express Gpr65 enhancing their viability. Hence, we investigated expression and function of these proton-sensing GPRs in the normal and degenerating retina. We observed increased retinal expression of Gpr65, but not of Gpr4 and Gpr68, in mouse models of both inherited (rd10) and induced (light damage) retinal degeneration. Lack of GPR65 slightly accelerated photoreceptor degeneration in rd10 mice and resulted in a strong activation of microglia after light-injury. Since GPR65 was dispensable for normal retinal development, function and aging as evidenced by the evaluation of Gpr65(-/-) mice, our results indicate that the proton-sensing G protein-coupled receptor GPR65 may be involved in a mechanism that supports survival of photoreceptors in the degenerating retina. PMID:26117715

  17. G Protein-coupled Receptor Kinase 5 Phosphorylates Nucleophosmin and Regulates Cell Sensitivity to Polo-like Kinase 1 Inhibition*

    PubMed Central

    So, Christopher H.; Michal, Allison M.; Mashayekhi, Rouzbeh; Benovic, Jeffrey L.

    2012-01-01

    G protein-coupled receptor kinases (GRKs) phosphorylate activated G protein-coupled receptors, leading to their desensitization and endocytosis. GRKs have also been implicated in phosphorylating other classes of proteins and can localize in a variety of cellular compartments, including the nucleus. Here, we attempted to identify potential nuclear substrates for GRK5. Our studies reveal that GRK5 is able to interact with and phosphorylate nucleophosmin (NPM1) both in vitro and in intact cells. NPM1 is a nuclear protein that regulates a variety of cell functions including centrosomal duplication, cell cycle control, and apoptosis. GRK5 interaction with NPM1 is mediated by the N-terminal domain of each protein, and GRK5 primarily phosphorylates NPM1 at Ser-4, a site shared with polo-like kinase 1 (PLK1). NPM1 phosphorylation by GRK5 and PLK1 correlates with the sensitivity of cells to undergo apoptosis with cells having higher GRK5 levels being less sensitive and cells with lower GRK5 being more sensitive to PLK1 inhibitor-induced apoptosis. Taken together, our results demonstrate that GRK5 phosphorylates Ser-4 in nucleophosmin and regulates the sensitivity of cells to PLK1 inhibition. PMID:22467873

  18. Chapter Three - Ubiquitination and Protein Turnover of G-Protein-Coupled Receptor Kinases in GPCR Signaling and Cellular Regulation.

    PubMed

    Penela, P

    2016-01-01

    G-protein-coupled receptors (GPCRs) are responsible for regulating a wide variety of physiological processes, and distinct mechanisms for GPCR inactivation exist to guarantee correct receptor functionality. One of the widely used mechanisms is receptor phosphorylation by specific G-protein-coupled receptor kinases (GRKs), leading to uncoupling from G proteins (desensitization) and receptor internalization. GRKs and β-arrestins also participate in the assembly of receptor-associated multimolecular complexes, thus initiating alternative G-protein-independent signaling events. In addition, the abundant GRK2 kinase has diverse "effector" functions in cellular migration, proliferation, and metabolism homeostasis by means of the phosphorylation or interaction with non-GPCR partners. Altered expression of GRKs (particularly of GRK2 and GRK5) occurs during pathological conditions characterized by impaired GPCR signaling including inflammatory syndromes, cardiovascular disease, and tumor contexts. It is increasingly appreciated that different pathways governing GRK protein stability play a role in the modulation of kinase levels in normal and pathological conditions. Thus, enhanced GRK2 degradation by the proteasome pathway occurs upon GPCR stimulation, what allows cellular adaptation to chronic stimulation in a physiological setting. β-arrestins participate in this process by facilitating GRK2 phosphorylation by different kinases and by recruiting diverse E3 ubiquitin ligase to the receptor complex. Different proteolytic systems (ubiquitin-proteasome, calpains), chaperone activities and signaling pathways influence the stability of GRKs in different ways, thus endowing specificity to GPCR regulation as protein turnover of GRKs can be differentially affected. Therefore, modulation of protein stability of GRKs emerges as a versatile mechanism for feedback regulation of GPCR signaling and basic cellular processes. PMID:27378756

  19. Homogeneous time-resolved G protein-coupled receptor-ligand binding assay based on fluorescence cross-correlation spectroscopy.

    PubMed

    Antoine, Thomas; Ott, David; Ebell, Katharina; Hansen, Kerrin; Henry, Luc; Becker, Frank; Hannus, Stefan

    2016-06-01

    G protein-coupled receptors (GPCRs) mediate many important physiological functions and are considered as one of the most successful therapeutic target classes for a wide spectrum of diseases. Drug discovery projects generally benefit from a broad range of experimental approaches for screening compound libraries and for the characterization of binding modes of drug candidates. Owing to the difficulties in solubilizing and purifying GPCRs, assay formats have been so far mainly limited to cell-based functional assays and radioligand binding assays. In this study, we used fluorescence cross-correlation spectroscopy (FCCS) to analyze the interaction of detergent-solubilized receptors to various types of GPCR ligands: endogenous peptides, small molecules, and a large surrogate antagonist represented by a blocking monoclonal antibody. Our work demonstrates the suitability of the homogeneous and time-resolved FCCS assay format for a robust, high-throughput determination of receptor-ligand binding affinities and kinetic rate constants for various therapeutically relevant GPCRs. PMID:26954998

  20. Mapping functional group free energy patterns at protein occluded sites: nuclear receptors and G-protein coupled receptors.

    PubMed

    Lakkaraju, Sirish Kaushik; Yu, Wenbo; Raman, E Prabhu; Hershfeld, Alena V; Fang, Lei; Deshpande, Deepak A; MacKerell, Alexander D

    2015-03-23

    Occluded ligand-binding pockets (LBP) such as those found in nuclear receptors (NR) and G-protein coupled receptors (GPCR) represent a significant opportunity and challenge for computer-aided drug design. To determine free energies maps of functional groups of these LBPs, a Grand-Canonical Monte Carlo/Molecular Dynamics (GCMC/MD) strategy is combined with the Site Identification by Ligand Competitive Saturation (SILCS) methodology. SILCS-GCMC/MD is shown to map functional group affinity patterns that recapitulate locations of functional groups across diverse classes of ligands in the LBPs of the androgen (AR) and peroxisome proliferator-activated-γ (PPARγ) NRs and the metabotropic glutamate (mGluR) and β2-adreneric (β2AR) GPCRs. Inclusion of protein flexibility identifies regions of the binding pockets not accessible in crystal conformations and allows for better quantitative estimates of relative ligand binding affinities in all the proteins tested. Differences in functional group requirements of the active and inactive states of the β2AR LBP were used in virtual screening to identify high efficacy agonists targeting β2AR in Airway Smooth Muscle (ASM) cells. Seven of the 15 selected ligands were found to effect ASM relaxation representing a 46% hit rate. Hence, the method will be of use for the rational design of ligands in the context of chemical biology and the development of therapeutic agents. PMID:25692383

  1. Mapping Functional Group Free Energy Patterns at Protein Occluded Sites: Nuclear Receptors and G-Protein Coupled Receptors

    PubMed Central

    2015-01-01

    Occluded ligand-binding pockets (LBP) such as those found in nuclear receptors (NR) and G-protein coupled receptors (GPCR) represent a significant opportunity and challenge for computer-aided drug design. To determine free energies maps of functional groups of these LBPs, a Grand-Canonical Monte Carlo/Molecular Dynamics (GCMC/MD) strategy is combined with the Site Identification by Ligand Competitive Saturation (SILCS) methodology. SILCS-GCMC/MD is shown to map functional group affinity patterns that recapitulate locations of functional groups across diverse classes of ligands in the LBPs of the androgen (AR) and peroxisome proliferator-activated-γ (PPARγ) NRs and the metabotropic glutamate (mGluR) and β2-adreneric (β2AR) GPCRs. Inclusion of protein flexibility identifies regions of the binding pockets not accessible in crystal conformations and allows for better quantitative estimates of relative ligand binding affinities in all the proteins tested. Differences in functional group requirements of the active and inactive states of the β2AR LBP were used in virtual screening to identify high efficacy agonists targeting β2AR in Airway Smooth Muscle (ASM) cells. Seven of the 15 selected ligands were found to effect ASM relaxation representing a 46% hit rate. Hence, the method will be of use for the rational design of ligands in the context of chemical biology and the development of therapeutic agents. PMID:25692383

  2. Receptor-Drug Interaction: Europium Employment for Studying the Biochemical Pathway of G-Protein-Coupled Receptor Activation

    PubMed Central

    Antonio, Colabufo Nicola; Grazia, Perrone Maria; Marialessandra, Contino; Francesco, Berardi; Roberto, Perrone

    2007-01-01

    In medicinal chemistry field, the biochemical pathways, involved in 7-transmembrane domains G-protein coupled receptors (GPCRs) activation, are commonly studied to establish the activity of ligands towards GPCRs. The most studied steps are the measurement of activated GTP-α subunit and stimulated intracellular cAMP. At the present, many researchers defined agonist or antagonist activity of potential GPCRs drugs employing [35S]GTPγS or [3H]cAMP as probes. Recently, the corresponding lanthanide labels Eu-GTP and Eu-cAMP as alternative to radiochemicals have been developed because they are highly sensitive, easy to automate, easily synthesized, they display a much longer shelf-life and they can be used in multilabel experiments. In the present review, the receptor-drug interaction by europium employment for studying the biochemical pathway of GPCR activation has been focused. Moreover, comparative studies between lanthanide label probes and the corresponding radiolabeled compounds have been carried out. PMID:18350113

  3. International Union of Basic and Clinical Pharmacology. XCIII. The parathyroid hormone receptors--family B G protein-coupled receptors.

    PubMed

    Gardella, Thomas J; Vilardaga, Jean-Pierre

    2015-01-01

    The type-1 parathyroid hormone receptor (PTHR1) is a family B G protein-coupled receptor (GPCR) that mediates the actions of two polypeptide ligands; parathyroid hormone (PTH), an endocrine hormone that regulates the levels of calcium and inorganic phosphate in the blood by acting on bone and kidney, and PTH-related protein (PTHrP), a paracrine-factor that regulates cell differentiation and proliferation programs in developing bone and other tissues. The type-2 parathyroid hormone receptor (PTHR2) binds a peptide ligand, called tuberoinfundibular peptide-39 (TIP39), and while the biologic role of the PTHR2/TIP39 system is not as defined as that of the PTHR1, it likely plays a role in the central nervous system as well as in spermatogenesis. Mechanisms of action at these receptors have been explored through a variety of pharmacological and biochemical approaches, and the data obtained support a basic "two-site" mode of ligand binding now thought to be used by each of the family B peptide hormone GPCRs. Recent crystallographic studies on the family B GPCRs are providing new insights that help to further refine the specifics of the overall receptor architecture and modes of ligand docking. One intriguing pharmacological finding for the PTHR1 is that it can form surprisingly stable complexes with certain PTH/PTHrP ligand analogs and thereby mediate markedly prolonged cell signaling responses that persist even when the bulk of the complexes are found in internalized vesicles. The PTHR1 thus appears to be able to activate the Gα(s)/cAMP pathway not only from the plasma membrane but also from the endosomal domain. The cumulative findings could have an impact on efforts to develop new drug therapies for the PTH receptors. PMID:25713287

  4. The G Protein-Coupled Estrogen Receptor Agonist G-1 Inhibits Nuclear Estrogen Receptor Activity and Stimulates Novel Phosphoproteomic Signatures.

    PubMed

    Smith, L Cody; Ralston-Hooper, Kimberly J; Ferguson, P Lee; Sabo-Attwood, Tara

    2016-06-01

    Estrogen exerts cellular effects through both nuclear (ESR1 and ESR2) and membrane-bound estrogen receptors (G-protein coupled estrogen receptor, GPER); however, it is unclear if they act independently or engage in crosstalk to influence hormonal responses. To investigate each receptor's role in proliferation, transcriptional activation, and protein phosphorylation in breast cancer cells (MCF-7), we employed selective agonists for ESR1 propyl-pyrazole-triol (PPT), ESR2 diarylpropionitrile (DPN), and GPER (G-1) and also determined the impact of xenoestrogens bisphenol-A (BPA) and genistein on these effects. As anticipated, 17β-estradiol (E2), PPT, DPN, BPA, and genistein each enhanced proliferation and activation of an ERE-driven reporter gene whereas G-1 had no significant impact. However, G-1 significantly reduced E2-, PPT-, DPN-, BPA-, and genistein-induced proliferation and ERE activation at doses greater than 500 nM indicating that G-1 mediated inhibition is not ESR isotype specific. As membrane receptors initiate cascades of phosphorylation events, we performed a global phosphoproteomic analysis on cells exposed to E2 or G-1 to identify potential targets of receptor crosstalk via downstream protein phosphorylation targets. Of the 211 phosphorylated proteins identified, 40 and 13 phosphoproteins were specifically modified by E2 and G-1, respectively. Subnetwork enrichment analysis revealed several processes related to cell cycle were specifically enriched by G-1 compared with E2. Further there existed a number of newly identified proteins that were specifically phosphorylated by G-1. These phosphorylation networks highlight specific proteins that may modulate the inhibitory effects of G-1 and suggest a novel role for interference with nuclear receptor activity driven by E2 and xenoestrogens. PMID:27026707

  5. Regulatory role of C-terminus in the G-protein coupling of the metabotropic glutamate receptor 1.

    PubMed

    Tateyama, Michihiro; Kubo, Yoshihiro

    2008-11-01

    The signaling property of metabotropic glutamate receptor 1alpha (mGlu1alpha) is different from that of short-form splice variants. This could be caused by the exposure of a cluster of positively charged amino acid residues, RRKK, in the proximal C-tail which is thought to be masked by the long C-tail of mGlu1alpha. We found that the RRKK residues, when exposed, attenuate Gq coupling and decrease the basal activity and the surface expression of mGlu1, in agreement with previous results. Moreover, these residues abolish the Gi/o coupling of mGlu1, but do not affect glutamate-induced dimeric rearrangement and protein kinase A-dependent modulation of mGlu1. These results suggest that the RRKK residues do not inhibit the conformational change upon glutamate binding and protein accessibility to the intracellular loops where G-protein coupling occurs, but rather act as an inhibitory domain against G-protein coupling in a different manner depending on the type of G protein. PMID:18786167

  6. Importance of the gamma-aminobutyric acid(B) receptor C-termini for G-protein coupling.

    PubMed

    Grünewald, Sylvia; Schupp, Bettina J; Ikeda, Stephen R; Kuner, Rohini; Steigerwald, Frank; Kornau, Hans-Christian; Köhr, Georg

    2002-05-01

    Functional gamma-aminobutyric acid(B) (GABA(B)) receptors assemble from two subunits, GABA(B(1)) and GABA(B(2).) This heteromerization, which involves a C-terminal coiled-coil interaction, ensures efficient surface trafficking and agonist-dependent G-protein activation. In the present study, we took a closer look at the implications of the intracellular C termini of GABA(B(1)) and GABA(B(2)) for G-protein coupling. We generated a series of C-terminal mutants of GABA(B(1)) and GABA(B(2)) and tested them for physical interaction, surface trafficking, coupling to adenylyl cyclase, and G-protein-gated inwardly rectifying potassium channels in human embryonic kidney (HEK) 293 cells as well as on endogenous calcium channels in sympathetic neurons of the superior cervical ganglion (SCG). We found that the C-terminal interaction contributes only partly to the heterodimeric assembly of the subunits, indicating the presence of an additional interaction site. The described endoplasmic reticulum retention signal within the C terminus of GABA(B(1)) functioned only in the context of specific amino acids, which constitute part of the GABA(B(1)) coiled-coil sequence. This finding may provide a link between the retention signal and its shielding by the coiled coil of GABA(B(2).) In HEK293 cells, we observed that the two well-known GABA(B) receptor antagonists [S-(R*,R*)]-[3-[[1-(3,4-dichlorophenyl)ethyl]amino]-2-hydroxypropyl](cyclohexylmethyl) phosphinic acid (CGP54626) and (+)-(2S)-5,5-dimethyl-2-morpholineacetic acid (SCH50911) CGP54626 and SCH50911 function as inverse agonists. The C termini of GABA(B(1)) and GABA(B(2)) strongly influenced agonist-independent G-protein coupling, although they were not necessary for agonist-dependent G-protein coupling. The C-terminal GABA(B) receptor mutants described here demonstrate that the active receptor conformation is stabilized by the coiled-coil interaction. Thus, the C-terminal conformation of the GABA(B) receptor may determine its

  7. Arginine (CGC) codon targeting in the human prostacyclin receptor gene (PTGIR) and G-protein coupled receptors (GPCR)

    PubMed Central

    Stitham, Jeremiah; Arehart, Eric J.; Gleim, Scott; Douville, Karen L.; MacKenzie, Todd; Hwa, John

    2007-01-01

    The human prostacyclin receptor (hIP) has recently been recognized as an important seven transmembrane G-protein coupled receptor that plays critical roles in a theroprevention and cardioprotection. To date, four non-synonymous genetic variants have been identified, two of which occur at the same Arg amino acid position (R212H, R212C). This observation instigated further genetic screening for prostacyclin receptor variants on 1,455 human genomic samples. A total of 31 distinct genetic variants were detected, with 6 (19%) involving Arg residues. Distinct differences in location and frequencies of genetic variants were noted between Caucasian, Asian, Hispanic and African Americans, with the most changes noted in the Asian cohort._From the sequencing results, three Arg-targeted changes at the same 212 position within the third cytoplasmic loop of the human prostacyclin (hIP) receptor were detected: 1) R212C (CGC→TGC), 2) R212H (CGC→CAC), and 3) R212R (CGC→CGT). Three additional Arg codon variants (all exhibiting the same CGC to TGC change) were also detected, R77C, R215C, and R279C. Analysis (GPCR and SNP databases) of 200 other GPCRs, with recorded non-synonymous mutations, confirmed a high frequency of Arg-targeted missense mutations, particularly within the important cytoplasmic domain. Preferential nucleotide changes (at Arg codons), were observed involving cytosine (C) to thymine (T) (pyrimidine to pyrimidine), as well as guanine (G) to adenine (A) (purine to purine) (p<0.001, Pearson’s goodness-of-fit test). Such targeting of Arg residues, leading to significant changes in coding amino acid size and/or charge, may have potentially-important structural and evolutionary implications on the hIP and GPCRs in general. In the case of the human prostacyclin receptor, such alterations may reduce the cardio-, vasculo-, and cytoprotective effects of prostacyclin. PMID:17481829

  8. Arginine (CGC) codon targeting in the human prostacyclin receptor gene (PTGIR) and G-protein coupled receptors (GPCR).

    PubMed

    Stitham, Jeremiah; Arehart, Eric J; Gleim, Scott; Douville, Karen; MacKenzie, Todd; Hwa, John

    2007-07-01

    The human prostacyclin receptor (hIP) has recently been recognized as an important seven transmembrane G-protein coupled receptor that plays critical roles in atheroprevention and cardioprotection. To date, four non-synonymous genetic variants have been identified, two of which occur at the same Arg amino acid position (R212H, R212C). This observation instigated further genetic screening for prostacyclin receptor variants on 1455 human genomic samples. A total of 31 distinct genetic variants were detected, with 6 (19%) involving Arg residues. Distinct differences in location and frequencies of genetic variants were noted between Caucasian, Asian, Hispanic and African Americans, with the most changes noted in the Asian cohort. From the sequencing results, three Arg-targeted changes at the same 212 position within the third cytoplasmic loop of the human prostacyclin (hIP) receptor were detected: 1) R212C (CGC-->TGC), 2) R212H (CGC-->CAC), and 3) R212R (CGC-->CGT). Three additional Arg codon variants (all exhibiting the same CGC to TGC change) were also detected, R77C, R215C, and R279C. Analysis (GPCR and SNP databases) of 200 other GPCRs, with recorded non-synonymous mutations, confirmed a high frequency of Arg-targeted missense mutations, particularly within the important cytoplasmic domain. Preferential nucleotide changes (at Arg codons), were observed involving cytosine (C) to thymine (T) (pyrimidine to pyrimidine), as well as guanine (G) to adenine (A) (purine to purine) (p<0.001, Pearson's goodness-of-fit test). Such targeting of Arg residues, leading to significant changes in coding amino acid size and/or charge, may have potentially-important structural and evolutionary implications on the hIP and GPCRs in general. In the case of the human prostacyclin receptor, such alterations may reduce the cardio-, vasculo-, and cytoprotective effects of prostacyclin. PMID:17481829

  9. G-protein-coupled receptor regulation of P2X1 receptors does not involve direct channel phosphorylation

    PubMed Central

    2004-01-01

    P2X1 receptors for ATP are ligand-gated cation channels, which mediate smooth muscle contraction, contribute to blood clotting and are co-expressed with a range of GPCRs (G-protein-coupled receptors). Stimulation of Gαq-coupled mGluR1α (metabotropic glutamate receptor 1α), P2Y1 or P2Y2 receptors co-expressed with P2X1 receptors in Xenopus oocytes evoked calcium-activated chloride currents (IClCa) and potentiated subsequent P2X1-receptor-mediated currents by up to 250%. The mGluR1α-receptor-mediated effects were blocked by the phospholipase C inhibitor U-73122. Potentiation was mimicked by treatment with the phor-bol ester PMA. P2X receptors have a conserved intracellular PKC (protein kinase C) site; however, GPCR- and PMA-mediated potentiation was still observed with point mutants in which this site was disrupted. Similarly, the potentiation by GPCRs or PMA was unaffected by chelating the intracellular calcium rise with BAPTA/AM [bis(o-aminophenoxy)ethane-N,N,N′,N′-tetra-acetic acid tetrakis-(acetoxymethyl ester)] or the PKC inhibitors Ro-32-0432 and bisindolylmaleimide I, suggesting that the regulation does not involve a calcium-sensitive form of PKC. However, both GPCR and PMA potentiation were blocked by the kinase inhibitor staurosporine. Potentiation by phorbol esters was recorded in HEK-293 cells expressing P2X1 receptors, and radiolabelling of phosphorylated proteins in these cells demonstrated that P2X1 receptors are basally phosphorylated and that this level of phosphorylation is unaffected by phorbol ester treatment. This demonstrates that P2X1 regulation does not result directly from phosphorylation of the channel, but more likely by a staurosporine-sensitive phosphorylation of an accessory protein in the P2X1 receptor complex and suggests that in vivo fine-tuning of P2X1 receptors by GPCRs may contribute to cardiovascular control and haemostasis. PMID:15144237

  10. [Prospects for use of peptides and their derivatives, structurally corresponding to the G protein-coupled receptors, in medicine].

    PubMed

    Shpakov, A O; Shpakova, E A

    2015-01-01

    The regulation of signaling pathways involved in the control of many physiological functions is carried out via the heterotrimeric G protein-coupled receptors (GPCR). The search of effective and selective regulators of GPCR and intracellular signaling cascades coupled with them is one of the important problems of modern fundamental and clinical medicine. Recently data suggest that synthetic peptides and their derivatives, structurally corresponding to the intracellular and transmembrane regions of GPCR, can interact with high efficiency and selectivity with homologous receptors and influence, thus, the functional activity of intracellular signaling cascades and fundamental cellular processes controlled by them. GPCR-peptides are active in both in vitro and in vivo. They regulate hematopoiesis, angiogenesis and cell proliferation, inhibit tumor growth and metastasis, and prevent the inflammatory diseases and septic shock. These data show greatest prospects in the development of the new generations of drugs based on GPCR-derived peptides, capable of regulating the important functions of the organism. PMID:25762596

  11. Molecular Mechanism for Inhibition of G Protein-Coupled Receptor Kinase 2 by a Selective RNA Aptamer

    SciTech Connect

    Tesmer, Valerie M.; Lennarz, Sabine; Mayer, Günter; Tesmer, John J.G.

    2012-08-31

    Cardiovascular homeostasis is maintained in part by the rapid desensitization of activated heptahelical receptors that have been phosphorylated by G protein-coupled receptor kinase 2 (GRK2). However, during chronic heart failure GRK2 is upregulated and believed to contribute to disease progression. We have determined crystallographic structures of GRK2 bound to an RNA aptamer that potently and selectively inhibits kinase activity. Key to the mechanism of inhibition is the positioning of an adenine nucleotide into the ATP-binding pocket and interactions with the basic {alpha}F-{alpha}G loop region of the GRK2 kinase domain. Constraints imposed on the RNA by the terminal stem of the aptamer also play a role. These results highlight how a high-affinity aptamer can be used to selectively trap a novel conformational state of a protein kinase.

  12. Molecular mechanism for inhibition of G protein-coupled receptor kinase 2 by a selective RNA aptamer

    PubMed Central

    Tesmer, Valerie M.; Lennarz, Sabine; Mayer, Günter; Tesmer, John J. G.

    2012-01-01

    SUMMARY Cardiovascular homeostasis is maintained in part by the rapid desensitization of activated heptahelical receptors that have been phosphorylated by G protein-coupled receptor kinase 2 (GRK2). However, during chronic heart failure GRK2 is upregulated and believed to contribute to disease progression. We have determined crystallographic structures of GRK2 bound to an RNA aptamer that potently and selectively inhibits kinase activity. Key to the mechanism of inhibition is the positioning of an adenine nucleotide into the ATP-binding pocket and interactions with the basic αF-αG loop region of the GRK2 kinase domain. Constraints imposed on the RNA by the terminal stem of the aptamer also play a role. These results highlight how a high affinity aptamer can be used to selectively trap a novel conformational state of a protein kinase. PMID:22727813

  13. The role of membrane curvature elastic stress for function of rhodopsin-like G protein-coupled receptors

    PubMed Central

    Soubias, Olivier; Teague, Walter E.; Hines, Kirk G.; Gawrisch, Klaus

    2014-01-01

    The human genome encodes about 800 different G protein-coupled receptors (GPCR). They are key molecules in signal transduction pathways that transmit signals of a variety of ligands such as hormones and neurotransmitters to the cell interior. Upon ligand binding, the receptors undergo structural transitions that either enhance or inhibit transmission of a specific signal to the cell interior. Here we discuss results which indicate that transmission of such signals can be strongly modulated by the composition of the lipid matrix into which GPCR are imbedded. Experimental results have been obtained on rhodopsin, a prototype GPCR whose structure and function is representative for the great majority of GPCR in humans. The data shed light on the importance of curvature elastic stress in the lipid domain for function of GPCR. PMID:25447139

  14. Free fatty acid G-protein coupled receptor signaling in M1 skewed white adipose tissue macrophages.

    PubMed

    Vieira, Warren Antonio; Sadie-Van Gijsen, Hanél; Ferris, William Frank

    2016-10-01

    Obesity is associated with the establishment and maintenance of a low grade, chronically inflamed state in the white adipose tissue (WAT) of the body. The WAT macrophage population is a major cellular participant in this inflammatory process that significantly contributes to the pathophysiology of the disease, with the adipose depots of obese individuals, relative to lean counterparts, having an elevated number of macrophages that are skewed towards a pro-inflammatory phenotype. Alterations in the WAT lipid micro-environment, and specifically the availability of free fatty acids, are believed to contribute towards the obesity-related quantitative and functional changes observed in these cells. This review specifically addresses the involvement of the five G-protein coupled free fatty acid receptors which bind exogenous FFAs and signal in macrophages. Particular focus is placed on the involvement of these receptors in macrophage migration and cytokine production, two important aspects that modulate inflammation. PMID:27173059

  15. G Protein-Coupled Receptor Trafficking and Signalling in the Enteric Nervous System: The Past, Present and Future.

    PubMed

    Poole, Daniel P; Bunnett, Nigel W

    2016-01-01

    G protein-coupled receptors (GPCRs) enable cells to detect and respond to changes in their extracellular environment. With over 800 members, the GPCR family includes receptors for a diverse range of agonists including olfactants, neurotransmitters and hormones. Importantly, GPCRs represent a major therapeutic target, with approximately 50 % of all current drugs acting at some aspect of GPCR signalling (Audet and Bouvier 2008). GPCRs are widely expressed by all cell types in the gastrointestinal (GI) tract and are major regulators of every aspect of gut function. Many GPCRs are internalised upon activation, and this represents one of the mechanisms through which G protein-signalling is terminated. The latency between the endocytosis of GPCRs and their recycling and resensitization is a major determinant of the cell's ability to respond to subsequent exposure to agonists. PMID:27379642

  16. Molecular Actions of Ovarian Cancer G Protein-Coupled Receptor 1 Caused by Extracellular Acidification in Bone

    PubMed Central

    Yuan, Feng-Lai; Zhao, Ming-Dong; Jiang, Li-Bo; Wang, Hui-Ren; Cao, Lu; Zhou, Xiao-Gang; Li, Xi-Lei; Dong, Jian

    2014-01-01

    Extracellular acidification occurs under physiologic and pathologic conditions, such as exercise, ischemia, and inflammation. It has been shown that acidosis has various adverse effects on bone. In recent years there has been increasing evidence which indicates that ovarian cancer G protein-coupled receptor 1 (OGR1) is a pH-sensing receptor and mediates a variety of extracellular acidification-induced actions on bone cells and other cell types. Recent studies have shown that OGR1 is involved in the regulation of osteoclast differentiation, survival, and function, as well as osteoblast differentiation and bone formation. Moreover, OGR1 also regulates acid-induced apoptosis of endplate chondrocytes in intervertebral discs. These observations demonstrate the importance of OGR1 in skeletal development and metabolism. Here, we provide an overview of OGR1 regulation ofosteoclasts, osteoblasts, and chondrocytes, and the molecular actions of OGR1 induced by extracellular acidification in the maintenance of bone health. PMID:25479080

  17. Opposite Regulation of Ghrelin and Glucagon-like Peptide-1 by Metabolite G-Protein-Coupled Receptors.

    PubMed

    Engelstoft, M S; Schwartz, T W

    2016-09-01

    Gut hormones send information about incoming nutrients to the rest of the body and thereby control many aspects of metabolism. The secretion of ghrelin and glucagon-like protein (GLP)-1, two hormones with opposite secretory patterns and opposite actions on multiple targets, is controlled by a limited number of G-protein coupled receptors (GPCRs); half of which recognize and bind dietary nutrient metabolites, metabolites generated by gut microbiota, and metabolites of the host's intermediary metabolism. Most metabolite GPCRs controlling ghrelin secretion are inhibitory, whereas all metabolite receptors controlling GLP-1 secretion are stimulatory. This dichotomy in metabolite sensor function, which is obtained through a combination of differential expression and cell-dependent signaling bias, offers pharmacological targets to stimulate GLP-1 and inhibit ghrelin through the same mechanism. PMID:27474997

  18. Crosstalk between G protein-coupled receptors (GPCRs) and tyrosine kinase receptor (TXR) in the heart after morphine withdrawal

    PubMed Central

    Almela, Pilar; García-Carmona, Juan-Antonio; Martínez-Laorden, Elena; Milanés, María-Victoria; Laorden, María-Luisa

    2013-01-01

    G protein-coupled receptors (GPCRs) comprise a large family of membrane receptors involved in signal transduction. These receptors are linked to a variety of physiological and biological processes such as regulation of neurotransmission, growth, and cell differentiation among others. Some of the effects of GPCRs are known to be mediated by the activation of mitogen-activated extracellular kinase (MAPK) pathways. Cross-talk among various signal pathways plays an important role in activation of intracellular and intranuclear signal transduction cascades. Naloxone-induced morphine withdrawal leads to an up-regulation of adenyl cyclase-mediated signaling, resulting in high expression of protein kinase (PK) A. In addition, there is also an increased expression of extracellular signal regulated kinase (ERK), one member of MAPK. For this reason, the crosstalk between these GPCRs and receptors with tyrosine kinase activity (TKR) can be considered a possible mechanism for adaptive changes that occurs after morphine withdrawal. Morphine withdrawal activates ERK1/2 and phosphorylated tyrosine hydroxylase (TH) at Ser31 in the right and left ventricle. When N-(2-guanidinoethyl)-5-isoquinolinesulfonamide (HA-1004), a PKA inhibitor was infused, the ability of morphine withdrawal to activate ERK, which phosphorylates TH at Ser31, was reduced. The present finding demonstrated that the enhancement of ERK1/2 expression and the phosphorylation state of TH at Ser31 during morphine withdrawal are dependent on PKA and suggest cross-talk between PKA and ERK1/2 transduction pathway mediating morphine withdrawal-induced activation of TH. Increasing understanding of the mechanisms that interconnect the two pathway regulated by GPCRs and TKRs may facilitate the design of new therapeutic strategies. PMID:24409147

  19. Comparison of Class A and D G Protein-Coupled Receptors: Common Features in Structure and Activation†

    PubMed Central

    Eilers, Markus; Hornak, Viktor; Smith, Steven O.; Konopka, James B.

    2005-01-01

    All G protein-coupled receptors (GPCRs) share a common seven TM helix architecture and the ability to activate heterotrimeric G proteins. Nevertheless, these receptors have widely divergent sequences with no significant homology. We present a detailed structure–function comparison of the very divergent Class A and D receptors to address whether there is a common activation mechanism across the GPCR superfamily. The Class A and D receptors are represented by the vertebrate visual pigment rhodopsin and the yeast α-factor pheromone receptor Ste2, respectively. Conserved amino acids within each specific receptor class and amino acids where mutation alters receptor function were located in the structures of rhodopsin and Ste2 to assess whether there are functionally equivalent positions or regions within these receptors. We find several general similarities that are quite striking. First, strongly polar amino acids mediate helix interactions. Their mutation generally leads to loss of function or constitutive activity. Second, small and weakly polar amino acids facilitate tight helix packing. Third, proline is essential at similar positions in transmembrane helices 6 and 7 of both receptors. Mapping the specific location of the conserved amino acids and sites of constitutively active mutations identified conserved microdomains on transmembrane helices H3, H6, and H7, suggesting that there are underlying similarities in the mechanism of the widely divergent Class A and Class D receptors. PMID:15966721

  20. The Ubiquitin-like Protein PLIC-2 Is a Negative Regulator of G Protein-coupled Receptor Endocytosis

    PubMed Central

    N'Diaye, Elsa-Noah; Hanyaloglu, Aylin C.; Kajihara, Kimberly K.; Puthenveedu, Manojkumar A.; Wu, Ping; von Zastrow, Mark

    2008-01-01

    The activity of many signaling receptors is regulated by their endocytosis via clathrin-coated pits (CCPs). For G protein-coupled receptors (GPCRs), recruitment of the adaptor protein arrestin to activated receptors is thought to be sufficient to drive GPCR clustering in CCPs and subsequent endocytosis. We have identified an unprecedented role for the ubiquitin-like protein PLIC-2 as a negative regulator of GPCR endocytosis. Protein Linking IAP to Cytoskeleton (PLIC)-2 overexpression delayed ligand-induced endocytosis of two GPCRs: the V2 vasopressin receptor and β-2 adrenergic receptor, without affecting endocytosis of the transferrin or epidermal growth factor receptor. The closely related isoform PLIC-1 did not affect receptor endocytosis. PLIC-2 specifically inhibited GPCR concentration in CCPs, without affecting membrane recruitment of arrestin-3 to activated receptors or its cellular levels. Depletion of cellular PLIC-2 accelerated GPCR endocytosis, confirming its regulatory function at endogenous levels. The ubiquitin-like domain of PLIC-2, a ligand for ubiquitin-interacting motifs (UIMs), was required for endocytic inhibition. Interestingly, the UIM-containing endocytic adaptors epidermal growth factor receptor protein substrate 15 and Epsin exhibited preferential binding to PLIC-2 over PLIC-1. This differential interaction may underlie PLIC-2 specific effect on GPCR endocytosis. Identification of a negative regulator of GPCR clustering reveals a new function of ubiquitin-like proteins and highlights a cellular requirement for exquisite regulation of receptor dynamics. PMID:18199683

  1. Seven transmembrane G protein-coupled receptor repertoire of gastric ghrelin cells★

    PubMed Central

    Engelstoft, Maja S.; Park, Won-mee; Sakata, Ichiro; Kristensen, Line V.; Husted, Anna Sofie; Osborne-Lawrence, Sherri; Piper, Paul K.; Walker, Angela K.; Pedersen, Maria H.; Nøhr, Mark K.; Pan, Jie; Sinz, Christopher J.; Carrington, Paul E.; Akiyama, Taro E.; Jones, Robert M.; Tang, Cong; Ahmed, Kashan; Offermanns, Stefan; Egerod, Kristoffer L.; Zigman, Jeffrey M.; Schwartz, Thue W.

    2013-01-01

    The molecular mechanisms regulating secretion of the orexigenic-glucoregulatory hormone ghrelin remain unclear. Based on qPCR analysis of FACS-purified gastric ghrelin cells, highly expressed and enriched 7TM receptors were comprehensively identified and functionally characterized using in vitro, ex vivo and in vivo methods. Five Gαs-coupled receptors efficiently stimulated ghrelin secretion: as expected the β1-adrenergic, the GIP and the secretin receptors but surprisingly also the composite receptor for the sensory neuropeptide CGRP and the melanocortin 4 receptor. A number of Gαi/o-coupled receptors inhibited ghrelin secretion including somatostatin receptors SSTR1, SSTR2 and SSTR3 and unexpectedly the highly enriched lactate receptor, GPR81. Three other metabolite receptors known to be both Gαi/o- and Gαq/11-coupled all inhibited ghrelin secretion through a pertussis toxin-sensitive Gαi/o pathway: FFAR2 (short chain fatty acid receptor; GPR43), FFAR4 (long chain fatty acid receptor; GPR120) and CasR (calcium sensing receptor). In addition to the common Gα subunits three non-common Gαi/o subunits were highly enriched in ghrelin cells: GαoA, GαoB and Gαz. Inhibition of Gαi/o signaling via ghrelin cell-selective pertussis toxin expression markedly enhanced circulating ghrelin. These 7TM receptors and associated Gα subunits constitute a major part of the molecular machinery directly mediating neuronal and endocrine stimulation versus metabolite and somatostatin inhibition of ghrelin secretion including a series of novel receptor targets not previously identified on the ghrelin cell. PMID:24327954

  2. Identification and characterization of a novel family of Drosophila beta-adrenergic-like octopamine G-protein coupled receptors.

    PubMed

    Maqueira, Braudel; Chatwin, Heather; Evans, Peter D

    2005-07-01

    Insect octopamine receptors carry out many functional roles traditionally associated with vertebrate adrenergic receptors. These include control of carbohydrate metabolism, modulation of muscular tension, modulation of sensory inputs and modulation of memory and learning. The activation of octopamine receptors mediating many of these actions leads to increases in the levels of cyclic AMP. However, to date none of the insect octopamine receptors that have been cloned have been convincingly shown to be capable of directly mediating selective and significant increases in cyclic AMP levels. Here we report on the identification and characterization of a novel, neuronally expressed family of three Drosophila G-protein coupled receptors that are selectively coupled to increases in intracellular cyclic AMP levels by octopamine. This group of receptors, DmOct beta1R (CG6919), DmOct beta2R (CG6989) and DmOct beta3R (CG7078) shows homology to vertebrate beta-adrenergic receptors. When expressed in Chinese hamster ovary cells all three receptors show a strong preference for octopamine over tyramine for the accumulation of cyclic AMP but show unique pharmacological profiles when tested with a range of synthetic agonists and antagonists. Thus, the pharmacological profile of individual insect tissue responses to octopamine might vary with the combination and the degree of expression of the individual octopamine receptors present. PMID:15998303

  3. Identification of Drosophila of the invertebrate G-protein couples FMRFamide receptor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We here describe the cloning and characterization of the functionally active Drosophila melanogaster (Drm) FMRFamide receptor, which we designated as DrmFMRFa-R. The full-length ORF of a D. melanogaster orphan receptor CG 2114 (Berkeley Drsophila Genome Project), was cloned from genomic DNA. This ...

  4. Imaging of G protein-coupled receptors in solid-supported planar membranes at the single molecule level

    NASA Astrophysics Data System (ADS)

    Märki, Iwan; Leutenegger, Marcel; Geissbuehler, Matthias; Robelek, Rudolf; Sinner, Eva-Kathrin; Lasser, Theo

    2008-02-01

    Odorant receptors are an excellent example of natural superiority in specifically binding specific, small and hydrophobic molecules. They are of particular interest in the development of a sensor platform for G protein-coupled receptors (GPCRs). Odorant receptors (OR5) of Rattus norvegicus were incorporated into model membranes by in vitro synthesis and vectorial incorporation for achieving natural receptor function. The vectorial insertion of OR5 into the planar membrane and their lateral distribution, their interactions and their mobility within the membrane are of great importance for ligand-receptor interaction. We applied total internal reflection fluorescence (TIRF) microscopy and image analysis to assess the insertion and the OR5 distribution as well as the lateral mobility of these receptors at the single molecule level. The vectorial incorporation of OR5 into planar lipid membranes was investigated with TIRF microscopy and image segmentation. With increasing expression time, the OR5 incorporation density and aggregation increased linearly by about 0.02μm -2min -1. The expression and incorporations of single OR5s were completed within about 8 minutes. The mobility of the incorporated receptors was measured with fluorescence correlation spectroscopy (FCS) and fluorescence recovery after photo-bleaching (FRAP). These measurements revealed that the incorporated receptors were immobilized with this class of lipid membranes.

  5. Optical probes based on G protein-coupled receptors - added work or added value?

    PubMed

    Stumpf, A D; Hoffmann, C

    2016-01-01

    In 2003, the first report was published that presented proof of principle for a novel class of FRET biosensors for use in living cells. This novel sensor class was built on the base of GPCRs, which represent an integral transmembrane receptor family passing the membrane seven times and are thus also called the 7TM receptor family. As an estimated number of 30% of all marketed drugs exert their effects by modulating GPCR function, these initial reports promised the gain of novel insights into receptor function. Such FRET sensors have slowly, but progressively, made their way into the standard toolbox for GPCR research as several groups are now reporting on the generation and use of these sensors. By now, FRET sensors have been reported for 18 different GPCRs, and more are expected to be added. These particular receptor sensors have been used to investigate receptor dynamics in living cells to evaluate ligand binding and ligand efficacy in real time, to study voltage and mechanosensitivity of GPCRs or to study the influence of receptor polymorphisms on receptor function in real-time. In this review we will describe the different design principles of these GPCR-based sensors and will summarize their current biological applications in living cells. PMID:26562218

  6. Exon capture analysis of G protein-coupled receptors identifies activating mutations in GRM3 in melanoma

    PubMed Central

    Prickett, Todd D; Wei, Xiaomu; Cardenas-Navia, Isabel; Teer, Jamie K; Lin, Jimmy C; Walia, Vijay; Gartner, Jared; Jiang, Jiji; Cherukuri, Praveen F; Molinolo, Alfredo; Davies, Michael A; Gershenwald, Jeffrey E; Stemke-Hale, Katherine; Rosenberg, Steven A; Margulies, Elliott H; Samuels, Yardena

    2012-01-01

    G protein-coupled receptors (GPCRs), the largest human gene family, are important regulators of signaling pathways. However, knowledge of their genetic alterations is limited. In this study, we used exon capture and massively parallel sequencing methods to analyze the mutational status of 734 GPCRs in melanoma. This investigation revealed that one family member, GRM3, was frequently mutated and that one of its mutations clustered within one position. Biochemical analysis of GRM3 alterations revealed that mutant GRM3 selectively regulated the phosphorylation of MEK, leading to increased anchorage-independent growth and migration. Melanoma cells expressing mutant GRM3 had reduced cell growth and cellular migration after short hairpin RNA–mediated knockdown of GRM3 or treatment with a selective MEK inhibitor, AZD-6244, which is currently being used in phase 2 clinical trials. Our study yields the most comprehensive map of genetic alterations in the GPCR gene family. PMID:21946352

  7. G protein-coupled receptors GPR4 and TDAG8 are oncogenic and overexpressed in human cancers.

    PubMed

    Sin, Wun Chey; Zhang, Yaoping; Zhong, Wendy; Adhikarakunnathu, Sree; Powers, Scott; Hoey, Tim; An, Songzhu; Yang, Jianxin

    2004-08-19

    The GPR4 subfamily consists of four G protein-coupled receptors that share significant sequence homology. In addition to GPR4, this subfamily includes OGR1, TDAG8 and G2A. G2A has previously been shown to be a potent transforming oncogene for murine 3T3 cells. Here we show that GPR4 also malignantly transforms NIH3T3 cells and that TDAG8 malignantly transforms the normal mammary epithelial cell line NMuMG. Overexpression of GPR4 or TDAG8 in HEK293 cells led to transcriptional activation from SRE- and CRE-driven promoters, independent of exogenously added ligand. TDAG8 and GPR4 are also overexpressed in a range of human cancer tissues. Our results suggest that GPR4 and TDAG8 overexpression in human tumors plays a role in driving or maintaining tumor formation. PMID:15221007

  8. Functional over-expression of the Stm1 protein, a G-protein-coupled receptor, in Schizosaccharomyces pombe.

    PubMed

    Chung, Kyung-Sook; Kim, Dong-Uk; Ryoo, Sung-Woo; Kang, Eun-Jung; Won, Misun; Kim, Lila; Jang, Young-Joo; Maeng, Pil-Jae; Kim, Sei-Chang; Yoo, Hyang-Sook; Hoe, Kwang-Lae

    2003-02-01

    We report here the first functional over-expression of the Stm1 protein, a G-protein-coupled receptor with seven-trans-membrane spanning regions, in a homologous expression system without internal modification of the open reading frame of Stm1. The entire coding sequence, except for the termination codon followed by a C-terminal His6 tag, has been cloned into the pREP1 vector. The functionally active Stm1-His6 was over-expressed in Schizosaccharomyces pombe under the control of the nmt1 (no message in thiamine) promoter. The expression after induction was 120 times as much as that of control before induction and it gave approximately 500 ng protein/2 x 10(7) cells. PMID:12882583

  9. Activation of a G protein-coupled receptor by its endogenous ligand triggers the Caenorhabditis elegans innate immune response

    PubMed Central

    Zugasti, Olivier; Bose, Neelanjan; Squiban, Barbara; Belougne, Jérôme; Kurz, C. Léopold; Schroeder, Frank C.; Pujol, Nathalie; Ewbank, Jonathan J.

    2014-01-01

    Immune defenses are triggered by microbe-associated molecular patterns or as a result of damage to host cells. The elicitors of immune responses in the nematode Caenorhabditis elegans are unclear. Using a genome-wide RNAi screen, we identify the G-protein coupled receptor (GPCR) DCAR-1 as being required for the response to fungal infection and wounding. DCAR-1 acts in the epidermis to regulate the expression of antimicrobial peptides via a conserved p38 mitogen-activated protein kinase pathway. Through targeted metabolomics analysis we identify the tyrosine-derivative 4-hydroxyphenyllactic acid (HPLA) as an endogenous ligand. These findings reveal DCAR-1 and its cognate ligand HPLA to be important triggers of the epidermal innate immune response in C. elegans and highlight the ancient role of GPCRs in host defense. PMID:25086774

  10. G-protein Coupled Receptor Signaling in Pluripotent Stem Cell-derived Cardiovascular Cells: Implications for Disease Modeling

    PubMed Central

    Dolatshad, Nazanin F.; Hellen, Nicola; Jabbour, Richard J.; Harding, Sian E.; Földes, Gabor

    2015-01-01

    Human pluripotent stem cell derivatives show promise as an in vitro platform to study a range of human cardiovascular diseases. A better understanding of the biology of stem cells and their cardiovascular derivatives will help to understand the strengths and limitations of this new model system. G-protein coupled receptors (GPCRs) are key regulators of stem cell maintenance and differentiation and have an important role in cardiovascular cell signaling. In this review, we will therefore describe the state of knowledge concerning the regulatory role of GPCRs in both the generation and function of pluripotent stem cell derived-cardiomyocytes, -endothelial, and -vascular smooth muscle cells. We will consider how far the in vitro disease models recapitulate authentic GPCR signaling and provide a useful basis for discovery of disease mechanisms or design of therapeutic strategies. PMID:26697426

  11. Modulation of firing and synaptic transmission of serotonergic neurons by intrinsic G protein-coupled receptors and ion channels.

    PubMed

    Maejima, Takashi; Masseck, Olivia A; Mark, Melanie D; Herlitze, Stefan

    2013-01-01

    Serotonergic neurons project to virtually all regions of the central nervous system and are consequently involved in many critical physiological functions such as mood, sexual behavior, feeding, sleep/wake cycle, memory, cognition, blood pressure regulation, breathing, and reproductive success. Therefore, serotonin release and serotonergic neuronal activity have to be precisely controlled and modulated by interacting brain circuits to adapt to specific emotional and environmental states. We will review the current knowledge about G protein-coupled receptors and ion channels involved in the regulation of serotonergic system, how their regulation is modulating the intrinsic activity of serotonergic neurons and its transmitter release and will discuss the latest methods for controlling the modulation of serotonin release and intracellular signaling in serotonergic neurons in vitro and in vivo. PMID:23734105

  12. Gpr176 is a Gz-linked orphan G-protein-coupled receptor that sets the pace of circadian behaviour

    PubMed Central

    Doi, Masao; Murai, Iori; Kunisue, Sumihiro; Setsu, Genzui; Uchio, Naohiro; Tanaka, Rina; Kobayashi, Sakurako; Shimatani, Hiroyuki; Hayashi, Hida; Chao, Hsu-Wen; Nakagawa, Yuuki; Takahashi, Yukari; Hotta, Yunhong; Yasunaga, Jun-ichirou; Matsuoka, Masao; Hastings, Michael H.; Kiyonari, Hiroshi; Okamura, Hitoshi

    2016-01-01

    G-protein-coupled receptors (GPCRs) participate in a broad range of physiological functions. A priority for fundamental and clinical research, therefore, is to decipher the function of over 140 remaining orphan GPCRs. The suprachiasmatic nucleus (SCN), the brain's circadian pacemaker, governs daily rhythms in behaviour and physiology. Here we launch the SCN orphan GPCR project to (i) search for murine orphan GPCRs with enriched expression in the SCN, (ii) generate mutant animals deficient in candidate GPCRs, and (iii) analyse the impact on circadian rhythms. We thereby identify Gpr176 as an SCN-enriched orphan GPCR that sets the pace of circadian behaviour. Gpr176 is expressed in a circadian manner by SCN neurons, and molecular characterization reveals that it represses cAMP signalling in an agonist-independent manner. Gpr176 acts independently of, and in parallel to, the Vipr2 GPCR, not through the canonical Gi, but via the unique G-protein subclass Gz. PMID:26882873

  13. G-protein-coupled receptor heteromers as key players in the molecular architecture of the central nervous system.

    PubMed

    Brugarolas, Marc; Navarro, Gemma; Martínez-Pinilla, Eva; Angelats, Edgar; Casadó, Vicent; Lanciego, José L; Franco, Rafael

    2014-08-01

    The overall architecture of the nervous system, especially the CNS, is remarkable. The anatomy of the nervous system is constituted not only by macroscopic and microscopy identifiable regions and neuronal cell types, but also by protein complexes whose identification and localization require sophisticated techniques. G-protein-coupled receptors (GPCRs) constitute an example of proteins that are the key factors in the framework needed to sustain brain and nerve structure and function. The versatility underlying nervous system anatomy takes advantage of a recently discovered feature of GPCRs, the possibility to form heteromers that, placed at specific neuronal subsets and at specific locations (pre-, post-, or peri-synaptic), contribute to attain unique neural functions. PMID:24809909

  14. Endolysosomal trafficking of viral G protein-coupled receptor functions in innate immunity and control of viral oncogenesis.

    PubMed

    Dong, Xiaonan; Cheng, Adam; Zou, Zhongju; Yang, Yih-Sheng; Sumpter, Rhea M; Huang, Chou-Long; Bhagat, Govind; Virgin, Herbert W; Lira, Sergio A; Levine, Beth

    2016-03-15

    The ubiquitin-proteasome system degrades viral oncoproteins and other microbial virulence factors; however, the role of endolysosomal degradation pathways in these processes is unclear. Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma, and a constitutively active viral G protein-coupled receptor (vGPCR) contributes to the pathogenesis of KSHV-induced tumors. We report that a recently discovered autophagy-related protein, Beclin 2, interacts with KSHV GPCR, facilitates its endolysosomal degradation, and inhibits vGPCR-driven oncogenic signaling. Furthermore, monoallelic loss of Becn2 in mice accelerates the progression of vGPCR-induced lesions that resemble human Kaposi's sarcoma. Taken together, these findings indicate that Beclin 2 is a host antiviral molecule that protects against the pathogenic effects of KSHV GPCR by facilitating its endolysosomal degradation. More broadly, our data suggest a role for host endolysosomal trafficking pathways in regulating viral pathogenesis and oncogenic signaling. PMID:26929373

  15. Metformin Disrupts Crosstalk Between G protein-Coupled Receptor and Insulin Receptor Signaling Systems and Inhibits Pancreatic Cancer Growth

    PubMed Central

    Kisfalvi, Krisztina; Eibl, Guido; Sinnett-Smith, James; Rozengurt, Enrique

    2009-01-01

    Recently we identified a novel crosstalk between insulin and G-protein-coupled receptor (GPCR) signaling pathways in human pancreatic cancer cells. Insulin enhanced GPCR signaling through a rapamycin-sensitive mTOR-dependent pathway. Metformin, the most widely used drug in the treatment of type-2 diabetes, activates AMP kinase (AMPK), which negatively regulates mTOR. Here, we determined whether metformin disrupts crosstalk between insulin receptor and GPCR signaling in pancreatic cancer cells. Treatment of human pancreatic cancer cells (PANC-1, MIAPaCa-2, BxPC-3) with insulin (10ng/ml) for 5 min markedly enhanced the increase in intracellular [Ca2+] induced by GPCR agonists (e.g. neurotensin, bradykinin, angiotensin II). Metformin pretreatment completely abrogated insulin-induced potentiation of Ca2+ signaling but did not interfere with the effect of GPCR agonists alone. Insulin also enhanced GPCR agonist-induced growth, measured by DNA synthesis, and numbers of cells cultured in adherent or non-adherent conditions. Low doses of metformin (0.1-0.5 mM) blocked stimulation of DNA synthesis, anchorage-dependent and independent growth induced by insulin and GPCR agonists. Treatment with metformin induced striking and sustained increase in the phosphorylation of AMPK at Thr172 and a selective AMPK inhibitor (compound C, at 5μM) reversed the effects of metformin on [Ca2+]i, and DNA synthesis, indicating that metformin acts through AMPK activation. In view of these results we tested whether metformin inhibits pancreatic cancer growth. Administration of metformin significantly decreased the growth of MIAPaCa-2 and PANC-1 cells xenografted on the flank of nude mice. The results raise the possibility that metformin could be a potential candidate in novel treatment strategies for human pancreatic cancer. PMID:19679549

  16. Identification of G Protein-Coupled Receptors (GPCRs) in Primary Cilia and Their Possible Involvement in Body Weight Control.

    PubMed

    Omori, Yoshihiro; Chaya, Taro; Yoshida, Satoyo; Irie, Shoichi; Tsujii, Toshinori; Furukawa, Takahisa

    2015-01-01

    Primary cilia are sensory organelles that harbor various receptors such as G protein-coupled receptors (GPCRs). We analyzed subcellular localization of 138 non-odorant GPCRs. We transfected GPCR expression vectors into NIH3T3 cells, induced ciliogenesis by serum starvation, and observed subcellular localization of GPCRs by immunofluorescent staining. We found that several GPCRs whose ligands are involved in feeding behavior, including prolactin-releasing hormone receptor (PRLHR), neuropeptide FF receptor 1 (NPFFR1), and neuromedin U receptor 1 (NMUR1), localized to the primary cilia. In addition, we found that a short form of dopamine receptor D2 (DRD2S) is efficiently transported to the primary cilia, while a long form of dopamine receptor D2 (DRD2L) is rarely transported to the primary cilia. Using an anti-Prlhr antibody, we found that Prlhr localized to the cilia on the surface of the third ventricle in the vicinity of the hypothalamic periventricular nucleus. We generated the Npy2r-Cre transgenic mouse line in which Cre-recombinase is expressed under the control of the promoter of Npy2r encoding a ciliary GPCR. By mating Npy2r-Cre mice with Ift80 flox mice, we generated Ift80 conditional knockout (CKO) mice in which Npy2r-positive cilia were diminished in number. We found that Ift80 CKO mice exhibited a body weight increase. Our results suggest that Npy2r-positive cilia are important for body weight control. PMID:26053317

  17. A generic selection system for improved expression and thermostability of G protein-coupled receptors by directed evolution.

    PubMed

    Klenk, Christoph; Ehrenmann, Janosch; Schütz, Marco; Plückthun, Andreas

    2016-01-01

    Structural and biophysical studies as well as drug screening approaches on G protein-coupled receptors (GPCRs) have been largely hampered by the poor biophysical properties and low expression yields of this largest class of integral membrane proteins. Thermostabilisation of GPCRs by introduction of stabilising mutations has been a key factor to overcome these limitations. However, labelled ligands with sufficient affinity, which are required for selective binding to the correctly folded receptor, are often not available. Here we describe a novel procedure to improve receptor expression and stability in a generic way, independent of specific ligands, by means of directed evolution in E. coli. We have engineered a homogenous fluorescent reporter assay that only detects receptors which are correctly integrated into the inner cell membrane and, thus, discriminates functional from non-functional receptor species. When we combined this method with a directed evolution procedure we obtained highly expressing mutants of the neurotensin receptor 1 with greatly improved thermostability. By this procedure receptors with poor expression and/or low stability, for which no ligands or only ones with poor binding properties are available, can now be generated in quantities allowing detailed structural and biophysical analysis. PMID:26887595

  18. A generic selection system for improved expression and thermostability of G protein-coupled receptors by directed evolution

    PubMed Central

    Klenk, Christoph; Ehrenmann, Janosch; Schütz, Marco; Plückthun, Andreas

    2016-01-01

    Structural and biophysical studies as well as drug screening approaches on G protein-coupled receptors (GPCRs) have been largely hampered by the poor biophysical properties and low expression yields of this largest class of integral membrane proteins. Thermostabilisation of GPCRs by introduction of stabilising mutations has been a key factor to overcome these limitations. However, labelled ligands with sufficient affinity, which are required for selective binding to the correctly folded receptor, are often not available. Here we describe a novel procedure to improve receptor expression and stability in a generic way, independent of specific ligands, by means of directed evolution in E. coli. We have engineered a homogenous fluorescent reporter assay that only detects receptors which are correctly integrated into the inner cell membrane and, thus, discriminates functional from non-functional receptor species. When we combined this method with a directed evolution procedure we obtained highly expressing mutants of the neurotensin receptor 1 with greatly improved thermostability. By this procedure receptors with poor expression and/or low stability, for which no ligands or only ones with poor binding properties are available, can now be generated in quantities allowing detailed structural and biophysical analysis. PMID:26887595

  19. Regulation of p53 expression, phosphorylation and sub-cellular localisation by a G-protein coupled receptor

    PubMed Central

    Solyakov, Lev; Sayan, Emre; Riley, Joan; Pointon, Amy; Tobin, Andrew B

    2009-01-01

    G-protein coupled receptors (GPCRs) have been extremely successful drug targets for a multitude of diseases from heart failure to depression. This super-family of cell surface receptors have not, however, been widely considered as a viable target in cancer treatment. In the current study we demonstrate that a classical Gq/11-coupled GPCR, the M3-muscarinic receptor, was able to regulate apoptosis via receptors that are endogenously expressed in the human neuroblastoma cell line SH-SY5Y and when ectopically expressed in Chinese hamster ovary (CHO) cells. Stimulation of the M3-muscarinic receptor was shown to inhibit the ability of the DNA-damaging chemotherapeutic agent, etoposide, from mediating apoptosis. This protective response in CHO cells correlated with the ability of the receptor to regulate the expression levels of p53. In contrast, stimulation of endogenous muscarinic receptors in SH-SY5Y cells did not regulate p53 expression but rather was able to inhibit p53 translocation to the mitochondria and p53 phosphorylation at serine 15 and 37. This study suggests the possibility that a GPCR can regulate the apoptotic properties of a chemotherapeutic DNA-damaging agent by regulating the expression, sub-cellular trafficking and modification of p53 in a manner that is in part dependent on the cell type. PMID:19648965

  20. Single-molecule view of basal activity and activation mechanisms of the G protein-coupled receptor β2AR.

    PubMed

    Lamichhane, Rajan; Liu, Jeffrey J; Pljevaljcic, Goran; White, Kate L; van der Schans, Edwin; Katritch, Vsevolod; Stevens, Raymond C; Wüthrich, Kurt; Millar, David P

    2015-11-17

    Binding of extracellular ligands to G protein-coupled receptors (GPCRs) initiates transmembrane signaling by inducing conformational changes on the cytoplasmic receptor surface. Knowledge of this process provides a platform for the development of GPCR-targeting drugs. Here, using a site-specific Cy3 fluorescence probe in the human β2-adrenergic receptor (β2AR), we observed that individual receptor molecules in the native-like environment of phospholipid nanodiscs undergo spontaneous transitions between two distinct conformational states. These states are assigned to inactive and active-like receptor conformations. Individual receptor molecules in the apo form repeatedly sample both conformations, with a bias toward the inactive conformation. Experiments in the presence of drug ligands show that binding of the full agonist formoterol shifts the conformational distribution in favor of the active-like conformation, whereas binding of the inverse agonist ICI-118,551 favors the inactive conformation. Analysis of single-molecule dwell-time distributions for each state reveals that formoterol increases the frequency of activation transitions, while also reducing the frequency of deactivation events. In contrast, the inverse agonist increases the frequency of deactivation transitions. Our observations account for the high level of basal activity of this receptor and provide insights that help to rationalize, on the molecular level, the widely documented variability of the pharmacological efficacies among GPCR-targeting drugs. PMID:26578769

  1. Islet-selectivity of G-protein coupled receptor ligands evaluated for PET imaging of pancreatic {beta}-cell mass

    SciTech Connect

    Cline, Gary W.; Zhao, Xiaojian; Jakowski, Amy B.; Soeller, Walter C.; Treadway, Judith L.

    2011-09-02

    Highlights: {yields} We screened G-protein coupled receptors for imaging pancreatic. {yields} Database mining and immunohistochemistry identified GPCRs enriched in {beta}-cells. {yields} In vitro and in vivo assays were used to determine exocrine vs endocrine specificity. {yields} GPCR candidates for imaging of {beta}-cell mass are Prokineticin-1R, mGluR5, and GLP-1R. -- Abstract: A critical unmet need exists for methods to quantitatively measure endogenous pancreatic {beta}-cell mass (BCM) for the clinical evaluation of therapies to prevent or reverse loss of BCM and diabetes progression. Our objective was to identify G-protein coupled receptors (GPCRs) that are expressed with a high degree of specificity to islet {beta}-cells for receptor-targeted imaging of BCM. GPCRs enriched in pancreatic islets relative to pancreas acinar and hepatic tissue were identified using a database screen. Islet-specific expression was confirmed by human pancreas immunohistochemistry (IHC). In vitro selectivity assessment was determined from the binding and uptake of radiolabeled ligands to the rat insulinoma INS-1 832/13 cell line and isolated rat islets relative to the exocrine pancreas cell-type, PANC-1. Tail-vein injections of radioligands into rats were used to determine favorable image criteria of in vivo biodistribution to the pancreas relative to other internal organs (i.e., liver, spleen, stomach, and lungs). Database and IHC screening identified four candidate receptors for further in vitro and in vivo evaluation for PET imaging of BCM: prokineticin-1 receptor (PK-1R), metabotropic glutamate receptor type-5 (mGluR5), neuropeptide Y-2 receptor (NPY-2R), and glucagon-like peptide 1 receptor (GLP-1R). In vitro specificity ratios gave the following receptor rank order: PK-1R > GLP-1R > NPY-2R > mGluR5. The biodistribution rank order of selectivity to the pancreas was found to be PK-1R > VMAT2 {approx} GLP-1R > mGluR5. Favorable islet selectivity and biodistribution

  2. Sex peptides and MIPs can activate the same G protein-coupled receptor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In many animal species, copulation elicits a number of physiological and behavioral changes in the female partner. In Drosophila melanogaster, the main molecular effector of these physiological responses has been identified as sex peptide (SP). The sex peptide receptor (SPR) has been characterized a...

  3. Tick G protein-coupled receptors as targets for development of new acaricides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The GPCR class of receptors is a source of many pharmacologicals in human medicine and are still being pursued in research programs as promising targets for drug development. GPCRs have been identified in arthropods and with the advent of expressed sequence tag (EST) and genome projects in the ticks...

  4. EFR3s are palmitoylated plasma membrane proteins that control responsiveness to G-protein-coupled receptors.

    PubMed

    Bojjireddy, Naveen; Guzman-Hernandez, Maria Luisa; Reinhard, Nathalie Renée; Jovic, Marko; Balla, Tamas

    2015-01-01

    The yeast Efr3p protein is a main regulator of the Stt4p phosphatidylinositol 4-kinase at contact sites between the endoplasmic reticulum and the plasma membrane. A mutation in its fly homologue Rbo, leads to diminished light responses in the eye attributed to progressively impaired PLC signaling. Here, we find that Efr3s plays a role in maintaining responsiveness to the type-I angiotensin II (AngII) receptors. siRNA-mediated depletion of EFR3A and EFR3B impaired the sustained phase of cytosolic Ca(2+) response to high concentration of AngII in HEK293 cells that express wild type but not truncated AGTR1 (AT1a receptor), missing the phosphorylation sites. Efr3 depletion had minimal effect on the recovery of plasma membrane phosphoinositides during stimulation, and AT1 receptors still underwent ligand-induced internalization. A higher level of basal receptor phosphorylation and a larger response was observed after stimulation. Moreover, Gq activation more rapidly desensitized after AngII stimulation in Efr3 downregulated cells. A similar but less pronounced effect of EFR3 depletion was observed on the desensitization of the cAMP response after stimulation with isoproterenol. These data suggest that mammalian Efr3s contribute to the control of the phosphorylation state and, hence, desensitization of AT1a receptors, and could affect responsiveness of G-protein-coupled receptors in higher eukaryotes. PMID:25380825

  5. Alternative splicing of pre-mRNA in cancer: focus on G protein-coupled peptide hormone receptors.

    PubMed

    Körner, Meike; Miller, Laurence J

    2009-08-01

    Through alternative splicing, multiple different transcripts can be generated from a single gene. Alternative splicing represents an important molecular mechanism of gene regulation in physiological processes such as developmental programming as well as in disease. In cancer, splicing is significantly altered. Tumors express a different collection of alternative spliceoforms than normal tissues. Many tumor-associated splice variants arise from genes with an established role in carcinogenesis or tumor progression, and their functions can be oncogenic. This raises the possibility that products of alternative splicing play a pathogenic role in cancer. Moreover, cancer-associated spliceoforms represent potential diagnostic biomarkers and therapeutic targets. G protein-coupled peptide hormone receptors provide a good illustration of alternative splicing in cancer. The wild-type forms of these receptors have long been known to be expressed in cancer and to modulate tumor cell functions. They are also recognized as attractive clinical targets. Recently, splice variants of these receptors have been increasingly identified in various types of cancer. In particular, alternative cholecystokinin type 2, secretin, and growth hormone-releasing hormone receptor spliceoforms are expressed in tumors. Peptide hormone receptor splice variants can fundamentally differ from their wild-type receptor counterparts in pharmacological and functional characteristics, in their distribution in normal and malignant tissues, and in their potential use for clinical applications. PMID:19574427

  6. Multiplex Detection of Functional G Protein-Coupled Receptors Harboring Site-Specifically Modified Unnatural Amino Acids

    PubMed Central

    2015-01-01

    We developed a strategy for identifying positions in G protein-coupled receptors that are amenable to bioorthogonal modification with a peptide epitope tag under cell culturing conditions. We introduced the unnatural amino acid p-azido-l-phenylalanine (azF) into human CC chemokine receptor 5 (CCR5) at site-specific amber codon mutations. We then used strain-promoted azide–alkyne [3+2] cycloaddition to label the azF-CCR5 variants with a FLAG peptide epitope-conjugated aza-dibenzocyclooctyne (DBCO) reagent. A microtiter plate-based sandwich fluorophore-linked immunosorbent assay was used to probe simultaneously the FLAG epitope and the receptor using infrared dye-conjugated antibodies so that the extent of DBCO incorporation, corresponding nominally to labeling efficiency, could be quantified ratiometrically. The extent of incorporation of DBCO at the various sites was evaluated in the context of a recent crystal structure of maraviroc-bound CCR5. We observed that labeling efficiency varied dramatically depending on the topological location of the azF in CCR5. Interestingly, position 109 in transmembrane helix 3, located in a hydrophobic cavity on the extracellular side of the receptor, was labeled most efficiently. Because the bioorthogonal labeling and detection strategy described might be used to introduce a variety of different peptide epitopes or fluorophores into engineered expressed receptors, it might prove to be useful for a wide range of applications, including single-molecule detection studies of receptor trafficking and signaling mechanism. PMID:25524496

  7. Increasingly accurate dynamic molecular models of G-protein coupled receptor oligomers: Panacea or Pandora's box for novel drug discovery?

    PubMed Central

    Filizola, Marta

    2009-01-01

    For years conventional drug design at G-protein coupled receptors (GPCRs) has mainly focused on the inhibition of a single receptor at a usually well-defined ligand-binding site. The recent discovery of more and more physiologically relevant GPCR dimers/oligomers suggests that selectively targeting these complexes or designing small molecules that inhibit receptor-receptor interactions might provide new opportunities for novel drug discovery. To uncover the fundamental mechanisms and dynamics governing GPCR dimerization/oligomerization, it is crucial to understand the dynamic process of receptor-receptor association, and to identify regions that are suitable for selective drug binding. This minireview highlights current progress in the development of increasingly accurate dynamic molecular models of GPCR oligomers based on structural, biochemical, and biophysical information that has recently appeared in the literature. In view of this new information, there has never been a more exciting time for computational research into GPCRs than at present. Information-driven modern molecular models of GPCR complexes are expected to efficiently guide the rational design of GPCR oligomer-specific drugs, possibly allowing researchers to reach for the high-hanging fruits in GPCR drug discovery, i.e. more potent and selective drugs for efficient therapeutic interventions. PMID:19465029

  8. EFR3s are palmitoylated plasma membrane proteins that control responsiveness to G-protein-coupled receptors

    PubMed Central

    Bojjireddy, Naveen; Guzman-Hernandez, Maria Luisa; Reinhard, Nathalie Renée; Jovic, Marko; Balla, Tamas

    2015-01-01

    ABSTRACT The yeast Efr3p protein is a main regulator of the Stt4p phosphatidylinositol 4-kinase at contact sites between the endoplasmic reticulum and the plasma membrane. A mutation in its fly homologue Rbo, leads to diminished light responses in the eye attributed to progressively impaired PLC signaling. Here, we find that Efr3s plays a role in maintaining responsiveness to the type-I angiotensin II (AngII) receptors. siRNA-mediated depletion of EFR3A and EFR3B impaired the sustained phase of cytosolic Ca2+ response to high concentration of AngII in HEK293 cells that express wild type but not truncated AGTR1 (AT1a receptor), missing the phosphorylation sites. Efr3 depletion had minimal effect on the recovery of plasma membrane phosphoinositides during stimulation, and AT1 receptors still underwent ligand-induced internalization. A higher level of basal receptor phosphorylation and a larger response was observed after stimulation. Moreover, Gq activation more rapidly desensitized after AngII stimulation in Efr3 downregulated cells. A similar but less pronounced effect of EFR3 depletion was observed on the desensitization of the cAMP response after stimulation with isoproterenol. These data suggest that mammalian Efr3s contribute to the control of the phosphorylation state and, hence, desensitization of AT1a receptors, and could affect responsiveness of G-protein-coupled receptors in higher eukaryotes. PMID:25380825

  9. Identification and comparative analysis of G protein-coupled receptors in Pediculus humanus humanus.

    PubMed

    Li, Chengjun; Song, Xiaowen; Chen, Xuhong; Liu, Xing; Sang, Ming; Wu, Wei; Yun, Xiaopei; Hu, Xingxing; Li, Bin

    2014-07-01

    The body louse has the smallest genome size among the known genome-sequenced insects. Here, 81 GPCRs were identified in Pediculus humanus humanus, 56, 14, 6 and 5 GPCRs for family-A, -B, -C and -D, respectively. These GPCRs constitute the comparable repertoire of GPCRs with other insects. Moreover, it contains a more complete set of neuropeptide and protein hormone receptors not even than Acyrthosiphon pisum but also Drosophila melanogaster, for example, Sulfakinin, Corazonin, Trissin and PTHRL only presented in P. h. humanus but lost either in A. pisum or D. melanogaster. However, it has less duplication among the sub-families. Meanwhile, ACP, AVPL, HE6 receptors and Boss were also absent from P. h. humanus. These results indicated that the repertoire of GPCRs in P. h. humanus were not affected by its smallest genome size, and further suggested that P. h. humanus has a relatively original and concise GPCR regulation system. PMID:24952173

  10. Allosteric modulation in monomers and oligomers of a G protein-coupled receptor

    PubMed Central

    Shivnaraine, Rabindra V; Kelly, Brendan; Sankar, Krishana S; Redka, Dar'ya S; Han, Yi Rang; Huang, Fei; Elmslie, Gwendolynne; Pinto, Daniel; Li, Yuchong; Rocheleau, Jonathan V; Gradinaru, Claudiu C; Ellis, John; Wells, James W

    2016-01-01

    The M2 muscarinic receptor is the prototypic model of allostery in GPCRs, yet the molecular and the supramolecular determinants of such effects are unknown. Monomers and oligomers of the M2 muscarinic receptor therefore have been compared to identify those allosteric properties that are gained in oligomers. Allosteric interactions were monitored by means of a FRET-based sensor of conformation at the allosteric site and in pharmacological assays involving mutants engineered to preclude intramolecular effects. Electrostatic, steric, and conformational determinants of allostery at the atomic level were examined in molecular dynamics simulations. Allosteric effects in monomers were exclusively negative and derived primarily from intramolecular electrostatic repulsion between the allosteric and orthosteric ligands. Allosteric effects in oligomers could be positive or negative, depending upon the allosteric-orthosteric pair, and they arose from interactions within and between the constituent protomers. The complex behavior of oligomers is characteristic of muscarinic receptors in myocardial preparations. DOI: http://dx.doi.org/10.7554/eLife.11685.001 PMID:27151542

  11. G-protein-coupled glucocorticoid receptors on the pituitary cell membrane.

    PubMed

    Maier, Christina; Rünzler, Dominik; Schindelar, Julia; Grabner, Gottfried; Waldhäusl, Werner; Köhler, Gottfried; Luger, Anton

    2005-08-01

    Rapid, nongenomic actions of glucocorticoids (GCs) have been well documented, but information about putative membrane receptors that mediate them is scarce. We used fluorescence correlation spectroscopy to search for membrane GC-binding on the mouse pituitary cell line AtT-20. A slowly diffusing fraction (tau3; diffusion constant 3x10(-10) cm2 s-1) of fluorescein-labeled dexamethasone on the cell membrane corresponds to fluorescein-dexamethasone binding. Preincubation experiments were performed to test binding specificity: a 500-fold excess of unlabeled dexamethasone abolished subsequent fluorescein-dexamethasone membrane binding from 58+/-2 (control) to 8+/-1 (% of tau3, mean+/-s.e.m.), the natural ligand corticosterone prevented it partially (29+/-2), while the sex steroids estradiol (56+/-4) and progesterone (50+/-4) and the GC-receptor antagonist RU486 (56+/-2) had no effect. Preincubation with pertussis toxin resulted in disappearance of the slowest diffusion component (11+/-4) suggesting association of the receptor with a G-protein. Varying the concentration of fluorescein-dexamethasone showed that membrane binding is highly cooperative with an apparent Kd of 180 nM and Bmax of 230 nM. Taken together, these results demonstrate high-affinity GC-binding on the cell membrane of AtT-20 cells with characteristics distinct from intracellular binding. PMID:16079279

  12. Synergistically acting agonists and antagonists of G protein-coupled receptors prevent photoreceptor cell degeneration.

    PubMed

    Chen, Yu; Palczewska, Grazyna; Masuho, Ikuo; Gao, Songqi; Jin, Hui; Dong, Zhiqian; Gieser, Linn; Brooks, Matthew J; Kiser, Philip D; Kern, Timothy S; Martemyanov, Kirill A; Swaroop, Anand; Palczewski, Krzysztof

    2016-01-01

    Photoreceptor cell degeneration leads to visual impairment and blindness in several types of retinal disease. However, the discovery of safe and effective therapeutic strategies conferring photoreceptor cell protection remains challenging. Targeting distinct cellular pathways with low doses of different drugs that produce a functionally synergistic effect could provide a strategy for preventing or treating retinal dystrophies. We took a systems pharmacology approach to identify potential combination therapies using a mouse model of light-induced retinal degeneration. We showed that a combination of U.S. Food and Drug Administration-approved drugs that act on different G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptors (GPCRs) exhibited synergistic activity that protected retinas from light-induced degeneration even when each drug was administered at a low dose. In functional assays, the combined effects of these drugs were stimulation of Gi/o signaling by activating the dopamine receptors D2R and D4R, as well as inhibition of Gs and Gq signaling by antagonizing D1R and the α1A-adrenergic receptor ADRA1A, respectively. Moreover, transcriptome analyses demonstrated that such combined GPCR-targeted treatments preserved patterns of retinal gene expression that were more similar to those of the normal retina than did higher-dose monotherapy. Our study thus supports a systems pharmacology approach to identify treatments for retinopathies, an approach that could extend to other complex disorders. PMID:27460988

  13. Microvesicle and tunneling nanotube mediated intercellular transfer of g-protein coupled receptors in cell cultures

    SciTech Connect

    Guescini, M.; Leo, G.; Genedani, S.; Carone, C.; Pederzoli, F.; Ciruela, F.; Guidolin, D.; Stocchi, V.; Mantuano, M.; Borroto-Escuela, D.O.; Fuxe, K.; Agnati, L.F.

    2012-03-10

    Recent evidence shows that cells exchange collections of signals via microvesicles (MVs) and tunneling nano-tubes (TNTs). In this paper we have investigated whether in cell cultures GPCRs can be transferred by means of MVs and TNTs from a source cell to target cells. Western blot, transmission electron microscopy and gene expression analyses demonstrate that A{sub 2A} and D{sub 2} receptors are present in released MVs. In order to further demonstrate the involvement of MVs in cell-to-cell communication we created two populations of cells (HEK293T and COS-7) transiently transfected with D{sub 2}R-CFP or A{sub 2A}R-YFP. These two types of cells were co-cultured, and FRET analysis demonstrated simultaneously positive cells to the D{sub 2}R-CFP and A{sub 2A}R-YFP. Fluorescence microscopy analysis also showed that GPCRs can move from one cell to another also by means of TNTs. Finally, recipient cells pre-incubated for 24 h with A{sub 2A}R positive MVs were treated with the adenosine A{sub 2A} receptor agonist CGS-21680. The significant increase in cAMP accumulation clearly demonstrated that A{sub 2A}Rs were functionally competent in target cells. These findings demonstrate that A{sub 2A} receptors capable of recognizing and decoding extracellular signals can be safely transferred via MVs from source to target cells.

  14. Expression of G protein-coupled receptor 56 is associated with tumor progression in non-small-cell lung carcinoma patients

    PubMed Central

    Song, Yanjie; Li, Aiqin; Zhang, Li; Duan, Lingling

    2016-01-01

    Background G protein-coupled receptor 56 (GPR56) is an adhesion G protein-coupled receptor with essential functions for cell physiology and survival, and its expression correlates with prognosis in a number of malignancies. The aim of this study is to determine the relationship of GPR56 expression with clinicopathological parameters and prognosis in non-small-cell lung carcinoma (NSCLC). Methods The levels of GPR56 were evaluated by immunohistochemistry in 157 NSCLC tissue samples. The association between GPR56 and clinicopathological parameters was evaluated by χ2 test. Univariate and multivariate analyses were performed to demonstrate the prognosis role of GPR56. The function of GPR56 in NSCLC cell lines was also explored through overexpression and knockdown studies. Results The expression level of GPR56 in tumor tissues was significantly correlated with the TNM stage of NSCLC (P=0.005). Univariate and multivariate analyses revealed that GPR56 can act as an independent prognostic factor for overall survival. Furthermore, through overexpression and knockdown experiments, we confirmed that GPR56 can promote the proliferation and invasion of NSCLC cells. Conclusion GPR56 plays an important role in tumor development and may serve as a promising target for prognostic prediction in NSCLC. PMID:27462165

  15. International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, Classification, and Pharmacology of G Protein-Coupled Melatonin Receptors

    PubMed Central

    Delagrange, Philippe; Krause, Diana N.; Sugden, David; Cardinali, Daniel P.; Olcese, James

    2010-01-01

    The hormone melatonin (5-methoxy-N-acetyltryptamine) is synthesized primarily in the pineal gland and retina, and in several peripheral tissues and organs. In the circulation, the concentration of melatonin follows a circadian rhythm, with high levels at night providing timing cues to target tissues endowed with melatonin receptors. Melatonin receptors receive and translate melatonin's message to influence daily and seasonal rhythms of physiology and behavior. The melatonin message is translated through activation of two G protein-coupled receptors, MT1 and MT2, that are potential therapeutic targets in disorders ranging from insomnia and circadian sleep disorders to depression, cardiovascular diseases, and cancer. This review summarizes the steps taken since melatonin's discovery by Aaron Lerner in 1958 to functionally characterize, clone, and localize receptors in mammalian tissues. The pharmacological and molecular properties of the receptors are described as well as current efforts to discover and develop ligands for treatment of a number of illnesses, including sleep disorders, depression, and cancer. PMID:20605968

  16. The G protein-coupled receptor kinase-2 is a TGFbeta-inducible antagonist of TGFbeta signal transduction.

    PubMed

    Ho, Joanne; Cocolakis, Eftihia; Dumas, Victor M; Posner, Barry I; Laporte, Stéphane A; Lebrun, Jean-Jacques

    2005-09-21

    Signaling from the activin/transforming growth factor beta (TGFbeta) family of cytokines is a tightly regulated process. Disregulation of TGFbeta signaling is often the underlying basis for various cancers, tumor metastasis, inflammatory and autoimmune diseases. In this study, we identify the protein G-coupled receptor kinase 2 (GRK2), a kinase involved in the desensitization of G protein-coupled receptors (GPCR), as a downstream target and regulator of the TGFbeta-signaling cascade. TGFbeta-induced expression of GRK2 acts in a negative feedback loop to control TGFbeta biological responses. Upon TGFbeta stimulation, GRK2 associates with the receptor-regulated Smads (R-Smads) through their MH1 and MH2 domains and phosphorylates their linker region. GRK2 phosphorylation of the R-Smads inhibits their carboxyl-terminal, activating phosphorylation by the type I receptor kinase, thus preventing nuclear translocation of the Smad complex, leading to the inhibition of TGFbeta-mediated target gene expression, cell growth inhibition and apoptosis. Furthermore, we demonstrate that GRK2 antagonizes TGFbeta-induced target gene expression and apoptosis ex vivo in primary hepatocytes, establishing a new role for GRK2 in modulating single-transmembrane serine/threonine kinase receptor-mediated signal transduction. PMID:16121194

  17. Absorption of PCB126 by upper airways impairs G protein-coupled receptor-mediated immune response

    NASA Astrophysics Data System (ADS)

    Shimada, Ana Lúcia B.; Cruz, Wesley S.; Loiola, Rodrigo A.; Drewes, Carine C.; Dörr, Fabiane; Figueiredo, Natália G.; Pinto, Ernani; Farsky, Sandra H. P.

    2015-10-01

    PCB126 is a dioxin-like polychlorinated biphenyl (PCB) environmental pollutant with a significant impact on human health, as it bioaccumulates and causes severe toxicity. PCB126-induced immune toxicity has been described, although the mechanisms have not been fully elucidated. In this study, an in vivo protocol of PCB126 intoxication into male Wistar rats by intranasal route was used, which has not yet been described. The intoxication was characterised by PCB126 accumulation in the lungs and liver, and enhanced aryl hydrocarbon receptor expression in the liver, lungs, kidneys, and adipose tissues. Moreover, an innate immune deficiency was characterised by impairment of adhesion receptors on blood leukocytes and by reduced blood neutrophil locomotion and oxidative burst activation elicited by ex vivo G protein-coupled receptor (GPCR) activation. Specificity of PCB126 actions on the GPCR pathway was shown by normal burst oxidative activation evoked by Toll-like receptor 4 and protein kinase C direct activation. Moreover, in vivo PCB180 intoxication did not alter adhesion receptors on blood leukocytes either blood neutrophil locomotion, and only partially reduced the GPCR-induced burst oxidative activation on neutrophils. Therefore, a novel mechanism of in vivo PCB126 toxicity is described which impairs a pivotal inflammatory pathway to the host defence against infections.

  18. Orthogonal Optical Control of a G Protein-Coupled Receptor with a SNAP-Tethered Photochromic Ligand.

    PubMed

    Broichhagen, Johannes; Damijonaitis, Arunas; Levitz, Joshua; Sokol, Kevin R; Leippe, Philipp; Konrad, David; Isacoff, Ehud Y; Trauner, Dirk

    2015-10-28

    The covalent attachment of synthetic photoswitches is a general approach to impart light sensitivity onto native receptors. It mimics the logic of natural photoreceptors and significantly expands the reach of optogenetics. Here we describe a novel photoswitch design-the photoswitchable orthogonal remotely tethered ligand (PORTL)-that combines the genetically encoded SNAP-tag with photochromic ligands connected to a benzylguanine via a long flexible linker. We use the method to convert the G protein-coupled receptor mGluR2, a metabotropic glutamate receptor, into a photoreceptor (SNAG-mGluR2) that provides efficient optical control over the neuronal functions of mGluR2: presynaptic inhibition and control of excitability. The PORTL approach enables multiplexed optical control of different native receptors using distinct bioconjugation methods. It should be broadly applicable since SNAP-tags have proven to be reliable, many SNAP-tagged receptors are already available, and photochromic ligands on a long leash are readily designed and synthesized. PMID:27162996

  19. Site-specific incorporation of keto amino acids into functional G protein-coupled receptors using unnatural amino acid mutagenesis.

    PubMed

    Ye, Shixin; Köhrer, Caroline; Huber, Thomas; Kazmi, Manija; Sachdev, Pallavi; Yan, Elsa C Y; Bhagat, Aditi; RajBhandary, Uttam L; Sakmar, Thomas P

    2008-01-18

    G protein-coupled receptors (GPCRs) are ubiquitous heptahelical transmembrane proteins involved in a wide variety of signaling pathways. The work described here on application of unnatural amino acid mutagenesis to two GPCRs, the chemokine receptor CCR5 (a major co-receptor for the human immunodeficiency virus) and rhodopsin (the visual photoreceptor), adds a new dimension to studies of GPCRs. We incorporated the unnatural amino acids p-acetyl-L-phenylalanine (Acp) and p-benzoyl-L-phenylalanine (Bzp) into CCR5 at high efficiency in mammalian cells to produce functional receptors harboring reactive keto groups at three specific positions. We obtained functional mutant CCR5, at levels up to approximately 50% of wild type as judged by immunoblotting, cell surface expression, and ligand-dependent calcium flux. Rhodopsin containing Acp at three different sites was also purified in high yield (0.5-2 microg/10(7) cells) and reacted with fluorescein hydrazide in vitro to produce fluorescently labeled rhodopsin. The incorporation of reactive keto groups such as Acp or Bzp into GPCRs allows their reaction with different reagents to introduce a variety of spectroscopic and other probes. Bzp also provides the possibility of photo-cross-linking to identify precise sites of protein-protein interactions, including GPCR binding to G proteins and arrestins, and for understanding the molecular basis of ligand recognition by chemokine receptors. PMID:17993461

  20. Absorption of PCB126 by upper airways impairs G protein-coupled receptor-mediated immune response

    PubMed Central

    Shimada, Ana Lúcia B.; Cruz, Wesley S.; Loiola, Rodrigo A.; Drewes, Carine C.; Dörr, Fabiane; Figueiredo, Natália G.; Pinto, Ernani; Farsky, Sandra H. P.

    2015-01-01

    PCB126 is a dioxin-like polychlorinated biphenyl (PCB) environmental pollutant with a significant impact on human health, as it bioaccumulates and causes severe toxicity. PCB126-induced immune toxicity has been described, although the mechanisms have not been fully elucidated. In this study, an in vivo protocol of PCB126 intoxication into male Wistar rats by intranasal route was used, which has not yet been described. The intoxication was characterised by PCB126 accumulation in the lungs and liver, and enhanced aryl hydrocarbon receptor expression in the liver, lungs, kidneys, and adipose tissues. Moreover, an innate immune deficiency was characterised by impairment of adhesion receptors on blood leukocytes and by reduced blood neutrophil locomotion and oxidative burst activation elicited by ex vivo G protein-coupled receptor (GPCR) activation. Specificity of PCB126 actions on the GPCR pathway was shown by normal burst oxidative activation evoked by Toll-like receptor 4 and protein kinase C direct activation. Moreover, in vivo PCB180 intoxication did not alter adhesion receptors on blood leukocytes either blood neutrophil locomotion, and only partially reduced the GPCR-induced burst oxidative activation on neutrophils. Therefore, a novel mechanism of in vivo PCB126 toxicity is described which impairs a pivotal inflammatory pathway to the host defence against infections. PMID:26449762

  1. Orthogonal Optical Control of a G Protein-Coupled Receptor with a SNAP-Tethered Photochromic Ligand

    PubMed Central

    2015-01-01

    The covalent attachment of synthetic photoswitches is a general approach to impart light sensitivity onto native receptors. It mimics the logic of natural photoreceptors and significantly expands the reach of optogenetics. Here we describe a novel photoswitch design—the photoswitchable orthogonal remotely tethered ligand (PORTL)—that combines the genetically encoded SNAP-tag with photochromic ligands connected to a benzylguanine via a long flexible linker. We use the method to convert the G protein-coupled receptor mGluR2, a metabotropic glutamate receptor, into a photoreceptor (SNAG-mGluR2) that provides efficient optical control over the neuronal functions of mGluR2: presynaptic inhibition and control of excitability. The PORTL approach enables multiplexed optical control of different native receptors using distinct bioconjugation methods. It should be broadly applicable since SNAP-tags have proven to be reliable, many SNAP-tagged receptors are already available, and photochromic ligands on a long leash are readily designed and synthesized. PMID:27162996

  2. The ligand specificity of the G-protein-coupled receptor GPR34.

    PubMed

    Ritscher, Lars; Engemaier, Eva; Stäubert, Claudia; Liebscher, Ines; Schmidt, Philipp; Hermsdorf, Thomas; Römpler, Holger; Schulz, Angela; Schöneberg, Torsten

    2012-05-01

    Lyso-PS (lyso-phosphatidylserine) has been shown to activate the G(i/o)-protein-coupled receptor GPR34. Since in vitro and in vivo studies provided controversial results in assigning lyso-PS as the endogenous agonist for GPR34, we investigated the evolutionary conservation of agonist specificity in more detail. Except for some fish GPR34 subtypes, lyso-PS has no or very weak agonistic activity at most vertebrate GPR34 orthologues investigated. Using chimaeras we identified single positions in the second extracellular loop and the transmembrane helix 5 of carp subtype 2a that, if transferred to the human orthologue, enabled lyso-PS to activate the human GPR34. Significant improvement of agonist efficacy by changing only a few positions strongly argues against the hypothesis that nature optimized GPR34 as the receptor for lyso-PS. Phylogenetic analysis revealed several positions in some fish GPR34 orthologues which are under positive selection. These structural changes may indicate functional specification of these orthologues which can explain the species- and subtype-specific pharmacology of lyso-PS. Furthermore, we identified aminoethyl-carbamoyl ATP as an antagonist of carp GPR34, indicating ligand promiscuity with non-lipid compounds. The results of the present study suggest that lyso-PS has only a random agonistic activity at some GPR34 orthologues and the search for the endogenous agonist should consider additional chemical entities. PMID:22348703

  3. Nonradioactive GTP binding assay to monitor activation of g protein-coupled receptors.

    PubMed

    Frang, Heini; Mukkala, Veli-Matti; Syystö, Rita; Ollikka, Pia; Hurskainen, Pertti; Scheinin, Mika; Hemmilä, Ilkka

    2003-04-01

    GPCRs represent important targets for drug discovery because GPCRs participate in a wide range of cellular signaling pathways that play a role in a variety of pathological conditions. A large number of screening assays have been developed in HTS laboratories for the identification of hits or lead compounds acting on GPCRs. One type of assay that has found relatively widespread application, due to its at least in part generic nature, relies on the use of a radioactive GTP analogue, [(35)S]GTPgammaS. The G-protein alpha subunit is an essential part of the interaction between receptor and G proteins in transmembrane signaling, where the activated receptor catalyzes the release of GDP from Galpha, thereby enabling the subsequent binding of GTP or a GTP analogue. [(35)S]GTPgammaS allows the extent of this interaction to be followed quantitatively by determining the amount of radioactivity associated with cell membranes. However, with the increased desire to move assays to nonradioactive formats, there is a considerable need to develop a nonradioactive GTP binding assay to monitor ligand-induced changes in GPCR activity. The Eu-GTP binding assay described here is based on TRF that exploits the unique fluorescence properties of lanthanide chelates, and provides a powerful alternative to assays using radioisotopes. In this article, we have used the human alpha(2A)-AR as a model GPCR system to evaluate the usefulness of this Eu-GTP binding assay. PMID:15090192

  4. Regulation of epithelial morphogenesis by the G protein-coupled receptor mist and its ligand fog.

    PubMed

    Manning, Alyssa J; Peters, Kimberly A; Peifer, Mark; Rogers, Stephen L

    2013-11-12

    Epithelial morphogenesis is essential for shaping organs and tissues and for establishment of the three embryonic germ layers during gastrulation. Studies of gastrulation in Drosophila have provided insight into how epithelial morphogenesis is governed by developmental patterning mechanisms. We developed an assay to recapitulate morphogenetic shape changes in individual cultured cells and used RNA interference-based screening to identify Mist, a Drosophila G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor (GPCR) that transduces signals from the secreted ligand Folded gastrulation (Fog) in cultured cells. Mist functioned in Fog-dependent embryonic morphogenesis, and the transcription factor Snail regulated expression of mist in zygotes. Our data revealed how a cell fate transcriptional program acts through a ligand-GPCR pair to stimulate epithelial morphogenetic shape changes. PMID:24222713

  5. G Protein-Coupled Receptors - Targets for Fragment-based Drug Discovery.

    PubMed

    Lawson, Alastair D G

    2015-01-01

    As the considerable technical challenges involved with generating crystal structures of G (guanine nucleotide- binding) protein-coupled receptors (GPCRs) are starting to be successfully addressed, opportunities to apply fragment-based drug discovery (FBDD) to this class of target are becoming a reality. GPCRs represent a large and important family of drug targets with considerable clinical and commercial interest. While their general seven transmembrane helix bundle structures are amenable to therapeutic intervention with small molecules, to date successful drugs have primarily been discovered using traditional competitive or function-based screening. With advances in biophysical screening techniques such as Surface Plasmon Resonance (SPR) and Target-Immobilised NMR Screening (TINS), being matched to developments in molecular dynamics simulations, virtual screening and stabilisation of biologically relevant conformations of GPCRs, structure-based approaches using fragment starting points are beginning to be applied to the discovery of new generations of small molecules. PMID:26126904

  6. Confined Diffusion Without Fences of a G-Protein-Coupled Receptor as Revealed by Single Particle Tracking

    PubMed Central

    Daumas, Frédéric; Destainville, Nicolas; Millot, Claire; Lopez, André; Dean, David; Salomé, Laurence

    2003-01-01

    Single particle tracking is a powerful tool for probing the organization and dynamics of the plasma membrane constituents. We used this technique to study the μ-opioid receptor belonging to the large family of the G-protein-coupled receptors involved with other partners in a signal transduction pathway. The specific labeling of the receptor coupled to a T7-tag at its N-terminus, stably expressed in fibroblastic cells, was achieved by colloidal gold coupled to a monoclonal anti T7-tag antibody. The lateral movements of the particles were followed by nanovideomicroscopy at 40 ms time resolution during 2 min with a spatial precision of 15 nm. The receptors were found to have either a slow or directed diffusion mode (10%) or a walking confined diffusion mode (90%) composed of a long-term random diffusion and a short-term confined diffusion, and corresponding to a diffusion confined within a domain that itself diffuses. The results indicate that the confinement is due to an effective harmonic potential generated by long-range attraction between the membrane proteins. A simple model for interacting membrane proteins diffusion is proposed that explains the variations with the domain size of the short-term and long-term diffusion coefficients. PMID:12524289

  7. Transcriptome analysis of neuropeptides and G-protein coupled receptors (GPCRs) for neuropeptides in the brown planthopper Nilaparvata lugens.

    PubMed

    Tanaka, Yoshiaki; Suetsugu, Yoshitaka; Yamamoto, Kimiko; Noda, Hiroaki; Shinoda, Tetsuro

    2014-03-01

    The genes encoding neuropeptides, neurohormones and their putative G-protein coupled receptors were identified in the brown planthopper (BPH), Nilaparvata lugens (Stål) by transcriptome analysis (RNA-seq). Forty-eight candidate genes were found to encode neuropeptides or peptide hormones. These include all known insect neuropeptides and neurohormones, with the exception of neuropeptide-like precursor 2 (NPLP2) and trissin. The gene coding for prothoracicotropic hormone (PTTH) was first identified from hemimetabolous insect. A total of 57 putative neuropeptide GPCR genes were identified and phylogenetic analysis showed most of them to be closely related to insect GPCRs. A notable finding was the occurrence of vertebrate hormone receptors, thyrotropin-releasing hormone receptor (TRHR)-like GPCR and parathyroid hormone receptor (PTHR)-like GPCRs. These results suggest that N. lugens possesses the most comprehensive neuropeptide system yet found in insects. Moreover, our findings demonstrate the power of RNA-seq as a tool for analyzing the neuropeptide-related genes in the absence of whole genome sequence information. PMID:23932938

  8. The GPS Motif Is a Molecular Switch for Bimodal Activities of Adhesion Class G Protein-Coupled Receptors

    PubMed Central

    Prömel, Simone; Frickenhaus, Marie; Hughes, Samantha; Mestek, Lamia; Staunton, David; Woollard, Alison; Vakonakis, Ioannis; Schöneberg, Torsten; Schnabel, Ralf; Russ, Andreas P.; Langenhan, Tobias

    2012-01-01

    Summary Adhesion class G protein-coupled receptors (aGPCR) form the second largest group of seven-transmembrane-spanning (7TM) receptors whose molecular layout and function differ from canonical 7TM receptors. Despite their essential roles in immunity, tumorigenesis, and development, the mechanisms of aGPCR activation and signal transduction have remained obscure to date. Here, we use a transgenic assay to define the protein domains required in vivo for the activity of the prototypical aGPCR LAT-1/Latrophilin in Caenorhabditis elegans. We show that the GPCR proteolytic site (GPS) motif, the molecular hallmark feature of the entire aGPCR class, is essential for LAT-1 signaling serving in two different activity modes of the receptor. Surprisingly, neither mode requires cleavage but presence of the GPS, which relays interactions with at least two different partners. Our work thus uncovers the versatile nature of aGPCR activity in molecular detail and places the GPS motif in a central position for diverse protein-protein interactions. PMID:22938866

  9. Isolation of a novel G protein-coupled receptor (GPR4) localized to chromosome 19q13.3

    SciTech Connect

    Mahadevan, M.S.; Baird, S.; Bailly, J.E.

    1995-11-01

    We present the cloning and sequencing of the human gene for a novel G-protein coupled receptor (GPR4), from the critical myotonic dystrophy (DM) region on chromosome 19q13.3. The homologous porcine gene was isolated and sequenced as well. The genes of both species are intronless and contain an open reading frame encoding a protein of 362 amino acids. In human, two isoforms of GPR4 are expressed, differing in their 3{prime} untranslated region due to the use of alternate polyadenylation signals and measuring approximately 2.8 and 1.8 kb, respectively. Northern blot analysis showed that GPR4 is widely expressed, with higher levels in kidney, heart, and especially lung, where it is at least fivefold greater than in other tissues. Sequence analysis suggests that GPR4 is a peptide receptor and shares strongest homologies with purinergic receptors and receptors for angiotensin II, platelet activating factor, thrombin, and bradykinin. 25 refs., 3 figs., 1 tab.

  10. Unravelling intrinsic efficacy and ligand bias at G protein coupled receptors: A practical guide to assessing functional data.

    PubMed

    Stott, Lisa A; Hall, David A; Holliday, Nicholas D

    2016-02-01

    Stephenson's empirical definition of an agonist, as a ligand with binding affinity and intrinsic efficacy (the ability to activate the receptor once bound), underpins classical receptor pharmacology. Quantifying intrinsic efficacy using functional concentration response relationships has always presented an experimental challenge. The requirement for realistic determination of efficacy is emphasised by recent developments in our understanding of G protein coupled receptor (GPCR) agonists, with recognition that some ligands stabilise different active conformations of the receptor, leading to pathway-selective, or biased agonism. Biased ligands have potential as therapeutics with improved selectivity and clinical efficacy, but there are also pitfalls to the identification of pathway selective effects. Here we explore the basics of concentration response curve analysis, beginning with the need to distinguish ligand bias from other influences of the functional system under study. We consider the different approaches that have been used to quantify and compare biased ligands, many of which are based on the Black and Leff operational model of agonism. Some of the practical issues that accompany these analyses are highlighted, with opportunities to improve estimates in future, particularly in the separation of true agonist intrinsic efficacy from the contributions of system dependent coupling efficiency. Such methods are by their nature practical approaches, and all rely on Stephenson's separation of affinity and efficacy parameters, which are interdependent at the mechanistic level. Nevertheless, operational analysis methods can be justified by mechanistic models of GPCR activation, and if used wisely are key elements to biased ligand identification. PMID:26478533

  11. Altered immune response in mice deficient for the G protein-coupled receptor GPR34.

    PubMed

    Liebscher, Ines; Müller, Uwe; Teupser, Daniel; Engemaier, Eva; Engel, Kathrin M Y; Ritscher, Lars; Thor, Doreen; Sangkuhl, Katrin; Ricken, Albert; Wurm, Antje; Piehler, Daniel; Schmutzler, Sandra; Fuhrmann, Herbert; Albert, Frank W; Reichenbach, Andreas; Thiery, Joachim; Schöneberg, Torsten; Schulz, Angela

    2011-01-21

    The X-chromosomal GPR34 gene encodes an orphan G(i) protein-coupled receptor that is highly conserved among vertebrates. To evaluate the physiological relevance of GPR34, we generated a GPR34-deficient mouse line. GPR34-deficient mice were vital, reproduced normally, and showed no gross abnormalities in anatomical, histological, laboratory chemistry, or behavioral investigations under standard housing. Because GPR34 is highly expressed in mononuclear cells of the immune system, mice were specifically tested for altered functions of these cell types. Following immunization with methylated BSA, the number of granulocytes and macrophages in spleens was significantly lower in GPR34-deficient mice as in wild-type mice. GPR34-deficient mice showed significantly increased paw swelling in the delayed type hypersensitivity test and higher pathogen burden in extrapulmonary tissues after pulmonary infection with Cryptococcus neoformans compared with wild-type mice. The findings in delayed type hypersensitivity and infection tests were accompanied by significantly different basal and stimulated TNF-α, GM-CSF, and IFN-γ levels in GPR34-deficient animals. Our data point toward a functional role of GPR34 in the cellular response to immunological challenges. PMID:21097509

  12. Altered Immune Response in Mice Deficient for the G Protein-coupled Receptor GPR34*

    PubMed Central

    Liebscher, Ines; Müller, Uwe; Teupser, Daniel; Engemaier, Eva; Engel, Kathrin M. Y.; Ritscher, Lars; Thor, Doreen; Sangkuhl, Katrin; Ricken, Albert; Wurm, Antje; Piehler, Daniel; Schmutzler, Sandra; Fuhrmann, Herbert; Albert, Frank W.; Reichenbach, Andreas; Thiery, Joachim; Schöneberg, Torsten; Schulz, Angela

    2011-01-01

    The X-chromosomal GPR34 gene encodes an orphan Gi protein-coupled receptor that is highly conserved among vertebrates. To evaluate the physiological relevance of GPR34, we generated a GPR34-deficient mouse line. GPR34-deficient mice were vital, reproduced normally, and showed no gross abnormalities in anatomical, histological, laboratory chemistry, or behavioral investigations under standard housing. Because GPR34 is highly expressed in mononuclear cells of the immune system, mice were specifically tested for altered functions of these cell types. Following immunization with methylated BSA, the number of granulocytes and macrophages in spleens was significantly lower in GPR34-deficient mice as in wild-type mice. GPR34-deficient mice showed significantly increased paw swelling in the delayed type hypersensitivity test and higher pathogen burden in extrapulmonary tissues after pulmonary infection with Cryptococcus neoformans compared with wild-type mice. The findings in delayed type hypersensitivity and infection tests were accompanied by significantly different basal and stimulated TNF-α, GM-CSF, and IFN-γ levels in GPR34-deficient animals. Our data point toward a functional role of GPR34 in the cellular response to immunological challenges. PMID:21097509

  13. Structure-based network analysis of an evolved G protein-coupled receptor homodimer interface

    PubMed Central

    Nichols, Sara E; Hernández, Carlos X; Wang, Yi; McCammon, James Andrew

    2013-01-01

    Crystallographic structures and experimental assays of human CXC chemokine receptor type 4 (CXCR4) provide strong evidence for the capacity to homodimerize, potentially as a means of allosteric regulation. Even so, how this homodimer forms and its biological significance has yet to be fully characterized. By applying principles from network analysis, sequence-based approaches such as statistical coupling analysis to determine coevolutionary residues, can be used in conjunction with molecular dynamics simulations to identify residues relevant to dimerization. Here, the predominant coevolution sector lies along the observed dimer interface, suggesting functional relevance. Furthermore, coevolution scoring provides a basis for determining significant nodes, termed hubs, in the network formed by residues found along the interface of the homodimer. These node residues coincide with hotspots indicating potential druggability. Drug design efforts targeting such key residues could potentially result in modulation of binding and therapeutic benefits for disease states, such as lung cancers, lymphomas and latent HIV-1 infection. Furthermore, this method may be applied to any protein–protein interaction. PMID:23553730

  14. Identification and Characterization of Novel Variations in Platelet G-Protein Coupled Receptor (GPCR) Genes in Patients Historically Diagnosed with Type 1 von Willebrand Disease

    PubMed Central

    Leo, Vincenzo C.; Sabi, Essa; Cunningham, Margaret R.; Eikenboom, Jeroen C.; Lethagen, Stefan; Schneppenheim, Reinhard; Goodeve, Anne C.; Watson, Steve P.; Mundell, Stuart J.; Daly, Martina E.

    2015-01-01

    The clinical expression of type 1 von Willebrand disease may be modified by co-inheritance of other mild bleeding diatheses. We previously showed that mutations in the platelet P2Y12 ADP receptor gene (P2RY12) could contribute to the bleeding phenotype in patients with type 1 von Willebrand disease. Here we investigated whether variations in platelet G protein-coupled receptor genes other than P2RY12 also contributed to the bleeding phenotype. Platelet G protein-coupled receptor genes P2RY1, F2R, F2RL3, TBXA2R and PTGIR were sequenced in 146 index cases with type 1 von Willebrand disease and the potential effects of identified single nucleotide variations were assessed using in silico methods and heterologous expression analysis. Seven heterozygous single nucleotide variations were identified in 8 index cases. Two single nucleotide variations were detected in F2R; a novel c.-67G>C transversion which reduced F2R transcriptional activity and a rare c.1063C>T transition predicting a p.L355F substitution which did not interfere with PAR1 expression or signalling. Two synonymous single nucleotide variations were identified in F2RL3 (c.402C>G, p.A134 =; c.1029 G>C p.V343 =), both of which introduced less commonly used codons and were predicted to be deleterious, though neither of them affected PAR4 receptor expression. A third single nucleotide variation in F2RL3 (c.65 C>A; p.T22N) was co-inherited with a synonymous single nucleotide variation in TBXA2R (c.6680 C>T, p.S218 =). Expression and signalling of the p.T22N PAR4 variant was similar to wild-type, while the TBXA2R variation introduced a cryptic splice site that was predicted to cause premature termination of protein translation. The enrichment of single nucleotide variations in G protein-coupled receptor genes among type 1 von Willebrand disease patients supports the view of type 1 von Willebrand disease as a polygenic disorder. PMID:26630678

  15. Identification and Characterization of Novel Variations in Platelet G-Protein Coupled Receptor (GPCR) Genes in Patients Historically Diagnosed with Type 1 von Willebrand Disease.

    PubMed

    Stockley, Jacqueline; Nisar, Shaista P; Leo, Vincenzo C; Sabi, Essa; Cunningham, Margaret R; Eikenboom, Jeroen C; Lethagen, Stefan; Schneppenheim, Reinhard; Goodeve, Anne C; Watson, Steve P; Mundell, Stuart J; Daly, Martina E

    2015-01-01

    The clinical expression of type 1 von Willebrand disease may be modified by co-inheritance of other mild bleeding diatheses. We previously showed that mutations in the platelet P2Y12 ADP receptor gene (P2RY12) could contribute to the bleeding phenotype in patients with type 1 von Willebrand disease. Here we investigated whether variations in platelet G protein-coupled receptor genes other than P2RY12 also contributed to the bleeding phenotype. Platelet G protein-coupled receptor genes P2RY1, F2R, F2RL3, TBXA2R and PTGIR were sequenced in 146 index cases with type 1 von Willebrand disease and the potential effects of identified single nucleotide variations were assessed using in silico methods and heterologous expression analysis. Seven heterozygous single nucleotide variations were identified in 8 index cases. Two single nucleotide variations were detected in F2R; a novel c.-67G>C transversion which reduced F2R transcriptional activity and a rare c.1063C>T transition predicting a p.L355F substitution which did not interfere with PAR1 expression or signalling. Two synonymous single nucleotide variations were identified in F2RL3 (c.402C>G, p.A134 =; c.1029 G>C p.V343 =), both of which introduced less commonly used codons and were predicted to be deleterious, though neither of them affected PAR4 receptor expression. A third single nucleotide variation in F2RL3 (c.65 C>A; p.T22N) was co-inherited with a synonymous single nucleotide variation in TBXA2R (c.6680 C>T, p.S218 =). Expression and signalling of the p.T22N PAR4 variant was similar to wild-type, while the TBXA2R variation introduced a cryptic splice site that was predicted to cause premature termination of protein translation. The enrichment of single nucleotide variations in G protein-coupled receptor genes among type 1 von Willebrand disease patients supports the view of type 1 von Willebrand disease as a polygenic disorder. PMID:26630678

  16. Identification of a Chemoattractant G-Protein-Coupled Receptor for Folic Acid that Controls Both Chemotaxis and Phagocytosis.

    PubMed

    Pan, Miao; Xu, Xuehua; Chen, Yong; Jin, Tian

    2016-02-22

    Eukaryotic phagocytes search and destroy invading microorganisms via chemotaxis and phagocytosis. The social amoeba Dictyostelium discoideum is a professional phagocyte that chases bacteria through chemotaxis and engulfs them as food via phagocytosis. G-protein-coupled receptors (GPCRs) are known for detecting chemoattractants and directing cell migration, but their roles in phagocytosis are not clear. Here, we developed a quantitative phosphoproteomic technique to discover signaling components. Using this approach, we discovered the long sought after folic acid receptor, fAR1, in D. discoideum. We showed that the seven-transmembrane receptor fAR1 is required for folic acid-mediated signaling events. Significantly, we discovered that fAR1 is essential for both chemotaxis and phagocytosis of bacteria, thereby representing a chemoattractant GPCR that mediates not only chasing but also ingesting bacteria. We revealed that a phagocyte is able to internalize particles via a chemoattractant-mediated engulfment process. We propose that mammalian phagocytes may also use this mechanism to engulf and ingest bacterial pathogens. PMID:26906738

  17. Monitoring G protein-coupled receptor and β-arrestin trafficking in live cells using enhanced bystander BRET.

    PubMed

    Namkung, Yoon; Le Gouill, Christian; Lukashova, Viktoria; Kobayashi, Hiroyuki; Hogue, Mireille; Khoury, Etienne; Song, Mideum; Bouvier, Michel; Laporte, Stéphane A

    2016-01-01

    Endocytosis and intracellular trafficking of receptors are pivotal to maintain physiological functions and drug action; however, robust quantitative approaches are lacking to study such processes in live cells. Here we present new bioluminescence resonance energy transfer (BRET) sensors to quantitatively monitor G protein-coupled receptors (GPCRs) and β-arrestin trafficking. These sensors are based on bystander BRET and use the naturally interacting chromophores luciferase (RLuc) and green fluorescent protein (rGFP) from Renilla. The versatility and robustness of this approach are exemplified by anchoring rGFP at the plasma membrane or in endosomes to generate high dynamic spectrometric BRET signals on ligand-promoted recruitment or sequestration of RLuc-tagged proteins to, or from, specific cell compartments, as well as sensitive subcellular BRET imaging for protein translocation visualization. These sensors are scalable to high-throughput formats and allow quantitative pharmacological studies of GPCR trafficking in real time, in live cells, revealing ligand-dependent biased trafficking of receptor/β-arrestin complexes. PMID:27397672

  18. Identification and expression profiles of neuropeptides and their G protein-coupled receptors in the rice stem borer Chilo suppressalis.

    PubMed

    Xu, Gang; Gu, Gui-Xiang; Teng, Zi-Wen; Wu, Shun-Fan; Huang, Jia; Song, Qi-Sheng; Ye, Gong-Yin; Fang, Qi

    2016-01-01

    In insects, neuropeptides play important roles in the regulation of multiple physiological processes by binding to their corresponding receptors, which are primarily G protein-coupled receptors (GPCRs). The genes encoding neuropeptides and their associated GPCRs in the rice stem borer Chilo suppressalis were identified by a transcriptomic analysis and were used to identify potential targets for the disruption of physiological processes and the protection of crops. Forty-three candidate genes were found to encode the neuropeptide precursors for all known insect neuropeptides except for arginine-vasopressin-like peptide (AVLP), CNMamide, neuropeptide-like precursors 2-4 (NPLP2-4), and proctolin. In addition, novel alternative splicing variants of three neuropeptide genes (allatostatin CC, CCHamide 1, and short neuropeptide F) are reported for the first time, and 51 putative neuropeptide GPCRs were identified. Phylogenetic analyses demonstrated that 44 of these GPCRs belong to the A-family (or rhodopsin-like), 5 belong to the B-family (or secretin-like), and 2 are leucine-rich repeat-containing GPCRs. These GPCRs and their likely ligands were also described. qRT-PCR analyses revealed the expression profiles of the neuropeptide precursors and GPCR genes in various tissues of C. suppressalis. Our study provides fundamental information that may further our understanding of neuropeptidergic signaling systems in Lepidoptera and aid in the design of peptidomimetics, pseudopeptides or small molecules capable of disrupting the physiological processes regulated by these signaling molecules and their receptors. PMID:27353701

  19. Identification and expression profiles of neuropeptides and their G protein-coupled receptors in the rice stem borer Chilo suppressalis

    PubMed Central

    Xu, Gang; Gu, Gui-Xiang; Teng, Zi-Wen; Wu, Shun-Fan; Huang, Jia; Song, Qi-Sheng; Ye, Gong-Yin; Fang, Qi

    2016-01-01

    In insects, neuropeptides play important roles in the regulation of multiple physiological processes by binding to their corresponding receptors, which are primarily G protein-coupled receptors (GPCRs). The genes encoding neuropeptides and their associated GPCRs in the rice stem borer Chilo suppressalis were identified by a transcriptomic analysis and were used to identify potential targets for the disruption of physiological processes and the protection of crops. Forty-three candidate genes were found to encode the neuropeptide precursors for all known insect neuropeptides except for arginine-vasopressin-like peptide (AVLP), CNMamide, neuropeptide-like precursors 2-4 (NPLP2-4), and proctolin. In addition, novel alternative splicing variants of three neuropeptide genes (allatostatin CC, CCHamide 1, and short neuropeptide F) are reported for the first time, and 51 putative neuropeptide GPCRs were identified. Phylogenetic analyses demonstrated that 44 of these GPCRs belong to the A-family (or rhodopsin-like), 5 belong to the B-family (or secretin-like), and 2 are leucine-rich repeat-containing GPCRs. These GPCRs and their likely ligands were also described. qRT-PCR analyses revealed the expression profiles of the neuropeptide precursors and GPCR genes in various tissues of C. suppressalis. Our study provides fundamental information that may further our understanding of neuropeptidergic signaling systems in Lepidoptera and aid in the design of peptidomimetics, pseudopeptides or small molecules capable of disrupting the physiological processes regulated by these signaling molecules and their receptors. PMID:27353701

  20. Phosphatidic acid phospholipase A1 mediates ER-Golgi transit of a family of G protein-coupled receptors.

    PubMed

    Kunduri, Govind; Yuan, Changqing; Parthibane, Velayoudame; Nyswaner, Katherine M; Kanwar, Ritu; Nagashima, Kunio; Britt, Steven G; Mehta, Nickita; Kotu, Varshika; Porterfield, Mindy; Tiemeyer, Michael; Dolph, Patrick J; Acharya, Usha; Acharya, Jairaj K

    2014-07-01

    The coat protein II (COPII)-coated vesicular system transports newly synthesized secretory and membrane proteins from the endoplasmic reticulum (ER) to the Golgi complex. Recruitment of cargo into COPII vesicles requires an interaction of COPII proteins either with the cargo molecules directly or with cargo receptors for anterograde trafficking. We show that cytosolic phosphatidic acid phospholipase A1 (PAPLA1) interacts with COPII protein family members and is required for the transport of Rh1 (rhodopsin 1), an N-glycosylated G protein-coupled receptor (GPCR), from the ER to the Golgi complex. In papla1 mutants, in the absence of transport to the Golgi, Rh1 is aberrantly glycosylated and is mislocalized. These defects lead to decreased levels of the protein and decreased sensitivity of the photoreceptors to light. Several GPCRs, including other rhodopsins and Bride of sevenless, are similarly affected. Our findings show that a cytosolic protein is necessary for transit of selective transmembrane receptor cargo by the COPII coat for anterograde trafficking. PMID:25002678

  1. Extracellular surface residues of the α1B-adrenoceptor critical for G protein-coupled receptor function.

    PubMed

    Ragnarsson, Lotten; Andersson, Åsa; Thomas, Walter G; Lewis, Richard J

    2015-01-01

    Ligand binding and conformational changes that accompany signaling from G protein-coupled receptors (GPCRs) have mostly focused on the role of transmembrane helices and intracellular loop regions. However, recent studies, including several GPCRs cocrystallized with bound ligands, suggest that the extracellular surface (ECS) of GPCRs plays an important role in ligand recognition, selectivity, and binding, as well as potentially contributing to receptor activation and signaling. This study applied alanine-scanning mutagenesis to investigate the role of the complete ECS of the α1B-adrenoreceptor on norepinephrine (NE) potency, affinity, and efficacy. Half (24 of 48) of the ECS mutations significantly decreased NE potency in an inositol 1-phosphate assay. Most mutations reduced NE affinity (17) determined from [(3)H]prazosin displacement studies, whereas four mutations at the entrance to the NE binding pocket enhanced NE affinity. Removing the influence of NE affinity and receptor expression levels on NE potency gave a measure of NE efficacy, which was significantly decreased for 11 of 48 ECS mutants. These different effects tended to cluster to different regions of the ECS, which is consistent with different regions of the ECS playing discrete functional roles. Exposed ECS residues at the entrance to the NE binding pocket mostly affected NE affinity, whereas buried or structurally significant residues mostly affected NE efficacy. The broad potential for ECS mutations to affect GPCR function has relevance for the increasing number of nonsynonymous single nucleotide polymorphisms now being identified in GPCRs. PMID:25352041

  2. Myocardial pathology induced by aldosterone is dependent on non-canonical activities of G protein-coupled receptor kinases

    PubMed Central

    Cannavo, Alessandro; Liccardo, Daniela; Eguchi, Akito; Elliott, Katherine J.; Traynham, Christopher J.; Ibetti, Jessica; Eguchi, Satoru; Leosco, Dario; Ferrara, Nicola; Rengo, Giuseppe; Koch, Walter J.

    2016-01-01

    Hyper-aldosteronism is associated with myocardial dysfunction including induction of cardiac fibrosis and maladaptive hypertrophy. Mechanisms of these cardiotoxicities are not fully understood. Here we show that mineralocorticoid receptor (MR) activation by aldosterone leads to pathological myocardial signalling mediated by mitochondrial G protein-coupled receptor kinase 2 (GRK2) pro-death activity and GRK5 pro-hypertrophic action. Moreover, these MR-dependent GRK2 and GRK5 non-canonical activities appear to involve cross-talk with the angiotensin II type-1 receptor (AT1R). Most importantly, we show that ventricular dysfunction caused by chronic hyper-aldosteronism in vivo is completely prevented in cardiac Grk2 knockout mice (KO) and to a lesser extent in Grk5 KO mice. However, aldosterone-induced cardiac hypertrophy is totally prevented in Grk5 KO mice. We also show human data consistent with MR activation status in heart failure influencing GRK2 levels. Therefore, our study uncovers GRKs as targets for ameliorating pathological cardiac effects associated with high-aldosterone levels. PMID:26932512

  3. Constitutive Activation of G Protein-Coupled Receptors and Diseases: Insights into Mechanisms of Activation and Therapeutics

    PubMed Central

    Tao, Ya-Xiong

    2008-01-01

    The existence of constitutive activity for G protein-coupled receptors (GPCRs) was first described in 1980s. In 1991, the first naturally occurring constitutively active mutations in GPCRs that cause diseases were reported in rhodopsin. Since then, numerous constitutively active mutations that cause human diseases were reported in several additional receptors. More recently, loss of constitutive activity was postulated to also cause diseases. Animal models expressing some of these mutants confirmed the roles of these mutations in the pathogenesis of the diseases. Detailed functional studies of these naturally occurring mutations, combined with homology modeling using rhodopsin crystal structure as the template, lead to important insights into the mechanism of activation in the absence of crystal structure of GPCRs in active state. Search for inverse agonists on these receptors will be critical for correcting the diseases cause by activating mutations in GPCRs. Theoretically, these inverse agonists are better therapeutics than neutral antagonists in treating genetic diseases caused by constitutively activating mutations in GPCRs. PMID:18768149

  4. Leucine-rich repeat-containing G-protein-coupled receptor 5 is associated with invasion, metastasis, and could be a potential therapeutic target in human gastric cancer

    PubMed Central

    Xi, H Q; Cai, A Z; Wu, X S; Cui, J X; Shen, W S; Bian, S B; Wang, N; Li, J Y; Lu, C R; Song, Z; Wei, B; Chen, L

    2014-01-01

    Background: Leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5), which is identified as a novel intestinal stem cell marker, is overexpressed in various tumours. In this study, we explore Lgr5 expression in gastric carcinoma and analyse its role in invasion, metastasis, and prognosis in carcinoma. Methods: A combination of immunohistochemistry, western blotting, and quantitative reverse transcription–polymerase chain reaction were used to detect mRNA and protein expression levels of Lgr5 and matrix metalloproteinase 2 (MMP2). Small interfering RNA against Lgr5 was designed, synthesised, and transfected into AGS cells. The effects of Lgr5 siRNA on cell invasion were detected by transwell invasion chamber assay and wound healing assay. Results: Leucine-rich repeat-containing G-protein-coupled receptor 5 expression was significantly higher in gastric carcinomas than in normal mucosa. Leucine-rich repeat-containing G-protein-coupled receptor 5 expression positively correlated with the depth of invasion, lymph node metastasis, distance of metastasis, and MMP2 expression levels. Multivariate analysis showed that Lgr5 had an independent effect on survival, and that it positively correlated with MMP2. Leucine-rich repeat-containing G-protein-coupled receptor 5 siRNAs inhibited Lgr5 mRNA and protein expression. Transwell assays indicated that these siRNAs resulted in significantly fewer cells migrating through the polycarbonate membrane, and wound healing assay also indicated that siRNAs decreased the migration of cells. Inhibition of Lgr5 resulted in a significant decrease in MMP2 and β-catenin levels compared with those in controls. Conclusions: Leucine-rich repeat-containing G-protein-coupled receptor 5 was correlated with invasion and metastasis. Leucine-rich repeat-containing G-protein-coupled receptor 5 inhibition could serve as a novel therapeutic approach. PMID:24594994

  5. G protein-coupled receptor kinase 6/β-arrestin 2 system in a rat model of dopamine supersensitivity psychosis.

    PubMed

    Oda, Yasunori; Tadokoro, Shigenori; Takase, Masayuki; Kanahara, Nobuhisa; Watanabe, Hiroyuki; Shirayama, Yukihiko; Hashimoto, Kenji; Iyo, Masaomi

    2015-12-01

    In humans, long-term antipsychotic treatment is known to induce movement disorders and a psychosis, called dopamine supersensitivity psychosis (DSP). The mechanism by which chronic administration of antipsychotic(s) causes DSP may be the treatment-induced up-regulation of dopamine D2 receptors (DRD2). G protein-coupled receptor kinase 6 (GRK6) and beta-arrestin 2 (ARRB2) play important roles in the trafficking of DRD2 by phosphorylation and internalization. We investigated the effects of chronic continuous treatment with mini-pump-administered haloperidol (HAL) on the sensitivity of Wistar rats to dopamine, as measured by the locomotor response to methamphetamine (MAP) and the density of striatal DRD2. Chronic continuous treatment with HAL resulted in significantly higher locomotor response to MAP and significantly higher striatal DRD2 density compared with those in rats administered vehicle (VEH). Enzyme-linked immunosorbent assays revealed that striatal ARRB2 in DSP model rats tended to decrease in comparison with that in the VEH group. In addition, the ratio of GRK6/ARRB2 in DSP model rats was significantly higher than that in controls. Our results suggest that alterations of the GRK6 and ARRB2 system could induce both DRD2 up-regulation and impairment of the dopamine signaling pathway, resulting potentially in the development of DSP. PMID:26174132

  6. Ligand Residence Time at G-protein-Coupled Receptors-Why We Should Take Our Time To Study It.

    PubMed

    Hoffmann, C; Castro, M; Rinken, A; Leurs, R; Hill, S J; Vischer, H F

    2015-09-01

    Over the past decade the kinetics of ligand binding to a receptor have received increasing interest. The concept of drug-target residence time is becoming an invaluable parameter for drug optimization. It holds great promise for drug development, and its optimization is thought to reduce off-target effects. The success of long-acting drugs like tiotropium support this hypothesis. Nonetheless, we know surprisingly little about the dynamics and the molecular detail of the drug binding process. Because protein dynamics and adaptation during the binding event will change the conformation of the protein, ligand binding will not be the static process that is often described. This can cause problems because simple mathematical models often fail to adequately describe the dynamics of the binding process. In this minireview we will discuss the current situation with an emphasis on G-protein-coupled receptors. These are important membrane protein drug targets that undergo conformational changes upon agonist binding to communicate signaling information across the plasma membrane of cells. PMID:26152198

  7. G protein-coupled receptors in stem cell maintenance and somatic reprogramming to pluripotent or cancer stem cells

    PubMed Central

    Choi, Hye Yeon; Saha, Subbroto Kumar; Kim, Kyeongseok; Kim, Sangsu; Yang, Gwang-Mo; Kim, BongWoo; Kim, Jin-hoi; Cho, Ssang-Goo

    2015-01-01

    G protein-coupled receptors (GPCRs) are a large class of transmembrane receptors categorized into five distinct families: rhodopsin, secretin, adhesion, glutamate, and frizzled. They bind and regulate 80% of all hormones and account for 20-50% of the pharmaceuticals currently on the market. Hundreds of GPCRs integrate and coordinate the functions of individual cells, mediating signaling between various organs. GPCRs are crucial players in tumor progression, adipogenesis, and inflammation. Several studies have also confirmed their central roles in embryonic development and stem cell maintenance. Recently, GPCRs have emerged as key players in the regulation of cell survival, proliferation, migration, and self-renewal in pluripotent (PSCs) and cancer stem cells (CSCs). Our study and other reports have revealed that the expression of many GPCRs is modulated during the generation of induced PSCs (iPSCs) or CSCs as well as during CSC sphere formation. These GPCRs may have crucial roles in the regulation of selfrenewal and other biological properties of iPSCs and CSCs. This review addresses the current understanding of the role of GPCRs in stem cell maintenance and somatic reprogramming to PSCs or CSCs. [BMB Reports 2015; 48(2): 68-80] PMID:25413305

  8. Involvement of the G-protein-coupled receptor 4 in RANKL expression by osteoblasts in an acidic environment.

    PubMed

    Okito, Asuka; Nakahama, Ken-Ichi; Akiyama, Masako; Ono, Takashi; Morita, Ikuo

    2015-03-01

    Osteoclast activity is enhanced in acidic environments following systemic or local inflammation. However, the regulatory mechanism of receptor activator of NF-κB ligand (RANKL) expression in osteoblasts under acidic conditions is not fully understood. In the present paper, we detected the mRNA expression of the G-protein-coupled receptor (GPR) proton sensors GPR4 and GPR65 (T-cell death-associated gene 8, TDAG8), in osteoblasts. RANKL expression and the cyclic AMP (cAMP) level in osteoblasts were up-regulated under acidic culture conditions. Acidosis-induced up-regulation of RANKL was abolished by the protein kinase A inhibitor H89. To clarify the role of GPR4 in RANKL expression, GPR4 gain and loss of function experiments were performed. Gene knockdown and forced expression of GPR4 caused reduction and induction of RANKL expression, respectively. These results suggested that, at least in part, RANKL expression by osteoblasts in an acidic environment was mediated by cAMP/PKA signaling resulting from GPR4 activation. A comprehensive microarray analysis of gene expression of osteoblasts revealed that, under acidic conditions, the phenotype of osteoblasts was that of an osteoclast supporting cell rather than that of a mineralizing cell. These findings will contribute to a molecular understanding of bone disruption in an acidic environment. PMID:25668130

  9. Interaction of Glucagon G-Protein Coupled Receptor with Known Natural Antidiabetic Compounds: Multiscoring In Silico Approach

    PubMed Central

    Baig, M. H.; Ahmad, K.; Hasan, Q.; Khan, M. K. A.; Rao, N. S.; Kamal, M. A.; Choi, I.

    2015-01-01

    Glucagon receptor (GCGR) is a secretin-like (class B) family of G-protein coupled receptors (GPCRs) in humans that plays an important role in elevating the glucose concentration in blood and has thus become one of the promising therapeutic targets for treatment of type 2 diabetes mellitus. GCGR based inhibitors for the treatment of type 2 diabetes are either glucagon neutralizers or small molecular antagonists. Management of diabetes without any side effects is still a challenge to the medical system, and the search for a new and effective natural GCGR antagonist is an important area for the treatment of type 2 diabetes. In the present study, a number of natural compounds containing antidiabetic properties were selected from the literature and their binding potential against GCGR was determined using molecular docking and other in silico approaches. Among all selected natural compounds, curcumin was found to be the most effective compound against GCGR followed by amorfrutin 1 and 4-hydroxyderricin. These compounds were rescored to confirm the accuracy of binding using another scoring function (x-score). The final conclusions were drawn based on the results obtained from the GOLD and x-score. Further experiments were conducted to identify the atomic level interactions of selected compounds with GCGR. PMID:26236379

  10. Quantitative analysis of G-protein-coupled receptor internalization using DnaE intein-based assay.

    PubMed

    Lu, Bin; Chen, Linjie; Zhang, Yaping; Shi, Ying; Zhou, Naiming

    2016-01-01

    G-protein-coupled receptors (GPCRs), the largest family of cell surface receptors, are involved in many physiological processes. They represent highly important therapeutic targets for drug discovery. Currently, there are numerous cell-based assays developed for the pharmacological profiling of GPCRs and the identification of novel agonists and antagonists. However, the development of new, faster, easier, and more cost-effective approaches to detect GPCR activity remains highly desirable. β-arrestin-dependent internalization has been demonstrated to be a common mechanism for most GPCRs. Here we describe a novel assay for quantitative analysis of GPCR internalization based on DnaE intein-mediated reconstitution of fragmented Renilla luciferase or Firefly luciferase when activated GPCRs interact with β-arrestin2 or Rab5. Further validation, using functionally divergent GPCRs, showed that EC50 values obtained for the known agonists and antagonists were in close agreement with the results of previous reports. This suggests that this assay is sensitive enough to permit quantification of GPCR internalization. Compared with conventional assays, this novel assay system is cost-effective, rapid, and easy to manipulate. These advantages may allow this assay to be used universally as a functional cell-based system for GPCR characterization and in the screening process of drug discovery. PMID:26928549

  11. Identification of co-evolving sites in the ligand binding domain of G protein-coupled receptors using mutual information

    NASA Astrophysics Data System (ADS)

    Fatakia, Sarosh N.; Costanzi, Stefano; Chow, Carson C.

    2008-03-01

    G protein-coupled receptors (GPCRs) are the largest superfamily of membrane proteins in humans. They are involved in signal transduction in numerous cellular processes and are the most common target for pharmacological intervention via activation or inhibition. Identification of functionally important sites is relevant for better understanding the ligand-receptor interaction and therefore for drug delivery. In a superfamily of proteins, functionally important but co-evolving sites are not easily identified in a multiple sequence alignment (MSA). Using a MSA of trans-membrane (TM) domains of GPCR superfamily, we identify sites which co-evolve, and may therefore be functionally important. Assigning the TM site as a node and the MI of site pairs as an inverse inter-node distance, a MI graph is established. Co-evolving sites are then identified via this graph. Nodes characterized by high connectivity are located within the commonly accepted ligand binding site of GPCRs, suggesting that concerted co-evolution of a number of neighboring residues gave rise to a multitude of subfamilies each recognizing a specific set of ligands. MI and graph analysis may serve as a tool for the identification of topologically conserved binding pockets in the families of evolutionarily related proteins.

  12. Actions of translocator protein ligands on neutrophil adhesion and motility induced by G-protein coupled receptor signaling.

    PubMed

    de Lima, Camila Bento; Tamura, Eduardo K; Montero-Melendez, Trindad; Palermo-Neto, João; Perretti, Mauro; Markus, Regina P; Farsky, Sandra Helena Poliselli

    2012-01-13

    The 18 kDa translocator protein (TSPO) also known as the peripheral benzodiazepine receptor (PBR), mediates the transportation of cholesterol and anions from the outer to the inner mitochondrial membrane in different cells types. Although recent evidences indicate a potential role for TSPO in the development of inflammatory processes, the mechanisms involved have not been elucidated. The present study investigated the ability of the specific TSPO ligands, the isoquinoline carboxamide PK11195 and benzodiazepine Ro5-4864, on neutrophil recruitment promoted by the N-formylmethionyl-leucyl-phenylalanine peptide (fMLP), an agonist of G-protein coupled receptor (GPCR). Pre-treatment with Ro5-4864 abrograted fMLP-induced leukocyte-endothelial interactions in mesenteric postcapillary venules in vivo. Moreover, in vitro Ro5-4864 treatment prevented fMLP-induced: (i) L-selectin shedding and overexpression of PECAM-1 on the neutrophil cell surface; (ii) neutrophil chemotaxis and (iii) enhancement of intracellular calcium cations (iCa(+2)). Intriguingly, the two latter effects were augmented by cell treatment with PK11195. An allosteric agonist/antagonist relation may be suggested, as the effects of Ro5-4864 on fMLP-stimulated neutrophils were reverted by simultaneous treatment with PK11195. Taken together, these data highlight TSPO as a modulator of pathways of neutrophil adhesion and locomotion induced by GPCR, connecting TSPO actions and the onset of an innate inflammatory response. PMID:22209795

  13. Smoothened determines β-arrestin-mediated removal of the G protein-coupled receptor Gpr161 from the primary cilium.

    PubMed

    Pal, Kasturi; Hwang, Sun-Hee; Somatilaka, Bandarigoda; Badgandi, Hemant; Jackson, Peter K; DeFea, Kathryn; Mukhopadhyay, Saikat

    2016-03-28

    Dynamic changes in membrane protein composition of the primary cilium are central to development and homeostasis, but we know little about mechanisms regulating membrane protein flux. Stimulation of the sonic hedgehog (Shh) pathway in vertebrates results in accumulation and activation of the effector Smoothened within cilia and concomitant disappearance of a negative regulator, the orphan G protein-coupled receptor (GPCR), Gpr161. Here, we describe a two-step process determining removal of Gpr161 from cilia. The first step involves β-arrestin recruitment by the signaling competent receptor, which is facilitated by the GPCR kinase Grk2. An essential factor here is the ciliary trafficking and activation of Smoothened, which by increasing Gpr161-β-arrestin binding promotes Gpr161 removal, both during resting conditions and upon Shh pathway activation. The second step involves clathrin-mediated endocytosis, which functions outside of the ciliary compartment in coordinating Gpr161 removal. Mechanisms determining dynamic compartmentalization of Gpr161 in cilia define a new paradigm for down-regulation of GPCRs during developmental signaling from a specialized subcellular compartment. PMID:27002170

  14. In silico cloning of genes encoding neuropeptides, neurohormones and their putative G-protein coupled receptors in a spider mite.

    PubMed

    Veenstra, Jan A; Rombauts, Stephane; Grbić, Miodrag

    2012-04-01

    The genome of the spider mite was prospected for the presence of genes coding neuropeptides, neurohormones and their putative G-protein coupled receptors. Fifty one candidate genes were found to encode neuropeptides or neurohormones. These include all known insect neuropeptides and neurohormones, with the exception of sulfakinin, corazonin, neuroparsin and PTTH. True orthologs of adipokinetic hormone (AKH) were neither found, but there are three genes encoding peptides similar in structure to both AKH and the AKH-corazonin-related peptide. We were also unable to identify the precursors for pigment dispersing factor (PDF) or the recently discovered trissin. However, the spider mite probably does have such genes, as we found their putative receptors. A novel arthropod neuropeptide gene was identified that shows similarity to previously described molluscan neuropeptide genes and was called EFLamide. A total of 65 putative neuropeptide GPCR genes were also identified, of these 58 belong to the A-family and 7 to the B-family. Phylogenetic analysis showed that 50 of them are closely related to insect GPCRs, which allowed the identification of their putative ligand in 39 cases with varying degrees of certainty. Other spider mite GPCRs however have no identifiable orthologs in the genomes of the four holometabolous insect species best analyzed. Whereas some of the latter have orthologs in hemimetabolous insect species, crustaceans or ticks, for others such arthropod homologs are currently unknown. PMID:22214827

  15. Mass-spectrometry-based method for screening of new peptide ligands for G-protein-coupled receptors.

    PubMed

    Cologna, Camila T; Gilles, Nicolas; Echterbille, Julien; Degueldre, Michel; Servent, Denis; de Pauw, Edwin; Quinton, Loïc

    2015-07-01

    G-protein-coupled receptors (GPCRs) constitute the largest family of transmembrane proteins. Although implicated in almost all physiological processes in the human body, most of them remain unexploited, mostly because of the lack of specific ligands. The objective of this work is to develop a new mass-spectrometry-based technique capable of identifying new peptide ligands for GPCRs. The strategy is based on the incubation of cellular membranes overexpressing GPCRs with a mixture of peptides that contains potential ligands. Peptide ligands bind to the receptors, whereas other peptides remain in the binding buffer. Bound peptides are eluted from membranes and directly detected, identified, and characterized by MALDI TOF-TOF. The results reveal the efficacy of the procedure for selecting a specific ligand of GPCRs in both simple and complex mixtures of peptides. This new approach may offer direct purification, identification, and characterization of the new ligand in a single workflow. The proposed method is labeling-free and, unlike radio-binding and other techniques, it does not require a previously known labeled ligand of the studied GPCR. All these properties greatly reduce the experimental constraints. Moreover, because it is not based on the principle of a competitive specific binding, this technique constitutes a new tool to discover new ligands not only for known GPCRs, but also for orphan GPCRs. PMID:25935673

  16. Type IV collagen is an activating ligand for the adhesion G protein-coupled receptor GPR126.

    PubMed

    Paavola, Kevin J; Sidik, Harwin; Zuchero, J Bradley; Eckart, Michael; Talbot, William S

    2014-08-12

    GPR126 is an orphan heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptor (GPCR) that is essential for the development of diverse organs. We found that type IV collagen, a major constituent of the basement membrane, binds to Gpr126 and activates its signaling function. Type IV collagen stimulated the production of cyclic adenosine monophosphate in rodent Schwann cells, which require Gpr126 activity to differentiate, and in human embryonic kidney (HEK) 293 cells expressing exogenous Gpr126. Type IV collagen specifically bound to the extracellular amino-terminal region of Gpr126 containing the CUB (complement, Uegf, Bmp1) and pentraxin domains. Gpr126 derivatives lacking the entire amino-terminal region were constitutively active, suggesting that this region inhibits signaling and that ligand binding relieves this inhibition to stimulate receptor activity. A new zebrafish mutation that truncates Gpr126 after the CUB and pentraxin domains disrupted development of peripheral nerves and the inner ear. Thus, our findings identify type IV collagen as an activating ligand for GPR126, define its mechanism of activation, and highlight a previously unrecognized signaling function of type IV collagen in basement membranes. PMID:25118328

  17. G Protein-Coupled Receptor Signaling and Sphingosine-1-Phosphate Play a Phylogenetically Conserved Role in Endocrine Pancreas Morphogenesis ▿

    PubMed Central

    Serafimidis, Ioannis; Heximer, Scott; Beis, Dimitris; Gavalas, Anthony

    2011-01-01

    During development pancreatic endocrine cells migrate in a coordinated fashion. This migration is necessary to form fully functional islets, but the mechanisms involved remain unknown. Therapeutic strategies to restore β-cell mass and islet functionality by reprogramming endogenous exocrine cells would be strengthened from simultaneous treatments that enhance endocrine cell clustering. We found that endocrine progenitors respond to and regulate G protein-coupled receptor