Science.gov

Sample records for predicting drug pharmacokinetics

  1. A new methodology for predicting human pharmacokinetics for inhaled drugs from oratracheal pharmacokinetic data in rats.

    PubMed

    Jones, Rhys M; Harrison, Anthony

    2012-01-01

    Prediction of pharmacokinetic (PK) profile for inhaled drugs in humans provides valuable information to aid toxicology safety assessment, evaluate the potential for systemic accumulation on multiple dosing and enable an estimate for the clinical plasma assay requirements. The accuracy in prediction of inhaled human PK profiles for seven inhaled drugs or drug candidates (salmeterol, salbutamol, formoterol, fluticasone propionate, budesonide, CP-325366 and UK-432097) was assessed using rat oratracheal solution and dry powder PK data. The prediction methodology incorporates allometric scaling and mean residence time (MRT) principles with a two compartmental PK approach. Across the range of compounds tested, the prediction of human inhaled maximum concentration (C(max)) and MRT was within 2-fold for 5 of the 7 compounds, providing an accuracy of prediction similar to the current methodologies used to predict human oral C(max) from preclinical data ( De Buck et al. 2007 ). Administering as a dry powder formulation slowed the rat lung absorption rate of the least soluble compound (fluticasone propionate), impacting the prediction of C(max) and MRT. This flags the potential for preclinical studies with dry powder formulations to positively influence predictive accuracy, although further studies with low solubility inhaled drugs are required to confirm this. This study illustrates the value of preclinical assessment of PKs following administration to the lung, and provides a viable means of predicting the human PK profile for inhaled drugs. PMID:22077102

  2. Application of allometric principles for the prediction of pharmacokinetics in human and veterinary drug development.

    PubMed

    Mahmood, Iftekhar

    2007-09-30

    The concept of correlating pharmacokinetic parameters with body weight (termed as pharmacokinetic interspecies scaling) from different animal species has become a useful tool in drug development. Interspecies scaling is based on the power function, where the body weight of the species is plotted against the pharmacokinetic parameter of interest. Clearance, volume of distribution, and elimination half-life are the three most frequently extrapolated pharmacokinetic parameters. The predicted pharmacokinetic parameter clearance can be used for estimating a first-in-human dose. Over the years, many approaches have been suggested to improve the prediction of aforementioned pharmacokinetic parameters in humans from animal data. A literature review indicates that there are different degrees of success with different methods for different drugs. Interspecies scaling is also a very useful tool in veterinary medicine. The knowledge of pharmacokinetics in veterinary medicine is important for dosage selection, particularly in the treatment of large animals such as horses, camels, elephants, or other large zoo animals. Despite the potential for extrapolation error, the reality is that interspecies scaling is needed across many veterinary practice situations, and therefore will be used. For this reason, it is important to consider mechanisms for reducing the risk of extrapolation errors that can seriously affect animal safety and therapeutic response. Overall, although interspecies scaling requires continuous refinement and better understanding, the rationale approach of interspecies scaling has a lot of potential during the drug development process. PMID:17826864

  3. Improving Predictive Modeling in Pediatric Drug Development: Pharmacokinetics, Pharmacodynamics, and Mechanistic Modeling

    SciTech Connect

    Slikker, William; Young, John F.; Corley, Rick A.; Dorman, David C.; Conolly, Rory B.; Knudsen, Thomas; Erstad, Brian L.; Luecke, Richard H.; Faustman, Elaine M.; Timchalk, Chuck; Mattison, Donald R.

    2005-07-26

    A workshop was conducted on November 18?19, 2004, to address the issue of improving predictive models for drug delivery to developing humans. Although considerable progress has been made for adult humans, large gaps remain for predicting pharmacokinetic/pharmacodynamic (PK/PD) outcome in children because most adult models have not been tested during development. The goals of the meeting included a description of when, during development, infants/children become adultlike in handling drugs. The issue of incorporating the most recent advances into the predictive models was also addressed: both the use of imaging approaches and genomic information were considered. Disease state, as exemplified by obesity, was addressed as a modifier of drug pharmacokinetics and pharmacodynamics during development. Issues addressed in this workshop should be considered in the development of new predictive and mechanistic models of drug kinetics and dynamics in the developing human.

  4. Prediction of renal transporter mediated drug-drug interactions for pemetrexed using physiologically based pharmacokinetic modeling.

    PubMed

    Posada, Maria M; Bacon, James A; Schneck, Karen B; Tirona, Rommel G; Kim, Richard B; Higgins, J William; Pak, Y Anne; Hall, Stephen D; Hillgren, Kathleen M

    2015-03-01

    Pemetrexed, an anionic anticancer drug with a narrow therapeutic index, is eliminated mainly by active renal tubular secretion. The in vitro to in vivo extrapolation approach used in this work was developed to predict possible drug-drug interactions (DDIs) that may occur after coadministration of pemetrexed and nonsteroidal anti-inflammatory drugs (NSAIDs), and it included in vitro assays, risk assessment models, and physiologically based pharmacokinetic (PBPK) models. The pemetrexed transport and its inhibition parameters by several NSAIDs were quantified using HEK-PEAK cells expressing organic anion transporter (OAT) 3 or OAT4. The NSAIDs were ranked according to their DDI index, calculated as the ratio of their maximum unbound concentration in plasma over the concentration inhibiting 50% (IC50) of active pemetrexed transport. A PBPK model for ibuprofen, the NSAID with the highest DDI index, was built incorporating active renal secretion in Simcyp Simulator. The bottom-up model for pemetrexed underpredicted the clearance by 2-fold. The model we built using a scaling factor of 5.3 for the maximal uptake rate (Vmax) of OAT3, which estimated using plasma concentration profiles from patients given a 10-minute infusion of 500 mg/m(2) of pemetrexed supplemented with folic acid and vitamin B12, recovered the clinical data adequately. The observed/predicted increases in Cmax and the area under the plasma-concentration time curve (AUC0-inf) of pemetrexed when ibuprofen was coadministered were 1.1 and 1.0, respectively. The coadministration of all other NSAIDs was predicted to have no significant impact on the AUC0-inf based on their DDI indexes. The PBPK model reasonably reproduced pemetrexed concentration time profiles in cancer patients and its interaction with ibuprofen. PMID:25504564

  5. Physiologically based pharmacokinetic modeling framework for quantitative prediction of an herb-drug interaction.

    PubMed

    Brantley, S J; Gufford, B T; Dua, R; Fediuk, D J; Graf, T N; Scarlett, Y V; Frederick, K S; Fisher, M B; Oberlies, N H; Paine, M F

    2014-01-01

    Herb-drug interaction predictions remain challenging. Physiologically based pharmacokinetic (PBPK) modeling was used to improve prediction accuracy of potential herb-drug interactions using the semipurified milk thistle preparation, silibinin, as an exemplar herbal product. Interactions between silibinin constituents and the probe substrates warfarin (CYP2C9) and midazolam (CYP3A) were simulated. A low silibinin dose (160 mg/day × 14 days) was predicted to increase midazolam area under the curve (AUC) by 1%, which was corroborated with external data; a higher dose (1,650 mg/day × 7 days) was predicted to increase midazolam and (S)-warfarin AUC by 5% and 4%, respectively. A proof-of-concept clinical study confirmed minimal interaction between high-dose silibinin and both midazolam and (S)-warfarin (9 and 13% increase in AUC, respectively). Unexpectedly, (R)-warfarin AUC decreased (by 15%), but this is unlikely to be clinically important. Application of this PBPK modeling framework to other herb-drug interactions could facilitate development of guidelines for quantitative prediction of clinically relevant interactions.CPT Pharmacometrics Syst. Pharmacol. (2014) 3, e107; doi:10.1038/psp.2013.69; advance online publication 26 March 2014. PMID:24670388

  6. Physiologically Based Pharmacokinetic Modeling Framework for Quantitative Prediction of an Herb–Drug Interaction

    PubMed Central

    Brantley, S J; Gufford, B T; Dua, R; Fediuk, D J; Graf, T N; Scarlett, Y V; Frederick, K S; Fisher, M B; Oberlies, N H; Paine, M F

    2014-01-01

    Herb–drug interaction predictions remain challenging. Physiologically based pharmacokinetic (PBPK) modeling was used to improve prediction accuracy of potential herb–drug interactions using the semipurified milk thistle preparation, silibinin, as an exemplar herbal product. Interactions between silibinin constituents and the probe substrates warfarin (CYP2C9) and midazolam (CYP3A) were simulated. A low silibinin dose (160 mg/day × 14 days) was predicted to increase midazolam area under the curve (AUC) by 1%, which was corroborated with external data; a higher dose (1,650 mg/day × 7 days) was predicted to increase midazolam and (S)-warfarin AUC by 5% and 4%, respectively. A proof-of-concept clinical study confirmed minimal interaction between high-dose silibinin and both midazolam and (S)-warfarin (9 and 13% increase in AUC, respectively). Unexpectedly, (R)-warfarin AUC decreased (by 15%), but this is unlikely to be clinically important. Application of this PBPK modeling framework to other herb–drug interactions could facilitate development of guidelines for quantitative prediction of clinically relevant interactions. PMID:24670388

  7. A Physiologically Based Pharmacokinetic Model to Predict the Pharmacokinetics of Highly Protein-Bound Drugs and Impact of Errors in Plasma Protein Binding

    PubMed Central

    Ye, Min; Nagar, Swati; Korzekwa, Ken

    2015-01-01

    Predicting the pharmacokinetics of highly protein-bound drugs is difficult. Also, since historical plasma protein binding data was often collected using unbuffered plasma, the resulting inaccurate binding data could contribute to incorrect predictions. This study uses a generic physiologically based pharmacokinetic (PBPK) model to predict human plasma concentration-time profiles for 22 highly protein-bound drugs. Tissue distribution was estimated from in vitro drug lipophilicity data, plasma protein binding, and blood: plasma ratio. Clearance was predicted with a well-stirred liver model. Underestimated hepatic clearance for acidic and neutral compounds was corrected by an empirical scaling factor. Predicted values (pharmacokinetic parameters, plasma concentration-time profile) were compared with observed data to evaluate model accuracy. Of the 22 drugs, less than a 2-fold error was obtained for terminal elimination half-life (t1/2, 100% of drugs), peak plasma concentration (Cmax, 100%), area under the plasma concentration-time curve (AUC0–t, 95.4%), clearance (CLh, 95.4%), mean retention time (MRT, 95.4%), and steady state volume (Vss, 90.9%). The impact of fup errors on CLh and Vss prediction was evaluated. Errors in fup resulted in proportional errors in clearance prediction for low-clearance compounds, and in Vss prediction for high-volume neutral drugs. For high-volume basic drugs, errors in fup did not propagate to errors in Vss prediction. This is due to the cancellation of errors in the calculations for tissue partitioning of basic drugs. Overall, plasma profiles were well simulated with the present PBPK model. PMID:26531057

  8. Development of a Multicompartment Permeability-Limited Lung PBPK Model and Its Application in Predicting Pulmonary Pharmacokinetics of Antituberculosis Drugs

    PubMed Central

    Gaohua, L; Wedagedera, J; Small, BG; Almond, L; Romero, K; Hermann, D; Hanna, D; Jamei, M; Gardner, I

    2015-01-01

    Achieving sufficient concentrations of antituberculosis (TB) drugs in pulmonary tissue at the optimum time is still a challenge in developing therapeutic regimens for TB. A physiologically based pharmacokinetic model incorporating a multicompartment permeability-limited lung model was developed and used to simulate plasma and pulmonary concentrations of seven drugs. Passive permeability of drugs within the lung was predicted using an in vitro-in vivo extrapolation approach. Simulated epithelial lining fluid (ELF):plasma concentration ratios showed reasonable agreement with observed clinical data for rifampicin, isoniazid, ethambutol, and erythromycin. For clarithromycin, itraconazole and pyrazinamide the observed ELF:plasma ratios were significantly underpredicted. Sensitivity analyses showed that changing ELF pH or introducing efflux transporter activity between lung tissue and ELF can alter the ELF:plasma concentration ratios. The described model has shown utility in predicting the lung pharmacokinetics of anti-TB drugs and provides a framework for predicting pulmonary concentrations of novel anti-TB drugs. PMID:26535161

  9. Systems Pharmacology Approach for Prediction of Pulmonary and Systemic Pharmacokinetics and Receptor Occupancy of Inhaled Drugs

    PubMed Central

    Evans, N; Chappell, M; Lundqvist, A; Ewing, P; Wigenborg, A; Fridén, M

    2016-01-01

    Pulmonary drug disposition after inhalation is complex involving mechanisms, such as regional drug deposition, dissolution, and mucociliary clearance. This study aimed to develop a systems pharmacology approach to mechanistically describe lung disposition in rats and thereby provide an integrated understanding of the system. When drug‐ and formulation‐specific properties for the poorly soluble drug fluticasone propionate were fed into the model, it proved predictive of the pharmacokinetics and receptor occupancy after intravenous administration and nose‐only inhalation. As the model clearly distinguishes among drug‐specific, formulation‐specific, and system‐specific properties, it was possible to identify key determinants of pulmonary selectivity of receptor occupancy of inhaled drugs: slow particle dissolution and slow drug‐receptor dissociation. Hence, it enables assessment of factors for lung targeting, including molecular properties, formulation, as well as the physiology of the animal species, thereby providing a general framework for rational drug design and facilitated translation of lung targeting from animal to man. PMID:27104089

  10. The Application of Physiologically Based Pharmacokinetic Modeling to Predict the Role of Drug Transporters: Scientific and Regulatory Perspectives.

    PubMed

    Pan, Yuzhuo; Hsu, Vicky; Grimstein, Manuela; Zhang, Lei; Arya, Vikram; Sinha, Vikram; Grillo, Joseph A; Zhao, Ping

    2016-07-01

    Transporters play an important role in drug absorption, disposition, and drug action. The evaluation of drug transporters requires a comprehensive understanding of transporter biology and pharmacology. Physiologically based pharmacokinetic (PBPK) models may offer an integrative platform to quantitatively evaluate the role of drug transporters and its interplay with other drug disposition processes such as passive drug diffusion and elimination by metabolizing enzymes. To date, PBPK modeling and simulations integrating drug transporters lag behind that for drug-metabolizing enzymes. In addition, predictive performance of PBPK has not been well established for predicting the role of drug transporters in the pharmacokinetics of a drug. To enhance overall predictive performance of transporter-based PBPK models, it is necessary to have a detailed understanding of transporter biology for proper representation in the models and to have a quantitative understanding of the contribution of transporters in the absorption and metabolism of a drug. This article summarizes PBPK-based submissions evaluating the role of drug transporters to the Office of Clinical Pharmacology of the US Food and Drug Administration. PMID:27385170

  11. Pharmacokinetics in Drug Discovery: An Exposure-Centred Approach to Optimising and Predicting Drug Efficacy and Safety.

    PubMed

    Reichel, Andreas; Lienau, Philip

    2016-01-01

    The role of pharmacokinetics (PK) in drug discovery is to support the optimisation of the absorption, distribution, metabolism and excretion (ADME) properties of lead compounds with the ultimate goal to attain a clinical candidate which achieves a concentration-time profile in the body that is adequate for the desired efficacy and safety profile. A thorough characterisation of the lead compounds aiming at the identification of the inherent PK liabilities also includes an early generation of PK/PD relationships linking in vitro potency and target exposure/engagement with expression of pharmacological activity (mode-of-action) and efficacy in animal studies. The chapter describes an exposure-centred approach to lead generation, lead optimisation and candidate selection and profiling that focuses on a stepwise generation of an understanding between PK/exposure and PD/efficacy relationships by capturing target exposure or surrogates thereof and cellular mode-of-action readouts in vivo. Once robust PK/PD relationship in animal PD models has been constructed, it is translated to anticipate the pharmacologically active plasma concentrations in patients and the human therapeutic dose and dosing schedule which is also based on the prediction of the PK behaviour in human as described herein. The chapter outlines how the level of confidence in the predictions increases with the level of understanding of both the PK and the PK/PD of the new chemical entities (NCE) in relation to the disease hypothesis and the ability to propose safe and efficacious doses and dosing schedules in responsive patient populations. A sound identification of potential drug metabolism and pharmacokinetics (DMPK)-related development risks allows proposing of an effective de-risking strategy for the progression of the project that is able to reduce uncertainties and to increase the probability of success during preclinical and clinical development. PMID:26330260

  12. Prediction of pharmacokinetic parameters using a genetic algorithm combined with an artificial neural network for a series of alkaloid drugs.

    PubMed

    Zandkarimi, Majid; Shafiei, Mohammad; Hadizadeh, Farzin; Darbandi, Mohammad Ali; Tabrizian, Kaveh

    2014-03-01

    An important goal for drug development within the pharmaceutical industry is the application of simple methods to determine human pharmacokinetic parameters. Effective computing tools are able to increase scientists' ability to make precise selections of chemical compounds in accordance with desired pharmacokinetic and safety profiles. This work presents a method for making predictions of the clearance, plasma protein binding, and volume of distribution for alkaloid drugs. The tools used in this method were genetic algorithms (GAs) combined with artificial neural networks (ANNs) and these were applied to select the most relevant molecular descriptors and to develop quantitative structure-pharmacokinetic relationship (QSPkR) models. Results showed that three-dimensional structural descriptors had more influence on QSPkR models. The models developed in this study were able to predict systemic clearance, volume of distribution, and plasma protein binding with normalized root mean square error (NRMSE) values of 0.151, 0.263, and 0.423, respectively. These results demonstrate an acceptable level of efficiency of the developed models for the prediction of pharmacokinetic parameters. PMID:24634842

  13. Intravitreal clearance and volume of distribution of compounds in rabbits: In silico prediction and pharmacokinetic simulations for drug development.

    PubMed

    del Amo, Eva M; Vellonen, Kati-Sisko; Kidron, Heidi; Urtti, Arto

    2015-09-01

    The aims of this research were to (1) create a curated universal database of intravitreal volumes of distribution (Vss, ivt) and clearances (CL ivt) of small molecular weight compounds and macromolecules and (2) to develop quantitative structure property relationship (QSPR) and pharmacokinetic models for the estimation of vitreal drug concentrations based on the compound structure. Vss, ivt and CL ivt values were determined from the available literature on intravitreal drug administration using compartmental models and curve fitting. A simple QSPR model for CL ivt of small molecular weight compounds was obtained with two descriptors: Log D7.4 and hydrogen bond donor capacity. The model predicted the internal and external test sets reliably with a mean fold error of 1.50 and 1.33, respectively (Q(2)Y=0.62). For 80% of the compounds the Vss, ivt was 1.18-2.28 ml; too narrow range for QSPR model building. Integration of the estimated Vss, ivt and predicted CL ivt parameters into pharmacokinetic simulation models allows prediction of vitreous drug concentrations after intravitreal administration. The present work presents for the first time a database of CL ivt and Vss, ivt values and the dependence of the CL ivt values on the molecular structure. The study provides also useful in silico tools to investigate a priori the intravitreal pharmacokinetic profiles for intravitreally injected candidate compounds and drug delivery systems. PMID:25603198

  14. Simulation and Prediction of the Drug‐Drug Interaction Potential of Naloxegol by Physiologically Based Pharmacokinetic Modeling

    PubMed Central

    Bui, K; Sostek, M; Al‐Huniti, N

    2016-01-01

    Naloxegol, a peripherally acting μ‐opioid receptor antagonist for the treatment of opioid‐induced constipation, is a substrate for cytochrome P450 (CYP) 3A4/3A5 and the P‐glycoprotein (P‐gp) transporter. By integrating in silico, preclinical, and clinical pharmacokinetic (PK) findings, minimal and full physiologically based pharmacokinetic (PBPK) models were developed to predict the drug‐drug interaction (DDI) potential for naloxegol. The models reasonably predicted the observed changes in naloxegol exposure with ketoconazole (increase of 13.1‐fold predicted vs. 12.9‐fold observed), diltiazem (increase of 2.8‐fold predicted vs. 3.4‐fold observed), rifampin (reduction of 76% predicted vs. 89% observed), and quinidine (increase of 1.2‐fold predicted vs. 1.4‐fold observed). The moderate CYP3A4 inducer efavirenz was predicted to reduce naloxegol exposure by ∼50%, whereas weak CYP3A inhibitors were predicted to minimally affect exposure. In summary, the PBPK models reasonably estimated interactions with various CYP3A modulators and can be used to guide dosing in clinical practice when naloxegol is coadministered with such agents. PMID:27299937

  15. Pharmacogenetic Biomarkers Predictive of the Pharmacokinetics and Pharmacodynamics of Immunosuppressive Drugs.

    PubMed

    Picard, Nicolas; Bergan, Stein; Marquet, Pierre; van Gelder, Teun; Wallemacq, Pierre; Hesselink, Dennis A; Haufroid, Vincent

    2016-04-01

    In association with therapeutic drug monitoring of immunosuppressive drugs, pharmacogenetics has rapidly emerged as an additional tool to refine dose selection or, more interestingly to select, a priori, the first dose to administer. Pharmacogenetic biomarkers are now readily available in most transplantation centers, at a limited cost and within a limited analytical time frame, which make them compatible with the clinical decision process. However, despite some evidence of clear associations between polymorphisms in genes encoding metabolizing enzymes (CYP3A4/3A5, UGT1A9) or drug transporters (ABCB1, ABCC2, SLCO1B1) and pharmacokinetics of several immunosuppressive drugs, pre-emptive genotyping and selection of the optimal starting dose based on the genetic background of the patient is still rarely performed in clinical practice. The main reason is probably the lack of formal proof that clinical outcome really improves after genotype-based dosing. So far, the only clinical recommendation in relation to pharmacogenetic biomarkers should be a doubling of the starting tacrolimus dose in patients who are CYP3A5 expressers, and even in this case, some authors still do not recommend pre-emptive genotyping but only genotype-based adaptation if the CYP3A5 genotype is already known. However, with the rise of new technologies, as next generation sequencing, allowing to obtain pre-emptive genetic information, one must be aware that the question will no longer be whether to genotype or not but rather whether or not to use the information already there. There was therefore a need to update the information available in relation to pharmacogenetic biomarkers for calcineurin inhibitors, mycophenolic acid, and mammalian target of rapamycin inhibitors. PMID:26469711

  16. Use of three-compartment physiologically based pharmacokinetic modeling to predict hepatic blood levels of fluvoxamine relevant for drug-drug interactions.

    PubMed

    Iga, Katsumi

    2015-04-01

    Using a three-compartment physiologically based pharmacokinetic (PBPK) model and a tube model for hepatic extraction kinetics, equations for calculating blood drug levels (Cb s) and hepatic blood drug levels (Chb s, proportional to actual hepatic drug levels), were derived mathematically. Assuming the actual values for total body clearance (CLtot ), oral bioavailability (F), and steady-state distribution volume (Vdss ), Cb s, and Chb s after intravenous and oral administration of fluvoxamine (strong perpetrator in drug-drug interactions, DDIs), propranolol, imipramine, and tacrine were simulated. Values for Cb s corresponded to the actual values for all tested drugs, and mean Chb and maximal Chb -to-maximal Cb ratio predicted for oral fluvoxamine administration (50 mg twice-a-day administration) were nearly 100 nM and 2.3, respectively, which would be useful for the predictions of the DDIs caused by fluvoxamine. Fluvoxamine and tacrine are known to exhibit relatively large F values despite having CLtot similar to or larger than hepatic blood flow, which may be because of the high liver uptake (almost 0.6) upon intravenous administration. The present method is thus considered to be more predictive of the Chb for perpetrators of DDIs than other methods. PMID:25558834

  17. Predicting neonatal pharmacokinetics from prior data using population pharmacokinetic modeling.

    PubMed

    Wang, Jian; Edginton, Andrea N; Avant, Debbie; Burckart, Gilbert J

    2015-10-01

    Selection of the first dose for neonates in clinical trials is very challenging. The objective of this analysis was to assess if a population pharmacokinetic (PK) model developed with data from infants to adults is predictive of neonatal clearance and to evaluate what age range of prior PK data is needed for informative modeling to predict neonate exposure. Two sources of pharmacokinetic data from 8 drugs were used to develop population models: (1) data from all patients > 2 years of age, and (2) data from all nonneonatal patients aged > 28 days. The prediction error based on the models using data from subjects > 2 years of age showed bias toward overprediction, with median average fold error (AFE) for CL predicted/CLobserved greater than 1.5. The bias for predicting neonatal PK was improved when using all prior PK data including infants as opposed to an assessment without infant PK data, with the median AFE 0.91. As an increased number of pediatric trials are conducted in neonates under the Food and Drug Administration Safety and Innovation Act, dose selection should be based on the best estimates of neonatal pharmacokinetics and pharmacodynamics prior to conducting efficacy and safety studies in neonates. PMID:25907280

  18. Pharmacokinetic characterization of BMS-936561, an anti-CD70 antibody-drug conjugate, in preclinical animal species and prediction of its pharmacokinetics in humans.

    PubMed

    Wang, Haiqing; Rangan, Vangipuram S; Sung, Mei-Chen; Passmore, David; Kempe, Thomas; Wang, Xiaoli; Thevanayagam, Lourdes; Pan, Chin; Rao, Chetana; Srinivasan, Mohan; Zhang, Qian; Gangwar, Sanjeev; Deshpande, Shrikant; Cardarelli, Pina; Marathe, Punit; Yang, Zheng

    2016-03-01

    CD70 is a tumor necrosis factor (TNF)-like type II integral membrane protein that is transiently expressed on activated T- and B-lymphocytes. Aberrant expression of CD70 was identified in both solid tumors and haematologic malignancies. BMS-936561 (αCD70_MED-A) is an antibody-drug conjugate composed of a fully human anti-CD70 monoclonal antibody (αCD70) conjugated with a duocarmycin derivative, MED-A, through a maleimide-containing citrulline-valine dipeptide linker. MED-A is a carbamate prodrug that is activated by carboxylesterase to its active form, MED-B, to exert its DNA alkylation activity. In vitro serum stability studies suggested the efficiencies of hydrolyzing the carbamate-protecting group in αCD70_MED-A followed a rank order of mouse > rat > > monkey > dog ~ human. Pharmacokinetics of αCD70_MED-A was evaluated in mice, monkeys, and dogs after single intravenous doses. In mice, αCD70_MED-A was cleared rapidly, with no detectable exposures after 15 min following dosing. In contrast, αCD70_MED-A was much more stable in monkeys and dogs. The clearance of αCD70_MED-A in monkeys was 58 mL/d/kg, ~2-fold faster than that in dogs (31 mL/d/kg). The human PK profiles of the total αCD70 and αCD70_MED-A were predicted using allometrically scaled monkeys PK parameters of αCD70 and the carbamate hydrolysis rate constant estimated in dogs. Comparing the predicted and observed human PK from the phase I study, the dose-normalized concentration-time profiles of αCD70_MED-A and the total αCD70 were largely within the 5(th) -95(th) percentile of the predicted profiles. Copyright © 2015 John Wiley & Sons, Ltd. PMID:25869904

  19. Pharmacokinetics of drugs in pregnancy

    PubMed Central

    Feghali, Maisa; Venkataramanan, Raman; Caritis, Steve

    2016-01-01

    Pregnancy is a complex state where changes in maternal physiology have evolved to favor the development and growth of the placenta and the fetus. These adaptations may affect preexisting disease or result in pregnancy-specific disorders. Similarly, variations in physiology may alter the pharmacokinetics or pharmacodynamics that determines drug dosing and effect. It follows that detailed pharmacologic information is required to adjust therapeutic treatment strategies during pregnancy. Understanding both pregnancy physiology and the gestation-specific pharmacology of different agents is necessary to achieve effective treatment and limit maternal and fetal risk. Unfortunately, most drug studies have excluded pregnant women based on often-mistaken concerns regarding fetal risk. Furthermore, over two-thirds of women receive prescription drugs while pregnant, with treatment and dosing strategies based on data from healthy male volunteers and non-pregnant women, and with little adjustment for the complex physiology of pregnancy and its unique disease states. This review will describe basic concepts in pharmacokinetics and their clinical relevance and highlight the variations in pregnancy that may impact the pharmacokinetic properties of medications. PMID:26452316

  20. Pharmacokinetic drug interactions of macrolides.

    PubMed

    Periti, P; Mazzei, T; Mini, E; Novelli, A

    1992-08-01

    The macrolide antibiotics include natural members, prodrugs and semisynthetic derivatives. These drugs are indicated in a variety of infections and are often combined with other drug therapies, thus creating the potential for pharmacokinetic interactions. Macrolides can both inhibit drug metabolism in the liver by complex formation and inactivation of microsomal drug oxidising enzymes and also interfere with microorganisms of the enteric flora through their antibiotic effects. Over the past 20 years, a number of reports have incriminated macrolides as a potential source of clinically severe drug interactions. However, differences have been found between the various macrolides in this regard and not all macrolides are responsible for drug interactions. With the recent advent of many semisynthetic macrolide antibiotics it is now evident that they may be classified into 3 different groups in causing drug interactions. The first group (e.g. troleandomycin, erythromycins) are those prone to forming nitrosoalkanes and the consequent formation of inactive cytochrome P450-metabolite complexes. The second group (e.g. josamycin, flurithromycin, roxithromycin, clarithromycin, miocamycin and midecamycin) form complexes to a lesser extent and rarely produce drug interactions. The last group (e.g. spiramycin, rokitamycin, dirithromycin and azithromycin) do not inactivate cytochrome P450 and are unable to modify the pharmacokinetics of other compounds. It appears that 2 structural factors are important for a macrolide antibiotic to lead to the induction of cytochrome P450 and the formation in vivo or in vitro of an inhibitory cytochrome P450-iron-nitrosoalkane metabolite complex: the presence in the macrolide molecules of a non-hindered readily accessible N-dimethylamino group and the hydrophobic character of the drug. Troleandomycin ranks first as a potent inhibitor of microsomal liver enzymes, causing a significant decrease of the metabolism of methylprednisolone, theophylline

  1. Drug Transport and Pharmacokinetics for Chemical Engineers

    ERIC Educational Resources Information Center

    Simon, Laurent; Kanneganti, Kumud; Kim, Kwang Seok

    2010-01-01

    Experiments in continuous-stirred vessels were proposed to introduce methods in pharmacokinetics and drug transport to chemical engineering students. The activities can be incorporated into the curriculum to illustrate fundamentals learned in the classroom. An appreciation for the role of pharmacokinetics in drug discovery will also be gained…

  2. Drug therapy in patients undergoing haemodialysis. Clinical pharmacokinetic considerations.

    PubMed

    Lee, C S; Marbury, T C

    1984-01-01

    Haemodialysis is utilised therapeutically as supportive treatment for end-stage renal disease (ESRD). In conjunction with haemodialysis therapy, ESRD patients frequently receive a large number of drugs to treat a multitude of intercurrent conditions. Because of the impaired renal function in ESRD patients, dosage reduction is often recommended to avoid adverse drug reactions, particularly for drugs and active metabolites with extensive renal excretion. On the other hand, if the removal of a drug by haemodialysis during concomitant drug therapy is significant, a dosage supplement would be required to ensure adequate therapeutic efficacy. Knowledge of the impact of haemodialysis on the elimination of specific drugs is therefore essential to the rational design of the dosage regimen in patients undergoing haemodialysis. This review addresses the clinical pharmacokinetic aspects of drug therapy in haemodialysis patients and considers: (a) the effects of ESRD on the general pharmacokinetics of drugs; (b) dialysis clearance and its impact on drug and metabolite elimination; (c) the definition of dialysability and the criteria for evaluation of drug dialysability; (d) pharmacokinetic parameters which are useful in the prediction of drug dialysability; and (e) the application of pharmacokinetic principles to the adjustment of dosage regimens in haemodialysis patients. Finally, drugs commonly associated with haemodialysis therapy are tabulated with updated pharmacokinetics and dialysability information. PMID:6362952

  3. [Drug Interactions and Pharmacokinetics of Psychotropic Drugs].

    PubMed

    Suzuki, Eiji

    2015-01-01

    Pharmacokinetics is the field dedicated to investigating the absorption, distribution, metabolism and excretion of drugs. Absorption of drugs is affected when they are taken together with a meal. Depending on the drug, the area under the concentration curve is affected by whether a medication is taken before or after a meal. Combined use of drugs with a high plasma protein binding fraction may be dangerous, since drug efficacy is impacted by efficiency, which in turn is affected by the degree to which it binds to proteins. Even more significant is the issue of "drug/drug" interactions that arise due to inhibition of the cytochrome P450 (CYP) hepatic microsomal enzyme system. Some antidepressants, such as paroxetine and fluvoxamine, are strong inhibitors of the CYP system. In the case of a medication that depends on renal clearance for elimination, caution is required when taking such a drug if it influences renal function. When a medicinal effect changes, pharmacodynamic changes must also be considered. PMID:26514046

  4. A Physiologically Based Pharmacokinetic Model to Predict Disposition of CYP2D6 and CYP1A2 Metabolized Drugs in Pregnant Women

    PubMed Central

    Ke, Alice Ban; Nallani, Srikanth C.; Zhao, Ping; Rostami-Hodjegan, Amin; Isoherranen, Nina

    2013-01-01

    Conducting pharmacokinetic (PK) studies in pregnant women is challenging. Therefore, we asked if a physiologically based pharmacokinetic (PBPK) model could be used to evaluate different dosing regimens for pregnant women. We refined and verified our previously published pregnancy PBPK model by incorporating cytochrome P450 CYP1A2 suppression (based on caffeine PK) and CYP2D6 induction (based on metoprolol PK) into the model. This model accounts for gestational age–dependent changes in maternal physiology and hepatic CYP3A activity. For verification, the disposition of CYP1A2–metabolized drug theophylline (THEO) and CYP2D6–metabolized drugs paroxetine (PAR), dextromethorphan (DEX), and clonidine (CLO) during pregnancy was predicted. Our PBPK model successfully predicted THEO disposition during the third trimester (T3). Predicted mean postpartum to third trimester (PP:T3) ratios of THEO area under the curve (AUC), maximum plasma concentration, and minimum plasma concentration were 0.76, 0.95, and 0.66 versus observed values 0.75, 0.89, and 0.72, respectively. The predicted mean PAR steady-state plasma concentration (Css) ratio (PP:T3) was 7.1 versus the observed value 3.7. Predicted mean DEX urinary ratio (UR) (PP:T3) was 2.9 versus the observed value 1.9. Predicted mean CLO AUC ratio (PP:T3) was 2.2 versus the observed value 1.7. Sensitivity analysis suggested that a 100% induction of CYP2D6 during T3 was required to recover the observed PP:T3 ratios of PAR Css, DEX UR, and CLO AUC. Based on these data, it is prudent to conclude that the magnitude of hepatic CYP2D6 induction during T3 ranges from 100 to 200%. Our PBPK model can predict the disposition of CYP1A2, 2D6, and 3A drugs during pregnancy. PMID:23355638

  5. A physiologically based pharmacokinetic model to predict disposition of CYP2D6 and CYP1A2 metabolized drugs in pregnant women.

    PubMed

    Ke, Alice Ban; Nallani, Srikanth C; Zhao, Ping; Rostami-Hodjegan, Amin; Isoherranen, Nina; Unadkat, Jashvant D

    2013-04-01

    Conducting pharmacokinetic (PK) studies in pregnant women is challenging. Therefore, we asked if a physiologically based pharmacokinetic (PBPK) model could be used to evaluate different dosing regimens for pregnant women. We refined and verified our previously published pregnancy PBPK model by incorporating cytochrome P450 CYP1A2 suppression (based on caffeine PK) and CYP2D6 induction (based on metoprolol PK) into the model. This model accounts for gestational age-dependent changes in maternal physiology and hepatic CYP3A activity. For verification, the disposition of CYP1A2-metabolized drug theophylline (THEO) and CYP2D6-metabolized drugs paroxetine (PAR), dextromethorphan (DEX), and clonidine (CLO) during pregnancy was predicted. Our PBPK model successfully predicted THEO disposition during the third trimester (T3). Predicted mean postpartum to third trimester (PP:T3) ratios of THEO area under the curve (AUC), maximum plasma concentration, and minimum plasma concentration were 0.76, 0.95, and 0.66 versus observed values 0.75, 0.89, and 0.72, respectively. The predicted mean PAR steady-state plasma concentration (Css) ratio (PP:T3) was 7.1 versus the observed value 3.7. Predicted mean DEX urinary ratio (UR) (PP:T3) was 2.9 versus the observed value 1.9. Predicted mean CLO AUC ratio (PP:T3) was 2.2 versus the observed value 1.7. Sensitivity analysis suggested that a 100% induction of CYP2D6 during T3 was required to recover the observed PP:T3 ratios of PAR Css, DEX UR, and CLO AUC. Based on these data, it is prudent to conclude that the magnitude of hepatic CYP2D6 induction during T3 ranges from 100 to 200%. Our PBPK model can predict the disposition of CYP1A2, 2D6, and 3A drugs during pregnancy. PMID:23355638

  6. Development of a Physiologically Based Pharmacokinetic Model to Predict Disease-Mediated Therapeutic Protein-Drug Interactions: Modulation of Multiple Cytochrome P450 Enzymes by Interleukin-6.

    PubMed

    Jiang, Xiling; Zhuang, Yanli; Xu, Zhenhua; Wang, Weirong; Zhou, Honghui

    2016-05-01

    Disease-mediated therapeutic protein-drug interactions have recently gained attention from regulatory agencies and pharmaceutical industries in the development of new biological products. In this study, we developed a physiologically based pharmacokinetic (PBPK) model using SimCYP to predict the impact of elevated interleukin-6 (IL-6) levels on cytochrome P450 (CYP) enzymes and the treatment effect of an anti-IL-6 monoclonal antibody, sirukumab, in patients with rheumatoid arthritis (RA). A virtual RA patient population was first constructed by incorporating the impact of systemic IL-6 level on hepatic and intestinal expression of multiple CYP enzymes with information from in vitro studies. Then, a PBPK model for CYP enzyme substrates was developed for healthy adult subjects. After incorporating the virtual RA patient population, the PBPK model was applied to quantitatively predict pharmacokinetics of multiple CYP substrates in RA patients before and after sirukumab treatment from a clinical cocktail drug interaction study. The results suggested that, compared with observed clinical data, changes in systemic exposure to multiple CYP substrates by anti-IL-6 treatment in virtual RA patients have been reasonably captured by the PBPK model, as manifested by modulations in area under plasma concentration versus time curves for midazolam, omeprazole, S-warfarin, and caffeine. This PBPK model reasonably captured the modulation effect of IL-6 and sirukumab on activity of CYP3A, CYP2C9, CYP2C19, and CYP1A2 and holds the potential to be utilized to assess the modulation effect of sirukumab on the metabolism and pharmacokinetics of concomitant small-molecule drugs in RA patients. PMID:26961818

  7. Evolution of Antibody-Drug Conjugate Tumor Disposition Model to Predict Preclinical Tumor Pharmacokinetics of Trastuzumab-Emtansine (T-DM1).

    PubMed

    Singh, Aman P; Maass, Katie F; Betts, Alison M; Wittrup, K Dane; Kulkarni, Chethana; King, Lindsay E; Khot, Antari; Shah, Dhaval K

    2016-07-01

    A mathematical model capable of accurately characterizing intracellular disposition of ADCs is essential for a priori predicting unconjugated drug concentrations inside the tumor. Towards this goal, the objectives of this manuscript were to: (1) evolve previously published cellular disposition model of ADC with more intracellular details to characterize the disposition of T-DM1 in different HER2 expressing cell lines, (2) integrate the improved cellular model with the ADC tumor disposition model to a priori predict DM1 concentrations in a preclinical tumor model, and (3) identify prominent pathways and sensitive parameters associated with intracellular activation of ADCs. The cellular disposition model was augmented by incorporating intracellular ADC degradation and passive diffusion of unconjugated drug across tumor cells. Different biomeasures and chemomeasures for T-DM1, quantified in the companion manuscript, were incorporated into the modified model of ADC to characterize in vitro pharmacokinetics of T-DM1 in three HER2+ cell lines. When the cellular model was integrated with the tumor disposition model, the model was able to a priori predict tumor DM1 concentrations in xenograft mice. Pathway analysis suggested different contribution of antigen-mediated and passive diffusion pathways for intracellular unconjugated drug exposure between in vitro and in vivo systems. Global and local sensitivity analyses revealed that non-specific deconjugation and passive diffusion of the drug across tumor cell membrane are key parameters for drug exposure inside a cell. Finally, a systems pharmacokinetic model for intracellular processing of ADCs has been proposed to highlight our current understanding about the determinants of ADC activation inside a cell. PMID:27029797

  8. Using physiologically-based pharmacokinetic-guided "body-on-a-chip" systems to predict mammalian response to drug and chemical exposure.

    PubMed

    Sung, Jong Hwan; Srinivasan, Balaji; Esch, Mandy Brigitte; McLamb, William T; Bernabini, Catia; Shuler, Michael L; Hickman, James J

    2014-09-01

    The continued development of in vitro systems that accurately emulate human response to drugs or chemical agents will impact drug development, our understanding of chemical toxicity, and enhance our ability to respond to threats from chemical or biological agents. A promising technology is to build microscale replicas of humans that capture essential elements of physiology, pharmacology, and/or toxicology (microphysiological systems). Here, we review progress on systems for microscale models of mammalian systems that include two or more integrated cellular components. These systems are described as a "body-on-a-chip", and utilize the concept of physiologically-based pharmacokinetic (PBPK) modeling in the design. These microscale systems can also be used as model systems to predict whole-body responses to drugs as well as study the mechanism of action of drugs using PBPK analysis. In this review, we provide examples of various approaches to construct such systems with a focus on their physiological usefulness and various approaches to measure responses (e.g. chemical, electrical, or mechanical force and cellular viability and morphology). While the goal is to predict human response, other mammalian cell types can be utilized with the same principle to predict animal response. These systems will be evaluated on their potential to be physiologically accurate, to provide effective and efficient platform for analytics with accessibility to a wide range of users, for ease of incorporation of analytics, functional for weeks to months, and the ability to replicate previously observed human responses. PMID:24951471

  9. Pharmacokinetics of Drug Entry into Cochlear Fluids

    ERIC Educational Resources Information Center

    Salt, Alec N.

    2005-01-01

    The inner ear is exposed to aminoglycosides or other drugs either intentionally or as a side effect of clinical treatments directed at other regions of the body. An understanding of the effects of drugs on the inner ear requires knowledge of the pharmacokinetics of the drug once it reaches the cochlear fluids, specifically how much of it reaches…

  10. PREDICTIVE PHARMACOKINETICS OF TRAMADOL HYDROCHLORIDE FLOATING TABLETS.

    PubMed

    Wang, Jianming; Zhang, Yanzhen; Guo, Zhiling; Tao, Qingwen; Wang, Yongjun; Zhou, Wei; Ma, Xiao; Li, Zhihong

    2016-01-01

    The purpose of this study was to propose the effectiveness of convolution approach to predict pharmacokinetics of tramadol hydrochloride floating tablets, prepared by using various ratios of carbopol, HPMC K100M, and Hibiscus rosa Sinensis as excipient. The in vitro dissolution test was conducted using paddle method in 900 mL of HCl buffer with pH 1.2 to simulate the gastric condition. The stirring speed of paddles was set at 70 rpm. Temperature of dissolution medium was adjusted at 37 ± 5 °C. At predetermined time points, 5 mL of dissolution samples were taken with a replacement of same volume using fresh medium. The obtained samples were analyzed at 271 nm using UV visible spectrophotometer. The values of predicted pharmacokinetic parameters like Cmax (maximum blood drug level), Tmax (time required to attain maximum blood drug level), and AUC (area under blood drug concentration curve) ranged between 80.8 ± 3.2-119.6 ± 4.7 ng/mL, 11.4 ± 0.2-12.2 ± 0.2 h, and 1430.5 ± 209.5-1970.6 ± 287.4 ng.h/mL, respectively. This certainly is a desired feature required at the formulation development step, where the formulator requires the development of a formulation using desired in vivo features on the basis of only accessible in vitro data. It can be concluded from the results that convolution method is a practical method for the prediction of drug concentration in blood and for quality control. PMID:27476294

  11. Application of IVIVE and PBPK modeling in prospective prediction of clinical pharmacokinetics: strategy and approach during the drug discovery phase with four case studies.

    PubMed

    Chen, Yuan; Jin, Jin Y; Mukadam, Sophie; Malhi, Vikram; Kenny, Jane R

    2012-03-01

    Prospective simulations of human pharmacokinetic (PK) parameters and plasma concentration-time curves using in vitro in vivo extrapolation (IVIVE) and physiologically based pharmacokinetic (PBPK) models are becoming a vital part of the drug discovery and development process. This paper presents a strategy to deliver prospective simulations in support of clinical candidate nomination. A three stage approach of input parameter evaluation, model selection and multiple scenario simulation is utilized to predict the key components influencing human PK; absorption, distribution and clearance. The Simcyp® simulator is used to illustrate the approach and four compounds are presented as case studies. In general, the prospective predictions captured the observed clinical data well. Predicted C(max) was within 2-fold of observed data for all compounds and AUC was within 2-fold for all compounds following a single dose and three out of four compounds following multiple doses. Similarly, t(max) was within 2-fold of observed data for all compounds. However, C(last) was less accurately captured with two of the four compounds predicting C(last) within 2-fold of observed data following a single dose. The trend in results was towards overestimation of AUC and C(last) , this was particularly apparent for compound 2 for which clearance was likely underestimated via IVIVE. The prospective approach to simulating human PK using IVIVE and PBPK modeling outlined here attempts to utilize all available in silico, in vitro and in vivo preclinical data in order to determine the most appropriate assumptions to use in prospective predictions of absorption, distribution and clearance to aid clinical candidate nomination. PMID:22228214

  12. Alterations of chemotherapeutic pharmacokinetic profiles by drug–drug interactions

    PubMed Central

    Ghalib, Mohammed; Chaudhary, Imran; Goel, Sanjay

    2012-01-01

    Background Drug interactions in oncology are common place and largely ignored as we tolerate high thresholds of ‘toxic’ drug responses in these patients. However, in the era of ‘targeted’ or seemingly ‘less toxic’ therapy, these interactions are more commonly flagged and contribute significantly towards poor ‘quality of life’ and medical fatalities. Objective This review and opinion article focuses on alteration of chemotherapeutic pharmacokinetic profiles by drug interactions in the setting of polypharmacy. The assumption is that the drugs, with changes in their pharmacokinetics, will contribute towards changes in their pharmacodynamics. Methods The examples cited for such drug–drug interactions are culled from published literature with an emphasis on those interactions that have been well characterized at the molecular level. Results Although very few drug interaction studies have been performed on approved oncology based drugs, it is clear that drugs whose pharmacokinetics profiles are closely related to their pharmacodynamics will indeed result in clinically important drug interactions. Some newer mechanisms are described that involve interactions at the level of gene transcription, whereby, drug metabolism is significantly altered. However, for any given drug interaction, there does not seem to be a comprehensive model describing interactions. Conclusions Mechanisms based drug interactions are plentiful in oncology; however, there is an absolute lack of a comprehensive model that would predict drug–drug interactions. PMID:19239394

  13. Utility of a human FcRn transgenic mouse model in drug discovery for early assessment and prediction of human pharmacokinetics of monoclonal antibodies.

    PubMed

    Avery, Lindsay B; Wang, Mengmeng; Kavosi, Mania S; Joyce, Alison; Kurz, Jeffrey C; Fan, Yao-Yun; Dowty, Martin E; Zhang, Minlei; Zhang, Yiqun; Cheng, Aili; Hua, Fei; Jones, Hannah M; Neubert, Hendrik; Polzer, Robert J; O'Hara, Denise M

    2016-01-01

    Therapeutic antibodies continue to develop as an emerging drug class, with a need for preclinical tools to better predict in vivo characteristics. Transgenic mice expressing human neonatal Fc receptor (hFcRn) have potential as a preclinical pharmacokinetic (PK) model to project human PK of monoclonal antibodies (mAbs). Using a panel of 27 mAbs with a broad PK range, we sought to characterize and establish utility of this preclinical animal model and provide guidance for its application in drug development of mAbs. This set of mAbs was administered to both hemizygous and homozygous hFcRn transgenic mice (Tg32) at a single intravenous dose, and PK parameters were derived. Higher hFcRn protein tissue expression was confirmed by liquid chromatography-high resolution tandem mass spectrometry in Tg32 homozygous versus hemizygous mice. Clearance (CL) was calculated using non-compartmental analysis and correlations were assessed to historical data in wild-type mouse, non-human primate (NHP), and human. Results show that mAb CL in hFcRn Tg32 homozygous mouse correlate with human (r(2) = 0.83, r = 0.91, p < 0.01) better than NHP (r(2) = 0.67, r = 0.82, p < 0.01) for this dataset. Applying simple allometric scaling using an empirically derived best-fit exponent of 0.93 enabled the prediction of human CL from the Tg32 homozygous mouse within 2-fold error for 100% of mAbs tested. Implementing the Tg32 homozygous mouse model in discovery and preclinical drug development to predict human CL may result in an overall decreased usage of monkeys for PK studies, enhancement of the early selection of lead molecules, and ultimately a decrease in the time for a drug candidate to reach the clinic. PMID:27232760

  14. Pharmacokinetics and Drug Dosing in Obese Children

    PubMed Central

    Kendrick, Jennifer G.; Carr, Roxane R.; Ensom, Mary H.H.

    2010-01-01

    OBJECTIVES To review pharmacokinetics in obese children and to provide medication dosing recommendations. METHODS EMBASE, MEDLINE, and International Pharmaceutical Abstracts databases were searched using the following terms: obesity, morbid obesity, overweight, pharmacokinetics, drug, dose, kidney function test, creatinine, pediatric, and child. RESULTS We identified 10 studies in which the authors examined drug dosing or pharmacokinetics for obese children. No information was found for drug absorption or metabolism. Obese children have a higher percent fat mass and a lower percent lean mass compared with normal-weight children. Therefore, in obese children, the volume of distribution of lipophilic drugs is most likely higher, and that of hydrophilic drugs is most likely lower, than in normal-weight children. Serum creatinine concentrations are higher in obese than normal-weight children. Total body weight is an appropriate size descriptor for calculating doses of antineoplastics, cefazolin, and succinylcholine in obese children. Initial tobramycin doses may be determined using an adjusted body weight, although using total body weight in the context of monitoring serum tobramycin concentrations would also be an appropriate strategy. We found no information for any of the opioids; antibiotics such as penicillins, carbapenems, vancomycin, and linezolid; antifungals; cardiac drugs such as digoxin and amiodarone; corticosteroids; benzodiazepines; and anticonvulsants. In particular, we found no information about medications that are widely distributed to adipose tissue or that can accumulate there. CONCLUSIONS The available data are limited because of the small numbers of participating children, study design, or both. The number and type of drugs that have been studied limit our understanding of the pharmacokinetics in obese children. In the absence of dosing information for obese children, it is important to consider the nature and severity of a child's illness

  15. Drug pharmacokinetics and pharmacodynamics: Technological considerations

    SciTech Connect

    Fowler, J.S.; Volkow, N.D.; Wolf, A.P.

    1992-12-31

    Additionally, the use of PET to examine drug pharmacokinetics and pharmacadynamics and the relationship of these properties to the behavioral, therapeutic and toxic properties of drugs and substances of abuse is emerging as a powerful new scientific tool. The pharmacokinetic properties of a drug, which comprises all of the biological processes which determine the fraction of the drug available, can be measured using the labeled drug itself. For example, the labeled drug can be used to measure the absolute uptake, regional distribution and kinetics of a drug at its site of action in the body. Additionally the labeled drug and whole body its labeled metabolites and thus provide information an potential toxic effects as well as tissue half lives. On the other hand, different labeled tracers can be used to assess drug pharmacodynamics which include the biological Processes involved in the drug`s effects. For example, with appropriate radiotracers, the effects of a drug on metabolism, neurotransmitter activity, blood flew, enzyme activity or other processes can be probed.

  16. [Pharmacokinetic interactions of telaprevir with other drugs].

    PubMed

    Berenguer Berenguer, Juan; González-García, Juan

    2013-07-01

    Telaprevir is a new direct-acting antiviral drug for the treatment of hepatitis C virus (HCV) infection and is both a substrate and an inhibitor of cytochrome P450 (CYP450) isoenzymes. With the introduction of this new drug, assessment of drug-drug interactions has become a key factor in the evaluation of patients under treatment for HCV infection. During the treatment of this infection, many patients require other drugs to mitigate the adverse effects of anti-HCV drugs and to control other comorbidities. Moreover, most patients coinfected with HIV and HCV require antiretroviral therapy during treatment for HCV. Physicians should therefore be familiar with the pharmacokinetic properties of direct-acting antivirals for HCV treatment and their potential drug-drug interactions. The present article reviews the available information to date on the interactions of telaprevir with other drugs and provides recommendations for daily clinical practice. PMID:24063902

  17. Drug pharmacokinetics and pharmacodynamics: Technological considerations

    SciTech Connect

    Fowler, J.S.; Volkow, N.D.; Wolf, A.P.

    1992-01-01

    Additionally, the use of PET to examine drug pharmacokinetics and pharmacadynamics and the relationship of these properties to the behavioral, therapeutic and toxic properties of drugs and substances of abuse is emerging as a powerful new scientific tool. The pharmacokinetic properties of a drug, which comprises all of the biological processes which determine the fraction of the drug available, can be measured using the labeled drug itself. For example, the labeled drug can be used to measure the absolute uptake, regional distribution and kinetics of a drug at its site of action in the body. Additionally the labeled drug and whole body its labeled metabolites and thus provide information an potential toxic effects as well as tissue half lives. On the other hand, different labeled tracers can be used to assess drug pharmacodynamics which include the biological Processes involved in the drug's effects. For example, with appropriate radiotracers, the effects of a drug on metabolism, neurotransmitter activity, blood flew, enzyme activity or other processes can be probed.

  18. Physiologically-based pharmacokinetic modeling to predict the clinical pharmacokinetics of monoclonal antibodies.

    PubMed

    Glassman, Patrick M; Balthasar, Joseph P

    2016-08-01

    Accurate prediction of the clinical pharmacokinetics of new therapeutic entities facilitates decision making during drug discovery, and increases the probability of success for early clinical trials. Standard strategies employed for predicting the pharmacokinetics of small-molecule drugs (e.g., allometric scaling) are often not useful for predicting the disposition monoclonal antibodies (mAbs), as mAbs frequently demonstrate species-specific non-linear pharmacokinetics that is related to mAb-target binding (i.e., target-mediated drug disposition, TMDD). The saturable kinetics of TMDD are known to be influenced by a variety of factors, including the sites of target expression (which determines the accessibility of target to mAb), the extent of target expression, the rate of target turnover, and the fate of mAb-target complexes. In most cases, quantitative information on the determinants of TMDD is not available during early phases of drug discovery, and this has complicated attempts to employ mechanistic mathematical models to predict the clinical pharmacokinetics of mAbs. In this report, we introduce a simple strategy, employing physiologically-based modeling, to predict mAb disposition in humans. The approach employs estimates of inter-antibody variability in rate processes of extravasation in tissues and fluid-phase endocytosis, estimates for target concentrations in tissues derived through use of categorical immunohistochemical scores, and in vitro measures of the turnover of target and target-mAb complexes. Monte Carlo simulations were performed for four mAbs (cetuximab, figitumumab, dalotuzumab, trastuzumab) directed against three targets (epidermal growth factor receptor, insulin-like growth factor receptor 1, human epidermal growth factor receptor 2). The proposed modeling strategy was able to predict well the pharmacokinetics of cetuximab, dalotuzumab, and trastuzumab at a range of doses, but trended towards underprediction of figitumumab concentrations

  19. Pharmacokinetic drug interactions with phenytoin (Part I).

    PubMed

    Nation, R L; Evans, A M; Milne, R W

    1990-01-01

    Phenytoin, which is used primarily as an anticonvulsant agent, has a relatively low therapeutic index, and monitoring of plasma phenytoin concentration is often used to help guide therapy. It has properties which predispose it to an involvement in pharmacokinetic interactions, a large number of which have been reported. These properties include: low aqueous solubility and slow rate of gastrointestinal absorption; a relatively high degree of plasma protein binding; a clearance that is non-linear due to saturable oxidative biotransformation; and the ability to induce hepatic microsomal enzymes. Because of its narrow therapeutic range, drug interactions leading to alterations in plasma phenytoin concentration may be clinically important. Such interactions have often been reported initially as either cases of phenytoin intoxication or of decreased effectiveness. Drugs may modify the pharmacokinetics of phenytoin by altering its absorption, plasma protein binding, or hepatic biotransformation; alterations in the absorption and/or biotransformation may lead to changes in both the unbound plasma phenytoin concentration and, as a result, the clinical effect. Preparations which may decrease the gastrointestinal absorption of phenytoin include nutritional formulae and charcoal. There are many reports of drugs which may increase (e.g. folic acid, dexamethasone and rifampicin) or decrease (e.g. valproic acid, sulthiame, isoniazid, cimetidine, phenylbutazone, chloramphenicol and some sulphonamides) the metabolism of phenytoin. It is important to bear in mind that, as a result of its non-linear clearance, changes in phenytoin absorption and/or biotransformation will lead to more than proportionate changes in plasma drug concentration. Drugs which may displace phenytoin from plasma albumin include valproic acid, salicylic acid, phenylbutazone and some sulphonamides. Although an alteration in the unbound fraction of phenytoin in plasma would not, in itself, be expected to alter

  20. Pharmacokinetic/Pharmacodynamic-Driven Drug Development

    PubMed Central

    Gallo, James M.

    2010-01-01

    The drug discovery and development enterprise, traditionally an industrial juggernaut, has spanned into the academic arena that is partially motivated by the National Institutes of Health Roadmap highlighting translational science and medicine. Since drug discovery and development represents a pipeline of basic to clinical investigations it meshes well with the prime “bench to the bedside” directive of translational medicine. The renewed interest in drug discovery and develpoment in academia provides an opportunity to rethink the hiearchary of studies with the hope to improve the staid approaches that have been critizied for lacking innovation. One area that has received limited attention concerns the use of pharmacokinetic [PK] and pharmacodynamic [PD] studies in the drug development process. Using anticancer drug development as a focus, this review will address past and current deficencies in how PK/PD studies are conducted and offer new strategies that might bridge the gap between preclinical and clinical trials. PMID:20687184

  1. Clinical significance of pharmacokinetic interactions between antiepileptic and psychotropic drugs.

    PubMed

    Spina, Edoardo; Perucca, Emilio

    2002-01-01

    As antiepileptic drugs (AEDs) and psychotropic agents are increasingly used in combination, the possibility of pharmacokinetic interactions between these compounds is relatively common. Most pharmacokinetic interactions between AEDs and psychoactive drugs occur at a metabolic level, and usually involve changes in the activity of the cytochrome P450 mixed-function oxidases (CYP) involved in their biotransformation. As a consequence of CYP inhibition or induction, plasma concentrations of a given drug may reach toxic or subtherapeutic levels, and dosage adjustments may be required to avoid adverse effects or clinical failure. Enzyme-inducing AEDs, such as carbamazepine (CBZ), phenytoin (PHT), and barbiturates, stimulate the oxidative biotransformation of many concurrently prescribed psychotropics. In particular, these AEDs may decrease the plasma concentrations of tricyclic antidepressants, many antipsychotics, including traditional compounds, i.e., haloperidol and chlorpromazine, and newer agents, i.e., clozapine, risperidone, olanzapine, quetiapine, and ziprasidone, and some benzodiazepines. Conversely, new AEDs appear to have a lower potential for interactions with all psychotropic drugs. While antipsychotics and anxiolytics do not significantly influence the pharmacokinetics of most AEDs, some newer antidepressants, such as viloxazine, fluoxetine, and fluvoxamine, may lead to higher serum levels of some AEDs, namely CBZ and PHT, through inhibition of CYP enzymes. No significant pharmacokinetic interactions have been documented between AEDs and lithium. Information about CYP enzymes responsible for the biotransformation of individual agents and about the effects of these compounds on the activity of specific CYP enzymes may help in predicting and avoiding clinically significant interactions. Apart from careful clinical observation, serum level monitoring of AEDs and psychotropic drugs can be useful in determining the need for dosage adjustments, especially if

  2. Duloxetine: clinical pharmacokinetics and drug interactions.

    PubMed

    Knadler, Mary Pat; Lobo, Evelyn; Chappell, Jill; Bergstrom, Richard

    2011-05-01

    Duloxetine, a potent reuptake inhibitor of serotonin (5-HT) and norepinephrine, is effective for the treatment of major depressive disorder, diabetic neuropathic pain, stress urinary incontinence, generalized anxiety disorder and fibromyalgia. Duloxetine achieves a maximum plasma concentration (C(max)) of approximately 47 ng/mL (40 mg twice-daily dosing) to 110 ng/mL (80 mg twice-daily dosing) approximately 6 hours after dosing. The elimination half-life of duloxetine is approximately 10-12 hours and the volume of distribution is approximately 1640 L. The goal of this paper is to provide a review of the literature on intrinsic and extrinsic factors that may impact the pharmacokinetics of duloxetine with a focus on concomitant medications and their clinical implications. Patient demographic characteristics found to influence the pharmacokinetics of duloxetine include sex, smoking status, age, ethnicity, cytochrome P450 (CYP) 2D6 genotype, hepatic function and renal function. Of these, only impaired hepatic function or severely impaired renal function warrant specific warnings or dose recommendations. Pharmacokinetic results from drug interaction studies show that activated charcoal decreases duloxetine exposure, and that CYP1A2 inhibition increases duloxetine exposure to a clinically significant degree. Specifically, following oral administration in the presence of fluvoxamine, the area under the plasma concentration-time curve and C(max) of duloxetine significantly increased by 460% (90% CI 359, 584) and 141% (90% CI 93, 200), respectively. In addition, smoking is associated with a 30% decrease in duloxetine concentration. The exposure of duloxetine with CYP2D6 inhibitors or in CYP2D6 poor metabolizers is increased to a lesser extent than that observed with CYP1A2 inhibition and does not require a dose adjustment. In addition, duloxetine increases the exposure of drugs that are metabolized by CYP2D6, but not CYP1A2. Pharmacodynamic study results indicate

  3. Pharmacokinetic drug interactions with oral contraceptives.

    PubMed

    Back, D J; Orme, M L

    1990-06-01

    Oral contraceptive steroids are used by an estimated 60 to 70 million women world-wide. Over the past 20 years there have been both case reports and clinical studies on the topic of drug interactions with these agents. Some of the interactions are of definite therapeutic relevance, whereas others can be discounted as being of no clinical significance. Pharmacological interactions between oral contraceptive steroids and other compounds may be of 2 kinds: (a) drugs may impair the efficacy of oral contraceptive steroids, leading to breakthrough bleeding and pregnancy (in a few cases, the activity of the contraceptive is enhanced); (b) oral contraceptive steroids may interfere with the metabolism of other drugs. A number of anticonvulsants (phenobarbital, phenytoin, carbamazepine) are enzyme-inducing agents and thereby increase the clearance of the oral contraceptive steroids. Valproic acid has no enzyme-inducing properties, and thus women on this anticonvulsant can rely on their low dose oral contraceptive steroids for contraceptive protection. Researchers are now beginning to unravel the molecular basis of this interaction, with evidence of specific forms of cytochrome P450 (P450IIC and IIIA gene families) being induced by phenobarbital. Rifampicin, the antituberculous drug, also induces a cytochrome P450 which is a product of the P450IIIA gene subfamily. This isozyme is one of the major forms involved in 2-hydroxylation of ethinylestradiol. Broad spectrum antibiotics have been implicated in causing pill failure; case reports document the interaction, and general practitioners are convinced that it is real. The problem remains that there is still no firm clinical pharmacokinetic evidence which indicates that blood concentrations of oral contraceptive steroids are altered by antibiotics. However, perhaps this should not be a surprise, given that the incidence of the interaction may be very low. It is suggested that an individual at risk will have a low bioavailability

  4. Individual and population pharmacokinetic compartment analysis: a graphic procedure for quantification of predictive performance

    PubMed Central

    Eksborg, Staffan

    2013-01-01

    Objectives Pharmacokinetic studies are important for optimizing of drug dosing, but requires proper validation of the used pharmacokinetic procedures. However, simple and reliable statistical methods suitable for evaluation of the predictive performance of pharmacokinetic analysis are essentially lacking. The aim of the present study was to construct and evaluate a graphic procedure for quantification of predictive performance of individual and population pharmacokinetic compartment analysis. Methods Original data from previously published pharmacokinetic compartment analyses after intravenous, oral, and epidural administration, and digitized data, obtained from published scatter plots of observed vs predicted drug concentrations from population pharmacokinetic studies using the NPEM algorithm and NONMEM computer program and Bayesian forecasting procedures, were used for estimating the predictive performance according to the proposed graphical method and by the method of Sheiner and Beal. Results The graphical plot proposed in the present paper proved to be a useful tool for evaluation of predictive performance of both individual and population compartment pharmacokinetic analysis. Conclusion The proposed method is simple to use and gives valuable information concerning time- and concentration-dependent inaccuracies that might occur in individual and population pharmacokinetic compartment analysis. Predictive performance can be quantified by the fraction of concentration ratios within arbitrarily specified ranges, e.g. within the range 0.8–1.2.

  5. Semi-mechanistic physiologically-based pharmacokinetic modeling of clinical glibenclamide pharmacokinetics and drug-drug-interactions.

    PubMed

    Greupink, Rick; Schreurs, Marieke; Benne, Marina S; Huisman, Maarten T; Russel, Frans G M

    2013-08-16

    We studied if the clinical pharmacokinetics and drug-drug interactions (DDIs) of the sulfonylurea-derivative glibenclamide can be simulated via a physiologically-based pharmacokinetic modeling approach. To this end, a glibenclamide PBPK-model was build in Simcyp using in vitro physicochemical and biotransformation data of the drug, and was subsequently optimized using plasma disappearance data observed after i.v. administration. The model was validated against data observed after glibenclamide oral dosing, including DDIs. We found that glibenclamide pharmacokinetics could be adequately modeled if next to CYP metabolism an active hepatic uptake process was assumed. This hepatic uptake process was subsequently included in the model in a non-mechanistic manner. After an oral dose of 0.875 mg predicted Cmax and AUC were 39.7 (95% CI:37.0-42.7)ng/mL and 108 (95% CI: 96.9-120)ng/mLh, respectively, which is in line with observed values of 43.6 (95% CI: 37.7-49.5)ng/mL and 133 (95% CI: 107-159)ng/mLh. For a 1.75 mg oral dose, the predicted and observed values were 82.5 (95% CI:76.6-88.9)ng/mL vs 91.1 (95% CI: 67.9-115.9) for Cmax and 224 (95% CI: 202-248) vs 324 (95% CI: 197-451)ng/mLh for AUC, respectively. The model correctly predicted a decrease in exposure after rifampicin pre-treatment. An increase in glibenclamide exposure after clarithromycin co-treatment was predicted, but the magnitude of the effect was underestimated because part of this DDI is the result of an interaction at the transporter level. Finally, the effects of glibenclamide and fluconazol co-administration were simulated. Our simulations indicated that co-administration of this potent CYP450 inhibitor will profoundly increase glibenclamide exposure, which is in line with clinical observations linking the glibenclamide-fluconazol combination to an increased risk of hypoglycemia. In conclusion, glibenclamide pharmacokinetics and its CYP-mediated DDIs can be simulated via PBPK-modeling. In addition, our

  6. On the assessment of effects of food on the pharmacokinetics of drugs in early development.

    PubMed

    Li, Zhihong; Vachharajani, Nimish N; Krishna, Rajesh

    2002-05-01

    The impact of food on the pharmacokinetics of a drug has important implications in drug development. This commentary is aimed at addressing two key challenges, developability of drugs whose pharmacokinetics are severely influenced by food, and the need for addressing the effects of fruit juice ingredients which modulate metabolic/efflux properties of a compound. Perspectives on the value in predicting food-drug interactions during preclinical development, timing of clinical food-drug interaction studies, and implications of food effects are presented herein. PMID:12015791

  7. Modeling of Corneal and Retinal Pharmacokinetics after Periocular Drug Administration

    PubMed Central

    Amrite, Aniruddha C.; Edelhauser, Henry F.; Kompella, Uday B.

    2012-01-01

    Purpose To develop pharmacokinetics models to describe the disposition of small lipophilic molecules in the cornea and retina after periocular (subconjunctival or posterior subconjunctival) administration. Methods Compartmental pharmacokinetics analysis was performed on the corneal and retinal data obtained after periocular administration of 3 mg of celecoxib (a selective COX-2 inhibitor) to Brown Norway (BN) rats. Berkeley Madonna, a differential and difference equation–based modeling software, was used for the pharmacokinetics modeling. The data were fit to different compartment models with first-order input and disposition, and the best fit was selected on the basis of coefficient of regression and Akaike information criteria (AIC). The models were validated by using the celecoxib data from a prior study in Sprague-Dawley (SD) rats. The corneal model was also fit to the corneal data for prednisolone at a dose of 2.61 mg in albino rabbits, and the model was validated at two other doses of prednisolone (0.261 and 26.1 mg) in these rabbits. Model simulations were performed with the finalized model to understand the effect of formulation on corneal and retinal pharmacokinetics after periocular administration. Results Celecoxib kinetics in the BN rat cornea can be described by a two-compartment (periocular space and cornea, with a dissolution step for periocular formulation) model, with parallel elimination from the cornea and the periocular space. The inclusion of a distribution compartment or a dissolution step for celecoxib suspension did not lead to an overall improvement in the corneal data fit compared with the two-compartment model. The more important parameter for enhanced fit and explaining the apparent lack of an increase phase in the corneal levels is the inclusion of the initial leak-back of the dose from the periocular space into the precorneal area. The predicted celecoxib concentrations from this model also showed very good correlation (r = 0

  8. Persistent pharmacokinetic challenges to pediatric drug development

    PubMed Central

    Sage, Daniel P.; Kulczar, Christopher; Roth, Wyatt; Liu, Wanqing; Knipp, Gregory T.

    2014-01-01

    The development of new therapeutic agents for the mitigation of pediatric disorders is largely hindered by the inability for investigators to assess pediatric pharmacokinetics (PK) in healthy patients due to substantial safety concerns. Pediatric patients are a clinical moving target for drug delivery due to changes in absorption, distribution, metabolism and excretion (ADME) and the potential for PK related toxicological (T) events to occur throughout development. These changes in ADMET can have profound effects on drug delivery, and may lead to toxic or sub-therapeutic outcomes. Ethical, economical, logistical, and technical barriers have resulted in insufficient investigation of these changes by industrial, regulatory, and academic bodies, leading to the classification of pediatric patients as therapeutic orphans. In response to these concerns, regulatory agencies have incentivized investigation into these ontogenic changes and their effects on drug delivery in pediatric populations. The intent of this review is to briefly present a synopsis of the development changes that occur in pediatric patients, discuss the effects of these changes on ADME and drug delivery strategies, highlight the hurdles that are still being faced, and present some opportunities to overcome these challenges. PMID:25221567

  9. Pharmacokinetic/pharmacodynamic studies in drug product development.

    PubMed

    Meibohm, Bernd; Derendorf, Hartmut

    2002-01-01

    In the quest of ways for rationalizing and accelerating drug product development, integrated pharmacokinetic/pharmacodynamic (PK/PD) concepts provide a highly promising tool. PK/PD modeling concepts can be applied in all stages of preclinical and clinical drug development, and their benefits are multifold. At the preclinical stage, potential applications might comprise the evaluation of in vivo potency and intrinsic activity, the identification of bio-/surrogate markers, as well as dosage form and regimen selection and optimization. At the clinical stage, analytical PK/PD applications include characterization of the dose-concentration-effect/toxicity relationship, evaluation of food, age and gender effects, drug/drug and drug/disease interactions, tolerance development, and inter- and intraindividual variability in response. Predictive PK/PD applications can also involve extrapolation from preclinical data, simulation of drug responses, as well as clinical trial forecasting. Rigorous implementation of the PK/PD concepts in drug product development provides a rationale, scientifically based framework for efficient decision making regarding the selection of potential drug candidates, for maximum information gain from the performed experiments and studies, and for conducting fewer, more focused clinical trials with improved efficiency and cost effectiveness. Thus, PK/PD concepts are believed to play a pivotal role in streamlining the drug development process of the future. PMID:11782894

  10. Prediction of human pharmacokinetics from preclinical information: comparative accuracy of quantitative prediction approaches.

    PubMed

    Hosea, Natilie A; Collard, Wendy T; Cole, Susan; Maurer, Tristan S; Fang, Rick X; Jones, Hannah; Kakar, Shefali M; Nakai, Yasuhiro; Smith, Bill J; Webster, Rob; Beaumont, Kevin

    2009-05-01

    Quantitative prediction of human pharmacokinetics is critical in assessing the viability of drug candidates and in determining first-in-human dosing. Numerous prediction methodologies, incorporating both in vitro and preclinical in vivo data, have been developed in recent years, each with advantages and disadvantages. However, the lack of a comprehensive data set, both preclinical and clinical, has limited efforts to evaluate the optimal strategy (or strategies) that results in quantitative predictions of human pharmacokinetics. To address this issue, the authors conducted a retrospective analysis using 50 proprietary compounds for which in vitro, preclinical pharmacokinetic data and oral single-dose human pharmacokinetic data were available. Five predictive strategies, involving either allometry or use of unbound intrinsic clearance from microsomes or hepatocytes, were then compared for their ability to predict human oral clearance, half-life through predictions of systemic clearance, volume of distribution, and bioavailability. Use of a single-species scaling approach with rat, dog, or monkey was as accurate as or more accurate than using multiple-species allometry. For those compounds cleared almost exclusively by P450-mediated pathways, scaling from human liver microsomes was as predictive as single-species scaling of clearance based on data from rat, dog, or monkey. These data suggest that use of predictive methods involving either single-species in vivo data or in vitro human liver microsomes can quantitatively predict human in vivo pharmacokinetics and suggest the possibility of streamlining the predictive methodology through use of a single species or use only of human in vitro microsomal preparations. PMID:19299532

  11. Pharmacokinetic properties and in silico ADME modeling in drug discovery.

    PubMed

    Honório, Kathia M; Moda, Tiago L; Andricopulo, Adriano D

    2013-03-01

    The discovery and development of a new drug are time-consuming, difficult and expensive. This complex process has evolved from classical methods into an integration of modern technologies and innovative strategies addressed to the design of new chemical entities to treat a variety of diseases. The development of new drug candidates is often limited by initial compounds lacking reasonable chemical and biological properties for further lead optimization. Huge libraries of compounds are frequently selected for biological screening using a variety of techniques and standard models to assess potency, affinity and selectivity. In this context, it is very important to study the pharmacokinetic profile of the compounds under investigation. Recent advances have been made in the collection of data and the development of models to assess and predict pharmacokinetic properties (ADME--absorption, distribution, metabolism and excretion) of bioactive compounds in the early stages of drug discovery projects. This paper provides a brief perspective on the evolution of in silico ADME tools, addressing challenges, limitations, and opportunities in medicinal chemistry. PMID:23016542

  12. Physiologically based pharmacokinetic modeling of disposition and drug-drug interactions for atorvastatin and its metabolites.

    PubMed

    Zhang, Tao

    2015-09-18

    Atorvastatin is the most commonly used of all statins to lower cholesterol. Atorvastatin is extensively metabolized in both gut and liver to produce several active metabolites. The purpose of the present study is to develop a physiologically based pharmacokinetic (PBPK) model for atorvastatin and its two primary metabolites, 2-hydroxy-atorvastatin acid and atorvastatin lactone, using in vitro and in vivo data. The model was used to predict the pharmacokinetic profiles and drug-drug interaction (DDI) effect for atorvastatin and its metabolites in different DDI scenarios. The predictive performance of the model was assessed by comparing predicted results to observed data after coadministration of atorvastatin with different medications such as itraconazole, clarithromycin, cimetidine, rifampin and phenytoin. This population based PBPK model was able to describe the concentration-time profiles of atorvastatin and its two metabolites reasonably well in the absence or presence of those drugs at different dose regimens. The predicted maximum concentration (Cmax), area under the concentration-time curve (AUC) values and between-phase ratios were in good agreement with clinically observed data. The model has also revealed the importance of different metabolic pathways on the disposition of atorvastatin metabolites. This PBPK model can be utilized to assess the safety and efficacy of atorvastatin in the clinic. This study demonstrated the feasibility of applying PBPK approach to predict the DDI potential of drugs undergoing complex metabolism. PMID:26116278

  13. Pharmacokinetics and drug interactions of eslicarbazepine acetate.

    PubMed

    Bialer, Meir; Soares-da-Silva, Patricio

    2012-06-01

    Eslicarbazepine acetate (ESL) is a novel once-daily antiepileptic drug (AED) approved in Europe since 2009 that was found to be efficacious and well tolerated in a phase III clinical program in adult patients with partial onset seizures previously not controlled with treatment with one to three AEDs, including carbamazepine (CBZ). ESL shares with CBZ and oxcarbazepine (OXC) the dibenzazepine nucleus bearing the 5-carboxamide substitute, but is structurally different at the 10,11 position. This molecular variation results in differences in metabolism, preventing the formation of toxic epoxide metabolites such as carbamazepine-10,11-epoxide. Unlike OXC, which is metabolized to both eslicarbazepine and (R)-licarbazepine, ESL is extensively converted to eslicarbazepine. The systemic exposure to eslicarbazepine after ESL oral administration is approximately 94% of the parent dose, with minimal exposure to (R)-licarbazepine and OXC. After ESL oral administration, the effective half-life (t(1/2,eff) ) of eslicarbazepine was 20-24 h, which is approximately two times longer than its terminal half-life (t(1/2)). At clinically relevant doses (400-1,600 mg/day) ESL has linear pharmacokinetics (PK) with no effects of gender or moderate liver impairment. However, because eslicarbazepine is eliminated primarily (66%) by renal excretion, dose adjustment is recommended for patients with renal impairment. Eslicarbazepine clearance is induced by phenobarbital, phenytoin, and CBZ and it dose-dependently decreases plasma exposure of oral contraceptive and simvastatin. PMID:22612290

  14. Predicting pharmacokinetic profiles using in silico derived parameters.

    PubMed

    Hosea, Natalie A; Jones, Hannah M

    2013-04-01

    Human pharmacokinetic (PK) predictions play a critical role in assessing the quality of potential clinical candidates where the accurate estimation of clearance, volume of distribution, bioavailability, and the plasma-concentration-time profiles are the desired end points. While many methods for conducting predictions utilize in vivo data, predictions can be conducted successfully from in vitro or in silico data, applying modeling and simulation techniques. This approach can be facilitated using commercially available prediction software such as GastroPlus which has been reported to accurately predict the oral PK profile of small drug-like molecules. Herein, case studies are described where GastroPlus modeling and simulation was employed using in silico or in vitro data to predict PK profiles in early discovery. The results obtained demonstrate the feasibility of adequately predicting plasma-concentration-time profiles with in silico derived as well as in vitro measured parameters and hence predicting PK profiles with minimal data. The applicability of this approach can provide key information enabling decisions on either dose selection, chemistry strategy to improve compounds, or clinical protocol design, thus demonstrating the value of modeling and simulation in both early discovery and exploratory development for predicting absorption and disposition profiles. PMID:23427934

  15. A Pharmacometabonomic Approach To Predicting Metabolic Phenotypes and Pharmacokinetic Parameters of Atorvastatin in Healthy Volunteers.

    PubMed

    Huang, Qing; Aa, Jiye; Jia, Huning; Xin, Xiaoqing; Tao, Chunlei; Liu, Linsheng; Zou, Bingjie; Song, Qinxin; Shi, Jian; Cao, Bei; Yong, Yonghong; Wang, Guangji; Zhou, Guohua

    2015-09-01

    Genetic polymorphism and environment each influence individual variability in drug metabolism and disposition. It is preferable to predict such variability, which may affect drug efficacy and toxicity, before drug administration. We examined individual differences in the pharmacokinetics of atorvastatin by applying gas chromatography-mass spectrometry-based metabolic profiling to predose plasma samples from 48 healthy volunteers. We determined the level of atorvastatin in plasma using liquid chromatography-tandem mass spectrometry. With the endogenous molecules, which showed a good correlation with pharmacokinetic parameters, a refined partial least-squares model was calculated based on predose data from a training set of 36 individuals and exhibited good predictive capability for the other 12 individuals in the prediction set. In addition, the model was successfully used to predictively classify individual pharmacokinetic responses into subgroups. Metabolites such as tryptophan, alanine, arachidonic acid, 2-hydroxybutyric acid, cholesterol, and isoleucine were indicated as candidate markers for predicting by showing better predictive capability for explaining individual differences than a conventional physiological index. These results suggest that a pharmacometabonomic approach offers the potential to predict individual differences in pharmacokinetics and therefore to facilitate individualized drug therapy. PMID:26216528

  16. In vitro-in vivo Pharmacokinetic correlation model for quality assurance of antiretroviral drugs

    PubMed Central

    Restrepo Valencia, Piedad

    2015-01-01

    Introduction: The in vitro-in vivo pharmacokinetic correlation models (IVIVC) are a fundamental part of the drug discovery and development process. The ability to accurately predict the in vivo pharmacokinetic profile of a drug based on in vitro observations can have several applications during a successful development process. Objective: To develop a comprehensive model to predict the in vivo absorption of antiretroviral drugs based on permeability studies, in vitro and in vivo solubility and demonstrate its correlation with the pharmacokinetic profile in humans. Methods: Analytical tools to test the biopharmaceutical properties of stavudine, lamivudine y zidovudine were developed. The kinetics of dissolution, permeability in caco-2 cells and pharmacokinetics of absorption in rabbits and healthy volunteers were evaluated. Results: The cumulative areas under the curve (AUC) obtained in the permeability study with Caco-2 cells, the dissolution study and the pharmacokinetics in rabbits correlated with the cumulative AUC values in humans. These results demonstrated a direct relation between in vitro data and absorption, both in humans and in the in vivo model. Conclusions: The analytical methods and procedures applied to the development of an IVIVC model showed a strong correlation among themselves. These IVIVC models are proposed as alternative and cost/effective methods to evaluate the biopharmaceutical properties that determine the bioavailability of a drug and their application includes the development process, quality assurance, bioequivalence studies and pharmacosurveillance. PMID:26600625

  17. Asparaginase pharmacokinetics and implications of therapeutic drug monitoring

    PubMed Central

    Asselin, Barbara; Rizzari, Carmelo

    2015-01-01

    Asparaginase is widely used in chemotherapeutic regimens for the treatment of acute lymphoblastic leukemia (ALL) and has led to a substantial improvement in cure rates, especially in children. Optimal therapeutic effects depend on a complete and sustained depletion of serum asparagine. However, pronounced interpatient variability, differences in pharmacokinetic properties between asparaginases and the formation of asparaginase antibodies make it difficult to predict the degree of asparagine depletion that will result from a given dose of asparaginase. The pharmacological principles underlying asparaginase therapy in the treatment of ALL are summarized in this article. A better understanding of the many factors that influence asparaginase activity and subsequent asparagine depletion may allow physicians to tailor treatment to the individual, maximizing therapeutic effect and minimizing treatment-related toxicity. Therapeutic drug monitoring provides a means of assessing a patient's current depletion status and can be used to better evaluate the potential benefit of treatment adjustments. PMID:25586605

  18. Estimation of drug dosage regimens with a pharmacokinetic slide rule.

    PubMed

    Straughn, A B; Cruze, C A; Meyer, M C

    1977-02-01

    A pharmacokinetic slide rule to facilitate the computations based on relatively simple pharmacokinetic principles involved in the development of individualized drug dosage regimens is described. The calculations are based on the assumption that the body can be conceived as a one-compartment open model with drug elimination proceeding by apparent first-order kinetics. Examples are presented (1) to illustrate the clinical application of a slide rule to compute the time-course of drug in the body, (2) to calculate steady-state maximum and minimum levels, and accumulation during multiple dosage and (3) to estimate appropriate maintenance doses and intravenous infusion rates. PMID:842548

  19. [Discussion about traditional Chinese medicine pharmacokinetics study based on first botanical drug approved by FDA].

    PubMed

    Huang, Fanghua

    2010-04-01

    Pharmacokinetics study is one of main components of pharmaceuticals development. Food and Drug Administration (FDA) approved Veregen as the first botanical drug in 2006. This article introduced FDA's requirement on pharmacokinetics study of botanical drug and pharmacokinetics studies of Veregen, summarized current requirement and status quo of pharmacokinetics study on traditional Chinese medicine (TCM) and natural medicine in China, and discussed about pharmacokinetics study strategy for TCM and natural medicine. PMID:20575403

  20. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures

    PubMed Central

    2015-01-01

    Drug development has a high attrition rate, with poor pharmacokinetic and safety properties a significant hurdle. Computational approaches may help minimize these risks. We have developed a novel approach (pkCSM) which uses graph-based signatures to develop predictive models of central ADMET properties for drug development. pkCSM performs as well or better than current methods. A freely accessible web server (http://structure.bioc.cam.ac.uk/pkcsm), which retains no information submitted to it, provides an integrated platform to rapidly evaluate pharmacokinetic and toxicity properties. PMID:25860834

  1. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures.

    PubMed

    Pires, Douglas E V; Blundell, Tom L; Ascher, David B

    2015-05-14

    Drug development has a high attrition rate, with poor pharmacokinetic and safety properties a significant hurdle. Computational approaches may help minimize these risks. We have developed a novel approach (pkCSM) which uses graph-based signatures to develop predictive models of central ADMET properties for drug development. pkCSM performs as well or better than current methods. A freely accessible web server (http://structure.bioc.cam.ac.uk/pkcsm), which retains no information submitted to it, provides an integrated platform to rapidly evaluate pharmacokinetic and toxicity properties. PMID:25860834

  2. Clinical Pharmacokinetics of Antiretroviral Drugs in Older Persons

    PubMed Central

    Schoen, John C.; Erlandson, Kristine Mace

    2013-01-01

    Introduction Combination antiretroviral therapy has enabled HIV infected persons to reach older ages in high numbers. Hepatic and renal changes that normally occur with advancing age occur earlier and with higher incidence in HIV-infected individuals. A limited number of prospective controlled studies have demonstrated small reductions (17% to 41%) in lopinavir, atazanavir, and lamivudine clearance in older versus younger adults. A much larger number of retrospective studies in adults (age range ~20 to 60 years), including all antiretroviral drugs, have evaluated age as a covariate for pharmacokinetics. Most studies did not detect substantial associations between drug exposures and age. Areas Covered This review summarizes antiretroviral drug pharmacokinetics in older persons. The authors review articles from PubMed (search terms: elderly, antiretroviral, pharmacokinetics) in addition to the bibliographies of those selected. Expert Opinion The evidence to date does not support major pharmacokinetic changes in adults between ~20 and 60 years of age. However, additional prospective, well-controlled studies are needed in more persons > 60 years, including those with frailty and comorbidities, with assessment of unbound drug clearance, and incorporation of adherence, pharmacogenetics, and concomitant medications. Until then, guidelines for drug-drug interactions and dosing in renal and hepatic impairment should be followed in older HIV infected individuals. PMID:23514375

  3. Prediction of drug clearance in children.

    PubMed

    Foissac, Frantz; Bouazza, Naïm; Valade, Elodie; De Sousa Mendes, Mailys; Fauchet, Floris; Benaboud, Sihem; Hirt, Déborah; Tréluyer, Jean-Marc; Urien, Saïk

    2015-07-01

    The pediatric population is often exposed to drugs without sufficient knowledge about pharmacokinetics. The prediction of accurate clearance values in children, especially in neonates and infants, will improve the rational in dosing decisions. Drug clearances from birth to adulthood were compiled after a systematic review of pharmacokinetic reports. The analysis was performed using NONMEM. Clearance predictions were then evaluated by external validation. Prediction errors were also compared with those obtained from weight-based allometric scaling and physiologically based clearance (PBCL) models. For the analysis, 17 and 15 drugs were used for model building and external validation, respectively. A model based on the adult drug clearance value and taking into account both weight and age was retained. Age-related maturation of clearance reached 90% of the adult value within 1.5 years of life. For children less than 2 years old, allometric scaling alone systematically overestimated clearances. Accounting for age improved the clearance prediction in the 6 months-2 years age group (prediction error < 25%). Predictions obtained from the PBCL approach were close to our results. This analysis established a single equation using the adult clearance value as well as individual age and weight to predict drug clearance in children older than 6 months. PMID:25721251

  4. Application of Physiologically Based Pharmacokinetic Modeling to Predict Acetaminophen Metabolism and Pharmacokinetics in Children

    PubMed Central

    Jiang, X-L; Zhao, P; Barrett, J S; Lesko, L J; Schmidt, S

    2013-01-01

    Acetaminophen (APAP) is a widely used analgesic and antipyretic drug that undergoes extensive phase I and II metabolism. To better understand the kinetics of this process and to characterize the dynamic changes in metabolism and pharmacokinetics (PK) between children and adults, we developed a physiologically based PK (PBPK) model for APAP integrating in silico, in vitro, and in vivo PK data into a single model. The model was developed and qualified for adults and subsequently expanded for application in children by accounting for maturational changes from birth. Once developed and qualified, it was able to predict clinical PK data in neonates (0–28 days), infants (29 days to <2 years), children (2 to <12 years), and adolescents (12–17 years) following intravenous and orally administered APAP. This approach represents a general strategy for projecting drug exposure in children, in the absence of pediatric PK information, using previous drug- and system-specific information of adults and children through PBPK modeling. PMID:24132164

  5. Investigation of an alternative generic model for predicting pharmacokinetic changes during physiological stress.

    PubMed

    Peng, Henry T; Edginton, Andrea N; Cheung, Bob

    2013-10-01

    Physiologically based pharmacokinetic models were developed using MATLAB Simulink® and PK-Sim®. We compared the capability and usefulness of these two models by simulating pharmacokinetic changes of midazolam under exercise and heat stress to verify the usefulness of MATLAB Simulink® as a generic PBPK modeling software. Although both models show good agreement with experimental data obtained under resting condition, their predictions of pharmacokinetics changes are less accurate in the stressful conditions. However, MATLAB Simulink® may be more flexible to include physiologically based processes such as oral absorption and simulate various stress parameters such as stress intensity, duration and timing of drug administration to improve model performance. Further work will be conducted to modify algorithms in our generic model developed using MATLAB Simulink® and to investigate pharmacokinetics under other physiological stress such as trauma. PMID:23852614

  6. Do drug metabolism and pharmacokinetic departments make any contribution to drug discovery?

    PubMed

    Smith, Dennis; Schmid, Esther; Jones, Barry

    2002-01-01

    The alignment of drug metabolism and pharmacokinetic departments with drug discovery has not produced a radical improvement in the pharmacokinetic properties of new chemical entities. The reason for this is complex, reflecting in part the difficulty of combining potency, selectivity, water solubility, metabolic stability and membrane permeability into a single molecule. This combination becomes increasingly problematic as the drug targets become more distant from aminergic seven-transmembrane-spanning receptors (7-TMs). The leads available for aminergic 7-TMs, like the natural agonists, are invariably small molecular weight, water soluble and potent. Even moving to 7-TMs for which the agonist is a peptide invariably produces lead matter that is less drug-like (higher molecular weight and lipophilic). The role of drug metabolism departments, therefore, has been to guide chemistry to obtaining adequate, rather than optimal, pharmacokinetic properties for these 'difficult' drug targets. A consistent belief of many researchers is that a high value is placed on optimal, rather than adequate, pharmacokinetic properties. One measure of value is market sales, and when these are examined no clear pattern emerges. Part of the success of amlodipine in the calcium channel antagonist sector must be due to its excellent pharmacokinetic profile, but the best-selling drugs among the angiotensin antagonists and beta-blockers have a much greater market share than other agents with better pharmacokinetic properties. Clearly, many other factors are important in the successful launch of a medicine, some reflected in the manner the compound is developed and the subsequent structure of the labelling. Overall, therefore the presence of drug metabolism in drug discovery has probably contributed most by allowing 'difficult' drug targets to be prosecuted, rather than by guiding medicinal chemists to optimal pharmacokinetics. These 'difficult' target candidates become successful drugs when

  7. Generalized pharmacokinetic modeling for drugs with nonlinear binding: I. Theoretical framework.

    PubMed

    Gillespie, W R

    1993-02-01

    The following integrodifferential equation is proposed as the basis for a generalized treatment of pharmacokinetic systems in which nonlinear binding occurs phi'(cu)c'u = -q(cu)+g * cu+f where cu identical to unbound plasma drug concentration, f identical to drug input rate, ' indicates the derivative of a function, and * indicates the convolution operation: (g * cu) (t) = integral of t0 g(t-u)cu(u) du. Possible physical interpretations of the functions q, g and f are: q(cu) identical to rate at which drug leaves the sampling compartment, g * cu identical to rate at which drug returns to the sampling compartment from the peripheral system (tissues that are kinetically distinct from the sampling compartment), and phi(cu) identical to amount of drug in the sampling compartment. The approach assumes that drug binding is sufficiently rapid that it may be treated as an equilibrium process. It may be applied to systems in which nonlinear binding occurs within the sampling compartment, i.e., in the systemic circulation or in tissues to which drug is rapidly distributed. The proposed relationship is a generalization of most existing models for drugs with nonlinear binding. It can serve as a general theoretical framework for such models or as the basis for "model-independent" methods for analyzing the pharmacokinetics of drugs with nonlinear binding. Computer programs for the numerical solution of the integrodifferential equation are presented. Methods for pharmacokinetic system characterization, prediction and bioavailability are presented and demonstrated. PMID:8410685

  8. Studies on pharmacokinetic drug interaction potential of vinpocetine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Vinpocetine, a semi-synthetic derivative of vincamine, is a popular dietary supplement used for the treatment of several central nervous system related disorders. Despite its wide use, no pharmacokinetic drug interaction studies are reported in literature. Due to increasing use of dietar...

  9. Clinical pharmacokinetics of new-generation antiepileptic drugs at the extremes of age: an update.

    PubMed

    Italiano, Domenico; Perucca, Emilio

    2013-08-01

    -related pharmacokinetic changes could be predicted by measuring creatinine clearance (CLCR). Overall, most recent findings confirm that age is a major factor influencing the pharmacokinetic profile of AEDs. However, pharmacokinetic variability at any age can be considerable, and the importance of other factors should not be disregarded. These include genetic factors, co-morbidities, and drug interactions, particularly those caused by concomitantly administered AEDs which induce or inhibit drug-metabolizing enzymes. PMID:23640503

  10. Pharmacokinetic and pharmacodynamic drug interactions with ethanol (alcohol).

    PubMed

    Chan, Lingtak-Neander; Anderson, Gail D

    2014-12-01

    Ethanol (alcohol) is one of the most widely used legal drugs in the world. Ethanol is metabolized by alcohol dehydrogenase (ADH) and the cytochrome P450 (CYP) 2E1 drug-metabolizing enzyme that is also responsible for the biotransformation of xenobiotics and fatty acids. Drugs that inhibit ADH or CYP2E1 are the most likely theoretical compounds that would lead to a clinically significant pharmacokinetic interaction with ethanol, which include only a limited number of drugs. Acute ethanol primarily alters the pharmacokinetics of other drugs by changing the rate and extent of absorption, with more limited effects on clearance. Both acute and chronic ethanol use can cause transient changes to many physiologic responses in different organ systems such as hypotension and impairment of motor and cognitive functions, resulting in both pharmacokinetic and pharmacodynamic interactions. Evaluating drug interactions with long-term use of ethanol is uniquely challenging. Specifically, it is difficult to distinguish between the effects of long-term ethanol use on liver pathology and chronic malnutrition. Ethanol-induced liver disease results in decreased activity of hepatic metabolic enzymes and changes in protein binding. Clinical studies that include patients with chronic alcohol use may be evaluating the effects of mild cirrhosis on liver metabolism, and not just ethanol itself. The definition of chronic alcohol use is very inconsistent, which greatly affects the quality of the data and clinical application of the results. Our study of the literature has shown that a significantly higher volume of clinical studies have focused on the pharmacokinetic interactions of ethanol and other drugs. The data on pharmacodynamic interactions are more limited and future research addressing pharmacodynamic interactions with ethanol, especially regarding the non-central nervous system effects, is much needed. PMID:25267448

  11. Pharmacokinetic predictions based on a variable dosage frequency in chronic treatment.

    PubMed

    Messori, A; Donati-Cori, G; Tendi, E

    1983-04-01

    After repeated intramuscular or oral administration, plasma drug levels are predicted by using a programmable calculator. Predictions are based on a one-compartment, open model with first-order absorption. The actual times of dosing are considered, so that the assumption of a constant dosing interval is not required. A brief analysis of the pharmacokinetic consequences that may result from a variable dosage frequency is presented. PMID:6839963

  12. Variations of pharmacokinetics of drugs in patients with cirrhosis.

    PubMed

    Pena, M A; Horga, J F; Zapater, P

    2016-01-01

    Liver cirrhosis is the end stage of many different chronic liver diseases and is becoming an important cause of mortality and morbidity across the world. In theory, the numerous physiopathological changes suffered by these patients warrant relevant pharmacokinetic changes in most drugs. However, the influence of these changes on the efficacy and toxicity responses of patients with cirrhosis have been evaluated by few clinical trials and observational studies. As a consequence, therapeutic decisions in these patients are usually complex and subject to uncertainties. In this article, we review the regulatory guidelines to study responses to drugs according to pharmacokinetic variability and the published information that is useful for guiding the dosage adjustment of frequently used drugs in patients with cirrhosis (antivirals, antibiotics, analgesics, etc.) to obtain the best risk-benefit ratio. PMID:26696448

  13. Pharmacokinetics in lactating women: prediction of alprazolam transfer into milk.

    PubMed Central

    Oo, C Y; Kuhn, R J; Desai, N; Wright, C E; McNamara, P J

    1995-01-01

    1. Alprazolam, a triazolobenzodiazepine, is extensively prescribed for the treatment of anxiety disorders, which predominantly affect women of child-bearing age. The purpose of the present study was to assess the pharmacokinetics of alprazolam and its two hydroxylated metabolites: 4-hydroxy-alprazolam and alpha-hydroxy-alprazolam in lactating human volunteers and to test the predictability of four recently reported models for drug transfer into milk based on physicochemical properties. 2. Multiple milk and serum samples in eight lactating subjects were collected up to 36 h following single oral doses of 0.5 mg alprazolam; suckling of the infant was discontinued after drug administration. 4-Hydroxy-alprazolam was the predominant metabolite in serum samples while alpha-hydroxy-alprazolam was not detected. 3. The mean oral clearance of alprazolam was 1.15 +/- 0.32 ml min-1 kg-1. The time course of alprazolam in milk roughly paralleled the perspective plasma time profile (mean serum residence time = 16.42 +/- 4.69 h; mean milk residence time = 18.93 +/- 7.03 h). The mean terminal half-life in serum was 12.52 +/- 3.53 h. 4. Observed milk/serum concentration ratios were determined in vivo as AUCmilk/AUCserum (mean M/S(obs) = 0.36 +/- 0.11).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8527284

  14. Preclinical Pharmacokinetic Considerations for the Development of Antibody Drug Conjugates.

    PubMed

    Kamath, Amrita V; Iyer, Suhasini

    2015-11-01

    Antibody drug conjugates (ADCs) are an emerging new class of targeted therapeutics for cancer that use antibodies to deliver cytotoxic drugs to cancer cells. There are two FDA approved ADCs on the market and over 30 ADCs in the clinical pipeline against a number of different cancer types. The structure of an ADC is very complex with multiple components and considerable efforts are ongoing to determine the attributes necessary for clinical success. Understanding the pharmacokinetics of an ADC and how it impacts efficacy and toxicity is a critical part of optimizing ADC design and delivery i.e., dose and schedule. This review discusses the pharmacokinetic considerations for an ADC and tools and strategies that can be used to evaluate molecules at the preclinical stage. PMID:25446773

  15. Rapid pharmacokinetic evaluation of topical drug formulations.

    PubMed

    Garzouzi, V L

    1999-01-01

    A new in vitro test system was developed to efficiently determine the effect of formulation on topical drug delivery. Sheets of viable, excised pig skin were sandwiched betwween two standard 24-well plates. The lower wells contained receptor fluid and a magnetic stirrer. The upper wells were opened to the atmosphere for formulation application. Using 14C-salicylic acid as a model compound, eight different formulations were evaluated representing hydrophilic and lipophilic solutions, a suspension and o/w and w/o emulsions. Formulations were applied to the skin surface in six different wells on three sets of plates. Twenty-four hours after application, excess drug was wiped from the skin surface and assayed for radiolabel. The stratum corneum was removed by tape stripping. Radiolabel contained in the remaining epidermis, dermis and receptor fluid was also determined. Statistical analysis (ANOVA, Student-Newman-Keuls multiple-range test, p=0.05) of radiolabel penetrating into the dermis and receptor fluid revealed the following order of formulations: ethanol= aqueous surfactant less than o/w emulsion = w/o emulsion less than lipophilic solution. These results demonstrate the importance of vehicle in directing drug delivery using a test system capable of simultaneously evaluating a large number of formulations. PMID:23985716

  16. Design and Application of Microfluidic Systems for In Vitro Pharmacokinetic Evaluation of Drug Candidates

    PubMed Central

    Maguire, T.J.; Novik, E.; Chao, P.; Barminko, J.; Nahmias, Y.; Yarmush, M.L.; Cheng, K.-C.

    2011-01-01

    One of the fundamental challenges facing the development of new chemical entities within the pharmaceutical industry is the extrapolation of key in vivo parameters from in vitro cell culture assays and animal studies. Development of microscale devices and screening assays incorporating primary human cells can potentially provide better, faster and more efficient prediction of in vivo toxicity and clinical drug performance. With this goal in mind, large strides have been made in the area of microfluidics to provide in vitro surrogates that are designed to mimic the physiological architecture and dynamics. More recent advancements have been made in the development of in vitro analogues to physiologically-based pharmacokinetic (PBPK) models – a mathematical model that represents the body as interconnected compartments specific for a particular organ. In this review we highlight recent advancements in human hepatocyte microscale culture, and describe the next generation of integrated devices, whose potential allows for the high throughput assessment of drug metabolism, distribution and pharmacokinetics. PMID:20166997

  17. Introduction to drug pharmacokinetics in the critically ill patient.

    PubMed

    Smith, Brian S; Yogaratnam, Dinesh; Levasseur-Franklin, Kimberly E; Forni, Allison; Fong, Jeffrey

    2012-05-01

    Despite regular use of drugs for critically ill patients, overall data are limited regarding the impact of critical illness on pharmacokinetics (PK). Designing safe and effective drug regimens for patients with critical illness requires an understanding of PK. This article reviews general principles of PK, including absorption, distribution, metabolism, and elimination, and how critical illness can influence these parameters. In the area of drug absorption, we discuss the impact of vasopressor use, delayed gastric emptying and feeding tubes, and nutrient interactions. On the topic of drug distribution, we review fluid resuscitation, alterations in plasma protein binding, and tissue perfusion. With drug metabolism, we discuss hepatic enzyme activity, protein binding, and hepatic blood flow. Finally, we review drug elimination in the critically ill patient and discuss the impact of augmented renal clearance and acute kidney injury on drug therapies. In each section, we highlight select literature reviewing the PK impact of these conditions on a drug PK profile and, where appropriate, provide general suggestions for clinicians on how to modify drug regimens to manage PK challenges. PMID:22553267

  18. THE DEVELOPMENT OF PHARMACOKINETIC PARAMETERS FOR PREDICTING THE EFFECTS OF PESTICIDES

    EPA Science Inventory

    This research involves the development and improvement of pharmacokinetic data for predicting the effects of exposure to pyrethroid pesticides. Pharmacokinetics address the exposure-dose relationship in an organism, and resulting data are useful for making extrapolations between...

  19. Pharmacokinetic Drug Interactions of Antimicrobial Drugs: A Systematic Review on Oxazolidinones, Rifamycines, Macrolides, Fluoroquinolones, and Beta-Lactams

    PubMed Central

    Bolhuis, Mathieu S.; Panday, Prashant N.; Pranger, Arianna D.; Kosterink, Jos G. W.; Alffenaar, Jan-Willem C.

    2011-01-01

    Like any other drug, antimicrobial drugs are prone to pharmacokinetic drug interactions. These drug interactions are a major concern in clinical practice as they may have an effect on efficacy and toxicity. This article provides an overview of all published pharmacokinetic studies on drug interactions of the commonly prescribed antimicrobial drugs oxazolidinones, rifamycines, macrolides, fluoroquinolones, and beta-lactams, focusing on systematic research. We describe drug-food and drug-drug interaction studies in humans, affecting antimicrobial drugs as well as concomitantly administered drugs. Since knowledge about mechanisms is of paramount importance for adequate management of drug interactions, the most plausible underlying mechanism of the drug interaction is provided when available. This overview can be used in daily practice to support the management of pharmacokinetic drug interactions of antimicrobial drugs. PMID:24309312

  20. Using improved serial blood sampling method of mice to study pharmacokinetics and drug-drug interaction.

    PubMed

    Watanabe, Ayahisa; Watari, Ryosuke; Ogawa, Keiko; Shimizu, Ryosuke; Tanaka, Yukari; Takai, Nozomi; Nezasa, Ken-ichi; Yamaguchi, Yoshitaka

    2015-03-01

    In pharmacokinetic evaluation of mice, using serial sampling methods rather than a terminal blood sampling method could reduce the number of animals needed and lead to more reliable data by excluding individual differences. In addition, using serial sampling methods can be valuable for evaluation of the drug-drug interaction (DDI) potential of drug candidates. In this study, we established an improved method for serially sampling the blood from one mouse by only one incision of the lateral tail vein, and investigated whether our method could be adapted to pharmacokinetic and DDI studies. After intravenous and oral administration of ibuprofen and fexofenadine (BCS class II and III), the plasma concentration and pharmacokinetic parameters were evaluated by our method and a terminal blood sampling method, with the result that both methods gave comparable results (ibuprofen: 63.8 ± 4.0% and 64.4%, fexofenadine: 6.5 ± 0.7% and 7.9%, respectively, in bioavailability). In addition, our method could be adapted to DDI study for cytochrome P450 and organic anion transporting polypeptide inhibition. These results demonstrate that our method can be useful for pharmacokinetic evaluation from the perspective of reliable data acquisition as well as easy handling and low stress to mice and improve the quality of pharmacokinetic and DDI studies. PMID:25452230

  1. [Pharmacokinetic alterations in pregnancy and use of therapeutic drug monitoring].

    PubMed

    Panchaud, Alice; Weisskopf, Etienne; Winterfeld, Ursula; Baud, David; Guidi, Monia; Eap, Chin B; Csajka, Chantal; Widmer, Nicolas

    2014-01-01

    Following the thalidomide tragedy, pharmacological research in pregnant women focused primarily on drug safety for the unborn child and remains only limited regarding the efficacy and safety of treatment for the mother. Significant physiological changes during pregnancy may yet affect the pharmacokinetics of drugs and thus compromise its efficacy and/or safety. Therapeutic drug monitoring (TDM) would maximize the potential effectiveness of treatments, while minimizing the potential risk of toxicity for the mother and the fetus. At present, because of the lack of concentration-response relationship studies in pregnant women, TDM can rely only on individual assessment (based on an effective concentration before pregnancy) and remains reserved only to unexpected situations such as signs of toxicity or unexplained inefficiency. PMID:25011648

  2. Interspecies allometric meta-analysis of the comparative pharmacokinetics of 85 drugs across veterinary and laboratory animal species.

    PubMed

    Huang, Q; Gehring, R; Tell, L A; Li, M; Riviere, J E

    2015-06-01

    Allometric scaling is widely used for the determination of first dosage regimen and the interpolation or extrapolation of pharmacokinetic parameters across many animal species during drug development. In this article, 85 drugs used in veterinary medicine obtained from the Food Animal Residue Avoidance Databank database were selected for allometric scaling analysis. Outlier species were identified by statistical methods. The results showed that 77% and 88% of drugs displayed significant correlations between total systemic clearance (CL) and volume of distribution at steady status (Vss) vs. body weight (P < 0.05) on a log-log scale, respectively. The distribution of the allometric exponent b for CL and Vss displays approximate normal distribution, with means (0.87 and 0.99) and standard deviations (0.143 and 0.157) for CL and Vss, respectively. Twelve drugs were identified to have at least one outlier species for CL and ten drugs for Vss. The human CL and Vss were predicted for selected drugs by the obtained allometric equations. The predicted CL and Vss were within a threefold error compared to observed values, except the predicted CL values for antipyrine, warfarin and diazepam. The results can be used to estimate cross-species pharmacokinetic profiles for predicting drug dosages in veterinary species, and to identify those species for which interpolation or extrapolation of pharmacokinetics properties may be problematic. PMID:25333341

  3. Transporter modulation by Chinese herbal medicines and its mediated pharmacokinetic herb-drug interactions.

    PubMed

    Wu, Xu; Ma, Jiang; Ye, Yang; Lin, Ge

    2016-07-15

    The increasing use of Chinese herbal medicines (CHMs) as complementary therapy and dietary supplement has been greatly raising the concerns about potential herb-drug interactions (HDIs). HDIs may cause the augmented or antagonized effects of prescription drugs, resulting in unexpected clinical outcomes. Therefore, it is of significance to identify or predict potential HDIs, and to delineate the underlying mechanisms. Drug transporters play key roles in transmembrane passage of a large number of drugs, affecting their absorption, distribution and elimination. Modulation of drug transporters has been recognized as one of the main causes of HDIs. In the last decade, a growing number of Chinese medicinal herbs and their derived phytochemicals have been identified to have modulatory effect toward transporter proteins, leading to pharmacokinetic HDIs when concomitantly used with conventional drugs. Some of these transporter-mediated interactions have already shown clinical significance. This review article focuses on two major transporter superfamilies, the solute carrier (SLC) and the ATP-binding cassette (ABC) transporters, to provide the recent advanced knowledge on CHMs and their inherent phytochemicals that interact with these transporters, and their induced pharmacokinetic HDIs from both preclinical and clinical aspects. In addition, the challenges and strategy for studying HDIs are also discussed. PMID:26675080

  4. Drug metabolism and pharmacokinetic diversity of ranunculaceae medicinal compounds.

    PubMed

    Hao, Da-Cheng; Ge, Guang-Bo; Xiao, Pei-Gen; Wang, Ping; Yang, Ling

    2015-01-01

    The wide-reaching distributed angiosperm family Ranunculaceae has approximately 2200 species in around 60 genera. Chemical components of this family include several representative groups: benzylisoquinoline alkaloid (BIA), ranunculin, triterpenoid saponin and diterpene alkaloid, etc. Their extensive clinical utility has been validated by traditional uses of thousands of years and current evidence-based medicine studies. Drug metabolism and pharmacokinetic (DMPK) studies of plant-based natural products are an indispensable part of comprehensive medicinal plant exploration, which could facilitate conservation and sustainable utilization of Ranunculaceae pharmaceutical resources, as well as new chemical entity development with improved DMPK parameters. However, DMPK characteristics of Ranunculaceaederived medicinal compounds have not been summarized. Black cohosh (Cimicifuga) and goldenseal (Hydrastis) raise concerns of herbdrug interaction. DMPK studies of other Ranunculaceae genera, e.g., Nigella, Delphinium, Aconitum, Trollius, and Coptis, are also rapidly increasing and becoming more and more clinically relevant. In this contribution, we highlight the up-to-date awareness, as well as the challenges around the DMPK-related issues in optimization of drug development and clinical practice of Ranunculaceae compounds. Herb-herb interaction of Ranunculaceae herb-containing traditional Chinese medicine (TCM) formula could significantly influence the in vivo pharmacokinetic behavior of compounds thereof, which may partially explain the complicated therapeutic mechanism of TCM formula. Although progress has been made on revealing the absorption, distribution, metabolism, excretion and toxicity (ADME/T) of Ranunculaceae compounds, there is a lack of DMPK studies of traditional medicinal genera Aquilegia, Thalictrum and Clematis. Fluorescent probe compounds could be promising substrate, inhibitor and/or inducer in future DMPK studies of Ranunculaceae compounds. A better

  5. Understanding pharmacokinetics using realistic computational models of fluid dynamics: biosimulation of drug distribution within the CSF space for intrathecal drugs.

    PubMed

    Kuttler, Andreas; Dimke, Thomas; Kern, Steven; Helmlinger, Gabriel; Stanski, Donald; Finelli, Luca A

    2010-12-01

    We introduce how biophysical modeling in pharmaceutical research and development, combining physiological observations at the tissue, organ and system level with selected drug physiochemical properties, may contribute to a greater and non-intuitive understanding of drug pharmacokinetics and therapeutic design. Based on rich first-principle knowledge combined with experimental data at both conception and calibration stages, and leveraging our insights on disease processes and drug pharmacology, biophysical modeling may provide a novel and unique opportunity to interactively characterize detailed drug transport, distribution, and subsequent therapeutic effects. This innovative approach is exemplified through a three-dimensional (3D) computational fluid dynamics model of the spinal canal motivated by questions arising during pharmaceutical development of one molecular therapy for spinal cord injury. The model was based on actual geometry reconstructed from magnetic resonance imaging data subsequently transformed in a parametric 3D geometry and a corresponding finite-volume representation. With dynamics controlled by transient Navier-Stokes equations, the model was implemented in a commercial multi-physics software environment established in the automotive and aerospace industries. While predictions were performed in silico, the underlying biophysical models relied on multiple sources of experimental data and knowledge from scientific literature. The results have provided insights into the primary factors that can influence the intrathecal distribution of drug after lumbar administration. This example illustrates how the approach connects the causal chain underlying drug distribution, starting with the technical aspect of drug delivery systems, through physiology-driven drug transport, then eventually linking to tissue penetration, binding, residence, and ultimately clearance. Currently supporting our drug development projects with an improved understanding of systems

  6. Pharmacokinetic drug-drug interaction and their implication in clinical management

    PubMed Central

    Palleria, Caterina; Di Paolo, Antonello; Giofrè, Chiara; Caglioti, Chiara; Leuzzi, Giacomo; Siniscalchi, Antonio; De Sarro, Giovambattista; Gallelli, Luca

    2013-01-01

    Drug-drug interactions (DDIs) are one of the commonest causes of medication error in developed countries, particularly in the elderly due to poly-therapy, with a prevalence of 20-40%. In particular, poly-therapy increases the complexity of therapeutic management and thereby the risk of clinically important DDIs, which can both induce the development of adverse drug reactions or reduce the clinical efficacy. DDIs can be classify into two main groups: pharmacokinetic and pharmacodynamic. In this review, using Medline, PubMed, Embase, Cochrane library and Reference lists we searched articles published until June 30 2012, and we described the mechanism of pharmacokinetic DDIs focusing the interest on their clinical implications. PMID:24516494

  7. Pharmacokinetic and pharmacodynamic drug interactions between antiretrovirals and oral contraceptives.

    PubMed

    Tittle, Victoria; Bull, Lauren; Boffito, Marta; Nwokolo, Nneka

    2015-01-01

    More than 50 % of women living with HIV in low- and middle-income countries are of reproductive age, but there are limitations to the administration of oral contraception for HIV-infected women receiving antiretroviral therapy due to drug-drug interactions caused by metabolism via the cytochrome P450 isoenzymes and glucuronidation. However, with the development of newer antiretrovirals that use alternative metabolic pathways, options for contraception in HIV-positive women are increasing. This paper aims to review the literature on the pharmacokinetics and pharmacodynamics of oral hormonal contraceptives when given with antiretroviral agents, including those currently used in developed countries, older ones that might still be used in salvage regimens, or those used in resource-limited settings, as well as newer drugs. Nucleos(t)ide reverse transcriptase inhibitors (NRTIs), the usual backbone to most combined antiretroviral treatments (cARTs) are characterised by a low potential for drug-drug interactions with oral contraceptives. On the other hand non-NRTIs (NNRTIs) and protease inhibitors (PIs) may interact with oral contraceptives. Of the NNRTIs, efavirenz and nevirapine have been demonstrated to cause drug-drug interactions; however, etravirine and rilpivirine appear safe to use without dose adjustment. PIs boosted with ritonavir are not recommended to be used with oral contraceptives, with the exception of boosted atazanavir which should be used with doses of at least 35 µg of estrogen. Maraviroc, an entry inhibitor, is safe for co-administration with oral contraceptives, as are the integrase inhibitors (INIs) raltegravir and dolutegravir. However, the INI elvitegravir, which is given in combination with cobicistat, requires a dose of estrogen of at least 30 µg. Despite the growing evidence in this field, data are still lacking in terms of large cohort studies, randomised trials and correlations to real clinical outcomes, such as pregnancy rates, in women

  8. Few Drugs Display Flip-Flop Pharmacokinetics and These Are Primarily Associated with Classes 3 and 4 of the BDDCS.

    PubMed

    Garrison, Kimberly L; Sahin, Selma; Benet, Leslie Z

    2015-09-01

    This study was conducted to determine the number of drugs exhibiting flip-flop pharmacokinetics following oral (p.o.) dosing from immediate-release dosage forms and if they exhibit a common characteristic that may be predicted based on BDDCS classification. The literature was searched for drugs displaying flip-flop kinetics (i.e., absorption half-life larger than elimination half-life) in mammals in PubMed, via internet search engines and reviewing drug pharmacokinetic data. Twenty two drugs were identified as displaying flip-flop kinetics in humans (13 drugs), rat (nine drugs), monkey (three drugs), horse (two drugs), and/or rabbit (two drugs). Nineteen of the 22 drugs exhibiting flip-flop kinetics were BDDCS Classes 3 and 4. One of the three exceptions, meclofenamic acid (Class 2), was identified in the horse; however, it would not exhibit flip-flop kinetics in humans where the p.o. dosing terminal half-life is 1.4 h. The second, carvedilol, can be explained based on solubility issues, but the third sapropterin dihydrochloride (nominally Class 1) requires further consideration. The few drugs displaying p.o. flip-flop kinetics in humans are predominantly BDDCS Classes 3 and 4. New molecular entities predicted to be BDDCS Classes 3 and 4 could be liable to exhibit flip-flop kinetics when the elimination half life is short and should be suspected to be substrates for intestinal transporters. PMID:26010239

  9. An Oracle: Antituberculosis Pharmacokinetics-Pharmacodynamics, Clinical Correlation, and Clinical Trial Simulations To Predict the Future▿

    PubMed Central

    Pasipanodya, Jotam; Gumbo, Tawanda

    2011-01-01

    Antimicrobial pharmacokinetic-pharmacodynamic (PK/PD) science and clinical trial simulations have not been adequately applied to the design of doses and dose schedules of antituberculosis regimens because many researchers are skeptical about their clinical applicability. We compared findings of preclinical PK/PD studies of current first-line antituberculosis drugs to findings from several clinical publications that included microbiologic outcome and pharmacokinetic data or had a dose-scheduling design. Without exception, the antimicrobial PK/PD parameters linked to optimal effect were similar in preclinical models and in tuberculosis patients. Thus, exposure-effect relationships derived in the preclinical models can be used in the design of optimal antituberculosis doses, by incorporating population pharmacokinetics of the drugs and MIC distributions in Monte Carlo simulations. When this has been performed, doses and dose schedules of rifampin, isoniazid, pyrazinamide, and moxifloxacin with the potential to shorten antituberculosis therapy have been identified. In addition, different susceptibility breakpoints than those in current use have been identified. These steps outline a more rational approach than that of current methods for designing regimens and predicting outcome so that both new and older antituberculosis agents can shorten therapy duration. PMID:20937778

  10. Antihypertensive Drugs Metabolism: An Update to Pharmacokinetic Profiles and Computational Approaches

    PubMed Central

    Zisaki, Aikaterini; Miskovic, Ljubisa; Hatzimanikatis, Vassily

    2015-01-01

    Drug discovery and development is a high-risk enterprise that requires significant investments in capital, time and scientific expertise. The studies of xenobiotic metabolism remain as one of the main topics in the research and development of drugs, cosmetics and nutritional supplements. Antihypertensive drugs are used for the treatment of high blood pressure, which is one the most frequent symptoms of the patients that undergo cardiovascular diseases such as myocardial infraction and strokes. In current cardiovascular disease pharmacology, four drug clusters - Angiotensin Converting Enzyme Inhibitors, Beta-Blockers, Calcium Channel Blockers and Diuretics - cover the major therapeutic characteristics of the most antihypertensive drugs. The pharmacokinetic and specifically the metabolic profile of the antihypertensive agents are intensively studied because of the broad inter-individual variability on plasma concentrations and the diversity on the efficacy response especially due to the P450 dependent metabolic status they present. Several computational methods have been developed with the aim to: (i) model and better understand the human drug metabolism; and (ii) enhance the experimental investigation of the metabolism of small xenobiotic molecules. The main predictive tools these methods employ are rule-based approaches, quantitative structure metabolism/activity relationships and docking approaches. This review paper provides detailed metabolic profiles of the major clusters of antihypertensive agents, including their metabolites and their metabolizing enzymes, and it also provides specific information concerning the computational approaches that have been used to predict the metabolic profile of several antihypertensive drugs. PMID:25341854

  11. Physiologically Based Pharmacokinetic Modeling in Pediatric Oncology Drug Development.

    PubMed

    Rioux, Nathalie; Waters, Nigel J

    2016-07-01

    Childhood cancer represents more than 100 rare and ultra-rare diseases, with an estimated 12,400 new cases diagnosed each year in the United States. As such, this much smaller patient population has led to pediatric oncology drug development lagging behind that for adult cancers. Developing drugs for pediatric malignancies also brings with it a number of unique trial design considerations, including flexible enrollment approaches, age-appropriate formulation, acceptable sampling schedules, and balancing the need for age-stratified dosing regimens, given the smaller patient populations. The regulatory landscape for pediatric pharmacotherapy has evolved with U.S. Food and Drug Administration (FDA) legislation such as the 2012 FDA Safety and Innovation Act. In parallel, regulatory authorities have recommended the application of physiologically based pharmacokinetic (PBPK) modeling, for example, in the recently issued FDA Strategic Plan for Accelerating the Development of Therapies for Pediatric Rare Diseases. PBPK modeling provides a quantitative and systems-based framework that allows the effects of intrinsic and extrinsic factors on drug exposure to be modeled in a mechanistic fashion. The application of PBPK modeling in drug development for pediatric cancers is relatively nascent, with several retrospective analyses of cytotoxic therapies, and latterly for targeted agents such as obatoclax and imatinib. More recently, we have employed PBPK modeling in a prospective manner to inform the first pediatric trials of pinometostat and tazemetostat in genetically defined populations (mixed lineage leukemia-rearranged and integrase interactor-1-deficient sarcomas, respectively). In this review, we evaluate the application of PBPK modeling in pediatric cancer drug development and discuss the important challenges that lie ahead in this field. PMID:26936973

  12. Preclinical pharmacokinetics of a novel HIV-1 attachment inhibitor BMS-378806 and prediction of its human pharmacokinetics.

    PubMed

    Yang, Zheng; Zadjura, Lisa; D'Arienzo, Celia; Marino, Anthony; Santone, Kenneth; Klunk, Lewis; Greene, Douglas; Lin, Pin-Fang; Colonno, Richard; Wang, Tao; Meanwell, Nicholas; Hansel, Steven

    2005-12-01

    BMS-378806 is a prototype of novel HIV attachment inhibitors that block the gp120 and CD4 interaction, the first step of HIV-1 entry into cells. The present work investigated the pharmacokinetics of BMS-378806 in rats, dogs and monkeys and assessed its in vitro permeability and metabolism. BMS-378806 exhibited species-dependent oral bioavailability which was 19%-24% in rats and monkeys and 77% in dogs. In rats and monkeys, absorption was prolonged, with an apparent terminal half-life of 2.1 and 6.5 h, respectively. In rats, linear pharmacokinetics was observed between i.v. doses of 1 and 5 mg/kg and between p.o. doses of 5 and 25 mg/kg. The total body clearance was intermediate in rats and low in dogs and monkeys. The steady-state volume of distribution was moderate (0.4-0.6 l/kg), contributing to a short half-life (0.3-1.2 h) after i.v. dosing. Studies in bile-duct cannulated rats together with intraportal infusion studies revealed that the renal and hepatic clearance each accounted for 30% and 70% of the total elimination in rats, with the hepatic clearance largely being oxidative metabolism. In vitro, BMS-378806 was not highly protein bound (44%-73%). The Caco-2 permeability was modest (51 nm/s) and confounded by P-glycoprotein mediated efflux transport. Both of these may contribute to the low brain penetration observed in rats (brain/plasma AUC ratio=0.06). In human liver microsomes BMS-378806 was equally metabolized by cytochrome P450 1A2, 2D6 and 3A4 and did not inhibit major drug-metabolizing enzymes to a significant extent. Based on in vitro and animal data, a mechanistic approach that factors in absorption and first-pass metabolism was employed to predict the human oral bioavailability of BMS-378806 (ca 20%). This, together with the complex Dedrick plot method, was used to simulate human oral profiles and to project an efficacious dose. These study results offer a comprehensive assessment of the developability of BMS-378806 and provide important guidance

  13. Prediction of Nanoparticle Prodrug Metabolism by Pharmacokinetic Modeling of Biliary Excretion

    PubMed Central

    Stern, Stephan T.; Zou, Peng; Skoczen, Sarah; Xie, Sherwin; Liboiron, Barry; Harasym, Troy; Tardi, Paul; Mayer, LawrenceD.; McNeil, Scott E.

    2013-01-01

    Pharmacokinetic modeling and simulation is a powerful tool for the prediction of drug concentrations in the absence of analytical techniques that allow for direct quantification. The present study applied this modeling approach to determine active drug release from a nanoparticle prodrug formulation. A comparative pharmacokinetic study of a nanoscale micellar docetaxel (DTX) prodrug, Procet 8, and commercial DTX formulation, Taxotere, was conducted in bile duct cannulated rats. The nanoscale (~40 nm) size of the Procet 8 formulation resulted in confinement within the plasma space and high prodrug plasma concentrations. Ex vivo prodrug hydrolysis during plasma sample preparation resulted in unacceptable error that precluded direct measurement of DTX concentrations. Pharmacokinetic modeling of Taxotere and Procet 8 plasma concentrations, and their associated biliary metabolites, allowed for prediction of the DTX concentration profile and DTX bioavailability, and thereby evaluation of Procet 8 metabolism. Procet 8 plasma decay and in vitro plasma hydrolytic rates were identical, suggesting systemic clearance of the prodrug was primarily metabolic. The Procet 8 and Taxotere plasma profiles, and associated docetaxel hydroxy-tert-butyl carbamate (HDTX) metabolite biliary excretion, were best fit by a two compartment model, with both linear and non-linear DTX clearance, and first order Procet 8 hydrolysis. The model estimated HDTX clearance rate agreed with in vitro literature values, supporting the predictability of the proposed model. Model simulation at the 10 mg DTX equivalent/kg dose level predicted DTX formation rate-limited kinetics and a peak plasma DTX concentration of 39 ng/mL at 4h for Procet 8, in comparison to 2826 ng/mL for Taxotere. As a result of nonlinear DTX clearance, the DTX AUCinf for the Procet 8 formulation was predicted to be 2.6 times lower than Taxotere (775 vs. 2017 h x ng/mL, respectively), resulting in an absolute bioavailability estimate of

  14. Development of a New Generation of 4-Aminoquinoline Antimalarial Compounds Using Predictive Pharmacokinetic and Toxicology Models

    PubMed Central

    Ray, Sunetra; Madrid, Peter B.; Catz, Paul; LeValley, Susanna E.; Furniss, Michael J.; Rausch, Linda L.; Guy, R. Kiplin; DeRisi, Joseph L.; Iyer, Lalitha V.; Green, Carol E.; Mirsalis, Jon C.

    2010-01-01

    Among the known antimalarial drugs, chloroquine (CQ) and other 4-aminoquinolines have shown high potency and good bioavailability, yet complications associated with drug resistance necessitate the discovery of effective new antimalarial agents. ADMETa prediction studies were employed to evaluate a library of new molecules based on the 4-aminoquinolone-related structure of CQ. Extensive in vitro screening and in vivo pharmacokinetic studies in mice helped to identify two lead molecules, 18 and 4, with promising in vitro therapeutic efficacy, improved ADMET properties, low risk for drug-drug interactions, and desirable pharmacokinetic profiles. Both 18 and 4 are highly potent antimalarial compounds, with IC50 values = 5.6 nM and 17.3 nM, respectively, against the W2 (CQ-resistant) strain of Plasmodium falciparum (IC50 for CQ = 382 nM). When tested in mice, these compounds were found to have biological half-lives and plasma exposure values similar to or higher than those of CQ; they are therefore desirable candidates to pursue in future clinical trials. PMID:20361799

  15. Drug Sensitivity in Older Adults: The Role of Physiologic and Pharmacokinetic Factors.

    ERIC Educational Resources Information Center

    Cherry, Katie E.; Morton, Mark R.

    1989-01-01

    Notes that age-related changes in physiology and pharmacokinetics (how drugs are used in the body) lead to increased drug sensitivity and potentially harmful drug effects. Addresses heightened sensitivity to drug effects seen in older adults. Presents three examples of physiologic decline and discusses some broad considerations for geriatric…

  16. Selection between Michaelis-Menten and target-mediated drug disposition pharmacokinetic models.

    PubMed

    Yan, Xiaoyu; Mager, Donald E; Krzyzanski, Wojciech

    2010-02-01

    Target-mediated drug disposition (TMDD) models have been applied to describe the pharmacokinetics of drugs whose distribution and/or clearance are affected by its target due to high binding affinity and limited capacity. The Michaelis-Menten (M-M) model has also been frequently used to describe the pharmacokinetics of such drugs. The purpose of this study is to investigate conditions for equivalence between M-M and TMDD pharmacokinetic models and provide guidelines for selection between these two approaches. Theoretical derivations were used to determine conditions under which M-M and TMDD pharmacokinetic models are equivalent. Computer simulations and model fitting were conducted to demonstrate these conditions. Typical M-M and TMDD profiles were simulated based on literature data for an anti-CD4 monoclonal antibody (TRX1) and phenytoin administered intravenously. Both models were fitted to data and goodness of fit criteria were evaluated for model selection. A case study of recombinant human erythropoietin was conducted to qualify results. A rapid binding TMDD model is equivalent to the M-M model if total target density R ( tot ) is constant, and R ( tot ) K ( D ) /(K ( D ) + C) ( 2 ) < 1 where K ( D ) represents the dissociation constant and C is the free drug concentration. Under these conditions, M-M parameters are defined as: V ( max ) = k ( int ) R ( tot ) V ( c ) and K ( m ) = K ( D ) where k ( int ) represents an internalization rate constant, and V ( c ) is the volume of the central compartment. R ( tot ) is constant if and only if k ( int ) = k ( deg,) where k ( deg ) is a degradation rate constant. If the TMDD model predictions are not sensitive to k ( int ) or k ( deg ) parameters, the condition of R ( tot ) K ( D ) /(K ( D ) + C) ( 2 ) < 1 alone can preserve the equivalence between rapid binding TMDD and M-M models. The model selection process for drugs that exhibit TMDD should involve a full mechanistic model as well as reduced models. The best model

  17. Pharmacokinetic profiles of the analgesic drug flupirtine in cats.

    PubMed

    De Vito, V; Lebkowska-Wieruszewska, B; Owen, H; Kowalski, C J; Giorgi, M

    2014-11-01

    Flupirtine (FLU) is a non-opioid analgesic drug with no antipyretic or antiphlogistic effects, used in the treatment of a wide range of pain states in human beings. There is a substantial body of evidence on the efficacy of FLU in humans but this is inadequate to recommend its off-label use in veterinary clinical practice. The aim of this study was to evaluate the pharmacokinetic profiles of FLU after IV and PO administration in healthy cats. Six mixed breed adult cats were randomly assigned to two treatment groups using an open, single-dose, two-treatment, two-phase, paired, cross-over design (2 × 2 Latin-square). Group 1 (n  =  3) received a single dose of 5 mg/kg of FLU injected IV into the jugular vein. Group 2 (n  =  3) received the same dose via PO route. The wash out period was 1 week. Blood samples (1 mL) were collected at assigned times and plasma was then analysed by a validated HPLC method. No adverse effects at the point of injection and no behavioural changes or alterations in health parameters were observed in the animals during or after the study (up to 7 days after the full study). After IV administration, FLU was detectable in plasma up to 36 h. After PO administration, FLU plasma concentrations were lower than those following IV administration, but they were detectable over the same time range. The terminal part of both mean pharmacokinetic curves showed a similar trend of elimination. The oral bioavailability was approximately 40%. This is the first study of FLU in an animal species of veterinary interest and it could pave the way for the use of this active ingredient in the veterinary field. PMID:25011711

  18. Evaluating a physiologically based pharmacokinetic model for predicting the pharmacokinetics of midazolam in Chinese after oral administration

    PubMed Central

    Wang, Hong-yun; Chen, Xia; Jiang, Ji; Shi, Jun; Hu, Pei

    2016-01-01

    Aim: To evaluate the SimCYP simulator ethnicity-specific population model for predicting the pharmacokinetics of midazolam, a typical CYP3A4/5 substrate, in Chinese after oral administration. Methods: The physiologically based pharmacokinetic (PBPK) model for midazolam was developed using a SimCYP population-based simulator incorporating Chinese population demographic, physiological and enzyme data. A clinical trial was conducted in 40 Chinese subjects (the half was females) receiving a single oral dose of 15 mg midazolam. The subjects were separated into 4 groups based on age (20–50, 51–65, 66–75, and above 76 years), and the pharmacokinetics profiles of each age- and gender-group were determined, and the results were used to verify the PBPK model. Results: Following oral administration, the simulated profiles of midazolam plasma concentrations over time in virtual Chinese were in good agreement with the observed profiles, as were AUC and Cmax. Moreover, for subjects of varying ages (20–80 years), the ratios of predicted to observed clearances were between 0.86 and 1.12. Conclusion: The SimCYP PBPK model accurately predicted the pharmacokinetics of midazolam in Chinese from youth to old age. This study may provide novel insight into the prediction of CYP3A4/5-mediated pharmacokinetics in the Chinese population relative to Caucasians and other ethnic groups, which can support the rational design of bridging clinical trials. PMID:26592516

  19. Recent progresses in the experimental methods and evaluation strategies of transporter functions for the prediction of the pharmacokinetics in humans.

    PubMed

    Kitamura, Satoshi; Maeda, Kazuya; Sugiyama, Yuichi

    2008-06-01

    Establishing the methods for the effective screening of compounds with optimal pharmacokinetic properties is of great importance to many scientists working in new drug discovery and development. This review deals with the methods by which in vivo pharmacokinetics in humans can be predicted from in vitro studies and from in vivo animal experiments. Direct extrapolation from animal studies to human pharmacokinetics is generally difficult because of species differences in the function of molecules involved in drug metabolism and transport. To overcome this problem, a "scaling factor," which relates in vivo animal studies with in vitro experiments, is often used for the accurate prediction. Several experimental systems for the functional analyses of membrane transporters have been developed and many reports have revealed that various transporters clearly govern the tissue dispositions of drugs in humans. This review covers the impact of membrane transporters on the pharmacokinetics, control of elimination pathways, and toxicity. Indeed, by utilizing transporter-deficient animals, some studies have clarified the importance of transporters in various types of tissue-specific toxicity. Transporter-mediated drug-drug interactions are one of the most important issues in clinical situation because some reports suggested that severe clinical incidents are caused by the inhibition of transporter-mediated uptake and efflux in clearance organs (liver and kidney) and at several barriers. The review also focuses on the clinical significance of genetic polymorphisms of transporters, as these can influence the plasma and tissue concentrations of some drugs. Finally, integrated information is presented based on multiple in vitro studies, including those on transporters. This should enable the prediction of the outcomes of drug exposure in cells, tissues, and individual organisms. PMID:18536908

  20. Does the Anesthetic Urethane Influence the Pharmacokinetics of Antifungal Drugs? A Population Pharmacokinetic Investigation in Rats.

    PubMed

    Azeredo, Francine Johansson; Hass, Sandra Elisa; Sansone, Pedro; Derendorf, Hartmut; Costa, Teresa Dalla; De Araujo, Bibiana Verlindo

    2015-10-01

    The aim of this paper was to analyze the impact of anesthesia induced by urethane on pharmacokinetics (PK) parameters of fluconazole (FCZ), mostly eliminated via renal excretion and voriconazole (VRC), eliminated mainly by hepatic metabolism. FCZ and VRC PK were investigated after administration of 10 mg/kg i.v. and 5 mg/kg i.v. doses to awake and urethane anesthetized Wistar rats (n = 6 per group), respectively. After dosing, blood samples were collected up to 18 h (FCZ) or 12 h (VRC) and the plasma data analysis was performed using the software MONOLIX v. 4.2.2. The population PK parameters and microconstants were determined by fitting plasma concentration-time profiles to two-compartment model for FCZ and three-compartment model for VRC. Fitting of FCZ plasma profiles after dosing to awake and anaesthetized animals resulted in a volume of distribution (V) of 9.3 and 8.1 L/kg, and k10 values of 0.12 and 0.14 h(-1) , respectively. VRC plasma profiles in awake and anaesthetized showed V 8.7 of and 7.6 L/kg, and k10 of 0.15 and 0.16 h(-1) , respectively. No statistical differences between plasma PK parameters and microconstants for the same drug in both animal conditions studied were observed (α = 0.05). PMID:26087701

  1. Emerging Insights for Translational Pharmacokinetic and Pharmacokinetic-Pharmacodynamic Studies: Towards Prediction of Nose-to-Brain Transport in Humans.

    PubMed

    Ruigrok, Mitchel J R; de Lange, Elizabeth C M

    2015-05-01

    To investigate the potential added value of intranasal drug administration, preclinical studies to date have typically used the area under the curve (AUC) in brain tissue or cerebrospinal fluid (CSF) compared to plasma following intranasal and intravenous administration to calculate measures of extent like drug targeting efficiencies (%DTE) and nose-to-brain transport percentages (%DTP). However, CSF does not necessarily provide direct information on the target site concentrations, while total brain concentrations are not specific to that end either as non-specific binding is not explicitly considered. Moreover, to predict nose-to-brain transport in humans, the use of descriptive analysis of preclinical data does not suffice. Therefore, nose-to-brain research should be performed translationally and focus on preclinical studies to obtain specific information on absorption from the nose, and distinguish between the different transport routes to the brain (absorption directly from the nose to the brain, absorption from the nose into the systemic circulation, and distribution between the systemic circulation and the brain), in terms of extent as well as rate. This can be accomplished by the use of unbound concentrations obtained from plasma and brain, with subsequent advanced mathematical modeling. To that end, brain extracellular fluid (ECF) is a preferred sampling site as it represents most closely the site of action for many targets. Furthermore, differences in nose characteristics between preclinical species and humans should be considered. Finally, pharmacodynamic measurements that can be obtained in both animals and humans should be included to further improve the prediction of the pharmacokinetic-pharmacodynamic relationship of intranasally administered CNS drugs in humans. PMID:25693488

  2. Population pharmacokinetics modeling of oxcarbazepine to characterize drug interactions in Chinese children with epilepsy

    PubMed Central

    Wang, Yang; Zhang, Hua-nian; Niu, Chang-he; Gao, Ping; Chen, Yu-jun; Peng, Jing; Liu, Mao-chang; Xu, Hua

    2014-01-01

    Aim: To develop a population pharmacokinetics model of oxcarbazepine in Chinese pediatric patients with epilepsy, and to study the interactions between oxcarbazepine and other antiepileptic drugs (AEDs). Methods: A total of 688 patients with epilepsy aged 2 months to 18 years were divided into model (n=573) and valid (n=115) groups. Serum concentrations of the main active metabolite of oxcarbazepine, 10-hydroxycarbazepine (MHD), were determined 0.5–48 h after the last dosage. A population pharmacokinetics (PPK) model was constructed using NLME software. This model was internally evaluated using Bootstrapping and goodness-of-fit plots inspection. The data of the valid group were used to calculate the mean prediction error (MPE), mean absolute prediction error (MAE), mean squared prediction error (MSE) and the 95% confidence intervals (95% CI) to externally evaluate the model. Results: The population values of pharmacokinetic parameters estimated in the final model were as follows: Ka=0.83 h-1, Vd=0.67 L/kg, and CL=0.035 L·kg−1·h−1. The enzyme-inducing AEDs (carbamazepine, phenytoin, phenobarbital) and newer generation AEDs (levetiracetam, lamotrigine, topiramate) increased the weight-normalized CL value of MHD by 17.4% and 10.5%, respectively, whereas the enzyme-inhibiting AED valproic acid decreased it by 3%. No significant association was found between the CL value of MHD and the other covariates. For the final model, the evaluation results (95% CI) were MPE=0.01 (−0.07–0.10) mg/L, MAE=0.46 (0.40–0.51) mg/L, MSE=0.39 (0.27–0.51) (mg/L)2. Conclusion: A PPK model of OXC in Chinese pediatric patients with epilepsy is established. The enzyme-inducing AEDs and some newer generation AEDs (lamotrigine, topiramate) could slightly increase the metabolism of MHD. PMID:25220641

  3. Computer-assisted learning lessons in drug disposition and pharmacokinetics.

    PubMed

    Aarons, L; Foster, R W; Hollingsworth, M; Morgan, C H; Smith, A

    1988-09-01

    A suite of 18 computer-assisted learning (C.A.L.) lessons has been developed in drug disposition covering processes, concepts and techniques, and pharmacokinetics. Development of lesions and implementation (using CDC's PLATO Programmerless Courseware Development authoring language (Advanced Tutorial Model) for delivery on IBM-PC clones (some also using NPL's Microtext on BBC model B microcomputers) and evaluation by questionnaire proceeded in stages. Staff assessed the authoring system and library lessons for their potential usefulness. Students assessed the importance to their own learning of the features that good quality C.A.L. lessons should display. Finally, our lessons were assessed by students for the presence of these features, comparison with other forms of presentation, their teaching performance, and integration into the curriculum. The use of a programmerless authoring language allowed the authors to concentrate on lesson subject content. The students appreciated the ability to go at their own pace and that their active involvement was required. Lessons scored well in relation to private reading and lectures but less well in comparison with practical work and tutorials. Appropriate integration of C.A.L. into the curriculum was found to be important. Evaluation by questionnaire at each stage of development was valuable. PMID:3065577

  4. 78 FR 73199 - Draft Guidance for Industry on Bioequivalence Studies With Pharmacokinetic Endpoints for Drugs...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-05

    ...The Food and Drug Administration (FDA) is announcing the availability of a draft guidance for industry entitled ``Bioequivalence Studies With Pharmacokinetic Endpoints for Drugs Submitted Under an ANDA.'' This guidance provides recommendations to applicants planning to include bioequivalence (BE) information in abbreviated new drug applications (ANDAs) and ANDA supplements. The guidance......

  5. Ezetimibe: a review of its metabolism, pharmacokinetics and drug interactions.

    PubMed

    Kosoglou, Teddy; Statkevich, Paul; Johnson-Levonas, Amy O; Paolini, John F; Bergman, Arthur J; Alton, Kevin B

    2005-01-01

    Ezetimibe is the first lipid-lowering drug that inhibits intestinal uptake of dietary and biliary cholesterol without affecting the absorption of fat-soluble nutrients. Following oral administration, ezetimibe is rapidly absorbed and extensively metabolised (>80%) to the pharmacologically active ezetimibe-glucuronide. Total ezetimibe (sum of 'parent' ezetimibe plus ezetimibe-glucuronide) concentrations reach a maximum 1-2 hours post-administration, followed by enterohepatic recycling and slow elimination. The estimated terminal half-life of ezetimibe and ezetimibe-glucuronide is approximately 22 hours. Consistent with the elimination half-life of ezetimibe, an approximate 2-fold accumulation is observed upon repeated once-daily administration. The recommended dose of ezetimibe 10 mg/day can be administered in the morning or evening without regard to food. There are no clinically significant effects of age, sex or race on ezetimibe pharmacokinetics and no dosage adjustment is necessary in patients with mild hepatic impairment or mild-to-severe renal insufficiency. The major metabolic pathway for ezetimibe consists of glucuronidation of the 4-hydroxyphenyl group by uridine 5'-diphosphate-glucuronosyltransferase isoenzymes to form ezetimibe-glucuronide in the intestine and liver. Approximately 78% of the dose is excreted in the faeces predominantly as ezetimibe, with the balance found in the urine mainly as ezetimibe-glucuronide. Overall, ezetimibe has a favourable drug-drug interaction profile, as evidenced by the lack of clinically relevant interactions between ezetimibe and a variety of drugs commonly used in patients with hypercholesterolaemia. Ezetimibe does not have significant effects on plasma levels of HMG-CoA reductase inhibitors commonly known as statins (atorvastatin, fluvastatin, lovastatin, pitavastatin, pravastatin, rosuvastatin, simvastatin), fibric acid derivatives (gemfibrozil, fenofibrate), digoxin, glipizide, warfarin and triphasic oral

  6. A review of pharmacokinetic drug-drug interactions with the anthelmintic medications albendazole and mebendazole.

    PubMed

    Pawluk, Shane Ashley; Roels, Craig Allan; Wilby, Kyle John; Ensom, Mary H H

    2015-04-01

    Medications indicated for helminthes and other parasitic infections are frequently being used in mass populations in endemic areas. Currently, there is a lack of guidance for clinicians on how to appropriately manage drug interactions when faced with patients requiring short-term anthelmintic therapy with albendazole or mebendazole while concurrently taking other agents. The objective of this review was to systematically summarize and evaluate published literature on the pharmacokinetics of albendazole or mebendazole when taken with other interacting medications. A search of MEDLINE (1946 to October 2014), EMBASE (1974 to October 2014), International Pharmaceutical Abstracts (1970 to October 2014), Google, and Google Scholar was conducted for articles describing the pharmacokinetics of albendazole or mebendazole when given with other medications (and supplemented by a bibliographic review of all relevant articles). Altogether, 17 articles were included in the review. Studies reported data on pharmacokinetic parameters for albendazole or mebendazole when taken with cimetidine, dexamethasone, ritonavir, phenytoin, carbamazepine, phenobarbital, ivermectin, praziquantel, diethylcarbamazine, azithromycin, and levamisole. Cimetidine increased the elimination half-life of albendazole and maximum concentration (Cmax) of mebendazole; dexamethasone increased the area under the plasma concentration-time curve (AUC) of albendazole; levamisole decreased the Cmax of albendazole; anticonvulsants (phenytoin, phenobarbital, carbamazepine) decreased the AUC of albendazole; praziquantel increased the AUC of albendazole; and ritonavir decreased the AUC of both albendazole and mebendazole. No major interactions were found with ivermectin, azithromycin, or diethylcarbamazine. Future research is required to clarify the clinical relevance of the interactions observed. PMID:25691367

  7. Pharmacokinetic and Pharmacodynamic Analyses of Drug-Drug Interactions between Iguratimod and Warfarin.

    PubMed

    Yamamoto, Tetsuya; Hasegawa, Kyoko; Onoda, Makoto; Tanaka, Keiichi

    2016-01-01

    Iguratimod (IGU), a disease-modifying antirheumatic drug launched in September 2012, has been reported to carry a risk of severe hemorrhages through a suspected interaction with warfarin (WF) in the all-case surveillance and early postmarketing-phase vigilance. To elucidate possible mechanisms of adverse interaction between IGU and WF, we analyzed the effects of IGU on the pharmacodynamics and pharmacokinetics of WF in rats. IGU was orally administered to male Wistar rats once daily for 5 d at 10 or 30 mg/kg in combination with WF at an oral dose of 0.25 mg/kg. Coadministration of IGU 30 mg/kg enhanced the anticoagulant activity of WF; prolonged blood coagulation time (prothrombin time and activated partial thromboplastin time) and decreased levels of vitamin K (VK)-dependent blood coagulation factors (II, VII, IX, and X) were observed. On the other hand, the pharmacokinetic parameters of WF including maximum plasma concentration (Cmax) and area under the plasma concentration-time curve from 0 to 24 h (AUC0-24 h) were not affected by the combination with IGU. IGU alone did not change blood coagulation time at doses up to 100 mg/kg, while VK-dependent blood coagulation factors decreased slightly at 30 and 100 mg/kg. These results suggest that the pharmacodynamic effect of IGU on VK-dependent blood coagulation factors is involved in the mechanism of drug-drug interaction of IGU with WF. PMID:27252068

  8. Metabolism-related pharmacokinetic drug−drug interactions with tyrosine kinase inhibitors: current understanding, challenges and recommendations

    PubMed Central

    Teo, Yi Ling; Ho, Han Kiat; Chan, Alexandre

    2015-01-01

    Drug−drug interactions (DDIs) occur when a patient's response to the drug is modified by administration or co-exposure to another drug. The main cytochrome P450 (CYP) enzyme, CYP3A4, is implicated in the metabolism of almost all of the tyrosine kinase inhibitors (TKIs). Therefore, there is a substantial potential for interaction between TKIs and other drugs that modulate the activity of this metabolic pathway. Cancer patients are susceptible to DDIs as they receive many medications, either for supportive care or for treatment of toxicity. Differences in DDI outcomes are generally negligible because of the wide therapeutic window of common drugs. However for anticancer agents, serious clinical consequences may occur from small changes in drug metabolism and pharmacokinetics. Therefore, the objective of this review is to highlight the current understanding of DDIs among TKIs, with a focus on metabolism, as well as to identify challenges in the prediction of DDIs and provide recommendations. PMID:25125025

  9. Challenges and Opportunities for Increasing the Knowledge Base Related to Drug Biotransformation and Pharmacokinetics during Growth and Development.

    PubMed

    Leeder, J Steven; Meibohm, Bernd

    2016-07-01

    It is generally acknowledged that there is a need and role for informative pharmacokinetic models to improve predictions and simulation as well as individualization of drug therapy in pediatric populations of different ages and developmental stages. This special issue contains more than 20 papers responding to the challenge of providing new information on scaling factors, ontogeny functions for drug metabolizing enzymes and transporters, the mechanisms underlying the observed developmental trajectories for these gene products, age-dependent changes in physiologic processes affecting drug disposition in children, as well as in vitro and in vivo studies describing the relative contribution of ontogeny and genetic factors as sources of variability in drug disposition in children. Considered together, these contributions serve to illustrate some of the current limitations regarding sample availability, number, and quality, but also provide a framework that allows for the potential value of the results of a given study to be interpreted within the context of these limitations. Among the challenges for the future are improving our understanding of the mechanisms regulating age-dependent changes in factors influencing drug disposition and response, thereby facilitating generalization to systems lacking detailed data, better integrating age-dependent changes in pharmacokinetics with age-dependent changes in pharmacodynamics, and allowing better predictability and individualization of drug disposition and response across the pediatric age spectrum. PMID:27302933

  10. Population Pharmacokinetics of Bedaquiline (TMC207), a Novel Antituberculosis Drug

    PubMed Central

    Vis, Peter; van Heeswijk, Rolf P. G.; Green, Bruce

    2014-01-01

    Bedaquiline is a novel agent for the treatment of pulmonary multidrug-resistant Mycobacterium tuberculosis infections, in combination with other agents. The objective of this study was to develop a population pharmacokinetic (PK) model for bedaquiline to describe the concentration-time data from phase I and II studies in healthy subjects and patients with drug-susceptible or multidrug-resistant tuberculosis (TB). A total of 5,222 PK observations from 480 subjects were used in a nonlinear mixed-effects modeling approach. The PK was described with a 4-compartment disposition model with dual zero-order input (to capture dual peaks observed during absorption) and long terminal half-life (t1/2). The model included between-subject variability on apparent clearance (CL/F), apparent central volume of distribution (Vc/F), the fraction of dose via the first input, and bioavailability (F). Bedaquiline was widely distributed, with apparent volume at steady state of >10,000 liters and low clearance. The long terminal t1/2 was likely due to redistribution from the tissue compartments. The final covariate model adequately described the data and had good simulation characteristics. The CL/F was found to be 52.0% higher for subjects of black race than that for subjects of other races, and Vc/F was 15.7% lower for females than that for males, although their effects on bedaquiline exposure were not considered to be clinically relevant. Small differences in F and CL/F were observed between the studies. The residual unexplained variability was 20.6% and was higher (27.7%) for long-term phase II studies. PMID:24957842

  11. Pharmacokinetics of verapamil in lactating rabbits. Prediction of verapamil distribution into rabbit milk.

    PubMed

    Solans, C; Aramayona, J J; Bregante, M A; Fraile, L J; Rueda, S; Garcia, M A

    2000-04-01

    In this work, we have studied the pharmacokinetics and milk penetration of verapamil following intravenous administration in lactating rabbits. Milk-to-serum drug concentration ratios (M/B(obs)) have been determined using area under the milk and serum concentration-time profiles, and the resulting values have then been compared with those obtained by theoretical classical diffusion milk transfer models that were described by Fleishaker et al. [J. Pharm. Sci. 76 (1987) 189.], Atkinson and Begg [Br. J. Clin. Pharmacol. 25 (1990) 495.], and Stebler and Guentert [Pharm. Res. 9 (1992) 1299.]. The pharmacokinetic profile of verapamil in lactating rabbits following endovenous administration is described in the form of a two-compartment model. Moreover, we detected an important milk transfer after endovenous administration of verapamil in lactating rabbits. M/B(obs) was near 15. The classical diffusional models mentioned were not able to predict this extensive transfer of verapamil into rabbit milk. However, when the classical Fleishaker equation was modified and a stepwise regression was carried out, we found that the M/B(obs) value could be predicted using the plasma and milk protein binding. PMID:11282217

  12. Physiologically-based pharmacokinetic modeling of target-mediated drug disposition of bortezomib in mice.

    PubMed

    Zhang, Li; Mager, Donald E

    2015-10-01

    Bortezomib is a reversible proteasome inhibitor with potent antineoplastic activity that exhibits dose- and time-dependent pharmacokinetics (PK). Proteasome-mediated bortezomib disposition is proposed as the primary source of its nonlinear and apparent nonstationary PK behavior. Single intravenous (IV) doses of bortezomib (0.25 and 1 mg/kg) were administrated to BALB/c mice, with blood and tissue samples obtained over 144 h, which were analyzed by LC/MS/MS. A physiologically based pharmacokinetic (PBPK) model incorporating tissue drug-target binding was developed to test the hypothesis of proteasome-mediated bortezomib disposition. The final model reasonably captured bortezomib plasma and tissue PK profiles, and parameters were estimated with good precision. The rank-order of model estimated tissue target density correlated well with experimentally measured proteasome concentrations reported in the literature, supporting the hypothesis that binding to proteasome influences bortezomib disposition. The PBPK model was further scaled-up to humans to assess the similarity of bortezomib disposition among species. Human plasma bortezomib PK profiles following multiple IV dosing (1.3 mg/m(2)) on days 1, 4, 8, and 11 were simulated by appropriately scaling estimated mouse parameters. Simulated and observed bortezomib concentrations after multiple dosing were in good agreement, suggesting target-mediated bortezomib disposition is likely for both mice and humans. Furthermore, the model predicts that renal impairment should exert minimal influence on bortezomib exposure in humans, confirming that bortezomib dose adjustment is not necessary for patients with renal impairment. PMID:26391023

  13. Drug Dosing in Obese Children: A Systematic Review of Current Pharmacokinetic Data

    PubMed Central

    Harskamp-van Ginkel, Margreet W.; Hill, Kevin D.; Becker, Kristian; Testoni, Daniela; Cohen-Wolkowiez, Michael; Gonzalez, Daniel; Barrett, Jeffrey S.; Benjamin, Daniel K.; Siegel, David A.; Banks, Patricia; Watt, Kevin M.

    2015-01-01

    IMPORTANCE Obesity affects nearly one sixth of U.S. children and results in alterations to body composition and physiology that can affect drug disposition, possibly leading to therapeutic failure or toxicity. The depth of available literature regarding obesity’s effect on drug safety, pharmacokinetics (PK) and dosing in obese children is unknown. OBJECTIVE To perform a systematic literature review describing the current evidence of the effect of obesity on drug disposition in children. EVIDENCE REVIEW We searched the Medline, Cochrane, and Embase databases (January 1970–December 2012) and included studies if they contained clearance, volume of distribution, or drug concentration data in obese children (age ≤18 years). We compared exposure and weight-normalized volume of distribution and clearance between obese and non-obese children. We explored the relationship between drug physicochemical properties and clearance and volume of distribution. FINDINGS Twenty studies met inclusion criteria and contained pharmacokinetic data for 21 drugs. The median number of obese children studied per drug was 10 (range 1–112), ages ranged from 0–29 years. Dosing schema varied and were based on a fixed dose (n=6, 29%), body weight (n=10, 48%), and body surface area (n=4, 19%). Clinically significant pharmacokinetic alterations were observed in obese children for 65% (11/17) of studied drugs. Pharmacokinetic alterations resulted in substantial differences in exposure between obese and non-obese children for 38% (5/13) of drugs. We found no association between drug lipophilicity or Biopharmaceutical Drug Disposition Classification System class and changes in volume of distribution or clearance due to obesity. CONCLUSIONS AND RELEVANCE Consensus is lacking on the most appropriate weight-based dosing strategy. Prospective pharmacokinetic trials in obese children are needed to ensure therapeutic efficacy and enhance drug safety. PMID:25961828

  14. Quantitative Structure-Pharmacokinetic Relationships for the Prediction of Renal Clearance in Humans

    PubMed Central

    Dave, Rutwij A.

    2015-01-01

    Renal clearance (CLR), a major route of elimination for many drugs and drug metabolites, represents the net result of glomerular filtration, active secretion and reabsorption, and passive reabsorption. The aim of this study was to develop quantitative structure-pharmacokinetic relationships (QSPKR) to predict CLR of drugs or drug-like compounds in humans. Human CLR data for 382 compounds were obtained from the literature. Step-wise multiple linear regression was used to construct QSPKR models for training sets and their predictive performance was evaluated using internal validation (leave-one-out method). All qualified models were validated externally using test sets. QSPKR models were also constructed for compounds in accordance with their 1) net elimination pathways (net secretion, extensive net secretion, net reabsorption, and extensive net reabsorption), 2) net elimination clearances (net secretion clearance, CLSEC; or net reabsorption clearance, CLREAB), 3) ion status, and 4) substrate/inhibitor specificity for renal transporters. We were able to predict 1) CLREAB (Q2 = 0.77) of all compounds undergoing net reabsorption; 2) CLREAB (Q2 = 0.81) of all compounds undergoing extensive net reabsorption; and 3) CLR for substrates and/or inhibitors of OAT1/3 (Q2 = 0.81), OCT2 (Q2 = 0.85), MRP2/4 (Q2 = 0.78), P-gp (Q2 = 0.71), and MATE1/2K (Q2 = 0.81). Moreover, compounds undergoing net reabsorption/extensive net reabsorption predominantly belonged to Biopharmaceutics Drug Disposition Classification System classes 1 and 2. In conclusion, constructed parsimonious QSPKR models can be used to predict CLR of compounds that 1) undergo net reabsorption/extensive net reabsorption and 2) are substrates and/or inhibitors of human renal transporters. PMID:25352657

  15. High Throughput pharmacokinetic modeling using computationally predicted parameter values: dissociation constants (TDS)

    EPA Science Inventory

    Estimates of the ionization association and dissociation constant (pKa) are vital to modeling the pharmacokinetic behavior of chemicals in vivo. Methodologies for the prediction of compound sequestration in specific tissues using partition coefficients require a parameter that ch...

  16. Herb–Drug Interactions: Challenges and Opportunities for Improved Predictions

    PubMed Central

    Brantley, Scott J.; Argikar, Aneesh A.; Lin, Yvonne S.; Nagar, Swati

    2014-01-01

    Supported by a usage history that predates written records and the perception that “natural” ensures safety, herbal products have increasingly been incorporated into Western health care. Consumers often self-administer these products concomitantly with conventional medications without informing their health care provider(s). Such herb–drug combinations can produce untoward effects when the herbal product perturbs the activity of drug metabolizing enzymes and/or transporters. Despite increasing recognition of these types of herb–drug interactions, a standard system for interaction prediction and evaluation is nonexistent. Consequently, the mechanisms underlying herb–drug interactions remain an understudied area of pharmacotherapy. Evaluation of herbal product interaction liability is challenging due to variability in herbal product composition, uncertainty of the causative constituents, and often scant knowledge of causative constituent pharmacokinetics. These limitations are confounded further by the varying perspectives concerning herbal product regulation. Systematic evaluation of herbal product drug interaction liability, as is routine for new drugs under development, necessitates identifying individual constituents from herbal products and characterizing the interaction potential of such constituents. Integration of this information into in silico models that estimate the pharmacokinetics of individual constituents should facilitate prospective identification of herb–drug interactions. These concepts are highlighted with the exemplar herbal products milk thistle and resveratrol. Implementation of this methodology should help provide definitive information to both consumers and clinicians about the risk of adding herbal products to conventional pharmacotherapeutic regimens. PMID:24335390

  17. Using Nonexperts for Annotating Pharmacokinetic Drug-Drug Interaction Mentions in Product Labeling: A Feasibility Study

    PubMed Central

    Ning, Yifan; Hernandez, Andres; Horn, John R; Jacobson, Rebecca; Boyce, Richard D

    2016-01-01

    Background Because vital details of potential pharmacokinetic drug-drug interactions are often described in free-text structured product labels, manual curation is a necessary but expensive step in the development of electronic drug-drug interaction information resources. The use of nonexperts to annotate potential drug-drug interaction (PDDI) mentions in drug product label annotation may be a means of lessening the burden of manual curation. Objective Our goal was to explore the practicality of using nonexpert participants to annotate drug-drug interaction descriptions from structured product labels. By presenting annotation tasks to both pharmacy experts and relatively naïve participants, we hoped to demonstrate the feasibility of using nonexpert annotators for drug-drug information annotation. We were also interested in exploring whether and to what extent natural language processing (NLP) preannotation helped improve task completion time, accuracy, and subjective satisfaction. Methods Two experts and 4 nonexperts were asked to annotate 208 structured product label sections under 4 conditions completed sequentially: (1) no NLP assistance, (2) preannotation of drug mentions, (3) preannotation of drug mentions and PDDIs, and (4) a repeat of the no-annotation condition. Results were evaluated within the 2 groups and relative to an existing gold standard. Participants were asked to provide reports on the time required to complete tasks and their perceptions of task difficulty. Results One of the experts and 3 of the nonexperts completed all tasks. Annotation results from the nonexpert group were relatively strong in every scenario and better than the performance of the NLP pipeline. The expert and 2 of the nonexperts were able to complete most tasks in less than 3 hours. Usability perceptions were generally positive (3.67 for expert, mean of 3.33 for nonexperts). Conclusions The results suggest that nonexpert annotation might be a feasible option for comprehensive

  18. Incorporation of in vitro drug metabolism data into physiologically-based pharmacokinetic models.

    PubMed

    Houston, J B; Carlile, D J

    1997-10-01

    The liver poses particular problems in constructing physiologically-based pharmacokinetic models since this organ is not only a distribution site for drugs/chemicals but frequently the major site of metabolism. The impact of hepatic drug metabolism in modelling is substantial and it is crucial to the success of the model that in vitro data on biotransformation be incorporated in a judicious manner. The value of in vitro/in vivo extrapolation is clearly demonstrated by considering kinetic data from incubations with freshly isolated hepatocytes. The determination of easily measurable in vitro parameters, such as V(max) and K(m), from initial rate studies and scaling to the in vivo situation by accounting for hepatocellularity provides intrinsic clearance estimates. A scaling factor of 1200 x 10(6) cells per 250 g rat has proved to be a robust parameter independent of laboratory technique and insensitive to animal pretreatment. Similar procedures can also be adopted for other in vitro systems such as hepatic microsomes and liver slices. An appropriate scaling factor for microsomal studies is the microsomal recovery index which allows for the incomplete recovery of cytochrome P-450 with standard differential centrifugation of liver homogenates. The hepatocellularity of a liver slice has been unsatisfactory in scaling kinetic parameters from liver slices. The level of success varies from drug to drug and substrate diffusion is a competing process to metabolism within the slice incubation system; hence, low clearance drugs are better predicted than high clearance drugs. The use of three liver models (venous-equilibration, undistributed sinusoidal and dispersion models) have been compared to predict hepatic clearance from in vitro intrinsic clearance values. As no consistent advantage of one model over the others could be demonstrated, the simplest, the venous-equilibration model, is adequate for the currently available data in hepatocytes. While these successes are

  19. Flip-flop pharmacokinetics – delivering a reversal of disposition: challenges and opportunities during drug development

    PubMed Central

    Yáñez, Jaime A; Remsberg, Connie M; Sayre, Casey L; Forrest, M Laird; Davies, Neal M

    2011-01-01

    Flip-flop pharmacokinetics is a phenomenon often encountered with extravascularly administered drugs. Occurrence of flip-flop spans preclinical to human studies. The purpose of this article is to analyze both the pharmacokinetic interpretation errors and opportunities underlying the presence of flip-flop pharmacokinetics during drug development. Flip-flop occurs when the rate of absorption is slower than the rate of elimination. If it is not recognized, it can create difficulties in the acquisition and interpretation of pharmacokinetic parameters. When flip-flop is expected or discovered, a longer duration of sampling may be necessary in order to avoid overestimation of fraction of dose absorbed. Common culprits of flip-flop disposition are modified dosage formulations; however, formulation characteristics such as the drug chemical entities themselves or the incorporated excipients can also cause the phenomenon. Yet another contributing factor is the physiological makeup of the extravascular site of administration. In this article, these causes of flip-flop pharmacokinetics are discussed with incorporation of relevant examples and the implications for drug development outlined. PMID:21837267

  20. Pharmacokinetics of Chemotherapeutic Drugs in Pediatric Patients With Down Syndrome and Leukemia.

    PubMed

    Hefti, Erik; Blanco, Javier G

    2016-05-01

    Children with Down syndrome (DS) have a 10- to 30-fold increased risk of developing acute myeloid leukemia or acute lymphoblastic leukemia. Patients with DS and leukemia are treated with the same chemotherapeutic agents as patients without DS. Treatment regimens for pediatric leukemia comprise multiple cytotoxic drugs including methotrexate, doxorubicin, vincristine, cytarabine, and etoposide. There have been reports of increased toxicity, as well as altered therapeutic outcomes in pediatric patients with DS and leukemia. This review is focused on the pharmacokinetics of cytotoxic drugs in pediatric patients with leukemia and DS. The available literature suggests that methotrexate and thioguanine display altered pharmacokinetic parameters in pediatric patients with DS. It has been hypothesized that the variable pharmacokinetics of these drugs may contribute to the increased incidence of treatment-related toxicities seen in DS. Data from a small number of studies suggest that the pharmacokinetics of vincristine, etoposide, doxorubicin, and busulfan are similar between patients with and without DS. Definitive conclusions regarding the pharmacokinetics of cytotoxic drugs in pediatric patients with leukemia and DS are difficult to reach due to limitations in the available studies. PMID:26907658

  1. Nanoparticle Drug Loading as a Design Parameter to Improve Docetaxel Pharmacokinetics and Efficacy

    PubMed Central

    Chu, Kevin S.; Schorzman, Allison N.; Finniss, Mathew C.; Bowerman, Charles J.; Peng, Lei; Luft, J. Christopher; Madden, Andrew; Wang, Andrew Z.; Zamboni, William C.; DeSimone, Joseph M.

    2013-01-01

    Nanoparticle (NP) drug loading is one of the key defining characteristics of a NP formulation. However, the effect of NP drug loading on therapeutic efficacy and pharmacokinetics has not been thoroughly evaluated. Herein, we characterized the efficacy, toxicity and pharmacokinetic properties of NP docetaxel formulations that have differential drug loading but are otherwise identical. Particle Replication in Non-wetting Templates (PRINT®), a soft-lithography fabrication technique, was used to formulate NPs with identical size, shape and surface chemistry, but with variable docetaxel loading. The lower weight loading (9%-NP) of docetaxel was found to have a superior pharmacokinetic profile and enhanced efficacy in a murine cancer model when compared to that of a higher docetaxel loading (20%-NP). The 9%-NP docetaxel increased plasma and tumor docetaxel exposure and reduced liver, spleen and lung exposure when compared to that of 20%-NP docetaxel. PMID:23899444

  2. Pharmacokinetic Interactions for Drugs with a Long Half-Life—Evidence for the Need of Model-Based Analysis.

    PubMed

    Svensson, Elin M; Acharya, Chayan; Clauson, Björn; Dooley, Kelly E; Karlsson, Mats O

    2016-01-01

    Pharmacokinetic drug-drug interactions (DDIs) can lead to undesired drug exposure, resulting in insufficient efficacy or aggravated toxicity. Accurate quantification of DDIs is therefore crucial but may be difficult when full concentration-time profiles are problematic to obtain. We have compared non-compartmental analysis (NCA) and model-based predictions of DDIs for long half-life drugs by conducting simulation studies and reviewing published trials, using antituberculosis drug bedaquiline (BDQ) as a model compound. Furthermore, different DDI study designs were evaluated. A sequential design mimicking conducted trials and a population pharmacokinetic (PK) model of BDQ and the M2 metabolite were utilized in the simulations where five interaction scenarios from strong inhibition (clearance fivefold decreased) to strong induction (clearance fivefold increased) were evaluated. In trial simulations, NCA systematically under-predicted the DDIs’ impact. The bias in average exposure was 29–96% for BDQ and 20–677% for M2. The model-based analysis generated unbiased predictions, and simultaneous fitting of metabolite data increased precision in DDI predictions. The discrepancy between the methods was also apparent for conducted trials, e.g., lopinavir/ritonavir was predicted to increased BDQ exposure 22% by NCA and 188% by model-based methods. In the design evaluation, studies with parallel designs were considered and shown to generally be inferior to sequential/cross-over designs. However, in the case of low inter-individual variability and no informative metabolite data, a prolonged parallel design could be favored. Model-based analysis for DDI assessments is preferable over NCA for victim drugs with a long half-life and should always be used when incomplete concentration-time profiles are part of the analysis. PMID:26463060

  3. Human pharmacokinetic prediction of UDP-glucuronosyltransferase substrates with an animal scale-up approach.

    PubMed

    Deguchi, Tsuneo; Watanabe, Nobuaki; Kurihara, Atsushi; Igeta, Katsuhiro; Ikenaga, Hidenori; Fusegawa, Keiichi; Suzuki, Norio; Murata, Shinji; Hirouchi, Masakazu; Furuta, Yoshitake; Iwasaki, Masaru; Okazaki, Osamu; Izumi, Takashi

    2011-05-01

    The aim of the current study was to evaluate the accuracy of allometric scaling methods for drugs metabolized by UDP-glucuronosyltransferases (UGTs), such as ketoprofen, imipramine, lorazepam, levofloxacin, zidovudine, diclofenac, furosemide, raloxifene, gemfibrozil, mycophenolic acid, indomethacin, and telmisartan. Human plasma clearance (CL) predictions were conducted from preclinical in vivo data by using multiple-species allometry with the rule of exponents and single-species allometric scaling (SSS) of mice, rats, monkeys, or dogs. Distribution volume at a steady state (V(ss)) was predicted by multiple-species allometry or SSS of V(ss). Oral plasma clearance (CL(po)) was calculated under the assumption that F(a) × F(g) was equivalent across species. Each of the results was compared with the observed parameter calculated from the clinical data after intravenous or oral administration. Multiple-species allometry and SSS of mice, rats, and dogs resulted in a similar accuracy of CL and CL(po) predictions. Monkeys tended to provide the most accurate predictions of human CL and CL(po). The ability to predict the half-life, which was determined from CL and V(ss) predictions, was more accurate in SSS of rats and monkeys. The in vivo fraction metabolized by glucuronidation (f(m,UGT)) in bile duct-cannulated monkeys was relatively similar to that of humans compared with other animal species, which likely contributed to the highest accuracy of SSS prediction of monkeys. On the basis of the current results, monkeys would be more reliable than other animal species in predicting human pharmacokinetics and f(m,UGT) for drugs metabolized by UGTs. PMID:21282406

  4. Meta-analysis of hepatic cytochrome P450 ontogeny to underwrite the prediction of pediatric pharmacokinetics using physiologically based pharmacokinetic modeling.

    PubMed

    Upreti, Vijay V; Wahlstrom, Jan L

    2016-03-01

    The accurate prediction of pharmacokinetics (PK) is fundamental to underwriting safety and efficacy in pediatric clinical trials; age-dependent PK may be observed with pediatrics because of the growth and maturation processes that occur during development. Understanding the ontogeny of drug-metabolizing enzymes is a critical enabler for pediatric PK prediction, as enzyme expression or activity may change with age. Although ontogeny functions for the cytochrome P450s (CYPs) have been developed, disconnects between ontogeny functions for the same CYP may exist, depending on whether the functions were derived from in vitro or in vivo data. This report describes the development of ontogeny functions for all the major hepatic CYPs based on in vitro or in vivo data; these ontogeny functions were subsequently incorporated into a physiologically based pharmacokinetic model and evaluated. Pediatric PK predictions based on in vivo-derived ontogeny functions performed markedly better than those developed from in vitro data for intravenous (100% versus 51% within 2-fold, respectively) and oral (98% versus 67%, respectively) dosing. The verified models were then applied to complex pediatric scenarios involving active metabolites, CYP polymorphisms and physiological changes because of critical illness; the models reasonably explained the observed age-dependent changes in pediatric PK. PMID:26139104

  5. Extraction of pharmacokinetic evidence of drug-drug interactions from the literature.

    PubMed

    Kolchinsky, Artemy; Lourenço, Anália; Wu, Heng-Yi; Li, Lang; Rocha, Luis M

    2015-01-01

    Drug-drug interaction (DDI) is a major cause of morbidity and mortality and a subject of intense scientific interest. Biomedical literature mining can aid DDI research by extracting evidence for large numbers of potential interactions from published literature and clinical databases. Though DDI is investigated in domains ranging in scale from intracellular biochemistry to human populations, literature mining has not been used to extract specific types of experimental evidence, which are reported differently for distinct experimental goals. We focus on pharmacokinetic evidence for DDI, essential for identifying causal mechanisms of putative interactions and as input for further pharmacological and pharmacoepidemiology investigations. We used manually curated corpora of PubMed abstracts and annotated sentences to evaluate the efficacy of literature mining on two tasks: first, identifying PubMed abstracts containing pharmacokinetic evidence of DDIs; second, extracting sentences containing such evidence from abstracts. We implemented a text mining pipeline and evaluated it using several linear classifiers and a variety of feature transforms. The most important textual features in the abstract and sentence classification tasks were analyzed. We also investigated the performance benefits of using features derived from PubMed metadata fields, various publicly available named entity recognizers, and pharmacokinetic dictionaries. Several classifiers performed very well in distinguishing relevant and irrelevant abstracts (reaching F1≈0.93, MCC≈0.74, iAUC≈0.99) and sentences (F1≈0.76, MCC≈0.65, iAUC≈0.83). We found that word bigram features were important for achieving optimal classifier performance and that features derived from Medical Subject Headings (MeSH) terms significantly improved abstract classification. We also found that some drug-related named entity recognition tools and dictionaries led to slight but significant improvements, especially in

  6. Drug-metabolism mechanism: Knowledge-based population pharmacokinetic approach for characterizing clobazam drug-drug interactions.

    PubMed

    Tolbert, Dwain; Bekersky, Ihor; Chu, Hui-May; Ette, Ene I

    2016-03-01

    A metabolic mechanism-based characterization of antiepileptic drug-drug interactions (DDIs) with clobazam in patients with Lennox-Gastaut syndrome (LGS) was performed using a population pharmacokinetic (PPK) approach. To characterize potential DDIs with clobazam, pharmacokinetic (PK) data from 153 patients with LGS in study OV-1012 (NCT00518713) and 18 healthy participants in bioavailability study OV-1017 were pooled. Antiepileptic drugs (AEDs) were grouped based on their effects on the cytochrome P450 (CYP) isozymes responsible for the metabolism of clobazam and its metabolite, N-desmethylclobazam (N-CLB): CYP3A inducers (phenobarbital, phenytoin, and carbamazepine), CYP2C19 inducers (valproic acid, phenobarbital, phenytoin, and carbamazepine), or CYP2C19 inhibitors (felbamate, oxcarbazepine). CYP3A4 inducers-which did not affect the oral clearance of clobazam-significantly increased the formation of N-CLB by 9.4%, while CYP2C19 inducers significantly increased the apparent elimination rate of N-CLB by 10.5%, resulting in a negligible net change in the PK of the active metabolite. CYP2C19 inhibitors did not affect N-CLB elimination. Because concomitant use of AEDs that are either CYP450 inhibitors or inducers with clobazam in the treatment of LGS patients had negligible to no effect on clobazam PK in this study, dosage adjustments may not be required for clobazam in the presence of the AEDs investigated here. PMID:26224203

  7. Prediction of Pharmacokinetics and Penetration of Moxifloxacin in Human with Intra-Abdominal Infection Based on Extrapolated PBPK Model

    PubMed Central

    Yang, JianWei; Zhang, Yuan; Wang, YongMing; Zhang, JianLei; Zhao, YuanYuan; Dong, WeiLin

    2015-01-01

    The aim of this study is to develop a physiologically based pharmacokinetic (PBPK) model in intra-abdominal infected rats, and extrapolate it to human to predict moxifloxacin pharmacokinetics profiles in various tissues in intra-abdominal infected human. 12 male rats with intra-abdominal infections, induced by Escherichia coli, received a single dose of 40 mg/kg body weight of moxifloxacin. Blood plasma was collected at 5, 10, 20, 30, 60, 120, 240, 480, 1440 min after drug injection. A PBPK model was developed in rats and extrapolated to human using GastroPlus software. The predictions were assessed by comparing predictions and observations. In the plasma concentration versus time profile of moxifloxcinin rats, Cmax was 11.151 µg/mL at 5 min after the intravenous injection and t1/2 was 2.936 h. Plasma concentration and kinetics in human were predicted and compared with observed datas. Moxifloxacin penetrated and accumulated with high concentrations in redmarrow, lung, skin, heart, liver, kidney, spleen, muscle tissues in human with intra-abdominal infection. The predicted tissue to plasma concentration ratios in abdominal viscera were between 1.1 and 2.2. When rat plasma concentrations were known, extrapolation of a PBPK model was a method to predict drug pharmacokinetics and penetration in human. Moxifloxacin has a good penetration into liver, kidney, spleen, as well as other tissues in intra-abdominal infected human. Close monitoring are necessary when using moxifloxacin due to its high concentration distribution. This pathological model extrapolation may provide reference to the PK/PD study of antibacterial agents. PMID:25729270

  8. In vitro metabolism, disposition, preclinical pharmacokinetics and prediction of human pharmacokinetics of DNDI-VL-2098, a potential oral treatment for Visceral Leishmaniasis.

    PubMed

    Mukkavilli, Rao; Pinjari, Jakir; Patel, Bhavesh; Sengottuvelan, Shankar; Mondal, Subodh; Gadekar, Ajit; Verma, Manas; Patel, Jignesh; Pothuri, Lavanya; Chandrashekar, Gopu; Koiram, Prabhakar; Harisudhan, Tanukrishnan; Moinuddin, Ansari; Launay, Delphine; Vachharajani, Nimish; Ramanathan, Vikram; Martin, Denis

    2014-12-18

    The in vitro metabolism and in vivo pharmacokinetic (PK) properties of DNDI-VL-2098, a potential oral agent for Visceral Leishmaniasis (VL) were studied and used to predict its human pharmacokinetics. DNDI-VL-2098 showed a low solubility (10μM) and was highly permeable (>200nm/s) in the Caco-2 model. It was stable in vitro in liver microsomes and hepatocytes and no metabolite was detectable in circulating plasma from dosed animals suggesting very slow, if any, metabolism of the compound. DNDI-VL-2098 was moderate to highly bound to plasma proteins across the species tested (94-98%). DNDI-VL-2098 showed satisfactory PK properties in mouse, hamster, rat and dog with a low blood clearance (<15% of hepatic blood flow except hamster), a volume of distribution of about 3 times total body water, acceptable half-life (1-6h across the species) and good oral bioavailability (37-100%). Allometric scaling of the preclinical PK data to human gave a blood half-life of approximately 20h suggesting that the compound could be a once-a-day drug. Based on the above assumptions, the minimum efficacious dose predicted for a 50kg human was 150mg and 300mg, using efficacy results in the mouse and hamster, respectively. PMID:25261338

  9. Pharmacokinetic drug-drug interaction assessment between LCZ696, an angiotensin receptor neprilysin inhibitor, and hydrochlorothiazide, amlodipine, or carvedilol.

    PubMed

    Hsiao, Hsiu-Ling; Langenickel, Thomas Heiko; Greeley, Michael; Roberts, John; Zhou, Wei; Pal, Parasar; Rebello, Sam; Rajman, Iris; Sunkara, Gangadhar

    2015-11-01

    LCZ696 is a first-in-class angiotensin receptor neprilysin inhibitor in development for treatments of hypertension and heart failure indications. In 3 separate studies, pharmacokinetic drug-drug interactions (DDIs) potential was assessed when LCZ696 was coadministered with hydrochlorothiazide (HCTZ), amlodipine, or carvedilol. The studies used a open-label, single-sequence, 3-period, crossover design in healthy subjects. Blood samples were collected to determine the pharmacokinetic parameters of LCZ696 analytes (AHU377, LBQ657, and valsartan), HCTZ, amlodipine, or carvedilol (R[+]- and S[-]-carvedilol) for statistical analysis. When coadministered LCZ696 with HCTZ, the 90% CIs of the geometric mean ratios of AUCtau,ss of HCTZ and that of LBQ657 were within a 0.80-1.25 interval, whereas HCTZ Cmax,ss decreased by 26%, LBQ657 Cmax,ss increased by 19%, and the AUCtau,ss and Cmax,ss of valsartan increased by 14% and 16%, respectively. Pharmacokinetics of amlodipine, R(+)- and S(-)-carvedilol, or LBQ657 were not altered after coadministration of LCZ696 with amlodipine or carvedilol. Coadministration of LCZ696 400 mg once daily (qd) with HCTZ 25 mg qd, amlodipine 10 mg qd, or carvedilol 25 mg twice a day (bid) had no clinically relevant pharmacokinetic drug-drug interactions. LCZ696, HCTZ, amlodipine, and carvedilol were safe and well tolerated when given alone or concomitantly in the investigated studies. PMID:27137712

  10. Evaluation and Quantitative Prediction of Renal Transporter-Mediated Drug-Drug Interactions.

    PubMed

    Feng, Bo; Varma, Manthena V

    2016-07-01

    With numerous drugs cleared renally, inhibition of uptake transporters localized on the basolateral membrane of renal proximal tubule cells, eg, organic anion transporters (OATs) and organic cation transporters (OCTs), may lead to clinically meaningful drug-drug interactions (DDIs). Additionally, clinical evidence for the possible involvement of efflux transporters, such as P-glycoprotein (P-gp) and multidrug and toxin extrusion protein 1/2-K (MATE1/2-K), in the renal DDIs is emerging. Herein, we review recent progress regarding mechanistic understanding of transporter-mediated renal DDIs as well as the quantitative predictability of renal DDIs using static and physiologically based pharmacokinetic (PBPK) models. Generally, clinical DDI data suggest that the magnitude of plasma exposure changes attributable to renal DDIs is less than 2-fold, unlike the DDIs associated with inhibition of cytochrome P-450s and/or hepatic uptake transporters. It is concluded that although there is a need for risk assessment early in drug development, current available data imply that safety concerns related to the renal DDIs are generally low. Nevertheless, consideration must be given to the therapeutic index of the victim drug and potential risk in a specific patient population (eg, renal impairment). Finally, in vitro transporter data and clinical pharmacokinetic parameters obtained from the first-in-human studies have proven useful in support of quantitative prediction of DDIs associated with inhibition of renal secretory transporters, OATs or OCTs. PMID:27385169

  11. Prediction of in vivo drug performance using in vitro dissolution coupled with STELLA: a study with selected drug products.

    PubMed

    Chakraborty, Sumon; Yadav, Lokesh; Aggarwal, Deepika

    2015-01-01

    Prediction of the in vivo performance of the drug product from the in vitro studies is the major challenging job for the pharmaceutical industries. From the current regulatory perspective, biorelevant dissolution media should now be considered as quality control media in order to avoid the risk associated. Physiological based pharmacokinetic models (PBPK) coupled with biorelevant dissolution medium is widely used in simulation and prediction of the plasma drug concentration and in vivo drug performance. The present investigation deals with the evaluation of biorelevant dissolution media as well as in vivo drug performance by PBPK modelling using STELLA® simulation software. The PBPK model was developed using STELLA® using dissolution kinetics, solubility, standard gastrointestinal parameters and post-absorptive disposition parameters. The drug product selected for the present study includes Linezolid film-coated immediate-release tablets (Zyvox), Tacrolimus prolonged-release capsules (Advagraf), Valganciclovir tablets (Valcyte) and Mesalamine controlled-release capsules (Pentasa) each belonging to different biopharmaceutics classification system (BCS). The simulated plasma drug concentration was analyzed and pharmacokinetic parameters were calculated and compared with the reported values. The result from the present investigation indicates that STELLA® when coupled with biorelevant dissolution media can predict the in vivo performance of the drug product with prediction error less than 20% irrespective of the dosage form (immediate release versus modified release) and BCS Classification. Thus, STELLA® can be used for in vivo drug prediction which will be helpful in generic drug development. PMID:25494535

  12. PREDICTIVE PHYSIOLOGICALLY BASED PHARMACOKINETICS MODELING (PBPK) OF PYRETHROID PESTICIDES

    EPA Science Inventory

    Pyrethroids are a class of neurotoxic pesticides that have many different applications in agriculture, horticulture, and homes, and medicinal uses for animals and humans. Differences in the toxicity of pyrethroids are the result of their pharmacokinetic and/or pharmacodynamic pr...

  13. Interspecies allometric analysis of the comparative pharmacokinetics of 44 drugs across veterinary and laboratory animal species.

    PubMed

    Riviere, J E; Martin-Jimenez, T; Sundlof, S F; Craigmill, A L

    1997-12-01

    The purpose of this study was to apply the method of allometric analysis to a study of the comparative disposition of veterinary drugs using the Food Animal Residue Avoidance Databank (FARAD) as a source of the comparative pharmacokinetic data. An initial filtration of the FARAD data was performed in order to exclude drugs for which no pharmacokinetic data were available, in at least four species the route of administration was other than intravenous, and the matrix was different from blood, plasma or serum. This process restricted the study to a total of 44 candidate drugs. The primary pharmacokinetic parameter selected for study was half-life (t1/2). As this parameter is a composite of clearance (Cl) and volume of distribution (Vd), it was considered to be the most robust for interspecies scaling. Volume of distribution at steady state (Vdss) and clearance showed weak allometric correlations with weight across species. The relationships between body weight and elimination half-life (51/2 beta) were determined for this selected group of drugs by using the empirically determined function Y = a Wb. The function Y represents the parameter of concern (half-life), a is a coefficient typical of every drug (intercept), W is the species average body weight, and b is the scaling exponent. A total of 11 drugs (tetracycline, oxytetracycline, chlortetracycline, erythromycin, diazepam, prednisolone, cephapirin, ampicillin, gentamicin, apramycin and carbenicillin) showed statistically significant correlations and consequently are excellent candidates for interspecies extrapolation of pharmacokinetic parameters (half-life) in species of relevance to veterinary medicine. The remaining 33 drugs were divided into two groups which showed various degrees of lack of correlation. Many of the drugs that showed no allometric correlation were low hepatic extraction drugs. However, some other drugs demonstrated equivocal results which could either be due to a true lack of allometric

  14. [Pharmacokinetic comparison of baicalin absorption medicine Qinbai Qingfei concentrated pellets drug compatibility].

    PubMed

    Li, Hai-Long; Feng, Wen-Cheng; Yao, Lin; Sun, Yan; Song, Ya-Juan; Hu, Hao; Wang, Wei-Ming

    2014-05-01

    The Qinbai Qingfei concentrated pellets by traditional Chinese medicine theoryand party and group, the rats were given the drugs group, comparison of pharmacokinetics parameters changes of baicalin , discusses the rationality of Qinbai prescription. The rats were gavaged monarch drug group (Huang Qincu extract, mainly forbaicalin), and official medicine group, adjuvant group, medicine group and Qinbai group (Quan Fangzu) the content of baicalin equal as the monarch drug group, in the 28 h collection in rat plasma at different time point, application of HPLC determination of baicalin glycosides in rat plasmaconcentration time curve, with 3P97 practical pharmacokinetics program to process the data Based on the data analysis, baicalin in rat plasma of Qinbai group Cmax is 4 times as big as monarch druggroup, AUC is 6 times as big as monarch drug group; the content of baicalin in plasma of rats the highest is Qinbai group, the minister drug group, adjuvant group, medicine group of baicalin in rat plasma content of less than the Qinbai group, but was significantly higher than that of monarch drug group; the medicine group is slightly higher than that adjuvant the content of baicalin in plasma of rats. The pharmacokinetic results show that the measured plasma concentration in rats that Qinbai can significantly increase Cmax and AUC of baicalin, other components of qinbai can promoted the baicalin absorption in vivo. It showed that the reasonable of Qinbai compound compatibility. The minister drug can promote the absorption of baicalin in vivo. PMID:25282909

  15. Pharmacokinetic and pharmacodynamic alterations of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors: drug-drug interactions and interindividual differences in transporter and metabolic enzyme functions.

    PubMed

    Shitara, Yoshihisa; Sugiyama, Yuichi

    2006-10-01

    3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) are widely used for the treatment of hypercholesterolemia. Their efficacy in preventing cardiovascular events has been shown by a large number of clinical trials. However, myotoxic side effects, sometimes severe, including myopathy or rhabdomyolysis, are associated with the use of statins. In some cases, such toxicity is associated with pharmacokinetic alterations. In this review, the pharmacokinetic aspects and physicochemical properties of statins are reviewed in order to understand the mechanism governing their pharmacokinetic alterations. Among the statins, simvastatin, lovastatin and atorvastatin are metabolized by cytochrome P450 3A4 (CYP3A4) while fluvastatin is metabolized by CYP2C9. Cerivastatin is subjected to 2 metabolic pathways mediated by CYP2C8 and 3A4. Pravastatin, rosuvastatin and pitavastatin undergo little metabolism. Their plasma clearances are governed by the transporters involved in the hepatic uptake and biliary excretion. Also for other statins, which are orally administered as open acid forms (i.e. fluvastatin, cerivastatin and atorvastatin), hepatic uptake transporter(s) play important roles in their clearances. Based on such information, pharmacokinetic alterations of statins can be predicted following coadministration of other drugs or in patients with lowered activities in drug metabolism and/or transport. We also present a quantitative analysis of the effect of some factors on the pharmacokinetics of statins based on a physiologically based pharmacokinetic model. To avoid a pharmacokinetic alteration, we need to have information about the metabolizing enzyme(s) and transporter(s) involved in the pharmacokinetics of statins and, along with such information, model-based prediction is also useful. PMID:16714062

  16. Absence of pharmacokinetic drug-drug interaction of pertuzumab with trastuzumab and docetaxel.

    PubMed

    Cortés, Javier; Swain, Sandra M; Kudaba, Iveta; Hauschild, Maik; Patel, Taral; Grincuka, Elza; Masuda, Norikazu; McNally, Virginia; Ross, Graham; Brewster, Mike; Marier, Jean-François; Trinh, My My; Garg, Amit; Nijem, Ihsan; Visich, Jennifer; Lum, Bert L; Baselga, José

    2013-11-01

    Pertuzumab is a novel antihuman epidermal growth factor receptor 2 (HER2) humanized monoclonal antibody. Combined with trastuzumab plus docetaxel, pertuzumab improved progression-free and overall survival versus trastuzumab plus docetaxel in the phase III CLEOPATRA trial (NCT00567190) in first-line HER2-positive metastatic breast cancer. Thirty-seven patients participated in a pharmacokinetic (PK)/corrected QT interval substudy of CLEOPATRA, which evaluated potential PK drug-drug interaction (DDI). PK parameters were calculated using noncompartmental methods, and DDI analyses were carried out. In the presence of trastuzumab and docetaxel, the mean pertuzumab Cmin and Cmax in cycle 3 were 63.6 and 183 µg/ml, respectively. The pertuzumab concentrations observed were consistent with simulations from a validated population PK model, indicating that trastuzumab and docetaxel did not alter pertuzumab PK. Comparison of geometric least-squares mean PK parameters between arms showed no impact of pertuzumab on the PK of trastuzumab or docetaxel. In conclusion, no PK DDI was observed when pertuzumab, trastuzumab, and docetaxel were combined for the treatment of HER2-positive metastatic breast cancer. PMID:23969513

  17. Quantitative evaluation of drug-drug interaction potentials by in vivo information- guided prediction approach.

    PubMed

    Chen, Feng; Hu, Zhe-Yi; Jia, Wei-Wei; Lu, Jing-Tao; Zhao, Yuan-Sheng

    2014-01-01

    Drug-drug interaction (DDI) is one important topic in drug discovery, drug development and clinical practice. Recently, a novel approach, in vivo information-guided prediction (IVIP), was introduced for predicting the magnitude of pharmacokinetic DDIs which are caused by changes in cytochrome P450 (CYP) activity. This approach utilizes two parameters, i.e. CR (the apparent contribution of the target metabolizing enzyme to the clearance of the substrate drug) and IX (the apparent effect of a perpetrator on the target CYP) to describe the magnitude of DDI between a perpetrator and a victim drug. The essential concept of this method assumes that at a given dose level, the IX for a given perpetrator remains constant whatever the victim drug is. Usually, this IVIP method is only based on information from clinical studies and does not need in vitro information. In this review, basic concept, application and extension, as well as pros and cons of the IVIP method were presented. How to apply this approach was also discussed. Thus far, this method displayed good performance in predicting DDIs associated with CYPs, and can be used to forecast the magnitude of a large number of possible DDIs, of which only a small portion have been investigated in clinical studies. The key concept of this static approach could even be implemented in dynamic modeling to assess risks of DDIs involving drug transporters. PMID:25705907

  18. Atomoxetine: A Review of Its Pharmacokinetics and Pharmacogenomics Relative to Drug Disposition.

    PubMed

    Yu, Guo; Li, Guo-Fu; Markowitz, John S

    2016-05-01

    Atomoxetine is a selective norepinephrine (NE) reuptake inhibitor approved for the treatment of attention-deficit/hyperactivity disorder (ADHD) in children (≥6 years of age), adolescents, and adults. Its metabolism and disposition are fairly complex, and primarily governed by cytochrome P450 (CYP) 2D6 (CYP2D6), whose protein expression varies substantially from person to person, and by race and ethnicity because of genetic polymorphism. These differences can be substantial, resulting in 8-10-fold differences in atomoxetine exposure between CYP2D6 poor metabolizers and extensive metabolizers. In this review, we have attempted to revisit and analyze all published clinical pharmacokinetic data on atomoxetine inclusive of public access documents from the new drug application submitted to the United States Food and Drug Administration (FDA). The present review focuses on atomoxetine metabolism, disposition, and genetic polymorphisms of CYP2D6 as they specifically relate to atomoxetine, and provides an in-depth discussion of the fundamental pharmacokinetics of the drug including its absorption, distribution, metabolism, and excretion in pediatric and adult populations. Further, a summary of relationships between genetic variants of CYP2D6 and to some degree, CYP2C19, are provided with respect to atomoxetine plasma concentrations, central nervous system (CNS) pharmacokinetics, and associated clinical implications for pharmacotherapy. Lastly, dosage adjustments based on pharmacokinetic principles are discussed. PMID:26859445

  19. Assessing Predictive Performance of Published Population Pharmacokinetic Models of Intravenous Tobramycin in Pediatric Patients.

    PubMed

    Bloomfield, Celeste; Staatz, Christine E; Unwin, Sean; Hennig, Stefanie

    2016-06-01

    Several population pharmacokinetic models describe the dose-exposure relationship of tobramycin in pediatric patients. Before the implementation of these models in clinical practice for dosage adjustment, their predictive performance should be externally evaluated. This study tested the predictive performance of all published population pharmacokinetic models of tobramycin developed for pediatric patients with an independent patient cohort. A literature search was conducted to identify suitable models for testing. Demographic and pharmacokinetic data were collected retrospectively from the medical records of pediatric patients who had received intravenous tobramycin. Tobramycin exposure was predicted from each model. Predictive performance was assessed by visual comparison of predictions to observations, by calculation of bias and imprecision, and through the use of simulation-based diagnostics. Eight population pharmacokinetic models were identified. A total of 269 concentration-time points from 41 pediatric patients with cystic fibrosis were collected for external evaluation. Three models consistently performed best in all evaluations and had mean errors ranging from -0.4 to 1.8 mg/liter, relative mean errors ranging from 4.9 to 29.4%, and root mean square errors ranging from 47.8 to 66.9%. Simulation-based diagnostics supported these findings. Models that allowed a two-compartment disposition generally had better predictive performance than those that used a one-compartment disposition model. Several published models of the pharmacokinetics of tobramycin showed reasonable low levels of bias, although all models seemed to have some problems with imprecision. This suggests that knowledge of typical pharmacokinetic behavior and patient covariate values alone without feedback concentration measurements from individual patients is not sufficient to make precise predictions. PMID:27001806

  20. Prediction of the pharmacokinetics of atorvastatin, cerivastatin, and indomethacin using kinetic models applied to isolated rat hepatocytes.

    PubMed

    Paine, Stuart W; Parker, Alison J; Gardiner, Philip; Webborn, Peter J H; Riley, Robert J

    2008-07-01

    The disposition of atorvastatin, cerivastatin, and indomethacin, established substrates of rat hepatic basolateral uptake transporters, has been evaluated in suspended rat hepatocytes. Cell and media concentration-time data were simultaneously fitted to a model incorporating active uptake, permeation, binding, and metabolism. Use of the model to estimate the ratio of intracellular to extracellular steady-state free drug concentrations demonstrated the strong influence of active uptake on the kinetics of atorvastatin (18:1) and cerivastatin (8:1), in comparison with indomethacin (3.5:1). Indomethacin, however, was shown to have a higher uptake clearance (599 +/- 101 microl/min/10(6) cells) than atorvastatin (375 +/- 45 microl/min/10(6) cells) and cerivastatin (413 +/- 47 microl/min/10(6) cells). The high passive permeability of indomethacin (237 +/- 63 microl/min/10(6) cells) clearly negated the effect of the active transport on the overall disposition. An analogous physiological model was constructed that allowed prediction of the in vivo pharmacokinetics, including the free intracellular concentration in liver. Hepatic clearance was well predicted by the model, in contrast to predictions based on standard methods. Volume of distribution was well predicted for indomethacin and predicted reasonably for atorvastatin and cerivastatin and higher than might be expected for an acid compound. Furthermore, the terminal half-life predictions for all three compounds were within 2-fold of the observed values. The ability to estimate the free-intracellular hepatic concentration of uptake substrates has major benefits in terms of predicting pharmacokinetics, potential CYP-mediated drug-drug interactions, and efficacy of hepatically targeted therapeutics. PMID:18426955

  1. Clinical, Pharmacokinetic, and In Vitro Studies to Support Bioequivalence of Ophthalmic Drug Products.

    PubMed

    Choi, Stephanie H; Lionberger, Robert A

    2016-07-01

    For ophthalmic drug products, the determination of bioequivalence can be challenging, as drug concentrations at the site of action cannot always be measured. The FDA has recommended a variety of studies that can be used to demonstrate bioequivalence for different ophthalmic drug products. Product-specific bioequivalence recommendations for 28 ophthalmic products have been posted on FDA's website as of May 2016, outlining the specific tests which should be performed to demonstrate bioequivalence. The type of study that can be used to demonstrate bioequivalence depends on the drug product's active pharmaceutical ingredient(s), dosage form, indication, site of action, mechanism of action, and scientific understanding of drug release/drug availability and drug product characteristics. This article outlines the FDA's current guidance on studies to demonstrate bioequivalence through clinical endpoint studies, pharmacokinetic studies, and in vitro studies for generic ophthalmic drug products. PMID:27184578

  2. Modern Methods for Analysis of Antiepileptic Drugs in the Biological Fluids for Pharmacokinetics, Bioequivalence and Therapeutic Drug Monitoring

    PubMed Central

    Park, Yoo-Sin; Kim, Shin-Hee; Kim, Sang-Hyun; Jun, Min-Young

    2011-01-01

    Epilepsy is a chronic disease occurring in approximately 1.0% of the world's population. About 30% of the epileptic patients treated with availably antiepileptic drugs (AEDs) continue to have seizures and are considered therapy-resistant or refractory patients. The ultimate goal for the use of AEDs is complete cessation of seizures without side effects. Because of a narrow therapeutic index of AEDs, a complete understanding of its clinical pharmacokinetics is essential for understanding of the pharmacodynamics of these drugs. These drug concentrations in biological fluids serve as surrogate markers and can be used to guide or target drug dosing. Because early studies demonstrated clinical and/or electroencephalographic correlations with serum concentrations of several AEDs, It has been almost 50 years since clinicians started using plasma concentrations of AEDs to optimize pharmacotherapy in patients with epilepsy. Therefore, validated analytical method for concentrations of AEDs in biological fluids is a necessity in order to explore pharmacokinetics, bioequivalence and TDM in various clinical situations. There are hundreds of published articles on the analysis of specific AEDs by a wide variety of analytical methods in biological samples have appears over the past decade. This review intends to provide an updated, concise overview on the modern method development for monitoring AEDs for pharmacokinetic studies, bioequivalence and therapeutic drug monitoring. PMID:21660146

  3. Clinically significant pharmacokinetic drug interactions of antiepileptic drugs with new antidepressants and new antipsychotics.

    PubMed

    Spina, Edoardo; Pisani, Francesco; de Leon, Jose

    2016-04-01

    Antiepileptic drugs (AEDs) are frequently co-prescribed with new antidepressants (ADs) or new antipsychotics (APs). A PubMed search with no time limit was used to update the review of the clinically significant pharmacokinetic (PK) drug interactions DIs (DIs) between AEDs with new ADs and APs. Our best interpretation of what to expect regarding dosing changes in the average patient after combining AEDs with new ADs or new APs is summarized on updated tables that integrate the information on in vitro metabolism studies, therapeutic drug monitoring (TDM) studies, case report/series and prospective studies. There will be a need to periodically update these dose correction factors as new knowledge becomes available. These tables will provide some orientation to clinicians with no TDM access and may also encourage clinicians to further study TDM. The clinical relevance of the inductive properties of carbamazepine, phenytoin, phenobarbital and primidone on new ADs and new APs and the inhibitory properties of valproic acid and some new ADs, are relatively well understood. On the other hand, PK DI studies combining new AEDs with weak inductive properties (particularly oxcarbazepine doses≥1200mg/day), topiramate doses≥400mg/day, clobazam, eslicarbazepine, and rufinamide), with new ADs and new APs are needed. Valproic acid may be 1) an inhibitor and/or inducer of clozapine and olanzapine with potential for clinically relevant DIs, 2) an inhibitor of paliperidone, and 3) a weak inducer of aripiprazole. Fluoxetine and fluvoxamine are relevant inhibitors of phenytoin and valproic acid and possibly of clobazam, lacosamide, phenobarbital, or primidone. PMID:26896788

  4. Prediction of the pharmacokinetics and tissue distribution of levofloxacin in humans based on an extrapolated PBPK model.

    PubMed

    Zhu, Liqin; Zhang, Yuan; Yang, Jianwei; Wang, Yongming; Zhang, Jianlei; Zhao, Yuanyuan; Dong, Weilin

    2016-08-01

    This study developed a physiologically based pharmacokinetic (PBPK) model in intraabdominally infected rats and extrapolated it to humans to predict the levofloxacin pharmacokinetics and penetration into tissues. Twelve male rats with intraabdominal infections induced by Escherichia coli received a single dose of 50 mg/kg body weight of levofloxacin. Blood plasma was collected at 5, 10, 20, 30, 60, 120, 240, 480 and 1440 min after injection, respectively. A PBPK model was developed in rats and extrapolated to humans using GastroPlus software. The predictions were assessed by comparing predictions and observations. In the plasma concentration-versus-time profile of levofloxacin in rats, C max was 23.570 μg/ml at 5 min after intravenous injection, and t1/2 was 2.38 h. The plasma concentration and kinetics in humans were predicted and validated by the observed data. Levofloxacin penetrated and accumulated with high concentrations in the heart, liver, kidney, spleen, muscle and skin tissues in humans. The predicted tissue-to-plasma concentration ratios in abdominal viscera were between 1.9 and 2.3. When rat plasma concentrations were known, extrapolation of a PBPK model was a method to predict the drug pharmacokinetics and penetration in humans. Levofloxacin had good penetration into the liver, kidney and spleen as well as other tissues in humans. This pathological model extrapolation may provide a reference for the study of antiinfective PK/PD. In our study, levofloxacin penetrated well into abdominal organs. Also ADR monitoring should be implemented when using levofloxacin. PMID:25753830

  5. Lisdexamfetamine: A pharmacokinetic review.

    PubMed

    Comiran, Eloisa; Kessler, Félix Henrique; Fröehlich, Pedro Eduardo; Limberger, Renata Pereira

    2016-06-30

    Lisdexamfetamine (LDX) is a d-amphetamine (d-AMPH) pro-drug used to treat Attention Deficit and Hyperactivity Disorder (ADHD) and Binge Eating Disorder (BED) symptoms. The in vivo pharmacodynamics of LDX is the same as that of its active product d-AMPH, although there are a few qualitative and quantitative differences due to pharmacokinetics. Due to the specific pharmacokinetics of the long-acting stimulants, this article revises the pharmacokinetic studies on LDX, the newest amphetamine pro-drug. The Medline/Pubmed, Science Direct and Biblioteca Virtual em Saúde (Lilacs and Ibecs) (2007-2016) databases were searched for articles and their list of references. As for basic pharmacokinetics studies, since LDX is a newly developed medication, there are few results concerning biotransformation, distribution and the use of different biological matrices for analysis. This is the first robust review on this topic, gathering data from all clinical pharmacokinetics studies available in the literature. The particular pharmacokinetics of LDX plays a major role in studying this pro-drug, since this knowledge was essential to understand some reports on clinical effects in literature, e.g. the small likelihood of reducing the effect by interactions, the effect of long duration use and the still questionable reduction of the potential for abuse. In general the already well-known pharmacokinetic properties of amphetamine make LDX relatively predictable, simplifying the use of LDX in clinical practice. PMID:27125257

  6. Prediction of drug disposition on the basis of its chemical structure.

    PubMed

    Stepensky, David

    2013-06-01

    The chemical structure of any drug determines its pharmacokinetics and pharmacodynamics. Detailed understanding of relationships between the drug chemical structure and individual disposition pathways (i.e., distribution and elimination) is required for efficient use of existing drugs and effective development of new drugs. Different approaches have been developed for this purpose, ranging from statistics-based quantitative structure-property (or structure-pharmacokinetic) relationships (QSPR) analysis to physiologically based pharmacokinetic (PBPK) models. This review critically analyzes currently available approaches for analysis and prediction of drug disposition on the basis of chemical structure. Models that can be used to predict different aspects of disposition are presented, including: (a) value of the individual pharmacokinetic parameter (e.g., clearance or volume of distribution), (b) efficiency of the specific disposition pathway (e.g., biliary drug excretion or cytochrome P450 3A4 metabolism), (c) accumulation in a specific organ or tissue (e.g., permeability of the placenta or accumulation in the brain), and (d) the whole-body disposition in the individual patients. Examples of presented pharmacological agents include "classical" low-molecular-weight compounds, biopharmaceuticals, and drugs encapsulated in specialized drug-delivery systems. The clinical efficiency of agents from all these groups can be suboptimal, because of inefficient permeability of the drug to the site of action and/or excessive accumulation in other organs and tissues. Therefore, robust and reliable approaches for chemical structure-based prediction of drug disposition are required to overcome these limitations. PBPK models are increasingly being used for prediction of drug disposition. These models can reflect the complex interplay of factors that determine drug disposition in a mechanistically correct fashion and can be combined with other approaches, for example QSPR

  7. Physiologically Based Pharmacokinetic Modeling of Fluorescently Labeled Block Copolymer Nanoparticles for Controlled Drug Delivery in Leukemia Therapy.

    PubMed

    Gilkey, M J; Krishnan, V; Scheetz, L; Jia, X; Rajasekaran, A K; Dhurjati, P S

    2015-03-01

    A physiologically based pharmacokinetic (PBPK) model was developed that describes the concentration and biodistribution of fluorescently labeled nanoparticles in mice used for the controlled delivery of dexamethasone in acute lymphoblastic leukemia (ALL) therapy. The simulated data showed initial spikes in nanoparticle concentration in the liver, spleen, and kidneys, whereas concentration in plasma decreased rapidly. These simulation results were consistent with previously published in vivo data. At shorter time scales, the simulated data predicted decrease of nanoparticles from plasma with concomitant increase in the liver, spleen, and kidneys before decaying at longer timepoints. Interestingly, the simulated data predicted an unaccounted accumulation of about 50% of the injected dose of nanoparticles. Incorporation of an additional compartment into the model justified the presence of unaccounted nanoparticles in this compartment. Our results suggest that the proposed PBPK model can be an excellent tool for prediction of optimal dose of nanoparticle-encapsulated drugs for cancer treatment. PMID:26225236

  8. Physiologically Based Pharmacokinetic Modeling of Fluorescently Labeled Block Copolymer Nanoparticles for Controlled Drug Delivery in Leukemia Therapy

    PubMed Central

    Gilkey, MJ; Krishnan, V; Scheetz, L; Jia, X; Rajasekaran, AK; Dhurjati, PS

    2015-01-01

    A physiologically based pharmacokinetic (PBPK) model was developed that describes the concentration and biodistribution of fluorescently labeled nanoparticles in mice used for the controlled delivery of dexamethasone in acute lymphoblastic leukemia (ALL) therapy. The simulated data showed initial spikes in nanoparticle concentration in the liver, spleen, and kidneys, whereas concentration in plasma decreased rapidly. These simulation results were consistent with previously published in vivo data. At shorter time scales, the simulated data predicted decrease of nanoparticles from plasma with concomitant increase in the liver, spleen, and kidneys before decaying at longer timepoints. Interestingly, the simulated data predicted an unaccounted accumulation of about 50% of the injected dose of nanoparticles. Incorporation of an additional compartment into the model justified the presence of unaccounted nanoparticles in this compartment. Our results suggest that the proposed PBPK model can be an excellent tool for prediction of optimal dose of nanoparticle-encapsulated drugs for cancer treatment. PMID:26225236

  9. Randomized pharmacokinetic and drug–drug interaction studies of ceftazidime, avibactam, and metronidazole in healthy subjects

    PubMed Central

    Das, Shampa; Li, Jianguo; Armstrong, Jon; Learoyd, Maria; Edeki, Timi

    2015-01-01

    We assessed pharmacokinetic and safety profiles of ceftazidime–avibactam administered ± metronidazole, and whether drug–drug interactions exist between ceftazidime and avibactam, or ceftazidime-avibactam and metronidazole. The first study (NCT01430910) involved two cohorts of healthy subjects. Cohort 1 received ceftazidime–avibactam (2000–500 mg) as a single infusion or as multiple intravenous infusions over 11 days to evaluate ceftazidime–avibactam pharmacokinetics. Cohort 2 received ceftazidime, avibactam, or ceftazidime–avibactam over 4 days to assess drug–drug interaction between ceftazidime and avibactam. The second study (NCT01534247) assessed interaction between ceftazidime–avibactam and metronidazole in subjects receiving ceftazidime–avibactam (2000–500 mg), metronidazole (500 mg), or metronidazole followed by ceftazidime–avibactam over 4 days. In all studies, subjects received a single-dose on the first and final days, and multiple-doses every 8 h on intervening days. Concentration-time profiles for ceftazidime and avibactam administered as single- or multiple-doses separately or together with/without metronidazole were similar. There was no evidence of time-dependent pharmacokinetics or accumulation. In both interaction studies, 90% confidence intervals for geometric least squares mean ratios of area under the curve and maximum plasma concentrations for each drug were within the predefined interval (80–125%) indicating no drug–drug interaction between ceftazidime and avibactam, or ceftazidime–avibactam and metronidazole. There were no safety concerns. In conclusion, pharmacokinetic parameters and safety of ceftazidime, avibactam, and metronidazole were similar after single and multiple doses with no observed drug–drug interaction between ceftazidime and avibactam, or ceftazidime–avibactam and metronidazole. PMID:26516584

  10. Psychedelic 5-Methoxy-N,N-dimethyltryptamine: Metabolism, Pharmacokinetics, Drug Interactions, and Pharmacological Actions

    PubMed Central

    Shen, Hong-Wu; Jiang, Xi-Ling; Winter, Jerrold C.; Yu, Ai-Ming

    2011-01-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) belongs to a group of naturally-occurring psychoactive indolealkylamine drugs. It acts as a nonselective serotonin (5-HT) agonist and causes many physiological and behavioral changes. 5-MeO-DMT is O-demethylated by polymorphic cytochrome P450 2D6 (CYP2D6) to an active metabolite, bufotenine, while it is mainly inactivated through the deamination pathway mediated by monoamine oxidase A (MAO-A). 5-MeO-DMT is often used with MAO-A inhibitors such as harmaline. Concurrent use of harmaline reduces 5-MeO-DMT deamination metabolism and leads to a prolonged and increased exposure to the parent drug 5-MeO-DMT, as well as the active metabolite bufotenine. Harmaline, 5-MeO-DMT and bufotenine act agonistically on serotonergic systems and may result in hyperserotonergic effects or serotonin toxicity. Interestingly, CYP2D6 also has important contribution to harmaline metabolism, and CYP2D6 genetic polymorphism may cause considerable variability in the metabolism, pharmacokinetics and dynamics of harmaline and its interaction with 5-MeO-DMT. Therefore, this review summarizes recent findings on biotransformation, pharmacokinetics, and pharmacological actions of 5-MeO-DMT. In addition, the pharmacokinetic and pharmacodynamic drug-drug interactions between harmaline and 5-MeO-DMT, potential involvement of CYP2D6 pharmacogenetics, and risks of 5-MeO-DMT intoxication are discussed. PMID:20942780

  11. Psychedelic 5-methoxy-N,N-dimethyltryptamine: metabolism, pharmacokinetics, drug interactions, and pharmacological actions.

    PubMed

    Shen, Hong-Wu; Jiang, Xi-Ling; Winter, Jerrold C; Yu, Ai-Ming

    2010-10-01

    5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) belongs to a group of naturally-occurring psychoactive indolealkylamine drugs. It acts as a nonselective serotonin (5-HT) agonist and causes many physiological and behavioral changes. 5-MeO-DMT is O-demethylated by polymorphic cytochrome P450 2D6 (CYP2D6) to an active metabolite, bufotenine, while it is mainly inactivated through the deamination pathway mediated by monoamine oxidase A (MAO-A). 5-MeO-DMT is often used with MAO-A inhibitors such as harmaline. Concurrent use of harmaline reduces 5-MeO-DMT deamination metabolism and leads to a prolonged and increased exposure to the parent drug 5-MeO-DMT, as well as the active metabolite bufotenine. Harmaline, 5-MeO-DMT and bufotenine act agonistically on serotonergic systems and may result in hyperserotonergic effects or serotonin toxicity. Interestingly, CYP2D6 also has important contribution to harmaline metabolism, and CYP2D6 genetic polymorphism may cause considerable variability in the metabolism, pharmacokinetics and dynamics of harmaline and its interaction with 5-MeO-DMT. Therefore, this review summarizes recent findings on biotransformation, pharmacokinetics, and pharmacological actions of 5-MeO-DMT. In addition, the pharmacokinetic and pharmacodynamic drug-drug interactions between harmaline and 5-MeO-DMT, potential involvement of CYP2D6 pharmacogenetics, and risks of 5-MeO-DMT intoxication are discussed. PMID:20942780

  12. Robust model predictive control for optimal continuous drug administration.

    PubMed

    Sopasakis, Pantelis; Patrinos, Panagiotis; Sarimveis, Haralambos

    2014-10-01

    In this paper the model predictive control (MPC) technology is used for tackling the optimal drug administration problem. The important advantage of MPC compared to other control technologies is that it explicitly takes into account the constraints of the system. In particular, for drug treatments of living organisms, MPC can guarantee satisfaction of the minimum toxic concentration (MTC) constraints. A whole-body physiologically-based pharmacokinetic (PBPK) model serves as the dynamic prediction model of the system after it is formulated as a discrete-time state-space model. Only plasma measurements are assumed to be measured on-line. The rest of the states (drug concentrations in other organs and tissues) are estimated in real time by designing an artificial observer. The complete system (observer and MPC controller) is able to drive the drug concentration to the desired levels at the organs of interest, while satisfying the imposed constraints, even in the presence of modelling errors, disturbances and noise. A case study on a PBPK model with 7 compartments, constraints on 5 tissues and a variable drug concentration set-point illustrates the efficiency of the methodology in drug dosing control applications. The proposed methodology is also tested in an uncertain setting and proves successful in presence of modelling errors and inaccurate measurements. PMID:24986530

  13. Microdosing of a Carbon-14 Labeled Protein in Healthy Volunteers Accurately Predicts Its Pharmacokinetics at Therapeutic Dosages.

    PubMed

    Vlaming, M L H; van Duijn, E; Dillingh, M R; Brands, R; Windhorst, A D; Hendrikse, N H; Bosgra, S; Burggraaf, J; de Koning, M C; Fidder, A; Mocking, J A J; Sandman, H; de Ligt, R A F; Fabriek, B O; Pasman, W J; Seinen, W; Alves, T; Carrondo, M; Peixoto, C; Peeters, P A M; Vaes, W H J

    2015-08-01

    Preclinical development of new biological entities (NBEs), such as human protein therapeutics, requires considerable expenditure of time and costs. Poor prediction of pharmacokinetics in humans further reduces net efficiency. In this study, we show for the first time that pharmacokinetic data of NBEs in humans can be successfully obtained early in the drug development process by the use of microdosing in a small group of healthy subjects combined with ultrasensitive accelerator mass spectrometry (AMS). After only minimal preclinical testing, we performed a first-in-human phase 0/phase 1 trial with a human recombinant therapeutic protein (RESCuing Alkaline Phosphatase, human recombinant placental alkaline phosphatase [hRESCAP]) to assess its safety and kinetics. Pharmacokinetic analysis showed dose linearity from microdose (53 μg) [(14) C]-hRESCAP to therapeutic doses (up to 5.3 mg) of the protein in healthy volunteers. This study demonstrates the value of a microdosing approach in a very small cohort for accelerating the clinical development of NBEs. PMID:25869840

  14. Metformin and cimetidine: Physiologically based pharmacokinetic modelling to investigate transporter mediated drug-drug interactions.

    PubMed

    Burt, H J; Neuhoff, S; Almond, L; Gaohua, L; Harwood, M D; Jamei, M; Rostami-Hodjegan, A; Tucker, G T; Rowland-Yeo, K

    2016-06-10

    Metformin is used as a probe for OCT2 mediated transport when investigating possible DDIs with new chemical entities. The aim of the current study was to investigate the ability of physiologically-based pharmacokinetic (PBPK) models to simulate the effects of OCT and MATE inhibition by cimetidine on metformin kinetics. PBPK models were developed, incorporating mechanistic kidney and liver sub-models for metformin (OCT and MATE substrate) and a mechanistic kidney sub-model for cimetidine. The models were used to simulate inhibition of the MATE1, MATE2-K, OCT1 and OCT2 mediated transport of metformin by cimetidine. Assuming competitive inhibition and using cimetidine Ki values determined in vitro, the predicted metformin AUC ratio was 1.0 compared to an observed value of 1.46. The observed AUC ratio could only be recovered with this model when the cimetidine Ki for OCT2 was decreased 1000-fold or the Ki's for both OCT1 and OCT2 were decreased 500-fold. An alternative description of metformin renal transport by OCT1 and OCT2, incorporating electrochemical modulation of the rate of metformin uptake together with 8-18-fold decreases in cimetidine Ki's for OCTs and MATEs, allowed recovery of the extent of the observed effect of cimetidine on metformin AUC. While the final PBPK model has limitations, it demonstrates the benefit of allowing for the complexities of passive permeability combined with active cellular uptake modulated by an electrochemical gradient and active efflux. PMID:27019345

  15. Pharmacokinetic-pharmacodynamic relationship of anesthetic drugs: from modeling to clinical use

    PubMed Central

    Billard, Valerie

    2015-01-01

    Anesthesia is a combination of unconsciousness, amnesia, and analgesia, expressed in sleeping patients by limited reaction to noxious stimulations. It is achieved by several classes of drugs, acting mainly on central nervous system. Compared to other therapeutic families, the anesthetic drugs, administered by intravenous or pulmonary route, are quickly distributed in the blood and induce in a few minutes effects that are fully reversible within minutes or hours. These effects change in parallel with the concentration of the drug, and the concentration time course of the drug follows with a reasonable precision mathematical models based on the Fick principle. Therefore, understanding concentration time course allows adjusting the dosing delivery scheme in order to control the effects.   The purpose of this short review is to describe the basis of pharmacokinetics and modeling, the concentration-effects relationship, and drug interactions modeling to offer to anesthesiologists and non-anesthesiologists an overview of the rules to follow to optimize anesthetic drug delivery. PMID:26918133

  16. Utility of population pharmacokinetic modeling in the assessment of therapeutic protein-drug interactions.

    PubMed

    Chow, Andrew T; Earp, Justin C; Gupta, Manish; Hanley, William; Hu, Chuanpu; Wang, Diane D; Zajic, Stefan; Zhu, Min

    2014-05-01

    Assessment of pharmacokinetic (PK) based drug-drug interactions (DDI) is essential for ensuring patient safety and drug efficacy. With the substantial increase in therapeutic proteins (TP) entering the market and drug development, evaluation of TP-drug interaction (TPDI) has become increasingly important. Unlike for small molecule (e.g., chemical-based) drugs, conducting TPDI studies often presents logistical challenges, while the population PK (PPK) modeling may be a viable approach dealing with the issues. A working group was formed with members from the pharmaceutical industry and the FDA to assess the utility of PPK-based TPDI assessment including study designs, data analysis methods, and implementation strategy. This paper summarizes key issues for consideration as well as a proposed strategy with focuses on (1) PPK approach for exploratory assessment; (2) PPK approach for confirmatory assessment; (3) importance of data quality; (4) implementation strategy; and (5) potential regulatory implications. Advantages and limitations of the approach are also discussed. PMID:24272952

  17. Pharmacogenomic and clinical data link non-pharmacokinetic metabolic dysregulation to drug side effect pathogenesis

    PubMed Central

    Zielinski, Daniel C.; Filipp, Fabian V.; Bordbar, Aarash; Jensen, Kasper; Smith, Jeffrey W.; Herrgard, Markus J.; Mo, Monica L.; Palsson, Bernhard O.

    2015-01-01

    Drug side effects cause a significant clinical and economic burden. However, mechanisms of drug action underlying side effect pathogenesis remain largely unknown. Here, we integrate pharmacogenomic and clinical data with a human metabolic network and find that non-pharmacokinetic metabolic pathways dysregulated by drugs are linked to the development of side effects. We show such dysregulated metabolic pathways contain genes with sequence variants affecting side effect incidence, play established roles in pathophysiology, have significantly altered activity in corresponding diseases, are susceptible to metabolic inhibitors and are effective targets for therapeutic nutrient supplementation. Our results indicate that metabolic dysregulation represents a common mechanism underlying side effect pathogenesis that is distinct from the role of metabolism in drug clearance. We suggest that elucidating the relationships between the cellular response to drugs, genetic variation of patients and cell metabolism may help managing side effects by personalizing drug prescriptions and nutritional intervention strategies. PMID:26055627

  18. Evaluation of utility of pharmacokinetic studies in phase I trials of two oncology drugs

    PubMed Central

    Wu, Kehua; House, Larry; Ramírez, Jacqueline; Seminerio, Michael J.; Ratain, Mark J.

    2013-01-01

    Purpose There are many phase I trials of oncology drug combinations, very few of which report clinically significant pharmacokinetic interactions. We hypothesized that the utility of such pharmacokinetic drug-drug interaction (DDI) studies is low in the absence of a mechanistic hypothesis. Experimental Design We retrospectively reviewed 152 phase I (2 drug) combination studies published in 2007–2011. Results Only 28 (18%) studies had an implicit or explicit rationale, either inhibition/induction of a drug metabolizing enzyme or transporter, co-substrates for the same enzyme or transporter, potential for end-organ toxicity, or protein binding. Only 12 (8%) studies demonstrated a statistically significant DDI, based on change in clearance (or area under the curve) of parent drug and/or active metabolite. There was a strong association between a rationale and a demonstrable drug interaction, as only 2% of studies without a rationale demonstrated a DDI, compared to 32% of studies with a rationale (Fisher’s exact test, p<10−6). Conclusion DDI studies should not be routinely performed as part of phase I trials of oncology combinations. PMID:24056785

  19. [Physico-chemical profiling of centrally acting molecules for prediction of pharmacokinetic properties].

    PubMed

    Deák, Katalin

    2008-01-01

    Physico-chemical profiling is a fundamental tool at the early stage of drug discovery in screening drug-like candidates. Complex physico-chemical profiling, including molecular properties such as solubility, ionization, lipophilicity and permeability, has been found to be of predictive power in ADME (absorption, distribution, metabolism, elimination). In the present thesis work, the physico-chemical properties of centrally acting compounds were investigated. We determined the protonation constants (K), the partition coeffitient in octanol/water (Poct) and cyclohexane/water (Pch) systems of antidepressive sertraline and 15 antipsychotic piperidine and piperazine derivatives and calculated the delta logP (logPoct-logPch) values of the molecules. Due to the poor water solubility of the compounds potentiometry using the "co-solvent" technique was applied for the determination of the protonation constants. The logP values were measured by the dual-phase potentiometric titration in octanol/water system and the traditional shake-flask method was used in cyclohexane/water system. Highly precise physico-chemical data were obtained by these validated methods. The relationship between the structure of the molecules and the physico-chemical data was investigated. The pharmacokinetic properties of the compounds were predicted by the physico-chemical parameters. Linear relationship has been found between the brain penetration characterized by the logBB values and the delta logP values. The validity of the equation was controlled by the delta logP and the logBB values of sertraline. PMID:18986088

  20. Pharmacokinetic-directed high-dose busulfan combined with cyclophosphamide and etoposide results in predictable drug levels and durable long-term survival in lymphoma patients undergoing autologous stem cell transplantation.

    PubMed

    Zhang, Hongzheng; Graiser, Michael; Hutcherson, Donald A; Dada, M Olufemi; McMillan, Stephanie; Ali, Zahir; Flowers, Christopher R; Waller, Edmund K

    2012-08-01

    The clinical advantage of pharmacokinetic (PK)-directed-based dosing on intravenous (i.v.) versus oral busulfan-related toxicity and survival remains unclear. We performed a retrospective cohort study of sequential cohorts of patients comparing PK-directed oral and i.v. busulfan-based conditioning regimens in lymphoma patients undergoing autologous hematopoietic cell transplantation (ASCT). Patients received oral (n = 95), every 6 hours i.v. (IV16, n = 113), or once-daily i.v. (IV4, n = 86) busulfan, cyclophosphamide, and etoposide. PK-directed dosing was performed to achieve a predefined target area under the curve (AUC) of 20,000 μM-min (range: 18,400-21,600 μM-min). PK-directed dose adjustments markedly reduced the number of patients in the oral group with total AUC higher than the targeted AUC range, and reduced the variations of total AUC values in all patient groups. One hundred-day mortality was 2.1%, 3.6%, and 3.5% for oral, IV16, and IV4 cohorts, respectively. Five-year overall survival (OS) was 57% (95% confidence interval [CI] 45%-66%) and 64% (95% CI 53%-73%) for patients who received oral and i.v. busulfan, respectively. Both multivariable and instrumental variable analyses indicated the route of delivery had no significant impact on OS, whereas refractory disease and age ≥55 were significantly associated with poorer OS. In lymphoma patients undergoing ASCT, PK-directed i.v. or oral busulfan-based conditioning regimens have comparable toxicity and OS. PMID:22370160

  1. GESSE: Predicting Drug Side Effects from Drug-Target Relationships.

    PubMed

    Pérez-Nueno, Violeta I; Souchet, Michel; Karaboga, Arnaud S; Ritchie, David W

    2015-09-28

    The in silico prediction of unwanted side effects (SEs) caused by the promiscuous behavior of drugs and their targets is highly relevant to the pharmaceutical industry. Considerable effort is now being put into computational and experimental screening of several suspected off-target proteins in the hope that SEs might be identified early, before the cost associated with developing a drug candidate rises steeply. Following this need, we present a new method called GESSE to predict potential SEs of drugs from their physicochemical properties (three-dimensional shape plus chemistry) and to target protein data extracted from predicted drug-target relationships. The GESSE approach uses a canonical correlation analysis of the full drug-target and drug-SE matrices, and it then calculates a probability that each drug in the resulting drug-target matrix will have a given SE using a Bayesian discriminant analysis (DA) technique. The performance of GESSE is quantified using retrospective (external database) analysis and literature examples by means of area under the ROC curve analysis, "top hit rates", misclassification rates, and a χ(2) independence test. Overall, the robust and very promising retrospective statistics obtained and the many SE predictions that have experimental corroboration demonstrate that GESSE can successfully predict potential drug-SE profiles of candidate drug compounds from their predicted drug-target relationships. PMID:26251970

  2. Herbal medicines in Brazil: pharmacokinetic profile and potential herb-drug interactions

    PubMed Central

    Mazzari, Andre L. D. A.; Prieto, Jose M.

    2014-01-01

    A plethora of active compounds found in herbal medicines can serve as substrate for enzymes involved in the metabolism of xenobiotics. When a medicinal plant is co-administered with a conventional drug and little or no information is known about the pharmacokinetics of the plant metabolites, there is an increased risk of potential herb-drug interactions. Moreover, genetic polymorphisms in a population may act to predispose individuals to adverse reactions. The use of herbal medicines is rapidly increasing in many countries, particularly Brazil where the vast biodiversity is a potential source of new and more affordable treatments for numerous conditions. Accordingly, the Brazilian Unified Public Health System (SUS) produced a list of 71 plant species of interest, which could be made available to the population in the near future. Physicians at SUS prescribe a number of essential drugs and should herbal medicines be added to this system the chance of herb-drug interactions further increases. A review of the effects of these medicinal plants on Phase 1 and Phase 2 metabolic mechanisms and the transporter P-glycoprotein was conducted. The results have shown that approximately half of these medicinal plants lack any pharmacokinetic data. Moreover, most of the studies carried out are in vitro. Only a few reports on herb-drug interactions with essential drugs prescribed by SUS were found, suggesting that very little attention is being given to the safety of herbal medicines. Here we have taken this information to discuss the potential interactions between herbal medicines and essential drugs prescribed to Brazilian patients whilst taking into account the most common polymorphisms present in the Brazilian population. A number of theoretical interactions are pinpointed but more pharmacokinetic studies and pharmacovigilance data are needed to ascertain their clinical significance. PMID:25071580

  3. Interspecies pharmacokinetics as applied to the hard drug photosensitizing agent meta(tetrahydroxphenyl)chlorin

    NASA Astrophysics Data System (ADS)

    Ronn, Avigdor M.; Lofgren, Lennart A.; Westerborn, Anders

    1996-01-01

    Having successfully completed an extensive three year study of the pharmacokinetics and efficacy of m-THPC as a photosensitizer in three different animal models (rabbit, dog and nude rats) we began a phase one human trial in two centers. At the Orebro Medical Center Hospital, Sweden ten patients were selected for the treatment of bronchial, prostate, skin, laryngeal and nasopharyngeal tumors while at Long Island Jewish Medical Center Hospital four patients were treated for laryngeal cancers. These studies were designed to study the optimal parameters for human treatment and as such relied on data from the animal studies mentioned above. De-escalating drug doses of 0.3, 0.15, 0.075 and 0.0375 mg/kg were chosen and the pharmacokinetics of the patients plasma, tumor and adjacent healthy tissues were measured spectrofluorometrically following chemical extraction of the drug. The half life of the drug in our Cotton tail rabbit model was measured as 24.7 hours as opposed to the human half life of 44.5 hours within the studied dosing range. This illustrates the extreme care that must be exercised before translating animal pharmacokinetics data to human dosing decision.

  4. Mechanistic pharmacokinetic modeling for the prediction of transporter-mediated disposition in humans from sandwich culture human hepatocyte data.

    PubMed

    Jones, Hannah M; Barton, Hugh A; Lai, Yurong; Bi, Yi-An; Kimoto, Emi; Kempshall, Sarah; Tate, Sonya C; El-Kattan, Ayman; Houston, J Brian; Galetin, Aleksandra; Fenner, Katherine S

    2012-05-01

    With efforts to reduce cytochrome P450-mediated clearance (CL) during the early stages of drug discovery, transporter-mediated CL mechanisms are becoming more prevalent. However, the prediction of plasma concentration-time profiles for such compounds using physiologically based pharmacokinetic (PBPK) modeling is far less established in comparison with that for compounds with passively mediated pharmacokinetics (PK). In this study, we have assessed the predictability of human PK for seven organic anion-transporting polypeptide (OATP) substrates (pravastatin, cerivastatin, bosentan, fluvastatin, rosuvastatin, valsartan, and repaglinide) for which clinical intravenous data were available. In vitro data generated from the sandwich culture human hepatocyte system were simultaneously fit to estimate parameters describing both uptake and biliary efflux. Use of scaled active uptake, passive distribution, and biliary efflux parameters as inputs into a PBPK model resulted in the overprediction of exposure for all seven drugs investigated, with the exception of pravastatin. Therefore, fitting of in vivo data for each individual drug in the dataset was performed to establish empirical scaling factors to accurately capture their plasma concentration-time profiles. Overall, active uptake and biliary efflux were under- and overpredicted, leading to average empirical scaling factors of 58 and 0.061, respectively; passive diffusion required no scaling factor. This study illustrates the mechanistic and model-driven application of in vitro uptake and efflux data for human PK prediction for OATP substrates. A particular advantage is the ability to capture the multiphasic plasma concentration-time profiles for such compounds using only preclinical data. A prediction strategy for novel OATP substrates is discussed. PMID:22344703

  5. Phenotype of TPBG Gene Replacement in the Mouse and Impact on the Pharmacokinetics of an Antibody-Drug Conjugate.

    PubMed

    Hu, George; Leal, Mauricio; Lin, Qingcong; Affolter, Timothy; Sapra, Puja; Bates, Brian; Damelin, Marc

    2015-06-01

    The use of predictive preclinical models in drug discovery is critical for compound selection, optimization, preclinical to clinical translation, and strategic decision-making. Trophoblast glycoprotein (TPBG), also known as 5T4, is the therapeutic target of several anticancer agents currently in clinical development, largely due to its high expression in tumors and low expression in normal adult tissues. In this study, mice were engineered to express human TPBG under endogenous regulatory sequences by replacement of the murine Tpbg coding sequence. The gene replacement was considered functional since the hTPBG knockin (hTPBG-KI) mice did not exhibit clinical observations or histopathological phenotypes that are associated with Tpbg gene deletion, except in rare instances. The expression of hTPBG in certain epithelial cell types and in different microregions of the brain and spinal cord was consistent with previously reported phenotypes and expression patterns. In pharmacokinetic studies, the exposure of a clinical-stage anti-TPBG antibody-drug conjugate (ADC), A1mcMMAF, was lower in hTPBG-KI versus wild-type animals, which was evidence of target-related increased clearance in hTPBG-KI mice. Thus, the hTPBG-KI mice constitute an improved system for pharmacology studies with current and future TPBG-targeted therapies and can generate more precise pharmacokinetic and pharmacodynamic data. In general the strategy of employing gene replacement to improve pharmacokinetic assessments should be broadly applicable to the discovery and development of ADCs and other biotherapeutics. PMID:25423493

  6. Pharmacokinetic drug interactions in liver disease: An update

    PubMed Central

    Palatini, Pietro; De Martin, Sara

    2016-01-01

    Inhibition and induction of drug-metabolizing enzymes are the most frequent and dangerous drug-drug interactions. They are an important cause of serious adverse events that have often resulted in early termination of drug development or withdrawal of drugs from the market. Management of such interactions by dose adjustment in clinical practice is extremely difficult because of the wide interindividual variability in their magnitude. This review examines the genetic, physiological, and environmental factors responsible for this variability, focusing on an important but so far neglected cause of variability, liver functional status. Clinical studies have shown that liver disease causes a reduction in the magnitude of interactions due to enzyme inhibition, which is proportional to the degree of liver function impairment. The effect of liver dysfunction varies quantitatively according to the nature, reversible or irreversible, of the inhibitory interaction. The magnitude of reversible inhibition is more drastically reduced and virtually vanishes in patients with advanced hepatocellular insufficiency. Two mechanisms, in order of importance, are responsible for this reduction: decreased hepatic uptake of the inhibitory drug and reduced enzyme expression. The extent of irreversible inhibitory interactions is only partially reduced, as it is only influenced by the decreased expression of the inhibited enzyme. Thus, for appropriate clinical management of inhibitory drug interactions, both the liver functional status and the mechanism of inhibition must be taken into consideration. Although the inducibility of drug-metabolizing enzymes in liver disease has long been studied, very conflicting results have been obtained, mainly because of methodological differences. Taken together, the results of early animal and human studies indicated that enzyme induction is substantially preserved in compensated liver cirrhosis, whereas no definitive conclusion as to whether it is

  7. Sensitivity Analysis of a Pharmacokinetic Model of Vaginal Anti-HIV Microbicide Drug Delivery.

    PubMed

    Jarrett, Angela M; Gao, Yajing; Hussaini, M Yousuff; Cogan, Nicholas G; Katz, David F

    2016-05-01

    Uncertainties in parameter values in microbicide pharmacokinetics (PK) models confound the models' use in understanding the determinants of drug delivery and in designing and interpreting dosing and sampling in PK studies. A global sensitivity analysis (Sobol' indices) was performed for a compartmental model of the pharmacokinetics of gel delivery of tenofovir to the vaginal mucosa. The model's parameter space was explored to quantify model output sensitivities to parameters characterizing properties for the gel-drug product (volume, drug transport, initial loading) and host environment (thicknesses of the mucosal epithelium and stroma and the role of ambient vaginal fluid in diluting gel). Greatest sensitivities overall were to the initial drug concentration in gel, gel-epithelium partition coefficient for drug, and rate constant for gel dilution by vaginal fluid. Sensitivities for 3 PK measures of drug concentration values were somewhat different than those for the kinetic PK measure. Sensitivities in the stromal compartment (where tenofovir acts against host cells) and a simulated biopsy also depended on thicknesses of epithelium and stroma. This methodology and results here contribute an approach to help interpret uncertainties in measures of vaginal microbicide gel properties and their host environment. In turn, this will inform rational gel design and optimization. PMID:27012224

  8. Nanoformulation for anticancer drug delivery: Enhanced pharmacokinetics and circulation

    NASA Astrophysics Data System (ADS)

    Parekh, Gaurav

    In this study, we have explored the application of the Layer-by-Layer (LbL) assembly technique for improving injectable drug delivery systems of low soluble anticancer drugs (e.g. Camptothecin (CPT), Paclitaxel (PTX) or Doxorubicin (DOX)). For this study, a polyelectrolyte shell encapsulates different types of drug nanocores (e.g. soft core, nanomicelle or solid lipid nanocores).The low soluble drugs tend to crystallize and precipitate in an aqueous medium. This is the reason they cannot be injected and may have low concentrations and low circulation time in the blood. Even though these drugs when present in the cancer microenvironment have high anti-tumor inhibition, the delivery to the tumor site after intravenous administration is a challenge. We have used FDA-approved biopolymers for the process and elaborated formation of 60-90 nm diameter initial cores, which was stabilized by multilayer LbL shells for controlled release and longer circulation. A washless LbL assembly process was applied as an essential advancement in nano-assembly technology using low density nanocore (lipids) and preventing aggregation. This advancement reduced the number of process steps, enhanced drug loading capacity, and prevented the loss of expensive polyelectrolytes. Finally, we elaborated a general nano-encapsulation process, which allowed these three important anticancer drug core-shell nanocapsules with diameters of ca. 100-130 nm (this small size is a record for LbL encapsulation technique) to be stable in the serum and the blood for at least one week, efficient for cancer cell culture studies, injectable to mice with circulation for 4 hrs, and effective in suppressing tumors. This work is divided into three studies. The first study (CHAPTER 4) explores the application of LbL assembly for encapsulating a soft core of albumin protein and CPT anticancer drug. In order to preserve the activity of drug in the core, a unique technique of pH reversal is employed where the first few

  9. Clinically Relevant Pharmacokinetic Herb-drug Interactions in Antiretroviral Therapy.

    PubMed

    Fasinu, Pius S; Gurley, Bill J; Walker, Larry A

    2015-01-01

    For healthcare professionals, the volume of literature available on herb-drug interactions often makes it difficult to separate experimental/potential interactions from those deemed clinically relevant. There is a need for concise and conclusive information to guide pharmacotherapy in HIV/AIDS. In this review, the bases for potential interaction of medicinal herbs with specific antiretroviral drugs are presented, and several botanicals are discussed for which clinically relevant interactions in humans are established. Such studies have provided, in most cases, sufficient ground to warrant the avoidance of concurrent administration of antiretroviral (ARVs) drugs with St John's wort (Hypericum perforatum), black pepper (Piper species) and grapefruit juice. Other botanicals that require caution in the use with antiretrovirals include African potato (Hypoxis hemerocallidea), ginkgo (Ginkgo biloba), ginseng (Panax species), garlic (Allium sativum), goldenseal (Hydrastis canadensis) and kava kava (Piper methysticum). The knowledge of clinically significant herb-drug interaction will be important in order to avoid herb-induced risk of sub-therapeutic exposure to ARVs (which can lead to viral resistance) or the precipitation of toxicity (which may lead to poor compliance and/or discontinuation of antiretroviral therapy). PMID:26526838

  10. Nanoformulation for anticancer drug delivery: Enhanced pharmacokinetics and circulation

    NASA Astrophysics Data System (ADS)

    Parekh, Gaurav

    In this study, we have explored the application of the Layer-by-Layer (LbL) assembly technique for improving injectable drug delivery systems of low soluble anticancer drugs (e.g. Camptothecin (CPT), Paclitaxel (PTX) or Doxorubicin (DOX)). For this study, a polyelectrolyte shell encapsulates different types of drug nanocores (e.g. soft core, nanomicelle or solid lipid nanocores).The low soluble drugs tend to crystallize and precipitate in an aqueous medium. This is the reason they cannot be injected and may have low concentrations and low circulation time in the blood. Even though these drugs when present in the cancer microenvironment have high anti-tumor inhibition, the delivery to the tumor site after intravenous administration is a challenge. We have used FDA-approved biopolymers for the process and elaborated formation of 60-90 nm diameter initial cores, which was stabilized by multilayer LbL shells for controlled release and longer circulation. A washless LbL assembly process was applied as an essential advancement in nano-assembly technology using low density nanocore (lipids) and preventing aggregation. This advancement reduced the number of process steps, enhanced drug loading capacity, and prevented the loss of expensive polyelectrolytes. Finally, we elaborated a general nano-encapsulation process, which allowed these three important anticancer drug core-shell nanocapsules with diameters of ca. 100-130 nm (this small size is a record for LbL encapsulation technique) to be stable in the serum and the blood for at least one week, efficient for cancer cell culture studies, injectable to mice with circulation for 4 hrs, and effective in suppressing tumors. This work is divided into three studies. The first study (CHAPTER 4) explores the application of LbL assembly for encapsulating a soft core of albumin protein and CPT anticancer drug. In order to preserve the activity of drug in the core, a unique technique of pH reversal is employed where the first few

  11. Clinically relevant pharmacokinetic herb-drug interactions in antiretroviral therapy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For healthcare professionals, the volume of literature available on herb-drug interactions often makes it difficult to separate experimental/potential interactions from those deemed clinically relevant. There is a need for concise and conclusive information to guide pharmacotherapy in HIV/AIDS. In t...

  12. Pharmacokinetics and pharmacokinetic-dynamic modeling of an 8-aminoquinoline candidate anticyanide drug (WR242511)

    SciTech Connect

    Marino, M.T.; Brewer, T.G.; Brown, L.D.; Peggins, J.O.; Urquhart, M.R.

    1993-05-13

    Cyanide is one of the most rapidly acting toxic compounds. With a sufficiently high dose one may die within minutes of exposure. Treatment must be rapid to be effective. Cyanide is used extensively in industry and agriculture in a variety of forms which may lead to inadvertent human exposure. Agents useful in treating cyanide intoxication include sodium nitrite, 4-dimethylaminophenol, cobalt EDTA, and hydroxycobalamin. Sodium nitrite and 4-dimethylaminophenol dimethylaminophenol work by converting hemoglobin to methemoglobin for which cyanide has a very high affinity thus acting as a cyanide sink. Cobalt EDTA and hydroxycobalamin act directly as cyanide chelators. Sodium thiosulfate is administered in conjunction with sodium nitrite to accelerate conversion of cyanide to thiocyanate which is nontoxic and excreted in the urine. All of the above treatments require intravenous delivery and careful monitoring by trained medical personnel. Hydrogen cyanide is considered a serious chemical warfare threat because it can be delivered to the battlefield in concentrations sufficiently to cause extensive morbidity and mortality. In military situations the administration of any of the known antidotes would be virtually impossible because of the number of casualities, the short time span in which the antidote needs to be delivered, and the limitations of MOPP. A prophylactic drug for cyanide poisoning would be the treatment of choice to avert mass casualties. The ideal drug would be effective in the majority of the population being treated, the dosing rate would be daily or less frequent, it would have minimal side effects and would not interfere with aerobic and anaerobic work necessitated in the course of military duties.

  13. Preparation of finasteride capsules-loaded drug nanoparticles: formulation, optimization, in vitro, and pharmacokinetic evaluation.

    PubMed

    Ahmed, Tarek A

    2016-01-01

    In this study, optimized freeze-dried finasteride nanoparticles (NPs) were prepared from drug nanosuspension formulation that was developed using the bottom-up technique. The effects of four formulation and processing variables that affect the particle size and solubility enhancement of the NPs were explored using the response surface optimization design. The optimized formulation was morphologically characterized using transmission electron microscopy (TEM). Physicochemical interaction among the studied components was investigated. Crystalline change was investigated using X-ray powder diffraction (XRPD). Crystal growth of the freeze-dried NPs was compared to the corresponding aqueous drug nanosuspension. Freeze-dried NPs formulation was subsequently loaded into hard gelatin capsules that were examined for in vitro dissolution and pharmacokinetic behavior. Results revealed that in most of the studied variables, some of the quadratic and interaction effects had a significant effect on the studied responses. TEM image illustrated homogeneity and shape of the prepared NPs. No interaction among components was noticed. XRPD confirmed crystalline state change in the optimized NPs. An enhancement in the dissolution rate of more than 2.5 times from capsules filled with optimum drug NPs, when compared to capsules filled with pure drug, was obtained. Crystal growth, due to Ostwald ripening phenomenon and positive Gibbs free energy, was reduced following lyophilization of the nanosuspension formulation. Pharmacokinetic parameters from drug NPs were superior to that of pure drug and drug microparticles. In conclusion, freeze-dried NPs based on drug nanosuspension formulation is a successful technique in enhancing stability, solubility, and in vitro dissolution of poorly water-soluble drugs with possible impact on the drug bioavailability. PMID:26893559

  14. Preparation of finasteride capsules-loaded drug nanoparticles: formulation, optimization, in vitro, and pharmacokinetic evaluation

    PubMed Central

    Ahmed, Tarek A

    2016-01-01

    In this study, optimized freeze-dried finasteride nanoparticles (NPs) were prepared from drug nanosuspension formulation that was developed using the bottom–up technique. The effects of four formulation and processing variables that affect the particle size and solubility enhancement of the NPs were explored using the response surface optimization design. The optimized formulation was morphologically characterized using transmission electron microscopy (TEM). Physicochemical interaction among the studied components was investigated. Crystalline change was investigated using X-ray powder diffraction (XRPD). Crystal growth of the freeze-dried NPs was compared to the corresponding aqueous drug nanosuspension. Freeze-dried NPs formulation was subsequently loaded into hard gelatin capsules that were examined for in vitro dissolution and pharmacokinetic behavior. Results revealed that in most of the studied variables, some of the quadratic and interaction effects had a significant effect on the studied responses. TEM image illustrated homogeneity and shape of the prepared NPs. No interaction among components was noticed. XRPD confirmed crystalline state change in the optimized NPs. An enhancement in the dissolution rate of more than 2.5 times from capsules filled with optimum drug NPs, when compared to capsules filled with pure drug, was obtained. Crystal growth, due to Ostwald ripening phenomenon and positive Gibbs free energy, was reduced following lyophilization of the nanosuspension formulation. Pharmacokinetic parameters from drug NPs were superior to that of pure drug and drug microparticles. In conclusion, freeze-dried NPs based on drug nanosuspension formulation is a successful technique in enhancing stability, solubility, and in vitro dissolution of poorly water-soluble drugs with possible impact on the drug bioavailability. PMID:26893559

  15. Optimal Drug Prediction from Personal Genomics Profiles

    PubMed Central

    Sheng, Jianting; Li, Fuhai; Wong, Stephen T.C.

    2015-01-01

    Cancer patients often show heterogeneous drug responses such that only a small subset of patients is sensitive to a given anti-cancer drug. With the availability of large-scale genomic profiling via next generation sequencing (NGS), it is now economically feasible to profile the whole transcriptome and genome of individual patients in order to identify their unique genetic mutations and differentially expressed genes, which are believed to be responsible for heterogeneous drug responses. Although subtyping analysis has identified patient subgroups sharing common biomarkers, there is no effective method to predict the drug response of individual patients precisely and reliably. Herein, we propose a novel computational algorithm to predict the drug response of individual patients based on personal genomic profiles, as well as pharmacogenomic and drug sensitivity data. Specifically, more than 600 cancer cell lines (viewed as individual patients) across over 50 types of cancers and their responses to 75 drugs were obtained from the Genomics of Drug Sensitivity in Cancer (GDSC) database. The drug-specific sensitivity signatures were determined from the changes in genomic profiles of individual cell lines in response to a specific drug. The optimal drugs for individual cell lines were predicted by integrating the votes from other cell lines. The experimental results show that the proposed drug prediction algorithm can be used to improve greatly the reliability of finding optimal drugs for individual patients and will thus form a key component in the precision medicine infrastructure for oncology care. PMID:25781964

  16. Estimation of pharmacokinetic model parameters.

    PubMed

    Timcenko, A; Reich, D L; Trunfio, G

    1995-01-01

    This paper addresses the problem of estimating the depth of anesthesia in clinical practice where many drugs are used in combination. The aim of the project is to use pharmacokinetically-derived data to predict episodes of light anesthesia. The weighted linear combination of anesthetic drug concentrations was computed using a stochastic pharmacokinetic model. The clinical definition of light anesthesia was based on the hemodynamic consequences of autonomic nervous system responses to surgical stimuli. A rule-based expert system was used to review anesthesia records to determine instances of light anesthesia using hemodynamic criteria. It was assumed that light anesthesia was a direct consequence of the weighted linear combination of drug concentrations in the patient's body that decreased below a certain threshold. We augmented traditional two-compartment models with a stochastic component of anesthetics' concentrations to compensate for interpatient pharmacokinetic and pharmacodynamic variability. A cohort of 532 clinical anesthesia cases was examined and parameters of two compartment pharmacokinetic models for 6 intravenously administered anesthetic drugs (fentanyl, thiopenthal, morphine, propofol, midazolam, ketamine) were estimated, as well as the parameters for 2 inhalational anesthetics (N2O and isoflurane). These parameters were then prospectively applied to 22 cases that were not used for parameter estimation, and the predictive ability of the pharmacokinetic model was determined. The goal of the study is the development of a pharmacokinetic model that will be useful in predicting light anesthesia in the clinically relevant circumstance where many drugs are used concurrently. PMID:8563327

  17. Pharmacokinetic and pharmacodynamic considerations of antimicrobial drug therapy in cancer patients with kidney dysfunction.

    PubMed

    Keller, Frieder; Schröppel, Bernd; Ludwig, Ulla

    2015-07-01

    Patients with cancer have a high inherent risk of infectious complications. In addition, the incidence of acute and chronic kidney dysfunction rises in this population. Anti-infective drugs often require dosing modifications based on an estimate of kidney function, usually the glomerular filtration rate (GFR). However, there is still no preferential GFR formula to be used, and in acute kidney injury there is always a considerable time delay between true kidney function and estimated GFR. In most cases, the anti-infective therapy should start with an immediate and high loading dose. Pharmacokinetic as well as pharmacodynamic principles must be applied for further dose adjustment. Anti-infective drugs with time-dependent action should be given with the target of high trough concentrations (e.g., beta lactam antibiotics, penems, vancomycin, antiviral drugs). Anti-infective drugs with concentration-dependent action should be given with the target of high peak concentrations (e.g., aminoglycosides, daptomycin, colistin, quinolones). Our group created a pharmacokinetic database, called NEPharm, hat serves as a reference to obtain reliable dosing regimens of anti-infective drugs in kidney dysfunction as well as renal replacement therapy. To avoid the risk of either too low or too infrequent peak concentrations, we prefer the eliminated fraction rule for dose adjustment calculations. PMID:26167456

  18. Pharmacokinetic and pharmacodynamic considerations of antimicrobial drug therapy in cancer patients with kidney dysfunction

    PubMed Central

    Keller, Frieder; Schröppel, Bernd; Ludwig, Ulla

    2015-01-01

    Patients with cancer have a high inherent risk of infectious complications. In addition, the incidence of acute and chronic kidney dysfunction rises in this population. Anti-infective drugs often require dosing modifications based on an estimate of kidney function, usually the glomerular filtration rate (GFR). However, there is still no preferential GFR formula to be used, and in acute kidney injury there is always a considerable time delay between true kidney function and estimated GFR. In most cases, the anti-infective therapy should start with an immediate and high loading dose. Pharmacokinetic as well as pharmacodynamic principles must be applied for further dose adjustment. Anti-infective drugs with time-dependent action should be given with the target of high trough concentrations (e.g., beta lactam antibiotics, penems, vancomycin, antiviral drugs). Anti-infective drugs with concentration-dependent action should be given with the target of high peak concentrations (e.g., aminoglycosides, daptomycin, colistin, quinolones). Our group created a pharmacokinetic database, called NEPharm, hat serves as a reference to obtain reliable dosing regimens of anti-infective drugs in kidney dysfunction as well as renal replacement therapy. To avoid the risk of either too low or too infrequent peak concentrations, we prefer the eliminated fraction rule for dose adjustment calculations. PMID:26167456

  19. Pharmacokinetic strategies to improve drug penetration and entrapment within solid tumors.

    PubMed

    Al-Abd, Ahmed M; Aljehani, Zekra K; Gazzaz, Rana W; Fakhri, Sarah H; Jabbad, Aisha H; Alahdal, Abdulrahman M; Torchilin, Vladimir P

    2015-12-10

    Despite the discovery of a large number of anticancer agents, cancer still remains among the leading causes of death since the middle of the twentieth century. Solid tumors possess a high degree of genetic instability and emergence of treatment resistance. Tumor resistance has emerged for almost all approved anticancer drugs and will most probably emerge for newly discovered anticancer agents as well. The use of pharmacokinetic approaches to increase anticancer drug concentrations within the solid tumor compartment and prolong its entrapment might diminish the possibility of resistance emergence at the molecular pharmacodynamic level and might even reverse tumor resistance. Several novel treatment modalities such as metronomic therapy, angiogenesis inhibitors, vascular disrupting agents and tumor priming have been introduced to improve solid tumor treatment outcomes. In the current review we will discuss the pharmacokinetic aspect of these treatment modalities in addition to other older treatment modalities, such as extracellular matrix dissolving agents, extracellular matrix synthesis inhibitors, chemoembolization and cellular efflux pump inhibition. Many of these strategies showed variable degrees of success/failure; however, reallocating these modalities based on their influence on the intratumoral pharmacokinetics might improve their understanding and treatment outcomes. PMID:26342660

  20. Metronidazole pharmacokinetics during rapid growth in turkeys - relation to changes in haemodynamics and drug metabolism.

    PubMed

    Świtała, M; Poźniak, B; Pasławska, U; Grabowski, T; Motykiewicz-Pers, K; Bobrek, K

    2016-08-01

    Whereas interspecies variation in pharmacokinetics is a commonly investigated issue, variations in drug kinetics within a species are less documented. The aim of the study was to assess the influence of age-related changes in haemodynamics on the pharmacokinetics of metronidazole (MTZ) and its hydroxy metabolite (MTZ-OH) in turkeys. MTZ was administered intravenously and orally at a dose of 25 mg/kg. Plasma drug and metabolite concentrations were assessed by high-performance liquid chromatography, and pharmacokinetic parameters were calculated by noncompartmental analysis. Haemodynamic parameters (heart rate, stroke volume, cardiac output) were assessed by echocardiography and extraction ratio for MTZ was calculated based on total body clearance (ClB ). Between the 5th and 15th week of age, ClB of MTZ decreased from 3.6 to 1.2 mL/min/kg causing a twofold increase in the mean residence time (MRT) and elimination half-life (T1/2el ). The MTZ-OH production decreased threefold and its MRT and T1/2el increased. Although heart rate significantly decreased with age, cardiac output increased. Extraction ratio was low in all age groups. It is concluded that significant age-dependent decrease in ClB of MTZ in turkeys resulted from decreased perfusion of the clearing organs and their reduced metabolic capacity. This phenomenon is probably species specific and may apply to other therapeutic agents. PMID:26813708

  1. An Updated Review on Drug-Induced Cholestasis: Mechanisms and Investigation of Physicochemical Properties and Pharmacokinetic Parameters

    PubMed Central

    YANG, KYUNGHEE; KÖCK, KATHLEEN; SEDYKH, ALEXANDER; TROPSHA, ALEXANDER; BROUWER, KIM L.R.

    2014-01-01

    Drug-induced cholestasis is an important form of acquired liver disease and is associated with significant morbidity and mortality. Bile acids are key signaling molecules, but they can exert toxic responses when they accumulate in hepatocytes. This review focuses on the physiological mechanisms of drug-induced cholestasis associated with altered bile acid homeostasis due to direct (e.g. bile acid transporter inhibition) or indirect (e.g. activation of nuclear receptors, altered function/expression of bile acid transporters) processes. Mechanistic information about the effects of a drug on bile acid homeostasis is important when evaluating the cholestatic potential of a compound, but experimental data often are not available. The relationship between physicochemical properties, pharmacokinetic parameters, and inhibition of the bile salt export pump (BSEP) among seventy-seven cholestatic drugs with different pathophysiological mechanisms of cholestasis (i.e. impaired formation of bile vs. physical obstruction of bile flow) was investigated. The utility of in silico models to obtain mechanistic information about the impact of compounds on bile acid homeostasis to aid in predicting the cholestatic potential of drugs is highlighted. PMID:23653385

  2. Drug interactions with the newer antiepileptic drugs (AEDs)--Part 2: pharmacokinetic and pharmacodynamic interactions between AEDs and drugs used to treat non-epilepsy disorders.

    PubMed

    Patsalos, Philip N

    2013-12-01

    Since antiepileptic drugs (AEDs) are prescribed to treat various non-epilepsy-related disorders in addition to the fact that patients with epilepsy may develop concurrent disorders that will need treatment, the propensity for AEDs to interact with non-AEDs is considerable and indeed can present a difficult clinical problem. The present review details the pharmacokinetic and pharmacodynamic interactions that have been reported to occur with the new AEDs (eslicarbazepine acetate, felbamate, gabapentin, lacosamide, lamotrigine, levetiracetam, oxcarbazepine, perampanel, pregabalin, retigabine (ezogabine), rufinamide, stiripentol, tiagabine, topiramate, vigabatrin and zonisamide) and drugs used to treat non-epilepsy disorders. Interaction study details are described, as necessary, so as to allow the reader to take a view as to the possible clinical significance of particular interactions. Pharmacokinetic interactions relate to hepatic enzyme induction or inhibition and involved a variety of drugs including psychoactive drugs, cardioactive drugs, oral contraceptives, antituberculous agents, analgesics and antineoplastic drugs. A total of 68 pharmacokinetic interactions have been described, with lamotrigine (n = 22), topiramate (n = 18) and oxcarbazepine (n = 7) being associated with most, whilst lacosamide, pregabalin, stiripentol and vigabatrin are associated with none. Overall, only three pharmacodynamic interactions have been described and occur with oxcarbazepine, perampanel and pregabalin. PMID:23794036

  3. Toward Prospective Prediction of Pharmacokinetics in OATP1B1 Genetic Variant Populations

    PubMed Central

    Li, R; Barton, H A; Maurer, T S

    2014-01-01

    Physiologically based pharmacokinetic (PBPK) models are increasingly being used to provide human pharmacokinetic (PK) predictions for organic anion-transporting polypeptide (OATP) substrates based on in vitro assay data. As a natural extension in the application of these models, in this study, we incorporated in vitro information of three major OATP1B1 genetic variants into a previously reported PBPK model to predict the impact of OATP1B1 polymorphisms on human PK. Using pravastatin and rosuvastatin as examples, we showed that the predicted plasma concentration–time profiles in groups carrying different OATP1B1 genetic variants reasonably matched the clinical observations from multiple studies. This modeling and simulation approach may aid decision making in early pharmaceutical research and development as well as patient-specific dose adjustment in clinical practice. PMID:25494035

  4. Predicting risk of adverse drug reactions in older adults

    PubMed Central

    Lavan, Amanda Hanora; Gallagher, Paul

    2016-01-01

    Adverse drug reactions (ADRs) are common in older adults, with falls, orthostatic hypotension, delirium, renal failure, gastrointestinal and intracranial bleeding being amongst the most common clinical manifestations. ADR risk increases with age-related changes in pharmacokinetics and pharmacodynamics, increasing burden of comorbidity, polypharmacy, inappropriate prescribing and suboptimal monitoring of drugs. ADRs are a preventable cause of harm to patients and an unnecessary waste of healthcare resources. Several ADR risk tools exist but none has sufficient predictive value for clinical practice. Good clinical practice for detecting and predicting ADRs in vulnerable patients includes detailed documentation and regular review of prescribed and over-the-counter medications through standardized medication reconciliation. New medications should be prescribed cautiously with clear therapeutic goals and recognition of the impact a drug can have on multiple organ systems. Prescribers should regularly review medication efficacy and be vigilant for ADRs and their contributory risk factors. Deprescribing should occur at an individual level when drugs are no longer efficacious or beneficial or when safer alternatives exist. Inappropriate prescribing and unnecessary polypharmacy should be minimized. Comprehensive geriatric assessment and the use of explicit prescribing criteria can be useful in this regard. PMID:26834959

  5. Predicting risk of adverse drug reactions in older adults.

    PubMed

    Lavan, Amanda Hanora; Gallagher, Paul

    2016-02-01

    Adverse drug reactions (ADRs) are common in older adults, with falls, orthostatic hypotension, delirium, renal failure, gastrointestinal and intracranial bleeding being amongst the most common clinical manifestations. ADR risk increases with age-related changes in pharmacokinetics and pharmacodynamics, increasing burden of comorbidity, polypharmacy, inappropriate prescribing and suboptimal monitoring of drugs. ADRs are a preventable cause of harm to patients and an unnecessary waste of healthcare resources. Several ADR risk tools exist but none has sufficient predictive value for clinical practice. Good clinical practice for detecting and predicting ADRs in vulnerable patients includes detailed documentation and regular review of prescribed and over-the-counter medications through standardized medication reconciliation. New medications should be prescribed cautiously with clear therapeutic goals and recognition of the impact a drug can have on multiple organ systems. Prescribers should regularly review medication efficacy and be vigilant for ADRs and their contributory risk factors. Deprescribing should occur at an individual level when drugs are no longer efficacious or beneficial or when safer alternatives exist. Inappropriate prescribing and unnecessary polypharmacy should be minimized. Comprehensive geriatric assessment and the use of explicit prescribing criteria can be useful in this regard. PMID:26834959

  6. Report: pharmacokinetic and drug interaction studies of pefloxacin with paracetamol (NNAID) in healthy volunteers in Pakistan.

    PubMed

    Gauhar, Shahnaz; Ali, Syed Ayub; Naqvi, Syed Baqir; Shoaib, Muhammad Harris

    2014-03-01

    In the present study, the pharmacokinetic and drug interaction evaluation of two drugs pefloxacin and paracetamol was carried out by a single-dose, two-treatment and two-sequence crossover design. Total fifteen healthy volunteers participated out of which ten completed the study. All were male volunteers, aged 22.36 years (means), with a mean weight of 76.45±12.05 Kg. The washout period between treatments was 5 week. Initially the method utilized for quantitative analysis of the drug was developed which was further validated. The study involved plasma protein precipitation with ethyl acetate and detection was done at 275nm. The retention time for pefloxacin 18±1 min and paracetamol were approximately 6±1 min, respectively. The calibration curve for pefloxacin was linear in the concentration range of 0.125-12.0mg/ml with r(2)=0.9987 in plasma. Standard concentration solution was maintained on the same temperature as that of volunteer's samples to optimize the periods for the determination of drug concentration in the plasma samples. Blood samples were collected from volunteers at different time intervals. The pharmacokinetics and drug interaction studies were anticipated by plotting concentration versus time-profiles. The value of AUC0-∞ in control was 67.355±3.174μg.h/ml, in treatment 61.242±3.868μg.h/ml along with relative bioavailability =91.395±4.864. Under the control and treatment condition the mean maximum plasma concentrations were found to be 4.679±0.248 μg/ml and 4.6595±0.266 μg/ml respectively. The average T(max) for plasma concentrations was 1.819±0.1743hr and 1.605 ±0.1134hr respectively. The biological half-lives in the two phases of studies were found to be 7.953±0.33hr in control and 7.7257±0.355hr in treatment. No significant effect were observed on the bioavailability and pharmacokinetics of pefloxacin by the concomitant administration with paracetamol, however very minor effect were observed that might be related with inter

  7. Concomitant efavirenz reduces pharmacokinetic exposure to the antimalarial drug artemether-lumefantrine in healthy volunteers

    PubMed Central

    Huang, Liusheng; Parikh, Sunil; Rosenthal, Philip J.; Lizak, Patricia; Marzan, Florence; Dorsey, Grant; Havlir, Diane; Aweeka, Francesca T.

    2012-01-01

    Background The antiretroviral drug efavirenz (EFV) and the antimalarial artemisinin-based combination therapy (ACT) artemether-lumefantrine (AL) are commonly co-administered to treat HIV and malaria. EFV is a known inducer of cytochrome P450 3A4, which converts artemether to dihydroartemisinin (DHA) that is also active and metabolizes longer acting lumefantrine (LR). A study in healthy volunteers was completed to address the concern that EFV impacts AL pharmacokinetics (PK). Methods Adults received AL (80/480 mg BID) for 3-days prior to and during EFV co-administration (600 mg daily for 26-days) with intensive PK for artemether, DHA, and LR conducted after the last AL dose for each period. EFV PK was evaluated with and without AL. PK parameters were estimated using non-compartmental methods. Results Twelve subjects completed the two-period study. PK exposure for artemether, DHA, and LR [as estimated by the area under the concentration time curve (AUClast)] decreased or trended toward decrease with EFV, compared to when administered alone [−51% (p=0.084), −46% (p=0.005), and −21% (p=0.102), respectively]. Day 7 LR levels, previously deemed predictive of treatment success, were 46% lower (p=0.002) with EFV, but the LR half-life was unchanged. EFV PK exposure was minimally altered following AL co-administration [AUC0–24h decreased by 17% (p=0.034)]. Conclusions Exposure to DHA, but not LR, was significantly lower during EFV-AL co-administration compared to that during administration of AL alone. These findings may have implications for the treatment efficacy of AL, particularly in children. However, the observed modest changes probably do not warrant dosage adjustment during co-administration of AL with EFV. PMID:22918158

  8. Evaluation of different indirect measures of rate of drug absorption in comparative pharmacokinetic studies.

    PubMed

    Lacey, L F; Keene, O N; Duquesnoy, C; Bye, A

    1994-02-01

    As indirect measures of rate of drug absorption (metrics), maximum plasma concentration (Cmax) is confounded by extent of drug absorption and the time to reach Cmax (tmax) is a discrete variable, dependent on blood sampling frequency. Building on the work of Endrenyi et al., we have compared different metrics, including Cmax/area under the curve of concentration versus time from time zero to infinity (AUC infinity), partial AUC from zero to tmax (AUCp), and Cmax.tmax with simulated experiments. Importantly, the performance of these metrics was assessed with the results of actual pharmacokinetic studies involving Glaxo drugs. The results of the simulated and real experiments were consistent and produced the following unambiguous findings: (1) Cmax/AUC infinity is a more powerful metric than Cmax in establishing bioequivalence when the formulations are truly bioequivalent; (2) Cmax/AUC infinity is more sensitive than Cmax at detecting differences in rate of absorption when they exist; and (3) the treatment ratios for AUCp, AUCp/AUC infinity, and Cmax.tmax are very imprecisely estimated and are of no practical value as measures of rate of absorption. Of the metrics examined, Cmax/AUC infinity is the most sensitive and powerful indirect measure of rate of drug absorption in comparative pharmacokinetic studies involving immediate-release dosage forms and should be used instead of Cmax in bioequivalence testing. PMID:8169791

  9. Factorial design studies of antiretroviral drug-loaded stealth liposomal injectable: PEGylation, lyophilization and pharmacokinetic studies

    NASA Astrophysics Data System (ADS)

    Sudhakar, Beeravelli; Krishna, Mylangam Chaitanya; Murthy, Kolapalli Venkata Ramana

    2016-01-01

    The aim of the present study was to formulate and evaluate the ritonavir-loaded stealth liposomes by using 32 factorial design and intended to delivered by parenteral delivery. Liposomes were prepared by ethanol injection method using 32 factorial designs and characterized for various physicochemical parameters such as drug content, size, zeta potential, entrapment efficiency and in vitro drug release. The optimization process was carried out using desirability and overlay plots. The selected formulation was subjected to PEGylation using 10 % PEG-10000 solution. Stealth liposomes were characterized for the above-mentioned parameters along with surface morphology, Fourier transform infrared spectrophotometer, differential scanning calorimeter, stability and in vivo pharmacokinetic studies in rats. Stealth liposomes showed better result compared to conventional liposomes due to effect of PEG-10000. The in vivo studies revealed that stealth liposomes showed better residence time compared to conventional liposomes and pure drug solution. The conventional liposomes and pure drug showed dose-dependent pharmacokinetics, whereas stealth liposomes showed long circulation half-life compared to conventional liposomes and pure ritonavir solution. The results of statistical analysis showed significance difference as the p value is (<0.05) by one-way ANOVA. The result of the present study revealed that stealth liposomes are promising tool in antiretroviral therapy.

  10. Feline drug metabolism and disposition: pharmacokinetic evidence for species differences and molecular mechanisms

    PubMed Central

    2013-01-01

    Synopsis Although it is widely appreciated that cats respond differently to certain drugs when compared with other companion animal species, the causes of these differences are poorly understood. This review critically evaluates published evidence for altered drug effects in cats, focusing on pharmacokinetic differences between cats, dogs and humans, and the molecular mechanisms underlying these differences. Pharmacokinetic studies indicate that acetaminophen, propofol, carprofen, and acetylsalicylic acid (aspirin) are cleared significantly more slowly in cats versus dogs and humans. All of these drugs are metabolized by conjugation. Cats lack the major phenol UDP-glucuronosyltransferase (UGT) enzymes, including UGT1A6 and UGT1A9, that glucuronidate acetaminophen and propofol. Deficient glucuronidation may also explain slower carprofen clearance, although there is no direct evidence for this. However, poor aspirin clearance in cats appears to be mainly a consequence of slower glycine conjugation. Cats are also deficient in several other conjugation enzymes, including N-acetyltransferase (NAT) 2 and thiopurine methyltransferase (TMPT). NAT2 deficiency may be the reason cats are more prone to developing methemoglobinemia rather than hepatotoxicity from acetaminophen. TMPT deficiency may predispose cats to azathioprine toxicity. No evidence was found for slower elimination of drugs cleared by oxidation or unchanged into urine or bile. Piroxicam, an oxidized drug, was cleared much more rapidly in cats than humans and dogs, although the mechanism for this difference is unclear. More work is needed to better understand drug metabolism and disposition differences in cats, thereby enabling more rational prescribing of existing medications, and the development of safer drugs for this species. PMID:23890237

  11. Pharmacokinetic Evaluation of Improved Oral Bioavailability of Valsartan: Proliposomes Versus Self-Nanoemulsifying Drug Delivery System.

    PubMed

    Nekkanti, Vijaykumar; Wang, Zhijun; Betageri, Guru V

    2016-08-01

    The objective of this study was to develop proliposomes and self-nanoemulsifying drug delivery system (SNEDDS) for a poorly bioavailable drug, valsartan, and to compare their in vivo pharmacokinetics. Proliposomes were prepared by thin-film hydration method using different lipids such as soy phosphatidylcholine (SPC), hydrogenated soy phosphatidylcholine (HSPC), distearyl phosphatidylcholine (DSPC), dimyristoylphosphatidylcholine (DMPC), and dimyristoyl phosphatidylglycerol sodium (DMPG) and cholesterol in various ratios. SNEDDS formulations were prepared using varying concentrations of capmul MCM, labrafil M 2125, and Tween 80. Both proliposomes and SNEDDS were evaluated for particle size, zeta potential, in vitro drug release, in vitro permeability, and in vivo pharmacokinetics. In vitro drug release was carried out in purified water and 0.1 N HCl using USP type II dissolution apparatus. In vitro drug permeation was studied using parallel artificial membrane permeation assay (PAMPA) and everted rat intestinal permeation techniques. Among the formulations, the proliposomes with drug/DMPG/cholesterol in the ratio of 1:1:0.5 and SNEDDS with capmul MCM (16.0% w/w), labrafil M 2125 (64.0% w/w), and Tween 80 (18.0% w/w) showed the desired particle size and zeta potential. Enhanced drug release was observed with proliposomes and SNEDDS as compared to pure valsartan. Valsartan permeability across PAMPA and everted rat intestinal permeation models was significantly higher with proliposomes and SNEDDS. Following single oral administration of proliposomes and SNEDDS, a relative bioavailability of 202.36 and 196.87%, respectively, was achieved compared to pure valsartan suspension. The study results indicated that both proliposomes and SNEDDS formulations are comparable in improving the oral bioavailability of valsartan. PMID:26381913

  12. Disposition and pharmacokinetics of the antimigraine drug, rizatriptan, in humans.

    PubMed

    Vyas, K P; Halpin, R A; Geer, L A; Ellis, J D; Liu, L; Cheng, H; Chavez-Eng, C; Matuszewski, B K; Varga, S L; Guiblin, A R; Rogers, J D

    2000-01-01

    The absorption and disposition of rizatriptan (MK-0462, Maxalt(TM)), a selective 5-HT(1B/1D) receptor agonist used in the treatment of migraine headaches, was investigated in humans. In a two-period, single i.v. (3 mg, 30-min infusion), and single oral (10 mg) dose study with [(14)C]rizatriptan in six healthy human males, total recovery of radioactivity was approximately 94%, with unchanged rizatriptan and its metabolites being excreted mainly in the urine (89% i.v. dose, 82% p.o. dose). Approximately 26 and 14% of i.v. and oral rizatriptan doses, respectively, were excreted in urine as intact parent drug. In a second, high-dose study (60 mg p.o.), five metabolites excreted into urine were identified using liquid chromatography-tandem mass spectrometry and NMR methods. They were triazolomethyl-indole-3-acetic acid, rizatriptan-N(10)-oxide, 6-hydroxy-rizatriptan, 6-hydroxy-rizatriptan sulfate, and N(10)-monodesmethyl-rizatriptan. Urinary excretion of triazolomethyl-indole-3-acetic acid after i.v. and oral administrations of rizatriptan accounted for 35 and 51% of the dose, respectively, whereas the corresponding values for rizatriptan-N(10)-oxide were 4 and 2% of the dose. Plasma clearance (CL) and renal clearance (CL(r)) were 1325 and 349 ml/min, respectively, after i.v. administration. A similar CL(r) value was obtained after oral administration (396 ml/min). The primary route of rizatriptan elimination occurred via nonrenal route(s) (i.e., metabolism) because the CL(r) of rizatriptan accounted for 25% of total CL. Furthermore, the CL(r) was higher than normal glomerular filtration rate ( approximately 130 ml/min), indicating that this compound was actively secreted by renal tubules. The absorption of rizatriptan was approximately 90%, but it experienced a moderate first-pass effect, resulting in a bioavailability estimate of 47%. PMID:10611145

  13. Drug interactions with the newer antiepileptic drugs (AEDs)--part 1: pharmacokinetic and pharmacodynamic interactions between AEDs.

    PubMed

    Patsalos, Philip N

    2013-11-01

    Since 1989 there has been an exponential introduction of new antiepileptic drugs (AEDs) into clinical practice and these include eslicarbazepine acetate, felbamate, gabapentin, lacosamide, lamotrigine, levetiracetam, oxcarbazepine, perampanel, pregabalin, retigabine (ezogabine), rufinamide, stiripentol, tiagabine, topiramate, vigabatrin and zonisamide; 16 in total. Because often the treatment of epilepsy is lifelong, and because patients are commonly prescribed polytherapy with other AEDs, AED interactions are an important consideration in the treatment of epilepsy and indeed can be a major therapeutic challenge. For new AEDs, their propensity to interact is particularly important because inevitably they can only be prescribed, at least in the first instance, as adjunctive polytherapy. The present review details the pharmacokinetic and pharmacodynamic interactions that have been reported to occur with the new AEDs. Interaction study details are described, as necessary, so as to allow the reader to take a view as to the possible clinical significance of particular interactions. The principal pharmacokinetic interaction relates to hepatic enzyme induction or inhibition whilst pharmacodynamic interactions principally entail adverse effect synergism, although examples of anticonvulsant synergism also exist. Overall, the new AEDs are less interacting primarily because many are renally excreted or not hepatically metabolised (e.g. gabapentin, lacosamide, levetiracetam, topiramate, vigabatrin) and most do not (or minimally) induce or inhibit hepatic metabolism. A total of 139 pharmacokinetic interactions between concurrent AEDs have been described. The least pharmacokinetic interactions (n ≤ 5) are associated with gabapentin, lacosamide, tiagabine, vigabatrin and zonisamide, whilst lamotrigine (n = 17), felbamate (n = 15), oxcarbazepine (n = 14) and rufinamide (n = 13) are associated with the most. To date, felbamate, gabapentin, oxcarbazepine, perampanel, pregabalin

  14. Drug metabolism and pharmacokinetics of nanodrugs from Chinese medicines and natural products.

    PubMed

    Liu, Chang-Xiao; Si, Duan-Yun; Xiao, Xue-Feng; He, Xin; Li, Ya-Zhuo

    2012-06-01

    Over the past few years, nanoscale Chinese medicine has become one of focuses in modern Chinese medicine research. There is an increasing need for a more systematic study on the basic issues involved in traditional Chinese medicine and a more active participation of researchers in the application area of nanoscale traditional Chinese drugs. In this review, author analyzed the current applications of nanotechnology in research and development of drugs from natural products and herbal medicines involving traditional Chinese medicines, and also discussed the bio-medicinal evaluation issues on ADME including bio-distribution and metabolism of nanodrugs. Author noted that great challenges faced in nanodrugs from herb drugs and natural products are the follows: (1) the first challenge is to prepare nanodrug delivery system and quantitatively evaluate the therapeutic effects and safety; (2) the second challenge is to clarify the concrete metabolism course; and (3) the third challenge is to study the pharmacokinetics of nanodrugs. PMID:22475334

  15. Design, synthesis, and pharmacokinetic evaluation of a chemical delivery system for drug targeting to lung tissue.

    PubMed

    Saah, M; Wu, W M; Eberst, K; Marvanyos, E; Bodor, N

    1996-05-01

    We espouse the application of a novel chemical delivery system (CDS) approach to a delivery mechanism for drug targeting to lung tissue using the 1,2-dithiolane-3-pentyl moiety of lipoic acid as the "targetor moiety". The synthesis and the physicochemical and pharmacokinetic evaluation of a CDS modeling the lipoyl and other ester derivatives of chlorambucil (an antineoplastic agent) and cromolyn (a bischromone used in antiasthma prophylaxis) as compared with their respective parent drugs are described. The chlorambucil CDS was synthesized by esterifying the alcohol derivative of lipoic acid with chlorambucil using dicyclohexylcarbodiimide as the coupling agent. The cromolyn CDS was prepared by a multistep synthetic procedure culminating in the reaction of the alkyl bromide derivative of lipoic acid with the disodium salt of the bischromone compound. All the esters were highly lipophilic unlike the parent compounds. The in-vitro kinetic and in-vivo pharmacokinetic studies showed that the respective CDSs were sufficiently stable in buffer and biological media, hydrolyzed rapidly into the respective active parent drugs, and significantly enhanced delivery and retention of the active compound to lung tissue in comparison with the underivatized parent compounds used in conventional therapy. PMID:8742941

  16. Pharmacokinetic Modeling of Lamivudine and Zidovudine Triphosphates Predicts Differential Pharmacokinetics in Seminal Mononuclear Cells and Peripheral Blood Mononuclear Cells

    PubMed Central

    Yang, Kuo H.; Kendrick, Racheal; Reddy, Y. Sunila; Kashuba, Angela D. M.; Troiani, Luigi; Bridges, Arlene S.; Fiscus, Susan A.; Forrest, Alan; Cohen, Myron S.

    2015-01-01

    The male genital tract is a potential site of viral persistence. Therefore, adequate concentrations of antiretrovirals are required to eliminate HIV replication in the genital tract. Despite higher zidovudine (ZDV) and lamivudine (3TC) concentrations in seminal plasma (SP) than in blood plasma (BP) (SP/BP drug concentration ratios of 2.3 and 6.7, respectively), we have previously reported lower relative intracellular concentrations of their active metabolites, zidovudine triphosphate (ZDV-TP) and lamivudine triphosphate (3TC-TP), in seminal mononuclear cells (SMCs) than in peripheral blood mononuclear cells (PBMCs) (SMC/PBMC drug concentration ratios of 0.36 and 1.0, respectively). Here, we use population pharmacokinetic (PK) modeling-based methods to simultaneously describe parent and intracellular metabolite PK in blood, semen, and PBMCs and SMCs. From this model, the time to steady state in each matrix was estimated, and the results indicate that the PK of 3TC-TP and ZDV-TP in PBMCs are different from the PK of the two in SMCs and different for the two triphosphates. We found that steady-state conditions in PBMCs were achieved within 2 days for ZDV-TP and 3 days for 3TC-TP. However, steady-state conditions in SMCs were achieved within 2 days for ZDV-TP and 2 weeks for 3TC-TP. Despite this, or perhaps because of it, ZDV-TP in SMCs does not achieve the surrogate 50% inhibitory concentration (IC50) (as established for PBMCs, assuming SMC IC50 = PBMC IC50) at the standard 300-mg twice-daily dosing. Mechanistic studies are needed to understand these differences and to explore intracellular metabolite behavior in SMCs for other nucleoside analogues used in HIV prevention, treatment, and cure. PMID:26239974

  17. Evaluation of drug loading, pharmacokinetic behavior, and toxicity of a cisplatin-containing hydrogel nanoparticle

    PubMed Central

    Kai, Marc P.; Keeler, Amanda W.; Perry, Jillian L.; Reuter, Kevin G.; Luft, J. Christopher; O’Neal, Sara K.; Zamboni, William C.

    2015-01-01

    Cisplatin is a cytotoxic drug used as a first-line therapy for a wide variety of cancers. However, significant renal and neurological toxicities limits it clinical use. It has been documented that drug toxicities can be mitigated through nanoparticle formulation, while simultaneously increasing tumor accumulation through the enhanced permeation and retention effect. Circulation persistence is a key characteristic for exploiting this effect, and to that end we have developed long-circulating, PEGylated, polymeric hydrogels using the Particle Replication In Non-wetting Templates (PRINT®) platform and complexed cisplatin into the particles (PRINT-Platin). Sustained release was demonstrated, and drug loading correlated to surface PEG density. A PEG Mushroom conformation showed the best compromise between particle pharmacokinetic (PK) parameters and drug loading (16 wt %). While the PK profile of PEG Brush was superior, the loading was poor (2 wt %). Conversely, the drug loading in non-PEGylated particles was better (20 wt %), but the PK was not desirable. We also showed comparable cytotoxicity to cisplatin in several cancer cell lines (non-small cell lung, A549; ovarian, SKOV-3; breast, MDA-MB-468) and a higher MTD in mice (10 mg/kg versus 5 mg/kg). The pharmacokinetic profiles of drug in plasma, tumor, and kidney indicate improved exposure in the blood and tumor accumulation, with concurrent renal protection, when cisplatin was formulated in a nanoparticle. PK parameters were markedly improved: a 16.4-times higher area-under-the-curve (AUC), a reduction in clearance (CL) by a factor of 11.2, and a 4.20-times increase in the volume of distribution (Vd). Additionally, non-small cell lung and ovarian tumor AUC was at least twice that of cisplatin in both models. These findings suggest the potential for PRINT-Platin to improve efficacy and reduce toxicity compared to current cisplatin therapies. PMID:25744827

  18. Pharmacokinetics of Antituberculosis Drugs in HIV-Positive and HIV-Negative Adults in Malawi.

    PubMed

    van Oosterhout, J J; Dzinjalamala, F K; Dimba, A; Waterhouse, D; Davies, G; Zijlstra, E E; Molyneux, M E; Molyneux, E M; Ward, S

    2015-10-01

    Limited data address the impact of HIV coinfection on the pharmacokinetics (PK) of antituberculosis drugs in sub-Saharan Africa. A total of 47 Malawian adults underwent rich pharmacokinetic sampling at 0, 0.5, 1, 2, 3, 4, 6, 8, and 24 h postdose. Of the subjects, 51% were male, their mean age was 34 years, and 65% were HIV-positive with a mean CD4 count of 268 cells/μl. Antituberculosis drugs were administered as fixed-dose combinations (150 mg rifampin, 75 mg isoniazid, 400 mg pyrazinamide, and 275 mg ethambutol) according to recommended weight bands. Plasma drug concentrations were determined by high-performance liquid chromatography (rifampin and pyrazinamide) or liquid chromatography-mass spectrometry (isoniazid and ethambutol). Data were analyzed by noncompartmental methods and analysis of variance of log-transformed summary parameters. The pharmacokinetic parameters were as follows (median [interquartile range]): for rifampin, maximum concentration of drug in plasma (Cmax) of 4.129 μg/ml (2.474 to 5.596 μg/ml), area under the curve from 0 to 24 h (AUC0-∞) of 21.32 μg/ml · h (13.57 to 28.60 μg/ml · h), and half-life of 2.45 h (1.86 to 3.08 h); for isoniazid, Cmax of 3.97 μg/ml (2.979 to 4.544 μg/ml), AUC0-24 of 22.5 (14.75 to 34.59 μg/ml · h), and half-life of 3.93 h (3.18 to 4.73 h); for pyrazinamide, Cmax of 34.21 μg/ml (30.00 to 41.60 μg/ml), AUC0-24 of 386.6 μg/ml · h (320.0 to 463.7 μg/ml · h), and half-life of 6.821 h (5.71 to 8.042 h); and for ethambutol, Cmax of 2.278 μg/ml (1.694 to 3.098 μg/ml), AUC0-24 of 20.41 μg/ml · h (16.18 to 26.27 μg/ml · h), and half-life of 7.507 (6.517 to 8.696 h). The isoniazid PK data analysis suggested that around two-thirds of the participants were slow acetylators. Dose, weight, and weight-adjusted dose were not significant predictors of PK exposure, probably due to weight-banded dosing. In this first pharmacokinetic study of antituberculosis drugs in Malawian adults, measures of

  19. Linking Suspension Nasal Spray Drug Deposition Patterns to Pharmacokinetic Profiles: A Proof-of-Concept Study Using Computational Fluid Dynamics.

    PubMed

    Rygg, Alex; Hindle, Michael; Longest, P Worth

    2016-06-01

    The objective of this study was to link regional nasal spray deposition patterns of suspension formulations, predicted with computational fluid dynamics, to in vivo human pharmacokinetic plasma concentration profiles. This is accomplished through the use of computational fluid dynamics simulations coupled with compartmental pharmacokinetic modeling. Results showed a rapid initial rise in plasma concentration that is due to the absorption of drug particles deposited in the nasal middle passages, followed by a slower increase in plasma concentration that is governed by the transport of drug particles from the nasal vestibule to the middle passages. Although drug deposition locations in the nasal cavity had a significant effect on the shape of the concentration profile, the absolute bioavailability remained constant provided that all the drug remained in the nose over the course of the simulation. Loss of drug through the nostrils even after long periods resulted in a significant decrease in bioavailability and increased variability. The results of this study quantify how differences in nasal drug deposition affect transient plasma concentrations and overall bioavailability. These findings are potentially useful for establishing bioequivalence for nasal spray devices and reducing the burden of in vitro testing, pharmacodynamics, and clinical studies. PMID:27238495

  20. Pharmacokinetic considerations of nanodelivery to the brain: Using modeling and simulations to predict the outcome of liposomal formulations.

    PubMed

    Lindqvist, Annika; Fridén, Markus; Hammarlund-Udenaes, Margareta

    2016-09-20

    The use of nanocarriers is an intriguing solution to increase the brain delivery of novel therapeutics. The aim of this paper was to use pharmacokinetic analysis and simulations to identify key factors that determine the effective drug concentration-time profile at the target site in the brain. Model building and simulations were based on experimental data obtained from the administration of the opioid peptide DAMGO in glutathione tagged PEGylated liposomes to rats. Different pharmacokinetic models were investigated to explore the mechanisms of increased brain delivery. Concentration-time profiles for a set of formulations with varying compound and carrier characteristics were simulated. By controlling the release rate from the liposome, the time profile and the extent of brain delivery can be regulated. The modeling did not support a mechanism of the liposomes passing the brain endothelial cell membrane in an intact form through endocytosis or transcytosis. The most likely process was found to be fusion of the liposome with the endothelial luminal membrane. The simulations revealed that low permeable compounds, independent on efflux, will gain the most from a nanocarrier formulation. The present model based approach is useful to explore and predict possibilities and limitations of carrier-based systems to the brain. PMID:27393342

  1. Tools to evaluate pharmacokinetics data for establishing maximum residue limits for approved veterinary drugs: examples from JECFA's work.

    PubMed

    Sanders, P; Henri, J; Laurentie, M

    2016-05-01

    Maximum residue limits (MRLs) for residues of veterinary drugs are the maximum concentrations of residues permitted in or on a food by national or regional legislation. In the process of MRLs recommendations by the Joint FAO/WHO Expert Committee on Food Additives (JECFA), analysis of pharmacokinetic data describing the ADME process (absorption, distribution, metabolism and excretion) is a crucial step and requires the use of different pharmacokinetic tools. The results of animal metabolism studies are the prime determinants of the residue definition in food commodities. Substances labelled with radioactive isotopes are used so that the disposition of the residue can be followed as total residue and main metabolites concentrations. Residue depletion studies with radiolabelled parent drug will lead to the estimate of the time course of the total residue and to determine a marker residue. Depletion studies with an unlabelled drug provide more information on the time course of the marker residue in raw commodities after administration under approved practical conditions of use. By use of this information and after conversion with the total/residue marker ratio, MRLs are derived by comparison of the acceptable daily intake with the daily intakes calculated with different scenarios of dietary exposure. Progress in pharmacokinetic model such as physiologically based pharmacokinetics and population pharmacokinetics will drive the future research in this field to improved veterinary drug development. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27443212

  2. QSAR Modeling and Prediction of Drug-Drug Interactions.

    PubMed

    Zakharov, Alexey V; Varlamova, Ekaterina V; Lagunin, Alexey A; Dmitriev, Alexander V; Muratov, Eugene N; Fourches, Denis; Kuz'min, Victor E; Poroikov, Vladimir V; Tropsha, Alexander; Nicklaus, Marc C

    2016-02-01

    Severe adverse drug reactions (ADRs) are the fourth leading cause of fatality in the U.S. with more than 100,000 deaths per year. As up to 30% of all ADRs are believed to be caused by drug-drug interactions (DDIs), typically mediated by cytochrome P450s, possibilities to predict DDIs from existing knowledge are important. We collected data from public sources on 1485, 2628, 4371, and 27,966 possible DDIs mediated by four cytochrome P450 isoforms 1A2, 2C9, 2D6, and 3A4 for 55, 73, 94, and 237 drugs, respectively. For each of these data sets, we developed and validated QSAR models for the prediction of DDIs. As a unique feature of our approach, the interacting drug pairs were represented as binary chemical mixtures in a 1:1 ratio. We used two types of chemical descriptors: quantitative neighborhoods of atoms (QNA) and simplex descriptors. Radial basis functions with self-consistent regression (RBF-SCR) and random forest (RF) were utilized to build QSAR models predicting the likelihood of DDIs for any pair of drug molecules. Our models showed balanced accuracy of 72-79% for the external test sets with a coverage of 81.36-100% when a conservative threshold for the model's applicability domain was applied. We generated virtually all possible binary combinations of marketed drugs and employed our models to identify drug pairs predicted to be instances of DDI. More than 4500 of these predicted DDIs that were not found in our training sets were confirmed by data from the DrugBank database. PMID:26669717

  3. Pharmacokinetic estimation for therapeutic dosage regimens (PETDR)--a software program designed to determine intravenous drug dosage regimens for veterinary applications.

    PubMed

    Riviere, J E; Frazier, D L; Tippitt, W L

    1988-12-01

    Pharmacokinetic estimation for therapeutic dosage regimens (PETDR) is a soft-ware program used to design individualized intravenous dosage regimens, determine concentration-time profiles, predict serum concentrations at a specific time after intravenous dosing and predict the time after the last dose to achieve a specified concentration of drug. The reference pharmacokinetic parameters may be based on an individual animal's pharmacokinetic disposition of drug or on FARAD (Food Animal Residue Avoidance Databank) mean population kinetic parameters. An individual animal's kinetic parameters may be input for predetermined analysis or the program can calculate these values by input of raw serum concentration-time data. The program allows the user to specify certain parameters of the dosage regimen, then calculates the other parameters (given desired maximum and minimum serum concentrations, dose and interval are calculated; given desired maximum serum concentration and interval, dose is calculated, etc.). Given the kinetic parameters, the dose and dosing interval, the program calculates and plots the serum concentration-time profile of the drug for that animal. The time and the number of doses to reach steady state can be calculated as well as the determination of loading dose. The percentage of the time of a dosing interval at steady state that the serum concentration is above a specific minimum inhibitory concentration (MIC) allows evaluation of efficacy of an antimicrobial regimen. Similarly, the time to reach a specific concentration (e.g. residue tolerance) or the MIC of a drug can be calculated. Legal tissue tolerances can be accessed from FARAD to aid in predicting for what period of time illegal residues will remain in the animal.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3210265

  4. Pharmacokinetics, brain distribution and plasma protein binding of carbamazepine and nine derivatives: new set of data for predictive in silico ADME models.

    PubMed

    Fortuna, Ana; Alves, Gilberto; Soares-da-Silva, Patrício; Falcão, Amílcar

    2013-11-01

    In silico approaches to predict absorption, distribution, metabolism and excretion (ADME) of new drug candidates are gaining a relevant importance in drug discovery programmes. When considering particularly the pharmacokinetics during the development of oral antiepileptic drugs (AEDs), one of the most prominent goals is designing compounds with good bioavailability and brain penetration. Thus, it is expected that in silico models able to predict these features may be applied during the early stages of AEDs discovery. The present investigation was mainly carried out in order to generate in vivo pharmacokinetic data that can be utilized for development and validation of in silico models. For this purpose, a single dose of each compound (1.4mmol/kg) was orally administered to male CD-1 mice. After quantifying the parent compound and main metabolites in plasma and brain up to 12h post-dosing, a non-compartmental pharmacokinetic analysis was performed and the corresponding brain/plasma ratios were calculated. Moreover the plasma protein binding was estimated in vitro applying the ultrafiltration procedure. The present in vivo pharmacokinetic characterization of the test compounds and corresponding metabolites demonstrated that the metabolism extensively compromised the in vivo activity of CBZ derivatives and their toxicity. Furthermore, it was clearly evidenced that the time to reach maximum peak concentration, bioavailability (given by the area under the curve) and metabolic stability (given by the AUC0-12h ratio of the parent compound and total systemic drug) influenced the in vivo pharmacological activities and must be considered as primary parameters to be investigated. All the test compounds presented brain/plasma ratios lower than 1.0, suggesting that the blood-brain barrier restricts drug entry into the brain. In agreement with in vitro studies already performed within our research group, CBZ, CBZ-10,11-epoxide and oxcarbazepine exhibited the highest brain

  5. Pharmacokinetic drug interactions of the selective androgen receptor modulator GTx-024(Enobosarm) with itraconazole, rifampin, probenecid, celecoxib and rosuvastatin.

    PubMed

    Coss, Christopher C; Jones, Amanda; Dalton, James T

    2016-08-01

    GTx-024 (also known as enobosarm) is a first in class selective androgen receptor modulator being developed for diverse indications in oncology. Preclinical studies of GTx-024 supported the evaluation of several potential drug-drug interactions in a clinical setting. A series of open-label Phase I GTx-024 drug-drug interaction studies were designed to interrogate potential interactions with CYP3A4 inhibitor (itraconazole), a CYP3A4 inducer (rifampin), a pan-UGT inhibitor (probenecid), a CYP2C9 substrate (celecoxib) and a BCRP substrate (rosuvastatin). The plasma pharmacokinetics of GTx-024, its major metabolite (GTx-024 glucuronide), and each substrate were characterized in detail. Itraconazole administration had no effect on GTx-024 pharmacokinetics. Likewise, GTx-024 administration did not significantly change the pharmacokinetics of celecoxib or rosuvastatin. Rifampin administration had the largest impact on GTx-024 pharmacokinetics of any co-administered agent and reduced the maximal plasma concentration (Cmax) by 23 % and the area under the curve (AUC∞) by 43 %. Probenecid had a complex interaction with GTx-024 whereby both GTx-024 plasma levels and GTx-024 glucuronide plasma levels (AUC∞) were increased by co-administration of the UGT inhibitor (50 and 112 %, respectively). Overall, GTx-024 was well tolerated and poses very little risk of generating clinically relevant drug-drug interactions. PMID:27105861

  6. Pharmacokinetics of Selected Anticancer Drugs in Elderly Cancer Patients: Focus on Breast Cancer

    PubMed Central

    Crombag, Marie-Rose B.S.; Joerger, Markus; Thürlimann, Beat; Schellens, Jan H.M.; Beijnen, Jos H.; Huitema, Alwin D.R.

    2016-01-01

    Background: Elderly patients receiving anticancer drugs may have an increased risk to develop treatment-related toxicities compared to their younger peers. However, a potential pharmacokinetic (PK) basis for this increased risk has not consistently been established yet. Therefore, the objective of this study was to systematically review the influence of age on the PK of anticancer agents frequently administered to elderly breast cancer patients. Methods: A literature search was performed using the PubMed electronic database, Summary of Product Characteristics (SmPC) and available drug approval reviews, as published by EMA and FDA. Publications that describe age-related PK profiles of selected anticancer drugs against breast cancer, excluding endocrine compounds, were selected and included. Results: This review presents an overview of the available data that describe the influence of increasing age on the PK of selected anticancer drugs used for the treatment of breast cancer. Conclusions: Selected published data revealed differences in the effect and magnitude of increasing age on the PK of several anticancer drugs. There may be clinically-relevant, age-related PK differences for anthracyclines and platina agents. In the majority of cases, age is not a good surrogate marker for anticancer drug PK, and the physiological state of the individual patient may better be approached by looking at organ function, Charlson Comorbidity Score or geriatric functional assessment. PMID:26729170

  7. Enhanced Oral Bioavailability of Efavirenz by Solid Lipid Nanoparticles: In Vitro Drug Release and Pharmacokinetics Studies

    PubMed Central

    Gaur, Praveen Kumar; Mishra, Shikha; Bajpai, Meenakshi; Mishra, Anushika

    2014-01-01

    Solid lipid nanoparticle is an efficient lipid based drug delivery system which can enhance the bioavailability of poorly water soluble drugs. Efavirenz is a highly lipophilic drug from nonnucleoside inhibitor category for treatment of HIV. Present work illustrates development of an SLN formulation for Efavirenz with increased bioavailability. At first, suitable lipid component and surfactant were chosen. SLNs were prepared and analyzed for physical parameters, stability, and pharmacokinetic profile. Efavirenz loaded SLNs were formulated using Glyceryl monostearate as main lipid and Tween 80 as surfactant. ESLN-3 has shown mean particle size of 124.5 ± 3.2 nm with a PDI value of 0.234, negative zeta potential, and 86% drug entrapment. In vitro drug release study has shown 60.6–98.22% drug release in 24 h by various SLN formulations. Optimized SLNs have shown good stability at 40°C ± 2°C and 75 ± 5% relative humidity (RH) for 180 days. ESLN-3 exhibited 5.32-fold increase in peak plasma concentration (Cmax⁡) and 10.98-fold increase in AUC in comparison to Efavirenz suspension (ES). PMID:24967360

  8. Physiologically based predictions of the impact of inhibition of intestinal and hepatic metabolism on human pharmacokinetics of CYP3A substrates.

    PubMed

    Fenneteau, Frederique; Poulin, Patrick; Nekka, Fahima

    2010-01-01

    The first objective of the present study was to predict the pharmacokinetics of selected CYP3A substrates administered at a single oral dose to human. The second objective was to predict pharmacokinetics of the selected drugs in presence of inhibitors of the intestinal and/or hepatic CYP3A activity. We developed a whole-body physiologically based pharmacokinetics (WB-PBPK) model accounting for presystemic elimination of midazolam (MDZ), alprazolam (APZ), triazolam (TRZ), and simvastatin (SMV). The model also accounted for concomitant administration of the above-mentioned drugs with CYP3A inhibitors, namely ketoconazole (KTZ), itraconazole (ITZ), diltiazem (DTZ), saquinavir (SQV), and a furanocoumarin contained in grape-fruit juice (GFJ), namely 6',7'-dihydroxybergamottin (DHB). Model predictions were compared to published clinical data. An uncertainty analysis was performed to account for the variability and uncertainty of model parameters when predicting the model outcomes. We also briefly report on the results of our efforts to develop a global sensitivity analysis and its application to the current WB-PBPK model. Considering the current criterion for a successful prediction, judged satisfied once the clinical data are captured within the 5th and 95th percentiles of the predicted concentration-time profiles, a successful prediction has been obtained for a single oral administration of MDZ and SMV. For APZ and TRZ, however, a slight deviation toward the 95th percentile was observed especially for C(max) but, overall, the in vivo profiles were well captured by the PBPK model. Moreover, the impact of DHB-mediated inhibition on the extent of intestinal pre-systemic elimination of MDZ and SMV has been accurately predicted by the proposed PBPK model. For concomitant administrations of MDZ and ITZ, APZ and KTZ, as well as SMV and DTZ, the in vivo concentration-time profiles were accurately captured by the model. A slight deviation was observed for SMV when

  9. A framework for meta-analysis of veterinary drug pharmacokinetic data using mixed effect modeling.

    PubMed

    Li, Mengjie; Gehring, Ronette; Lin, Zhoumeng; Riviere, Jim

    2015-04-01

    Combining data from available studies is a useful approach to interpret the overwhelming amount of data generated in medical research from multiple studies. Paradoxically, in veterinary medicine, lack of data requires integrating available data to make meaningful population inferences. Nonlinear mixed-effects modeling is a useful tool to apply meta-analysis to diverse pharmacokinetic (PK) studies of veterinary drugs. This review provides a summary of the characteristics of PK data of veterinary drugs and how integration of these data may differ from human PK studies. The limits of meta-analysis include the sophistication of data mining, and generation of misleading results caused by biased or poor quality data. The overriding strength of meta-analysis applied to this field is that robust statistical analysis of the diverse sparse data sets inherent to veterinary medicine applications can be accomplished, thereby allowing population inferences to be made. PMID:25641543

  10. Improved prediction of tacrolimus concentrations early after kidney transplantation using theory-based pharmacokinetic modelling

    PubMed Central

    Størset, Elisabet; Holford, Nick; Hennig, Stefanie; Bergmann, Troels K; Bergan, Stein; Bremer, Sara; Åsberg, Anders; Midtvedt, Karsten; Staatz, Christine E

    2014-01-01

    Aims The aim was to develop a theory-based population pharmacokinetic model of tacrolimus in adult kidney transplant recipients and to externally evaluate this model and two previous empirical models. Methods Data were obtained from 242 patients with 3100 tacrolimus whole blood concentrations. External evaluation was performed by examining model predictive performance using Bayesian forecasting. Results Pharmacokinetic disposition parameters were estimated based on tacrolimus plasma concentrations, predicted from whole blood concentrations, haematocrit and literature values for tacrolimus binding to red blood cells. Disposition parameters were allometrically scaled to fat free mass. Tacrolimus whole blood clearance/bioavailability standardized to haematocrit of 45% and fat free mass of 60 kg was estimated to be 16.1 l h−1 [95% CI 12.6, 18.0 l h−1]. Tacrolimus clearance was 30% higher (95% CI 13, 46%) and bioavailability 18% lower (95% CI 2, 29%) in CYP3A5 expressers compared with non-expressers. An Emax model described decreasing tacrolimus bioavailability with increasing prednisolone dose. The theory-based model was superior to the empirical models during external evaluation displaying a median prediction error of −1.2% (95% CI −3.0, 0.1%). Based on simulation, Bayesian forecasting led to 65% (95% CI 62, 68%) of patients achieving a tacrolimus average steady-state concentration within a suggested acceptable range. Conclusion A theory-based population pharmacokinetic model was superior to two empirical models for prediction of tacrolimus concentrations and seemed suitable for Bayesian prediction of tacrolimus doses early after kidney transplantation. PMID:25279405

  11. Metabolic Network Prediction of Drug Side Effects.

    PubMed

    Shaked, Itay; Oberhardt, Matthew A; Atias, Nir; Sharan, Roded; Ruppin, Eytan

    2016-03-23

    Drug side effects levy a massive cost on society through drug failures, morbidity, and mortality cases every year, and their early detection is critically important. Here, we describe the array of model-based phenotype predictors (AMPP), an approach that leverages medical informatics resources and a human genome-scale metabolic model (GSMM) to predict drug side effects. AMPP is substantially predictive (AUC > 0.7) for >70 drug side effects, including very serious ones such as interstitial nephritis and extrapyramidal disorders. We evaluate AMPP's predictive signal through cross-validation, comparison across multiple versions of a side effects database, and co-occurrence analysis of drug side effect associations in scientific abstracts (hypergeometric p value = 2.2e-40). AMPP outperforms a previous biochemical structure-based method in predicting metabolically based side effects (aggregate AUC = 0.65 versus 0.59). Importantly, AMPP enables the identification of key metabolic reactions and biomarkers that are predictive of specific side effects. Taken together, this work lays a foundation for future detection of metabolically grounded side effects during early stages of drug development. PMID:27135366

  12. Clinical Pharmacokinetic, Pharmacodynamic and Drug-Interaction Profile of the Integrase Inhibitor Dolutegravir

    PubMed Central

    Cottrell, Mackenzie L.; Hadzic, Tanja

    2013-01-01

    decrease dolutegravir plasma exposure and should be separated by 2 hours before, or 6 hours after, a dolutegravir dose. In summary, dolutegravir is the first of the second generation INSTIs, which exhibits a predictable pharmacokinetic profile and a well-defined exposure-response relationship. Dolutegravir retains activity despite the presence of some class resistant mutations and achieves rapid and sustained virologic suppression in ARV-naïve and -experienced patients. Clinically dolutegravir is poised to become a commonly used component of antiretroviral regimens. PMID:23824675

  13. Oral pharmacokinetics of the acidic drugs, diclofenac and sulfamonomethoxine in male Shiba goats.

    PubMed

    Elbadawy, Mohamed; Sakiyama, Takara; Abohatab, Rania; Sasaki, Kazuaki; Shimoda, Minoru

    2015-01-01

    In the present study, we examined the oral pharmacokinetics of the acidic drugs, diclofenac (DF) and sulfamonomethoxine (SMM), which have different physicochemical properties, in Shiba goats. DF and SMM were intravenously and orally administered to 5 male goats using a crossover design. The T(max) of DF and SMM were reached 1.5 and 5.6 hr after they have been orally administered, respectively, and this was followed by their slow elimination. The elimination of both drugs was markedly faster after being intravenously rather than orally administered, which indicated flip-flop phenomena after the oral administration. The mean absorption times (MATs) of DF and SMM were 6 and 15 hr, respectively. This slow absorption may have been due to slow gastric emptying in goats. The large difference observed in MATs between DF and SMM may have been because DF, which is more lipophilic than SMM, was partly absorbed from the forestomach. Therefore, these results suggest that the absorption of highly lipophilic drugs from the forestomach may be markedly high in Shiba goats. In case of drugs whose elimination is quite fast, their efficacies may appear from the early stage after oral administration even in ruminants, because elimination rate is the determinant factor of T(max) in flip-flop phenomena. Such drugs may be used orally even in ruminants. PMID:25311913

  14. Effects of Hormonal Contraception on Anti-Retroviral Drug Metabolism, Pharmacokinetics and Pharmacodynamics

    PubMed Central

    Thurman, Andrea Ries; Anderson, Sharon; Doncel, Gustavo F

    2014-01-01

    Among women, human immunodeficiency virus type 1 (HIV-1) infection is most prevalent in those of reproductive age. These women are also at risk of unintended or mistimed pregnancies. Hormonal contraceptives (HCs) are one of the most commonly used methods of family planning world-wide. Therefore concurrent use of HC among women on anti-retroviral medications (ARVs) is increasingly common. ARVs are being investigated and have been approved for pre-exposure prophylaxis (PrEP), and therefore drug-drug interactions must also be considered in HIV-1 negative women who want to prevent both unintended pregnancy and HIV-1 infection. This article will review four main interactions: (1) the effect of HCs on ARV pharmacokinetics (PK) and pharmacodynamics (PD) during therapy, (2) the effect of ARVs on HC PK and PD, (3) the role of drug transporters on drug-drug interactions and (4) ongoing research into the effect of HCs on pre-exposure prophylaxis PK and PD. PMID:24521428

  15. Assessing the utility of an anti-malarial pharmacokinetic-pharmacodynamic model for aiding drug clinical development

    PubMed Central

    2012-01-01

    Background Mechanistic within-host models relating blood anti-malarial drug concentrations with the parasite-time profile help in assessing dosing schedules and partner drugs for new anti-malarial treatments. A comprehensive simulation study to assess the utility of a stage-specific pharmacokinetic-pharmacodynamic (PK-PD) model for predicting within-host parasite response was performed. Methods Three anti-malarial combination therapies were selected: artesunate-mefloquine, dihydroartemisinin-piperaquine, and artemether-lumefantrine. The PK-PD model included parameters to represent the concentration-time profiles of both drugs, the initial parasite burden and distribution across the parasite life cycle, and the parasite multiplication factor due to asexual reproduction. The model also included the maximal killing rate of each drug, and the blood drug concentration associated with half of that killing effect (in vivo EC50), derived from the in vitro IC50, the extent of binding to 0.5% Albumax present in the in vitro testing media, and the drugs plasma protein binding and whole blood to plasma partitioning ratio. All stochastic simulations were performed using a Latin-Hypercube-Sampling approach. Results The simulations demonstrated that the proportion of patients cured was highly sensitive to the in vivo EC50 and the maximal killing rate of the partner drug co-administered with the artemisinin derivative. The in vivo EC50 values that corresponded to on average 95% of patients cured were much higher than the adjusted values derived from the in vitro IC50. The proportion clinically cured was not strongly influenced by changes in the parameters defining the age distribution of the initial parasite burden (mean age of 4 to 16 hours) and the parasite multiplication factor every life cycle (ranging from 8 to 12 fold/cycle). The median parasite clearance times, however, lengthened as the standard deviation of the initial parasite burden increased (i.e. the infection became

  16. Venetoclax (ABT-199) Might Act as a Perpetrator in Pharmacokinetic Drug–Drug Interactions

    PubMed Central

    Weiss, Johanna; Gajek, Thomas; Köhler, Bruno Christian; Haefeli, Walter Emil

    2016-01-01

    Venetoclax (ABT-199) represents a specific B-cell lymphoma 2 (Bcl-2) inhibitor that is currently under development for the treatment of lymphoid malignancies. So far, there is no published information on its interaction potential with important drug metabolizing enzymes and drug transporters, or its efficacy in multidrug resistant (MDR) cells. We therefore scrutinized its drug–drug interaction potential in vitro. Inhibition of cytochrome P450 enzymes (CYPs) was quantified by commercial kits. Inhibition of drug transporters (P-glycoprotein (P-gp, ABCB1), breast cancer resistance protein (BCRP), and organic anion transporting polypeptides (OATPs)) was evaluated by the use of fluorescent probe substrates. Induction of drug transporters and drug metabolizing enzymes was quantified by real-time RT-PCR. The efficacy of venetoclax in MDR cells lines was evaluated with proliferation assays. Venetoclax moderately inhibited P-gp, BCRP, OATP1B1, OATP1B3, CYP3A4, and CYP2C19, whereas CYP2B6 activity was increased. Venetoclax induced the mRNA expression of CYP1A1, CYP1A2, UGT1A3, and UGT1A9. In contrast, expression of ABCB1 was suppressed, which might revert tumor resistance towards antineoplastic P-gp substrates. P-gp over-expression led to reduced antiproliferative effects of venetoclax. Effective concentrations for inhibition and induction lay in the range of maximum plasma concentrations of venetoclax, indicating that it might act as a perpetrator drug in pharmacokinetic drug–drug interactions. PMID:26927160

  17. Cationic drug-based self-assembled polyelectrolyte complex micelles: Physicochemical, pharmacokinetic, and anticancer activity analysis.

    PubMed

    Ramasamy, Thiruganesh; Poudel, Bijay Kumar; Ruttala, Himabindu; Choi, Ju Yeon; Hieu, Truong Duy; Umadevi, Kandasamy; Youn, Yu Seok; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2016-10-01

    Nanofabrication of polymeric micelles through self-assembly of an ionic block copolymer and oppositely charged small molecules has recently emerged as a promising method of formulating delivery systems. The present study therefore aimed to investigate the interaction of cationic drugs doxorubicin (DOX) and mitoxantrone (MTX) with the anionic block polymer poly(ethylene oxide)-block-poly(acrylic acid) (PEO-b-PAA) and to study the influence of these interactions on the pharmacokinetic stability and antitumor potential of the formulated micelles in clinically relevant animal models. To this end, individual DOX and MTX-loaded polyelectrolyte complex micelles (PCM) were prepared, and their physicochemical properties and pH-responsive release profiles were studied. MTX-PCM and DOX-PCM exhibited a different release profile under all pH conditions tested. MTX-PCM exhibited a monophasic release profile with no initial burst, while DOX-PCM exhibited a biphasic release. DOX-PCM showed a higher cellular uptake than that shown by MTX-PCM in A-549 cancer cells. Furthermore, DOX-PCM induced higher apoptosis of cancer cells than that induced by MTX-PCM. Importantly, both MTX-PCM and DOX-PCM showed prolonged blood circulation. MTX-PCM improved the AUCall of MTX 4-fold compared to a 3-fold increase by DOX-PCM for DOX. While a definite difference in blood circulation was observed between MTX-PCM and DOX-PCM in the pharmacokinetic study, both MTX-PCM and DOX-PCM suppressed tumor growth to the same level as the respective free drugs, indicating the potential of PEGylated polymeric micelles as effective delivery systems. Taken together, our results show that the nature of interactions of cationic drugs with the polyionic copolymer can have a tremendous influence on the biological performance of a delivery system. PMID:27318960

  18. Two cholesterol derivative-based PEGylated liposomes as drug delivery system, study on pharmacokinetics and drug delivery to retina

    NASA Astrophysics Data System (ADS)

    Geng, Shengyong; Yang, Bin; Wang, Guowu; Qin, Geng; Wada, Satoshi; Wang, Jin-Ye

    2014-07-01

    In this study, two cholesterol derivatives, (4-cholesterocarbonyl-4‧-(N,N,N-triethylamine butyloxyl bromide) azobenzene (CAB) and 4-cholesterocarbonyl-4‧-(N,N-diethylamine butyloxyl) azobenzene (ACB), one of which is positively charged while the other is neutral, were synthesized and incorporated with phospholipids and cholesterol to form doxorubicin (DOX)-loaded liposomes. PEGylation was achieved by including 1,2-distearoyl-sn-glycero-3-phosphatiylethanol-amine-N-[methoxy-(polyethylene glycol)-2000 (DSPE-PEG2000). Our results showed that PEGylated liposomes displayed significantly improved stability and the drug leakage was decreased compared to the non-PEGylated ones in vitro. The in vivo study with rats also revealed that the pharmacokinetics and circulation half-life of DOX were significantly improved when liposomes were PEGylated (p < 0.05). In particular, the neutral cholesterol derivative ACB played some role in improving liposomes’ stability in systemic circulation compared to the conventional PC liposome and the positively charged CAB liposome, with or without PEGylation. In addition, in the case of local drug delivery, the positively charged PEG-liposome not only delivered much more of the drug into the rats’ retinas (p < 0.001), but also maintained much longer drug retention time compared to the neutral PEGylated liposomes.

  19. Extraction of Pharmacokinetic Evidence of Drug–Drug Interactions from the Literature

    PubMed Central

    Kolchinsky, Artemy; Lourenço, Anália; Wu, Heng-Yi; Li, Lang; Rocha, Luis M.

    2015-01-01

    Drug-drug interaction (DDI) is a major cause of morbidity and mortality and a subject of intense scientific interest. Biomedical literature mining can aid DDI research by extracting evidence for large numbers of potential interactions from published literature and clinical databases. Though DDI is investigated in domains ranging in scale from intracellular biochemistry to human populations, literature mining has not been used to extract specific types of experimental evidence, which are reported differently for distinct experimental goals. We focus on pharmacokinetic evidence for DDI, essential for identifying causal mechanisms of putative interactions and as input for further pharmacological and pharmacoepidemiology investigations. We used manually curated corpora of PubMed abstracts and annotated sentences to evaluate the efficacy of literature mining on two tasks: first, identifying PubMed abstracts containing pharmacokinetic evidence of DDIs; second, extracting sentences containing such evidence from abstracts. We implemented a text mining pipeline and evaluated it using several linear classifiers and a variety of feature transforms. The most important textual features in the abstract and sentence classification tasks were analyzed. We also investigated the performance benefits of using features derived from PubMed metadata fields, various publicly available named entity recognizers, and pharmacokinetic dictionaries. Several classifiers performed very well in distinguishing relevant and irrelevant abstracts (reaching F1≈0.93, MCC≈0.74, iAUC≈0.99) and sentences (F1≈0.76, MCC≈0.65, iAUC≈0.83). We found that word bigram features were important for achieving optimal classifier performance and that features derived from Medical Subject Headings (MeSH) terms significantly improved abstract classification. We also found that some drug-related named entity recognition tools and dictionaries led to slight but significant improvements, especially in

  20. Pharmacokinetics of oral 6-mercaptopurine: relationship between plasma levels and urine excretion of parent drug.

    PubMed

    Endresen, L; Lie, S O; Storm-Mathisen, I; Rugstad, H E; Stokke, O

    1990-05-01

    Plasma levels and cumulative urine excretion of 6-mercaptopurine (6-MP) were measured using a specific and sensitive high-performance liquid chromatographic assay in seven children with acute lymphoblastic leukemia (ALL) as well as in one healthy volunteer. The dose of 6-MP varied in the range of 25-75 mg/m2 of body surface area and was administered with a standard breakfast. A 4- to 11-fold variation between individuals was found in the pharmacokinetic parameters: peak concentration, time to reach peak, area under the plasma concentration-time curve (AUC), and fraction of dose excreted in the urine. Three repeated determinations in one individual revealed that AUC also varied more than sixfold following an overnight fast. In three individuals, the reducing agents glutathione (10 mg/kg) and ascorbic acid (15 mg/kg) were coadministered with 6-MP to evaluate their possible role in the protection of 6-MP from oxidation and degradation in the intestinal lumen. No consistent effect was observed, however, on the AUCs of either of these agents. A clear relationship was found between AUCs and the 24-h urinary excretion of unchanged drug (r = 0.9381), indicating that determinations of 6-MP in the urine may replace the painful procedure of repeated blood sampling. Further studies are necessary to determine the factors contributing to the unpredictable plasma levels following oral doses of 6-MP and to determine the value of pharmacokinetic monitoring in ALL patients. PMID:2349605

  1. Preclinical pharmacokinetics, pharmacology and toxicology of lisdexamfetamine: a novel d-amphetamine pro-drug.

    PubMed

    Hutson, Peter H; Pennick, Michael; Secker, Roger

    2014-12-01

    Lisdexamfetamine dimesylate (LDX) is a novel pro-drug of d-amphetamine that is currently used for the treatment of attention-deficit/hyperactivity disorder in children aged ≥ 6 years and adults. LDX is enzymatically cleaved to form d-amphetamine following contact with red blood cells, which reduces the rate of appearance and magnitude of d-amphetamine concentration in the blood and hence the brain when compared with immediate-release d-amphetamine at equimolar doses. Thus, the increase of striatal dopamine efflux and subsequent increase of locomotor activity following d-amphetamine is less prominent and slower to attain maximal effect following an equimolar dose of LDX. Furthermore, unlike d-amphetamine, the pharmacodynamic effects of LDX are independent of the route of administration underlining the requirement to be hydrolyzed by contact with red blood cells. It is conceivable that these pharmacokinetic and pharmacodynamic differences may impact the psychostimulant properties of LDX in the clinic. This article reviews the preclinical pharmacokinetics, pharmacology, and toxicology of LDX. This article is part of the Special Issue entitled 'CNS Stimulants'. PMID:24594478

  2. Pharmacokinetics of naftopidil, a novel anti-hypertensive drug, in patients with hepatic dysfunction.

    PubMed Central

    Farthing, M. J.; Alstead, E. M.; Abrams, S. M.; Haug, G.; Johnston, A.; Hermann, R.; Niebch, G.; Ruus, P.; Molz, K. H.; Turner, P.

    1994-01-01

    The pharmacokinetics of naftopidil, a novel alpha-1 adrenoceptor-blocking antihypertensive, were investigated in ten patients (9M/1F) with hepatic dysfunction after oral administration (50 mg, tablet) and after an intravenous infusion of 5.0 mg over 2 minutes. Results were compared to a control group of 12 healthy subjects (6M/6F) of a previous investigation, which was carried out according to the identical study protocol. The pharmacokinetic parameters obtained for the i.v. administration were comparable in both groups (half life 3.6 +/- 3.4 hours in liver-impaired subjects versus 3.3 +/- 2.1 hours in controls; clearance 11.9 +/- 4.7 ml/minute/kg versus 11.0 +/- 1.6 ml/minute/kg). Following oral administration the plasma levels and half-life times of naftopidil were significantly increased in liver impairment (t1/2 16.6 +/- 19.3 hours versus 5.4 +/- 3.2 hours in controls; P = 0.012). Mean values for the absolute bioavailability in patients with hepatic dysfunction were significantly higher (mean 75%, median 53%, range 13.4-211.0%) compared to healthy subjects (mean 17%, median 16%, range 6.7-29.6%, P = 0.001). Reduction of functional hepatic blood flow in chronic liver disease or, as evidenced in one case as a consequence of shunt surgery, is the probable cause of the observed alteration in naftopidil kinetics. This phenomenon occurred only following the oral 50 mg dose whereas the intravenous 5 mg dose obviously still could be normally handled. Naftopidil demethylation and hydroxylation were both less and non-uniformly affected. The pharmacokinetic findings suggest that in patients with severe hepatic impairment or evidence for marked changes in hepatic blood flow the dose of naftopidil may require adjustment to the lower end of the therapeutic range and/or may be limited to once daily. However, before definite conclusions can be drawn, further steady-state studies are required. Despite the pharmacokinetic discrepancies no difference in drug tolerability was seen

  3. Self nanoemulsifying drug delivery system (SNEDDS) of rosuvastatin calcium: design, formulation, bioavailability and pharmacokinetic evaluation.

    PubMed

    Balakumar, Krishnamoorthy; Raghavan, Chellan Vijaya; selvan, Natarajan Tamil; prasad, Ranganathan Hari; Abdu, Siyad

    2013-12-01

    The aim of the present study is to improve solubility and bioavailability of Rosuvastatin calcium using self nanoemulsifying drug delivery system (SNEDDS). Self emulsifying property of various oils including essential oils was evaluated with suitable surfactants and co-surfactants. Ternary phase diagrams were constructed based on Rosuvastatin calcium solubility analysis for optimizing the system. The prepared formulations were evaluated for self emulsifying time, robustness to dilution, droplet size determination and zeta potential analysis. The system was found to be robust in different pH media and dilution volume. The globule size of the optimized system was less than 200nm which could be an acceptable nanoemulsion size range. The zeta potential of the selected CN 7 SNEDDS formulation (cinnamon oil 30%; labrasol 60%; Capmul MCM C8 10%) was -29.5±0.63 with an average particle size distribution of 122nm. In vitro drug release studies showed remarkable increase in dissolution of CN7 SNEDDS compared to marketed formulation. In house developed HPLC method for determination of Rosuvastatin calcium in rat plasma was used in the bioavailability and pharmacokinetic evaluation. The relative bioavailability of self nanoemulsified formulation showed an enhanced bioavailability of 2.45 times greater than that of drug in suspension. The obtained plasma drug concentration data was processed with PKSolver 2.0 and it was best fit into the one compartment model. PMID:24012665

  4. Assessing the viability of microsponges as gastro retentive drug delivery system of curcumin: optimization and pharmacokinetics.

    PubMed

    Arya, Priyanka; Pathak, Kamla

    2014-01-01

    The work was aimed to validate the gastroretentive potential of microsponges via optimization of targeted floating curcumin microsponges for improved site specific absorption for gastric cancer Modified quasi emulsion solvent diffusion method was used to formulate microsponges using 3(2) full factorial design. The effect of different levels of ethyl cellulose and polyvinyl alcohol concentration, selected as independent variables was determined on the % entrapment efficiency, % buoyancy and % cumulative drug release. Modified rosette rise apparatus was used for in vitro release and the release data best fitted Higuchi's model and mechanism of drug release was diffusion (n). The optimized formulation (MS5) demonstrated favourable % entrapment efficiency (90.7 ± 1.7), % buoyancy (82.0 ± 2.0) and % cumulative drug release (85.2 ± 1.07) with maximum desirability factor of 0.816. SEM revealed spherical and porous microsponges. DSC confirmed molecular dispersion of the drug in the microsponges polymeric matrix. DRIFT revealed no chemical interaction between the drug and polymer used. The in vitro permeation of curcumin through gastric mucin gel layer affirmed the capability of microsponges to deliver drug across mucin r and reach the target site to treat gastric cancer. Anticancer oral dose of microsponges was calculated as 50mg by cytotoxicity assay in human cancer cell line KB. The pharmacokinetic evaluation of MS5 in rabbits revealed 10-fold increase in bioavailability as compared to native curcumin, demonstrated the superiority of microsponges over native curcumin as gastro retentive drug delivery system. This study presents a new approach based on floating ability of microsponges for treatment of gastric cancer. PMID:24184218

  5. Pharmacokinetic drug interactions with clopidogrel: updated review and risk management in combination therapy

    PubMed Central

    Wang, Zhi-Yu; Chen, Meng; Zhu, Ling-Ling; Yu, Lu-Shan; Zeng, Su; Xiang, Mei-Xiang; Zhou, Quan

    2015-01-01

    Background Coprescribing of clopidogrel and other drugs is common. Available reviews have addressed the drug–drug interactions (DDIs) when clopidogrel is as an object drug, or focused on combination use of clopidogrel and a special class of drugs. Clinicians may still be ignorant of those DDIs when clopidogrel is a precipitant drug, the factors determining the degree of DDIs, and corresponding risk management. Methods A literature search was performed using PubMed, MEDLINE, Web of Science, and the Cochrane Library to analyze the pharmacokinetic DDIs of clopidogrel and new P2Y12 receptor inhibitors. Results Clopidogrel affects the pharmacokinetics of cerivastatin, repaglinide, ferulic acid, sibutramine, efavirenz, and omeprazole. Low efficacy of clopidogrel is anticipated in the presence of omeprazole, esomeprazole, morphine, grapefruit juice, scutellarin, fluoxetine, azole antifungals, calcium channel blockers, sulfonylureas, and ritonavir. Augmented antiplatelet effects are anticipated when clopidogrel is coprescribed with aspirin, curcumin, cyclosporin, St John’s wort, rifampicin, and angiotensin-converting enzyme inhibitors. The factors determining the degree of DDIs with clopidogrel include genetic status (eg, cytochrome P540 [CYP]2B6*6, CYP2C19 polymorphism, CYP3A5*3, CYP3A4*1G, and CYP1A2-163C.A), species differences, and dose strength. The DDI risk does not exhibit a class effect, eg, the effects of clopidogrel on cerivastatin versus other statins, the effects of proton pump inhibitors on clopidogrel (omeprazole, esomeprazole versus pantoprazole, rabeprazole), the effects of rifampicin on clopidogrel versus ticagrelor and prasugrel, and the effects of calcium channel blockers on clopidogrel (amlodipine versus P-glycoprotein-inhibiting calcium channel blockers). The mechanism of the DDIs with clopidogrel involves modulating CYP enzymes (eg, CYP2B6, CYP2C8, CYP2C19, and CYP3A4), paraoxonase-1, hepatic carboxylesterase 1, P-glycoprotein, and organic anion

  6. How the Probability and Potential Clinical Significance of Pharmacokinetically Mediated Drug-Drug Interactions Are Assessed in Drug Development: Desvenlafaxine as an Example

    PubMed Central

    Nichols, Alice I.; Preskorn, Sheldon H.

    2015-01-01

    Objective: The avoidance of adverse drug-drug interactions (DDIs) is a high priority in terms of both the US Food and Drug Administration (FDA) and the individual prescriber. With this perspective in mind, this article illustrates the process for assessing the risk of a drug (example here being desvenlafaxine) causing or being the victim of DDIs, in accordance with FDA guidance. Data Sources/Study Selection: DDI studies for the serotonin-norepinephrine reuptake inhibitor desvenlafaxine conducted by the sponsor and published since 2009 are used as examples of the systematic way that the FDA requires drug developers to assess whether their new drug is either capable of causing clinically meaningful DDIs or being the victim of such DDIs. In total, 8 open-label studies tested the effects of steady-state treatment with desvenlafaxine (50–400 mg/d) on the pharmacokinetics of cytochrome (CYP) 2D6 and/or CYP 3A4 substrate drugs, or the effect of CYP 3A4 inhibition on desvenlafaxine pharmacokinetics. The potential for DDIs mediated by the P-glycoprotein (P-gp) transporter was assessed in in vitro studies using Caco-2 monolayers. Data Extraction: Changes in area under the plasma concentration-time curve (AUC; CYP studies) and efflux (P-gp studies) were reviewed for potential DDIs in accordance with FDA criteria. Results: Desvenlafaxine coadministration had minimal effect on CYP 2D6 and/or 3A4 substrates per FDA criteria. Changes in AUC indicated either no interaction (90% confidence intervals for the ratio of AUC geometric least-squares means [GM] within 80%–125%) or weak inhibition (AUC GM ratio 125% to < 200%). Coadministration with ketoconazole resulted in a weak interaction with desvenlafaxine (AUC GM ratio of 143%). Desvenlafaxine was not a substrate (efflux ratio < 2) or inhibitor (50% inhibitory drug concentration values > 250 μM) of P-gp. Conclusions: A 2-step process based on FDA guidance can be used first to determine whether a pharmacokinetically mediated

  7. Current bioanalytical methods for pharmacokinetic studies of drugs used in neglected tropical diseases.

    PubMed

    dos Santos Magalhães, Igor Rafael

    2014-01-01

    Neglected tropical diseases are conditions directly associated to poverty and affect millions of people in tropical areas. Considering the necessity of pharmacokinetic and therapeutic drug monitoring studies to assess the disposition of agents clinically employed in the treatment of these diseases, especially in the involved population, this article will overview the current bioanalytical methods developed in the last 10 years, particularly those fully validated and using standard techniques, such as chromatographic procedures combined or not with mass spectrometry. The characteristics of each assay reported will be summarized and critically discussed. Furthermore, emphasis will also be given to the pros and cons in order to highlight the application of each method, especially in routine laboratories. PMID:25077629

  8. Using Simcyp to project human oral pharmacokinetic variability in early drug research to mitigate mechanism-based adverse events.

    PubMed

    Shaffer, Christopher L; Scialis, Renato J; Rong, Haojing; Obach, R Scott

    2012-03-01

    Positive allosteric modulators ('potentiators') of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) have been shown to display a mechanism-based exposure-response continuum in preclinical species with procognitive electrophysiological and behavioral effects ('efficacy') at low exposures and motor coordination disruptions at progressively higher exposures. Due to the dose-capping nature of such motor coordination deficits, an exposure threshold-mediated adverse event (C(AE) ), the adequacy of separation between the maximal total plasma compound concentration (C(max) ) at a predicted clinically efficacious oral dose and this adverse event (AE) was explored in early drug research with three AMPAR potentiators considered potential candidates for clinical trials. In vitro metabolism studies in human liver microsomes and human hepatocytes demonstrated the metabolic clearance for each compound was predominately due to cytochromes P450 (CYP). Thus, for each compound's anticipated clinically efficacious dose, human C(max) variability following oral administration was assessed using Simcyp software, which combines its virtual human populations database using extensive demographic, physiological and genomic information with routinely collected compound-specific in vitro biochemical data to simulate and predict drug disposition. Using a combination of experimentally determined recombinant human CYP intrinsic clearances for CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP3A4, human binding factors, expected fraction absorbed and estimated steady-state volume of distribution, Simcyp simulations demonstrated that two of the three potentiators had acceptable projected C(max) variability (i.e. the 95th percentile C(max) did not breach C(AE) ). This evaluation aided in the selection of compounds for preclinical progression, and represents a novel application of pharmacologically based pharmacokinetic (PBPK) software approaches to predict interpatient

  9. Assessment of in vitro high throughput pharmacokinetic data to predict in vivo pharmacokinetic data of environmental chemicals

    EPA Science Inventory

    Assessing the health risks of the thousands of chemicals in use requires both toxicology and pharmacokinetic (PK) data that can be generated more quickly. For PK, in vitro clearance assays with hepatocytes and serum protein binding assays provide a means to generate high throughp...

  10. Physiologically Based Pharmacokinetics Is Impacting Drug Development and Regulatory Decision Making.

    PubMed

    Rowland, M; Lesko, L J; Rostami-Hodjegan, A

    2015-06-01

    It is no coincidence that the reports of two meetings, one organized by the US Food and Drug Administration (FDA), in March 2014, and the other by the UK Medicines and Healthcare Products Regulatory (MHRA), in collaboration with ABPI (the Association of British Pharmaceutical Industry), in June 2014, have been published in tandem in CPT-PSP.12 Both reports deal with the same topic, namely, the impact of physiologically based pharmacokinetics (PBPK) in clinical drug development and the best practices for such applications. This reflects the transition of PBPK from academic curiosity to industrial norm, manifested by the regulatory agencies encouraging its use and receiving an increasing number of submissions containing PBPK models. The goal of both meetings was to help determine the need and facilitate the development of regulatory guidances on this subject within the conceptual framework of model informed drug development and regulatory decision-making. A further reflection of this intent is the publication by the European Medicines Agency of a Concept Paper on PBPK.3 One is reminded of a similar train of events surrounding the introduction of population PK/PD and nonlinear mixed effects modeling in the early-late 1990s, again with encouragement and receptivity of regulatory agencies leading to FDA guidance on the topic.4 Indeed, the intention of PBPK modeling and simulation is to complement other approaches, such as compartmental modeling, or, in some cases, replace them with a more mechanistic approach. PBPK models represent an important class of models that characterize absorption, distribution, metabolism, excretion (ADME) processes and their underlying biological and physiological drivers. An increased understanding of these drivers and their unique interactions with drug substance and formulation factors provides critical insights into how drugs will behave in healthy volunteers and patients with disease. PMID:26225258

  11. Physiologically Based Pharmacokinetics Is Impacting Drug Development and Regulatory Decision Making

    PubMed Central

    Rowland, M; Lesko, LJ; Rostami-Hodjegan, A

    2015-01-01

    It is no coincidence that the reports of two meetings, one organized by the US Food and Drug Administration (FDA), in March 2014, and the other by the UK Medicines and Healthcare Products Regulatory (MHRA), in collaboration with ABPI (the Association of British Pharmaceutical Industry), in June 2014, have been published in tandem in CPT-PSP.12 Both reports deal with the same topic, namely, the impact of physiologically based pharmacokinetics (PBPK) in clinical drug development and the best practices for such applications. This reflects the transition of PBPK from academic curiosity to industrial norm, manifested by the regulatory agencies encouraging its use and receiving an increasing number of submissions containing PBPK models. The goal of both meetings was to help determine the need and facilitate the development of regulatory guidances on this subject within the conceptual framework of model informed drug development and regulatory decision-making. A further reflection of this intent is the publication by the European Medicines Agency of a Concept Paper on PBPK.3 One is reminded of a similar train of events surrounding the introduction of population PK/PD and nonlinear mixed effects modeling in the early-late 1990s, again with encouragement and receptivity of regulatory agencies leading to FDA guidance on the topic.4 Indeed, the intention of PBPK modeling and simulation is to complement other approaches, such as compartmental modeling, or, in some cases, replace them with a more mechanistic approach. PBPK models represent an important class of models that characterize absorption, distribution, metabolism, excretion (ADME) processes and their underlying biological and physiological drivers. An increased understanding of these drivers and their unique interactions with drug substance and formulation factors provides critical insights into how drugs will behave in healthy volunteers and patients with disease. PMID:26225258

  12. Pharmacokinetic drug-drug interaction assessment of LCZ696 (an angiotensin receptor neprilysin inhibitor) with omeprazole, metformin or levonorgestrel-ethinyl estradiol in healthy subjects.

    PubMed

    Gan, Lu; Jiang, Xuemin; Mendonza, Anisha; Swan, Therese; Reynolds, Christine; Nguyen, Joanne; Pal, Parasar; Neelakantham, Srikanth; Dahlke, Marion; Langenickel, Thomas; Rajman, Iris; Akahori, Mizuki; Zhou, Wei; Rebello, Sam; Sunkara, Gangadhar

    2016-01-01

    LCZ696 is a novel angiotensin receptor neprilysin inhibitor in development for the treatment of cardiovascular diseases. Here, we assessed the potential for pharmacokinetic drug-drug interaction of LCZ696 (400 mg, single dose or once daily [q.d.]) when co-administered with omeprazole 40 mg q.d. (n = 28) or metformin 1000 mg q.d. (n = 27) or levonorgestrel-ethinyl estradiol 150/30 μg single dose (n = 24) in three separate open-label, single-sequence studies in healthy subjects. Pharmacokinetic parameters of LCZ696 analytes (sacubitril, LBQ657, and valsartan), metformin, and levonorgestrel-ethinyl estradiol were assessed. Omeprazole did not alter the AUCinf of sacubitril and pharmacokinetics of LBQ657; however, 7% decrease in the Cmax of sacubitril, and 11% and 13% decreases in AUCinf and Cmax of valsartan were observed. Co-administration of LCZ696 with metformin had no significant effect on the pharmacokinetics of LBQ657 and valsartan; however, AUCtau,ss and Cmax,ss of metformin were decreased by 23%. Co-administration of LCZ696 with levonorgestrel-ethinyl estradiol had no effect on the pharmacokinetics of ethinyl estradiol and LBQ657 or AUCinf of levonorgestrel. The Cmax of levonorgestrel decreased by 15%, and AUCtau,ss and Cmax,ss of valsartan decreased by 14% and 16%, respectively. Co-administration of LCZ696 with omeprazole, metformin, or levonorgestrel-ethinyl estradiol was not associated with any clinically relevant pharmacokinetic drug interactions. PMID:27119576

  13. Pharmacokinetic Modeling of an Induction Regimen for In Vivo Combined Testing of Novel Drugs against Pediatric Acute Lymphoblastic Leukemia Xenografts

    PubMed Central

    Kang, Min H.; Liem, Natalia L. M.; Carol, Hernan; Boehm, Ingrid; Groepper, Daniel; Reynolds, C. Patrick; Stewart, Clinton F.; Lock, Richard B.

    2012-01-01

    Current regimens for induction therapy of pediatric acute lymphoblastic leukemia (ALL), or for re-induction post relapse, use a combination of vincristine (VCR), a glucocorticoid, and l-asparaginase (ASP) with or without an anthracycline. With cure rates now approximately 80%, robust pre-clinical models are necessary to prioritize active new drugs for clinical trials in relapsed/refractory patients, and the ability of these models to predict synergy/antagonism with established therapy is an essential attribute. In this study, we report optimization of an induction-type regimen by combining VCR, dexamethasone (DEX) and ASP (VXL) against ALL xenograft models established from patient biopsies in immune-deficient mice. We demonstrate that the VXL combination was synergistic in vitro against leukemia cell lines as well as in vivo against ALL xenografts. In vivo, VXL treatment caused delays in progression of individual xenografts ranging from 22 to >146 days. The median progression delay of xenografts derived from long-term surviving patients was 2-fold greater than that of xenografts derived from patients who died of their disease. Pharmacokinetic analysis revealed that systemic DEX exposure in mice increased 2-fold when administered in combination with VCR and ASP, consistent with clinical findings, which may contribute to the observed synergy between the 3 drugs. Finally, as proof-of-principle we tested the in vivo efficacy of combining VXL with either the Bcl-2/Bcl-xL/Bcl-w inhibitor, ABT-737, or arsenic trioxide to provide evidence of a robust in vivo platform to prioritize new drugs for clinical trials in children with relapsed/refractory ALL. PMID:22479469

  14. Pharmacokinetic Interaction of Rifampicin with Oral Versus Intravenous Anticancer Drugs: Challenges, Dilemmas and Paradoxical Effects Due to Multiple Mechanisms.

    PubMed

    Srinivas, Nuggehally R

    2016-06-01

    Since many drugs are cytochrome P450 (CYP)-3A4 substrates, it has become common practice to assess drug-drug interaction (DDI) potential with a CYP3A4 inhibitor (ketoconazole) or inducer (rifampicin) in early drug development. Such an evaluation is relevant to anticancer drugs with metabolism governed by CYP3A4. DDIs with rifampicin are complex, involving other physiological mechanisms that may impact overall pharmacokinetics. Our objective was to study and delineate such mechanisms for oral versus intravenous anticancer drugs. We hypothesized that DDIs between anticancer drugs and rifampicin were primarily driven by CYP3A4 induction. This hypothesis was proven for the oral anticancer drugs; however, in some cases, other intrinsic mechanisms such as P-glycoprotein (Pgp)/UDP glucuronosyl transferase (UGT) induction and transporter inhibition may have played an important role alongside the induced CYP3A4 enzymes. The hypothesis that CYP3A4 induction would decrease drug exposure appeared paradoxical for intravenous romidepsin and-to a somewhat lesser extent-for cabazitaxel. In light of this dilemma in the interpretation of the pharmacokinetic data with rifampicin, several questions require further consideration. Given the complexity and paradoxical effects arising with DDIs with rifampicin, the continued preference for rifampicin as CYP3A4 inducer needs immediate re-appraisal. PMID:27098526

  15. Clinical pharmacokinetics and drug-drug interactions of endothelin receptor antagonists in pulmonary arterial hypertension.

    PubMed

    Venitz, Jürgen; Zack, Julia; Gillies, Hunter; Allard, Martine; Regnault, Jean; Dufton, Christopher

    2012-12-01

    The authors review the basic pharmacology and potential for adverse drug-drug interactions (DDIs) of bosentan and ambrisentan, the 2 endothelin receptor antagonists currently approved for pulmonary arterial hypertension (PAH) treatment. Bosentan, an endothelin (ET) receptor-type ET(A) and ET(B) antagonist, is metabolized to active metabolites by and an inducer of cytochrome P450 (CYP)2C9 and CYP3A. Ambrisentan, a selective ET(A) receptor antagonist, is metabolized primarily by uridine 5'diphosphate glucuronosyltransferases (UGTs) 1A9S, 2B7S, and 1A3S and, to a lesser extent, by CYP3A and CYP2C19. Drug interactions observed with bosentan DDI studies have demonstrated a potential for significant clinical implications during PAH management: bosentan is contraindicated with cyclosporine A and glyburide, and additional monitoring/dose adjustments are required when coadministered with hormonal contraceptives, simvastatin, lopinavir/ritonavir, and rifampicin. As bosentan carries a boxed warning regarding risks of liver injury and showed dose-dependant increases in serum aminotransferase abnormalities, drug interactions that increase bosentan exposure are of particular clinical concern. Ambrisentan DDI studies performed to date have shown only one clinically relevant DDI, an interaction with cyclosporine A that requires ambrisentan dose reduction. As the treatment of PAH moves toward multimodal combination therapy, scrutiny should be placed on ensuring that drug combinations achieve maximal clinical benefit while minimizing side effects. PMID:22205719

  16. Can Humanized Mice Predict Drug "Behavior" in Humans?

    PubMed

    Xu, Dan; Peltz, Gary

    2016-01-01

    Most of what we know about a drug prior to human clinical studies is derived from animal testing. Because animals and humans have substantial differences in their physiology and in their drug metabolism pathways, we do not know very much about the pharmacokinetic and pharmacodynamic behavior of a drug in humans until after it is administered to many people. Hence, drug-induced liver injury has become a significant public health problem, and we have a very inefficient drug development process with a high failure rate. Because the human liver is at the heart of these problems, chimeric mice with humanized livers could be used to address these issues. We examine recent evidence indicating that drug testing in chimeric mice could provide better information about a drug's metabolism, disposition, and toxicity (i.e., its "behavior") in humans and could aid in developing personalized medicine strategies, which would improve drug efficacy and safety. PMID:26514208

  17. Pharmacokinetics & Neurophysiology

    ERIC Educational Resources Information Center

    Davis, Andrew S.; Salpekar, Jay A.

    2009-01-01

    Medications administered in clinical practice obtain their therapeutic effect only to the extent that the drug is present in the appropriate concentration at the desired site. To achieve this goal, the prescribing clinician must be aware of how a drug may interact with the physiology of the patient. Pharmacokinetics is the study of this process…

  18. Pharmacokinetics of antiretroviral drugs in anatomical sanctuary sites: the fetal compartment (placenta and amniotic fluid).

    PubMed

    Else, Laura J; Taylor, Stephen; Back, David J; Khoo, Saye H

    2011-01-01

    HIV resides within anatomical 'sanctuary sites' where local drug exposure and viral dynamics may differ significantly from the systemic compartment. Widespread implementation of antiretroviral therapy has seen a significant decline in the incidence of mother-to-child transmission (MTCT) of HIV. In addition to suppression of maternal plasma/genital viral loads, antiretroviral agents that cross the placenta and achieve adequate concentrations in the fetal compartment may exert a greater prophylactic effect. Penetration of antiretrovirals in the fetal compartment is expressed by accumulation ratios derived from the measurement of drug concentrations in paired maternal plasma and umbilical cord samples. The nucleoside analogues and nevirapine accumulate extensively in cord blood and in the surrounding amniotic fluid, whereas the protease inhibitors (PIs) exhibit low-to-moderate placental accumulation. Early data suggest that high placental/neonatal concentrations are achieved with raltegravir, but to a lesser extent with etravirine and maraviroc (rank order of accumulation: raltegravir/nucleoside reverse transcriptase inhibitor [tenofovir > zidovudine/lamivudine/emtricitabine/stavudine/abacavir] > non-nucleoside reverse transcriptase inhibitor [nevirapine > etravirine] > PI > maraviroc/enfuvirtide). More comprehensive in vivo pharmacokinetic data are required to justify the potential use of these agents as safe and effective options during pregnancy. PMID:22155898

  19. HPLC Determination of Fexofenadine in Human Plasma For Therapeutic Drug Monitoring and Pharmacokinetic Studies.

    PubMed

    Helmy, S A; El Bedaiwy, H M

    2016-07-01

    A simple and sensitive method was developed for fexofenadine determination in human plasma by liquid chromatography with ultraviolet detection. Satisfactory separation was achieved on a Hypersil® BDS C18 column (250 × 4.6 mm, 5μm) using a mobile phase comprising 20 mm sodium dihydrogen phosphate-2 hydrate (pH adjusted to 3 with phosphoric acid)-acetonitrile at a ratio of 52:48, v/v. The elution was isocratic at ambient temperature with a flow rate of 1.0 mL/min. The UV detector was set at 215 nm for the drug and 330 nm for the internal standared (tinidazole). The total time for a chromatographic separation was ~6.5 min. Linearity was demonstrated over the concentration range 0.01-4 μg/mL. The observed within- and between-day assay precision ranged from 0.346 to 13.6%; accuracy varied between 100.4 and 111.2%. This method was successfully applied for therapeutic drug monitoring in patients treated with clinical doses of fexofenadine and for pharmacokinetic studies. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26577375

  20. Improvement of pyrazolo[3,4-d]pyrimidines pharmacokinetic properties: nanosystem approaches for drug delivery

    PubMed Central

    Vignaroli, Giulia; Calandro, Pierpaolo; Zamperini, Claudio; Coniglio, Federica; Iovenitti, Giulia; Tavanti, Matteo; Colecchia, David; Dreassi, Elena; Valoti, Massimo; Schenone, Silvia; Chiariello, Mario; Botta, Maurizio

    2016-01-01

    Pyrazolo[3,4-d]pyrimidines are a class of compounds with a good activity against several cancer cell lines. Despite the promising anticancer activity, these molecules showed a poor aqueous solubility. This issue could threat the future development of pyrazolo[3,4-d]pyrimidines as clinical drug candidates. With the aim of improving their solubility profile and consequently their pharmacokinetic properties, we have chosen four compounds (1–4) on the base of their anti-neuroblastoma activity and we have developed albumin nanoparticles and liposomes for the selected candidates. Albumin nanoparticles and liposomes were prepared and characterized regarding size and ζ-potential distribution, polidispersity index, entrapment efficiency and activity against SH-SY5Y human neuroblastoma cell line. The most promising nanosystem, namely LP-2, was chosen to perform further studies: confocal microscopy, stability and drug release in physiological conditions, and biodistribution. Altogether, the obtained data strongly indicate that the encapsulation of pyrazolo[3,4-d]pyrimidines in liposomes represent an effective method to overcome the poor water solubility. PMID:26898318

  1. Coadministration of pioglitazone or glyburide and alogliptin: pharmacokinetic drug interaction assessment in healthy participants.

    PubMed

    Karim, Aziz; Laurent, Aziz; Munsaka, Melvin; Wann, Elisabeth; Fleck, Penny; Mekki, Qais

    2009-10-01

    Alogliptin is a dipeptidyl peptidase-4 inhibitor under investigation for treatment of patients with type 2 diabetes mellitus. Potential pharmacokinetic (PK) drug-drug interactions of alogliptin with pioglitazone or glyburide were evaluated in healthy adults. In a randomized, 6-sequence, 3-period crossover study (study I), participants (n = 30 enrolled; n = 27 completed) received monotherapy with pioglitazone 45 mg once daily (qd), alogliptin 25 mg qd, or coadministration of the 2 agents. The 12-day treatment periods were separated by a > or =10-day washout interval. In a nonrandomized, single-sequence study (study II), participants (n = 24 completed) received a single 5-mg dose of the sulfonylurea glyburide, alone and after 8 days of dosing with alogliptin 25 mg qd. Sequential samples of blood (both studies) and urine (first study) were obtained for determination of PK parameters for alogliptin, pioglitazone, their metabolites, and glyburide. Minor changes in PK parameters between combination therapy and monotherapy were obtained but not judged to be clinically relevant. The combination treatments were well tolerated, although glyburide frequently caused hypoglycemia. Most adverse events were of mild intensity and occurred with a frequency similar to that with monotherapy. It is concluded that pioglitazone or glyburide can be administered with alogliptin without dose adjustment to any component of the combination therapy. PMID:19622714

  2. Improvement of pyrazolo[3,4-d]pyrimidines pharmacokinetic properties: nanosystem approaches for drug delivery.

    PubMed

    Vignaroli, Giulia; Calandro, Pierpaolo; Zamperini, Claudio; Coniglio, Federica; Iovenitti, Giulia; Tavanti, Matteo; Colecchia, David; Dreassi, Elena; Valoti, Massimo; Schenone, Silvia; Chiariello, Mario; Botta, Maurizio

    2016-01-01

    Pyrazolo[3,4-d]pyrimidines are a class of compounds with a good activity against several cancer cell lines. Despite the promising anticancer activity, these molecules showed a poor aqueous solubility. This issue could threat the future development of pyrazolo[3,4-d]pyrimidines as clinical drug candidates. With the aim of improving their solubility profile and consequently their pharmacokinetic properties, we have chosen four compounds (1-4) on the base of their anti-neuroblastoma activity and we have developed albumin nanoparticles and liposomes for the selected candidates. Albumin nanoparticles and liposomes were prepared and characterized regarding size and ζ-potential distribution, polidispersity index, entrapment efficiency and activity against SH-SY5Y human neuroblastoma cell line. The most promising nanosystem, namely LP-2, was chosen to perform further studies: confocal microscopy, stability and drug release in physiological conditions, and biodistribution. Altogether, the obtained data strongly indicate that the encapsulation of pyrazolo[3,4-d]pyrimidines in liposomes represent an effective method to overcome the poor water solubility. PMID:26898318

  3. Making Transporter Models for Drug-Drug Interaction Prediction Mobile.

    PubMed

    Ekins, Sean; Clark, Alex M; Wright, Stephen H

    2015-10-01

    The past decade has seen increased numbers of studies publishing ligand-based computational models for drug transporters. Although they generally use small experimental data sets, these models can provide insights into structure-activity relationships for the transporter. In addition, such models have helped to identify new compounds as substrates or inhibitors of transporters of interest. We recently proposed that many transporters are promiscuous and may require profiling of new chemical entities against multiple substrates for a specific transporter. Furthermore, it should be noted that virtually all of the published ligand-based transporter models are only accessible to those involved in creating them and, consequently, are rarely shared effectively. One way to surmount this is to make models shareable or more accessible. The development of mobile apps that can access such models is highlighted here. These apps can be used to predict ligand interactions with transporters using Bayesian algorithms. We used recently published transporter data sets (MATE1, MATE2K, OCT2, OCTN2, ASBT, and NTCP) to build preliminary models in a commercial tool and in open software that can deliver the model in a mobile app. In addition, several transporter data sets extracted from the ChEMBL database were used to illustrate how such public data and models can be shared. Predicting drug-drug interactions for various transporters using computational models is potentially within reach of anyone with an iPhone or iPad. Such tools could help prioritize which substrates should be used for in vivo drug-drug interaction testing and enable open sharing of models. PMID:26199424

  4. Pharmacokinetic drug-drug interaction study of ranolazine and metformin in subjects with type 2 diabetes mellitus.

    PubMed

    Zack, Julia; Berg, Jolene; Juan, Axel; Pannacciulli, Nicola; Allard, Martine; Gottwald, Mildred; Zhang, Heather; Shao, Yongwu; Ben-Yehuda, Ori; Jochelson, Phil

    2015-03-01

    Ranolazine and metformin may be frequently co-administered in subjects with chronic angina and co-morbid type 2 diabetes mellitus (T2DM). The potential for a drug-drug interaction was explored in two phase 1 clinical studies in subjects with T2DM to evaluate the pharmacokinetics and safety of metformin 1000 mg BID when administered with ranolazine 1000 mg BID (Study 1, N = 28) or ranolazine 500 mg BID (Study 2, N = 25) as compared to metformin alone. Co-administration of ranolazine 1000 mg BID with metformin 1000 mg BID resulted in 1.53- and 1.79-fold increases in steady-state metformin Cmax and AUCtau , respectively; co-administration of ranolazine 500 mg BID with metformin 1000 mg BID resulted in 1.22- and 1.37-fold increases in steady-state metformin Cmax and AUCtau , respectively. Co-administration of ranolazine and metformin was well tolerated in these T2DM subjects, with no serious adverse events or drug-related adverse events leading to discontinuation. The most common adverse events were nausea, diarrhea, and dizziness. These findings are consistent with a dose-related interaction between ranolazine and metformin, and suggest that a dose adjustment of metformin may not be required with ranolazine 500 mg BID; whereas, the metformin dose should not exceed 1700 mg of total daily dose when using ranolazine 1000 mg BID. PMID:27128216

  5. Development of quantitative structure-pharmacokinetic relationships.

    PubMed Central

    Mayer, J M; van de Waterbeemd, H

    1985-01-01

    Quantitative structure-activity relationships (QSAR) relating biological activity to physiochemical descriptors have been successfully used for a number of years. It is also long recognized that pharmacokinetic parameters may play an important and even determinant role in drug action. This prompted several researchers to focus attention to pharmacokinetic parameters as potential descriptors in quantitative drug design. A number of examples of quantitative structure-pharmacokinetic relationships (QSPR) have appeared in the literature. The present contribution reviews some developments in this field. In particular, a number of concepts and problems are critically discussed, rather than compilations of examples already published in recent reviews. Attention will be paid to the main processes of the pharmacokinetic or toxicokinetic phase in drug action, including absorption, distribution and elimination (biotransformation and excretion). It is clear that quantitative approaches are of considerable interest to toxicologists, since these methods may contribute to the development of real predictive toxicology. PMID:3905378

  6. High prevalence of potential drug interactions affecting mycophenolic acid pharmacokinetics in nonmyeloablative hematopoietic stem cell transplant recipients

    PubMed Central

    Jaklič, Alenka; Collins, Carol J.; Mrhar, Aleš; Sorror, Mohamed L.; Sandmaier, Brenda M.; Bemer, Meagan J.; Locatelli, Igor; McCune, Jeannine S.

    2013-01-01

    Objective: Mycophenolic acid (MPA) exposure is associated with clinical outcomes in hematopoietic cell transplant (HCT) recipients. Various drug interaction studies, predominantly in healthy volunteers or solid organ transplant recipients, have identified medications which impact MPA pharmacokinetics. Recipients of nonmyeloablative HCT, however, have an increased burden of comorbidities, potentially increasing the number of concomitant medications and potential drug interactions (PDI) affecting MPA exposure. Thus, we sought to be the first to characterize these PDI in nonmyeloablative HCT recipients. Materials and methods: We compiled PDI affecting MPA pharmacokinetics and characterized the prevalence of PDI in nonmyeloablative HCT recipients. A comprehensive literature evaluation of four databases and PubMed was conducted to identify medications with PDI affecting MPA pharmacokinetics. Subsequently, a retrospective medication review was conducted to characterize the cumulative PDI burden, defined as the number of PDI for an individual patient over the first 21 days after allogeneic graft infusion, in 84 nonmyeloablative HCT recipients. Results: Of the 187 concomitant medications, 11 (5.9%) had a PDI affecting MPA pharmacokinetics. 87% of 84 patients had one PDI, with a median cumulative PDI burden of 2 (range 0 – 4). The most common PDI, in descending order, were cyclosporine, omeprazole and pantoprazole. Conclusion: Only a minority of medications (5.9%) have a PDI affecting MPA pharmacokinetics. However, the majority of nonmyeloablative HCT recipients had a PDI, with cyclosporine and the proton pump inhibitors being the most common. A better understanding of PDI and their management should lead to safer medication regimens for nonmyeloablative HCT recipients. PMID:23782584

  7. Is infant exposure to antiretroviral drugs during breastfeeding quantitatively important? A systematic review and meta-analysis of pharmacokinetic studies

    PubMed Central

    Waitt, Catriona John; Garner, Paul; Bonnett, Laura Jayne; Khoo, Saye Hock; Else, Laura Jayne

    2015-01-01

    Objectives The objectives of this study were to summarize antiretroviral drug concentrations in breast milk (BM) and exposure of breast-fed infants. Methods This was a systematic review of pharmacokinetic studies of HIV-positive women taking antiretrovirals that measured drugs in BM. The quality of pharmacokinetic and laboratory methods was assessed using pre-defined criteria. Pooled ratios and 95% CIs were calculated using the generalized inverse variance method and heterogeneity was estimated by the I2 statistic. PubMed Central, SCOPUS and LactMed databases were searched. No date or language restrictions were applied. Searches were conducted up to 10 November 2014. Clinical relevance was estimated by comparing ingested dose with the recommended therapeutic dose for each drug. Results Twenty-four studies were included. There was substantial variability in the clinical and laboratory methods used and in reported results. Relative to maternal plasma (MP), NRTIs accumulate in BM, with BM : MP ratios (95% CI estimates) from 0.89 to 1.21 (14 studies, 1159 paired BM and MP samples). NNRTI estimates were from 0.71 to 0.94 (17 studies, 965 paired samples) and PI estimates were from 0.17 to 0.21 (8 studies, 477 paired samples). Relative to the recommended paediatric doses, a breast-fed infant may ingest 8.4% (95% CI 1.9–15.0), 12.5% (95% CI 2.6–22.3) and 1.1% (95% CI 0–3.6) of lamivudine, nevirapine and efavirenz, respectively, via BM. Conclusions Transfer to untreated infants appears quantitatively important for some NRTIs and NNRTIs. The pharmacokinetic methods varied widely and we propose standards for the design, analysis and reporting of future pharmacokinetic studies of drug transfer during breastfeeding. PMID:25858354

  8. Difference in the Pharmacokinetics and Hepatic Metabolism of Antidiabetic Drugs in Zucker Diabetic Fatty and Sprague-Dawley Rats.

    PubMed

    Zhou, Xin; Rougée, Luc R A; Bedwell, David W; Cramer, Jeff W; Mohutsky, Michael A; Calvert, Nathan A; Moulton, Richard D; Cassidy, Kenneth C; Yumibe, Nathan P; Adams, Lisa A; Ruterbories, Kenneth J

    2016-08-01

    The Zucker diabetic fatty (ZDF) rat, an inbred strain of obese Zucker fatty rat, develops early onset of insulin resistance and displays hyperglycemia and hyperlipidemia. The phenotypic changes resemble human type 2 diabetes associated with obesity and therefore the strain is used as a pharmacological model for type 2 diabetes. The aim of the current study was to compare the pharmacokinetics and hepatic metabolism in male ZDF and Sprague-Dawley (SD) rats of five antidiabetic drugs that are known to be cleared via various mechanisms. Among the drugs examined, metformin, cleared through renal excretion, and rosiglitazone, metabolized by hepatic cytochrome P450 2C, did not exhibit differences in the plasma clearance in ZDF and SD rats. In contrast, glibenclamide, metabolized by hepatic CYP3A, canagliflozin, metabolized mainly by UDP-glucuronosyltransferases (UGT), and troglitazone, metabolized by sulfotransferase and UGT, exhibited significantly lower plasma clearance in ZDF than in SD rats after a single intravenous administration. To elucidate the mechanisms for the difference in the drug clearance, studies were performed to characterize the activity of hepatic drug-metabolizing enzymes using liver S9 fractions from the two strains. The results revealed that the activity for CYP3A and UGT was decreased in ZDF rats using the probe substrates, and decreased unbound intrinsic clearance in vitro for glibenclamide, canagliflozin, and troglitazone was consistent with lower plasma clearance in vivo. The difference in pharmacokinetics of these two strains may complicate pharmacokinetic/pharmacodynamic correlations, given that ZDF is used as a pharmacological model, and SD rat as the pharmacokinetics and toxicology strain. PMID:27217490

  9. A new goldfish model to evaluate pharmacokinetic and pharmacodynamic effects of drugs used for motion sickness in different gravity loads

    NASA Astrophysics Data System (ADS)

    Lathers, Claire M.; Mukai, Chiaki; Smith, Cedric M.; Schraeder, Paul L.

    2001-08-01

    This paper proposes a new goldfish model to predict pharmacodynamic/pharmacokinetic effects of drugs used to treat motion sickness administered in differing gravity loads. The assumption of these experiments is that the vestibular system is dominant in producing motion sickness and that the visual system is secondary or of small import in the production of motion sickness. Studies will evaluate the parameter of gravity and the contribution of vision to the role of the neurovestibular system in the initiation of motion sickness with and without pharmacologic agents. Promethazine will be studied first. A comparison of data obtained in different groups of goldfish will be done (normal vs. acutely and chronically bilaterally blinded vs. sham operated). Some fish will be bilaterally blinded 10 months prior to initiation of the experiment (designated the chronically bilaterally blinded group of goldfish) to evaluate the neuroplasticity of the nervous system and the associated return of neurovestibular function. Data will be obtained under differing gravity loads with and without a pharmacological agent for motion sickness. Experiments will differentiate pharmacological effects on vision vs. neurovestibular input to motion sickness. Comparison of data obtained in the normal fish and in acutely and chronically bilaterally blinded fish with those obtained in fish with intact and denervated otoliths will differentiate if the visual or neurovestibular system is dominant in response to altered gravity and/or drugs. Experiments will contribute to validation of the goldfish as a model for humans since plasticity of the central nervous system allows astronauts to adapt to the altered visual stimulus conditions of 0-g. Space motion sickness may occur until such an adaptation is achieved.

  10. Preclinical pharmacokinetics of TPN729MA, a novel PDE5 inhibitor, and prediction of its human pharmacokinetics using a PBPK model

    PubMed Central

    Gao, Zhi-wei; Zhu, Yun-ting; Yu, Ming-ming; Zan, Bin; Liu, Jia; Zhang, Yi-fan; Chen, Xiao-yan; Li, Xue-ning; Zhong, Da-fang

    2015-01-01

    Aim: TPN729MA is a novel selective PDE5 inhibitor currently under clinical development in China for the treatment of erectile dysfunction. In this study we characterized its preclinical pharmacokinetics (PK) and predict its human PK using a physiologically based pharmacokinetic (PBPK) model. Methods: The preclinical PK of TPN729MA was studied in rats and dogs. Human clearance (CL) values for TPN729MA were predicted from various allometric methods and from intrinsic CL determined in human liver microsomes. Human PK and plasma concentration versus time profiles of TPN729MA were predicted by using a PBPK model in GastroPlus. Considering the uncertainties in the prediction, a preliminary human study was conducted in 3 healthy male volunteers with an oral dose of 25 mg. Results: After a single intravenous administration of TPN729MA at a dose of 1 mg/kg in rats and 3 mg/kg in dogs, the plasma CL was 69.7 mL·min−1·kg−1 in rats and 26.3 mL·min−1·kg−1 in dogs, and the steady-state volumes of distribution (Vss) were 7.35 L/kg in rats and 6.48 L/kg in dogs. The oral bioavailability of TPN729MA was 10% in rats and above 34% in dogs. Profiles of predicted plasma concentration versus time were similar to those observed in humans at 25 mg, and the predicted Tmax, Cmax and AUC values were within 2-fold of the observed values. Conclusion: TPN729MA demonstrates good preclinical PK. This compound is a valuable candidate for further clinical development. This study shows the benefits of using a PBPK model to predict PK in humans. PMID:26592518