Science.gov

Sample records for predicting environmental chemical

  1. EPA'S TOXCAST PROGRAM FOR PREDICTING TOXICITY AND PRIORITIZING ENVIRONMENTAL CHEMICALS

    EPA Science Inventory

    ToxCast is a research program to predict or forecast toxicity by evaluating a broad spectrum of chemicals and effects; physical-chemical properties, predicted bioactivities, HTS and cell-based assays, and genomics. Data will be interpretively linked to known or predicted toxicol...

  2. Evaluation of a multimedia model for predicting the environmental fate of organic chemicals in Canada

    SciTech Connect

    Kane, D.M.; Mackay, D.

    1995-12-31

    Health Canada is required to assess human health risks associated with the introduction of new chemicals for commercial use in Canada. An important initial step in this assessment process is the estimation of expected concentrations of a particular new chemical in various environmental media such as air, water, sail, and sediment. These concentrations can then form the basis for subsequent calculations of human exposure. A fugacity-based multimedia exposure model (CHEMCAN3) was developed for these assessments which describes the chemical`s fate in the environment based on its physical chemical properties, reactivity, transport characteristics and emissions. This paper presents the results of a validation exercise comparing the predictions of the model against measured data. CHEMCAN3 was applied to the prediction of the environmental fate of a set of 10 organic chemicals. The predictions were then compared to available environmental monitoring data for these chemicals, The test set included 5 industrial chemicals and 5 commonly used pesticides; benzene, chlorobenzene, hexachlorobenzene, toluene, dichloromethane, di(2-ethylhexyl) phthalate, atrazine, dinoseb, lindane, parathion, and 2,4-dichlorophenoxyacetic acid. The Southern Ontario region of Canada was used as the environment for the model predictions. The results show that the model successfully predicts the environmental behavior of the chemicals, with 82% agreement within one order of magnitude between predicted and measured values. This result lends confidence to the use of this model, and similar models, for prediction of environmental fate and as a basis for exposure assessment.

  3. Predictive In Vitro Screening of Environmental Chemicals – The ToxCast Project

    EPA Science Inventory

    ToxCast, the United States Environmental Protection Agency’s chemical prioritization research program, is developing methods for utilizing computational chemistry and bioactivity profiling to predict potential for toxicity and prioritize limited testing resources (www.epa.gov/toc...

  4. Use of QSARs in international decision-making frameworks to predict ecologic effects and environmental fate of chemical substances.

    PubMed Central

    Cronin, Mark T D; Walker, John D; Jaworska, Joanna S; Comber, Michael H I; Watts, Christopher D; Worth, Andrew P

    2003-01-01

    This article is a review of the use, by regulatory agencies and authorities, of quantitative structure-activity relationships (QSARs) to predict ecologic effects and environmental fate of chemicals. For many years, the U.S. Environmental Protection Agency has been the most prominent regulatory agency using QSARs to predict the ecologic effects and environmental fate of chemicals. However, as increasing numbers of standard QSAR methods are developed and validated to predict ecologic effects and environmental fate of chemicals, it is anticipated that more regulatory agencies and authorities will find them to be acceptable alternatives to chemical testing. PMID:12896861

  5. A unified algorithm for predicting partition coefficients for PBPK modeling of drugs and environmental chemicals

    SciTech Connect

    Peyret, Thomas; Poulin, Patrick; Krishnan, Kannan

    2010-12-15

    The algorithms in the literature focusing to predict tissue:blood PC (P{sub tb}) for environmental chemicals and tissue:plasma PC based on total (K{sub p}) or unbound concentration (K{sub pu}) for drugs differ in their consideration of binding to hemoglobin, plasma proteins and charged phospholipids. The objective of the present study was to develop a unified algorithm such that P{sub tb}, K{sub p} and K{sub pu} for both drugs and environmental chemicals could be predicted. The development of the unified algorithm was accomplished by integrating all mechanistic algorithms previously published to compute the PCs. Furthermore, the algorithm was structured in such a way as to facilitate predictions of the distribution of organic compounds at the macro (i.e. whole tissue) and micro (i.e. cells and fluids) levels. The resulting unified algorithm was applied to compute the rat P{sub tb}, K{sub p} or K{sub pu} of muscle (n = 174), liver (n = 139) and adipose tissue (n = 141) for acidic, neutral, zwitterionic and basic drugs as well as ketones, acetate esters, alcohols, aliphatic hydrocarbons, aromatic hydrocarbons and ethers. The unified algorithm reproduced adequately the values predicted previously by the published algorithms for a total of 142 drugs and chemicals. The sensitivity analysis demonstrated the relative importance of the various compound properties reflective of specific mechanistic determinants relevant to prediction of PC values of drugs and environmental chemicals. Overall, the present unified algorithm uniquely facilitates the computation of macro and micro level PCs for developing organ and cellular-level PBPK models for both chemicals and drugs.

  6. THE INTEGRATED USE OF COMPUTATIONAL CHEMISTRY, SCANNING PROBE MICROSCOPY, AND VIRTUAL REALITY TO PREDICT THE CHEMICAL REACTIVITY OF ENVIRONMENTAL SURFACES

    EPA Science Inventory

    In the last decade three new techniques scanning probe microscopy (SPM), virtual reality (YR) and computational chemistry ave emerged with the combined capability of a priori predicting the chemically reactivity of environmental surfaces. Computational chemistry provides the cap...

  7. Toxicity challenges in environmental chemicals: Prediction of human plasma protein binding through quantitative structure-activity relationship (QSAR) models

    EPA Science Inventory

    The present study explores the merit of utilizing available pharmaceutical data to construct a quantitative structure-activity relationship (QSAR) for prediction of the fraction of a chemical unbound to plasma protein (Fub) in environmentally relevant compounds. Independent model...

  8. Importance of environmental and biomass dynamics in predicting chemical exposure in ecological risk assessment.

    PubMed

    Morselli, Melissa; Semplice, Matteo; De Laender, Frederik; Van den Brink, Paul J; Di Guardo, Antonio

    2015-09-01

    In ecological risk assessment, exposure is generally modelled assuming static conditions, herewith neglecting the potential role of emission, environmental and biomass dynamics in affecting bioavailable concentrations. In order to investigate the influence of such dynamics on predicted bioavailable concentrations, the spatially-resolved dynamic model "ChimERA fate" was developed, incorporating macrophyte and particulate/dissolved organic carbon (POC/DOC) dynamics into a water-sediment system. An evaluation against three case studies revealed a satisfying model performance. Illustrative simulations then highlighted the potential spatio-temporal variability of bioavailable concentrations after a pulsed emission of four chemicals in a system composed of a pond connected to its inflow and outflow streams. Changes in macrophyte biomass and POC/DOC levels caused exposure variations which were up to a factor of 4.5 in time and even more significant (several orders of magnitude) in space, especially for highly hydrophobic chemicals. ChimERA fate thus revealed to be a useful tool to investigate such variations and to identify those environmental and ecological conditions in which risk is expected to be highest. PMID:25967479

  9. EPA's ToxCast Program for Predicting Hazard and Prioritizing the Toxicity Testing of Environmental Chemicals

    EPA Science Inventory

    An alternative is to perform a set of relatively inexpensive and rapid high throughput screening (HTS) assays, derive signatures predictive of effects or modes of chemical toxicity from the HTS data, then use these predictions to prioritize chemicals for more detailed analysis. T...

  10. A Rat α-Fetoprotein Binding Activity Prediction Model to Facilitate Assessment of the Endocrine Disruption Potential of Environmental Chemicals.

    PubMed

    Hong, Huixiao; Shen, Jie; Ng, Hui Wen; Sakkiah, Sugunadevi; Ye, Hao; Ge, Weigong; Gong, Ping; Xiao, Wenming; Tong, Weida

    2016-01-01

    Endocrine disruptors such as polychlorinated biphenyls (PCBs), diethylstilbestrol (DES) and dichlorodiphenyltrichloroethane (DDT) are agents that interfere with the endocrine system and cause adverse health effects. Huge public health concern about endocrine disruptors has arisen. One of the mechanisms of endocrine disruption is through binding of endocrine disruptors with the hormone receptors in the target cells. Entrance of endocrine disruptors into target cells is the precondition of endocrine disruption. The binding capability of a chemical with proteins in the blood affects its entrance into the target cells and, thus, is very informative for the assessment of potential endocrine disruption of chemicals. α-fetoprotein is one of the major serum proteins that binds to a variety of chemicals such as estrogens. To better facilitate assessment of endocrine disruption of environmental chemicals, we developed a model for α-fetoprotein binding activity prediction using the novel pattern recognition method (Decision Forest) and the molecular descriptors calculated from two-dimensional structures by Mold² software. The predictive capability of the model has been evaluated through internal validation using 125 training chemicals (average balanced accuracy of 69%) and external validations using 22 chemicals (balanced accuracy of 71%). Prediction confidence analysis revealed the model performed much better at high prediction confidence. Our results indicate that the model is useful (when predictions are in high confidence) in endocrine disruption risk assessment of environmental chemicals though improvement by increasing number of training chemicals is needed. PMID:27023588

  11. A Rat α-Fetoprotein Binding Activity Prediction Model to Facilitate Assessment of the Endocrine Disruption Potential of Environmental Chemicals

    PubMed Central

    Hong, Huixiao; Shen, Jie; Ng, Hui Wen; Sakkiah, Sugunadevi; Ye, Hao; Ge, Weigong; Gong, Ping; Xiao, Wenming; Tong, Weida

    2016-01-01

    Endocrine disruptors such as polychlorinated biphenyls (PCBs), diethylstilbestrol (DES) and dichlorodiphenyltrichloroethane (DDT) are agents that interfere with the endocrine system and cause adverse health effects. Huge public health concern about endocrine disruptors has arisen. One of the mechanisms of endocrine disruption is through binding of endocrine disruptors with the hormone receptors in the target cells. Entrance of endocrine disruptors into target cells is the precondition of endocrine disruption. The binding capability of a chemical with proteins in the blood affects its entrance into the target cells and, thus, is very informative for the assessment of potential endocrine disruption of chemicals. α-fetoprotein is one of the major serum proteins that binds to a variety of chemicals such as estrogens. To better facilitate assessment of endocrine disruption of environmental chemicals, we developed a model for α-fetoprotein binding activity prediction using the novel pattern recognition method (Decision Forest) and the molecular descriptors calculated from two-dimensional structures by Mold2 software. The predictive capability of the model has been evaluated through internal validation using 125 training chemicals (average balanced accuracy of 69%) and external validations using 22 chemicals (balanced accuracy of 71%). Prediction confidence analysis revealed the model performed much better at high prediction confidence. Our results indicate that the model is useful (when predictions are in high confidence) in endocrine disruption risk assessment of environmental chemicals though improvement by increasing number of training chemicals is needed. PMID:27023588

  12. Essential Set of Molecular Descriptors for ADME Prediction in Drug and Environmental Chemical Space

    EPA Science Inventory

    Historically, the disciplines of pharmacology and toxicology have embraced quantitative structure-activity relationships (QSAR) and quantitative structure-property relationships (QSPR) to predict ADME properties or biological activities of untested chemicals. The question arises ...

  13. EPA'S TOXCAST PROGRAM FOR PREDICTING HAZARD AND PRIORITIZING TOXICITY TESTING OF ENVIRONMENTAL CHEMICALS

    EPA Science Inventory

    EPA is developing methods for utilizing computational chemistry, high-throughput screening (HTS) and various toxicogenomic technologies to predict potential for toxicity and prioritize limited testing resources towards chemicals that likely represent the greatest hazard to human ...

  14. The US EPAs ToxCast Program for the Prioritization and Prediction of Environmental Chemical Toxicity

    EPA Science Inventory

    To meet the need for evaluating large numbers of chemicals for potential toxicity, the U.S. Environmental Protection Agency has initiated a research project call ToxCast that makes use of recent advances in molecular biology and high-throughput screening. These technologies have ...

  15. An Online Prediction Platform to Support the Environmental Sciences (American Chemical Society)

    EPA Science Inventory

    Historical QSAR models are currently utilized across a broad range of applications within the U.S. Environmental Protection Agency (EPA). These models predict basic physicochemical properties (e.g., logP, aqueous solubility, vapor pressure), which are then incorporated into expo...

  16. The Environmental Fate Simulator: A tool for predicting the degradation pathways of organic chemicals in groundwater aquifers

    EPA Science Inventory

    Development of the Environmental Fate Simulator (EFS): • High throughput computational system for providing molecular and environmental descriptors for consumption by EF&T models Requires:  Knowledge of the process science controlling chemical fate and transport  The abil...

  17. Chemical and Environmental Technology.

    ERIC Educational Resources Information Center

    Sheather, Harry

    The two-year curriculum in chemical technology presented in the document is designed to prepare high school graduates for technical positions in the chemical industry. Course outlines are given for general chemistry, chemical calculations, quantitative analysis, environmental chemistry, organic chemistry 1 and 2, instrumental analysis, and…

  18. Prediction of Cytochrome P450 Profiles of Environmental Chemicals with QSAR Models Built from Drug-like Molecules

    EPA Science Inventory

    The human cytochrome P450 (CYP450) enzyme family is involved in the biotransformation of many environmental chemicals. As part of the U.S. Tox21 effort, we profiled the CYP450 activity of ~2800 chemicals predominantly of environmental concern against CYP1A2, CYP2C19, CYP2C9, CYP2...

  19. EPAS TOXCAST PROGRAM FOR PREDICTING HAZARD AND PRIORITIZING TOXICITY TESTING OF ENVIRONMENTAL CHEMICALS(S).

    EPA Science Inventory

    EPAs National Center for Computational Toxicology is developing methods that apply computational chemistry, high-throughput screening (HTS) and genomic technologies to predict potential toxicity and prioritize the use of limited testing resources.

  20. Critically Evaluated Database of Environmental Properties: The Importance of Thermodynamic Relationships, Chemical Family Trends, and Prediction Methods

    NASA Astrophysics Data System (ADS)

    Brockbank, Sarah A.; Russon, Jenna L.; Giles, Neil F.; Rowley, Richard L.; Wilding, W. Vincent

    2013-11-01

    A database containing Henry's law constants, infinite dilution activity coefficients, and solubility data of industrially important chemicals has been compiled for aqueous systems. These properties are important in predicting the fate and transport of chemicals in the environment. The structure of this database is compatible with the existing 801 database and DIADEM interface, and data are included for a subset of compounds found in the 801 database. Thermodynamic relationships, chemical family trends, and predicted values were carefully considered when designating recommended values.

  1. Coal Extraction - Environmental Prediction

    USGS Publications Warehouse

    Cecil, C. Blaine; Tewalt, Susan J.

    2002-01-01

    Coal from the Appalachian region has supplied energy to the Nation for more than 200 years. Appalachian coal fueled America through a civil war and helped win two world wars. Appalachian coal has also provided fuel for keeping America warm in the winter and cool in the summer and has served as the basis for the steel, automobile, organic chemicals, chlorine, and aluminum industries. These benefits have not come without environmental costs, however. Coal extraction and utilization have had significant environmental impacts.

  2. Prediction of Cytochrome P450 Profiles of Environmental Chemicals with QSAR Models Built from Drug-like Molecules

    PubMed Central

    Sun, Hongmao; Veith, Henrike; Xia, Menghang; Austin, Christopher P.; Tice, Raymond R.; Huang, Ruili

    2012-01-01

    The human cytochrome P450 (CYP) enzyme family is involved in the biotransformation of many xenobiotics. As part of the U.S. Tox21 Phase I effort, we profiled the CYP activity of approximately three thousand compounds, primarily those of environmental concern, against human CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4 isoforms in a quantitative high throughput screening (qHTS) format. In order to evaluate the extent to which computational models built from a drug-like library screened in these five CYP assays under the same conditions can accurately predict the outcome of an environmental compound library, five support vector machines (SVM) models built from over 17,000 drug-like compounds were challenged to predict the CYP activities of the Tox21 compound collection. Although a large fraction of the test compounds fall outside of the applicability domain (AD) of the models, as measured by k-nearest neighbor (k-NN) similarities, the predictions were largely accurate for CYP1A2, CYP2C9, and CYP3A4 ioszymes with area under the receiver operator characteristic curves (AUC-ROC) ranging between 0.82 and 0.84. The lower predictive power of the CYP2C19 model (AUC-ROC = 0.76) is caused by experimental errors and that of the CYP2D6 model (AUC-ROC = 0.76) can be rescued by rebalancing the training data. Our results demonstrate that decomposing molecules into atom types enhanced the coverage of the AD and that computational models built from drug-like molecules can be used to predict the ability of non-drug like compounds to interact with these CYPs. PMID:23459712

  3. Predicting biological effects of environmental mixtures using exposure:activity ratios (EAR) derived from US EPA’s ToxCast data: Retrospective application to chemical monitoring data

    EPA Science Inventory

    Chemical monitoring has been widely used in environmental surveillance to assess exposure to environmental contaminants which could represent potential hazards to exposed organisms. However, the ability to detect chemicals in the environment has rapidly outpaced assessment of pot...

  4. Environmental Chemicals in Breast Milk

    EPA Science Inventory

    Most of the information available on environmental chemicals in breast milk is focused on persistent, lipophilic chemicals; the database on levels of these chemicals has expanded substantially since the 1950s. Currently, various types of chemicals are measured in breast milk and ...

  5. Predictive testing of environmental carcinogens

    SciTech Connect

    Dickson, J.G.

    1982-01-01

    Two research approaches are presented which address different aspects of predictive testing for environmental carcinogens. In Part I, a well-known microbial assay is used to determine the presence of carcinogens in an environmental sample of suspected hazard. In Part II, a single chemical carcinogen is chosen to demonstrate the utility of three-phase microcosms for prediction of transport and transformations pathways in a reservoir ecosystem. The Ames/Salmonella mutagenicity assay was used to screen processed oil shale extracts for potentially carcinogenic chemicals. Positive mutagenic activity was detected in organic solvent extracts of all four spent shales tested. Problems which might limit application of the Ames assay were explored. The results of assays of one-to-one mixtures of two mutagens which exhibited different dose response curves when assayed separately indicated the response to the mixture was nonadditive. Furthermore, the response to the mixture was determined to be statistically indistinguishable (chi-square analysis) from the dose response curve of one of the mutagens in the majority of cases. This masking effect was found to persist for one strong mutagen (benzo(a)pyrene) even when it composed only 10% of the mixture. The effect of various non-toxic solvents on the mutagenic response of certain mutagens was also determined. Three-phase microcosms were used to study the aquatic fate and effect of a polycyclic aromatic hydrocarbon (PAH), benz(a)antracene.

  6. PREDICTING CHEMICAL REACTIVITY BY COMPUTER

    EPA Science Inventory

    Mathematical models for predicting the fate of pollutants in the environment require reactivity parameter values--that it, the physical and chemical constants that govern reactivity. lthough empirical structure-activity relationships have been developed that allow estimation of s...

  7. Human health and the environment: Predicting plasma protein binding and metabolic clearance rates of environmentally relevant chemicals.

    EPA Science Inventory

    In silico methods provide a rapid, inexpensive means of screening a wide array of environmentally relevant pollutants, pesticides, fungicides and consumer products for further toxicity testing. Physiologically based pharmacokinetic (PBPK) models bridge the gap between in vitro as...

  8. Predicted no effect concentration derivation as a significant source of variability in environmental hazard assessments of chemicals in aquatic systems: an international analysis.

    PubMed

    Hahn, Thorsten; Diamond, Jerry; Dobson, Stuart; Howe, Paul; Kielhorn, Janet; Koennecker, Gustav; Lee-Steere, Chris; Mangelsdorf, Inge; Schneider, Uwe; Sugaya, Yoshio; Taylor, Ken; Dam, Rick Van; Stauber, Jenny L

    2014-01-01

    Environmental hazard assessments for chemicals are carried out to define an environmentally "safe" level at which, theoretically, the chemical will not negatively affect any exposed biota. Despite this common goal, the methodologies in use are very diverse across different countries and jurisdictions. This becomes particularly obvious when international scientists work together on documents with global scope, e.g., in the World Health Organization (WHO) International Program on Chemical Safety. In this article, we present a study that describes the extent of such variability and analyze the reasons that lead to different outcomes in deriving a "safe level" (termed the predicted no effect concentration [PNEC] throughout this article). For this purpose, we chose 5 chemicals to represent well-known substances for which sufficient high-quality aquatic effects data were available: ethylene glycol, trichloroethylene, nonylphenol, hexachlorobenzene, and copper (Cu). From these data, 2 data sets for each chemical were compiled: the full data set, that contained all information from selected peer-review sources, and the base data set, a subsample of the full set simulating limited data. Scientists from the European Union (EU), United States, Canada, Japan, and Australia independently carried out hazard assessments for each of these chemicals using the same data sets. Their reasoning for key study selection, use of assessment factors, or use of probabilistic methods was comprehensively documented. The observed variation in the PNECs for all chemicals was up to 3 orders of magnitude, and this was not simply due to obvious factors such as the size of the data set or the methodology used. Rather, this was due to individual decisions of the assessors within the scope of the methodology used, especially key study selection, acute versus chronic definitions, and size of assessment factors. Awareness of these factors, together with transparency of the decision-making process, would

  9. Toxicokinetic Triage for Environmental Chemicals

    PubMed Central

    Wambaugh, John F.; Wetmore, Barbara A.; Pearce, Robert; Strope, Cory; Goldsmith, Rocky; Sluka, James P.; Sedykh, Alexander; Tropsha, Alex; Bosgra, Sieto; Shah, Imran; Judson, Richard; Thomas, Russell S.; Woodrow Setzer, R.

    2015-01-01

    Toxicokinetic (TK) models link administered doses to plasma, blood, and tissue concentrations. High-throughput TK (HTTK) performs in vitro to in vivo extrapolation to predict TK from rapid in vitro measurements and chemical structure-based properties. A significant toxicological application of HTTK has been “reverse dosimetry,” in which bioactive concentrations from in vitro screening studies are converted into in vivo doses (mg/kg BW/day). These doses are predicted to produce steady-state plasma concentrations that are equivalent to in vitro bioactive concentrations. In this study, we evaluate the impact of the approximations and assumptions necessary for reverse dosimetry and develop methods to determine whether HTTK tools are appropriate or may lead to false conclusions for a particular chemical. Based on literature in vivo data for 87 chemicals, we identified specific properties (eg, in vitro HTTK data, physico-chemical descriptors, and predicted transporter affinities) that correlate with poor HTTK predictive ability. For 271 chemicals we developed a generic HT physiologically based TK (HTPBTK) model that predicts non-steady-state chemical concentration time-courses for a variety of exposure scenarios. We used this HTPBTK model to find that assumptions previously used for reverse dosimetry are usually appropriate, except most notably for highly bioaccumulative compounds. For the thousands of man-made chemicals in the environment that currently have no TK data, we propose a 4-element framework for chemical TK triage that can group chemicals into 7 different categories associated with varying levels of confidence in HTTK predictions. For 349 chemicals with literature HTTK data, we differentiated those chemicals for which HTTK approaches are likely to be sufficient, from those that may require additional data. PMID:26085347

  10. Assessment of in vitro high throughput pharmacokinetic data to predict in vivo pharmacokinetic data of environmental chemicals

    EPA Science Inventory

    Assessing the health risks of the thousands of chemicals in use requires both toxicology and pharmacokinetic (PK) data that can be generated more quickly. For PK, in vitro clearance assays with hepatocytes and serum protein binding assays provide a means to generate high throughp...

  11. Environmental chemical exposures and human epigenetics

    PubMed Central

    Hou, Lifang; Zhang, Xiao; Wang, Dong; Baccarelli, Andrea

    2012-01-01

    Every year more than 13 million deaths worldwide are due to environmental pollutants, and approximately 24% of diseases are caused by environmental exposures that might be averted through preventive measures. Rapidly growing evidence has linked environmental pollutants with epigenetic variations, including changes in DNA methylation, histone modifications and microRNAs. Environ mental chemicals and epigenetic changes All of these mechanisms are likely to play important roles in disease aetiology, and their modifications due to environmental pollutants might provide further understanding of disease aetiology, as well as biomarkers reflecting exposures to environmental pollutants and/or predicting the risk of future disease. We summarize the findings on epigenetic alterations related to environmental chemical exposures, and propose mechanisms of action by means of which the exposures may cause such epigenetic changes. We discuss opportunities, challenges and future directions for future epidemiology research in environmental epigenomics. Future investigations are needed to solve methodological and practical challenges, including uncertainties about stability over time of epigenomic changes induced by the environment, tissue specificity of epigenetic alterations, validation of laboratory methods, and adaptation of bioinformatic and biostatistical methods to high-throughput epigenomics. In addition, there are numerous reports of epigenetic modifications arising following exposure to environmental toxicants, but most have not been directly linked to disease endpoints. To complete our discussion, we also briefly summarize the diseases that have been linked to environmental chemicals-related epigenetic changes. PMID:22253299

  12. Multimedia environmental chemical partitioning from molecular information.

    PubMed

    Martínez, Izacar; Grifoll, Jordi; Giralt, Francesc; Rallo, Robert

    2010-12-15

    The prospect of assessing the environmental distribution of chemicals directly from their molecular information was analyzed. Multimedia chemical partitioning of 455 chemicals, expressed in dimensionless compartmental mass ratios, was predicted by SimpleBox 3, a Level III Fugacity model, together with the propagation of reported uncertainty for key physicochemical and transport properties, and degradation rates. Chemicals, some registered in priority lists, were selected according to the availability of experimental property data to minimize the influence of predicted information in model development. Chemicals were emitted in air or water in a fixed geographical scenario representing the Netherlands and characterized by five compartments (air, water, sediments, soil and vegetation). Quantitative structure-fate relationship (QSFR) models to predict mass ratios in different compartments were developed with support vector regression algorithms. A set of molecular descriptors, including the molecular weight and 38 counts of molecular constituents were adopted to characterize the chemical space. Out of the 455 chemicals, 375 were used for training and testing the QSFR models, while 80 were excluded from model development and were used as an external validation set. Training and test chemicals were selected and the domain of applicability (DOA) of the QSFRs established by means of self-organizing maps according to structural similarity. Best results were obtained with QSFR models developed for chemicals belonging to either the class [C] and [C; O], or the class with at least one heteroatom different than oxygen in the structure. These two class-specific models, with respectively 146 and 229 chemicals, showed a predictive squared coefficient of q(2) ≥ 0.90 both for air and water, which respectively dropped to q(2)≈ 0.70 and 0.40 for outlying chemicals. Prediction errors were of the same order of magnitude as the deviations associated to the uncertainty of the

  13. Coal extraction - environmental prediction

    SciTech Connect

    C. Blaine Cecil; Susan J. Tewalt

    2002-08-01

    To predict and help minimize the impact of coal extraction in the Appalachian region, the U.S. Geological Survey (USGS) is addressing selected mine-drainage issues through the following four interrelated studies: spatial variability of deleterious materials in coal and coal-bearing strata; kinetics of pyrite oxidation; improved spatial geologic models of the potential for drainage from abandoned coal mines; and methodologies for the remediation of waters discharged from coal mines. As these goals are achieved, the recovery of coal resources will be enhanced. 2 figs.

  14. Chemical-gene interaction networks and causal reasoning for biological effects prediction and prioritization of contaminants for environmental monitoring and surveillance

    EPA Science Inventory

    Evaluating the potential human health and ecological risks associated with exposures to complex chemical mixtures in the environment is one of the main challenges of chemical safety assessment and environmental protection. There is a need for approaches that can help to integrat...

  15. Toxicokinetic Triage for Environmental Chemicals

    EPA Science Inventory

    Toxicokinetic (TK) models are essential for linking administered doses to blood and tissue concentrations. In vitro-to-in vivo extrapolation (IVIVE) methods have been developed to determine TK from limited in vitro measurements and chemical structure-based property predictions, p...

  16. Environmental benefits of chemical propulsion

    NASA Technical Reports Server (NTRS)

    Hayes, Joyce A.; Goldberg, Benjamin E.; Anderson, David M.

    1995-01-01

    This paper identifies the necessity of chemical propulsion to satellite usage and some of the benefits accrued through monitoring global resources and patterns, including the Global Climate Change Model (GCM). The paper also summarized how the satellite observations are used to affect national and international policies. Chemical propulsion, like all environmentally conscious industries, does provide limited, controlled pollutant sources through its manufacture and usage. However, chemical propulsion is the sole source which enables mankind to launch spacecraft and monitor the Earth. The information provided by remote sensing directly affects national and international policies designed to protect the environment and enhance the overall quality of life on Earth. The resultant of chemical propulsion is the capability to reduce overall pollutant emissions to the benefit of mankind.

  17. PREDICTING MODES OF TOXIC ACTION FROM CHEMICAL STRUCTURE: AN OVERVIEW

    EPA Science Inventory

    In the field of environmental toxicology, and especially aquatic toxicology, quantitative structure activity relationships (QSARS) have developed as scientifically-credible tools for predicting the toxicity of chemicals when little or no empirical data are available. asic and fun...

  18. Prediction of rodent carcinogenicity for 30 chemicals

    SciTech Connect

    Ashby, J.

    1996-10-01

    Predictions of carcinogenic activity are made for 30 chemicals currently being assessed for rodent carcinogenicity by the U.S. National Toxicology Program. The predictions are based upon the chemical structure, the anticipated or reported mutagenicity, and the reported sub-chronic toxicity of each chemical. It is predicted that 13 chemicals will be noncarcinogenic to rodents, that 7 will be genotoxic carcinogens, and that 10 may show some evidence of presumed nongenotoxic rodent carcinogenesis. 3 refs., 1 fig.

  19. High-Throughput Pharmacokinetics for Environmental Chemicals (SOT)

    EPA Science Inventory

    High throughput screening (HTS) promises to allow prioritization of thousands of environmental chemicals with little or no in vivo information. For bioactivity identified by HTS, toxicokinetic (TK) models are essential to predict exposure thresholds below which no significant bio...

  20. THE TOXCAST PROGRAM FOR PRIORITIZING TOXICITY TESTING OF ENVIRONMENTAL CHEMICALS

    EPA Science Inventory

    The United States Environmental Protection Agency (EPA) is developing methods for utilizing computational chemistry, high-throughput screening (HTS) and various toxicogenomic technologies to predict potential for toxicity and prioritize limited testing resources towards chemicals...

  1. Learning to predict chemical reactions.

    PubMed

    Kayala, Matthew A; Azencott, Chloé-Agathe; Chen, Jonathan H; Baldi, Pierre

    2011-09-26

    Being able to predict the course of arbitrary chemical reactions is essential to the theory and applications of organic chemistry. Approaches to the reaction prediction problems can be organized around three poles corresponding to: (1) physical laws; (2) rule-based expert systems; and (3) inductive machine learning. Previous approaches at these poles, respectively, are not high throughput, are not generalizable or scalable, and lack sufficient data and structure to be implemented. We propose a new approach to reaction prediction utilizing elements from each pole. Using a physically inspired conceptualization, we describe single mechanistic reactions as interactions between coarse approximations of molecular orbitals (MOs) and use topological and physicochemical attributes as descriptors. Using an existing rule-based system (Reaction Explorer), we derive a restricted chemistry data set consisting of 1630 full multistep reactions with 2358 distinct starting materials and intermediates, associated with 2989 productive mechanistic steps and 6.14 million unproductive mechanistic steps. And from machine learning, we pose identifying productive mechanistic steps as a statistical ranking, information retrieval problem: given a set of reactants and a description of conditions, learn a ranking model over potential filled-to-unfilled MO interactions such that the top-ranked mechanistic steps yield the major products. The machine learning implementation follows a two-stage approach, in which we first train atom level reactivity filters to prune 94.00% of nonproductive reactions with a 0.01% error rate. Then, we train an ensemble of ranking models on pairs of interacting MOs to learn a relative productivity function over mechanistic steps in a given system. Without the use of explicit transformation patterns, the ensemble perfectly ranks the productive mechanism at the top 89.05% of the time, rising to 99.86% of the time when the top four are considered. Furthermore, the system

  2. Learning to Predict Chemical Reactions

    PubMed Central

    Kayala, Matthew A.; Azencott, Chloé-Agathe; Chen, Jonathan H.

    2011-01-01

    Being able to predict the course of arbitrary chemical reactions is essential to the theory and applications of organic chemistry. Approaches to the reaction prediction problems can be organized around three poles corresponding to: (1) physical laws; (2) rule-based expert systems; and (3) inductive machine learning. Previous approaches at these poles respectively are not high-throughput, are not generalizable or scalable, or lack sufficient data and structure to be implemented. We propose a new approach to reaction prediction utilizing elements from each pole. Using a physically inspired conceptualization, we describe single mechanistic reactions as interactions between coarse approximations of molecular orbitals (MOs) and use topological and physicochemical attributes as descriptors. Using an existing rule-based system (Reaction Explorer), we derive a restricted chemistry dataset consisting of 1630 full multi-step reactions with 2358 distinct starting materials and intermediates, associated with 2989 productive mechanistic steps and 6.14 million unproductive mechanistic steps. And from machine learning, we pose identifying productive mechanistic steps as a statistical ranking, information retrieval, problem: given a set of reactants and a description of conditions, learn a ranking model over potential filled-to-unfilled MO interactions such that the top ranked mechanistic steps yield the major products. The machine learning implementation follows a two-stage approach, in which we first train atom level reactivity filters to prune 94.00% of non-productive reactions with a 0.01% error rate. Then, we train an ensemble of ranking models on pairs of interacting MOs to learn a relative productivity function over mechanistic steps in a given system. Without the use of explicit transformation patterns, the ensemble perfectly ranks the productive mechanism at the top 89.05% of the time, rising to 99.86% of the time when the top four are considered. Furthermore, the system

  3. Integrating Biological and Chemical Data for Hepatotoxicity Prediction (SOT)

    EPA Science Inventory

    The U.S. EPA ToxCastTM program is screening thousands of environmental chemicals for bioactivity using hundreds of high-throughput in vitro assays to build predictive models of toxicity. A set of 677 chemicals were represented by 711 bioactivity descriptors (from ToxCast assays),...

  4. Conformal Prediction Classification of a Large Data Set of Environmental Chemicals from ToxCast and Tox21 Estrogen Receptor Assays.

    PubMed

    Norinder, Ulf; Boyer, Scott

    2016-06-20

    Quantitative structure-activity relationships (QSAR) are critical to exploitation of the chemical information in toxicology databases. Exploitation can be extraction of chemical knowledge from the data but also making predictions of new chemicals based on quantitative analysis of past findings. In this study, we analyzed the ToxCast and Tox21 estrogen receptor data sets using Conformal Prediction to enhance the full exploitation of the information in these data sets. We applied aggregated conformal prediction (ACP) to the ToxCast and Tox21 estrogen receptor data sets using support vector machine classifiers to compare overall performance of the models but, more importantly, to explore the performance of ACP on data sets that are significantly enriched in one class without employing sampling strategies of the training set. ACP was also used to investigate the problem of applicability domain using both data sets. Comparison of ACP to previous results obtained on the same data sets using traditional QSAR approaches indicated similar overall balanced performance to methods in which careful training set selections were made, e.g., sensitivity and specificity for the external Tox21 data set of 70-75% and far superior results to those obtained using traditional methods without training set sampling where the corresponding results showed a clear imbalance of 50 and 96%, respectively. Application of conformal prediction to imbalanced data sets facilitates an unambiguous analysis of all data, allows accurate predictive models to be built which display similar accuracy in external validation to external validation, and, most importantly, allows an unambiguous treatment of the applicability domain. PMID:27152554

  5. ENVIRONMENTAL ENGINEERING AND ENDOCRINE DISRUPTING CHEMICALS

    EPA Science Inventory

    Endocrine disruptors are a class of chemicals of growing interest to the environmental community. USEPA's Risk Assessment Forum defined an endocrine disrupting chemical (EDC) as "an exogenous agent that interferes with the synthesis, secretion, transport, binding, action, or elim...

  6. PREDICTING CHEMICAL PARAMETERS WITH PROLOG

    EPA Science Inventory

    Work is described that seeks to develop novel methods for the computer estimation of fundamental reactivity parameters strictly from molecular structure. Although the prototype system SPARC (Sparc Performs Automated Reasoning in Chemistry) deals only with the prediction of sunlig...

  7. Impact of Environmental Chemicals on Lung Development

    PubMed Central

    Miller, Mark D.; Marty, Melanie A.

    2010-01-01

    Background Disruption of fundamental biologic processes and associated signaling events may result in clinically significant alterations in lung development. Objectives We reviewed evidence on the impact of environmental chemicals on lung development and key signaling events in lung morphogenesis, and the relevance of potential outcomes to public health and regulatory science. Data sources We evaluated the peer-reviewed literature on developmental lung biology and toxicology, mechanistic studies, and supporting epidemiology. Data synthesis Lung function in infancy predicts pulmonary function throughout life. In utero and early postnatal exposures influence both childhood and adult lung structure and function and may predispose individuals to chronic obstructive lung disease and other disorders. The nutritional and endogenous chemical environment affects development of the lung and can result in altered function in the adult. Studies now suggest that similar adverse impacts may occur in animals and humans after exposure to environmentally relevant doses of certain xenobiotics during critical windows in early life. Potential mechanisms include interference with highly conserved factors in developmental processes such as gene regulation, molecular signaling, and growth factors involved in branching morphogenesis and alveolarization. Conclusions Assessment of environmental chemical impacts on the lung requires studies that evaluate specific alterations in structure or function—end points not regularly assessed in standard toxicity tests. Identifying effects on important signaling events may inform protocols of developmental toxicology studies. Such knowledge may enable policies promoting true primary prevention of lung diseases. Evidence of relevant signaling disruption in the absence of adequate developmental toxicology data should influence the size of the uncertainty factors used in risk assessments. PMID:20444669

  8. WORKSHOP ON ENVIRONMENTALLY CONSCIOUS CHEMICAL PROCESS DESIGN

    EPA Science Inventory

    To encourage the consideration of environmental issues during chemical process design, the USEPA has developed techniques and software tools to evaluate the relative environmental impact of a chemical process. These techniques and tools aid in the risk management process by focus...

  9. Predicting skin permeability from complex chemical mixtures

    SciTech Connect

    Riviere, Jim E. . E-mail: Jim_Riviere@ncsu.edu; Brooks, James D.

    2005-10-15

    Occupational and environmental exposure to topical chemicals is usually in the form of complex chemical mixtures, yet risk assessment is based on experimentally derived data from individual chemical exposures from a single, usually aqueous vehicle, or from computed physiochemical properties. We present an approach using hybrid quantitative structure permeation relationships (QSPeR) models where absorption through porcine skin flow-through diffusion cells is well predicted using a QSPeR model describing the individual penetrants, coupled with a mixture factor (MF) that accounts for physicochemical properties of the vehicle/mixture components. The baseline equation is log k {sub p} = c + mMF + a{sigma}{alpha} {sub 2} {sup H} + b{sigma}{beta} {sub 2} {sup H} + s{pi} {sub 2} {sup H} + rR {sub 2} + vV {sub x} where {sigma}{alpha} {sub 2} {sup H} is the hydrogen-bond donor acidity, {sigma}{beta} {sub 2} {sup H} is the hydrogen-bond acceptor basicity, {pi} {sub 2} {sup H} is the dipolarity/polarizability, R {sub 2} represents the excess molar refractivity, and V {sub x} is the McGowan volume of the penetrants of interest; c, m, a, b, s, r, and v are strength coefficients coupling these descriptors to skin permeability (k {sub p}) of 12 penetrants (atrazine, chlorpyrifos, ethylparathion, fenthion, methylparathion, nonylphenol, {rho}-nitrophenol, pentachlorophenol, phenol, propazine, simazine, and triazine) in 24 mixtures. Mixtures consisted of full factorial combinations of vehicles (water, ethanol, propylene glycol) and additives (sodium lauryl sulfate, methyl nicotinate). An additional set of 4 penetrants (DEET, SDS, permethrin, ricinoleic acid) in different mixtures were included to assess applicability of this approach. This resulted in a dataset of 16 compounds administered in 344 treatment combinations. Across all exposures with no MF, R{sup 2} for absorption was 0.62. With the MF, correlations increased up to 0.78. Parameters correlated to the MF include refractive

  10. MODELING A MIXTURE: PBPK/PD APPROACHES FOR PREDICTING CHEMICAL INTERACTIONS.

    EPA Science Inventory

    Since environmental chemical exposures generally involve multiple chemicals, there are both regulatory and scientific drivers to develop methods to predict outcomes of these exposures. Even using efficient statistical and experimental designs, it is not possible to test in vivo a...

  11. DESIGNING ENVIRONMENTALLY FRIENDLY CHEMICAL PROCESSES

    EPA Science Inventory

    The design of a chemical process involves many aspects: from profitability, flexibility and reliability to safety to the environment. While each of these is important, in this work, the focus will be on profitability and the environment. Key to the study of these aspects is the ...

  12. HUMAN HEALTH IMPACT OF ENVIRONMENTAL ESTROGENIC CHEMICALS

    EPA Science Inventory

    HUMAN HEALTH IMPACT OF ENVIRONMENTAL ESTROGENIC CHEMICALS.

    Robert J. Kavlock, Reproductive Toxicology Division, NHEERL, ORD, US Environmental Protection Agency, Research Triangle Park, NC USA.

    Over the past several decades a hypothesis has been put forth that a numb...

  13. Soil organic matter prediction using environmental factors

    NASA Astrophysics Data System (ADS)

    Oueslati, I.; Allamano, P.; Claps, P.; Bonifacio, E.

    2009-04-01

    Organic matter is one of the most important properties affecting soil chemical and physical fertility, but it influences also soil hydrologic parameters. It is easily measured by chemical analyses, but in large scale studies its prediction is desirable. This study aims at predicting the spatial distribution of the soil organic matter concentration (SOM) in forest topsoils in Piedmont (North West Italy) using continuous predictors (in forms of auxiliary maps). As predictors we selected: the digital elevation model (DEM, 50 meter resolution), the mean annual precipitation, the soil dryness index and normal difference vegetation index (NDVI, 1 km resolution). Using the Geographic Information System SAGA, the terrain attributes were computed from the DEM, namely are: elevation, slope, aspect and mean curvature associated with hydrological parameters namely, the compound topographic index (CTI) and stream power index (SPI). From the long term monthly average of NDVI the mean annual value and the coefficient of variation (CV) were also derived. This data set was used to estimate the SOM concentration by regression analysis. To test the relationship between the SOM and the environmental variables, 66 soil profiles were used. Several variables were found to be significantly correlated with SOM concentration: elevation, slope, mean NDVI, CV(NDVI), precipitation and dryness index, with correlation coefficients, r, of the linear regressions ranging from 0.12 to 0.63. However, only precipitation and mean NDVI were retained when a stepwise multiple regression was used. Although these two predictors contribute only partially to explain SOM variability (R2=0.42). The importance of vegetation is clearly depicted by the significant effect of NDVI, while the precipitation may contribute to the explanation in a less direct way because of the complex links between climate and organic matter transformation in soils.

  14. Validated predictive modelling of the environmental resistome.

    PubMed

    Amos, Gregory C A; Gozzard, Emma; Carter, Charlotte E; Mead, Andrew; Bowes, Mike J; Hawkey, Peter M; Zhang, Lihong; Singer, Andrew C; Gaze, William H; Wellington, Elizabeth M H

    2015-06-01

    Multi-drug-resistant bacteria pose a significant threat to public health. The role of the environment in the overall rise in antibiotic-resistant infections and risk to humans is largely unknown. This study aimed to evaluate drivers of antibiotic-resistance levels across the River Thames catchment, model key biotic, spatial and chemical variables and produce predictive models for future risk assessment. Sediment samples from 13 sites across the River Thames basin were taken at four time points across 2011 and 2012. Samples were analysed for class 1 integron prevalence and enumeration of third-generation cephalosporin-resistant bacteria. Class 1 integron prevalence was validated as a molecular marker of antibiotic resistance; levels of resistance showed significant geospatial and temporal variation. The main explanatory variables of resistance levels at each sample site were the number, proximity, size and type of surrounding wastewater-treatment plants. Model 1 revealed treatment plants accounted for 49.5% of the variance in resistance levels. Other contributing factors were extent of different surrounding land cover types (for example, Neutral Grassland), temporal patterns and prior rainfall; when modelling all variables the resulting model (Model 2) could explain 82.9% of variations in resistance levels in the whole catchment. Chemical analyses correlated with key indicators of treatment plant effluent and a model (Model 3) was generated based on water quality parameters (contaminant and macro- and micro-nutrient levels). Model 2 was beta tested on independent sites and explained over 78% of the variation in integron prevalence showing a significant predictive ability. We believe all models in this study are highly useful tools for informing and prioritising mitigation strategies to reduce the environmental resistome. PMID:25679532

  15. Validated predictive modelling of the environmental resistome

    PubMed Central

    Amos, Gregory CA; Gozzard, Emma; Carter, Charlotte E; Mead, Andrew; Bowes, Mike J; Hawkey, Peter M; Zhang, Lihong; Singer, Andrew C; Gaze, William H; Wellington, Elizabeth M H

    2015-01-01

    Multi-drug-resistant bacteria pose a significant threat to public health. The role of the environment in the overall rise in antibiotic-resistant infections and risk to humans is largely unknown. This study aimed to evaluate drivers of antibiotic-resistance levels across the River Thames catchment, model key biotic, spatial and chemical variables and produce predictive models for future risk assessment. Sediment samples from 13 sites across the River Thames basin were taken at four time points across 2011 and 2012. Samples were analysed for class 1 integron prevalence and enumeration of third-generation cephalosporin-resistant bacteria. Class 1 integron prevalence was validated as a molecular marker of antibiotic resistance; levels of resistance showed significant geospatial and temporal variation. The main explanatory variables of resistance levels at each sample site were the number, proximity, size and type of surrounding wastewater-treatment plants. Model 1 revealed treatment plants accounted for 49.5% of the variance in resistance levels. Other contributing factors were extent of different surrounding land cover types (for example, Neutral Grassland), temporal patterns and prior rainfall; when modelling all variables the resulting model (Model 2) could explain 82.9% of variations in resistance levels in the whole catchment. Chemical analyses correlated with key indicators of treatment plant effluent and a model (Model 3) was generated based on water quality parameters (contaminant and macro- and micro-nutrient levels). Model 2 was beta tested on independent sites and explained over 78% of the variation in integron prevalence showing a significant predictive ability. We believe all models in this study are highly useful tools for informing and prioritising mitigation strategies to reduce the environmental resistome. PMID:25679532

  16. The Toxicity Data Landscape for Environmental Chemicals

    PubMed Central

    Judson, Richard; Richard, Ann; Dix, David J.; Houck, Keith; Martin, Matthew; Kavlock, Robert; Dellarco, Vicki; Henry, Tala; Holderman, Todd; Sayre, Philip; Tan, Shirlee; Carpenter, Thomas; Smith, Edwin

    2009-01-01

    Objective Thousands of chemicals are in common use, but only a portion of them have undergone significant toxicologic evaluation, leading to the need to prioritize the remainder for targeted testing. To address this issue, the U.S. Environmental Protection Agency (EPA) and other organizations are developing chemical screening and prioritization programs. As part of these efforts, it is important to catalog, from widely dispersed sources, the toxicology information that is available. The main objective of this analysis is to define a list of environmental chemicals that are candidates for the U.S. EPA screening and prioritization process, and to catalog the available toxicology information. Data sources We are developing ACToR (Aggregated Computational Toxicology Resource), which combines information for hundreds of thousands of chemicals from > 200 public sources, including the U.S. EPA, National Institutes of Health, Food and Drug Administration, corresponding agencies in Canada, Europe, and Japan, and academic sources. Data extraction ACToR contains chemical structure information; physical–chemical properties; in vitro assay data; tabular in vivo data; summary toxicology calls (e.g., a statement that a chemical is considered to be a human carcinogen); and links to online toxicology summaries. Here, we use data from ACToR to assess the toxicity data landscape for environmental chemicals. Data synthesis We show results for a set of 9,912 environmental chemicals being considered for analysis as part of the U.S. EPA ToxCast screening and prioritization program. These include high-and medium-production-volume chemicals, pesticide active and inert ingredients, and drinking water contaminants. Conclusions Approximately two-thirds of these chemicals have at least limited toxicity summaries available. About one-quarter have been assessed in at least one highly curated toxicology evaluation database such as the U.S. EPA Toxicology Reference Database, U.S. EPA Integrated

  17. Predicting the chemical stability of monatomic chains

    NASA Astrophysics Data System (ADS)

    Lin, Zheng-Zhe; Chen, Xi

    2013-02-01

    A simple model for evaluating the thermal atomic transfer rates in nanosystems (Lin Z.-Z. et al., EPL, 94 (2011) 40002) was developed to predict the chemical reaction rates of nanosystems with small gas molecules. The accuracy of the model was verified by MD simulations for molecular adsorption and desorption on a monatomic chain. By the prediction, a monatomic carbon chain should survive for 1.2 × 102 years in the ambient of 1 atm O2 at room temperature, and it is very invulnerable to N2, H2O, NO2, CO and CO2, while a monatomic gold chain quickly ruptures in vacuum. It is worth noting that since the model can be easily applied via common ab initio calculations, it could be widely used in the prediction of chemical stability of nanosystems.

  18. ToxCast: Developing Predictive Signatures of Chemically Induced Toxicity (Developing Predictive Bioactivity Signatures from ToxCasts HTS Data)

    EPA Science Inventory

    ToxCast, the United States Environmental Protection Agency’s chemical prioritization research program, is developing methods for utilizing computational chemistry, bioactivity profiling and toxicogenomic data to predict potential for toxicity and prioritize limited testing resour...

  19. Absorption, biotransformation, and excretion of environmental chemicals.

    PubMed

    Oehme, F W

    1980-08-01

    Foreign chemicals are continually present in the environment of man and animals. Mammalian systems are in a constant state of balance-the intake compensated for by the outflow. The intake is largely determined by the route of exposure and the chemical characteristics of the environmental compound. Under normal conditions of exposure to small or moderate amounts of environmental chemicals, the system is capable of biotransforming and detoxifying such materials into compounds more easily handled by the mammalian system. These are largely converted to more water-soluble materials and excreted in the urine, bile, and less commonly through other excretory routes. In situations of massive exposure to foreign materials, or when repeated exposure to moderate amounts of chemicals results in accumulation in body systems, toxicoses may result. These are essentially an overwhelming of the biological mechanisms for detoxifying and excreting such materials. The hazard associated with environmental chemicals is greatly increased if a preexisting disease modifies the normal biological detoxification processes. Therapy to assist intoxicated individuals is largely aimed at increasing excretory processes and maintaining or restoring the physiological balance between the amount of environmental chemical absorbed and the level capable of being excreted. PMID:7408430

  20. Prediction of Cancer Drugs by Chemical-Chemical Interactions

    PubMed Central

    Li, Hai-Peng; Feng, Kai-Yan; Chen, Lei; Zheng, Ming-Yue; Cai, Yu-Dong

    2014-01-01

    Cancer, which is a leading cause of death worldwide, places a big burden on health-care system. In this study, an order-prediction model was built to predict a series of cancer drug indications based on chemical-chemical interactions. According to the confidence scores of their interactions, the order from the most likely cancer to the least one was obtained for each query drug. The 1st order prediction accuracy of the training dataset was 55.93%, evaluated by Jackknife test, while it was 55.56% and 59.09% on a validation test dataset and an independent test dataset, respectively. The proposed method outperformed a popular method based on molecular descriptors. Moreover, it was verified that some drugs were effective to the ‘wrong’ predicted indications, indicating that some ‘wrong’ drug indications were actually correct indications. Encouraged by the promising results, the method may become a useful tool to the prediction of drugs indications. PMID:24498372

  1. Environmental release of chemicals and reproductive ecology.

    PubMed

    Bajaj, J S; Misra, A; Rajalakshmi, M; Madan, R

    1993-07-01

    Reproductive ecology is defined as "the study of causes and mechanisms of the effects of environmental risk factors on reproductive health and the methods of their prevention and management." Major areas of concern, within the purview of this paper, relate to adverse pregnancy outcomes, effects on target tissues in the male and the female, and alterations in the control and regulatory mechanisms of reproductive processes. Teratogenic potential of chemicals, released as a result of accidents and catastrophes, is of critical significance. Congenital Minamata disease is due to transplacental fetal toxicity caused by accidental ingestion of methyl mercury. Generalized disorders of ectodermal tissue following prenatal exposure to polychlorinated biphenyls have been reported in Taiwan and Japan. The Bhopal gas disaster, a catastrophic industrial accident, was due to a leak of toxic gas, methyl isocyanate (MIC), in the pesticide manufacturing process. The outcome of pregnancy was studied in female survivors of MIC exposure. The spontaneous abortion rate was nearly four times more common in the affected areas as compared to the control area (24.2% versus 5.6%; p < 0.0001). Furthermore, while stillbirth rate was found to be similar in the affected and control areas, the perinatal and neonatal mortality rates were observed to be higher in the affected area. The rate of congenital malformations in the affected and control areas did not show any significant difference. Chromosomal aberrations and sister chromatid exchange (SCE) frequencies were investigated in human survivors of exposure. The observed SCE frequencies in control and exposed groups indicated that mutagenesis has been induced. Strategies for the management, prediction, and preventability of such disasters are outlined. PMID:8243381

  2. Health and environmental effects of complex chemical mixtures: proceedings

    SciTech Connect

    Not Available

    1985-01-01

    The Office of Health and Environmental Research (OHER) of the Department of Energy supports a broad long-term research program on human health and environmental effects from potential exposure to energy-related complex chemical mixtures. The program seeks basic mechanistic data on the effects of complex mixtures at the cellular, molecular, and whole animal levels to aid in predicting human health effects and seeks ecological data on biological and physical transformations in the mixtures, concentrations of the mixtures in various compartments of the environment, and potential routes for human exposure to these mixtures (e.g., food chain). On June 17-18, 1985, OHER held its First Annual Technical Meeting on the Complex Chemical Mixtures Program in Chicago, IL. The primary purpose of the meeting was to enable principal investigators to report the research status and accomplishments of ongoing complex chemical mixture studies supported by OHER. To help focus future research directions round table discussions were conducted.

  3. Predicting hepatotoxicity using ToxCast in vitro bioactivity and chemical structure

    EPA Science Inventory

    Background: The U.S. EPA ToxCastTM program is screening thousands of environmental chemicals for bioactivity using hundreds of high-throughput in vitro assays to build predictive models of toxicity. We represented chemicals based on bioactivity and chemical structure descriptors ...

  4. INTERSPECIES CORRELATION ESTIMATES PREDICT PROTECTIVE ENVIRONMENTAL CONCENTRATIONS

    EPA Science Inventory

    Environmental risk assessments often use multiple single species toxicity test results and species sensitivity distributions (SSDs) to derive a predicted no-effect concentration in the environment, typically the 5th percentile of the SSD, termed the HC5. The shape and location of...

  5. Priority Environmental Chemical Contaminants in Meat

    NASA Astrophysics Data System (ADS)

    Brambilla, Gianfranco; Iamiceli, Annalaura; di Domenico, Alessandro

    Generally, foods of animal origin play an important role in determining the exposure of human beings to contaminants of both biological and chemical origins (Ropkins & Beck, 2002; Lievaart et al., 2005). A potentially large number of chemicals could be considered, several of them deserving a particular attention due to their occurrence (contaminations levels and frequencies) and intake scenarios reflecting the differences existing in the economical, environmental, social and ecological contexts in which the “from-farm-to-fork” activities related to meat production are carried out (FAO - Food and Agriculture Organization, 2008).

  6. ToxCast: Developing Predictive Signatures of Chemically Induced Toxicity (S)

    EPA Science Inventory

    ToxCast, the United States Environmental Protection Agency’s chemical prioritization research program, is developing methods for utilizing computational chemistry, bioactivity profiling and toxicogenomic data to predict potential for toxicity and prioritize limited testing resour...

  7. Use of the molecular connectivity index to predict chemical biotransfer

    SciTech Connect

    Dowdy, D.L.; McKone, T.E.; Hsieh, D.P.H.

    1994-12-31

    Chemicals released into the environment can pose a danger to organisms if exposure occurs. In order to assess the level of risk, it is necessary to first determine if a chemical is capable of biotransfer from a given environmental medium into a particular biological system. Experimental determination of biotransfer factors (BTF), defined as the ratio of the concentration of a chemical in an organism or tissue to that in the exposure medium, is usually difficult, expensive, and time consuming. Since an accurate measurement of BTF is crucial to exposure and risk assessment, it would be advantageous if BTF could be estimated from a chemical property that is quantifiable with high precision. The molecular connectivity index (MCI) is such a chemical property, which in theory encodes information about molecular size, branching, cyclization, saturation, and heteroatom content. MCI`s are readily obtainable from chemical structure and the periodic table, requiring no experimental measurement. The results indicate a strong correlation between the MCI and BTF values for animal tissue, milk, and vegetation. Using MCI to estimate BTF could provide a faster, more cost effective, and more accurate method for predicting chemical biotransfer.

  8. NATIONAL REPORT ON HUMAN EXPOSURE TO ENVIRONMENTAL CHEMICALS

    EPA Science Inventory

    The National Report on Human Exposure to Environmental Chemicals is a new publication that will provide an ongoing assessment of the U.S. population's exposure to environmental chemicals using biomonitoring. For this Report, an environmental chemical means a chemical compound or ...

  9. Environmental mimics of chemical warfare agents.

    PubMed

    Claborn, David M

    2004-12-01

    There are several natural and artificial factors that mimic the effects of chemical warfare agents, thereby causing unwarranted alarm and confusion on the battlefield. Symptoms associated with chemical warfare include paralysis, muscle tremors, heavy salivation, severe burns, blistering, and corrosive skin injuries among others. Similar symptoms can be produced from a variety of environmental sources, artificial and natural. This article reviews several published and unpublished examples of environmental factors that produce syndromes similar to those caused by these agents. Examples of such mimics include pesticides, blistering exudates from insects and plants, various types of bites, and naturally occurring diseases. The potential for confusion caused by these factors is discussed and means of discriminating between warfare agents and naturally occurring events are identified. Recommendations for the use of this information and for needed research are also discussed. PMID:15646185

  10. Allergic contact sensitizing chemicals as environmental carcinogens.

    PubMed Central

    Albert, R E

    1997-01-01

    Chemicals that were bioassayed by the National Toxicology Program (NTP) and that also produce allergic dermatitis (ACD) in humans were evaluated for their tumorigenic characteristics. The impetus for the study was that most contact sensitizers, i.e., those that produce ACD, and genotoxic carcinogens are chemically similar in that they are electrophilic, thereby producing adducts on macromolecules including protein and DNA. This similarity in chemical behavior suggests that many contact sensitizers might be environmental carcinogens. All of the published NTP bioassays by early 1996 that had both genotoxicity and carcinogenicity studies were included in this analysis. The NTP chemicals had been chosen for bioassay without regard to their ability to produce ACD. Of the 209 chemicals that were bioassayed, there were 36 (17%) that were known to be human contact sensitizers; about half of these were positive on tumor bioassays. The contact sensitizers differed from the NTP sample as a whole by having a proportionately larger number of nongenotoxic chemicals by the Ames Salmonella assay, presumably because more of them were selected on the basis of widespread usage rather than structural resemblance to known carcinogens. Compared to the nongenotoxic chemicals, the genotoxics were stronger carcinogens in that they had a higher incidence of positive tumor bioassays, with twice the number of organs in which tumors were induced. The nongenotoxic chemicals had a preference for tumor induction in parenchymal tissues in contrast to epithelial tissues. The contact sensitizers showed essentially the same characteristics as the whole NTP sample when stratified according to genotoxicity. Judging by the chemicals that were chosen primarily for their widespread use rather than for their structural resemblance to carcinogens, the addition of a test for contact sensitization to the Ames test as a screening tool would increase the tumorigenic detection efficiency by about 40% because of

  11. Myelodysplasia, chemical exposure, and other environmental factors

    SciTech Connect

    Farrow, A.; Jacobs, A.; West, R.R.

    1989-01-01

    This paper describes a case-control study of the occupational and environmental exposures of patients with myelodysplasia. The methodology, first described in Canada for solid tumors, estimates lifetime exposures to a number of potential toxic hazards or carcinogens. This pilot study confirms that the methodology, with the use of questionnaires and interviews, can estimate exposures to specific chemicals and shows some significant associations with myelodysplasia, including exposure to petrol or diesel compounds.

  12. Alterations in macrophage functions by environmental chemicals.

    PubMed Central

    Gardner, D E

    1984-01-01

    The establishment of infectious diseases is rarely entirely attributed to a single entity, but instead is the result of a primary stress and one or more secondary factors that interfere with homeostasis and the ability of the host to cope with the primary etiologic assault. Any environmental chemical that can suppress the normal functioning of the host's body defenses would be expected to increase the risk of the host to such diseases. Within the lung, the alveolar macrophages are the crucial elements responsible for defending the body against such airborne viable agents. The effects of inhaled gases and particulates on these defense cells are a major concern of the environmental health scientist since such chemicals have the capability of adversely affecting the integrity and functioning of these pulmonary defense cells. The objective of this report is to provide an overview that will improve our understanding of how a variety of environmental chemicals can alter the biochemical, physiological and immunological functioning of these cells. PMID:6376106

  13. Environmental chemistry of chemical warfare agents

    SciTech Connect

    MacNaughton, M.G.; Brewer, J.H.; Ledbetter-Ferrill, J.

    1995-06-01

    This paper summarizes the approach used in the preparation of a Handbook for the Corps of Engineers, Huntsville Division, on the environmental chemistry of chemical warfare agents. The agents GB and HD will be used to illustrate the type of information in the report. Those readers interested in the full report should contact Mr. Arkie Fanning, Huntsville Corps of Engineers at (505) 955-5256. The U.S. Army Corps of Engineers (ACE) has identified approximately 7,200 formerly used defense sites (FUDS) in the United States, some of which are suspected to be contaminated with chemical warfare agents (CWA). The ACE has responsibility for environmental clean-up of FUDS, including site characterization, evaluation and remediation of the site. Thirty-four FUDS and 48 active DOD installations that may contain CWA were identified in an Interim Survey and Analysis Report by the USACMDA Program Manager for Non-Stockpile Chemical Material (NSCM). The chemical agents listed include sulfur mustard (H), lewisite (L), tabun (GA), sarin (GB), VX, hydrogen cyanide (AC), cyanogen chloride (CK), phosgene (CG), BZ, and CS.

  14. Use of the Chemical Transformation Simulator as a Parameterization Tool for Modeling the Environmental Fate of Organic Chemicals and their Transformation Products

    EPA Science Inventory

    A Chemical Transformation Simulator is a web-based system for predicting transformation pathways and physicochemical properties of organic chemicals. Role in Environmental Modeling • Screening tool for identifying likely transformation products in the environment • Parameteri...

  15. Influences of Environmental Chemicals on Atopic Dermatitis

    PubMed Central

    2015-01-01

    Atopic dermatitis is a chronic inflammatory skin condition including severe pruritus, xerosis, visible eczematous skin lesions that mainly begin early in life. Atopic dermatitis exerts a profound impact on the quality of life of patients and their families. The estimated lifetime prevalence of atopic dermatitis has increased 2~3 fold during over the past 30 years, especially in urban areas in industrialized countries, emphasizing the importance of life-style and environment in the pathogenesis of atopic diseases. While the interplay of individual genetic predisposition and environmental factors contribute to the development of atopic dermatitis, the recent increase in the prevalence of atopic dermatitis might be attributed to increased exposure to various environmental factors rather than alterations in human genome. In recent decades, there has been an increasing exposure to chemicals from a variety of sources. In this study, the effects of various environmental chemicals we face in everyday life - air pollutants, contact allergens and skin irritants, ingredients in cosmetics and personal care products, and food additives - on the prevalence and severity of atopic dermatitis are reviewed. PMID:26191377

  16. Predictive Modeling of Chemical Hazard by Integrating Numerical Descriptors of Chemical Structures and Short-term Toxicity Assay Data

    PubMed Central

    Rusyn, Ivan; Sedykh, Alexander; Guyton, Kathryn Z.; Tropsha, Alexander

    2012-01-01

    Quantitative structure-activity relationship (QSAR) models are widely used for in silico prediction of in vivo toxicity of drug candidates or environmental chemicals, adding value to candidate selection in drug development or in a search for less hazardous and more sustainable alternatives for chemicals in commerce. The development of traditional QSAR models is enabled by numerical descriptors representing the inherent chemical properties that can be easily defined for any number of molecules; however, traditional QSAR models often have limited predictive power due to the lack of data and complexity of in vivo endpoints. Although it has been indeed difficult to obtain experimentally derived toxicity data on a large number of chemicals in the past, the results of quantitative in vitro screening of thousands of environmental chemicals in hundreds of experimental systems are now available and continue to accumulate. In addition, publicly accessible toxicogenomics data collected on hundreds of chemicals provide another dimension of molecular information that is potentially useful for predictive toxicity modeling. These new characteristics of molecular bioactivity arising from short-term biological assays, i.e., in vitro screening and/or in vivo toxicogenomics data can now be exploited in combination with chemical structural information to generate hybrid QSAR–like quantitative models to predict human toxicity and carcinogenicity. Using several case studies, we illustrate the benefits of a hybrid modeling approach, namely improvements in the accuracy of models, enhanced interpretation of the most predictive features, and expanded applicability domain for wider chemical space coverage. PMID:22387746

  17. Predicting blood lead concentrations from lead in environmental media.

    PubMed Central

    Mahaffey, K R

    1998-01-01

    Policy statements providing health and environmental criteria for blood lead (PbB) often give recommendations on an acceptable distribution of PbB concentrations. Such statements may recommend distributions of PbB concentrations including an upper range (e.g., maximum and/or 90th percentile values) and central tendency (e.g., mean and/or 50th percentile) of the PbB distribution. Two major, and fundamentally dissimilar, methods to predict the distribution of PbB are currently in use: statistical analyses of epidemiologic data, and application of biokinetic models to environmental lead measurements to predict PbB. Although biokinetic models may include a parameter to predict contribution of lead from bone (PbBone), contemporary data based on chemical analyses of pediatric bone samples are rare. Dramatic decreases in environmental lead exposures over the past 15 years make questionable use of earlier data on PbBone concentrations to estimate a contribution of lead from bone; often used by physiologic modelers to predict PbB. X-ray fluorescent techniques estimating PbBone typically have an instrument-based quantitation limit that is too high for use with many young children. While these quantitation limits have improved during the late 1990s, PbBone estimates using an epidemiologic approach to describing these limits for general populations of children may generate values lower than the instrument's quantitation limit. Additional problems that occur if predicting PbB from environmental lead by biokinetic modeling include a) uncertainty regarding the fractional lead absorption by young children; b) questions of bioavailability of specific environmental sources of lead; and c) variability in fractional absorption values over a range of exposures. Additional sources of variability in lead exposures that affect predictions of PbB from models include differences in the prevalence of such child behaviors as intensity of hand-to-mouth activity and pica. In contrast with these

  18. Environmental remediation monitoring using chemical sensors

    SciTech Connect

    Dong X. Li

    1996-12-31

    Monitoring is one of the most critical steps in environmental site remediation. However, the conventional technique of monitoring {open_quotes}inlet{close_quotes} and {open_quotes}outlet{close_quotes} of a process stream is no longer applicable in many in-situ remedial processes such as bioventing, biosparging, and intrinsic bioremediation. Traditional soil sampling and analysis is also unsuitable for monitoring biodegradation process because of chemical and biological inhomogeneity in soil. Soil gas measurement, on the other hand, is one of the few techniques available which is ideally suited for monitoring in-situ processes, since bioremediation processes involve gaseous components such as oxygen and carbon dioxide. In addition to oxygen and carbon dioxide, contaminant vapors and other trace gaseous components found in the pores of unsaturated soils also provide information on the spatial distribution and the extent of biodegradation. These gaseous components are very mobile, which are ideal analytes for chemical sensors. In this study, oxygen, carbon dioxide, and hydrocarbon subsurface chemical sensors were employed for monitoring in-situ bioremediation of petroleum hydrocarbon contaminated soils.

  19. Robotic automation of the environmental chemical laboratory

    SciTech Connect

    Hollen, R.M.; Erkkila, T.H.

    1994-04-01

    To date, automation of the environmental chemical laboratory has been a slow and tedious affair. In many, of our domestic analytical laboratories, automation consists of no more than analytical instrumentation coupled to an autosampling device. When we look into the future environmental needs of our nation, and indeed the world, it is apparent that we will not be able to keep up with the drastically increasing sample load without automated analyses. Stricter regulatory requirements on the horizon will potentially mandate staggering changes in sampling and characterization requirements. The Contaminant Analysis Automation (CAA) Program was initiated in 1990 by the US government`s Department of Energy (DOE) to address these issues. By application of a new robotics paradigm, based on an integrated production chemistry foundation applied to analytical chemistry, the CAA will use standardized modular instruments called Standard Laboratory Modules (SLM) to provide flexible and standardized automation systems. By promoting the commercialization of this technology, CAA will provide the integrated robotics systems necessary to meet the coming remediation demands. This multilaboratory program is within the Robotics Technology Development Program (RTDP) of the Office of Technology Development (OTD).

  20. SECOND NATIONAL REPORT ON HUMAN EXPOSURE TO ENVIRONMENTAL CHEMICALS

    EPA Science Inventory

    The National Report on Human Exposure to Environmental Chemicals is an ongoing assessment of the exposure of the U.S. population to environmental chemicals using biomonitoring. The first Report on 27 chemicals was issued in March 2001. This Second Report, released in January 20...

  1. Analytic considerations for measuring environmental chemicals in breast milk.

    PubMed Central

    Needham, Larry L; Wang, Richard Y

    2002-01-01

    The presence of environmental chemicals in human breast milk is of general concern because of the potential health consequence of these chemicals to the breast-fed infant and the mother. In addition to the mother's exposure, several features determine the presence of environmental chemicals in breast milk and their ability to be determined analytically. These include maternal factors and properties of the environmental chemical--both physical and chemical--such as its lipid solubility, degree of ionization, and molecular weight. Environmental chemicals with high lipid solubility are likely to be found in breast milk; they include polyhalogenated compounds such as polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, organochlorine insecticides, and polybrominated diphenylethers. These fat-soluble chemicals are incorporated into the milk as it is synthesized, and they must be measured in accordance with the fat content of the milk to allow for meaningful comparisons within an individual and among populations. Although the analytic approach selected to measure the environmental chemical is predominantly determined by the characteristics of the chemical, the concentration of the chemical in the milk sample and the existence of structurally similar chemicals (e.g., congeners) must be considered as well. In general, the analytic approach for measuring environmental chemicals in breast milk is similar to the approach for measuring the same chemicals in other matrices, except special considerations must be given for the relatively high fat content of milk. The continued efforts of environmental scientists to measure environmental chemicals in breast milk is important for defining the true contribution of these chemicals to public health, especially to the health of the newborn. Work is needed for identifying and quantifying additional environmental chemicals in breast milk from the general population and for developing analytic

  2. Predicting chemical ocular toxicity using a combinatorial QSAR approach.

    PubMed

    Solimeo, Renee; Zhang, Jun; Kim, Marlene; Sedykh, Alexander; Zhu, Hao

    2012-12-17

    Regulatory agencies require testing of chemicals and products to protect workers and consumers from potential eye injury hazards. Animal screening, such as the rabbit Draize test, for potential environmental toxicants is time-consuming and costly. Therefore, virtual screening using computational models to tag potential ocular toxicants is attractive to toxicologists and policy makers. We have developed quantitative structure-activity relationship (QSAR) models for a set of small molecules with animal ocular toxicity data compiled by the National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods. The data set was initially curated by removing duplicates, mixtures, and inorganics. The remaining 75 compounds were used to develop QSAR models. We applied both k nearest neighbor and random forest statistical approaches in combination with Dragon and Molecular Operating Environment descriptors. Developed models were validated on an external set of 34 compounds collected from additional sources. The external correct classification rates (CCR) of all individual models were between 72 and 87%. Furthermore, the consensus model, based on the prediction average of individual models, showed additional improvement (CCR = 0.93). The validated models could be used to screen external chemical libraries and prioritize chemicals for in vivo screening as potential ocular toxicants. PMID:23148656

  3. Evaluating the Toxicity Pathways Using High-Throughput Environmental Chemical Data

    EPA Science Inventory

    The application of HTS methods to the characterization of human phenotypic response to environmental chemicals is a largely unexplored area of pharmacogenomics. The U.S. Environmental Protection Agency (EPA), through its ToxCast program, is developing predictive toxicity approach...

  4. DESIGNING ENVIRONMENTALLY FRIENDLY CHEMICAL PROCESSES WITH FUGITIVE AND OPEN EMISSIONS

    EPA Science Inventory

    Designing a chemical process normally includes aspects of economic and environmental disciplines. In this work we describe methods to quickly and easily evaluate the economics and potential environmental impacts of a process, with the hydrodealkylation of toluene as an example. ...

  5. Integrated Proteomic Approaches for Understanding Toxicity of Environmental Chemicals

    EPA Science Inventory

    To apply quantitative proteomic analysis to the evaluation of toxicity of environmental chemicals, we have developed an integrated proteomic technology platform. This platform has been applied to the analysis of the toxic effects and pathways of many important environmental chemi...

  6. A Framework for the Environmental Professional in the Chemical Industry.

    ERIC Educational Resources Information Center

    Priesing, Charles P.

    1982-01-01

    Addresses four areas of environmental concern in the chemical industry: (1) needs and responsibilities of environmental protection; (2) organization and distribution of environmental affairs within the corporate structure; (3) functions and operations associated with industrial environmental management; and (4) origins and tasks of the…

  7. 4D prediction of protein (1)H chemical shifts.

    PubMed

    Lehtivarjo, Juuso; Hassinen, Tommi; Korhonen, Samuli-Petrus; Peräkylä, Mikael; Laatikainen, Reino

    2009-12-01

    A 4D approach for protein (1)H chemical shift prediction was explored. The 4th dimension is the molecular flexibility, mapped using molecular dynamics simulations. The chemical shifts were predicted with a principal component model based on atom coordinates from a database of 40 protein structures. When compared to the corresponding non-dynamic (3D) model, the 4th dimension improved prediction by 6-7%. The prediction method achieved RMS errors of 0.29 and 0.50 ppm for Halpha and HN shifts, respectively. However, for individual proteins the RMS errors were 0.17-0.34 and 0.34-0.65 ppm for the Halpha and HN shifts, respectively. X-ray structures gave better predictions than the corresponding NMR structures, indicating that chemical shifts contain invaluable information about local structures. The (1)H chemical shift prediction tool 4DSPOT is available from http://www.uku.fi/kemia/4dspot . PMID:19876601

  8. PREDICTION OF PHYSICOCHEMICAL PROCESSES FOR ENVIRONMENTAL MODELING BY COMPUTER

    EPA Science Inventory

    The major differences among behavioral profiles of molecules in the environment are attributable to their physicochemical properties. For most chemicals, only fragmentary knowledge exists about those properties that determine each compound's environmental fate. A chemical-by-ch...

  9. Roles for epidemiology: the impact of environmental chemicals.

    PubMed Central

    Neutra, R

    1983-01-01

    Aside from the well-recognized role of documenting the extent of any health impact from exposure to environmental chemicals, epidemiology has other potential roles. Arguing by analogy from the function of epidemiology in the infectious disease field, two practical public health functions are mentioned. The first is rumor abatement: simply characterizing the population exposed and documenting the frequency of salient complaints and providing this to the affected population, so as to separate fact from fiction. Another practical public health function is to review available data bases to document the number of individuals exposed to such chemicals and a review of gross trends by place and time to set public fears in proper perspective. There are important descriptive scientific functions as well, namely, to document any syndromes or symptom patterns which may be associated with chemical exposures and to document the natural history and progression of clinical and preclinical conditions associated with chemical exposures. The sensitivity, specificity and predictive value of tests for preclinical disease are discussed. PMID:6825643

  10. EFFECTS OF ENVIRONMENTAL CHEMICALS ON FETAL TESTES TESTOSTERONE PRODUCTION

    EPA Science Inventory

    Effects of Environmental Chemicals on Fetal Testes Testosterone Production

    Lambright, CS , Wilson, VS , Furr, J, Wolf, CJ, Noriega, N, Gray, LE, Jr.
    US EPA, ORD/NHEERL/RTD, RTP, NC

    Exposure of pregnant rodents to certain environmental chemicals during criti...

  11. Environmental chemical mutagens and genetic risks: Lessons from radiation genetics

    SciTech Connect

    Sankaranarayanan, K.

    1996-12-31

    The last three decades have witnessed substantial progress in the development and use of a variety of in vitro and in vivo assay systems for the testing of environmental chemicals which may pose a mutagenic hazard to humans. This is also true of basic studies in chemical mutagenesis on mechanisms, DNA repair, molecular dosimetry, structure-activity relationships, etc. However, the field of quantitative evaluation of genetic risks of environmental chemicals to humans is still in it infancy. This commentary addresses the question of how our experience in estimating genetic risks of exposure to ionizing radiation can be helpful in similar endeavors with environmental chemical mutagens. 24 refs., 3 tabs.

  12. Environmental analysis of the chemical release module. [space shuttle payload

    NASA Technical Reports Server (NTRS)

    Heppner, J. P.; Dubin, M.

    1980-01-01

    The environmental analysis of the Chemical Release Module (a free flying spacecraft deployed from the space shuttle to perform chemical release experiments) is reviewed. Considerations of possible effects of the injectants on human health, ionosphere, weather, ground based optical astronomical observations, and satellite operations are included. It is concluded that no deleterious environmental effects of widespread or long lasting nature are anticipated from chemical releases in the upper atmosphere of the type indicated for the program.

  13. Predicting environmental fate parameters with infrared spectroscopy.

    EPA Science Inventory

    One of the principal uncertainties associated with risk assessments of organic chemicals in the environment is the lack of chemical-specific values that quantify the many processes determining the chemical's transport and transformation. Because it is not feasible to measure the ...

  14. EVALUATING AND DESIGNING CHEMICAL PROCESSES FOR ENVIRONMENTAL SUSTAINABILITY

    EPA Science Inventory

    Chemicals and chemical processes are at the heart of most environmental problems. This isn't surprising since chemicals make up all of the products we use in our lives. The common use of cjhemicals makes them of high interest for systems analysis, particularly because of environ...

  15. Perceived Vulnerability to Disease Predicts Environmental Attitudes

    ERIC Educational Resources Information Center

    Prokop, Pavol; Kubiatko, Milan

    2014-01-01

    Investigating predictors of environmental attitudes may bring valuable benefits in terms of improving public awareness about biodiversity degradation and increased pro-environmental behaviour. Here we used an evolutionary approach to study environmental attitudes based on disease-threat model. We hypothesized that people vulnerable to diseases may…

  16. How can Databases assist with the Prediction of Chemical Compounds?

    PubMed Central

    Schön, J Christian

    2014-01-01

    An overview is given on the ways databases can be employed to aid in the prediction of chemical compounds, in particular inorganic crystalline compounds. Methods currently employed and possible future approaches are discussed. PMID:26213422

  17. Deconstructing environmental predictability: seasonality, environmental colour and the biogeography of marine life histories.

    PubMed

    Marshall, Dustin J; Burgess, Scott C

    2015-02-01

    Environmental predictability is predicted to shape the evolution of life histories. Two key types of environmental predictability, seasonality and environmental colour, may influence life-history evolution independently but formal considerations of both and how they relate to life history are exceedingly rare. Here, in a global biogeographical analysis of over 800 marine invertebrates, we explore the relationships between both forms of environmental predictability and three fundamental life-history traits: location of larval development (aplanktonic vs. planktonic), larval developmental mode (feeding vs. non-feeding) and offspring size. We found that both dispersal potential and offspring size related to environmental predictability, but the relationships depended on both the environmental factor as well as the type of predictability. Environments that were more seasonal in food availability had a higher prevalence of species with a planktonic larval stage. Future studies should consider both types of environmental predictability as each can strongly affect life-history evolution. PMID:25534504

  18. Simulation of Chronic Liver Injury Due to Environmental Chemicals

    EPA Science Inventory

    US EPA Virtual Liver (v-Liver) is a cellular systems model of hepatic tissues to predict the effects of chronic exposure to chemicals. Tens of thousands of chemicals are currently in commerce and hundreds more are introduced every year. Few of these chemicals have been adequate...

  19. Chemical Fingerprinting of Materials Developed Due to Environmental Issues

    NASA Technical Reports Server (NTRS)

    Smith, Doris A.; McCool, A. (Technical Monitor)

    2000-01-01

    Instrumental chemical analysis methods are developed and used to chemically fingerprint new and modified External Tank materials made necessary by changing environmental requirements. Chemical fingerprinting can detect and diagnose variations in material composition. To chemically characterize each material, fingerprint methods are selected from an extensive toolbox based on the material's chemistry and the ability of the specific methods to detect the material's critical ingredients. Fingerprint methods have been developed for a variety of materials including Thermal Protection System foams, adhesives, primers, and composites.

  20. PREDICTING EVAPORATION RATES AND TIMES FOR SPILLS OF CHEMICAL MIXTURES

    EPA Science Inventory


    Spreadsheet and short-cut methods have been developed for predicting evaporation rates and evaporation times for spills (and constrained baths) of chemical mixtures. Steady-state and time-varying predictions of evaporation rates can be made for six-component mixtures, includ...

  1. Computational Toxicology: Application in Environmental Chemicals

    EPA Science Inventory

    This chapter provides an overview of computational models that describe various aspects of the source-to-health effect continuum. Fate and transport models describe the release, transportation, and transformation of chemicals from sources of emission throughout the general envir...

  2. Surfactant chemical technology works for environmental jobs

    SciTech Connect

    Foley, J.T. )

    1991-11-01

    This paper reports on surface active agents that have been employed in mining and mineral processing operations for many years. They are beginning to find increasing use as tools to deal with pressing environmental problems in the industry. Surface active agents are attracting particular attention from mining operators as environmental regulations as well as safety and health standards continue to tighten. These surfactants comprise a variety of products that have different end uses. They promote foaming, wetting, emulsification and crystal growth modification, among other functions. And they are generally environmentally friendly and non-toxic. Among the major environmental issues facing mine operators are effluent control, dust and fume suppression, acid drainage control and soil reclamation and remediation. Surfactants have already been put to work in each of these areas.

  3. Multicomponent criteria for predicting carcinogenicity: dataset of 30 NTP chemicals.

    PubMed Central

    Huff, J; Weisburger, E; Fung, V A

    1996-01-01

    This article is in response to the challenge issued to the scientific community by the National Toxicology Program to predict the carcinogenicity potential of 30 chemicals previously selected for long-term carcinogenicity testing. Utilizing the available toxicologic, genetic, and structural information on 30 chemicals previously selected for long-term carcinogenicity testing, we predict that 16 chemicals (53%) would induce some indication of carcinogenic activity in rodents; we further predict that 10 chemicals (33%) would be associated with weak or equivocal carcinogenic responses, and another 4 (13%) would give no indication of carcinogenicity. Our level of certainty is indicated for many of these predictions. Nonetheless, we believe that most instances of guessing whether a chemical would eventually induce cancer in experimental animals and hence represent a carcinogenic hazard to humans are fraught with considerable uncertainty: uncertainty that can only be relieved by long-term testing for carcinogenicity in animals or by conducting an epidemiologic investigation of exposed individuals or groups. We further believe that the day may come when our predictive acumen will be upgraded to such an extent that we might eventually obviate cancer testing. Until then, and in the best interests of public health, however, we urge long term testing of chemicals in animals be continued, at increased pace. PMID:8933061

  4. Prediction of Harmful Human Health Effects of Chemicals from Structure

    NASA Astrophysics Data System (ADS)

    Cronin, Mark T. D.

    There is a great need to assess the harmful effects of chemicals to which man is exposed. Various in silico techniques including chemical grouping and category formation, as well as the use of (Q)SARs can be applied to predict the toxicity of chemicals for a number of toxicological effects. This chapter provides an overview of the state of the art of the prediction of the harmful effects of chemicals to human health. A variety of existing data can be used to obtain information; many such data are formalized into freely available and commercial databases. (Q)SARs can be developed (as illustrated with reference to skin sensitization) for local and global data sets. In addition, chemical grouping techniques can be applied on "similar" chemicals to allow for read-across predictions. Many "expert systems" are now available that incorporate these approaches. With these in silico approaches available, the techniques to apply them successfully have become essential. Integration of different in silico approaches with each other, as well as with other alternative approaches, e.g., in vitro and -omics through the development of integrated testing strategies, will assist in the more efficient prediction of the harmful health effects of chemicals

  5. Hierarchical dose-response modeling for high-throughput toxicity screening of environmental chemicals.

    PubMed

    Wilson, Ander; Reif, David M; Reich, Brian J

    2014-03-01

    High-throughput screening (HTS) of environmental chemicals is used to identify chemicals with high potential for adverse human health and environmental effects from among the thousands of untested chemicals. Predicting physiologically relevant activity with HTS data requires estimating the response of a large number of chemicals across a battery of screening assays based on sparse dose-response data for each chemical-assay combination. Many standard dose-response methods are inadequate because they treat each curve separately and under-perform when there are as few as 6-10 observations per curve. We propose a semiparametric Bayesian model that borrows strength across chemicals and assays. Our method directly parametrizes the efficacy and potency of the chemicals as well as the probability of response. We use the ToxCast data from the U.S. Environmental Protection Agency (EPA) as motivation. We demonstrate that our hierarchical method provides more accurate estimates of the probability of response, efficacy, and potency than separate curve estimation in a simulation study. We use our semiparametric method to compare the efficacy of chemicals in the ToxCast data to well-characterized reference chemicals on estrogen receptor α (ERα) and peroxisome proliferator-activated receptor γ (PPARγ) assays, then estimate the probability that other chemicals are active at lower concentrations than the reference chemicals. PMID:24397816

  6. Chemical Aging of Environmentally Friendly Cleaners

    NASA Technical Reports Server (NTRS)

    Biegert, L. L.; Evans, K. B.; Olsen, B. D.; Weber, B. L.

    2001-01-01

    Use of cleaners in the manufacturing area demands bottles that will hold a sufficient amount of material and allow for easy and controlled dispensing by the operator without contamination or material leaching from the bottle. The manufacturing storage conditions are also a factor that may affect cleaner chemical integrity and its potential to leave a residue on the part. A variety of squeeze bottles stored in mild (72 F, 10% R.H., dark) and harsh (105 F, 50% R.H., fluorescent lighting) conditions were evaluated to determine the effect of environment and bottle exposure on ozone depleting chemicals (ODC) cleaners chemical composition. Low Density Polyethylene (LDPE) bottles were found to be quite permeable to all the cleaners evaluated in this study indicating this bottle type should not be used in the manufacturing area. Fluorinated Polyethylene (FLPE) bottles showed little cleaner loss and change in cleaner chemical composition over time suggesting these bottles would be acceptable for use. Chemical analysis indicates limonene containing cleaners show increased non-volatile residue (NVR) content with storage under harsh conditions. Some cleaners use BHT (butylated hydroxytoluene) as stabilizer and to protect against limonene oxidation. Under harsh conditions, BHT was quickly depleted resulting in higher NVR levels.

  7. Proteomic analyses of the environmental toxicity of carcinogenic chemicals

    EPA Science Inventory

    Protein expression and posttranslational modifications consistently change in response to the exposure to environmental chemicals. Recent technological advances in proteomics provide new tools for more efficient characterization of protein expression and posttranslational modific...

  8. SIMULATION MODELS FOR ENVIRONMENTAL MULTIMEDIA ANALYSIS OF TOXIC CHEMICALS

    EPA Science Inventory

    Multimedia understanding of pollutant behavior in the environment is of particular concern for chemicals that are toxic and are subject to accumulation in the environmental media (air, soil, water, vegetation) where biota and human exposure is significant. Multimedia simulation ...

  9. DESIGNING ENVIRONMENTAL, ECONOMIC AND ENERGY EFFICIENT CHEMICAL PROCESSES

    EPA Science Inventory

    The design and improvement of chemical processes can be very challenging. The earlier energy conservation, process economics and environmental aspects are incorporated into the process development, the easier and less expensive it is to alter the process design. Process emissio...

  10. BIOASSAY-DIRECTED CHEMICAL ANALYSIS IN ENVIRONMENTAL RESEARCH

    EPA Science Inventory

    The use of short-term bioassay tests in conjunction with analytical measurements, constitute a powerful tool for identifying important environmental contaminants. The authors have coined the terminology 'bioassay directed chemical analysis' to best describe this marriage of analy...

  11. Chemical Aging of Environmentally Friendly Cleaners

    NASA Technical Reports Server (NTRS)

    Evans, K.; Biegert, L.; Olsen, B.; Weber, B.; McCool, Alex (Technical Monitor)

    2001-01-01

    Use of cleaners in the manufacturing area demands bottles that will hold a sufficient amount of material and allow for easy and controlled dispensing by the operator without contamination or material leaching from the bottle. The manufacturing storage conditions are also a factor that may affect cleaner chemical integrity and its potential to leave a residue on the part. A variety of squeeze bottles stored in mild (72 F, 10 % R.H., dark) and harsh (105 F, 50 % R.H., fluorescent lighting) conditions were evaluated to determine the effect of environment and bottle exposure on the chemical composition of TCA (1,1,1 trichloroethane) replacement solvents. Low Density Polyethylene (LDPE) bottles were found to be quite permeable to all the cleaners evaluated in this study indicating this bottle type should not be used in the manufacturing area. Fluorinated Polyethylene (FLPE) bottles showed little cleaner loss and change in cleaner chemical composition over time suggesting these bottles would be acceptable for use. Chemical analysis indicates limonene-containing cleaners show increased non-volatile residue (NVR) content with storage under harsh conditions. Some cleaners use BHT (butylated hydroxytoluene) as stabilizer and to protect against limonene oxidation. Under harsh conditions, BHT was quickly depleted resulting in higher NVR levels.

  12. DEVELOPMENT OF ENVIRONMENTAL INDICES FOR GREEN CHEMICAL PRODUCTION AND USE

    EPA Science Inventory

    Chemical production, use and disposal cause adverse impacts on the environment. Consequently, much research has been conducted to develop methods for estimating the risk of chemicals and to screen them based on environmental impact. Risk assessment may be subdivide...

  13. A Chemical Properties Simulator to Support Integrated Environmental Modeling

    EPA Science Inventory

    Users of Integrated Environmental Modeling (IEM) systems are responsible for defining individual chemicals and their properties, a process that is time-consuming at best and overwhelming at worst, especially for new chemicals with new structures. A software tool is needed to allo...

  14. A Chemical Properties Simulator to Support Integrated Environmental Modeling (proceeding)

    EPA Science Inventory

    Users of Integrated Environmental Modeling (IEM) systems are responsible for defining individual chemicals and their properties, a process that is time-consuming at best and overwhelming at worst, especially for new chemicals with new structures. A software tool is needed to allo...

  15. Information System for Environmental Chemicals: Training for End Users.

    ERIC Educational Resources Information Center

    Voigt, Kristina; And Others

    1991-01-01

    Discusses factors to consider in identifying and accessing appropriate data sources for environmental chemical information and describes three training programs for end-users: (1) a course on retrieval of information on dangerous substances; (2) a seminar on German offline databases on chemicals; and (3) a workshop on the Information System for…

  16. RAPID SCREENING OF ENVIRONMENTAL CHEMICALS FOR ESTROGEN RECEPTOR BINDING CAPACITY

    EPA Science Inventory

    Over the last few years, an increased awareness of endocrine disrupting chemicals (EDCs) and their potential to affect wildlife and humans has produced a demand for practical screening methods to identify endocrine activity in a wide range of environmental and industrial chemical...

  17. ENVIRONMENTAL ENGINEERING AND ENDOCRINE DISRUPTING CHEMICALS: JOURNAL ARTICLE

    EPA Science Inventory

    NRMRL-CIN-1600 Sayles*, G.D. Environmental Engineering and Endocrine Disrupting Chemicals. ASCE Journal of Environmental Engineering (Arnold, R.G. (Ed.), Reston, VA: American Society of Civil Engineers) 128 (1):1-2 (2002). EPA/600/J- 02/001. ...

  18. ANIMALS AS SENTINELS OF HUMAN HEALTH HAZARDS OF ENVIRONMENTAL CHEMICALS

    EPA Science Inventory

    A workshop titled "Using Sentinel Species Data to Address the Potential Human Health Effects of Chemicals in the Environmnet," sponsored by the U.S. Army Center for Environmental Health Research, the National Center for Environmental Assessment of the EPA, and the Agency for Toxi...

  19. ENVIRONMENTAL IMPLICATIONS OF CHANGES IN THE BROMINATED CHEMICALS INDUSTRY

    EPA Science Inventory

    In light of the large-scale changes occuring within the bromine-based chemicals industry, the U.S. Environmental Protection Agency commissioned a study to investigate the potential for adverse environmental effects that might result from such changes. In particular, EPA was inter...

  20. Optodes for environmental chemical monitoring of lead

    NASA Astrophysics Data System (ADS)

    Lerchi, Markus; Simon, Wilhelm

    1993-03-01

    Sensors with optical transduction (optodes) based on plasticized poly(vinyl chloride) (PVC) bulk membranes incorporating a metal ion-selective ionophore, a hydrogen ion-selective chromoionophore and lipophilic anionic sites for the measurement of lead are presented. Different ionophores were used to design new optodes for environmental sensing properties. Since sufficient detection limits and excellent selectivities over alkali and alkaline earth metals are reached, these sensors can be used as monitoring devices for environmental relevant purposes. These reversibly working optodes show different dynamic ranges depending on the basicity of the involved chromoionophore and on the pH of the sample solution. Therefore, these sensors can be tailored to a specific application by varying these two parameters. Dynamic range, detection limit, response behavior, short-time repeatability, stability and selectivity of the optode systems are discussed.

  1. Family Environmental and Genetic Influences on Children's Future Chemical Dependency.

    ERIC Educational Resources Information Center

    Kumpfer, Karol L.; DeMarsh, Joseph

    1985-01-01

    Discusses the following in relation to their predictability to future drug abuse in youth: (1) susceptibility of children of chemically dependent parents; (2) genetic transmutation; (3) family structure and management; (4) socialization; and (5) cognitive family characteristics. (Author/LHW)

  2. Environmental Impact on Vascular Development Predicted by High Throughput Screening

    EPA Science Inventory

    Understanding health risks to embryonic development from exposure to environmental chemicals is a significant challenge given the diverse chemical landscape and paucity of data for most of these compounds. High throughput screening (HTS) in EPA’s ToxCastTM project provides vast d...

  3. Prediction uncertainty of environmental change effects on temperate European biodiversity.

    PubMed

    Dormann, Carsten F; Schweiger, Oliver; Arens, P; Augenstein, I; Aviron, St; Bailey, Debra; Baudry, J; Billeter, R; Bugter, R; Bukácek, R; Burel, F; Cerny, M; Cock, Raphaël De; De Blust, Geert; DeFilippi, R; Diekötter, Tim; Dirksen, J; Durka, W; Edwards, P J; Frenzel, M; Hamersky, R; Hendrickx, Frederik; Herzog, F; Klotz, St; Koolstra, B; Lausch, A; Le Coeur, D; Liira, J; Maelfait, J P; Opdam, P; Roubalova, M; Schermann-Legionnet, Agnes; Schermann, N; Schmidt, T; Smulders, M J M; Speelmans, M; Simova, P; Verboom, J; van Wingerden, Walter; Zobel, M

    2008-03-01

    Observed patterns of species richness at landscape scale (gamma diversity) cannot always be attributed to a specific set of explanatory variables, but rather different alternative explanatory statistical models of similar quality may exist. Therefore predictions of the effects of environmental change (such as in climate or land cover) on biodiversity may differ considerably, depending on the chosen set of explanatory variables. Here we use multimodel prediction to evaluate effects of climate, land-use intensity and landscape structure on species richness in each of seven groups of organisms (plants, birds, spiders, wild bees, ground beetles, true bugs and hoverflies) in temperate Europe. We contrast this approach with traditional best-model predictions, which we show, using cross-validation, to have inferior prediction accuracy. Multimodel inference changed the importance of some environmental variables in comparison with the best model, and accordingly gave deviating predictions for environmental change effects. Overall, prediction uncertainty for the multimodel approach was only slightly higher than that of the best model, and absolute changes in predicted species richness were also comparable. Richness predictions varied generally more for the impact of climate change than for land-use change at the coarse scale of our study. Overall, our study indicates that the uncertainty introduced to environmental change predictions through uncertainty in model selection both qualitatively and quantitatively affects species richness projections. PMID:18070098

  4. Toxic chemicals in environment and models for predicting their degradation and fate

    SciTech Connect

    Sabljic, A.

    1996-12-31

    During the last 50 years many man-made chemicals have reached every corner of the global environment despite the limitations on their use in some regions and the fact that many of them were not deliberately released into the environment. Both the mobility and persistence of commercial chemicals are the key factors for evaluating their ultimate fate and possible adverse effects on mankind and environment. The notorious global adverse effects are climate changes such as global warming, acid rain, forest decline, as well as permanent degradation of the environment and quality of life. Global and regional models have been developed for predicting transport of chemicals in atmosphere, hydrosphere, and biosphere and hence their ultimate fate or their environmental sinks. Performance of these models will be demonstrated on several classes of persistent organic chemicals. However, in order to work reliably, global and regional models for environmental fate of chemicals require, as input parameters, their physico-chemical properties and reactivity data. Unfortunately, these data are unavailable for the majority of commercial chemicals and necessary data must be calculated or estimated. The present state of the art on the calculation and estimation of several critical environmental parameters, i.e. soil sorption coefficients, tropospheric and microbiological degradation rates will be presented and evaluated including the most recent results from our laboratory.

  5. Environmental neurotoxicity of chemicals and radiation

    SciTech Connect

    Verity, M.A. )

    1993-06-01

    Epidemiologic and societal concerns continue to stimulate studies in the field of environmental neurotoxicology. Although the role of heavy metals, aluminum, and iron are unclear in the etiology of human neurodegenerative disorders, these toxins have provided fertile ground for in vivo and in vitro experimental studies to elucidate their role in neurotoxic injury. Experimental models of clinical syndromes are discussed with special relevance to developmental neurotoxicology. Cycloleucine, tellurium, and 1,3-dinitrobenzene provide models of subacute combined degeneration, primary peripheral nerve demyelination, and thiamine deficiency-like lesions, respectively. Increasing attention is being given to irradiation neurotoxicity, especially in the developing or young central nervous system. A fuller understanding of the pathogenesis of low-dose irradiation injury allows for a clearer understanding of its neurobiology and also provides a more rational approach to understanding an interventional therapy associated with brain irradiation for childhood neoplasia. 43 refs.

  6. Environmental and safety obligations of the Chemical Weapons Convention

    SciTech Connect

    Tanzman, E.A.

    1994-04-07

    Among its many unique and precedent-setting provisions, the Chemical Weapons Convention (CWC) includes important requirements for States Parties to protect the public safety and the environment in the course of carrying out the treaty. These obligations will apply to the destruction of chemical weapons, of former chemical weapons production facilities, and to other activities under the Convention such as the verification scheme. This morning, I will briefly discuss the Convention`s safety and environmental obligations, concentrating on their effects in this country as the United States chemical weapons stockpile is destroyed.

  7. Prediction of Rate Constants for Catalytic Reactions with Chemical Accuracy.

    PubMed

    Catlow, C Richard A

    2016-08-01

    Ex machina: A computational method for predicting rate constants for reactions within microporous zeolite catalysts with chemical accuracy has recently been reported. A key feature of this method is a stepwise QM/MM approach that allows accuracy to be achieved while using realistic models with accessible computer resources. PMID:27329206

  8. The Formation Age of Comets: Predicted Physical and Chemical Trends

    NASA Technical Reports Server (NTRS)

    Nuth, Joesph A., III; Hill, H. G. M.

    2000-01-01

    The chemical composition of a comet has always been considered to be a function of where it formed in the nebula. We suggest that the most important factor in determining a comet's chemistry might actually be when it formed. We present specific predictions of correlations between the dust and volatile components to test our hypothesis.

  9. Environmental fate and transport of chemical signatures from buried landmines -- Screening model formulation and initial simulations

    SciTech Connect

    Phelan, J.M.; Webb, S.W.

    1997-06-01

    The fate and transport of chemical signature molecules that emanate from buried landmines is strongly influenced by physical chemical properties and by environmental conditions of the specific chemical compounds. Published data have been evaluated as the input parameters that are used in the simulation of the fate and transport processes. A one-dimensional model developed for screening agricultural pesticides was modified and used to simulate the appearance of a surface flux above a buried landmine, estimate the subsurface total concentration, and show the phase specific concentrations at the ground surface. The physical chemical properties of TNT cause a majority of the mass released to the soil system to be bound to the solid phase soil particles. The majority of the transport occurs in the liquid phase with diffusion and evaporation driven advection of soil water as the primary mechanisms for the flux to the ground surface. The simulations provided herein should only be used for initial conceptual designs of chemical pre-concentration subsystems or complete detection systems. The physical processes modeled required necessary simplifying assumptions to allow for analytical solutions. Emerging numerical simulation tools will soon be available that should provide more realistic estimates that can be used to predict the success of landmine chemical detection surveys based on knowledge of the chemical and soil properties, and environmental conditions where the mines are buried. Additional measurements of the chemical properties in soils are also needed before a fully predictive approach can be confidently applied.

  10. Simulation of the environmental fate and transport of chemical signatures from buried landmines

    SciTech Connect

    Phelan, J.M.; Webb, S.W.

    1998-03-01

    The fate and transport of chemical signature molecules that emanate from buried landmines is strongly influenced by physical chemical properties and by environmental conditions of the specific chemical compounds. Published data have been evaluated as the input parameters that are used in the simulation of the fate and transport processes. A one-dimensional model developed for screening agricultural pesticides was modified and used to simulate the appearance of a surface flux above a buried landmine and estimate the subsurface total concentration. The physical chemical properties of TNT cause a majority of the mass released to the soil system to be bound to the solid phase soil particles. The majority of the transport occurs in the liquid phase with diffusion and evaporation driven advection of soil water as the primary mechanisms for the flux to the ground surface. The simulations provided herein should only be used for initial conceptual designs of chemical pre-concentration subsystems or complete detection systems. The physical processes modeled required necessary simplifying assumptions to allow for analytical solutions. Emerging numerical simulation tools will soon be available that should provide more realistic estimates that can be used to predict the success of landmine chemical detection surveys based on knowledge of the chemical and soil properties, and environmental conditions where the mines are buried. Additional measurements of the chemical properties in soils are also needed before a fully predictive approach can be confidently applied.

  11. Predictive performance of the Vitrigel-eye irritancy test method using 118 chemicals.

    PubMed

    Yamaguchi, Hiroyuki; Kojima, Hajime; Takezawa, Toshiaki

    2016-08-01

    We recently developed a novel Vitrigel-eye irritancy test (EIT) method. The Vitrigel-EIT method is composed of two parts, i.e., the construction of a human corneal epithelium (HCE) model in a collagen vitrigel membrane chamber and the prediction of eye irritancy by analyzing the time-dependent profile of transepithelial electrical resistance values for 3 min after exposing a chemical to the HCE model. In this study, we estimated the predictive performance of Vitrigel-EIT method by testing a total of 118 chemicals. The category determined by the Vitrigel-EIT method in comparison to the globally harmonized system classification revealed that the sensitivity, specificity and accuracy were 90.1%, 65.9% and 80.5%, respectively. Here, five of seven false-negative chemicals were acidic chemicals inducing the irregular rising of transepithelial electrical resistance values. In case of eliminating the test chemical solutions showing pH 5 or lower, the sensitivity, specificity and accuracy were improved to 96.8%, 67.4% and 84.4%, respectively. Meanwhile, nine of 16 false-positive chemicals were classified irritant by the US Environmental Protection Agency. In addition, the disappearance of ZO-1, a tight junction-associated protein and MUC1, a cell membrane-spanning mucin was immunohistologically confirmed in the HCE models after exposing not only eye irritant chemicals but also false-positive chemicals, suggesting that such false-positive chemicals have an eye irritant potential. These data demonstrated that the Vitrigel-EIT method could provide excellent predictive performance to judge the widespread eye irritancy, including very mild irritant chemicals. We hope that the Vitrigel-EIT method contributes to the development of safe commodity chemicals. Copyright © 2015 The Authors. Journal of Applied Toxicology published by John Wiley & Sons Ltd. PMID:26472347

  12. NASA's Earth Science Research and Environmental Predictions

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.

    2004-01-01

    NASA Earth Science program began in the 1960s with cloud imaging satellites used for weather observations. A fleet of satellites are now in orbit to investigate the Earth Science System to uncover the connections between land, Oceans and the atmosphere. Satellite systems using an array of active and passive remote sensors are used to search for answers on how is the Earth changing and what are the consequences for life on Earth? The answer to these questions can be used for applications to serve societal needs and contribute to decision support systems for weather, hazard, and air quality predictions and mitigation of adverse effects. Partnerships with operational agencies using NASA's observational capabilities are now being explored. The system of the future will require new technology, data assimilation systems which includes data and models that will be used for forecasts that respond to user needs.

  13. Predicting the response of populations to environmental change

    SciTech Connect

    Ives, A.R.

    1995-04-01

    When subject to long-term directional environmental perturbations, changes in population densities depend on the positive and negative feedbacks operating through interactions within and among species in a community. This paper develops techniques to predict the long-term responses of population densities to environmental changes using data on short-term population fluctuations driven by short-term environmental variability. In addition to giving quantitative predictions, the techniques also reveal how different qualitative patterns of species interactions either buffer or accentuate population responses to environmental trends. All of the predictions are based on regression coefficients extracted from time series data, and they can therefore be applied with a minimum of mathematical and statistical gymnastics. 48 refs., 10 figs., 4 tabs.

  14. Chemical Genomics Profiling of Environmental Chemical Modulation of Human Nuclear Receptors

    EPA Science Inventory

    The large and increasing number of chemicals released into the environment demand more efficient and cost effective approaches for assessing environmental chemical toxicity. The U.S. Tox21 program has responded to this challenge by proposing alternative strategies for toxicity te...

  15. Optimal Exposure Biomarkers for Nonpersistent Chemicals in Environmental Epidemiology

    PubMed Central

    Calafat, Antonia M.; Longnecker, Matthew P.; Koch, Holger M.; Swan, Shanna H.; Hauser, Russ; Goldman, Lynn R.; Lanphear, Bruce P.; Rudel, Ruthann A.; Engel, Stephanie M.; Teitelbaum, Susan L.; Whyatt, Robin M.

    2015-01-01

    Summary We discuss considerations that are essential when evaluating exposure to nonpersistent, semivolatile environmental chemicals such as phthalates and phenols (e.g., bisphenol A). A biomarker should be chosen to best represent usual personal exposures and not recent, adventitious, or extraneous exposures. Biomarkers should be selected to minimize contamination arising from collection, sampling, or analysis procedures. Pharmacokinetics should be considered; for example, nonpersistent, semivolatile chemicals are metabolized quickly, and urine is the compartment with the highest concentrations of metabolites. Because these chemicals are nonpersistent, knowledge of intraindividual reliability over the biologic window of interest is also required. In recent years researchers have increasingly used blood as a matrix for characterizing exposure to nonpersistent chemicals. However, the biologic and technical factors noted above strongly support urine as the optimal matrix for measuring nonpersistent, semivolatile, hydrophilic environmental agents. PMID:26132373

  16. Optimal Exposure Biomarkers for Nonpersistent Chemicals in Environmental Epidemiology.

    PubMed

    Calafat, Antonia M; Longnecker, Matthew P; Koch, Holger M; Swan, Shanna H; Hauser, Russ; Goldman, Lynn R; Lanphear, Bruce P; Rudel, Ruthann A; Engel, Stephanie M; Teitelbaum, Susan L; Whyatt, Robin M; Wolff, Mary S

    2015-07-01

    We discuss considerations that are essential when evaluating exposure to nonpersistent, semivolatile environmental chemicals such as phthalates and phenols (e.g., bisphenol A). A biomarker should be chosen to best represent usual personal exposures and not recent, adventitious, or extraneous exposures. Biomarkers should be selected to minimize contamination arising from collection, sampling, or analysis procedures. Pharmacokinetics should be considered; for example, nonpersistent, semivolatile chemicals are metabolized quickly, and urine is the compartment with the highest concentrations of metabolites. Because these chemicals are nonpersistent, knowledge of intraindividual reliability over the biologic window of interest is also required. In recent years researchers have increasingly used blood as a matrix for characterizing exposure to nonpersistent chemicals. However, the biologic and technical factors noted above strongly support urine as the optimal matrix for measuring nonpersistent, semivolatile, hydrophilic environmental agents. PMID:26132373

  17. Traceability of environmental chemical analyses: can theory match practice?

    PubMed

    Quevauviller, P

    2005-08-01

    According to the ISO definition, the traceability concept basically implies that measurement data are linked to stated references through an unbroken chain of comparisons, all with stated uncertainties. This concept may be quite clear in theory, but we may wonder how it may be applicable to complex chemical measurements such as environmental chemical analyses in practice. This paper discusses this issue, giving some examples of drawbacks that are being faced in different environmental sectors (water, sediment, soil, biota and particulate atmospheric samples). PMID:16021419

  18. Developmental Exposure to Environmental Chemicals and Metabolic Changes in Children.

    PubMed

    Russ, Karin; Howard, Sarah

    2016-08-01

    The incidence of childhood obesity, type 2 diabetes, and other forms of metabolic disease have been rising over the past several decades. Although diet and physical activity play important roles in these trends, other environmental factors also may contribute to this significant public health issue. In this article, we discuss the possibility that widespread exposure to endocrine-disrupting chemicals (EDCs) may contribute to the development of metabolic diseases in children. We summarize the epidemiological evidence on exposure to environmental chemicals during early development and metabolic outcomes in infants and children. Prenatal exposure to EDCs, particularly the persistent organic pollutant DDT and its metabolite DDE, may influence growth patterns during infancy and childhood. The altered growth patterns associated with EDCs vary according to exposure level, sex, exposure timing, pubertal status, and age at which growth is measured. Early exposure to air pollutants also is linked to impaired metabolism in infants and children. As a result of these and other studies, professional health provider societies have called for a reduction in environmental chemical exposures. We summarize the resources available to health care providers to counsel patients on how to reduce chemical exposures. We conclude with a discussion of environmental policies that address chemical exposures and ultimately aim to improve public health. PMID:27401018

  19. Chemicals and environmentally caused diseases in developing countries

    SciTech Connect

    Jamall, I.S.; Davis, B. )

    1991-06-01

    This chapter discusses international aspects of diseases resulting from exposure to chemical pollutants in the environment, with an emphasis on developing countries. These countries share many of the same problems of air, water, and pesticide pollution that face the more industrialized countries. In developing countries, however, the problems are compounded by a number of unique situations, viz., economic priorities, high burden of infectious diseases, impoverishment, and absence of a regulatory framework for the disposal of toxic chemicals. This discussion emphasizes the importance of interactions among toxicants, malnutrition, and infectious diseases for both urban and rural populations insofar as these interactions contribute to disease. Toxicants not only produce disease directly but also exacerbate diseases with other causes. Specific examples from developing countries demonstrate how human health effects from exposures to environmental chemicals can be assessed. While they do not strictly fall under the rubric of developing countries, the public health consequences of inadequate control of environmental pollution in the East European countries should demonstrate the magnitude of the problem, except that in developing countries the public health consequence of environmental chemicals will be aggravated by the widespread malnutrition and high prevalence of infectious diseases. Much needs to be done before we can adequately quantify the contribution of environmental chemicals to morbidity and mortality in developing countries with the level of sophistication now evident in the charting of infectious diseases in these countries. 52 references.

  20. The ToxCast program for prioritizing toxicity testing of environmental chemicals.

    PubMed

    Dix, David J; Houck, Keith A; Martin, Matthew T; Richard, Ann M; Setzer, R Woodrow; Kavlock, Robert J

    2007-01-01

    The U.S. Environmental Protection Agency (EPA) is developing methods for utilizing computational chemistry, high-throughput screening (HTS), and various toxicogenomic technologies to predict potential for toxicity and prioritize limited testing resources toward chemicals that likely represent the greatest hazard to human health and the environment. This chemical prioritization research program, entitled "ToxCast," is being initiated with the purpose of developing the ability to forecast toxicity based on bioactivity profiling. The proof-of-concept phase of ToxCast will focus upon chemicals with an existing, rich toxicological database in order to provide an interpretive context for the ToxCast data. This set of several hundred reference chemicals will represent numerous structural classes and phenotypic outcomes, including tumorigens, developmental and reproductive toxicants, neurotoxicants, and immunotoxicants. The ToxCast program will evaluate chemical properties and bioactivity profiles across a broad spectrum of data domains: physical-chemical, predicted biological activities based on existing structure-activity models, biochemical properties based on HTS assays, cell-based phenotypic assays, and genomic and metabolomic analyses of cells. These data will be generated through a series of external contracts, along with collaborations across EPA, with the National Toxicology Program, and with the National Institutes of Health Chemical Genomics Center. The resulting multidimensional data set provides an informatics challenge requiring appropriate computational methods for integrating various chemical, biological, and toxicological data into profiles and models predicting toxicity. PMID:16963515

  1. VHH antibodies: emerging reagents for the analysis of environmental chemicals.

    PubMed

    Bever, Candace S; Dong, Jie-Xian; Vasylieva, Natalia; Barnych, Bogdan; Cui, Yongliang; Xu, Zhen-Lin; Hammock, Bruce D; Gee, Shirley J

    2016-09-01

    A VHH antibody (or nanobody) is the antigen binding fragment of heavy chain only antibodies. Discovered nearly 25 years ago, they have been investigated for their use in clinical therapeutics and immunodiagnostics, and more recently for environmental monitoring applications. A new and valuable immunoreagent for the analysis of small molecular weight environmental chemicals, VHH will overcome many pitfalls encountered with conventional reagents. In the work so far, VHH antibodies often perform comparably to conventional antibodies for small molecule analysis, are amenable to numerous genetic engineering techniques, and show ease of adaption to other immunodiagnostic platforms for use in environmental monitoring. Recent reviews cover the structure and production of VHH antibodies as well as their use in clinical settings. However, no report focuses on the use of these VHH antibodies to detect small environmental chemicals (MW < 1500 Da). This review article summarizes the efforts made to produce VHHs to various environmental targets, compares the VHH-based assays with conventional antibody assays, and discusses the advantages and limitations in developing these new antibody reagents particularly to small molecule targets. Graphical Abstract Overview of the production of VHHs to small environmental chemicals and highlights of the utility of these new emerging reagents. PMID:27209591

  2. SHIFTX2: significantly improved protein chemical shift prediction.

    PubMed

    Han, Beomsoo; Liu, Yifeng; Ginzinger, Simon W; Wishart, David S

    2011-05-01

    A new computer program, called SHIFTX2, is described which is capable of rapidly and accurately calculating diamagnetic (1)H, (13)C and (15)N chemical shifts from protein coordinate data. Compared to its predecessor (SHIFTX) and to other existing protein chemical shift prediction programs, SHIFTX2 is substantially more accurate (up to 26% better by correlation coefficient with an RMS error that is up to 3.3× smaller) than the next best performing program. It also provides significantly more coverage (up to 10% more), is significantly faster (up to 8.5×) and capable of calculating a wider variety of backbone and side chain chemical shifts (up to 6×) than many other shift predictors. In particular, SHIFTX2 is able to attain correlation coefficients between experimentally observed and predicted backbone chemical shifts of 0.9800 ((15)N), 0.9959 ((13)Cα), 0.9992 ((13)Cβ), 0.9676 ((13)C'), 0.9714 ((1)HN), 0.9744 ((1)Hα) and RMS errors of 1.1169, 0.4412, 0.5163, 0.5330, 0.1711, and 0.1231 ppm, respectively. The correlation between SHIFTX2's predicted and observed side chain chemical shifts is 0.9787 ((13)C) and 0.9482 ((1)H) with RMS errors of 0.9754 and 0.1723 ppm, respectively. SHIFTX2 is able to achieve such a high level of accuracy by using a large, high quality database of training proteins (>190), by utilizing advanced machine learning techniques, by incorporating many more features (χ(2) and χ(3) angles, solvent accessibility, H-bond geometry, pH, temperature), and by combining sequence-based with structure-based chemical shift prediction techniques. With this substantial improvement in accuracy we believe that SHIFTX2 will open the door to many long-anticipated applications of chemical shift prediction to protein structure determination, refinement and validation. SHIFTX2 is available both as a standalone program and as a web server ( http://www.shiftx2.ca ). PMID:21448735

  3. Improving Prediction of Prostate Cancer Recurrence using Chemical Imaging

    NASA Astrophysics Data System (ADS)

    Kwak, Jin Tae; Kajdacsy-Balla, André; Macias, Virgilia; Walsh, Michael; Sinha, Saurabh; Bhargava, Rohit

    2015-03-01

    Precise Outcome prediction is crucial to providing optimal cancer care across the spectrum of solid cancers. Clinically-useful tools to predict risk of adverse events (metastases, recurrence), however, remain deficient. Here, we report an approach to predict the risk of prostate cancer recurrence, at the time of initial diagnosis, using a combination of emerging chemical imaging, a diagnostic protocol that focuses simultaneously on the tumor and its microenvironment, and data analysis of frequent patterns in molecular expression. Fourier transform infrared (FT-IR) spectroscopic imaging was employed to record the structure and molecular content from tumors prostatectomy. We analyzed data from a patient cohort that is mid-grade dominant - which is the largest cohort of patients in the modern era and in whom prognostic methods are largely ineffective. Our approach outperforms the two widely used tools, Kattan nomogram and CAPRA-S score in a head-to-head comparison for predicting risk of recurrence. Importantly, the approach provides a histologic basis to the prediction that identifies chemical and morphologic features in the tumor microenvironment that is independent of conventional clinical information, opening the door to similar advances in other solid tumors.

  4. Environmental sentinel biomonitors: integrated response systems for monitoring toxic chemicals

    NASA Astrophysics Data System (ADS)

    van der Schalie, William H.; Reuter, Roy; Shedd, Tommy R.; Knechtges, Paul L.

    2002-02-01

    Operational environments for military forces are becoming potentially more dangerous due to the increased number, use, and misuse of toxic chemicals across the entire range of military missions. Defense personnel may be exposed to harmful chemicals as a result of industrial accidents or intentional or unintentional action of enemy, friendly forces, or indigenous populations. While there has been a significant military effort to enable forces to operate safely and survive and sustain operations in nuclear, biological, chemical warfare agent environments, until recently there has not been a concomitant effort associated with potential adverse health effects from exposures of deployed personnel to toxic industrial chemicals. To provide continuous real-time toxicity assessments across a broad spectrum of individual chemicals or chemical mixtures, an Environmental Sentinel Biomonitor (ESB) system concept is proposed. An ESB system will integrate data from one or more platforms of biologically-based systems and chemical detectors placed in the environment to sense developing toxic conditions and transmit time-relevant data for use in risk assessment, mitigation, and/or management. Issues, challenges, and next steps for the ESB system concept are described, based in part on discussions at a September 2001 workshop sponsored by the U.S. Army Center for Environmental Health Research.

  5. Predicting hepatotoxicity using ToxCast in vitro bioactivity and chemical structure.

    PubMed

    Liu, Jie; Mansouri, Kamel; Judson, Richard S; Martin, Matthew T; Hong, Huixiao; Chen, Minjun; Xu, Xiaowei; Thomas, Russell S; Shah, Imran

    2015-04-20

    The U.S. Tox21 and EPA ToxCast program screen thousands of environmental chemicals for bioactivity using hundreds of high-throughput in vitro assays to build predictive models of toxicity. We represented chemicals based on bioactivity and chemical structure descriptors, then used supervised machine learning to predict in vivo hepatotoxic effects. A set of 677 chemicals was represented by 711 in vitro bioactivity descriptors (from ToxCast assays), 4,376 chemical structure descriptors (from QikProp, OpenBabel, PaDEL, and PubChem), and three hepatotoxicity categories (from animal studies). Hepatotoxicants were defined by rat liver histopathology observed after chronic chemical testing and grouped into hypertrophy (161), injury (101) and proliferative lesions (99). Classifiers were built using six machine learning algorithms: linear discriminant analysis (LDA), Naïve Bayes (NB), support vector machines (SVM), classification and regression trees (CART), k-nearest neighbors (KNN), and an ensemble of these classifiers (ENSMB). Classifiers of hepatotoxicity were built using chemical structure descriptors, ToxCast bioactivity descriptors, and hybrid descriptors. Predictive performance was evaluated using 10-fold cross-validation testing and in-loop, filter-based, feature subset selection. Hybrid classifiers had the best balanced accuracy for predicting hypertrophy (0.84 ± 0.08), injury (0.80 ± 0.09), and proliferative lesions (0.80 ± 0.10). Though chemical and bioactivity classifiers had a similar balanced accuracy, the former were more sensitive, and the latter were more specific. CART, ENSMB, and SVM classifiers performed the best, and nuclear receptor activation and mitochondrial functions were frequently found in highly predictive classifiers of hepatotoxicity. ToxCast and ToxRefDB provide the largest and richest publicly available data sets for mining linkages between the in vitro bioactivity of environmental chemicals and their adverse histopathological outcomes

  6. Environmental laws regulating chemicals: Uses of information in decision making under environmental statutes

    SciTech Connect

    Gaba, J.M.

    1990-12-31

    Three areas are addressed in this paper: generic issues that arise simply in the process of decision-making under environmental statutes; different decision-making standards under various environmental statutes; and efforts to legislate a {open_quotes}safe{close_quotes} or {open_quotes}acceptable{close_quotes} risk from exposure to carcinogenic chemicals.

  7. An expert system for prediction of chemical toxicity

    USGS Publications Warehouse

    Hickey, James P.; Aldridge, Andrew J., IV; Passino-Reader, Dora R.; Frank, Anthony M.

    1992-01-01

    The National Fisheries Research Center- Great Lakes has developed an interactive computer program that uses the structure of an organic molecule to predict its acute toxicity to four aquatic species. The expert system software, written in the muLISP language, identifies the skeletal structures and substituent groups of an organic molecule from a user-supplied standard chemical notation known as a SMILES string, and then generates values for four solvatochromic parameters. Multiple regression equations relate these parameters to the toxicities (expressed as log10LC50s and log10EC50s, along with 95% confidence intervals) for four species. The system is demonstrated by prediction of toxicity for anilide-type pesticides to the fathead minnow (Pimephales promelas). This software is designed for use on an IBM-compatible personal computer by personnel with minimal toxicology background for rapid estimation of chemical toxicity. The system has numerous applications, with much potential for use in the pharmaceutical industry

  8. AGE-RELATED CHANGES IN SENSITIVITY TO ENVIRONMENTAL CHEMICALS

    EPA Science Inventory

    The processes of aging result in many physiological changes which can lead to alterations in both pharmacokinetic and pharmacodynamic properties. uch changes can result in altered sensitivity to chemicals, whether drugs or environmental agents, in the elderly. t is extremely diff...

  9. Chemical Fingerprinting of Materials Developed Due To Environmental Issues

    NASA Technical Reports Server (NTRS)

    Smith, Doris A.; McCool, A. (Technical Monitor)

    2000-01-01

    This paper presents viewgraphs on chemical fingerprinting of materials developed due to environmental issues. Some of the topics include: 1) Aerospace Materials; 2) Building Blocks of Capabilities; 3) Spectroscopic Techniques; 4) Chromatographic Techniques; 5) Factors that Determine Fingerprinting Approach; and 6) Fingerprinting: Combination of instrumental analysis methods that diagnostically characterize a material.

  10. The Toxicity Data Landscape for Environmental Chemicals (journal)

    EPA Science Inventory

    Thousands of chemicals are in common use but only a portion of them have undergone significant toxicological evaluation, leading to the need to prioritize the remainder for targeted testing. To address this issue, the U.S. Environmental Protection Agency (U.S. EPA) and other orga...

  11. ENVIRONMENTAL ANDROGENS AND ANTIANDROGENS: AN EXPANDING CHEMICAL UNIVERSE

    EPA Science Inventory

    Within the last ten years, awareness has grown about environmental chemicals that display antiandrogenic or androgenic activity. While studies in the early 1990s focused on pesticides that acted as androgen receptor (AR) antagonists, it soon became evident that this was not the ...

  12. Chemical testing strategies for predicting health hazards to children.

    PubMed

    Lamb, J C; Brown, S M

    2000-01-01

    The United States Environmental Protection Agency has proposed the development of a Children's Health Test Program under the Toxic Substances Control Act. The Environmental Protection Agency's proposal for the children's health test battery has 12 different assays including general toxicity, genotoxicity, carcinogenicity, neurotoxicity, and developmental and reproductive toxicity. The current Environmental Protection Agency testing proposal is an "all or nothing" test battery. An alternative and preferable approach would be to use a science-based, tiered testing scheme. It is proposed that the Screening Information Dataset program, currently used by the Organization for Economic Co-operation and Development (OECD) for the Screening Information Dataset-High Production Volume test battery, or equivalent, be considered for the first step. Step 1 would include acute and repeat dose toxicity testing, developmental toxicity testing (first species OECD 414 or OECD 422), reproductive toxicity screening (OECD 415 or 422), and genetic toxicity testing. For this step, the rat would be the initial and only species tested unless the mouse was used for in vivo genetic toxicity. Step 2 of the proposed children's health test battery would include developmental testing (second species OECD 414) or special mode of action studies performed for those chemicals that proved to be developmental toxicants in Step 1. Those chemicals that tested positive as reproductive toxicants in Step 1 would be tested in a two-generation reproduction study (OECD 416) or a special mode of action study. Steps 1 and 2 provide information on whether oncogenicity or developmental neurotoxicity testing is useful. Step 3 would include chronic toxicity/oncogenicity testing for those chemicals that tested positive for genetic toxicity in Step 1, and positive for developmental concerns in Step 2. In this step, chemicals would also be tested for developmental neurotoxicity if they showed evidence of neuropathy

  13. Predicting on-site environmental impacts of municipal engineering works

    SciTech Connect

    Gangolells, Marta Casals, Miquel Forcada, Núria Macarulla, Marcel

    2014-01-15

    The research findings fill a gap in the body of knowledge by presenting an effective way to evaluate the significance of on-site environmental impacts of municipal engineering works prior to the construction stage. First, 42 on-site environmental impacts of municipal engineering works were identified by means of a process-oriented approach. Then, 46 indicators and their corresponding significance limits were determined on the basis of a statistical analysis of 25 new-build and remodelling municipal engineering projects. In order to ensure the objectivity of the assessment process, direct and indirect indicators were always based on quantitative data from the municipal engineering project documents. Finally, two case studies were analysed and found to illustrate the practical use of the proposed model. The model highlights the significant environmental impacts of a particular municipal engineering project prior to the construction stage. Consequently, preventive actions can be planned and implemented during on-site activities. The results of the model also allow a comparison of proposed municipal engineering projects and alternatives with respect to the overall on-site environmental impact and the absolute importance of a particular environmental aspect. These findings are useful within the framework of the environmental impact assessment process, as they help to improve the identification and evaluation of on-site environmental aspects of municipal engineering works. The findings may also be of use to construction companies that are willing to implement an environmental management system or simply wish to improve on-site environmental performance in municipal engineering projects. -- Highlights: • We present a model to predict the environmental impacts of municipal engineering works. • It highlights significant on-site environmental impacts prior to the construction stage. • Findings are useful within the environmental impact assessment process. • They also

  14. UK Environmental Prediction - integration and evaluation at the convective scale

    NASA Astrophysics Data System (ADS)

    Fallmann, Joachim; Lewis, Huw; Castillo, Juan Manuel; Pearson, David; Harris, Chris; Saulter, Andy; Bricheno, Lucy; Blyth, Eleanor

    2016-04-01

    It has long been understood that accurate prediction and warning of the impacts of severe weather requires an integrated approach to forecasting. For example, high impact weather is typically manifested through various interactions and feedbacks between different components of the Earth System. Damaging high winds can lead to significant damage from the large waves and storm surge along coastlines. The impact of intense rainfall can be translated through saturated soils and land surface processes, high river flows and flooding inland. The substantial impacts on individuals, businesses and infrastructure of such events indicate a pressing need to understand better the value that might be delivered through more integrated environmental prediction. To address this need, the Met Office, NERC Centre for Ecology & Hydrology and NERC National Oceanography Centre have begun to develop the foundations of a coupled high resolution probabilistic forecast system for the UK at km-scale. This links together existing model components of the atmosphere, coastal ocean, land surface and hydrology. Our initial focus has been on a 2-year Prototype project to demonstrate the UK coupled prediction concept in research mode. This presentation will provide an update on UK environmental prediction activities. We will present the results from the initial implementation of an atmosphere-land-ocean coupled system and discuss progress and initial results from further development to integrate wave interactions. We will discuss future directions and opportunities for collaboration in environmental prediction, and the challenges to realise the potential of integrated regional coupled forecasting for improving predictions and applications.

  15. Facing environmental predictability with different sources of epigenetic variation.

    PubMed

    Leung, Christelle; Breton, Sophie; Angers, Bernard

    2016-08-01

    Different sources of epigenetic changes can increase the range of phenotypic options. Environmentally induced epigenetic changes and stochastic epimutations are, respectively, associated with phenotypic plasticity and diversifying bet-hedging. Their relative contribution is thus expected to reflect the capacity of a genotype to face distinct changes since these strategies are differentially selected according to environmental uncertainty. To test this hypothesis, we assessed the sources of epigenetic changes on clonal fish from predictable (lakes) or unpredictable (intermittent streams) environments. DNA methylation of clones from natural conditions revealed contrasting contribution of environmentally induced versus stochastic changes according to their origins. These differences were validated in common garden experiments. Consistent with theoretical models, distinct sources of epigenetic variation prevail according to the environmental uncertainty. However, both sources act conjointly, suggesting that plasticity and random processes are complementary strategies. This represents a rigorous approach for further exploring the capacity of organisms to respond to environmental conditions. PMID:27551379

  16. The effects of environmental chemicals on renal function

    PubMed Central

    Kataria, Anglina; Trasande, Leonardo; Trachtman, Howard

    2015-01-01

    The global incidence of chronic kidney disease (CKD) is increasing among individuals of all ages. Despite advances in proteomics, genomics and metabolomics, there remains a lack of safe and effective drugs to reverse or stabilize renal function in patients with glomerular or tubulointerstitial causes of CKD. Consequently, modifiable risk factors that are associated with a progressive decline in kidney function need to be identified. Numerous reports have documented the adverse effects that occur in response to graded exposure to a wide range of environmental chemicals. This Review summarizes the effects of such chemicals on four aspects of cardiorenal function: albuminuria, glomerular filtration rate, blood pressure and serum uric acid concentration. We focus on compounds that individuals are likely to be exposed to as a consequence of normal consumer activities or medical treatment, namely phthalates, bisphenol A, polyfluorinated alkyl acids, dioxins and furans, polycyclic aromatic hydrocarbons and polychlorinated biphenyls. Environmental exposure to these chemicals during everyday life could have adverse consequences on renal function and might contribute to progressive cumulative renal injury over a lifetime. Regulatory efforts should be made to limit individual exposure to environmental chemicals in an attempt to reduce the incidence of cardiorenal disease. PMID:26100504

  17. The effects of environmental chemicals on renal function.

    PubMed

    Kataria, Anglina; Trasande, Leonardo; Trachtman, Howard

    2015-10-01

    The global incidence of chronic kidney disease (CKD) is increasing among individuals of all ages. Despite advances in proteomics, genomics and metabolomics, there remains a lack of safe and effective drugs to reverse or stabilize renal function in patients with glomerular or tubulointerstitial causes of CKD. Consequently, modifiable risk factors that are associated with a progressive decline in kidney function need to be identified. Numerous reports have documented the adverse effects that occur in response to graded exposure to a wide range of environmental chemicals. This Review summarizes the effects of such chemicals on four aspects of cardiorenal function: albuminuria, glomerular filtration rate, blood pressure and serum uric acid concentration. We focus on compounds that individuals are likely to be exposed to as a consequence of normal consumer activities or medical treatment, namely phthalates, bisphenol A, polyfluorinated alkyl acids, dioxins and furans, polycyclic aromatic hydrocarbons and polychlorinated biphenyls. Environmental exposure to these chemicals during everyday life could have adverse consequences on renal function and might contribute to progressive cumulative renal injury over a lifetime. Regulatory efforts should be made to limit individual exposure to environmental chemicals in an attempt to reduce the incidence of cardiorenal disease. PMID:26100504

  18. Use of submitochondrial particles for prediction of chemical toxicity in man

    SciTech Connect

    Knobeloch, L.M.; Blondin, G.A.; Harkin, J.M. )

    1990-05-01

    Three bioassays which use submitochondrial electron transport particles (ETP) to evaluate chemical toxicity have been developed. These tests were initially designed for use in water quality monitoring. However, they are also valuable for assessing the toxicity of new and existing chemicals. The current investigation studies the ability of these procedures to predict in vivo tissue concentrations associated with clinical illness in man. To examine this potential, data obtained using the mitochondrial tests were compared to chemical concentrations measured in human blood samples obtained during the acute stage of chemical-induced illness. Twenty-nine chemicals were used in the comparison including 6 metals, 8 pesticides, 5 drugs, 4 solvents and 3 alcohols. The results of this study support the hypothesis that the mitochondrial bioassays can successfully predict the in vivo toxicity of many diverse chemicals. Properly performed and evaluated, these short-term tests may be useful in identifying potential environmental pollutants, selecting compounds for market development and prioritizing substances for more extensive testing in animals.

  19. Predicting People's Environmental Behaviour: Theory of Planned Behaviour and Model of Responsible Environmental Behaviour

    ERIC Educational Resources Information Center

    Chao, Yu-Long

    2012-01-01

    Using different measures of self-reported and other-reported environmental behaviour (EB), two important theoretical models explaining EB--Hines, Hungerford and Tomera's model of responsible environmental behaviour (REB) and Ajzen's theory of planned behaviour (TPB)--were compared regarding the fit between model and data, predictive ability,…

  20. Predictions of Chemical Weather in Asia: The EU Panda Project

    NASA Astrophysics Data System (ADS)

    Brasseur, G. P.; Petersen, A. K.; Wang, X.; Granier, C.; Bouarar, I.

    2014-12-01

    Air quality has become a pressing problem in Asia and specifically in China due to rapid economic development (i.e., rapidly expanding motor vehicle fleets, growing industrial and power generation activities, domestic and biomass burning). In spite of efforts to reduce chemical emissions, high levels of particle matter and ozone are observed and lead to severe health problems with a large number of premature deaths. To support efforts to reduce air pollution, the European Union is supporting the PANDA project whose objective is to use space and surface observations of chemical species as well as advanced meteorological and chemical models to analyze and predict air quality in China. The Project involves 7 European and 7 Chinese groups. The paper will describe the objectives of the project and present some first accomplishments. The project focuses on the improvement of methods for monitoring air quality from combined space and in-situ observations, the development of a comprehensive prediction system that makes use of these observations, the elaboration of indicators for air quality in support of policies, and the development of toolboxes for the dissemination of information.

  1. Rapid screening of environmental chemicals for estrogen receptor binding capacity.

    PubMed Central

    Bolger, R; Wiese, T E; Ervin, K; Nestich, S; Checovich, W

    1998-01-01

    Over the last few years, an increased awareness of endocrine disrupting chemicals (EDCs) and their potential to affect wildlife and humans has produced a demand for practical screening methods to identify endocrine activity in a wide range of environmental and industrial chemicals. While it is clear that in vivo methods will be required to identify adverse effects produced by these chemicals, in vitro assays can define particular mechanisms of action and have the potential to be employed as rapid and low-cost screens for use in large scale EDC screening programs. Traditional estrogen receptor (ER) binding assays are useful for characterizing a chemical's potential to be an estrogen-acting EDC, but they involve displacement of a radioactive ligand from crude receptor preparations at low temperatures. The usefulness of these assays for realistically determining the ER binding interactions of weakly estrogenic environmental and industrial compounds that have low aqueous solubility is unclear. In this report, we present a novel fluorescence polarization (FP) method that measures the capacity of a competitor chemical to displace a high affinity fluorescent ligand from purified, recombinant human ER-[alpha] at room temperature. The ER-[alpha] binding interactions generated for 15 natural and synthetic compounds were found to be similar to those determined with traditional receptor binding assays. We also discuss the potential to employ this FP technology to binding studies involving ER-ss and other receptors. Thus, the assay introduced in this study is a nonradioactive receptor binding method that shows promise as a high throughput screening method for large-scale testing of environmental and industrial chemicals for ER binding interactions. Images Figure 2 Figure 3 Figure 4 PMID:9721254

  2. Integrated chemical management system: A tool for managing chemical information at the Rocky Flats Environmental Technology Site

    SciTech Connect

    Costain, D.

    1995-07-01

    The Integrated Chemical Management System is a computer-based chemical information at the Rocky Flats Environmental Technology Site. Chemical containers are identified by bar code labels and information on the type, quantity and location of chemicals are tracked on individual data bases in separate buildings. Chemical inventories from multiple buildings are uploaded to a central sitewide chemical data base where reports are available from Product, Waste, and Chemical Use modules. Hazardous chemical information is provided by a separate Material Safety Data Sheet module and excess chemicals are traded between chemical owners and users with the aid of the Chemical Exchange Module.

  3. The Chemical Technology Division at Argonne National Laboratory: Applying chemical innovation to environmental problems

    SciTech Connect

    1995-06-01

    The Chemical Technology Division is one of the largest technical divisions at Argonne National Laboratory, a leading center for research and development related to energy and environmental issues. Since its inception in 1948, the Division has pioneered in developing separations processes for the nuclear industry. The current scope of activities includes R&D on methods for disposing of radioactive and hazardous wastes and on energy conversion processes with improved efficiencies, lower costs, and reduced environmental impact. Many of the technologies developed by CMT can be applied to solve manufacturing as well as environmental problems of industry.

  4. Bioassay-directed chemical analysis in environmental research

    SciTech Connect

    Schuetzle, D.; Lewtas, J.

    1986-01-01

    The use of short-term bioassay tests in conjunction with analytical measurements, constitute a powerful tool for identifying important environmental contaminants. The authors have coined the terminology bioassay directed chemical analysis to best describe this marriage of analytical chemistry and biology. The objective of this methodology is to identify key compounds in various types of air-pollutant samples. Once that task is completed, studies on metabolism, sources, environmental exposure and atmospheric chemistry can be undertaken. The principles and methodologies for bioassay directed chemical analysis are presented and illustrated in this paper. Most of this work has been directed toward the characterization of ambient air and diesel particulates, which are used as examples in this report to illustrate the analytical logic used for identifying the bio-active components of complex mixtures.

  5. Computational prediction of the chromosome-damaging potential of chemicals.

    PubMed

    Rothfuss, Andreas; Steger-Hartmann, Thomas; Heinrich, Nikolaus; Wichard, Jörg

    2006-10-01

    We report on the generation of computer-based models for the prediction of the chromosome-damaging potential of chemicals as assessed in the in vitro chromosome aberration (CA) test. On the basis of publicly available CA-test results of more than 650 chemical substances, half of which are drug-like compounds, we generated two different computational models. The first model was realized using the (Q)SAR tool MCASE. Results obtained with this model indicate a limited performance (53%) for the assessment of a chromosome-damaging potential (sensitivity), whereas CA-test negative compounds were correctly predicted with a specificity of 75%. The low sensitivity of this model might be explained by the fact that the underlying 2D-structural descriptors only describe part of the molecular mechanism leading to the induction of chromosome aberrations, that is, direct drug-DNA interactions. The second model was constructed with a more sophisticated machine learning approach and generated a classification model based on 14 molecular descriptors, which were obtained after feature selection. The performance of this model was superior to the MCASE model, primarily because of an improved sensitivity, suggesting that the more complex molecular descriptors in combination with statistical learning approaches are better suited to model the complex nature of mechanisms leading to a positive effect in the CA-test. An analysis of misclassified pharmaceuticals by this model showed that a large part of the false-negative predicted compounds were uniquely positive in the CA-test but lacked a genotoxic potential in other mutagenicity tests of the regulatory testing battery, suggesting that biologically nonsignificant mechanisms could be responsible for the observed positive CA-test result. Since such mechanisms are not amenable to modeling approaches it is suggested that a positive prediction made by the model reflects a biologically significant genotoxic potential. An integration of the

  6. Simultaneous prediction of enzyme orthologs from chemical transformation patterns for de novo metabolic pathway reconstruction

    PubMed Central

    Tabei, Yasuo; Yamanishi, Yoshihiro; Kotera, Masaaki

    2016-01-01

    Motivation: Metabolic pathways are an important class of molecular networks consisting of compounds, enzymes and their interactions. The understanding of global metabolic pathways is extremely important for various applications in ecology and pharmacology. However, large parts of metabolic pathways remain unknown, and most organism-specific pathways contain many missing enzymes. Results: In this study we propose a novel method to predict the enzyme orthologs that catalyze the putative reactions to facilitate the de novo reconstruction of metabolic pathways from metabolome-scale compound sets. The algorithm detects the chemical transformation patterns of substrate–product pairs using chemical graph alignments, and constructs a set of enzyme-specific classifiers to simultaneously predict all the enzyme orthologs that could catalyze the putative reactions of the substrate–product pairs in the joint learning framework. The originality of the method lies in its ability to make predictions for thousands of enzyme orthologs simultaneously, as well as its extraction of enzyme-specific chemical transformation patterns of substrate–product pairs. We demonstrate the usefulness of the proposed method by applying it to some ten thousands of metabolic compounds, and analyze the extracted chemical transformation patterns that provide insights into the characteristics and specificities of enzymes. The proposed method will open the door to both primary (central) and secondary metabolism in genomics research, increasing research productivity to tackle a wide variety of environmental and public health matters. Availability and Implementation: Contact: maskot@bio.titech.ac.jp PMID:27307627

  7. Invertebrates in testing of environmental chemicals: are they alternatives?

    PubMed Central

    Lagadic, L; Caquet, T

    1998-01-01

    An enlarged interpretation of alternatives in toxicology testing includes the replacement of one animal species with another, preferably a nonmammalian species. This paper reviews the potential of invertebrates in testing environmental chemicals and provides evidence of their usefulness in alternative testing methodologies. The first part of this review addresses the use of invertebrates in laboratory toxicology testing. Problems in extrapolating results obtained in invertebrates to those obtained from vertebrates are noted, suggesting that invertebrates can essentially be used in addition to rather than as replacements for vertebrates in laboratory toxicity tests. However, evaluation of the ecologic impact of environmental chemicals must include defining end points that may frequently differ from those classically used in biomedical research. In this context, alternative approaches using invertebrates may be more pertinent. The second part of the review therefore focuses on the use of invertebrates in situ to assess the environmental impact of pollutants. Advantages of invertebrates in ecotoxicologic investigation are presented for their usefulness for seeking mechanistic links between effects occurring at the individual level and consequences for higher levels of biologic organization (e.g., population and community). In the end, it is considered that replacement of vertebrates by invertebrates in ecotoxicity testing is likely to become a reality when basic knowledge of metabolic, physiologic, and developmental patterns in the latter will be sufficient to assess the effect of a given chemical through end points that could be different between invertebrates and vertebrates. PMID:9599707

  8. Predictive spectroscopy and chemical imaging based on novel optical systems

    NASA Astrophysics Data System (ADS)

    Nelson, Matthew Paul

    1998-10-01

    This thesis describes two futuristic optical systems designed to surpass contemporary spectroscopic methods for predictive spectroscopy and chemical imaging. These systems are advantageous to current techniques in a number of ways including lower cost, enhanced portability, shorter analysis time, and improved S/N. First, a novel optical approach to predicting chemical and physical properties based on principal component analysis (PCA) is proposed and evaluated. A regression vector produced by PCA is designed into the structure of a set of paired optical filters. Light passing through the paired filters produces an analog detector signal directly proportional to the chemical/physical property for which the regression vector was designed. Second, a novel optical system is described which takes a single-shot approach to chemical imaging with high spectroscopic resolution using a dimension-reduction fiber-optic array. Images are focused onto a two- dimensional matrix of optical fibers which are drawn into a linear distal array with specific ordering. The distal end is imaged with a spectrograph equipped with an ICCD camera for spectral analysis. Software is used to extract the spatial/spectral information contained in the ICCD images and deconvolute them into wave length-specific reconstructed images or position-specific spectra which span a multi-wavelength space. This thesis includes a description of the fabrication of two dimension-reduction arrays as well as an evaluation of the system for spatial and spectral resolution, throughput, image brightness, resolving power, depth of focus, and channel cross-talk. PCA is performed on the images by treating rows of the ICCD images as spectra and plotting the scores of each PC as a function of reconstruction position. In addition, iterative target transformation factor analysis (ITTFA) is performed on the spectroscopic images to generate ``true'' chemical maps of samples. Univariate zero-order images, univariate first

  9. UK Environmental Prediction - integration and evaluation at the convective scale

    NASA Astrophysics Data System (ADS)

    Fallmann, Joachim; Lewis, Huw; Castillo, Juan Manuel; Pearson, David; Harris, Chris; Saulter, Andy; Bricheno, Lucy; Blyth, Eleanor

    2016-04-01

    Traditionally, the simulation of regional ocean, wave and atmosphere components of the Earth System have been considered separately, with some information on other components provided by means of boundary or forcing conditions. More recently, the potential value of a more integrated approach, as required for global climate and Earth System prediction, for regional short-term applications has begun to gain increasing research effort. In the UK, this activity is motivated by an understanding that accurate prediction and warning of the impacts of severe weather requires an integrated approach to forecasting. The substantial impacts on individuals, businesses and infrastructure of such events indicate a pressing need to understand better the value that might be delivered through more integrated environmental prediction. To address this need, the Met Office, NERC Centre for Ecology & Hydrology and NERC National Oceanography Centre have begun to develop the foundations of a coupled high resolution probabilistic forecast system for the UK at km-scale. This links together existing model components of the atmosphere, coastal ocean, land surface and hydrology. Our initial focus has been on a 2-year Prototype project to demonstrate the UK coupled prediction concept in research mode. This presentation will provide an update on UK environmental prediction activities. We will present the results from the initial implementation of an atmosphere-land-ocean coupled system, including a new eddy-permitting resolution ocean component, and discuss progress and initial results from further development to integrate wave interactions in this relatively high resolution system. We will discuss future directions and opportunities for collaboration in environmental prediction, and the challenges to realise the potential of integrated regional coupled forecasting for improving predictions and applications.

  10. Odor annoyance of environmental chemicals: sensory and cognitive influences.

    PubMed

    van Thriel, Christoph; Kiesswetter, Ernst; Schäper, Michael; Juran, Stephanie A; Blaszkewicz, Meinolf; Kleinbeck, Stefan

    2008-01-01

    In low concentrations, environment pollutants like volatile organic compounds (VOCs) may be perceived via olfaction. Modulators of odor-mediated health effects include age, gender, or personality traits related to chemical sensitivity. Severe multi-organ symptoms in response to odors also characterize a syndrome referred to as idiopathic environmental intolerance (IEI). One prominent feature of IEI is self-reported odor hypersensitivity that is usually not accompanied by enhanced olfactory functioning. The impact of interindividual differences in olfactory functioning on chemosensory perceptions is sparsely investigated, and therefore this study addressed the influences of different types of modulators, including olfactory functioning. In a psychophysical scaling experiment, an age-stratified sample of 44 males and females was examined. After controlled application of nine concentrations of six chemicals by flow-olfactometry, the participants rated four olfactory and nine trigeminal perceptions. Weak effects were found for gender and age, as well as some modulating effects of self-reported chemical sensitivity and odor discrimination ability. For chemical sensitivity, the results were as expected: Subjects with higher sensitivity reported stronger perceptions. The individual odor threshold (n-butanol) exerted no influence on the subjects' ratings of olfactory and trigeminal perceptions. Surprisingly, above-average odor discrimination ability was associated with lower ratings of odor intensity and nausea. This particular aspect of olfactory functioning might be a reflection of a more objective odor evaluation model buffering emotional responses to environmental odors. PMID:18569576

  11. Environmental Impact on Vascular Development Predicted by High-Throughput Screening

    PubMed Central

    Judson, Richard S.; Reif, David M.; Sipes, Nisha S.; Singh, Amar V.; Chandler, Kelly J.; DeWoskin, Rob; Dix, David J.; Kavlock, Robert J.; Knudsen, Thomas B.

    2011-01-01

    Background: Understanding health risks to embryonic development from exposure to environmental chemicals is a significant challenge given the diverse chemical landscape and paucity of data for most of these compounds. High-throughput screening (HTS) in the U.S. Environmental Protection Agency (EPA) ToxCast™ project provides vast data on an expanding chemical library currently consisting of > 1,000 unique compounds across > 500 in vitro assays in phase I (complete) and Phase II (under way). This public data set can be used to evaluate concentration-dependent effects on many diverse biological targets and build predictive models of prototypical toxicity pathways that can aid decision making for assessments of human developmental health and disease. Objective: We mined the ToxCast phase I data set to identify signatures for potential chemical disruption of blood vessel formation and remodeling. Methods: ToxCast phase I screened 309 chemicals using 467 HTS assays across nine assay technology platforms. The assays measured direct interactions between chemicals and molecular targets (receptors, enzymes), as well as downstream effects on reporter gene activity or cellular consequences. We ranked the chemicals according to individual vascular bioactivity score and visualized the ranking using ToxPi (Toxicological Priority Index) profiles. Results: Targets in inflammatory chemokine signaling, the vascular endothelial growth factor pathway, and the plasminogen-activating system were strongly perturbed by some chemicals, and we found positive correlations with developmental effects from the U.S. EPA ToxRefDB (Toxicological Reference Database) in vivo database containing prenatal rat and rabbit guideline studies. We observed distinctly different correlative patterns for chemicals with effects in rabbits versus rats, despite derivation of in vitro signatures based on human cells and cell-free biochemical targets, implying conservation but potentially differential

  12. Potential effects of environmental chemical contamination in congenital heart disease.

    PubMed

    Gorini, Francesca; Chiappa, Enrico; Gargani, Luna; Picano, Eugenio

    2014-04-01

    There is compelling evidence that prenatal exposures to environmental xenobiotics adversely affect human development and childhood. Among all birth defects, congenital heart disease (CHD) is the most prevalent of all congenital malformations and remains the leading cause of death. It has been estimated that in most cases the causes of heart defects remain unknown, while a growing number of studies have indicated the potential role of environmental agents as risk factors in CHD occurrence. In particular, maternal exposure to chemicals during the first trimester of pregnancy represents the most critical window of exposure for CHD. Specific classes of xenobiotics (e.g. organochlorine pesticides, organic solvents, air pollutants) have been identified as potential risk factors for CHD. Nonetheless, the knowledge gained is currently still incomplete as a consequence of the frequent heterogeneity of the methods applied and the difficulty in estimating the net effect of environmental pollution on the pregnant mother. The presence of multiple sources of pollution, both indoor and outdoor, together with individual lifestyle factors, may represent a further confounding element for association with the disease. A future new approach for research should probably focus on individual measurements of professional, domestic, and urban exposure to physical and chemical pollutants in order to accurately retrace the environmental exposure of parents of affected offspring during the pre-conceptional and pregnancy periods. PMID:24452958

  13. PREDICTING THE EFFECTIVENESS OF CHEMICAL-PROTECTIVE CLOTHING MODEL AND TEST METHOD DEVELOPMENT

    EPA Science Inventory

    A predictive model and test method were developed for determining the chemical resistance of protective polymeric gloves exposed to liquid organic chemicals. The prediction of permeation through protective gloves by solvents was based on theories of the solution thermodynamics of...

  14. Predicting Chemical Environments of Bacteria from Receptor Signaling

    PubMed Central

    Neumann, Silke; Sourjik, Victor; Endres, Robert G.

    2014-01-01

    Sensory systems have evolved to respond to input stimuli of certain statistical properties, and to reliably transmit this information through biochemical pathways. Hence, for an experimentally well-characterized sensory system, one ought to be able to extract valuable information about the statistics of the stimuli. Based on dose-response curves from in vivo fluorescence resonance energy transfer (FRET) experiments of the bacterial chemotaxis sensory system, we predict the chemical gradients chemotactic Escherichia coli cells typically encounter in their natural environment. To predict average gradients cells experience, we revaluate the phenomenological Weber's law and its generalizations to the Weber-Fechner law and fold-change detection. To obtain full distributions of gradients we use information theory and simulations, considering limitations of information transmission from both cell-external and internal noise. We identify broad distributions of exponential gradients, which lead to log-normal stimuli and maximal drift velocity. Our results thus provide a first step towards deciphering the chemical nature of complex, experimentally inaccessible cellular microenvironments, such as the human intestine. PMID:25340783

  15. Chemical stimulation in unconventional hydrocarbons extraction in the USA: a preliminary environmental risk assessment.

    NASA Astrophysics Data System (ADS)

    Sutra, Emilie; Spada, Matteo; Burgherr, Peter

    2016-04-01

    While the exploitation of unconventional resources recently shows an extensive development, the stimulation techniques in use in this domain arouse growing public concerns. Often in the shadow of the disputed hydraulic fracturing process, the matrix acidizing is however a complementary or alternative procedure to enhance the reservoir connectivity. Although acidizing processes are widespread within the traditional hydrocarbons sources exploration, the matrix acidizing does not appear to be commonly used in unconventional hydrocarbons formations due to their low permeability. Nonetheless, this process has been recently applied to the Monterey formation, a shale oil play in California. These stimulation fluids are composed by various chemicals, what represents a matter of concern for public as well as for authorities. As a consequence, a risk assessment implying an exposure and toxicity analysis is needed. Focusing on site surface accidents, e.g., leak of a chemical from a storage tank, we develop in this study concentration scenarios for different exposure pathways to estimate the potential environmental risk associated with the use of specific hazardous substances in the matrix acidizing process for unconventional hydrocarbon reservoirs in the USA. Primary, information about the usage of different hazardous substances have been collected in order to extract the most frequently used chemicals. Afterwards, a probabilistic estimation of the environmental risk associated with the use of these chemicals is carried out by comparing the Predicted Environmental Concentrations (PEC) distribution with the Predicted No Effect Concentrations (PNEC) value. The latter is collected from a literature review, whereas the PEC is estimated as probability distribution concentrations in different environmental compartments (e.g., soil) built upon various predefined accident scenarios. By applying a probabilistic methodology for the concentrations, the level at which the used chemicals

  16. A multimedia environmental model of chemical distribution: fate, transport, and uncertainty analysis.

    PubMed

    Luo, Yuzhou; Yang, Xiusheng

    2007-01-01

    This paper presented a framework for analysis of chemical concentration in the environment and evaluation of variance propagation within the model. This framework was illustrated through a case study of selected organic compounds of benzo[alpha]pyrene (BAP) and hexachlorobenzene (HCB) in the Great Lakes region. A multimedia environmental fate model was applied to perform stochastic simulations of chemical concentrations in various media. Both uncertainty in chemical properties and variability in hydrometeorological parameters were included in the Monte Carlo simulation, resulting in a distribution of concentrations in each medium. Parameters of compartmental dimensions, densities, emissions, and background concentrations were assumed to be constant in this study. The predicted concentrations in air, surface water and sediment were compared to reported data for validation purpose. Based on rank correlations, a sensitivity analysis was conducted to determine the influence of individual input parameters on the output variance for concentration in each environmental medium and for the basin-wide total mass inventory. Results of model validation indicated that the model predictions were in reasonable agreement with spatial distribution patterns, among the five lake basins, of reported data in the literature. For the chemical and environmental parameters given in this study, parameters associated to air-ground partitioning (such as moisture in surface soil, vapor pressure, and deposition velocity) and chemical distribution in soil solid (such as organic carbon partition coefficient and organic carbon content in root-zone soil) were targeted to reduce the uncertainty in basin-wide mass inventory. This results of sensitivity analysis in this study also indicated that the model sensitivity to an input parameter might be affected by the magnitudes of input parameters defined by the parameter settings in the simulation scenario. Therefore, uncertainty and sensitivity analyses

  17. Development and Validation of Decision Forest Model for Estrogen Receptor Binding Prediction of Chemicals Using Large Data Sets.

    PubMed

    Ng, Hui Wen; Doughty, Stephen W; Luo, Heng; Ye, Hao; Ge, Weigong; Tong, Weida; Hong, Huixiao

    2015-12-21

    Some chemicals in the environment possess the potential to interact with the endocrine system in the human body. Multiple receptors are involved in the endocrine system; estrogen receptor α (ERα) plays very important roles in endocrine activity and is the most studied receptor. Understanding and predicting estrogenic activity of chemicals facilitates the evaluation of their endocrine activity. Hence, we have developed a decision forest classification model to predict chemical binding to ERα using a large training data set of 3308 chemicals obtained from the U.S. Food and Drug Administration's Estrogenic Activity Database. We tested the model using cross validations and external data sets of 1641 chemicals obtained from the U.S. Environmental Protection Agency's ToxCast project. The model showed good performance in both internal (92% accuracy) and external validations (∼ 70-89% relative balanced accuracies), where the latter involved the validations of the model across different ER pathway-related assays in ToxCast. The important features that contribute to the prediction ability of the model were identified through informative descriptor analysis and were related to current knowledge of ER binding. Prediction confidence analysis revealed that the model had both high prediction confidence and accuracy for most predicted chemicals. The results demonstrated that the model constructed based on the large training data set is more accurate and robust for predicting ER binding of chemicals than the published models that have been developed using much smaller data sets. The model could be useful for the evaluation of ERα-mediated endocrine activity potential of environmental chemicals. PMID:26524122

  18. Predicting total clearance in humans from chemical structure.

    PubMed

    Yu, Melvin J

    2010-07-26

    A conceptually simple, fully in silico model to predict total clearance of new compounds in humans is described. Based on the premise that similar molecules will exhibit similar pharmacokinetic properties, we used a k-nearest-neighbors (kNN) technique to predict total clearance by comparison with known reference agents. Molecular similarity was defined using readily calculated one- and two-dimensional molecular descriptors, and the reference set was obtained by combining the Obach and Berellini sets of human pharmacokinetic data. Neutral molecules and drugs whose biological activity is associated with a metal center were removed from the combined set. The remaining 462 compounds were partitioned into a training and external test set of 370 and 92 compounds, respectively. For acids, bases, zwitterions, and quaternary ammonium/pyridinium ions, average prediction accuracy was within two-fold of observed for the external test set (n = 92). Using a collection of 20 drugs from the literature with > or =3 preclinical animal species allometric scaling data, accuracy of the in silico kNN model was not as good as the rule of exponents, but better than simple allometry (SA), and approached that of combination multiexponential allometry (ME) as defined by the number of predictions with < or =50% error. For a collection of 18 drugs with two species (rat-dog) data, the kNN model outperformed both SA and combination ME using the same performance standard. Since the model is fully in silico and, therefore, capable of generating total clearance predictions in the absence of any experimental data, it can be used to help guide early drug discovery research efforts, such as virtual compound library screening, and analogue prioritization prior to chemical synthesis and biological evaluation. Model validation was accomplished using the external test set, three- and five-fold cross-validation and two different y-randomization techniques (y-shuffling and random number pseudodescriptors

  19. Porosity prediction of calcium phosphate cements based on chemical composition.

    PubMed

    Öhman, Caroline; Unosson, Johanna; Carlsson, Elin; Ginebra, Maria Pau; Persson, Cecilia; Engqvist, Håkan

    2015-07-01

    The porosity of calcium phosphate cements has an impact on several important parameters, such as strength, resorbability and bioactivity. A model to predict the porosity for biomedical cements would hence be a useful tool. At the moment such a model only exists for Portland cements. The aim of this study was to develop and validate a first porosity prediction model for calcium phosphate cements. On the basis of chemical reaction, molar weight and density of components, a volume-based model was developed and validated using calcium phosphate cement as model material. 60 mol% β-tricalcium phosphate and 40 mol% monocalcium phosphate monohydrate were mixed with deionized water, at different liquid-to-powder ratios. Samples were set for 24 h at 37°C and 100% relative humidity. Thereafter, samples were dried either under vacuum at room temperature for 24 h or in air at 37 °C for 7 days. Porosity and phase composition were determined. It was found that the two drying protocols led to the formation of brushite and monetite, respectively. The model was found to predict well the experimental values and also data reported in the literature for apatite cements, as deduced from the small absolute average residual errors (<2.0%). In conclusion, a theoretical model for porosity prediction was developed and validated for brushite, monetite and apatite cements. The model gives a good estimate of the final porosity and has the potential to be used as a porosity prediction tool in the biomedical cement field. PMID:26169187

  20. Environmental chemical exposures and disturbances of heme synthesis.

    PubMed Central

    Daniell, W E; Stockbridge, H L; Labbe, R F; Woods, J S; Anderson, K E; Bissell, D M; Bloomer, J R; Ellefson, R D; Moore, M R; Pierach, C A; Schreiber, W E; Tefferi, A; Franklin, G M

    1997-01-01

    Porphyrias are relatively uncommon inherited or acquired disorders in which clinical manifestations are attributable to a disturbance of heme synthesis (porphyrin metabolism), usually in association with endogenous or exogenous stressors. Porphyrias are characterized by elevations of heme precursors in blood, urine, and/or stool. A number of chemicals, particularly metals and halogenated hydrocarbons, induce disturbances of heme synthesis in experimental animals. Certain chemicals have also been linked to porphyria or porphyrinuria in humans, generally involving chronic industrial exposures or environmental exposures much higher than those usually encountered. A noteworthy example is the Turkish epidemic of porphyria cutanea tarda produced by accidental ingestion of wheat treated with the fungicide hexachlorobenzene. Measurements of excreted heme precursors have the potential to serve as biological markers for harmful but preclinical effects of certain chemical exposures; this potential warrants further research and applied field studies. It has been hypothesized that several otherwise unexplained chemical-associated illnesses, such as multiple chemical sensitivity syndrome, may represent mild chronic cases of porphyria or other acquired abnormalities in heme synthesis. This review concludes that, although it is reasonable to consider such hypotheses, there is currently no convincing evidence that these illnesses are mediated by a disturbance of heme synthesis; it is premature or unfounded to base clinical management on such explanations unless laboratory data are diagnostic for porphyria. This review discusses the limitations of laboratory measures of heme synthesis, and diagnostic guidelines are provided to assist in evaluating the symptomatic individual suspected of having a porphyria. PMID:9114276

  1. [Development of Chemical Exposure Prediction Model for Aerobic Sewage Treatment Plant for Biochemical Wastewaters].

    PubMed

    Zhou, Lin-jun; Liu, Ji-ning; Shi, Li-li; Feng, Jie; Xu, Yan-hua

    2016-01-15

    Sewage treatment plant (STP) is a key transfer station for chemicals distributed into different environment compartment, and hence models of exposure prediction play a crucial role in the environmental risk assessment and pollution prevention of chemicals. A mass balance model namely Chinese Sewage treatment plant (C-STP(O)) was developed to predict the fate and exposure of chemicals in a conventional sewage treatment plant. The model was expressed as 9 mixed boxes by compartment of air, water, suspended solids, and settled solids. It was based on the minimum input data required on the notification in new chemicals, such as molecular weight, absorption coefficient, vapor pressure, water solubility, ready or inherent biodegradability. The environment conditions ( Temperature = 283 K, wind speed = 2 m x s(-1)) and the classic STP scenario parameters of China, especially the scenario parameters of water quality and sludge properties were adopted in C-STP( 0) model to reflect Chinese characteristics, these parameters were sewage flow of 35 000 m3 x d(-1), influent BOD5 of 0.15 g x L(-1), influent SS of 0.2 kg x m(-3), effluent SS of 0.02 kg x m(-3), BOD5 removal in aerator of 90% sludge density of 1.6 kg x L(3) and organic carbon content of 0.18-0.19. It adopted the fugacity express for mechanism of linear absorption, first-order degradation, Whitman two resistances. An overall interphase transfer constant which was the sum of surface volatilization and stripping was used to assess the volatilization in aerator. The most important and uncertain input value was the biodegradation rate constant, and determination of which required a tier test strategy from ready or inherent biodegradability data to simulate test in STP. An extrapolated criterion of US EPA to derive biodegradation rate constant using the results of ready and inherent biodegradability was compared with that of EU and was recommended. C-STP ( 0 ) was valid to predict the relative emission of volatilization

  2. Chemodynamics: transport and behavior of chemicals in the environment--a problem in environmental health.

    PubMed Central

    Freed, V H; Chiou, C T; Haque, R

    1977-01-01

    In the manufacture and use of the several thousand chemicals employed by technological societies, portions of these chemicals escape or are intentionally introduced into the environment. The behavior, fate, and to some extent the effects produced by these chemicals are a result of a complex interaction of the properties of the chemical with the various processes governing transport, degradation, sequestration, and uptake by organisms. In addition, such processes as adsorption, evaporation, partitioning, and degradation are influenced by ambient conditions of temperature, air movement, moisture, presence of other chemicals, and the concentration and properties of the subject chemicals. These influence the level and extent of exposure to these chemicals that man might receive. Study of the physiochemical properties and extent of exposure to these chem;cals that man might receive. Study of the physiochemical properties of compounds in relation to these various processes has provided a basis for better understanding of the quantitative behavior. Such information is useful in development of predictive models on behavior and fate of the chemicals in relation to human exposure. Beyond this, it provides information that could be used to devise procedures of manufacture, use, and disposal that would minimize environmental contamination. Some of the physical principles involved in chemodynamics are presented in this review. PMID:598352

  3. Discovery of characteristic molecular signatures for the simultaneous prediction and detection of environmental pollutants.

    PubMed

    Song, Mi-Kyung; Choi, Han-Seam; Park, Yong-Keun; Ryu, Jae-Chun

    2014-02-01

    Gene expression data may be very promising for the classification of toxicant types, but the development and application of transcriptomic-based gene classifiers for environmental toxicological applications are lacking compared to the biomedical sciences. Also, simultaneous classification across a set of toxicant types has not been investigated extensively. In the present study, we determined the transcriptomic response to three types of ubiquitous toxicants exposure in two types of human cell lines (HepG2 and HL-60), which are useful in vitro human model for evaluation of toxic substances that may affect human hepatotoxicity (e.g., polycyclic aromatic hydrocarbon [PAH] and persistent organic pollutant [POP]) and human leukemic myelopoietic proliferation (e.g., volatile organic compound [VOC]). The findings demonstrate characteristic molecular signatures that facilitated discrimination and prediction of the toxicant type. To evaluate changes in gene expression levels after exposure to environmental toxicants, we utilized 18 chemical substances; nine PAH toxicants, six VOC toxicants, and three POP toxicants. Unsupervised gene expression analysis resulted in a characteristic molecular signature for each toxicant group, and combination analysis of two separate multi-classifications indicated 265 genes as surrogate markers for predicting each group of toxicants with 100 % accuracy. Our results suggest that these expression signatures can be used as predictable and discernible surrogate markers for detection and prediction of environmental toxicant exposure. Furthermore, this approach could easily be extended to screening for other types of environmental toxicants. PMID:24197968

  4. Bioconcentration potential of organic environmental chemicals in humans

    SciTech Connect

    Geyer, H.; Scheunert, I.; Korte, F.

    1986-12-01

    A list of environmental chemicals detectable in adipose tissue and/or milk of non-occupationally exposed humans is presented. Besides their physiochemical properties (n-octanol/water partition coefficient and water solubility), their acceptable daily intake (ADI) values, production figures, fate in the environment, concentrations in human adipose tissue, and data from total diet studies from market basket investigations are given. Average bioconcentration factors (BCF) of polychlorinated biphenyls (PCBs), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), DDT, hexachlorobenzene (HCB), dieldrin, hexachlorocyclohexane isomers (alpha-HCH, beta-HCH, gamma-HCH, delta-HCH), pentachlorophenol (PCP), and 3,5-di-tert-butyl-4-hydroxytoluene (BHT) in human adipose tissue are calculated. The bioconcentration factors (wet wt basis) of these compounds are between 3 and 47 times higher in humans than in rats. The environmental chemicals are divided into three groups in respect to their bioconcentration factors in human adipose tissue: group I, high BCF (greater than 100); group II, medium BCF (10-100); and group III, low BCF (less than 10). The bioconcentration factors are useful for hazard assessment of chemicals to humans.

  5. The effect of environmental chemicals on the tumor microenvironment

    PubMed Central

    Casey, Stephanie C.; Vaccari, Monica; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Barcellos-Hoff, Mary Helen; Brown, Dustin G.; Chapellier, Marion; Christopher, Joseph; Curran, Colleen S.; Forte, Stefano; Hamid, Roslida A.; Heneberg, Petr; Koch, Daniel C.; Krishnakumar, P.K.; Laconi, Ezio; Maguer-Satta, Veronique; Marongiu, Fabio; Memeo, Lorenzo; Mondello, Chiara; Raju, Jayadev; Roman, Jesse; Roy, Rabindra; Ryan, Elizabeth P.; Ryeom, Sandra; Salem, Hosni K.; Scovassi, A.Ivana; Singh, Neetu; Soucek, Laura; Vermeulen, Louis; Whitfield, Jonathan R.; Woodrick, Jordan; Colacci, Anna Maria; Bisson, William H.; Felsher, Dean W.

    2015-01-01

    Potentially carcinogenic compounds may cause cancer through direct DNA damage or through indirect cellular or physiological effects. To study possible carcinogens, the fields of endocrinology, genetics, epigenetics, medicine, environmental health, toxicology, pharmacology and oncology must be considered. Disruptive chemicals may also contribute to multiple stages of tumor development through effects on the tumor microenvironment. In turn, the tumor microenvironment consists of a complex interaction among blood vessels that feed the tumor, the extracellular matrix that provides structural and biochemical support, signaling molecules that send messages and soluble factors such as cytokines. The tumor microenvironment also consists of many host cellular effectors including multipotent stromal cells/mesenchymal stem cells, fibroblasts, endothelial cell precursors, antigen-presenting cells, lymphocytes and innate immune cells. Carcinogens can influence the tumor microenvironment through effects on epithelial cells, the most common origin of cancer, as well as on stromal cells, extracellular matrix components and immune cells. Here, we review how environmental exposures can perturb the tumor microenvironment. We suggest a role for disrupting chemicals such as nickel chloride, Bisphenol A, butyltins, methylmercury and paraquat as well as more traditional carcinogens, such as radiation, and pharmaceuticals, such as diabetes medications, in the disruption of the tumor microenvironment. Further studies interrogating the role of chemicals and their mixtures in dose-dependent effects on the tumor microenvironment could have important general mechanistic implications for the etiology and prevention of tumorigenesis. PMID:26106136

  6. The effect of environmental chemicals on the tumor microenvironment.

    PubMed

    Casey, Stephanie C; Vaccari, Monica; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Barcellos-Hoff, Mary Helen; Brown, Dustin G; Chapellier, Marion; Christopher, Joseph; Curran, Colleen S; Forte, Stefano; Hamid, Roslida A; Heneberg, Petr; Koch, Daniel C; Krishnakumar, P K; Laconi, Ezio; Maguer-Satta, Veronique; Marongiu, Fabio; Memeo, Lorenzo; Mondello, Chiara; Raju, Jayadev; Roman, Jesse; Roy, Rabindra; Ryan, Elizabeth P; Ryeom, Sandra; Salem, Hosni K; Scovassi, A Ivana; Singh, Neetu; Soucek, Laura; Vermeulen, Louis; Whitfield, Jonathan R; Woodrick, Jordan; Colacci, Annamaria; Bisson, William H; Felsher, Dean W

    2015-06-01

    Potentially carcinogenic compounds may cause cancer through direct DNA damage or through indirect cellular or physiological effects. To study possible carcinogens, the fields of endocrinology, genetics, epigenetics, medicine, environmental health, toxicology, pharmacology and oncology must be considered. Disruptive chemicals may also contribute to multiple stages of tumor development through effects on the tumor microenvironment. In turn, the tumor microenvironment consists of a complex interaction among blood vessels that feed the tumor, the extracellular matrix that provides structural and biochemical support, signaling molecules that send messages and soluble factors such as cytokines. The tumor microenvironment also consists of many host cellular effectors including multipotent stromal cells/mesenchymal stem cells, fibroblasts, endothelial cell precursors, antigen-presenting cells, lymphocytes and innate immune cells. Carcinogens can influence the tumor microenvironment through effects on epithelial cells, the most common origin of cancer, as well as on stromal cells, extracellular matrix components and immune cells. Here, we review how environmental exposures can perturb the tumor microenvironment. We suggest a role for disrupting chemicals such as nickel chloride, Bisphenol A, butyltins, methylmercury and paraquat as well as more traditional carcinogens, such as radiation, and pharmaceuticals, such as diabetes medications, in the disruption of the tumor microenvironment. Further studies interrogating the role of chemicals and their mixtures in dose-dependent effects on the tumor microenvironment could have important general mechanistic implications for the etiology and prevention of tumorigenesis. PMID:26106136

  7. Influence of heredity on human sensitivity to environmental chemicals

    SciTech Connect

    Weber, W.W.

    1995-12-31

    Hereditary peculiarities in individual responses to environmental chemicals are a common occurrence in human populations. Genetic variation in glutathione S-transferase, CYP1A2, N-acetyltransferase, and paraoxonase exemplify the relationship of metabolic variation to individual susceptibility to cancer and other toxicants of environmental origin. Heritable receptor protein variants, a subset of proteins of enormous pharmacogenetic, potential that have not thus far been extensively explored form the pharmacogenetic standpoint, and also considered. Examples of interest that are considered include receptor variants associated with retinoic acid resistance in acute promyelocytic leukemia, with paradoxical responses to antiandrogens in prostate cancer, and with retinitis pigmentosa. Additional heritable protein variants of pharmacogenetic interest that result in antibiotic-induced deafness, glucocorticoid-remediable aldosteronism and hypertension, the long-QT syndrome, and beryllium-induced lung disease are also discussed. These traits demonstrate how knowledge of the molecular basis and mechanism of the variant response may contribute to its prevention in sensitive persons as well as to improved therapy for genetically conditioned disorders that arise form environmental chemicals. 99 refs.

  8. Predicting regional lung deposition of environmental tobacco smoke particles

    SciTech Connect

    Nazaroff, W.W.; Hung, W.Y.; Sasse, A.G.B.M.; Gadgil, A.J.

    1993-10-01

    Inhalation exposure of environmental tobacco smoke (ETS) particles may increase health risks, but only to the extent that the particles deposit in the respiratory tract. We describe a technique to predict regional lung deposition of environmental tobacco smoke particles. Interpretation of particle size distribution measurements after cigarette combustion by a smoking machine in a test room yields an effective emissions profile. An aerosol dynamics model is used to predict indoor particle concentrations resulting from a specified combination of smoking frequency and building factors. By utilizing a lung deposition model, the rate of ETS mass accumulation in human lungs is then determined as a function of particle size and lung airway generation. Considering emissions of sidestream smoke only, residential exposures of nonsmokers to ETS are predicted to cause rates of total respiratory tract particle deposition in the range of 0.4-0.7 {mu}g/day per kg of body weight for light smoking in a well-ventilated residence and 8-13 {mu}g/day per kg for moderately heavy smoking in a poorly ventilated residence. Emissions of sidestream plus mainstream smoke lead to predicted deposition rates about a factor of 4 higher. This technique should be useful for evaluating health risks and control techniques associated with exposure to ETS particles. 36 refs., 6 figs., 3 tabs.

  9. Disruption of Androgen Receptor Signaling in Males by Environmental Chemicals

    PubMed Central

    Luccio-Camelo, Doug C.; Prins, Gail S

    2011-01-01

    Androgen-disruptors are environmental chemicals in that interfere with the biosynthesis, metabolism or action of endogenous androgens resulting in a deflection from normal male developmental programming and reproductive tract growth and function. Since male sexual differentiation is entirely androgen-dependent, it is highly susceptible to androgen-disruptors. Animal models and epidemiological evidence link exposure to androgen disrupting chemicals with reduced sperm counts, increased infertility, testicular dysgenesis syndrome, and testicular and prostate cancers. Further, there appears to be increased sensitivity to these agents during critical developmental windows when male differentiation is at its peak. A variety of in vitro and in silico approaches have been used to identify broad classes of androgen disrupting molecules that include organochlorinated pesticides, industrial chemicals, and plasticizers with capacity to ligand the androgen receptor. The vast majority of these synthetic molecules act as anti-androgens. This review will highlight the evidence for androgen disrupting chemicals that act through interference with the androgen receptor, discussing specific compounds for which there is documented in vivo evidence for male reproductive tract perturbations. PMID:21515368

  10. An environmental rationale for retention of endangered chemicals

    SciTech Connect

    Wuebbles, D.J.; Calm, J.M.

    1997-11-07

    Some of the chemicals being phased out to protect the stratospheric ozone layer offer offsetting benefits such as the potential to reduce global warming. This article discusses these two environmental issues together. Six scenarios were analyzed to assess the chlorine and bromine loading of HCFC-123, raising four major policy issues: using of single measure controls places excessive emphasis on the process rather than the objectives; the current Montreal Protocol, production is tantamount to emission, warrents reconsideration; phaseout of compounds based on GWPs will not resolve global warming concerns unless related emissions of greenhouse gases are also address, and careless elimination of options can be more harmful than beneficial. 8 refs., 2 figs.

  11. Modelling physico-chemical properties of (benzo)triazoles, and screening for environmental partitioning.

    PubMed

    Bhhatarai, B; Gramatica, P

    2011-01-01

    (Benzo)triazoles are distributed throughout the environment, mainly in water compartments, because of their wide use in industry where they are employed in pharmaceutical, agricultural and deicing products. They are hazardous chemicals that adversely affect humans and other non-target species, and are on the list of substances of very high concern (SVHC) in the new European regulation of chemicals - REACH (Registration, Evaluation, Authorization and Restriction of Chemical substances). Thus there is a vital need for further investigations to understand the behavior of these compounds in biota and the environment. In such a scenario, physico-chemical properties like aqueous solubility, hydrophobicity, vapor pressure and melting point can be useful. However, the limited availability and the high cost of lab testing prevents the acquisition of necessary experimental data that industry must submit for the registration of these chemicals. In such cases a preliminary analysis can be made using Quantitative Structure-Property Relationships (QSPR) models. For such an analysis, we propose Multiple Linear Regression (MLR) models based on theoretical molecular descriptors selected by Genetic Algorithm (GA). Training and prediction sets were prepared a priori by splitting the available experimental data, which were then used to derive statistically robust and predictive (both internally and externally) models. These models, after verification of their structural applicability domain (AD), were used to predict the properties of a total of 351 compounds, including those in the REACH preregistration list. Finally, Principal Component Analysis was applied to the predictions to rank the environmental partitioning properties (relevant for leaching and volatility) of new and untested (benzo)triazoles within the AD of each model. Our study using this approach highlighted compounds dangerous for the aquatic compartment. Similar analyses using predictions obtained by the EPI Suite and

  12. Activation of CAR and PXR by Dietary, Environmental and Occupational Chemicals Alters Drug Metabolism, Intermediary Metabolism, and Cell Proliferation

    PubMed Central

    Hernandez, J.P.; Mota, L.C.; Baldwin, W.S.

    2010-01-01

    The constitutive androstane receptor (CAR) and the pregnane × receptor (PXR) are activated by a variety of endogenous and exogenous ligands, such as steroid hormones, bile acids, pharmaceuticals, and environmental, dietary, and occupational chemicals. In turn, they induce phase I–III detoxification enzymes and transporters that help eliminate these chemicals. Because many of the chemicals that activate CAR and PXR are environmentally-relevant (dietary and anthropogenic), studies need to address whether these chemicals or mixtures of these chemicals may increase the susceptibility to adverse drug interactions. In addition, CAR and PXR are involved in hepatic proliferation, intermediary metabolism, and protection from cholestasis. Therefore, activation of CAR and PXR may have a wide variety of implications for personalized medicine through physiological effects on metabolism and cell proliferation; some beneficial and others adverse. Identifying the chemicals that activate these promiscuous nuclear receptors and understanding how these chemicals may act in concert will help us predict adverse drug reactions (ADRs), predict cholestasis and steatosis, and regulate intermediary metabolism. This review summarizes the available data on CAR and PXR, including the environmental chemicals that activate these receptors, the genes they control, and the physiological processes that are perturbed or depend on CAR and PXR action. This knowledge contributes to a foundation that will be necessary to discern interindividual differences in the downstream biological pathways regulated by these key nuclear receptors. PMID:20871735

  13. Environmental signaling: from environmental estrogens to endocrine-disrupting chemicals and beyond.

    PubMed

    McLachlan, J A

    2016-07-01

    The landmark report (Herbst et al. 1971) linking prenatal treatment with a synthetic estrogen, diethylstilbestrol (DES), to cancer at puberty in women whose mothers took the drug while pregnant ushered in an era of research on delayed effects of such exposures on functional outcomes in offspring. An animal model developed in our laboratory at the National Institute of Environmental Health Sciences confirmed that DES was the carcinogen and exposure to DES caused, as well, functional alterations in the reproductive, endocrine, and immune systems of male and female mice treated in utero. DES was also being used in agriculture and we discovered, at the first meeting on Estrogens in the Environment in 1979 (Estrogens in the Environment, 1980), that many environmental contaminants were also estrogenic. Many laboratories sought to discern the basis for estrogenicity in environmental chemicals and to discover other hormonally active xenobiotics. Our laboratory elucidated how DES and other estrogenic compounds worked by altering differentiation through epigenetic gene imprinting, helping explain the transgenerational effects found in mice and humans. At the Wingspread Conference on the Human-Wildlife Connection in 1991 (Advances in Modern Environmental Toxicology, 1992), we learned that environmental disruption of the endocrine system occurred in many species and phyla, and the term endocrine disruption was introduced. Further findings of transgenerational effects of environmental agents that mimicked or blocked various reproductive hormones and the ubiquity of environmental signals, such as bisphenol A increased concern for human and ecological health. Scientists began to look at other endocrine system aspects, such as cardiovascular and immune function, and other nuclear receptors, with important observations regarding obesity and metabolism. Laboratories, such as ours, are now using stem cells to try to understand the mechanisms by which various environmental signals

  14. Predicting Biological Functions of Compounds Based on Chemical-Chemical Interactions

    PubMed Central

    Huang, Tao; Cai, Yu-Dong; Chou, Kuo-Chen

    2011-01-01

    Given a compound, how can we effectively predict its biological function? It is a fundamentally important problem because the information thus obtained may benefit the understanding of many basic biological processes and provide useful clues for drug design. In this study, based on the information of chemical-chemical interactions, a novel method was developed that can be used to identify which of the following eleven metabolic pathway classes a query compound may be involved with: (1) Carbohydrate Metabolism, (2) Energy Metabolism, (3) Lipid Metabolism, (4) Nucleotide Metabolism, (5) Amino Acid Metabolism, (6) Metabolism of Other Amino Acids, (7) Glycan Biosynthesis and Metabolism, (8) Metabolism of Cofactors and Vitamins, (9) Metabolism of Terpenoids and Polyketides, (10) Biosynthesis of Other Secondary Metabolites, (11) Xenobiotics Biodegradation and Metabolism. It was observed that the overall success rate obtained by the method via the 5-fold cross-validation test on a benchmark dataset consisting of 3,137 compounds was 77.97%, which is much higher than 10.45%, the corresponding success rate obtained by the random guesses. Besides, to deal with the situation that some compounds may be involved with more than one metabolic pathway class, the method presented here is featured by the capacity able to provide a series of potential metabolic pathway classes ranked according to the descending order of their likelihood for each of the query compounds concerned. Furthermore, our method was also applied to predict 5,549 compounds whose metabolic pathway classes are unknown. Interestingly, the results thus obtained are quite consistent with the deductions from the reports by other investigators. It is anticipated that, with the continuous increase of the chemical-chemical interaction data, the current method will be further enhanced in its power and accuracy, so as to become a useful complementary vehicle in annotating uncharacterized compounds for their biological

  15. UK Environmental Prediction - integration and evaluation at the convective scale

    NASA Astrophysics Data System (ADS)

    Lewis, Huw; Brunet, Gilbert; Harris, Chris; Best, Martin; Saulter, Andrew; Holt, Jason; Bricheno, Lucy; Brerton, Ashley; Reynard, Nick; Blyth, Eleanor; Martinez de la Torre, Alberto

    2015-04-01

    It has long been understood that accurate prediction and warning of the impacts of severe weather requires an integrated approach to forecasting. This was well demonstrated in the UK throughout winter 2013/14 when an exceptional run of severe winter storms, often with damaging high winds and intense rainfall led to significant damage from the large waves and storm surge along coastlines, and from saturated soils, high river flows and significant flooding inland. The substantial impacts on individuals, businesses and infrastructure indicate a pressing need to understand better the value that might be delivered through more integrated environmental prediction. To address this need, the Met Office, Centre for Ecology & Hydrology and National Oceanography Centre have begun to develop the foundations of a coupled high resolution probabilistic forecast system for the UK at km-scale. This links together existing model components of the atmosphere, coastal ocean, land surface and hydrology. Our initial focus on a 2-year Prototype project will demonstrate the UK coupled prediction concept in research mode, including an analysis of the winter 2013/14 storms and its impacts. By linking science development to operational collaborations such as the UK Natural Hazards Partnership, we can ensure that science priorities are rooted in user requirements. This presentation will provide an overview of UK environmental prediction activities and an update on progress during the first year of the Prototype project. We will present initial results from the coupled model development and discuss the challenges to realise the potential of integrated regional coupled forecasting for improving predictions and applications.

  16. Biochar physico-chemical properties as affected by environmental exposure.

    PubMed

    Sorrenti, Giovambattista; Masiello, Caroline A; Dugan, Brandon; Toselli, Moreno

    2016-09-01

    To best use biochar as a sustainable soil management and carbon (C) sequestration technique, we must understand the effect of environmental exposure on its physical and chemical properties because they likely vary with time. These properties play an important role in biochar's environmental behavior and delivery of ecosystem services. We measured biochar before amendment and four years after amendment to a commercial nectarine orchard at rates of 5, 15 and 30tha(-1). We combined two pycnometry techniques to measure skeletal (ρs) and envelope (ρe) density and to estimate the total pore volume of biochar particles. We also examined imbibition, which can provide information about soil hydraulic conductivity. Finally, we investigated the chemical properties, surface, inner layers atomic composition and C1s bonding state of biochar fragments through X-ray photoelectron spectroscopy (XPS). Ageing increased biochar skeletal density and reduced the water imbibition rate within fragments as a consequence of partial pore clogging. However, porosity and the volume of water stored in particles remained unchanged. Exposure reduced biochar pH, EC, and total C, but enhanced total N, nitrate-N, and ammonium-N. X-ray photoelectron spectroscopy analyses showed an increase of O, Si, N, Na, Al, Ca, Mn, and Fe surface (0-5nm) atomic composition (at%) and a reduction of C and K in aged particles, confirming the interactions of biochar with soil inorganic and organic phases. Oxidation of aged biochar fragments occurred mainly in the particle surface, and progressively decreased down to 75nm. Biochar surface chemistry changes included the development of carbonyl and carboxylate functional groups, again mainly on the particle surface. However, changes were noticeable down to 75nm, while no significant changes were measured in the deepest layer, up to 110nm. Results show unequivocal shifts in biochar physical and chemical properties/characteristics over short (~years) timescales. PMID

  17. Shuttle sonic boom - Technology and predictions. [environmental impact

    NASA Technical Reports Server (NTRS)

    Holloway, P. F.; Wilhold, G. A.; Jones, J. H.; Garcia, F., Jr.; Hicks, R. M.

    1973-01-01

    Because the shuttle differs significantly in both geometric and operational characteristics from conventional supersonic aircraft, estimation of sonic boom characteristics required a new technology base. The prediction procedures thus developed are reviewed. Flight measurements obtained for both the ascent and entry phases of the Apollo 15 and 16 and for the ascent phase only of the Apollo 17 missions are presented which verify the techniques established for application to shuttle. Results of extensive analysis of the sonic boom overpressure characteristics completed to date are presented which indicate that this factor of the shuttle's environmental impact is predictable, localized, of short duration and acceptable. Efforts are continuing to define the shuttle sonic boom characteristics to a fine level of detail based on the final system design.

  18. Toxicity testing in the 21st century beyond environmental chemicals.

    PubMed

    Rovida, Costanza; Asakura, Shoji; Daneshian, Mardas; Hofman-Huether, Hana; Leist, Marcel; Meunier, Leo; Reif, David; Rossi, Anna; Schmutz, Markus; Valentin, Jean-Pierre; Zurlo, Joanne; Hartung, Thomas

    2015-01-01

    After the publication of the report titled Toxicity Testing in the 21st Century - A Vision and a Strategy, many initiatives started to foster a major paradigm shift for toxicity testing - from apical endpoints in animal-based tests to mechanistic endpoints through delineation of pathways of toxicity (PoT) in human cell based systems. The US EPA has funded an important project to develop new high throughput technologies based on human cell based in vitro technologies. These methods are currently being incorporated into the chemical risk assessment process. In the pharmaceutical industry, the efficacy and toxicity of new drugs are evaluated during preclinical investigations that include drug metabolism, pharmacokinetics, pharmacodynamics and safety toxicology studies. The results of these studies are analyzed and extrapolated to predict efficacy and potential adverse effects in humans. However, due to the high failure rate of drugs during the clinical phases, a new approach for a more predictive assessment of drugs both in terms of efficacy and adverse effects is getting urgent. The food industry faces the challenge of assessing novel foods and food ingredients for the general population, while using animal safety testing for extrapolation purposes is often of limited relevance. The question is whether the latest paradigm shift proposed by the Tox21c report for chemicals may provide a useful tool to improve the risk assessment approach also for drugs and food ingredients. PMID:26168280

  19. Predicting Toxic and Therapeutic Mechanisms of the ToxCast Chemical Library by Phenotypic Screening (SOT)

    EPA Science Inventory

    Addressing safety aspects of drugs and environmental chemicals relies extensively on animal testing. However the quantity of chemicals needing assessment and challenges of species extrapolation require development of alternative approaches. Using 8 primary human cell systems (Bio...

  20. Revolution In Toxicity Testing And Risk Prediction For Chemicals In The Environment (ASA)

    EPA Science Inventory

    Addressing safety aspects of drugs and environmental chemicals relies extensively on animal testing; however, the quantity of chemicals needing assessment and challenges of species extrapolation require alternative approaches to traditional animal studies. Newer in vitro and in s...

  1. A Predictive Model for Chemically-Induced Fracture

    NASA Astrophysics Data System (ADS)

    Carter, Emily

    2004-03-01

    Mechanical properties of bulk solids are affected not only by macroscopic external loads, but also by chemical reactions, typically at surfaces and interfaces. For example, impurities in metals often coalesce at grain boundaries, leading to weakening of the sample under stress. Atmospheric corrosion is another example that, when combined with external loads, leads to stress-corrosion cracking. These are inherently multiscale phenomena, where the chemistry occurring at the atomic scale profoundly affects the mechanical properties at the micron to millimeter scale. Here we discuss a multiscale model of environmentally-assisted fracture. This involves coupling periodic density functional theory (DFT) at the atomic scale to a finite element continuum mechanics description of the coarser scale. A key component is the cohesive law, which we have shown takes on a universal form distinct from the generally used UBER model. Further, we propose a scheme to calculate physically realistic cohesive laws in the presence of mobile impurities. This cohesive law is then used to in a continuum model that couples stress-assisted diffusion with cohesive zone models of fracture to describe hydrogen embrittlement in metals. We show that this model, with a first principles-based cohesive law, provides insight into the observed intermittent cracking in steel, as well as good quantitative agreement with experiment.

  2. Fate of sessile droplet chemical agents in environmental substrates in the presence of physiochemical processes

    NASA Astrophysics Data System (ADS)

    Navaz, H. K.; Dang, A. L.; Atkinson, T.; Zand, A.; Nowakowski, A.; Kamensky, K.

    2014-05-01

    A general-purpose multi-phase and multi-component computer model capable of solving the complex problems encountered in the agent substrate interaction is developed. The model solves the transient and time-accurate mass and momentum governing equations in a three dimensional space. The provisions for considering all the inter-phase activities (solidification, evaporation, condensation, etc.) are included in the model. The chemical reactions among all phases are allowed and the products of the existing chemical reactions in all three phases are possible. The impact of chemical reaction products on the transport properties in porous media such as porosity, capillary pressure, and permeability is considered. Numerous validations for simulants, agents, and pesticides with laboratory and open air data are presented. Results for chemical reactions in the presence of pre-existing water in porous materials such as moisture, or separated agent and water droplets on porous substrates are presented. The model will greatly enhance the capabilities in predicting the level of threat after any chemical such as Toxic Industrial Chemicals (TICs) and Toxic Industrial Materials (TIMs) release on environmental substrates. The model's generality makes it suitable for both defense and pharmaceutical applications.

  3. Development of structure-activity relationship rules for predicting carcinogenic potential of chemicals.

    PubMed

    Woo, Y T; Lai, D Y; Argus, M F; Arcos, J C

    1995-09-01

    Since the inception of Section 5 (Premanufacturing/Premarketing Notification, PMN) of the Toxic Substances Control Act (TSCA), structure-activity relationship (SAR) analysis has been effectively used by U.S. Environmental Protection Agency's (EPA) Structure Activity Team (SAT) in the assessment of potential carcinogenic hazard of new chemicals for which test data are not available. To capture, systematize and codify the Agency's predictive expertise in order to make it more widely available to assessors outside the TSCA program, a cooperative project was initiated to develop a knowledge rule-based expert system to mimic the thinking and reasoning of the SAT. In this communication, we describe the overall structure of this expert system, discuss the scientific bases and principles of SAR analysis of chemical carcinogens used in the development of SAR knowledge rules, and delineate the major factors/rules useful for assessing the carcinogenic potential of fibers, polymers, metals/metalloids and several major classes of organic chemicals. An integrative approach using available short-term predictive tests and non-cancer toxicological data to supplement SAR analysis has also been described. PMID:7570659

  4. STRUCTURE-REACTIVITY RELATIONSHIPS FOR PREDICTING ENVIRONMENTALLY HAZARDOUS CHEMICALS

    EPA Science Inventory

    A method for extrapolating rate coefficients using transition-state theory was applied to reactions of hydroxyl (OH) radicals with 10 halomethanes and 18 haloethanes. The entropy of activation was calculated for each compound and together with an experimental value of the rate of...

  5. Fast and accurate predictions of covalent bonds in chemical space.

    PubMed

    Chang, K Y Samuel; Fias, Stijn; Ramakrishnan, Raghunathan; von Lilienfeld, O Anatole

    2016-05-01

    We assess the predictive accuracy of perturbation theory based estimates of changes in covalent bonding due to linear alchemical interpolations among molecules. We have investigated σ bonding to hydrogen, as well as σ and π bonding between main-group elements, occurring in small sets of iso-valence-electronic molecules with elements drawn from second to fourth rows in the p-block of the periodic table. Numerical evidence suggests that first order Taylor expansions of covalent bonding potentials can achieve high accuracy if (i) the alchemical interpolation is vertical (fixed geometry), (ii) it involves elements from the third and fourth rows of the periodic table, and (iii) an optimal reference geometry is used. This leads to near linear changes in the bonding potential, resulting in analytical predictions with chemical accuracy (∼1 kcal/mol). Second order estimates deteriorate the prediction. If initial and final molecules differ not only in composition but also in geometry, all estimates become substantially worse, with second order being slightly more accurate than first order. The independent particle approximation based second order perturbation theory performs poorly when compared to the coupled perturbed or finite difference approach. Taylor series expansions up to fourth order of the potential energy curve of highly symmetric systems indicate a finite radius of convergence, as illustrated for the alchemical stretching of H2 (+). Results are presented for (i) covalent bonds to hydrogen in 12 molecules with 8 valence electrons (CH4, NH3, H2O, HF, SiH4, PH3, H2S, HCl, GeH4, AsH3, H2Se, HBr); (ii) main-group single bonds in 9 molecules with 14 valence electrons (CH3F, CH3Cl, CH3Br, SiH3F, SiH3Cl, SiH3Br, GeH3F, GeH3Cl, GeH3Br); (iii) main-group double bonds in 9 molecules with 12 valence electrons (CH2O, CH2S, CH2Se, SiH2O, SiH2S, SiH2Se, GeH2O, GeH2S, GeH2Se); (iv) main-group triple bonds in 9 molecules with 10 valence electrons (HCN, HCP, HCAs, HSiN, HSi

  6. Fast and accurate predictions of covalent bonds in chemical space

    NASA Astrophysics Data System (ADS)

    Chang, K. Y. Samuel; Fias, Stijn; Ramakrishnan, Raghunathan; von Lilienfeld, O. Anatole

    2016-05-01

    We assess the predictive accuracy of perturbation theory based estimates of changes in covalent bonding due to linear alchemical interpolations among molecules. We have investigated σ bonding to hydrogen, as well as σ and π bonding between main-group elements, occurring in small sets of iso-valence-electronic molecules with elements drawn from second to fourth rows in the p-block of the periodic table. Numerical evidence suggests that first order Taylor expansions of covalent bonding potentials can achieve high accuracy if (i) the alchemical interpolation is vertical (fixed geometry), (ii) it involves elements from the third and fourth rows of the periodic table, and (iii) an optimal reference geometry is used. This leads to near linear changes in the bonding potential, resulting in analytical predictions with chemical accuracy (˜1 kcal/mol). Second order estimates deteriorate the prediction. If initial and final molecules differ not only in composition but also in geometry, all estimates become substantially worse, with second order being slightly more accurate than first order. The independent particle approximation based second order perturbation theory performs poorly when compared to the coupled perturbed or finite difference approach. Taylor series expansions up to fourth order of the potential energy curve of highly symmetric systems indicate a finite radius of convergence, as illustrated for the alchemical stretching of H 2+ . Results are presented for (i) covalent bonds to hydrogen in 12 molecules with 8 valence electrons (CH4, NH3, H2O, HF, SiH4, PH3, H2S, HCl, GeH4, AsH3, H2Se, HBr); (ii) main-group single bonds in 9 molecules with 14 valence electrons (CH3F, CH3Cl, CH3Br, SiH3F, SiH3Cl, SiH3Br, GeH3F, GeH3Cl, GeH3Br); (iii) main-group double bonds in 9 molecules with 12 valence electrons (CH2O, CH2S, CH2Se, SiH2O, SiH2S, SiH2Se, GeH2O, GeH2S, GeH2Se); (iv) main-group triple bonds in 9 molecules with 10 valence electrons (HCN, HCP, HCAs, HSiN, HSi

  7. Use of Geochemical Indices in Environmental Assessment of Soil; the Predictable and the Predictably Unpredictable

    NASA Astrophysics Data System (ADS)

    Mikkonen, Hannah; Clarke, Bradley; van de Graaff, Robert; Reichman, Suzie

    2016-04-01

    Geochemical correlations between common contaminants (Pb, Ni, As, Cr, Co and Zn) and earth metals, Fe and Mn, have been recommended as empirical tools to estimate "background" concentrations of metals in soil. A limited number of studies indicate that geochemical ratios between Pb, Ni, As, Cr, Co, V and Zn with scavenger metals Fe or Mn, are consistent between soils collected from different regions (Hamon et al. 2004, Myers and Thorbjornsen 2004). These studies have resulted in the incorporation of geochemical indices into Australian guidance, for derivation of ecological investigation levels for Ni, Cr, Cu and Zn. However, little research has been undertaken to assess the variation of geochemical patterns between soils derived from different parent materials or different weathering environments. A survey of background soils derived from four different parent materials, across Victoria, Australia, was undertaken, comprising collection of samples (n=640) from the surface (0 to 0.1 m) and sub-surface (0.3 to 0.6 m). Soil samples were collected from urban and rural areas of low disturbance, away from point sources of contamination. Samples were analysed for metals/metalloids and soil physical and chemical properties. Statistical review of results included regression and multivariate analysis. The results of the soil survey were compared against geochemical relationships reported within Australia and internationally. Compilation of results from this study and international data sets, indicates that geochemical relationships for metals Cr and V (in the format of log[Cr] = alog[Fe] +c) are predictable, not only between soils derived from different parent materials, but also between soils of different continents. Conversely, relationships between Zn and Fe, Pb and Fe, Cu and Fe, Co and Mn are variable, particularly within soils derived from alluvial sediments, which may have undergone periods of reducing conditions, resulting in dissociation from metal oxides. Broad

  8. CHEMICAL HAZARD EVALUATION FOR MANAGEMENT STRATEGIES: A METHOD FOR RANKING AND SCORING CHEMICALS BY POTENTIAL HUMAN HEALTH AND ENVIRONMENTAL IMPACTS

    EPA Science Inventory

    Between 60,000 and 100,000 of the over than 8,000,000 chemicals listed by the Chemical Abstracts Services Registry are commercially produced and are potential environmental pollutants. Risk-based evaluation for these chemicals is often required to evaluate the potential impacts...

  9. Biodegradation of chemicals in a standardized test and in environmental conditions.

    PubMed

    Ahtiainen, Jukka; Aalto, Miia; Pessala, Piia

    2003-05-01

    The estimation of biodegradation rates is an important source of uncertainty in chemical risk assessment. The existing OECD tests for ready biodegradability have been developed to devise screening methods to determine whether a chemical is potentially easily biodegradable, rather than to predict the actual rate, of biodegradation in the environment. However, risk assessment needs degradation rates. In practice these rates are often estimated (default values) from ready biodegradability tests. These tests have many compromising arbitrary features compared to the situation in the real environment. One important difference is the concentration of the chemical. In wastewater treatment or in the environment many chemicals are present at ng l(-1) to microg l(-1) levels whereas in the tests the concentrations exceed 10-400 mg carbon per litre. These different concentrations of the chemical will lead to different growth kinetics and hence different biodegradation rates. At high concentrations the chemical, if it is degradable, can serve as a primary substrate and competent microorganisms will grow exponentially, resulting in a sigmoid biodegradation curve. At low environmental concentrations the chemical does not serve as a primary substrate, and therefore does not support significant growth of the degraders, and the substrate has a linear biodegradation rate. In this study the biodegradation rates of two reference chemicals, aniline and 4-chloroaniline, were compared in a standard method and in more realistic conditions at low concentrations, using 14C-labelled substances and different sources of inocula. Biomass evolution during the tests was monitored by adenosine triphosphate measurement and also on the basis of the residual 14C-activity in the particulate matter. The results partly support the thesis that low concentrations lead to different biodegradation kinetics compared to the concentrations used in the standard tests. Furthermore the biodegradation rates of the

  10. Using ToxCast in vitro Assays in the Hierarchical Quantitative Structure-Activity Relationship (QSAR) Modeling for Predicting in vivo Toxicity of Chemicals

    EPA Science Inventory

    The goal of chemical toxicology research is utilizing short term bioassays and/or robust computational methods to predict in vivo toxicity endpoints for chemicals. The ToxCast program established at the US Environmental Protection Agency (EPA) is addressing this goal by using ca....

  11. Predicting effects of environmental change on a migratory herbivore

    USGS Publications Warehouse

    Stillman, R A; Wood, K A; Gilkerson, Whelan; Elkinton, E; Black, J. M.; Ward, David H.; Petrie, M.

    2015-01-01

    for which birds were disturbed. We discuss the consequences of these predictions for Black Brant conservation. A wide range of migratory species responses are expected in response to environmental change. Process-based models are potential tools to predict such responses and understand the mechanisms which underpin them.

  12. Animals as sentinels of human health hazards of environmental chemicals.

    PubMed Central

    van der Schalie, W H; Gardner, H S; Bantle, J A; De Rosa, C T; Finch, R A; Reif, J S; Reuter, R H; Backer, L C; Burger, J; Folmar, L C; Stokes, W S

    1999-01-01

    A workshop titled "Using Sentinel Species Data to Address the Potential Human Health Effects of Chemicals in the Environment," sponsored by the U.S. Army Center for Environmental Health Research, the National Center for Environmental Assessment of the EPA, and the Agency for Toxic Substances and Disease Registry, was held to consider the use of sentinel and surrogate animal species data for evaluating the potential human health effects of chemicals in the environment. The workshop took a broad view of the sentinel species concept, and included mammalian and nonmammalian species, companion animals, food animals, fish, amphibians, and other wildlife. Sentinel species data included observations of wild animals in field situations as well as experimental animal data. Workshop participants identified potential applications for sentinel species data derived from monitoring programs or serendipitous observations and explored the potential use of such information in human health hazard and risk assessments and for evaluating causes or mechanisms of effect. Although it is unlikely that sentinel species data will be used as the sole determinative factor in evaluating human health concerns, such data can be useful as for additional weight of evidence in a risk assessment, for providing early warning of situations requiring further study, or for monitoring the course of remedial activities. Attention was given to the factors impeding the application of sentinel species approaches and their acceptance in the scientific and regulatory communities. Workshop participants identified a number of critical research needs and opportunities for interagency collaboration that could help advance the use of sentinel species approaches. PMID:10090711

  13. Fruit transpiration in kiwifruit: environmental drivers and predictive model

    PubMed Central

    Montanaro, Giuseppe; Dichio, Bartolomeo; Xiloyannis, Cristos; Lang, Alexander

    2012-01-01

    Background and aims In most fruit crops, storage quality varies greatly between regions and seasons, causing significant commercial loss. Understanding the sources of this variability will contribute to the knowledge of fruit developmental physiology and may also benefit commercial fruit production via altered managements that reduce it or forecasts that predict it. A causal-chain relationship is proposed to help elucidate the sources of variability in fruit storage quality: the weather →(i)→ fruit transpiration →(ii)→ fruit calcium →(iii)→ fruit storage quality. This paper explores the first link of this hypothesis, →(i)→, for Hayward kiwifruit using field measurements of fruit transpiration rate and concurrent meteorological recordings. The aims are to identify the key environmental variables driving fruit transpiration and develop a predictive fruit transpiration model. Methodology Fruit transpiration was determined hourly over several 24-h periods by recording weight loss of detached fruit, on Days 23, 35, 49, 65, 94 and 140 after full bloom. Meteorological records were made every 15 min throughout the season at an adjacent regional weather station. A model of fruit transpiration was developed in which the usual meteorological variables (radiation, temperature, windspeed and relative humidity) were incorporated in a Fick's Law transpiration flux equation. Principal results Fruit transpiration rate (i.e. the molar flux density, mmol cm−2 h−1) varied diurnally and decreased during the season. The dominant fruit variable governing transpiration rate was skin conductance and the dominant environmental variables were relative humidity and temperature. Radiation and windspeed were not significantly influential. Conclusions The model provides a good fit to the fruit transpiration rate measurements regardless of the time of day/night or the stage of fruit development. The model allows reasonably accurate and continuous predictions of fruit

  14. Prediction and Prevention of Chemical Reaction Hazards: Learning by Simulation.

    ERIC Educational Resources Information Center

    Shacham, Mordechai; Brauner, Neima; Cutlip, Michael B.

    2001-01-01

    Points out that chemical hazards are the major cause of accidents in chemical industry and describes a safety teaching approach using a simulation. Explains a problem statement on exothermic liquid-phase reactions. (YDS)

  15. Andra Environmental Specimen Bank: archiving the environmental chemical quality for long-term monitoring.

    PubMed

    Leclerc, Elisabeth; d'Arbaumont, Maëlle; Verron, Jean-Patrick; Goldstein, Céline; Cesar, Frédérique; Dewonck, Sarah

    2015-02-01

    Andra Environmental Specimen Bank (ESB) was established in 2010 as a part of the Perennial Observatory of the Environment (OPE), ongoing Long-Term Environmental Research Monitoring and Testing System located next to the Underground Research Laboratory (URL) at Bure, Meuse/Haute-Marne, France. The URL is used to study the deep geological disposal of high and intermediate level radioactive waste. Andra ESB is designed to archive during at least 100 years samples collected to define the initial state of environmental quality of the local area before the construction of industrial facilities and to ensure the traceability of long-term series of samples collected by the OPE ( http://www.andra.fr/ope ), using safe long-term conservation practices. Samples archived in the bank include some local food chain products (milk, cheese, honey, cereals, grass, cherry plum…) and specimen usually archived internationally to monitor the environmental quality (soil, sediment, water, fish, tree leaves, wild life, etc.). Regarding the different samples and analytical issues, three conservation modalities and facilities were designed: dry conservation under controlled temperature and humidity, cryopreservation in liquid nitrogen (LN2) vapor phase freezers (-150 °C) and in deep-freezing at -80 °C for temporary storage and raw samples before preparation. Andra ESB is equipped with a sample preparation clean room, certified ISO Class 5, dedicated to cryopreservation. This paper describes this first French experiment of long-term chemical quality monitoring and samples cryopreservation of different ecosystems and environmental compartments. PMID:24809491

  16. PREDICTING TOXICOLOGICAL ENDPOINTS OF CHEMICALS USING QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS (QSARS)

    EPA Science Inventory

    Quantitative structure-activity relationships (QSARs) are being developed to predict the toxicological endpoints for untested chemicals similar in structure to chemicals that have known experimental toxicological data. Based on a very large number of predetermined descriptors, a...

  17. STRUCTURE-ACTIVITY RELATIONSHIP STUIDES AND THEIR ROLE IN PREDICTING AND INVESTIGATING CHEMICAL TOXICITY

    EPA Science Inventory

    Structure-Activity Relationship Studies and their Role in Predicting and Investigating Chemical Toxicity

    Structure-activity relationships (SAR) represent attempts to generalize chemical information relative to biological activity for the twin purposes of generating insigh...

  18. AI AND SAR APPROACHES FOR PREDICTING CHEMICAL CARCINOGENICITY: SURVEY AND STATUS REPORT

    EPA Science Inventory

    A wide variety of artificial intelligence (AI) and structure-activity relationship (SAR approaches have been applied to tackling the general problem of predicting rodent chemical carcinogenicity. Given the diversity of chemical structures and mechanisms relative to this endpoin...

  19. PREDICTING CHEMICAL ACCUMULATION IN SHOOTS OF AQUATIC PLANTS

    EPA Science Inventory

    Chemical exchange dynamics expected for diffusive transfer of a chemical between aqueous solution and plant shoots, and expected bioconcentration based on partitioning properties of the chemical, are explored by using a three-compartment model. he model utilizes three dynamic com...

  20. Chemometric Methods and Theoretical Molecular Descriptors in Predictive QSAR Modeling of the Environmental Behavior of Organic Pollutants

    NASA Astrophysics Data System (ADS)

    Gramatica, Paola

    This chapter surveys the QSAR modeling approaches (developed by the author's research group) for the validated prediction of environmental properties of organic pollutants. Various chemometric methods, based on different theoretical molecular descriptors, have been applied: explorative techniques (such as PCA for ranking, SOM for similarity analysis), modeling approaches by multiple-linear regression (MLR, in particular OLS), and classification methods (mainly k-NN, CART, CP-ANN). The focus of this review is on the main topics of environmental chemistry and ecotoxicology, related to the physico-chemical properties, the reactivity, and biological activity of chemicals of high environmental concern. Thus, the review deals with atmospheric degradation reactions of VOCs by tropospheric oxidants, persistence and long-range transport of POPs, sorption behavior of pesticides (Koc and leaching), bioconcentration, toxicity (acute aquatic toxicity, mutagenicity of PAHs, estrogen binding activity for endocrine disruptors compounds (EDCs)), and finally persistent bioaccumulative and toxic (PBT) behavior for the screening and prioritization of organic pollutants. Common to all the proposed models is the attention paid to model validation for predictive ability (not only internal, but also external for chemicals not participating in the model development) and checking of the chemical domain of applicability. Adherence to such a policy, requested also by the OECD principles, ensures the production of reliable predicted data, useful also in the new European regulation of chemicals, REACH.

  1. In silico prediction of toxicity of non-congeneric industrial chemicals using ensemble learning based modeling approaches

    SciTech Connect

    Singh, Kunwar P. Gupta, Shikha

    2014-03-15

    Ensemble learning approach based decision treeboost (DTB) and decision tree forest (DTF) models are introduced in order to establish quantitative structure–toxicity relationship (QSTR) for the prediction of toxicity of 1450 diverse chemicals. Eight non-quantum mechanical molecular descriptors were derived. Structural diversity of the chemicals was evaluated using Tanimoto similarity index. Stochastic gradient boosting and bagging algorithms supplemented DTB and DTF models were constructed for classification and function optimization problems using the toxicity end-point in T. pyriformis. Special attention was drawn to prediction ability and robustness of the models, investigated both in external and 10-fold cross validation processes. In complete data, optimal DTB and DTF models rendered accuracies of 98.90%, 98.83% in two-category and 98.14%, 98.14% in four-category toxicity classifications. Both the models further yielded classification accuracies of 100% in external toxicity data of T. pyriformis. The constructed regression models (DTB and DTF) using five descriptors yielded correlation coefficients (R{sup 2}) of 0.945, 0.944 between the measured and predicted toxicities with mean squared errors (MSEs) of 0.059, and 0.064 in complete T. pyriformis data. The T. pyriformis regression models (DTB and DTF) applied to the external toxicity data sets yielded R{sup 2} and MSE values of 0.637, 0.655; 0.534, 0.507 (marine bacteria) and 0.741, 0.691; 0.155, 0.173 (algae). The results suggest for wide applicability of the inter-species models in predicting toxicity of new chemicals for regulatory purposes. These approaches provide useful strategy and robust tools in the screening of ecotoxicological risk or environmental hazard potential of chemicals. - Graphical abstract: Importance of input variables in DTB and DTF classification models for (a) two-category, and (b) four-category toxicity intervals in T. pyriformis data. Generalization and predictive abilities of the

  2. Environmental sensing and response genes in Cnidaria: the chemical defensome in the sea anemone Nematostella vectensis

    PubMed Central

    Goldstone, J.V.

    2010-01-01

    The starlet sea anemone Nematostella vectensis has been recently established as a new model system for the study of the evolution of developmental processes, as cnidaria occupy a key evolutionary position at the base of the bilateria. Cnidaria play important roles in estuarine and reef communities, but are exposed to many environmental stressors. Here I describe the genetic components of a ‘chemical defensome’ in the genome of N. vectensis, and review cnidarian molecular toxicology. Gene families that defend against chemical stressors and the transcription factors that regulate these genes have been termed a ‘chemical defensome,’ and include the cytochromes P450 and other oxidases, various conjugating enyzymes, the ATP-dependent efflux transporters, oxidative detoxification proteins, as well as various transcription factors. These genes account for about 1% (266/27200) of the predicted genes in the sea anemone genome, similar to the proportion observed in tunicates and humans, but lower than that observed in sea urchins. While there are comparable numbers of stress-response genes, the stress sensor genes appear to be reduced in N. vectensis relative to many model protostomes and deuterostomes. Cnidarian toxicology is understudied, especially given the important ecological roles of many cnidarian species. New genomic resources should stimulate the study of chemical stress sensing and response mechanisms in cnidaria, and allow us to further illuminate the evolution of chemical defense gene networks. PMID:18956243

  3. Toward seamless weather-climate and environmental prediction

    NASA Astrophysics Data System (ADS)

    Brunet, Gilbert

    2016-04-01

    Over the last decade or so, predicting the weather, climate and atmospheric composition has emerged as one of the most important areas of scientific endeavor. This is partly because the remarkable increase in skill of current weather forecasts has made society more and more dependent on them day to day for a whole range of decision making. And it is partly because climate change is now widely accepted and the realization is growing rapidly that it will affect every person in the world profoundly, either directly or indirectly. One of the important endeavors of our societies is to remain at the cutting-edge of modelling and predicting the evolution of the fully coupled environmental system: atmosphere (weather and composition), oceans, land surface (physical and biological), and cryosphere. This effort will provide an increasingly accurate and reliable service across all the socio-economic sectors that are vulnerable to the effects of adverse weather and climatic conditions, whether now or in the future. This emerging challenge was at the center of the World Weather Open Science Conference (Montreal, 2014).The outcomes of the conference are described in the World Meteorological Organization (WMO) book: Seamless Prediction of the Earth System: from Minutes to Months, (G. Brunet, S. Jones, P. Ruti Eds., WMO-No. 1156, 2015). It is freely available on line at the WMO website. We will discuss some of the outcomes of the conference for the WMO World Weather Research Programme (WWRP) and Global Atmospheric Watch (GAW) long term goals and provide examples of seamless modelling and prediction across a range of timescales at convective and sub-kilometer scales for regional coupled forecasting applications at Environment and Climate Change Canada (ECCC).

  4. Environmental correction factors for predicting room sound pressure levels

    SciTech Connect

    Warnock, A.C.C.

    1998-10-01

    ARI Standard 885 provides a method for calculating sound pressure levels in room below plenums containing air-handling devices. An important step in the calculation is the correction of the sound power for the device from values provided by the manufacturer to values appropriate for use in occupied spaces. This correction is called the environmental adjustment factor. It compensates for the fact that sound power measured for a source placed outdoors or in a hemi-free field has been found to be greater at low frequencies than the sound power measured for the same source in a reverberation room. When making predictions of sound pressure level in a room using such sound power levels, one has to estimate the reduction in sound power caused by the room. Estimated reductions provided in ARI 885 were examined during ASHRAE research project RP-755 and found to be too large. Lower values are suggested in this paper.

  5. Tool for the Reduction and Assessment of Chemical and other Environmental Impacts

    EPA Science Inventory

    TRACI, the Tool for the Reduction and Assessment of Chemical and other environmental Impacts, has been developed by the US Environmental Protection Agency’s National Risk Management Research Laboratory to facilitate the characterization of stressors that have potential effects, ...

  6. Assessment of quantitative structure-activity relationship of toxicity prediction models for Korean chemical substance control legislation

    PubMed Central

    Kim, Kwang-Yon; Shin, Seong Eun; No, Kyoung Tai

    2015-01-01

    Objectives For successful adoption of legislation controlling registration and assessment of chemical substances, it is important to obtain sufficient toxicological experimental evidence and other related information. It is also essential to obtain a sufficient number of predicted risk and toxicity results. Particularly, methods used in predicting toxicities of chemical substances during acquisition of required data, ultimately become an economic method for future dealings with new substances. Although the need for such methods is gradually increasing, the-required information about reliability and applicability range has not been systematically provided. Methods There are various representative environmental and human toxicity models based on quantitative structure-activity relationships (QSAR). Here, we secured the 10 representative QSAR-based prediction models and its information that can make predictions about substances that are expected to be regulated. We used models that predict and confirm usability of the information expected to be collected and submitted according to the legislation. After collecting and evaluating each predictive model and relevant data, we prepared methods quantifying the scientific validity and reliability, which are essential conditions for using predictive models. Results We calculated predicted values for the models. Furthermore, we deduced and compared adequacies of the models using the Alternative non-testing method assessed for Registration, Evaluation, Authorization, and Restriction of Chemicals Substances scoring system, and deduced the applicability domains for each model. Additionally, we calculated and compared inclusion rates of substances expected to be regulated, to confirm the applicability. Conclusions We evaluated and compared the data, adequacy, and applicability of our selected QSAR-based toxicity prediction models, and included them in a database. Based on this data, we aimed to construct a system that can be used

  7. Toxic Environmental Chemicals: The Role of Reproductive Health Professionals In Preventing Harmful Exposures

    PubMed Central

    SUTTON, Patrice; WOODRUFF, Tracey J.; PERRON, Joanne; STOTLAND, Naomi; CONRY, Jeanne A.; MILLER, Mark D.; GIUDICE, Linda C.

    2015-01-01

    Every pregnant woman in the U.S. is exposed to many and varied environmental chemicals. Rapidly accumulating scientific evidence documents that widespread exposure to environmental chemicals at levels encountered in daily life can adversely impact reproductive and developmental health. Preconception and prenatal exposure to environmental chemicals are of particular import because they may have a profound and lasting impact on health across the life course. Thus, preventing developmental exposures to environmental chemicals would benefit greatly from the active participation of reproductive health professionals in clinical and policy arenas. PMID:22405527

  8. Overview of the ToxCast Research Program: Applications to Predictive Toxicology and Chemical Prioritization (SETAC)

    EPA Science Inventory

    Understanding the potential health risks posed by environmental chemicals is a significant challenge driven by the large number of diverse chemicals with generally uncharacterized exposures, mechanisms and toxicities. The U.S. EPA’s ToxCast chemical prioritization research projec...

  9. Theoretical predictions of chemical degradation reaction mechanisms of RDX and other cyclic nitramines derived from their molecular structures.

    PubMed

    Qasim, M; Fredrickson, H; McGrath, C; Furey, J; Bajpai, R

    2005-06-01

    Analysis of environmental degradation pathways of contaminants is aided by predictions of likely reaction mechanisms and intermediate products derived from computational models of molecular structure. Quantum mechanical methods and force-field molecular mechanics were used to characterize cyclic nitramines. Likely degradation mechanisms for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) include hydroxylation utilizing addition of hydroxide ions to initiate proton abstraction via 2nd order rate elimination (E2) or via nucleophilic substitution of nitro groups, reductive chemical and biochemical degradation, and free radical oxidation. Due to structural similarities, it is predicted that, under homologous circumstances, certain RDX environmental degradation pathways should also be effective for octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and similar cyclic nitramines. Computational models provided a theoretical framework whereby likely transformation mechanisms and transformation products of cyclic nitramines were predicted and used to elucidate in situ degradation pathways. PMID:15804809

  10. THE FUTURE OF TOXICOLOGY-PREDICTIVE TOXICOLOGY: AN EXPANDED VIEW OF CHEMICAL TOXICITY

    EPA Science Inventory

    A chemistry approach to predictive toxicology relies on structure−activity relationship (SAR) modeling to predict biological activity from chemical structure. Such approaches have proven capabilities when applied to well-defined toxicity end points or regions of chemical space. T...

  11. Incorporating High-Throughput Exposure Predictions With Dosimetry-Adjusted In Vitro Bioactivity to Inform Chemical Toxicity Testing

    PubMed Central

    Wetmore, Barbara A.; Wambaugh, John F.; Allen, Brittany; Ferguson, Stephen S.; Sochaski, Mark A.; Setzer, R. Woodrow; Houck, Keith A.; Strope, Cory L.; Cantwell, Katherine; Judson, Richard S.; LeCluyse, Edward; Clewell, Harvey J.; Thomas, Russell S.; Andersen, Melvin E.

    2015-01-01

    We previously integrated dosimetry and exposure with high-throughput screening (HTS) to enhance the utility of ToxCast HTS data by translating in vitro bioactivity concentrations to oral equivalent doses (OEDs) required to achieve these levels internally. These OEDs were compared against regulatory exposure estimates, providing an activity-to-exposure ratio (AER) useful for a risk-based ranking strategy. As ToxCast efforts expand (ie, Phase II) beyond food-use pesticides toward a wider chemical domain that lacks exposure and toxicity information, prediction tools become increasingly important. In this study, in vitro hepatic clearance and plasma protein binding were measured to estimate OEDs for a subset of Phase II chemicals. OEDs were compared against high-throughput (HT) exposure predictions generated using probabilistic modeling and Bayesian approaches generated by the U.S. Environmental Protection Agency (EPA) ExpoCast program. This approach incorporated chemical-specific use and national production volume data with biomonitoring data to inform the exposure predictions. This HT exposure modeling approach provided predictions for all Phase II chemicals assessed in this study whereas estimates from regulatory sources were available for only 7% of chemicals. Of the 163 chemicals assessed in this study, 3 or 13 chemicals possessed AERs < 1 or < 100, respectively. Diverse bioactivities across a range of assays and concentrations were also noted across the wider chemical space surveyed. The availability of HT exposure estimation and bioactivity screening tools provides an opportunity to incorporate a risk-based strategy for use in testing prioritization. PMID:26251325

  12. Incorporating High-Throughput Exposure Predictions With Dosimetry-Adjusted In Vitro Bioactivity to Inform Chemical Toxicity Testing.

    PubMed

    Wetmore, Barbara A; Wambaugh, John F; Allen, Brittany; Ferguson, Stephen S; Sochaski, Mark A; Setzer, R Woodrow; Houck, Keith A; Strope, Cory L; Cantwell, Katherine; Judson, Richard S; LeCluyse, Edward; Clewell, Harvey J; Thomas, Russell S; Andersen, Melvin E

    2015-11-01

    We previously integrated dosimetry and exposure with high-throughput screening (HTS) to enhance the utility of ToxCast HTS data by translating in vitro bioactivity concentrations to oral equivalent doses (OEDs) required to achieve these levels internally. These OEDs were compared against regulatory exposure estimates, providing an activity-to-exposure ratio (AER) useful for a risk-based ranking strategy. As ToxCast efforts expand (ie, Phase II) beyond food-use pesticides toward a wider chemical domain that lacks exposure and toxicity information, prediction tools become increasingly important. In this study, in vitro hepatic clearance and plasma protein binding were measured to estimate OEDs for a subset of Phase II chemicals. OEDs were compared against high-throughput (HT) exposure predictions generated using probabilistic modeling and Bayesian approaches generated by the U.S. Environmental Protection Agency (EPA) ExpoCast program. This approach incorporated chemical-specific use and national production volume data with biomonitoring data to inform the exposure predictions. This HT exposure modeling approach provided predictions for all Phase II chemicals assessed in this study whereas estimates from regulatory sources were available for only 7% of chemicals. Of the 163 chemicals assessed in this study, 3 or 13 chemicals possessed AERs < 1 or < 100, respectively. Diverse bioactivities across a range of assays and concentrations were also noted across the wider chemical space surveyed. The availability of HT exposure estimation and bioactivity screening tools provides an opportunity to incorporate a risk-based strategy for use in testing prioritization. PMID:26251325

  13. Environmentally stable chemically amplified positive resist containing vinyllactam terpolymers

    NASA Astrophysics Data System (ADS)

    Bok, Cheol-Kyu; Koh, Cha-Won; Jung, Min-Ho; Baik, Ki-Ho; Kim, Jin-Baek; Cheong, Jong-Ho

    1997-07-01

    In this paper we report here on lithographic performance of high resolution, environmentally stable and aqueous base developable positive tone resist for DUV lithography. There have been a lot of efforts to prevent the resist from suffering from the deactivation of acid during the delay time between exposure and post exposure bake (PEB). The new design of matrix resin containing amide functional group has advantages over current lithographic techniques. The effects of amide functional group as a basic additive in a chemically amplified resist was investigated. A new class of matrix resin containing amide functional group, poly(hydroxystyrene-co-t- butyl acrylate-co-3-(t-butoxycarbonyl)-1-vinyl-2-caprolactam), was developed. It showed 0.20 micrometer lines/spaces patterns of this resist using KrF excimer stepper (NA 0.55, partial coherence factor 0.55) with an exposure dose of 25 mJ/cm2. This resist showed no change of pattern profile after 2 hours post exposure delay in which ammonia concentration is 5 ppb. 3-(t-butoxycarbonyl)-1-vinyl-2-caprolatam (BCVC) unit as a basic additive can not only solve amine contamination effectively, but also improve the resolution of the resist. BCVC unit reduces the diffusion of acid and it results in sharp contrast at the interface between the exposed and unexposed areas. Therefore, adding BCVC unit in matrix resin leads to the stabilization of the pattern profile and higher resolution.

  14. Prioritizing Environmental Chemicals for Obesity and Diabetes Outcomes Research: A Screening Approach Using ToxCast™ High-Throughput Data

    PubMed Central

    Auerbach, Scott; Filer, Dayne; Reif, David; Walker, Vickie; Holloway, Alison C.; Schlezinger, Jennifer; Srinivasan, Supriya; Svoboda, Daniel; Judson, Richard; Bucher, John R.; Thayer, Kristina A.

    2016-01-01

    Background: Diabetes and obesity are major threats to public health in the United States and abroad. Understanding the role that chemicals in our environment play in the development of these conditions is an emerging issue in environmental health, although identifying and prioritizing chemicals for testing beyond those already implicated in the literature is challenging. This review is intended to help researchers generate hypotheses about chemicals that may contribute to diabetes and to obesity-related health outcomes by summarizing relevant findings from the U.S. Environmental Protection Agency (EPA) ToxCast™ high-throughput screening (HTS) program. Objectives: Our aim was to develop new hypotheses around environmental chemicals of potential interest for diabetes- or obesity-related outcomes using high-throughput screening data. Methods: We identified ToxCast™ assay targets relevant to several biological processes related to diabetes and obesity (insulin sensitivity in peripheral tissue, pancreatic islet and β cell function, adipocyte differentiation, and feeding behavior) and presented chemical screening data against those assay targets to identify chemicals of potential interest. Discussion: The results of this screening-level analysis suggest that the spectrum of environmental chemicals to consider in research related to diabetes and obesity is much broader than indicated by research papers and reviews published in the peer-reviewed literature. Testing hypotheses based on ToxCast™ data will also help assess the predictive utility of this HTS platform. Conclusions: More research is required to put these screening-level analyses into context, but the information presented in this review should facilitate the development of new hypotheses. Citation: Auerbach S, Filer D, Reif D, Walker V, Holloway AC, Schlezinger J, Srinivasan S, Svoboda D, Judson R, Bucher JR, Thayer KA. 2016. Prioritizing environmental chemicals for obesity and diabetes outcomes research

  15. Semiempirical Predictions of Chemical Degradation Reaction Mechanisms of CL-20 as Related to Molecular Structure

    SciTech Connect

    Qasim, Mohammad M.; Furey, John; Fredrickson, Herbert L.; Szecsody, Jim E.; Mcgrath, Chris J.; Bajpai, Rakesh

    2004-10-01

    Quantum mechanical methods and force field molecular mechanics were used to characterize cage cyclic nitramines and to predict environmental degradation mechanisms. Due to structural similarities it is predicted that, under homologous circumstances, the major environmental RDX degradation pathways should also be effective for CL-20 and similar cyclic nitramines.

  16. Variation in Chemical Defense Among Natural Populations of Common Toad, Bufo bufo, Tadpoles: the Role of Environmental Factors.

    PubMed

    Bókony, Veronika; Móricz, Ágnes M; Tóth, Zsófia; Gál, Zoltán; Kurali, Anikó; Mikó, Zsanett; Pásztor, Katalin; Szederkényi, Márk; Tóth, Zoltán; Ujszegi, János; Üveges, Bálint; Krüzselyi, Dániel; Capon, Robert J; Hoi, Herbert; Hettyey, Attila

    2016-04-01

    Defensive toxins are widespread in nature, yet we know little about how various environmental factors shape the evolution of chemical defense, especially in vertebrates. In this study we investigated the natural variation in the amount and composition of bufadienolide toxins, and the relative importance of ecological factors in predicting that variation, in larvae of the common toad, Bufo bufo, an amphibian that produces toxins de novo. We found that tadpoles' toxin content varied markedly among populations, and the number of compounds per tadpole also differed between two geographical regions. The most consistent predictor of toxicity was the strength of competition, indicating that tadpoles produced more compounds and larger amounts of toxins when coexisting with more competitors. Additionally, tadpoles tended to contain larger concentrations of bufadienolides in ponds that were less prone to desiccation, suggesting that the costs of toxin production can only be afforded by tadpoles that do not need to drastically speed up their development. Interestingly, this trade-off was not alleviated by higher food abundance, as periphyton biomass had negligible effect on chemical defense. Even more surprisingly, we found no evidence that higher predation risk enhances chemical defenses, suggesting that low predictability of predation risk and high mortality cost of low toxicity might select for constitutive expression of chemical defense irrespective of the actual level of predation risk. Our findings highlight that the variation in chemical defense may be influenced by environmental heterogeneity in both the need for, and constraints on, toxicity as predicted by optimal defense theory. PMID:27059330

  17. Prediction of Bioactive Compounds Using Computed NMR Chemical Shifts.

    PubMed

    Karthikeyan, Muthukumarasamy; Rajamohanan, Pattuparambil Ramanpillai; Vyas, Renu

    2015-01-01

    NMR based chemical shifts are an important diagnostic parameter for structure elucidation as they capture rich information related to conformational, electronic and stereochemical arrangement of functional groups in a molecule which is responsible for its activity towards any biological target. The present work discusses the importance of computing NMR chemical shifts from molecular structures. The NMR chemical shift data (experimental or computed) was used to generate fingerprints in binary formats for mapping molecular fragments (as descriptors) and correlating with the bioactivity classes. For this study, chemical shift data derived binary fingerprints were computed for 149 classes and 4800 bioactive molecules. The sensitivity and selectivity of fingerprints in discriminating molecules belonging to different therapeutic categories was assessed using a LibSVM based classifier. An accuracy of 82% for proton and 94% for carbon NMR fingerprints were obtained for anti-psoriatic and anti-psychotic molecules demonstrating the effectiveness of this approach for virtual screening. PMID:26138568

  18. Predicting physico-chemical properties of polychlorinated diphenyl ethers (PCDEs): potential persistent organic pollutants (POPs).

    PubMed

    Huang, Jun; Yu, Gang; Yang, Xi; Zhang, Zu-lin

    2004-01-01

    Polychlorinated diphenyl ethers (PCDEs) have received more and more concerns as a category of potential persistent organic pollutants (POPs). Modeling its environmental fate and exposure assessment require a number of fundamental physico-chemical properties. However, the experimental data are currently limited due to the difficulty in analysis caused by the complexity of PCDE congeners. As an alternative, the quantitative structure property relationship (QSPR) approach could be used. In this paper, twelve kinds of molecular connectivity indices (MCIs) of all 209 possible molecular structure patterns of PCDEs were calculated. Based on 106 PCDEs with three observed physico-chemical properties-vapour pressure (P0L), aqueous solubility (Sw) and n-octanol/water (Kow) and their MCIs data, a series of QSPR equations were established using multiple linear regression (MLR) method. As a result, three equations with best performance were selected mainly from the view of high regression coefficient (R) and low standard error(SE). All of them showed significant relationship and high accuracy. With these equations the properties of other 103 patterns of PCDEs without the reported observed values were predicted. Furthermore, three partition properties for PCDE congeners-Henry' s Law constants (H), partition coefficients between gas/water (Kgw) and gas/n-octanol (Kgo) were calculated according to the internal relationship among these six properties. These observed and predicted values, in contrast with the criteria listed in the Stockholm treaty about POPs which has been signed by more than ninety countries in May 2001, illustrated that most of PCDEs congeners are potential persistent organic pollutants. As all descriptors/predictors are derived just from the molecular structure itself and without the import of any empirical parameters, this method is impersonal and promising for the estimation of physico-chemical properties of PCDEs. PMID:15137639

  19. Prediction of glass durability as a function of environmental conditions

    SciTech Connect

    Jantzen, C M

    1988-01-01

    A thermodynamic model of glass durability is applied to natural, ancient, and nuclear waste glasses. The durabilities of over 150 different natural and man-made glasses, including actual ancient Roman and Islamic glasses (Jalame ca. 350 AD, Nishapur 10-11th century AD and Gorgon 9-11th century AD), are compared. Glass durability is a function of the thermodynamic hydration free energy, ..delta..G/sub hyd/, which can be calculated from glass composition and solution pH. The durability of the most durable nuclear waste glasses examined was /approximately/10/sup 6/ years. The least durable waste glass formulations were comparable in durability to the most durable simulated medieval window glasses of /approximately/10/sup 3/ years. In this manner, the durability of nuclear waste glasses has been interpolated to be /approximately/10/sup 6/ years and no less than 10/sup 3/ years. Hydration thermodynamics have been shown to be applicable to the dissolution of glass in various natural environments. Groundwater-glass interactions relative to geologic disposal of nuclear waste, hydration rind dating of obsidians, andor other archeological studies can be modeled, e.g., the relative durabilities of six simulated medieval window glasses have been correctly predicted for both laboratory (one month) and burial (5 years) experiments. Effects of solution pH on glass dissolution has been determined experimentally for the 150 different glasses and can be predicted theoretically by hydration thermodynamics. The effects of solution redox on dissolution of glass matrix elements such as SI and B have shown to be minimal. The combined effects of solution pH and Eh have been described and unified by construction of thermodynamically calculated Pourbaix (pH-Eh) diagrams for glass dissolution. The Pourbaix diagrams have been quantified to describe glass dissolution as a function of environmental conditions by use of the data derived from hydration thermodynamics. 56 refs., 7 figs.

  20. Dynamical recurrent neural networks--towards environmental time series prediction.

    PubMed

    Aussem, A; Murtagh, F; Sarazin, M

    1995-06-01

    Dynamical Recurrent Neural Networks (DRNN) (Aussem 1995a) are a class of fully recurrent networks obtained by modeling synapses as autoregressive filters. By virtue of their internal dynamic, these networks approximate the underlying law governing the time series by a system of nonlinear difference equations of internal variables. They therefore provide history-sensitive forecasts without having to be explicitly fed with external memory. The model is trained by a local and recursive error propagation algorithm called temporal-recurrent-backpropagation. The efficiency of the procedure benefits from the exponential decay of the gradient terms backpropagated through the adjoint network. We assess the predictive ability of the DRNN model with meterological and astronomical time series recorded around the candidate observation sites for the future VLT telescope. The hope is that reliable environmental forecasts provided with the model will allow the modern telescopes to be preset, a few hours in advance, in the most suited instrumental mode. In this perspective, the model is first appraised on precipitation measurements with traditional nonlinear AR and ARMA techniques using feedforward networks. Then we tackle a complex problem, namely the prediction of astronomical seeing, known to be a very erratic time series. A fuzzy coding approach is used to reduce the complexity of the underlying laws governing the seeing. Then, a fuzzy correspondence analysis is carried out to explore the internal relationships in the data. Based on a carefully selected set of meteorological variables at the same time-point, a nonlinear multiple regression, termed nowcasting (Murtagh et al. 1993, 1995), is carried out on the fuzzily coded seeing records. The DRNN is shown to outperform the fuzzy k-nearest neighbors method. PMID:7496587

  1. Human AP Endonuclease 1: A Potential Marker for the Prediction of Environmental Carcinogenesis Risk

    PubMed Central

    Park, Jae Sung; Kim, Hye Lim; Kim, Yeo Jin; Weon, Jong-Il; Sung, Mi-Kyung; Chung, Hai Won; Seo, Young Rok

    2014-01-01

    Human apurinic/apyrimidinic endonuclease 1 (APE1) functions mainly in DNA repair as an enzyme removing AP sites and in redox signaling as a coactivator of various transcription factors. Based on these multifunctions of APE1 within cells, numerous studies have reported that the alteration of APE1 could be a crucial factor in development of human diseases such as cancer and neurodegeneration. In fact, the study on the combination of an individual's genetic make-up with environmental factors (gene-environment interaction) is of great importance to understand the development of diseases, especially lethal diseases including cancer. Recent reports have suggested that the human carcinogenic risk following exposure to environmental toxicants is affected by APE1 alterations in terms of gene-environment interactions. In this review, we initially outline the critical APE1 functions in the various intracellular mechanisms including DNA repair and redox regulation and its roles in human diseases. Several findings demonstrate that the change in expression and activity as well as genetic variability of APE1 caused by environmental chemical (e.g., heavy metals and cigarette smoke) and physical carcinogens (ultraviolet and ionizing radiation) is likely associated with various cancers. These enable us to ultimately suggest APE1 as a vital marker for the prediction of environmental carcinogenesis risk. PMID:25243052

  2. In Vitro Screening of Environmental Chemicals for Targeted Testing Prioritization: The ToxCast Project

    EPA Science Inventory

    Chemical toxicity testing is being transformed by advances in biology and computer modeling, concerns over animal use, and the thousands of environmental chemicals lacking toxicity data. The U.S. Environmental Protection Agency’s ToxCast program aims to address these concerns by ...

  3. Prediction of phylogeographic endemism in an environmentally complex biome

    PubMed Central

    Carnaval, Ana Carolina; Waltari, Eric; Rodrigues, Miguel T.; Rosauer, Dan; VanDerWal, Jeremy; Damasceno, Roberta; Prates, Ivan; Strangas, Maria; Spanos, Zoe; Rivera, Danielle; Pie, Marcio R.; Firkowski, Carina R.; Bornschein, Marcos R.; Ribeiro, Luiz F.; Moritz, Craig

    2014-01-01

    Phylogeographic endemism, the degree to which the history of recently evolved lineages is spatially restricted, reflects fundamental evolutionary processes such as cryptic divergence, adaptation and biological responses to environmental heterogeneity. Attempts to explain the extraordinary diversity of the tropics, which often includes deep phylogeographic structure, frequently invoke interactions of climate variability across space, time and topography. To evaluate historical versus contemporary drivers of phylogeographic endemism in a tropical system, we analyse the effects of current and past climatic variation on the genetic diversity of 25 vertebrates in the Brazilian Atlantic rainforest. We identify two divergent bioclimatic domains within the forest and high turnover around the Rio Doce. Independent modelling of these domains demonstrates that endemism patterns are subject to different climatic drivers. Past climate dynamics, specifically areas of relative stability, predict phylogeographic endemism in the north. Conversely, contemporary climatic heterogeneity better explains endemism in the south. These results accord with recent speleothem and fossil pollen studies, suggesting that climatic variability through the last 250 kyr impacted the northern and the southern forests differently. Incorporating sub-regional differences in climate dynamics will enhance our ability to understand those processes shaping high phylogeographic and species endemism, in the Neotropics and beyond. PMID:25122231

  4. Predicting environmental risk: A road map for the future.

    PubMed

    Jager, Tjalling

    2016-01-01

    Frameworks for environmental risk assessment (ERA) focus on comparing results from separate exposure and effect assessments. Exposure assessment generally relies on mechanistic fate models, whereas the effects assessment is anchored in standard test protocols and descriptive statistics. This discrepancy prevents a useful link between these two pillars of ERA, and jeopardizes the realism and efficacy of the entire process. Similar to exposure assessment, effects assessment requires a mechanistic approach to translate the output of fate models into predictions for impacts on populations and food webs. The aim of this study was to discuss (1) the central importance of the individual level, (2) different strategies of dealing with biological complexity, and (3) the role that toxicokinetic-toxicodynamic (TKTD) models, energy budgets, and molecular biology play in a mechanistic revision of the ERA framework. Consequently, an outline for a risk assessment paradigm was developed that incorporates a mechanistic effects assessment in a consistent manner, and a "roadmap for the future." Such a roadmap may play a critical role to eventually arrive at a more scientific and efficient ERA process, and needs to be used to shape our long-term research agendas. PMID:27484139

  5. Prediction of phylogeographic endemism in an environmentally complex biome.

    PubMed

    Carnaval, Ana Carolina; Waltari, Eric; Rodrigues, Miguel T; Rosauer, Dan; VanDerWal, Jeremy; Damasceno, Roberta; Prates, Ivan; Strangas, Maria; Spanos, Zoe; Rivera, Danielle; Pie, Marcio R; Firkowski, Carina R; Bornschein, Marcos R; Ribeiro, Luiz F; Moritz, Craig

    2014-10-01

    Phylogeographic endemism, the degree to which the history of recently evolved lineages is spatially restricted, reflects fundamental evolutionary processes such as cryptic divergence, adaptation and biological responses to environmental heterogeneity. Attempts to explain the extraordinary diversity of the tropics, which often includes deep phylogeographic structure, frequently invoke interactions of climate variability across space, time and topography. To evaluate historical versus contemporary drivers of phylogeographic endemism in a tropical system, we analyse the effects of current and past climatic variation on the genetic diversity of 25 vertebrates in the Brazilian Atlantic rainforest. We identify two divergent bioclimatic domains within the forest and high turnover around the Rio Doce. Independent modelling of these domains demonstrates that endemism patterns are subject to different climatic drivers. Past climate dynamics, specifically areas of relative stability, predict phylogeographic endemism in the north. Conversely, contemporary climatic heterogeneity better explains endemism in the south. These results accord with recent speleothem and fossil pollen studies, suggesting that climatic variability through the last 250 kyr impacted the northern and the southern forests differently. Incorporating sub-regional differences in climate dynamics will enhance our ability to understand those processes shaping high phylogeographic and species endemism, in the Neotropics and beyond. PMID:25122231

  6. Identification and Prioritization of Chemical Mixtures from Environmental Residue Data

    EPA Science Inventory

    High throughput toxicity testing has greatly improved the speed at which single chemicals can be screened using in vitro methods. However, people are not exposed to a single chemical at a time, rather to a mixture of chemicals. Even with the increased speed of these methods, te...

  7. Environmental Fate of Organophosphorus Compounds Related to Chemical Weapons

    SciTech Connect

    Davisson, M L; Love, A H; Vance, A; Reynolds, J G

    2005-02-08

    Man-made organophosphorus compounds have been widely distributed throughout our environment as pesticides since their development during and after WWII. Many important studies have documented their relative persistence and toxicity. Development and use of some organophosphorus compounds as nerve agents gave rise to a separate but parallel effort to understand environmental persistence. In this latter case, the experiments have focused mainly on evaporation rates and first-order reaction kinetics. However, because organophosphorus compounds are easily polarized, the ionic content of a surrounding media directly factors into these reaction rates, but limited work in this regard has been done under environmentally relevant conditions. Furthermore, limited experiments investigating persistence of these agents on soil has resulted in widely varying degradation rates. Not surprisingly, no studies have investigated affinities of organophosphorus nerve agents to mineral or organic matter typically found in soil. As a result, we initiated laboratory experiments on dilute concentrations of nerve agent O-ethyl S-(2-diisopropylaminoethyl) methylphosphonothiolate (VX) to quantify persistence in simulated environmental aqueous conditions. A quantitative analytical method was developed for VX and its degradation products using High Performance Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (HPLC-ESI-MS). VX hydrolysis rate is known to have a pH-dependency, however, the type of buffer and the relative proportion of different nucleophiles in solution significantly affect the overall rate and mechanism of degradation. For example, dissolved carbonate, a weak nucleophile dominating natural water, yielded pseudo-first order rate constants of {approx} 8 x 10{sup -3}/hr at pH 5 and 2 x 10{sup -2}/hr at pH 11. This small pH-dependent variation departs significantly from widely accepted rates at this pH range (4 x 10{sup -4}/hr to 8 x 10{sup -2}/hr) that were based on

  8. Prediction of rodent carcinogenicity of further 30 chemicals bioassayed by the US National Toxicology Program

    SciTech Connect

    Benigni, R.; Andreoli, C.; Zito, R.

    1996-10-01

    Recently the US National Toxicology Program (NTP) sponsored a comparative exercise in which different prediction approaches (both biologically and chemically based) were challenged for their predictive abilities of rodent carcinogenicity of a common set of chemicals. The exercise enjoyed remarkable scientific success and stimulated NTP to sponsor a second challenging round of tests, inviting participants to present predictions relative to the rodent carcinogenicity of a further 30 chemicals; these are currently being tested. In this article, we present our predictions based on structure-activity relationship considerations. In our procedure, first each chemical was assigned to an activity mechanism class and then, with semiquantitative considerations, was assigned a probability carcinogenicity score, taking into account simultaneously the hypothesized action mechanism and physical chemical parameters. 31 refs., 2 tabs.

  9. Predicting modes of toxic action from chemical structure

    EPA Science Inventory

    Like many of the papers in the ET&C top 100 list, the development of the fathead minnow database and the assignment of modes of action to the 617 chemicals therein was the result of a comprehensive research effort by a multidisciplinary team of researchers with expertise in quant...

  10. The U.S. Environmental Protection Agency strategic plan for evaluating the toxicity of chemicals.

    PubMed

    Firestone, Michael; Kavlock, Robert; Zenick, Hal; Kramer, Melissa

    2010-02-01

    In the 2007 report Toxicity Testing in the 21st Century: A Vision and a Strategy, the U.S. National Academy of Sciences envisioned a major transition in toxicity testing from cumbersome, expensive, and lengthy in vivo testing with qualitative endpoints, to in vitro robotic high-throughput screening with mechanistic quantitative parameters. Recognizing the need for agencies to partner and collaborate to ensure global harmonization, standardization, quality control and information sharing, the U.S. Environmental Protection Agency is leading by example and has established an intra-agency Future of Toxicity Testing Workgroup (FTTW). This workgroup has produced an ambitious blueprint for incorporating this new scientific paradigm to change the way chemicals are screened and evaluated for toxicity. Four main components of this strategy are discussed, as follows: (1) the impact and benefits of various types of regulatory activities, (2) chemical screening and prioritization, (3) toxicity pathway-based risk assessment, and (4) institutional transition. The new paradigm is predicated on the discovery of molecular perturbation pathways at the in vitro level that predict adverse health effects from xenobiotics exposure, and then extrapolating those events to the tissue, organ, or whole organisms by computational models. Research on these pathways will be integrated and compiled using the latest technology with the cooperation of global agencies, industry, and other stakeholders. The net result will be that chemical toxicity screening will become more efficient and cost-effective, include real-world exposure assessments, and eliminate currently used uncertainty factors. PMID:20574895

  11. Developing methods to assess and predict the population level effects of environmental contaminants.

    USGS Publications Warehouse

    Emlen, J.M.; Springman, K.R.

    2007-01-01

    The field of ecological toxicity seems largely to have drifted away from what its title implies--assessing and predicting the ecological consequences of environmental contaminants--moving instead toward an emphasis on individual effects and physiologic case studies. This paper elucidates how a relatively new ecological methodology, interaction assessment (INTASS), could be useful in addressing the field's initial goals. Specifically, INTASS is a model platform and methodology, applicable across a broad array of taxa and habitat types, that can be used to construct population dynamics models from field data. Information on environmental contaminants and multiple stressors can be incorporated into these models in a form that bypasses the problems inherent in assessing uptake, chemical interactions in the environment, and synergistic effects in the organism. INTASS can, therefore, be used to evaluate the effects of contaminants and other stressors at the population level and to predict how changes in stressor levels or composition of contaminant mixtures, as well as various mitigation measures, might affect population dynamics.

  12. Prenatal Exposures to Environmental Chemicals and Children's Neurodevelopment: An Update

    PubMed Central

    2013-01-01

    This review surveys the recent literature on the neurodevelopmental impacts of chemical exposures during pregnancy. The review focuses primarily on chemicals of recent concern, including phthalates, bisphenol-A, polybrominated diphenyl ethers, and perfluorinated compounds, but also addresses chemicals with longer histories of investigation, including air pollutants, lead, methylmercury, manganese, arsenic, and organophosphate pesticides. For some chemicals of more recent concern, the available literature does not yet afford strong conclusions about neurodevelopment toxicity. In such cases, points of disagreement among studies are identified and suggestions provided for approaches to resolution of the inconsistencies, including greater standardization of methods for expressing exposure and assessing outcomes. PMID:23515885

  13. EPAs ToxCast Program for Predicting Toxcity and Prioritizing Chemicals for Further Screening and Testing

    EPA Science Inventory

    Testing of environmental and industrial chemicals for toxicity potential is a daunting task because of the wide range of possible toxicity mechanisms. Although animal testing is one means of achieving broad toxicity coverage, evaluation of large numbers of chemicals is challengin...

  14. INVERSE QUANTITATIVE STRUCTURE ACTIVITY RELATIONSHIP ANALYSIS FOR IMPROVING PREDICTIONS OF CHEMICAL TOXICITY

    EPA Science Inventory

    The toxic outcomes associated with environmental contaminants are often not due to the chemical form that was originally introduced into the environment, but rather to the chemical having undergone a transformation prior to reaching the vulnerable species. More importantly, the c...

  15. Probing the ToxCast Chemical Library for Predictive Signatures of Developmental Toxicity

    EPA Science Inventory

    EPA’s ToxCast™ project is profiling the in vitro bioactivity of chemical compounds to assess pathway-level and cell-based signatures that correlate with observed in vivo toxicity. We hypothesize that cell signaling pathways are primary targets for diverse environmental chemicals ...

  16. Probing the ToxCastTM Chemical Library for Predictive Signatures of Developmental Toxicity -NLTO Poster

    EPA Science Inventory

    EPA’s ToxCast™ project is profiling the in vitro bioactivity of chemical compounds to assess pathway-level and cell-based signatures that correlate with observed in vivo toxicity. We hypothesize that cell signaling pathways are primary targets for diverse environmental chemicals ...

  17. Agricultural Chemicals and Radiation. Ag Ed Environmental Education Series.

    ERIC Educational Resources Information Center

    Tulloch, Rodney W.

    The document is designed to be used as a resource in teaching vocational agriculture high school students about the environment. Agricultural chemicals are the major focus, with some attention to radiation. The importance of safety in agricultural chemical use is stressed, with descriptions of the pesticide label; protective clothing; respiratory…

  18. High Throughput Heuristics for Prioritizing Human Exposure to Environmental Chemicals

    EPA Science Inventory

    The risk posed to human health by any of the thousands of untested anthropogenic chemicals in our environment is a function of both the potential hazard presented by the chemical, and the possibility of being exposed. Without the capacity to make quantitative, albeit uncertain, f...

  19. Predicted thermochemistry for chemical conversions of 5-hydroxymethylfurfural

    NASA Astrophysics Data System (ADS)

    Assary, Rajeev S.; Redfern, Paul C.; Hammond, Jeff R.; Greeley, Jeffrey; Curtiss, Larry A.

    2010-09-01

    The thermochemistry of various chemical transformations of 5-hydroxy methyl furfural (HMF) were investigated using highly accurate G AUSSIAN-4 (G4) theory. The conversion of HMF to nonane through aldol condensation, hydrogenation, and hydrogenolysis reactions was found to be thermodynamically favorable. The hydrogenation reactions involving the keto groups in the nonane reaction sequence were found to be enhanced at low temperatures and high pressures of H 2. The hydrogenation, selective oxidation, and hydration of HMF were also found to be thermodynamically favorable. Gas phase enthalpies of formation of all the intermediate compounds were calculated at the G4 level of theory and compared against existing experimental data.

  20. Predicted thermochemistry for chemical conversions of 5-hydroxymethylfurfural.

    SciTech Connect

    Assary, R. S.; Redfern, P. C.; Hammond, J. R.; Greeley, J.; Curtiss, L. A.; Northwestern Univ.

    2010-09-10

    The thermochemistry of various chemical transformations of 5-hydroxy methyl furfural (HMF) were investigated using highly accurate Gaussian-4 (G4) theory. The conversion of HMF to nonane through aldol condensation, hydrogenation, and hydrogenolysis reactions was found to be thermodynamically favorable. The hydrogenation reactions involving the keto groups in the nonane reaction sequence were found to be enhanced at low temperatures and high pressures of H{sub 2}. The hydrogenation, selective oxidation, and hydration of HMF were also found to be thermodynamically favorable. Gas phase enthalpies of formation of all the intermediate compounds were calculated at the G4 level of theory and compared against existing experimental data.

  1. Why small and medium chemical companies continue to pose severe environmental risks in rural China.

    PubMed

    He, Guizhen; Zhang, Lei; Mol, Arthur P J; Wang, Tieyu; Lu, Yonglong

    2014-02-01

    In China, rural chemical SMEs are often believed to still largely operate below the sustainability radar. This paper investigates to what extent and how chemical SMEs are already experiencing pressure to improve their environmental performance, using an in-depth case study in Jasmine County, Hebei province. The results show that local residents had rather low trust in the environmental improvement promises made by the enterprises and the local government, and disagreed with the proposed improvement plans. Although the power of local residents to influence decision making remained limited, the chemical SMEs started to feel increasing pressures to clean up their business, from governments, local communities and civil society, and international value chain stakeholders. Notwithstanding these mounting pressures chemical SME's environmental behavior and performance has not changed radically for the better. The strong economic ties between local county governments and chemical SMEs continue to be a major barrier for stringent environmental regulation. PMID:24284198

  2. Genetic and environmental factors affecting host response to drugs and other chemical compounds in our environment.

    PubMed Central

    Vesell, E S; Passananti, G T

    1977-01-01

    Compared to laboratory animals, humans are extremely heterogenous with respect to the many factors that can influence the distribution and biological effects of toxic chemicals. This heterogeneity can prevent an accurate assessment of the impact of a particular toxic compound on the health of an individual subject. Some of the factors that can significantly modify the host response to certain drugs, which serve in this review as a model for environmental chemicals, are enumerated and discussed. Although the mechanisms by which many of these factors modify the biological effects of certain environmental chemicals and drugs have been determined in some cases, better definition of the nature of interactions between these factors and environmental chemicals in a particular individual is required at a biochemical and molecular level. Recommendations are offered for the further development of our knowledge concerning interactions between environmental chemicals and such factors in a particular individual. PMID:598349

  3. PREDICTION OF CHEMICAL RESIDUES IN AQUATIC ORGANISMS FOR A FIELD DISCHARGE SITUATION.

    EPA Science Inventory

    A field study was performed which compared predicted and measured concentrations of chemicals in receiving water organisms from three sampling locations on Five Mile Creek, Birmingham, Al. Two point source discharges, both from coke manufacturing facilities, were included in the ...

  4. EXPANDING CHEMICAL-TOXICITY INFORMATION RESOURCES IN SUPPORT OF PREDICTIVE TOXICOLOGY.

    EPA Science Inventory

    We find that the connection between structure and biological response is not symmetric, with biological response better at predicting chemical structure than vice versa. *ToxCast Toxicity Reference Database.

  5. Prediction of Chemical Vapor Deposition Rates on Monofilaments and Its Implications for Fiber Properties

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.; Kuczmarski, M.; Veitch, L. C.

    1992-01-01

    Deposition rates are predicted in a cylindrical upflow reactor designed for chemical vapor deposition (CVD) on monofilaments. Deposition of silicon from silane in a hydrogen carrier gas is chosen as a relevant example. The effects of gas and surface chemistry are studied in a two-dimensional axisymmetric flow field for this chemically well-studied system. Model predictions are compared to experimental CVD rate measurements. The differences in some physical and chemical phenomena between such small diameter (about 150 microns) fiber substrates and other typical CVD substrates are highlighted. The influence of the Soret mass transport mechanism is determined to be extraordinarily significant. The difficulties associated with the accurate measurement and control of the fiber temperature are discussed. Model prediction sensitivities are investigated with respect to fiber temperatures, fiber radii, Soret transport, and chemical kinetic parameters. The implications of the predicted instantaneous rates are discussed relative to the desired fiber properties for both the batch and the continuous processes.

  6. EPA's Toxcast ™ Program for Predicting Hazard and Priortizing Toxicity Testing of Environemntal Chemicals (T)

    EPA Science Inventory

    EPA is developing methods for utilizing computational chemistry, high-throughput screening (HTS) and various toxicogenomic technologies to predict potential for toxicity and prioritize limited testing resources towards chemicals that likely represent the greatest hazard to human ...

  7. Variation in Environmentalism among University Students: Majoring in Outdoor Recreation, Parks, and Tourism Predicts Environmental Concerns and Behaviors

    ERIC Educational Resources Information Center

    Arnocky, Steven; Stroink, Mirella L.

    2011-01-01

    In a survey of Canadian university students (N = 205), the relationship between majoring in an outdoor recreation university program and environmental concern, cooperation, and behavior were examined. Stepwise linear regression indicated that enrollment in outdoor recreation was predictive of environmental behavior and ecological cooperation; and…

  8. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling

    SciTech Connect

    Valerio, Luis G. . E-mail: luis.valerio@FDA.HHS.gov; Arvidson, Kirk B.; Chanderbhan, Ronald F.; Contrera, Joseph F.

    2007-07-01

    Consistent with the U.S. Food and Drug Administration (FDA) Critical Path Initiative, predictive toxicology software programs employing quantitative structure-activity relationship (QSAR) models are currently under evaluation for regulatory risk assessment and scientific decision support for highly sensitive endpoints such as carcinogenicity, mutagenicity and reproductive toxicity. At the FDA's Center for Food Safety and Applied Nutrition's Office of Food Additive Safety and the Center for Drug Evaluation and Research's Informatics and Computational Safety Analysis Staff (ICSAS), the use of computational SAR tools for both qualitative and quantitative risk assessment applications are being developed and evaluated. One tool of current interest is MDL-QSAR predictive discriminant analysis modeling of rodent carcinogenicity, which has been previously evaluated for pharmaceutical applications by the FDA ICSAS. The study described in this paper aims to evaluate the utility of this software to estimate the carcinogenic potential of small, organic, naturally occurring chemicals found in the human diet. In addition, a group of 19 known synthetic dietary constituents that were positive in rodent carcinogenicity studies served as a control group. In the test group of naturally occurring chemicals, 101 were found to be suitable for predictive modeling using this software's discriminant analysis modeling approach. Predictions performed on these compounds were compared to published experimental evidence of each compound's carcinogenic potential. Experimental evidence included relevant toxicological studies such as rodent cancer bioassays, rodent anti-carcinogenicity studies, genotoxic studies, and the presence of chemical structural alerts. Statistical indices of predictive performance were calculated to assess the utility of the predictive modeling method. Results revealed good predictive performance using this software's rodent carcinogenicity module of over 1200 chemicals

  9. Do Interactions Between Gut Ecology and Environmental Chemicals Contribute to Obesity and Diabetes?

    PubMed Central

    Snedeker, Suzanne M.

    2011-01-01

    Background: Gut microbiota are important factors in obesity and diabetes, yet little is known about their role in the toxicodynamics of environmental chemicals, including those recently found to be obesogenic and diabetogenic. Objectives: We integrated evidence that independently links gut ecology and environmental chemicals to obesity and diabetes, providing a framework for suggesting how these environmental factors may interact with these diseases, and identified future research needs. Methods: We examined studies with germ-free or antibiotic-treated laboratory animals, and human studies that evaluated how dietary influences and microbial changes affected obesity and diabetes. Strengths and weaknesses of studies evaluating how environmental chemical exposures may affect obesity and diabetes were summarized, and research gaps on how gut ecology may affect the disposition of environmental chemicals were identified. Results: Mounting evidence indicates that gut microbiota composition affects obesity and diabetes, as does exposure to environmental chemicals. The toxicology and pharmacology literature also suggests that interindividual variations in gut microbiota may affect chemical metabolism via direct activation of chemicals, depletion of metabolites needed for biotransformation, alteration of host biotransformation enzyme activities, changes in enterohepatic circulation, altered bioavailability of environmental chemicals and/or antioxidants from food, and alterations in gut motility and barrier function. Conclusions: Variations in gut microbiota are likely to affect human toxicodynamics and increase individual exposure to obesogenic and diabetogenic chemicals. Combating the global obesity and diabetes epidemics requires a multifaceted approach that should include greater emphasis on understanding and controlling the impact of interindividual gut microbe variability on the disposition of environmental chemicals in humans. PMID:22042266

  10. Prioritizing chemicals for environmental management in China based on screening of potential risks

    NASA Astrophysics Data System (ADS)

    Yu, Xiangyi; Mao, Yan; Sun, Jinye; Shen, Yingwa

    2014-03-01

    The rapid development of China's chemical industry has created increasing pressure to improve the environmental management of chemicals. To bridge the large gap between the use and safe management of chemicals, we performed a comprehensive review of the international methods used to prioritize chemicals for environmental management. By comparing domestic and foreign methods, we confirmed the presence of this gap and identified potential solutions. Based on our literature review, we developed an appropriate screening method that accounts for the unique characteristics of chemical use within China. The proposed method is based on an evaluation using nine indices of the potential hazard posed by a chemical: three environmental hazard indices (persistence, bioaccumulation, and eco-toxicity), four health hazard indices (acute toxicity, carcinogenicity, mutagenicity, and reproductive and developmental toxicity), and two environmental exposure hazard indices (chemical amount and utilization pattern). The results of our screening agree with results of previous efforts from around the world, confirming the validity of the new system. The classification method will help decisionmakers to prioritize and identify the chemicals with the highest environmental risk, thereby providing a basis for improving chemical management in China.

  11. The U.S. EPA Geographic Information System for mapping environmental releases of Toxic Chemical Release Inventory (TRI) chemicals.

    PubMed

    Stockwell, J R; Sorensen, J W; Eckert, J W; Carreras, E M

    1993-04-01

    This study characterizes the environmental releases of toxic chemicals of the Toxic Chemical Release Inventory (TRI) in the southeastern United States by using the U.S. Environmental Protection Agency (EPA) Geographic Information System (GIS) to map them. These maps show that the largest quantities of TRI releases in the Southeast are usually near densely populated areas. This GIS mapping approach takes the first steps in defining those areas in the region which may be potential exposure zones and which could be strategic targets for future risk screening efforts in this geographic area. PMID:8502789

  12. The CONCEPTS Global Ice-Ocean Prediction System: Establishing an Environmental Prediction Capability in Canada

    NASA Astrophysics Data System (ADS)

    Pellerin, Pierre; Smith, Gregory; Testut, Charles-Emmanuel; Surcel Colan, Dorina; Roy, Francois; Reszka, Mateusz; Dupont, Frederic; Lemieux, Jean-Francois; Beaudoin, Christiane; He, Zhongjie; Belanger, Jean-Marc; Deacu, Daniel; Lu, Yimin; Buehner, Mark; Davidson, Fraser; Ritchie, Harold; Lu, Youyu; Drevillon, Marie; Tranchant, Benoit; Garric, Gilles

    2015-04-01

    Here we describe a new system implemented recently at the Canadian Meteorological Centre (CMC) entitled the Global Ice Ocean Prediction System (GIOPS). GIOPS provides ice and ocean analyses and 10 day forecasts daily at 00GMT on a global 1/4° resolution grid. GIOPS includes a full multivariate ocean data assimilation system that combines satellite observations of sea level anomaly and sea surface temperature (SST) together with in situ observations of temperature and salinity. In situ observations are obtained from a variety of sources including: the Argo network of autonomous profiling floats, moorings, ships of opportunity, marine mammals and research cruises. Ocean analyses are blended with sea ice analyses produced by the Global Ice Analysis System.. GIOPS has been developed as part of the Canadian Operational Network of Coupled Environmental PredicTion Systems (CONCEPTS) tri-departmental initiative between Environment Canada, Fisheries and Oceans Canada and National Defense. The development of GIOPS was made through a partnership with Mercator-Océan, a French operational oceanography group. Mercator-Océan provided the ocean data assimilation code and assistance with the system implementation. GIOPS has undergone a rigorous evaluation of the analysis, trial and forecast fields demonstrating its capacity to provide high-quality products in a robust and reliable framework. In particular, SST and ice concentration forecasts demonstrate a clear benefit with respect to persistence. These results support the use of GIOPS products within other CMC operational systems, and more generally, as part of a Government of Canada marine core service. Impact of a two-way coupling between the GEM atmospheric model and NEMO-CICE ocean-ice model will also be presented.

  13. Integrated Environmental Risk Assessment and Whole-Process Management System in Chemical Industry Parks

    PubMed Central

    Shao, Chaofeng; Yang, Juan; Tian, Xiaogang; Ju, Meiting; Huang, Lei

    2013-01-01

    Chemical industry parks in China are considered high-risk areas because they present numerous risks that can damage the environment, such as pollution incidents. In order to identify the environmental risks and the principal risk factors in these areas, we have developed a simple physical model of a regional environmental risk field (ERF) using existing dispersal patterns and migration models. The regional ERF zoning was also conducted and a reference value for diagnostic methods was developed to determine risk-acceptable, risk-warning, and risk-mitigation zones, which can provide a risk source layout for chemical industry parks. In accordance with the environmental risk control requirements, this study focused on the three stages of control and management of environmental risk and established an environmental risk management system including risk source identification and assessment, environmental safety planning, early risk warning, emergency management, assessment of environmental effects, and environmental remediation of pollution accidents. By using this model, the environmental risks in Tianjin Binhai New Area, the largest chemical industry park in China, were assessed and the environmental risk zoning map was drawn, which suggested the existence of many unacceptable environmental risks in this area. Thus, relevant suggestions have been proposed from the perspective of the adjustment of risk source layout, intensified management of environmental risk control and so on. PMID:23603866

  14. Primary rat hepatocytes in chemical testing and QSAR predictive applicability.

    PubMed

    Tichý, Milon; Pokorná, Adéla; Hanzlíková, Iveta; Nerudová, Jana; Tumová, Jana; Uzlová, Rút

    2010-02-01

    Primary rat hepatocytes were used to test acute toxicities of 16 neutral aliphatic alcohols, ketones and esters. Their effects on cell viability and metabolic function (ureogenesis, i.e. biotransformation of ornithine to urea) were measured and expressed as EC50 values. Log EC50 values from both tests correlated with the log partition coefficients for the chemicals between n-octanol and water and log P(ow)-based QSAR models were derived. Log EC50 (viability) tightly correlates with log EC50 (ureogenesis): log EC50 (viability)=0.91 log EC50 (ureogenesis)+0.06. Each of these toxic indices can be substituted by the other one. The toxic indices for both cell viability and metabolic disorder can be estimated using log EC50 for movement inhibition in the oligochaete Tubifex tubifex and the respective QSAR equation. It eliminates a usage of rats. Their correlations were proved and justified. PMID:19735719

  15. Predicting the chemical protection factor of CBRN protective garments.

    PubMed

    Ambesi, Davide; Bouma, Richard; den Hartog, Emiel; Kleijn, Chris R

    2013-01-01

    The protection factor and pressure drop coefficient of single layers of active carbon particles in chemical, biological, radiological, and nuclear (CBRN) protective garments have been computed from computational fluid dynamics simulations of airflow and mass transport. Based on the results from the simulations, a closed-form analytical model has been proposed for the protection factor and the pressure drop coefficient as a function of layer porosity, particle diameter, and cross airflow velocity. This model has been validated against experimental data in literature. It can be used to find an optimal compromise between high protection factor and low pressure drop coefficient. Maximum protection factors are achieved when small carbon particles are employed in a layer with high packing density, at the expense of a high pressure drop coefficient. For a given required protection factor, the lowest pressure drop coefficient is found for layers combining a high porosity and small particle diameter. PMID:23473003

  16. Significance of vapor phase chemical reactions on CVD rates predicted by chemically frozen and local thermochemical equilibrium boundary layer theories

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.

    1988-01-01

    This paper investigates the role played by vapor-phase chemical reactions on CVD rates by comparing the results of two extreme theories developed to predict CVD mass transport rates in the absence of interfacial kinetic barrier: one based on chemically frozen boundary layer and the other based on local thermochemical equilibrium. Both theories consider laminar convective-diffusion boundary layers at high Reynolds numbers and include thermal (Soret) diffusion and variable property effects. As an example, Na2SO4 deposition was studied. It was found that gas phase reactions have no important role on Na2SO4 deposition rates and on the predictions of the theories. The implications of the predictions of the two theories to other CVD systems are discussed.

  17. CURRENT STATE OF PREDICTING THE RESPIRATORY ALLERGY POTENTIAL OF CHEMICALS: WHAT ARE THE ISSUES?

    EPA Science Inventory

    Current State of Predicting the Respiratory Allergy Potential of Chemicals: What Are the Issues? M I. Gilmour1 and S. E. Loveless2, 1USEPA, Research Triangle Park, NC and 2DuPont Haskell Laboratory, Newark, DE.

    Many chemicals are clearly capable of eliciting immune respon...

  18. Students' Predictions about the Sensory Properties of Chemical Compounds: Additive versus Emergent Frameworks

    ERIC Educational Resources Information Center

    Talanquer, Vicente

    2008-01-01

    We investigated general chemistry students' intuitive ideas about the expected properties of the products of a chemical reaction. In particular, we analyzed college chemistry students' predictions about the color, smell, and taste of the products of chemical reactions represented at the molecular level. The study was designed to explore the extent…

  19. The Effect of Environmental Chemicals on Human Health -- CJA

    EPA Science Inventory

    Humans and animals have always been exposed to chemicals in our environment - natural products in foods, smoke from cooking fires, sewage in drinking water, pesticides from plants. However, the dramatic increases in industrialization over the past three centuries have dramatical...

  20. THE EFFECT OF ENVIRONMENTAL CHEMICALS ON HUMAN HEALTH -- USCF

    EPA Science Inventory

    Humans and animals have always been exposed to chemicals in our environment - natural products in foods, smoke from cooking fires, sewage in drinking water, pesticides from plants. However, the dramatic increases in industrialization over the past three centuries have dramatical...

  1. THE EFFECT OF ENVIRONMENTAL CHEMICALS ON HUMAN HEALTH

    EPA Science Inventory

    Humans and animals have always been exposed to chemicals in our environments - natural products in foods, smoke from cooking fires, sewage in drinking water, pesticides from plants. However, the dramatic increases in industrialization over the past three centuries have dramatica...

  2. ENVIRONMENTAL CHEMICAL MONITORING IN THE U.S.

    EPA Science Inventory

    Chemical monitoring of the environment is performed in the United States by Federal and State agencies, local governments, industries, organizations, and private individuals. The major reasons for monitoring are for compliance with laws and regulations, investigation of suspec...

  3. High Throughput Screening of Toxicity Pathways Perturbed by Environmental Chemicals

    EPA Science Inventory

    Toxicology, a field largely unchanged over the past several decades, is undergoing a significant transformation driven by a number of forces – the increasing number of chemicals needing assessment, changing legal requirements, advances in biology and computer science, and concern...

  4. Assays for endocrine-disrupting chemicals: Beyond environmental estrogens

    SciTech Connect

    Folmar, L.C.

    1999-07-01

    Recent popular and scientific articles have reported the presence of estrogenic and other hormone mimicking chemicals in the environment and their potential for causing reproductive dysfunction in humans and wildlife. The purpose of this session was to present the best available, if not standard, analytical methods to assay for the effects of xenobiotic chemicals on a broad range of endocrine-mediated events, including reproduction, growth, development and stress responses in aquatic vertebrate and invertebrate animals.

  5. New environmental concepts in the chemical and coke industries

    SciTech Connect

    A.Yu. Naletov; V.A. Naletov

    2007-05-15

    We know that environmentally pure technologies do not exist. Coke production is no exception to the rule. The article considers the logic of environmental decision making. Attention focuses on a new bank of ecologically appropriate materials whose release to the biosphere must be considered solely in quantititative terms. Qualitativily all these materials are familiar; they are assimilated by populations of microorganisms and tar thus compatible with the biosphere.

  6. High pressure electrides: a predictive chemical and physical theory.

    PubMed

    Miao, Mao-Sheng; Hoffmann, Roald

    2014-04-15

    Electrides, in which electrons occupy interstitial regions in the crystal and behave as anions, appear as new phases for many elements (and compounds) under high pressure. We propose a unified theory of high pressure electrides (HPEs) by treating electrons in the interstitial sites as filling the quantized orbitals of the interstitial space enclosed by the surrounding atom cores, generating what we call an interstitial quasi-atom, ISQ. With increasing pressure, the energies of the valence orbitals of atoms increase more significantly than the ISQ levels, due to repulsion, exclusion by the atom cores, effectively giving the valence electrons less room in which to move. At a high enough pressure, which depends on the element and its orbitals, the frontier atomic electron may become higher in energy than the ISQ, resulting in electron transfer to the interstitial space and the formation of an HPE. By using a He lattice model to compress (with minimal orbital interaction at moderate pressures between the surrounding He and the contained atoms or molecules) atoms and an interstitial space, we are able to semiquantitatively explain and predict the propensity of various elements to form HPEs. The slopes in energy of various orbitals with pressure (s > p > d) are essential for identifying trends across the entire Periodic Table. We predict that the elements forming HPEs under 500 GPa will be Li, Na (both already known to do so), Al, and, near the high end of this pressure range, Mg, Si, Tl, In, and Pb. Ferromagnetic electrides for the heavier alkali metals, suggested by Pickard and Needs, potentially compete with transformation to d-group metals. PMID:24702165

  7. 'Thermal taste' predicts higher responsiveness to chemical taste and flavor.

    PubMed

    Green, Barry G; George, Pravin

    2004-09-01

    Individual differences in taste perception have been explained in part by variations in peripheral innervation associated with the genetic ability to taste the bitter substances PTC and PROP. In the present study we report evidence of another source of individual differences that is independent of taste stimulus, taste quality, or gustatory nerve. Individuals who perceived taste from thermal stimulation alone (thermal taste) gave significantly higher taste ratings to chemical stimuli--often by a factor of >2:1--than did individuals who perceived no taste from thermal stimulation. This was true for all taste stimuli tested (sucrose, saccharin, sodium chloride, citric acid, quinine sulfate, MSG and PROP), for all three gustatory areas of the mouth (anterior tongue, posterior tongue and soft palate) and for whole-mouth stimulation. Moreover, the same individuals reported stronger sensations from the olfactory stimulus vanillin, particularly when it was sensed retronasally. The generality of the thermal-taster advantage and its extension to an olfactory stimulus suggests that it arises from individual differences in CNS processes that are involved in perception of both taste and flavor. PMID:15337686

  8. Predicting carcinogenicity of diverse chemicals using probabilistic neural network modeling approaches

    SciTech Connect

    Singh, Kunwar P.; Gupta, Shikha; Rai, Premanjali

    2013-10-15

    Robust global models capable of discriminating positive and non-positive carcinogens; and predicting carcinogenic potency of chemicals in rodents were developed. The dataset of 834 structurally diverse chemicals extracted from Carcinogenic Potency Database (CPDB) was used which contained 466 positive and 368 non-positive carcinogens. Twelve non-quantum mechanical molecular descriptors were derived. Structural diversity of the chemicals and nonlinearity in the data were evaluated using Tanimoto similarity index and Brock–Dechert–Scheinkman statistics. Probabilistic neural network (PNN) and generalized regression neural network (GRNN) models were constructed for classification and function optimization problems using the carcinogenicity end point in rat. Validation of the models was performed using the internal and external procedures employing a wide series of statistical checks. PNN constructed using five descriptors rendered classification accuracy of 92.09% in complete rat data. The PNN model rendered classification accuracies of 91.77%, 80.70% and 92.08% in mouse, hamster and pesticide data, respectively. The GRNN constructed with nine descriptors yielded correlation coefficient of 0.896 between the measured and predicted carcinogenic potency with mean squared error (MSE) of 0.44 in complete rat data. The rat carcinogenicity model (GRNN) applied to the mouse and hamster data yielded correlation coefficient and MSE of 0.758, 0.71 and 0.760, 0.46, respectively. The results suggest for wide applicability of the inter-species models in predicting carcinogenic potency of chemicals. Both the PNN and GRNN (inter-species) models constructed here can be useful tools in predicting the carcinogenicity of new chemicals for regulatory purposes. - Graphical abstract: Figure (a) shows classification accuracies (positive and non-positive carcinogens) in rat, mouse, hamster, and pesticide data yielded by optimal PNN model. Figure (b) shows generalization and predictive

  9. THYROID DISRUPTING CHEMICALS: CHALLENGES IN ASSESSING NEUROTOXIC RISK FROM ENVIRONMENTAL MIXTURES.

    EPA Science Inventory

    Environmental contaminants are known to act as thyroid disrupting chemicals (TDCs). Broadly defined, TDCs are xenobiotics that alter the structure or function of the thyroid gland, alter regulatory enzymes associated with thyroid hormone (TH) homeostasis, or change circulating o...

  10. IMPROVING THE ENVIRONMENTAL PERFORMANCE OF CHEMICAL PROCESSES THROUGH THE USE OF INFORMATION TECHNOLOGY

    EPA Science Inventory

    Efforts are currently underway at the USEPA to develop information technology applications to improve the environmental performance of the chemical process industry. These efforts include the use of genetic algorithms to optimize different process options for minimal environmenta...

  11. Comparison of cell type specificities of stress pathway reporter assay ensemble response to environmental chemicals.

    EPA Science Inventory

    The large number of environmental compounds that currently need characterization and prioritization for further toxicological study is a serious regulatory challenge facing the EPA. In addition to these agents comprising of pesticides, inerts, and high-production volume chemical...

  12. TRACI - THE TOOL FOR THE REDUCTION AND ASSESSMENT OF CHEMICAL AND OTHER ENVIRONMENTAL IMPACTS

    EPA Science Inventory

    TRACI, The Tool for the Reduction and Assessment of Chemical and other environmental Impacts, is described along with its history, the underlying research, methodologies, and insights within individual impact categories. TRACI facilitates the characterization of stressors that ma...

  13. Laser Applications to Chemical, Security, and Environmental Analysis: introduction to the feature issue

    SciTech Connect

    Dreizler, Andreas; Fried, Alan; Gord, James R

    2007-07-01

    This Applied Optics feature issue on Laser Applications to Chemical, Security,and Environmental Analysis (LACSEA) highlights papers presented at theLACSEA 2006 Tenth Topical Meeting sponsored by the Optical Society ofAmerica.

  14. The expert system for toxicity prediction of chemicals based on structure-activity relationship.

    PubMed Central

    Nakadate, M; Hayashi, M; Sofuni, T; Kamata, E; Aida, Y; Osada, T; Ishibe, T; Sakamura, Y; Ishidate, M

    1991-01-01

    The prediction systems of chemical toxicity has been developed by means of structure-activity relationship based on the computerized fact database (BL-DB). Numbers and ratio of elements, side chains, bonding, position, and microenvironment of side chains were used as structural factors of the chemical for the prediction. Such information was obtained from the BL-DB database by Wiswesser line-formula chemical notation. In the present study, the Salmonella/microsome assay was chosen as indicative of the target toxicity of chemicals. A set of chemicals specified with mutagenicity data was retrieved, and necessary information was extracted and transferred to the working file. Rules of the relations between characteristics of chemical structure and the assay result are extracted as parameters for rules by experts on the rearranged data set. These were analyzed statistically by the discriminant analysis and the prediction with the rules were evaluated by the elimination method. Eight kinds of rules to predict Salmonella/microsome assay were constructed, and currently results of the assay on aliphatic and heterocyclic compounds can be predicted as accurately as +90%. PMID:1820282

  15. Carcinogenicity tests of certain environmental and industrial chemicals

    SciTech Connect

    Weisburger, E.K.; Ulland, B.M.; Nam, J.; Gart, J.J.; Weisburger, J.H.

    1981-07-01

    Fourteen chemicals of varied uses were tested for carcinogenicity by oral administration in male and female Charles River CD rats. Under the conditions of the tests, propane sultone, propylene imine, and ethylenethiourea, in addition to the positive control N-2-fluorenylacetamide, were carcinogenic. Avadex, bis(2-chloroethyl) ether, the potassium salt of bis(2-hydroxyethyl) dithiocarbamic acid, ethylene carbonate, and semicarbazide hydrochloride were not carcinogenic under the test conditions. Dithiooxamide, glycerol alpha-monochlorohydrin, and thiosemicarbazide gave somewhat ambiguous results, though administered at high enough dose levels to be toxic. An inadequate number of animals survived treatments with sodium azide, sodium bisulfide, and vinylene carbonate, or the animals may not have received sufficiently high doses of the test chemicals to provide maximum test sensitivity. However, there were no indications that these three chemicals were carcinogenic under the test conditions.

  16. Predicting Concentrations of Organic Chemicals in Fish by Using Toxicokinetic Models

    PubMed Central

    2012-01-01

    Quantification of chemical toxicity continues to be generally based on measured external concentrations. Yet, internal chemical concentrations have been suggested to be a more suitable parameter. To better understand the relationship between the external and internal concentrations of chemicals in fish, and to quantify internal concentrations, we compared three toxicokinetic (TK) models with each other and with literature data of measured concentrations of 39 chemicals. Two one-compartment models, together with the physiologically based toxicokinetic (PBTK) model, in which we improved the treatment of lipids, were used to predict concentrations of organic chemicals in two fish species: rainbow trout (Oncorhynchus mykiss) and fathead minnow (Pimephales promelas). All models predicted the measured internal concentrations in fish within 1 order of magnitude for at least 68% of the chemicals. Furthermore, the PBTK model outperformed the one-compartment models with respect to simulating chemical concentrations in the whole body (at least 88% of internal concentrations were predicted within 1 order of magnitude using the PBTK model). All the models can be used to predict concentrations in different fish species without additional experiments. However, further development of TK models is required for polar, ionizable, and easily biotransformed compounds. PMID:22324398

  17. Chemical physics goes green: Simulations of environmentally important liquid/solid interfaces

    SciTech Connect

    McCarthy, M.I.; Schenter, G.K.; Brown, G.E. Jr.; Rehr, J.J.

    1997-12-31

    Understanding the molecular scale processes that control the fate and transport of contaminants through the subsurface and the chemistry of stored wastes are key goals of molecular environmental research. Recent advances in computational architectures and high performance computing have allowed us to use methods and concepts from theoretical chemical physics to study complex heterogeneous systems. In conjunction with state-of-the-art experimental techniques, we are able to gain insight into some of the fundamental processes that effect our environment. This presentation will illustrate how joint theory/experiment approaches are used to understand the underlying molecular-scale processes that govern the chemistry and physics at complex environmental interfaces. Ab initio based potentials are used to model the structure and dynamics of aqueous-metals at mineral oxide interfaces. Predictions of EXAFS (Extended X-ray Absorption Fine Structure) spectra, made from the theoretical models of these systems, help in interpreting by empirical data. Ab initio quantum mechanical methods are also used to investigate the mechanisms involved in laser desorption of sodium nitrate and calcite. NaNO3 and CaCO3 are found in high concentrations in the Hanford waste tanks.

  18. The Modification of Biocellular Chemical Reactions by Environmental Physicochemicals

    NASA Astrophysics Data System (ADS)

    Ishido, M.

    Environmental risk factors affect human biological system to different extent from modification of biochemical reaction to cellular catastrophe. There are considerable public concerns about electromagnetic fields and endocrine disruptors. Their risk assessments have not been fully achieved because of their scientific uncertainty: electromagnetic fields just modify the bioreaction in the restricted cells and endocrine disruptors are quite unique in that their expression is dependent on the exposure periods throughout a life. Thus, we here describe their molecular characterization to establish the new risk assessments for environmental physicochemicals.

  19. Chemical Transformation Simulator

    EPA Science Inventory

    The Chemical Transformation Simulator (CTS) is a web-based, high-throughput screening tool that automates the calculation and collection of physicochemical properties for an organic chemical of interest and its predicted products resulting from transformations in environmental sy...

  20. Predicting (17)O NMR chemical shifts of polyoxometalates using density functional theory.

    PubMed

    Sharma, Rupali; Zhang, Jie; Ohlin, C André

    2016-03-21

    We have investigated the computation of (17)O NMR chemical shifts of a wide range of polyoxometalates using density functional theory. The effects of basis sets and exchange-correlation functionals are explored, and whereas pure DFT functionals generally predict the chemical shifts of terminal oxygen sites quite well, hybrid functionals are required for the prediction of accurate chemical shifts in conjunction with linear regression. By using PBE0/def2-tzvp//PBE0/cc-pvtz(H-Ar), lanl2dz(K-) we have computed the chemical shifts of 37 polyoxometalates, corresponding to 209 (17)O NMR signals. We also show that at this level of theory the protonation-induced pH dependence of the chemical shift of the triprotic hexaniobate Lindqvist anion, [HxNb6O19]((8-x)), can be reproduced, which suggests that hypotheses regarding loci of protonation can be confidently tested. PMID:26925832

  1. High Throughput Pharmacokinetics for Environmental Chemicals (FutureToxII)

    EPA Science Inventory

    Pharmacokinetic (PK) models are critical to determine whether chemical exposures produce potentially hazardous tissue concentrations. For bioactivity identified in vitro (e.g. ToxCast) – hazardous or not – PK models can forecast exposure thresholds, below which no significant bio...

  2. ASSAYS FOR ENDOCRINE DISRUPTING CHEMICALS: BEYOND ENVIRONMENTAL ESTROGENS

    EPA Science Inventory

    Recent popular and scientific articles have reported the presence of estrogenic and other hormone mimicking chemicals in the environment and their potential for causing reproductive dysfunction in humans and wildlife. The purpose of this session was to present the best available,...

  3. Environmental chemical mixtures: Assessing ecological exposure and effects in streams

    EPA Science Inventory

    This product is a USGS fact sheet that describes a collaborative effort between USGS and US EPA to characterize exposures to chemical mixtures and associated biological effects for a diverse range of US streams representing varying watershed size, land-use patterns, and ecotypes.

  4. High Throughput Exposure Forecasts for Environmental Chemical Risk (SOT RASS)

    EPA Science Inventory

    Email Announcement to RASS: On December 11th we have rescheduled the webinar regarding progress and advances in exposure assessment, which was cancelled due to the government shutdown in October. Dr. Elaine Hubal, Deputy Director of the Chemical Safety for Sustainability (CSS) n...

  5. DESIGNING EFFICIENT, ECONOMIC AND ENVIRONMENTALLY FRIENDLY CHEMICAL PROCESSES

    EPA Science Inventory

    A catalytic reforming process has been studied using hierarchical design and simulation calculations. Approximations for the fugitive emissions indicate which streams allow the most value to be lost and which have the highest potential environmental impact. One can use this infor...

  6. DESIGNING EFFICIENT, ECONOMIC AND ENVIRONMENTALLY FRIENDLY CHEMICAL PROCESSES

    EPA Science Inventory

    A catalytic reforming process has been studied using hierarchical design and simulation calculations. Aproximations for the fugitive emissions indicate which streams allow the most value to be lost and which have the highest potential environmental impact. One can use tis inform...

  7. METHODS FOR INTEGRATING ENVIRONMENTAL CONSIDERATIONS INTO CHEMICAL PROCESS DESIGN DECISIONS

    EPA Science Inventory

    The objective of this cooperative agreement was to postulate a means by which an engineer could routinely include environmental considerations in day-to-day conceptual design problems; a means that could easily integrate with existing design processes, and thus avoid massive retr...

  8. Novel flame retardants: Estimating the physical-chemical properties and environmental fate of 94 halogenated and organophosphate PBDE replacements.

    PubMed

    Zhang, Xianming; Sühring, Roxana; Serodio, Daniela; Bonnell, Mark; Sundin, Nils; Diamond, Miriam L

    2016-02-01

    In the wake of the listing by the Stockholm Convention of PBDEs, an increasing number of "novel" flame retardants (NFRs) are being used in products. The properties that make for desirable flame retardants can also lead to negative health effects, long environmental residence times and an affinity for organic matrices. While NFRs are currently in use, little information is available regarding their physical-chemical properties and environmental fate. In this study, 94 halogenated and organophosphate NFRs were evaluated for their persistence and long-range transport potential. Physical-chemical properties (namely liquid sub-cooled vapor pressure P(l) and solubility S(l), air-water (K(AW)), octanol-water (K(OW)), and octanol-air (K(OA)) partition coefficients) of the NFRs were predicted using three chemical property estimation tools: EPI Suite, SPARC and Absolv. Physical-chemical properties predicted using these tools were generally within 10(2)-10(3) for compounds with molecular weight < 800 g/mol. Estimated physical-chemical properties of compounds with >800 g/mol, and/or the presence of a heteroatom and/or a polar functional group could deviate by up to 10(12). According to the OECD P(OV) and LRTP Screening Tool, up to 40% of the NFRs have a persistence and/or long range transport potential of medium to high level of concern and up to 60% have persistence and or long range transport potential similar to the PBDEs they are replacing. Long range transport potential could be underestimated by the OECD model since the model under-predicts long range transport potential of some organophosphate compounds. PMID:26613357

  9. Prediction of the rodent carcinogenicity of organic compounds from their chemical structures using the FALS method.

    PubMed Central

    Moriguchi, I; Hirano, H; Hirono, S

    1996-01-01

    Fuzzy adaptive least-squares (FALS), a pattern recognition method recently developed in our laboratory for correlating structure with activity rating, was used to generate quantitative structure-activity relationship (QSAR) models on the carcinogenicity of organic compounds of several chemical classes. Using the predictive models obtained from the chemical class-based FALS QSAR approach, the rodent carcinogenicity or noncarcinogenicity of a group of organic chemicals currently being tested by the U.S. National Toxicology Program was estimated from their chemical structures. PMID:8933054

  10. The contribution of household chemicals to environmental discharges via effluents: combining chemical and behavioural data.

    PubMed

    Richards, Samia; Paterson, Eric; Withers, Paul J A; Stutter, Marc

    2015-03-01

    Increased concentrations and loads of soluble, bioavailable forms of phosphorus (P) are a major cause of eutrophication in streams, rivers and lakes in many countries around the world. To implement P control measures, it is essential to identify P sources and their relative load contributions. A proportion of P loading generated from household wastewaters is derived from detergents yet the P compositions of the range of domestic detergents and their usage is poorly understood. To quantify P loads from household detergents, we analysed a large range of detergents and cleaning products commonly available in the UK and Europe, comparing regular and eco-labelled products. Chemical data were coupled with survey results on typical household detergents preferences and usage (n = 95 households). We also determined whether the major and trace element signatures of these household detergents could potentially be used as anthropogenic tracers in watercourses. The greatest P concentrations were found for regular dishwasher detergents (43-131 mg P/g detergent) whilst the range of P in eco-labelled dishwasher detergents was much lower (0.7-9.1 mg P/g detergent). Other household cleaning groups contained relatively smaller P concentrations. Considering the survey results, detergents' total P loading generated from one household using either regular or eco labelled products, was 0.414 and 0.021 kg P/year, respectively. Given a household occupancy of 2.7, the P load from all detergent use combined was 0.154 kg P/person/year of which the dishwasher contribution was 0.147 kg P/person/year. In terms of elemental signatures, (DWD) dishwasher detergents were significantly (P-value <0.001) different from other household cleaning products in their As, Na, TP, Si, Sr, SRP, Ti, Zn and Zr signatures. Na, P and B were all positively correlated with each other, indicating their potential use as a tracer suite for septic tank effluent in combination with other indices. We conclude that

  11. Endocrine Profiling and Prioritization of Environmental Chemicals Using ToxCast Data

    EPA Science Inventory

    The prioritization of chemicals for toxicity testing is a primary goal of the U.S. EPA’s ToxCast™ program. Phase I of ToxCast utilized a battery of 467 in vitro, high-throughput screening assays to assess 309 environmental chemicals. One important mode of action leading to toxici...

  12. 77 FR 12867 - Accreditation of ALTOL Chemical and Environmental Lab Inc., as a Commercial Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ...Notice is hereby given that, pursuant to 19 CFR 151.12, Altol Chemical and Environmental Lab Inc., Sabanetas Industrial Park, Building M-1380, Ponce, PR 00715, has been accredited to test petroleum, petroleum products, organic chemicals and vegetable oils for customs purposes, in accordance with the provisions of 19 CFR 151.12. Anyone wishing to employ this entity to conduct laboratory......

  13. Multiple Classes of Environmental Chemicals are Associated with Liver Disease: NHANES 2003-2006 [Journal Article

    EPA Science Inventory

    Biomonitoring of human tissues and fluids has shown that virtually all individuals, worldwide, carry a “body burden” of synthetic chemicals (Thornton et al. 2002; CDC 2009). Although the measurement of an environmental chemical in a person’s tissues or fluids is an indication of...

  14. Progress in High Throughput Exposure Assessment for Prioritizing Human Exposure to Environmental Chemicals (SRA)

    EPA Science Inventory

    For thousands of chemicals in commerce, there is little or no information about exposure or health and ecological effects. The US Environmental Protection Agency (USEPA) has ongoing research programs to develop and evaluate models that use the often minimal chemical information a...

  15. Toxic chemical release inventory at the Rocky Flats Environmental Technology Site

    SciTech Connect

    Leonard, R.J.

    1995-07-01

    The Rocky Flats Environmental Technology Site (Site) submits an annual Toxic Chemical Release Inventory (Form R) as required under the Emergency Planning and Community Right-to-Know Act (EPCRA). The Site uses a multi-step process for completing the Form R which includes developing a written procedure, determine thresholds, collection of chemical use and fate information, and peer review.

  16. WAR DSS: A DECISION SUPPORT SYSTEM FOR ENVIRONMENTALLY CONSCIOUS CHEMICAL PROCESS DESIGN

    EPA Science Inventory

    The second generation of the Waste Reduction (WAR) Algorithm is constructed as a decision support system (DSS) in the design of chemical manufacturing facilities. The WAR DSS is a software tool that can help reduce the potential environmental impacts (PEIs) of industrial chemical...

  17. A Qualitative Comparison of Porcine and Rodent Thyroperoxidase -Effects of Environmental Chemicals.

    EPA Science Inventory

    A wide variety of environmental chemicals alter the function of the thyroid system in many animal species. Thyroperoxidase (TPO), the enzyme that synthesizes thyroid hormone, is one of the known biochemical targets for thyroid disrupting chemicals (TDC). The majority of the in vi...

  18. Integrating Sustainable Development in Chemical Engineering Education: The Application of an Environmental Management System

    ERIC Educational Resources Information Center

    Montanes, M. T.; Palomares, A. E.; Sanchez-Tovar, R.

    2012-01-01

    The principles of sustainable development have been integrated in chemical engineering education by means of an environmental management system. These principles have been introduced in the teaching laboratories where students perform their practical classes. In this paper, the implementation of the environmental management system, the problems…

  19. Prediction of estrogen receptor binding for 58,000 chemicals using an integrated system of a tree-based model with structural alerts.

    PubMed Central

    Hong, Huixiao; Tong, Weida; Fang, Hong; Shi, Leming; Xie, Qian; Wu, Jie; Perkins, Roger; Walker, John D; Branham, William; Sheehan, Daniel M

    2002-01-01

    A number of environmental chemicals, by mimicking natural hormones, can disrupt endocrine function in experimental animals, wildlife, and humans. These chemicals, called "endocrine-disrupting chemicals" (EDCs), are such a scientific and public concern that screening and testing 58,000 chemicals for EDC activities is now statutorily mandated. Computational chemistry tools are important to biologists because they identify chemicals most important for in vitro and in vivo studies. Here we used a computational approach with integration of two rejection filters, a tree-based model, and three structural alerts to predict and prioritize estrogen receptor (ER) ligands. The models were developed using data for 232 structurally diverse chemicals (training set) with a 10(6) range of relative binding affinities (RBAs); we then validated the models by predicting ER RBAs for 463 chemicals that had ER activity data (testing set). The integrated model gave a lower false negative rate than any single component for both training and testing sets. When the integrated model was applied to approximately 58,000 potential EDCs, 80% (approximately 46,000 chemicals) were predicted to have negligible potential (log RBA < -4.5, with log RBA = 2.0 for estradiol) to bind ER. The ability to process large numbers of chemicals to predict inactivity for ER binding and to categorically prioritize the remainder provides one biologic measure to prioritize chemicals for entry into more expensive assays (most chemicals have no biologic data of any kind). The general approach for predicting ER binding reported here may be applied to other receptors and/or reversible binding mechanisms involved in endocrine disruption. PMID:11781162

  20. Computational prediction of microRNA networks incorporating environmental toxicity and disease etiology

    NASA Astrophysics Data System (ADS)

    Li, Jie; Wu, Zengrui; Cheng, Feixiong; Li, Weihua; Liu, Guixia; Tang, Yun

    2014-07-01

    MicroRNAs (miRNAs) play important roles in multiple biological processes and have attracted much scientific attention recently. Their expression can be altered by environmental factors (EFs), which are associated with many diseases. Identification of the phenotype-genotype relationships among miRNAs, EFs, and diseases at the network level will help us to better understand toxicology mechanisms and disease etiologies. In this study, we developed a computational systems toxicology framework to predict new associations among EFs, miRNAs and diseases by integrating EF structure similarity and disease phenotypic similarity. Specifically, three comprehensive bipartite networks: EF-miRNA, EF-disease and miRNA-disease associations, were constructed to build predictive models. The areas under the receiver operating characteristic curves using 10-fold cross validation ranged from 0.686 to 0.910. Furthermore, we successfully inferred novel EF-miRNA-disease networks in two case studies for breast cancer and cigarette smoke. Collectively, our methods provide a reliable and useful tool for the study of chemical risk assessment and disease etiology involving miRNAs.

  1. Computational prediction of microRNA networks incorporating environmental toxicity and disease etiology.

    PubMed

    Li, Jie; Wu, Zengrui; Cheng, Feixiong; Li, Weihua; Liu, Guixia; Tang, Yun

    2014-01-01

    MicroRNAs (miRNAs) play important roles in multiple biological processes and have attracted much scientific attention recently. Their expression can be altered by environmental factors (EFs), which are associated with many diseases. Identification of the phenotype-genotype relationships among miRNAs, EFs, and diseases at the network level will help us to better understand toxicology mechanisms and disease etiologies. In this study, we developed a computational systems toxicology framework to predict new associations among EFs, miRNAs and diseases by integrating EF structure similarity and disease phenotypic similarity. Specifically, three comprehensive bipartite networks: EF-miRNA, EF-disease and miRNA-disease associations, were constructed to build predictive models. The areas under the receiver operating characteristic curves using 10-fold cross validation ranged from 0.686 to 0.910. Furthermore, we successfully inferred novel EF-miRNA-disease networks in two case studies for breast cancer and cigarette smoke. Collectively, our methods provide a reliable and useful tool for the study of chemical risk assessment and disease etiology involving miRNAs. PMID:24992957

  2. Drug side-effect prediction based on the integration of chemical and biological spaces.

    PubMed

    Yamanishi, Yoshihiro; Pauwels, Edouard; Kotera, Masaaki

    2012-12-21

    Drug side-effects, or adverse drug reactions, have become a major public health concern and remain one of the main causes of drug failure and of drug withdrawal once they have reached the market. Therefore, the identification of potential severe side-effects is a challenging issue. In this paper, we develop a new method to predict potential side-effect profiles of drug candidate molecules based on their chemical structures and target protein information on a large scale. We propose several extensions of kernel regression model for multiple responses to deal with heterogeneous data sources. The originality lies in the integration of the chemical space of drug chemical structures and the biological space of drug target proteins in a unified framework. As a result, we demonstrate the usefulness of the proposed method on the simultaneous prediction of 969 side-effects for approved drugs from their chemical substructure and target protein profiles and show that the prediction accuracy consistently improves owing to the proposed regression model and integration of chemical and biological information. We also conduct a comprehensive side-effect prediction for uncharacterized drug molecules stored in DrugBank and confirm interesting predictions using independent information sources. The proposed method is expected to be useful at many stages of the drug development process. PMID:23157436

  3. Toxic effects of occupational and environmental chemicals on the testes

    SciTech Connect

    Sever, L.E.; Hessol, N.A.

    1983-01-01

    This paper examines evidence for effects of occupational chemicals on male reproduction. We consider primarily human data, and much of that from epidemiologic studies. We use animal studies to illustrate points, but the theme is the human experience. The approach is based on examining reproductive function as an indicator of toxic effects. Testicular structure and function is briefly discussed. We provide a brief review of relevant structure, function and hormonal control. We describe the anatomy of the testis and its histological structure. We then discuss the testis from the point of view of exocrine and endocrine function and the relationship of the testis to other endocrinological organs. This is followed by a review of methods for assessing human testicular function, including reproductive histories, sperm analysis, assessment of hormonal status, and histological studies. Although the primary focus is on human studies, we consider briefly general categories of chemicals shown to have a testicular effect in animal studies and also animal evidence of mechanisms of action associated with testicular toxicology. Specific chemicals shown to affect reproduction in the human male are reviewed and directions for future research in this area discussed.

  4. Integrating Environmental Management in Chemical Engineering Education by Introducing an Environmental Management System in the Student's Laboratory

    ERIC Educational Resources Information Center

    Montanes, Maria T.; Palomares, Antonio E.

    2008-01-01

    In this work we show how specific challenges related to sustainable development can be integrated into chemical engineering education by introducing an environmental management system in the laboratory where the students perform their experimental lessons. It is shown how the system has been developed and implemented in the laboratory, what role…

  5. Estimation of Physical Properties and Chemical Reactivity Parameters of Organic Compounds for Environmental Modeling by SPARC

    EPA Science Inventory

    Mathematical models for predicting the transport and fate of pollutants in the environment require reactivity parameter values that is value of the physical and chemical constants that govern reactivity. Although empirical structure activity relationships have been developed th...

  6. Mechanisms of environmental chemicals that enable the cancer hallmark of evasion of growth suppression

    PubMed Central

    Nahta, Rita; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Andrade-Vieira, Rafaela; Bay, Sarah; G. Brown, Dustin; Calaf, Gloria M.; Castellino, Robert C.; Cohen-Solal, Karine A.; Colacci, Annamaria; Cruickshanks, Nichola; Dent, Paul; Di Fiore, Riccardo; Forte, Stefano; Goldberg, Gary S.; Hamid, Roslida A.; Krishnan, Harini; Laird, Dale W.; Lasfar, Ahmed; Marignani, Paola A.; Memeo, Lorenzo; Mondello, Chiara; Naus, Christian C.; Ponce-Cusi, Richard; Raju, Jayadev; Roy, Debasish; Roy, Rabindra; P. Ryan, Elizabeth; Salem, Hosni K.; Scovassi, A. Ivana; Singh, Neetu; Vaccari, Monica; Vento, Renza; Vondráček, Jan; Wade, Mark; Woodrick, Jordan; Bisson, William H.

    2015-01-01

    As part of the Halifax Project, this review brings attention to the potential effects of environmental chemicals on important molecular and cellular regulators of the cancer hallmark of evading growth suppression. Specifically, we review the mechanisms by which cancer cells escape the growth-inhibitory signals of p53, retinoblastoma protein, transforming growth factor-beta, gap junctions and contact inhibition. We discuss the effects of selected environmental chemicals on these mechanisms of growth inhibition and cross-reference the effects of these chemicals in other classical cancer hallmarks. PMID:26106139

  7. Analytical methods for environmental sampling of chemical warfare agents and their degradation products

    SciTech Connect

    Watson, A.P.; Kistner, S.

    1995-06-01

    This first technical conference promoted the standardization of analytical procotols to reliably detect chemical warfare agents and their degradation products in soil, water, and other complex environmental media. This supports the various chemical weapons disposal and emergency preparedness programs, Chemical Weapons Convention treaty compliance, installation restoration and base closure decisions. Five major topics were addressed: Implementation for treaty compliance, installation, restoration and stockpile disposal decisions, existing analytical methods, practical applications of existing analytical techniques, immunoassay technologies, environmental and biological fate of agents and their degradation products. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  8. Molecular building blocks and their architecture in biologically/environmentally compatible soft matter chemical machinery.

    PubMed

    Toyota, Taro; Banno, Taisuke; Nitta, Sachiko; Takinoue, Masahiro; Nomoto, Tomonori; Natsume, Yuno; Matsumura, Shuichi; Fujinami, Masanori

    2014-01-01

    This review briefly summarizes recent developments in the construction of biologically/environmentally compatible chemical machinery composed of soft matter. Since environmental and living systems are open systems, chemical machinery must continuously fulfill its functions not only through the influx and generation of molecules but also via the degradation and dissipation of molecules. If the degradation or dissipation of soft matter molecular building blocks and biomaterial molecules/polymers can be achieved, soft matter particles composed of them can be used to realize chemical machinery such as selfpropelled droplets, drug delivery carriers, tissue regeneration scaffolds, protocell models, cell-/tissuemarkers, and molecular computing systems. PMID:25341502

  9. Studying the explanatory capacity of artificial neural networks for understanding environmental chemical quantitative structure-activity relationship models.

    PubMed

    Yang, Lei; Wang, Peng; Jiang, Yilin; Chen, Jian

    2005-01-01

    Although artificial neural networks (ANNs) have been shown to exhibit superior predictive power in the study of quantitative structure-activity relationships (QSARs), they have also been labeled a "black box" because they provide little explanatory insight into the relative influence of the independent variables in the predictive process so that little information on how and why compounds work can be obtained. Here, we have turned our interests to their explanatory capacities; therefore, a method was proposed for assessing the relative importance of variables indicating molecular structure, on the basis of axon connection weights and partial derivatives of the ANN output with respect to its input, which can identify variables that significantly contribute to network predictions, and providing a variable selection method for ANNs. We show that, by extending this approach to ANNs, the "black box" mechanics of ANNs can be greatly illuminated, thereby making it very useful in understanding environmental chemical QSAR models. PMID:16309287

  10. Environmental Chemical Analysis (by B. B. Kebbekus and S. Mitra)

    NASA Astrophysics Data System (ADS)

    Bower, Reviewed By Nathan W.

    1999-11-01

    This text helps to fill a void in the market, as there are relatively few undergraduate instrumental analysis texts designed specifically for the expanding population of environmental science students. R. N. Reeve's introductory, open-learning Environmental Analysis (Wiley, 1994) is one of the few, and it is aimed at a lower level and is less appropriate for traditional classroom study. Kebbekus and Mitra's book appears to be an update of I. Marr and M. Cresser's excellent 1983 text by the same name (and also published under the Chapman and Hall imprint). It assumes no background in instrumental methods of analysis but it does depend upon a good general chemistry background in kinetic and equilibrium calculations and the standard laboratory techniques found in a classical introduction to analytical chemistry. The slant taken by the authors is aimed more toward engineers, not only in the choice of topics, but also in how they are presented. For example, the statistical significance tests presented follow an engineering format rather than the standard used in analytical chemistry. This approach does not detract from the book's clarity. The writing style is concise and the book is generally well written. The earlier text, which has become somewhat of a classic, took the unusual step of teaching the instruments in the context of their environmental application. It was divided into sections on the "atmosphere", the "hydrosphere", the "lithosphere", and the "biosphere". This text takes a similar approach in the second half, with chapters on methods for air, water, and solid samples. Users who intend to use the book as a text instead of a reference will appreciate the addition of chapters in the first half of the book on spectroscopic, chromatographic, and mass spectrometric methods. The six chapters in these two parts of the book along with four chapters scattered throughout on environmental measurements, sampling, sample preparation, and quality assurance make a nice

  11. Endocrine-Disrupting Chemicals and Oil and Natural Gas Operations: Potential Environmental Contamination and Recommendations to Assess Complex Environmental Mixtures

    PubMed Central

    Kassotis, Christopher D.; Tillitt, Donald E.; Lin, Chung-Ho; McElroy, Jane A.; Nagel, Susan C.

    2015-01-01

    Background Hydraulic fracturing technologies, developed over the last 65 years, have only recently been combined with horizontal drilling to unlock oil and gas reserves previously deemed inaccessible. Although these technologies have dramatically increased domestic oil and natural gas production, they have also raised concerns for the potential contamination of local water supplies with the approximately 1,000 chemicals that are used throughout the process, including many known or suspected endocrine-disrupting chemicals. Objectives We discuss the need for an endocrine component to health assessments for drilling-dense regions in the context of hormonal and antihormonal activities for chemicals used. Methods We discuss the literature on a) surface and groundwater contamination by oil and gas extraction operations, and b) potential human exposure, particularly in the context of the total hormonal and antihormonal activities present in surface and groundwater from natural and anthropogenic sources; we also discuss initial analytical results and critical knowledge gaps. Discussion In light of the potential for environmental release of oil and gas chemicals that can disrupt hormone receptor systems, we recommend methods for assessing complex hormonally active environmental mixtures. Conclusions We describe a need for an endocrine-centric component for overall health assessments and provide information supporting the idea that using such a component will help explain reported adverse health trends as well as help develop recommendations for environmental impact assessments and monitoring programs. Citation Kassotis CD, Tillitt DE, Lin CH, McElroy JA, Nagel SC. 2016. Endocrine-disrupting chemicals and oil and natural gas operations: potential environmental contamination and recommendations to assess complex environmental mixtures. Environ Health Perspect 124:256–264; http://dx.doi.org/10.1289/ehp.1409535 PMID:26311476

  12. Improvements to enforcement of multilateral environmental agreements to control international shipments of chemicals and wastes.

    PubMed

    Liu, Ning; Somboon, Vira; Wun'gaeo, Surichai; Middleton, Carl; Tingsabadh, Charit; Limjirakan, Sangchan

    2016-06-01

    Illegal trade in hazardous waste and harmful chemicals has caused severe damage on human health and the environment, and brought big challenges to countries to meet their commitments to related multilateral environmental agreements. Synergy-building, like organising law enforcement operations, is critical to address illegal trade in waste and chemicals, and further improve the effectiveness of environmental enforcement. This article discusses how and why law enforcement operations can help countries to implement chemical and waste-related multilateral environmental agreements in a more efficient and effective way. The research explores key barriers and factors for organising law enforcement operations, and recommends methods to improve law enforcement operations to address illegal trade in hazardous waste and harmful chemicals. PMID:27118737

  13. The dilemma in prioritizing chemicals for environmental analysis: known versus unknown hazards.

    PubMed

    Anna, Sobek; Sofia, Bejgarn; Christina, Rudén; Magnus, Breitholtz

    2016-08-10

    A major challenge for society is to manage the risks posed by the many chemicals continuously emitted to the environment. All chemicals in production and use cannot be monitored and science-based strategies for prioritization are essential. In this study we review available data to investigate which substances are included in environmental monitoring programs and published research studies reporting analyses of chemicals in Baltic Sea fish between 2000 and 2012. Our aim is to contribute to the discussion of priority settings in environmental chemical monitoring and research, which is closely linked to chemical management. In total, 105 different substances or substance groups were analyzed in Baltic Sea fish. Polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs) were the most studied substances or substance groups. The majority, 87%, of all analyses comprised 20% of the substances or substance groups, whereas 46 substance groups (44%) were analyzed only once. Almost three quarters of all analyses regarded a POP-substance (persistent organic pollutant). These results demonstrate that the majority of analyses on environmental contaminants in Baltic Sea fish concern a small number of already regulated chemicals. Legacy pollutants such as POPs pose a high risk to the Baltic Sea due to their hazardous properties. Yet, there may be a risk that prioritizations for chemical analyses are biased based on the knowns of the past. Such biases may lead to society failing in identifying risks posed by yet unknown hazardous chemicals. Alternative and complementary ways to identify priority chemicals are needed. More transparent communication between risk assessments performed as part of the risk assessment process within REACH and monitoring programs, and information on chemicals contained in consumer articles, would offer ways to identify chemicals for environmental analysis. PMID:27222376

  14. Prediction of drug indications based on chemical interactions and chemical similarities.

    PubMed

    Huang, Guohua; Lu, Yin; Lu, Changhong; Zheng, Mingyue; Cai, Yu-Dong

    2015-01-01

    Discovering potential indications of novel or approved drugs is a key step in drug development. Previous computational approaches could be categorized into disease-centric and drug-centric based on the starting point of the issues or small-scaled application and large-scale application according to the diversity of the datasets. Here, a classifier has been constructed to predict the indications of a drug based on the assumption that interactive/associated drugs or drugs with similar structures are more likely to target the same diseases using a large drug indication dataset. To examine the classifier, it was conducted on a dataset with 1,573 drugs retrieved from Comprehensive Medicinal Chemistry database for five times, evaluated by 5-fold cross-validation, yielding five 1st order prediction accuracies that were all approximately 51.48%. Meanwhile, the model yielded an accuracy rate of 50.00% for the 1st order prediction by independent test on a dataset with 32 other drugs in which drug repositioning has been confirmed. Interestingly, some clinically repurposed drug indications that were not included in the datasets are successfully identified by our method. These results suggest that our method may become a useful tool to associate novel molecules with new indications or alternative indications with existing drugs. PMID:25821813

  15. Prediction of Drug Indications Based on Chemical Interactions and Chemical Similarities

    PubMed Central

    Huang, Guohua; Lu, Yin; Lu, Changhong; Cai, Yu-Dong

    2015-01-01

    Discovering potential indications of novel or approved drugs is a key step in drug development. Previous computational approaches could be categorized into disease-centric and drug-centric based on the starting point of the issues or small-scaled application and large-scale application according to the diversity of the datasets. Here, a classifier has been constructed to predict the indications of a drug based on the assumption that interactive/associated drugs or drugs with similar structures are more likely to target the same diseases using a large drug indication dataset. To examine the classifier, it was conducted on a dataset with 1,573 drugs retrieved from Comprehensive Medicinal Chemistry database for five times, evaluated by 5-fold cross-validation, yielding five 1st order prediction accuracies that were all approximately 51.48%. Meanwhile, the model yielded an accuracy rate of 50.00% for the 1st order prediction by independent test on a dataset with 32 other drugs in which drug repositioning has been confirmed. Interestingly, some clinically repurposed drug indications that were not included in the datasets are successfully identified by our method. These results suggest that our method may become a useful tool to associate novel molecules with new indications or alternative indications with existing drugs. PMID:25821813

  16. USE OF A CONVECTION-DIFFUSION MODEL TO UNDERSTAND GASTROINTESTINAL ABSORPTION OF ENVIRONMENTALLY-RELEVANT CHEMICALS

    EPA Science Inventory

    Understanding the factors that affect the gastrointestinal absorption of chemicals is important to predicting the delivered systemic dose of chemicals following exposure in food, water, and other media. Two factors of particular interest are the effects of a matrix to which th...

  17. Analysis of Environmental Chemical Mixtures and Non-Hodgkin Lymphoma Risk in the NCI-SEER NHL Study

    PubMed Central

    Czarnota, Jenna; Gennings, Chris; Colt, Joanne S.; De Roos, Anneclaire J.; Cerhan, James R.; Severson, Richard K.; Hartge, Patricia; Ward, Mary H.

    2015-01-01

    Background There are several suspected environmental risk factors for non-Hodgkin lymphoma (NHL). The associations between NHL and environmental chemical exposures have typically been evaluated for individual chemicals (i.e., one-by-one). Objectives We determined the association between a mixture of 27 correlated chemicals measured in house dust and NHL risk. Methods We conducted a population-based case–control study of NHL in four National Cancer Institute–Surveillance, Epidemiology, and End Results centers—Detroit, Michigan; Iowa; Los Angeles County, California; and Seattle, Washington—from 1998 to 2000. We used weighted quantile sum (WQS) regression to model the association of a mixture of chemicals and risk of NHL. The WQS index was a sum of weighted quartiles for 5 polychlorinated biphenyls (PCBs), 7 polycyclic aromatic hydrocarbons (PAHs), and 15 pesticides. We estimated chemical mixture weights and effects for study sites combined and for each site individually, and also for histologic subtypes of NHL. Results The WQS index was statistically significantly associated with NHL overall [odds ratio (OR) = 1.30; 95% CI: 1.08, 1.56; p = 0.006; for one quartile increase] and in the study sites of Detroit (OR = 1.71; 95% CI: 1.02, 2.92; p = 0.045), Los Angeles (OR = 1.44; 95% CI: 1.00, 2.08; p = 0.049), and Iowa (OR = 1.76; 95% CI: 1.23, 2.53; p = 0.002). The index was marginally statistically significant in Seattle (OR = 1.39; 95% CI: 0.97, 1.99; p = 0.071). The most highly weighted chemicals for predicting risk overall were PCB congener 180 and propoxur. Highly weighted chemicals varied by study site; PCBs were more highly weighted in Detroit, and pesticides were more highly weighted in Iowa. Conclusions An index of chemical mixtures was significantly associated with NHL. Our results show the importance of evaluating chemical mixtures when studying cancer risk. Citation Czarnota J, Gennings C, Colt JS, De Roos AJ, Cerhan JR, Severson RK, Hartge P, Ward MH

  18. Development of computer program ENMASK for prediction of residual environmental masking-noise spectra, from any three independent environmental parameters

    SciTech Connect

    Chang, Y.-S.; Liebich, R. E.; Chun, K. C.

    2000-03-31

    Residual environmental sound can mask intrusive4 (unwanted) sound. It is a factor that can affect noise impacts and must be considered both in noise-impact studies and in noise-mitigation designs. Models for quantitative prediction of sensation level (audibility) and psychological effects of intrusive noise require an input with 1/3 octave-band spectral resolution of environmental masking noise. However, the majority of published residual environmental masking-noise data are given with either octave-band frequency resolution or only single A-weighted decibel values. A model has been developed that enables estimation of 1/3 octave-band residual environmental masking-noise spectra and relates certain environmental parameters to A-weighted sound level. This model provides a correlation among three environmental conditions: measured residual A-weighted sound-pressure level, proximity to a major roadway, and population density. Cited field-study data were used to compute the most probable 1/3 octave-band sound-pressure spectrum corresponding to any selected one of these three inputs. In turn, such spectra can be used as an input to models for prediction of noise impacts. This paper discusses specific algorithms included in the newly developed computer program ENMASK. In addition, the relative audibility of the environmental masking-noise spectra at different A-weighted sound levels is discussed, which is determined by using the methodology of program ENAUDIBL.

  19. NMRDSP: an accurate prediction of protein shape strings from NMR chemical shifts and sequence data.

    PubMed

    Mao, Wusong; Cong, Peisheng; Wang, Zhiheng; Lu, Longjian; Zhu, Zhongliang; Li, Tonghua

    2013-01-01

    Shape string is structural sequence and is an extremely important structure representation of protein backbone conformations. Nuclear magnetic resonance chemical shifts give a strong correlation with the local protein structure, and are exploited to predict protein structures in conjunction with computational approaches. Here we demonstrate a novel approach, NMRDSP, which can accurately predict the protein shape string based on nuclear magnetic resonance chemical shifts and structural profiles obtained from sequence data. The NMRDSP uses six chemical shifts (HA, H, N, CA, CB and C) and eight elements of structure profiles as features, a non-redundant set (1,003 entries) as the training set, and a conditional random field as a classification algorithm. For an independent testing set (203 entries), we achieved an accuracy of 75.8% for S8 (the eight states accuracy) and 87.8% for S3 (the three states accuracy). This is higher than only using chemical shifts or sequence data, and confirms that the chemical shift and the structure profile are significant features for shape string prediction and their combination prominently improves the accuracy of the predictor. We have constructed the NMRDSP web server and believe it could be employed to provide a solid platform to predict other protein structures and functions. The NMRDSP web server is freely available at http://cal.tongji.edu.cn/NMRDSP/index.jsp. PMID:24376713

  20. NMRDSP: An Accurate Prediction of Protein Shape Strings from NMR Chemical Shifts and Sequence Data

    PubMed Central

    Mao, Wusong; Cong, Peisheng; Wang, Zhiheng; Lu, Longjian; Zhu, Zhongliang; Li, Tonghua

    2013-01-01

    Shape string is structural sequence and is an extremely important structure representation of protein backbone conformations. Nuclear magnetic resonance chemical shifts give a strong correlation with the local protein structure, and are exploited to predict protein structures in conjunction with computational approaches. Here we demonstrate a novel approach, NMRDSP, which can accurately predict the protein shape string based on nuclear magnetic resonance chemical shifts and structural profiles obtained from sequence data. The NMRDSP uses six chemical shifts (HA, H, N, CA, CB and C) and eight elements of structure profiles as features, a non-redundant set (1,003 entries) as the training set, and a conditional random field as a classification algorithm. For an independent testing set (203 entries), we achieved an accuracy of 75.8% for S8 (the eight states accuracy) and 87.8% for S3 (the three states accuracy). This is higher than only using chemical shifts or sequence data, and confirms that the chemical shift and the structure profile are significant features for shape string prediction and their combination prominently improves the accuracy of the predictor. We have constructed the NMRDSP web server and believe it could be employed to provide a solid platform to predict other protein structures and functions. The NMRDSP web server is freely available at http://cal.tongji.edu.cn/NMRDSP/index.jsp. PMID:24376713

  1. A Relocatable Environmental Prediction System for Volcanic Ash Forecasts

    NASA Astrophysics Data System (ADS)

    Cook, J.; Geiszler, D.

    2009-12-01

    Timeliness is an essential component for any system generating volcanic ash forecasts for aviation. Timeliness implies that the steps required for estimating the concentration of volcanic ash in the atmosphere are streamlined into a process that can accurately identify the volcano’s source function, utilize atmospheric conditions to predict the movement of the volcanic ash plume, and ultimately produce a volcanic ash forecast product in a useable format for aviation interests. During the past decade, the Naval Research Laboratory (NRL) has developed a suite of software integrated with the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®) that is designed with a similar automated purpose in support of the Navy’s operational (24/7) schedule and diverse mission requirements worldwide. The COAMPS-OS® (On-demand System) provides web-based interfaces to COAMPS that allows Navy users to rapidly (in a few minutes) set up and start a new forecast in response to short-fused requests. A unique capability in COAMPS unlike many regional numerical weather prediction models is the option to initialize a volcanic ash plume and use the model’s full three-dimensional atmospheric grid (e.g. winds and precipitation) to predict the movement and concentration of the plume. This paper will describe the efforts to automate volcanic ash forecasts using COAMPS-OS including the specification of the source function, initialization and configuration of COAMPS, and generation of output products for aviation. This research is in response to requirements and funding by the Federal Aviation Administration (FAA). The views expressed are those of the authors and do not necessarily represent the official policy or position of the FAA. COAMPS® and COAMPS-OS® are registered trademarks of the Naval Research Laboratory.

  2. High-throughput characterization of chemical-associated embryonic behavioral changes predicts teratogenic outcomes.

    PubMed

    Reif, David M; Truong, Lisa; Mandrell, David; Marvel, Skylar; Zhang, Guozhu; Tanguay, Robert L

    2016-06-01

    New strategies are needed to address the data gap between the bioactivity of chemicals in the environment versus existing hazard information. We address whether a high-throughput screening (HTS) system using a vertebrate organism (embryonic zebrafish) can characterize chemical-elicited behavioral responses at an early, 24 hours post-fertilization (hpf) stage that predict teratogenic consequences at a later developmental stage. The system was used to generate full concentration-response behavioral profiles at 24 hpf across 1060 ToxCast™ chemicals. Detailed, morphological evaluation of all individuals was performed as experimental follow-up at 5 days post-fertilization (dpf). Chemicals eliciting behavioral responses were also mapped against external HTS in vitro results to identify specific molecular targets and neurosignalling pathways. We found that, as an integrative measure of normal development, significant alterations in movement highlighted active chemicals representing several modes of action. These early behavioral responses were predictive for 17 specific developmental abnormalities and mortality measured at 5 dpf, often at lower (i.e., more potent) concentrations than those at which morphological effects were observed. Therefore, this system can provide rapid characterization of chemical-elicited behavioral responses at an early developmental stage that are predictive of observable adverse effects later in life. PMID:26126630

  3. 3D Chemical Similarity Networks for Structure-Based Target Prediction and Scaffold Hopping.

    PubMed

    Lo, Yu-Chen; Senese, Silvia; Damoiseaux, Robert; Torres, Jorge Z

    2016-08-19

    Target identification remains a major challenge for modern drug discovery programs aimed at understanding the molecular mechanisms of drugs. Computational target prediction approaches like 2D chemical similarity searches have been widely used but are limited to structures sharing high chemical similarity. Here, we present a new computational approach called chemical similarity network analysis pull-down 3D (CSNAP3D) that combines 3D chemical similarity metrics and network algorithms for structure-based drug target profiling, ligand deorphanization, and automated identification of scaffold hopping compounds. In conjunction with 2D chemical similarity fingerprints, CSNAP3D achieved a >95% success rate in correctly predicting the drug targets of 206 known drugs. Significant improvement in target prediction was observed for HIV reverse transcriptase (HIVRT) compounds, which consist of diverse scaffold hopping compounds targeting the nucleotidyltransferase binding site. CSNAP3D was further applied to a set of antimitotic compounds identified in a cell-based chemical screen and identified novel small molecules that share a pharmacophore with Taxol and display a Taxol-like mechanism of action, which were validated experimentally using in vitro microtubule polymerization assays and cell-based assays. PMID:27285961

  4. Mutagenesis and differentiation induction in mammalian cells by environmental chemicals

    SciTech Connect

    Friedman, J.; Huberman, E.

    1980-01-01

    These studies indicate that in agreement with the somatic mutation hypothesis, chemical carcinogens: (1) are mutagenic for mammalian cells as tested in the cell-mediated assay; (2) the degree of mutagenicity is correlated with their degree of carcinogenicity; (3) that at least in cases when analyzed carefully the metabolites responsible for mutagenesis are also responsible for initiating the carcinogenic event; and (4) that a cell organ type specificity can be established using the cell-mediated assay. Studies with HL-60 cells and HO melanoma cells and those of others suggest that tumor-promoting phorbol diesters can alter cell differentiation in various cell types and that the degree of the observed alteration in the differentiation properties may be related to the potency of the phorbol esters. Thus these and similar systems may serve as models for both studies and identification of certain types of tumor promoting agents. (ERB)

  5. High-Throughput Dietary Exposure Predictions for Chemical Migrants from Food Packaging Materials

    EPA Science Inventory

    United States Environmental Protection Agency researchers have developed a Stochastic Human Exposure and Dose Simulation High -Throughput (SHEDS-HT) model for use in prioritization of chemicals under the ExpoCast program. In this research, new methods were implemented in SHEDS-HT...

  6. Endocrine-disrupting chemicals and oil and natural gas operations: Potential environmental contamination and recommendations to assess complex environmental mixtures

    USGS Publications Warehouse

    Kassotis, Christopher D.; Tillitt, Donald E.; Lin, Chung-Ho; McElroy, Jane A.; Nagel, Susan C.

    2015-01-01

    Background: Hydraulic fracturing technologies, developed over the last 65 years, have only recently been combined with horizontal drilling to unlock oil and gas reserves previously deemed inaccessible. While these technologies have dramatically increased domestic oil and natural gas production, they have also raised concerns for the potential contamination of local water supplies with the approximately 1,000 chemicals used throughout the process, including many known or suspected endocrine-disrupting chemicals.Objectives: We discuss the need for an endocrine component to health assessments for drilling-dense regions in the context of hormonal and anti-hormonal activities for chemicals used.Methods: We discuss the literature on 1) surface and ground water contamination by oil and gas extraction operations, and 2) potential human exposure, particularly in context of the total hormonal and anti-hormonal activities present in surface and ground water from natural and anthropogenic sources, with initial analytical results and critical knowledge gaps discussed.Discussion: In light of the potential for environmental release of oil and gas chemicals that can disrupt hormone receptor systems, we recommend methods for assessing complex hormonally active environmental mixtures.Conclusions: We describe a need for an endocrine-centric component for overall health assessments and provide supporting information that using this may help explain reported adverse health trends as well as help develop recommendations for environmental impact assessments and monitoring programs.

  7. Liquefied Gaseous Fuels Spill Test Facility program: Eleven additional chemicals: Environmental Assessment

    SciTech Connect

    Not Available

    1989-12-01

    An Environmental Assessment (EA) has been prepared to assess the environmental consequences of spill testing eleven hazardous materials at the Liquefied Gaseous Fuels Spill Test Facility (LGFSTF) at Frenchman Flat, Nevada Test Site (NTS). These chemicals are: chlorosulfonic acid, fluorosulfonic acid, hydrogen chloride, methyl trichlorosilane, nitrogen tetroxide, oleum, silicon tetrachloride, sulfur-trioxide, titanium tetrachloride, trichlorosilane, and unsymmetrical dimethyl hydrazine. DOE has determined that the proposed spill testing of these eleven hazardous materials at LGFSTF at Frenchman Flat is not a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA). Therefore, an environmental impact statement (EIS) will not be prepared.

  8. Prediction of developmental chemical toxicity based on gene networks of human embryonic stem cells

    PubMed Central

    Yamane, Junko; Aburatani, Sachiyo; Imanishi, Satoshi; Akanuma, Hiromi; Nagano, Reiko; Kato, Tsuyoshi; Sone, Hideko; Ohsako, Seiichiroh; Fujibuchi, Wataru

    2016-01-01

    Predictive toxicology using stem cells or their derived tissues has gained increasing importance in biomedical and pharmaceutical research. Here, we show that toxicity category prediction by support vector machines (SVMs), which uses qRT-PCR data from 20 categorized chemicals based on a human embryonic stem cell (hESC) system, is improved by the adoption of gene networks, in which network edge weights are added as feature vectors when noisy qRT-PCR data fail to make accurate predictions. The accuracies of our system were 97.5–100% for three toxicity categories: neurotoxins (NTs), genotoxic carcinogens (GCs) and non-genotoxic carcinogens (NGCs). For two uncategorized chemicals, bisphenol-A and permethrin, our system yielded reasonable results: bisphenol-A was categorized as an NGC, and permethrin was categorized as an NT; both predictions were supported by recently published papers. Our study has two important features: (i) as the first study to employ gene networks without using conventional quantitative structure-activity relationships (QSARs) as input data for SVMs to analyze toxicogenomics data in an hESC validation system, it uses additional information of gene-to-gene interactions to significantly increase prediction accuracies for noisy gene expression data; and (ii) using only undifferentiated hESCs, our study has considerable potential to predict late-onset chemical toxicities, including abnormalities that occur during embryonic development. PMID:27207879

  9. Prediction of developmental chemical toxicity based on gene networks of human embryonic stem cells.

    PubMed

    Yamane, Junko; Aburatani, Sachiyo; Imanishi, Satoshi; Akanuma, Hiromi; Nagano, Reiko; Kato, Tsuyoshi; Sone, Hideko; Ohsako, Seiichiroh; Fujibuchi, Wataru

    2016-07-01

    Predictive toxicology using stem cells or their derived tissues has gained increasing importance in biomedical and pharmaceutical research. Here, we show that toxicity category prediction by support vector machines (SVMs), which uses qRT-PCR data from 20 categorized chemicals based on a human embryonic stem cell (hESC) system, is improved by the adoption of gene networks, in which network edge weights are added as feature vectors when noisy qRT-PCR data fail to make accurate predictions. The accuracies of our system were 97.5-100% for three toxicity categories: neurotoxins (NTs), genotoxic carcinogens (GCs) and non-genotoxic carcinogens (NGCs). For two uncategorized chemicals, bisphenol-A and permethrin, our system yielded reasonable results: bisphenol-A was categorized as an NGC, and permethrin was categorized as an NT; both predictions were supported by recently published papers. Our study has two important features: (i) as the first study to employ gene networks without using conventional quantitative structure-activity relationships (QSARs) as input data for SVMs to analyze toxicogenomics data in an hESC validation system, it uses additional information of gene-to-gene interactions to significantly increase prediction accuracies for noisy gene expression data; and (ii) using only undifferentiated hESCs, our study has considerable potential to predict late-onset chemical toxicities, including abnormalities that occur during embryonic development. PMID:27207879

  10. Can Exposure to Environmental Chemicals Increase the Risk of Diabetes Type 1 Development?

    PubMed Central

    Stene, Lars Christian

    2015-01-01

    Type 1 diabetes mellitus (T1DM) is an autoimmune disease, where destruction of beta-cells causes insulin deficiency. The incidence of T1DM has increased in the last decades and cannot entirely be explained by genetic predisposition. Several environmental factors are suggested to promote T1DM, like early childhood enteroviral infections and nutritional factors, but the evidence is inconclusive. Prenatal and early life exposure to environmental pollutants like phthalates, bisphenol A, perfluorinated compounds, PCBs, dioxins, toxicants, and air pollutants can have negative effects on the developing immune system, resulting in asthma-like symptoms and increased susceptibility to childhood infections. In this review the associations between environmental chemical exposure and T1DM development is summarized. Although information on environmental chemicals as possible triggers for T1DM is sparse, we conclude that it is plausible that environmental chemicals can contribute to T1DM development via impaired pancreatic beta-cell and immune-cell functions and immunomodulation. Several environmental factors and chemicals could act together to trigger T1DM development in genetically susceptible individuals, possibly via hormonal or epigenetic alterations. Further observational T1DM cohort studies and animal exposure experiments are encouraged. PMID:25883945

  11. Field lysimeters for the study of fate and transport of explosive chemicals in soils under variable environmental conditions

    NASA Astrophysics Data System (ADS)

    Molina, Gloria M.; Padilla, Ingrid; Pando, Miguel; Pérez, Diego D.

    2006-05-01

    Landmines and other buried explosive devices pose in an immense threat in many places of the world, requiring large efforts on detection and neutralization of these objects. Many of the available detection techniques require the presence of chemicals near the soil-atmospheric surface. The presence of explosive related chemicals (ERCs) near this surface and their relation to the location of landmines, however, depends on the source characteristics and on fate and transport processes that affect their movement in soils. Fate and transport processes of ERC is soils may be interrelated with each other and are influenced by chemical characteristics and interrelated soil and environmental factors. Accurate detection of ERCs near the soil surface must, therefore, take into the variability of ERC concentration distributions near the soil surface as affected by fate and transport processes controlled interrelated environmental factors. To effectively predict the concentration distributions of ERCs in soils and near soil surfaces, it is necessary to have good understanding of parameters values that control these processes. To address this need, field lysimeters have been designed and developed at the University of Puerto Rico, Mayaguez .This paper presents the design of two field lysimeter used to study the fate and transport behavior of ERC in the field subjected to varying uncontrolled subtropical environmental conditions in two different soils. Both lysimeters incorporate pressure and concentration sampling ports, thermocouples, and a drainage system. Hydrus-2D was used to simulate soil moisture and drainage in the lysimeter for average environmental conditions in the study for the two soils used. The field lysimeters allow collection and monitoring of spatial and temporal ERC concentrations under variable, uncontrolled environmental conditions.

  12. Predicting chemically-induced skin reactions. Part I: QSAR models of skin sensitization and their application to identify potentially hazardous compounds

    SciTech Connect

    Alves, Vinicius M.; Muratov, Eugene; Fourches, Denis; Strickland, Judy; Kleinstreuer, Nicole; Tropsha, Alexander

    2015-04-15

    Repetitive exposure to a chemical agent can induce an immune reaction in inherently susceptible individuals that leads to skin sensitization. Although many chemicals have been reported as skin sensitizers, there have been very few rigorously validated QSAR models with defined applicability domains (AD) that were developed using a large group of chemically diverse compounds. In this study, we have aimed to compile, curate, and integrate the largest publicly available dataset related to chemically-induced skin sensitization, use this data to generate rigorously validated and QSAR models for skin sensitization, and employ these models as a virtual screening tool for identifying putative sensitizers among environmental chemicals. We followed best practices for model building and validation implemented with our predictive QSAR workflow using Random Forest modeling technique in combination with SiRMS and Dragon descriptors. The Correct Classification Rate (CCR) for QSAR models discriminating sensitizers from non-sensitizers was 71–88% when evaluated on several external validation sets, within a broad AD, with positive (for sensitizers) and negative (for non-sensitizers) predicted rates of 85% and 79% respectively. When compared to the skin sensitization module included in the OECD QSAR Toolbox as well as to the skin sensitization model in publicly available VEGA software, our models showed a significantly higher prediction accuracy for the same sets of external compounds as evaluated by Positive Predicted Rate, Negative Predicted Rate, and CCR. These models were applied to identify putative chemical hazards in the Scorecard database of possible skin or sense organ toxicants as primary candidates for experimental validation. - Highlights: • It was compiled the largest publicly-available skin sensitization dataset. • Predictive QSAR models were developed for skin sensitization. • Developed models have higher prediction accuracy than OECD QSAR Toolbox. • Putative

  13. Increased medication use in a community environmentally exposed to chemicals.

    PubMed

    Bowler, Rosemarie M; Gysens, Sabine; Hartney, Christopher; Ngo, Long; Rauch, Stephen S; Midtling, John

    2002-10-01

    An epidemiological health study compared the health status of residents of a town exposed to an accidental Catacarb chemical release from an adjacent oil refinery, with the health status of demographically similar residents of an unexposed town in the region. Few studies of Catacarb's effects on humans exist; however, animal studies have shown it to be a respiratory, gastro-intestinal, dermatological and visual irritant. As part of the study, health questionnaires assessing pre- and post exposure symptoms, illnesses and medication use were mailed to residents in both towns. Medication use is sometimes reported to be a more objective and reliable measure of health outcomes. The current paper compared medication use of exposed and unexposed residents. Significant increases after exposure were found in the use of the following medications: antacid, asthma medication, cough and cold medication, eye medication, headache medication and sleep medication. These increases were consistent with reported symptoms, albeit of greater magnitude; no increase in medication use for other illnesses was reported. Medication use in this sample was consistent with patients' report of symptoms and may be a better measure of outcome. PMID:12502236

  14. Linking Empirical Estimates of Body Burden of Environmental Chemicals and Wellness using NHANES Data

    PubMed Central

    Gennings, Chris; Ellis, Rhonda; Ritter, Joe

    2011-01-01

    Biomonitoring of industrial chemicals in human tissues and fluids has shown that all people carry a “body burden” of synthetic chemicals. Although measurement of an environmental chemical in a person’s tissues/fluids is an indication of exposure, it does not necessarily mean the exposure concentration is sufficient to cause an adverse effect. Since humans are exposed to multiple chemicals, there may be a combination effect (e.g., additive, synergistic) associated with low-level exposures to multiple classes of contaminants, which may impact a variety of organ systems. The objective of this research is to link measures of body burden of environmental chemicals and a “holistic” measure of wellness. The approach is demonstrated using biomonitoring data from the National Health and Nutrition Examination Surveys (NHANES). Forty-two chemicals were selected for analysis based on their detection levels. Six biological pathway-specific indices were evaluated using groups of chemicals associated with each pathway. Five of the six pathways were negatively associated with wellness. Three non-zero interaction terms were detected which may provide empirical evidence of crosstalk across pathways. The approach identified five of the 42 chemicals from a variety of classes (metals, pesticides, furans, polycyclic aromatic hydrocarbons) as accounting for 71% of the weight linking body burden to wellness. Significant interactions were detected indicating the effect of smoking is exacerbated by body burden of environmental chemicals. Use of a holistic index on both sides of the exposure-health equation is a novel and promising empirical “systems biology” approach to risk evaluation of complex environmental exposures. PMID:22208743

  15. Chemical Engineering of Enzymes: Altered Catalytic Activity, Predictable Selectivity and Exceptional Stability of the Semisynthetic Peroxidase Seleno-Subtilisin

    NASA Astrophysics Data System (ADS)

    Häring, Dietmar; Schreier, Peter

    The increasing demand for enzymes as highly selective, mild, and environmentally benign catalysts is often limited by the lack of an enzyme with the desired catalytic activity or substrate selectivity and by their instability in biotechnological processes. The previous answers to these problems comprised genetically engineered enzymes and several classes of enzyme mimics. Here we describe the potential of chemical enzyme engineering: native enzymes can be modified by merely chemical means and basic equipment yielding so-called semisynthetic enzymes. Thus, the high substrate selectivity of the enzymatic peptide framework is combined with the catalytic versatility of a synthetic active site. We illustrate the potential of chemically engineered enzymes with the conception of the semisynthetic peroxidase seleno-subtilisin. First, the serine endoprotease subtilisin was crystallized and cross-linked with glutaraldehyde to give cross-linked enzyme crystals which were found to be insoluble in water or organic solvents and highly stable. Second, serine 221 in the active site (Enz-OH) was chemically converted into an oxidized derivative of selenocystein (Enz-SeO2H). As a consequence, the former proteolytic enzyme gained peroxidase activity and catalyzed the selective reduction of hydroperoxides. Due to the identical binding sites of the semisynthetic peroxidase and the protease, the substrate selectivity of seleno-subtilisin was predictable in view of the well-known selectivity of subtilisin.

  16. Predicting acute aquatic toxicity of structurally diverse chemicals in fish using artificial intelligence approaches.

    PubMed

    Singh, Kunwar P; Gupta, Shikha; Rai, Premanjali

    2013-09-01

    The research aims to develop global modeling tools capable of categorizing structurally diverse chemicals in various toxicity classes according to the EEC and European Community directives, and to predict their acute toxicity in fathead minnow using set of selected molecular descriptors. Accordingly, artificial intelligence approach based classification and regression models, such as probabilistic neural networks (PNN), generalized regression neural networks (GRNN), multilayer perceptron neural network (MLPN), radial basis function neural network (RBFN), support vector machines (SVM), gene expression programming (GEP), and decision tree (DT) were constructed using the experimental toxicity data. Diversity and non-linearity in the chemicals' data were tested using the Tanimoto similarity index and Brock-Dechert-Scheinkman statistics. Predictive and generalization abilities of various models constructed here were compared using several statistical parameters. PNN and GRNN models performed relatively better than MLPN, RBFN, SVM, GEP, and DT. Both in two and four category classifications, PNN yielded a considerably high accuracy of classification in training (95.85 percent and 90.07 percent) and validation data (91.30 percent and 86.96 percent), respectively. GRNN rendered a high correlation between the measured and model predicted -log LC50 values both for the training (0.929) and validation (0.910) data and low prediction errors (RMSE) of 0.52 and 0.49 for two sets. Efficiency of the selected PNN and GRNN models in predicting acute toxicity of new chemicals was adequately validated using external datasets of different fish species (fathead minnow, bluegill, trout, and guppy). The PNN and GRNN models showed good predictive and generalization abilities and can be used as tools for predicting toxicities of structurally diverse chemical compounds. PMID:23764236

  17. Using Neural Networks for 13C NMR Chemical Shift Prediction-Comparison with Traditional Methods

    NASA Astrophysics Data System (ADS)

    Meiler, Jens; Maier, Walter; Will, Martin; Meusinger, Reinhard

    2002-08-01

    Interpretation of 13C chemical shifts is essential for structure elucidation of organic molecules by NMR. In this article, we present an improved neural network approach and compare its performance to that of commonly used approaches. Specifically, our recently proposed neural network ( J. Chem. Inf. Comput. Sci. 2000, 40, 1169-1176) is improved by introducing an extended hybrid numerical description of the carbon atom environment, resulting in a standard deviation (std. dev.) of 2.4 ppm for an independent test data set of ˜42,500 carbons. Thus, this neural network allows fast and accurate 13C NMR chemical shift prediction without the necessity of access to molecule or fragment databases. For an unbiased test dataset containing 100 organic structures the accuracy of the improved neural network was compared to that of a prediction method based on the HOSE code ( hierarchically ordered spherical description of environment) using S PECI NFO. The results show the neural network predictions to be of quality (std. dev.=2.7 ppm) comparable to that of the HOSE code prediction (std. dev.=2.6 ppm). Further we compare the neural network predictions to those of a wide variety of other 13C chemical shift prediction tools including incremental methods (C HEMD RAW, S PECT OOL), quantum chemical calculation (G AUSSIAN, C OSMOS), and HOSE code fragment-based prediction (S PECI NFO, ACD/CNMR, P REDICTI T NMR) for the 47 13C-NMR shifts of Taxol, a natural product including many structural features of organic substances. The smallest standard deviations were achieved here with the neural network (1.3 ppm) and S PECI NFO (1.0 ppm).

  18. A hybrid method for prediction and repositioning of drug Anatomical Therapeutic Chemical classes.

    PubMed

    Chen, Lei; Lu, Jing; Zhang, Ning; Huang, Tao; Cai, Yu-Dong

    2014-04-01

    In the Anatomical Therapeutic Chemical (ATC) classification system, therapeutic drugs are divided into 14 main classes according to the organ or system on which they act and their chemical, pharmacological and therapeutic properties. This system, recommended by the World Health Organization (WHO), provides a global standard for classifying medical substances and serves as a tool for international drug utilization research to improve quality of drug use. In view of this, it is necessary to develop effective computational prediction methods to identify the ATC-class of a given drug, which thereby could facilitate further analysis of this system. In this study, we initiated an attempt to develop a prediction method and to gain insights from it by utilizing ontology information of drug compounds. Since only about one-fourth of drugs in the ATC classification system have ontology information, a hybrid prediction method combining the ontology information, chemical interaction information and chemical structure information of drug compounds was proposed for the prediction of drug ATC-classes. As a result, by using the Jackknife test, the 1st prediction accuracies for identifying the 14 main ATC-classes in the training dataset, the internal validation dataset and the external validation dataset were 75.90%, 75.70% and 66.36%, respectively. Analysis of some samples with false-positive predictions in the internal and external validation datasets indicated that some of them may even have a relationship with the false-positive predicted ATC-class, suggesting novel uses of these drugs. It was conceivable that the proposed method could be used as an efficient tool to identify ATC-classes of novel drugs or to discover novel uses of known drugs. PMID:24492783

  19. Unveiling variability and uncertainty for better science and decisions on cancer risks from environmental chemicals.

    PubMed

    Bogen, Kenneth T

    2014-10-01

    The National Research Council 2009 "Silver Book" panel report included a recommendation that the U.S. Environmental Protection Agency (EPA) should increase all of its chemical carcinogen (CC) potency estimates by ∼7-fold to adjust for a purported median-vs.-mean bias that I recently argued does not exist (Bogen KT. "Does EPA underestimate cancer risks by ignoring susceptibility differences?," Risk Analysis, 2014; 34(10):1780-1784). In this issue of the journal, my argument is critiqued for having flaws concerning: (1) intent, bias, and conservatism of EPA estimates of CC potency; (2) bias in potency estimates derived from epidemiology; and (3) human-animal CC-potency correlation. However, my argument remains valid, for the following reasons. (1) EPA's default approach to estimating CC risks has correctly focused on bounding average (not median) individual risk under a genotoxic mode-of-action (MOA) assumption, although pragmatically the approach leaves both inter-individual variability in CC-susceptibility, and widely varying CC-specific magnitudes of fundamental MOA uncertainty, unquantified. (2) CC risk estimates based on large epidemiology studies are not systematically biased downward due to limited sampling from broad, lognormal susceptibility distributions. (3) A good, quantitative correlation is exhibited between upper-bounds on CC-specific potency estimated from human vs. animal studies (n = 24, r = 0.88, p = 2 × 10(-8)). It is concluded that protective upper-bound estimates of individual CC risk that account for heterogeneity in susceptibility, as well as risk comparisons informed by best predictions of average-individual and population risk that address CC-specific MOA uncertainty, should each be used as separate, complimentary tools to improve regulatory decisions concerning low-level, environmental CC exposures. PMID:25407123

  20. Prediction of chemical contaminants and food compositions by near infrared spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prediction of Food Adulteration by Infrared Spectroscopy H. Zhuang Quality and Safety Assessment Research Unit, ARS-USDA, 950 College Station Road, Athens, GA 30605 Food adulteration, including both chemical contamination and composition alternation, has been one of major quality and/or safety c...

  1. Can phylogeny predict chemical diversity and potential medicinal activity of plants? A case study of Amaryllidaceae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During evolution, plants and other organisms have developed a diversity of chemical defences, leading to the evolution of various groups of specialized metabolites selected for their endogenous biological function. A correlation between phylogeny and biosynthetic pathways could offer a predictive ap...

  2. Species-Specific Predictive Signatures of Developmental Toxicity Using the ToxCast Chemical Library

    EPA Science Inventory

    EPA’s ToxCastTM project is profiling the in vitro bioactivity of chemicals to generate predictive signatures that correlate with observed in vivo toxicity. In vitro profiling methods from ToxCast data consist of over 600 high-throughput screening (HTS) and high-content screening ...

  3. Species-specific predictive models of developmental toxicity using the ToxCast chemical library

    EPA Science Inventory

    EPA’s ToxCastTM project is profiling the in vitro bioactivity of chemicals to generate predictive models that correlate with observed in vivo toxicity. In vitro profiling methods are based on ToxCast data, consisting of over 600 high-throughput screening (HTS) and high-content sc...

  4. Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure

    PubMed Central

    Mathews, David H.; Disney, Matthew D.; Childs, Jessica L.; Schroeder, Susan J.; Zuker, Michael; Turner, Douglas H.

    2004-01-01

    A dynamic programming algorithm for prediction of RNA secondary structure has been revised to accommodate folding constraints determined by chemical modification and to include free energy increments for coaxial stacking of helices when they are either adjacent or separated by a single mismatch. Furthermore, free energy parameters are revised to account for recent experimental results for terminal mismatches and hairpin, bulge, internal, and multibranch loops. To demonstrate the applicability of this method, in vivo modification was performed on 5S rRNA in both Escherichia coli and Candida albicans with 1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide metho-p-toluene sulfonate, dimethyl sulfate, and kethoxal. The percentage of known base pairs in the predicted structure increased from 26.3% to 86.8% for the E. coli sequence by using modification constraints. For C. albicans, the accuracy remained 87.5% both with and without modification data. On average, for these sequences and a set of 14 sequences with known secondary structure and chemical modification data taken from the literature, accuracy improves from 67% to 76%. This enhancement primarily reflects improvement for three sequences that are predicted with <40% accuracy on the basis of energetics alone. For these sequences, inclusion of chemical modification constraints improves the average accuracy from 28% to 78%. For the 11 sequences with <6% pseudoknotted base pairs, structures predicted with constraints from chemical modification contain on average 84% of known canonical base pairs. PMID:15123812

  5. Prediction of Synergism from Chemical-Genetic Interactions by Machine Learning.

    PubMed

    Wildenhain, Jan; Spitzer, Michaela; Dolma, Sonam; Jarvik, Nick; White, Rachel; Roy, Marcia; Griffiths, Emma; Bellows, David S; Wright, Gerard D; Tyers, Mike

    2015-12-23

    The structure of genetic interaction networks predicts that, analogous to synthetic lethal interactions between non-essential genes, combinations of compounds with latent activities may exhibit potent synergism. To test this hypothesis, we generated a chemical-genetic matrix of 195 diverse yeast deletion strains treated with 4,915 compounds. This approach uncovered 1,221 genotype-specific inhibitors, which we termed cryptagens. Synergism between 8,128 structurally disparate cryptagen pairs was assessed experimentally and used to benchmark predictive algorithms. A model based on the chemical-genetic matrix and the genetic interaction network failed to accurately predict synergism. However, a combined random forest and Naive Bayesian learner that associated chemical structural features with genotype-specific growth inhibition had strong predictive power. This approach identified previously unknown compound combinations that exhibited species-selective toxicity toward human fungal pathogens. This work demonstrates that machine learning methods trained on unbiased chemical-genetic interaction data may be widely applicable for the discovery of synergistic combinations in different species. PMID:27136353

  6. QSAR model for human pregnane X receptor (PXR) binding: Screening of environmental chemicals and correlations with genotoxicity, endocrine disruption and teratogenicity

    SciTech Connect

    Dybdahl, Marianne Nikolov, Nikolai G.; Wedebye, Eva Bay; Jónsdóttir, Svava Ósk; Niemelä, Jay R.

    2012-08-01

    The pregnane X receptor (PXR) has a key role in regulating the metabolism and transport of structurally diverse endogenous and exogenous compounds. Activation of PXR has the potential to initiate adverse effects, causing drug–drug interactions, and perturbing normal physiological functions. Therefore, identification of PXR ligands would be valuable information for pharmaceutical and toxicological research. In the present study, we developed a quantitative structure–activity relationship (QSAR) model for the identification of PXR ligands using data based on a human PXR binding assay. A total of 631 molecules, representing a variety of chemical structures, constituted the training set of the model. Cross-validation of the model showed a sensitivity of 82%, a specificity of 85%, and a concordance of 84%. The developed model provided knowledge about molecular descriptors that may influence the binding of molecules to PXR. The model was used to screen a large inventory of environmental chemicals, of which 47% was found to be within domain of the model. Approximately 35% of the chemicals within domain were predicted to be PXR ligands. The predicted PXR ligands were found to be overrepresented among chemicals predicted to cause adverse effects, such as genotoxicity, teratogenicity, estrogen receptor activation and androgen receptor antagonism compared to chemicals not causing these effects. The developed model may be useful as a tool for predicting potential PXR ligands and for providing mechanistic information of toxic effects of chemicals. -- Highlights: ► Global QSAR model for the identification of PXR ligands was developed. ► Molecular descriptors that may influence PXR binding were identified. ► 35% of a large set of environmental chemicals were predicted to be PXR ligands. ► Predicted PXR binding was associated with various adverse effects.

  7. Biodiversity in environmental assessment-current practice and tools for prediction

    SciTech Connect

    Gontier, Mikael . E-mail: gontier@kth.se; Balfors, Berit . E-mail: balfors@kth.se; Moertberg, Ulla . E-mail: mortberg@kth.se

    2006-04-15

    Habitat loss and fragmentation are major threats to biodiversity. Environmental impact assessment and strategic environmental assessment are essential instruments used in physical planning to address such problems. Yet there are no well-developed methods for quantifying and predicting impacts of fragmentation on biodiversity. In this study, a literature review was conducted on GIS-based ecological models that have potential as prediction tools for biodiversity assessment. Further, a review of environmental impact statements for road and railway projects from four European countries was performed, to study how impact prediction concerning biodiversity issues was addressed. The results of the study showed the existing gap between research in GIS-based ecological modelling and current practice in biodiversity assessment within environmental assessment.

  8. Drug-target interaction prediction by integrating chemical, genomic, functional and pharmacological data.

    PubMed

    Yang, Fan; Xu, Jinbo; Zeng, Jianyang

    2014-01-01

    In silico prediction of unknown drug-target interactions (DTIs) has become a popular tool for drug repositioning and drug development. A key challenge in DTI prediction lies in integrating multiple types of data for accurate DTI prediction. Although recent studies have demonstrated that genomic, chemical and pharmacological data can provide reliable information for DTI prediction, it remains unclear whether functional information on proteins can also contribute to this task. Little work has been developed to combine such information with other data to identify new interactions between drugs and targets. In this paper, we introduce functional data into DTI prediction and construct biological space for targets using the functional similarity measure. We present a probabilistic graphical model, called conditional random field (CRF), to systematically integrate genomic, chemical, functional and pharmacological data plus the topology of DTI networks into a unified framework to predict missing DTIs. Tests on two benchmark datasets show that our method can achieve excellent prediction performance with the area under the precision-recall curve (AUPR) up to 94.9. These results demonstrate that our CRF model can successfully exploit heterogeneous data to capture the latent correlations of DTIs, and thus will be practically useful for drug repositioning. Supplementary Material is available at http://iiis.tsinghua.edu.cn/~compbio/papers/psb2014/psb2014_sm.pdf. PMID:24297542

  9. Base-catalyzed reactions of environmentally relevant N-chloro-piperidines. A quantum-chemical study.

    PubMed

    Šakić, Davor; Zipse, Hendrik; Vrček, Valerije

    2011-06-01

    Electronic structure methods have been applied to calculate the gas and aqueous phase reaction energies for base-induced rearrangements of N-chloropiperidine, N-chloro-3-(hydroxymethyl)piperidine, and N-chloro-4-(4-fluorophenyl)-3-(hydroxymethyl)piperidine. These derivatives have been selected as representative models for studying the chemical fate of environmentally relevant chloramines. The performance of different computational methods (MP2, MP4, QCISD, B3LYP and B2PLYP) for calculating the thermochemistry of rearrangement reactions was assessed. The latter method produces energies similar to those obtained at G3B3(+) level, which themselves have been tested against experimental results. Experimental energy barriers and enthalpies for ring inversion, nitrogen inversion and dehydrochlorination reactions in N-chloropiperidine have been accurately reproduced when solvent effects have been included. It was also found that the combined use of continuum solvation models (e.g. CPCM) and explicit consideration of a single water molecule is sufficient to properly describe the water-assisted rearrangement of N-chlorinated compounds in basic media. In the case of N-chloro-4-(4-fluorophenyl)-3-(hydroxymethyl)piperidine, which represents the chlorinated metabolite of the antidepressant paroxetine, several different reactions (intramolecular addition, substitution, and elimination reactions) have been investigated. Transition state structures for these processes have been located together with minimum energy structures of conceivable products. Imine 4A is predicted to be the most stable reaction product, closely followed by imine 4B and oxazinane 8, while formation of isoxazolidine 7 is much less favourable. Calculated reaction barriers in aqueous solution are quite similar for all four processes, the lowest barrier being predicted for the formation of imine 4A. PMID:21503305

  10. Effect of Weather on the Predicted PMN Landmine Chemical Signature for Kabul, Afghanistan

    SciTech Connect

    WEBB, STEPHEN W.; PHELAN, JAMES M.

    2002-11-01

    Buried landmines are often detected through the chemical signature in the air above the soil surface by mine detection dogs. Environmental processes play a significant role in the chemical signature available for detection. Due to the shallow burial depth of landmines, the weather influences the release of chemicals from the landmine, transport through the soil to the surface, and degradation processes in the soil. The effect of weather on the landmine chemical signature from a PMN landmine was evaluated with the T2TNT code for Kabul, Afghanistan. Results for TNT and DNT gas-phase and soil solid-phase concentrations are presented as a function of time of the day and time of the year.

  11. Quark-mass dependence of the three-flavor QCD phase diagram at zero and imaginary chemical potential: Model prediction

    SciTech Connect

    Sasaki, Takahiro; Sakai, Yuji; Yahiro, Masanobu; Kouno, Hiroaki

    2011-11-01

    We draw the three-flavor phase diagram as a function of light- and strange-quark masses for both zero and imaginary quark-number chemical potential, using the Polyakov-loop extended Nambu-Jona-Lasinio model with an effective four-quark vertex depending on the Polyakov loop. The model prediction is qualitatively consistent with 2+1 flavor lattice QCD prediction at zero chemical potential and with degenerate three-flavor lattice QCD prediction at imaginary chemical potential.

  12. Predicting binding affinities of diverse pharmaceutical chemicals to human serum plasma proteins using QSPR modelling approaches.

    PubMed

    Basant, N; Gupta, S; Singh, K P

    2016-01-01

    The prediction of the plasma protein binding (PPB) affinity of chemicals is of paramount significance in the drug development process. In this study, ensemble machine learning-based QSPR models have been established for a four-category classification and PPB affinity prediction of diverse compounds using a large PPB dataset of 930 compounds and in accordance with the OECD guidelines. The structural diversity of the chemicals was tested by the Tanimoto similarity index. The external predictive power of the developed QSPR models was evaluated through internal and external validations. In the QSPR models, XLogP was the most important descriptor. In the test data, the classification QSPR models rendered an accuracy of >93%, while the regression QSPR models yielded r(2) of >0.920 between the measured and predicted PPB affinities, with the root mean squared error <9.77. Values of statistical coefficients derived for the test data were above their threshold limits, thus put a high confidence in this analysis. The QSPR models in this study performed better than any of the previous studies. The results suggest that the developed QSPR models are reliable for predicting the PPB affinity of structurally diverse chemicals. They can be useful for initial screening of candidate molecules in the drug development process. PMID:26854728

  13. A multi-scale, multi-disciplinary approach for assessing the technological, economic and environmental performance of bio-based chemicals.

    PubMed

    Herrgård, Markus; Sukumara, Sumesh; Campodonico, Miguel; Zhuang, Kai

    2015-12-01

    In recent years, bio-based chemicals have gained interest as a renewable alternative to petrochemicals. However, there is a significant need to assess the technological, biological, economic and environmental feasibility of bio-based chemicals, particularly during the early research phase. Recently, the Multi-scale framework for Sustainable Industrial Chemicals (MuSIC) was introduced to address this issue by integrating modelling approaches at different scales ranging from cellular to ecological scales. This framework can be further extended by incorporating modelling of the petrochemical value chain and the de novo prediction of metabolic pathways connecting existing host metabolism to desirable chemical products. This multi-scale, multi-disciplinary framework for quantitative assessment of bio-based chemicals will play a vital role in supporting engineering, strategy and policy decisions as we progress towards a sustainable chemical industry. PMID:26614653

  14. PREDICTION METRICS FOR CHEMICAL DETECTION IN LONG-WAVE INFRARED HYPERSPECTRAL IMAGERY

    SciTech Connect

    Chilton, M.; Walsh, S.J.; Daly, D.S.

    2009-01-01

    Natural and man-made chemical processes generate gaseous plumes that may be detected by hyperspectral imaging, which produces a matrix of spectra affected by the chemical constituents of the plume, the atmosphere, the bounding background surface and instrument noise. A physics-based model of observed radiance shows that high chemical absorbance and low background emissivity result in a larger chemical signature. Using simulated hyperspectral imagery, this study investigated two metrics which exploited this relationship. The objective was to explore how well the chosen metrics predicted when a chemical would be more easily detected when comparing one background type to another. The two predictor metrics correctly rank ordered the backgrounds for about 94% of the chemicals tested as compared to the background rank orders from Whitened Matched Filtering (a detection algorithm) of the simulated spectra. These results suggest that the metrics provide a reasonable summary of how the background emissivity and chemical absorbance interact to produce the at-sensor chemical signal. This study suggests that similarly effective predictors that account for more general physical conditions may be derived.

  15. Predicting changes in the distribution and abundance of species under environmental change

    PubMed Central

    Ehrlén, Johan; Morris, William F

    2015-01-01

    Environmental changes are expected to alter both the distribution and the abundance of organisms. A disproportionate amount of past work has focused on distribution only, either documenting historical range shifts or predicting future occurrence patterns. However, simultaneous predictions of abundance and distribution across landscapes would be far more useful. To critically assess which approaches represent advances towards the goal of joint predictions of abundance and distribution, we review recent work on changing distributions and on effects of environmental drivers on single populations. Several methods have been used to predict changing distributions. Some of these can be easily modified to also predict abundance, but others cannot. In parallel, demographers have developed a much better understanding of how changing abiotic and biotic drivers will influence growth rate and abundance in single populations. However, this demographic work has rarely taken a landscape perspective and has largely ignored the effects of intraspecific density. We advocate a synthetic approach in which population models accounting for both density dependence and effects of environmental drivers are used to make integrated predictions of equilibrium abundance and distribution across entire landscapes. Such predictions would constitute an important step forward in assessing the ecological consequences of environmental changes. PMID:25611188

  16. Predicting changes in the distribution and abundance of species under environmental change.

    PubMed

    Ehrlén, Johan; Morris, William F

    2015-03-01

    Environmental changes are expected to alter both the distribution and the abundance of organisms. A disproportionate amount of past work has focused on distribution only, either documenting historical range shifts or predicting future occurrence patterns. However, simultaneous predictions of abundance and distribution across landscapes would be far more useful. To critically assess which approaches represent advances towards the goal of joint predictions of abundance and distribution, we review recent work on changing distributions and on effects of environmental drivers on single populations. Several methods have been used to predict changing distributions. Some of these can be easily modified to also predict abundance, but others cannot. In parallel, demographers have developed a much better understanding of how changing abiotic and biotic drivers will influence growth rate and abundance in single populations. However, this demographic work has rarely taken a landscape perspective and has largely ignored the effects of intraspecific density. We advocate a synthetic approach in which population models accounting for both density dependence and effects of environmental drivers are used to make integrated predictions of equilibrium abundance and distribution across entire landscapes. Such predictions would constitute an important step forward in assessing the ecological consequences of environmental changes. PMID:25611188

  17. Extended Characterization of Chemical Processes in Hot Cells Using Environmental Swipe Samples

    SciTech Connect

    Olsen, Khris B.; Mitroshkov, Alexandre V.; Thomas, M-L; Lepel, Elwood A.; Brunson, Ronald R.; Ladd-Lively, Jennifer

    2012-09-15

    Environmental sampling is used extensively by the International Atomic Energy Agency (IAEA) for verification of information from State declarations or a facility’s design regarding nuclear activities occurring within the country or a specific facility. Environmental sampling of hot cells within a facility under safeguards is conducted using 10.2 cm x 10.2 cm cotton swipe material or cellulose swipes. Traditional target analytes used by the IAEA to verify operations within a facility include a select list of gamma-emitting radionuclides and total and isotopic U and Pu. Analysis of environmental swipe samples collected within a hot-cell facility where chemical processing occurs may also provide information regarding specific chemicals used in fuel processing. However, using swipe material to elucidate what specific chemical processes were/are being used within a hot cell has not been previously evaluated. Staff from Pacific Northwest National Laboratory (PNNL) and Oak Ridge National Laboratory (ORNL) teamed to evaluate the potential use of environmental swipe samples as collection media for volatile and semivolatile organic compounds. This evaluation was initiated with sample collection during a series of Coupled End-to-End (CETE) reprocessing runs at ORNL. The study included measurement of gamma emitting radionuclides, total and isotopic U and Pu, and volatile and semivolatile organic compounds. These results allowed us to elucidate what chemical processes used in the hot cells during reprocessing of power reactor and identify other legacy chemicals used in hot cell operations which predate the CETE process.

  18. Arsenic concentrations, related environmental factors, and the predicted probability of elevated arsenic in groundwater in Pennsylvania

    USGS Publications Warehouse

    Gross, Eliza L.; Low, Dennis J.

    2013-01-01

    Analytical results for arsenic in water samples from 5,023 wells obtained during 1969–2007 across Pennsylvania were compiled and related to other associated groundwater-quality and environmental factors and used to predict the probability of elevated arsenic concentrations, defined as greater than or equal to 4.0 micrograms per liter (µg/L), in groundwater. Arsenic concentrations of 4.0 µg/L or greater (elevated concentrations) were detected in 18 percent of samples across Pennsylvania; 8 percent of samples had concentrations that equaled or exceeded the U.S. Environmental Protection Agency’s drinking-water maximum contaminant level of 10.0 µg/L. The highest arsenic concentration was 490.0 µg/L. Comparison of arsenic concentrations in Pennsylvania groundwater by physiographic province indicates that the Central Lowland physiographic province had the highest median arsenic concentration (4.5 µg/L) and the highest percentage of sample records with arsenic concentrations greater than or equal to 4.0 µg/L (59 percent) and greater than or equal to 10.0 µg/L (43 percent). Evaluation of four major aquifer types (carbonate, crystalline, siliciclastic, and surficial) in Pennsylvania showed that all types had median arsenic concentrations less than 4.0 µg/L, and the highest arsenic concentration (490.0 µg/L) was in a siliciclastic aquifer. The siliciclastic and surficial aquifers had the highest percentage of sample records with arsenic concentrations greater than or equal to 4.0 µg/L and 10.0 µg/L. Elevated arsenic concentrations were associated with low pH (less than or equal to 4.0), high pH (greater than or equal to 8.0), or reducing conditions. For waters classified as anoxic (405 samples), 20 percent of sampled wells contained water with elevated concentrations of arsenic; for waters classified as oxic (1,530 samples) only 10 percent of sampled wells contained water with elevated arsenic concentrations. Nevertheless, regardless of the reduction

  19. Study of improved methods for predicting chemical equilibria. Final technical report, April 1, 1993--August 31, 1997

    SciTech Connect

    Lenz, T.G.; Vaughan, J.D.

    1997-10-01

    A long-standing goal of chemical engineers and chemists has been the development of techniques for accurate prediction of the thermodynamic properties of isolated molecules. The thermochemical functions for an ideal gas then provide a means of computing chemical equilibria, and such computations can be extended to condensed phase chemical equilibria with appropriate physical property data. Such capability for predicting diverse chemical equilibria is important in today`s competitive international economic environment, where bringing new products to market rapidly and efficiently is crucial. The purpose of this project has been to develop such computational methods for predicting chemical equilibria.

  20. Nonradiological chemical pathway analysis and identification of chemicals of concern for environmental monitoring at the Hanford Site

    SciTech Connect

    Blanton, M.L.; Cooper, A.T.; Castleton, K.J.

    1995-11-01

    Pacific Northwest`s Surface Environmental Surveillance Project (SESP) is an ongoing effort tot design, review, and conducted monitoring on and off the Hanford site. Chemicals of concern that were selected are listed. Using modeled exposure pathways, the offsite cancer incidence and hazard quotient were calculated and a retrospective pathway analysis performed to estimate what onsite concentrations would be required in the soil for each chemical of concern and other detected chemicals that would be required to obtain an estimated offsite human-health risk of 1.0E-06 cancer incidence or 1.0 hazard quotient. This analysis indicates that current nonradiological chemical contamination occurring on the site does not pose a significant offsite human-health risk; the highest cancer incidence to the offsite maximally exposed individual was from arsenic (1.76E-10); the highest hazard quotient was chromium(VI) (1.48E-04). The most sensitive pathways of exposure were surfacewater and aquatic food consumption. Combined total offsite excess cancer incidence was 2.09E-10 and estimated hazard quotient was 2.40E-04. Of the 17 identified chemicals of concern, the SESP does not currently (routinely) monitor arsenic, benzo(a)pyrene, bis(2- ethylhexyl)phthalate (BEHP), and chrysene. Only 3 of the chemicals of concern (arsenic, BEHP, chloroform) could actually occur in onsite soil at concern high enough to cause a 1.0E-06 excess cancer incidence or a 1.0 hazard index for a given offsite exposure pathway. During the retrospective analysis, 20 other chemicals were also evaluated; only vinyl chloride and thallium could reach targeted offsite risk values.

  1. IDENTIFICATION OF ENVIRONMENTAL CHEMICALS ASSOCIATED WITH THE DEVELOPMENT OF TOXICANT ASSOCIATED FATTY LIVER DISEASE IN RODENTS

    PubMed Central

    Al-Eryani, Laila; Wahlang, Banrida; Falkner, K.C.; Guardiola, J. J.; Clair, H.B.; Prough, R.A.; Cave, M.

    2014-01-01

    Background Toxicant associated fatty liver disease (TAFLD) is a recently identified form of non-alcoholic fatty liver disease (NAFLD) associated with exposure to industrial chemicals and environmental pollutants. Numerous studies have been conducted to test the association between industrial chemicals/ environmental pollutants and fatty liver disease both in vivo and in vitro. Objectives The objective of the paper is to report a list of chemicals associated with TAFLD. Methods Two federal databases of rodent toxicology studies– ToxRefDB (Environmental Protection Agency) and Chemical Effects in Biological Systems (CEBS, National Toxicology Program) were searched for liver endpoints. Combined, these two databases archive nearly 2000 rodent studies. TASH descriptors including fatty change, fatty necrosis, Oil red O positive staining, steatosis and lipid deposition were queried. Results Using these search terms, 123 chemicals associated with fatty liver were identified. Pesticides and solvents were the most frequently identified chemicals, while PCBs/dioxins were the most potent. About 44% of identified compounds were pesticides or their intermediates, and nearly 10% of pesticide registration studies in ToxRefDB were associated with fatty liver. Fungicides and herbicides were more frequently associated with fatty liver than insecticides. Conclusions More research on pesticides, solvents, metals and PCBs/dioxins in NAFLD/TAFLD is warranted due to their association with liver damage. PMID:25326588

  2. DNA methylation: a mechanism linking environmental chemical exposures to risk of autism spectrum disorders?

    PubMed Central

    Keil, Kimberly P.; Lein, Pamela J.

    2016-01-01

    There is now compelling evidence that gene by environment interactions are important in the etiology of autism spectrum disorders (ASDs). However, the mechanisms by which environmental factors interact with genetic susceptibilities to confer individual risk for ASD remain a significant knowledge gap in the field. The epigenome, and in particular DNA methylation, is a critical gene expression regulatory mechanism in normal and pathogenic brain development. DNA methylation can be influenced by environmental factors such as diet, hormones, stress, drugs, or exposure to environmental chemicals, suggesting that environmental factors may contribute to adverse neurodevelopmental outcomes of relevance to ASD via effects on DNA methylation in the developing brain. In this review, we describe epidemiological and experimental evidence implicating altered DNA methylation as a potential mechanism by which environmental chemicals confer risk for ASD, using polychlorinated biphenyls (PCBs), lead, and bisphenol A (BPA) as examples. Understanding how environmental chemical exposures influence DNA methylation and how these epigenetic changes modulate the risk and/or severity of ASD will not only provide mechanistic insight regarding gene-environment interactions of relevance to ASD but may also suggest potential intervention strategies for these and potentially other neurodevelopmental disorders. PMID:27158529

  3. Endocrine Profiling and Prioritization of Environmental Chemicals Using ToxCast Data

    PubMed Central

    Reif, David M.; Martin, Matthew T.; Tan, Shirlee W.; Houck, Keith A.; Judson, Richard S.; Richard, Ann M.; Knudsen, Thomas B.; Dix, David J.; Kavlock, Robert J.

    2010-01-01

    Background The prioritization of chemicals for toxicity testing is a primary goal of the U.S. Environmental Protection Agency (EPA) ToxCast™ program. Phase I of ToxCast used a battery of 467 in vitro, high-throughput screening assays to assess 309 environmental chemicals. One important mode of action leading to toxicity is endocrine disruption, and the U.S. EPA’s Endocrine Disruptor Screening Program (EDSP) has been charged with screening pesticide chemicals and environmental contaminants for their potential to affect the endocrine systems of humans and wildlife. Objective The goal of this study was to develop a flexible method to facilitate the rational prioritization of chemicals for further evaluation and demonstrate its application as a candidate decision-support tool for EDSP. Methods Focusing on estrogen, androgen, and thyroid pathways, we defined putative endocrine profiles and derived a relative rank or score for the entire ToxCast library of 309 unique chemicals. Effects on other nuclear receptors and xenobiotic metabolizing enzymes were also considered, as were pertinent chemical descriptors and pathways relevant to endocrine-mediated signaling. Results Combining multiple data sources into an overall, weight-of-evidence Toxicological Priority Index (ToxPi) score for prioritizing further chemical testing resulted in more robust conclusions than any single data source taken alone. Conclusions Incorporating data from in vitro assays, chemical descriptors, and biological pathways in this prioritization schema provided a flexible, comprehensive visualization and ranking of each chemical’s potential endocrine activity. Importantly, ToxPi profiles provide a transparent visualization of the relative contribution of all information sources to an overall priority ranking. The method developed here is readily adaptable to diverse chemical prioritization tasks. PMID:20826373

  4. Prediction Metrics for Chemical Detection in Long-Wave Infrared Hyperspectral Imagery

    SciTech Connect

    Chilton, Marie C.; Walsh, Stephen J.; Daly, Don S.

    2009-01-29

    A natural or anthropogenic process often generates a signature gas plume whose chemical constituents may be identified using hyperspectral imagery. A hyperspectral image is a pixel-indexed set of spectra where each spectrum reflects the chemical constituents of the plume, the atmosphere, the bounding background surface, and instrument noise. This study explored the relationship between gas absorbance and background emissivity across the long-wave infrared (LWIR) spectrum and how they affect relative gas detection sensitivity. The physics-based model for the observed radiance shows that high gas absorbance coupled with low background emissivity at a single wavenumber results in a stronger recorded radiance. Two sensitivity measures were developed to predict relative probability of detection using chemical absorbance and background emissivity: one focused on a single wavenumber while another accounted for the entire spectrum. The predictive abilities of these measures were compared to synthetic image analysis. This study simulated images with 499 distinct gases at each of 6 concentrations over 6 different background surfaces with the atmosphere and level of instrument noise held constant. The Whitened Matched Filter was used to define gas detection from an image spectrum. The estimate of a chemical’s probability of detection at a given concentration over a specific background was the proportion of detections in 500 trials. Of the 499 chemicals used in the images, 276 had estimated probabilities of detection below 0.2 across all backgrounds and concentrations; these chemicals were removed from the study. For 92.8 percent of the remaining chemicals, the single channel measure correctly predicted the background over which the chemical had the largest relative probability of detection. Further, the measure which accounted for information across all wavenumbers predicted the background over which the chemical had the largest relative probability of detection for 93

  5. Predicting the risk of toxic blooms of golden alga from cell abundance and environmental covariates

    USGS Publications Warehouse

    Patino, Reynaldo; VanLandeghem, Matthew M.; Denny, Shawn

    2016-01-01

    Golden alga (Prymnesium parvum) is a toxic haptophyte that has caused considerable ecological damage to marine and inland aquatic ecosystems worldwide. Studies focused primarily on laboratory cultures have indicated that toxicity is poorly correlated with the abundance of golden alga cells. This relationship, however, has not been rigorously evaluated in the field where environmental conditions are much different. The ability to predict toxicity using readily measured environmental variables and golden alga abundance would allow managers rapid assessments of ichthyotoxicity potential without laboratory bioassay confirmation, which requires additional resources to accomplish. To assess the potential utility of these relationships, several a priori models relating lethal levels of golden alga ichthyotoxicity to golden alga abundance and environmental covariates were constructed. Model parameters were estimated using archived data from four river basins in Texas and New Mexico (Colorado, Brazos, Red, Pecos). Model predictive ability was quantified using cross-validation, sensitivity, and specificity, and the relative ranking of environmental covariate models was determined by Akaike Information Criterion values and Akaike weights. Overall, abundance was a generally good predictor of ichthyotoxicity as cross validation of golden alga abundance-only models ranged from ∼ 80% to ∼ 90% (leave-one-out cross-validation). Environmental covariates improved predictions, especially the ability to predict lethally toxic events (i.e., increased sensitivity), and top-ranked environmental covariate models differed among the four basins. These associations may be useful for monitoring as well as understanding the abiotic factors that influence toxicity during blooms.

  6. Incorporating transgenerational testing and epigenetic mechanisms into chemical testing and risk assessment: A survey of transgenerational responses in environmental chemical studies

    EPA Science Inventory

    A number of environmental chemicals have been shown to alter markers of epigenetic change. Some published multi-generation rodent studies have identified effects on F2 and greater generations after chemical exposures solely to F0 dams, but were not focused on chemical safety. We ...

  7. Phenotypic side effects prediction by optimizing correlation with chemical and target profiles of drugs.

    PubMed

    Kanji, Rakesh; Sharma, Abhinav; Bagler, Ganesh

    2015-11-01

    Despite technological progresses and improved understanding of biological systems, discovery of novel drugs is an inefficient, arduous and expensive process. Research and development cost of drugs is unreasonably high, largely attributed to the high attrition rate of candidate drugs due to adverse drug reactions. Computational methods for accurate prediction of drug side effects, rooted in empirical data of drugs, have the potential to enhance the efficacy of the drug discovery process. Identification of features critical for specifying side effects would facilitate efficient computational procedures for their prediction. We devised a generalized ordinary canonical correlation model for prediction of drug side effects based on their chemical properties as well as their target profiles. While the former is based on 2D and 3D chemical features, the latter enumerates a systems-level property of drugs. We find that the model incorporating chemical features outperforms that incorporating target profiles. Furthermore we identified the 2D and 3D chemical properties that yield best results, thereby implying their relevance in specifying adverse drug reactions. PMID:26252576

  8. Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space

    DOE PAGESBeta

    Hansen, Katja; Biegler, Franziska; Ramakrishnan, Raghunathan; Pronobis, Wiktor; von Lilienfeld, O. Anatole; Müller, Klaus -Robert; Tkatchenko, Alexandre

    2015-06-04

    Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstratemore » prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the “holy grail” of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. The same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies.« less

  9. Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space

    SciTech Connect

    Hansen, Katja; Biegler, Franziska; Ramakrishnan, Raghunathan; Pronobis, Wiktor; von Lilienfeld, O. Anatole; Müller, Klaus -Robert; Tkatchenko, Alexandre

    2015-06-04

    Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstrate prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the “holy grail” of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. The same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies.

  10. Chemical analysis of human blood for assessment of environmental exposure to semivolatile organochlorine chemical contaminants.

    PubMed

    Bristol, D W; Crist, H L; Lewis, R G; MacLeod, K E; Sovocool, G W

    1982-01-01

    A chemical method for the quantitative analysis of organochlorine pesticide residues present in human blood was scaled-up to provide increased sensitivity and extended to include organochlorine industrial chemicals. Whole blood samples were extracted with hexane, concentrated, and analyzed without further cleanup by gas chromatography with electron capture detection. The methodology used was validated by conducting recovery studies at 1 and 10 ng/g (ppb) levels. Screening and confirmational analyses were performed by gas chromatography/mass spectrometry on samples collected from potentially exposed residents of the Love Canal area of Niagara Falls, New York and from volunteers in the Research Triangle Park area of North Carolina for 25 specific semivolatile organochlorine contaminants including chlorobenzene and chlorotoluene congeners, hexachloro-1,3-butadiene, pesticides, and polychlorinated biphenyls as Aroclor 1260. Dichlorobenzene, hexachlorobenzene, and beta-hexachlorocyclohexane residues fell in the range of 0.1 to 26 ppb in a high percentage of both the field and volunteer blood samples analyzed. Levels of other organochlorine compounds were either non-detectable or present in sub-ppb ranges. PMID:6819409

  11. An Energy Balance Model to Predict Chemical Partitioning in a Photosynthetic Microbial Mat

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Albert, Daniel B.; DesMarais, David J.

    2006-01-01

    Studies of biosignature formation in photosynthetic microbial mat communities offer potentially useful insights with regards to both solar and extrasolar astrobiology. Biosignature formation in such systems results from the chemical transformation of photosynthetically fixed carbon by accessory microorganisms. This fixed carbon represents a source not only of reducing power, but also energy, to these organisms, so that chemical and energy budgets should be coupled. We tested this hypothesis by applying an energy balance model to predict the fate of photosynthetic productivity under dark, anoxic conditions. Fermentation of photosynthetically fixed carbon is taken to be the only source of energy available to cyanobacteria in the absence of light and oxygen, and nitrogen fixation is the principal energy demand. The alternate fate for fixed carbon is to build cyanobacterial biomass with Redfield C:N ratio. The model predicts that, under completely nitrogen-limited conditions, growth is optimized when 78% of fixed carbon stores are directed into fermentative energy generation, with the remainder allocated to growth. These predictions were compared to measurements made on microbial mats that are known to be both nitrogen-limited and populated by actively nitrogen-fixing cyanobacteria. In these mats, under dark, anoxic conditions, 82% of fixed carbon stores were diverted into fermentation. The close agreement between these independent approaches suggests that energy balance models may provide a quantitative means of predicting chemical partitioning within such systems - an important step towards understanding how biological productivity is ultimately partitioned into biosignature compounds.

  12. Prediction of hydrogen and carbon chemical shifts from RNA using database mining and support vector regression.

    PubMed

    Brown, Joshua D; Summers, Michael F; Johnson, Bruce A

    2015-09-01

    The Biological Magnetic Resonance Data Bank (BMRB) contains NMR chemical shift depositions for over 200 RNAs and RNA-containing complexes. We have analyzed the (1)H NMR and (13)C chemical shifts reported for non-exchangeable protons of 187 of these RNAs. Software was developed that downloads BMRB datasets and corresponding PDB structure files, and then generates residue-specific attributes based on the calculated secondary structure. Attributes represent properties present in each sequential stretch of five adjacent residues and include variables such as nucleotide type, base-pair presence and type, and tetraloop types. Attributes and (1)H and (13)C NMR chemical shifts of the central nucleotide are then used as input to train a predictive model using support vector regression. These models can then be used to predict shifts for new sequences. The new software tools, available as stand-alone scripts or integrated into the NMR visualization and analysis program NMRViewJ, should facilitate NMR assignment and/or validation of RNA (1)H and (13)C chemical shifts. In addition, our findings enabled the re-calibration a ring-current shift model using published NMR chemical shifts and high-resolution X-ray structural data as guides. PMID:26141454

  13. Predicting the visibility of a chemical vapor plume using schlieren optics

    NASA Astrophysics Data System (ADS)

    Bigger, Rory; Settles, Gary

    2008-11-01

    Chemicals plumes from a freely-evaporating liquid surface and from the exit of a circular pipe are considered. For the freely-evaporating case, the visibility of fourteen chemicals was tested in two schlieren optical systems. One system was a modest bench-top system and the other was a lard system of extraordinary sensitivity. Plume visibility was found to be a function of the vapor pressure and vapor refractive index. An empirical fit to the plume-visibility data, compared with the sensitivities of these systems (measured using a standard-lens method), suggests guidelines for predicting the visibility of plumes of other chemicals using other schlieren equipment. For the circular opening case, plume visibility of the same chemicals was found to be a function of plume geometry and refractive index. The peak light-ray deflections (also measured with a standard lens) caused by plumes of two different sizes were found to scale based on plume geometry. This scaling information and plume refractive index can be used to predict plume visibility for arbitrary chemicals in arbitrary systems, if the system sensitivity is known. One application of this work lies in the optical detection of plumes emitted by contraband material.

  14. Chemical shift prediction for protein structure calculation and quality assessment using an optimally parameterized force field

    PubMed Central

    Nielsen, Jakob T.; Eghbalnia, Hamid R.; Nielsen, Niels Chr.

    2011-01-01

    The exquisite sensitivity of chemical shifts as reporters of structural information, and the ability to measure them routinely and accurately, gives great import to formulations that elucidate the structure-chemical-shift relationship. Here we present a new and highly accurate, precise, and robust formulation for the prediction of NMR chemical shifts from protein structures. Our approach, shAIC (shift prediction guided by Akaikes Information Criterion), capitalizes on mathematical ideas and an information-theoretic principle, to represent the functional form of the relationship between structure and chemical shift as a parsimonious sum of smooth analytical potentials which optimally takes into account short-, medium-, and long-range parameters in a nuclei-specific manner to capture potential chemical shift perturbations caused by distant nuclei. shAIC outperforms the state-of-the-art methods that use analytical formulations. Moreover, for structures derived by NMR or structures with novel folds, shAIC delivers better overall results; even when it is compared to sophisticated machine learning approaches. shAIC provides for a computationally lightweight implementation that is unimpeded by molecular size, making it an ideal for use as a force field. PMID:22293396

  15. Prediction of dermal absorption from complex chemical mixtures: incorporation of vehicle effects and interactions into a QSPR framework.

    PubMed

    Riviere, J E; Brooks, J D

    2007-01-01

    Significant progress has been made on predicting dermal absorption/penetration of topically applied compounds by developing QSPR models based on linear free energy relations (LFER). However, all of these efforts have employed compounds applied to the skin in aqueous or single solvent systems, a dosing scenario that does not mimic occupational, environmental or pharmaceutical exposure. We have explored using hybrid QSPR equations describing individual compound penetration based on the molecular descriptors for the compound modified by a mixture factor (MF) which accounts for the physicochemical properties of the vehicle/mixture components. The MF is calculated based on percentage composition of the vehicle/mixture components and physical chemical properties selected using principal components analysis. This model has been applied to 12 different compounds in 24 mixtures for a total of 288 treatment combinations obtained from flow-through porcine skin diffusion cells and in an additional dataset of 10 of the same compounds in five mixtures for a total of 50 treatment combinations in the ex vivo isolated perfused porcine skin flap. The use of the MF in combination with a classic LFER based on penetrant properties significantly improved the ability to predict dermal absorption of compounds dosed in complex chemical mixtures. PMID:17365957

  16. Impact of environmental chemicals on key transcription regulators and correlation to toxicity end points within EPA's ToxCast program.

    PubMed

    Martin, Matthew T; Dix, David J; Judson, Richard S; Kavlock, Robert J; Reif, David M; Richard, Ann M; Rotroff, Daniel M; Romanov, Sergei; Medvedev, Alexander; Poltoratskaya, Natalia; Gambarian, Maria; Moeser, Matt; Makarov, Sergei S; Houck, Keith A

    2010-03-15

    Exposure to environmental chemicals adds to the burden of disease in humans and wildlife to a degree that is difficult to estimate and, thus, mitigate. The ability to assess the impact of existing chemicals for which little to no toxicity data are available or to foresee such effects during early stages of chemical development and use, and before potential exposure occurs, is a pressing need. However, the capacity of the current toxicity evaluation approaches to meet this demand is limited by low throughput and high costs. In the context of EPA's ToxCast project, we have evaluated a novel cellular biosensor system (Factorial (1) ) that enables rapid, high-content assessment of a compound's impact on gene regulatory networks. The Factorial biosensors combined libraries of cis- and trans-regulated transcription factor reporter constructs with a highly homogeneous method of detection enabling simultaneous evaluation of multiplexed transcription factor activities. Here, we demonstrate the application of the technology toward determining bioactivity profiles by quantitatively evaluating the effects of 309 environmental chemicals on 25 nuclear receptors and 48 transcription factor response elements. We demonstrate coherent transcription factor activity across nuclear receptors and their response elements and that Nrf2 activity, a marker of oxidative stress, is highly correlated to the overall promiscuity of a chemical. Additionally, as part of the ToxCast program, we identify molecular targets that associate with in vivo end points and represent modes of action that can serve as potential toxicity pathway biomarkers and inputs for predictive modeling of in vivo toxicity. PMID:20143881

  17. Measurement and chemical kinetic model predictions of detonation cell size in methanol-oxygen mixtures

    NASA Astrophysics Data System (ADS)

    Eaton, R.; Zhang, B.; Bergthorson, J. M.; Ng, H. D.

    2012-03-01

    In this study, detonation cell sizes of methanol-oxygen mixtures are experimentally measured at different initial pressures and compositions. Good agreement is found between the experiment data and predictions based on the chemical length scales obtained from a detailed chemical kinetic model. To assess the detonation sensitivity in methanol-oxygen mixtures, the results are compared with those of hydrogen-oxygen and methane-oxygen mixtures. Based on the cell size comparison, it is shown that methanol-oxygen is more detonation sensitive than methane-oxygen but less sensitive than hydrogen-oxygen.

  18. Chemical genomic profiling via barcode sequencing to predict compound mode of action

    PubMed Central

    Piotrowski, Jeff S.; Simpkins, Scott W.; Li, Sheena C.; Deshpande, Raamesh; McIlwain, Sean; Ong, Irene; Myers, Chad L.; Boone, Charlie; Andersen, Raymond J.

    2015-01-01

    Summary Chemical genomics is an unbiased, whole-cell approach to characterizing novel compounds to determine mode of action and cellular target. Our version of this technique is built upon barcoded deletion mutants of Saccharomyces cerevisiae and has been adapted to a high-throughput methodology using next-generation sequencing. Here we describe the steps to generate a chemical genomic profile from a compound of interest, and how to use this information to predict molecular mechanism and targets of bioactive compounds. PMID:25618354

  19. Chemical mixtures and environmental effects: a pilot study to assess ecological exposure and effects in streams

    USGS Publications Warehouse

    Buxton, Herbert T.; Reilly, Timothy J.; Kuivila, Kathryn M.; Kolpin, Dana W.; Bradley, Paul M.; Villeneuve, Daniel L.; Mills, Marc A.

    2015-01-01

    Assessment and management of the risks of exposure to complex chemical mixtures in streams are priorities for human and environmental health organizations around the world. The current lack of information on the composition and variability of environmental mixtures and a limited understanding of their combined effects are fundamental obstacles to timely identification and prevention of adverse human and ecological effects of exposure. This report describes the design of a field-based study of the composition and biological activity of chemical mixtures in U.S. stream waters affected by a wide range of human activities and contaminant sources. The study is a collaborative effort by the U.S. Geological Survey and the U.S. Environmental Protection Agency. Scientists sampled 38 streams spanning 24 States and Puerto Rico. Thirty-four of the sites were located in watersheds impacted by multiple contaminant sources, including industrial and municipal wastewater discharges, crop and animal agricultural runoff, urban runoff, and other point and nonpoint contaminant sources. The remaining four sites were minimally development reference watersheds. All samples underwent comprehensive chemical and biological characterization, including sensitive and specific direct analysis for over 700 dissolved organic and inorganic chemicals and field parameters, identification of unknown contaminants (environmental diagnostics), and a variety of bioassays to evaluate biological activity and toxicity.

  20. MUSSEL WATCH--MEASUREMENTS OF CHEMICAL POLLUTANTS IN BIVALVES AS ONE INDICATOR OF COASTAL ENVIRONMENTAL QUALITY

    EPA Science Inventory

    The utility of the bivalve sentinel organism approach to monitoring for some chemicals of environmental concern in coastal and estuarine areas has been evaluated by regional and national programs and by smaller scale research efforts during the past 15 years. The extent and sever...

  1. DEVELOPMENT OF MOLECULAR MARKERS OF RESPONSE TO ASSESS THE SENSITIVITY OF CHILDREN TO ENVIRONMENTAL CHEMICALS

    EPA Science Inventory

    Development of Molecular Markers of Response to Assess the Sensitivity of Children to Environmental Chemicals

    J.Allen, C. Blackman, M. Blaze, D. Delker, D. DeMarini, C. Doerr, R. Grindstaff, S.
    Hester, C. Jones, A. Kligerman, G. Knapp, M. Kohan, C. Nelson, R. Owen, J. P...

  2. Incorporating Chemical Information Instruction and Environmental Science into the First-Year Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Landolt, R. G.

    2006-01-01

    The chemical information instruction and environmental science which is incorporated into a first-year organic chemistry laboratory is presented. The students are charged with devised search strategies, conducting online searches and limiting the project scope to ocean systems. The laboratory serves to provide for search strategy development…

  3. Evaluating the involvement of glucocorticoid feedback on the reproductive effects of environmental chemicals

    EPA Science Inventory

    Acute and chronic stressors activate the hypothalamic-pituitary-adrenal (lIPA) axis and are known to suppress reproductive function through central negative feedback of the gonadal axis by glucocorticoids. Recently, several environmental chemicals known to attenuate or suppress t...

  4. STRESS PATHWAY-BASED REPORTER ASSAYS TO ASSESS TOXICITY OF ENVIRONMENTAL CHEMICALS.

    EPA Science Inventory

    There is an increasing need for assays for the rapid and efficient assessment of toxicities of large numbers of environmental chemicals. To meet this need, we are developing cell-based reporter assays that measure the activation of key molecular stress pathways. We are using pro...

  5. EVALUATING THE ENVIRONMENTAL FRIENDLINESS, ECONOMICS, AND ENERGY EFFICIENCY OF CHEMICAL PROCESSES: HEAT INTEGRATION

    EPA Science Inventory

    The design and improvement of chemical processes can be very challenging. The earlier energy conservation, process economics and environmental aspects are incorporated into the process development, the easier and less expensive it is to alter the process design. In this work diff...

  6. Molecular Modeling for Screening Environmental Chemicals for Estrogenicity: Use of the Toxicant-Target Approach

    EPA Science Inventory

    There is a paucity of relevant experimental information available for the evaluation of the potential health and environmental effects of many man made chemicals. Knowledge of the potential pathways for activity provides a rational basis for the extrapolations inherent in the pre...

  7. Chemical Transformation System: Cloud Based Cheminformatic Services to Support Integrated Environmental Modeling

    EPA Science Inventory

    Integrated Environmental Modeling (IEM) systems that account for the fate/transport of organics frequently require physicochemical properties as well as transformation products. A myriad of chemical property databases exist but these can be difficult to access and often do not co...

  8. ABILITY OF THE MALE RAT PUBERTAL ASSAY TO DETECT ENVIRONMENTAL CHEMICALS THAT ALTER THYROID HORMONE HOMEOSTASIS

    EPA Science Inventory

    ABILITY OF THE MALE RAT PUBERTAL ASSAY TO DETECT ENVIRONMENTAL CHEMICALS THAT ALTER THYROID HORMONE HOMEOSTASIS

    Stoker, Tammy E.1; Laws, Susan C.1; Ferrell, Janet M.1; Cooper, Ralph L.1.

    Endocrinology Branch, RTD, NHEERL, ORD, U.S. EPA, RTP, NC, 27711.

    The...

  9. Methods for the Determination of Chemical Substances in Marine and Estuarine Environmental Matrices - 2nd Edition

    EPA Science Inventory

    This NERL-Cincinnati publication, “Methods for the Determination of Chemical Substances in Marine and Estuarine Environmental Matrices - 2nd Edition” was prepared as the continuation of an initiative to gather together under a single cover a compendium of standardized laborato...

  10. EVALUATING THE ECONOMICS AND ENVIRONMENTAL FRIENDLINESS OF NEWLY DESIGNED OR RETROFITTED CHEMICAL PROCESSES: JOURNAL ARTICLE

    EPA Science Inventory

    NRMRL-CIN-1646 Smith*, R.L. Evaluating the Economics and Environmental Friendliness of Newly Designed or Retrofitted Chemical Processes. Clean Products and Processes (Springer-Verlag) 3:383-391 (2002). 10/22/2001 This work describes a method for using spreadsheet analyses of ...

  11. Development of an Exchange Format for the European Environmental Chemical Data and Information Network (ECDIN).

    ERIC Educational Resources Information Center

    And Others; Proctor, David, J.

    1978-01-01

    Uses collection and storage of data in an environmental chemicals data bank to develop an exchange format of hierarchical tree structure between network partners. Rules identify and process the nodes in the tree in such a way that information is neither lost nor degraded upon transfer between network partners. (CWM)

  12. METHODOLOGY FOR ESTIMATING ENVIRONMENTAL LOADINGS FROM MANUFACTURE OF SYNTHETIC ORGANIC CHEMICALS

    EPA Science Inventory

    This report presents a methodology for estimating multimedia environmental loadings of a 'new' organic chemical (Section 2), the output data of which can be used to determine population exposure (within and without the manufacturing process plant battery limits) and to isolate th...

  13. Engineering Education: Environmental and Chemical Engineering or Technology Curricula--A European Perspective

    ERIC Educational Resources Information Center

    Glavic, Peter; Lukman, Rebeka; Lozano, Rodrigo

    2009-01-01

    Over recent years, universities have been incorporating sustainable development (SD) into their systems, including their curricula. This article analyses the incorporation of SD into the curricula of chemical and environmental engineering or technology bachelor degrees at universities in the European Union (EU) and European Free Trade Association…

  14. In vitro perturbations of targets in cancer hallmark processes predict rodent chemical carcinogenesis.

    PubMed

    Kleinstreuer, Nicole C; Dix, David J; Houck, Keith A; Kavlock, Robert J; Knudsen, Thomas B; Martin, Matthew T; Paul, Katie B; Reif, David M; Crofton, Kevin M; Hamilton, Kerry; Hunter, Ronald; Shah, Imran; Judson, Richard S

    2013-01-01

    Thousands of untested chemicals in the environment require efficient characterization of carcinogenic potential in humans. A proposed solution is rapid testing of chemicals using in vitro high-throughput screening (HTS) assays for targets in pathways linked to disease processes to build models for priority setting and further testing. We describe a model for predicting rodent carcinogenicity based on HTS data from 292 chemicals tested in 672 assays mapping to 455 genes. All data come from the EPA ToxCast project. The model was trained on a subset of 232 chemicals with in vivo rodent carcinogenicity data in the Toxicity Reference Database (ToxRefDB). Individual HTS assays strongly associated with rodent cancers in ToxRefDB were linked to genes, pathways, and hallmark processes documented to be involved in tumor biology and cancer progression. Rodent liver cancer endpoints were linked to well-documented pathways such as peroxisome proliferator-activated receptor signaling and TP53 and novel targets such as PDE5A and PLAUR. Cancer hallmark genes associated with rodent thyroid tumors were found to be linked to human thyroid tumors and autoimmune thyroid disease. A model was developed in which these genes/pathways function as hypothetical enhancers or promoters of rat thyroid tumors, acting secondary to the key initiating event of thyroid hormone disruption. A simple scoring function was generated to identify chemicals with significant in vitro evidence that was predictive of in vivo carcinogenicity in different rat tissues and organs. This scoring function was applied to an external test set of 33 compounds with carcinogenicity classifications from the EPA's Office of Pesticide Programs and successfully (p = 0.024) differentiated between chemicals classified as "possible"/"probable"/"likely" carcinogens and those designated as "not likely" or with "evidence of noncarcinogenicity." This model represents a chemical carcinogenicity prioritization tool supporting targeted

  15. Effect-Based Tools for Monitoring and Predicting the Ecotoxicological Effects of Chemicals in the Aquatic Environment

    PubMed Central

    Connon, Richard E.; Geist, Juergen; Werner, Inge

    2012-01-01

    Ecotoxicology faces the challenge of assessing and predicting the effects of an increasing number of chemical stressors on aquatic species and ecosystems. Herein we review currently applied tools in ecological risk assessment, combining information on exposure with expected biological effects or environmental water quality standards; currently applied effect-based tools are presented based on whether exposure occurs in a controlled laboratory environment or in the field. With increasing ecological relevance the reproducibility, specificity and thus suitability for standardisation of methods tends to diminish. We discuss the use of biomarkers in ecotoxicology including ecotoxicogenomics-based endpoints, which are becoming increasingly important for the detection of sublethal effects. Carefully selected sets of biomarkers allow an assessment of exposure to and effects of toxic chemicals, as well as the health status of organisms and, when combined with chemical analysis, identification of toxicant(s). The promising concept of “adverse outcome pathways (AOP)” links mechanistic responses on the cellular level with whole organism, population, community and potentially ecosystem effects and services. For most toxic mechanisms, however, practical application of AOPs will require more information and the identification of key links between responses, as well as key indicators, at different levels of biological organization, ecosystem functioning and ecosystem services. PMID:23112741

  16. [Predictive models for the assessment of occupational exposure to chemicals: a new challenge for employers].

    PubMed

    Gromiec, Jan Piotr; Kupczewska-Dobecka, Małgorzata; Jankowska, Agnieszka; Czerczak, Sławomir

    2013-01-01

    Employers are obliged to carry out and document the risk associated with the use of chemical substances. The best but the most expensive method is to measure workplace concentrations of chemicals. At present no "measureless" method for risk assessment is available in Poland, but predictive models for such assessments have been developed in some countries. The purpose of this work is to review and evaluate the applicability of selected predictive methods for assessing occupational inhalation exposure and related risk to check the compliance with Occupational Exposure Limits (OELs), as well as the compliance with REACH obligations. Based on the literature data HSE COSHH Essentials, EASE, ECETOC TRA, Stoffenmanager, and EMKG-Expo-Tool were evaluated. The data on validation of predictive models were also examined. It seems that predictive models may be used as a useful method for Tier 1 assessment of occupational exposure by inhalation. Since the levels of exposure are frequently overestimated, they should be considered as "rational worst cases" for selection of proper control measures. Bearing in mind that the number of available exposure scenarios and PROC categories is limited, further validation by field surveys is highly recommended. Predictive models may serve as a good tool for preliminary risk assessment and selection of the most appropriate risk control measures in Polish small and medium size enterprises (SMEs) providing that they are available in the Polish language. This also requires an extensive training of their future users. PMID:24502133

  17. Use of fish embryo toxicity tests for the prediction of acute fish toxicity to chemicals.

    PubMed

    Belanger, Scott E; Rawlings, Jane M; Carr, Gregory J

    2013-08-01

    The fish embryo test (FET) is a potential animal alternative for the acute fish toxicity (AFT) test. A comprehensive validation program assessed 20 different chemicals to understand intra- and interlaboratory variability for the FET. The FET had sufficient reproducibility across a range of potencies and modes of action. In the present study, the suitability of the FET as an alternative model is reviewed by relating FET and AFT. In total, 985 FET studies and 1531 AFT studies were summarized. The authors performed FET-AFT regressions to understand potential relationships based on physical-chemical properties, species choices, duration of exposure, chemical classes, chemical functional uses, and modes of action. The FET-AFT relationships are very robust (slopes near 1.0, intercepts near 0) across 9 orders of magnitude in potency. A recommendation for the predictive regression relationship is based on 96-h FET and AFT data: log FET median lethal concentration (LC50) = (0.989 × log fish LC50) - 0.195; n = 72 chemicals, r = 0.95, p < 0.001, LC50 in mg/L. A similar, not statistically different regression was developed for the entire data set (n = 144 chemicals, unreliable studies deleted). The FET-AFT regressions were robust for major chemical classes with suitably large data sets. Furthermore, regressions were similar to those for large groups of functional chemical categories such as pesticides, surfactants, and industrial organics. Pharmaceutical regressions (n = 8 studies only) were directionally correct. The FET-AFT relationships were not quantitatively different from acute fish-acute fish toxicity relationships with the following species: fathead minnow, rainbow trout, bluegill sunfish, Japanese medaka, and zebrafish. The FET is scientifically supportable as a rational animal alternative model for ecotoxicological testing of acute toxicity of chemicals to fish. PMID:23606235

  18. Environmental stability of chemically amplified resists: proposing an industry standard methodology for testing

    NASA Astrophysics Data System (ADS)

    Dean, Kim R.; Kishkovich, Oleg P.

    2000-06-01

    The authors propose the establishment of a new industry standard methodology for testing the environmental stability of chemically amplified chemical resists. Preparatory to making this proposal, they developed a pertinent test apparatus and test procedure that might be used uniformly as an industry-wide best practice. To demonstrate and validate their proposed methodology, the authors subjected two different 193 nm chemically amplified photoresists to test conditions in the 'torture chamber,' simulating actual lithographic environmental scenarios. Depending on the variables of each test run (e.g., different resists, different resist thicknesses, different pollutants, different concentrations, and different humidity levels), a variety of defects were noted and described quantitatively. Of the three contaminants tested, ammonia had the strongest effect. The thin resists were more strongly affected by the contamination.

  19. The Tox21 robotic platform for the assessment of environmental chemicals--from vision to reality.

    PubMed

    Attene-Ramos, Matias S; Miller, Nicole; Huang, Ruili; Michael, Sam; Itkin, Misha; Kavlock, Robert J; Austin, Christopher P; Shinn, Paul; Simeonov, Anton; Tice, Raymond R; Xia, Menghang

    2013-08-01

    Since its establishment in 2008, the US Tox21 inter-agency collaboration has made great progress in developing and evaluating cellular models for the evaluation of environmental chemicals as a proof of principle. Currently, the program has entered its production phase (Tox21 Phase II) focusing initially on the areas of modulation of nuclear receptors and stress response pathways. During Tox21 Phase II, the set of chemicals to be tested has been expanded to nearly 10,000 (10K) compounds and a fully automated screening platform has been implemented. The Tox21 robotic system combined with informatics efforts is capable of screening and profiling the collection of 10K environmental chemicals in triplicate in a week. In this article, we describe the Tox21 screening process, compound library preparation, data processing, and robotic system validation. PMID:23732176

  20. Predicting Formation Damage in Aquifer Thermal Energy Storage Systems Utilizing a Coupled Hydraulic-Thermal-Chemical Reservoir Model

    NASA Astrophysics Data System (ADS)

    Müller, Daniel; Regenspurg, Simona; Milsch, Harald; Blöcher, Guido; Kranz, Stefan; Saadat, Ali

    2014-05-01

    In aquifer thermal energy storage (ATES) systems, large amounts of energy can be stored by injecting hot water into deep or intermediate aquifers. In a seasonal production-injection cycle, water is circulated through a system comprising the porous aquifer, a production well, a heat exchanger and an injection well. This process involves large temperature and pressure differences, which shift chemical equilibria and introduce or amplify mechanical processes. Rock-fluid interaction such as dissolution and precipitation or migration and deposition of fine particles will affect the hydraulic properties of the porous medium and may lead to irreversible formation damage. In consequence, these processes determine the long-term performance of the ATES system and need to be predicted to ensure the reliability of the system. However, high temperature and pressure gradients and dynamic feedback cycles pose challenges on predicting the influence of the relevant processes. Within this study, a reservoir model comprising a coupled hydraulic-thermal-chemical simulation was developed based on an ATES demonstration project located in the city of Berlin, Germany. The structural model was created with Petrel, based on data available from seismic cross-sections and wellbores. The reservoir simulation was realized by combining the capabilities of multiple simulation tools. For the reactive transport model, COMSOL Multiphysics (hydraulic-thermal) and PHREEQC (chemical) were combined using the novel interface COMSOL_PHREEQC, developed by Wissmeier & Barry (2011). It provides a MATLAB-based coupling interface between both programs. Compared to using COMSOL's built-in reactive transport simulator, PHREEQC additionally calculates adsorption and reaction kinetics and allows the selection of different activity coefficient models in the database. The presented simulation tool will be able to predict the most important aspects of hydraulic, thermal and chemical transport processes relevant to

  1. Uniting Cheminformatics and Chemical Theory To Predict the Intrinsic Aqueous Solubility of Crystalline Druglike Molecules

    PubMed Central

    2014-01-01

    We present four models of solution free-energy prediction for druglike molecules utilizing cheminformatics descriptors and theoretically calculated thermodynamic values. We make predictions of solution free energy using physics-based theory alone and using machine learning/quantitative structure–property relationship (QSPR) models. We also develop machine learning models where the theoretical energies and cheminformatics descriptors are used as combined input. These models are used to predict solvation free energy. While direct theoretical calculation does not give accurate results in this approach, machine learning is able to give predictions with a root mean squared error (RMSE) of ∼1.1 log S units in a 10-fold cross-validation for our Drug-Like-Solubility-100 (DLS-100) dataset of 100 druglike molecules. We find that a model built using energy terms from our theoretical methodology as descriptors is marginally less predictive than one built on Chemistry Development Kit (CDK) descriptors. Combining both sets of descriptors allows a further but very modest improvement in the predictions. However, in some cases, this is a statistically significant enhancement. These results suggest that there is little complementarity between the chemical information provided by these two sets of descriptors, despite their different sources and methods of calculation. Our machine learning models are also able to predict the well-known Solubility Challenge dataset with an RMSE value of 0.9–1.0 log S units. PMID:24564264

  2. Environmental impact of industrial sludge stabilization/solidification products: chemical or ecotoxicological hazard evaluation?

    PubMed

    Silva, Marcos A R; Testolin, Renan C; Godinho-Castro, Alcione P; Corrêa, Albertina X R; Radetski, Claudemir M

    2011-09-15

    Nowadays, the classification of industrial solid wastes is not based on risk analysis, thus the aim of this study was to compare the toxicity classifications based on the chemical and ecotoxicological characterization of four industrial sludges submitted to a two-step stabilization/solidification (S/S) processes. To classify S/S products as hazardous or non-hazardous, values cited in Brazilian chemical waste regulations were adopted and compared to the results obtained with a battery of biotests (bacteria, alga and daphnids) which were carried out with soluble and leaching fractions. In some cases the hazardous potential of industrial sludge was underestimated, since the S/S products obtained from the metal-mechanics and automotive sludges were chemically classified as non-hazardous (but non-inert) when the ecotoxicity tests showed toxicity values for leaching and soluble fractions. In other cases, the environmental impact was overestimated, since the S/S products of the textile sludges were chemically classified as non-inert (but non-hazardous) while ecotoxicity tests did not reveal any effects on bacteria, daphnids and algae. From the results of the chemical and ecotoxicological analyses we concluded that: (i) current regulations related to solid waste classification based on leachability and solubility tests do not ensure reliable results with respect to environmental protection; (ii) the two-step process was very effective in terms of metal immobilization, even at higher metal-concentrations. Considering that S/S products will be subject to environmental conditions, it is of great interest to test the ecotoxicity potential of the contaminants release from these products with a view to avoiding environmental impact given the unreliability of ecotoxicological estimations originating from chemical analysis. PMID:21724330

  3. Three-dimensional prediction of soil physical, chemical, and hydrological properties in a forested catchment of the Santa Catalina CZO

    NASA Astrophysics Data System (ADS)

    Shepard, C.; Holleran, M.; Lybrand, R. A.; Rasmussen, C.

    2014-12-01

    Understanding critical zone evolution and function requires an accurate assessment of local soil properties. Two-dimensional (2D) digital soil mapping provides a general assessment of soil characteristics across a sampled landscape, but lacks the ability to predict soil properties with depth. The utilization of mass-preserving spline functions enable the extrapolation of soil properties with depth, extending predictive functions to three-dimensions (3D). The present study was completed in the Marshall Gulch (MG) catchment, located in the Santa Catalina Mountains, 30 km northwest of Tucson, Arizona, as part of the Santa Catalina-Jemez Mountains Critical Zone Observatory. Twenty-four soil pits were excavated and described following standard procedures. Mass-preserving splines were used to extrapolate mass carbon (kg C m-2); percent clay, silt, and sand (%); sodium mass flux (kg Na m-2); and pH for 24 sampled soil pits in 1-cm depth increments. Saturated volumetric water content (θs) and volumetric water content at 10 kPa (θ10) were predicted using ROSETTA and established empirical relationships. The described profiles were all sampled to differing depths; to compensate for the unevenness of the profile descriptions, the soil depths were standardized from 0.0 to 1.0 and then split into five equal standard depth sections. A logit-transformation was used to normalize the target variables. Step-wise regressions were calculated using available environmental covariates to predict the properties of each variable across the catchment in each depth section, and interpolated model residuals added back to the predicted layers to generate the final soil maps. Logit-transformed R2 for the predictive functions varied widely, ranging from 0.20 to 0.79, with logit-transformed RMSE ranging from 0.15 to 2.77. The MG catchment was further classified into clusters with similar properties based on the environmental covariates, and representative depth functions for each target variable

  4. Environmental Chemical Exposures and Autism Spectrum Disorders: A Review of the Epidemiological Evidence

    PubMed Central

    Kalkbrenner, Amy E.; Schmidt, Rebecca J.; Penlesky, Annie C.

    2016-01-01

    In the past decade, the number of epidemiological publications addressing environmental chemical exposures and autism has grown tremendously. These studies are important because it is now understood that environmental factors play a larger role in causing autism than previously thought and because they address modifiable risk factors that may open up avenues for the primary prevention of the disability associated with autism. In this review, we covered studies of autism and estimates of exposure to tobacco, air pollutants, volatile organic compounds and solvents, metals (from air, occupation, diet, dental amalgams, and thimerosal-containing vaccines), pesticides, and organic endocrine-disrupting compounds such as flame retardants, non-stick chemicals, phthalates, and bisphenol A. We included studies that had individual-level data on autism, exposure measures pertaining to pregnancy or the 1st year of life, valid comparison groups, control for confounders, and adequate sample sizes. Despite the inherent error in the measurement of many of these environmental exposures, which is likely to attenuate observed associations, some environmental exposures showed associations with autism, especially traffic-related air pollutants, some metals, and several pesticides, with suggestive trends for some volatile organic compounds (e.g., methylene chloride, trichloroethylene, and styrene) and phthalates. Whether any of these play a causal role requires further study. Given the limited scope of these publications, other environmental chemicals cannot be ruled out, but have not yet been adequately studied. Future research that addresses these and additional environmental chemicals, including their most common routes of exposures, with accurate exposure measurement pertaining to several developmental windows, is essential to guide efforts for the prevention of the neurodevelopmental damage that manifests in autism symptoms. PMID:25199954

  5. Environmental chemical exposures and autism spectrum disorders: a review of the epidemiological evidence.

    PubMed

    Kalkbrenner, Amy E; Schmidt, Rebecca J; Penlesky, Annie C

    2014-11-01

    In the past decade, the number of epidemiological publications addressing environmental chemical exposures and autism has grown tremendously. These studies are important because it is now understood that environmental factors play a larger role in causing autism than previously thought and because they address modifiable risk factors that may open up avenues for the primary prevention of the disability associated with autism. In this review, we covered studies of autism and estimates of exposure to tobacco, air pollutants, volatile organic compounds and solvents, metals (from air, occupation, diet, dental amalgams, and thimerosal-containing vaccines), pesticides, and organic endocrine-disrupting compounds such as flame retardants, non-stick chemicals, phthalates, and bisphenol A. We included studies that had individual-level data on autism, exposure measures pertaining to pregnancy or the 1st year of life, valid comparison groups, control for confounders, and adequate sample sizes. Despite the inherent error in the measurement of many of these environmental exposures, which is likely to attenuate observed associations, some environmental exposures showed associations with autism, especially traffic-related air pollutants, some metals, and several pesticides, with suggestive trends for some volatile organic compounds (e.g., methylene chloride, trichloroethylene, and styrene) and phthalates. Whether any of these play a causal role requires further study. Given the limited scope of these publications, other environmental chemicals cannot be ruled out, but have not yet been adequately studied. Future research that addresses these and additional environmental chemicals, including their most common routes of exposures, with accurate exposure measurement pertaining to several developmental windows, is essential to guide efforts for the prevention of the neurodevelopmental damage that manifests in autism symptoms. PMID:25199954

  6. Prediction of 31P nuclear magnetic resonance chemical shifts for phosphines

    NASA Astrophysics Data System (ADS)

    Tong, Jianbo; Liu, Shuling; Zhang, Shengwan; Li, Shengshi Z.

    2007-07-01

    Quantitative relationships of the 31P NMR chemical shifts of the phosphorus atoms in 291 phosphines with the atomic ionicity index (INI) and stereoscopic effect parameters ( ɛα, ɛβ, ɛγ) were primarily investigated in this paper for modeling some fundamental quantitative structure-spectroscopy relationships (QSSR). The results indicated that the 31P NMR chemical shifts of phosphines can be described as the quantitative equation by multiple linear regression (MLR): δp (ppm) = -174.0197 - 2.6724 INI + 40.4755 ɛα + 15.1141 ɛβ - 3.1858 ɛγ, correlation coefficient R = 0.9479, root mean square error (rms) = 13.9, and cross-validated predictive correlation coefficient was found by using the leave-one-out procedure to be Q2 = 0.8919. Furthermore, through way of random sampling, the estimative stability and the predictive power of the proposed MLR model were examined by constructing data set randomly into both the internal training set and external test set of 261 and 30 compounds, respectively, and then the chemical shifts were estimated and predicted with the training correlation coefficient R = 0.9467 and rms = 13.4 and the external predicting correlation coefficient Qext = 0.9598 and rms = 10.8. A partial least square model was developed that produced R = 0.9466, Q = 0.9407 and Qext = 0.9599, respectively. Those good results provided a new, simple, accurate and efficient methodology for calculating 31P NMR chemical shifts of phosphines.

  7. Computational reverse chemical ecology: Virtual screening and predicting behaviorally active semiochemicals for Bactrocera dorsalis

    PubMed Central

    2014-01-01

    Background Semiochemical is a generic term used for a chemical substance that influences the behaviour of an organism. It is a common term used in the field of chemical ecology to encompass pheromones, allomones, kairomones, attractants and repellents. Insects have mastered the art of using semiochemicals as communication signals and rely on them to find mates, host or habitat. This dependency of insects on semiochemicals has allowed chemical ecologists to develop environment friendly pest management strategies. However, discovering semiochemicals is a laborious process that involves a plethora of behavioural and analytical techniques, making it expansively time consuming. Recently, reverse chemical ecology approach using odorant binding proteins (OBPs) as target for elucidating behaviourally active compounds is gaining eminence. In this scenario, we describe a “computational reverse chemical ecology” approach for rapid screening of potential semiochemicals. Results We illustrate the high prediction accuracy of our computational method. We screened 25 semiochemicals for their binding potential to a GOBP of B. dorsalis using molecular docking (in silico) and molecular dynamics. Parallely, compounds were subjected to fluorescent quenching assays (Experimental). The correlation between in silico and experimental data were significant (r2 = 0.9408; P < 0.0001). Further, predicted compounds were subjected to behavioral bioassays and were found to be highly attractive to insects. Conclusions The present study provides a unique methodology for rapid screening and predicting behaviorally active semiochemicals. This methodology may be developed as a viable approach for prospecting active semiochemicals for pest control, which otherwise is a laborious process. PMID:24640964

  8. Environmental properties and aquatic hazard assessment of anionic surfactants: physico-chemical, environmental fate and ecotoxicity properties.

    PubMed

    Könnecker, Gustav; Regelmann, Jürgen; Belanger, Scott; Gamon, Konrad; Sedlak, Richard

    2011-09-01

    This paper summarizes the environmental hazard assessment of physicochemical properties, environmental fate and behavior and the ecotoxicity of a category of 61 anionic surfactants (ANS), comprised of alkyl sulfates (AS), primary alkane sulfonates (PAS) and alpha-olefin sulfonates (AOS) under the High Production Volume Chemicals Program of the Organisation for Economic Co-operation and Development (OECD). The most important common structural feature of the category members examined here is the presence of a predominantly linear aliphatic hydrocarbon chain with a polar sulfate or sulfonate group, neutralized with a counter-ion. The hydrophobic hydrocarbon chain (with a length between C(8) and C(18)) and the polar sulfate or sulfonate groups confer surfactant properties and enable the commercial use of these substances as anionic surfactants. The close structural similarities lead to physico-chemical properties and environmental fate characteristics which follow a regular pattern and justify the applied read-across within a category approach. Common physical and/or biological properties result in structurally similar breakdown products and are, together with the surfactant properties, responsible for similar environmental behavior. The structural similarities result in the same mode of ecotoxic action. Within each of the three sub-categories of ANS the most important parameter influencing ecotoxicity is the varying length of the alkyl chain. Although the counter-ion may also influence the physico-chemical properties, there is no indication that it significantly affects chemical reactivity, environmental fate and behavior or ecotoxicity of these chemicals. Deduced from physico-chemical and surfactancy properties, the main target compartment for the substances of the ANS category is the hydrosphere. They are quantitatively removed in waste water treatment plants, mainly by biodegradation. Quantitative removal in biological treatment plants is reflected by low AS

  9. Prediction of Toxic Pollution Resulting From Warfare Chemical Munitions Dumped In The Sea

    NASA Astrophysics Data System (ADS)

    Korotenko, K. A.

    A 3-D high-resolution Hydrodynamic/Transport model was developed to predict chemical pollution in marine environment with a special reference to warfare chem- icals dumped in the Baltic Sea. The Flow module was developed on the basis of the Princeton Ocean Model (POM). The grid step is chosen at 1/15Deg and 1/30/Deg along x- and y-axes (that is, about 4.0 km and 3.7 km, respectively). The model grid covers the Baltic from 9.3 to 24.6E and from 53.0 to 60.2N. The Transport module of the model takes the predetermined velocity field and uses the random walk technique to predict the motion of individual particles, the sum of which constitutes a consid- ered chemical agent. Several different approaches for modeling are used for different kind of chemical agents. Basic processes affecting the chemicals to be modeled are hydrolysis, solubility, and microbiological destruction. All available toxicity data re- garding the chemical warfare agents of primary concern and the expected degradation products in the Baltic environment were gathered and summarized. This information was used to compare the toxicities of the different agents and their degradation prod- ucts and to decide which chemicals may represent a toxic threat to the environment. The model was adapted to be used for chemical agents with various characteristics and behavior (as Sarin, Lewsite, Musturd, etc.) in seawaters. Special algorithms are developed to describe nonlinear reactions producing toxic and nontoxic products in result of the warfare agent destruction. Sources of chemical pollution in the sea are considered as steady state (chronic) point and/or distributed releases because princi- pally different two methods were used in dumping CW: 1) concentrated dumping of containers, shells, and bombs together with ships; 2) dispersed dumping of individual containers, shells and aircraft bombs from moving vessels. The model was run with four most recurrent climatic wind fields for the Bornholm and Gotland

  10. Predicting chemical kinetics with computational chemistry: is QOO&(H)rarr;HOQO important in fuel ignition?

    NASA Astrophysics Data System (ADS)

    Green, William H.; Wijaya, Catherina D.; Yelvington, Paul E.; Sumathi, R.

    An overview of predictive chemical kinetics is presented, with an application to the simulation and design of homogeneous charge compression ignition (HCCI) engines. The engine simulations are sensitive to the details of hydroperoxyalkyl (QOOH) radical chemistry, which are only partially understood, and there is a significant discrepancy between the simulations and experiment that limits the usefulness of the simulations. One possible explanation is that QOOH decomposes by other channels not considered in existing combustion chemistry models. Rate constants for one of these neglected channels, the intramolecular radical attack on the QOOH peroxide linkage to form hydroxyalkoxyl (HOQO) radicals, are predicted using quantum chemistry (CBS-QB3), to test whether or not this proposed channel can explain the observed discrepancies in the engine simulations. Although this channel has a significant rate, the competing attack on the other O atom in the peroxide to form a cyclic ether+OH is computed to be an order of magnitude faster, so the HOQO channel does not appear to be fast enough to explain the discrepancy. Definitive judgement on the importance of this reaction channel will require a careful reconsideration of all the coupled chemically activated QOOH reaction channels using modern predictive chemical kinetics software.

  11. Characterization Of Environmentally Relevant Chemical And Physical Properties Of Silver Nano-Particles

    EPA Science Inventory

    Understanding and predicting the fate and transport of nano-materials in the environment requires a detailed characterization of the chemical and physical properties that control fate and transport. In the current study, we have evaluated the surface charge, aggregation potentia...

  12. Simulating Microdosimetry of Environmental Chemicals for EPA’s Virtual Liver

    EPA Science Inventory

    US EPA Virtual Liver (v-Liver) is a cellular systems model of hepatic tissues aimed at predicting chemical-induced adverse effects through agent-based modeling. A primary objective of the project is to extrapolate in vitro data to in vivo outcomes. Agent-based approaches to tissu...

  13. Predicting aquatic toxicities of chemical pesticides in multiple test species using nonlinear QSTR modeling approaches.

    PubMed

    Basant, Nikita; Gupta, Shikha; Singh, Kunwar P

    2015-11-01

    In this study, we established nonlinear quantitative-structure toxicity relationship (QSTR) models for predicting the toxicities of chemical pesticides in multiple aquatic test species following the OECD (Organization for Economic Cooperation and Development) guidelines. The decision tree forest (DTF) and decision tree boost (DTB) based QSTR models were constructed using a pesticides toxicity dataset in Selenastrum capricornutum and a set of six descriptors. Other six toxicity data sets were used for external validation of the constructed QSTRs. Global QSTR models were also constructed using the combined dataset of all the seven species. The diversity in chemical structures and nonlinearity in the data were evaluated. Model validation was performed deriving several statistical coefficients for the test data and the prediction and generalization abilities of the QSTRs were evaluated. Both the QSTR models identified WPSA1 (weighted charged partial positive surface area) as the most influential descriptor. The DTF and DTB QSTRs performed relatively better than the single decision tree (SDT) and support vector machines (SVM) models used as a benchmark here and yielded R(2) of 0.886 and 0.964 between the measured and predicted toxicity values in the complete dataset (S. capricornutum). The QSTR models applied to six other aquatic species toxicity data yielded R(2) of >0.92 (DTF) and >0.97 (DTB), respectively. The prediction accuracies of the global models were comparable with those of the S. capricornutum models. The results suggest for the appropriateness of the developed QSTR models to reliably predict the aquatic toxicity of chemicals and can be used for regulatory purpose. PMID:26142614

  14. The impact of decreased environmental reward in predicting depression severity: support for behavioral theories of depression.

    PubMed

    Carvalho, John; Trent, Lindsay R; Hopko, Derek R

    2011-01-01

    Insufficient response-contingent positive reinforcement and decreased environmental reward have been hypothesized to directly contribute to the onset and persistence of depression. The present study examined whether decreased environmental reward was significantly associated with self-reported depression and diagnosed major depression relative to other well-established risk factors that included gender, stressful life events, traumatic life events, childhood maltreatment, and cognitive vulnerability. Based on hierarchical regression analyses, all variables except gender were significantly associated with self-reported depression, and stressful life events, cognitive vulnerability, and decreased environmental reward were associated with diagnosed depression. Of all variables, decreased environmental reward was most strongly related to both self-reported depression and diagnosed clinical depression. The incremental validity of environmental reward in predicting self-reported depression and clinical depression was established, accounting for significant unique variance (12%) in each regression equation. Implications for conceptualizing and treating depression are discussed. PMID:21502776

  15. [Physico-chemical profiling of centrally acting molecules for prediction of pharmacokinetic properties].

    PubMed

    Deák, Katalin

    2008-01-01

    Physico-chemical profiling is a fundamental tool at the early stage of drug discovery in screening drug-like candidates. Complex physico-chemical profiling, including molecular properties such as solubility, ionization, lipophilicity and permeability, has been found to be of predictive power in ADME (absorption, distribution, metabolism, elimination). In the present thesis work, the physico-chemical properties of centrally acting compounds were investigated. We determined the protonation constants (K), the partition coeffitient in octanol/water (Poct) and cyclohexane/water (Pch) systems of antidepressive sertraline and 15 antipsychotic piperidine and piperazine derivatives and calculated the delta logP (logPoct-logPch) values of the molecules. Due to the poor water solubility of the compounds potentiometry using the "co-solvent" technique was applied for the determination of the protonation constants. The logP values were measured by the dual-phase potentiometric titration in octanol/water system and the traditional shake-flask method was used in cyclohexane/water system. Highly precise physico-chemical data were obtained by these validated methods. The relationship between the structure of the molecules and the physico-chemical data was investigated. The pharmacokinetic properties of the compounds were predicted by the physico-chemical parameters. Linear relationship has been found between the brain penetration characterized by the logBB values and the delta logP values. The validity of the equation was controlled by the delta logP and the logBB values of sertraline. PMID:18986088

  16. Evaluation of the performance of four chemical transport models in predicting the aerosol chemical composition in Europe in 2005

    NASA Astrophysics Data System (ADS)

    Prank, Marje; Sofiev, Mikhail; Tsyro, Svetlana; Hendriks, Carlijn; Semeena, Valiyaveetil; Vazhappilly Francis, Xavier; Butler, Tim; Denier van der Gon, Hugo; Friedrich, Rainer; Hendricks, Johannes; Kong, Xin; Lawrence, Mark; Righi, Mattia; Samaras, Zissis; Sausen, Robert; Kukkonen, Jaakko; Sokhi, Ranjeet

    2016-05-01

    Four regional chemistry transport models were applied to simulate the concentration and composition of particulate matter (PM) in Europe for 2005 with horizontal resolution ~ 20 km. The modelled concentrations were compared with the measurements of PM chemical composition by the European Monitoring and Evaluation Programme (EMEP) monitoring network. All models systematically underestimated PM10 and PM2.5 by 10-60 %, depending on the model and the season of the year, when the calculated dry PM mass was compared with the measurements. The average water content at laboratory conditions was estimated between 5 and 20 % for PM2.5 and between 10 and 25 % for PM10. For majority of the PM chemical components, the relative underestimation was smaller than it was for total PM, exceptions being the carbonaceous particles and mineral dust. Some species, such as sea salt and NO3-, were overpredicted by the models. There were notable differences between the models' predictions of the seasonal variations of PM, mainly attributable to different treatments or omission of some source categories and aerosol processes. Benzo(a)pyrene concentrations were overestimated by all the models over the whole year. The study stresses the importance of improving the models' skill in simulating mineral dust and carbonaceous compounds, necessity for high-quality emissions from wildland fires, as well as the need for an explicit consideration of aerosol water content in model-measurement comparison.

  17. Origins of behavioral teratology and distinctions between research on pharmaceutical agents and environmental/industrial chemicals

    SciTech Connect

    Nelson, B.K. )

    1990-07-01

    Most behavioral teratology studies have focused on pharmaceutical agents. Investigations of developmental toxicity are lacking for the majority of the nearly 100,000 industrial chemicals currently in use. Only some three dozen chemicals have been examined for behavioral/neurochemical deviations in offspring following maternal exposures. Examination of industrial agents for developmental toxicity, therefore, remains a major public health need. Most developmental research addresses the effects of pharmaceutical agents, but these studies frequently do not address environmental/industrial concerns due to fundamental differences in experimental methodology. The route, duration, and timing of exposure, usefulness of fostering of offspring, and potential concomitant exposure of both parents are all variables which should be treated differently in research on industrial chemicals as opposed to pharmaceutical agents. After briefly tracking the history of behavioral teratology, the present paper discusses differences in application of behavioral teratological principles to industrial versus pharmaceutical agents, and points to the largely untested number of industrial chemicals needing investigation. 57 references.

  18. Prediction of Chemical Carcinogenicity in Rodents from in vitro Genetic Toxicity Assays

    NASA Astrophysics Data System (ADS)

    Tennant, Raymond W.; Margolin, Barry H.; Shelby, Michael D.; Zeiger, Errol; Haseman, Joseph K.; Spalding, Judson; Caspary, William; Resnick, Michael; Stasiewicz, Stanley; Anderson, Beth; Minor, Robert

    1987-05-01

    Four widely used in vitro assays for genetic toxicity were evaluated for their ability to predict the carcinogenicity of selected chemicals in rodents. These assays were mutagenesis in Salmonella and mouse lymphoma cells and chromosome aberrations and sister chromatid exchanges in Chinese hamster ovary cells. Seventy-three chemicals recently tested in 2-year carcinogenicity studies conducted by the National Cancer Institute and the National Toxicology Program were used in this evaluation. Test results from the four in vitro assays did not show significant differences in individual concordance with the rodent carcinogenicity results; the concordance of each assay was approximately 60 percent. Within the limits of this study there was no evidence of complementarity among the four assays, and no battery of tests constructed from these assays improved substantially on the overall performance of the Salmonella assay. The in vitro assays which represented a range of three cell types and four end points did show substantial agreement among themselves, indicating that chemicals positive in one in vitro assay tended to be positive in the other in vitro assays. To help put this project into its proper context, we emphasize certain features of the study: 1) Standard protocols were used to mimic the major use of STTs worldwide--screening for mutagens and carcinogens; no attempt was made to optimize protocols for specific chemicals. 2) The 73 NTP chemicals and their 60% incidence of carcinogenicity are probably not representative of the universe of chemicals but rather reflect the recent chemical selection process for the NTP carcinogenicity assay. 3) The small, diverse group of chemicals precludes a meaningful evaluation of the predictive utility of chemical structure information. 4) The NTP is currently testing these same 73 chemicals in two in vivo STTs for chromosomal effects. 5) Complete data for an additional group of 30 to 40 NTP chemicals will be gathered on

  19. Prediction of cancer cell sensitivity to natural products based on genomic and chemical properties.

    PubMed

    Yue, Zhenyu; Zhang, Wenna; Lu, Yongming; Yang, Qiaoyue; Ding, Qiuying; Xia, Junfeng; Chen, Yan

    2015-01-01

    Natural products play a significant role in cancer chemotherapy. They are likely to provide many lead structures, which can be used as templates for the construction of novel drugs with enhanced antitumor activity. Traditional research approaches studied structure-activity relationship of natural products and obtained key structural properties, such as chemical bond or group, with the purpose of ascertaining their effect on a single cell line or a single tissue type. Here, for the first time, we develop a machine learning method to comprehensively predict natural products responses against a panel of cancer cell lines based on both the gene expression and the chemical properties of natural products. The results on two datasets, training set and independent test set, show that this proposed method yields significantly better prediction accuracy. In addition, we also demonstrate the predictive power of our proposed method by modeling the cancer cell sensitivity to two natural products, Curcumin and Resveratrol, which indicate that our method can effectively predict the response of cancer cell lines to these two natural products. Taken together, the method will facilitate the identification of natural products as cancer therapies and the development of precision medicine by linking the features of patient genomes to natural product sensitivity. PMID:26644976

  20. Joint actions of environmental nonionizing electromagnetic fields and chemical pollution in cancer promotion.

    PubMed Central

    Adey, W R

    1990-01-01

    Studies of environmental electromagnetic (EM) field interactions in tissues have contributed to a new understanding of both normal growth and the biology of cancer in cell growth. From cancer research comes a floodtide of new knowledge about the disruption of communication by cancer-promoting chemicals with an onset of unregulated growth. Bioelectromagnetic research reveals clear evidence of joint actions at cell membranes of chemical cancer promoters and environmental electromagnetic fields. The union of these two disciplines has resulted in the first major new approach to tumor formation in 75 years, directing attention to dysfunctions in inward and outward streams of signals at cell membranes, rather than to damage DNA in cell nuclei, and to synergic actions of chemical pollutants and environmental electromagnetic fields. We are witnesses and, in great measure, participants in one of the great revolutions in the history of biology. In little more than a century, we have moved from organs, to tissues, to cells, and finally to the molecules that are the elegant fabric of living tissues. Today, we stand at a new frontier. It may be more difficult to comprehend, but it is far more significant; for it is at the atomic level, rather than the molecular, that physical, rather than chemical, processes appear to shape the flow of signals that are at the essence of living matter. To pursue these problems in the environment and in the laboratory, our needs for further research with appropriate budgets are great.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2205491

  1. Environmental Chemical Assessment in Clinical Practice: Unveiling the Elephant in the Room

    PubMed Central

    Bijlsma, Nicole; Cohen, Marc M.

    2016-01-01

    A growing body of evidence suggests chemicals present in air, water, soil, food, building materials and household products are toxicants that contribute to the many chronic diseases typically seen in routine medical practice. Yet, despite calls from numerous organisations to provide clinicians with more training and awareness in environmental health, there are multiple barriers to the clinical assessment of toxic environmental exposures. Recent developments in the fields of systems biology, innovative breakthroughs in biomedical research encompassing the “-omics” fields, and advances in mobile sensing, peer-to-peer networks and big data, provide tools that future clinicians can use to assess environmental chemical exposures in their patients. There is also a need for concerted action at all levels, including actions by individual patients, clinicians, medical educators, regulators, government and non-government organisations, corporations and the wider civil society, to understand the “exposome” and minimise the extent of toxic exposures on current and future generations. Clinical environmental chemical risk assessment may provide a bridge between multiple disciplines that uses new technologies to herald in a new era in personalised medicine that unites clinicians, patients and civil society in the quest to understand and master the links between the environment and human health. PMID:26848668

  2. Environmental Chemical Assessment in Clinical Practice: Unveiling the Elephant in the Room.

    PubMed

    Bijlsma, Nicole; Cohen, Marc M

    2016-02-01

    A growing body of evidence suggests chemicals present in air, water, soil, food, building materials and household products are toxicants that contribute to the many chronic diseases typically seen in routine medical practice. Yet, despite calls from numerous organisations to provide clinicians with more training and awareness in environmental health, there are multiple barriers to the clinical assessment of toxic environmental exposures. Recent developments in the fields of systems biology, innovative breakthroughs in biomedical research encompassing the "-omics" fields, and advances in mobile sensing, peer-to-peer networks and big data, provide tools that future clinicians can use to assess environmental chemical exposures in their patients. There is also a need for concerted action at all levels, including actions by individual patients, clinicians, medical educators, regulators, government and non-government organisations, corporations and the wider civil society, to understand the "exposome" and minimise the extent of toxic exposures on current and future generations. Clinical environmental chemical risk assessment may provide a bridge between multiple disciplines that uses new technologies to herald in a new era in personalised medicine that unites clinicians, patients and civil society in the quest to understand and master the links between the environment and human health. PMID:26848668

  3. International Federation of Gynecology and Obstetrics opinion on reproductive health impacts of exposure to toxic environmental chemicals.

    PubMed

    Di Renzo, Gian Carlo; Conry, Jeanne A; Blake, Jennifer; DeFrancesco, Mark S; DeNicola, Nathaniel; Martin, James N; McCue, Kelly A; Richmond, David; Shah, Abid; Sutton, Patrice; Woodruff, Tracey J; van der Poel, Sheryl Ziemin; Giudice, Linda C

    2015-12-01

    Exposure to toxic environmental chemicals during pregnancy and breastfeeding is ubiquitous and is a threat to healthy human reproduction. There are tens of thousands of chemicals in global commerce, and even small exposures to toxic chemicals during pregnancy can trigger adverse health consequences. Exposure to toxic environmental chemicals and related health outcomes are inequitably distributed within and between countries; universally, the consequences of exposure are disproportionately borne by people with low incomes. Discrimination, other social factors, economic factors, and occupation impact risk of exposure and harm. Documented links between prenatal exposure to environmental chemicals and adverse health outcomes span the life course and include impacts on fertility and pregnancy, neurodevelopment, and cancer. The global health and economic burden related to toxic environmental chemicals is in excess of millions of deaths and billions of dollars every year. On the basis of accumulating robust evidence of exposures and adverse health impacts related to toxic environmental chemicals, the International Federation of Gynecology and Obstetrics (FIGO) joins other leading reproductive health professional societies in calling for timely action to prevent harm. FIGO recommends that reproductive and other health professionals advocate for policies to prevent exposure to toxic environmental chemicals, work to ensure a healthy food system for all, make environmental health part of health care, and champion environmental justice. PMID:26433469

  4. Characterizing the Estrogenic Potential of 1060 Environmental Chemicals by Assessing Growth Kinetics in T47D Cells

    EPA Science Inventory

    In order to detect environmental chemicals that pose a risk of endocrine disruption, high-throughput screening (HTS) tests capable of testing thousands of environmental chemicals are needed. Alteration of estrogen signaling has been implicated in a variety of adverse health effec...

  5. Environmentally adaptive acoustic transmission loss prediction in turbulent and nonturbulent atmospheres.

    PubMed

    Wichern, Gordon; Azimi-Sadjadi, Mahmood R; Mungiole, Michael

    2007-05-01

    An environmentally adaptive system for prediction of acoustic transmission loss (TL) in the atmosphere is developed in this paper. This system uses several back propagation neural network predictors, each corresponding to a specific environmental condition. The outputs of the expert predictors are combined using a fuzzy confidence measure and a nonlinear fusion system. Using this prediction methodology the computational intractability of traditional acoustic model-based approaches is eliminated. The proposed TL prediction system is tested on two synthetic acoustic data sets for a wide range of geometrical, source and environmental conditions including both nonturbulent and turbulent atmospheres. Test results of the system showed root mean square (RMS) errors of 1.84 dB for the nonturbulent and 1.36 dB for the turbulent conditions, respectively, which are acceptable levels for near real-time performance. Additionally, the environmentally adaptive system demonstrated improved TL prediction accuracy at high frequencies and large values of horizontal separation between source and receiver. PMID:17521880

  6. Investigation of the relative significance of individual environmental parameters to sonar performance prediction uncertainty

    NASA Astrophysics Data System (ADS)

    Wang, Ding; Xu, Wen; Schmidt, Henrik

    2002-11-01

    A large part of sonar performance prediction uncertainty is associated with the uncertain ocean acoustic environment. Optimal in situ measurement strategy, i.e. adaptively capturing the most critical uncertain environmental parameters within operational constrains can minimize the sonar performance prediction uncertainty. Understanding the relative significance of individual environmental parameters to sonar performance prediction uncertainty is fundamental to the heuristics to determine the most critical environmental parameters. Based on this understanding, the optimal parametrization of ocean acoustic environments can be defined, which will significantly simplify the adaptively sampling pattern. As an example, the matched-field processing is used to localize an unknown sound source position in a realistic ocean environment. Typical shallow water environmental models are used with some of the properties being stochastic variables. The ratio of the main lobe peak to the maximum side lobe peak of the ambiguity function and the main lobe peak displacement due to mismatch are chosen as performance metrics, respectively, in two different scenarios. The relative significance of some environmental parameters such as sediment thickness, weights of empirical orthogonal functions (EOFs) has been computed. Some preliminary results are discussed.

  7. Climate-based archetypes for the environmental fate assessment of chemicals.

    PubMed

    Ciuffo, Biagio; Sala, Serenella

    2013-11-15

    Emissions of chemicals have been on the rise for years, and their impacts are greatly influenced by spatial differentiation. Chemicals are usually emitted locally but their impact can be felt both locally and globally, due to their chemical properties and persistence. The variability of environmental parameters in the emission compartment may affect the chemicals' fate and the exposure at different orders of magnitude. The assessment of the environmental fate of chemicals and the inherent spatial differentiation requires the use of multimedia models at various levels of complexity (from a simple box model to complex computational and high-spatial-resolution models). The objective of these models is to support ecological and human health risk assessment, by reducing the uncertainty of chemical impact assessments. The parameterisation of spatially resolved multimedia models is usually based on scenarios of evaluative environments, or on geographical resolutions related to administrative boundaries (e.g. countries/continents) or landscape areas (e.g. watersheds, eco-regions). The choice of the most appropriate scale and scenario is important from a management perspective, as a balance should be reached between a simplified approach and computationally intensive multimedia models. In this paper, which aims to go beyond the more traditional approach based on scale/resolution (cell, country, and basin), we propose and assess climate-based archetypes for the impact assessment of chemicals released in air. We define the archetypes based on the main drivers of spatial variability, which we systematically identify by adopting global sensitivity analysis techniques. A case study that uses the high resolution multimedia model MAPPE (Multimedia Assessment of Pollutant Pathways in the Environment) is presented. Results of the analysis showed that suitable archetypes should be both climate- and chemical-specific, as different chemicals (or groups of them) have different traits

  8. Predicting chemically-induced skin reactions. Part I: QSAR models of skin sensitization and their application to identify potentially hazardous compounds.

    PubMed

    Alves, Vinicius M; Muratov, Eugene; Fourches, Denis; Strickland, Judy; Kleinstreuer, Nicole; Andrade, Carolina H; Tropsha, Alexander

    2015-04-15

    Repetitive exposure to a chemical agent can induce an immune reaction in inherently susceptible individuals that leads to skin sensitization. Although many chemicals have been reported as skin sensitizers, there have been very few rigorously validated QSAR models with defined applicability domains (AD) that were developed using a large group of chemically diverse compounds. In this study, we have aimed to compile, curate, and integrate the largest publicly available dataset related to chemically-induced skin sensitization, use this data to generate rigorously validated and QSAR models for skin sensitization, and employ these models as a virtual screening tool for identifying putative sensitizers among environmental chemicals. We followed best practices for model building and validation implemented with our predictive QSAR workflow using Random Forest modeling technique in combination with SiRMS and Dragon descriptors. The Correct Classification Rate (CCR) for QSAR models discriminating sensitizers from non-sensitizers was 71-88% when evaluated on several external validation sets, within a broad AD, with positive (for sensitizers) and negative (for non-sensitizers) predicted rates of 85% and 79% respectively. When compared to the skin sensitization module included in the OECD QSAR Toolbox as well as to the skin sensitization model in publicly available VEGA software, our models showed a significantly higher prediction accuracy for the same sets of external compounds as evaluated by Positive Predicted Rate, Negative Predicted Rate, and CCR. These models were applied to identify putative chemical hazards in the Scorecard database of possible skin or sense organ toxicants as primary candidates for experimental validation. PMID:25560674

  9. Predicting chemically-induced skin reactions. Part I: QSAR models of skin sensitization and their application to identify potentially hazardous compounds

    PubMed Central

    Alves, Vinicius M.; Muratov, Eugene; Fourches, Denis; Strickland, Judy; Kleinstreuer, Nicole; Andrade, Carolina H.; Tropsha, Alexander

    2015-01-01

    Repetitive exposure to a chemical agent can induce an immune reaction in inherently susceptible individuals that leads to skin sensitization. Although many chemicals have been reported as skin sensitizers, there have been very few rigorously validated QSAR models with defined applicability domains (AD) that were developed using a large group of chemically diverse compounds. In this study, we have aimed to compile, curate, and integrate the largest publicly available dataset related to chemically-induced skin sensitization, use this data to generate rigorously validated and QSAR models for skin sensitization, and employ these models as a virtual screening tool for identifying putative sensitizers among environmental chemicals. We followed best practices for model building and validation implemented with our predictive QSAR workflow using random forest modeling technique in combination with SiRMS and Dragon descriptors. The Correct Classification Rate (CCR) for QSAR models discriminating sensitizers from non-sensitizers were 71–88% when evaluated on several external validation sets, within a broad AD, with positive (for sensitizers) and negative (for non-sensitizers) predicted rates of 85% and 79% respectively. When compared to the skin sensitization module included in the OECD QSAR toolbox as well as to the skin sensitization model in publicly available VEGA software, our models showed a significantly higher prediction accuracy for the same sets of external compounds as evaluated by Positive Predicted Rate, Negative Predicted Rate, and CCR. These models were applied to identify putative chemical hazards in the ScoreCard database of possible skin or sense organ toxicants as primary candidates for experimental validation. PMID:25560674

  10. Technical guide for applications of gene expression profiling in human health risk assessment of environmental chemicals.

    PubMed

    Bourdon-Lacombe, Julie A; Moffat, Ivy D; Deveau, Michelle; Husain, Mainul; Auerbach, Scott; Krewski, Daniel; Thomas, Russell S; Bushel, Pierre R; Williams, Andrew; Yauk, Carole L

    2015-07-01

    Toxicogenomics promises to be an important part of future human health risk assessment of environmental chemicals. The application of gene expression profiles (e.g., for hazard identification, chemical prioritization, chemical grouping, mode of action discovery, and quantitative analysis of response) is growing in the literature, but their use in formal risk assessment by regulatory agencies is relatively infrequent. Although additional validations for specific applications are required, gene expression data can be of immediate use for increasing confidence in chemical evaluations. We believe that a primary reason for the current lack of integration is the limited practical guidance available for risk assessment specialists with limited experience in genomics. The present manuscript provides basic information on gene expression profiling, along with guidance on evaluating the quality of genomic experiments and data, and interpretation of results presented in the form of heat maps, pathway analyses and other common approaches. Moreover, potential ways to integrate information from gene expression experiments into current risk assessment are presented using published studies as examples. The primary objective of this work is to facilitate integration of gene expression data into human health risk assessments of environmental chemicals. PMID:25944780

  11. Novel integrated-optic chemical sensor for environmental monitoring and process control

    NASA Astrophysics Data System (ADS)

    Edwards, John G.

    1995-01-01

    This paper describes an inexpensive point sensor for chemical detection. The sensor is based on a novel integrated optic interferometer that provides a highly stable platform for measuring low concentrations of specific chemicals in gaseous or aqueous environments. Sensing is accomplished by monitoring refractive index changes in a thin-film surface coating, with specificity for a particular chemical achieved by using a surface coating that selectively interacts with that chemical. Multiple surface coatings can be used for simultaneous detection of several chemicals. This approach has a number of key advantages: (1) it is capable of quantifying concentrations down to at least the parts-per-billion level, yet has a broad dynamic range, (2) it is rapid response (environmental interference (e.g.; electromagnetic fields, radiation, corrosive chemicals), (5) it is compact (centimeter dimensions), (6) it requires minimal power (Chemicals investigated to date include ammonia, benzene, toluene, chlorine, chlorine dioxide and hydrogen. Applications range from worksite and workforce monitoring to agricultural and industrial process control.

  12. The chemical defensome: Environmental sensing and response genes in the Strongylocentrotus purpuratus genome

    PubMed Central

    Goldstone, J.V.; Hamdoun, A.; Cole, B.J.; Howard-Ashby, M.; Nebert, D.W.; Scally, M.; Dean, M.; Epel, D.; Hahn, M.E.; Stegeman, J.J.

    2011-01-01

    Metazoan genomes contain large numbers of genes that participate in responses to environmental stressors. We surveyed the sea urchin Strongylocentrotus purpuratus genome for homologs of gene families thought to protect against chemical stressors; these genes collectively comprise the ‘chemical defensome.’ Chemical defense genes include cytochromes P450 and other oxidases, various conjugating enzymes, ATP-dependent efflux transporters, oxidative detoxification proteins, and transcription factors that regulate these genes. Together such genes account for more than 400 genes in the sea urchin genome. The transcription factors include homologs of the aryl hydrocarbon receptor, hypoxia-inducible factor, nuclear factor erythroid-derived 2, heat shock factor, and nuclear hormone receptors, which regulate stress-response genes in vertebrates. Some defense gene families, including the ABCC, the UGT, and the CYP families, have undergone expansion in the urchin relative to other deuterostome genomes, whereas the stress sensor gene families do not show such expansion. More than half of the defense genes are expressed during embryonic or larval life stages, indicating their importance during development. This genome-wide survey of chemical defense genes in the sea urchin reveals evolutionary conservation of this network combined with lineage-specific diversification that together suggest the importance of these chemical stress sensing and response mechanisms in early deuterostomes. These results should facilitate future studies on the evolution of chemical defense gene networks and the role of these networks in protecting embryos from chemical stress during development. PMID:17097629

  13. Prediction of the sorption capacities and affinities of organic chemicals by XAD-7.

    PubMed

    Yang, Kun; Qi, Long; Wei, Wei; Wu, Wenhao; Lin, Daohui

    2016-01-01

    Macro-porous resins are widely used as adsorbents for the treatment of organic contaminants in wastewater and for the pre-concentration of organic solutes from water. However, the sorption mechanisms for organic contaminants on such adsorbents have not been systematically investigated so far. Therefore, in this study, the sorption capacities and affinities of 24 organic chemicals by XAD-7 were investigated and the experimentally obtained sorption isotherms were fitted to the Dubinin-Ashtakhov model. Linear positive correlations were observed between the sorption capacities and the solubilities (SW) of the chemicals in water or octanol and between the sorption affinities and the solvatochromic parameters of the chemicals, indicating that the sorption of various organic compounds by XAD-7 occurred by non-linear partitioning into XAD-7, rather than by adsorption on XAD-7 surfaces. Both specific interactions (i.e., hydrogen-bonding interactions) as well as nonspecific interactions were considered to be responsible for the non-linear partitioning. The correlation equations obtained in this study allow the prediction of non-linear partitioning using well-known chemical parameters, namely SW, octanol-water partition coefficients (KOW), and the hydrogen-bonding donor parameter (αm). The effect of pH on the sorption of ionizable organic compounds (IOCs) could also be predicted by combining the correlation equations with additional equations developed from the estimation of IOC dissociation rates. The prediction equations developed in this study and the proposed non-linear partition mechanism shed new light on the selective removal and pre-concentration of organic solutes from water and on the regeneration of exhausted XAD-7 using solvent extraction. PMID:25561259

  14. Mussel watch - measurements of chemical pollutants in bivalves as one indicator of coastal environmental quality

    SciTech Connect

    Farrington, J.W.; Davis, A.C.; Tripp, B.W.; Phelps, D.K.; Galloway, W.B.

    1987-01-01

    The utility of the bivalve sentinel organism approach to monitoring for some chemicals of environmental concern in coastal and estuarine areas has been evaluated by regional and national programs and by smaller-scale research efforts during the past 15 years. The extent and severity of coastal contamination by chemicals such as polychlorinated biphenyls, chlorinated pesticides, trace metals, and plutonium was assessed in several bivalve sentinel organism programs. Advantages and limitations of this approach are presented and discussed briefly within the context of both national and international efforts.

  15. Development of quantitative structure-activity relationship (QSAR) models to predict the carcinogenic potency of chemicals

    SciTech Connect

    Venkatapathy, Raghuraman Wang Chingyi; Bruce, Robert Mark; Moudgal, Chandrika

    2009-01-15

    Determining the carcinogenicity and carcinogenic potency of new chemicals is both a labor-intensive and time-consuming process. In order to expedite the screening process, there is a need to identify alternative toxicity measures that may be used as surrogates for carcinogenic potency. Alternative toxicity measures for carcinogenic potency currently being used in the literature include lethal dose (dose that kills 50% of a study population [LD{sub 50}]), lowest-observed-adverse-effect-level (LOAEL) and maximum tolerated dose (MTD). The purpose of this study was to investigate the correlation between tumor dose (TD{sub 50}) and three alternative toxicity measures as an estimator of carcinogenic potency. A second aim of this study was to develop a Classification and Regression Tree (CART) between TD{sub 50} and estimated/experimental predictor variables to predict the carcinogenic potency of new chemicals. Rat TD{sub 50}s of 590 structurally diverse chemicals were obtained from the Cancer Potency Database, and the three alternative toxicity measures considered in this study were estimated using TOPKAT, a toxicity estimation software. Though poor correlations were obtained between carcinogenic potency and the three alternative toxicity (both experimental and TOPKAT) measures for the CPDB chemicals, a CART developed using experimental data with no missing values as predictor variables provided reasonable estimates of TD{sub 50} for nine chemicals that were part of an external validation set. However, if experimental values for the three alternative measures, mutagenicity and logP are not available in the literature, then either the CART developed using missing experimental values or estimated values may be used for making a prediction.

  16. National differences in environmental concern and performance are predicted by country age.

    PubMed

    Hershfield, Hal E; Bang, H Min; Weber, Elke U

    2014-01-01

    There are obvious economic predictors of ability and willingness to invest in environmental sustainability. Yet, given that environmental decisions represent trade-offs between present sacrifices and uncertain future benefits, psychological factors may also play a role in country-level environmental behavior. Gott's principle suggests that citizens may use perceptions of their country's age to predict its future continuation, with longer pasts predicting longer futures. Using country- and individual-level analyses, we examined whether longer perceived pasts result in longer perceived futures, which in turn motivate concern for continued environmental quality. Study 1 found that older countries scored higher on an environmental performance index, even when the analysis controlled for country-level differences in gross domestic product and governance. Study 2 showed that when the United States was framed as an old country (vs. a young one), participants were willing to donate more money to an environmental organization. The findings suggest that framing a country as a long-standing entity may effectively prompt proenvironmental behavior. PMID:24264938

  17. Prediction of drug disposition on the basis of its chemical structure.

    PubMed

    Stepensky, David

    2013-06-01

    The chemical structure of any drug determines its pharmacokinetics and pharmacodynamics. Detailed understanding of relationships between the drug chemical structure and individual disposition pathways (i.e., distribution and elimination) is required for efficient use of existing drugs and effective development of new drugs. Different approaches have been developed for this purpose, ranging from statistics-based quantitative structure-property (or structure-pharmacokinetic) relationships (QSPR) analysis to physiologically based pharmacokinetic (PBPK) models. This review critically analyzes currently available approaches for analysis and prediction of drug disposition on the basis of chemical structure. Models that can be used to predict different aspects of disposition are presented, including: (a) value of the individual pharmacokinetic parameter (e.g., clearance or volume of distribution), (b) efficiency of the specific disposition pathway (e.g., biliary drug excretion or cytochrome P450 3A4 metabolism), (c) accumulation in a specific organ or tissue (e.g., permeability of the placenta or accumulation in the brain), and (d) the whole-body disposition in the individual patients. Examples of presented pharmacological agents include "classical" low-molecular-weight compounds, biopharmaceuticals, and drugs encapsulated in specialized drug-delivery systems. The clinical efficiency of agents from all these groups can be suboptimal, because of inefficient permeability of the drug to the site of action and/or excessive accumulation in other organs and tissues. Therefore, robust and reliable approaches for chemical structure-based prediction of drug disposition are required to overcome these limitations. PBPK models are increasingly being used for prediction of drug disposition. These models can reflect the complex interplay of factors that determine drug disposition in a mechanistically correct fashion and can be combined with other approaches, for example QSPR

  18. The fetal ovary exhibits temporal sensitivity to a ‘real-life’ mixture of environmental chemicals

    PubMed Central

    Lea, Richard G.; Amezaga, Maria R.; Loup, Benoit; Mandon-Pépin, Béatrice; Stefansdottir, Agnes; Filis, Panagiotis; Kyle, Carol; Zhang, Zulin; Allen, Ceri; Purdie, Laura; Jouneau, Luc; Cotinot, Corinne; Rhind, Stewart M.; Sinclair, Kevin D.; Fowler, Paul A.

    2016-01-01

    The development of fetal ovarian follicles is a critical determinant of adult female reproductive competence. Prolonged exposure to environmental chemicals (ECs) can perturb this process with detrimental consequences for offspring. Here we report on the exposure of pregnant ewes to an environmental mixture of ECs derived from pastures fertilized with sewage sludge (biosolids): a common global agricultural practice. Exposure of pregnant ewes to ECs over 80 day periods during early, mid or late gestation reduced the proportion of healthy early stage fetal follicles comprising the ovarian reserve. Mid and late gestation EC exposures had the most marked effects, disturbing maternal and fetal liver chemical profiles, masculinising fetal anogenital distance and greatly increasing the number of altered fetal ovarian genes and proteins. In conclusion, differential temporal sensitivity of the fetus and its ovaries to EC mixtures has implications for adult ovarian function following adverse exposures during pregnancy. PMID:26931299

  19. The fetal ovary exhibits temporal sensitivity to a 'real-life' mixture of environmental chemicals.

    PubMed

    Lea, Richard G; Amezaga, Maria R; Loup, Benoit; Mandon-Pépin, Béatrice; Stefansdottir, Agnes; Filis, Panagiotis; Kyle, Carol; Zhang, Zulin; Allen, Ceri; Purdie, Laura; Jouneau, Luc; Cotinot, Corinne; Rhind, Stewart M; Sinclair, Kevin D; Fowler, Paul A

    2016-01-01

    The development of fetal ovarian follicles is a critical determinant of adult female reproductive competence. Prolonged exposure to environmental chemicals (ECs) can perturb this process with detrimental consequences for offspring. Here we report on the exposure of pregnant ewes to an environmental mixture of ECs derived from pastures fertilized with sewage sludge (biosolids): a common global agricultural practice. Exposure of pregnant ewes to ECs over 80 day periods during early, mid or late gestation reduced the proportion of healthy early stage fetal follicles comprising the ovarian reserve. Mid and late gestation EC exposures had the most marked effects, disturbing maternal and fetal liver chemical profiles, masculinising fetal anogenital distance and greatly increasing the number of altered fetal ovarian genes and proteins. In conclusion, differential temporal sensitivity of the fetus and its ovaries to EC mixtures has implications for adult ovarian function following adverse exposures during pregnancy. PMID:26931299

  20. Exploratory multivariate modeling and prediction of the physico-chemical properties of surface water and groundwater

    NASA Astrophysics Data System (ADS)

    Ayoko, Godwin A.; Singh, Kirpal; Balerea, Steven; Kokot, Serge

    2007-03-01

    SummaryPhysico-chemical properties of surface water and groundwater samples from some developing countries have been subjected to multivariate analyses by the non-parametric multi-criteria decision-making methods, PROMETHEE and GAIA. Complete ranking information necessary to select one source of water in preference to all others was obtained, and this enabled relationships between the physico-chemical properties and water quality to be assessed. Thus, the ranking of the quality of the water bodies was found to be strongly dependent on the total dissolved solid, phosphate, sulfate, ammonia-nitrogen, calcium, iron, chloride, magnesium, zinc, nitrate and fluoride contents of the waters. However, potassium, manganese and zinc composition showed the least influence in differentiating the water bodies. To model and predict the water quality influencing parameters, partial least squares analyses were carried out on a matrix made up of the results of water quality assessment studies carried out in Nigeria, Papua New Guinea, Egypt, Thailand and India/Pakistan. The results showed that the total dissolved solid, calcium, sulfate, sodium and chloride contents can be used to predict a wide range of physico-chemical characteristics of water. The potential implications of these observations on the financial and opportunity costs associated with elaborate water quality monitoring are discussed.

  1. Comparison of experimentally determined and mathematically predicted percutaneous penetration rates of chemicals.

    PubMed

    Korinth, Gintautas; Schaller, Karl Heinz; Bader, Michael; Bartsch, Rüdiger; Göen, Thomas; Rossbach, Bernd; Drexler, Hans

    2012-03-01

    The aim of the study was to evaluate the predictive potential of three different mathematical models for the percutaneous penetration of industrial solvents with respect to our experimental data. Percutaneous penetration rates (fluxes) from diffusion cell experiments of 11 chemicals were compared with fluxes predicted by mathematical models. The chemicals considered were three glycol ethers (2-butoxyethanol, diethylene glycol monobutyl ether and 1-ethoxy-2-propanol), three alcohols (ethanol, isopropanol and methanol), two glycols (ethylene glycol and 1,2-propanediol), one aromatic hydrocarbon (toluene) and two aromatic amines (aniline and o-toluidine). For the mathematical prediction of fluxes, models described by Fiserova-Bergerova et al. (Am J Ind Med 17:617-635 1990), Guy and Potts (Am J Ind Med 23:711-719 1993) and Wilschut et al. (Chemosphere 30:1275-1296 1995) were used. The molecular weights, octanol-water partition coefficients (LogP) and water solubilities of the compounds were obtained from a database for modelling. The fit between the mathematically predicted and experimentally determined fluxes was poor (R(2) = 0.04-0.29; linear regression). The flux differences ranged up to a factor of 412. For 4 compounds, the Guy and Potts model showed a closer fit with the experimental flux than the other models. The Wilschut et al. model showed a lower flux difference for 4 compounds as compared to experimental data than the models of Fiserova-Bergerova et al. and Guy and Potts. The Fiserova-Bergerova et al. model showed for 3 compounds a lower flux difference to experimental data than the other models. This study demonstrates large differences between mathematically predicted and experimentally determined fluxes. The percutaneous penetration as determined in diffusion cell experiments may be considerably overestimated as well as underestimated by mathematical models. Although the number of compounds in our comparison study is small, the results point out that none

  2. Chemical and microbiological experimentation for development of environmental control and life support systems

    NASA Technical Reports Server (NTRS)

    Whitman, G. A.; Wilson, M. E.; Cole, H. E.; Traweek, M.

    1992-01-01

    Microbiological techniques are under study with a view to the identification of viable microorganisms in liquid cultures, improve the identification of stressed organisms, and determine the biocidal activity of iodine and other chemicals on isolates from recycled water. A quality-assurance program has been implemented to validate data employed in making decisions concerning engineering and human health and safety. Analytical laboratory refinements will strongly aid the development of environmental control and life-support systems.

  3. Bringing the Polluters Back In: Environmental Inequality and the Organization of Chemical Production

    PubMed Central

    Grant, Don; Trautner, Mary Nell; Downey, Liam; Thiebaud, Lisa

    2011-01-01

    Environmental justice scholars have suggested that because chemical plants and other hazardous facilities emit more pollutants where they face the least resistance, disadvantaged communities face a special health risk. In trying to determine whether race or income has the bigger impact on a neighborhood’s exposure to pollution, however, scholars tend to overlook the facilities themselves and the effect of their characteristics on emissions. In particular, how do the characteristics of facilities and their surrounding communities jointly shape pollution outcomes? We propose a new line of environmental justice research that focuses on facilities and how their features combine with communities’ features to create dangerous emissions. Using novel fuzzy-set analysis techniques and the EPA’s newly developed Risk-Screening Environmental Indicators, we test the influence of facility and community factors on chemical plants’ health-threatening emissions. Contrary to the idea that community characteristics have singular, linear effects, findings show that facility and community factors combine in a variety of ways to produce risky emissions. We speculate that as chemical firms experiment with different ways of producing goods and externalizing pollution costs, new “recipes of risk” are likely to emerge. The question, then, will no longer be whether race or income matters most, but in which of these recipes do they matter and how. PMID:21921966

  4. A variety of environmentally persistent chemicals, including some phthalate plasticizers, are weakly estrogenic.

    PubMed Central

    Jobling, S; Reynolds, T; White, R; Parker, M G; Sumpter, J P

    1995-01-01

    Sewage, a complex mixture of organic and inorganic chemicals, is considered to be a major source of environmental pollution. A random screen of 20 organic man-made chemicals present in liquid effluents revealed that half appeared able to interact with the estradiol receptor. This was demonstrated by their ability to inhibit binding of 17 beta-estradiol to the fish estrogen receptor. Further studies, using mammalian estrogen screens in vitro, revealed that the two phthalate esters butylbenzyl phthalate (BBP) and di-n-butylphthalate (DBP) and a food antioxidant, butylated hydroxyanisole (BHA) were estrogenic; however, they were all less estrogenic than the environmental estrogen octylphenol. Phthalate esters, used in the production of various plastics (including PVC), are among the most common industrial chemicals. Their ubiquity in the environment and tendency to bioconcentrate in animal fat are well known. Neither BBP nor DBP were able to act as antagonists, indicating that, in the presence of endogenous estrogens, their overall effect would be cumulative. Recently, it has been suggested that environmental estrogens may be etiological agents in several human diseases, including disorders of the male reproductive tract and breast and testicular cancers. The current finding that some phthalate compounds and some food additives are weakly estrogenic in vitro, needs to be supported by further studies on their effects in vivo before any conclusions can be made regarding their possible role in the development of these conditions. Images Figure 1. Figure 2. Figure 3. Figure 4. PMID:7556011

  5. Predicting changes in aquatic toxicity of chemicals resulting from solvent or dispersant use as vehicle.

    PubMed

    Kikuchi, Mikio; Nakagawa, Masamitsu; Tone, Suguru; Saito, Hotaka; Niino, Tatsuhiro; Nagasawa, Natsumi; Sawai, Jun

    2016-07-01

    The influence of two vehicles (N,N-dimethylformamide [DMF] as solvent and polyoxyethylene hydrogenated castor oil [HCO-40] as a dispersant) on the acute toxicity of eight hydrophobic chemicals with a non-specific mode of action to Daphnia magna was investigated according to the OECD Guidelines for the Testing of Chemicals, No. 202. An increased 48-h EC50 value for D. magna or reduced toxicity resulting from the addition of HCO-40 to the test medium was observed for five of the eight chemicals examined. Each of eight chemicals was dissolved in water at a concentration of either 10 mg/L or 1.0 mg/L, with or without DMF or HCO-40. Silicone film as a model of a biological membrane was then immersed in each solution, and the concentration of each chemical in the water was monitored until equilibrium was reached for each test substance, after which the adsorbed amount of each chemical was determined. The amounts of p-pentylphenol and four other substances with log Pow (1-octanol/water partition coefficient) values greater than 3.4 adsorbed onto the silicone film decreased with increasing concentrations of HCO-40. However, 3-chloro-4-fluoronitrobenzene and two other substances with log Pow values less than 2.6 demonstrated no changes in adsorption with either increasing HCO-40 concentration or the addition of DMF. The reduced adsorption in the presence of a vehicle on the silicone film correlated closely with changes in toxicity. These results indicate that the methodology developed in this study enables the prediction of changes in toxicity resulting from the addition of vehicles to a test system. PMID:27037772

  6. Toxmatch--a chemical classification and activity prediction tool based on similarity measures.

    PubMed

    Gallegos-Saliner, Ana; Poater, Albert; Jeliazkova, Nina; Patlewicz, Grace; Worth, Andrew P

    2008-11-01

    Chemical similarity forms the underlying basis for the development of (Quantitative) Structure-Activity Relationships ((Q)SARs), expert systems and chemical groupings. Recently a new software tool to facilitate chemical similarity calculations named Toxmatch was developed. Toxmatch encodes a number of similarity indices to help in the systematic development of chemical groupings, including endpoint specific groupings and read-across, and the comparison of model training and test sets. Two rule-based classification schemes were additionally implemented, namely: the Verhaar scheme for assigning mode of action for aquatic toxicants and the BfR rulebase for skin irritation and corrosion. In this study, a variety of different descriptor-based similarity indices were used to evaluate and compare the BfR training set with respect to its test set. The descriptors utilised in this comparison were the same as those used to derive the original BfR rules i.e. the descriptors selected were relevant for skin irritation/corrosion. The Euclidean distance index was found to be the most predictive of the indices in assessing the performance of the rules. PMID:18617309

  7. Allostatic and Environmental Load in Toddlers Predicts Anxiety in Preschool and Kindergarten

    PubMed Central

    Buss, Kristin A.; Davis, Elizabeth L.; Kiel, Elizabeth J.

    2010-01-01

    Psychobiological models of allostatic load have delineated the effects of multiple processes that contribute to risk for psychopathology. This approach has been fruitful, but the interactive contributions of allostatic and environmental load remain understudied in early childhood. Because this developmental period encompasses the emergence of internalizing problems and biological sensitivity to early experiences, this is an important time to examine this process. In two studies, we examined allostatic and environmental load and links to subsequent internalizing and externalizing problems. Study 1 examined relations between load indices and maladjustment, concurrently and at multiple times between age 2 and kindergarten; Study 2 added more comprehensive risk indices in a sample following a group of highly fearful toddlers from 2 to 3 years of age. Results from both studies showed that increased allostatic load related to internalizing problems as environmental risk also increased. Study 2 additionally showed that fearfulness interacted with allostatic and environmental load indices to predict greater anxiety among the fearful children who had high levels of allostatic and environmental load. Taken together, findings support a model of risk for internalizing characterized by the interaction of biological and environmental stressors, and demonstrate the importance of considering individual differences and environmental context in applying models of allostatic load to developmental change in early childhood. PMID:22018082

  8. Prediction of (19)F NMR Chemical Shifts in Labeled Proteins: Computational Protocol and Case Study.

    PubMed

    Isley, William C; Urick, Andrew K; Pomerantz, William C K; Cramer, Christopher J

    2016-07-01

    The structural analysis of ligand complexation in biomolecular systems is important in the design of new medicinal therapeutic agents; however, monitoring subtle structural changes in a protein's microenvironment is a challenging and complex problem. In this regard, the use of protein-based (19)F NMR for screening low-molecular-weight molecules (i.e., fragments) can be an especially powerful tool to aid in drug design. Resonance assignment of the protein's (19)F NMR spectrum is necessary for structural analysis. Here, a quantum chemical method has been developed as an initial approach to facilitate the assignment of a fluorinated protein's (19)F NMR spectrum. The epigenetic "reader" domain of protein Brd4 was taken as a case study to assess the strengths and limitations of the method. The overall modeling protocol predicts chemical shifts for residues in rigid proteins with good accuracy; proper accounting for explicit solvation of fluorinated residues by water is critical. PMID:27218275

  9. Use of plant cell cultures to study the metabolism of environmental chemicals

    SciTech Connect

    Sandermann, H. Jr.; Scheel, D.; v.d.Trenck, T.

    1984-04-01

    The metabolism of the following environmental chemicals has been studied in cell suspension cultures of wheat (Triticum aestivum L.) and soybean (Glycine max L.):2, 4-dichlorophenoxyacetic acid (2,4-D), 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), hexachlorobenzene, pentachlorophenol, diethylhexylphthalate , benzo (alpha) pyrene, and DDT. All chemicals tested, including the persistent ones, were partially metabolized. Polar conjugates predominated in all cases. A covalent incorporation into lignin could be demonstrated for 2,4-D and pentachlorophenol. A specific deposition in the cellular vacuole could be demonstrated for the beta-D-glucopyranoside conjugates derived from 2,4-D. A rapid assay procedure to evaluate the metabolism of a given /sup 14/C-labeled chemical in plant cell suspension cultures is described. This procedure requires about 1 week, and the reproducibility of the results obtained has been assessed.

  10. [Research in Mexico on the health impact of environmental chemical pollutants].

    PubMed

    Ortega-Ceseña, J; Carreón-Valencia, T; López-Carrillo, L; Chávez-Ayala, R; Hernández-Avila, M

    1993-01-01

    This paper is intended to offer a qualitative and quantitative diagnosis on publications concerned with human health impact of exposure to environmental chemical pollutants in Mexico. The review of these subjects included scientific papers on studies carried out in Mexico, published both in Mexican and international journals. The articles were analyzed according to the following criteria: chemical pollutants, type of study and institution that conducted it, study population, design, and analysis of data. The article concludes that publications in this field are scarce. Moreover, this review showed that there is little diversity, limited methodology and an unequal distribution of the human and material resources for research. All this indicates a rudimentary level of scientific knowledge in Mexico regarding public health implications of chemical pollutants. PMID:8128296

  11. The Rainbow Trout Liver Cancer Model: Response to Environmental Chemicals and Studies on Promotion and Chemoprevention✰

    PubMed Central

    Williams, David E.

    2011-01-01

    Rainbow trout (Oncorhynchus mykiss) are an outstanding model of liver cancer induction by environmental chemicals and development of strategies for chemoprevention. Trout have critical and unique advantages allowing for cancer studies with 40,000 animals to determine dose-response at levels orders of magnitude lower than possible in rodents. Examples of two promoters in this model, the dietary supplement dehydroepiandrosterone (DHEA) and industrial chemical perfluorooctanoic acid (PFOA), are presented. In addition, indole-3-carbinol (I3C) and chlorophyllin (CHL) inhibit initiation following exposure to potent human chemical carcinogens (e.g., aflatoxin B1 (AFB1). Two “ED001” cancer studies have been conducted, utilizing approximately 40,000 trout, by dietary exposure to AFB1 and dibenzo[d,e,f,p]chrysene (DBC). These studies represent the two largest cancer studies ever performed and expand the dose-response dataset generated by the 25,000 mouse “ED01” study over an order of magnitude. With DBC, the liver tumor response fell well below the LED10 line, often used for risk assessment, even though the biomarker (liver DBC-DNA adducts) remained linear. Conversely, the response with AFB1 remained relatively linear throughout the entire dose range. These contributions to elucidation of mechanisms of liver cancer, induced by environmental chemicals and the remarkable datasets generated with ED001 studies, make important contributions to carcinogenesis and chemoprevention. PMID:21704190

  12. Impacts of Environmental Nanoparticles on Chemical, Biological and Hydrological Processes in Terrestrial Ecosystems

    SciTech Connect

    Qafoku, Nikolla

    2012-01-01

    This chapter provides insights on nanoparticle (NP) influence or control on the extent and timescales of single or coupled physical, chemical, biological and hydrological reactions and processes that occur in terrestrial ecosystems. Examples taken from the literature that show how terrestrial NPs may determine the fate of the aqueous and sorbed (adsorbed or precipitated) chemical species of nutrients and contaminants, are also included in this chapter. Specifically, in the first section, chapter objectives, term definitions and discussions on size-dependent properties, the origin and occurrence of NP in terrestrial ecosystems and NP toxicity, are included. In the second section, the topic of the binary interactions of NPs of different sizes, shapes, concentrations and ages with the soil solution chemical species is covered, focusing on NP formation, stability, aggregation, ability to serve as sorbents, or surface-mediated precipitation catalysts, or electron donors and acceptors. In the third section, aspects of the interactions in the ternary systems composed of environmental NP, nutrient/contaminant chemical species, and the soil/sediment matrix are discussed, focusing on the inhibitory and catalytic effects of environmental NP on nutrient/contaminant advective mobility and mass transfer, adsorption and desorption, dissolution and precipitation and redox reactions that occur in terrestrial ecosystems. These three review sections are followed by a short summary of future research needs and directions, the acknowledgements, the list of the references, and the figures.

  13. Prediction of Low Community Sanitation Coverage Using Environmental and Sociodemographic Factors in Amhara Region, Ethiopia.

    PubMed

    Oswald, William E; Stewart, Aisha E P; Flanders, W Dana; Kramer, Michael R; Endeshaw, Tekola; Zerihun, Mulat; Melaku, Birhanu; Sata, Eshetu; Gessesse, Demelash; Teferi, Tesfaye; Tadesse, Zerihun; Guadie, Birhan; King, Jonathan D; Emerson, Paul M; Callahan, Elizabeth K; Moe, Christine L; Clasen, Thomas F

    2016-09-01

    This study developed and validated a model for predicting the probability that communities in Amhara Region, Ethiopia, have low sanitation coverage, based on environmental and sociodemographic conditions. Community sanitation coverage was measured between 2011 and 2014 through trachoma control program evaluation surveys. Information on environmental and sociodemographic conditions was obtained from available data sources and linked with community data using a geographic information system. Logistic regression was used to identify predictors of low community sanitation coverage (< 20% versus ≥ 20%). The selected model was geographically and temporally validated. Model-predicted probabilities of low community sanitation coverage were mapped. Among 1,502 communities, 344 (22.90%) had coverage below 20%. The selected model included measures for high topsoil gravel content, an indicator for low-lying land, population density, altitude, and rainfall and had reasonable predictive discrimination (area under the curve = 0.75, 95% confidence interval = 0.72, 0.78). Measures of soil stability were strongly associated with low community sanitation coverage, controlling for community wealth, and other factors. A model using available environmental and sociodemographic data predicted low community sanitation coverage for areas across Amhara Region with fair discrimination. This approach could assist sanitation programs and trachoma control programs, scaling up or in hyperendemic areas, to target vulnerable areas with additional activities or alternate technologies. PMID:27430547

  14. A Simple and Fast Approach for Predicting 1H and 13C Chemical Shifts: Toward Chemical Shift-Guided Simulations of RNA

    PubMed Central

    2014-01-01

    We introduce a simple and fast approach for predicting RNA chemical shifts from interatomic distances that performs with an accuracy similar to existing predictors and enables the first chemical shift-restrained simulations of RNA to be carried out. Our analysis demonstrates that the applied restraints can effectively guide conformational sampling toward regions of space that are more consistent with chemical shifts than the initial coordinates used for the simulations. As such, our approach should be widely applicable in mapping the conformational landscape of RNAs via chemical shift-guided molecular dynamics simulations. The simplicity and demonstrated sensitivity to three-dimensional structure should also allow our method to be used in chemical shift-based RNA structure prediction, validation, and refinement. PMID:25255209

  15. Genome-Wide Association Analysis of Adaptation Using Environmentally Predicted Traits.

    PubMed

    van Heerwaarden, Joost; van Zanten, Martijn; Kruijer, Willem

    2015-10-01

    Current methods for studying the genetic basis of adaptation evaluate genetic associations with ecologically relevant traits or single environmental variables, under the implicit assumption that natural selection imposes correlations between phenotypes, environments and genotypes. In practice, observed trait and environmental data are manifestations of unknown selective forces and are only indirectly associated with adaptive genetic variation. In theory, improved estimation of these forces could enable more powerful detection of loci under selection. Here we present an approach in which we approximate adaptive variation by modeling phenotypes as a function of the environment and using the predicted trait in multivariate and univariate genome-wide association analysis (GWAS). Based on computer simulations and published flowering time data from the model plant Arabidopsis thaliana, we find that environmentally predicted traits lead to higher recovery of functional loci in multivariate GWAS and are more strongly correlated to allele frequencies at adaptive loci than individual environmental variables. Our results provide an example of the use of environmental data to obtain independent and meaningful information on adaptive genetic variation. PMID:26496492

  16. Genome-Wide Association Analysis of Adaptation Using Environmentally Predicted Traits

    PubMed Central

    van Zanten, Martijn

    2015-01-01

    Current methods for studying the genetic basis of adaptation evaluate genetic associations with ecologically relevant traits or single environmental variables, under the implicit assumption that natural selection imposes correlations between phenotypes, environments and genotypes. In practice, observed trait and environmental data are manifestations of unknown selective forces and are only indirectly associated with adaptive genetic variation. In theory, improved estimation of these forces could enable more powerful detection of loci under selection. Here we present an approach in which we approximate adaptive variation by modeling phenotypes as a function of the environment and using the predicted trait in multivariate and univariate genome-wide association analysis (GWAS). Based on computer simulations and published flowering time data from the model plant Arabidopsis thaliana, we find that environmentally predicted traits lead to higher recovery of functional loci in multivariate GWAS and are more strongly correlated to allele frequencies at adaptive loci than individual environmental variables. Our results provide an example of the use of environmental data to obtain independent and meaningful information on adaptive genetic variation. PMID:26496492

  17. Predicting corn digestible and metabolizable energy content from its chemical composition in growing pigs

    PubMed Central

    2014-01-01

    Background The nutrient composition of corn is variable. To prevent unforeseen reductions in growth performance, grading and analytical methods are used to minimize nutrient variability between calculated and analyzed values. This experiment was carried out to define the sources of variation in the energy content of corn and to develop a practical method to accurately estimate the digestible energy (DE) and metabolisable energy (ME) content of individual corn samples for growing pigs. Twenty samples were taken from each of five provinces in China (Jilin, Hebei, Shandong, Liaoning, and Henan) to obtain a range of quality. Results The DE and ME contents of the 100 corn samples were measured in 35.3 ± 1.92 kg growing pigs (six pigs per corn sample). Sixty corn samples were used to build the prediction model; the remaining forty samples were used to test the suitability of these models. The chemical composition of each corn sample was determined, and the results were used to establish prediction equations for DE or ME content from chemical characteristics. The mean DE and ME content of the 100 samples were 4,053 and 3,923 kcal/kg (dry matter basis), respectively. The physical characteristics were determined, as well, and the results indicated that the bulk weight and 1,000-kernel weight were not associated with energy content. The DE and ME values could be accurately predicted from chemical characteristics. The best fit equations were as follows: DE, kcal/kg of DM = 1062.68 + (49.72 × EE) + (0.54 × GE) + (9.11 × starch), with R2 = 0.62, residual standard deviation (RSD) = 48 kcal/kg, and P < 0.01; ME, kcal/kg of dry matter basis (DM) = 671.54 + (0.89 × DE) – (5.57 × NDF) – (191.39 × ash), with R2 = 0.87, RSD = 18 kcal/kg, and P < 0.01. Conclusion This experiment confirms the large variation in the energy content of corn, describes the factors that influence this variation, and

  18. Typology of exogenous organic matters based on chemical and biochemical composition to predict potential nitrogen mineralization.

    PubMed

    Lashermes, G; Nicolardot, B; Parnaudeau, V; Thuriès, L; Chaussod, R; Guillotin, M L; Linères, M; Mary, B; Metzger, L; Morvan, T; Tricaud, A; Villette, C; Houot, S

    2010-01-01

    Our aim was to develop a typology predicting potential N availability of exogenous organic matters (EOMs) in soil based on their chemical characteristics. A database of 273 EOMs was constructed including analytical data of biochemical fractionation, organic C and N, and results of N mineralization during incubation of soil-EOM mixtures in controlled conditions. Multiple factor analysis and hierarchical classification were performed to gather EOMs with similar composition and N mineralization behavior. A typology was then defined using composition criteria to predict potential N mineralization. Six classes of EOM potential N mineralization in soil were defined, from high potential N mineralization to risk of inducing N immobilization in soil after application. These classes were defined on the basis of EOM organic N content and soluble, cellulose-, and lignin-like fractions. A decision tree based on these variables was constructed in order to easily attribute any EOM to 1 of the 6 classes. PMID:19726180

  19. Discovery of optimal zeolites for challenging separations and chemical transformations using predictive materials modeling

    NASA Astrophysics Data System (ADS)

    Bai, Peng; Jeon, Mi Young; Ren, Limin; Knight, Chris; Deem, Michael W.; Tsapatsis, Michael; Siepmann, J. Ilja

    2015-01-01

    Zeolites play numerous important roles in modern petroleum refineries and have the potential to advance the production of fuels and chemical feedstocks from renewable resources. The performance of a zeolite as separation medium and catalyst depends on its framework structure. To date, 213 framework types have been synthesized and >330,000 thermodynamically accessible zeolite structures have been predicted. Hence, identification of optimal zeolites for a given application from the large pool of candidate structures is attractive for accelerating the pace of materials discovery. Here we identify, through a large-scale, multi-step computational screening process, promising zeolite structures for two energy-related applications: the purification of ethanol from fermentation broths and the hydroisomerization of alkanes with 18-30 carbon atoms encountered in petroleum refining. These results demonstrate that predictive modelling and data-driven science can now be applied to solve some of the most challenging separation problems involving highly non-ideal mixtures and highly articulated compounds.

  20. EPA’s ToxCast Program for Predicting Toxicity and Prioritizing Chemicals for Further Screening and Testing

    EPA Science Inventory

    Testing of environmental and industrial chemicals for toxicity potential is a daunting task because of the wide range of possible toxicity mechanisms. Although animal testing is one means of achieving broad toxicity coverage, evaluation of large numbers of chemicals is challengin...

  1. Probing the ToxCastTM Chemical Library for Predictive Signatures of Developmental Toxicity - Poster at Teratology Society Annual Meeting

    EPA Science Inventory

    EPA’s ToxCast™ project is profiling the in vitro bioactivity of chemical compounds to assess pathway-level and cell-based signatures that correlate with observed in vivo toxicity. We hypothesize that cell signaling pathways are primary targets for diverse environmental chemicals ...

  2. Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterisation.

    PubMed

    Stone, Vicki; Nowack, Bernd; Baun, Anders; van den Brink, Nico; Kammer, Frank von der; Dusinska, Maria; Handy, Richard; Hankin, Steven; Hassellöv, Martin; Joner, Erik; Fernandes, Teresa F

    2010-03-01

    NanoImpactNet is a European Commission Framework Programme 7 (FP7) funded project that provides a forum for the discussion of current opinions on nanomaterials in relation to human and environmental issues. In September 2008, in Zurich, a NanoImpactNet environmental workshop focused on three key questions: 1. What properties should be characterised for nanomaterials used in environmental and ecotoxicology studies? 2. What reference materials should be developed for use in environmental and ecotoxicological studies? 3. Is it possible to group different nanomaterials into categories for consideration in environmental studies? Such questions have been, at least partially, addressed by other projects/workshops especially in relation to human health effects. Such projects provide a useful basis on which this workshop was based, but in this particular case these questions were reformulated in order to focus specifically on environmental studies. The workshop participants, through a series of discussion and reflection sessions, generated the conclusions listed below. The physicochemical characterisation information identified as important for environmental studies included measures of aggregation/agglomeration/dispersability, size, dissolution (solubility), surface area, surface charge, surface chemistry/composition, with the assumption that chemical composition would already be known. There is a need to have test materials for ecotoxicology, and several substances are potentially useful, including TiO(2) nanoparticles, polystyrene beads labelled with fluorescent dyes, and silver nanoparticles. Some of these test materials could then be developed into certified reference materials over time. No clear consensus was reached regarding the classification of nanomaterials into categories to aid environmental studies, except that a chemistry-based classification system was a reasonable starting point, with some modifications. It was suggested, that additional work may be

  3. Predicting leaf area index based on environmental constraints to canopy development

    NASA Astrophysics Data System (ADS)

    Savoy, P.; Mackay, D. S.

    2013-12-01

    Vegetation phenology influences cycles of carbon, water, nutrients, and feedbacks between the land surface and atmosphere and as such it is necessary to include an accurate representation of phenology in ecosystem models. While much of the research on phenology has been concerned with accurately predicting the timing of important phenological events the influence of the seasonal progression of leaf area index (LAI) is also important to consider. Environmental factors impose limitations on the development of vegetation and this relationship can serve as a framework for prognostic models of phenology. The goal of this study is to use a simple model based on the environmental drivers of phenology to predict both the timing of phenological events and the seasonal progression of LAI. Meteorological data from the FLUXNET database was used to predict the seasonal progression of canopy development. Five deciduous sites were selected to test model performance based on the presence of sufficient validation data. Model predictions were compared both to in situ LAI measurements as well as phenological transition dates extracted from near continuous measurements of LAI derived from gap fraction theory. The results show a strong correlation between model predictions and observed values of LAI (r = .93). On average across all sites and years the model displayed a relatively small bias in predicting phenological transition dates. These results demonstrate the utility of a simple prognostic phenology model based on environmental constraints to plant development. Accurate representation of LAI in ecosystem process models would increase model performance by incorporating the influence of canopy dynamics on various resource cycles and atmospheric feedbacks.

  4. Environmental controls on plant chemical traits: Using the CAO-VSWIR to characterize patterns in a mediterranean-type ecosystem

    NASA Astrophysics Data System (ADS)

    Dahlin, K.; Asner, G. P.; Field, C. B.

    2012-12-01

    Here we present results from a new imaging spectrometer, the Carnegie Airborne Observatory's (CAO) Visible-Short Wave Infrared (VSWIR) sensor, and we use these data to map key plant functional traits in a semi-arid ecosystem, Jasper Ridge Biological Preserve (Woodside, CA USA). We considered four fundamental plant traits: leaf nitrogen per mass (Nmass, %), leaf carbon per mass (Cmass, %), leaf water fraction (WL), and canopy water fraction (WC).With these maps we ask the following questions: (1) How do these traits vary with environmental gradients and land use history, independent of species composition? (2) Does information about plant community improve our ability to explain trait patterns? And (3) what does the variation within plant communities tell us about the underlying processes driving or limiting this ecosystem? We show that the new CAO-VSWIR combined with partial least squares regression can effectively map these four plant chemical traits across multiple plant functional types (observed v. predicted R2s ranging from 0.55 for WL to 0.84 for Cmass). To consider how these traits varied with environmental gradients we used simultaneous autoregressive modeling and found, in general, that environment and land-use history together explained about a quarter of the variation in each trait, but that information about plant community boundaries dramatically improved our predictive power. While 29 - 44% of the variation in these four traits remained unexplained, when we considered the trait distributions within each plant community we found that most plant communities were sharply peaked (leptokurtic) or near normal, while a few communities were more evenly distributed (platykurtic) for each trait. These results show that, even though environmental gradients play a small but significant role, most of the plant communities at Jasper Ridge are characterized by a narrow range of trait patterns. For the few communities that are highly divergent, possible causal

  5. Environmental Factors Affecting Asthma and Allergies: Predicting and Simulating Downwind Exposure to Airborne Pollen

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey; Estes, Sue; Sprigg, William A.; Nickovic, Slobodan; Huete, Alfredo; Solano, Ramon; Ratana, Piyachat; Jiang, Zhangyan; Flowers, Len; Zelicoff, Alan

    2009-01-01

    This slide presentation reviews the environmental factors that affect asthma and allergies and work to predict and simulate the downwind exposure to airborne pollen. Using a modification of Dust REgional Atmosphere Model (DREAM) that incorporates phenology (i.e. PREAM) the aim was to predict concentrations of pollen in time and space. The strategy for using the model to simulate downwind pollen dispersal, and evaluate the results. Using MODerate-resolution Imaging Spectroradiometer (MODIS), to get seasonal sampling of Juniper, the pollen chosen for the study, land cover on a near daily basis. The results of the model are reviewed.

  6. How relevant is chemical recalcitrance for predicting climatic effects on mineral soil carbon stocks?

    NASA Astrophysics Data System (ADS)

    Hopkins, F. M.; Torn, M. S.; Trumbore, S.

    2011-12-01

    The role of chemical recalcitrance in mediating the effect of warming on soil carbon stocks has been a focus of research efforts aimed toward the larger goal of prediction of carbon loss from soils in the 21st century. Arrhenius kinetics provides a theoretical basis for the prediction that reaction of chemically recalcitrant carbon compounds (those with higher activation energy) should be more temperature sensitive than compounds with faster turnover rates (lower activation energy). This relationship has even been integrated into models of soil carbon dynamics. However, since chemically recalcitrant compounds have, by definition, slower turnover rates, their response to warming should ultimately be far smaller than those of faster turnover compounds in terms of overall respiratory loss (Sierra 2011). Regardless of the relative temperature sensitivity of recalcitrant soil carbon, it remains an open question how important enhanced decomposition of chemically recalcitrant carbon in mineral soils is for potential feedbacks between warming and soil carbon stocks. To lend insight to this question, we present a series of incubation warming experiments with soils from two forest Free Air CO2 Enrichment (FACE) sites. Because of the distinct carbon isotope (radiocarbon free) signature of the CO2 fumigation gas, soil carbon in elevated CO2 plots has incorporated a decade of labeled carbon. By measuring the radiocarbon signature of flux, which reflects FACE label carbon in CO2 elevated plots, and the atmospheric history of radiocarbon in CO2 control plots, we attributed warming-induced increases in flux rates to soil carbon pools of different ages. Much of our knowledge about decomposition of recalcitrant compounds comes from litter decomposition, where chemical recalcitrance is the presumed control on decomposition rates. By comparing the response of litter and mineral soils to warming, we infer the role of chemical recalcitrance in mineral soils. Flux rates from both organic

  7. Research review. Interactions between environmental chemicals and drug biotransformation in man.

    PubMed

    Alvares, A P

    1978-01-01

    Many factors influence the metabolism of drugs in man. Besides genetic factors, environmental factors may play a significant role in explaining the variation observed in the rates of drug metabolism between different individuals. Intentional or unintentional exposure to environmental chemicals could enhance or inhibit the activity of hepatic mixed function oxidases that metabolise drugs and other foreign chemicals, as well as endogenous substrates such as steroid hormones. A major source of such exposure may be occupational. Exposure to the heavy metal, lead, has been shown to inhibit drug metabolism; whereas intensive exposure to chlorinated insecticides, and other halogenated hydrocarbons such as polychlorinated biphenyls, has been shown to enhance the metabolism of test drugs such as antipyrine and phenylbutazone. An intentional source of exposure to foreign chemicals is cigarette smoke. Cigarette smoke contains polycyclic hydrocarbons, which are known inducers of hepatic mixed function oxidases. A number of studies have shown that cigarette smoking can alter the pharmacological action and/or the metabolism of some drugs. Pharmacokinetic studies have shown that cigarette smoking decreases the bioavailability of phenacetin and increases dosage requirements of theophylline by enhancing their rate of metabolism. Data, which are not very conclusive, indicate that heavy marijuana use may have an inhibitory effect on metabolism of some drugs and an inducing effect on others such as theophylline. Dietary factors may also play a significant role in the regulation of drug metabolism. Charcoal broiling which introduces polycyclic hydrocarbons into foods has been shown to enhance the metabolism of the test drug, antipyrine, and of such commonly