Science.gov

Sample records for predicts functional association

  1. Gene Function Prediction from Functional Association Networks Using Kernel Partial Least Squares Regression

    PubMed Central

    Lehtinen, Sonja; Lees, Jon; Bähler, Jürg; Shawe-Taylor, John; Orengo, Christine

    2015-01-01

    With the growing availability of large-scale biological datasets, automated methods of extracting functionally meaningful information from this data are becoming increasingly important. Data relating to functional association between genes or proteins, such as co-expression or functional association, is often represented in terms of gene or protein networks. Several methods of predicting gene function from these networks have been proposed. However, evaluating the relative performance of these algorithms may not be trivial: concerns have been raised over biases in different benchmarking methods and datasets, particularly relating to non-independence of functional association data and test data. In this paper we propose a new network-based gene function prediction algorithm using a commute-time kernel and partial least squares regression (Compass). We compare Compass to GeneMANIA, a leading network-based prediction algorithm, using a number of different benchmarks, and find that Compass outperforms GeneMANIA on these benchmarks. We also explicitly explore problems associated with the non-independence of functional association data and test data. We find that a benchmark based on the Gene Ontology database, which, directly or indirectly, incorporates information from other databases, may considerably overestimate the performance of algorithms exploiting functional association data for prediction. PMID:26288239

  2. Biological interpretation of genome-wide association studies using predicted gene functions.

    PubMed

    Pers, Tune H; Karjalainen, Juha M; Chan, Yingleong; Westra, Harm-Jan; Wood, Andrew R; Yang, Jian; Lui, Julian C; Vedantam, Sailaja; Gustafsson, Stefan; Esko, Tonu; Frayling, Tim; Speliotes, Elizabeth K; Boehnke, Michael; Raychaudhuri, Soumya; Fehrmann, Rudolf S N; Hirschhorn, Joel N; Franke, Lude

    2015-01-01

    The main challenge for gaining biological insights from genetic associations is identifying which genes and pathways explain the associations. Here we present DEPICT, an integrative tool that employs predicted gene functions to systematically prioritize the most likely causal genes at associated loci, highlight enriched pathways and identify tissues/cell types where genes from associated loci are highly expressed. DEPICT is not limited to genes with established functions and prioritizes relevant gene sets for many phenotypes. PMID:25597830

  3. Integrated protein function prediction by mining function associations, sequences, and protein–protein and gene–gene interaction networks

    PubMed Central

    Cao, Renzhi; Cheng, Jianlin

    2016-01-01

    Motivations Protein function prediction is an important and challenging problem in bioinformatics and computational biology. Functionally relevant biological information such as protein sequences, gene expression, and protein–protein interactions has been used mostly separately for protein function prediction. One of the major challenges is how to effectively integrate multiple sources of both traditional and new information such as spatial gene–gene interaction networks generated from chromosomal conformation data together to improve protein function prediction. Results In this work, we developed three different probabilistic scores (MIS, SEQ, and NET score) to combine protein sequence, function associations, and protein–protein interaction and spatial gene–gene interaction networks for protein function prediction. The MIS score is mainly generated from homologous proteins found by PSI-BLAST search, and also association rules between Gene Ontology terms, which are learned by mining the Swiss-Prot database. The SEQ score is generated from protein sequences. The NET score is generated from protein–protein interaction and spatial gene–gene interaction networks. These three scores were combined in a new Statistical Multiple Integrative Scoring System (SMISS) to predict protein function. We tested SMISS on the data set of 2011 Critical Assessment of Function Annotation (CAFA). The method performed substantially better than three base-line methods and an advanced method based on protein profile–sequence comparison, profile–profile comparison, and domain co-occurrence networks according to the maximum F-measure. PMID:26370280

  4. Are Executive Functioning Deficits Concurrently and Predictively Associated with Depressive and Anxiety Symptoms in Adolescents?

    PubMed

    Han, Georges; Helm, Jonathan; Iucha, Cornelia; Zahn-Waxler, Carolyn; Hastings, Paul D; Klimes-Dougan, Bonnie

    2016-01-01

    The central objective of the current study was to evaluate how executive functions (EF), and specifically cognitive flexibility, were concurrently and predictively associated with anxiety and depressive symptoms in adolescence. Adolescents (N = 220) and their parents participated in this longitudinal investigation. Adolescents' EF was assessed by the Wisconsin Card Sorting Test (WCST) during the initial assessment, and symptoms of depressive and anxiety disorders were reported by mothers and youths concurrently and 2 years later. Correlational analyses suggested that youths who made more total errors (TE), including both perseverative errors (PE) and nonperseverative errors (NPE), concurrently exhibited significantly more depressive symptoms. Adolescents who made more TE and those who made more NPE tended to have more anxiety symptoms 2 years later. Structural equation modeling analyses accounting for key explanatory variables (e.g., IQ, disruptive behavior disorders, and attention deficit hyperactive disorder) showed that TE was concurrently associated with parent reports of adolescent depressive symptoms. The results suggest internalizing psychopathology is associated with global (TE) and nonspecific (NPE) EF difficulties but not robustly associated with cognitive inflexibility (PE). Future research with the WCST should consider different sources of errors that are posited to reflect divergent underlying neural mechanisms, conferring differential vulnerability for emerging mental health problems. PMID:26042358

  5. Composition and predicted functional ecology of mussel-associated bacteria in Indonesian marine lakes.

    PubMed

    Cleary, Daniel F R; Becking, Leontine E; Polónia, Ana R M; Freitas, Rossana M; Gomes, Newton C M

    2015-03-01

    In the present study, we sampled bacterial communities associated with mussels inhabiting two distinct coastal marine ecosystems in Kalimantan, Indonesia, namely, marine lakes and coastal mangroves. We used 16S rRNA gene pyrosequencing and predicted metagenomic analysis to compare microbial composition and function. Marine lakes are small landlocked bodies of seawater isolated to varying degrees from the open sea environment. They contain numerous endemic taxa and represent natural laboratories of speciation. Our primary goals were to (1) use BLAST search to identify closely related organisms to dominant bacterial OTUs in our mussel dataset and (2) to compare bacterial communities and enrichment in the predicted bacterial metagenome among lakes. Our sequencing effort yielded 3553 OTUs belonging to 44 phyla, 99 classes and 121 orders. Mussels in the largest marine lake (Kakaban) and the coastal mangrove habitat were dominated by bacteria belonging to the phylum Proteobacteria whereas smaller lakes, located on the island of Maratua, were dominated by bacteria belonging to the phyla Firmicutes and Tenericutes. The single most abundant OTU overall was assigned to the genus Mycoplasma. There were several significant differences among locations with respect to metabolic pathways. These included enrichment of xenobiotic biodegradation pathways in the largest marine lake and coastal mangrove. These locations were also the most enriched with respect to nitrogen metabolism. The presence of genes related to isoquinoline alkaloids, polyketides, hydrolases, mono and dioxygenases in the predicted analysis of functional pathways is an indication that the bacterial communities of Brachidontes mussels may be potentially important sources of new marine medicines and enzymes of industrial interest. Future work should focus on measuring how mussel microbial communities influence nutrient dynamics within the marine lake environment and isolating microbes with potential biotechnological

  6. PTMcode: a database of known and predicted functional associations between post-translational modifications in proteins

    PubMed Central

    Minguez, Pablo; Letunic, Ivica; Parca, Luca; Bork, Peer

    2013-01-01

    Post-translational modifications (PTMs) are involved in the regulation and structural stabilization of eukaryotic proteins. The combination of individual PTM states is a key to modulate cellular functions as became evident in a few well-studied proteins. This combinatorial setting, dubbed the PTM code, has been proposed to be extended to whole proteomes in eukaryotes. Although we are still far from deciphering such a complex language, thousands of protein PTM sites are being mapped by high-throughput technologies, thus providing sufficient data for comparative analysis. PTMcode (http://ptmcode.embl.de) aims to compile known and predicted PTM associations to provide a framework that would enable hypothesis-driven experimental or computational analysis of various scales. In its first release, PTMcode provides PTM functional associations of 13 different PTM types within proteins in 8 eukaryotes. They are based on five evidence channels: a literature survey, residue co-evolution, structural proximity, PTMs at the same residue and location within PTM highly enriched protein regions (hotspots). PTMcode is presented as a protein-based searchable database with an interactive web interface providing the context of the co-regulation of nearly 75 000 residues in >10 000 proteins. PMID:23193284

  7. Identification and functional prediction of mitochondrial complex III and IV mutations associated with glioblastoma

    PubMed Central

    Lloyd, Rhiannon E.; Keatley, Kathleen; Littlewood, D. Timothy J.; Meunier, Brigitte; Holt, William V.; An, Qian; Higgins, Samantha C.; Polyzoidis, Stavros; Stephenson, Katie F.; Ashkan, Keyoumars; Fillmore, Helen L.; Pilkington, Geoffrey J.; McGeehan, John E.

    2015-01-01

    Background Glioblastoma (GBM) is the most common primary brain tumor in adults, with a dismal prognosis. Treatment is hampered by GBM's unique biology, including differential cell response to therapy. Although several mitochondrial abnormalities have been identified, how mitochondrial DNA (mtDNA) mutations contribute to GBM biology and therapeutic response remains poorly described. We sought to determine the spectrum of functional complex III and IV mtDNA mutations in GBM. Methods The complete mitochondrial genomes of 10 GBM cell lines were obtained using next-generation sequencing and combined with another set obtained from 32 GBM tissues. Three-dimensional structural mapping and analysis of all the nonsynonymous mutations identified in complex III and IV proteins was then performed to investigate functional importance. Results Over 200 mutations were identified in the mtDNAs, including a significant proportion with very low mutational loads. Twenty-five were nonsynonymous mutations in complex III and IV, 9 of which were predicted to be functional and affect mitochondrial respiratory chain activity. Most of the functional candidates were GBM specific and not found in the general population, and 2 were present in the germ-line. Patient-specific maps reveal that 43% of tumors carry at least one functional candidate. Conclusions We reveal that the spectrum of GBM-associated mtDNA mutations is wider than previously thought, as well as novel structural-functional links between specific mtDNA mutations, abnormal mitochondria, and the biology of GBM. These results could provide tangible new prognostic indicators as well as targets with which to guide the development of patient-specific mitochondrially mediated chemotherapeutic approaches. PMID:25731774

  8. New York Heart Association functional class predicts exercise parameters in the current era

    PubMed Central

    Russell, Stuart D.; Saval, Matthew A.; Robbins, Jennifer L.; Ellestad, Myrvin H.; Gottlieb, Stephen S.; Handberg, Eileen M.; Zhou, Yi; Chandler, Bleakley

    2009-01-01

    The New York Heart Association (NYHA) functional class is a subjective estimate of a patient's functional ability based on symptoms that does not always correlate with the objective estimate of functional capacity, peak oxygen consumption (peak VO2). Additionally, relationships between these two measurements have not been examined in the current medical era when patients are using beta blockers, aldosterone antagonists, and cardiac resynchronization therapy (CRT). Using baseline data from the HF-ACTION (Heart Failure and A Controlled Trial Investigating Outcomes of Exercise TraiNing) study, we examined this relationship. Methods 1758 patients underwent a symptom limited metabolic stress test and stopped exercise due to dyspnea or fatigue. The relationship between NYHA functional class and peak VO2 was examined. Additionally, the effects of beta blockers, aldosterone antagonists, and CRT therapy on these relationships were compared. Results NYHA II patients have a significantly higher peak VO2 (16.1 ± 4.6 vs. 13.0 ± 4.2 ml/kg/min), a lower Ve/VCO2 slope (32.8 ± 7.7 versus 36.8 ± 10.4), and a longer duration of exercise (11.0 ± 3.9 versus 8.0 ± 3.4 minutes) than NYHA III/IV patients. Within each functional class, there is no difference in any of the exercise parameters between patients on or off of beta blockers, aldosterone antagonists, or CRT therapy. Finally, with increasing age a significant difference in peak VO2, Ve/VCO2 slope, and exercise time was found. Conclusion For patients being treated with current medical therapy, there still is a difference in true functional capacity between NYHA functional class II and III/IV patients. However, within each NYHA functional class, the presence or absence or contemporary heart failure therapies does not alter exercise parameters. PMID:19782785

  9. Osteoprotegerin is Associated With Endothelial Function and Predicts Early Carotid Atherosclerosis in Patients With Coronary Artery Disease.

    PubMed

    Morisawa, Taichirou; Nakagomi, Akihiro; Kohashi, Keiichi; Kosugi, Munenori; Kusama, Yoshiki; Atarashi, Hirotsugu; Shimizu, Wataru

    2015-01-01

    Osteoprotegerin (OPG) is a soluble glycoprotein belonging to the tumor necrosis factor receptor superfamily and is linked to vascular atherosclerosis and calcification. The carotid intima-media thickness (CIMT) correlates with carotid atherosclerosis and is a significant predictor of cardiovascular events. The OPG levels are associated with the CIMT in coronary artery disease (CAD) patients. However, the pathophysiological mechanisms underlying this pathway remain unclear. We investigated 114 CAD patients (89 men, 25 women; mean age: 68.7 ± 10.3 years) and measured the Gensini score (a marker of the extent of coronary atherosclerosis), the mean CIMT and the plasma levels of OPG and asymmetric dimethylarginine (ADMA; a marker of endothelial function). Early carotid atherosclerosis was defined as a mean CIMT > 1.0 mm. Only 33 of the 114 patients (28.9%) had early carotid atherosclerosis. Patients with early carotid atherosclerosis had higher OPG levels than those without. The OPG levels were found to be significantly associated with ADMA (r = 0.191, P = 0.046) and the mean CIMT (r = 0.319, P = 0.001), but not with the Gensini score. A receiver operating curve analysis revealed the optimal cut-off value of the OPG levels for predicting early carotid atherosclerosis to be 100 pmol/L. A multivariate logistic regression analysis showed OPG ≥ 100 pmol/L to be significantly and independently associated with early carotid atherosclerosis (odds ratio: 2.98, 95% confidence interval: 1.22-7.20, P = 0.017). These data indicate that OPG is significantly associated with endothelial function and predicts early carotid atherosclerosis in patients with CAD. PMID:26549398

  10. Predicting lncRNA-disease associations and constructing lncRNA functional similarity network based on the information of miRNA

    PubMed Central

    Chen, Xing

    2015-01-01

    Accumulating experimental studies have indicated that lncRNAs play important roles in various critical biological process and their alterations and dysregulations have been associated with many important complex diseases. Developing effective computational models to predict potential disease-lncRNA association could benefit not only the understanding of disease mechanism at lncRNA level, but also the detection of disease biomarkers for disease diagnosis, treatment, prognosis and prevention. However, known experimentally confirmed disease-lncRNA associations are still very limited. In this study, a novel model of HyperGeometric distribution for LncRNA-Disease Association inference (HGLDA) was developed to predict lncRNA-disease associations by integrating miRNA-disease associations and lncRNA-miRNA interactions. Although HGLDA didn’t rely on any known disease-lncRNA associations, it still obtained an AUC of 0.7621 in the leave-one-out cross validation. Furthermore, 19 predicted associations for breast cancer, lung cancer, and colorectal cancer were verified by biological experimental studies. Furthermore, the model of LncRNA Functional Similarity Calculation based on the information of MiRNA (LFSCM) was developed to calculate lncRNA functional similarity on a large scale by integrating disease semantic similarity, miRNA-disease associations, and miRNA-lncRNA interactions. It is anticipated that HGLDA and LFSCM could be effective biological tools for biomedical research. PMID:26278472

  11. Within and between population variation in plant traits predicts ecosystem functions associated with a dominant plant species

    PubMed Central

    Breza, Lauren C; Souza, Lara; Sanders, Nathan J; Classen, Aimée T

    2012-01-01

    Linking intraspecific variation in plant traits to ecosystem carbon uptake may allow us to better predict how shift in populations shape ecosystem function. We investigated whether plant populations of a dominant old-field plant species (Solidago altissima) differed in carbon dynamics and if variation in plant traits among genotypes and between populations predicted carbon dynamics. We established a common garden experiment with 35 genotypes from three populations of S. altissima from either Tennessee (southern populations) or Connecticut (northern populations) to ask whether: (1) southern and northern Solidago populations will differ in aboveground productivity, leaf area, flowering time and duration, and whole ecosystem carbon uptake, (2) intraspecific trait variation (growth and reproduction) will be related to intraspecific variation in gross ecosystem CO2 exchange (GEE) and net ecosystem CO2 exchange (NEE) within and between northern and southern populations. GEE and NEE were 4.8× and 2× greater in southern relative to northern populations. Moreover, southern populations produced 13× more aboveground biomass and 1.4× more inflorescence mass than did northern populations. Flowering dynamics (first- and last-day flowering and flowering duration) varied significantly among genotypes in both the southern and northern populations, but plant performance and ecosystem function did not. Both productivity and inflorescence mass predicted NEE and GEE between S. altissima southern and northern populations. Taken together, our data demonstrate that variation between S. altissima populations in performance and flowering traits are strong predictors of ecosystem function in a dominant old-field species and suggest that populations of the same species might differ substantially in their response to environmental perturbations. PMID:22833791

  12. Effluent Free Radicals are Associated with Residual Renal Function and Predict Technique Failure in Peritoneal Dialysis Patients

    PubMed Central

    Morinaga, Hiroshi; Sugiyama, Hitoshi; Inoue, Tatsuyuki; Takiue, Keiichi; Kikumoto, Yoko; Kitagawa, Masashi; Akagi, Shigeru; Nakao, Kazushi; Maeshima, Yohei; Miyazaki, Ikuko; Asanuma, Masato; Hiramatsu, Makoto; Makino, Hirofumi

    2012-01-01

    ♦ Objective: Residual renal function (RRF) is associated with low oxidative stress in peritoneal dialysis (PD). In the present study, we investigated the relationship between the impact of oxidative stress on RRF and patient outcomes during PD. ♦ Methods: Levels of free radicals (FRs) in effluent from the overnight dwell in 45 outpatients were determined by electron spin resonance spectrometry. The FR levels, clinical parameters, and the level of 8-hydroxy-2′-deoxyguanosine were evaluated at study start. The effects of effluent FR level on technique and patient survival were analyzed in a prospective cohort followed for 24 months. ♦ Results: Levels of effluent FRs showed significant negative correlations with daily urine volume and residual renal Kt/V, and positive correlations with plasma β2-microglobulin and effluent 8-hydroxy-2′-deoxyguanosine. A highly significant difference in technique survival (p < 0.05), but not patient survival, was observed for patients grouped by effluent FR quartile. The effluent FR level was independently associated with technique failure after adjusting for patient age, history of cardiovascular disease, and presence of diabetes mellitus (p < 0.001). The level of effluent FRs was associated with death-censored technique failure in both univariate (p < 0.001) and multivariate (p < 0.01) hazard models. Compared with patients remaining on PD, those withdrawn from the modality had significantly higher levels of effluent FRs (p < 0.005). ♦ Conclusions: Elevated effluent FRs are associated with RRF and technique failure in stable PD patients. These findings highlight the importance of oxidative stress as an unfavorable prognostic factor in PD and emphasize that steps should be taken to minimize oxidative stress in these patients. PMID:22215657

  13. Predicting communities from functional traits.

    PubMed

    Cadotte, Marc W; Arnillas, Carlos A; Livingstone, Stuart W; Yasui, Simone-Louise E

    2015-09-01

    Species traits influence where species live and how they interact. While there have been many advances in describing the functional composition and diversity of communities, only recently do researchers have the ability to predict community composition and diversity. This predictive ability can offer fundamental insights into ecosystem resilience and restoration. PMID:26190136

  14. Plasma neutrophil gelatinase-associated lipocalin as a marker for the prediction of worsening renal function in children hospitalized for acute heart failure.

    PubMed

    Elsharawy, Sahar; Raslan, Lila; Morsy, Saed; Hassan, Basheir; Khalifa, Naglaa

    2016-01-01

    Acute heart failure (AHF) is frequently associated with worsening renal function in adult patients. Neutrophil gelatinase-associated lipocalin (NGAL) serves as an early marker for acute renal tubular injury. To assess the role of plasma NGAL in predicting worsening renal function (WRF) in children with AHF, we studied 30 children hospitalized for AHF; children with history of chronic renal disease or on nephrotoxic drugs were excluded. Twenty age- and sex-matched healthy children were included in the study as a control group. Echocardiographic examination was performed on admission. Blood urea nitrogen (BUN), serum creatinine, estimated glomerular filtration rate (eGFR) and plasma NGAL levels were measured on admission and 72 h later. Seventeen (56.6%) patients developed WRF within the three-day follow-up period. At presentation, plasma NGAL level was significantly elevated in children who developed WRF. Admission plasma NGAL level correlated with renal parameters (BUN, creatinine and eGFR) as well as with left ventricular systolic parameters (ejection fraction and fractional shortening). For prediction of WRF, admission plasma, NGAL level>27.5 μg/L had sensitivity and specificity of 90% and 68%, respectively. The area under the receiver-operator curve was higher for NGAL (0.869) than for BUN (0.569) or eGFR (0.684). We conclude that admission plasma NGAL level can predict WRF in children hospitalized for AHF. PMID:26787566

  15. Load-related brain activation predicts spatial working memory performance in youth aged 9-12 and is associated with executive function at earlier ages.

    PubMed

    Huang, Anna S; Klein, Daniel N; Leung, Hoi-Chung

    2016-02-01

    Spatial working memory is a central cognitive process that matures through adolescence in conjunction with major changes in brain function and anatomy. Here we focused on late childhood and early adolescence to more closely examine the neural correlates of performance variability during this important transition period. Using a modified spatial 1-back task with two memory load conditions in an fMRI study, we examined the relationship between load-dependent neural responses and task performance in a sample of 39 youth aged 9-12 years. Our data revealed that between-subject differences in task performance was predicted by load-dependent deactivation in default network regions, including the ventral anterior cingulate cortex (vACC) and posterior cingulate cortex (PCC). Although load-dependent increases in activation in prefrontal and posterior parietal regions were only weakly correlated with performance, increased prefrontal-parietal coupling was associated with better performance. Furthermore, behavioral measures of executive function from as early as age 3 predicted current load-dependent deactivation in vACC and PCC. These findings suggest that both task positive and task negative brain activation during spatial working memory contributed to successful task performance in late childhood/early adolescence. This may serve as a good model for studying executive control deficits in developmental disorders. PMID:26562059

  16. DHCR24 associates strongly with the endoplasmic reticulum beyond predicted membrane domains: implications for the activities of this multi-functional enzyme

    PubMed Central

    Zerenturk, Eser J.; Sharpe, Laura J.; Brown, Andrew J.

    2014-01-01

    Cholesterol synthesis occurs in the ER (endoplasmic reticulum), where most of the cholesterogenic machinery resides. As membrane-bound proteins, their topology is difficult to determine, and thus their structures are largely unknown. To help resolve this, we focused on the final enzyme in cholesterol synthesis, DHCR24 (3β-hydroxysterol Δ24-reductase). Prediction programmes and previous studies have shown conflicting results regarding which regions of DHCR24 are associated with the membrane, although there was general agreement that this was limited to only the N-terminal portion. Here, we present biochemical evidence that in fact the majority of the enzyme is associated with the ER membrane. This has important consequences for the many functions attributed to DHCR24. In particular, those that suggest DHCR24 alters its localization within the cell should be reassessed in light of this new information. Moreover, we propose that the expanding database of post-translational modifications will be a valuable resource for mapping the topology of membrane-associated proteins, such as DHCR24, that is, flagging cytosolic residues accessible to modifying enzymes such as kinases and ubiquitin ligases. PMID:24502685

  17. Integrating Rare-Variant Testing, Function Prediction, and Gene Network in Composite Resequencing-Based Genome-Wide Association Studies (CR-GWAS).

    PubMed

    Zhu, Chengsong; Li, Xianran; Yu, Jianming

    2011-08-01

    High-density array-based genome-wide association studies (GWAS) are complemented by exome sequencing and whole-genome resequencing-based association studies. Here we present a composite resequencing-based genome-wide association study (CR-GWAS) strategy that systematically exploits collective biological information and analytical tools for a robust analysis. We showcased the utility of this strategy by using Arabidopsis (Arabidopsis thaliana) resequencing data. Bioinformatic predictions of biological function alteration at each locus were integrated into the process of association testing of both common and rare variants for complex traits with a suite of statistics. Significant signals were then filtered with a priori candidate loci generated from genome database and gene network models to obtain a posteriori candidate loci. A probabilistic gene network (AraNet) that interrogates network neighborhoods of genes was then used to expand the filtering power to examine the significant testing signals. Using this strategy, we confirmed the known true positives and identified several new promising associations. Promising genes (AP1, FCA, FRI, FLC, FLM, SPL5, FY, and DCL2) were shown to control for flowering time through either common variants or rare variants within a diverse set of Arabidopsis accessions. Although many of these candidate genes were cloned earlier with mutational studies, identifying their allele variation contribution to overall phenotypic variation among diverse natural accessions is critical. Our rare allele testing established a greater number of connections than previous analyses in which this issue was not addressed. More importantly, our results demonstrated the potential of integrating various biological, statistical, and bioinformatic tools into complex trait dissection. PMID:22384334

  18. Predicting hand function after hemidisconnection.

    PubMed

    Küpper, Hanna; Kudernatsch, Manfred; Pieper, Tom; Groeschel, Samuel; Tournier, Jacques-Donald; Raffelt, David; Winkler, Peter; Holthausen, Hans; Staudt, Martin

    2016-09-01

    Hemidisconnections (i.e. hemispherectomies or hemispherotomies) invariably lead to contralateral hemiparesis. Many patients with a pre-existing hemiparesis, however, experience no deterioration in motor functions, and some can still grasp with their paretic hand after hemidisconnection. The scope of our study was to predict this phenomenon. Hypothesizing that preserved contralateral grasping ability after hemidisconnection can only occur in patients controlling their paretic hands via ipsilateral corticospinal projections already in the preoperative situation, we analysed the asymmetries of the brainstem (by manual magnetic resonance imaging volumetry) and of the structural connectivity of the corticospinal tracts within the brainstem (by magnetic resonance imaging diffusion tractography), assuming that marked hypoplasia or Wallerian degeneration on the lesioned side in patients who can grasp with their paretic hands indicate ipsilateral control. One hundred and two patients who underwent hemidisconnections between 0.8 and 36 years of age were included. Before the operation, contralateral hand function was normal in 3/102 patients, 47/102 patients showed hemiparetic grasping ability and 52/102 patients could not grasp with their paretic hands. After hemidisconnection, 20/102 patients showed a preserved grasping ability, and 5/102 patients began to grasp with their paretic hands only after the operation. All these 25 patients suffered from pre- or perinatal brain lesions. Thirty of 102 patients lost their grasping ability. This group included all seven patients with a post-neonatally acquired or progressive brain lesion who could grasp before the operation, and also all three patients with a preoperatively normal hand function. The remaining 52/102 patients were unable to grasp pre- and postoperatively. On magnetic resonance imaging, the patients with preserved grasping showed significantly more asymmetric brainstem volumes than the patients who lost their grasping

  19. Biological cluster evaluation for gene function prediction.

    PubMed

    Klie, Sebastian; Nikoloski, Zoran; Selbig, Joachim

    2014-06-01

    Recent advances in high-throughput omics techniques render it possible to decode the function of genes by using the "guilt-by-association" principle on biologically meaningful clusters of gene expression data. However, the existing frameworks for biological evaluation of gene clusters are hindered by two bottleneck issues: (1) the choice for the number of clusters, and (2) the external measures which do not take in consideration the structure of the analyzed data and the ontology of the existing biological knowledge. Here, we address the identified bottlenecks by developing a novel framework that allows not only for biological evaluation of gene expression clusters based on existing structured knowledge, but also for prediction of putative gene functions. The proposed framework facilitates propagation of statistical significance at each of the following steps: (1) estimating the number of clusters, (2) evaluating the clusters in terms of novel external structural measures, (3) selecting an optimal clustering algorithm, and (4) predicting gene functions. The framework also includes a method for evaluation of gene clusters based on the structure of the employed ontology. Moreover, our method for obtaining a probabilistic range for the number of clusters is demonstrated valid on synthetic data and available gene expression profiles from Saccharomyces cerevisiae. Finally, we propose a network-based approach for gene function prediction which relies on the clustering of optimal score and the employed ontology. Our approach effectively predicts gene function on the Saccharomyces cerevisiae data set and is also employed to obtain putative gene functions for an Arabidopsis thaliana data set. PMID:20059365

  20. PREDICTION OF NONLINEAR SPATIAL FUNCTIONALS. (R827257)

    EPA Science Inventory

    Spatial statistical methodology can be useful in the arena of environmental regulation. Some regulatory questions may be addressed by predicting linear functionals of the underlying signal, but other questions may require the prediction of nonlinear functionals of the signal. ...

  1. Structure prediction of magnetosome-associated proteins.

    PubMed

    Nudelman, Hila; Zarivach, Raz

    2014-01-01

    Magnetotactic bacteria (MTB) are Gram-negative bacteria that can navigate along geomagnetic fields. This ability is a result of a unique intracellular organelle, the magnetosome. These organelles are composed of membrane-enclosed magnetite (Fe3O4) or greigite (Fe3S4) crystals ordered into chains along the cell. Magnetosome formation, assembly, and magnetic nano-crystal biomineralization are controlled by magnetosome-associated proteins (MAPs). Most MAP-encoding genes are located in a conserved genomic region - the magnetosome island (MAI). The MAI appears to be conserved in all MTB that were analyzed so far, although the MAI size and organization differs between species. It was shown that MAI deletion leads to a non-magnetic phenotype, further highlighting its important role in magnetosome formation. Today, about 28 proteins are known to be involved in magnetosome formation, but the structures and functions of most MAPs are unknown. To reveal the structure-function relationship of MAPs we used bioinformatics tools in order to build homology models as a way to understand their possible role in magnetosome formation. Here we present a predicted 3D structural models' overview for all known Magnetospirillum gryphiswaldense strain MSR-1 MAPs. PMID:24523717

  2. Structure prediction of magnetosome-associated proteins

    PubMed Central

    Nudelman, Hila; Zarivach, Raz

    2014-01-01

    Magnetotactic bacteria (MTB) are Gram-negative bacteria that can navigate along geomagnetic fields. This ability is a result of a unique intracellular organelle, the magnetosome. These organelles are composed of membrane-enclosed magnetite (Fe3O4) or greigite (Fe3S4) crystals ordered into chains along the cell. Magnetosome formation, assembly, and magnetic nano-crystal biomineralization are controlled by magnetosome-associated proteins (MAPs). Most MAP-encoding genes are located in a conserved genomic region – the magnetosome island (MAI). The MAI appears to be conserved in all MTB that were analyzed so far, although the MAI size and organization differs between species. It was shown that MAI deletion leads to a non-magnetic phenotype, further highlighting its important role in magnetosome formation. Today, about 28 proteins are known to be involved in magnetosome formation, but the structures and functions of most MAPs are unknown. To reveal the structure–function relationship of MAPs we used bioinformatics tools in order to build homology models as a way to understand their possible role in magnetosome formation. Here we present a predicted 3D structural models’ overview for all known Magnetospirillum gryphiswaldense strain MSR-1 MAPs. PMID:24523717

  3. Interactions between self-reported alcohol outcome expectancies and cognitive functioning in the prediction of alcohol use and associated problems: a further examination.

    PubMed

    Littlefield, Andrew K; Vergés, Alvaro; McCarthy, Denis M; Sher, Kenneth J

    2011-09-01

    A recent debate regarding the theoretical distinction between explicit and implicit cognitive processes relevant to alcohol-related behaviors was strongly shaped by empirical findings from dual-process models (Moss & Albery, 2009; Wiers & Stacy, 2010; Moss & Albery, 2010). Specifically, as part of a broader discussion, Wiers & Stacy (2010) contended that alcohol-related behaviors are better predicted by self-reported alcohol expectancies for individuals with good executive control and verbal abilities relative to those without such abilities. The purpose of the current paper is to further test whether self-reported alcohol outcome expectancies are moderated by measures of cognitive functioning. Using multiple indices of alcohol use, alcohol-related consequences, self-reported alcohol outcome expectancies, and cognitive functioning, both cross-sectional and longitudinal analyses were conducted in a prospective sample of 489 individuals at varying risk for alcohol use disorders. Results from a series of regression analyses testing interactions between self-reported alcohol expectancies and cognitive functioning showed minimal support for the hypothesized pattern discussed by Wiers and Stacy, 2010 regarding self-reported alcohol outcome expectancies. The overall rates of significance were consistent with Type I error rates and a substantial proportion of the significant interactions were inconsistent with previous findings. Thus, the conclusion that cognitive measures consistently moderate the relation between self-reported alcohol expectancies and alcohol use and outcomes should be tempered. PMID:21443299

  4. The Full Spectrum of Holoprosencephaly-Associated Mutations within the ZIC2 Gene in Humans Predicts Loss-of-Function as the Predominant Disease Mechanism

    PubMed Central

    Roessler, Erich; Lacbawan, Felicitas; Dubourg, Christèle; Paulussen, Aimee; Herbergs, Jos; Hehr, Ute; Bendavid, Claude; Zhou, Nan; Ouspenskaia, Maia; Bale, Sherri; Odent, Sylvie; David, Vèronique; Muenke, Maximilian

    2009-01-01

    Mutations of the ZIC2 transcription factor gene are among the most common heterozygous variations detected in holoprosencephaly (HPE) patients, a patient group who lack critical midline forebrain specification due to defective embryonic signaling during development. Recent studies indicate that complete deficiency of the related murine Zic2 transcription factor can also be a contributing factor to variable midline deficiencies, presenting during mid-gastrulation, that could explain similar forebrain anomalies in this model system. Here we collect and summarize all available mutations in the human ZIC2 gene detected in HPE patients (21 published and 62 novel). Our analysis corroborates this mechanism proposed in mice by predicting loss-of-function as the likely pathogenetic mechanism common to most, if not all, of these mutations in HPE. PMID:19177455

  5. Hierarchical Ensemble Methods for Protein Function Prediction

    PubMed Central

    2014-01-01

    Protein function prediction is a complex multiclass multilabel classification problem, characterized by multiple issues such as the incompleteness of the available annotations, the integration of multiple sources of high dimensional biomolecular data, the unbalance of several functional classes, and the difficulty of univocally determining negative examples. Moreover, the hierarchical relationships between functional classes that characterize both the Gene Ontology and FunCat taxonomies motivate the development of hierarchy-aware prediction methods that showed significantly better performances than hierarchical-unaware “flat” prediction methods. In this paper, we provide a comprehensive review of hierarchical methods for protein function prediction based on ensembles of learning machines. According to this general approach, a separate learning machine is trained to learn a specific functional term and then the resulting predictions are assembled in a “consensus” ensemble decision, taking into account the hierarchical relationships between classes. The main hierarchical ensemble methods proposed in the literature are discussed in the context of existing computational methods for protein function prediction, highlighting their characteristics, advantages, and limitations. Open problems of this exciting research area of computational biology are finally considered, outlining novel perspectives for future research. PMID:25937954

  6. A Dual Role for Prediction Error in Associative Learning

    PubMed Central

    Friston, Karl J.; Daw, Nathaniel D.; McIntosh, Anthony R.; Stephan, Klaas E.

    2009-01-01

    Confronted with a rich sensory environment, the brain must learn statistical regularities across sensory domains to construct causal models of the world. Here, we used functional magnetic resonance imaging and dynamic causal modeling (DCM) to furnish neurophysiological evidence that statistical associations are learnt, even when task-irrelevant. Subjects performed an audio-visual target-detection task while being exposed to distractor stimuli. Unknown to them, auditory distractors predicted the presence or absence of subsequent visual distractors. We modeled incidental learning of these associations using a Rescorla–Wagner (RW) model. Activity in primary visual cortex and putamen reflected learning-dependent surprise: these areas responded progressively more to unpredicted, and progressively less to predicted visual stimuli. Critically, this prediction-error response was observed even when the absence of a visual stimulus was surprising. We investigated the underlying mechanism by embedding the RW model into a DCM to show that auditory to visual connectivity changed significantly over time as a function of prediction error. Thus, consistent with predictive coding models of perception, associative learning is mediated by prediction-error dependent changes in connectivity. These results posit a dual role for prediction-error in encoding surprise and driving associative plasticity. PMID:18820290

  7. Year 2 Report: Protein Function Prediction Platform

    SciTech Connect

    Zhou, C E

    2012-04-27

    Upon completion of our second year of development in a 3-year development cycle, we have completed a prototype protein structure-function annotation and function prediction system: Protein Function Prediction (PFP) platform (v.0.5). We have met our milestones for Years 1 and 2 and are positioned to continue development in completion of our original statement of work, or a reasonable modification thereof, in service to DTRA Programs involved in diagnostics and medical countermeasures research and development. The PFP platform is a multi-scale computational modeling system for protein structure-function annotation and function prediction. As of this writing, PFP is the only existing fully automated, high-throughput, multi-scale modeling, whole-proteome annotation platform, and represents a significant advance in the field of genome annotation (Fig. 1). PFP modules perform protein functional annotations at the sequence, systems biology, protein structure, and atomistic levels of biological complexity (Fig. 2). Because these approaches provide orthogonal means of characterizing proteins and suggesting protein function, PFP processing maximizes the protein functional information that can currently be gained by computational means. Comprehensive annotation of pathogen genomes is essential for bio-defense applications in pathogen characterization, threat assessment, and medical countermeasure design and development in that it can short-cut the time and effort required to select and characterize protein biomarkers.

  8. Quantitative assessment of protein function prediction programs.

    PubMed

    Rodrigues, B N; Steffens, M B R; Raittz, R T; Santos-Weiss, I C R; Marchaukoski, J N

    2015-01-01

    Fast prediction of protein function is essential for high-throughput sequencing analysis. Bioinformatic resources provide cheaper and faster techniques for function prediction and have helped to accelerate the process of protein sequence characterization. In this study, we assessed protein function prediction programs that accept amino acid sequences as input. We analyzed the classification, equality, and similarity between programs, and, additionally, compared program performance. The following programs were selected for our assessment: Blast2GO, InterProScan, PANTHER, Pfam, and ScanProsite. This selection was based on the high number of citations (over 500), fully automatic analysis, and the possibility of returning a single best classification per sequence. We tested these programs using 12 gold standard datasets from four different sources. The gold standard classification of the databases was based on expert analysis, the Protein Data Bank, or the Structure-Function Linkage Database. We found that the miss rate among the programs is globally over 50%. Furthermore, we observed little overlap in the correct predictions from each program. Therefore, a combination of multiple types of sources and methods, including experimental data, protein-protein interaction, and data mining, may be the best way to generate more reliable predictions and decrease the miss rate. PMID:26782400

  9. Protein function prediction based on data fusion and functional interrelationship.

    PubMed

    Meng, Jun; Wekesa, Jael-Sanyanda; Shi, Guan-Li; Luan, Yu-Shi

    2016-04-01

    One of the challenging tasks of bioinformatics is to predict more accurate and confident protein functions from genomics and proteomics datasets. Computational approaches use a variety of high throughput experimental data, such as protein-protein interaction (PPI), protein sequences and phylogenetic profiles, to predict protein functions. This paper presents a method that uses transductive multi-label learning algorithm by integrating multiple data sources for classification. Multiple proteomics datasets are integrated to make inferences about functions of unknown proteins and use a directed bi-relational graph to assign labels to unannotated proteins. Our method, bi-relational graph based transductive multi-label function annotation (Bi-TMF) uses functional correlation and topological PPI network properties on both the training and testing datasets to predict protein functions through data fusion of the individual kernel result. The main purpose of our proposed method is to enhance the performance of classifier integration for protein function prediction algorithms. Experimental results demonstrate the effectiveness and efficiency of Bi-TMF on multi-sources datasets in yeast, human and mouse benchmarks. Bi-TMF outperforms other recently proposed methods. PMID:26869536

  10. Rumination prospectively predicts executive functioning impairments in adolescents

    PubMed Central

    Connolly, Samantha L.; Wagner, Clara A.; Shapero, Benjamin G.; Pendergast, Laura L.; Abramson, Lyn Y.; Alloy, Lauren B.

    2014-01-01

    Background and objectives The current study tested the resource allocation hypothesis, examining whether baseline rumination or depressive symptom levels prospectively predicted deficits in executive functioning in an adolescent sample. The alternative to this hypothesis was also evaluated by testing whether lower initial levels of executive functioning predicted increases in rumination or depressive symptoms at follow-up. Methods A community sample of 200 adolescents (ages 12–13) completed measures of depressive symptoms, rumination, and executive functioning at baseline and at a follow-up session approximately 15 months later. Results Adolescents with higher levels of baseline rumination displayed decreases in selective attention and attentional switching at follow-up. Rumination did not predict changes in working memory or sustained and divided attention. Depressive symptoms were not found to predict significant changes in executive functioning scores at follow-up. Baseline executive functioning was not associated with change in rumination or depression over time. Conclusions Findings partially support the resource allocation hypothesis that engaging in ruminative thoughts consumes cognitive resources that would otherwise be allocated towards difficult tests of executive functioning. Support was not found for the alternative hypothesis that lower levels of initial executive functioning would predict increased rumination or depressive symptoms at follow-up. Our study is the first to find support for the resource allocation hypothesis using a longitudinal design and an adolescent sample. Findings highlight the potentially detrimental effects of rumination on executive functioning during early adolescence. PMID:23978629

  11. A Survey of Computational Intelligence Techniques in Protein Function Prediction

    PubMed Central

    Tiwari, Arvind Kumar; Srivastava, Rajeev

    2014-01-01

    During the past, there was a massive growth of knowledge of unknown proteins with the advancement of high throughput microarray technologies. Protein function prediction is the most challenging problem in bioinformatics. In the past, the homology based approaches were used to predict the protein function, but they failed when a new protein was different from the previous one. Therefore, to alleviate the problems associated with homology based traditional approaches, numerous computational intelligence techniques have been proposed in the recent past. This paper presents a state-of-the-art comprehensive review of various computational intelligence techniques for protein function predictions using sequence, structure, protein-protein interaction network, and gene expression data used in wide areas of applications such as prediction of DNA and RNA binding sites, subcellular localization, enzyme functions, signal peptides, catalytic residues, nuclear/G-protein coupled receptors, membrane proteins, and pathway analysis from gene expression datasets. This paper also summarizes the result obtained by many researchers to solve these problems by using computational intelligence techniques with appropriate datasets to improve the prediction performance. The summary shows that ensemble classifiers and integration of multiple heterogeneous data are useful for protein function prediction. PMID:25574395

  12. Beyond Genotype: Serotonin Transporter Epigenetic Modification Predicts Human Brain Function

    PubMed Central

    Nikolova, Yuliya S.; Koenen, Karestan C.; Galea, Sandro; Wang, Chiou-Miin; Seney, Marianne L.; Sibille, Etienne; Williamson, Douglas E.; Hariri, Ahmad R.

    2014-01-01

    We examined epigenetic regulation in regards to behaviorally and clinically relevant human brain function. Specifically, we found that increased promoter methylation of the serotonin transporter gene predicted increased threat-related amygdala reactivity and decreased mRNA expression in postmortem amygdala tissue. These patterns were independent of functional genetic variation in the same region. Furthermore, the association with amygdala reactivity was replicated in a second cohort and was robust to both sampling methods and age. PMID:25086606

  13. Optimizing nondecomposable loss functions in structured prediction.

    PubMed

    Ranjbar, Mani; Lan, Tian; Wang, Yang; Robinovitch, Steven N; Li, Ze-Nian; Mori, Greg

    2013-04-01

    We develop an algorithm for structured prediction with nondecomposable performance measures. The algorithm learns parameters of Markov Random Fields (MRFs) and can be applied to multivariate performance measures. Examples include performance measures such as Fβ score (natural language processing), intersection over union (object category segmentation), Precision/Recall at k (search engines), and ROC area (binary classifiers). We attack this optimization problem by approximating the loss function with a piecewise linear function. The loss augmented inference forms a Quadratic Program (QP), which we solve using LP relaxation. We apply this approach to two tasks: object class-specific segmentation and human action retrieval from videos. We show significant improvement over baseline approaches that either use simple loss functions or simple scoring functions on the PASCAL VOC and H3D Segmentation datasets, and a nursing home action recognition dataset. PMID:22868650

  14. 47 CFR 69.603 - Association functions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Association functions. 69.603 Section 69.603... Exchange Carrier Association § 69.603 Association functions. (a) The Association shall not engage in any... untariffed basis shall be deemed to be authorized association activities. (c)-(e) (f) The association...

  15. Graph pyramids for protein function prediction

    PubMed Central

    2015-01-01

    Background Uncovering the hidden organizational characteristics and regularities among biological sequences is the key issue for detailed understanding of an underlying biological phenomenon. Thus pattern recognition from nucleic acid sequences is an important affair for protein function prediction. As proteins from the same family exhibit similar characteristics, homology based approaches predict protein functions via protein classification. But conventional classification approaches mostly rely on the global features by considering only strong protein similarity matches. This leads to significant loss of prediction accuracy. Methods Here we construct the Protein-Protein Similarity (PPS) network, which captures the subtle properties of protein families. The proposed method considers the local as well as the global features, by examining the interactions among 'weakly interacting proteins' in the PPS network and by using hierarchical graph analysis via the graph pyramid. Different underlying properties of the protein families are uncovered by operating the proposed graph based features at various pyramid levels. Results Experimental results on benchmark data sets show that the proposed hierarchical voting algorithm using graph pyramid helps to improve computational efficiency as well the protein classification accuracy. Quantitatively, among 14,086 test sequences, on an average the proposed method misclassified only 21.1 sequences whereas baseline BLAST score based global feature matching method misclassified 362.9 sequences. With each correctly classified test sequence, the fast incremental learning ability of the proposed method further enhances the training model. Thus it has achieved more than 96% protein classification accuracy using only 20% per class training data. PMID:26044522

  16. Systematic prediction of gene function in Arabidopsis thaliana using a probabilistic functional gene network

    PubMed Central

    Hwang, Sohyun; Rhee, Seung Y; Marcotte, Edward M; Lee, Insuk

    2012-01-01

    AraNet is a functional gene network for the reference plant Arabidopsis and has been constructed in order to identify new genes associated with plant traits. It is highly predictive for diverse biological pathways and can be used to prioritize genes for functional screens. Moreover, AraNet provides a web-based tool with which plant biologists can efficiently discover novel functions of Arabidopsis genes (http://www.functionalnet.org/aranet/). This protocol explains how to conduct network-based prediction of gene functions using AraNet and how to interpret the prediction results. Functional discovery in plant biology is facilitated by combining candidate prioritization by AraNet with focused experimental tests. PMID:21886106

  17. Executive functions predict conceptual learning of science.

    PubMed

    Rhodes, Sinéad M; Booth, Josephine N; Palmer, Lorna Elise; Blythe, Richard A; Delibegovic, Mirela; Wheate, Nial J

    2016-06-01

    We examined the relationship between executive functions and both factual and conceptual learning of science, specifically chemistry, in early adolescence. Sixty-three pupils in their second year of secondary school (aged 12-13 years) participated. Pupils completed tasks of working memory (Spatial Working Memory), inhibition (Stop-Signal), attention set-shifting (ID/ED), and planning (Stockings of Cambridge), from the CANTAB. They also participated in a chemistry teaching session, practical, and assessment on the topic of acids and alkalis designed specifically for this study. Executive function data were related to (1) the chemistry assessment which included aspects of factual and conceptual learning and (2) a recent school science exam. Correlational analyses between executive functions and both the chemistry assessment and science grades revealed that science achievements were significantly correlated with working memory. Linear regression analysis revealed that visuospatial working memory ability was predictive of chemistry performance. Interestingly, this relationship was observed solely in relation to the conceptual learning condition of the assessment highlighting the role of executive functions in understanding and applying knowledge about what is learned within science teaching. PMID:26751597

  18. Visual predictions in the orbitofrontal cortex rely on associative content.

    PubMed

    Chaumon, Maximilien; Kveraga, Kestutis; Barrett, Lisa Feldman; Bar, Moshe

    2014-11-01

    Predicting upcoming events from incomplete information is an essential brain function. The orbitofrontal cortex (OFC) plays a critical role in this process by facilitating recognition of sensory inputs via predictive feedback to sensory cortices. In the visual domain, the OFC is engaged by low spatial frequency (LSF) and magnocellular-biased inputs, but beyond this, we know little about the information content required to activate it. Is the OFC automatically engaged to analyze any LSF information for meaning? Or is it engaged only when LSF information matches preexisting memory associations? We tested these hypotheses and show that only LSF information that could be linked to memory associations engages the OFC. Specifically, LSF stimuli activated the OFC in 2 distinct medial and lateral regions only if they resembled known visual objects. More identifiable objects increased activity in the medial OFC, known for its function in affective responses. Furthermore, these objects also increased the connectivity of the lateral OFC with the ventral visual cortex, a crucial region for object identification. At the interface between sensory, memory, and affective processing, the OFC thus appears to be attuned to the associative content of visual information and to play a central role in visuo-affective prediction. PMID:23771980

  19. Predicting real-world functional milestones in schizophrenia.

    PubMed

    Olsson, Anna-Karin; Hjärthag, Fredrik; Helldin, Lars

    2016-08-30

    Schizophrenia is a severe disorder that often causes impairments in major areas of functioning, and most patients do not achieve expected real-world functional milestones. The aim of this study was to identify which variables of demography, illness activity, and functional capacity predict patients' ability to attain real-world functional milestones. Participants were 235 outpatients, 149 men and 86 women, diagnosed with schizophrenia spectrum disorder. Our results showed that younger patients managed to achieve a higher level of functioning in educational level, marital status, and social contacts. Patients' functional capacity was primarily associated with educational level and housing situation. We also found that women needed less support regarding housing and obtained a higher level of marital status as compared with men. Our findings demonstrate the importance of considering current symptoms, especially negative symptoms, and remission stability over time, together with age, duration of illness, gender, educational level, and current functional capacity, when predicting patients' future real-world functioning. We also conclude that there is an advantage in exploring symptoms divided into positive, negative, and general domains considering their probable impact on functional achievements. PMID:27235985

  20. Prediction of Postchemotherapy Ovarian Function Using Markers of Ovarian Reserve

    PubMed Central

    Xia, Rong; Schott, Anne F.; McConnell, Daniel; Banerjee, Mousumi; Hayes, Daniel F.

    2014-01-01

    Background. Reproductive-aged women frequently receive both chemotherapy and endocrine therapy as part of their treatment regimen for early stage hormone receptor-positive breast cancer. Chemotherapy results in transient or permanent ovarian failure in the majority of women. The difficulty in determining which patients will recover ovarian function has implications for adjuvant endocrine therapy decision making. We hypothesized that pretreatment serum anti-Müllerian hormone (AMH) and inhibin B concentrations would predict for ovarian function following chemotherapy. Methods. Pre- and perimenopausal women aged 25–50 years with newly diagnosed breast cancer were enrolled. Subjects underwent phlebotomy for assessment of serum AMH, inhibin B, follicle-stimulating hormone, and estradiol prior to chemotherapy and 1 month and 1 year following completion of treatment. Associations among hormone concentrations, clinical factors, and biochemically assessed ovarian function were assessed. Results. Twenty-seven subjects were evaluable for the primary endpoint. Median age was 41. Twenty subjects (74.1%) experienced recovery of ovarian function within 18 months. Of the 26 evaluable subjects assessed prior to chemotherapy, 19 (73.1%) had detectable serum concentrations of AMH. The positive predictive value of a detectable baseline serum AMH concentration for recovery of ovarian function was 94.7%, and the negative predictive value was 85.7%. On univariate analysis, younger age and detectable serum AMH concentration at chemotherapy initiation were predictive of increased likelihood of recovery of ovarian function. Conclusion. Prechemotherapy assessment of serum AMH may be useful for predicting postchemotherapy ovarian function. This finding has implications for decision making about adjuvant endocrine therapy in premenopausal women treated with chemotherapy. PMID:24319018

  1. The Prediction of Scattered Broadband Shock-Associated Noise

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2015-01-01

    A mathematical model is developed for the prediction of scattered broadband shock-associated noise. Model arguments are dependent on the vector Green's function of the linearized Euler equations, steady Reynolds-averaged Navier-Stokes solutions, and the two-point cross-correlation of the equivalent source. The equivalent source is dependent on steady Reynolds-averaged Navier-Stokes solutions of the jet flow, that capture the nozzle geometry and airframe surface. Contours of the time-averaged streamwise velocity component and turbulent kinetic energy are examined with varying airframe position relative to the nozzle exit. Propagation effects are incorporated by approximating the vector Green's function of the linearized Euler equations. This approximation involves the use of ray theory and an assumption that broadband shock-associated noise is relatively unaffected by the refraction of the jet shear layer. A non-dimensional parameter is proposed that quantifies the changes of the broadband shock-associated noise source with varying jet operating condition and airframe position. Scattered broadband shock-associated noise possesses a second set of broadband lobes that are due to the effect of scattering. Presented predictions demonstrate relatively good agreement compared to a wide variety of measurements.

  2. Spinal meningiomas: clinicoradiological factors predicting recurrence and functional outcome.

    PubMed

    Maiti, Tanmoy K; Bir, Shyamal C; Patra, Devi Prasad; Kalakoti, Piyush; Guthikonda, Bharat; Nanda, Anil

    2016-08-01

    OBJECTIVE Spinal meningiomas are benign tumors with a wide spectrum of clinical and radiological features at presentation. The authors analyzed multiple clinicoradiological factors to predict recurrence and functional outcome in a cohort with a mean follow-up of more than 4 years. The authors also discuss the results of clinical studies regarding spinal meningiomas in the last 15 years. METHODS The authors retrospectively reviewed the clinical and radiological details of patients who underwent surgery for spinal tumors between 2001 and 2015 that were histopathologically confirmed as meningiomas. Demographic parameters, such as age, sex, race, and association with neurofibromatosis Type 2, were considered. Radiological parameters, such as tumor size, signal changes of spinal cord, spinal level, number of levels, location of tumor attachment, shape of tumor, and presence of dural tail/calcification, were noted. These factors were analyzed to predict recurrence and functional outcome. Furthermore, a pooled analysis was performed from 13 reports of spinal meningiomas in the last 15 years. RESULTS A total of 38 patients were included in this study. Male sex and tumors with radiological evidence of a dural tail were associated with an increased risk of recurrence at a mean follow-up of 51.2 months. Ventral or ventrolateral location, large tumors, T2 cord signal changes, and poor preoperative functional status were associated with poor functional outcome at 1-year follow-up. CONCLUSIONS Spine surgeons must be aware of the natural history and risk factors of spinal meningiomas to establish a prognosis for their patients. PMID:27476848

  3. Predicting Protein Function via Semantic Integration of Multiple Networks.

    PubMed

    Yu, Guoxian; Fu, Guangyuan; Wang, Jun; Zhu, Hailong

    2016-01-01

    Determining the biological functions of proteins is one of the key challenges in the post-genomic era. The rapidly accumulated large volumes of proteomic and genomic data drives to develop computational models for automatically predicting protein function in large scale. Recent approaches focus on integrating multiple heterogeneous data sources and they often get better results than methods that use single data source alone. In this paper, we investigate how to integrate multiple biological data sources with the biological knowledge, i.e., Gene Ontology (GO), for protein function prediction. We propose a method, called SimNet, to Semantically i ntegrate multiple functional association Networks derived from heterogenous data sources. SimNet firstly utilizes GO annotations of proteins to capture the semantic similarity between proteins and introduces a semantic kernel based on the similarity. Next, SimNet constructs a composite network, obtained as a weighted summation of individual networks, and aligns the network with the kernel to get the weights assigned to individual networks. Then, it applies a network-based classifier on the composite network to predict protein function. Experiment results on heterogenous proteomic data sources of Yeast, Human, Mouse, and Fly show that, SimNet not only achieves better (or comparable) results than other related competitive approaches, but also takes much less time. The Matlab codes of SimNet are available at https://sites.google.com/site/guoxian85/simnet. PMID:26800544

  4. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function.

    PubMed

    Warde-Farley, David; Donaldson, Sylva L; Comes, Ovi; Zuberi, Khalid; Badrawi, Rashad; Chao, Pauline; Franz, Max; Grouios, Chris; Kazi, Farzana; Lopes, Christian Tannus; Maitland, Anson; Mostafavi, Sara; Montojo, Jason; Shao, Quentin; Wright, George; Bader, Gary D; Morris, Quaid

    2010-07-01

    GeneMANIA (http://www.genemania.org) is a flexible, user-friendly web interface for generating hypotheses about gene function, analyzing gene lists and prioritizing genes for functional assays. Given a query list, GeneMANIA extends the list with functionally similar genes that it identifies using available genomics and proteomics data. GeneMANIA also reports weights that indicate the predictive value of each selected data set for the query. Six organisms are currently supported (Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, Mus musculus, Homo sapiens and Saccharomyces cerevisiae) and hundreds of data sets have been collected from GEO, BioGRID, Pathway Commons and I2D, as well as organism-specific functional genomics data sets. Users can select arbitrary subsets of the data sets associated with an organism to perform their analyses and can upload their own data sets to analyze. The GeneMANIA algorithm performs as well or better than other gene function prediction methods on yeast and mouse benchmarks. The high accuracy of the GeneMANIA prediction algorithm, an intuitive user interface and large database make GeneMANIA a useful tool for any biologist. PMID:20576703

  5. Exponential generating functions for the associated Bessel functions

    NASA Astrophysics Data System (ADS)

    Fakhri, H.; Mojaveri, B.; Gomshi Nobary, M. A.

    2008-09-01

    Similar to the associated Legendre functions, the differential equation for the associated Bessel functions Bl,m(x) is introduced so that its form remains invariant under the transformation l → -l - 1. A Rodrigues formula for the associated Bessel functions as squared integrable solutions in both regions l < 0 and l >= 0 is presented. The functions with the same m but with different positive and negative values of l are not independent of each other, while the functions with the same l + m (l - m) but with different values of l and m are independent of each other. So, all the functions Bl,m(x) may be taken into account as the union of the increasing (decreasing) infinite sequences with respect to l. It is shown that two new different types of exponential generating functions are attributed to the associated Bessel functions corresponding to these rearranged sequences.

  6. Habitual fat intake predicts memory function in younger women

    PubMed Central

    Gibson, E. Leigh; Barr, Suzanne; Jeanes, Yvonne M.

    2013-01-01

    High intakes of fat have been linked to greater cognitive decline in old age, but such associations may already occur in younger adults. We tested memory and learning in 38 women (25 to 45 years old), recruited for a larger observational study in women with polycystic ovary syndrome. These women varied in health status, though not significantly between cases (n = 23) and controls (n = 15). Performance on tests sensitive to medial temporal lobe function (CANTABeclipse, Cambridge Cognition Ltd, Cambridge, UK), i.e., verbal memory, visuo-spatial learning, and delayed pattern matching (DMS), were compared with intakes of macronutrients from 7-day diet diaries and physiological indices of metabolic syndrome. Partial correlations were adjusted for age, activity, and verbal IQ (National Adult Reading Test). Greater intakes of saturated and trans fats, and higher saturated to unsaturated fat ratio (Sat:UFA), were associated with more errors on the visuo-spatial task and with poorer word recall and recognition. Unexpectedly, higher UFA intake predicted poorer performance on the word recall and recognition measures. Fasting insulin was positively correlated with poorer word recognition only, whereas higher blood total cholesterol was associated only with visuo-spatial learning errors. None of these variables predicted performance on a DMS test. The significant nutrient–cognition relationships were tested for mediation by total energy intake: saturated and trans fat intakes, and Sat:UFA, remained significant predictors specifically of visuo-spatial learning errors, whereas total fat and UFA intakes now predicted only poorer word recall. Examination of associations separately for monounsaturated (MUFA) and polyunsaturated fats suggested that only MUFA intake was predictive of poorer word recall. Saturated and trans fats, and fasting insulin, may already be associated with cognitive deficits in younger women. The findings need extending but may have important implications for

  7. "Reverse Genomics" Predicts Function of Human Conserved Noncoding Elements.

    PubMed

    Marcovitz, Amir; Jia, Robin; Bejerano, Gill

    2016-05-01

    Evolutionary changes in cis-regulatory elements are thought to play a key role in morphological and physiological diversity across animals. Many conserved noncoding elements (CNEs) function as cis-regulatory elements, controlling gene expression levels in different biological contexts. However, determining specific associations between CNEs and related phenotypes is a challenging task. Here, we present a computational "reverse genomics" approach that predicts the phenotypic functions of human CNEs. We identify thousands of human CNEs that were lost in at least two independent mammalian lineages (IL-CNEs), and match their evolutionary profiles against a diverse set of phenotypes recently annotated across multiple mammalian species. We identify 2,759 compelling associations between human CNEs and a diverse set of mammalian phenotypes. We discuss multiple CNEs, including a predicted ear element near BMP7, a pelvic CNE in FBN1, a brain morphology element in UBE4B, and an aquatic adaptation forelimb CNE near EGR2, and provide a full list of our predictions. As more genomes are sequenced and more traits are annotated across species, we expect our method to facilitate the interpretation of noncoding mutations in human disease and expedite the discovery of individual CNEs that play key roles in human evolution and development. PMID:26744417

  8. Metabolic Syndrome Biomarkers Predict Lung Function Impairment

    PubMed Central

    Naveed, Bushra; Weiden, Michael D.; Kwon, Sophia; Gracely, Edward J.; Comfort, Ashley L.; Ferrier, Natalia; Kasturiarachchi, Kusali J.; Cohen, Hillel W.; Aldrich, Thomas K.; Rom, William N.; Kelly, Kerry; Prezant, David J.

    2012-01-01

    Rationale: Cross-sectional studies demonstrate an association between metabolic syndrome and impaired lung function. Objectives: To define if metabolic syndrome biomarkers are risk factors for loss of lung function after irritant exposure. Methods: A nested case-control study of Fire Department of New York personnel with normal pre–September 11th FEV1 and who presented for subspecialty pulmonary evaluation before March 10, 2008. We correlated metabolic syndrome biomarkers obtained within 6 months of World Trade Center dust exposure with subsequent FEV1. FEV1 at subspecialty pulmonary evaluation within 6.5 years defined disease status; cases had FEV1 less than lower limit of normal, whereas control subjects had FEV1 greater than or equal to lower limit of normal. Measurements and Main Results: Clinical data and serum sampled at the first monitoring examination within 6 months of September 11, 2001, assessed body mass index, heart rate, serum glucose, triglycerides and high-density lipoprotein (HDL), leptin, pancreatic polypeptide, and amylin. Cases and control subjects had significant differences in HDL less than 40 mg/dl with triglycerides greater than or equal to 150 mg/dl, heart rate greater than or equal to 66 bpm, and leptin greater than or equal to 10,300 pg/ml. Each increased the odds of abnormal FEV1 at pulmonary evaluation by more than twofold, whereas amylin greater than or equal to 116 pg/ml decreased the odds by 84%, in a multibiomarker model adjusting for age, race, body mass index, and World Trade Center arrival time. This model had a sensitivity of 41%, a specificity of 86%, and a receiver operating characteristic area under the curve of 0.77. Conclusions: Abnormal triglycerides and HDL and elevated heart rate and leptin are independent risk factors of greater susceptibility to lung function impairment after September 11, 2001, whereas elevated amylin is protective. Metabolic biomarkers are predictors of lung disease, and may be useful for assessing

  9. GAPIT: genome association and prediction integrated tool

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Advances in high throughput sequencing have improved the detection of genes underlying important traits as well as the prediction accuracy of disease risk and breeding value of crop or livestock. Software programs developed to perform statistical genetic analysis that support these activities should...

  10. Text Mining Improves Prediction of Protein Functional Sites

    PubMed Central

    Cohn, Judith D.; Ravikumar, Komandur E.

    2012-01-01

    We present an approach that integrates protein structure analysis and text mining for protein functional site prediction, called LEAP-FS (Literature Enhanced Automated Prediction of Functional Sites). The structure analysis was carried out using Dynamics Perturbation Analysis (DPA), which predicts functional sites at control points where interactions greatly perturb protein vibrations. The text mining extracts mentions of residues in the literature, and predicts that residues mentioned are functionally important. We assessed the significance of each of these methods by analyzing their performance in finding known functional sites (specifically, small-molecule binding sites and catalytic sites) in about 100,000 publicly available protein structures. The DPA predictions recapitulated many of the functional site annotations and preferentially recovered binding sites annotated as biologically relevant vs. those annotated as potentially spurious. The text-based predictions were also substantially supported by the functional site annotations: compared to other residues, residues mentioned in text were roughly six times more likely to be found in a functional site. The overlap of predictions with annotations improved when the text-based and structure-based methods agreed. Our analysis also yielded new high-quality predictions of many functional site residues that were not catalogued in the curated data sources we inspected. We conclude that both DPA and text mining independently provide valuable high-throughput protein functional site predictions, and that integrating the two methods using LEAP-FS further improves the quality of these predictions. PMID:22393388

  11. A Prediction Model of the Capillary Pressure J-Function.

    PubMed

    Xu, W S; Luo, P Y; Sun, L; Lin, N

    2016-01-01

    The capillary pressure J-function is a dimensionless measure of the capillary pressure of a fluid in a porous medium. The function was derived based on a capillary bundle model. However, the dependence of the J-function on the saturation Sw is not well understood. A prediction model for it is presented based on capillary pressure model, and the J-function prediction model is a power function instead of an exponential or polynomial function. Relative permeability is calculated with the J-function prediction model, resulting in an easier calculation and results that are more representative. PMID:27603701

  12. Remote sensing of vegetation ecophysiological function for improved hydrologic prediction

    NASA Astrophysics Data System (ADS)

    Drewry, D.; Ruddell, B. L.

    2014-12-01

    Land surface hydrology in vegetated landscapes is strongly controlled by ecophysiological function. The coupling between photosynthesis, stomatal dynamics and leaf energy balance fundamentally links the hydrologic and carbon cycles, and provides a basis for examining the utility of observations of functional plant traits for hydrologic prediction. Here we explore the potential of solar induced fluorescence (SIF) and thermal infrared (TIR) remote sensing observations to improve the accuracy and reduce the uncertainty in hydrologic prediction. While SIF represents an emission of radiation associated with photosynthesis, TIR provides information on foliage temperature and is related to stomatal function and water stress. A set of remote observing system simulation experiments are conducted to quantify the value of remotely sensed observations of SIF and TIR when assimilated into a detailed vegetation biophysical model. The MLCan model discretizes a dense plant canopy to resolve vertical variation in photosynthesis, water vapor and energy exchange. Here we present extensions to MLCan that allow for direct computation of the canopy emission of both SIF and TIR. The detailed representation of the physical environment and biological functioning of structurally complex canopies makes MLCan an ideal simulation tool for exploring the impact of these two unique, and potentially synergistic observables. This work specifically addresses remote sensing capabilities on both recently launched (OCO-2) and near-term (ECOSTRESS) satellite platforms. We contrast the information gained through the assimilation of SIF and TIR observations to that of the assimilation of data related to physical states such as soil moisture and leaf area index.

  13. Electrocortical indices of selective attention predict adolescent executive functioning.

    PubMed

    Lackner, Christine L; Santesso, Diane L; Dywan, Jane; Wade, Terrance J; Segalowitz, Sidney J

    2013-05-01

    Executive functioning is considered a powerful predictor of behavioral and mental health outcomes during adolescence. Our question was whether executive functioning skills, normally considered "top-down" processes, are related to automatic aspects of selective attention. Event-related potentials (ERPs) were recorded from typically-developing 12-14-year-old adolescents as they responded to tones presented in attended and unattended channels in an auditory selective attention task. Examining these ERPs in relation to parental reports on the Behavior Rating Inventory of Executive Function (BRIEF) revealed that an early frontal positivity (EFP) elicited by to-be-ignored/unattended tones was larger in those with poorer executive functions, driven by scores on the BRIEF Metacognition Index. As is traditionally found, N1 amplitudes were more negative for the to-be-attended rather than unattended tones. Additionally, N1 latencies to unattended tones correlated with parent-ratings on the BRIEF Behavior Regulation Index, where shorter latencies predicted better executive functions. Results suggest that the ability to disengage attention from distractor information in the early stages of stimulus processing is associated with adolescent executive functioning skills. PMID:23528784

  14. Predicted vibrational spectra from anharmonic potential functions

    SciTech Connect

    Dunn, K.M.

    1986-01-01

    The dissertation develops a procedure for predicting vibrational spectra of polyatomic molecules from a combination of theoretical and experimental information. Ab initio quantum chemical calculations provide anharmonic force constants including cubics and diagonal quartics. A variational procedure analogous to configuration interaction is then used to compute eigenvalues of the pure vibrational Hamiltonian. The diagonal quadratic force constants are then adjusted until the calculated fundamental frequencies agree with experiment. The resulting theoretical-experimental force field may then be used to predict the energies of vibrationally excited states. The method is applied to three molecules: hydrogen cyanide, ammonia, and methyl fluoride. For hydrogen cyanide, the dissertation presents predicted energies for all of the vibrationally excited states with up to four quanta of excitation distributed among the four modes. The root-mean-square error is 8.7 cm{sup {minus}1} for the states below 11,000 cm{sup {minus}1}. The force constants for ammonia are adjusted to reproduce the fundamental frequencies of ND{sub 3}. The force constants then predict the energies of states below 7000 cm{sup {minus}1} with an rms error of 5.8 cm{sup {minus}1} for ND{sub 3} and 16.7 cm{sup {minus}1} for NH{sub 3}. Finally, the adjusted force constants for methyl fluoride predict the energies of states below 4100 cm{sup {minus}1} with an rms error of 4.3 cm{sup {minus}1}. These force constants are also used to predict the CH stretching overtone region of CH{sub 3}F and the first, second and third overtone regions of CD{sub 2}FH for which experimental information is not available.

  15. Models for predicting objective function weights in prostate cancer IMRT

    SciTech Connect

    Boutilier, Justin J. Lee, Taewoo; Craig, Tim; Sharpe, Michael B.; Chan, Timothy C. Y.

    2015-04-15

    Purpose: To develop and evaluate the clinical applicability of advanced machine learning models that simultaneously predict multiple optimization objective function weights from patient geometry for intensity-modulated radiation therapy of prostate cancer. Methods: A previously developed inverse optimization method was applied retrospectively to determine optimal objective function weights for 315 treated patients. The authors used an overlap volume ratio (OV) of bladder and rectum for different PTV expansions and overlap volume histogram slopes (OVSR and OVSB for the rectum and bladder, respectively) as explanatory variables that quantify patient geometry. Using the optimal weights as ground truth, the authors trained and applied three prediction models: logistic regression (LR), multinomial logistic regression (MLR), and weighted K-nearest neighbor (KNN). The population average of the optimal objective function weights was also calculated. Results: The OV at 0.4 cm and OVSR at 0.1 cm features were found to be the most predictive of the weights. The authors observed comparable performance (i.e., no statistically significant difference) between LR, MLR, and KNN methodologies, with LR appearing to perform the best. All three machine learning models outperformed the population average by a statistically significant amount over a range of clinical metrics including bladder/rectum V53Gy, bladder/rectum V70Gy, and dose to the bladder, rectum, CTV, and PTV. When comparing the weights directly, the LR model predicted bladder and rectum weights that had, on average, a 73% and 74% relative improvement over the population average weights, respectively. The treatment plans resulting from the LR weights had, on average, a rectum V70Gy that was 35% closer to the clinical plan and a bladder V70Gy that was 29% closer, compared to the population average weights. Similar results were observed for all other clinical metrics. Conclusions: The authors demonstrated that the KNN and MLR

  16. Network-based prediction of protein function

    PubMed Central

    Sharan, Roded; Ulitsky, Igor; Shamir, Ron

    2007-01-01

    Functional annotation of proteins is a fundamental problem in the post-genomic era. The recent availability of protein interaction networks for many model species has spurred on the development of computational methods for interpreting such data in order to elucidate protein function. In this review, we describe the current computational approaches for the task, including direct methods, which propagate functional information through the network, and module-assisted methods, which infer functional modules within the network and use those for the annotation task. Although a broad variety of interesting approaches has been developed, further progress in the field will depend on systematic evaluation of the methods and their dissemination in the biological community. PMID:17353930

  17. A survey of the broadband shock associated noise prediction methods

    NASA Technical Reports Server (NTRS)

    Kim, Chan M.; Krejsa, Eugene A.; Khavaran, Abbas

    1992-01-01

    Several different prediction methods to estimate the broadband shock associated noise of a supersonic jet are introduced and compared with experimental data at various test conditions. The nozzle geometries considered for comparison include a convergent and a convergent-divergent nozzle, both axisymmetric. Capabilities and limitations of prediction methods in incorporating the two nozzle geometries, flight effect, and temperature effect are discussed. Predicted noise field shows the best agreement for a convergent nozzle geometry under static conditions. Predicted results for nozzles in flight show larger discrepancies from data and more dependable flight data are required for further comparison. Qualitative effects of jet temperature, as observed in experiment, are reproduced in predicted results.

  18. Critical evidence for the prediction error theory in associative learning

    PubMed Central

    Terao, Kanta; Matsumoto, Yukihisa; Mizunami, Makoto

    2015-01-01

    In associative learning in mammals, it is widely accepted that the discrepancy, or error, between actual and predicted reward determines whether learning occurs. Complete evidence for the prediction error theory, however, has not been obtained in any learning systems: Prediction error theory stems from the finding of a blocking phenomenon, but blocking can also be accounted for by other theories, such as the attentional theory. We demonstrated blocking in classical conditioning in crickets and obtained evidence to reject the attentional theory. To obtain further evidence supporting the prediction error theory and rejecting alternative theories, we constructed a neural model to match the prediction error theory, by modifying our previous model of learning in crickets, and we tested a prediction from the model: the model predicts that pharmacological intervention of octopaminergic transmission during appetitive conditioning impairs learning but not formation of reward prediction itself, and it thus predicts no learning in subsequent training. We observed such an “auto-blocking”, which could be accounted for by the prediction error theory but not by other competitive theories to account for blocking. This study unambiguously demonstrates validity of the prediction error theory in associative learning. PMID:25754125

  19. Critical evidence for the prediction error theory in associative learning.

    PubMed

    Terao, Kanta; Matsumoto, Yukihisa; Mizunami, Makoto

    2015-01-01

    In associative learning in mammals, it is widely accepted that the discrepancy, or error, between actual and predicted reward determines whether learning occurs. Complete evidence for the prediction error theory, however, has not been obtained in any learning systems: Prediction error theory stems from the finding of a blocking phenomenon, but blocking can also be accounted for by other theories, such as the attentional theory. We demonstrated blocking in classical conditioning in crickets and obtained evidence to reject the attentional theory. To obtain further evidence supporting the prediction error theory and rejecting alternative theories, we constructed a neural model to match the prediction error theory, by modifying our previous model of learning in crickets, and we tested a prediction from the model: the model predicts that pharmacological intervention of octopaminergic transmission during appetitive conditioning impairs learning but not formation of reward prediction itself, and it thus predicts no learning in subsequent training. We observed such an "auto-blocking", which could be accounted for by the prediction error theory but not by other competitive theories to account for blocking. This study unambiguously demonstrates validity of the prediction error theory in associative learning. PMID:25754125

  20. MASS FUNCTION PREDICTIONS BEYOND {Lambda}CDM

    SciTech Connect

    Bhattacharya, Suman; Lukic, Zarija; Habib, Salman; Heitmann, Katrin; White, Martin; Wagner, Christian

    2011-05-10

    The statistics of dark matter halos is an essential component of precision cosmology. The mass distribution of halos, as specified by the halo mass function, is a key input for several cosmological probes. The sizes of N-body simulations are now such that, for the most part, results need no longer be statistics-limited, but are still subject to various systematic uncertainties. Discrepancies in the results of simulation campaigns for the halo mass function remain in excess of statistical uncertainties and of roughly the same size as the error limits set by near-future observations; we investigate and discuss some of the reasons for these differences. Quantifying error sources and compensating for them as appropriate, we carry out a high-statistics study of dark matter halos from 67 N-body simulations to investigate the mass function and its evolution for a reference {Lambda}CDM cosmology and for a set of wCDM cosmologies. For the reference {Lambda}CDM cosmology (close to WMAP5), we quantify the breaking of universality in the form of the mass function as a function of redshift, finding an evolution of as much as 10% away from the universal form between redshifts z = 0 and z = 2. For cosmologies very close to this reference we provide a fitting formula to our results for the (evolving) {Lambda}CDM mass function over a mass range of 6 x 10{sup 11}-3 x 10{sup 15} M{sub sun} to an estimated accuracy of about 2%. The set of wCDM cosmologies is taken from the Coyote Universe simulation suite. The mass functions from this suite (which includes a {Lambda}CDM cosmology and others with w {approx_equal} -1) are described by the fitting formula for the reference {Lambda}CDM case at an accuracy level of 10%, but with clear systematic deviations. We argue that, as a consequence, fitting formulae based on a universal form for the mass function may have limited utility in high-precision cosmological applications.

  1. Mass Function Predictions Beyond ΛCDM

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Suman; Heitmann, Katrin; White, Martin; Lukić, Zarija; Wagner, Christian; Habib, Salman

    2011-05-01

    The statistics of dark matter halos is an essential component of precision cosmology. The mass distribution of halos, as specified by the halo mass function, is a key input for several cosmological probes. The sizes of N-body simulations are now such that, for the most part, results need no longer be statistics-limited, but are still subject to various systematic uncertainties. Discrepancies in the results of simulation campaigns for the halo mass function remain in excess of statistical uncertainties and of roughly the same size as the error limits set by near-future observations; we investigate and discuss some of the reasons for these differences. Quantifying error sources and compensating for them as appropriate, we carry out a high-statistics study of dark matter halos from 67 N-body simulations to investigate the mass function and its evolution for a reference ΛCDM cosmology and for a set of wCDM cosmologies. For the reference ΛCDM cosmology (close to WMAP5), we quantify the breaking of universality in the form of the mass function as a function of redshift, finding an evolution of as much as 10% away from the universal form between redshifts z = 0 and z = 2. For cosmologies very close to this reference we provide a fitting formula to our results for the (evolving) ΛCDM mass function over a mass range of 6 × 1011-3 × 1015 M sun to an estimated accuracy of about 2%. The set of wCDM cosmologies is taken from the Coyote Universe simulation suite. The mass functions from this suite (which includes a ΛCDM cosmology and others with w ~= -1) are described by the fitting formula for the reference ΛCDM case at an accuracy level of 10%, but with clear systematic deviations. We argue that, as a consequence, fitting formulae based on a universal form for the mass function may have limited utility in high-precision cosmological applications.

  2. Early executive function predicts reasoning development.

    PubMed

    Richland, Lindsey E; Burchinal, Margaret R

    2013-01-01

    Analogical reasoning is a core cognitive skill that distinguishes humans from all other species and contributes to general fluid intelligence, creativity, and adaptive learning capacities. Yet its origins are not well understood. In the study reported here, we analyzed large-scale longitudinal data from the Study of Early Child Care and Youth Development to test predictors of growth in analogical-reasoning skill from third grade to adolescence. Our results suggest an integrative resolution to the theoretical debate regarding contributory factors arising from smaller-scale, cross-sectional experiments on analogy development. Children with greater executive-function skills (both composite and inhibitory control) and vocabulary knowledge in early elementary school displayed higher scores on a verbal analogies task at age 15 years, even after adjusting for key covariates. We posit that knowledge is a prerequisite to analogy performance, but strong executive-functioning resources during early childhood are related to long-term gains in fundamental reasoning skills. PMID:23184588

  3. Sexual abuse predicts functional somatic symptoms: an adolescent population study.

    PubMed

    Bonvanie, Irma J; van Gils, Anne; Janssens, Karin A M; Rosmalen, Judith G M

    2015-08-01

    The main aim of this study was to investigate the effect of childhood sexual abuse on medically not well explained or functional somatic symptoms (FSSs) in adolescents. We hypothesized that sexual abuse predicts higher levels of FSSs and that anxiety and depression contribute to this relationship. In addition, we hypothesized that more severe abuse is associated with higher levels of FSSs and that sexual abuse is related to gastrointestinal FSSs in particular. This study was part of the Tracking Adolescents' Individual Lives Survey (TRAILS): a general population cohort which started in 2001 (N=2,230; 50.8% girls, mean age 11.1 years). The current study uses data of 1,680 participants over four assessment waves (75% of baseline, mean duration of follow-up: 8 years). FSSs were measured by the Somatic Complaints subscale of the Youth Self-Report at all waves. Sexual abuse before the age of sixteen was assessed retrospectively with a questionnaire at T4. To test the hypotheses linear mixed models were used adjusted for age, sex, socioeconomic status, anxiety and depression. Sexual abuse predicted higher levels of FSSs after adjustment for age sex and socioeconomic status (B=.06) and after additional adjustment for anxiety and depression (B=.03). While sexual abuse involving physical contact significantly predicted the level of FSSs (assault; B=.08, rape; B=.05), non-contact sexual abuse was not significantly associated with FSSs (B=.04). Sexual abuse was not a stronger predictor of gastrointestinal FSSs (B=.06) than of all FSSs. Further research is needed to clarify possible mechanisms underlying relationship between sexual abuse and FSSs. PMID:26142915

  4. Probabilistic Protein Function Prediction from Heterogeneous Genome-Wide Data

    PubMed Central

    Nariai, Naoki; Kolaczyk, Eric D.; Kasif, Simon

    2007-01-01

    Dramatic improvements in high throughput sequencing technologies have led to a staggering growth in the number of predicted genes. However, a large fraction of these newly discovered genes do not have a functional assignment. Fortunately, a variety of novel high-throughput genome-wide functional screening technologies provide important clues that shed light on gene function. The integration of heterogeneous data to predict protein function has been shown to improve the accuracy of automated gene annotation systems. In this paper, we propose and evaluate a probabilistic approach for protein function prediction that integrates protein-protein interaction (PPI) data, gene expression data, protein motif information, mutant phenotype data, and protein localization data. First, functional linkage graphs are constructed from PPI data and gene expression data, in which an edge between nodes (proteins) represents evidence for functional similarity. The assumption here is that graph neighbors are more likely to share protein function, compared to proteins that are not neighbors. The functional linkage graph model is then used in concert with protein domain, mutant phenotype and protein localization data to produce a functional prediction. Our method is applied to the functional prediction of Saccharomyces cerevisiae genes, using Gene Ontology (GO) terms as the basis of our annotation. In a cross validation study we show that the integrated model increases recall by 18%, compared to using PPI data alone at the 50% precision. We also show that the integrated predictor is significantly better than each individual predictor. However, the observed improvement vs. PPI depends on both the new source of data and the functional category to be predicted. Surprisingly, in some contexts integration hurts overall prediction accuracy. Lastly, we provide a comprehensive assignment of putative GO terms to 463 proteins that currently have no assigned function. PMID:17396164

  5. Functional prediction of hypothetical proteins in human adenoviruses.

    PubMed

    Dorden, Shane; Mahadevan, Padmanabhan

    2015-01-01

    Assigning functional information to hypothetical proteins in virus genomes is crucial for gaining insight into their proteomes. Human adenoviruses are medium sized viruses that cause a range of diseases. Their genomes possess proteins with uncharacterized function known as hypothetical proteins. Using a wide range of protein function prediction servers, functional information was obtained about these hypothetical proteins. A comparison of functional information obtained from these servers revealed that some of them produced functional information, while others provided little functional information about these human adenovirus hypothetical proteins. The PFP, ESG, PSIPRED, 3d2GO, and ProtFun servers produced the most functional information regarding these hypothetical proteins. PMID:26664031

  6. Predicting Transfer Performance: A Comparison of Competing Function Learning Models

    ERIC Educational Resources Information Center

    McDaniel, Mark A.; Dimperio, Eric; Griego, Jacqueline A.; Busemeyer, Jerome R.

    2009-01-01

    The population of linear experts (POLE) model suggests that function learning and transfer are mediated by activation of a set of prestored linear functions that together approximate the given function (Kalish, Lewandowsky, & Kruschke, 2004). In the extrapolation-association (EXAM) model, an exemplar-based architecture associates trained input…

  7. Using search engine technology for protein function prediction.

    PubMed

    Chen, Ziyang; Cai, Zhao; Li, Min; Liu, Binbin

    2011-01-01

    Prediction of protein function is one of the most challenging problems in the post-genomic era. In this paper, we propose a novel algorithm Improved ProteinRank (IPR) for protein function prediction, which is based on the search engine technology and the preferential attachment criteria. In addition, an improved algorithm IPRW is developed from IPR to be used in the weighted protein?protein interaction (PPI) network. The proposed algorithms IPR and IPRW are applied to the PPI network of S.cerevisiae. The experimental results show that both IPR and IPRW outweigh the previous methods for the prediction of protein functions. PMID:21441099

  8. Predicting individual brain maturity using dynamic functional connectivity

    PubMed Central

    Qin, Jian; Chen, Shan-Guang; Hu, Dewen; Zeng, Ling-Li; Fan, Yi-Ming; Chen, Xiao-Ping; Shen, Hui

    2015-01-01

    Neuroimaging-based functional connectivity (FC) analyses have revealed significant developmental trends in specific intrinsic connectivity networks linked to cognitive and behavioral maturation. However, knowledge of how brain functional maturation is associated with FC dynamics at rest is limited. Here, we examined age-related differences in the temporal variability of FC dynamics with data publicly released by the Nathan Kline Institute (NKI; n = 183, ages 7–30) and showed that dynamic inter-region interactions can be used to accurately predict individual brain maturity across development. Furthermore, we identified a significant age-dependent trend underlying dynamic inter-network FC, including increasing variability of the connections between the visual network, default mode network (DMN) and cerebellum as well as within the cerebellum and DMN and decreasing variability within the cerebellum and between the cerebellum and DMN as well as the cingulo-opercular network. Overall, the results suggested significant developmental changes in dynamic inter-network interaction, which may shed new light on the functional organization of typical developmental brains. PMID:26236224

  9. Dopamine neurons share common response function for reward prediction error

    PubMed Central

    Eshel, Neir; Tian, Ju; Bukwich, Michael; Uchida, Naoshige

    2016-01-01

    Dopamine neurons are thought to signal reward prediction error, or the difference between actual and predicted reward. How dopamine neurons jointly encode this information, however, remains unclear. One possibility is that different neurons specialize in different aspects of prediction error; another is that each neuron calculates prediction error in the same way. We recorded from optogenetically-identified dopamine neurons in the lateral ventral tegmental area (VTA) while mice performed classical conditioning tasks. Our tasks allowed us to determine the full prediction error functions of dopamine neurons and compare them to each other. We found striking homogeneity among individual dopamine neurons: their responses to both unexpected and expected rewards followed the same function, just scaled up or down. As a result, we could describe both individual and population responses using just two parameters. Such uniformity ensures robust information coding, allowing each dopamine neuron to contribute fully to the prediction error signal. PMID:26854803

  10. Polyamines: Predictive Biomarker for HIV-Associated Neurocognitive Disorders

    PubMed Central

    Merali, Salim; Barrero, Carlos A.; Sacktor, Ned C.; Haughey, Norman J.; Datta, Prasun K.; Langford, Dianne; Khalili, Kamel

    2014-01-01

    Objectives Spermidine/spermine-N1-acetytransferase (SSAT) is the key enzyme in the catabolism of polyamines that are involved in regulating NMDA functioning. Over expression of SSAT leads to abnormal metabolic cycling and may disrupt NMDA receptor signaling. In fact, the HIV protein Tat induces neurotoxicity involving polyamine/NMDA receptor interactions. Thus, we investigated abnormal polyamine cycling in HIV+ participants with varying degrees of HIV-associated neurocognitive disorders. Methods Acetyl-polyamine (SSAT products) levels were assessed by HPLC in CSF from 99 HIV-infected participants (no cognitive impairment (NCI, n=25), asymptomatic neurocognitive impairment (ANI, n=25), mild cognitive and motor disorders (MCMD, n=24), and HIV-associated dementia (HAD, n=25)). Polyamine levels in brain tissues from a subset of participants (uninfected (n=3), NCI (n=3), and MNCD (n=3)) were also assessed. Human primary astrocytes expressing HIV Tat were assessed for levels of the SSAT activity. Results Activation of the polyamine catabolic enzyme, SSAT increases polyamine flux in brain and CSF of HIV infected individuals with HIV-associated neurocognitive disorders. CSF levels of acetylated polyamine increase with the degree of HAND severity as indicated by significantly increased acetylpolyamine levels in HAD participants compared to NCI and ANI (p<0.0001) and between MCMD and NCI and ANI (p<0.0001). In vitro studies suggest that the HIV protein Tat may be responsible in part for astrocyte-derived acetyl polyamine release. Interpretation Our data suggest that polyamine metabolism may play a pivotal role in the neurodegeneration process among HAND patients. Changes in polyamine flux may serve as a potential predictive diagnostic biomarker for different severities of HAND. PMID:25893137

  11. Genome-environment associations in sorghum landraces predict adaptive traits.

    PubMed

    Lasky, Jesse R; Upadhyaya, Hari D; Ramu, Punna; Deshpande, Santosh; Hash, C Tom; Bonnette, Jason; Juenger, Thomas E; Hyma, Katie; Acharya, Charlotte; Mitchell, Sharon E; Buckler, Edward S; Brenton, Zachary; Kresovich, Stephen; Morris, Geoffrey P

    2015-07-01

    Improving environmental adaptation in crops is essential for food security under global change, but phenotyping adaptive traits remains a major bottleneck. If associations between single-nucleotide polymorphism (SNP) alleles and environment of origin in crop landraces reflect adaptation, then these could be used to predict phenotypic variation for adaptive traits. We tested this proposition in the global food crop Sorghum bicolor, characterizing 1943 georeferenced landraces at 404,627 SNPs and quantifying allelic associations with bioclimatic and soil gradients. Environment explained a substantial portion of SNP variation, independent of geographical distance, and genic SNPs were enriched for environmental associations. Further, environment-associated SNPs predicted genotype-by-environment interactions under experimental drought stress and aluminum toxicity. Our results suggest that genomic signatures of environmental adaptation may be useful for crop improvement, enhancing germplasm identification and marker-assisted selection. Together, genome-environment associations and phenotypic analyses may reveal the basis of environmental adaptation. PMID:26601206

  12. Genome-environment associations in sorghum landraces predict adaptive traits

    PubMed Central

    Lasky, Jesse R.; Upadhyaya, Hari D.; Ramu, Punna; Deshpande, Santosh; Hash, C. Tom; Bonnette, Jason; Juenger, Thomas E.; Hyma, Katie; Acharya, Charlotte; Mitchell, Sharon E.; Buckler, Edward S.; Brenton, Zachary; Kresovich, Stephen; Morris, Geoffrey P.

    2015-01-01

    Improving environmental adaptation in crops is essential for food security under global change, but phenotyping adaptive traits remains a major bottleneck. If associations between single-nucleotide polymorphism (SNP) alleles and environment of origin in crop landraces reflect adaptation, then these could be used to predict phenotypic variation for adaptive traits. We tested this proposition in the global food crop Sorghum bicolor, characterizing 1943 georeferenced landraces at 404,627 SNPs and quantifying allelic associations with bioclimatic and soil gradients. Environment explained a substantial portion of SNP variation, independent of geographical distance, and genic SNPs were enriched for environmental associations. Further, environment-associated SNPs predicted genotype-by-environment interactions under experimental drought stress and aluminum toxicity. Our results suggest that genomic signatures of environmental adaptation may be useful for crop improvement, enhancing germplasm identification and marker-assisted selection. Together, genome-environment associations and phenotypic analyses may reveal the basis of environmental adaptation. PMID:26601206

  13. A new protein structure representation for efficient protein function prediction.

    PubMed

    Maghawry, Huda A; Mostafa, Mostafa G M; Gharib, Tarek F

    2014-12-01

    One of the challenging problems in bioinformatics is the prediction of protein function. Protein function is the main key that can be used to classify different proteins. Protein function can be inferred experimentally with very small throughput or computationally with very high throughput. Computational methods are sequence based or structure based. Structure-based methods produce more accurate protein function prediction. In this article, we propose a new protein structure representation for efficient protein function prediction. The representation is based on three-dimensional patterns of protein residues. In the analysis, we used protein function based on enzyme activity through six mechanistically diverse enzyme superfamilies: amidohydrolase, crotonase, haloacid dehalogenase, isoprenoid synthase type I, and vicinal oxygen chelate. We applied three different classification methods, naïve Bayes, k-nearest neighbors, and random forest, to predict the enzyme superfamily of a given protein. The prediction accuracy using the proposed representation outperforms a recently introduced representation method that is based only on the distance patterns. The results show that the proposed representation achieved prediction accuracy up to 98%, with improvement of about 10% on average. PMID:25343279

  14. Identification of optimal soil hydraulic functions and parameters for predicting soil moisture

    EPA Science Inventory

    We examined the accuracy of several commonly used soil hydraulic functions and associated parameters for predicting observed soil moisture data. We used six combined methods formed by three commonly used soil hydraulic functions – i.e., Brooks and Corey (1964) (BC), Campbell (19...

  15. Gene function prediction with knowledge from gene ontology.

    PubMed

    Shen, Ying; Zhang, Lin

    2015-01-01

    Gene function prediction is an important problem in bioinformatics. Due to the inherent noise existing in the gene expression data, the attempt to improve the prediction accuracy resorting to new classification techniques is limited. With the emergence of Gene Ontology (GO), extra knowledge about the gene products can be extracted from GO and facilitates solving the gene function prediction problem. In this paper, we propose a new method which utilises GO information to improve the classifiers' performance in gene function prediction. Specifically, our method learns a distance metric under the supervision of the GO knowledge using the distance learning technique. Compared with the traditional distance metrics, the learned one produces a better performance and consequently classification accuracy can be improved. The effectiveness of our proposed method has been corroborated by the extensive experimental results. PMID:26529907

  16. Empirical sediment transport function predicting seepage erosion undercutting for cohesive bank failure prediction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seepage erosion is an important factor in hillslope instability and failure. However, predicting erosion by subsurface flow or seepage and incorporating its effects into stability models remains a challenge. Limitations exist with all existing seepage erosion sediment transport functions, including ...

  17. INTEGRATING COMPUTATIONAL PROTEIN FUNCTION PREDICTION INTO DRUG DISCOVERY INITIATIVES

    PubMed Central

    Grant, Marianne A.

    2014-01-01

    Pharmaceutical researchers must evaluate vast numbers of protein sequences and formulate innovative strategies for identifying valid targets and discovering leads against them as a way of accelerating drug discovery. The ever increasing number and diversity of novel protein sequences identified by genomic sequencing projects and the success of worldwide structural genomics initiatives have spurred great interest and impetus in the development of methods for accurate, computationally empowered protein function prediction and active site identification. Previously, in the absence of direct experimental evidence, homology-based protein function annotation remained the gold-standard for in silico analysis and prediction of protein function. However, with the continued exponential expansion of sequence databases, this approach is not always applicable, as fewer query protein sequences demonstrate significant homology to protein gene products of known function. As a result, several non-homology based methods for protein function prediction that are based on sequence features, structure, evolution, biochemical and genetic knowledge have emerged. Herein, we review current bioinformatic programs and approaches for protein function prediction/annotation and discuss their integration into drug discovery initiatives. The development of such methods to annotate protein functional sites and their application to large protein functional families is crucial to successfully utilizing the vast amounts of genomic sequence information available to drug discovery and development processes. PMID:25530654

  18. Preschool Executive Functioning Abilities Predict Early Mathematics Achievement

    ERIC Educational Resources Information Center

    Clark, Caron A. C.; Pritchard, Verena E.; Woodward, Lianne J.

    2010-01-01

    Impairments in executive function have been documented in school-age children with mathematical learning difficulties. However, the utility and specificity of preschool executive function abilities in predicting later mathematical achievement are poorly understood. This study examined linkages between children's developing executive function…

  19. A Unitary Executive Function Predicts Intelligence in Children

    ERIC Educational Resources Information Center

    Brydges, Christopher R.; Reid, Corinne L.; Fox, Allison M.; Anderson, Mike

    2012-01-01

    Executive functions (EF) and intelligence are of critical importance to success in many everyday tasks. Working memory, or updating, which is one latent variable identified in confirmatory factor analytic models of executive functions, predicts intelligence (both fluid and crystallised) in adults, but inhibition and shifting do not (Friedman et…

  20. A large-scale evaluation of computational protein function prediction

    PubMed Central

    Radivojac, Predrag; Clark, Wyatt T; Ronnen Oron, Tal; Schnoes, Alexandra M; Wittkop, Tobias; Sokolov, Artem; Graim, Kiley; Funk, Christopher; Verspoor, Karin; Ben-Hur, Asa; Pandey, Gaurav; Yunes, Jeffrey M; Talwalkar, Ameet S; Repo, Susanna; Souza, Michael L; Piovesan, Damiano; Casadio, Rita; Wang, Zheng; Cheng, Jianlin; Fang, Hai; Gough, Julian; Koskinen, Patrik; Törönen, Petri; Nokso-Koivisto, Jussi; Holm, Liisa; Cozzetto, Domenico; Buchan, Daniel W A; Bryson, Kevin; Jones, David T; Limaye, Bhakti; Inamdar, Harshal; Datta, Avik; Manjari, Sunitha K; Joshi, Rajendra; Chitale, Meghana; Kihara, Daisuke; Lisewski, Andreas M; Erdin, Serkan; Venner, Eric; Lichtarge, Olivier; Rentzsch, Robert; Yang, Haixuan; Romero, Alfonso E; Bhat, Prajwal; Paccanaro, Alberto; Hamp, Tobias; Kassner, Rebecca; Seemayer, Stefan; Vicedo, Esmeralda; Schaefer, Christian; Achten, Dominik; Auer, Florian; Böhm, Ariane; Braun, Tatjana; Hecht, Maximilian; Heron, Mark; Hönigschmid, Peter; Hopf, Thomas; Kaufmann, Stefanie; Kiening, Michael; Krompass, Denis; Landerer, Cedric; Mahlich, Yannick; Roos, Manfred; Björne, Jari; Salakoski, Tapio; Wong, Andrew; Shatkay, Hagit; Gatzmann, Fanny; Sommer, Ingolf; Wass, Mark N; Sternberg, Michael J E; Škunca, Nives; Supek, Fran; Bošnjak, Matko; Panov, Panče; Džeroski, Sašo; Šmuc, Tomislav; Kourmpetis, Yiannis A I; van Dijk, Aalt D J; ter Braak, Cajo J F; Zhou, Yuanpeng; Gong, Qingtian; Dong, Xinran; Tian, Weidong; Falda, Marco; Fontana, Paolo; Lavezzo, Enrico; Di Camillo, Barbara; Toppo, Stefano; Lan, Liang; Djuric, Nemanja; Guo, Yuhong; Vucetic, Slobodan; Bairoch, Amos; Linial, Michal; Babbitt, Patricia C; Brenner, Steven E; Orengo, Christine; Rost, Burkhard; Mooney, Sean D; Friedberg, Iddo

    2013-01-01

    Automated annotation of protein function is challenging. As the number of sequenced genomes rapidly grows, the overwhelming majority of protein products can only be annotated computationally. If computational predictions are to be relied upon, it is crucial that the accuracy of these methods be high. Here we report the results from the first large-scale community-based Critical Assessment of protein Function Annotation (CAFA) experiment. Fifty-four methods representing the state-of-the-art for protein function prediction were evaluated on a target set of 866 proteins from eleven organisms. Two findings stand out: (i) today’s best protein function prediction algorithms significantly outperformed widely-used first-generation methods, with large gains on all types of targets; and (ii) although the top methods perform well enough to guide experiments, there is significant need for improvement of currently available tools. PMID:23353650

  1. Protein Structure and Function Prediction Using I-TASSER

    PubMed Central

    Yang, Jianyi; Zhang, Yang

    2016-01-01

    I-TASSER is a hierarchical protocol for automated protein structure prediction and structure-based function annotation. Starting from the amino acid sequence of target proteins, I-TASSER first generates full-length atomic structural models from multiple threading alignments and iterative structural assembly simulations followed by atomic-level structure refinement. The biological functions of the protein, including ligand-binding sites, enzyme commission number, and gene ontology terms, are then inferred from known protein function databases based on sequence and structure profile comparisons. I-TASSER is freely available as both an on-line server and a stand-alone package. This unit describes how to use the I-TASSER protocol to generate structure and function prediction and how to interpret the prediction results, as well as alternative approaches for further improving the I-TASSER modeling quality for distant-homologous and multi-domain protein targets. PMID:26678386

  2. A large-scale evaluation of computational protein function prediction.

    PubMed

    Radivojac, Predrag; Clark, Wyatt T; Oron, Tal Ronnen; Schnoes, Alexandra M; Wittkop, Tobias; Sokolov, Artem; Graim, Kiley; Funk, Christopher; Verspoor, Karin; Ben-Hur, Asa; Pandey, Gaurav; Yunes, Jeffrey M; Talwalkar, Ameet S; Repo, Susanna; Souza, Michael L; Piovesan, Damiano; Casadio, Rita; Wang, Zheng; Cheng, Jianlin; Fang, Hai; Gough, Julian; Koskinen, Patrik; Törönen, Petri; Nokso-Koivisto, Jussi; Holm, Liisa; Cozzetto, Domenico; Buchan, Daniel W A; Bryson, Kevin; Jones, David T; Limaye, Bhakti; Inamdar, Harshal; Datta, Avik; Manjari, Sunitha K; Joshi, Rajendra; Chitale, Meghana; Kihara, Daisuke; Lisewski, Andreas M; Erdin, Serkan; Venner, Eric; Lichtarge, Olivier; Rentzsch, Robert; Yang, Haixuan; Romero, Alfonso E; Bhat, Prajwal; Paccanaro, Alberto; Hamp, Tobias; Kaßner, Rebecca; Seemayer, Stefan; Vicedo, Esmeralda; Schaefer, Christian; Achten, Dominik; Auer, Florian; Boehm, Ariane; Braun, Tatjana; Hecht, Maximilian; Heron, Mark; Hönigschmid, Peter; Hopf, Thomas A; Kaufmann, Stefanie; Kiening, Michael; Krompass, Denis; Landerer, Cedric; Mahlich, Yannick; Roos, Manfred; Björne, Jari; Salakoski, Tapio; Wong, Andrew; Shatkay, Hagit; Gatzmann, Fanny; Sommer, Ingolf; Wass, Mark N; Sternberg, Michael J E; Škunca, Nives; Supek, Fran; Bošnjak, Matko; Panov, Panče; Džeroski, Sašo; Šmuc, Tomislav; Kourmpetis, Yiannis A I; van Dijk, Aalt D J; ter Braak, Cajo J F; Zhou, Yuanpeng; Gong, Qingtian; Dong, Xinran; Tian, Weidong; Falda, Marco; Fontana, Paolo; Lavezzo, Enrico; Di Camillo, Barbara; Toppo, Stefano; Lan, Liang; Djuric, Nemanja; Guo, Yuhong; Vucetic, Slobodan; Bairoch, Amos; Linial, Michal; Babbitt, Patricia C; Brenner, Steven E; Orengo, Christine; Rost, Burkhard; Mooney, Sean D; Friedberg, Iddo

    2013-03-01

    Automated annotation of protein function is challenging. As the number of sequenced genomes rapidly grows, the overwhelming majority of protein products can only be annotated computationally. If computational predictions are to be relied upon, it is crucial that the accuracy of these methods be high. Here we report the results from the first large-scale community-based critical assessment of protein function annotation (CAFA) experiment. Fifty-four methods representing the state of the art for protein function prediction were evaluated on a target set of 866 proteins from 11 organisms. Two findings stand out: (i) today's best protein function prediction algorithms substantially outperform widely used first-generation methods, with large gains on all types of targets; and (ii) although the top methods perform well enough to guide experiments, there is considerable need for improvement of currently available tools. PMID:23353650

  3. Relating Phylogenetic and Functional Diversity among Denitrifiers and Quantifying their Capacity to Predict Community Functioning

    PubMed Central

    Salles, Joana Falcão; Le Roux, Xavier; Poly, Franck

    2012-01-01

    Genetic diversity of phylogenetic or functional markers is widely used as a proxy of microbial diversity. However, it remains unclear to what extent functional diversity (FD), gene sequence diversity and community functioning are linked. For a range of denitrifying bacteria, we analyzed the relationships between (i) the similarity of functional traits evaluated from metabolic profiles (BIOLOG plates) or from N2O accumulation patterns on different carbon sources and (ii) the similarity of phylogenetic (16S rRNA gene) or functional (nir gene) markers. We also calculated different proxies for the diversity of denitrifier community based on taxa richness, phylogenetic (16S rRNA gene) or functional similarities (based either on metabolic profiles or N2O accumulation patterns), and evaluated their performance in inferring the functioning of assembled denitrifying communities. For individual strains, the variation in the 16S rRNA gene sequence was weakly correlated with the variation in metabolic patterns (ρ = 0.35) and was not related to N2O accumulation. The latter was correlated with the similarity of nitrite reductase residues. When nir genes were analyzed separately, the similarity in amino acids coded by the nirS genes was highly correlated with the observed patterns of N2O accumulation (ρ = 0.62), whereas nirK amino acid residues were unrelated to N2O accumulation. For bacterial assemblages, phylogenetic diversity (average similarity among species in a community) and mean community dissimilarity (average distance between species) calculated using 16S rRNA gene sequences, and FD measures associated with metabolic profiles, poorly predicted the variation in the functioning of assembled communities (≤15%). In contrast, the proxies of FD based on N2O accumulation patterns performed better and explained from 23 to 42% of the variation in denitrification. Amongst those, community niche was the best metric, indicating the importance of complementarity for

  4. Beyond GWASs: Illuminating the Dark Road from Association to Function

    PubMed Central

    Edwards, Stacey L.; Beesley, Jonathan; French, Juliet D.; Dunning, Alison M.

    2013-01-01

    Genome-wide association studies (GWASs) have enabled the discovery of common genetic variation contributing to normal and pathological traits and clinical drug responses, but recognizing the precise targets of these associations is now the major challenge. Here, we review recent approaches to the functional follow-up of GWAS loci, including fine mapping of GWAS signal(s), prioritization of putative functional SNPs by the integration of genetic epidemiological and bioinformatic methods, and in vitro and in vivo experimental verification of predicted molecular mechanisms for identifying the targeted genes. The majority of GWAS-identified variants fall in noncoding regions of the genome. Therefore, this review focuses on strategies for assessing likely mechanisms affected by noncoding variants; such mechanisms include transcriptional regulation, noncoding RNA function, and epigenetic regulation. These approaches have already accelerated progress from genetic studies to biological knowledge and might ultimately guide the development of prognostic, preventive, and therapeutic measures. PMID:24210251

  5. Ladder operators for the associated Laguerre functions

    NASA Astrophysics Data System (ADS)

    Fakhri, H.; Chenaghlou, A.

    2004-07-01

    Introducing the associated Laguerre functions in terms of two non-negative integers, we obtain simultaneously and separately realization of the laddering equations with respect to each of the integers by means of two pairs of ladder operators. Besides, two different types of shape-invariance symmetries are realized. This approach leads to a derivation of shape-invariance equations of third type which are realized by two simultaneous raising and lowering operators of two parameters.

  6. Curved Saccade Trajectories Reveal Conflicting Predictions in Associative Learning

    ERIC Educational Resources Information Center

    Koenig, Stephan; Lachnit, Harald

    2011-01-01

    We report how the trajectories of saccadic eye movements are affected by memory interference acquired during associative learning. Human participants learned to perform saccadic choice responses based on the presentation of arbitrary central cues A, B, AC, BC, AX, BY, X, and Y that were trained to predict the appearance of a peripheral target…

  7. Revisiting the prediction of protein function at CASP6.

    PubMed

    Pellegrini-Calace, Marialuisa; Soro, Simonetta; Tramontano, Anna

    2006-07-01

    The ability to predict the function of a protein, given its sequence and/or 3D structure, is an essential requirement for exploiting the wealth of data made available by genomics and structural genomics projects and is therefore raising increasing interest in the computational biology community. To foster developments in the area as well as to establish the state of the art of present methods, a function prediction category was tentatively introduced in the 6th edition of the Critical Assessment of Techniques for Protein Structure Prediction (CASP) worldwide experiment. The assessment of the performance of the methods was made difficult by at least two factors: (a) the experimentally determined function of the targets was not available at the time of assessment; (b) the experiment is run blindly, preventing verification of whether the convergence of different predictions towards the same functional annotation was due to the similarity of the methods or to a genuine signal detectable by different methodologies. In this work, we collected information about the methods used by the various predictors and revisited the results of the experiment by verifying how often and in which cases a convergent prediction was obtained by methods based on different rationale. We propose a method for classifying the type and redundancy of the methods. We also analyzed the cases in which a function for the target protein has become available. Our results show that predictions derived from a consensus of different methods can reach an accuracy as high as 80%. It follows that some of the predictions submitted to CASP6, once reanalyzed taking into account the type of converging methods, can provide very useful information to researchers interested in the function of the target proteins. PMID:16759228

  8. Functional Analysis of Variance for Association Studies

    PubMed Central

    Vsevolozhskaya, Olga A.; Zaykin, Dmitri V.; Greenwood, Mark C.; Wei, Changshuai; Lu, Qing

    2014-01-01

    While progress has been made in identifying common genetic variants associated with human diseases, for most of common complex diseases, the identified genetic variants only account for a small proportion of heritability. Challenges remain in finding additional unknown genetic variants predisposing to complex diseases. With the advance in next-generation sequencing technologies, sequencing studies have become commonplace in genetic research. The ongoing exome-sequencing and whole-genome-sequencing studies generate a massive amount of sequencing variants and allow researchers to comprehensively investigate their role in human diseases. The discovery of new disease-associated variants can be enhanced by utilizing powerful and computationally efficient statistical methods. In this paper, we propose a functional analysis of variance (FANOVA) method for testing an association of sequence variants in a genomic region with a qualitative trait. The FANOVA has a number of advantages: (1) it tests for a joint effect of gene variants, including both common and rare; (2) it fully utilizes linkage disequilibrium and genetic position information; and (3) allows for either protective or risk-increasing causal variants. Through simulations, we show that FANOVA outperform two popularly used methods – SKAT and a previously proposed method based on functional linear models (FLM), – especially if a sample size of a study is small and/or sequence variants have low to moderate effects. We conduct an empirical study by applying three methods (FANOVA, SKAT and FLM) to sequencing data from Dallas Heart Study. While SKAT and FLM respectively detected ANGPTL 4 and ANGPTL 3 associated with obesity, FANOVA was able to identify both genes associated with obesity. PMID:25244256

  9. Inductive matrix completion for predicting gene–disease associations

    PubMed Central

    Natarajan, Nagarajan; Dhillon, Inderjit S.

    2014-01-01

    Motivation: Most existing methods for predicting causal disease genes rely on specific type of evidence, and are therefore limited in terms of applicability. More often than not, the type of evidence available for diseases varies—for example, we may know linked genes, keywords associated with the disease obtained by mining text, or co-occurrence of disease symptoms in patients. Similarly, the type of evidence available for genes varies—for example, specific microarray probes convey information only for certain sets of genes. In this article, we apply a novel matrix-completion method called Inductive Matrix Completion to the problem of predicting gene-disease associations; it combines multiple types of evidence (features) for diseases and genes to learn latent factors that explain the observed gene–disease associations. We construct features from different biological sources such as microarray expression data and disease-related textual data. A crucial advantage of the method is that it is inductive; it can be applied to diseases not seen at training time, unlike traditional matrix-completion approaches and network-based inference methods that are transductive. Results: Comparison with state-of-the-art methods on diseases from the Online Mendelian Inheritance in Man (OMIM) database shows that the proposed approach is substantially better—it has close to one-in-four chance of recovering a true association in the top 100 predictions, compared to the recently proposed Catapult method (second best) that has <15% chance. We demonstrate that the inductive method is particularly effective for a query disease with no previously known gene associations, and for predicting novel genes, i.e. genes that are previously not linked to diseases. Thus the method is capable of predicting novel genes even for well-characterized diseases. We also validate the novelty of predictions by evaluating the method on recently reported OMIM associations and on associations recently

  10. Executive function does not predict coping with symptoms in stable patients with a diagnosis of schizophrenia

    PubMed Central

    Bak, Maarten; Krabbendam, Lydia; Delespaul, Philippe; Huistra, Karola; Walraven, Wil; van Os, Jim

    2008-01-01

    Background Associations between coping with and control over psychotic symptoms were examined using the Maastricht Assessment of Coping Strategies-24, testing the hypothesis that the cognitive domain of executive functioning predicted quality and quantity of coping. Methods MACS-24 was administered to 32 individuals with a diagnosis of schizophrenia. For each of 24 symptoms, experience of distress, type of coping and the resulting degree of perceived control were assessed. Coping types were reduced to two contrasting coping categories: symptomatic coping (SC) and non-symptomatic coping (NSC; combining active problem solving, passive illness behaviour, active problem avoiding, and passive problem avoiding). Cognitive functioning was assessed using the GIT (Groninger Intelligence Test), the Zoo map (BADS: Behavioural Assessment of Dysexecutive function), Stroop-test and Trail making. Results Cognitive function was not associated with frequency of coping, nor did cognitive function differentially predict SC or NSC. Cognitive function similarly was not associated with symptom distress or level of perceived control over the symptom. Conclusion There was no evidence that cognitive function predicts quantity or quality of coping with symptoms in people with a diagnosis of schizophrenia. Variation in the realm of emotion regulation and social cognition may be more predictive of coping with psychotic symptoms. PMID:18510757

  11. Differential association between chronic cannabis use and brain function deficits.

    PubMed

    Soueif, M I

    1976-01-01

    To summarize, 12 objective tests that generated 16 test variables were administered to 850 male regular cannabis users and 839 nonusers. The tests were designed to assess various modalities, including speed of psychomotor performance, distance estimation, time estimation, immediate memory, and visuomotor coordination. Most of the test variables differentiated significantly between consumers and controls. At the same time, a significant second-order interaction emerged in most cases. This interaction meant that, under certain conditions that relate to the two dimensions "literacy-illiteracy" and/or "urbanism-ruralism," the superiority of controls over cannabis users became impressive, whereas under other conditions it almost disappeared. To account for this complex pattern of results, a working hypothesis was presented to the effect that "other conditions being equal, the lower the nondrug level of proficiency on tests of cognitive and psychomotor performance the smaller the size of function deficit associated with drug usage." For an empirical examination of the hypothesis, six predictions were formulated. Three predictions defined specific relationships between level of performance, on one hand, and each of three organismic variables, on the other: literacy, urbanism, and age. The remaining predictions delineated relationships to be expected between size of function deficit and the three organismic variables. All our predictions were confirmed, showing less function impairment to be contingent with cannabis usage among the illiterates, rurals, and older subjects. Level of cortical arousal was suggested as the central process associated with the three organismic variables. Because the version of our working hypothesis was formulated with reference to chronic material, the possibility of a transposition of the paradign to research on the acute effects of the drug was discussed. The suggestion was made that our working hypothesis, in either version, is capable of

  12. Prediction of Functional Outcome in Axonal Guillain-Barre Syndrome

    PubMed Central

    2016-01-01

    Objective To identify the factors that could predict the functional outcome in patients with the axonal type of Guillain-Barre syndrome (GBS). Methods Two hundred and two GBS patients admitted to our university hospital between 2003 and 2014 were reviewed retrospectively. We defined a good outcome as being "able to walk independently at 1 month after onset" and a poor outcome as being "unable to walk independently at 1 month after onset". We evaluated the factors that differed between the good and poor outcome groups. Results Twenty-four patients were classified into the acute motor axonal neuropathy type. There was a statistically significant difference between the good and poor outcome groups in terms of the GBS disability score at admission, and GBS disability score and Medical Research Council sum score at 1 month after admission. In an electrophysiologic analysis, the good outcome group showed greater amplitude of median, ulnar, deep peroneal, and posterior tibial nerve compound muscle action potentials (CMAP) and greater amplitude of median, ulnar, and superficial peroneal sensory nerve action potentials (SNAP) than the poor outcome group. Conclusion A lower GBS disability score at admission, high amplitude of median, ulnar, deep peroneal, and posterior tibial CMAPs, and high amplitude of median, ulnar, and superficial peroneal SNAPs were associated with being able to walk at 1 month in patients with axonal GBS. PMID:27446785

  13. PredictProtein—an open resource for online prediction of protein structural and functional features

    PubMed Central

    Yachdav, Guy; Kloppmann, Edda; Kajan, Laszlo; Hecht, Maximilian; Goldberg, Tatyana; Hamp, Tobias; Hönigschmid, Peter; Schafferhans, Andrea; Roos, Manfred; Bernhofer, Michael; Richter, Lothar; Ashkenazy, Haim; Punta, Marco; Schlessinger, Avner; Bromberg, Yana; Schneider, Reinhard; Vriend, Gerrit; Sander, Chris; Ben-Tal, Nir; Rost, Burkhard

    2014-01-01

    PredictProtein is a meta-service for sequence analysis that has been predicting structural and functional features of proteins since 1992. Queried with a protein sequence it returns: multiple sequence alignments, predicted aspects of structure (secondary structure, solvent accessibility, transmembrane helices (TMSEG) and strands, coiled-coil regions, disulfide bonds and disordered regions) and function. The service incorporates analysis methods for the identification of functional regions (ConSurf), homology-based inference of Gene Ontology terms (metastudent), comprehensive subcellular localization prediction (LocTree3), protein–protein binding sites (ISIS2), protein–polynucleotide binding sites (SomeNA) and predictions of the effect of point mutations (non-synonymous SNPs) on protein function (SNAP2). Our goal has always been to develop a system optimized to meet the demands of experimentalists not highly experienced in bioinformatics. To this end, the PredictProtein results are presented as both text and a series of intuitive, interactive and visually appealing figures. The web server and sources are available at http://ppopen.rostlab.org. PMID:24799431

  14. PHARM – Association Rule Mining for Predictive Health

    PubMed Central

    Cheng, Chih-Wen; Martin, Greg S.; Wu, Po-Yen; Wang, May D.

    2016-01-01

    Predictive health is a new and innovative healthcare model that focuses on maintaining health rather than treating diseases. Such a model may benefit from computer-based decision support systems, which provide more quantitative health assessment, enabling more objective advice and action plans from predictive health providers. However, data mining for predictive health is more challenging compared to that for diseases. This is a reason why there are relatively fewer predictive health decision support systems embedded with data mining. The purpose of this study is to research and develop an interactive decision support system, called PHARM, in conjunction with Emory Center for Health Discovery and Well Being (CHDWB®). PHARM adopts association rule mining to generate quantitative and objective rules for health assessment and prediction. A case study results in 12 rules that predict mental illness based on five psychological factors. This study shows the value and usability of the decision support system to prevent the development of potential illness and to prioritize advice and action plans for reducing disease risks.

  15. Biochemical functional predictions for protein structures of unknown or uncertain function

    PubMed Central

    Mills, Caitlyn L.; Beuning, Penny J.; Ondrechen, Mary Jo

    2015-01-01

    With the exponential growth in the determination of protein sequences and structures via genome sequencing and structural genomics efforts, there is a growing need for reliable computational methods to determine the biochemical function of these proteins. This paper reviews the efforts to address the challenge of annotating the function at the molecular level of uncharacterized proteins. While sequence- and three-dimensional-structure-based methods for protein function prediction have been reviewed previously, the recent trends in local structure-based methods have received less attention. These local structure-based methods are the primary focus of this review. Computational methods have been developed to predict the residues important for catalysis and the local spatial arrangements of these residues can be used to identify protein function. In addition, the combination of different types of methods can help obtain more information and better predictions of function for proteins of unknown function. Global initiatives, including the Enzyme Function Initiative (EFI), COMputational BRidges to EXperiments (COMBREX), and the Critical Assessment of Function Annotation (CAFA), are evaluating and testing the different approaches to predicting the function of proteins of unknown function. These initiatives and global collaborations will increase the capability and reliability of methods to predict biochemical function computationally and will add substantial value to the current volume of structural genomics data by reducing the number of absent or inaccurate functional annotations. PMID:25848497

  16. Can infant lung function predict respiratory morbidity during the first year of life in preterm infants?

    PubMed

    Proietti, Elena; Riedel, Thomas; Fuchs, Oliver; Pramana, Isabelle; Singer, Florian; Schmidt, Anne; Kuehni, Claudia; Latzin, Philipp; Frey, Urs

    2014-06-01

    Compared with term-born infants, preterm infants have increased respiratory morbidity in the first year of life. We investigated whether lung function tests performed near term predict subsequent respiratory morbidity during the first year of life and compared this to standard clinical parameters in preterms. The prospective birth cohort included randomly selected preterm infants with and without bronchopulmonary dysplasia. Lung function (tidal breathing and multiple-breath washout) was measured at 44 weeks post-menstrual age during natural sleep. We assessed respiratory morbidity (wheeze, hospitalisation, inhalation and home oxygen therapy) after 1 year using a standardised questionnaire. We first assessed the association between lung function and subsequent respiratory morbidity. Secondly, we compared the predictive power of standard clinical predictors with and without lung function data. In 166 preterm infants, tidal volume, time to peak tidal expiratory flow/expiratory time ratio and respiratory rate were significantly associated with subsequent wheeze. In comparison with standard clinical predictors, lung function did not improve the prediction of later respiratory morbidity in an individual child. Although associated with later wheeze, noninvasive infant lung function shows large physiological variability and does not add to clinically relevant risk prediction for subsequent respiratory morbidity in an individual preterm. PMID:24696112

  17. Exploring Function Prediction in Protein Interaction Networks via Clustering Methods

    PubMed Central

    Trivodaliev, Kire; Bogojeska, Aleksandra; Kocarev, Ljupco

    2014-01-01

    Complex networks have recently become the focus of research in many fields. Their structure reveals crucial information for the nodes, how they connect and share information. In our work we analyze protein interaction networks as complex networks for their functional modular structure and later use that information in the functional annotation of proteins within the network. We propose several graph representations for the protein interaction network, each having different level of complexity and inclusion of the annotation information within the graph. We aim to explore what the benefits and the drawbacks of these proposed graphs are, when they are used in the function prediction process via clustering methods. For making this cluster based prediction, we adopt well established approaches for cluster detection in complex networks using most recent representative algorithms that have been proven as efficient in the task at hand. The experiments are performed using a purified and reliable Saccharomyces cerevisiae protein interaction network, which is then used to generate the different graph representations. Each of the graph representations is later analysed in combination with each of the clustering algorithms, which have been possibly modified and implemented to fit the specific graph. We evaluate results in regards of biological validity and function prediction performance. Our results indicate that the novel ways of presenting the complex graph improve the prediction process, although the computational complexity should be taken into account when deciding on a particular approach. PMID:24972109

  18. The Prediction of Ego Functioning in Adolescence. Final Report.

    ERIC Educational Resources Information Center

    Taube, Irvin; Vreeland, Rebecca

    The object of this study was to predict ego functioning in college among a group of successful high school graduates. Two hundred and seventy-one graduates of Phillips Exeter Academy who had been admitted to Harvard University during 4 consecutive years were studied. Three types of previously collected data were used: (1) teacher reports on the…

  19. Human transfer functions used to predict system performance parameters

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Automatic, parameter-tracking, model-matching technique compares the responses of a human operator with those of an analog computer model of a human operator to predict and analyze the performance of mechanical or electromechanical systems prior to construction. Transfer functions represent the input-output relation of an operator controlling a closed-loop system.

  20. Protein side chain conformation predictions with an MMGBSA energy function.

    PubMed

    Gaillard, Thomas; Panel, Nicolas; Simonson, Thomas

    2016-06-01

    The prediction of protein side chain conformations from backbone coordinates is an important task in structural biology, with applications in structure prediction and protein design. It is a difficult problem due to its combinatorial nature. We study the performance of an "MMGBSA" energy function, implemented in our protein design program Proteus, which combines molecular mechanics terms, a Generalized Born and Surface Area (GBSA) solvent model, with approximations that make the model pairwise additive. Proteus is not a competitor to specialized side chain prediction programs due to its cost, but it allows protein design applications, where side chain prediction is an important step and MMGBSA an effective energy model. We predict the side chain conformations for 18 proteins. The side chains are first predicted individually, with the rest of the protein in its crystallographic conformation. Next, all side chains are predicted together. The contributions of individual energy terms are evaluated and various parameterizations are compared. We find that the GB and SA terms, with an appropriate choice of the dielectric constant and surface energy coefficients, are beneficial for single side chain predictions. For the prediction of all side chains, however, errors due to the pairwise additive approximation overcome the improvement brought by these terms. We also show the crucial contribution of side chain minimization to alleviate the rigid rotamer approximation. Even without GB and SA terms, we obtain accuracies comparable to SCWRL4, a specialized side chain prediction program. In particular, we obtain a better RMSD than SCWRL4 for core residues (at a higher cost), despite our simpler rotamer library. Proteins 2016; 84:803-819. © 2016 Wiley Periodicals, Inc. PMID:26948696

  1. WBSMDA: Within and Between Score for MiRNA-Disease Association prediction.

    PubMed

    Chen, Xing; Yan, Chenggang Clarence; Zhang, Xu; You, Zhu-Hong; Deng, Lixi; Liu, Ying; Zhang, Yongdong; Dai, Qionghai

    2016-01-01

    Increasing evidences have indicated that microRNAs (miRNAs) are functionally associated with the development and progression of various complex human diseases. However, the roles of miRNAs in multiple biological processes or various diseases and their underlying molecular mechanisms still have not been fully understood yet. Predicting potential miRNA-disease associations by integrating various heterogeneous biological datasets is of great significance to the biomedical research. Computational methods could obtain potential miRNA-disease associations in a short time, which significantly reduce the experimental time and cost. Considering the limitations in previous computational methods, we developed the model of Within and Between Score for MiRNA-Disease Association prediction (WBSMDA) to predict potential miRNAs associated with various complex diseases. WBSMDA could be applied to the diseases without any known related miRNAs. The AUC of 0.8031 based on Leave-one-out cross validation has demonstrated its reliable performance. WBSMDA was further applied to Colon Neoplasms, Prostate Neoplasms, and Lymphoma for the identification of their potential related miRNAs. As a result, 90%, 84%, and 80% of predicted miRNA-disease pairs in the top 50 prediction list for these three diseases have been confirmed by recent experimental literatures, respectively. It is anticipated that WBSMDA would be a useful resource for potential miRNA-disease association identification. PMID:26880032

  2. Cardiorespiratory function associated with dietary nitrate supplementation

    PubMed Central

    Bond, Vernon; Curry, Bryan H.; Adams, Richard G.; Millis, Richard M.; Haddad, Georges E.

    2014-01-01

    The advent of medical nutrition therapy and nutritional physiology affords the opportunity to link diet to specific cardiovascular mechanisms, suggesting novel treatments for cardiovascular disease. This study tests the hypothesis that beetroot juice increases the plasma nitric oxide (NO) concentration, which is associated with improvements in cardiorespiratory function at rest and during submaximal aerobic exercise. The subjects were 12 healthy, young adult, normotensive African-American females, with a body mass of 61 ± 2 kg, body fat of 28% ± 4%, and peak oxygen consumption of 26 ± 3 mL·kg−1·min−1. The subjects were studied at rest and during cycle ergometer exercise at 40%, 60%, and 80% of peak oxygen consumption. Plasma NO concentration, respiratory quotient (RQ), minute ventilation, systolic and diastolic blood pressure (SBP and DBP), heart rate, and oxygen consumption were compared between isocaloric, isovolumetric placebo control orange juice and experimental beetroot juice treatments on separate days. The beetroot juice treatment increased plasma NO concentration and decreased oxygen consumption, SBP, and the heart rate-SBP product at rest and at 40%, 60%, and 80% of peak oxygen consumption in the absence of significant effects on RQ, minute ventilation, heart rate, and DBP. These findings suggest that, in healthy subjects, beetroot juice treatments increase plasma NO concentration and decrease cardiac afterload and myocardial oxygen demand at rest and during 3 submaximal levels of aerobic exercise. Future studies should determine the cellular and molecular mechanisms responsible for the improvement in cardiorespiratory function associated with dietary nitrate supplementation and whether they translate into better cardiovascular function and exercise tolerance in individuals with a compromised cardiovascular system. PMID:24476472

  3. Cardiorespiratory function associated with dietary nitrate supplementation.

    PubMed

    Bond, Vernon; Curry, Bryan H; Adams, Richard G; Millis, Richard M; Haddad, Georges E

    2014-02-01

    The advent of medical nutrition therapy and nutritional physiology affords the opportunity to link diet to specific cardiovascular mechanisms, suggesting novel treatments for cardiovascular disease. This study tests the hypothesis that beetroot juice increases the plasma nitric oxide (NO) concentration, which is associated with improvements in cardiorespiratory function at rest and during submaximal aerobic exercise. The subjects were 12 healthy, young adult, normotensive African-American females, with a body mass of 61 ± 2 kg, body fat of 28% ± 4%, and peak oxygen consumption of 26 ± 3 mL·kg(-1)·min(-1). The subjects were studied at rest and during cycle ergometer exercise at 40%, 60%, and 80% of peak oxygen consumption. Plasma NO concentration, respiratory quotient (RQ), minute ventilation, systolic and diastolic blood pressure (SBP and DBP), heart rate, and oxygen consumption were compared between isocaloric, isovolumetric placebo control orange juice and experimental beetroot juice treatments on separate days. The beetroot juice treatment increased plasma NO concentration and decreased oxygen consumption, SBP, and the heart rate-SBP product at rest and at 40%, 60%, and 80% of peak oxygen consumption in the absence of significant effects on RQ, minute ventilation, heart rate, and DBP. These findings suggest that, in healthy subjects, beetroot juice treatments increase plasma NO concentration and decrease cardiac afterload and myocardial oxygen demand at rest and during 3 submaximal levels of aerobic exercise. Future studies should determine the cellular and molecular mechanisms responsible for the improvement in cardiorespiratory function associated with dietary nitrate supplementation and whether they translate into better cardiovascular function and exercise tolerance in individuals with a compromised cardiovascular system. PMID:24476472

  4. Analysis and Functional Prediction of Reactive Cysteine Residues*

    PubMed Central

    Marino, Stefano M.; Gladyshev, Vadim N.

    2012-01-01

    Cys is much different from other common amino acids in proteins. Being one of the least abundant residues, Cys is often observed in functional sites in proteins. This residue is reactive, polarizable, and redox-active; has high affinity for metals; and is particularly responsive to the local environment. A better understanding of the basic properties of Cys is essential for interpretation of high-throughput data sets and for prediction and classification of functional Cys residues. We provide an overview of approaches used to study Cys residues, from methods for investigation of their basic properties, such as exposure and pKa, to algorithms for functional prediction of different types of Cys in proteins. PMID:22157013

  5. Pattern recognition methods for protein functional site prediction.

    PubMed

    Yang, Zheng Rong; Wang, Lipo; Young, Natasha; Trudgian, Dave; Chou, Kuo-Chen

    2005-10-01

    Protein functional site prediction is closely related to drug design, hence to public health. In order to save the cost and the time spent on identifying the functional sites in sequenced proteins in biology laboratory, computer programs have been widely used for decades. Many of them are implemented using the state-of-the-art pattern recognition algorithms, including decision trees, neural networks and support vector machines. Although the success of this effort has been obvious, advanced and new algorithms are still under development for addressing some difficult issues. This review will go through the major stages in developing pattern recognition algorithms for protein functional site prediction and outline the future research directions in this important area. PMID:16248799

  6. Predicting plants -modeling traits as a function of environment

    NASA Astrophysics Data System (ADS)

    Franklin, Oskar

    2016-04-01

    A central problem in understanding and modeling vegetation dynamics is how to represent the variation in plant properties and function across different environments. Addressing this problem there is a strong trend towards trait-based approaches, where vegetation properties are functions of the distributions of functional traits rather than of species. Recently there has been enormous progress in in quantifying trait variability and its drivers and effects (Van Bodegom et al. 2012; Adier et al. 2014; Kunstler et al. 2015) based on wide ranging datasets on a small number of easily measured traits, such as specific leaf area (SLA), wood density and maximum plant height. However, plant function depends on many other traits and while the commonly measured trait data are valuable, they are not sufficient for driving predictive and mechanistic models of vegetation dynamics -especially under novel climate or management conditions. For this purpose we need a model to predict functional traits, also those not easily measured, and how they depend on the plants' environment. Here I present such a mechanistic model based on fitness concepts and focused on traits related to water and light limitation of trees, including: wood density, drought response, allocation to defense, and leaf traits. The model is able to predict observed patterns of variability in these traits in relation to growth and mortality, and their responses to a gradient of water limitation. The results demonstrate that it is possible to mechanistically predict plant traits as a function of the environment based on an eco-physiological model of plant fitness. References Adier, P.B., Salguero-Gómez, R., Compagnoni, A., Hsu, J.S., Ray-Mukherjee, J., Mbeau-Ache, C. et al. (2014). Functional traits explain variation in plant lifehistory strategies. Proc. Natl. Acad. Sci. U. S. A., 111, 740-745. Kunstler, G., Falster, D., Coomes, D.A., Hui, F., Kooyman, R.M., Laughlin, D.C. et al. (2015). Plant functional traits

  7. Nanoparticles-cell association predicted by protein corona fingerprints.

    PubMed

    Palchetti, S; Digiacomo, L; Pozzi, D; Peruzzi, G; Micarelli, E; Mahmoudi, M; Caracciolo, G

    2016-07-01

    In a physiological environment (e.g., blood and interstitial fluids) nanoparticles (NPs) will bind proteins shaping a "protein corona" layer. The long-lived protein layer tightly bound to the NP surface is referred to as the hard corona (HC) and encodes information that controls NP bioactivity (e.g. cellular association, cellular signaling pathways, biodistribution, and toxicity). Decrypting this complex code has become a priority to predict the NP biological outcomes. Here, we use a library of 16 lipid NPs of varying size (Ø≈ 100-250 nm) and surface chemistry (unmodified and PEGylated) to investigate the relationships between NP physicochemical properties (nanoparticle size, aggregation state and surface charge), protein corona fingerprints (PCFs), and NP-cell association. We found out that none of the NPs' physicochemical properties alone was exclusively able to account for association with human cervical cancer cell line (HeLa). For the entire library of NPs, a total of 436 distinct serum proteins were detected. We developed a predictive-validation modeling that provides a means of assessing the relative significance of the identified corona proteins. Interestingly, a minor fraction of the HC, which consists of only 8 PCFs were identified as main promoters of NP association with HeLa cells. Remarkably, identified PCFs have several receptors with high level of expression on the plasma membrane of HeLa cells. PMID:27279572

  8. Ligand Similarity Complements Sequence, Physical Interaction, and Co-Expression for Gene Function Prediction

    PubMed Central

    Shoichet, Brian K.; Gillis, Jesse

    2016-01-01

    The expansion of protein-ligand annotation databases has enabled large-scale networking of proteins by ligand similarity. These ligand-based protein networks, which implicitly predict the ability of neighboring proteins to bind related ligands, may complement biologically-oriented gene networks, which are used to predict functional or disease relevance. To quantify the degree to which such ligand-based protein associations might complement functional genomic associations, including sequence similarity, physical protein-protein interactions, co-expression, and disease gene annotations, we calculated a network based on the Similarity Ensemble Approach (SEA: sea.docking.org), where protein neighbors reflect the similarity of their ligands. We also measured the similarity with functional genomic networks over a common set of 1,131 genes, and found that the networks had only small overlaps, which were significant only due to the large scale of the data. Consistent with the view that the networks contain different information, combining them substantially improved Molecular Function prediction within GO (from AUROC~0.63–0.75 for the individual data modalities to AUROC~0.8 in the aggregate). We investigated the boost in guilt-by-association gene function prediction when the networks are combined and describe underlying properties that can be further exploited. PMID:27467773

  9. Nanoparticles-cell association predicted by protein corona fingerprints

    NASA Astrophysics Data System (ADS)

    Palchetti, S.; Digiacomo, L.; Pozzi, D.; Peruzzi, G.; Micarelli, E.; Mahmoudi, M.; Caracciolo, G.

    2016-06-01

    In a physiological environment (e.g., blood and interstitial fluids) nanoparticles (NPs) will bind proteins shaping a ``protein corona'' layer. The long-lived protein layer tightly bound to the NP surface is referred to as the hard corona (HC) and encodes information that controls NP bioactivity (e.g. cellular association, cellular signaling pathways, biodistribution, and toxicity). Decrypting this complex code has become a priority to predict the NP biological outcomes. Here, we use a library of 16 lipid NPs of varying size (Ø ~ 100-250 nm) and surface chemistry (unmodified and PEGylated) to investigate the relationships between NP physicochemical properties (nanoparticle size, aggregation state and surface charge), protein corona fingerprints (PCFs), and NP-cell association. We found out that none of the NPs' physicochemical properties alone was exclusively able to account for association with human cervical cancer cell line (HeLa). For the entire library of NPs, a total of 436 distinct serum proteins were detected. We developed a predictive-validation modeling that provides a means of assessing the relative significance of the identified corona proteins. Interestingly, a minor fraction of the HC, which consists of only 8 PCFs were identified as main promoters of NP association with HeLa cells. Remarkably, identified PCFs have several receptors with high level of expression on the plasma membrane of HeLa cells.In a physiological environment (e.g., blood and interstitial fluids) nanoparticles (NPs) will bind proteins shaping a ``protein corona'' layer. The long-lived protein layer tightly bound to the NP surface is referred to as the hard corona (HC) and encodes information that controls NP bioactivity (e.g. cellular association, cellular signaling pathways, biodistribution, and toxicity). Decrypting this complex code has become a priority to predict the NP biological outcomes. Here, we use a library of 16 lipid NPs of varying size (Ø ~ 100-250 nm) and surface

  10. Scoring functions for prediction of protein-ligand interactions.

    PubMed

    Wang, Jui-Chih; Lin, Jung-Hsin

    2013-01-01

    The scoring functions for protein-ligand interactions plays central roles in computational drug design, virtual screening of chemical libraries for new lead identification, and prediction of possible binding targets of small chemical molecules. An ideal scoring function for protein-ligand interactions is expected to be able to recognize the native binding pose of a ligand on the protein surface among decoy poses, and to accurately predict the binding affinity (or binding free energy) so that the active molecules can be discriminated from the non-active ones. Due to the empirical nature of most, if not all, scoring functions for protein-ligand interactions, the general applicability of empirical scoring functions, especially to domains far outside training sets, is a major concern. In this review article, we will explore the foundations of different classes of scoring functions, their possible limitations, and their suitable application domains. We also provide assessments of several scoring functions on weakly-interacting protein-ligand complexes, which will be useful information in computational fragment-based drug design or virtual screening. PMID:23016847

  11. Accurate perception of negative emotions predicts functional capacity in schizophrenia.

    PubMed

    Abram, Samantha V; Karpouzian, Tatiana M; Reilly, James L; Derntl, Birgit; Habel, Ute; Smith, Matthew J

    2014-04-30

    Several studies suggest facial affect perception (FAP) deficits in schizophrenia are linked to poorer social functioning. However, whether reduced functioning is associated with inaccurate perception of specific emotional valence or a global FAP impairment remains unclear. The present study examined whether impairment in the perception of specific emotional valences (positive, negative) and neutrality were uniquely associated with social functioning, using a multimodal social functioning battery. A sample of 59 individuals with schizophrenia and 41 controls completed a computerized FAP task, and measures of functional capacity, social competence, and social attainment. Participants also underwent neuropsychological testing and symptom assessment. Regression analyses revealed that only accurately perceiving negative emotions explained significant variance (7.9%) in functional capacity after accounting for neurocognitive function and symptoms. Partial correlations indicated that accurately perceiving anger, in particular, was positively correlated with functional capacity. FAP for positive, negative, or neutral emotions were not related to social competence or social attainment. Our findings were consistent with prior literature suggesting negative emotions are related to functional capacity in schizophrenia. Furthermore, the observed relationship between perceiving anger and performance of everyday living skills is novel and warrants further exploration. PMID:24524947

  12. Bisphenol A Exposure is Associated with Decreased Lung Function

    PubMed Central

    Spanier, Adam J.; Fiorino, Elizabeth K.; Trasande, Leonardo

    2014-01-01

    Objective To examine the associations of bisphenol A (BPA) exposure with lung function measures and exhaled nitric oxide (FeNO) in children. Study design We performed a cross-sectional analysis of a subsample of US children age 6–19 years who participated in the 2007–2010 National Health and Nutrition Examination Survey. We assessed univariate and multivariable associations of urinary BPA concentration with the predicted pulmonary function measures for age, sex, race/ethnicity and height (forced expiratory function in 1 second – FEV1, forced vital capacity – FVC, forced expiratory flow 25–75% – FEF2575, and FEV1/FVC) and with FeNO. Results Exposure and outcome data were available for 661 children. Median BPA was 2.4 ng/ml (IQR: 1.3, 4.1). In multivariable analysis a larger urinary BPA concentration was associated with significantly decreased %FEF2575 (3.7%, 95% CI 1.0, 6.5) and %FEV1/FVC (0.8%, 95% CI 0.1, 1.7) but not %FEV1, %FVC, or FeNO. A child in the top quartile of BPA compared with the bottom quartile had a 10% decrease in %FEF2575 (95% CI −1, −19) and 3% decrease in %FEV1/FVC (95% CI −1, −5). Conclusions BPA exposure was associated with a modest decrease in %FEF2575 (small airway function) and %FEV1/FVC (pulmonary obstruction) but not FEV1, FVC, or FeNO. Explanations of the association cannot rule out the possibility of reverse causality. PMID:24657123

  13. Association Between a Prognostic Gene Signature and Functional Gene Sets

    PubMed Central

    Hummel, Manuela; Metzeler, Klaus H.; Buske, Christian; Bohlander, Stefan K.; Mansmann, Ulrich

    2008-01-01

    Background The development of expression-based gene signatures for predicting prognosis or class membership is a popular and challenging task. Besides their stringent validation, signatures need a functional interpretation and must be placed in a biological context. Popular tools such as Gene Set Enrichment have drawbacks because they are restricted to annotated genes and are unable to capture the information hidden in the signature’s non-annotated genes. Methodology We propose concepts to relate a signature with functional gene sets like pathways or Gene Ontology categories. The connection between single signature genes and a specific pathway is explored by hierarchical variable selection and gene association networks. The risk score derived from an individual patient’s signature is related to expression patterns of pathways and Gene Ontology categories. Global tests are useful for these tasks, and they adjust for other factors. GlobalAncova is used to explore the effect on gene expression in specific functional groups from the interaction of the score and selected mutations in the patient’s genome. Results We apply the proposed methods to an expression data set and a corresponding gene signature for predicting survival in Acute Myeloid Leukemia (AML). The example demonstrates strong relations between the signature and cancer-related pathways. The signature-based risk score was found to be associated with development-related biological processes. Conclusions Many authors interpret the functional aspects of a gene signature by linking signature genes to pathways or relevant functional gene groups. The method of gene set enrichment is preferred to annotating signature genes to specific Gene Ontology categories. The strategies proposed in this paper go beyond the restriction of annotation and deepen the insights into the biological mechanisms reflected in the information given by a signature. PMID:19812786

  14. COMBREX-DB: an experiment centered database of protein function: knowledge, predictions and knowledge gaps.

    PubMed

    Chang, Yi-Chien; Hu, Zhenjun; Rachlin, John; Anton, Brian P; Kasif, Simon; Roberts, Richard J; Steffen, Martin

    2016-01-01

    The COMBREX database (COMBREX-DB; combrex.bu.edu) is an online repository of information related to (i) experimentally determined protein function, (ii) predicted protein function, (iii) relationships among proteins of unknown function and various types of experimental data, including molecular function, protein structure, and associated phenotypes. The database was created as part of the novel COMBREX (COMputational BRidges to EXperiments) effort aimed at accelerating the rate of gene function validation. It currently holds information on ∼ 3.3 million known and predicted proteins from over 1000 completely sequenced bacterial and archaeal genomes. The database also contains a prototype recommendation system for helping users identify those proteins whose experimental determination of function would be most informative for predicting function for other proteins within protein families. The emphasis on documenting experimental evidence for function predictions, and the prioritization of uncharacterized proteins for experimental testing distinguish COMBREX from other publicly available microbial genomics resources. This article describes updates to COMBREX-DB since an initial description in the 2011 NAR Database Issue. PMID:26635392

  15. Computational predictions of energy materials using density functional theory

    NASA Astrophysics Data System (ADS)

    Jain, Anubhav; Shin, Yongwoo; Persson, Kristin A.

    2016-01-01

    In the search for new functional materials, quantum mechanics is an exciting starting point. The fundamental laws that govern the behaviour of electrons have the possibility, at the other end of the scale, to predict the performance of a material for a targeted application. In some cases, this is achievable using density functional theory (DFT). In this Review, we highlight DFT studies predicting energy-related materials that were subsequently confirmed experimentally. The attributes and limitations of DFT for the computational design of materials for lithium-ion batteries, hydrogen production and storage materials, superconductors, photovoltaics and thermoelectric materials are discussed. In the future, we expect that the accuracy of DFT-based methods will continue to improve and that growth in computing power will enable millions of materials to be virtually screened for specific applications. Thus, these examples represent a first glimpse of what may become a routine and integral step in materials discovery.

  16. Plant functional traits predict green roof ecosystem services.

    PubMed

    Lundholm, Jeremy; Tran, Stephanie; Gebert, Luke

    2015-02-17

    Plants make important contributions to the services provided by engineered ecosystems such as green roofs. Ecologists use plant species traits as generic predictors of geographical distribution, interactions with other species, and ecosystem functioning, but this approach has been little used to optimize engineered ecosystems. Four plant species traits (height, individual leaf area, specific leaf area, and leaf dry matter content) were evaluated as predictors of ecosystem properties and services in a modular green roof system planted with 21 species. Six indicators of ecosystem services, incorporating thermal, hydrological, water quality, and carbon sequestration functions, were predicted by the four plant traits directly or indirectly via their effects on aggregate ecosystem properties, including canopy density and albedo. Species average height and specific leaf area were the most useful traits, predicting several services via effects on canopy density or growth rate. This study demonstrates that easily measured plant traits can be used to select species to optimize green roof performance across multiple key services. PMID:25599106

  17. Associations between Markers of Glucose and Insulin Function and Cognitive Function in Healthy African American Elders

    PubMed Central

    Skinner, Jeannine S.; Morgan, Amy; Hernandez-Saucedo, Hector; Hansen, Angela; Corbett, Selena; Arbuckle, Matthew; Leverenz, James BA; Wilkins, Consuelo H.; Craft, Suzanne; Baker, Laura D.

    2015-01-01

    Background Glucose and insulin are important moderators of cognitive function. African Americans have poorer glycemic control across the glycemic spectrum and are at increased risk for type 2 diabetes and poor cognitive health. It is unclear which glucoregulatory markers predict cognitive function in this at-risk population. The purpose of this study was to examine the association between cognitive function and common markers of glucoregulation in non-diabetic African Americans elders. Methods Thirty-four, community-dwelling African Americans, aged 50-75 years completed cognitive testing and blood collection as part of a health screening assessment. Cognitive outcomes were composite scores derived from neuropsychological tests of executive function and verbal memory. Linear regression was used to examine relationships between cognitive composite scores and fasting blood levels of glucose, insulin, and hemoglobin A1C, with adjustments for age, education, body mass index, and antihypertensive medication use. Results Fasting plasma glucose was negatively associated with executive function (β=−0.41, p=0.03). There was a trend of an association between fasting plasma glucose and verbal memory (β=−0.34, p=0.06). Fasting insulin and hemoglobin A1c were not associated with cognitive function. Conclusion High non-diabetic fasting glucose levels were associated with poorer executive function and verbal memory. These results provide preliminary support for proactive glucose control in older African Americans even before glycemic criteria for type 2 diabetes are met. Our findings suggests that high-normal FPG levels may represent an early red-flag to signify increased risk of cognitive impairment or decline. PMID:26798567

  18. Optimizing Non-Decomposable Loss Functions in Structured Prediction

    PubMed Central

    Ranjbar, Mani; Lan, Tian; Wang, Yang; Robinovitch, Steven N.; Li, Ze-Nian; Mori, Greg

    2012-01-01

    We develop an algorithm for structured prediction with non-decomposable performance measures. The algorithm learns parameters of Markov random fields and can be applied to multivariate performance measures. Examples include performance measures such as Fβ score (natural language processing), intersection over union (object category segmentation), Precision/Recall at k (search engines) and ROC area (binary classifiers). We attack this optimization problem by approximating the loss function with a piecewise linear function. The loss augmented inference forms a quadratic program (QP), which we solve using LP relaxation. We apply this approach to two tasks: object class-specific segmentation and human action retrieval from videos. We show significant improvement over baseline approaches that either use simple loss functions or simple scoring functions on the PASCAL VOC and H3D Segmentation datasets, and a nursing home action recognition dataset. PMID:22868650

  19. Rapid D-Affine Biventricular Cardiac Function with Polar Prediction

    PubMed Central

    Gilbert, Kathleen; Cowan, Brett; Suinesiaputra, Avan; Occleshaw, Christopher; Young, Alistair

    2014-01-01

    Although many solutions have been proposed for left ventricular functional analysis of the heart, right and left (bi-) ventricular function has been problematic due to the complex geometry and large motions. Biventricular function is particularly important in congenital heart disease, the most common type of birth defects. We describe a rapid interactive analysis tool for biventricular function which incorporates 1) a 3D+ time finite element model of biventricular geometry, 2) a fast prediction step which estimates an initial geometry in a polar coordinate system, and 3) a Cartesian update which penalizes deviations from affine transformations (D-Affine) from a prior. Solution times were very rapid, enabling interaction in real time using guide point modeling. The method was applied to 13 patients with congenital heart disease and compared with the clinical gold standard of manual tracing. Results between the methods showed good correlation (R2 > 0.9) and good precision (volume<17ml; mass<11g) for both chambers. PMID:25485422

  20. High Precision Prediction of Functional Sites in Protein Structures

    PubMed Central

    Buturovic, Ljubomir; Wong, Mike; Tang, Grace W.; Altman, Russ B.; Petkovic, Dragutin

    2014-01-01

    We address the problem of assigning biological function to solved protein structures. Computational tools play a critical role in identifying potential active sites and informing screening decisions for further lab analysis. A critical parameter in the practical application of computational methods is the precision, or positive predictive value. Precision measures the level of confidence the user should have in a particular computed functional assignment. Low precision annotations lead to futile laboratory investigations and waste scarce research resources. In this paper we describe an advanced version of the protein function annotation system FEATURE, which achieved 99% precision and average recall of 95% across 20 representative functional sites. The system uses a Support Vector Machine classifier operating on the microenvironment of physicochemical features around an amino acid. We also compared performance of our method with state-of-the-art sequence-level annotator Pfam in terms of precision, recall and localization. To our knowledge, no other functional site annotator has been rigorously evaluated against these key criteria. The software and predictive models are incorporated into the WebFEATURE service at http://feature.stanford.edu/wf4.0-beta. PMID:24632601

  1. Functional brain imaging predicts public health campaign success.

    PubMed

    Falk, Emily B; O'Donnell, Matthew Brook; Tompson, Steven; Gonzalez, Richard; Dal Cin, Sonya; Strecher, Victor; Cummings, Kenneth Michael; An, Lawrence

    2016-02-01

    Mass media can powerfully affect health decision-making. Pre-testing through focus groups or surveys is a standard, though inconsistent, predictor of effectiveness. Converging evidence demonstrates that activity within brain systems associated with self-related processing can predict individual behavior in response to health messages. Preliminary evidence also suggests that neural activity in small groups can forecast population-level campaign outcomes. Less is known about the psychological processes that link neural activity and population-level outcomes, or how these predictions are affected by message content. We exposed 50 smokers to antismoking messages and used their aggregated neural activity within a 'self-localizer' defined region of medial prefrontal cortex to predict the success of the same campaign messages at the population level (n = 400,000 emails). Results demonstrate that: (i) independently localized neural activity during health message exposure complements existing self-report data in predicting population-level campaign responses (model combined R(2) up to 0.65) and (ii) this relationship depends on message content-self-related neural processing predicts outcomes in response to strong negative arguments against smoking and not in response to compositionally similar neutral images. These data advance understanding of the psychological link between brain and large-scale behavior and may aid the construction of more effective media health campaigns. PMID:26400858

  2. Large-scale de novo prediction of physical protein-protein association.

    PubMed

    Elefsinioti, Antigoni; Saraç, Ömer Sinan; Hegele, Anna; Plake, Conrad; Hubner, Nina C; Poser, Ina; Sarov, Mihail; Hyman, Anthony; Mann, Matthias; Schroeder, Michael; Stelzl, Ulrich; Beyer, Andreas

    2011-11-01

    Information about the physical association of proteins is extensively used for studying cellular processes and disease mechanisms. However, complete experimental mapping of the human interactome will remain prohibitively difficult in the near future. Here we present a map of predicted human protein interactions that distinguishes functional association from physical binding. Our network classifies more than 5 million protein pairs predicting 94,009 new interactions with high confidence. We experimentally tested a subset of these predictions using yeast two-hybrid analysis and affinity purification followed by quantitative mass spectrometry. Thus we identified 462 new protein-protein interactions and confirmed the predictive power of the network. These independent experiments address potential issues of circular reasoning and are a distinctive feature of this work. Analysis of the physical interactome unravels subnetworks mediating between different functional and physical subunits of the cell. Finally, we demonstrate the utility of the network for the analysis of molecular mechanisms of complex diseases by applying it to genome-wide association studies of neurodegenerative diseases. This analysis provides new evidence implying TOMM40 as a factor involved in Alzheimer's disease. The network provides a high-quality resource for the analysis of genomic data sets and genetic association studies in particular. Our interactome is available via the hPRINT web server at: www.print-db.org. PMID:21836163

  3. Large-scale De Novo Prediction of Physical Protein-Protein Association*

    PubMed Central

    Elefsinioti, Antigoni; Saraç, Ömer Sinan; Hegele, Anna; Plake, Conrad; Hubner, Nina C.; Poser, Ina; Sarov, Mihail; Hyman, Anthony; Mann, Matthias; Schroeder, Michael; Stelzl, Ulrich; Beyer, Andreas

    2011-01-01

    Information about the physical association of proteins is extensively used for studying cellular processes and disease mechanisms. However, complete experimental mapping of the human interactome will remain prohibitively difficult in the near future. Here we present a map of predicted human protein interactions that distinguishes functional association from physical binding. Our network classifies more than 5 million protein pairs predicting 94,009 new interactions with high confidence. We experimentally tested a subset of these predictions using yeast two-hybrid analysis and affinity purification followed by quantitative mass spectrometry. Thus we identified 462 new protein-protein interactions and confirmed the predictive power of the network. These independent experiments address potential issues of circular reasoning and are a distinctive feature of this work. Analysis of the physical interactome unravels subnetworks mediating between different functional and physical subunits of the cell. Finally, we demonstrate the utility of the network for the analysis of molecular mechanisms of complex diseases by applying it to genome-wide association studies of neurodegenerative diseases. This analysis provides new evidence implying TOMM40 as a factor involved in Alzheimer's disease. The network provides a high-quality resource for the analysis of genomic data sets and genetic association studies in particular. Our interactome is available via the hPRINT web server at: www.print-db.org. PMID:21836163

  4. Predictions of Geospace Drivers By the Probability Distribution Function Model

    NASA Astrophysics Data System (ADS)

    Bussy-Virat, C.; Ridley, A. J.

    2014-12-01

    Geospace drivers like the solar wind speed, interplanetary magnetic field (IMF), and solar irradiance have a strong influence on the density of the thermosphere and the near-Earth space environment. This has important consequences on the drag on satellites that are in low orbit and therefore on their position. One of the basic problems with space weather prediction is that these drivers can only be measured about one hour before they affect the environment. In order to allow for adequate planning for some members of the commercial, military, or civilian communities, reliable long-term space weather forecasts are needed. The study presents a model for predicting geospace drivers up to five days in advance. This model uses the same general technique to predict the solar wind speed, the three components of the IMF, and the solar irradiance F10.7. For instance, it uses Probability distribution functions (PDFs) to relate the current solar wind speed and slope to the future solar wind speed, as well as the solar wind speed to the solar wind speed one solar rotation in the future. The PDF Model has been compared to other models for predictions of the speed. It has been found that it is better than using the current solar wind speed (i.e., persistence), and better than the Wang-Sheeley-Arge Model for prediction horizons of 24 hours. Once the drivers are predicted, and the uncertainty on the drivers are specified, the density in the thermosphere can be derived using various models of the thermosphere, such as the Global Ionosphere Thermosphere Model. In addition, uncertainties on the densities can be estimated, based on ensembles of simulations. From the density and uncertainty predictions, satellite positions, as well as the uncertainty in those positions can be estimated. These can assist operators in determining the probability of collisions between objects in low Earth orbit.

  5. [Falls and renal function: a dangerous association].

    PubMed

    De Giorgi, Alfredo; Fabbian, Fabio; Pala, Marco; Mallozzi Menegatti, Alessandra; Misurati, Elisa; Manfredini, Roberto

    2012-01-01

    Falls are an important health problem and the risk of falling increases with age. The costs due to falls are related to the progressive decline of patients' clinical conditions, with functional inability inducing increasing social costs, morbidity and mortality. Renal dysfunction is mostly present in elderly people who often have several comorbidities. Risk factors for falls have been classified as intrinsic and extrinsic, and renal dysfunction is included among the former. Chronic kidney disease per se is an important risk factor for falls, and the risk correlates negatively with creatinine clearance. Vitamin D deficiency, dysfunction of muscles and bones, nerve degeneration, cognitive decline, electrolyte imbalance, anemia, and metabolic acidosis have been reported to be associated with falls. Falls seem to be very frequent in dialysis patients: 44% of subjects on hemodialysis fall at least once a year with a 1-year mortality due to fractures of 64%. Male sex, comorbidities, predialysis hypotension, and a history of previous falls are the main risk factors, together with events directly related to renal replacement therapy such as biocompatibility of the dialysis membrane, arrhythmias, fluid overload and length of dialysis treatment. Peripheral nerve degeneration and demyelination as well as altered nerve conduction resulting in muscular weakness and loss of peripheral sensitivity are frequent when the glomerular filtration rate is less than 12 mL/min. Moreover, depression and sleep disorders can also increase the risk of falls. Kidney function is an important parameter to consider when evaluating the risk of falls in the elderly, and the development of specific guidelines for preventing falls in the uremic population should be considered. PMID:22718453

  6. Association between lung function and airway wall density

    NASA Astrophysics Data System (ADS)

    Leader, J. Ken; Zheng, Bin; Fuhrman, Carl R.; Tedrow, John; Park, Sang C.; Tan, Jun; Pu, Jiantao; Drescher, John M.; Gur, David; Sciurba, Frank C.

    2009-02-01

    Computed tomography (CT) examination is often used to quantify the relation between lung function and airway remodeling in chronic obstructive pulmonary disease (COPD). In this preliminary study, we examined the association between lung function and airway wall computed attenuation ("density") in 200 COPD screening subjects. Percent predicted FVC (FVC%), percent predicted FEV1 (FEV1%), and the ratio of FEV1 to FVC as a percentage (FEV1/FVC%) were measured post-bronchodilator. The apical bronchus of the right upper lobe was manually selected from CT examinations for evaluation. Total airway area, lumen area, wall area, lumen perimeter and wall area as fraction of the total airway area were computed. Mean HU (meanHU) and maximum HU (maxHU) values were computed across pixels assigned membership in the wall and with a HU value greater than -550. The Pearson correlation coefficients (PCC) between FVC%, FEV1%, and FEV1/FVC% and meanHU were -0.221 (p = 0.002), -0.175 (p = 0.014), and -0.110 (p = 0.123), respectively. The PCCs for maxHU were only significant for FVC%. The correlations between lung function and the airway morphometry parameters were slightly stronger compared to airway wall density. MeanHU was significantly correlated with wall area (PCC = 0.720), airway area (0.498) and wall area percent (0.611). This preliminary work demonstrates that airway wall density is associated with lung function. Although the correlations in our study were weaker than a recent study, airway wall density initially appears to be an important parameter in quantitative CT analysis of COPD.

  7. The use of copula functions for predictive analysis of correlations between extreme storm tides

    NASA Astrophysics Data System (ADS)

    Domino, Krzysztof; Błachowicz, Tomasz; Ciupak, Maurycy

    2014-11-01

    In this paper we present a method used in quantitative description of weakly predictable hydrological, extreme events at inland sea. Investigations for correlations between variations of individual measuring points, employing combined statistical methods, were carried out. As a main tool for this analysis we used a two-dimensional copula function sensitive for correlated extreme effects. Additionally, a new proposed methodology, based on Detrended Fluctuations Analysis (DFA) and Anomalous Diffusion (AD), was used for the prediction of negative and positive auto-correlations and associated optimum choice of copula functions. As a practical example we analysed maximum storm tides data recorded at five spatially separated places at the Baltic Sea. For the analysis we used Gumbel, Clayton, and Frank copula functions and introduced the reversed Clayton copula. The application of our research model is associated with modelling the risk of high storm tides and possible storm flooding.

  8. Resting amygdala and medial prefrontal metabolism predicts functional activation of the fear extinction circuit

    PubMed Central

    Linnman, Clas; Zeidan, Mohamed A.; Furtak, Sharon C.; Pitman, Roger K.; Quirk, Gregory J.; Milad, Mohammed R.

    2014-01-01

    Objective Individual differences in ability to control fear have been linked to activation of dorsal anterior cingulate cortex, ventromedial prefrontal cortex, and amygdala. This study investigated whether functional variance in this network can be predicted by resting metabolism in these same regions. Methods Healthy subject volunteers were studied with positron emission tomography using [18F]-deoxyglucose to measure resting brain metabolism. This was followed by a two-day fear conditioning and extinction training paradigm in a functional magnetic resonance imaging scanner to measure brain activation during fear extinction and its recall. Skin conductance response was used to index conditioned responding. Resting metabolism in amygdala, dorsal anterior cingulate cortex and ventromedial prefrontal cortex were used to predict responses during fear extinction and extinction recall. Results During extinction training, resting amygdala metabolism positively predicted ventromedial prefrontal cortex, and negatively predicted dorsal anterior cingulate cortex, activation. In contrast, during extinction recall, resting amygdala metabolism negatively predicted ventromedial prefrontal cortex, and positively predicted dorsal anterior cingulate cortex, activation. Resting dorsal anterior cingulate cortex metabolism predicted fear expression (skin conductance response) during extinction recall. Conclusions Brain metabolism at rest predicts neuronal reactivity and skin conductance changes associated with recall of the fear extinction memory. PMID:22318762

  9. Multitrophic functional diversity predicts ecosystem functioning in experimental assemblages of estuarine consumers.

    PubMed

    Lefcheck, Jonathan S; Duffy, J Emmett

    2015-11-01

    The use of functional traits to explain how biodiversity affects ecosystem functioning has attracted intense interest, yet few studies have a priori altered functional diversity, especially in multitrophic communities. Here, we manipulated multivariate functional diversity of estuarine grazers and predators within multiple levels of species richness to test how species richness and functional diversity predicted ecosystem functioning in a multitrophic food web. Community functional diversity was a better predictor than species richness for the majority of ecosystem properties, based on generalized linear mixed-effects models. Combining inferences from eight traits into a single multivariate index increased prediction accuracy of these models relative to any individual trait. Structural equation modeling revealed that functional diversity of both grazers and predators was important in driving final biomass within trophic levels, with stronger effects observed for predators. We also show that different species drove different ecosystem responses, with evidence for both sampling effects and complementarity. Our study extends experimental investigations of functional trait diversity to a multilevel food web, and demonstrates that functional diversity can be more accurate and effective than species richness in predicting community biomass in a food web context. PMID:27070016

  10. Mini-review: Prediction errors, attention and associative learning.

    PubMed

    Holland, Peter C; Schiffino, Felipe L

    2016-05-01

    Most modern theories of associative learning emphasize a critical role for prediction error (PE, the difference between received and expected events). One class of theories, exemplified by the Rescorla-Wagner (1972) model, asserts that PE determines the effectiveness of the reinforcer or unconditioned stimulus (US): surprising reinforcers are more effective than expected ones. A second class, represented by the Pearce-Hall (1980) model, argues that PE determines the associability of conditioned stimuli (CSs), the rate at which they may enter into new learning: the surprising delivery or omission of a reinforcer enhances subsequent processing of the CSs that were present when PE was induced. In this mini-review we describe evidence, mostly from our laboratory, for PE-induced changes in the associability of both CSs and USs, and the brain systems involved in the coding, storage and retrieval of these altered associability values. This evidence favors a number of modifications to behavioral models of how PE influences event processing, and suggests the involvement of widespread brain systems in animals' responses to PE. PMID:26948122

  11. Network-based auto-probit modeling for protein function prediction.

    PubMed

    Jiang, Xiaoyu; Gold, David; Kolaczyk, Eric D

    2011-09-01

    Predicting the functional roles of proteins based on various genome-wide data, such as protein-protein association networks, has become a canonical problem in computational biology. Approaching this task as a binary classification problem, we develop a network-based extension of the spatial auto-probit model. In particular, we develop a hierarchical Bayesian probit-based framework for modeling binary network-indexed processes, with a latent multivariate conditional autoregressive Gaussian process. The latter allows for the easy incorporation of protein-protein association network topologies-either binary or weighted-in modeling protein functional similarity. We use this framework to predict protein functions, for functions defined as terms in the Gene Ontology (GO) database, a popular rigorous vocabulary for biological functionality. Furthermore, we show how a natural extension of this framework can be used to model and correct for the high percentage of false negative labels in training data derived from GO, a serious shortcoming endemic to biological databases of this type. Our method performance is evaluated and compared with standard algorithms on weighted yeast protein-protein association networks, extracted from a recently developed integrative database called Search Tool for the Retrieval of INteracting Genes/proteins (STRING). Results show that our basic method is competitive with these other methods, and that the extended method-incorporating the uncertainty in negative labels among the training data-can yield nontrivial improvements in predictive accuracy. PMID:21133881

  12. Predictive biomarker discovery through the parallel integration of clinical trial and functional genomics datasets.

    PubMed

    Swanton, Charles; Larkin, James M; Gerlinger, Marco; Eklund, Aron C; Howell, Michael; Stamp, Gordon; Downward, Julian; Gore, Martin; Futreal, P Andrew; Escudier, Bernard; Andre, Fabrice; Albiges, Laurence; Beuselinck, Benoit; Oudard, Stephane; Hoffmann, Jens; Gyorffy, Balázs; Torrance, Chris J; Boehme, Karen A; Volkmer, Hansjuergen; Toschi, Luisella; Nicke, Barbara; Beck, Marlene; Szallasi, Zoltan

    2010-01-01

    The European Union multi-disciplinary Personalised RNA interference to Enhance the Delivery of Individualised Cytotoxic and Targeted therapeutics (PREDICT) consortium has recently initiated a framework to accelerate the development of predictive biomarkers of individual patient response to anti-cancer agents. The consortium focuses on the identification of reliable predictive biomarkers to approved agents with anti-angiogenic activity for which no reliable predictive biomarkers exist: sunitinib, a multi-targeted tyrosine kinase inhibitor and everolimus, a mammalian target of rapamycin (mTOR) pathway inhibitor. Through the analysis of tumor tissue derived from pre-operative renal cell carcinoma (RCC) clinical trials, the PREDICT consortium will use established and novel methods to integrate comprehensive tumor-derived genomic data with personalized tumor-derived small hairpin RNA and high-throughput small interfering RNA screens to identify and validate functionally important genomic or transcriptomic predictive biomarkers of individual drug response in patients. PREDICT's approach to predictive biomarker discovery differs from conventional associative learning approaches, which can be susceptible to the detection of chance associations that lead to overestimation of true clinical accuracy. These methods will identify molecular pathways important for survival and growth of RCC cells and particular targets suitable for therapeutic development. Importantly, our results may enable individualized treatment of RCC, reducing ineffective therapy in drug-resistant disease, leading to improved quality of life and higher cost efficiency, which in turn should broaden patient access to beneficial therapeutics, thereby enhancing clinical outcome and cancer survival. The consortium will also establish and consolidate a European network providing the technological and clinical platform for large-scale functional genomic biomarker discovery. Here we review our current understanding

  13. Predictive factors associated with hepatitis C antiviral therapy response.

    PubMed

    Cavalcante, Lourianne Nascimento; Lyra, André Castro

    2015-06-28

    Hepatitis C virus (HCV) infection may lead to significant liver injury, and viral, environmental, host, immunologic and genetic factors may contribute to the differences in the disease expression and treatment response. In the early 2000s, dual therapy using a combination of pegylated interferon plus ribavirin (PR) became the standard of care for HCV treatment. In this PR era, predictive factors of therapy response related to virus and host have been identified. In 2010/2011, therapeutic regimens for HCV genotype 1 patients were modified, and the addition of NS3/4a protease inhibitors (boceprevir or telaprevir) to dual therapy increased the effectiveness and chances of sustained virologic response (SVR). Nevertheless, the first-generation triple therapy is associated with many adverse events, some of which are serious and associated with death, particularly in cirrhotic patients. This led to the need to identify viral and host predictive factors that might influence the SVR rate to triple therapy and avoid unnecessary exposure to these drugs. Over the past four years, hepatitis C treatment has been rapidly changing with the development of new therapies and other developments. Currently, with the more recent generations of pangenotipic antiviral therapies, there have been higher sustained virologic rates, and prognostic factors may not have the same importance and strength as before. Nonetheless, some variables may still be consistent with the low rates of non-response with regimens that include sofosbuvir, daclatasvir and ledipasvir. In this manuscript, we review the predictive factors of therapy response across the different treatment regimens over the last decade including the new antiviral drugs. PMID:26140082

  14. Improving Phenotypic Prediction by Combining Genetic and Epigenetic Associations.

    PubMed

    Shah, Sonia; Bonder, Marc J; Marioni, Riccardo E; Zhu, Zhihong; McRae, Allan F; Zhernakova, Alexandra; Harris, Sarah E; Liewald, Dave; Henders, Anjali K; Mendelson, Michael M; Liu, Chunyu; Joehanes, Roby; Liang, Liming; Levy, Daniel; Martin, Nicholas G; Starr, John M; Wijmenga, Cisca; Wray, Naomi R; Yang, Jian; Montgomery, Grant W; Franke, Lude; Deary, Ian J; Visscher, Peter M

    2015-07-01

    We tested whether DNA-methylation profiles account for inter-individual variation in body mass index (BMI) and height and whether they predict these phenotypes over and above genetic factors. Genetic predictors were derived from published summary results from the largest genome-wide association studies on BMI (n ∼ 350,000) and height (n ∼ 250,000) to date. We derived methylation predictors by estimating probe-trait effects in discovery samples and tested them in external samples. Methylation profiles associated with BMI in older individuals from the Lothian Birth Cohorts (LBCs, n = 1,366) explained 4.9% of the variation in BMI in Dutch adults from the LifeLines DEEP study (n = 750) but did not account for any BMI variation in adolescents from the Brisbane Systems Genetic Study (BSGS, n = 403). Methylation profiles based on the Dutch sample explained 4.9% and 3.6% of the variation in BMI in the LBCs and BSGS, respectively. Methylation profiles predicted BMI independently of genetic profiles in an additive manner: 7%, 8%, and 14% of variance of BMI in the LBCs were explained by the methylation predictor, the genetic predictor, and a model containing both, respectively. The corresponding percentages for LifeLines DEEP were 5%, 9%, and 13%, respectively, suggesting that the methylation profiles represent environmental effects. The differential effects of the BMI methylation profiles by age support previous observations of age modulation of genetic contributions. In contrast, methylation profiles accounted for almost no variation in height, consistent with a mainly genetic contribution to inter-individual variation. The BMI results suggest that combining genetic and epigenetic information might have greater utility for complex-trait prediction. PMID:26119815

  15. High-throughput functional testing of ENCODE segmentation predictions

    PubMed Central

    Kwasnieski, Jamie C.; Fiore, Christopher; Chaudhari, Hemangi G.

    2014-01-01

    The histone modification state of genomic regions is hypothesized to reflect the regulatory activity of the underlying genomic DNA. Based on this hypothesis, the ENCODE Project Consortium measured the status of multiple histone modifications across the genome in several cell types and used these data to segment the genome into regions with different predicted regulatory activities. We measured the cis-regulatory activity of more than 2000 of these predictions in the K562 leukemia cell line. We tested genomic segments predicted to be Enhancers, Weak Enhancers, or Repressed elements in K562 cells, along with other sequences predicted to be Enhancers specific to the H1 human embryonic stem cell line (H1-hESC). Both Enhancer and Weak Enhancer sequences in K562 cells were more active than negative controls, although surprisingly, Weak Enhancer segmentations drove expression higher than did Enhancer segmentations. Lower levels of the covalent histone modifications H3K36me3 and H3K27ac, thought to mark active enhancers and transcribed gene bodies, associate with higher expression and partly explain the higher activity of Weak Enhancers over Enhancer predictions. While DNase I hypersensitivity (HS) is a good predictor of active sequences in our assay, transcription factor (TF) binding models need to be included in order to accurately identify highly expressed sequences. Overall, our results show that a significant fraction (∼26%) of the ENCODE enhancer predictions have regulatory activity, suggesting that histone modification states can reflect the cis-regulatory activity of sequences in the genome, but that specific sequence preferences, such as TF-binding sites, are the causal determinants of cis-regulatory activity. PMID:25035418

  16. Prediction of Broadband Shock-Associated Noise Including Propagation Effects Originating NASA

    NASA Technical Reports Server (NTRS)

    Miller, Steven; Morris, Philip J.

    2012-01-01

    An acoustic analogy is developed based on the Euler equations for broadband shock-associated noise (BBSAN) that directly incorporates the vector Green s function of the linearized Euler equations and a steady Reynolds-Averaged Navier-Stokes solution (SRANS) to describe the mean flow. The vector Green s function allows the BBSAN propagation through the jet shear layer to be determined. The large-scale coherent turbulence is modeled by two-point second order velocity cross-correlations. Turbulent length and time scales are related to the turbulent kinetic energy and dissipation rate. An adjoint vector Green s function solver is implemented to determine the vector Green s function based on a locally parallel mean flow at different streamwise locations. The newly developed acoustic analogy can be simplified to one that uses the Green s function associated with the Helmholtz equation, which is consistent with a previous formulation by the authors. A large number of predictions are generated using three different nozzles over a wide range of fully-expanded jet Mach numbers and jet stagnation temperatures. These predictions are compared with experimental data from multiple jet noise experimental facilities. In addition, two models for the so-called fine-scale mixing noise are included in the comparisons. Improved BBSAN predictions are obtained relative to other models that do not include propagation effects.

  17. Do Early-Life Conditions Predict Functional Health Status in Adulthood? The Case of Mexico

    PubMed Central

    Huang, Cheng; Soldo, Beth J; Elo, Irma T

    2010-01-01

    Relatively few researchers have investigated early antecedents of adult functional limitations in developing countries. In this study, we assessed associations between childhood conditions and adult lower-body functional limitations (LBFL) as well as the potential mediating role of adult socioeconomic status, smoking, body mass index, and chronic diseases or symptoms. Based on data from the Mexican Health and Aging Study (MHAS) of individuals born prior to 1951 and contacted in 2001 and 2003, we found that childhood nutritional deprivation, serious health problems, and family background predict adult LBFL in Mexico. Adjustment for the potential mediators in adulthood attenuates these associations only to a modest degree. PMID:21074924

  18. Simple topological properties predict functional misannotations in a metabolic network

    PubMed Central

    Liberal, Rodrigo; Pinney, John W.

    2013-01-01

    Motivation: Misannotation in sequence databases is an important obstacle for automated tools for gene function annotation, which rely extensively on comparison with sequences with known function. To improve current annotations and prevent future propagation of errors, sequence-independent tools are, therefore, needed to assist in the identification of misannotated gene products. In the case of enzymatic functions, each functional assignment implies the existence of a reaction within the organism’s metabolic network; a first approximation to a genome-scale metabolic model can be obtained directly from an automated genome annotation. Any obvious problems in the network, such as dead end or disconnected reactions, can, therefore, be strong indications of misannotation. Results: We demonstrate that a machine-learning approach using only network topological features can successfully predict the validity of enzyme annotations. The predictions are tested at three different levels. A random forest using topological features of the metabolic network and trained on curated sets of correct and incorrect enzyme assignments was found to have an accuracy of up to 86% in 5-fold cross-validation experiments. Further cross-validation against unseen enzyme superfamilies indicates that this classifier can successfully extrapolate beyond the classes of enzyme present in the training data. The random forest model was applied to several automated genome annotations, achieving an accuracy of in most cases when validated against recent genome-scale metabolic models. We also observe that when applied to draft metabolic networks for multiple species, a clear negative correlation is observed between predicted annotation quality and phylogenetic distance to the major model organism for biochemistry (Escherichia coli for prokaryotes and Homo sapiens for eukaryotes). Contact: j.pinney@imperial.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID

  19. Platelet Serotonin Transporter Function Predicts Default-Mode Network Activity

    PubMed Central

    Kasess, Christian H.; Meyer, Bernhard M.; Hofmaier, Tina; Diers, Kersten; Bartova, Lucie; Pail, Gerald; Huf, Wolfgang; Uzelac, Zeljko; Hartinger, Beate; Kalcher, Klaudius; Perkmann, Thomas; Haslacher, Helmuth; Meyer-Lindenberg, Andreas; Kasper, Siegfried; Freissmuth, Michael; Windischberger, Christian; Willeit, Matthäus; Lanzenberger, Rupert; Esterbauer, Harald; Brocke, Burkhard; Moser, Ewald; Sitte, Harald H.; Pezawas, Lukas

    2014-01-01

    Background The serotonin transporter (5-HTT) is abundantly expressed in humans by the serotonin transporter gene SLC6A4 and removes serotonin (5-HT) from extracellular space. A blood-brain relationship between platelet and synaptosomal 5-HT reuptake has been suggested, but it is unknown today, if platelet 5-HT uptake can predict neural activation of human brain networks that are known to be under serotonergic influence. Methods A functional magnetic resonance study was performed in 48 healthy subjects and maximal 5-HT uptake velocity (Vmax) was assessed in blood platelets. We used a mixed-effects multilevel analysis technique (MEMA) to test for linear relationships between whole-brain, blood-oxygen-level dependent (BOLD) activity and platelet Vmax. Results The present study demonstrates that increases in platelet Vmax significantly predict default-mode network (DMN) suppression in healthy subjects independent of genetic variation within SLC6A4. Furthermore, functional connectivity analyses indicate that platelet Vmax is related to global DMN activation and not intrinsic DMN connectivity. Conclusion This study provides evidence that platelet Vmax predicts global DMN activation changes in healthy subjects. Given previous reports on platelet-synaptosomal Vmax coupling, results further suggest an important role of neuronal 5-HT reuptake in DMN regulation. PMID:24667541

  20. iPFPi: A System for Improving Protein Function Prediction through Cumulative Iterations.

    PubMed

    Taha, Kamal; Yoo, Paul D; Alzaabi, Mohammed

    2015-01-01

    We propose a classifier system called iPFPi that predicts the functions of un-annotated proteins. iPFPi assigns an un-annotated protein P the functions of GO annotation terms that are semantically similar to P. An un-annotated protein P and a GO annotation term T are represented by their characteristics. The characteristics of P are GO terms found within the abstracts of biomedical literature associated with P. The characteristics of Tare GO terms found within the abstracts of biomedical literature associated with the proteins annotated with the function of T. Let F and F/ be the important (dominant) sets of characteristic terms representing T and P, respectively. iPFPi would annotate P with the function of T, if F and F/ are semantically similar. We constructed a novel semantic similarity measure that takes into consideration several factors, such as the dominance degree of each characteristic term t in set F based on its score, which is a value that reflects the dominance status of t relative to other characteristic terms, using pairwise beats and looses procedure. Every time a protein P is annotated with the function of T, iPFPi updates and optimizes the current scores of the characteristic terms for T based on the weights of the characteristic terms for P. Set F will be updated accordingly. Thus, the accuracy of predicting the function of T as the function of subsequent proteins improves. This prediction accuracy keeps improving over time iteratively through the cumulative weights of the characteristic terms representing proteins that are successively annotated with the function of T. We evaluated the quality of iPFPi by comparing it experimentally with two recent protein function prediction systems. Results showed marked improvement. PMID:26357323

  1. The Association Between Urinary Phthalates and Lung Function

    PubMed Central

    Cakmak, Sabit; Hebbern, Chris; Saravanabhavan, Gurusankar

    2014-01-01

    Objective: To investigate the influence of phthalate exposure on lung function in the Canadian population. Methods: We tested the association between 1-second forced expiratory volume (FEVl), forced vital capacity (FVC), and urinary phthalate metabolite levels in a nationally representative sample of 3147, from 6 to 49 years old. Results: An interquartile increase in mono-n-butyl phthalate was associated with decreases in percent predicted FEV1 of 0.8% (95% confidence interval = 0.3 to 1.4) and in FVC of 0.9% (95% confidence interval = 0.3 to 1.5). Results were similar for mono-3-carboxypropyl phthalate, mono-benzyl phthalate, and di(2-ethylhexyl) phthalate metabolites, but significant effects of the latter were only seen in males and those at least 17 years old. Conclusions: These results provide evidence that phthalate exposure may adversely affect lung function in the Canadian population. Given that these chemicals are ubiquitous, the population health burden may be significant if the associations were causal. PMID:24709763

  2. Associations between static and functional measures of joint function in the foot and ankle.

    PubMed

    Wrobel, James S; Connolly, John E; Beach, Michael L

    2004-01-01

    Clinicians have traditionally assessed range of motion of the first metatarsophalangeal and ankle joints in a static position. It is unclear, however, if these measurements accurately reflect functional sagittal plane limitations of these joints during gait. For 50 patients (100 feet), we assessed available dorsiflexion at the first metatarsophalangeal and ankle joints, as well as the presence of pinch callus. We then compared these findings with 11 functional gait parameters, as measured using a pressure sensor system. After adjusting for age, weight, smoking status, glycosylated hemoglobin, and insensitivity to monofilament, we found that patients with pinch callus demonstrated statistically significant compensatory gait patterns in 7 of 11 measures. Hallux limitus and equinus patients demonstrated six and three statistically significant associations, respectively. Pinch callus seems to be as predictive of functional gait alterations as static first metatarsophalangeal joint and ankle dorsiflexion. PMID:15547120

  3. Contrast sensitivity function calibration based on image quality prediction

    NASA Astrophysics Data System (ADS)

    Han, Yu; Cai, Yunze

    2014-11-01

    Contrast sensitivity functions (CSFs) describe visual stimuli based on their spatial frequency. However, CSF calibration is limited by the size of the sample collection and this remains an open issue. In this study, we propose an approach for calibrating CSFs that is based on the hypothesis that a precise CSF model can accurately predict image quality. Thus, CSF calibration is regarded as the inverse problem of image quality prediction according to our hypothesis. A CSF could be calibrated by optimizing the performance of a CSF-based image quality metric using a database containing images with known quality. Compared with the traditional method, this would reduce the work involved in sample collection dramatically. In the present study, we employed three image databases to optimize some existing CSF models. The experimental results showed that the performance of a three-parameter CSF model was better than that of other models. The results of this study may be helpful in CSF and image quality research.

  4. Prediction of functional residues in water channels and related proteins.

    PubMed Central

    Froger, A.; Tallur, B.; Thomas, D.; Delamarche, C.

    1998-01-01

    In this paper, we present an updated classification of the ubiquitous MIP (Major Intrinsic Protein) family proteins, including 153 fully or partially sequenced members available in public databases. Presently, about 30 of these proteins have been functionally characterized, exhibiting essentially two distinct types of channel properties: (1) specific water transport by the aquaporins, and (2) small neutral solutes transport, such as glycerol by the glycerol facilitators. Sequence alignments were used to predict amino acids and motifs discriminant in channel specificity. The protein sequences were also analyzed using statistical tools (comparisons of means and correspondence analysis). Five key positions were clearly identified where the residues are specific for each functional subgroup and exhibit high dissimilar physico-chemical properties. Moreover, we have found that the putative channels for small neutral solutes clearly differ from the aquaporins by the amino acid content and the length of predicted loop regions, suggesting a substrate filter function for these loops. From these results, we propose a signature pattern for water transport. PMID:9655351

  5. Does human presynaptic striatal dopamine function predict social conformity?

    PubMed

    Stokes, Paul R A; Benecke, Aaf; Puraite, Julita; Bloomfield, Michael A P; Shotbolt, Paul; Reeves, Suzanne J; Lingford-Hughes, Anne R; Howes, Oliver; Egerton, Alice

    2014-03-01

    Socially desirable responding (SDR) is a personality trait which reflects either a tendency to present oneself in an overly positive manner to others, consistent with social conformity (impression management (IM)), or the tendency to view one's own behaviour in an overly positive light (self-deceptive enhancement (SDE)). Neurochemical imaging studies report an inverse relationship between SDR and dorsal striatal dopamine D₂/₃ receptor availability. This may reflect an association between SDR and D₂/₃ receptor expression, synaptic dopamine levels or a combination of the two. In this study, we used a [¹⁸F]-DOPA positron emission tomography (PET) image database to investigate whether SDR is associated with presynaptic dopamine function. Striatal [¹⁸F]-DOPA uptake, (k(i)(cer), min⁻¹), was determined in two independent healthy participant cohorts (n=27 and 19), by Patlak analysis using a cerebellar reference region. SDR was assessed using the revised Eysenck Personality Questionnaire (EPQ-R) Lie scale, and IM and SDE were measured using the Paulhus Deception Scales. No significant associations were detected between Lie, SDE or IM scores and striatal [¹⁸F]-DOPA k(i)(cer). These results indicate that presynaptic striatal dopamine function is not associated with social conformity and suggests that social conformity may be associated with striatal D₂/₃ receptor expression rather than with synaptic dopamine levels. PMID:24257812

  6. Do dissociated or associated phoria predict the comfortable prism?

    PubMed Central

    Otto, Joanna M. N.; Kromeier, Miriam; Bach, Michael

    2008-01-01

    Background Dissociated and associated phoria are measures of latent strabismus under artificial viewing conditions. We examined to what extent dissociated and associated phoria predict the “comfortable prism”, i.e. the prism that appears most comfortable under natural viewing conditions. Methods For associated phoria, a configuration resembling the Mallett test was employed: both eyes were presented with a fixation cross, surrounded by fusionable objects. Nonius lines served as monocular markers. For dissociated phoria, the left eye was presented with all the Mallett elements, while only a white spot was presented to the right eye. To determine the comfortable prism, all the Mallett elements, including the Nonius lines, were shown to both eyes. In each of the three tests, the observer had to adjust a pair of counterrotating prisms. To avoid any (possibly prejudiced) influence of the experimenter, the prismatic power was recorded with a potentiometer. Twenty non-strabismic subjects with a visual acuity of ≥1.0 in each eye were examined. Results The range of the intertrial mean was for dissociated phoria from +9.3 eso to −5.9 cm/m exo, for associated phoria from +11.2 eso to −3.3 cm/m exo, and for the comfortable prism from +4.8 eso to −4.1 cm/m exo (cm/m = prism dioptre). In most observers, the phoria parameters differed greatly from the comfortable prism. On average, the phoria values were shifted about 2 cm/m towards the eso direction in relation to the comfortable prism (associated phoria not less than dissociated phoria). Conclusions The deviation of both, dissociated and associated phoria, from the comfortable prism suggests that the abnormal viewing conditions under which the phoria parameters are determined induce artefacts. Accordingly, the findings cast doubt on current textbook recommendations to use dissociated or associated phoria as a basis for therapeutic prisms. Rather, patients should be allowed to determine their comfortable prism

  7. The Evolutionary Legacy of Diversification Predicts Ecosystem Function.

    PubMed

    Yguel, Benjamin; Jactel, Hervé; Pearse, Ian S; Moen, Daniel; Winter, Marten; Hortal, Joaquin; Helmus, Matthew R; Kühn, Ingolf; Pavoine, Sandrine; Purschke, Oliver; Weiher, Evan; Violle, Cyrille; Ozinga, Wim; Brändle, Martin; Bartish, Igor; Prinzing, Andreas

    2016-10-01

    Theory suggests that the structure of evolutionary history represented in a species community may affect its functioning, but phylogenetic diversity metrics do not allow for the identification of major differences in this structure. Here we propose a new metric, ELDERness (for Evolutionary Legacy of DivERsity) to estimate evolutionary branching patterns within communities by fitting a polynomial function to lineage-through-time (LTT) plots. We illustrate how real and simulated community branching patterns can be more correctly described by ELDERness and can successfully predict ecosystem functioning. In particular, the evolutionary history of branching patterns can be encapsulated by the parameters of third-order polynomial functions and further measured through only two parameters, the "ELDERness surfaces." These parameters captured variation in productivity of a grassland community better than existing phylogenetic diversity or diversification metrics and independent of species richness or presence of nitrogen fixers. Specifically, communities with small ELDERness surfaces (constant accumulation of lineages through time in LTT plots) were more productive, consistent with increased productivity resulting from complementary lineages combined with niche filling within lineages. Overall, while existing phylogenetic diversity metrics remain useful in many contexts, we suggest that our ELDERness approach better enables testing hypotheses that relate complex patterns of macroevolutionary history represented in local communities to ecosystem functioning. PMID:27622874

  8. Structural and functional protein network analyses predict novel signaling functions for rhodopsin

    PubMed Central

    Kiel, Christina; Vogt, Andreas; Campagna, Anne; Chatr-aryamontri, Andrew; Swiatek-de Lange, Magdalena; Beer, Monika; Bolz, Sylvia; Mack, Andreas F; Kinkl, Norbert; Cesareni, Gianni; Serrano, Luis; Ueffing, Marius

    2011-01-01

    Orchestration of signaling, photoreceptor structural integrity, and maintenance needed for mammalian vision remain enigmatic. By integrating three proteomic data sets, literature mining, computational analyses, and structural information, we have generated a multiscale signal transduction network linked to the visual G protein-coupled receptor (GPCR) rhodopsin, the major protein component of rod outer segments. This network was complemented by domain decomposition of protein–protein interactions and then qualified for mutually exclusive or mutually compatible interactions and ternary complex formation using structural data. The resulting information not only offers a comprehensive view of signal transduction induced by this GPCR but also suggests novel signaling routes to cytoskeleton dynamics and vesicular trafficking, predicting an important level of regulation through small GTPases. Further, it demonstrates a specific disease susceptibility of the core visual pathway due to the uniqueness of its components present mainly in the eye. As a comprehensive multiscale network, it can serve as a basis to elucidate the physiological principles of photoreceptor function, identify potential disease-associated genes and proteins, and guide the development of therapies that target specific branches of the signaling pathway. PMID:22108793

  9. Inter-individual differences in the experience of negative emotion predict variations in functional brain architecture.

    PubMed

    Petrican, Raluca; Saverino, Cristina; Shayna Rosenbaum, R; Grady, Cheryl

    2015-12-01

    Current evidence suggests that two spatially distinct neuroanatomical networks, the dorsal attention network (DAN) and the default mode network (DMN), support externally and internally oriented cognition, respectively, and are functionally regulated by a third, frontoparietal control network (FPC). Interactions among these networks contribute to normal variations in cognitive functioning and to the aberrant affective profiles present in certain clinical conditions, such as major depression. Nevertheless, their links to non-clinical variations in affective functioning are still poorly understood. To address this issue, we used fMRI to measure the intrinsic functional interactions among these networks in a sample of predominantly younger women (N=162) from the Human Connectome Project. Consistent with the previously documented dichotomous motivational orientations (i.e., withdrawal versus approach) associated with sadness versus anger, we hypothesized that greater sadness would predict greater DMN (rather than DAN) functional dominance, whereas greater anger would predict the opposite. Overall, there was evidence of greater DAN (rather than DMN) functional dominance, but this pattern was modulated by current experience of specific negative emotions, as well as subclinical depressive and anxiety symptoms. Thus, greater levels of currently experienced sadness and subclinical depression independently predicted weaker DAN functional dominance (i.e., weaker DAN-FPC functional connectivity), likely reflecting reduced goal-directed attention towards the external perceptual environment. Complementarily, greater levels of currently experienced anger and subclinical anxiety predicted greater DAN functional dominance (i.e., greater DAN-FPC functional connectivity and, for anxiety only, also weaker DMN-FPC coupling). Our findings suggest that distinct affective states and subclinical mood symptoms have dissociable neural signatures, reflective of the symbiotic relationship

  10. Utility functions predict variance and skewness risk preferences in monkeys

    PubMed Central

    Genest, Wilfried; Stauffer, William R.; Schultz, Wolfram

    2016-01-01

    Utility is the fundamental variable thought to underlie economic choices. In particular, utility functions are believed to reflect preferences toward risk, a key decision variable in many real-life situations. To assess the validity of utility representations, it is therefore important to examine risk preferences. In turn, this approach requires formal definitions of risk. A standard approach is to focus on the variance of reward distributions (variance-risk). In this study, we also examined a form of risk related to the skewness of reward distributions (skewness-risk). Thus, we tested the extent to which empirically derived utility functions predicted preferences for variance-risk and skewness-risk in macaques. The expected utilities calculated for various symmetrical and skewed gambles served to define formally the direction of stochastic dominance between gambles. In direct choices, the animals’ preferences followed both second-order (variance) and third-order (skewness) stochastic dominance. Specifically, for gambles with different variance but identical expected values (EVs), the monkeys preferred high-variance gambles at low EVs and low-variance gambles at high EVs; in gambles with different skewness but identical EVs and variances, the animals preferred positively over symmetrical and negatively skewed gambles in a strongly transitive fashion. Thus, the utility functions predicted the animals’ preferences for variance-risk and skewness-risk. Using these well-defined forms of risk, this study shows that monkeys’ choices conform to the internal reward valuations suggested by their utility functions. This result implies a representation of utility in monkeys that accounts for both variance-risk and skewness-risk preferences. PMID:27402743

  11. Predicting activity approach based on new atoms similarity kernel function.

    PubMed

    Abu El-Atta, Ahmed H; Moussa, M I; Hassanien, Aboul Ella

    2015-07-01

    Drug design is a high cost and long term process. To reduce time and costs for drugs discoveries, new techniques are needed. Chemoinformatics field implements the informational techniques and computer science like machine learning and graph theory to discover the chemical compounds properties, such as toxicity or biological activity. This is done through analyzing their molecular structure (molecular graph). To overcome this problem there is an increasing need for algorithms to analyze and classify graph data to predict the activity of molecules. Kernels methods provide a powerful framework which combines machine learning with graph theory techniques. These kernels methods have led to impressive performance results in many several chemoinformatics problems like biological activity prediction. This paper presents a new approach based on kernel functions to solve activity prediction problem for chemical compounds. First we encode all atoms depending on their neighbors then we use these codes to find a relationship between those atoms each other. Then we use relation between different atoms to find similarity between chemical compounds. The proposed approach was compared with many other classification methods and the results show competitive accuracy with these methods. PMID:26117822

  12. miRDB: an online resource for microRNA target prediction and functional annotations.

    PubMed

    Wong, Nathan; Wang, Xiaowei

    2015-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that are extensively involved in many physiological and disease processes. One major challenge in miRNA studies is the identification of genes regulated by miRNAs. To this end, we have developed an online resource, miRDB (http://mirdb.org), for miRNA target prediction and functional annotations. Here, we describe recently updated features of miRDB, including 2.1 million predicted gene targets regulated by 6709 miRNAs. In addition to presenting precompiled prediction data, a new feature is the web server interface that allows submission of user-provided sequences for miRNA target prediction. In this way, users have the flexibility to study any custom miRNAs or target genes of interest. Another major update of miRDB is related to functional miRNA annotations. Although thousands of miRNAs have been identified, many of the reported miRNAs are not likely to play active functional roles or may even have been falsely identified as miRNAs from high-throughput studies. To address this issue, we have performed combined computational analyses and literature mining, and identified 568 and 452 functional miRNAs in humans and mice, respectively. These miRNAs, as well as associated functional annotations, are presented in the FuncMir Collection in miRDB. PMID:25378301

  13. Weaknesses in executive functioning predict the initiating of adolescents' alcohol use.

    PubMed

    Peeters, Margot; Janssen, Tim; Monshouwer, Karin; Boendermaker, Wouter; Pronk, Thomas; Wiers, Reinout; Vollebergh, Wilma

    2015-12-01

    Recently, it has been suggested that impairments in executive functioning might be risk factors for the onset of alcohol use rather than a result of heavy alcohol use. In the present study, we examined whether two aspects of executive functioning, working memory and response inhibition, predicted the first alcoholic drink and first binge drinking episode in young adolescents using discrete survival analyses. Adolescents were selected from several Dutch secondary schools including both mainstream and special education (externalizing behavioral problems). Participants were 534 adolescents between 12 and 14 years at baseline. Executive functioning and alcohol use were assessed four times over a period of two years. Working memory uniquely predicted the onset of first drink (p=.01) and first binge drinking episode (p=.04) while response inhibition only uniquely predicted the initiating of the first drink (p=.01). These results suggest that the association of executive functioning and alcohol consumption found in former studies cannot simply be interpreted as an effect of alcohol consumption, as weaknesses in executive functioning, found in alcohol naïve adolescents, predict the initiating of (binge) drinking. Though, prolonged and heavy alcohol use might further weaken already existing deficiencies. PMID:25936585

  14. Parent Emotional Expressiveness and Children's Self-Regulation: Associations with Abused Children's School Functioning

    ERIC Educational Resources Information Center

    Haskett, Mary E.; Stelter, Rebecca; Proffit, Katie; Nice, Rachel

    2012-01-01

    Objective: Identifying factors associated with school functioning of abused children is important in prevention of long-term negative outcomes associated with school failure. The purpose of this study was to examine the degree to which parent emotional expressiveness and children's self-regulation predicted early school behavior of abused…

  15. Genome-wide association study identifies five loci associated with lung function

    PubMed Central

    Repapi, Emmanouela; Sayers, Ian; Wain, Louise V; Burton, Paul R; Johnson, Toby; Obeidat, Ma’en; Zhao, Jing Hua; Ramasamy, Adaikalavan; Zhai, Guangju; Vitart, Veronique; Huffman, Jennifer E; Igl, Wilmar; Albrecht, Eva; Deloukas, Panos; Henderson, John; Granell, Raquel; McArdle, Wendy L; Rudnicka, Alicja R; Barroso, Inês; Loos, Ruth J F; Wareham, Nicholas J; Mustelin, Linda; Rantanen, Taina; Surakka, Ida; Imboden, Medea; Wichmann, H Erich; Grkovic, Ivica; Jankovic, Stipan; Zgaga, Lina; Hartikainen, Anna-Liisa; Peltonen, Leena; Gyllensten, Ulf; Johansson, Åsa; Zaboli, Ghazal; Campbell, Harry; Wild, Sarah H; Wilson, James F; Gläser, Sven; Homuth, Georg; Völzke, Henry; Mangino, Massimo; Soranzo, Nicole; Spector, Tim D; Polašek, Ozren; Rudan, Igor; Wright, Alan F; Heliövaara, Markku; Ripatti, Samuli; Pouta, Anneli; Naluai, Åsa Torinsson; Olin, Anna-Carin; Torén, Kjell; Cooper, Matthew N; James, Alan L; Palmer, Lyle J; Hingorani, Aroon D; Wannamethee, S Goya; Whincup, Peter H; Smith, George Davey; Ebrahim, Shah; McKeever, Tricia M; Pavord, Ian D; MacLeod, Andrew K; Morris, Andrew D; Porteous, David J; Cooper, Cyrus; Dennison, Elaine; Shaheen, Seif; Karrasch, Stefan; Schnabel, Eva; Schulz, Holger; Grallert, Harald; Bouatia-Naji, Nabila; Delplanque, Jérôme; Froguel, Philippe; Blakey, John D; Britton, John R; Morris, Richard W; Holloway, John W; Lawlor, Debbie A; Hui, Jennie; Nyberg, Fredrik; Jarvelin, Marjo-Riitta; Jackson, Cathy; Kähönen, Mika; Kaprio, Jaakko; Probst-Hensch, Nicole M; Koch, Beate; Hayward, Caroline; Evans, David M; Elliott, Paul; Strachan, David P; Hall, Ian P; Tobin, Martin D

    2010-01-01

    Pulmonary function measures are heritable traits that predict morbidity and mortality and define chronic obstructive pulmonary disease (COPD). We tested genome-wide association with forced expiratory volume in 1 s (FEV1) and the ratio of FEV1 to forced vital capacity (FVC) in the SpiroMeta consortium (n = 20,288 individuals of European ancestry). We conducted a meta-analysis of top signals with data from direct genotyping (n ≤ 32,184 additional individuals) and in silico summary association data from the CHARGE Consortium (n = 21,209) and the Health 2000 survey (n ≤ 883). We confirmed the reported locus at 4q31 and identified associations with FEV1 or FEV1/FVC and common variants at five additional loci: 2q35 in TNS1 (P = 1.11 × 10−12), 4q24 in GSTCD (2.18 × 10−23), 5q33 in HTR4 (P = 4.29 × 10−9), 6p21 in AGER (P = 3.07 × 10−15) and 15q23 in THSD4 (P = 7.24 × 10−15). mRNA analyses showed expression of TNS1, GSTCD, AGER, HTR4 and THSD4 in human lung tissue. These associations offer mechanistic insight into pulmonary function regulation and indicate potential targets for interventions to alleviate respiratory disease. PMID:20010834

  16. 47 CFR 69.603 - Association functions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... proportion to the revenues associated with each component. The first component (“Category I.A Expenses”) shall be in proportion to the Universal Service Fund and Lifeline Assistance revenues. The second component (“Category I.B Expenses”) shall be in proportion to the sum of the association End User...

  17. Predicting clinical responses in major depression using intrinsic functional connectivity.

    PubMed

    Qin, Jian; Shen, Hui; Zeng, Ling-Li; Jiang, Weixiong; Liu, Li; Hu, Dewen

    2015-08-19

    There has been increasing interest in multivariate pattern analysis (MVPA) as a means of distinguishing psychiatric patients from healthy controls using brain imaging. However, it remains unclear whether MVPA methods can accurately estimate the medication status of psychiatric patients. This study aims to develop an MVPA approach to accurately predict the antidepressant medication status of individuals with major depression on the basis of whole-brain resting-state functional connectivity MRI (rs-fcMRI). We investigated data from rs-fcMRI of 24 medication-naive depressed patients, 16 out of whom subsequently underwent antidepressant treatment and achieved clinical recovery, and 29 demographically similar controls. By training a linear support vector machine classifier and combining it with principal component analysis, the medication-naive patients were identified from the healthy controls with 100% accuracy. In addition, we found reliable correlations between MVPA prediction scores and clinical symptom severity. Moreover, the most discriminative functional connections were located within or across the cerebellum and default mode, affective, and sensorimotor networks, indicating that these networks may play important roles in major depression. Most importantly, only ∼30% of these discriminative connections were normalized in clinically recovered patients after antidepressant treatment. The current study may not only show the feasibility of estimating medication status by MVPA of whole-brain rs-fcMRI data in major depression but also shed new light on the pathological mechanism of this disorder. PMID:26164454

  18. Prediction of a stable associated liquid of short amyloidogenic peptides.

    PubMed

    Luiken, Jurriaan A; Bolhuis, Peter G

    2015-04-28

    Amyloid fibril formation is believed to be a nucleation-controlled process. Depending on the nature of peptide sequence, fibril nucleation can occur in one step, straight from a dilute solution, or in multiple steps via oligomers or disordered aggregates. What determines this process is poorly understood. Since the fibril formation kinetics is driven by thermodynamic forces, knowledge of the phase behavior is crucial. Here, we investigated the phase behavior of three short peptide sequences of varying side-chain hydrophobicity. Replica exchange molecular dynamics simulations of a mid-resolution model indicate that the weakly hydrophobic peptide forms fibrils directly from solution, whereas the most hydrophobic peptide forms a dense liquid phase before crystallizing into ordered fibrils at low temperatures. For the medium hydrophobic peptide we found evidence of a novel additional transition to a liquid phase consisting of clusters of aligned peptides, implying a three-step nucleation process. We tested the robustness of this prediction by applying Wertheim's theory and statistical associating fluid theory to a hard-sphere model dressed with isotropic and anisotropic attractions. We found that the ratio of interaction strengths strongly affects the phase behavior, and under certain conditions indeed gives rise to a stable polymerized liquid phase. The peptide clusters in the associated liquid tend to be slow and long-lived, which may give the oligomer droplet more time to act as a toxic oligomer, before turning into a fibril. PMID:25804723

  19. Predicting habitat associations of five intertidal crab species among estuaries

    NASA Astrophysics Data System (ADS)

    Vermeiren, Peter; Sheaves, Marcus

    2014-08-01

    Intertidal crab assemblages that are active on the sediment surface of tropical estuaries during tidal exposure play an important role in many fundamental ecosystem processes. Consequently, they are critical contributors to a wide range of estuarine goods and services. However, a lack of understanding of their spatial organization within a large landscape context prevents the inclusion of intertidal crabs into generally applicable ecological models and management applications. We investigated spatial distribution patterns of intertidal crabs within and among eight dry tropical estuaries spread across a 160 km stretch of coast in North East Queensland, Australia. Habitat associations were modelled for five species based on photographic sampling in 40-80 sites per estuarine up- and downstream component: Uca seismella occurred in sites with little structure, bordered by low intertidal vegetation; Macrophthalmus japonicus occupied flat muddy sites with no structure or vegetation; Metopograpsus frontalis and Metopograpsus latifrons occupied sites covered with structure in more than 10% and 25% respectively. Finally, both Metopograpsus spp. and Metopograpsus thukuhar occupied rock walls. Habitat associations were predictable among estuaries with moderate to high sensitivity and low percentages of false positives indicating that simple, physical factors were adequate to explain the spatial distribution pattern of intertidal crabs. Results provide a necessary first step in developing generally applicable understanding of the fundamental mechanisms driving spatial niche organization of intertidal crabs within a landscape context.

  20. The functions of contexts in associative learning

    PubMed Central

    Urcelay, Gonzalo P.; Miller, Ralph R.

    2014-01-01

    Although contexts play many roles during training and also during testing, over the last four decades theories of learning have predominantly focused on one or the other of two families of functions served by contexts. In this selective review, we summarize recent data concerning these two functions and their interrelationship. The first function is similar to that of discrete cues, and allows contexts to elicit conditioned responses and compete with discrete events for behavioral control. The second function is modulatory, and similar to that of discrete occasion setters in that in this role contexts do not elicit conditioned responses by themselves, but rather modulate instrumental responding or responding to Pavlovian cues. We first present evidence for these two functions, and then suggest that the spacing of trials, amount of training, and contiguity are three determinants of the degree to which the context will play each function. We also conclude that these two functions are not mutually exclusive, and that future research would benefit from identifying the conditions under which their functions dominate behavioral control. We close by discussing some misconceptions concerning contexts. PMID:24614400

  1. Prediction of functional aerobic capacity without exercise testing

    NASA Technical Reports Server (NTRS)

    Jackson, A. S.; Blair, S. N.; Mahar, M. T.; Wier, L. T.; Ross, R. M.; Stuteville, J. E.

    1990-01-01

    The purpose of this study was to develop functional aerobic capacity prediction models without using exercise tests (N-Ex) and to compare the accuracy with Astrand single-stage submaximal prediction methods. The data of 2,009 subjects (9.7% female) were randomly divided into validation (N = 1,543) and cross-validation (N = 466) samples. The validation sample was used to develop two N-Ex models to estimate VO2peak. Gender, age, body composition, and self-report activity were used to develop two N-Ex prediction models. One model estimated percent fat from skinfolds (N-Ex %fat) and the other used body mass index (N-Ex BMI) to represent body composition. The multiple correlations for the developed models were R = 0.81 (SE = 5.3 ml.kg-1.min-1) and R = 0.78 (SE = 5.6 ml.kg-1.min-1). This accuracy was confirmed when applied to the cross-validation sample. The N-Ex models were more accurate than what was obtained from VO2peak estimated from the Astrand prediction models. The SEs of the Astrand models ranged from 5.5-9.7 ml.kg-1.min-1. The N-Ex models were cross-validated on 59 men on hypertensive medication and 71 men who were found to have a positive exercise ECG. The SEs of the N-Ex models ranged from 4.6-5.4 ml.kg-1.min-1 with these subjects.(ABSTRACT TRUNCATED AT 250 WORDS).

  2. Ongoing dynamics in large-scale functional connectivity predict perception

    PubMed Central

    Sadaghiani, Sepideh; Poline, Jean-Baptiste; Kleinschmidt, Andreas; D’Esposito, Mark

    2015-01-01

    Most brain activity occurs in an ongoing manner not directly locked to external events or stimuli. Regional ongoing activity fluctuates in unison with some brain regions but not others, and the degree of long-range coupling is called functional connectivity, often measured with correlation. Strength and spatial distributions of functional connectivity dynamically change in an ongoing manner over seconds to minutes, even when the external environment is held constant. Direct evidence for any behavioral relevance of these continuous large-scale dynamics has been limited. Here, we investigated whether ongoing changes in baseline functional connectivity correlate with perception. In a continuous auditory detection task, participants perceived the target sound in roughly one-half of the trials. Very long (22–40 s) interstimulus intervals permitted investigation of baseline connectivity unaffected by preceding evoked responses. Using multivariate classification, we observed that functional connectivity before the target predicted whether it was heard or missed. Using graph theoretical measures, we characterized the difference in functional connectivity between states that lead to hits vs. misses. Before misses compared with hits and task-free rest, connectivity showed reduced modularity, a measure of integrity of modular network structure. This effect was strongest in the default mode and visual networks and caused by both reduced within-network connectivity and enhanced across-network connections before misses. The relation of behavior to prestimulus connectivity was dissociable from that of prestimulus activity amplitudes. In conclusion, moment to moment dynamic changes in baseline functional connectivity may shape subsequent behavioral performance. A highly modular network structure seems beneficial to perceptual efficiency. PMID:26106164

  3. Functional imaging in tumor-associated lymphatics

    NASA Astrophysics Data System (ADS)

    Kwon, Sunkuk; Sevick-Muraca, Eva M.

    2011-03-01

    The lymphatic system plays an important role in cancer cell dissemination; however whether lymphatic drainage pathways and function change during tumor progression and metastasis remains to be elucidated. In this report, we employed a non-invasive, dynamic near-infrared (NIR) fluorescence imaging technique for functional lymphatic imaging. Indocyanine green (ICG) was intradermally injected into tumor-free mice and mice bearing C6/LacZ rat glioma tumors in the tail or hindlimb. Our imaging data showed abnormal lymphatic drainage pathways and reduction/loss of lymphatic contractile function in mice with lymph node (LN) metastasis, indicating that cancer metastasis to the draining LNs is accompanied by transient changes of the lymphatic architectural network and its function. Therefore, functional lymphatic imaging may provide a role in the clinical staging of cancer.

  4. Fibrosis with Inflammation at One Year Predicts Transplant Functional Decline

    PubMed Central

    Park, Walter D.; Griffin, Matthew D.; Cornell, Lynn D.; Cosio, Fernando G.

    2010-01-01

    Lack of knowledge regarding specific causes for late loss of kidney transplants hampers improvements in long-term allograft survival. Kidney transplants with both interstitial fibrosis and subclinical inflammation but not fibrosis alone after 1 year have reduced survival. This study tested whether fibrosis with inflammation at 1 year associates with decline of renal function in a low-risk cohort and characterized the nature of the inflammation. We studied 151 living-donor, tacrolimus/mycophenolate-treated recipients without overt risk factors for reduced graft survival. Transplants with normal histology (n = 86) or fibrosis alone (n = 45) on 1-year protocol biopsy had stable renal function between 1 and 5 years, whereas those with both fibrosis and inflammation (n = 20) exhibited a decline in GFR and reduced graft survival. Immunohistochemistry confirmed increased interstitial T cells and macrophages/dendritic cells in the group with both fibrosis and inflammation, and there was increased expression of transcripts related to innate and cognate immunity. Pathway- and pathologic process–specific analyses of microarray profiles revealed that potentially damaging immunologic activities were enriched among the overexpressed transcripts (e.g., Toll-like receptor signaling, antigen presentation/dendritic cell maturation, IFN-γ–inducible response, cytotoxic T lymphocyte–associated and acute rejection–associated genes). Therefore, the combination of fibrosis and inflammation in 1-year protocol biopsies associates with reduced graft function and survival as well as a rejection-like gene expression signature, even among recipients with no clinical risk factors for poor outcomes. Early interventions aimed at altering rejection-like inflammation may improve long-term survival of kidney allografts. PMID:20813870

  5. How and when should interactome-derived clusters be used to predict functional modules and protein function?

    PubMed Central

    Song, Jimin; Singh, Mona

    2009-01-01

    Motivation: Clustering of protein–protein interaction networks is one of the most common approaches for predicting functional modules, protein complexes and protein functions. But, how well does clustering perform at these tasks? Results: We develop a general framework to assess how well computationally derived clusters in physical interactomes overlap functional modules derived via the Gene Ontology (GO). Using this framework, we evaluate six diverse network clustering algorithms using Saccharomyces cerevisiae and show that (i) the performances of these algorithms can differ substantially when run on the same network and (ii) their relative performances change depending upon the topological characteristics of the network under consideration. For the specific task of function prediction in S.cerevisiae, we demonstrate that, surprisingly, a simple non-clustering guilt-by-association approach outperforms widely used clustering-based approaches that annotate a protein with the overrepresented biological process and cellular component terms in its cluster; this is true over the range of clustering algorithms considered. Further analysis parameterizes performance based on the number of annotated proteins, and suggests when clustering approaches should be used for interactome functional analyses. Overall our results suggest a re-examination of when and how clustering approaches should be applied to physical interactomes, and establishes guidelines by which novel clustering approaches for biological networks should be justified and evaluated with respect to functional analysis. Contact: msingh@cs.princeton.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19770263

  6. LncDisease: a sequence based bioinformatics tool for predicting lncRNA-disease associations

    PubMed Central

    Wang, Junyi; Ma, Ruixia; Ma, Wei; Chen, Ji; Yang, Jichun; Xi, Yaguang; Cui, Qinghua

    2016-01-01

    LncRNAs represent a large class of noncoding RNA molecules that have important functions and play key roles in a variety of human diseases. There is an urgent need to develop bioinformatics tools as to gain insight into lncRNAs. This study developed a sequence-based bioinformatics method, LncDisease, to predict the lncRNA-disease associations based on the crosstalk between lncRNAs and miRNAs. Using LncDisease, we predicted the lncRNAs associated with breast cancer and hypertension. The breast-cancer-associated lncRNAs were studied in two breast tumor cell lines, MCF-7 and MDA-MB-231. The qRT-PCR results showed that 11 (91.7%) of the 12 predicted lncRNAs could be validated in both breast cancer cell lines. The hypertension-associated lncRNAs were further evaluated in human vascular smooth muscle cells (VSMCs) stimulated with angiotensin II (Ang II). The qRT-PCR results showed that 3 (75.0%) of the 4 predicted lncRNAs could be validated in Ang II-treated human VSMCs. In addition, we predicted 6 diseases associated with the lncRNA GAS5 and validated 4 (66.7%) of them by literature mining. These results greatly support the specificity and efficacy of LncDisease in the study of lncRNAs in human diseases. The LncDisease software is freely available on the Software Page: http://www.cuilab.cn/. PMID:26887819

  7. LncDisease: a sequence based bioinformatics tool for predicting lncRNA-disease associations.

    PubMed

    Wang, Junyi; Ma, Ruixia; Ma, Wei; Chen, Ji; Yang, Jichun; Xi, Yaguang; Cui, Qinghua

    2016-05-19

    LncRNAs represent a large class of noncoding RNA molecules that have important functions and play key roles in a variety of human diseases. There is an urgent need to develop bioinformatics tools as to gain insight into lncRNAs. This study developed a sequence-based bioinformatics method, LncDisease, to predict the lncRNA-disease associations based on the crosstalk between lncRNAs and miRNAs. Using LncDisease, we predicted the lncRNAs associated with breast cancer and hypertension. The breast-cancer-associated lncRNAs were studied in two breast tumor cell lines, MCF-7 and MDA-MB-231. The qRT-PCR results showed that 11 (91.7%) of the 12 predicted lncRNAs could be validated in both breast cancer cell lines. The hypertension-associated lncRNAs were further evaluated in human vascular smooth muscle cells (VSMCs) stimulated with angiotensin II (Ang II). The qRT-PCR results showed that 3 (75.0%) of the 4 predicted lncRNAs could be validated in Ang II-treated human VSMCs. In addition, we predicted 6 diseases associated with the lncRNA GAS5 and validated 4 (66.7%) of them by literature mining. These results greatly support the specificity and efficacy of LncDisease in the study of lncRNAs in human diseases. The LncDisease software is freely available on the Software Page: http://www.cuilab.cn/. PMID:26887819

  8. The Mutational Spectrum of Holoprosencephaly-Associated Changes within the SHH Gene in Humans Predicts Loss-of-Function Through Either Key Structural Alterations of the Ligand or Its Altered Synthesis

    PubMed Central

    Roessler, Erich; El-Jaick, Kenia B.; Dubourg, Christèle; Vélez, Jorge I.; Solomon, Benjamin D.; Pineda-Álvarez, Daniel E.; Lacbawan, Felicitas; Zhou, Nan; Ouspenskaia, Maia; Paulussen, Aimée; Smeets, Hubert J.; Hehr, Ute; Bendavid, Claude; Bale, Sherri; Odent, Sylvie; David, Véronique; Muenke, Maximilian

    2009-01-01

    Mutations within either the SHH gene or its related pathway components are the most common, and best understood, pathogenetic changes observed in holoprosencephaly patients; this fact is consistent with the essential functions of this gene during forebrain development and patterning. Here we summarize the nature and types of deleterious sequence alterations among over one hundred distinct mutations in the SHH gene (64 novel mutations) and compare these to over a dozen mutations in disease-related Hedgehog family members IHH and DHH. This combined structural analysis suggests that dysfunction of Hedgehog signaling in human forebrain development can occur through truncations or major structural changes to the signaling domain, SHH-N, as well as due to defects in the processing of the mature ligand from its pre-pro-precursor or defective post-translation bi-lipid modifications with palmitate and cholesterol PMID:19603532

  9. Predicting Gene-Regulation Functions: Lessons from Temperate Bacteriophages

    PubMed Central

    Teif, Vladimir B.

    2010-01-01

    Gene-regulation functions (GRF) provide a unique characteristic of a cis-regulatory module (CRM), relating the concentrations of transcription factors (input) to the promoter activities (output). The challenge is to predict GRFs from the sequence. Here we systematically consider the lysogeny-lysis CRMs of different temperate bacteriophages such as the Lactobacillus casei phage A2, Escherichia coli phages λ, and 186 and Lactococcal phage TP901-1. This study allowed explaining a recent experimental puzzle on the role of Cro protein in the lambda switch. Several general conclusions have been drawn: 1), long-range interactions, multilayer assembly and DNA looping may lead to complex GRFs that cannot be described by linear functions of binding site occupancies; 2), in general, GRFs cannot be described by the Boolean logic, whereas a three-state non-Boolean logic suffices for the studied examples; 3), studied CRMs of the intact phages seemed to have a similar GRF topology (the number of plateaus and peaks corresponding to different expression regimes); we hypothesize that functionally equivalent CRMs might have topologically equivalent GRFs for a larger class of genetic systems; and 4) within a given GRF class, a set of mechanistic-to-mathematical transformations has been identified, which allows shaping the GRF before carrying out a system-level analysis. PMID:20371324

  10. The Prediction of Broadband Shock-Associated Noise Including Propagation Effects

    NASA Technical Reports Server (NTRS)

    Miller, Steven; Morris, Philip J.

    2011-01-01

    An acoustic analogy is developed based on the Euler equations for broadband shock- associated noise (BBSAN) that directly incorporates the vector Green's function of the linearized Euler equations and a steady Reynolds-Averaged Navier-Stokes solution (SRANS) as the mean flow. The vector Green's function allows the BBSAN propagation through the jet shear layer to be determined. The large-scale coherent turbulence is modeled by two-point second order velocity cross-correlations. Turbulent length and time scales are related to the turbulent kinetic energy and dissipation. An adjoint vector Green's function solver is implemented to determine the vector Green's function based on a locally parallel mean flow at streamwise locations of the SRANS solution. However, the developed acoustic analogy could easily be based on any adjoint vector Green's function solver, such as one that makes no assumptions about the mean flow. The newly developed acoustic analogy can be simplified to one that uses the Green's function associated with the Helmholtz equation, which is consistent with the formulation of Morris and Miller (AIAAJ 2010). A large number of predictions are generated using three different nozzles over a wide range of fully expanded Mach numbers and jet stagnation temperatures. These predictions are compared with experimental data from multiple jet noise labs. In addition, two models for the so-called 'fine-scale' mixing noise are included in the comparisons. Improved BBSAN predictions are obtained relative to other models that do not include the propagation effects, especially in the upstream direction of the jet.

  11. Functional traits predict relationship between plant abundance dynamic and long-term climate warming.

    PubMed

    Soudzilovskaia, Nadejda A; Elumeeva, Tatiana G; Onipchenko, Vladimir G; Shidakov, Islam I; Salpagarova, Fatima S; Khubiev, Anzor B; Tekeev, Dzhamal K; Cornelissen, Johannes H C

    2013-11-01

    Predicting climate change impact on ecosystem structure and services is one of the most important challenges in ecology. Until now, plant species response to climate change has been described at the level of fixed plant functional types, an approach limited by its inflexibility as there is much interspecific functional variation within plant functional types. Considering a plant species as a set of functional traits greatly increases our possibilities for analysis of ecosystem functioning and carbon and nutrient fluxes associated therewith. Moreover, recently assembled large-scale databases hold comprehensive per-species data on plant functional traits, allowing a detailed functional description of many plant communities on Earth. Here, we show that plant functional traits can be used as predictors of vegetation response to climate warming, accounting in our test ecosystem (the species-rich alpine belt of Caucasus mountains, Russia) for 59% of variability in the per-species abundance relation to temperature. In this mountain belt, traits that promote conservative leaf water economy (higher leaf mass per area, thicker leaves) and large investments in belowground reserves to support next year's shoot buds (root carbon content) were the best predictors of the species increase in abundance along with temperature increase. This finding demonstrates that plant functional traits constitute a highly useful concept for forecasting changes in plant communities, and their associated ecosystem services, in response to climate change. PMID:24145400

  12. Reveal genes functionally associated with ACADS by a network study.

    PubMed

    Chen, Yulong; Su, Zhiguang

    2015-09-15

    Establishing a systematic network is aimed at finding essential human gene-gene/gene-disease pathway by means of network inter-connecting patterns and functional annotation analysis. In the present study, we have analyzed functional gene interactions of short-chain acyl-coenzyme A dehydrogenase gene (ACADS). ACADS plays a vital role in free fatty acid β-oxidation and regulates energy homeostasis. Modules of highly inter-connected genes in disease-specific ACADS network are derived by integrating gene function and protein interaction data. Among the 8 genes in ACADS web retrieved from both STRING and GeneMANIA, ACADS is effectively conjoined with 4 genes including HAHDA, HADHB, ECHS1 and ACAT1. The functional analysis is done via ontological briefing and candidate disease identification. We observed that the highly efficient-interlinked genes connected with ACADS are HAHDA, HADHB, ECHS1 and ACAT1. Interestingly, the ontological aspect of genes in the ACADS network reveals that ACADS, HAHDA and HADHB play equally vital roles in fatty acid metabolism. The gene ACAT1 together with ACADS indulges in ketone metabolism. Our computational gene web analysis also predicts potential candidate disease recognition, thus indicating the involvement of ACADS, HAHDA, HADHB, ECHS1 and ACAT1 not only with lipid metabolism but also with infant death syndrome, skeletal myopathy, acute hepatic encephalopathy, Reye-like syndrome, episodic ketosis, and metabolic acidosis. The current study presents a comprehensible layout of ACADS network, its functional strategies and candidate disease approach associated with ACADS network. PMID:26045367

  13. Structure and Associated Biological Functions of Viroids.

    PubMed

    Steger, Gerhard; Perreault, Jean-Pierre

    2016-01-01

    Mature viroids consist of a noncoding, covalently closed circular RNA that is able to autonomously infect respective host plants. Thus, they must utilize proteins of the host for most biological functions such as replication, processing, transport, and pathogenesis. Therefore, viroids can be regarded as minimal parasites of the host machinery. They have to present to the host machinery the appropriate signals based on either their sequence or their structure. Here, we summarize such sequence and structural features critical for the biological functions of viroids. PMID:26997592

  14. Predicting Stability Constants for Uranyl Complexes Using Density Functional Theory

    SciTech Connect

    Vukovic, Sinisa; Hay, Benjamin P.; Bryantsev, Vyacheslav S.

    2015-04-02

    The ability to predict the equilibrium constants for the formation of 1:1 uranyl:ligand complexes (log K1 values) provides the essential foundation for the rational design of ligands with enhanced uranyl affinity and selectivity. We also use density functional theory (B3LYP) and the IEFPCM continuum solvation model to compute aqueous stability constants for UO22+ complexes with 18 donor ligands. Theoretical calculations permit reasonably good estimates of relative binding strengths, while the absolute log K1 values are significantly overestimated. Accurate predictions of the absolute log K1 values (root mean square deviation from experiment < 1.0 for log K1 values ranging from 0 to 16.8) can be obtained by fitting the experimental data for two groups of mono and divalent negative oxygen donor ligands. The utility of correlations is demonstrated for amidoxime and imide dioxime ligands, providing a useful means of screening for new ligands with strong chelate capability to uranyl.

  15. Predicting Stability Constants for Uranyl Complexes Using Density Functional Theory

    DOE PAGESBeta

    Vukovic, Sinisa; Hay, Benjamin P.; Bryantsev, Vyacheslav S.

    2015-04-02

    The ability to predict the equilibrium constants for the formation of 1:1 uranyl:ligand complexes (log K1 values) provides the essential foundation for the rational design of ligands with enhanced uranyl affinity and selectivity. We also use density functional theory (B3LYP) and the IEFPCM continuum solvation model to compute aqueous stability constants for UO22+ complexes with 18 donor ligands. Theoretical calculations permit reasonably good estimates of relative binding strengths, while the absolute log K1 values are significantly overestimated. Accurate predictions of the absolute log K1 values (root mean square deviation from experiment < 1.0 for log K1 values ranging from 0more » to 16.8) can be obtained by fitting the experimental data for two groups of mono and divalent negative oxygen donor ligands. The utility of correlations is demonstrated for amidoxime and imide dioxime ligands, providing a useful means of screening for new ligands with strong chelate capability to uranyl.« less

  16. Predicting stability constants for uranyl complexes using density functional theory.

    PubMed

    Vukovic, Sinisa; Hay, Benjamin P; Bryantsev, Vyacheslav S

    2015-04-20

    The ability to predict the equilibrium constants for the formation of 1:1 uranyl/ligand complexes (log K1 values) provides the essential foundation for the rational design of ligands with enhanced uranyl affinity and selectivity. We use density functional theory (B3LYP) and the integral equation formalism polarizable continuum model (IEF-PCM) to compute aqueous stability constants for UO2(2+) complexes with 18 donor ligands. Theoretical calculations permit reasonably good estimates of relative binding strengths, while the absolute log K1 values are significantly overestimated. Accurate predictions of the absolute log K1 values (root-mean-square deviation from experiment <1.0 for log K1 values ranging from 0 to 16.8) can be obtained by fitting the experimental data for two groups of mono- and divalent negative oxygen donor ligands. The utility of correlations is demonstrated for amidoxime and imide dioxime ligands, providing a useful means of screening for new ligands with strong chelating capability to uranyl. PMID:25835578

  17. Prediction of glass durability as a function of environmental conditions

    SciTech Connect

    Jantzen, C M

    1988-01-01

    A thermodynamic model of glass durability is applied to natural, ancient, and nuclear waste glasses. The durabilities of over 150 different natural and man-made glasses, including actual ancient Roman and Islamic glasses (Jalame ca. 350 AD, Nishapur 10-11th century AD and Gorgon 9-11th century AD), are compared. Glass durability is a function of the thermodynamic hydration free energy, ..delta..G/sub hyd/, which can be calculated from glass composition and solution pH. The durability of the most durable nuclear waste glasses examined was /approximately/10/sup 6/ years. The least durable waste glass formulations were comparable in durability to the most durable simulated medieval window glasses of /approximately/10/sup 3/ years. In this manner, the durability of nuclear waste glasses has been interpolated to be /approximately/10/sup 6/ years and no less than 10/sup 3/ years. Hydration thermodynamics have been shown to be applicable to the dissolution of glass in various natural environments. Groundwater-glass interactions relative to geologic disposal of nuclear waste, hydration rind dating of obsidians, andor other archeological studies can be modeled, e.g., the relative durabilities of six simulated medieval window glasses have been correctly predicted for both laboratory (one month) and burial (5 years) experiments. Effects of solution pH on glass dissolution has been determined experimentally for the 150 different glasses and can be predicted theoretically by hydration thermodynamics. The effects of solution redox on dissolution of glass matrix elements such as SI and B have shown to be minimal. The combined effects of solution pH and Eh have been described and unified by construction of thermodynamically calculated Pourbaix (pH-Eh) diagrams for glass dissolution. The Pourbaix diagrams have been quantified to describe glass dissolution as a function of environmental conditions by use of the data derived from hydration thermodynamics. 56 refs., 7 figs.

  18. Evolutionary-guided de novo structure prediction of self-associated transmembrane helical proteins with near-atomic accuracy

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Barth, P.

    2015-05-01

    How specific protein associations regulate the function of membrane receptors remains poorly understood. Conformational flexibility currently hinders the structure determination of several classes of membrane receptors and associated oligomers. Here we develop EFDOCK-TM, a general method to predict self-associated transmembrane protein helical (TMH) structures from sequence guided by co-evolutionary information. We show that accurate intermolecular contacts can be identified using a combination of protein sequence covariation and TMH binding surfaces predicted from sequence. When applied to diverse TMH oligomers, including receptors characterized in multiple conformational and functional states, the method reaches unprecedented near-atomic accuracy for most targets. Blind predictions of structurally uncharacterized receptor tyrosine kinase TMH oligomers provide a plausible hypothesis on the molecular mechanisms of disease-associated point mutations and binding surfaces for the rational design of selective inhibitors. The method sets the stage for uncovering novel determinants of molecular recognition and signalling in single-spanning eukaryotic membrane receptors.

  19. Resting-state functional connectivity predicts longitudinal change in autistic traits and adaptive functioning in autism.

    PubMed

    Plitt, Mark; Barnes, Kelly Anne; Wallace, Gregory L; Kenworthy, Lauren; Martin, Alex

    2015-12-01

    Although typically identified in early childhood, the social communication symptoms and adaptive behavior deficits that are characteristic of autism spectrum disorder (ASD) persist throughout the lifespan. Despite this persistence, even individuals without cooccurring intellectual disability show substantial heterogeneity in outcomes. Previous studies have found various behavioral assessments [such as intelligence quotient (IQ), early language ability, and baseline autistic traits and adaptive behavior scores] to be predictive of outcome, but most of the variance in functioning remains unexplained by such factors. In this study, we investigated to what extent functional brain connectivity measures obtained from resting-state functional connectivity MRI (rs-fcMRI) could predict the variance left unexplained by age and behavior (follow-up latency and baseline autistic traits and adaptive behavior scores) in two measures of outcome--adaptive behaviors and autistic traits at least 1 y postscan (mean follow-up latency = 2 y, 10 mo). We found that connectivity involving the so-called salience network (SN), default-mode network (DMN), and frontoparietal task control network (FPTCN) was highly predictive of future autistic traits and the change in autistic traits and adaptive behavior over the same time period. Furthermore, functional connectivity involving the SN, which is predominantly composed of the anterior insula and the dorsal anterior cingulate, predicted reliable improvement in adaptive behaviors with 100% sensitivity and 70.59% precision. From rs-fcMRI data, our study successfully predicted heterogeneity in outcomes for individuals with ASD that was unaccounted for by simple behavioral metrics and provides unique evidence for networks underlying long-term symptom abatement. PMID:26627261

  20. Resting-state functional connectivity predicts longitudinal change in autistic traits and adaptive functioning in autism

    PubMed Central

    Plitt, Mark; Barnes, Kelly Anne; Wallace, Gregory L.; Kenworthy, Lauren; Martin, Alex

    2015-01-01

    Although typically identified in early childhood, the social communication symptoms and adaptive behavior deficits that are characteristic of autism spectrum disorder (ASD) persist throughout the lifespan. Despite this persistence, even individuals without cooccurring intellectual disability show substantial heterogeneity in outcomes. Previous studies have found various behavioral assessments [such as intelligence quotient (IQ), early language ability, and baseline autistic traits and adaptive behavior scores] to be predictive of outcome, but most of the variance in functioning remains unexplained by such factors. In this study, we investigated to what extent functional brain connectivity measures obtained from resting-state functional connectivity MRI (rs-fcMRI) could predict the variance left unexplained by age and behavior (follow-up latency and baseline autistic traits and adaptive behavior scores) in two measures of outcome—adaptive behaviors and autistic traits at least 1 y postscan (mean follow-up latency = 2 y, 10 mo). We found that connectivity involving the so-called salience network (SN), default-mode network (DMN), and frontoparietal task control network (FPTCN) was highly predictive of future autistic traits and the change in autistic traits and adaptive behavior over the same time period. Furthermore, functional connectivity involving the SN, which is predominantly composed of the anterior insula and the dorsal anterior cingulate, predicted reliable improvement in adaptive behaviors with 100% sensitivity and 70.59% precision. From rs-fcMRI data, our study successfully predicted heterogeneity in outcomes for individuals with ASD that was unaccounted for by simple behavioral metrics and provides unique evidence for networks underlying long-term symptom abatement. PMID:26627261

  1. Predicting Species-environment Relationships with Functional Traits for the Understory Flora of Wisconsin

    NASA Astrophysics Data System (ADS)

    Ash, J.; Li, D.; Johnson, S.; Rogers, D. A.; Waller, D. M.

    2015-12-01

    Understanding the processes that structure species' abundance patterns is a central problem in ecology, both for explaining current species' distributions and predicting future changes. Environmental gradients affect species' distribution patterns with these responses likely depending on species' functional traits. Thus, tracking shifts in species' traits can provide insight into the mechanisms by which species respond to dynamic environmental conditions. We examined how functional traits are associated with long-term changes in the distribution and abundance of understory plants in Wisconsin forests over the last 50+ years. We relied on detailed surveys and resurveys of the same Wisconsin forest plots, data on 12 functional traits, and site-level environmental variables including soil and climate conditions. We then related changes in the abundance of 293 species across a network of 249 sites to these environmental variables and explored whether functional traits served to predict these relationships using multilevel models. Species abundance patterns were strongly related to variation in environmental conditions among sites, but species appear to be responding to distinct sets of environmental variables. Functional traits only weakly predicted these species-environment relationships, limiting our ability to generalize these results to other systems. Nonetheless, understanding how traits interact with environmental gradients to structure species distribution patterns helps us to disentangle the drivers of ecological change across diverse landscapes.

  2. LRR Conservation Mapping to Predict Functional Sites within Protein Leucine-Rich Repeat Domains

    PubMed Central

    Helft, Laura; Reddy, Vignyan; Chen, Xiyang; Koller, Teresa; Federici, Luca; Fernández-Recio, Juan; Gupta, Rishabh; Bent, Andrew

    2011-01-01

    Computational prediction of protein functional sites can be a critical first step for analysis of large or complex proteins. Contemporary methods often require several homologous sequences and/or a known protein structure, but these resources are not available for many proteins. Leucine-rich repeats (LRRs) are ligand interaction domains found in numerous proteins across all taxonomic kingdoms, including immune system receptors in plants and animals. We devised Repeat Conservation Mapping (RCM), a computational method that predicts functional sites of LRR domains. RCM utilizes two or more homologous sequences and a generic representation of the LRR structure to identify conserved or diversified patches of amino acids on the predicted surface of the LRR. RCM was validated using solved LRR+ligand structures from multiple taxa, identifying ligand interaction sites. RCM was then used for de novo dissection of two plant microbe-associated molecular pattern (MAMP) receptors, EF-TU RECEPTOR (EFR) and FLAGELLIN-SENSING 2 (FLS2). In vivo testing of Arabidopsis thaliana EFR and FLS2 receptors mutagenized at sites identified by RCM demonstrated previously unknown functional sites. The RCM predictions for EFR, FLS2 and a third plant LRR protein, PGIP, compared favorably to predictions from ODA (optimal docking area), Consurf, and PAML (positive selection) analyses, but RCM also made valid functional site predictions not available from these other bioinformatic approaches. RCM analyses can be conducted with any LRR-containing proteins at www.plantpath.wisc.edu/RCM, and the approach should be modifiable for use with other types of repeat protein domains. PMID:21789174

  3. A continuous function model for path prediction of entities

    NASA Astrophysics Data System (ADS)

    Nanda, S.; Pray, R.

    2007-04-01

    As militaries across the world continue to evolve, the roles of humans in various theatres of operation are being increasingly targeted by military planners for substitution with automation. Forward observation and direction of supporting arms to neutralize threats from dynamic adversaries is one such example. However, contemporary tracking and targeting systems are incapable of serving autonomously for they do not embody the sophisticated algorithms necessary to predict the future positions of adversaries with the accuracy offered by the cognitive and analytical abilities of human operators. The need for these systems to incorporate methods characterizing such intelligence is therefore compelling. In this paper, we present a novel technique to achieve this goal by modeling the path of an entity as a continuous polynomial function of multiple variables expressed as a Taylor series with a finite number of terms. We demonstrate the method for evaluating the coefficient of each term to define this function unambiguously for any given entity, and illustrate its use to determine the entity's position at any point in time in the future.

  4. Local functional descriptors for surface comparison based binding prediction

    PubMed Central

    2012-01-01

    Background Molecular recognition in proteins occurs due to appropriate arrangements of physical, chemical, and geometric properties of an atomic surface. Similar surface regions should create similar binding interfaces. Effective methods for comparing surface regions can be used in identifying similar regions, and to predict interactions without regard to the underlying structural scaffold that creates the surface. Results We present a new descriptor for protein functional surfaces and algorithms for using these descriptors to compare protein surface regions to identify ligand binding interfaces. Our approach uses descriptors of local regions of the surface, and assembles collections of matches to compare larger regions. Our approach uses a variety of physical, chemical, and geometric properties, adaptively weighting these properties as appropriate for different regions of the interface. Our approach builds a classifier based on a training corpus of examples of binding sites of the target ligand. The constructed classifiers can be applied to a query protein providing a probability for each position on the protein that the position is part of a binding interface. We demonstrate the effectiveness of the approach on a number of benchmarks, demonstrating performance that is comparable to the state-of-the-art, with an approach with more generality than these prior methods. Conclusions Local functional descriptors offer a new method for protein surface comparison that is sufficiently flexible to serve in a variety of applications. PMID:23176080

  5. Efficacy of functional movement screening for predicting injuries in coast guard cadets.

    PubMed

    Knapik, Joseph J; Cosio-Lima, Ludimila M; Reynolds, Katy L; Shumway, Richard S

    2015-05-01

    Functional movement screening (FMS) examines the ability of individuals to perform highly specific movements with the aim of identifying individuals who have functional limitations or asymmetries. It is assumed that individuals who can more effectively accomplish the required movements have a lower injury risk. This study determined the ability of FMS to predict injuries in the United States Coast Guard (USCG) cadets. Seven hundred seventy male and 275 female USCG freshman cadets were administered the 7 FMS tests before the physically intense 8-week Summer Warfare Annual Basic (SWAB) training. Physical training-related injuries were recorded during SWAB training. Cumulative injury incidence was calculated at various FMS cutpoint scores. The ability of the FMS total score to predict injuries was examined by calculating sensitivity and specificity. Determination of the FMS cutpoint that maximized specificity and sensitivity was determined from the Youden's index (sensitivity + specificity - 1). For men, FMS scores ≤ 12 were associated with higher injury risk than scores >12; for women, FMS scores ≤ 15 were associated with higher injury risk than scores >15. The Youden's Index indicated that the optimal FMS cutpoint was ≤ 11 for men (22% sensitivity, 87% specificity) and ≤ 14 for women (60% sensitivity, 61% specificity). Functional movement screening demonstrated moderate prognostic accuracy for determining injury risk among female Coast Guard cadets but relatively low accuracy among male cadets. Attempting to predict injury risk based on the FMS test seems to have some limited promise based on the present and past investigations. PMID:25264669

  6. Handgrip Strength Predicts Functional Decline at Discharge in Hospitalized Male Elderly: A Hospital Cohort Study

    PubMed Central

    García-Peña, Carmen; García-Fabela, Luis C.; Gutiérrez-Robledo, Luis M.; García-González, Jose J.; Arango-Lopera, Victoria E.; Pérez-Zepeda, Mario U.

    2013-01-01

    Functional decline after hospitalization is a common adverse outcome in elderly. An easy to use, reproducible and accurate tool to identify those at risk would aid focusing interventions in those at higher risk. Handgrip strength has been shown to predict adverse outcomes in other settings. The aim of this study was to determine if handgrip strength measured upon admission to an acute care facility would predict functional decline (either incident or worsening of preexisting) at discharge among older Mexican, stratified by gender. In addition, cutoff points as a function of specificity would be determined. A cohort study was conducted in two hospitals in Mexico City. The primary endpoint was functional decline on discharge, defined as a 30-point reduction in the Barthel Index score from that of the baseline score. Handgrip strength along with other variables was measured at initial assessment, including: instrumental activities of daily living, cognition, depressive symptoms, delirium, hospitalization length and quality of life. All analyses were stratified by gender. Logistic regression to test independent association between handgrip strength and functional decline was performed, along with estimation of handgrip strength test values (specificity, sensitivity, area under the curve, etc.). A total of 223 patients admitted to an acute care facility between 2007 and 2009 were recruited. A total of 55 patients (24.7%) had functional decline, 23.46% in male and 25.6% in women. Multivariate analysis showed that only males with low handgrip strength had an increased risk of functional decline at discharge (OR 0.88, 95% CI 0.79–0.98, p = 0.01), with a specificity of 91.3% and a cutoff point of 20.65 kg for handgrip strength. Females had not a significant association between handgrip strength and functional decline. Measurement of handgrip strength on admission to acute care facilities may identify male elderly patients at risk of having functional decline, and

  7. Prospective associations between bilingualism and executive function in Latino children: sustained effects while controlling for biculturalism.

    PubMed

    Riggs, Nathaniel R; Shin, Hee-Sung; Unger, Jennifer B; Spruijt-Metz, Donna; Pentz, Mary Ann

    2014-10-01

    The study purpose was to test 1-year prospective associations between English-Spanish bilingualism and executive function in 5th to 6th grade students while controlling for biculturalism. Participants included 182 US Latino students (50 % female). Self-report surveys assessed biculturalism, bilingualism, and executive function (i.e., working memory, organizational skills, inhibitory control, and emotional control, as well as a summary executive function score). General linear model regressions demonstrated that bilingualism significantly predicted the summary executive function score as well as working memory such that bilingual proficiency was positively related to executive function. Results are the first to demonstrate (a) prospective associations between bilingualism to executive function while controlling for the potential third variable of biculturalism, and (b) a principal role for working memory in this relationship. Since executive function is associated with a host of health outcomes, one implication of study findings is that bilingualism may have an indirect protective influence on youth development. PMID:23632808

  8. In silico predicted structural and functional robustness of piscine steroidogenesis.

    PubMed

    Hala, D; Huggett, D B

    2014-03-21

    Assessments of metabolic robustness or susceptibility are inherently dependent on quantitative descriptions of network structure and associated function. In this paper a stoichiometric model of piscine steroidogenesis was constructed and constrained with productions of selected steroid hormones. Structural and flux metrics of this in silico model were quantified by calculating extreme pathways and optimal flux distributions (using linear programming). Extreme pathway analysis showed progestin and corticosteroid synthesis reactions to be highly participant in extreme pathways. Furthermore, reaction participation in extreme pathways also fitted a power law distribution (degree exponent γ=2.3), which suggested that progestin and corticosteroid reactions act as 'hubs' capable of generating other functionally relevant pathways required to maintain steady-state functionality of the network. Analysis of cofactor usage (O2 and NADPH) showed progestin synthesis reactions to exhibit high robustness, whereas estrogen productions showed highest energetic demands with low associated robustness to maintain such demands. Linear programming calculated optimal flux distributions showed high heterogeneity of flux values with a near-random power law distribution (degree exponent γ≥2.7). Subsequently, network robustness was tested by assessing maintenance of metabolite flux-sum subject to targeted deletions of rank-ordered (low to high metric) extreme pathway participant and optimal flux reactions. Network robustness was susceptible to deletions of extreme pathway participant reactions, whereas minimal impact of high flux reaction deletion was observed. This analysis shows that the steroid network is susceptible to perturbation of structurally relevant (extreme pathway) reactions rather than those carrying high flux. PMID:24333207

  9. Predicting strength and function for promoters of the Escherichia coli alternative sigma factor, σE

    PubMed Central

    Rhodius, Virgil A.; Mutalik, Vivek K.

    2010-01-01

    Sequenced bacterial genomes provide a wealth of information but little understanding of transcriptional regulatory circuits largely because accurate prediction of promoters is difficult. We examined two important issues for accurate promoter prediction: (1) the ability to predict promoter strength and (2) the sequence properties that distinguish between active and weak/inactive promoters. We addressed promoter prediction using natural core promoters recognized by the well-studied alternative sigma factor, Escherichia coli σE, as a representative of group 4 σs, the largest σ group. To evaluate the contribution of sequence to promoter strength and function, we used modular position weight matrix models comprised of each promoter motif and a penalty score for suboptimal motif location. We find that a combination of select modules is moderately predictive of promoter strength and that imposing minimal motif scores distinguished active from weak/inactive promoters. The combined -35/-10 score is the most important predictor of activity. Our models also identified key sequence features associated with active promoters. A conserved “AAC” motif in the -35 region is likely to be a general predictor of function for promoters recognized by group 4 σs. These results provide valuable insights into sequences that govern promoter strength, distinguish active and inactive promoters for the first time, and are applicable to both in vivo and in vitro measures of promoter strength. PMID:20133665

  10. Predicting strength and function for promoters of the Escherichia coli alternative sigma factor, sigmaE.

    PubMed

    Rhodius, Virgil A; Mutalik, Vivek K

    2010-02-16

    Sequenced bacterial genomes provide a wealth of information but little understanding of transcriptional regulatory circuits largely because accurate prediction of promoters is difficult. We examined two important issues for accurate promoter prediction: (1) the ability to predict promoter strength and (2) the sequence properties that distinguish between active and weak/inactive promoters. We addressed promoter prediction using natural core promoters recognized by the well-studied alternative sigma factor, Escherichia coli sigma(E), as a representative of group 4 sigmas, the largest sigma group. To evaluate the contribution of sequence to promoter strength and function, we used modular position weight matrix models comprised of each promoter motif and a penalty score for suboptimal motif location. We find that a combination of select modules is moderately predictive of promoter strength and that imposing minimal motif scores distinguished active from weak/inactive promoters. The combined -35/-10 score is the most important predictor of activity. Our models also identified key sequence features associated with active promoters. A conserved "AAC" motif in the -35 region is likely to be a general predictor of function for promoters recognized by group 4 sigmas. These results provide valuable insights into sequences that govern promoter strength, distinguish active and inactive promoters for the first time, and are applicable to both in vivo and in vitro measures of promoter strength. PMID:20133665

  11. Predicting Functional Status Following Amputation After Lower Extremity Bypass

    PubMed Central

    Suckow, Bjoern D.; Goodney, Philip P.; Cambria, Robert A.; Bertges, Daniel J.; Eldrup-Jorgensen, Jens; Indes, Jeffrey E.; Schanzer, Andres; Stone, David H.; Kraiss, Larry W.; Cronenwett, Jack L.

    2012-01-01

    Background Some patients who undergo lower extremity bypass (LEB) for critical limb ischemia ultimately require amputation. The functional outcome achieved by these patients after amputation is not well known. Therefore, we sought to characterize the functional outcome of patients who undergo amputation after LEB, and to describe the pre- and perioperative factors associated with independent ambulation at home after lower extremity amputation. Methods Within a cohort of 3,198 patients who underwent an LEB between January, 2003 and December, 2008, we studied 436 patients who subsequently received an above-knee (AK), below-knee (BK), or minor (forefoot or toe) ipsilateral or contralateral amputation. Our main outcome measure consisted of a “good functional outcome,” defined as living at home and ambulating independently. We calculated univariate and multivariate associations among patient characteristics and our main outcome measure, as well as overall survival. Results Of the 436 patients who underwent amputation within the first year following LEB, 224 of 436 (51.4%) had a minor amputation, 105 of 436 (24.1%) had a BK amputation, and 107 of 436 (24.5%) had an AK amputation. The majority of AK (75 of 107, 72.8%) and BK amputations (72 of 105, 70.6%) occurred in the setting of bypass graft thrombosis, whereas nearly all minor amputations (200 of 224, 89.7%) occurred with a patent bypass graft. By life-table analysis at 1 year, we found that the proportion of surviving patients with a good functional outcome varied by the presence and extent of amputation (proportion surviving with good functional outcome = 88% no amputation, 81% minor amputation, 55% BK amputation, and 45% AK amputation, p = 0.001). Among those analyzed at long-term follow-up, survival was slightly lower for those who had a minor amputation when compared with those who did not receive an amputation after LEB (81 vs. 88%, p = 0.02). Survival among major amputation patients did not significantly

  12. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences

    PubMed Central

    Langille, Morgan G. I.; Zaneveld, Jesse; Caporaso, J. Gregory; McDonald, Daniel; Knights, Dan; Reyes, Joshua A.; Clemente, Jose C.; Burkepile, Deron E.; Vega Thurber, Rebecca L.; Knight, Rob; Beiko, Robert G.; Huttenhower, Curtis

    2013-01-01

    Profiling phylogenetic marker genes, such as the 16S rRNA gene, is a key tool for studies of microbial communities but does not provide direct evidence of a community’s functional capabilities. Here we describe PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States), a computational approach to predict the functional composition of a metagenome using marker gene data and a database of reference genomes. PICRUSt uses an extended ancestral-state reconstruction algorithm to predict which gene families are present and then combines gene families to estimate the composite metagenome. Using 16S information, PICRUSt recaptures key findings from the Human Microbiome Project and accurately predicts the abundance of gene families in host-associated and environmental communities, with quantifiable uncertainty. Our results demonstrate that phylogeny and function are sufficiently linked that this ‘predictive metagenomic’ approach should provide useful insights into the thousands of uncultivated microbial communities for which only marker gene surveys are currently available. PMID:23975157

  13. The OMA orthology database in 2015: function predictions, better plant support, synteny view and other improvements.

    PubMed

    Altenhoff, Adrian M; Škunca, Nives; Glover, Natasha; Train, Clément-Marie; Sueki, Anna; Piližota, Ivana; Gori, Kevin; Tomiczek, Bartlomiej; Müller, Steven; Redestig, Henning; Gonnet, Gaston H; Dessimoz, Christophe

    2015-01-01

    The Orthologous Matrix (OMA) project is a method and associated database inferring evolutionary relationships amongst currently 1706 complete proteomes (i.e. the protein sequence associated for every protein-coding gene in all genomes). In this update article, we present six major new developments in OMA: (i) a new web interface; (ii) Gene Ontology function predictions as part of the OMA pipeline; (iii) better support for plant genomes and in particular homeologs in the wheat genome; (iv) a new synteny viewer providing the genomic context of orthologs; (v) statically computed hierarchical orthologous groups subsets downloadable in OrthoXML format; and (vi) possibility to export parts of the all-against-all computations and to combine them with custom data for 'client-side' orthology prediction. OMA can be accessed through the OMA Browser and various programmatic interfaces at http://omabrowser.org. PMID:25399418

  14. Sensitivity and specificity of the functional hallux limitus test to predict foot function.

    PubMed

    Payne, Craig; Chuter, Vivienne; Miller, Kathryn

    2002-05-01

    Functional hallux limitus is an underrecognized entity that generally does not produce symptoms but can result in a variety of compensatory mechanisms that can produce symptoms. Clinically, hallux limitus can be determined by assessing the range of motion available at the first metatarsophalangeal joint while the first ray is prevented from plantarflexing. The aim of this study was to determine the sensitivity and specificity of this clinical test to predict abnormal excessive midtarsal joint function during gait. A total of 86 feet were examined for functional hallux limitus and abnormal pronation of the midtarsal joint during late midstance. The test had a sensitivity of 0.72 and a specificity of 0.66, suggesting that clinicians should consider functional hallux limitus when there is late midstance pronation of the midtarsal joint during gait. PMID:12015407

  15. Specific early number skills mediate the association between executive functioning skills and mathematics achievement.

    PubMed

    Fuhs, Mary Wagner; Hornburg, Caroline Byrd; McNeil, Nicole M

    2016-08-01

    A growing literature reports significant associations between children's executive functioning skills and their mathematics achievement. The purpose of this study was to examine if specific early number skills, such as quantity discrimination, number line estimation, number sets identification, fast counting, and number word comprehension, mediate this association. In 141 kindergarteners, cross-sectional analyses controlling for IQ revealed that number sets identification (but not the other early number skills) mediated the association between executive functioning skills and mathematics achievement. A longitudinal analysis showed that higher executive functioning skills predicted higher number sets identification in kindergarten, which in turn predicted growth in mathematics achievement from kindergarten to second grade. Results suggest that executive functioning skills may help children quickly and accurately identify number sets as wholes instead of getting distracted by the individual components of the sets, and this focus on sets, in turn, may help children learn more advanced mathematics concepts in the early elementary grades. (PsycINFO Database Record PMID:27337509

  16. Tests of executive functioning predict scores on the MacAndrew Alcoholism Scale.

    PubMed

    Deckel, A W

    1999-02-01

    1. Previous work reported that tests of executive functioning (EF) predict the risk of alcoholism in subject populations selected for a "high density" of a family history of alcoholism and/or the presence of sociopathic traits. The current experiment examined the ability of EF tests to predict the risk of alcoholism, as measured by the MacAndrew Alcoholism Scale (MAC), in outpatient subjects referred to a general neuropsychological testing service. 2. Sixty-eight male and female subjects referred for neuropsychological testing were assessed for their past drinking histories and administered the Wisconsin Card Sorting Test, the Wechsler Adult Intelligence Scale-Revised, the Trails (Part B) Test, and the MAC. Principal Components analysis (PCA) reduced the number of EF tests to two measures, including one that loaded on the WCST, and one that loaded on the Similarities, Picture Arrangement, and Trails tests. Multiple hierarchical regression first removed the variance from demographic variables, alcohol consumption, and verbal (i.e., Vocabulary) and non-verbal (i.e., Block Design) IQ, and then entered the executive functioning factors into the prediction of the MAC. 3. Seventy-six percent of the subjects were classified as either light, infrequent, or non-drinkers on the Quantity-Frequency-Variability scale. The factor derived from the WCST on PCA significantly added to the prediction of risk on the MAC (p = .0063), as did scores on Block Design (p = .033). Relatively more impaired scores on the WCST factor and Block Design were predictive of higher scores on the MAC. The other factors were not associated with MAC scores. 4. These results support the hypothesis that decrements in EF are associated with risk factors for alcoholism, even in populations where the density of alcoholic behaviors are not unusually high. When taken in conjunction with other findings, these results implicate EF test scores, and prefrontal brain functioning, in the neurobiology of the risk for

  17. Predicting performance on the Columbia Card Task: effects of personality characteristics, mood, and executive functions.

    PubMed

    Buelow, Melissa T

    2015-04-01

    Behavioral measures of risky decision making are frequently used by researchers and clinicians; however, most of these measures are strongly associated with personality characteristics and state mood. The present study sought to examine personality, mood, and executive function predictors of performance on a newer measure of decision making, the Columbia Card Task (CCT). Participants were 489 undergraduate students who completed either the hot or cold version of the CCT as well as measures of state mood, impulsive sensation seeking, behavioral inhibition and activation systems, and executive functions (Wisconsin Card Sort Task; Digit Span). Results indicated that performance on the CCT-cold was predicted by Wisconsin Card Sort Task errors, and Digit Span predicted the CCT-hot. In addition, significant correlations were found between the CCT information use variables and the predictor variables. Implications for the utility of the CCT as a clinical instrument and its relationship with other measures of decision making are discussed. PMID:24947984

  18. Neuro-oncological patients admitted in intensive-care unit: predictive factors and functional outcome.

    PubMed

    Tabouret, E; Boucard, C; Devillier, R; Barrie, M; Boussen, S; Autran, D; Chinot, O; Bruder, N

    2016-03-01

    The prognosis of oncology patients admitted to the intensive care unit (ICU) is considered poor. Our objective was to analyze the characteristics and predictive factors of death in the ICU and functional outcome following ICU treatment for neuro-oncology patients. A retrospective study was conducted on all patients with primary brain tumor admitted to our institutional ICU for medical indications. Predictive impact on the risk of death in the ICU was analyzed as well as the functional status was evaluated prior and following ICU discharge. Seventy-one patients were admitted to the ICU. ICU admission indications were refractory seizures (41 %) and septic shock (17 %). On admission, 16 % had multi-organ failure. Ventilation was necessary for 41 % and catecholamines for 13 %. Twenty-two percent of patients died in the ICU. By multivariate analysis, predictive factors associated with an increased risk of ICU death were: non-neurological cause of admission [p = 0.045; odds ratio (OR) 5.405], multiple organ failure (p = 0.021; OR 8.027), respiratory failure (p = 0.006; OR 9.615), and hemodynamic failure (p = 0.008; OR 10.111). In contrast, tumor type (p = 0.678) and disease control status (p = 0.380) were not associated with an increased risk of ICU death. Among the 35 evaluable patients, 77 % presented with a stable or improved Karnofsky performance status following ICU hospitalization compared with the ongoing status before discharge. In patients with primary brain tumor admitted to the ICU, predictive factors of death appear to be similar to those described in non-oncology patients. ICU hospitalization is generally not associated with a subsequent decrease in the functional status. PMID:26608523

  19. Striatal structure and function predict individual biases in learning to avoid pain

    PubMed Central

    Eldar, Eran; Hauser, Tobias U.; Dayan, Peter; Dolan, Raymond J.

    2016-01-01

    Pain is an elemental inducer of avoidance. Here, we demonstrate that people differ in how they learn to avoid pain, with some individuals refraining from actions that resulted in painful outcomes, whereas others favor actions that helped prevent pain. These individual biases were best explained by differences in learning from outcome prediction errors and were associated with distinct forms of striatal responses to painful outcomes. Specifically, striatal responses to pain were modulated in a manner consistent with an aversive prediction error in individuals who learned predominantly from pain, whereas in individuals who learned predominantly from success in preventing pain, modulation was consistent with an appetitive prediction error. In contrast, striatal responses to success in preventing pain were consistent with an appetitive prediction error in both groups. Furthermore, variation in striatal structure, encompassing the region where pain prediction errors were expressed, predicted participants’ predominant mode of learning, suggesting the observed learning biases may reflect stable individual traits. These results reveal functional and structural neural components underlying individual differences in avoidance learning, which may be important contributors to psychiatric disorders involving pathological harm avoidance behavior. PMID:27071092

  20. Shape invariance and laddering equations for the associated hypergeometric functions

    NASA Astrophysics Data System (ADS)

    Fakhri, H.; Chenaghlou, A.

    2004-03-01

    Introducing the associated hypergeometric functions in terms of two non-negative integers, we factorize their corresponding differential equation into a product of first-order differential operators by four different ways as shape invariance equations. These shape invariances are realized by four different types of raising and lowering operators. This procedure gives four different pairs of recursion relations on the associated hypergeometric functions.

  1. Systemic vascular function is associated with muscular power in adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Age-associated loss of muscular strength and muscular power are critical determinants of loss of physical function and progression to disability in older adults. In this study, we examined the association of systemic vascular function and measures of muscle strength and power in older adults. Measu...

  2. Prediction Error Associated with the Perceptual Segmentation of Naturalistic Events

    ERIC Educational Resources Information Center

    Zacks, Jeffrey M.; Kurby, Christopher A.; Eisenberg, Michelle L.; Haroutunian, Nayiri

    2011-01-01

    Predicting the near future is important for survival and plays a central role in theories of perception, language processing, and learning. Prediction failures may be particularly important for initiating the updating of perceptual and memory systems and, thus, for the subjective experience of events. Here, we asked observers to make predictions…

  3. Genome-Wide Association Analysis of Adaptation Using Environmentally Predicted Traits.

    PubMed

    van Heerwaarden, Joost; van Zanten, Martijn; Kruijer, Willem

    2015-10-01

    Current methods for studying the genetic basis of adaptation evaluate genetic associations with ecologically relevant traits or single environmental variables, under the implicit assumption that natural selection imposes correlations between phenotypes, environments and genotypes. In practice, observed trait and environmental data are manifestations of unknown selective forces and are only indirectly associated with adaptive genetic variation. In theory, improved estimation of these forces could enable more powerful detection of loci under selection. Here we present an approach in which we approximate adaptive variation by modeling phenotypes as a function of the environment and using the predicted trait in multivariate and univariate genome-wide association analysis (GWAS). Based on computer simulations and published flowering time data from the model plant Arabidopsis thaliana, we find that environmentally predicted traits lead to higher recovery of functional loci in multivariate GWAS and are more strongly correlated to allele frequencies at adaptive loci than individual environmental variables. Our results provide an example of the use of environmental data to obtain independent and meaningful information on adaptive genetic variation. PMID:26496492

  4. Genome-Wide Association Analysis of Adaptation Using Environmentally Predicted Traits

    PubMed Central

    van Zanten, Martijn

    2015-01-01

    Current methods for studying the genetic basis of adaptation evaluate genetic associations with ecologically relevant traits or single environmental variables, under the implicit assumption that natural selection imposes correlations between phenotypes, environments and genotypes. In practice, observed trait and environmental data are manifestations of unknown selective forces and are only indirectly associated with adaptive genetic variation. In theory, improved estimation of these forces could enable more powerful detection of loci under selection. Here we present an approach in which we approximate adaptive variation by modeling phenotypes as a function of the environment and using the predicted trait in multivariate and univariate genome-wide association analysis (GWAS). Based on computer simulations and published flowering time data from the model plant Arabidopsis thaliana, we find that environmentally predicted traits lead to higher recovery of functional loci in multivariate GWAS and are more strongly correlated to allele frequencies at adaptive loci than individual environmental variables. Our results provide an example of the use of environmental data to obtain independent and meaningful information on adaptive genetic variation. PMID:26496492

  5. Multi-instance multi-label distance metric learning for genome-wide protein function prediction.

    PubMed

    Xu, Yonghui; Min, Huaqing; Song, Hengjie; Wu, Qingyao

    2016-08-01

    Multi-instance multi-label (MIML) learning has been proven to be effective for the genome-wide protein function prediction problems where each training example is associated with not only multiple instances but also multiple class labels. To find an appropriate MIML learning method for genome-wide protein function prediction, many studies in the literature attempted to optimize objective functions in which dissimilarity between instances is measured using the Euclidean distance. But in many real applications, Euclidean distance may be unable to capture the intrinsic similarity/dissimilarity in feature space and label space. Unlike other previous approaches, in this paper, we propose to learn a multi-instance multi-label distance metric learning framework (MIMLDML) for genome-wide protein function prediction. Specifically, we learn a Mahalanobis distance to preserve and utilize the intrinsic geometric information of both feature space and label space for MIML learning. In addition, we try to deal with the sparsely labeled data by giving weight to the labeled data. Extensive experiments on seven real-world organisms covering the biological three-domain system (i.e., archaea, bacteria, and eukaryote; Woese et al., 1990) show that the MIMLDML algorithm is superior to most state-of-the-art MIML learning algorithms. PMID:26923212

  6. Radiomic Texture Analysis Mapping Predicts Areas of True Functional MRI Activity

    PubMed Central

    Hassan, Islam; Kotrotsou, Aikaterini; Bakhtiari, Ali Shojaee; Thomas, Ginu A.; Weinberg, Jeffrey S.; Kumar, Ashok J.; Sawaya, Raymond; Luedi, Markus M.; Zinn, Pascal O.; Colen, Rivka R.

    2016-01-01

    Individual analysis of functional Magnetic Resonance Imaging (fMRI) scans requires user-adjustment of the statistical threshold in order to maximize true functional activity and eliminate false positives. In this study, we propose a novel technique that uses radiomic texture analysis (TA) features associated with heterogeneity to predict areas of true functional activity. Scans of 15 right-handed healthy volunteers were analyzed using SPM8. The resulting functional maps were thresholded to optimize visualization of language areas, resulting in 116 regions of interests (ROIs). A board-certified neuroradiologist classified different ROIs into Expected (E) and Non-Expected (NE) based on their anatomical locations. TA was performed using the mean Echo-Planner Imaging (EPI) volume, and 20 rotation-invariant texture features were obtained for each ROI. Using forward stepwise logistic regression, we built a predictive model that discriminated between E and NE areas of functional activity, with a cross-validation AUC and success rate of 79.84% and 80.19% respectively (specificity/sensitivity of 78.34%/82.61%). This study found that radiomic TA of fMRI scans may allow for determination of areas of true functional activity, and thus eliminate clinician bias. PMID:27151623

  7. Motor function predicts parent-reported musculoskeletal pain in children with cerebral palsy

    PubMed Central

    Barney, Chantel C; Krach, Linda E; Rivard, Patrick F; Belew, John L; Symons, Frank J

    2013-01-01

    BACKGROUND: The relationship between pain and motor function is not well understood, especially for children and adolescents with communication and motor impairments associated with cerebral palsy (CP). OBJECTIVES: To determine whether a predictive relationship between motor function and musculoskeletal pain exists in children with CP. METHODS: Following informed consent, caregivers of 34 pediatric patients with CP (mean [± SD] age 9.37±4.49 years; 80.0% male) completed pain- and function-related measures. Parents completed the Dalhousie Pain Interview and the Brief Pain Inventory based on a one-week recall to determine whether pain had been experienced in the past week, its general description, possible cause, duration, frequency, intensity and interference with daily function. The Gross Motor Function Classification System (GMFCS) was used to classify the motor involvement of the child based on their functional ability and their need for assistive devices for mobility. RESULTS: GMFCS level significantly predicted parent-reported musculoskeletal pain frequency (P<0.02), duration (P=0.05) and intensity (P<0.01). Duration of pain was significantly related to interference with activities of daily living (P<0.05). CONCLUSIONS: Children with CP with greater motor involvement, as indexed by GMFCS level, may be at risk for increased pain (intensity, frequency and duration) that interfers with activities of daily living. The clinical index of suspicion should be raised accordingly when evaluating children with developmental disability who cannot self-report reliably. PMID:24308022

  8. Resting-state functional connectivity predicts impulsivity in economic decision-making.

    PubMed

    Li, Nan; Ma, Ning; Liu, Ying; He, Xiao-Song; Sun, De-Lin; Fu, Xian-Ming; Zhang, Xiaochu; Han, Shihui; Zhang, Da-Ren

    2013-03-13

    Increasing neuroimaging evidence suggests an association between impulsive decision-making behavior and task-related brain activity. However, the relationship between impulsivity in decision-making and resting-state brain activity remains unknown. To address this issue, we used functional MRI to record brain activity from human adults during a resting state and during a delay discounting task (DDT) that requires choosing between an immediate smaller reward and a larger delayed reward. In experiment I, we identified four DDT-related brain networks. The money network (the striatum, posterior cingulate cortex, etc.) and the time network (the medial and dorsolateral prefrontal cortices, etc.) were associated with the valuation process; the frontoparietal network and the dorsal anterior cingulate cortex-anterior insular cortex network were related to the choice process. Moreover, we found that the resting-state functional connectivity of the brain regions in these networks was significantly correlated with participants' discounting rate, a behavioral index of impulsivity during the DDT. In experiment II, we tested an independent group of subjects and demonstrated that this resting-state functional connectivity was able to predict individuals' discounting rates. Together, these findings suggest that resting-state functional organization of the human brain may be a biomarker of impulsivity and can predict economic decision-making behavior. PMID:23486959

  9. Functional identity and diversity of animals predict ecosystem functioning better than species-based indices

    PubMed Central

    Gagic, Vesna; Bartomeus, Ignasi; Jonsson, Tomas; Taylor, Astrid; Winqvist, Camilla; Fischer, Christina; Slade, Eleanor M.; Steffan-Dewenter, Ingolf; Emmerson, Mark; Potts, Simon G.; Tscharntke, Teja; Weisser, Wolfgang; Bommarco, Riccardo

    2015-01-01

    Drastic biodiversity declines have raised concerns about the deterioration of ecosystem functions and have motivated much recent research on the relationship between species diversity and ecosystem functioning. A functional trait framework has been proposed to improve the mechanistic understanding of this relationship, but this has rarely been tested for organisms other than plants. We analysed eight datasets, including five animal groups, to examine how well a trait-based approach, compared with a more traditional taxonomic approach, predicts seven ecosystem functions below- and above-ground. Trait-based indices consistently provided greater explanatory power than species richness or abundance. The frequency distributions of single or multiple traits in the community were the best predictors of ecosystem functioning. This implies that the ecosystem functions we investigated were underpinned by the combination of trait identities (i.e. single-trait indices) and trait complementarity (i.e. multi-trait indices) in the communities. Our study provides new insights into the general mechanisms that link biodiversity to ecosystem functioning in natural animal communities and suggests that the observed responses were due to the identity and dominance patterns of the trait composition rather than the number or abundance of species per se. PMID:25567651

  10. A density functional theory for colloids with two multiple bonding associating sites.

    PubMed

    Haghmoradi, Amin; Wang, Le; Chapman, Walter G

    2016-06-22

    Wertheim's multi-density formalism is extended for patchy colloidal fluids with two multiple bonding patches. The theory is developed as a density functional theory to predict the properties of an associating inhomogeneous fluid. The equation of state developed for this fluid depends on the size of the patch, and includes formation of cyclic, branched and linear clusters of associated species. The theory predicts the density profile and the fractions of colloids in different bonding states versus the distance from one wall as a function of bulk density and temperature. The predictions from our theory are compared with previous results for a confined fluid with four single bonding association sites. Also, comparison between the present theory and Monte Carlo simulation indicates a good agreement. PMID:27115237

  11. A density functional theory for colloids with two multiple bonding associating sites

    NASA Astrophysics Data System (ADS)

    Haghmoradi, Amin; Wang, Le; Chapman, Walter G.

    2016-06-01

    Wertheim’s multi-density formalism is extended for patchy colloidal fluids with two multiple bonding patches. The theory is developed as a density functional theory to predict the properties of an associating inhomogeneous fluid. The equation of state developed for this fluid depends on the size of the patch, and includes formation of cyclic, branched and linear clusters of associated species. The theory predicts the density profile and the fractions of colloids in different bonding states versus the distance from one wall as a function of bulk density and temperature. The predictions from our theory are compared with previous results for a confined fluid with four single bonding association sites. Also, comparison between the present theory and Monte Carlo simulation indicates a good agreement.

  12. Prediction of Membership in Rehabilitation Counseling Professional Associations

    ERIC Educational Resources Information Center

    Phillips, Brian N.; Leahy, Michael J.

    2012-01-01

    Declining membership is a concerning yet poorly understood issue affecting professional associations across disciplines (Bauman, 2008). Rehabilitation counseling association membership is in decline even while number of certified rehabilitation counselors continues to increase (Leahy, 2009). Factors influencing rehabilitation counseling…

  13. NTSMDA: prediction of miRNA-disease associations by integrating network topological similarity.

    PubMed

    Sun, Dongdong; Li, Ao; Feng, Huanqing; Wang, Minghui

    2016-06-21

    Recently, accumulating studies have indicated that microRNAs (miRNAs) play an important role in exploring the pathogenesis of various human diseases at the molecular level and may result in the design of specific tools for diagnosis, treatment evaluation and prevention. Experimental identification of disease-related miRNAs is time-consuming and labour-intensive. Hence, there is a stressing need to propose efficient computational methods to detect more potential miRNA-disease associations. Currently, several computational approaches for identifying disease-related miRNAs on the miRNA-disease network have gained much attention by means of integrating miRNA functional similarities and disease semantic similarities. However, these methods rarely consider the network topological similarity of the miRNA-disease association network. Here, in this paper we develop an improved computational method named NTSMDA that is based on known miRNA-disease network topological similarity to exploit more potential disease-related miRNAs. We achieve an AUC of 89.4% by using the leave-one-out cross-validation experiment, demonstrating the excellent predictive performance of NTSMDA. Furthermore, predicted highly ranked miRNA-disease associations of breast neoplasms, lung neoplasms and prostatic neoplasms are manually confirmed by different related databases and literature, providing evidence for the good performance and potential value of the NTSMDA method in inferring miRNA-disease associations. The R code and readme file of NTSMDA can be downloaded from . PMID:27153230

  14. An integrative approach to predicting the functional effects of non-coding and coding sequence variation

    PubMed Central

    Shihab, Hashem A.; Rogers, Mark F.; Gough, Julian; Mort, Matthew; Cooper, David N.; Day, Ian N. M.; Gaunt, Tom R.; Campbell, Colin

    2015-01-01

    Motivation: Technological advances have enabled the identification of an increasingly large spectrum of single nucleotide variants within the human genome, many of which may be associated with monogenic disease or complex traits. Here, we propose an integrative approach, named FATHMM-MKL, to predict the functional consequences of both coding and non-coding sequence variants. Our method utilizes various genomic annotations, which have recently become available, and learns to weight the significance of each component annotation source. Results: We show that our method outperforms current state-of-the-art algorithms, CADD and GWAVA, when predicting the functional consequences of non-coding variants. In addition, FATHMM-MKL is comparable to the best of these algorithms when predicting the impact of coding variants. The method includes a confidence measure to rank order predictions. Availability and implementation: The FATHMM-MKL webserver is available at: http://fathmm.biocompute.org.uk Contact: H.Shihab@bristol.ac.uk or Mark.Rogers@bristol.ac.uk or C.Campbell@bristol.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25583119

  15. Exercise Ventilatory Inefficiency Adds to Lung Function in Predicting Mortality in COPD.

    PubMed

    Neder, J Alberto; Alharbi, Abdullah; Berton, Danilo C; Alencar, Maria Clara N; Arbex, Flavio F; Hirai, Daniel M; Webb, Katherine A; O'Donnell, Denis E

    2016-08-01

    Severity of resting functional impairment only partially predicts the increased risk of death in chronic obstructive pulmonary disease (COPD). Increased ventilation during exercise is associated with markers of disease progression and poor prognosis, including emphysema extension and pulmonary vascular impairment. Whether excess exercise ventilation would add to resting lung function in predicting mortality in COPD, however, is currently unknown. After an incremental cardiopulmonary exercise test, 288 patients (forced expiratory volume in one second ranging from 18% to 148% predicted) were followed for a median (interquartile range) of 57 (47) months. Increases in the lowest (nadir) ventilation to CO2 output (VCO2) ratio determined excess exercise ventilation. Seventy-seven patients (26.7%) died during follow-up: 30/77 (38.9%) deaths were due to respiratory causes. Deceased patients were older, leaner, had a greater co-morbidity burden (Charlson Index) and reported more daily life dyspnea. Moreover, they had poorer lung function and exercise tolerance (p < 0.05). A logistic regression analysis revealed that ventilation/VCO2 nadir was the only exercise variable that added to age, body mass index, Charlson Index and resting inspiratory capacity (IC)/total lung capacity (TLC) ratio to predict all-cause and respiratory mortality (p < 0.001). Kaplan-Meier analyses showed that survival time was particularly reduced when ventilation/VCO2 nadir > 34 was associated with IC/TLC ≤ 0.34 or IC/TLC ≤ 0.31 for all-cause and respiratory mortality, respectively (p < 0.001). Excess exercise ventilation is an independent prognostic marker across the spectrum of COPD severity. Physiological abnormalities beyond traditional airway dysfunction and lung mechanics are relevant in determining the course of the disease. PMID:27077955

  16. Machine learning methods enable predictive modeling of antibody feature:function relationships in RV144 vaccinees.

    PubMed

    Choi, Ickwon; Chung, Amy W; Suscovich, Todd J; Rerks-Ngarm, Supachai; Pitisuttithum, Punnee; Nitayaphan, Sorachai; Kaewkungwal, Jaranit; O'Connell, Robert J; Francis, Donald; Robb, Merlin L; Michael, Nelson L; Kim, Jerome H; Alter, Galit; Ackerman, Margaret E; Bailey-Kellogg, Chris

    2015-04-01

    The adaptive immune response to vaccination or infection can lead to the production of specific antibodies to neutralize the pathogen or recruit innate immune effector cells for help. The non-neutralizing role of antibodies in stimulating effector cell responses may have been a key mechanism of the protection observed in the RV144 HIV vaccine trial. In an extensive investigation of a rich set of data collected from RV144 vaccine recipients, we here employ machine learning methods to identify and model associations between antibody features (IgG subclass and antigen specificity) and effector function activities (antibody dependent cellular phagocytosis, cellular cytotoxicity, and cytokine release). We demonstrate via cross-validation that classification and regression approaches can effectively use the antibody features to robustly predict qualitative and quantitative functional outcomes. This integration of antibody feature and function data within a machine learning framework provides a new, objective approach to discovering and assessing multivariate immune correlates. PMID:25874406

  17. CARDIO-PRED: an in silico tool for predicting cardiovascular-disorder associated proteins.

    PubMed

    Jain, Prerna; Thukral, Nitin; Gahlot, Lokesh Kumar; Hasija, Yasha

    2015-06-01

    Interactions between proteins largely govern cellular processes and this has led to numerous efforts culminating in enormous information related to the proteins, their interactions and the function which is determined by their interactions. The main concern of the present study is to present interface analysis of cardiovascular-disorder (CVD) related proteins to shed lights on details of interactions and to emphasize the importance of using structures in network studies. This study combines the network-centred approach with three dimensional studies to comprehend the fundamentals of biology. Interface properties were used as descriptors to classify the CVD associated proteins and non-CVD associated proteins. Machine learning algorithm was used to generate a classifier based on the training set which was then used to predict potential CVD related proteins from a set of polymorphic proteins which are not known to be involved in any disease. Among several classifying algorithms applied to generate models, best performance was achieved using Random Forest with an accuracy of 69.5 %. The tool named CARDIO-PRED, based on the prediction model is present at http://www.genomeinformatics.dce.edu/CARDIO-PRED/. The predicted CVD related proteins may not be the causing factor of particular disease but can be involved in pathways and reactions yet unknown to us thus permitting a more rational analysis of disease mechanism. Study of their interactions with other proteins can significantly improve our understanding of the molecular mechanism of diseases. PMID:25972989

  18. Reduced Cognitive Function Predicts Functional Decline in Patients with Heart Failure over 12 months

    PubMed Central

    Alosco, Michael L.; Spitznagel, Mary Beth; Cohen, Ronald; Sweet, Lawrence H.; Colbert, Lisa H.; Josephson, Richard; Hughes, Joel; Rosneck, Jim; Gunstad, John

    2016-01-01

    Background Impaired activities of daily living (ADL) are common in heart failure (HF) patients and contribute to the elevated mortality and hospitalization rates in this population. Cognitive impairment is also prevalent in HF, though its ability to predict functional decline over time is unknown. Aims This study examined the longitudinal pattern of activities of daily living in HF persons and whether reduced baseline cognitive status predicts functional decline in this population. Methods 110 persons with HF completed the Lawton-Brody Activities of Daily Living Scale and were administered the Modified Mini-Mental Status Examination (3MS) at baseline and a 12-month follow-up. Three composite scores were derived from the Lawton-Brody, including total, instrumental, and basic ADLs. Results HF patients reported high rates of baseline impairments in instrumental ADLs, including shopping, food preparation, housekeeping duties, laundry, among others. Repeated measures analyses showed significant declines in total and instrumental ADLs from baseline to the 12-month follow-up in HF (p < .05). Hierarchical regression analyses showed that poorer baseline performance on the 3MS predicted worse total ADL performance at 12-months (β = .15, p = .049), including greater dependence in shopping, driving, feeding, and physical ambulation (p < .05 for all). Conclusion The current results show that HF patients report significant functional decline over a 12-month period and brief cognitive tests can identify those patients at highest risk for decline. If replicated, such findings encourage the use of cognitive screening measures to identify HF patients most likely to require assistance with ADL tasks. PMID:23754840

  19. Predicting invasive species impacts: a community module functional response approach reveals context dependencies.

    PubMed

    Paterson, Rachel A; Dick, Jaimie T A; Pritchard, Daniel W; Ennis, Marilyn; Hatcher, Melanie J; Dunn, Alison M

    2015-03-01

    Predatory functional responses play integral roles in predator-prey dynamics, and their assessment promises greater understanding and prediction of the predatory impacts of invasive species. Other interspecific interactions, however, such as parasitism and higher-order predation, have the potential to modify predator-prey interactions and thus the predictive capability of the comparative functional response approach. We used a four-species community module (higher-order predator; focal native or invasive predators; parasites of focal predators; native prey) to compare the predatory functional responses of native Gammarus duebeni celticus and invasive Gammarus pulex amphipods towards three invertebrate prey species (Asellus aquaticus, Simulium spp., Baetis rhodani), thus, quantifying the context dependencies of parasitism and a higher-order fish predator on these functional responses. Our functional response experiments demonstrated that the invasive amphipod had a higher predatory impact (lower handling time) on two of three prey species, which reflects patterns of impact observed in the field. The community module also revealed that parasitism had context-dependent influences, for one prey species, with the potential to further reduce the predatory impact of the invasive amphipod or increase the predatory impact of the native amphipod in the presence of a higher-order fish predator. Partial consumption of prey was similar for both predators and occurred increasingly in the order A. aquaticus, Simulium spp. and B. rhodani. This was associated with increasing prey densities, but showed no context dependencies with parasitism or higher-order fish predator. This study supports the applicability of comparative functional responses as a tool to predict and assess invasive species impacts incorporating multiple context dependencies. PMID:25265905

  20. Predicting invasive species impacts: a community module functional response approach reveals context dependencies

    PubMed Central

    Paterson, Rachel A; Dick, Jaimie T A; Pritchard, Daniel W; Ennis, Marilyn; Hatcher, Melanie J; Dunn, Alison M

    2015-01-01

    Summary Predatory functional responses play integral roles in predator–prey dynamics, and their assessment promises greater understanding and prediction of the predatory impacts of invasive species. Other interspecific interactions, however, such as parasitism and higher-order predation, have the potential to modify predator–prey interactions and thus the predictive capability of the comparative functional response approach. We used a four-species community module (higher-order predator; focal native or invasive predators; parasites of focal predators; native prey) to compare the predatory functional responses of native Gammarus duebeni celticus and invasive Gammarus pulex amphipods towards three invertebrate prey species (Asellus aquaticus, Simulium spp., Baetis rhodani), thus, quantifying the context dependencies of parasitism and a higher-order fish predator on these functional responses. Our functional response experiments demonstrated that the invasive amphipod had a higher predatory impact (lower handling time) on two of three prey species, which reflects patterns of impact observed in the field. The community module also revealed that parasitism had context-dependent influences, for one prey species, with the potential to further reduce the predatory impact of the invasive amphipod or increase the predatory impact of the native amphipod in the presence of a higher-order fish predator. Partial consumption of prey was similar for both predators and occurred increasingly in the order A. aquaticus, Simulium spp. and B. rhodani. This was associated with increasing prey densities, but showed no context dependencies with parasitism or higher-order fish predator. This study supports the applicability of comparative functional responses as a tool to predict and assess invasive species impacts incorporating multiple context dependencies. PMID:25265905

  1. Gene Co-Expression Analysis Predicts Genetic Variants Associated with Drug Responsiveness in Lung Cancer

    PubMed Central

    Shroff, Sanaya; Zhang, Jie; Huang, Kun

    2016-01-01

    Responsiveness to drugs is an important concern in designing personalized treatment for cancer patients. Currently genetic markers are often used to guide targeted therapy. However, deeper understanding of the molecular basis for drug responses and discovery of new predictive biomarkers for drug sensitivity are much needed. In this paper, we present a workflow for identifying condition-specific gene co-expression networks associated with responses to the tyrosine kinase inhibitor, Erlotinib, in lung adenocarcinoma cell lines using data from the Cancer Cell Line Encyclopedia by combining network mining and statistical analysis. Particularly, we have identified multiple gene modules specifically co-expressed in the drug responsive cell lines but not in the unresponsive group. Interestingly, most of these modules are enriched on specific cytobands, suggesting potential copy number variation events on these loci. Our results therefore imply that there are multiple genetic loci with copy number variations associated with the Erlotinib responses. The existence of CNVs in these loci is also confirmed in lung cancer tissue samples using the TCGA data. Since these structural variations are inferred from functional genomics data, these CNVs are functional variations. These results suggest the condition specific gene co- expression network mining approach is an effective approach in predicting candidate biomarkers for drug responses. PMID:27570645

  2. Gene Co-Expression Analysis Predicts Genetic Variants Associated with Drug Responsiveness in Lung Cancer.

    PubMed

    Shroff, Sanaya; Zhang, Jie; Huang, Kun

    2016-01-01

    Responsiveness to drugs is an important concern in designing personalized treatment for cancer patients. Currently genetic markers are often used to guide targeted therapy. However, deeper understanding of the molecular basis for drug responses and discovery of new predictive biomarkers for drug sensitivity are much needed. In this paper, we present a workflow for identifying condition-specific gene co-expression networks associated with responses to the tyrosine kinase inhibitor, Erlotinib, in lung adenocarcinoma cell lines using data from the Cancer Cell Line Encyclopedia by combining network mining and statistical analysis. Particularly, we have identified multiple gene modules specifically co-expressed in the drug responsive cell lines but not in the unresponsive group. Interestingly, most of these modules are enriched on specific cytobands, suggesting potential copy number variation events on these loci. Our results therefore imply that there are multiple genetic loci with copy number variations associated with the Erlotinib responses. The existence of CNVs in these loci is also confirmed in lung cancer tissue samples using the TCGA data. Since these structural variations are inferred from functional genomics data, these CNVs are functional variations. These results suggest the condition specific gene co- expression network mining approach is an effective approach in predicting candidate biomarkers for drug responses. PMID:27570645

  3. Genome wide prediction of protein function via a generic knowledge discovery approach based on evidence integration

    PubMed Central

    Xiong, Jianghui; Rayner, Simon; Luo, Kunyi; Li, Yinghui; Chen, Shanguang

    2006-01-01

    Background The automation of many common molecular biology techniques has resulted in the accumulation of vast quantities of experimental data. One of the major challenges now facing researchers is how to process this data to yield useful information about a biological system (e.g. knowledge of genes and their products, and the biological roles of proteins, their molecular functions, localizations and interaction networks). We present a technique called Global Mapping of Unknown Proteins (GMUP) which uses the Gene Ontology Index to relate diverse sources of experimental data by creation of an abstraction layer of evidence data. This abstraction layer is used as input to a neural network which, once trained, can be used to predict function from the evidence data of unannotated proteins. The method allows us to include almost any experimental data set related to protein function, which incorporates the Gene Ontology, to our evidence data in order to seek relationships between the different sets. Results We have demonstrated the capabilities of this method in two ways. We first collected various experimental datasets associated with yeast (Saccharomyces cerevisiae) and applied the technique to a set of previously annotated open reading frames (ORFs). These ORFs were divided into training and test sets and were used to examine the accuracy of the predictions made by our method. Then we applied GMUP to previously un-annotated ORFs and made 1980, 836 and 1969 predictions corresponding to the GO Biological Process, Molecular Function and Cellular Component sub-categories respectively. We found that GMUP was particularly successful at predicting ORFs with functions associated with the ribonucleoprotein complex, protein metabolism and transportation. Conclusion This study presents a global and generic gene knowledge discovery approach based on evidence integration of various genome-scale data. It can be used to provide insight as to how certain biological processes are

  4. Individual differences in common factors of emotional traits and executive functions predict functional connectivity of the amygdala.

    PubMed

    Rohr, C S; Dreyer, F R; Aderka, I M; Margulies, D S; Frisch, S; Villringer, A; Okon-Singer, H

    2015-10-15

    Evidence suggests that individual differences in emotion control are associated with frontoparietal-limbic networks and linked to emotional traits and executive functions. In a first attempt to directly target the link between emotional traits and executive functions using resting-state fMRI analysis, 43 healthy adults completed a test battery including executive tasks and emotional trait self-assessments that were subjected to a principal component analysis. Of the three factors detected, two explained 40.4% of the variance and were further investigated. Both factors suggest a relation between emotional traits and executive functions. Specifically, the first factor consisted of measures related to inhibitory control and negative affect, and the second factor was related to reward and positive affect. To investigate whether this interplay between emotional traits and executive functions is reflected in neural connectivity, we used resting-state fMRI to explore the functional connectivity of the amygdala as a starting point, and progressed to other seed-based analyses based on the initial findings. We found that the first factor predicted the strength of connectivity between brain regions known to be involved in the cognitive control of emotion, including the amygdala and the dorsolateral prefrontal cortex, whereas the second factor predicted the strength of connectivity between brain regions known to be involved in reward and attention, including the amygdala, the caudate and the thalamus. These findings suggest that individual differences in the ability to inhibit negative affect are mediated by prefrontal-limbic pathways, while the ability to be positive and use rewarding information is mediated by a network that includes the amygdala and thalamostriatal regions. PMID:26108101

  5. Prediction of functional sites in proteins using conserved functional group analysis.

    PubMed

    Innis, C Axel; Anand, A Prem; Sowdhamini, R

    2004-04-01

    A detailed knowledge of a protein's functional site is an absolute prerequisite for understanding its mode of action at the molecular level. However, the rapid pace at which sequence and structural information is being accumulated for proteins greatly exceeds our ability to determine their biochemical roles experimentally. As a result, computational methods are required which allow for the efficient processing of the evolutionary information contained in this wealth of data, in particular that related to the nature and location of functionally important sites and residues. The method presented here, referred to as conserved functional group (CFG) analysis, relies on a simplified representation of the chemical groups found in amino acid side-chains to identify functional sites from a single protein structure and a number of its sequence homologues. We show that CFG analysis can fully or partially predict the location of functional sites in approximately 96% of the 470 cases tested and that, unlike other methods available, it is able to tolerate wide variations in sequence identity. In addition, we discuss its potential in a structural genomics context, where automation, scalability and efficiency are critical, and an increasing number of protein structures are determined with no prior knowledge of function. This is exemplified by our analysis of the hypothetical protein Ydde_Ecoli, whose structure was recently solved by members of the North East Structural Genomics consortium. Although the proposed active site for this protein needs to be validated experimentally, this example illustrates the scope of CFG analysis as a general tool for the identification of residues likely to play an important role in a protein's biochemical function. Thus, our method offers a convenient solution to rapidly and automatically process the vast amounts of data that are beginning to emerge from structural genomics projects. PMID:15033369

  6. Predicted energies and structures associated with the mixed calcium strontium fluorapatites

    SciTech Connect

    Michie, Emily M.; Grimes, Robin W. Fong, Shirley K.; Metcalfe, Brian L.

    2008-12-15

    Atomic scale local density functional simulations and configurational averaging are used to predict the energies and lattice parameters associated with mixed calcium/strontium fluorapatites, Ca{sub x}Sr{sub 10-x}(PO{sub 4}){sub 6}F{sub 2}. In particular, the partition of Sr{sup 2+} and Ca{sup 2+} ions between the 6h and 4f cation sites is established across the entire compositional range. Lattice parameters and lattice volume are also analyzed as a function of Ca{sup 2+} to Sr{sup 2+} concentration and their cation site distribution. The predicted internal energy of mixing between the end members is used to discuss the available experimental data. - Graphical abstract: Quantum mechanical simulations rationalize the distribution of strontium and calcium over 6h and 4f cation sites in fluorapatite across the entire Ca{sub x}Sr{sub 10-x}(PO{sub 4}){sub 6}F{sub 2} solid solution. Lattice parameters and lattice volume are also analyzed as a function of Ca{sup 2+} and Sr{sup 2+} cation site distribution and concentration.

  7. Physical activity and obesity mediate the association between childhood motor function and adolescents' academic achievement.

    PubMed

    Kantomaa, Marko T; Stamatakis, Emmanuel; Kankaanpää, Anna; Kaakinen, Marika; Rodriguez, Alina; Taanila, Anja; Ahonen, Timo; Järvelin, Marjo-Riitta; Tammelin, Tuija

    2013-01-29

    The global epidemic of obesity and physical inactivity may have detrimental implications for young people's cognitive function and academic achievement. This prospective study investigated whether childhood motor function predicts later academic achievement via physical activity, fitness, and obesity. The study sample included 8,061 children from the Northern Finland Birth Cohort 1986, which contains data about parent-reported motor function at age 8 y and self-reported physical activity, predicted cardiorespiratory fitness (cycle ergometer test), obesity (body weight and height), and academic achievement (grades) at age 16 y. Structural equation models with unstandardized (B) and standardized (β) coefficients were used to test whether, and to what extent, physical activity, cardiorespiratory fitness, and obesity at age 16 mediated the association between childhood motor function and adolescents' academic achievement. Physical activity was associated with a higher grade-point average, and obesity was associated with a lower grade-point average in adolescence. Furthermore, compromised motor function in childhood had a negative indirect effect on adolescents' academic achievement via physical inactivity (B = -0.023, 95% confidence interval = -0.031, -0.015) and obesity (B = -0.025, 95% confidence interval = -0.039, -0.011), but not via cardiorespiratory fitness. These results suggest that physical activity and obesity may mediate the association between childhood motor function and adolescents' academic achievement. Compromised motor function in childhood may represent an important factor driving the effects of obesity and physical inactivity on academic underachievement. PMID:23277558

  8. firestar--advances in the prediction of functionally important residues.

    PubMed

    Lopez, Gonzalo; Maietta, Paolo; Rodriguez, Jose Manuel; Valencia, Alfonso; Tress, Michael L

    2011-07-01

    firestar is a server for predicting catalytic and ligand-binding residues in protein sequences. Here, we present the important developments since the first release of firestar. Previous versions of the server required human interpretation of the results; the server is now fully automatized. firestar has been implemented as a web service and can now be run in high-throughput mode. Prediction coverage has been greatly improved with the extension of the FireDB database and the addition of alignments generated by HHsearch. Ligands in FireDB are now classified for biological relevance. Many of the changes have been motivated by the critical assessment of techniques for protein structure prediction (CASP) ligand-binding prediction experiment, which provided us with a framework to test the performance of firestar. URL: http://firedb.bioinfo.cnio.es/Php/FireStar.php. PMID:21672959

  9. 21 CFR 868.1890 - Predictive pulmonary-function value calculator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Predictive pulmonary-function value calculator. 868.1890 Section 868.1890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... pulmonary-function value calculator. (a) Identification. A predictive pulmonary-function value calculator...

  10. Improved association in a classical density functional theory for water.

    PubMed

    Krebs, Eric J; Schulte, Jeff B; Roundy, David

    2014-03-28

    We present a modification to our recently published statistical associating fluid theory-based classical density functional theory for water. We have recently developed and tested a functional for the averaged radial distribution function at contact of the hard-sphere fluid that is dramatically more accurate at interfaces than earlier approximations. We now incorporate this improved functional into the association term of our free energy functional for water, improving its description of hydrogen bonding. We examine the effect of this improvement by studying two hard solutes (a hard hydrophobic rod and a hard sphere) and a Lennard-Jones approximation of a krypton atom solute. The improved functional leads to a moderate change in the density profile and a large decrease in the number of hydrogen bonds broken in the vicinity of the hard solutes. We find an improvement of the partial radial distribution for a krypton atom in water when compared with experiment. PMID:24697459

  11. Improved association in a classical density functional theory for water

    SciTech Connect

    Krebs, Eric J.; Schulte, Jeff B.; Roundy, David

    2014-03-28

    We present a modification to our recently published statistical associating fluid theory-based classical density functional theory for water. We have recently developed and tested a functional for the averaged radial distribution function at contact of the hard-sphere fluid that is dramatically more accurate at interfaces than earlier approximations. We now incorporate this improved functional into the association term of our free energy functional for water, improving its description of hydrogen bonding. We examine the effect of this improvement by studying two hard solutes (a hard hydrophobic rod and a hard sphere) and a Lennard-Jones approximation of a krypton atom solute. The improved functional leads to a moderate change in the density profile and a large decrease in the number of hydrogen bonds broken in the vicinity of the hard solutes. We find an improvement of the partial radial distribution for a krypton atom in water when compared with experiment.

  12. Pretransplant thymic function predicts acute rejection in antithymocyte globulin-treated renal transplant recipients.

    PubMed

    Bamoulid, Jamal; Courivaud, Cécile; Crepin, Thomas; Carron, Clémence; Gaiffe, Emilie; Roubiou, Caroline; Laheurte, Caroline; Moulin, Bruno; Frimat, Luc; Rieu, Philippe; Mousson, Christiane; Durrbach, Antoine; Heng, Anne-Elisabeth; Rebibou, Jean-Michel; Saas, Philippe; Ducloux, Didier

    2016-05-01

    Lack of clear identification of patients at high risk of acute rejection hampers the ability to individualize immunosuppressive therapy. Here we studied whether thymic function may predict acute rejection in antithymocyte globulin (ATG)-treated renal transplant recipients in 482 patients prospectively studied during the first year post-transplant of which 86 patients experienced acute rejection. Only CD45RA(+)CD31(+)CD4(+) T cell (recent thymic emigrant [RTE]) frequency (RTE%) was marginally associated with acute rejection in the whole population. This T-cell subset accounts for 26% of CD4(+) T cells. Pretransplant RTE% was significantly associated with acute rejection in ATG-treated patients (hazard ratio, 1.04; 95% confidence interval, 1.01-1.08) for each increased percent in RTE/CD4(+) T cells), but not in anti-CD25 monoclonal (αCD25 mAb)-treated patients. Acute rejection was significantly more frequent in ATG-treated patients with high pretransplant RTE% (31.2% vs. 16.4%) or absolute number of RTE/mm(3) (31.7 vs. 16.1). This difference was not found in αCD25 monclonal antibody-treated patients. Highest values of both RTE% (>31%, hazard ratio, 2.50; 95% confidence interval, 1.09-5.74) and RTE/mm(3) (>200/mm(3), hazard ratio, 3.71; 95% confidence interval, 1.59-8.70) were predictive of acute rejection in ATG-treated patients but not in patients having received αCD25 monoclonal antibody). Results were confirmed in a retrospective cohort using T-cell receptor excision circle levels as a marker of thymic function. Thus, pretransplant thymic function predicts acute rejection in ATG-treated patients. PMID:27083287

  13. Survival in rectal cancer is predicted by T cell infiltration of tumour-associated lymphoid nodules

    PubMed Central

    McMullen, T P W; Lai, R; Dabbagh, L; Wallace, T M; de Gara, C J

    2010-01-01

    Lymphoid nodules are a normal component of the mucosa of the rectum, but little is known about their function and whether they contribute to the host immune response in malignancy. In rectal cancer specimens from patients with local (n = 18), regional (n = 12) and distant (n = 10) disease, we quantified T cell (CD3, CD25) and dendritic cell (CD1a, CD83) levels at the tumour margin as well as within tumour-associated lymphoid nodules. In normal tissue CD3+, but not CD25+, T cells are concentrated at high levels within lymphoid nodules, with significantly fewer cells found in surrounding normal mucosa (P = 0·001). Mature (CD83), but not immature (CD1a), dendritic cells in normal tissue are also found clustered almost exclusively within lymphoid nodules (P = < 0·0001). In rectal tumours, both CD3+ T cells (P = 0·004) and CD83+ dendritic cells (P = 0·0001) are also localized preferentially within tumour-associated lymphoid nodules. However, when comparing tumour specimens to normal rectal tissue, the average density of CD3+ T cells (P = 0·0005) and CD83+ dendritic cells (P = 0·0006) in tumour-associated lymphoid nodules was significantly less than that seen in lymphoid nodules in normal mucosa. Interestingly, regardless of where quantified, T cell and dendritic cell levels did not depend upon the stage of disease. Increased CD3+ T cell infiltration of tumour-associated lymphoid nodules predicted improved survival, independent of stage (P = 0·05). Other T cell (CD25) markers and different levels of CD1a+ or CD83+ dendritic cells did not predict survival. Tumour-associated lymphoid nodules, enriched in dendritic cells and T cells, may be an important site for antigen presentation and increased T cell infiltration may be a marker for improved survival. PMID:20408858

  14. Intrapersonal and interpersonal functions of non suicidal self-injury: associations with emotional and social functioning.

    PubMed

    Turner, Brianna J; Chapman, Alexander L; Layden, Brianne K

    2012-02-01

    Understanding the functions of nonsuicidal self-injury (NSSI) has important implications for the development and refinement of theoretical models and treatments of NSSI. Emotional and social vulnerabilities associated with five common functions of NSSI-emotion relief (ER), feeling generation (FG), self-punishment (SP), interpersonal influence (II), and interpersonal communication (IC)-were investigated to clarify why individuals use this behavior in the service of different purposes. Female participants (n = 162) with a history of NSSI completed online measures of self-injury, emotion regulation strategies and abilities, trait affectivity, social problem-solving styles, and interpersonal problems. ER functions were associated with more intense affectivity, expressive suppression, and limited access to emotion regulation strategies. FG functions were associated with a lack of emotional clarity. Similar to ER functions, SP functions were associated with greater affective intensity and expressive suppression. II functions were negatively associated with expressive suppression and positively associated with domineering/controlling and intrusive/needy interpersonal styles. IC functions were negatively associated with expressive suppression and positively associated with a vindictive or self-centered interpersonal style. These findings highlight the specific affective traits, emotional and social skill deficits, and interpersonal styles that may render a person more likely to engage in NSSI to achieve specific goals. PMID:22276747

  15. Predicting brain states associated with object categories from fMRI data.

    PubMed

    Behroozi, Mehdi; Daliri, Mohammad Reza

    2014-12-01

    Recently, the multivariate analysis methods have been widely used for predicting the human cognitive states from fMRI data. Here, we explore the possibility of predicting the human cognitive states using a pattern of brain activities associated with thinking about concrete objects. The fMRI signals in conjunction with pattern recognition methods were used for the analysis of cognitive functions associated with viewing of 60 object pictures named by the words in 12 categories. The important step in Multi Voxel Pattern Analysis (MVPA) is feature extraction and feature selection parts. In this study, the new feature selection method (accuracy method) was developed for multi-class fMRI dataset to select the informative voxels corresponding to the objects category from the whole brain voxels. Here the result of three multivariate classifiers namely, Naïve Bayes, K-nearest neighbor and support vector machine, were compared for predicting the category of presented objects from activation BOLD patterns in human whole brain. We investigated whether the multivariate classifiers are capable to find the associated regions of the brain with the visual presentation of categories of various objects. Overall Naïve Bayes classifier perfumed best and it was the best method for extracting features from the whole brain data. In addition, the results of this study indicate that thinking about different semantic categories of objects have an effect on different spatial patterns of neural activation, and so it is possible to identify the category of the objects based on the patterns of neural activation recorded during representation of object line drawing from participants with high accuracy. Finally we demonstrated that the selected brain regions that were informative for object categorization were similar across subjects and this distribution of selected voxels on the cortex may neutrally represent the various object's category properties. PMID:25352153

  16. The inhomogeneous distribution of liver function: possible impact on the prediction of post-operative remnant liver function

    PubMed Central

    Nilsson, Henrik; Karlgren, Silja; Blomqvist, Lennart; Jonas, Eduard

    2015-01-01

    Background Previous studies have shown that liver function is inhomogeneously distributed in diseased livers, and this uneven distribution cannot be compensated for if a global liver function test is used for the prediction of post-operative remnant liver function. Dynamic Gd-EOB-DTPA-enhanced magnetic resonance imaging (MRI) can assess segmental liver function, thus offering the possibility to overcome this problem. Methods In 10 patients with liver cirrhosis and 10 normal volunteers, the contribution of individual liver segments to total liver function and volume was calculated using dynamic Gd-EOB-DTPA-enhanced MRI. Remnant liver function predictions using a segmental method and global assessment were compared for a simulated left hemihepatectomy. For the prediction based on segmental functional MRI assessment, the estimated function of the remnant liver segments was added. Results Global liver function assessment overestimated the remnant liver function in 9 out of 10 patients by as much as 9.3% [median −3.5% (−9.3–3.5%)]. In the normal volunteers there was a slight underestimation of remnant function in 9 out of 10 cases [median 1.07% (−0.7–2.5%)]. Discussion The present study underlines the necessity of a segmental liver function test able to compensate for the non-homogeneous nature of liver function, if the prediction of post-operative remnant liver function is to be improved. PMID:25297934

  17. Cloud Prediction of Protein Structure and Function with PredictProtein for Debian

    PubMed Central

    Kaján, László; Yachdav, Guy; Vicedo, Esmeralda; Steinegger, Martin; Mirdita, Milot; Angermüller, Christof; Böhm, Ariane; Domke, Simon; Ertl, Julia; Mertes, Christian; Reisinger, Eva; Rost, Burkhard

    2013-01-01

    We report the release of PredictProtein for the Debian operating system and derivatives, such as Ubuntu, Bio-Linux, and Cloud BioLinux. The PredictProtein suite is available as a standard set of open source Debian packages. The release covers the most popular prediction methods from the Rost Lab, including methods for the prediction of secondary structure and solvent accessibility (profphd), nuclear localization signals (predictnls), and intrinsically disordered regions (norsnet). We also present two case studies that successfully utilize PredictProtein packages for high performance computing in the cloud: the first analyzes protein disorder for whole organisms, and the second analyzes the effect of all possible single sequence variants in protein coding regions of the human genome. PMID:23971032

  18. Cloud prediction of protein structure and function with PredictProtein for Debian.

    PubMed

    Kaján, László; Yachdav, Guy; Vicedo, Esmeralda; Steinegger, Martin; Mirdita, Milot; Angermüller, Christof; Böhm, Ariane; Domke, Simon; Ertl, Julia; Mertes, Christian; Reisinger, Eva; Staniewski, Cedric; Rost, Burkhard

    2013-01-01

    We report the release of PredictProtein for the Debian operating system and derivatives, such as Ubuntu, Bio-Linux, and Cloud BioLinux. The PredictProtein suite is available as a standard set of open source Debian packages. The release covers the most popular prediction methods from the Rost Lab, including methods for the prediction of secondary structure and solvent accessibility (profphd), nuclear localization signals (predictnls), and intrinsically disordered regions (norsnet). We also present two case studies that successfully utilize PredictProtein packages for high performance computing in the cloud: the first analyzes protein disorder for whole organisms, and the second analyzes the effect of all possible single sequence variants in protein coding regions of the human genome. PMID:23971032

  19. Prediction of gene–phenotype associations in humans, mice, and plants using phenologs

    PubMed Central

    2013-01-01

    Background Phenotypes and diseases may be related to seemingly dissimilar phenotypes in other species by means of the orthology of underlying genes. Such “orthologous phenotypes,” or “phenologs,” are examples of deep homology, and may be used to predict additional candidate disease genes. Results In this work, we develop an unsupervised algorithm for ranking phenolog-based candidate disease genes through the integration of predictions from the k nearest neighbor phenologs, comparing classifiers and weighting functions by cross-validation. We also improve upon the original method by extending the theory to paralogous phenotypes. Our algorithm makes use of additional phenotype data — from chicken, zebrafish, and E. coli, as well as new datasets for C. elegans — establishing that several types of annotations may be treated as phenotypes. We demonstrate the use of our algorithm to predict novel candidate genes for human atrial fibrillation (such as HRH2, ATP4A, ATP4B, and HOPX) and epilepsy (e.g., PAX6 and NKX2-1). We suggest gene candidates for pharmacologically-induced seizures in mouse, solely based on orthologous phenotypes from E. coli. We also explore the prediction of plant gene–phenotype associations, as for the Arabidopsis response to vernalization phenotype. Conclusions We are able to rank gene predictions for a significant portion of the diseases in the Online Mendelian Inheritance in Man database. Additionally, our method suggests candidate genes for mammalian seizures based only on bacterial phenotypes and gene orthology. We demonstrate that phenotype information may come from diverse sources, including drug sensitivities, gene ontology biological processes, and in situ hybridization annotations. Finally, we offer testable candidates for a variety of human diseases, plant traits, and other classes of phenotypes across a wide array of species. PMID:23800157

  20. Genome-environment associations in sorghum landraces predict adaptive traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improving environmental adaptation in crops is essential for food security under global change, but phenotyping adaptive traits remains a major bottleneck. If associations between single-nucleotide polymorphism (SNP) alleles and environment of origin in crop landraces reflect adaptation, then these ...

  1. PINALOG: a novel approach to align protein interaction networks—implications for complex detection and function prediction

    PubMed Central

    Phan, Hang T. T.; Sternberg, Michael J. E.

    2012-01-01

    Motivation: Analysis of protein–protein interaction networks (PPINs) at the system level has become increasingly important in understanding biological processes. Comparison of the interactomes of different species not only provides a better understanding of species evolution but also helps with detecting conserved functional components and in function prediction. Method and Results: Here we report a PPIN alignment method, called PINALOG, which combines information from protein sequence, function and network topology. Alignment of human and yeast PPINs reveals several conserved subnetworks between them that participate in similar biological processes, notably the proteasome and transcription related processes. PINALOG has been tested for its power in protein complex prediction as well as function prediction. Comparison with PSI-BLAST in predicting protein function in the twilight zone also shows that PINALOG is valuable in predicting protein function. Availability and implementation: The PINALOG web-server is freely available from http://www.sbg.bio.ic.ac.uk/~pinalog. The PINALOG program and associated data are available from the Download section of the web-server. Contact: m.sternberg@imperial.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22419782

  2. Prediction of Functional Outcome in Individuals at Clinical High Risk for Psychosis

    PubMed Central

    Carrión, Ricardo E.; McLaughlin, Danielle; Goldberg, Terry E.; Auther, Andrea M.; Olsen, Ruth H.; Olvet, Doreen M.; Correll, Christoph U.; Cornblatt, Barbara A.

    2014-01-01

    Importance A major public health concern associated with schizophrenia and psychotic disorders is the long-term disability that involves impaired cognition, lack of social support, and an inability to function independently in the community. A critical goal of early detection and intervention studies in psychosis is therefore to understand the factors leading to this often profound impairment. Objective To develop a predictive model of functional (social and role) outcome in a clinical high-risk sample for psychosis. Design Prospective, naturalistic, longitudinal 3- to 5-year follow-up study. Setting The Recognition and Prevention Program in New York, a research clinic located in the Zucker Hillside Hospital in New York. Participants One hundred one treatment-seeking patients at clinical high risk for psychosis. Ninety-two (91%) were followed up prospectively for a mean (SD) of 3 (1.6) years. Intervention Neurocognitive and clinical assessment. Main Outcomes and Measures The primary outcome variables were social and role functioning at the last follow-up visit. Results Poor social outcome was predicted by reduced processing speed (odds ratio [OR], 1.38; 95% CI, 1.050-1.823; P = .02), impaired social functioning at baseline (OR, 1.85; 95% CI, 1.258-2.732; P = .002), and total disorganized symptoms (OR, 5.06; 95% CI, 1.548-16.527; P = .007). Reduced performance on tests for verbal memory (OR, 1.74; 95% CI, 1.169-2.594; P = .006), role functioning at baseline (OR, 1.34; 95% CI, 1.053-1.711; P = .02), and motor disturbances (OR, 1.77; 95% CI, 1.060-2.969; P = .03) predicted role outcome. The areas under the curve for the social and role prediction models were 0.824 (95% CI, 0.736-0.913; P < .001) and 0.77 (95% CI, 0.68-0.87; P < .001), respectively, demonstrating a high discriminative ability. In addition, poor functional outcomes were not entirely dependent on the development of psychosis, because 40.3% and 45.5% of nonconverters at clinical high risk had poor social

  3. Executive Function Predicts Artificial Language Learning in Children and Adults

    ERIC Educational Resources Information Center

    Kapa, Leah Lynn

    2013-01-01

    Prior research has established an executive function advantage among bilinguals as compared to monolingual peers. These non-linguistic cognitive advantages are largely assumed to result from the experience of managing two linguistic systems. However, the possibility remains that the relationship between bilingualism and executive function is…

  4. Improved detection of disease-associated variation by sex-specific characterization and prediction of genes required for fertility

    PubMed Central

    Ho, Nicholas Rui Yuan; Huang, Ni; Conrad, Donald F.

    2016-01-01

    Despite its great potential, high-throughput functional genomic data is rarely integrated and applied to characterizing the genomic basis of fertility. We obtained and reprocessed over 30 functional genomics datasets from human and mouse germ cells to perform genomewide prediction of genes underlying various reproductive phenotypes in both species. Genes involved in male fertility are easier to predict than their female analogs. Of the multiple genomic data types examined, protein-protein interactions are by far the most informative for gene prediction, followed by gene expression, and then epigenetic marks. As an application of our predictions, we show that CNVs disrupting predicted fertility genes are more strongly associated with gonadal dysfunction in male and female case-control cohorts when compared to all gene-disrupting CNVs (OR=1.64, p< 1.64 × 10−8 versus OR=1.25, p < 4 × 10−6). Using gender-specific fertility gene annotations further increased the observed associations (OR = 2.31, p< 2.2 × 10−16). We provide our gene predictions as a resource with this paper. PMID:26473511

  5. Influencing factors on color and product-function association.

    PubMed

    Ko, Ya-Hsien

    2011-06-01

    The associations of age, sex, and matching types with color and product-function were examined in a real-world product scenario (shampoo) among 128 volunteers (M age = 29.3 yr.; SD = 15.6). A pilot study identified eight popular colors and eight product-functions. The association between color and product-function was explored in the main sample. Responses suggested seven pairings of color/product-functions: Red/Hot oil treatment, Yellow/Bright and shiny hair, Green/Herbal extracts, Blue/Deep cleaning, Purple/Soothing, Black/Antiseptic, and White/Anti-dandruff. Analyses indicated that adult participants required more repetitions for retention, as did memorization with random pairing compared to participant-selected pairings. There were statistically significant correlations of responses to colors and product functions. With known color/product-function associations, manufacturers might promote their products more effectively. It is suggested that the associations might be sex- or culture-specific. PMID:21879633

  6. Longitudinal Associations Between Depression and Functioning In Midlife Women

    PubMed Central

    Bromberger, Joyce T.; di Scalea, Teresa Lanza

    2009-01-01

    Associations between depression and impaired functioning are well known and have been documented in numerous clinical, primary care and epidemiological studies. Reviews of this research have focused on the elderly. Recent studies suggest that women become increasingly vulnerable during the menopausal transition to declines in physical and role function and increases in depressive symptoms. The purpose of the current research is to review the literature since 1966 for studies examining the association between depression and physical and psychosocial impairment in midlife women. We selected only longitudinal studies that had the potential to elucidate the nature of the complex relationship between depression and functioning. Results of the review indicate evidence for bi-directional associations between depression and functioning in middle-aged women. However, the studies are only broadly informative. Most adjusted for only a limited group of factors that could be associated with both depression and functioning. None of them directly examined potential moderators or mediators of the relationship between depression and impaired functioning. PMID:19854010

  7. Longitudinal associations between depression and functioning in midlife women.

    PubMed

    Bromberger, Joyce T; di Scalea, T Lanza

    2009-11-20

    Associations between depression and impaired functioning are well known and have been documented in numerous clinical, primary care and epidemiological studies. Reviews of this research have focused on the elderly. Recent studies suggest that women become increasingly vulnerable during the menopausal transition to declines in physical and role function and increases in depressive symptoms. The purpose of the current research is to review the literature since 1966 for studies examining the association between depression and physical and psychosocial impairment in midlife women. We selected only longitudinal studies that had the potential to elucidate the nature of the complex relationship between depression and functioning. Results of the review indicate evidence for bi-directional associations between depression and functioning in middle-aged women. However, the studies are only broadly informative. Most adjusted for only a limited group of factors that could be associated with both depression and functioning. None of them directly examined potential moderators or mediators of the relationship between depression and impaired functioning. PMID:19854010

  8. Baseline burnout symptoms predict visuospatial executive function during survival school training in special operations military personnel.

    PubMed

    Morgan, Charles A; Russell, Bartlett; McNeil, Jeff; Maxwell, Jeff; Snyder, Peter J; Southwick, Steven M; Pietrzak, Robert H

    2011-05-01

    Burnout symptoms, which are characterized by exhaustion, cynicism, and a reduced sense of professional efficacy, may deleteriously affect cognitive function in military personnel. A total of 32 U.S. Military Special Operations personnel enrolled in Survival School completed measures of trauma history, dissociation, and burnout before training. They then completed the Groton Maze Learning Test (GMLT), a neuropsychological measure of integrative visuospatial executive function during three field-based phases of Survival School-enemy evasion, captivity/interrogation, and escape/release from captivity. Lower pre-training perceptions of professional efficacy were associated with reduced executive function during all of the field-based phases of Survival School, even after adjustment for years of education, cynicism, and baseline GMLT scores. Magnitudes of decrements in executive function in Marines with low efficacy relative to those with high efficacy increased as training progressed and ranged from .58 during enemy evasion to .99 during escape/release from captivity. Pre-training perceptions of burnout may predict visuospatial executive function during naturalistic training-related stress in military personnel. Assessment of burnout symptoms, particularly perceptions of professional efficacy, may help identify military personnel at risk for stress-related executive dysfunction. PMID:21466738

  9. Genome-Wide Association Study of Lung Function Phenotypes in a Founder Population

    PubMed Central

    Yao, Tsung-Chieh; Du, Gaixin; Han, Lide; Sun, Ying; Hu, Donglei; Yang, James J.; Mathias, Rasika; Roth, Lindsey A.; Rafaels, Nicholas; Thompson, Emma E.; Loisel, Dagan A.; Anderson, Rebecca; Eng, Celeste; Orbegozo, Maitane Arruabarrena; Young, Melody; Klocksieben, James M.; Anderson, Elizabeth; Shanovich, Kathleen; Lester, Lucille A.; Williams, L. Keoki; Barnes, Kathleen C.; Burchard, Esteban G.; Nicolae, Dan L.; Abney, Mark; Ober, Carole

    2014-01-01

    Background Lung function is a long-term predictor of mortality and morbidity. Objective We sought to identify single nucleotide polymorphisms (SNPs) associated with lung function. Methods We performed a genome-wide association study (GWAS) of forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), and FEV1/FVC in 1,144 Hutterites aged 6–89 years, who are members of a founder population of European descent. We performed least absolute shrinkage and selection operation (LASSO) regression to select the minimum set of SNPs that best predict FEV1/FVC in the Hutterites and used the GRAIL algorithm to mine the Gene Ontology database for evidence of functional connections between genes near the predictive SNPs. Results Our GWAS identified significant associations between FEV1/FVC and SNPs at the THSD4-UACA-TLE3 locus on chromosome 15q23 (P = 5.7x10−8 ~ 3.4x10−9). Nine SNPs at or near four additional loci had P-values < 10−5 with FEV1/FVC. There were only two SNPs with P-values < 10−5 for FEV1 or FVC. We found nominal levels of significance with SNPs at 9 of the 27 previously reported loci associated with lung function measures. Among a predictive set of 80 SNPs, six loci were identified that had a significant degree of functional connectivity (GRAIL P < 0.05), including three clusters of β-defensin genes, two chemokine genes (CCL18 and CXCL12), and TNFRSF13B. Conclusion This study identifies genome-wide significant associations and replicates results of previous GWAS. Multimarker modeling implicated for the first time common variation in genes involved in anti-microbial immunity in airway mucosa influences lung function. PMID:23932459

  10. DEFINING THE PLAYERS IN HIGHER-ORDER NETWORKS: PREDICTIVE MODELING FOR REVERSE ENGINEERING FUNCTIONAL INFLUENCE NETWORKS

    SciTech Connect

    McDermott, Jason E.; Costa, Michelle N.; Stevens, S.L.; Stenzel-Poore, Mary; Sanfilippo, Antonio P.

    2011-01-20

    A difficult problem that is currently growing rapidly due to the sharp increase in the amount of high-throughput data available for many systems is that of determining useful and informative causative influence networks. These networks can be used to predict behavior given observation of a small number of components, predict behavior at a future time point, or identify components that are critical to the functioning of the system under particular conditions. In these endeavors incorporating observations of systems from a wide variety of viewpoints can be particularly beneficial, but has often been undertaken with the objective of inferring networks that are generally applicable. The focus of the current work is to integrate both general observations and measurements taken for a particular pathology, that of ischemic stroke, to provide improved ability to produce useful predictions of systems behavior. A number of hybrid approaches have recently been proposed for network generation in which the Gene Ontology is used to filter or enrich network links inferred from gene expression data through reverse engineering methods. These approaches have been shown to improve the biological plausibility of the inferred relationships determined, but still treat knowledge-based and machine-learning inferences as incommensurable inputs. In this paper, we explore how further improvements may be achieved through a full integration of network inference insights achieved through application of the Gene Ontology and reverse engineering methods with specific reference to the construction of dynamic models of transcriptional regulatory networks. We show that integrating two approaches to network construction, one based on reverse-engineering from conditional transcriptional data, one based on reverse-engineering from in situ hybridization data, and another based on functional associations derived from Gene Ontology, using probabilities can improve results of clustering as evaluated by a

  11. Intrinsic functional connectivity predicts individual differences in distractibility.

    PubMed

    Poole, Victoria N; Robinson, Meghan E; Singleton, Omar; DeGutis, Joseph; Milberg, William P; McGlinchey, Regina E; Salat, David H; Esterman, Michael

    2016-06-01

    Distractor suppression, the ability to filter and ignore task-irrelevant information, is critical for efficient task performance. While successful distractor suppression relies on a balance of activity in neural networks responsible for attention maintenance (dorsal attention network; DAN), reorientation (ventral attention network; VAN), and internal thought (default mode network, DMN), the degree to which intrinsic connectivity within and between these networks contributes to individual differences in distractor suppression ability is not well-characterized. For the purposes of understanding these interactions, the current study collected resting-state fMRI data from 32 Veterans and, several months later (7±5 months apart), performance on the additional singleton paradigm, a measure of distractor suppression. Using multivariate support vector regression models composed of resting state connectivity between regions of the DAN, VAN, and DMN, and a leave-one-subject-out cross-validation procedure, we were able to predict an individual's task performance, yielding a significant correlation between the actual and predicted distractor suppression (r=0.48, p=0.0053). Network-level analyses revealed that greater within-network DMN connectivity was predictive of better distractor suppression, while greater connectivity between the DMN and attention networks was predictive of poorer distractor suppression. The strongest connection hubs were determined to be the right frontal eye field and temporoparietal junction of the DAN and VAN, respectively, and medial (ventromedial prefrontal and posterior cingulate cortices) and bilateral prefrontal regions of the DMN. These results are amongst a small but growing number of studies demonstrating that resting state connectivity is related to stable individual differences in cognitive ability, and suggest that greater integrity and independence of the DMN is related to better attentional ability. PMID:27132070

  12. Better prediction of functional effects for sequence variants

    PubMed Central

    2015-01-01

    Elucidating the effects of naturally occurring genetic variation is one of the major challenges for personalized health and personalized medicine. Here, we introduce SNAP2, a novel neural network based classifier that improves over the state-of-the-art in distinguishing between effect and neutral variants. Our method's improved performance results from screening many potentially relevant protein features and from refining our development data sets. Cross-validated on >100k experimentally annotated variants, SNAP2 significantly outperformed other methods, attaining a two-state accuracy (effect/neutral) of 83%. SNAP2 also outperformed combinations of other methods. Performance increased for human variants but much more so for other organisms. Our method's carefully calibrated reliability index informs selection of variants for experimental follow up, with the most strongly predicted half of all effect variants predicted at over 96% accuracy. As expected, the evolutionary information from automatically generated multiple sequence alignments gave the strongest signal for the prediction. However, we also optimized our new method to perform surprisingly well even without alignments. This feature reduces prediction runtime by over two orders of magnitude, enables cross-genome comparisons, and renders our new method as the best solution for the 10-20% of sequence orphans. SNAP2 is available at: https://rostlab.org/services/snap2web Definitions used Delta, input feature that results from computing the difference feature scores for native amino acid and feature scores for variant amino acid; nsSNP, non-synoymous SNP; PMD, Protein Mutant Database; SNAP, Screening for non-acceptable polymorphisms; SNP, single nucleotide polymorphism; variant, any amino acid changing sequence variant. PMID:26110438

  13. Predicting supernova associated to gamma-ray burst 130427a

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Ruffini, R.; Kovacevic, M.; Bianco, C. L.; Enderli, M.; Muccino, M.; Penacchioni, A. V.; Pisani, G. B.; Rueda, J. A.

    2015-07-01

    Binary systems constituted by a neutron star and a massive star are not rare in the universe. The Induced Gravitational Gamma-ray Burst (IGC) paradigm interprets Gamma-ray bursts as the outcome of a neutron star that collapses into a black hole due to the accretion of the ejecta coming from its companion massive star that underwent a supernova event. GRB 130427A is one of the most luminous GRBs ever observed, of which isotropic energy exceeds 1054 erg. And it is within one of the few GRBs obtained optical, X-ray and GeV spectra simultaneously for hundreds of seconds, which provides an unique opportunity so far to understand the multi-wavelength observation within the IGC paradigm, our data analysis found low Lorentz factor blackbody emission in the Episode 3 and its X-ray light curve overlaps typical IGC Golden Sample, which comply to the IGC mechanisms. We consider these findings as clues of GRB 130427A belonging to the IGC GRBs. We predicted on GCN the emergence of a supernova on May 2, 2013, which was later successfully detected on May 13, 2013.

  14. Numerical prediction of turbulent oscillating flow and associated heat transfer

    NASA Astrophysics Data System (ADS)

    Koehler, W. J.; Patankar, S. V.; Ibele, W. E.

    1991-08-01

    A crucial point for further development of engines is the optimization of its heat exchangers which operate under oscillatory flow conditions. It has been found that the most important thermodynamic uncertainties in the Stirling engine designs for space power are in the heat transfer between gas and metal in all engine components and in the pressure drop across the heat exchanger components. So far, performance codes cannot predict the power output of a Stirling engine reasonably enough if used for a wide variety of engines. Thus, there is a strong need for better performance codes. However, a performance code is not concerned with the details of the flow. This information must be provided externally. While analytical relationships exist for laminar oscillating flow, there has been hardly any information about transitional and turbulent oscillating flow, which could be introduced into the performance codes. In 1986, a survey by Seume and Simon revealed that most Stirling engine heat exchangers operate in the transitional and turbulent regime. Consequently, research has since focused on the unresolved issue of transitional and turbulent oscillating flow and heat transfer. Since 1988, the University of Minnesota oscillating flow facility has obtained experimental data about transitional and turbulent oscillating flow. However, since the experiments in this field are extremely difficult, lengthy, and expensive, it is advantageous to numerically simulate the flow and heat transfer accurately from first principles. Work done at the University of Minnesota on the development of such a numerical simulation is summarized.

  15. Numerical prediction of turbulent oscillating flow and associated heat transfer

    NASA Technical Reports Server (NTRS)

    Koehler, W. J.; Patankar, S. V.; Ibele, W. E.

    1991-01-01

    A crucial point for further development of engines is the optimization of its heat exchangers which operate under oscillatory flow conditions. It has been found that the most important thermodynamic uncertainties in the Stirling engine designs for space power are in the heat transfer between gas and metal in all engine components and in the pressure drop across the heat exchanger components. So far, performance codes cannot predict the power output of a Stirling engine reasonably enough if used for a wide variety of engines. Thus, there is a strong need for better performance codes. However, a performance code is not concerned with the details of the flow. This information must be provided externally. While analytical relationships exist for laminar oscillating flow, there has been hardly any information about transitional and turbulent oscillating flow, which could be introduced into the performance codes. In 1986, a survey by Seume and Simon revealed that most Stirling engine heat exchangers operate in the transitional and turbulent regime. Consequently, research has since focused on the unresolved issue of transitional and turbulent oscillating flow and heat transfer. Since 1988, the University of Minnesota oscillating flow facility has obtained experimental data about transitional and turbulent oscillating flow. However, since the experiments in this field are extremely difficult, lengthy, and expensive, it is advantageous to numerically simulate the flow and heat transfer accurately from first principles. Work done at the University of Minnesota on the development of such a numerical simulation is summarized.

  16. Quantitative reactivity profiling predicts functional cysteines in proteomes

    PubMed Central

    Weerapana, Eranthie; Wang, Chu; Simon, Gabriel M.; Richter, Florian; Khare, Sagar; Dillon, Myles B.D.; Bachovchin, Daniel A.; Mowen, Kerri; Baker, David; Cravatt, Benjamin F.

    2010-01-01

    Cysteine is the most intrinsically nucleophilic amino acid in proteins, where its reactivity is tuned to perform diverse biochemical functions. The absence of a consensus sequence that defines functional cysteines in proteins has hindered their discovery and characterization. Here, we describe a proteomics method to quantitatively profile the intrinsic reactivity of cysteine residues en masse directly in native biological systems. Hyperreactivity was a rare feature among cysteines and found to specify a wide range of activities, including nucleophilic and reductive catalysis and sites of oxidative modification. Hyperreactive cysteines were identified in several proteins of uncharacterized function, including a residue conserved across eukaryotic phylogeny that we show is required for yeast viability and involved in iron-sulfur protein biogenesis. Finally, we demonstrate that quantitative reactivity profiling can also form the basis for screening and functional assignment of cysteines in computationally designed proteins, where it discriminated catalytically active from inactive cysteine hydrolase designs. PMID:21085121

  17. Quantitative reactivity profiling predicts functional cysteines in proteomes.

    PubMed

    Weerapana, Eranthie; Wang, Chu; Simon, Gabriel M; Richter, Florian; Khare, Sagar; Dillon, Myles B D; Bachovchin, Daniel A; Mowen, Kerri; Baker, David; Cravatt, Benjamin F

    2010-12-01

    Cysteine is the most intrinsically nucleophilic amino acid in proteins, where its reactivity is tuned to perform diverse biochemical functions. The absence of a consensus sequence that defines functional cysteines in proteins has hindered their discovery and characterization. Here we describe a proteomics method to profile quantitatively the intrinsic reactivity of cysteine residues en masse directly in native biological systems. Hyper-reactivity was a rare feature among cysteines and it was found to specify a wide range of activities, including nucleophilic and reductive catalysis and sites of oxidative modification. Hyper-reactive cysteines were identified in several proteins of uncharacterized function, including a residue conserved across eukaryotic phylogeny that we show is required for yeast viability and is involved in iron-sulphur protein biogenesis. We also demonstrate that quantitative reactivity profiling can form the basis for screening and functional assignment of cysteines in computationally designed proteins, where it discriminated catalytically active from inactive cysteine hydrolase designs. PMID:21085121

  18. From genetic associations to functional studies in multiple sclerosis.

    PubMed

    Bos, S D; Berge, T; Celius, E G; Harbo, H F

    2016-05-01

    Genetic screens steadily reveal more loci that show robust associations to complex human diseases, including multiple sclerosis (MS). Although some of the identified genetic variants are easily interpreted into a biological function, most of the genetic associations are frequently challenging to interpret. Underlying these difficulties is the fact that chip-based assays typically detect single nucleotide polymorphisms (SNPs) representative of a stretch of DNA containing many genomic variants in linkage disequilibrium. Furthermore, a large proportion of the SNPs with strongest association to MS are located in regions of the DNA that do not directly code for proteins. Here we discuss challenges faced by MS researchers to follow up the large-scale genetic screens that have been published over the past years in search of functional consequences of the identified MS-associated SNPs. We discuss experimental design, tools and methods that may provide the much-needed biological insights in both disease etiology and disease manifestations. PMID:26948534

  19. Disease Prediction based on Functional Connectomes using a Scalable and Spatially-Informed Support Vector Machine

    PubMed Central

    Watanabe, Takanori; Kessler, Daniel; Scott, Clayton; Angstadt, Michael; Sripada, Chandra

    2014-01-01

    Substantial evidence indicates that major psychiatric disorders are associated with distributed neural dysconnectivity, leading to strong interest in using neuroimaging methods to accurately predict disorder status. In this work, we are specifically interested in a multivariate approach that uses features derived from whole-brain resting state functional connectomes. However, functional connectomes reside in a high dimensional space, which complicates model interpretation and introduces numerous statistical and computational challenges. Traditional feature selection techniques are used to reduce data dimensionality, but are blind to the spatial structure of the connectomes. We propose a regularization framework where the 6-D structure of the functional connectome (defined by pairs of points in 3-D space) is explicitly taken into account via the fused Lasso or the GraphNet regularizer. Our method only restricts the loss function to be convex and margin-based, allowing non-differentiable loss functions such as the hinge-loss to be used. Using the fused Lasso or GraphNet regularizer with the hinge-loss leads to a structured sparse support vector machine (SVM) with embedded feature selection. We introduce a novel efficient optimization algorithm based on the augmented Lagrangian and the classical alternating direction method, which can solve both fused Lasso and GraphNet regularized SVM with very little modification. We also demonstrate that the inner subproblems of the algorithm can be solved efficiently in analytic form by coupling the variable splitting strategy with a data augmentation scheme. Experiments on simulated data and resting state scans from a large schizophrenia dataset show that our proposed approach can identify predictive regions that are spatially contiguous in the 6-D “connectome space,” offering an additional layer of interpretability that could provide new insights about various disease processes. PMID:24704268

  20. Wiggle—Predicting Functionally Flexible Regions from Primary Sequence

    PubMed Central

    Gu, Jenny; Gribskov, Michael; Bourne, Philip E

    2006-01-01

    The Wiggle series are support vector machine–based predictors that identify regions of functional flexibility using only protein sequence information. Functionally flexible regions are defined as regions that can adopt different conformational states and are assumed to be necessary for bioactivity. Many advances have been made in understanding the relationship between protein sequence and structure. This work contributes to those efforts by making strides to understand the relationship between protein sequence and flexibility. A coarse-grained protein dynamic modeling approach was used to generate the dataset required for support vector machine training. We define our regions of interest based on the participation of residues in correlated large-scale fluctuations. Even with this structure-based approach to computationally define regions of functional flexibility, predictors successfully extract sequence-flexibility relationships that have been experimentally confirmed to be functionally important. Thus, a sequence-based tool to identify flexible regions important for protein function has been created. The ability to identify functional flexibility using a sequence based approach complements structure-based definitions and will be especially useful for the large majority of proteins with unknown structures. The methodology offers promise to identify structural genomics targets amenable to crystallization and the possibility to engineer more flexible or rigid regions within proteins to modify their bioactivity. PMID:16839194

  1. Aerobic exercise interacts with neurotrophic factors to predict cognitive functioning in adolescents.

    PubMed

    Lee, Tatia M C; Wong, Mark Lawrence; Lau, Benson Wui-Man; Lee, Jada Chia-Di; Yau, Suk-Yu; So, Kwok-Fai

    2014-01-01

    Recent findings have suggested that aerobic exercise may have a positive effect on brain functioning, in addition to its well-recognized beneficial effects on human physiology. This study confirmed the cognitive effects of aerobic exercise on the human brain. It also examined the relationships between exercise and the serum levels of neurotrophic factors (BDNF, IGI-1, and VEGF). A total of 91 healthy teens who exercised regularly participated in this study. A between-group design was adopted to compare cognitive functioning subserved by the frontal and temporal brain regions and the serum levels of neurotrophic factors between 45 regular exercisers and 46 matched controls. The exercisers performed significantly better than the controls on the frontal and temporal functioning parameters measured. This beneficial cognitive effect was region-specific because no such positive cognitive effect on task-tapping occipital functioning was observed. With respect to the serum levels of the neurotrophic factors, a negative correlation between neurotrophic factors (BDNF and VEGF) with frontal and medial-temporal lobe function was revealed. Furthermore, the levels of BDNF and VEGF interacted with exercise status in predicting frontal and temporal lobe function. This is the first report of the interaction effects of exercise and neurotrophic factors on cognitive functioning. Herein, we report preliminary evidence of the beneficial effects of regular aerobic exercise in improving cognitive functions in teens. These beneficial effects are region-specific and are associated with the serum levels of neurotrophic factors. Our findings lay the path for future studies looking at ways to translate these beneficial effects to therapeutic strategies for adolescents. PMID:24149089

  2. Temperamental exuberance and executive function predict propensity for risk-taking in childhood

    PubMed Central

    Lahat, Ayelet; Degnan, Kathryn A.; White, Lauren K.; McDermott, Jennifer Martin; Henderson, Heather A.; Lejuez, C. W.; Fox, Nathan A.

    2015-01-01

    The present study takes a multilevel approach to examine developmental trajectories in risk-taking propensity. We examined the moderating role of specific executive function components, attention shifting and inhibitory control, on the link between exuberant temperament in infancy and propensity for risk-taking in childhood. Risk-taking was assessed using a task previously associated with sensation seeking and antisocial behaviors. Two hundred and ninety one infants were brought into the lab and behaviors reflecting exuberance were observed at 4, 9, 24, and 36 months of age. Executive function was assessed at 48 months of age. Risk-taking propensity was measured when children were 60 months of age. The results indicate that exuberance and attention shifting, but not inhibitory control, significantly interact to predict propensity for risk-taking. Exuberance was positively associated with risk-taking propensity among children relatively low in attention shifting but unrelated for children high in attention shifting. These findings illustrate the multifinality of developmental outcomes for temperamentally exuberant young children and point to the distinct regulatory influences of different executive functions for children of differing temperaments. Attention shifting likely affords a child the ability to consider both positive and negative consequences, and moderates the relation between early exuberance and risk-taking propensity. PMID:22781858

  3. Link functions in multi-locus genetic models: implications for testing, prediction, and interpretation.

    PubMed

    Clayton, David

    2012-05-01

    "Complex" diseases are, by definition, influenced by multiple causes, both genetic and environmental, and statistical work on the joint action of multiple risk factors has, for more than 40 years, been dominated by the generalized linear model (GLM). In genetics, models for dichotomous traits have traditionally been approached via the model of an underlying, normally distributed, liability. This corresponds to the GLM with binomial errors and a probit link function. Elsewhere in epidemiology, however, the logistic regression model, a GLM with logit link function, has been the tool of choice, largely because of its convenient properties in case-control studies. The choice of link function has usually been dictated by mathematical convenience, but it has some important implications in (a) the choice of association test statistic in the presence of existing strong risk factors, (b) the ability to predict disease from genotype given its heritability, and (c) the definition, and interpretation of epistasis (or epistacy). These issues are reviewed, and a new association test proposed. PMID:22508388

  4. Six-SOMAmer Index Relating to Immune, Protease and Angiogenic Functions Predicts Progression in IPF

    PubMed Central

    Ashley, Shanna L.; Xia, Meng; Murray, Susan; O’Dwyer, David N.; Grant, Ethan; White, Eric S.; Flaherty, Kevin R.; Martinez, Fernando J.

    2016-01-01

    Rationale Biomarkers in easily accessible compartments like peripheral blood that can predict disease progression in idiopathic pulmonary fibrosis (IPF) would be clinically useful regarding clinical trial participation or treatment decisions for patients. In this study, we used unbiased proteomics to identify relevant disease progression biomarkers in IPF. Methods Plasma from IPF patients was measured using an 1129 analyte slow off-rate modified aptamer (SOMAmer) array, and patient outcomes were followed over the next 80 weeks. Receiver operating characteristic (ROC) curves evaluated sensitivity and specificity for levels of each biomarker and estimated area under the curve (AUC) when prognostic biomarker thresholds were used to predict disease progression. Both logistic and Cox regression models advised biomarker selection for a composite disease progression index; index biomarkers were weighted via expected progression-free days lost during follow-up with a biomarker on the unfavorable side of the threshold. Results A six-analyte index, scaled 0 to 11, composed of markers of immune function, proteolysis and angiogenesis [high levels of ficolin-2 (FCN2), cathepsin-S (Cath-S), legumain (LGMN) and soluble vascular endothelial growth factor receptor 2 (VEGFsR2), but low levels of inducible T cell costimulator (ICOS) or trypsin 3 (TRY3)] predicted better progression-free survival in IPF with a ROC AUC of 0.91. An index score ≥ 3 (group ≥ 2) was strongly associated with IPF progression after adjustment for age, gender, smoking status, immunomodulation, forced vital capacity % predicted and diffusing capacity for carbon monoxide % predicted (HR 16.8, 95% CI 2.2–126.7, P = 0.006). Conclusion This index, derived from the largest proteomic analysis of IPF plasma samples to date, could be useful for clinical decision making in IPF, and the identified analytes suggest biological processes that may promote disease progression. PMID:27490795

  5. Predicting tree diversity across the United States as a function of modeled gross primary production.

    PubMed

    Nightingale, Joanne M; Fan, Weihong; Coops, Nicholas C; Waring, Richard H

    2008-01-01

    At the regional and continental scale, ecologists have theorized that spatial variation in biodiversity can be interpreted as a response to differences in climate. To test this theory we assumed that ecological constraints associated with current climatic conditions (2000-2004) might best be correlated with tree richness if expressed through satellite-derived measures of gross primary production (GPP), rather than the more commonly used, but less consistently derived, net primary production. To evaluate current patterns in tree diversity across the contiguous United States we acquired information on tree composition from the USDA Forest Service's Forest Inventory and Analysis program that represented more than 17,4000 survey plots. We selected 2693 cells of 1000 km2 within which a sufficient number of plots were available to estimate tree richness per hectare. Our estimates of forest productivity varied from simple vegetation indices indicative of the fraction of light intercepted by canopies at 16-d intervals, a product from the MODIS (Moderate Resolution Imaging Spectro-radiometer), to 8- and 10-d GPP products derived with minimal climatic data (MODIS) and SPOT-Vegetation (Systeme Pour l'Observation de la Terre), to 3-PGS (Physiological Principles Predicting Growth with Satellites), which requires both climate and soil data. Across the contiguous United States, modeled predictions of gross productivity accounted for between 51% and 77% of the recorded spatial variation in tree diversity, which ranged from 2 to 67 species per hectare. When the analyses were concentrated within nine broadly defined ecoregions, predictive relations largely disappeared. Only 3-PGS predictions fit a theorized unimodal function by being able to distinguish highly productive forests in the Pacific Northwest that support lower than expected tree diversity. Other models predicted a continuous steep rise in tree diversity with increasing productivity, and did so with generally better or

  6. Predictability Effects on Durations of Content and Function Words in Conversational English

    SciTech Connect

    Bell, Alan; Brenier, Jason; Gregory, Michelle L.; girand, cynthia; Jurafsky, Daniel

    2009-01-01

    Content and function word duration are affected differently by their frequency and predictability. Regression analyses of conversational speech show that content words are shorter when they are more frequent, but function words are not. Repeated content words are shorter, but function words are not. Furthermore, function words have shorter pronunciations, after controlling for frequency and predictability. both content and function words are strongly affected by predictability from the word following them, and only very frequent function words show sensitivity to predictability from the preceding word. The results support the view that content and function words are accessed by different production mechanisms. We argue that words’ form differences due to frequency or repetition stem from their faster or slower lexical access, mediated by a general mechanism that coordinates the pace of higher-level planning and the execution of the articulatory plan.

  7. Monogenic Generalized Hermite Polynomials and Associated Hermite-Bessel Functions

    NASA Astrophysics Data System (ADS)

    Cação, I.

    2010-09-01

    A large range of generalizations of the ordinary Hermite polynomials of one or several real or complex variables has been considered by several authors, using different methods. We construct monogenic generalizations of ordinary Hermite polynomials starting from a hypercomplex analogue to the real valued Lahiri exponential generating function. By using specific operational techniques, we derive some of their properties. As an application of the constructed polynomials, we define associated monogenic Hermite-Bessel functions.

  8. Higher Genus Abelian Functions Associated with Cyclic Trigonal Curves

    NASA Astrophysics Data System (ADS)

    England, Matthew

    2010-03-01

    We develop the theory of Abelian functions associated with cyclic trigonal curves by considering two new cases. We investigate curves of genus six and seven and consider whether it is the trigonal nature or the genus which dictates certain areas of the theory. We present solutions to the Jacobi inversion problem, sets of relations between the Abelian function, links to the Boussinesq equation and a new addition formula.

  9. Profusion of opacities in simple coal workers’ pneumoconiosis is associated with reduced lung function

    PubMed Central

    Blackley, David J.; Laney, A. Scott; Halldin, Cara N.; Cohen, Robert A.

    2015-01-01

    Background A large body of evidence demonstrates dose-response relationships of cumulative coal mine dust exposure with lung function impairment and with small opacity profusion. However, medical literature generally holds that simple coal workers’ pneumoconiosis (CWP) is not associated with lung function impairment. This study examines the relationship between small opacity profusion and lung function in U.S. underground coal miners with simple CWP. Methods Miners were examined during 2005–2013 as part of the Enhanced Coal Workers’ Health Surveillance Program. Work histories were obtained, and chest radiographs and spirometry were administered. For those with multiple Program encounters, the most recent visit was used. Lung parenchymal abnormalities consistent with CWP were classified according to International Labour Organization guidelines, and reference values for FEV1 and FVC were calculated using reference equations derived from the 3rd National Health and Nutrition Examination Survey. Differences in lung function were evaluated by opacity profusion, and regression models were fit to characterize associations between profusion and lung function. Results A total of 8,230 miners were eligible for analysis; 269 had category 1 or 2 simple CWP. Decrements in FEV1 percent predicted were nearly consistent across profusion subcategories. Clear decrements in FVC percent predicted and FEV1/FVC were also observed, although these were less consistent. Controlling for smoking status, BMI, and mining tenure, each one-unit subcategory increase in profusion was associated with decreases of 1.5% (95% CI 1.0% to 1.9%), 1.0% (95% CI 0.6% to 1.3%), and 0.6% (95% CI 0.4% to 0.8%) in FEV1 percent predicted, FVC percent predicted, and FEV1/FVC, respectively. Conclusions We observed progressively lower lung function across the range of small opacity profusion. These findings address a longstanding question in occupational medicine, and point to the importance of medical

  10. Functional prediction: identification of protein orthologs and paralogs.

    PubMed Central

    Chen, R.; Jeong, S. S.

    2000-01-01

    Orthologs typically retain the same function in the course of evolution. Using beta-decarboxylating dehydrogenase family as a model, we demonstrate that orthologs can be confidently identified. The strategy is based on our recent findings that substitutions of only a few amino acid residues in these enzymes are sufficient to exchange substrate and coenzyme specificities. Hence, the few major specificity determinants can serve as reliable markers for determining orthologous or paralogous relationships. The power of this approach has been demonstrated by correcting similarity-based functional misassignment and discovering new genes and related pathways, and should be broadly applicable to other enzyme families. PMID:11206056

  11. Associations between Kidney Function and Subclinical Cardiac Abnormalities in CKD

    PubMed Central

    Hsu, Chi-yuan; Li, Yongmei; Mishra, Rakesh K.; Keane, Martin; Rosas, Sylvia E.; Dries, Daniel; Xie, Dawei; Chen, Jing; He, Jiang; Anderson, Amanda; Go, Alan S.; Shlipak, Michael G.

    2012-01-01

    Heart failure is a common consequence of CKD, and it portends high risk for mortality. However, among patients without known heart failure, the associations of different stages of estimated GFR (eGFR) with changes in cardiac structure and function are not well described. Here, we performed a cross-sectional analysis to study these associations among 3487 participants of the Chronic Renal Insufficiency Cohort Study. We estimated GFR using cystatin C. The prevalence of left ventricular hypertrophy (LVH) assessed by echocardiography was 32%, 48%, 57%, and 75% for eGFR categories ≥60, 45–59, 30–44, and <30 ml/min per 1.73 m2, respectively. In fully adjusted multivariable analyses, subjects with eGFR levels of <30 ml/min per 1.73 m2 had twofold higher odds of LVH (OR=2.20, 95% CI=1.40–3.40; P<0.001) relative to subjects with eGFR≥60 ml/min per 1.73 m2. This reduction in kidney function also significantly associated with abnormal LV geometry but not diastolic or systolic dysfunction. An eGFR of 30–44 ml/min per 1.73 m2 also significantly associated with LVH and abnormal LV geometry compared with eGFR≥60 ml/min per 1.73 m2. In summary, in this large CKD cohort, reduced kidney function associated with abnormal cardiac structure. We did not detect significant associations between kidney function and systolic or diastolic function after adjusting for potential confounding variables. PMID:22935481

  12. Statistical prediction of protein structural, localization and functional properties by the analysis of its fragment mass distributions after proteolytic cleavage

    PubMed Central

    Bogachev, Mikhail I.; Kayumov, Airat R.; Markelov, Oleg A.; Bunde, Armin

    2016-01-01

    Structural, localization and functional properties of unknown proteins are often being predicted from their primary polypeptide chains using sequence alignment with already characterized proteins and consequent molecular modeling. Here we suggest an approach to predict various structural and structure-associated properties of proteins directly from the mass distributions of their proteolytic cleavage fragments. For amino-acid-specific cleavages, the distributions of fragment masses are determined by the distributions of inter-amino-acid intervals in the protein, that in turn apparently reflect its structural and structure-related features. Large-scale computer simulations revealed that for transmembrane proteins, either α-helical or β -barrel secondary structure could be predicted with about 90% accuracy after thermolysin cleavage. Moreover, 3/4 intrinsically disordered proteins could be correctly distinguished from proteins with fixed three-dimensional structure belonging to all four SCOP structural classes by combining 3–4 different cleavages. Additionally, in some cases the protein cellular localization (cytosolic or membrane-associated) and its host organism (Firmicute or Proteobacteria) could be predicted with around 80% accuracy. In contrast to cytosolic proteins, for membrane-associated proteins exhibiting specific structural conformations, their monotopic or transmembrane localization and functional group (ATP-binding, transporters, sensors and so on) could be also predicted with high accuracy and particular robustness against missing cleavages. PMID:26924271

  13. Statistical prediction of protein structural, localization and functional properties by the analysis of its fragment mass distributions after proteolytic cleavage

    NASA Astrophysics Data System (ADS)

    Bogachev, Mikhail I.; Kayumov, Airat R.; Markelov, Oleg A.; Bunde, Armin

    2016-02-01

    Structural, localization and functional properties of unknown proteins are often being predicted from their primary polypeptide chains using sequence alignment with already characterized proteins and consequent molecular modeling. Here we suggest an approach to predict various structural and structure-associated properties of proteins directly from the mass distributions of their proteolytic cleavage fragments. For amino-acid-specific cleavages, the distributions of fragment masses are determined by the distributions of inter-amino-acid intervals in the protein, that in turn apparently reflect its structural and structure-related features. Large-scale computer simulations revealed that for transmembrane proteins, either α-helical or β -barrel secondary structure could be predicted with about 90% accuracy after thermolysin cleavage. Moreover, 3/4 intrinsically disordered proteins could be correctly distinguished from proteins with fixed three-dimensional structure belonging to all four SCOP structural classes by combining 3-4 different cleavages. Additionally, in some cases the protein cellular localization (cytosolic or membrane-associated) and its host organism (Firmicute or Proteobacteria) could be predicted with around 80% accuracy. In contrast to cytosolic proteins, for membrane-associated proteins exhibiting specific structural conformations, their monotopic or transmembrane localization and functional group (ATP-binding, transporters, sensors and so on) could be also predicted with high accuracy and particular robustness against missing cleavages.

  14. CD86+/CD206+, Diametrically Polarized Tumor-Associated Macrophages, Predict Hepatocellular Carcinoma Patient Prognosis

    PubMed Central

    Dong, Pingping; Ma, Lijie; Liu, Longzi; Zhao, Guangxi; Zhang, Si; Dong, Ling; Xue, Ruyi; Chen, She

    2016-01-01

    Tumor-associated macrophages (TAMs), the most abundant infiltrating immune cells in tumor microenvironment, have distinct functions in hepatocellular carcinoma (HCC) progression. CD68+ TAMs represent multiple polarized immune cells mainly containing CD86+ antitumoral M1 macrophages and CD206+ protumoral M2 macrophages. TAMs expression and density were assessed by immunohistochemical staining of CD68, CD86, and CD206 in tissue microarrays from 253 HCC patients. Clinicopathologic features and prognostic value of these markers were evaluated. We found that CD68+ TAMs were not associated with clinicopathologic characteristics and prognosis in HCC. Low presence of CD86+ TAMs and high presence of CD206+ TAMs were markedly correlated with aggressive tumor phenotypes, such as multiple tumor number and advanced tumor-node-metastasis (TNM) stage; and were associated with poor overall survival (OS) (p = 0.027 and p = 0.024, respectively) and increased time to recurrence (TTR) (p = 0.037 and p = 0.031, respectively). In addition, combined analysis of CD86 and CD206 provided a better indicator for OS (p = 0.011) and TTR (p = 0.024) in HCC than individual analysis of CD86 and CD206. Moreover, CD86+/CD206+ TAMs predictive model also had significant prognosis value in α-fetoprotein (AFP)-negative patients (OS: p = 0.002, TTR: p = 0.005). Thus, these results suggest that combined analysis of immune biomarkers CD86 and CD206 could be a promising HCC prognostic biomarker. PMID:26938527

  15. GENETIC ASSOCIATION BETWEEN HUMAN CHITINASES AND LUNG FUNCTION IN COPD

    PubMed Central

    Aminuddin, F.; Akhabir, L.; Stefanowicz, D.; Paré, P.D.; Connett, J.E.; Anthonisen, N.R.; Fahy, J.V.; Seibold, M.A.; Burchard, E.G.; Eng, C.; Gulsvik, A.; Bakke, P.; Cho, M. H.; Litonjua, A.; Lomas, D.A.; Anderson, W. H.; Beaty, T.H.; Crapo, J.D.; Silverman, E.K.; Sandford, A.J.

    2013-01-01

    Two primary chitinases have been identified in humans – acid mammalian chitinase (AMCase) and chitotriosidase (CHIT1). Mammalian chitinases have been observed to affect the host’s immune response. The aim of this study was to test for association between genetic variation in the chitinases and phenotypes related to Chronic Obstructive Pulmonary Disease (COPD). Polymorphisms in the chitinase genes were selected based on previous associations with respiratory diseases. Polymorphisms that were associated with lung function level or rate of decline in the Lung Health Study (LHS) cohort were analyzed for association with COPD affection status in four other COPD case-control populations. Chitinase activity and protein levels were also related to genotypes. In the Caucasian LHS population, the baseline forced expiratory volume in one second (FEV1) was significantly different between the AA and GG genotypic groups of the AMCase rs3818822 polymorphism. Subjects with the GG genotype had higher AMCase protein and chitinase activity compared with AA homozygotes. For CHIT1 rs2494303, a significant association was observed between rate of decline in FEV1 and the different genotypes. In the African American LHS population, CHIT1 rs2494303 and AMCase G339T genotypes were associated with rate of decline in FEV1. Although a significant effect of chitinase gene alleles was found on lung function level and decline in the LHS, we were unable to replicate the associations with COPD affection status in the other COPD study groups. PMID:22200767

  16. DOES FAMILY OF ORIGIN FUNCTIONING PREDICT ADULT SOMATIC COMPLAINTS?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has long been believed that adult somatic complaints are associated with early family dysfunction. Yet few studies have examined this hypothesis in community samples, where medically unexplained symptom complaints are estimated to be very common. Given the potential population-wide impact of subt...

  17. Energy functions for knots: Beginning to predict physical behavior

    SciTech Connect

    Simon, J.

    1996-12-31

    Several definitions have been proposed for the {open_quotes}energy{close_quotes} of a knot. The intuitive goal is to define a number u(K) that somehow measures how {open_quotes}tangled{close_quotes} or {open_quotes}crumpled{close_quotes} a knot K is. Typically, one starts with the idea that a small piece of the knot somehow repels other pieces, and then adds up the contributions from all the pieces. From a purely mathematical standpoint, one may hope to define new knot-type invariants, e.g by considering the minimum of u(K) as K ranges over all the knots of a given knot-type. We also are motivated by the desire to understand and predict how knot-type affects the behavior of physically real knots, in particular DNA loops in gel electrophoresis or random knotting experiments. Despite the physical naivete of recently studied knot energies, there now is enough laboratory data on relative gel velocity, along with computer calculations of idealized knot energies, to justify the assertion that knot energies can predict relative knot behavior in physical systems. The relationships between random knot frequencies and either gel velocities or knot energies is less clear at this time. 50 refs., 8 figs., 2 tabs.

  18. Visual Predictive Check in Models with Time-Varying Input Function.

    PubMed

    Largajolli, Anna; Bertoldo, Alessandra; Campioni, Marco; Cobelli, Claudio

    2015-11-01

    The nonlinear mixed effects models are commonly used modeling techniques in the pharmaceutical research as they enable the characterization of the individual profiles together with the population to which the individuals belong. To ensure a correct use of them is fundamental to provide powerful diagnostic tools that are able to evaluate the predictive performance of the models. The visual predictive check (VPC) is a commonly used tool that helps the user to check by visual inspection if the model is able to reproduce the variability and the main trend of the observed data. However, the simulation from the model is not always trivial, for example, when using models with time-varying input function (IF). In this class of models, there is a potential mismatch between each set of simulated parameters and the associated individual IF which can cause an incorrect profile simulation. We introduce a refinement of the VPC by taking in consideration a correlation term (the Mahalanobis or normalized Euclidean distance) that helps the association of the correct IF with the individual set of simulated parameters. We investigate and compare its performance with the standard VPC in models of the glucose and insulin system applied on real and simulated data and in a simulated pharmacokinetic/pharmacodynamic (PK/PD) example. The newly proposed VPC performance appears to be better with respect to the standard VPC especially for the models with big variability in the IF where the probability of simulating incorrect profiles is higher. PMID:26265094

  19. Association Between Pulmonary Function and Nonalcoholic Fatty Liver Disease in the NHANES III Study

    PubMed Central

    Peng, Tao-Chun; Kao, Tung-Wei; Wu, Li-Wei; Chen, Ying-Jen; Chang, Yaw-Wen; Wang, Chung-Ching; Tsao, Yu-Tzu; Chen, Wei-Liang

    2015-01-01

    Abstract Emerging evidence indicates that nonalcoholic fatty liver disease (NAFLD) is associated with a wide variety of extrahepatic complications. However, the potential association between impaired pulmonary function and NAFLD has been less investigated. This study examined the relationship between pulmonary function and hepatic steatosis in 9976 adults participating in a cross-sectional analysis of the Third National Health and Nutrition Examination Survey (NHANES III). NAFLD was defined as hepatic steatosis presented on ultrasound examinations in the absence of other known liver diseases. The associations between predicted forced expiratory volume in 1 second (FEV1)% or predicted forced vital capacity (FVC)% and NAFLD were examined using multivariable linear regression while controlling for confounders. The association between obstructive or restrictive spirometry patterns and NAFLD was also evaluated using multivariable logistic regression analysis. After adjustment for multiple covariates, predicted FEV1% and FVC% were significantly and inversely associated with the degree of hepatic steatosis (P for trend <0.001 for both). The restrictive lung pattern was significantly related to participants with moderate and severe hepatic steatosis as compared with those without steatosis (OR 1.65, 95% CI 1.14–2.39 and OR 1.85, 95% CI 1.13–2.82), whereas the obstructive lung pattern was not associated with the presence of hepatic steatosis. Individuals with a greater degree of hepatic steatosis were at greater risk for poor pulmonary function, especially in restrictive pattern. These novel findings demonstrate that impaired pulmonary function is also an extrahepatic complication of NAFLD. PMID:26020401

  20. Using Genetic Variation to Predict and Extend Long-term Kidney Transplant Function.

    PubMed

    Simmonds, Matthew J

    2015-10-01

    Renal transplantation has transformed the life of patients with end-stage renal disease and other chronic kidney disorders by returning endogenous kidney function and enabling patients to cease dialysis. Several clinical indicators of graft outcome and long-term function have been established. Although rising creatinine levels and graft biopsy can be used to determine graft loss, identifying early predictors of graft function will not only improve our ability to predict long-term graft outcome but importantly provide a window of opportunity to therapeutically intervene to preserve graft function before graft failure has occurred. Since understanding the importance of matching genetic variation at the HLA region between donors and recipients and translating this into clinical practise to improve transplant outcome, much focus has been placed on trying to identify additional genetic predictors of transplant outcome/function. This review will focus on how candidate gene studies have identified variants within immunosuppression, immune response, fibrotic pathways, and specific ethnic groups, which correlate with graft outcome. We will also discuss the challenges faced by candidate gene studies, such as differences in donor and recipient selection criteria and use of small data sets, which have led to many genes failing to be consistently associated with transplant outcome. This review will also look at how recent advances in our understanding of and ability to screen the genome are starting to provide new insights into the mechanisms behind long-term graft loss and with it the opportunity to target these pathways therapeutically to ultimately increase graft lifespan and the associated benefits to patients. PMID:26262502

  1. Extent of Spine Deformity Predicts Lung Growth and Function in Rabbit Model of Early Onset Scoliosis

    PubMed Central

    Olson, J. Casey; Takahashi, Ayuko; Glotzbecker, Michael P.; Snyder, Brian D.

    2015-01-01

    Early onset deformity of the spine and chest wall (initiated <8 years of age) is associated with increased morbidity at adulthood relative to adolescent onset deformity of comparable severity. Presumably, inhibition of thoracic growth during late stage alveolarization leads to an irreversible loss of pulmonary growth and thoracic function; however the natural history of this disease from onset to adulthood has not been well characterized. In this study we establish a rabbit model of early onset scoliosis to establish the extent that thoracic deformity affects structural and functional respiratory development. Using a surgical right unilateral rib-tethering procedure, rib fusion with early onset scoliosis was induced in 10 young New Zealand white rabbits (3 weeks old). Progression of spine deformity, functional residual capacity, total lung capacity, and lung mass was tracked through longitudinal breath-hold computed tomography imaging up to skeletal maturity (28 weeks old). Additionally at maturity forced vital capacity and regional specific volume were calculated as functional measurements and histo-morphometry performed with the radial alveolar count as a measure of acinar complexity. Data from tethered rib rabbits were compared to age matched healthy control rabbits (N = 8). Results show unilateral rib-tethering created a progressive spinal deformity ranging from 30° to 120° curvature, the severity of which was strongly associated with pulmonary growth and functional outcomes. At maturity rabbits with deformity greater than the median (55°) had decreased body weight (89%), right (59%) and left (86%) lung mass, right (74%) and left (69%) radial alveolar count, right lung volume at total lung capacity (60%), and forced vital capacity (75%). Early treatment of spinal deformity in children may prevent pulmonary complications in adulthood and these results provide a basis for the prediction of pulmonary development from thoracic structure. This model may also have

  2. Predictive Effects of Lung function test on Postoperative Pneumonia in Squamous Esophageal Cancer

    PubMed Central

    Wei, Ran; Dong, Wei; Shen, Hongchang; Ni, Yang; Zhang, Tiehong; Wang, Yibing; Du, Jiajun

    2016-01-01

    Pulmonary function tests had prospective implications for postoperative pneumonia, which occurred frequently after esophagectomy. Understanding factors that were associated with pulmonary infection may help in patient selection and postoperative management. We performed a retrospective review of 2 independent cohorts including 216 patients who underwent esophagectomy between November 2011 and May 2014, aiming at identifying predictors of primary pneumonia. Univariate analysis was used to identify potential covariates for the development of primary pneumonia. Adjustments for multiple comparisons were made using False Discovery Rate (FDR) (Holm-Bonferroni method). Multivariable logistic regression analysis was used to identify independent predictors and construct a regression model based on a training cohort (n = 166) and then the regression model was validated using an independent cohort (n = 50). It showed that low PEF (hazard ratio 0.97, P = 0.009) was independent risk factors for the development of primary pneumonia in multivariate analyses and had a predictive effect for primary pneumonia (AUC = 0.691 and 0.851 for training and validation data set, respectively). Therefore, PEF has clinical value in predicting postoperative pneumonia after esophagectomy and it may serve as an indicator of preoperative lung function training. PMID:27004739

  3. Predictive Effects of Lung function test on Postoperative Pneumonia in Squamous Esophageal Cancer.

    PubMed

    Wei, Ran; Dong, Wei; Shen, Hongchang; Ni, Yang; Zhang, Tiehong; Wang, Yibing; Du, Jiajun

    2016-01-01

    Pulmonary function tests had prospective implications for postoperative pneumonia, which occurred frequently after esophagectomy. Understanding factors that were associated with pulmonary infection may help in patient selection and postoperative management. We performed a retrospective review of 2 independent cohorts including 216 patients who underwent esophagectomy between November 2011 and May 2014, aiming at identifying predictors of primary pneumonia. Univariate analysis was used to identify potential covariates for the development of primary pneumonia. Adjustments for multiple comparisons were made using False Discovery Rate (FDR) (Holm-Bonferroni method). Multivariable logistic regression analysis was used to identify independent predictors and construct a regression model based on a training cohort (n = 166) and then the regression model was validated using an independent cohort (n = 50). It showed that low PEF (hazard ratio 0.97, P = 0.009) was independent risk factors for the development of primary pneumonia in multivariate analyses and had a predictive effect for primary pneumonia (AUC = 0.691 and 0.851 for training and validation data set, respectively). Therefore, PEF has clinical value in predicting postoperative pneumonia after esophagectomy and it may serve as an indicator of preoperative lung function training. PMID:27004739

  4. Body mass and immune function, but not bill coloration, predict dominance in female mallards.

    PubMed

    Ligon, Russell A; Butler, Michael W

    2016-10-01

    Competition over indivisible resources is common and often costly. Therefore, selection should favor strategies, including efficient communication, that minimize unnecessary costs associated with such competition. For example, signaling enables competitors to avoid engaging in costly asymmetrical contests. Recently, bill coloration has been identified as an information-rich signal used by some birds to mediate aggressive interactions and we evaluated this possibility in female mallards Anas platyrhynchos. Specifically, we conducted two rounds of competitive interactions among groups of unfamiliar adult female ducks. By recording all aggressive behaviors exhibited by each individual, as well as the identity of attack recipients, we were able to assign dominance scores and evaluate links between numerous physiological, morphological, and experimental variables that we predicted would influence contest outcome and dominance. Contrary to our predictions, dominance was not linked to any aspect of bill coloration, access to dietary carotenoids during development, two of three measures of immune function, or ovarian follicle maturation. Instead, heavier birds were more dominant, as were those with reduced immune system responses to an experimentally administered external immunostimulant, phytohemagglutinin. These results suggest that visual signals are less useful during the establishment of dominance hierarchies within multi-individual scramble competitions, and that immune function is correlated with contest strategies in competitions for access to limited resources. PMID:27561967

  5. Predicting the Academic Functioning of Youth Involved in Residential Care

    ERIC Educational Resources Information Center

    Griffith, Annette K.; Trout, Alexandra L.; Epstein, Michael H.; Garbin, Calvin P.; Pick, Robert; Wright, Tanya

    2010-01-01

    Youth involved in residential care programs present with significant difficulties across behavioral and mental health domains. Although this is a group that is also at considerable risk for academic failure, very little research has been done to understand the academic functioning of this population. The current study sought to expand what is…

  6. Human Hippocampal Increases in Low-Frequency Power during Associative Prediction Violations

    PubMed Central

    Chen, Janice; Dastjerdi, Mohammad; Foster, Brett L.; LaRocque, Karen F.; Rauschecker, Andreas M.; Parvizi, Josef; Wagner, Anthony D.

    2013-01-01

    Environmental cues often trigger memories of past events (associative retrieval), and these memories are a form of prediction about imminent experience. Learning is driven by the detection of prediction violations, when the past and present diverge. Using intracranial electroencephalography (iEEG), we show that associative prediction violations elicit increased low-frequency power (in the slow-theta range) in human hippocampus, that this low-frequency power increase is modulated by whether conditions allow predictions to be generated, that the increase rapidly onsets after the moment of violation, and that changes in low-frequency power are not present in adjacent perirhinal cortex. These data suggest that associative mismatch is computed within hippocampus when cues trigger predictions that are violated by imminent experience. PMID:23571081

  7. Increasing Steps/Day Predicts Improvement in Physical Function and Pain Interference in Adults with Fibromyalgia

    PubMed Central

    Kaleth, Anthony S.; Slaven, James E.; Ang, Dennis C.

    2014-01-01

    Objective To examine the concurrent and predictive associations between the number of steps taken per day (steps/day) and clinical outcomes in patients with fibromyalgia (FM). Methods 199 adults with FM [mean age = 46.1 yr; 95% females] enrolled in a randomized clinical trial wore a hip-mounted accelerometer for 1 week and completed self-report measures of physical function [Fibromyalgia Impact Questionnaire-Physical Impairment (FIQ-PI), SF-36 physical component score (SF-36 PCS)], pain intensity and interference (Brief Pain Inventory; BPI), and depressive symptoms (Patient Health Questionnaire-8; PHQ-8) as part of their baseline and follow-up assessments. Associations of steps/day with self-report clinical measures were evaluated from baseline to week 12 using multivariate regression models adjusted for demographic and baseline covariates. Results Study participants were primarily sedentary, averaging 4,019 ± 1,530 steps/day. Our findings demonstrate a linear relationship between the change in steps/day and improvement in health outcomes for FM. Incremental increases on the order of 1,000 steps/day were significantly associated with (and predictive of) improvements in FIQ-PI, SF-36 PCS, BPI pain interference, and PHQ-8 (all p<0.05). Although higher step counts were associated with lower FIQ and BPI pain intensity scores, these were not statistically significant. Conclusion Step counts is an easily obtained and understood objective measure of daily physical activity. An exercise prescription that includes recommendations to gradually accumulate at least 5,000 additional steps/day may result in clinically significant improvements in outcomes relevant to patients with FM. Future studies are needed to elucidate the dose-response relationship between steps/day and patient outcomes in FM. PMID:25049001

  8. Distinct Quantitative Computed Tomography Emphysema Patterns Are Associated with Physiology and Function in Smokers

    PubMed Central

    San José Estépar, Raúl; Mendoza, Carlos S.; Hersh, Craig P.; Laird, Nan; Crapo, James D.; Lynch, David A.; Silverman, Edwin K.; Washko, George R.

    2013-01-01

    Rationale: Emphysema occurs in distinct pathologic patterns, but little is known about the epidemiologic associations of these patterns. Standard quantitative measures of emphysema from computed tomography (CT) do not distinguish between distinct patterns of parenchymal destruction. Objectives: To study the epidemiologic associations of distinct emphysema patterns with measures of lung-related physiology, function, and health care use in smokers. Methods: Using a local histogram-based assessment of lung density, we quantified distinct patterns of low attenuation in 9,313 smokers in the COPDGene Study. To determine if such patterns provide novel insights into chronic obstructive pulmonary disease epidemiology, we tested for their association with measures of physiology, function, and health care use. Measurements and Main Results: Compared with percentage of low-attenuation area less than −950 Hounsfield units (%LAA-950), local histogram-based measures of distinct CT low-attenuation patterns are more predictive of measures of lung function, dyspnea, quality of life, and health care use. These patterns are strongly associated with a wide array of measures of respiratory physiology and function, and most of these associations remain highly significant (P < 0.005) after adjusting for %LAA-950. In smokers without evidence of chronic obstructive pulmonary disease, the mild centrilobular disease pattern is associated with lower FEV1 and worse functional status (P < 0.005). Conclusions: Measures of distinct CT emphysema patterns provide novel information about the relationship between emphysema and key measures of physiology, physical function, and health care use. Measures of mild emphysema in smokers with preserved lung function can be extracted from CT scans and are significantly associated with functional measures. PMID:23980521

  9. Analogue Functional Analysis of Movements Associated with Tardive Dyskinesia

    ERIC Educational Resources Information Center

    Valdovinos, Maria G.; Roberts, Celeste; Kennedy, Craig H.

    2004-01-01

    We studied whether movements associated with tardive dyskinesia (TD) served operant functions in 2 men with developmental disabilities. We found that TD-related movements occurred more frequently in the alone and attention conditions and less frequently in control and demand conditions. Our findings suggest that TD-related movements may not be…

  10. Associations among False Belief Understanding, Counterfactual Reasoning, and Executive Function

    ERIC Educational Resources Information Center

    Guajardo, Nicole R.; Parker, Jessica; Turley-Ames, Kandi

    2009-01-01

    The primary purposes of the present study were to clarify previous work on the association between counterfactual thinking and false belief performance to determine (1) whether these two variables are related and (2) if so, whether executive function skills mediate the relationship. A total of 92 3-, 4-, and 5-year-olds completed false belief,…

  11. Vascular function in diabetic individuals in association with particulate matter

    EPA Science Inventory

    Rationale: Exposure to ambient air pollution has been shown to be associated with cardiovascular effects, especially in people with chronic diseases such as diabetes. The purpose of this study was to analyze the short-term effects of air pollution on vascular function in two pane...

  12. Testing for Differential Item Functioning with Measures of Partial Association

    ERIC Educational Resources Information Center

    Woods, Carol M.

    2009-01-01

    Differential item functioning (DIF) occurs when an item on a test or questionnaire has different measurement properties for one group of people versus another, irrespective of mean differences on the construct. There are many methods available for DIF assessment. The present article is focused on indices of partial association. A family of average…

  13. Denoising inferred functional association networks obtained by gene fusion analysis

    PubMed Central

    Kamburov, Atanas; Goldovsky, Leon; Freilich, Shiri; Kapazoglou, Aliki; Kunin, Victor; Enright, Anton J; Tsaftaris, Athanasios; Ouzounis, Christos A

    2007-01-01

    Background Gene fusion detection – also known as the 'Rosetta Stone' method – involves the identification of fused composite genes in a set of reference genomes, which indicates potential interactions between its un-fused counterpart genes in query genomes. The precision of this method typically improves with an ever-increasing number of reference genomes. Results In order to explore the usefulness and scope of this approach for protein interaction prediction and generate a high-quality, non-redundant set of interacting pairs of proteins across a wide taxonomic range, we have exhaustively performed gene fusion analysis for 184 genomes using an efficient variant of a previously developed protocol. By analyzing interaction graphs and applying a threshold that limits the maximum number of possible interactions within the largest graph components, we show that we can reduce the number of implausible interactions due to the detection of promiscuous domains. With this generally applicable approach, we generate a robust set of over 2 million distinct and testable interactions encompassing 696,894 proteins in 184 species or strains, most of which have never been the subject of high-throughput experimental proteomics. We investigate the cumulative effect of increasing numbers of genomes on the fidelity and quantity of predictions, and show that, for large numbers of genomes, predictions do not become saturated but continue to grow linearly, for the majority of the species. We also examine the percentage of component (and composite) proteins with relation to the number of genes and further validate the functional categories that are highly represented in this robust set of detected genome-wide interactions. Conclusion We illustrate the phylogenetic and functional diversity of gene fusion events across genomes, and their usefulness for accurate prediction of protein interaction and function. PMID:18081932

  14. Functional independence of Taiwanese children with VACTERL association.

    PubMed

    Lin, Hsin-Yi; Lin, Shuan-Pei; Lin, Hsiang-Yu; Hsu, Chyong-Hsin; Chang, Jui-Hsing; Kao, Hsin-An; Hung, Han-Yang; Peng, Chun-Chih; Lee, Hung-Chang; Chen, Ming-Ren; Tsai, Jeng-Daw

    2012-12-01

    VACTERL association is a non-random association of birth defects, which may include anomalies of the vertebral column, limbs, kidneys, and heart; anal atresia; tracheoesophageal fistula; and esophageal atresia. The presence of two or more of the defects establishes the diagnosis. The aim of our study is to describe the functional independence of children with VACTERL association and compare the results to unaffected children. These results will enable clinicians to provide more realistic prognostic information to parents and families. We used the WeeFIM questionnaire to assess the functional skills of 23 patients who had been diagnosed with VACTERL association at Mackay Memorial Hospital, Taipei, Taiwan, from June 1994 to June 2009. The total WeeFIM scores and sub-scores for three domains (self-care, mobility, and cognition) correlated significantly with age (P < 0.01). The scores were generally within the same range as those of unaffected Chinese children, although our subjects had slightly inferior scores on six items, including bowel, chair transfer, stairs, expression, social interaction, and problem solving. In conclusion, the daily functional skills of Taiwanese children with VACTERL association were similar to those of unaffected children. PMID:23165933

  15. Functional linear models for association analysis of quantitative traits.

    PubMed

    Fan, Ruzong; Wang, Yifan; Mills, James L; Wilson, Alexander F; Bailey-Wilson, Joan E; Xiong, Momiao

    2013-11-01

    Functional linear models are developed in this paper for testing associations between quantitative traits and genetic variants, which can be rare variants or common variants or the combination of the two. By treating multiple genetic variants of an individual in a human population as a realization of a stochastic process, the genome of an individual in a chromosome region is a continuum of sequence data rather than discrete observations. The genome of an individual is viewed as a stochastic function that contains both linkage and linkage disequilibrium (LD) information of the genetic markers. By using techniques of functional data analysis, both fixed and mixed effect functional linear models are built to test the association between quantitative traits and genetic variants adjusting for covariates. After extensive simulation analysis, it is shown that the F-distributed tests of the proposed fixed effect functional linear models have higher power than that of sequence kernel association test (SKAT) and its optimal unified test (SKAT-O) for three scenarios in most cases: (1) the causal variants are all rare, (2) the causal variants are both rare and common, and (3) the causal variants are common. The superior performance of the fixed effect functional linear models is most likely due to its optimal utilization of both genetic linkage and LD information of multiple genetic variants in a genome and similarity among different individuals, while SKAT and SKAT-O only model the similarities and pairwise LD but do not model linkage and higher order LD information sufficiently. In addition, the proposed fixed effect models generate accurate type I error rates in simulation studies. We also show that the functional kernel score tests of the proposed mixed effect functional linear models are preferable in candidate gene analysis and small sample problems. The methods are applied to analyze three biochemical traits in data from the Trinity Students Study. PMID:24130119

  16. The predictive value of arterial stiffness on major adverse cardiovascular events in individuals with mildly impaired renal function

    PubMed Central

    Han, Jie; Wang, Xiaona; Ye, Ping; Cao, Ruihua; Yang, Xu; Xiao, Wenkai; Zhang, Yun; Bai, Yongyi; Wu, Hongmei

    2016-01-01

    Objectives Despite growing evidence that arterial stiffness has important predictive value for cardiovascular disease in patients with advanced stages of chronic kidney disease, the predictive significance of arterial stiffness in individuals with mildly impaired renal function has not been established. The aim of this study was to evaluate the predictive value of arterial stiffness on cardiovascular disease in this specific population. Materials and methods We analyzed measurements of arterial stiffness (carotid–femoral pulse-wave velocity [cf-PWV]) and the incidence of major adverse cardiovascular events (MACEs) in 1,499 subjects from a 4.8-year longitudinal study. Results A multivariate Cox proportional-hazard regression analysis showed that in individuals with normal renal function (estimated glomerular filtration rate [eGFR] ≥90 mL/min/1.73 m2), the baseline cf-PWV was not associated with occurrence of MACEs (hazard ratio 1.398, 95% confidence interval 0.748–2.613; P=0.293). In individuals with mildly impaired renal function (eGFR <90 mL/min/1.73 m2), a higher baseline cf-PWV level was associated with a higher risk of MACEs (hazard ratio 2.334, 95% confidence interval 1.082–5.036; P=0.031). Conclusion Arterial stiffness is a moderate and independent predictive factor for MACEs in individuals with mildly impaired renal function (eGFR <90 mL/min/1.73 m2). PMID:27621605

  17. Association between Cognitive Activity and Cognitive Function in Older Hispanics

    PubMed Central

    Marquine, María J.; Segawa, Eisuke; Wilson, Robert S.; Bennett, David A.; Barnes, Lisa L.

    2012-01-01

    There is limited research on the association between participation in cognitively stimulating activity and cognitive function in older Hispanics. The main purpose of the present study was to explore whether frequency of cognitive activity and its association with cognitive function in Hispanics is comparable to that of non-Hispanics. In a multiethnic cohort of 1571 non-demented older adults, we assessed past and current cognitive activity, availability of cognitive resources in the home in childhood and middle age, and five domains of cognitive function. The measures of cognitive activity and cognitive resources had adequate reliability and validity in our subset of Hispanic participants (n = 81). Hispanics reported lower levels of education, lower frequency of cognitive activity and less cognitive resources than non-Hispanic White (n = 1102) and non-Hispanic Black (n = 388) participants. Despite these differences the strength of the association between cognitive activity and cognitive function was comparable across ethnic groups. Because Hispanics have lower frequency of cognitive activity, the benefit of cognitive activity to late life cognitive function may be potentially larger in this segment of the population. Thus, interventions aimed at increasing frequency of participation in cognitively stimulating activity may offer a potential target to reduce cognitive impairment in Hispanics. PMID:22676914

  18. Characterizing genomic alterations in cancer by complementary functional associations.

    PubMed

    Kim, Jong Wook; Botvinnik, Olga B; Abudayyeh, Omar; Birger, Chet; Rosenbluh, Joseph; Shrestha, Yashaswi; Abazeed, Mohamed E; Hammerman, Peter S; DiCara, Daniel; Konieczkowski, David J; Johannessen, Cory M; Liberzon, Arthur; Alizad-Rahvar, Amir Reza; Alexe, Gabriela; Aguirre, Andrew; Ghandi, Mahmoud; Greulich, Heidi; Vazquez, Francisca; Weir, Barbara A; Van Allen, Eliezer M; Tsherniak, Aviad; Shao, Diane D; Zack, Travis I; Noble, Michael; Getz, Gad; Beroukhim, Rameen; Garraway, Levi A; Ardakani, Masoud; Romualdi, Chiara; Sales, Gabriele; Barbie, David A; Boehm, Jesse S; Hahn, William C; Mesirov, Jill P; Tamayo, Pablo

    2016-05-01

    Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment. We used REVEALER to uncover complementary genomic alterations associated with the transcriptional activation of β-catenin and NRF2, MEK-inhibitor sensitivity, and KRAS dependency. REVEALER successfully identified both known and new associations, demonstrating the power of combining functional profiles with extensive characterization of genomic alterations in cancer genomes. PMID:27088724

  19. Proteins that associate with lamins: Many faces, many functions

    SciTech Connect

    Schirmer, Eric C. . E-mail: e.schirmer@ed.ac.uk; Foisner, Roland . E-mail: roland.foisner@meduniwien.ac.at

    2007-06-10

    Lamin-associated polypeptides (LAPs) comprise inner nuclear membrane proteins tightly associated with the peripheral lamin scaffold as well as proteins forming stable complexes with lamins in the nucleoplasm. The involvement of LAPs in a wide range of human diseases may be linked to an equally bewildering range of their functions, including sterol reduction, histone modification, transcriptional repression, and Smad- and {beta}-catenin signaling. Many LAPs are likely to be at the center of large multi-protein complexes, components of which may dictate their functions, and a few LAPs have defined enzymatic activities. Here we discuss the definition of LAPs, review their many binding partners, elaborate their functions in nuclear architecture, chromatin organization, gene expression and signaling, and describe what is currently known about their links to human disease.

  20. Genomic islands predict functional adaptation in marine actinobacteria

    SciTech Connect

    Penn, Kevin; Jenkins, Caroline; Nett, Markus; Udwary, Daniel; Gontang, Erin; McGlinchey, Ryan; Foster, Brian; Lapidus, Alla; Podell, Sheila; Allen, Eric; Moore, Bradley; Jensen, Paul

    2009-04-01

    Linking functional traits to bacterial phylogeny remains a fundamental but elusive goal of microbial ecology 1. Without this information, it becomes impossible to resolve meaningful units of diversity and the mechanisms by which bacteria interact with each other and adapt to environmental change. Ecological adaptations among bacterial populations have been linked to genomic islands, strain-specific regions of DNA that house functionally adaptive traits 2. In the case of environmental bacteria, these traits are largely inferred from bioinformatic or gene expression analyses 2, thus leaving few examples in which the functions of island genes have been experimentally characterized. Here we report the complete genome sequences of Salinispora tropica and S. arenicola, the first cultured, obligate marine Actinobacteria 3. These two species inhabit benthic marine environments and dedicate 8-10percent of their genomes to the biosynthesis of secondary metabolites. Despite a close phylogenetic relationship, 25 of 37 secondary metabolic pathways are species-specific and located within 21 genomic islands, thus providing new evidence linking secondary metabolism to ecological adaptation. Species-specific differences are also observed in CRISPR sequences, suggesting that variations in phage immunity provide fitness advantages that contribute to the cosmopolitan distribution of S. arenicola 4. The two Salinispora genomes have evolved by complex processes that include the duplication and acquisition of secondary metabolite genes, the products of which provide immediate opportunities for molecular diversification and ecological adaptation. Evidence that secondary metabolic pathways are exchanged by Horizontal Gene Transfer (HGT) yet are fixed among globally distributed populations 5 supports a functional role for their products and suggests that pathway acquisition represents a previously unrecognized force driving bacterial diversification

  1. The Proteome Folding Project: Proteome-scale prediction of structure and function

    PubMed Central

    Drew, Kevin; Winters, Patrick; Butterfoss, Glenn L.; Berstis, Viktors; Uplinger, Keith; Armstrong, Jonathan; Riffle, Michael; Schweighofer, Erik; Bovermann, Bill; Goodlett, David R.; Davis, Trisha N.; Shasha, Dennis; Malmström, Lars; Bonneau, Richard

    2011-01-01

    The incompleteness of proteome structure and function annotation is a critical problem for biologists and, in particular, severely limits interpretation of high-throughput and next-generation experiments. We have developed a proteome annotation pipeline based on structure prediction, where function and structure annotations are generated using an integration of sequence comparison, fold recognition, and grid-computing-enabled de novo structure prediction. We predict protein domain boundaries and three-dimensional (3D) structures for protein domains from 94 genomes (including human, Arabidopsis, rice, mouse, fly, yeast, Escherichia coli, and worm). De novo structure predictions were distributed on a grid of more than 1.5 million CPUs worldwide (World Community Grid). We generated significant numbers of new confident fold annotations (9% of domains that are otherwise unannotated in these genomes). We demonstrate that predicted structures can be combined with annotations from the Gene Ontology database to predict new and more specific molecular functions. PMID:21824995

  2. Intrapersonal and Interpersonal Functions of Non Suicidal Self-Injury: Associations with Emotional and Social Functioning

    ERIC Educational Resources Information Center

    Turner, Brianna J.; Chapman, Alexander L.; Layden, Brianne K.

    2012-01-01

    Understanding the functions of nonsuicidal self-injury (NSSI) has important implications for the development and refinement of theoretical models and treatments of NSSI. Emotional and social vulnerabilities associated with five common functions of NSSI-emotion relief (ER), feeling generation (FG), self-punishment (SP), interpersonal influence…

  3. Pre-transplant Evaluation of Donor Urinary Biomarkers can Predict Reduced Graft Function After Deceased Donor Kidney Transplantation

    PubMed Central

    Koo, Tai Yeon; Jeong, Jong Cheol; Lee, Yonggu; Ko, Kwang-Pil; Lee, Kyoung-Bun; Lee, Sik; Park, Suk Joo; Park, Jae Berm; Han, Miyeon; Lim, Hye Jin; Ahn, Curie; Yang, Jaeseok

    2016-01-01

    Abstract Several recipient biomarkers are reported to predict graft dysfunction, but these are not useful in decision making for the acceptance or allocation of deceased donor kidneys; thus, it is necessary to develop donor biomarkers predictive of graft dysfunction. To address this issue, we prospectively enrolled 94 deceased donors and their 109 recipients who underwent transplantation between 2010 and 2013 at 4 Korean transplantation centers. We investigated the predictive values of donor urinary neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), and L-type fatty acid binding protein (L-FABP) for reduced graft function (RGF). We also developed a prediction model of RGF using these donor biomarkers. RGF was defined as delayed or slow graft function. Multiple logistic regression analysis was used to generate a prediction model, which was internally validated using a bootstrapping method. Multiple linear regression analysis was used to assess the association of biomarkers with 1-year graft function. Notably, donor urinary NGAL levels were associated with donor AKI (P = 0.014), and donor urinary NGAL and L-FABP were predictive for RGF, with area under the receiver-operating characteristic curves (AUROC) of 0.758 and 0.704 for NGAL and L-FABP, respectively. The best-fit model including donor urinary NGAL, L-FABP, and serum creatinine conveyed a better predictive value for RGF than donor serum creatinine alone (P = 0.02). In addition, we generated a scoring method to predict RGF based on donor urinary NGAL, L-FABP, and serum creatinine levels. Diagnostic performance of the RGF prediction score (AUROC 0.808) was significantly better than that of the DGF calculator (AUROC 0.627) and the kidney donor profile index (AUROC 0.606). Donor urinary L-FABP levels were also predictive of 1-year graft function (P = 0.005). Collectively, these findings suggest donor urinary NGAL and L-FABP to be useful biomarkers for RGF, and support

  4. Pre-transplant Evaluation of Donor Urinary Biomarkers can Predict Reduced Graft Function After Deceased Donor Kidney Transplantation.

    PubMed

    Koo, Tai Yeon; Jeong, Jong Cheol; Lee, Yonggu; Ko, Kwang-Pil; Lee, Kyoung-Bun; Lee, Sik; Park, Suk Joo; Park, Jae Berm; Han, Miyeon; Lim, Hye Jin; Ahn, Curie; Yang, Jaeseok

    2016-03-01

    Several recipient biomarkers are reported to predict graft dysfunction, but these are not useful in decision making for the acceptance or allocation of deceased donor kidneys; thus, it is necessary to develop donor biomarkers predictive of graft dysfunction. To address this issue, we prospectively enrolled 94 deceased donors and their 109 recipients who underwent transplantation between 2010 and 2013 at 4 Korean transplantation centers. We investigated the predictive values of donor urinary neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), and L-type fatty acid binding protein (L-FABP) for reduced graft function (RGF). We also developed a prediction model of RGF using these donor biomarkers. RGF was defined as delayed or slow graft function. Multiple logistic regression analysis was used to generate a prediction model, which was internally validated using a bootstrapping method. Multiple linear regression analysis was used to assess the association of biomarkers with 1-year graft function. Notably, donor urinary NGAL levels were associated with donor AKI (P = 0.014), and donor urinary NGAL and L-FABP were predictive for RGF, with area under the receiver-operating characteristic curves (AUROC) of 0.758 and 0.704 for NGAL and L-FABP, respectively. The best-fit model including donor urinary NGAL, L-FABP, and serum creatinine conveyed a better predictive value for RGF than donor serum creatinine alone (P = 0.02). In addition, we generated a scoring method to predict RGF based on donor urinary NGAL, L-FABP, and serum creatinine levels. Diagnostic performance of the RGF prediction score (AUROC 0.808) was significantly better than that of the DGF calculator (AUROC 0.627) and the kidney donor profile index (AUROC 0.606). Donor urinary L-FABP levels were also predictive of 1-year graft function (P = 0.005). Collectively, these findings suggest donor urinary NGAL and L-FABP to be useful biomarkers for RGF, and support the use of

  5. Does right ventricular function predict survival in patients with chronic obstructive lung disease?

    PubMed Central

    France, A J; Prescott, R J; Biernacki, W; Muir, A L; MacNee, W

    1988-01-01

    Non-invasive measurements of the right ventricular ejection fraction by radionuclide ventriculography were made in 115 patients with chronic obstructive lung disease. Survival was assessed over a mean period of 918 days. The right ventricular ejection fraction was reasonably normal in most patients (mean 0.42, range 0.10-0.66) but was lower in those with peripheral oedema, indicating cor pulmonale (mean 0.31 (SD 0.07); p less than 0.0001). Right ventricular ejection fraction was related to survival, but the relationship was weak (p = 0.03) by comparison with the association between the arterial oxygen and carbon dioxide tensions and survival (both p less than 0.0001). It is concluded that, although right ventricular function is predictive of survival in patients with chronic obstructive lung disease, it is probably a reflection of severity of disease and does not directly affect the prognosis. PMID:3175974

  6. Motor cortex excitability changes within 8 hours after ischaemic stroke may predict the functional outcome.

    PubMed

    Di Lazzaro, V; Oliviero, A; Profice, P; Saturno, E; Pilato, F; Tonali, P

    1999-06-01

    Motor evoked potentials after magnetic transcranial stimulation and the excitability of the motor cortex to increasing magnetic stimulus intensities were evaluated in six patients with hemiparesis after ischaemic stroke within 8 hours after stroke. The latencies of motor evoked potentials were normal in all patients. After stimulation of the ischaemic hemisphere we obtained responses comparable with the contralateral ones in two patients (mean NIH score 2 (SD 0)) and this group was completely asymptomatic after 15 days (NIH score 0). In four patients the excitability of the motor cortex involved by the ischaemia was reduced and magnetic motor threshold was higher than that of the spared motor cortex. This finding was associated with a poor motor recovery and the NIH score after 15 days was unchanged (NIH score 1.75 (SD 1.5)). The present data suggest that the evaluation of the excitability of motor cortex may offer a mean of predicting functional outcome following stroke. PMID:10461555

  7. Historical precipitation predictably alters the shape and magnitude of microbial functional response to soil moisture.

    PubMed

    Averill, Colin; Waring, Bonnie G; Hawkes, Christine V

    2016-05-01

    Soil moisture constrains the activity of decomposer soil microorganisms, and in turn the rate at which soil carbon returns to the atmosphere. While increases in soil moisture are generally associated with increased microbial activity, historical climate may constrain current microbial responses to moisture. However, it is not known if variation in the shape and magnitude of microbial functional responses to soil moisture can be predicted from historical climate at regional scales. To address this problem, we measured soil enzyme activity at 12 sites across a broad climate gradient spanning 442-887 mm mean annual precipitation. Measurements were made eight times over 21 months to maximize sampling during different moisture conditions. We then fit saturating functions of enzyme activity to soil moisture and extracted half saturation and maximum activity parameter values from model fits. We found that 50% of the variation in maximum activity parameters across sites could be predicted by 30-year mean annual precipitation, an indicator of historical climate, and that the effect is independent of variation in temperature, soil texture, or soil carbon concentration. Based on this finding, we suggest that variation in the shape and magnitude of soil microbial response to soil moisture due to historical climate may be remarkably predictable at regional scales, and this approach may extend to other systems. If historical contingencies on microbial activities prove to be persistent in the face of environmental change, this approach also provides a framework for incorporating historical climate effects into biogeochemical models simulating future global change scenarios. PMID:26748720

  8. Filtered selection coupled with support vector machines generate a functionally relevant prediction model for colorectal cancer

    PubMed Central

    Gabere, Musa Nur; Hussein, Mohamed Aly; Aziz, Mohammad Azhar

    2016-01-01

    Purpose There has been considerable interest in using whole-genome expression profiles for the classification of colorectal cancer (CRC). The selection of important features is a crucial step before training a classifier. Methods In this study, we built a model that uses support vector machine (SVM) to classify cancer and normal samples using Affymetrix exon microarray data obtained from 90 samples of 48 patients diagnosed with CRC. From the 22,011 genes, we selected the 20, 30, 50, 100, 200, 300, and 500 genes most relevant to CRC using the minimum-redundancy–maximum-relevance (mRMR) technique. With these gene sets, an SVM model was designed using four different kernel types (linear, polynomial, radial basis function [RBF], and sigmoid). Results The best model, which used 30 genes and RBF kernel, outperformed other combinations; it had an accuracy of 84% for both ten fold and leave-one-out cross validations in discriminating the cancer samples from the normal samples. With this 30 genes set from mRMR, six classifiers were trained using random forest (RF), Bayes net (BN), multilayer perceptron (MLP), naïve Bayes (NB), reduced error pruning tree (REPT), and SVM. Two hybrids, mRMR + SVM and mRMR + BN, were the best models when tested on other datasets, and they achieved a prediction accuracy of 95.27% and 91.99%, respectively, compared to other mRMR hybrid models (mRMR + RF, mRMR + NB, mRMR + REPT, and mRMR + MLP). Ingenuity pathway analysis was used to analyze the functions of the 30 genes selected for this model and their potential association with CRC: CDH3, CEACAM7, CLDN1, IL8, IL6R, MMP1, MMP7, and TGFB1 were predicted to be CRC biomarkers. Conclusion This model could be used to further develop a diagnostic tool for predicting CRC based on gene expression data from patient samples. PMID:27330311

  9. Hyperhomocysteinemia predicts renal function decline: a prospective study in hypertensive adults.

    PubMed

    Xie, Di; Yuan, Yan; Guo, Jiangnan; Yang, Shenglin; Xu, Xin; Wang, Qin; Li, Youbao; Qin, Xianhui; Tang, Genfu; Huo, Yong; Deng, Guangpu; Wu, Shengjie; Wang, Binyan; Zhang, Qin; Wang, Xiaobin; Fang, Pu; Wang, Hong; Xu, Xiping; Hou, Fanfan

    2015-01-01

    Hyper-homocysteinemia (HHcy) is associated with microalbuminuria and glomerular injury in general and diabetic populations. However, HHcy's role in hypertensive patients was not studied. We investigated whether HHcy is an independent risk factor for renal function decline and development of chronic kidney disease (CKD) in hypertensive men and women. This was a community-based prospective cohort study of 2,387 hypertensive adults without CKD at baseline, with a mean follow-up of 4.4 years. Baseline and follow-up levels of plasma Hcy, folate, vitamin B12, blood pressure and other pertinent covariables were obtained. CKD was defined as an estimated glomerular filtration rate (eGFR) <60 ml/min/per 1.73 m(2) and an eGFR decline rate >1 ml/min/per 1.73 m(2)/year. There was a graded association between Hcy tertiles and eGFR decline. Subjects in the 3(rd) tertile of Hcy levels had an accelerated rate of eGFR decline and an increased risk of incident CKD, as compared with those in the 1st tertile, after adjusting for age, gender, baseline diabetes, SBP, BMI, smoking, dyslipidemia, eGFR, folate and vitamin B12 levels. In conclusion, in this prospective cohort of Chinese hypertensive adults, elevated baseline plasma Hcy can serve as an independent biomarker to predict renal function decline and incident CKD. PMID:26553372

  10. Impaired High-Density Lipoprotein Anti-Oxidant Function Predicts Poor Outcome in Critically Ill Patients

    PubMed Central

    Schrutka, Lore; Goliasch, Georg; Meyer, Brigitte; Wurm, Raphael; Koller, Lorenz; Kriechbaumer, Lukas; Heinz, Gottfried; Pacher, Richard; Lang, Irene M

    2016-01-01

    Introduction Oxidative stress affects clinical outcome in critically ill patients. Although high-density lipoprotein (HDL) particles generally possess anti-oxidant capacities, deleterious properties of HDL have been described in acutely ill patients. The impact of anti-oxidant HDL capacities on clinical outcome in critically ill patients is unknown. We therefore analyzed the predictive value of anti-oxidant HDL function on mortality in an unselected cohort of critically ill patients. Method We prospectively enrolled 270 consecutive patients admitted to a university-affiliated intensive care unit (ICU) and determined anti-oxidant HDL function using the HDL oxidant index (HOI). Based on their HOI, the study population was stratified into patients with impaired anti-oxidant HDL function and the residual study population. Results During a median follow-up time of 9.8 years (IQR: 9.2 to 10.0), 69% of patients died. Cox regression analysis revealed a significant and independent association between impaired anti-oxidant HDL function and short-term mortality with an adjusted HR of 1.65 (95% CI 1.22–2.24; p = 0.001) as well as 10-year mortality with an adj. HR of 1.19 (95% CI 1.02–1.40; p = 0.032) when compared to the residual study population. Anti-oxidant HDL function correlated with the amount of oxidative stress as determined by Cu/Zn superoxide dismutase (r = 0.38; p<0.001). Conclusion Impaired anti-oxidant HDL function represents a strong and independent predictor of 30-day mortality as well as long-term mortality in critically ill patients. PMID:26978526

  11. Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards

    PubMed Central

    Plitt, Mark; Barnes, Kelly Anne; Martin, Alex

    2014-01-01

    Objectives Autism spectrum disorders (ASD) are diagnosed based on early-manifesting clinical symptoms, including markedly impaired social communication. We assessed the viability of resting-state functional MRI (rs-fMRI) connectivity measures as diagnostic biomarkers for ASD and investigated which connectivity features are predictive of a diagnosis. Methods Rs-fMRI scans from 59 high functioning males with ASD and 59 age- and IQ-matched typically developing (TD) males were used to build a series of machine learning classifiers. Classification features were obtained using 3 sets of brain regions. Another set of classifiers was built from participants' scores on behavioral metrics. An additional age and IQ-matched cohort of 178 individuals (89 ASD; 89 TD) from the Autism Brain Imaging Data Exchange (ABIDE) open-access dataset (http://fcon_1000.projects.nitrc.org/indi/abide/) were included for replication. Results High classification accuracy was achieved through several rs-fMRI methods (peak accuracy 76.67%). However, classification via behavioral measures consistently surpassed rs-fMRI classifiers (peak accuracy 95.19%). The class probability estimates, P(ASD|fMRI data), from brain-based classifiers significantly correlated with scores on a measure of social functioning, the Social Responsiveness Scale (SRS), as did the most informative features from 2 of the 3 sets of brain-based features. The most informative connections predominantly originated from regions strongly associated with social functioning. Conclusions While individuals can be classified as having ASD with statistically significant accuracy from their rs-fMRI scans alone, this method falls short of biomarker standards. Classification methods provided further evidence that ASD functional connectivity is characterized by dysfunction of large-scale functional networks, particularly those involved in social information processing. PMID:25685703

  12. Improvements to executive function during exercise training predict maintenance of physical activity over the following year

    PubMed Central

    Best, John R.; Nagamatsu, Lindsay S.; Liu-Ambrose, Teresa

    2014-01-01

    Previous studies have shown that exercise training benefits cognitive, neural, and physical health markers in older adults. It is likely that these positive effects will diminish if participants return to sedentary lifestyles following training cessation. Theory posits that that the neurocognitive processes underlying self-regulation, namely executive function (EF), are important to maintaining positive health behaviors. Therefore, we examined whether better EF performance in older women would predict greater adherence to routine physical activity (PA) over 1 year following a 12-month resistance exercise training randomized controlled trial. The study sample consisted of 125 community-dwelling women aged 65–75 years old. Our primary outcome measure was self-reported PA, as measured by the Physical Activity Scale for the Elderly (PASE), assessed on a monthly basis from month 13 to month 25. Executive function was assessed using the Stroop Test at baseline (month 0) and post-training (month 12). Latent growth curve analyses showed that, on average, PA decreased during the follow-up period but at a decelerating rate. Women who made greater improvements to EF during the training period showed better adherence to PA during the 1-year follow-up period (β = −0.36, p < 0.05); this association was unmitigated by the addition of covariates (β = −0.44, p < 0.05). As expected, EF did not predict changes in PA during the training period (p > 0.10). Overall, these findings suggest that improving EF plays an important role in whether older women maintain higher levels of PA following exercise training and that this association is only apparent after training when environmental support for PA is low. PMID:24904387

  13. Functional networks in parallel with cortical development associate with executive functions in children.

    PubMed

    Zhong, Jidan; Rifkin-Graboi, Anne; Ta, Anh Tuan; Yap, Kar Lai; Chuang, Kai-Hsiang; Meaney, Michael J; Qiu, Anqi

    2014-07-01

    Children begin performing similarly to adults on tasks requiring executive functions in late childhood, a transition that is probably due to neuroanatomical fine-tuning processes, including myelination and synaptic pruning. In parallel to such structural changes in neuroanatomical organization, development of functional organization may also be associated with cognitive behaviors in children. We examined 6- to 10-year-old children's cortical thickness, functional organization, and cognitive performance. We used structural magnetic resonance imaging (MRI) to identify areas with cortical thinning, resting-state fMRI to identify functional organization in parallel to cortical development, and working memory/response inhibition tasks to assess executive functioning. We found that neuroanatomical changes in the form of cortical thinning spread over bilateral frontal, parietal, and occipital regions. These regions were engaged in 3 functional networks: sensorimotor and auditory, executive control, and default mode network. Furthermore, we found that working memory and response inhibition only associated with regional functional connectivity, but not topological organization (i.e., local and global efficiency of information transfer) of these functional networks. Interestingly, functional connections associated with "bottom-up" as opposed to "top-down" processing were more clearly related to children's performance on working memory and response inhibition, implying an important role for brain systems involved in late childhood. PMID:23448875

  14. ENTPRISE: An Algorithm for Predicting Human Disease-Associated Amino Acid Substitutions from Sequence Entropy and Predicted Protein Structures

    PubMed Central

    Zhou, Hongyi; Gao, Mu; Skolnick, Jeffrey

    2016-01-01

    The advance of next-generation sequencing technologies has made exome sequencing rapid and relatively inexpensive. A major application of exome sequencing is the identification of genetic variations likely to cause Mendelian diseases. This requires processing large amounts of sequence information and therefore computational approaches that can accurately and efficiently identify the subset of disease-associated variations are needed. The accuracy and high false positive rates of existing computational tools leave much room for improvement. Here, we develop a boosted tree regression machine-learning approach to predict human disease-associated amino acid variations by utilizing a comprehensive combination of protein sequence and structure features. On comparing our method, ENTPRISE, to the state-of-the-art methods SIFT, PolyPhen-2, MUTATIONASSESSOR, MUTATIONTASTER, FATHMM, ENTPRISE exhibits significant improvement. In particular, on a testing dataset consisting of only proteins with balanced disease-associated and neutral variations defined as having the ratio of neutral/disease-associated variations between 0.3 and 3, the Mathews Correlation Coefficient by ENTPRISE is 0.493 as compared to 0.432 by PPH2-HumVar, 0.406 by SIFT, 0.403 by MUTATIONASSESSOR, 0.402 by PPH2-HumDiv, 0.305 by MUTATIONTASTER, and 0.181 by FATHMM. ENTPRISE is then applied to nucleic acid binding proteins in the human proteome. Disease-associated predictions are shown to be highly correlated with the number of protein-protein interactions. Both these predictions and the ENTPRISE server are freely available for academic users as a web service at http://cssb.biology.gatech.edu/entprise/. PMID:26982818

  15. Epigenetic and immune function profiles associated with posttraumatic stress disorder

    PubMed Central

    Uddin, Monica; Aiello, Allison E.; Wildman, Derek E.; Koenen, Karestan C.; Pawelec, Graham; de los Santos, Regina; Goldmann, Emily; Galea, Sandro

    2010-01-01

    The biologic underpinnings of posttraumatic stress disorder (PTSD) have not been fully elucidated. Previous work suggests that alterations in the immune system are characteristic of the disorder. Identifying the biologic mechanisms by which such alterations occur could provide fundamental insights into the etiology and treatment of PTSD. Here we identify specific epigenetic profiles underlying immune system changes associated with PTSD. Using blood samples (n = 100) obtained from an ongoing, prospective epidemiologic study in Detroit, the Detroit Neighborhood Health Study, we applied methylation microarrays to assay CpG sites from more than 14,000 genes among 23 PTSD-affected and 77 PTSD-unaffected individuals. We show that immune system functions are significantly overrepresented among the annotations associated with genes uniquely unmethylated among those with PTSD. We further demonstrate that genes whose methylation levels are significantly and negatively correlated with traumatic burden show a similar strong signal of immune function among the PTSD affected. The observed epigenetic variability in immune function by PTSD is corroborated using an independent biologic marker of immune response to infection, CMV—a typically latent herpesvirus whose activity was significantly higher among those with PTSD. This report of peripheral epigenomic and CMV profiles associated with mental illness suggests a biologic model of PTSD etiology in which an externally experienced traumatic event induces downstream alterations in immune function by reducing methylation levels of immune-related genes. PMID:20439746

  16. Associations between preoperative functional status and functional outcomes of total joint replacement in the Dominican Republic

    PubMed Central

    Collins, Jamie E.; Ghazinouri, Roya; Alcantara, Luis; Thornhill, Thomas S.; Katz, Jeffrey N.

    2013-01-01

    Objective. In developed countries, the functional status scores of patients with poor preoperative scores undergoing total joint replacement (TJR) improve more following TJR than those for patients with better preoperative scores. However, those with better preoperative scores achieve the best postoperative functional outcomes. We determined whether similar associations exist in a developing country. Methods. Dominican patients undergoing total hip or knee replacement completed WOMAC and SF-36 surveys preoperatively and at 12-month follow-up. Patients were stratified into low-, medium- and high-scoring preoperative groups based on their preoperative WOMAC function scores. We examined the associations between the baseline functional status of these groups and two outcomes—improvement in functional status over 12 months and functional status at 12 months—using analysis of variance with multivariable linear regression. Results. Patients who scored the lowest preoperatively made the greatest gains in function and pain relief following their TJRs. However, there were no significant differences in pain or function at 12-month follow-up between patients who scored low and those who scored high on preoperative WOMAC and SF-36 surveys. Conclusion. Patients with poor preoperative functional status had greater improvement but similar 12-month functional outcomes compared with patients who had a higher level of function before surgery. These results suggest that a policy of focusing scarce resources on patients with worse functional status in developing countries may optimize improvement following TJR without threatening functional outcome. Additional research is needed to confirm these findings in other developing countries and to understand why these associations vary between patients in the Dominican Republic and patients from developed countries. PMID:23748412

  17. What Specific Facets of Executive Function are Associated with Academic Functioning in Youth with Attention-Deficit/Hyperactivity Disorder?

    PubMed Central

    Langberg, Joshua M.; Dvorsky, Melissa R.; Evans, Steven W.

    2013-01-01

    The purpose of the study was to evaluate the relation between ratings of Executive Function (EF) and academic functioning in a sample of 94 middle-school-aged youth with Attention-Deficit/Hyperactivity Disorder (ADHD; Mage = 11.9; 78% male; 21% minority). This study builds on prior work by evaluating associations between multiple specific aspects of EF (e.g., working memory, inhibition, and planning and organization) as rated by both parents and teachers on the Behavior Rating Inventory of Executive Function (BRIEF), with multiple academic outcomes, including school grades and homework problems. Further, this study examined the relationship between EF and academic outcomes above and beyond ADHD symptoms and controlled for a number of potentially important covariates, including intelligence and achievement scores. The EF Planning and Organization subscale as rated by both parents and teachers predicted school grades above and beyond symptoms of ADHD and relevant covariates. Parent ratings of youth’s ability to transition effectively between tasks/situations (Shift subscale) also predicted school grades. Parent-rated symptoms of inattention, hyperactivity/impulsivity, and planning and organization abilities were significant in the final model predicting homework problems. In contrast, only symptoms of inattention and the Organization of Materials subscale from the BRIEF were significant in the teacher model predicting homework problems. Organization and planning abilities are highly important aspects academic functioning for middle-school-aged youth with ADHD. Implications of these findings for the measurement of EF, and organization and planning abilities in particular, are discussed along with potential implications for intervention. PMID:23640285

  18. A general approach to association using cluster partition functions

    NASA Astrophysics Data System (ADS)

    Hendriks, E. M.; Walsh, J.; van Bergen, A. R. D.

    1997-06-01

    A systematic and fundamental approach to associating mixtures is presented. It is shown how the thermodynamic functions may be computed starting from a partition function based on the cluster concept such as occurs in chemical theory. The theory provides a basis for and an extension of the existing chemical theory of (continuous) association. It is applicable to arbitrary association schemes. Analysis of separate cases is not necessary. The assumptions that were made to allow the development were chosen such as to make the principle of reactivity valid. It is this same principle that links various theories: the chemical theory of continuous association, the lattice fluid hydrogen bonding model, and first-order perturbation theory. The equivalence between these theories in appropriate limits is shown in a general and rigorous way. The theory is believed to provide a practical framework for engineering modeling work. Binary interaction parameters can be incorporated. The association scheme is accounted for by a set of generic equations, which should facilitate robust implementation in computer programs.

  19. Using Disease-Associated Coding Sequence Variation to Investigate Functional Compensation by Human Paralogous Proteins

    PubMed Central

    Miura, Sayaka; Tate, Stephanie; Kumar, Sudhir

    2015-01-01

    Gene duplication enables the functional diversification in species. It is thought that duplicated genes may be able to compensate if the function of one of the gene copies is disrupted. This possibility is extensively debated with some studies reporting proteome-wide compensation, whereas others suggest functional compensation among only recent gene duplicates or no compensation at all. We report results from a systematic molecular evolutionary analysis to test the predictions of the functional compensation hypothesis. We contrasted the density of Mendelian disease-associated single nucleotide variants (dSNVs) in proteins with no discernable paralogs (singletons) with the dSNV density in proteins found in multigene families. Under the functional compensation hypothesis, we expected to find greater numbers of dSNVs in singletons due to the lack of any compensating partners. Our analyses produced an opposite pattern; paralogs have over 35% higher dSNV density than singletons. We found that these patterns are concordant with similar differences in the rates of amino acid evolution (ie, functional constraints), as the proteins with paralogs have evolved 33% slower than singletons. Our evolutionary constraint explanation is robust to differences in family sizes, ages (young vs. old duplicates), and degrees of amino acid sequence similarities among paralogs. Therefore, disease-associated human variation does not exhibit significant signals of functional compensation among paralogous proteins, but rather an evolutionary constraint hypothesis provides a better explanation for the observed patterns of disease-associated and neutral polymorphisms in the human genome. PMID:26604664

  20. Circulating MicroRNAs: Association with Lung Function in Asthma

    PubMed Central

    Kho, Alvin T.; Sharma, Sunita; Davis, Joshua S.; Spina, Joseph; Howard, Dagnie; McEnroy, Kevin; Moore, Kip; Sylvia, Jody; Qiu, Weiliang; Weiss, Scott T.; Tantisira, Kelan G.

    2016-01-01

    Background MicroRNAs are key transcriptional and network regulators previously associated with asthma susceptibility. However, their role in relation to asthma severity has not been delineated. Objective We hypothesized that circulating microRNAs could serve as biomarkers of changes in lung function in asthma patients. Methods We isolated microRNAs from serum samples obtained at randomization for 160 participants of the Childhood Asthma Management Program. Using a TaqMan microRNA array containing 754 microRNA primers, we tested for the presence of known asthma microRNAs, and assessed the association of the individual microRNAs with lung function as measured by FEV1/FVC, FEV1% and FVC%. We further tested the subset of FEV1/FVC microRNAs for sex-specific and lung developmental associations. Results Of the 108 well-detected circulating microRNAs, 74 (68.5%) had previously been linked to asthma susceptibility. We found 22 (20.3%), 4 (3.7%) and 8 (7.4%) microRNAs to be associated with FEV1/FVC, FEV1% and FVC%, respectively. 8 (of 22) FEV1/FVC, 3 (of 4) FEV1% and 1 (of 8) FVC% microRNAs had functionally validated target genes that have been linked via genome wide association studies to asthma and FEV1 change. Among the 22 FEV1/FVC microRNAs, 9 (40.9%) remain associated with FEV1/FVC in boys alone in a sex-stratified analysis (compared with 3 FEV1/FVC microRNAs in girls alone), 7 (31.8%) were associated with fetal lung development, and 3 (13.6%) in both. Ontology analyses revealed enrichment for pathways integral to asthma, including PPAR signaling, G-protein coupled signaling, actin and myosin binding, and respiratory system development. Conclusions Circulating microRNAs reflect asthma biology and are associated with lung function differences in asthmatics. They may represent biomarkers of asthma severity. PMID:27362794

  1. New BPD predicts lung function at school age: Follow-up study and meta-analysis.

    PubMed

    Ronkainen, Eveliina; Dunder, Teija; Peltoniemi, Outi; Kaukola, Tuula; Marttila, Riitta; Hallman, Mikko

    2015-11-01

    New treatment practices have improved survival of preterm infants and decreased airway pathology in bronchopulmonary dysplasia (BPD). Our aim was to investigate whether preterm birth, BPD, and the severity of BPD predict lung function in school children that are born in surfactant era. We studied pulmonary function of 88 school-aged children born very preterm (gestational age <32 weeks) and paired them with 88 age- and sex-matched controls born at term. Spirometry and diffusion capacity were recorded. We also performed a meta-analysis covering the era of antenatal corticosteroid and surfactant treatment. BPD was defined as oxygen dependence for ≥ 28 days and it was severity-graded by oxygen requirement at 36 weeks postmenstrual age (mild, none; moderate, FiO2 = 0.22-0.29; severe, FiO2 ≥ 0.30). Preterm children had lower forced expiratory volume in 1 sec (FEV1 ) 86.4 ± 11.8 versus 94.9 ± 10.1 (mean % predicted ± SD; P < 0.001), and lower diffusion capacity (DLCO) 87.6 ± 13.9 versus 93.7 ± 12.0 (P = 0.005) compared with term controls. BPD group differed in both FEV1 (P = 0.037) and DLCO (P = 0.018) from those without BPD. For meta-analysis, search identified 210 articles. Together with present results, six articles met the inclusion criteria. FEV1 of no BPD, all BPD, and moderate to severe BPD groups differed from that in term controls by -7.4, -10.5, and -17.8%, respectively. According to meta-analysis and follow-up study, the adverse effects of prematurity on pulmonary function are still detectable in school-age. BPD was associated with reductions in both diffusion capacity and spirometry. New interventions are required to document a further decrease in the life-long consequences of prematurity. PMID:25589379

  2. Exercise testing in severe emphysema: association with quality of life and lung function.

    PubMed

    Brown, Cynthia D; Benditt, Joshua O; Sciurba, Frank C; Lee, Shing M; Criner, Gerard J; Mosenifar, Zab; Shade, David M; Slivka, William A; Wise, Robert A

    2008-04-01

    Six-minute walk testing (6MWT) and cardiopulmonary exercise testing (CPX) are used to evaluate impairment in emphysema. However, the extent of impairment in these tests as well as the correlation of these tests with each other and lung function in advanced emphysema is not well characterized. During screening for the National Emphysema Treatment Trial, maximum ergometer CPX and 6MWT were performed in 1,218 individuals with severe COPD with an average FEV(1) of 26.9 +/- 7.1 % predicted. Predicted values for 6MWT and CPX were calculated from reference equations. Correlation coefficients and multivariable regression models were used to determine the association between lung function, quality of life (QOL) scores, and exercise measures. The two forms of exercise testing were correlated with each other (r = 0.57, p < 0.0001). However, the impairment of performance on CPX was greater than on the 6MWT (27.6 +/- 16.8 vs. 67.9 +/- 18.9 % predicted). Both exercise tests had similar correlation with measures of QOL, but maximum exercise capacity was better correlated with lung function measures than 6-minute walk distance. After adjustment, 6MWD had a slightly greater association with total SGRQ score than maximal exercise (effect size 0.37 +/- 0.04 vs. 0.25 +/- 0.03 %predicted/unit). Despite advanced emphysema, patients are able to maintain 6MWD to a greater degree than maximum exercise capacity. Moreover, the 6MWT may be a better test of functional capacity given its greater association with QOL measures whereas CPX is a better test of physiologic impairment. PMID:18415810

  3. Does cognitive functioning predict chronic pain? Results from a prospective surgical cohort.

    PubMed

    Attal, Nadine; Masselin-Dubois, Anne; Martinez, Valéria; Jayr, Christian; Albi, Aline; Fermanian, Jacques; Bouhassira, Didier; Baudic, Sophie

    2014-03-01

    It is well established that chronic pain impairs cognition, particularly memory, attention and mental flexibility. Overlaps have been found between the brain regions involved in pain modulation and cognition, including in particular the prefrontal cortex and the anterior cingulate cortex, which are involved in executive function, attention and memory. However, whether cognitive function may predict chronic pain has not been investigated. We addressed this question in surgical patients, because such patients can be followed prospectively and may have no pain before surgery. In this prospective longitudinal study, we investigated the links between executive function, visual memory and attention, as assessed by clinical measurements and the development of chronic pain, its severity and neuropathic symptoms (based on the 'Douleur Neuropathique 4' questionnaire), 6 and 12 months after surgery (total knee arthroplasty for osteoarthritis or breast surgery for cancer). Neuropsychological tests included the Trail-Making Test A and B, and the Rey-Osterrieth Complex Figure copy and immediate recall, which assess cognitive flexibility, visuospatial processing and visual memory. Anxiety, depression and coping strategies were also evaluated. In total, we investigated 189 patients before surgery: 96% were re-evaluated at 6 months, and 88% at 12 months. Multivariate logistic regression (stepwise selection) for the total group of patients indicated that the presence of clinical meaningful pain at 6 and 12 months (pain intensity ≥ 3/10) was predicted by poorer cognitive performance in the Trail Making Test B (P = 0.0009 and 0.02 for pain at 6 and 12 months, respectively), Rey-Osterrieth Complex Figure copy (P = 0.015 and 0.006 for pain at 6 and 12 months, respectively) and recall (P = 0.016 for pain at 12 months), independently of affective variables. Linear regression analyses indicated that impaired scores on these tests predicted pain intensity (P < 0.01) and neuropathic

  4. The Prediction of Broadband Shock-Associated Noise from Dualstream and Rectangular Jets Using RANS CFD

    NASA Technical Reports Server (NTRS)

    Miller, Steven A.; Morris, Philip J.

    2010-01-01

    Supersonic jets operating off-design produce broadband shock-associated noise. Broadband shock-associated noise is characterized by multiple broadband peaks in the far-field and is often the dominant source of noise towards the sideline and upstream direction relative to the jet axis. It is due to large scale coherent turbulence structures in the jet shear layers interacting with the shock cell structure. A broadband shock-associated noise model recently developed by the authors predicts this noise component from solutions to the Reynolds averaged Navier-Stokes equations using a two-equation turbulence model. The broadband shock-associated noise model is applied to dualstream and rectangular nozzles operating supersonically, heated, and off-design. The dualstream jet broadband shock-associated noise predictions are conducted for cases when the core jet is supersonic and the fan jet is subsonic, the core jet is subsonic and the fan jet is supersonic, and when both jet streams operate supersonically. Rectangular jet predictions are shown for a convergent-divergent nozzle operating both over- and under-expanded for cold and heated conditions. The original model implementation has been heavily modified to make accurate predictions for the dualstream jets. It is also argued that for over-expanded jets the oblique shock wave attached to the nozzle lip contributes little to broadband shock-associated noise. All predictions are compared with experiments.

  5. A functional polymorphism in the MAOA gene promoter (MAOA-LPR) predicts central dopamine function and body mass index.

    PubMed

    Ducci, F; Newman, T K; Funt, S; Brown, G L; Virkkunen, M; Goldman, D

    2006-09-01

    Variation in brain monoaminergic activity is heritable and modulates risk of alcoholism and other addictions, as well as food intake and energy expenditure. Monoamine oxidase A deaminates the monoamine neurotransmitters serotonin, dopamine (DA), and noradrenaline. The monoamine oxidase A (MAOA) gene (Xp11.5) contains a length polymorphism in its promoter region (MAOA-LPR) that putatively affects transcriptional efficiency. Our goals were to test (1) whether MAOA-LPR contributes to interindividual variation in monoamine activity, assessed using levels of cerebrospinal fluid (CSF) monoamine metabolites; and (2) whether MAOA-LPR genotype influences alcoholism and/or body mass index (BMI). Male, unrelated criminal alcoholics (N=278) and controls (N=227) were collected from a homogeneous Finnish source population. CSF concentration of 5-hydroxyindoleacetic acid (5-HIAA), homovanillic acid (HVA), and 3-methoxy-4-hydroxyphenylglycol (MHPG) were available from 208 participants. Single allele, hemizygous genotypes were grouped according to inferred effect of the MAOA alleles on transcriptional activity. MAOA-LPR genotypes had a significant effect on CSF HVA concentration (P=0.01) but explained only 3% of the total variance. There was a detectable but nonsignificant genotype effect on 5-HIAA and no effects on MHPG. Specifically, the genotype conferring high MAOA activity was associated with lower HVA levels in both alcoholics and controls, a finding that persisted after accounting for the potential confounds of alcoholism, BMI, height, and smoking. MAOA-LPR genotype predicted BMI (P<0.005), with the high-activity genotype being associated with lower BMI. MAOA-LPR genotypes were not associated with alcoholism or related psychiatric phenotypes in this data set. Our results suggest that MAOA-LPR allelic variation modulates DA turnover in the CNS, but does so in a manner contrary to our prior expectation that alleles conferring high activity would predict higher HVA levels in

  6. The Luminosity Function of OB Associations in the Galaxy

    NASA Astrophysics Data System (ADS)

    McKee, Christopher F.; Williams, Jonathan P.

    1997-02-01

    as many ionizing photons as the radio H II regions themselves. Allowing for the ionizing radiation that is absorbed by dust (about 25% of the total), we find that the maximum ionizing photon luminosity of a Galactic OB association is Su ~= 4.9 × 1051 photons s-1, corresponding to an Hα luminosity of about 5 × 1039 ergs s-1. The total ionizing luminosity of this distribution of OB associations can account for the thermal radio emission and the N II far-infrared emission of the Galaxy. The number of massive stars in the associations is consistent with estimates of the rate of massive star supernovae in the Galaxy. Associations produce several generations of stars over their lifetimes, and the largest associations are predicted to produce about 7000 supernova progenitors. Fitting the surface density of associations to an exponential of the form d\\Nscra(\\Nscr*)/dA~ exp (-R/HR) with a scale length HR = 3.5 kpc gives a number of OB associations in the solar neighborhood that is consistent with observation. The H II envelopes contribute to pulsar dispersion measures and can account for the increased dispersion measure observed in the inner Galaxy.

  7. Neuropsychological Characteristics and Their Association with Higher-Level Functional Capacity in Parkinson's Disease

    PubMed Central

    Miura, Kayoko; Matsui, Mie; Takashima, Shutaro; Tanaka, Kortaro

    2015-01-01

    Background/Aims Little is known about the relationship between cognitive functions and higher-level functional capacity (e.g. intellectual activity, social role, and social participation) in Parkinson's disease (PD). The purpose of this study was to clarify neuropsychological characteristics and their association with higher-level functional capacity in PD patients. Methods Participants were 31 PD patients and 23 demographically matched healthy controls. Neuropsychological tests were conducted. One year later, a questionnaire survey evaluated higher-level functional capacity in daily living. Results The PD group scored significantly lower than the control group in all cognitive domains, particularly executive function and processing. Executive function, processing speed, language, and memory were significantly correlated with higher-level functional capacity in PD patients. Stepwise regression showed that only executive function (Trail Making Test-B), together with disease severity (HY stage), predicted the higher-level functional capacity. Conclusion Our findings provide evidence of a relationship between executive function and higher-level functional capacity in patients with PD. PMID:26273243

  8. Heterogeneous Network Edge Prediction: A Data Integration Approach to Prioritize Disease-Associated Genes

    PubMed Central

    Himmelstein, Daniel S.; Baranzini, Sergio E.

    2015-01-01

    The first decade of Genome Wide Association Studies (GWAS) has uncovered a wealth of disease-associated variants. Two important derivations will be the translation of this information into a multiscale understanding of pathogenic variants and leveraging existing data to increase the power of existing and future studies through prioritization. We explore edge prediction on heterogeneous networks—graphs with multiple node and edge types—for accomplishing both tasks. First we constructed a network with 18 node types—genes, diseases, tissues, pathophysiologies, and 14 MSigDB (molecular signatures database) collections—and 19 edge types from high-throughput publicly-available resources. From this network composed of 40,343 nodes and 1,608,168 edges, we extracted features that describe the topology between specific genes and diseases. Next, we trained a model from GWAS associations and predicted the probability of association between each protein-coding gene and each of 29 well-studied complex diseases. The model, which achieved 132-fold enrichment in precision at 10% recall, outperformed any individual domain, highlighting the benefit of integrative approaches. We identified pleiotropy, transcriptional signatures of perturbations, pathways, and protein interactions as influential mechanisms explaining pathogenesis. Our method successfully predicted the results (with AUROC = 0.79) from a withheld multiple sclerosis (MS) GWAS despite starting with only 13 previously associated genes. Finally, we combined our network predictions with statistical evidence of association to propose four novel MS genes, three of which (JAK2, REL, RUNX3) validated on the masked GWAS. Furthermore, our predictions provide biological support highlighting REL as the causal gene within its gene-rich locus. Users can browse all predictions online (http://het.io). Heterogeneous network edge prediction effectively prioritized genetic associations and provides a powerful new approach for data

  9. Heterogeneous Network Edge Prediction: A Data Integration Approach to Prioritize Disease-Associated Genes.

    PubMed

    Himmelstein, Daniel S; Baranzini, Sergio E

    2015-07-01

    The first decade of Genome Wide Association Studies (GWAS) has uncovered a wealth of disease-associated variants. Two important derivations will be the translation of this information into a multiscale understanding of pathogenic variants and leveraging existing data to increase the power of existing and future studies through prioritization. We explore edge prediction on heterogeneous networks--graphs with multiple node and edge types--for accomplishing both tasks. First we constructed a network with 18 node types--genes, diseases, tissues, pathophysiologies, and 14 MSigDB (molecular signatures database) collections--and 19 edge types from high-throughput publicly-available resources. From this network composed of 40,343 nodes and 1,608,168 edges, we extracted features that describe the topology between specific genes and diseases. Next, we trained a model from GWAS associations and predicted the probability of association between each protein-coding gene and each of 29 well-studied complex diseases. The model, which achieved 132-fold enrichment in precision at 10% recall, outperformed any individual domain, highlighting the benefit of integrative approaches. We identified pleiotropy, transcriptional signatures of perturbations, pathways, and protein interactions as influential mechanisms explaining pathogenesis. Our method successfully predicted the results (with AUROC = 0.79) from a withheld multiple sclerosis (MS) GWAS despite starting with only 13 previously associated genes. Finally, we combined our network predictions with statistical evidence of association to propose four novel MS genes, three of which (JAK2, REL, RUNX3) validated on the masked GWAS. Furthermore, our predictions provide biological support highlighting REL as the causal gene within its gene-rich locus. Users can browse all predictions online (http://het.io). Heterogeneous network edge prediction effectively prioritized genetic associations and provides a powerful new approach for data

  10. Analogue functional analysis of movements associated with tardive dyskinesia.

    PubMed

    Valdovinos, Maria G; Roberts, Celeste; Kennedy, Craig H

    2004-01-01

    We studied whether movements associated with tardive dyskinesia (TD) served operant functions in 2 men with developmental disabilities. We found that TD-related movements occurred more frequently in the alone and attention conditions and less frequently in control and demand conditions. Our findings suggest that TD-related movements may not be maintained by social reinforcers and that decreases in TD movements are possibly a result of engagement in activities that are incompatible with TD movements. PMID:15529895

  11. Predicting Functional Resilience Among Young-Adult Children of Opiate-Addicted Parents

    PubMed Central

    Skinner, Martie L.; Haggerty, Kevin P.; Fleming, Charles B.; Catalano, Richard F.

    2009-01-01

    Purpose This study describes the adversities experienced by a sample of children of opiate-addicted parents, examines criteria for young adulthood functional resilience, and tests parent, child, and school predictors of resilience. Methods The Focus on Families (FOF) project was a randomized trial of a family-focused intervention with opiate addicts in methadone treatment and their children. Analyses were conducted on data from the children in treatment and control families during the original study (1991–1995) and a long-term follow-up interview (2005–2006). Results While all participants had an opiate-addicted parent, 70% experienced 2 or more and 20% experienced 4 or more additional types of childhood adversity. Twenty-four percent met the following three criteria for functional resilience at the time of their young-adult interview: (1) working or being enrolled in school, (2) no history of substance abuse or dependence, and (3) no adult criminal charges in the prior 5 years. The FOF intervention did not significantly predict functional resilience. Girls were approximately four times more likely to exhibit resilience than boys. Experiencing a wider range of adversities in addition to having an opiate-addicted parent did not reduce the likelihood of functional resilience. Of the 5 child, family, and school predictors tested after, only externalizing or internalizing problems in childhood were significantly associated with the likelihood of functional resilience (OR = .30, p = .04) as a young adult. Conclusions These findings suggest that early intervention with families with addicted parents to prevent and reduce internalizing and externalizing problems in their children holds the most promise of supporting resilient adaptation in early adulthood. PMID:19237115

  12. Functional organization of telencephalic visual association fields in pigeons.

    PubMed

    Stacho, Martin; Ströckens, Felix; Xiao, Qian; Güntürkün, Onur

    2016-04-15

    Birds show remarkable visual abilities that surpass most of our visual psychophysiological abilities. In this study, we investigated visual associative areas of the tectofugal visual system in pigeons. Similar to the condition in mammals, ascending visual pathways in birds are subdivided into parallel form/color vs. motion streams at the thalamic and primary telencephalic level. However, we know practically nothing about the functional organization of those telencephalic areas that receive input from the primary visual telencephalic fields. The current study therefore had two objectives: first, to reveal whether these visual associative areas of the tectofugal system are activated during visual discrimination tasks; second, to test whether separated form/color vs. motion pathways can be discerned among these association fields. To this end, we trained pigeons to discriminate either form/color or motion stimuli and used the immediate early gene protein ZENK to capture the activity of the visual associative areas during the task. We could indeed identify several visual associative telencephalic structures by activity pattern changes during discriminations. However, none of these areas displayed a difference between form/color vs. motion sessions. The presence of such a distinction in thalamo-telencephalic, but not in further downstream visual association areas opens the possibility that these separate streams converge very early in birds, which possibly minimizes long-range connections due to the evolutionary pressure toward miniaturized brains. PMID:26802723

  13. CHARGE association in Sweden: malformations and functional deficits.

    PubMed

    Strömland, Kerstin; Sjögreen, Lotta; Johansson, Maria; Ekman Joelsson, Britt-Marie; Miller, Marilyn; Danielsson, Susanna; Billstedt, Eva; Gillberg, Christopher; Jacobsson, Catharina; Norinder, Jan Andersson; Granström, Gösta

    2005-03-15

    CHARGE association (CA) consists of a non-random association of ocular coloboma (C), heart anomaly (H), atresia of choanae (A), retarded growth and/or development (R), genital hypoplasia (G), and ear anomalies and/or hearing impairment (E). A prospective multidisciplinary study of 31 Swedish patients with CA was undertaken in order to describe the associated malformations and functional deficits, find possible etiological factors and identify critical time periods for the maldevelopment. The clinical files were analyzed, the mothers answered a questionnaire on history of prenatal events, and a clinical evaluation of systemic findings, vision, hearing, balance, speech, oral and swallowing function, and neuro-psychiatric function, especially autism, was performed. The most frequent physical abnormalities affected ears (90%), eyes (90%), brain (61%), heart (52%), retarded growth (48%), genitals (38%), choanae (35%), and facial nerve (32%). Sixty-one percent of the patients were visually impaired or blind, and 74% had hearing loss or deafness. Problems in balance, speech, and eating were common. Forty percent of the patients had autism/atypical autism, and 82% had developmental delay. Three children were born following assisted fertilization and two mothers had diabetes. The mothers reported infections, bleedings, and drug use during pregnancy. Analysis of possible critical time periods suggested that most malformations were produced early in pregnancy, mainly during post conceptual weeks 4, 5, and 6. A multidisciplinary approach is essential in the assessment and management of CA. PMID:15633180

  14. Functional Coherence of Insula Networks is Associated with Externalizing Behavior

    PubMed Central

    Abram, Samantha V.; Wisner, Krista M.; Grazioplene, Rachael G.; Krueger, Robert F.; MacDonald, Angus W.; DeYoung, Colin G.

    2015-01-01

    The externalizing spectrum encompasses a range of maladaptive behaviors, including substance use problems, impulsivity, and aggression. While previous literature has linked externalizing behaviors with prefrontal and amygdala abnormalities, recent studies suggest insula functionality is implicated. The present study investigated the relation between insula functional coherence and externalizing in a large community sample (N=244). Participants underwent a resting functional magnetic resonance imaging scan. Three non-artifactual intrinsic connectivity networks (ICNs) substantially involving the insula were identified after completing independent components analysis. Three externalizing domains—general disinhibition, substance abuse, and callous aggression—were measured with the Externalizing Spectrum Inventory. Regression models tested whether within-network coherence for the three insula ICNs was related to each externalizing domain. Posterior insula coherence was positively associated with general disinhibition and substance abuse. Anterior insula/ventral striatum/anterior cingulate network coherence was negatively associated with general disinhibition. Insula coherence did not relate to the callous aggression domain. Follow-up analyses indicated specificity for insula ICNs in their relation to general disinhibition and substance abuse as compared to other frontal and limbic ICNs. This study found insula network coherence was significantly associated with externalizing behaviors in community participants. Frontal and limbic ICNs containing less insular cortex were not related to externalizing. Thus, the neural synchrony of insula networks may be central for understanding externalizing psychopathology. PMID:26301974

  15. Factors Associated with Lung Function Decline in Patients with Non-Tuberculous Mycobacterial Pulmonary Disease

    PubMed Central

    Lee, Meng-Rui; Yang, Ching-Yao; Chang, Kai-Ping; Keng, Li-Ta; Yen, David Hung-Tsang; Wang, Jann-Yuan; Wu, Huey-Dong; Lee, Li-Na; Yu, Chong-Jen

    2013-01-01

    Background There is paucity of risk factors on lung function decline among patients with non-tuberculous mycobacteria (NTM) pulmonary disease in literature. Methods Patients with NTM pulmonary disease between January 2000 and April 2011 were retrospectively selected. Sixty-eight patients had at least two pulmonary function tests within a mean follow-up period of 47 months. Results Sixty-eight patients were included. They had a median age of 65 years and 65% had impaired lung function (Forced expiratory volume in 1 second [FEV1] <80% of predicted value). The mean FEV1 decline was 48 ml/year. By linear regression, younger age (beta: 0.472, p<0.001), initial FEV1>50% of predicted value (beta: 0.349, p = 0.002), male sex (beta: 0.295, p = 0.018), bronchiectasis pattern (beta: 0.232, p = 0.035), and radiographic score >3 (beta: 0.217, p = 0.049) were associated with greater FEV1 decline. Initial FEV1>50% of predicted value (beta: 0.263, p = 0.032) was also associated with greater FVC annual decline, whereas M. kansasii pulmonary disease was marginally associated with greater annual FVC decline (beta: 0.227, p = 0.062). Conclusions NTM pulmonary disease is associated with greater decline in lung function in patients who are young, male, with bronchiectasis, and with a high radiographic score. Special attention should be given to patients with these risk factors. PMID:23483998

  16. Association between Functional Variables and Heart Failure after Myocardial Infarction in Rats

    PubMed Central

    Polegato, Bertha F.; Minicucci, Marcos F.; Azevedo, Paula S.; Gonçalves, Andréa F.; Lima, Aline F.; Martinez, Paula F.; Okoshi, Marina P.; Okoshi, Katashi; Paiva, Sergio A. R.; Zornoff, Leonardo A. M.

    2016-01-01

    Background Heart failure prediction after acute myocardial infarction may have important clinical implications. Objective To analyze the functional echocardiographic variables associated with heart failure in an infarction model in rats. Methods The animals were divided into two groups: control and infarction. Subsequently, the infarcted animals were divided into groups: with and without heart failure. The predictive values were assessed by logistic regression. The cutoff values predictive of heart failure were determined using ROC curves. Results Six months after surgery, 88 infarcted animals and 43 control animals were included in the study. Myocardial infarction increased left cavity diameters and the mass and wall thickness of the left ventricle. Additionally, myocardial infarction resulted in systolic and diastolic dysfunction, characterized by lower area variation fraction values, posterior wall shortening velocity, E-wave deceleration time, associated with higher values of E / A ratio and isovolumic relaxation time adjusted by heart rate. Among the infarcted animals, 54 (61%) developed heart failure. Rats with heart failure have higher left cavity mass index and diameter, associated with worsening of functional variables. The area variation fraction, the E/A ratio, E-wave deceleration time and isovolumic relaxation time adjusted by heart rate were functional variables predictors of heart failure. The cutoff values of functional variables associated with heart failure were: area variation fraction < 31.18%; E / A > 3.077; E-wave deceleration time < 42.11 and isovolumic relaxation time adjusted by heart rate < 69.08. Conclusion In rats followed for 6 months after myocardial infarction, the area variation fraction, E/A ratio, E-wave deceleration time and isovolumic relaxation time adjusted by heart rate are predictors of heart failure onset. PMID:26815462

  17. Emotion suppression moderates the quadratic association between RSA and executive function

    PubMed Central

    Spangler, Derek P.; Bell, Martha Ann; Deater-Deckard, Kirby

    2016-01-01

    There is uncertainty about whether respiratory sinus arrhythmia (RSA), a cardiac marker of adaptive emotion regulation, is involved in relatively low or high executive function performance. In the present study, we investigated: (1) whether RSA during rest and tasks predict both relatively low and high executive function within a larger quadratic association among the two variables, and (2) the extent to which this quadratic trend was moderated by individual differences in emotion regulation. To achieve these aims, a sample of ethnically and socioeconomically diverse women self-reported reappraisal and emotion suppression. They next experienced a two-minute resting period during which ECG was continually assessed. In the next phase, the women completed an array of executive function and non-executive cognitive tasks while ECG was measured throughout. As anticipated, resting RSA showed a quadratic association with executive function that was strongest for high suppression. These results suggest that relatively high resting RSA may predict poor executive function ability when emotion regulation consumes executive control resources needed for ongoing cognitive performance. PMID:26018941

  18. Misalignment Effect Function Measurement for Oblique Rotation Axes: Counterintuitive Predictions and Theoretical Extensions

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.; Adelstein, Bernard D.; Yeom, Kiwon

    2013-01-01

    The Misalignment Effect Function (MEF) describes the decrement in manual performance associated with a rotation between operators' visual display frame of reference and that of their manual control. It now has been empirically determined for rotation axes oblique to canonical body axes and is compared with the MEF previously measured for rotations about canonical axes. A targeting rule, called the Secant Rule, based on these earlier measurements is derived from a hypothetical process and shown to describe some of the data from three previous experiments. It explains the motion trajectories determined for rotations less than 65deg in purely kinematic terms without the need to appeal to a mental rotation process. Further analysis of this rule in three dimensions applied to oblique rotation axes leads to a somewhat surprising expectation that the difficulty posed by rotational misalignment should get harder as the required movement is shorter. This prediction is confirmed. Geometry underlying this rule also suggests analytic extensions for predicting more generally the difficulty of making movements in arbitrary directions subject to arbitrary misalignments.

  19. Genotype and gene expression associations with immune function in Drosophila.

    PubMed

    Sackton, Timothy B; Lazzaro, Brian P; Clark, Andrew G

    2010-01-01

    It is now well established that natural populations of Drosophila melanogaster harbor substantial genetic variation associated with physiological measures of immune function. In no case, however, have intermediate measures of immune function, such as transcriptional activity of immune-related genes, been tested as mediators of phenotypic variation in immunity. In this study, we measured bacterial load sustained after infection of D. melanogaster with Serratia marcescens, Providencia rettgeri, Enterococcus faecalis, and Lactococcus lactis in a panel of 94 third-chromosome substitution lines. We also measured transcriptional levels of 329 immune-related genes eight hours after infection with E. faecalis and S. marcescens in lines from the phenotypic tails of the test panel. We genotyped the substitution lines at 137 polymorphic markers distributed across 25 genes in order to test for statistical associations among genotype, bacterial load, and transcriptional dynamics. We find that genetic polymorphisms in the pathogen recognition genes (and particularly in PGRP-LC, GNBP1, and GNBP2) are most significantly associated with variation in bacterial load. We also find that overall transcriptional induction of effector proteins is a significant predictor of bacterial load after infection with E. faecalis, and that a marker upstream of the recognition gene PGRP-SD is statistically associated with variation in both bacterial load and transcriptional induction of effector proteins. These results show that polymorphism in genes near the top of the immune system signaling cascade can have a disproportionate effect on organismal phenotype due to the amplification of minor effects through the cascade. PMID:20066029

  20. Predicting maize phenology: Intercomparison of functions for developmental response to temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate prediction of phenological development in maize is fundamental to determining crop adaptation and yield potential. A number of thermal functions are used in crop models, but their relative precision in predicting maize development has not been quantified. The objectives of this study were t...

  1. Nurses' Assessment of Rehabilitation Potential and Prediction of Functional Status at Discharge from Inpatient Rehabilitation

    ERIC Educational Resources Information Center

    Myers, Jamie S.; Grigsby, Jim; Teel, Cynthia S.; Kramer, Andrew M.

    2009-01-01

    The goals of this study were to evaluate the accuracy of nurses' predictions of rehabilitation potential in older adults admitted to inpatient rehabilitation facilities and to ascertain whether the addition of a measure of executive cognitive function would enhance predictive accuracy. Secondary analysis was performed on prospective data collected…

  2. Predicting the biomechanical strength of proximal femur specimens with Minkowski functionals and support vector regression

    NASA Astrophysics Data System (ADS)

    Yang, Chien-Chun; Nagarajan, Mahesh B.; Huber, Markus B.; Carballido-Gamio, Julio; Bauer, Jan S.; Baum, Thomas; Eckstein, Felix; Lochmüller, Eva-Maria; Link, Thomas M.; Wismüller, Axel

    2014-03-01

    Regional trabecular bone quality estimation for purposes of femoral bone strength prediction is important for improving the clinical assessment of osteoporotic fracture risk. In this study, we explore the ability of 3D Minkowski Functionals derived from multi-detector computed tomography (MDCT) images of proximal femur specimens in predicting their corresponding biomechanical strength. MDCT scans were acquired for 50 proximal femur specimens harvested from human cadavers. An automated volume of interest (VOI)-fitting algorithm was used to define a consistent volume in the femoral head of each specimen. In these VOIs, the trabecular bone micro-architecture was characterized by statistical moments of its BMD distribution and by topological features derived from Minkowski Functionals. A linear multiregression analysis and a support vector regression (SVR) algorithm with a linear kernel were used to predict the failure load (FL) from the feature sets; the predicted FL was compared to the true FL determined through biomechanical testing. The prediction performance was measured by the root mean square error (RMSE) for each feature set. The best prediction result was obtained from the Minkowski Functional surface used in combination with SVR, which had the lowest prediction error (RMSE = 0.939 ± 0.345) and which was significantly lower than mean BMD (RMSE = 1.075 ± 0.279, p<0.005). Our results indicate that the biomechanical strength prediction can be significantly improved in proximal femur specimens with Minkowski Functionals extracted from on MDCT images used in conjunction with support vector regression.

  3. Common Functional Gastroenterological Disorders Associated With Abdominal Pain.

    PubMed

    Bharucha, Adil E; Chakraborty, Subhankar; Sletten, Christopher D

    2016-08-01

    Although abdominal pain is a symptom of several structural gastrointestinal disorders (eg, peptic ulcer disease), this comprehensive review will focus on the 4 most common nonstructural, or functional, disorders associated with abdominal pain: functional dyspepsia, constipation-predominant and diarrhea-predominant irritable bowel syndrome, and functional abdominal pain syndrome. Together, these conditions affect approximately 1 in 4 people in the United States. They are associated with comorbid conditions (eg, fibromyalgia and depression), impaired quality of life, and increased health care utilization. Symptoms are explained by disordered gastrointestinal motility and sensation, which are implicated in various peripheral (eg, postinfectious inflammation and luminal irritants) and/or central (eg, stress and anxiety) factors. These disorders are defined and can generally be diagnosed by symptoms alone. Often prompted by alarm features, selected testing is useful to exclude structural disease. Identifying the specific diagnosis (eg, differentiating between functional abdominal pain and irritable bowel syndrome) and establishing an effective patient-physician relationship are the cornerstones of therapy. Many patients with mild symptoms can be effectively managed with limited tests, sensible dietary modifications, and over-the-counter medications tailored to symptoms. If these measures are not sufficient, pharmacotherapy should be considered for bowel symptoms (constipation or diarrhea) and/or abdominal pain; opioids should not be used. Behavioral and psychological approaches (eg, cognitive behavioral therapy) can be helpful, particularly in patients with chronic abdominal pain who require a multidisciplinary pain management program without opioids. PMID:27492916

  4. FUNCTIONAL EVALUATION OF AUTISM-ASSOCIATED MUTATIONS IN NHE9

    PubMed Central

    Kondapalli, Kalyan C.; Hack, Anniesha; Schushan, Maya; Landau, Meytal; Ben-Tal, Nir; Rao, Rajini

    2013-01-01

    Summary NHE9 (SLC9A9) is an endosomal cation/proton antiporter with orthologs in yeast and bacteria. Rare, missense substitutions in NHE9 are genetically linked with autism, but have not been functionally evaluated. Here we use evolutionary conservation analysis to build a model-structure of NHE9 based on the crystal structure of bacterial NhaA and use it to screen autism-associated variants in the human population first by phenotype complementation in yeast, followed by functional analysis in primary cortical astrocytes from mouse. NHE9-GFP localizes to recycling endosomes where it significantly alkalinizes luminal pH, elevates uptake of transferrin and the neurotransmitter glutamate, and stabilizes surface expression of transferrin receptor and GLAST transporter. In contrast, autism associated variants L236S, S438P and V176I lack function in astrocytes. Thus, we establish a neurobiological cell model of a candidate gene in autism. Loss of function mutations in NHE9 may contribute to autistic phenotype by modulating synaptic membrane protein expression and neurotransmitter clearance. PMID:24065030

  5. FNTM: a server for predicting functional networks of tissues in mouse.

    PubMed

    Goya, Jonathan; Wong, Aaron K; Yao, Victoria; Krishnan, Arjun; Homilius, Max; Troyanskaya, Olga G

    2015-07-01

    Functional Networks of Tissues in Mouse (FNTM) provides biomedical researchers with tissue-specific predictions of functional relationships between proteins in the most widely used model organism for human disease, the laboratory mouse. Users can explore FNTM-predicted functional relationships for their tissues and genes of interest or examine gene function and interaction predictions across multiple tissues, all through an interactive, multi-tissue network browser. FNTM makes predictions based on integration of a variety of functional genomic data, including over 13 000 gene expression experiments, and prior knowledge of gene function. FNTM is an ideal starting point for clinical and translational researchers considering a mouse model for their disease of interest, researchers already working with mouse models who are interested in discovering new genes related to their pathways or phenotypes of interest, and biologists working with other organisms to explore the functional relationships of their genes of interest in specific mouse tissue contexts. FNTM predicts tissue-specific functional relationships in 200 tissues, does not require any registration or installation and is freely available for use at http://fntm.princeton.edu. PMID:25940632

  6. Spatially distributed flame transfer functions for predicting combustion dynamics in lean premixed gas turbine combustors

    SciTech Connect

    Kim, K.T.; Lee, J.G.; Quay, B.D.; Santavicca, D.A.

    2010-09-15

    The present paper describes a methodology to improve the accuracy of prediction of the eigenfrequencies and growth rates of self-induced instabilities and demonstrates its application to a laboratory-scale, swirl-stabilized, lean-premixed, gas turbine combustor. The influence of the spatial heat release distribution is accounted for using local flame transfer function (FTF) measurements. The two-microphone technique and CH{sup *} chemiluminescence intensity measurements are used to determine the input (inlet velocity perturbation) and the output functions (heat release oscillation), respectively, for the local flame transfer functions. The experimentally determined local flame transfer functions are superposed using the flame transfer function superposition principle, and the result is incorporated into an analytic thermoacoustic model, in order to predict the linear stability characteristics of a given system. Results show that when the flame length is not acoustically compact the model prediction calculated using the local flame transfer functions is better than the prediction made using the global flame transfer function. In the case of a flame in the compact flame regime, accurate predictions of eigenfrequencies and growth rates can be obtained using the global flame transfer function. It was also found that the general response characteristics of the local FTF (gain and phase) are qualitatively the same as those of the global FTF. (author)

  7. DISSOCIATING N400 EFFECTS OF PREDICTION FROM ASSOCIATION IN SINGLE WORD CONTEXTS

    PubMed Central

    Lau, Ellen F.; Holcomb, Phillip J.; Kuperberg, Gina R.

    2013-01-01

    When a word is preceded by a supportive context such as a semantically associated word or a strongly constraining sentence frame, the N400 component of the ERP is reduced in amplitude. An ongoing debate is the degree to which this reduction reflects a passive spread of activation across long-term semantic memory representations as opposed to specific predictions about upcoming input. We addressed this question by embedding semantically associated prime-target pairs within an experimental context that encouraged prediction to a greater or lesser degree. The proportion of related items was used to manipulate the predictive validity of the prime for the target while holding semantic association constant. A semantic category probe detection task was used to encourage semantic processing and to preclude the need for a motor response on the trials of interest. A larger N400 reduction to associated targets was observed in the high than the low relatedness proportion condition, consistent with the hypothesis that predictions about upcoming stimuli make a substantial contribution to the N400 effect. We also observed an earlier priming effect (205–240 ms) in the high proportion condition, which may reflect facilitation due to form-based prediction. In sum, the results suggest that predictability modulates N400 amplitude to a greater degree than the semantic content of the context. PMID:23163410

  8. Dissociating N400 effects of prediction from association in single-word contexts.

    PubMed

    Lau, Ellen F; Holcomb, Phillip J; Kuperberg, Gina R

    2013-03-01

    When a word is preceded by a supportive context such as a semantically associated word or a strongly constraining sentence frame, the N400 component of the ERP is reduced in amplitude. An ongoing debate is the degree to which this reduction reflects a passive spread of activation across long-term semantic memory representations as opposed to specific predictions about upcoming input. We addressed this question by embedding semantically associated prime-target pairs within an experimental context that encouraged prediction to a greater or lesser degree. The proportion of related items was used to manipulate the predictive validity of the prime for the target while holding semantic association constant. A semantic category probe detection task was used to encourage semantic processing and to preclude the need for a motor response on the trials of interest. A larger N400 reduction to associated targets was observed in the high than the low relatedness proportion condition, consistent with the hypothesis that predictions about upcoming stimuli make a substantial contribution to the N400 effect. We also observed an earlier priming effect (205-240 msec) in the high-proportion condition, which may reflect facilitation because of form-based prediction. In summary, the results suggest that predictability modulates N400 amplitude to a greater degree than the semantic content of the context. PMID:23163410

  9. A prediction method for broadband shock associated noise from supersonic rectangualr jets

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Reddy, N. N.

    1993-01-01

    Braodband shock associated noise is an important aircraft noise component of the proposed high-speed civil transport (HSCT) at take-offs and landings. For noise certification purpose one would, therefore, like to be able to predict as accurately as possible the intensity, directivity and spectral content of this noise component. The purpose of this work is to develop a semi-empirical prediction method for the broadband shock associated noise from supersonic rectangular jets. The complexity and quality of the noise prediction method are to be similar to those for circular jets. In this paper only the broadband shock associated noise of jets issued from rectangular nozzles with straight side walls is considered. Since many current aircraft propulsion systems have nozzle aspect ratios (at nozzle exit) in the range of 1 to 4, the present study has been confined to nozzles with aspect ratio less than 6. In developing the prediction method the essential physics of the problem are taken into consideration. Since the braodband shock associated noise generation mechanism is the same whether the jet is circular or round the present prediction method in a number of ways is quite similar to that for axisymmetric jets. Comparisons between predictions and measurements for jets with aspect ratio up to 6 will be reported. Efforts will be concentrated on the fly-over plane. However, side line angles and other directions will also be included.

  10. Quantification of protein group coherence and pathway assignment using functional association

    PubMed Central

    2011-01-01

    Background Genomics and proteomics experiments produce a large amount of data that are awaiting functional elucidation. An important step in analyzing such data is to identify functional units, which consist of proteins that play coherent roles to carry out the function. Importantly, functional coherence is not identical with functional similarity. For example, proteins in the same pathway may not share the same Gene Ontology (GO) terms, but they work in a coordinated fashion so that the aimed function can be performed. Thus, simply applying existing functional similarity measures might not be the best solution to identify functional units in omics data. Results We have designed two scores for quantifying the functional coherence by considering association of GO terms observed in two biological contexts, co-occurrences in protein annotations and co-mentions in literature in the PubMed database. The counted co-occurrences of GO terms were normalized in a similar fashion as the statistical amino acid contact potential is computed in the protein structure prediction field. We demonstrate that the developed scores can identify functionally coherent protein sets, i.e. proteins in the same pathways, co-localized proteins, and protein complexes, with statistically significant score values showing a better accuracy than existing functional similarity scores. The scores are also capable of detecting protein pairs that interact with each other. It is further shown that the functional coherence scores can accurately assign proteins to their respective pathways. Conclusion We have developed two scores which quantify the functional coherence of sets of proteins. The scores reflect the actual associations of GO terms observed either in protein annotations or in literature. It has been shown that they have the ability to accurately distinguish biologically relevant groups of proteins from random ones as well as a good discriminative power for detecting interacting pairs of

  11. The Power of Renal Function Estimation Equations for Predicting Long-Term Kidney Graft Survival

    PubMed Central

    Choi, Hoon Young; Joo, Dong Jin; Song, Mi Kyung; Kim, Myoung Soo; Park, Hyeong Cheon; Kim, Yu Seun; Kim, Beom Seok

    2016-01-01

    Abstract Evaluation of renal function using an accurate estimation equation is important for predicting long-term graft survival. We designed this retrospective cohort study to evaluate the predictive power of renal function estimation by the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) and the Modification of Diet in Renal Disease (MDRD) study equations for graft survival. We reviewed data of 3290 adult kidney transplant recipients who underwent transplantation at a single center between April 1979 and September 2012. The reliability and agreement of chronic kidney disease (CKD) stages based on the estimated glomerular filtration rate (eGFR) as calculated by the CKD-EPI and MDRD equations were evaluated using Bland–Altman plots and Cohen weighted kappa analyses. The predictive power of CKD stages as classified by each equation for graft survival was investigated using Cox regression models. Additionally, Pearson and Spearman correlation coefficients were used to reveal the relationship between graft survival and eGFR equations. Of 3290 kidney transplant recipients, 3040 were included in the analysis. The mean follow-up duration was 128.08 ± 83.54 months, and 29.8% of participants were reclassified to higher eGFR categories by the CKD-EPI equation compared to the category classification by the MDRD equation. eGFR calculated using the MDRD equation was underestimated compared to that calculated using the CKD-EPI equation, based on the Bland–Altman plot. In Cohen weighted kappa analysis, agreement across CKD stages classified using the 2 equations was reliable, but all CKD stages classified using the MDRD equation appeared to be in lower eGFR categories than those classified using the CKD-EPI equation. Pearson and Spearman correlation analyses indicated that the CKD stage as classified by the CKD-EPI equation, but not the MDRD equation, was significantly correlated with the risk of graft failure. In multivariable Cox regression analysis for

  12. In Silico Promoter Analysis can Predict Genes of Functional Relevance in Cell Proliferation: Validation in a Colon Cancer Model

    PubMed Central

    Moss, Alan C.; Doran, Peter P.; MacMathuna, Padraic

    2007-01-01

    Specific combinations of transcription-factor binding sites in the promoter regions of genes regulate gene expression, and thus key functional processes in cells. Analysis of such promoter regions in specific functional contexts can be used to delineate novel disease-associated genes based on shared phenotypic properties. The aim of this study was to utilize promoter analysis to predict cell proliferation-associated genes and to test this method in colon cancer cell lines. We used freely-available bioinformatic techniques to identify cell-proliferation-associated genes expressed in colon cancer, extract a shared promoter module, and identify novel genes that also contain this module in the human genome. An EGRF/ETSF promoter module was identified as prevalent in proliferation-associated genes from a colon cancer cDNA library. We detected 30 other genes, from the known promoters of the human genome, which contained this proliferation-associated module. This group included known proliferation-associated genes, such as HERG1 and MCM7, and a number of genes not previously implicated in cell proliferation in cancer, such as TSPAN3, Necdin and APLP2. Suppression of TSPAN3 and APLP2 by siRNA was performed and confirmed by RT-PCR. Inhibition of these genes significantly inhibited cell proliferation in colon cancer cell lines. This study demonstrates that promoter analysis can be used to identify novel cancer-associated genes based on shared functional processes. PMID:23641142

  13. Do self-report and medical record comorbidity data predict longitudinal functional capacity and quality of life health outcomes similarly?

    PubMed Central

    2012-01-01

    Background The search for a reliable, valid and cost-effective comorbidity risk adjustment method for outcomes research continues to be a challenge. The most widely used tool, the Charlson Comorbidity Index (CCI) is limited due to frequent missing data in medical records and administrative data. Patient self-report data has the potential to be more complete but has not been widely used. The purpose of this study was to evaluate the performance of the Self-Administered Comorbidity Questionnaire (SCQ) to predict functional capacity, quality of life (QOL) health outcomes compared to CCI medical records data. Method An SCQ-score was generated from patient interview, and the CCI score was generated by medical record review for 525 patients hospitalized for Acute Coronary Syndrome (ACS) at baseline, three months and eight months post-discharge. Linear regression models assessed the extent to which there were differences in the ability of comorbidity measures to predict functional capacity (Activity Status Index [ASI] scores) and quality of life (EuroQOL 5D [EQ5D] scores). Results The CCI (R2 = 0.245; p = 0.132) did not predict quality of life scores while the SCQ self-report method (R2 = 0.265; p < 0.0005) predicted the EQ5D scores. However, the CCI was almost as good as the SCQ for predicting the ASI scores at three and six months and performed slightly better in predicting ASI at eight-month follow up (R2 = 0.370; p < 0.0005 vs. R2 = 0.358; p < 0.0005) respectively. Only age, gender, family income and Center for Epidemiologic Studies-Depression (CESD) scores showed significant association with both measures in predicting QOL and functional capacity. Conclusions Although our model R-squares were fairly low, these results show that the self-report SCQ index is a good alternative method to predict QOL health outcomes when compared to a CCI medical record score. Both measures predicted physical functioning similarly. This suggests that patient self-reported comorbidity

  14. The utility of pulmonary function testing in predicting outcomes following liver transplantation.

    PubMed

    Kia, Leila; Cuttica, Michael J; Yang, Amy; Donnan, Erica N; Whitsett, Maureen; Singhvi, Ajay; Lemmer, Alexander; Levitsky, Josh

    2016-06-01

    Although pulmonary function tests (PFTs) are routinely performed in patients during the evaluation period before liver transplantation (LT), their utility in predicting post-LT mortality and morbidity outcomes is not known. The aim of this study was to determine the impact of obstructive and/or restrictive lung disease on post-LT outcomes. We conducted a retrospective analysis of patients who had pre-LT PFTs and underwent a subsequent LT (2007-2013). We used statistical analyses to determine independent associations between PFT parameters and outcomes (graft/patient survival, time on ventilator, and hospital/intensive care unit [ICU] length of stay [LOS]). A total of 415 LT recipients with available PFT data were included: 65% of patients had normal PFTs; 8% had obstructive lung disease; and 27% had restrictive lung disease. There was no difference in patient and graft survival between patients with normal, obstructive, and restrictive lung disease. However, restrictive lung disease was associated with longer post-LT time on ventilator and both ICU and hospital LOS (P < 0.05). More specific PFT parameters (diffusing capacity of the lungs for carbon monoxide, total lung capacity, and residual volume) were all significant predictors of ventilator time and both ICU and hospital LOS (P < 0.05). Although pre-LT PFT parameters may not predict post-LT mortality, restrictive abnormalities correlate with prolonged post-LT ventilation and LOS. Efforts to identify and minimize the impact of restrictive abnormalities on PFTs might improve such outcomes. Liver Transplantation 22 805-811 2016 AASLD. PMID:26929108

  15. Association of exceptional parental longevity and physical function in aging.

    PubMed

    Ayers, Emmeline; Barzilai, Nir; Crandall, Jill P; Milman, Sofiya; Verghese, Joe

    2014-01-01

    Offspring of parents with exceptional longevity (OPEL), who are more likely to carry longevity-associated genotypes, may age more successfully than offspring of parents with usual survival (OPUS). Maintenance of physical function is a key attribute of successful aging. While many genetic and non-genetic factors interact to determine physical phenotype in aging, examination of the contribution of exceptional parental longevity to physical function in aging is limited. The LonGenity study recruited a relatively genetically homogenous cohort of Ashkenazi Jewish (AJ) adults age 65 and older, who were defined as either OPEL (having at least one parent who lived to age 95 or older) or OPUS (neither parent survived to age 95). Subjective and objective measures of physical function were compared between the two groups, accounting for potential confounders. Of the 893 LonGenity subjects, 365 were OPEL and 528 were OPUS. OPEL had better objective and subjective measures of physical function than OPUS, especially on unipedal stance (p = 0.009) and gait speed (p = 0.002). Results support the protective role of exceptional parental longevity in preventing decline in physical function, possibly via genetic mechanisms that should be further explored. PMID:24997018

  16. Predicting exposure-response associations of ambient particulate matter with mortality in 73 Chinese cities.

    PubMed

    Madaniyazi, Lina; Guo, Yuming; Chen, Renjie; Kan, Haidong; Tong, Shilu

    2016-01-01

    Estimating the burden of mortality associated with particulates requires knowledge of exposure-response associations. However, the evidence on exposure-response associations is limited in many cities, especially in developing countries. In this study, we predicted associations of particulates smaller than 10 μm in aerodynamic diameter (PM10) with mortality in 73 Chinese cities. The meta-regression model was used to test and quantify which city-specific characteristics contributed significantly to the heterogeneity of PM10-mortality associations for 16 Chinese cities. Then, those city-specific characteristics with statistically significant regression coefficients were treated as independent variables to build multivariate meta-regression models. The model with the best fitness was used to predict PM10-mortality associations in 73 Chinese cities in 2010. Mean temperature, PM10 concentration and green space per capita could best explain the heterogeneity in PM10-mortality associations. Based on city-specific characteristics, we were able to develop multivariate meta-regression models to predict associations between air pollutants and health outcomes reasonably well. PMID:26452312

  17. Cognitive Impairment Precedes and Predicts Functional Impairment in Mild Alzheimer’s Disease

    PubMed Central

    Liu-Seifert, Hong; Siemers, Eric; Price, Karen; Han, Baoguang; Selzler, Katherine J.; Henley, David; Sundell, Karen; Aisen, Paul; Cummings, Jeffrey; Raskin, Joel; Mohs, Richard

    2015-01-01

    Abstract Background: The temporal relationship of cognitive deficit and functional impairment in Alzheimer’s disease (AD) is not well characterized. Recent analyses suggest cognitive decline predicts subsequent functional decline throughout AD progression. Objective: To better understand the relationship between cognitive and functional decline in mild AD using autoregressive cross-lagged (ARCL) panel analyses in several clinical trials. Methods: Data included placebo patients with mild AD pooled from two multicenter, double-blind, Phase 3 solanezumab (EXPEDITION/2) or semagacestat (IDENTITY/2) studies, and from AD patients participating in the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Cognitive and functional outcomes were assessed using AD Assessment Scale-Cognitive subscale (ADAS-Cog), AD Cooperative Study-Activities of Daily Living instrumental subscale (ADCS-iADL), or Functional Activities Questionnaire (FAQ), respectively. ARCL panel analyses evaluated relationships between cognitive and functional impairment over time. Results: In EXPEDITION, ARCL panel analyses demonstrated cognitive scores significantly predicted future functional impairment at 5 of 6 time points, while functional scores predicted subsequent cognitive scores in only 1 of 6 time points. Data from IDENTITY and ADNI programs yielded consistent results whereby cognition predicted subsequent function, but not vice-versa. Conclusions: Analyses from three databases indicated cognitive decline precedes and predicts subsequent functional decline in mild AD dementia, consistent with previously proposed hypotheses, and corroborate recent publications using similar methodologies. Cognitive impairment may be used as a predictor of future functional impairment in mild AD dementia and can be considered a critical target for prevention strategies to limit future functional decline in the dementia process. PMID:26402769

  18. Functional disability of adults in Brazil: prevalence and associated factors

    PubMed Central

    de Andrade, Keitty Regina Cordeiro; Silva, Marcus Tolentino; Galvão, Taís Freire; Pereira, Maurício Gomes

    2015-01-01

    ABSTRACT OBJECTIVE To estimate the prevalence and factors associated with functional disability in adults in Brazil. METHODS We used information from the health supplement of the National Household Sample Survey in 2008. The dependent variable was the functional disability among adults of 18 to 65 years, measured by the difficulty of walking about 100 meters; independent variables were: health plan membership, region of residence, state of domicile, education level, household income, economic activity, self-perception of health, hospitalization, chronic diseases, age group, sex, and color. We calculated the gross odds ratios (OR), and their respective confidence intervals (95%), and adjusted them for variables of study by ordinal logistic regression, following hierarchical model. Sample weights were considered in all calculations. RESULTS We included 18,745 subjects, 74.0% of whom were women. More than a third of adults reported having functional disability. The disability was significantly higher among men (OR = 1.17; 95%CI 1.09;1.27), people from 35 to 49 years (OR = 1.30; 95%CI 1.17;1.45) and 50 to 65 years (OR = 1.38; 95%CI 1.24;1.54); economically inactive individuals (OR = 2.21; 95%CI 1.65;2.96); adults who reported heart disease (OR = 1.13; 95%CI 1.03;1.24), diabetes mellitus (OR = 1.16; 95%CI 1.05;1.29), arterial systemic hypertension (OR = 1.10; 95%CI 1.02;1.18), and arthritis/rheumatism (OR = 1.24; 95%CI 1.15;1.34); and participants who were admitted in the last 12 months (OR = 2.35; 95%CI 1.73;3.2). CONCLUSIONS Functional disability is common among Brazilian adults. Hospitalization is the most strongly associated factor, followed by economic activity, and chronic diseases. Sex, age, education, and income are also associated. Results indicate specific targets for actions that address the main factors associated with functional disabilities and contribute to the projection of interventions for the improvement of the well-being and promotion of adults

  19. Using PPI network autocorrelation in hierarchical multi-label classification trees for gene function prediction

    PubMed Central

    2013-01-01

    Background Ontologies and catalogs of gene functions, such as the Gene Ontology (GO) and MIPS-FUN, assume that functional classes are organized hierarchically, that is, general functions include more specific ones. This has recently motivated the development of several machine learning algorithms for gene function prediction that leverages on this hierarchical organization where instances may belong to multiple classes. In addition, it is possible to exploit relationships among examples, since it is plausible that related genes tend to share functional annotations. Although these relationships have been identified and extensively studied in the area of protein-protein interaction (PPI) networks, they have not received much attention in hierarchical and multi-class gene function prediction. Relations between genes introduce autocorrelation in functional annotations and violate the assumption that instances are independently and identically distributed (i.i.d.), which underlines most machine learning algorithms. Although the explicit consideration of these relations brings additional complexity to the learning process, we expect substantial benefits in predictive accuracy of learned classifiers. Results This article demonstrates the benefits (in terms of predictive accuracy) of considering autocorrelation in multi-class gene function prediction. We develop a tree-based algorithm for considering network autocorrelation in the setting of Hierarchical Multi-label Classification (HMC). We empirically evaluate the proposed algorithm, called NHMC (Network Hierarchical Multi-label Classification), on 12 yeast datasets using each of the MIPS-FUN and GO annotation schemes and exploiting 2 different PPI networks. The results clearly show that taking autocorrelation into account improves the predictive performance of the learned models for predicting gene function. Conclusions Our newly developed method for HMC takes into account network information in the learning phase: When

  20. Constructing lncRNA functional similarity network based on lncRNA-disease associations and disease semantic similarity.

    PubMed

    Chen, Xing; Yan, Chenggang Clarence; Luo, Cai; Ji, Wen; Zhang, Yongdong; Dai, Qionghai

    2015-01-01

    Increasing evidence has indicated that plenty of lncRNAs play important roles in many critical biological processes. Developing powerful computational models to construct lncRNA functional similarity network based on heterogeneous biological datasets is one of the most important and popular topics in the fields of both lncRNAs and complex diseases. Functional similarity network construction could benefit the model development for both lncRNA function inference and lncRNA-disease association identification. However, little effort has been attempted to analysis and calculate lncRNA functional similarity on a large scale. In this study, based on the assumption that functionally similar lncRNAs tend to be associated with similar diseases, we developed two novel lncRNA functional similarity calculation models (LNCSIM). LNCSIM was evaluated by introducing similarity scores into the model of Laplacian Regularized Least Squares for LncRNA-Disease Association (LRLSLDA) for lncRNA-disease association prediction. As a result, new predictive models improved the performance of LRLSLDA in the leave-one-out cross validation of various known lncRNA-disease associations datasets. Furthermore, some of the predictive results for colorectal cancer and lung cancer were verified by independent biological experimental studies. It is anticipated that LNCSIM could be a useful and important biological tool for human disease diagnosis, treatment, and prevention. PMID:26061969

  1. Constructing lncRNA functional similarity network based on lncRNA-disease associations and disease semantic similarity

    PubMed Central

    Chen, Xing; Clarence Yan, Chenggang; Luo, Cai; Ji, Wen; Zhang, Yongdong; Dai, Qionghai

    2015-01-01

    Increasing evidence has indicated that plenty of lncRNAs play important roles in many critical biological processes. Developing powerful computational models to construct lncRNA functional similarity network based on heterogeneous biological datasets is one of the most important and popular topics in the fields of both lncRNAs and complex diseases. Functional similarity network consturction could benefit the model development for both lncRNA function inference and lncRNA-disease association identification. However, little effort has been attempted to analysis and calculate lncRNA functional similarity on a large scale. In this study, based on the assumption that functionally similar lncRNAs tend to be associated with similar diseases, we developed two novel lncRNA functional similarity calculation models (LNCSIM). LNCSIM was evaluated by introducing similarity scores into the model of Laplacian Regularized Least Squares for LncRNA–Disease Association (LRLSLDA) for lncRNA-disease association prediction. As a result, new predictive models improved the performance of LRLSLDA in the leave-one-out cross validation of various known lncRNA-disease associations datasets. Furthermore, some of the predictive results for colorectal cancer and lung cancer were verified by independent biological experimental studies. It is anticipated that LNCSIM could be a useful and important biological tool for human disease diagnosis, treatment, and prevention. PMID:26061969

  2. The Predictive Utility of Early Childhood Disruptive Behaviors for School-Age Social Functioning

    PubMed Central

    Shaw, Daniel S.; Dishion, Thomas J.; Wilson, Melvin N.

    2016-01-01

    Research suggests that school-age children with disruptive behavior (DB) problems frequently demonstrate impaired social skills and experience rejection from peers, which plays a crucial role in the pathway to more serious antisocial behavior. A critical question is which DB problems in early childhood are prognostic of impaired social functioning in school-age children. This study examines the hypothesis that aggression in early childhood will be the more consistent predictor of compromised social functioning than inattentive, hyperactive-impulsive, or oppositional behavior. Participants included an ethnically diverse sample of 725 high-risk children from 3 geographically distinct areas followed from ages 2 to 8.5. Four latent growth models of DB from child ages 2 to 5, and potential interactions between dimensions, were used to predict latent parent and teacher ratings of school-age social dysfunction. Analyses were conducted in a multi-group format to examine potential differences between intervention and control group participants. Results showed that age 2 aggression was the DB problem most consistently associated with both parent- and teacher-rated social dysfunction for both groups. Early starting aggressive behavior may be particularly important for the early identification of children at risk for school-age social difficulties. PMID:25526865

  3. Association between Binge Eating Disorder and Changes in Cognitive Functioning Following Bariatric Surgery

    PubMed Central

    Lavender, Jason M.; Alosco, Michael L.; Spitznagel, Mary Beth; Strain, Gladys; Devlin, Michael; Cohen, Ronald; Paul, Robert; Crosby, Ross D.; Mitchell, James E.; Wonderlich, Stephen A.; Gunstad, John

    2014-01-01

    Evidence suggests that both obesity and binge eating disorder (BED) may be associated with deficits in cognitive functioning. The purpose of this study was to examine whether a lifetime history of BED would be associated with changes in several domains of cognitive functioning (attention, executive function, language, and memory) following bariatric surgery. Participants were 68 bariatric surgery patients who completed a computerized battery of cognitive tests within 30 days prior to undergoing surgery and again at a 12-month postoperative follow-up. Results revealed that on the whole, participants displayed improvements from baseline to follow-up in attention, executive function, and memory, even after controlling for diagnostic history of depression; no changes were observed for language. However, individuals with and without a history of BED did not differ in changes in body mass index or in the degree of improvement in cognitive functioning from baseline to follow-up. Such results suggest that a history of BED does not influence changes in cognitive functioning following bariatric surgery. Future research will be needed to further clarify the role of BED in predicting cognitive function over time. PMID:25201638

  4. Drug-target interaction prediction by integrating chemical, genomic, functional and pharmacological data.

    PubMed

    Yang, Fan; Xu, Jinbo; Zeng, Jianyang

    2014-01-01

    In silico prediction of unknown drug-target interactions (DTIs) has become a popular tool for drug repositioning and drug development. A key challenge in DTI prediction lies in integrating multiple types of data for accurate DTI prediction. Although recent studies have demonstrated that genomic, chemical and pharmacological data can provide reliable information for DTI prediction, it remains unclear whether functional information on proteins can also contribute to this task. Little work has been developed to combine such information with other data to identify new interactions between drugs and targets. In this paper, we introduce functional data into DTI prediction and construct biological space for targets using the functional similarity measure. We present a probabilistic graphical model, called conditional random field (CRF), to systematically integrate genomic, chemical, functional and pharmacological data plus the topology of DTI networks into a unified framework to predict missing DTIs. Tests on two benchmark datasets show that our method can achieve excellent prediction performance with the area under the precision-recall curve (AUPR) up to 94.9. These results demonstrate that our CRF model can successfully exploit heterogeneous data to capture the latent correlations of DTIs, and thus will be practically useful for drug repositioning. Supplementary Material is available at http://iiis.tsinghua.edu.cn/~compbio/papers/psb2014/psb2014_sm.pdf. PMID:24297542

  5. DIANA-microT web server: elucidating microRNA functions through target prediction.

    PubMed

    Maragkakis, M; Reczko, M; Simossis, V A; Alexiou, P; Papadopoulos, G L; Dalamagas, T; Giannopoulos, G; Goumas, G; Koukis, E; Kourtis, K; Vergoulis, T; Koziris, N; Sellis, T; Tsanakas, P; Hatzigeorgiou, A G

    2009-07-01

    Computational microRNA (miRNA) target prediction is one of the key means for deciphering the role of miRNAs in development and disease. Here, we present the DIANA-microT web server as the user interface to the DIANA-microT 3.0 miRNA target prediction algorithm. The web server provides extensive information for predicted miRNA:target gene interactions with a user-friendly interface, providing extensive connectivity to online biological resources. Target gene and miRNA functions may be elucidated through automated bibliographic searches and functional information is accessible through Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The web server offers links to nomenclature, sequence and protein databases, and users are facilitated by being able to search for targeted genes using different nomenclatures or functional features, such as the genes possible involvement in biological pathways. The target prediction algorithm supports parameters calculated individually for each miRNA:target gene interaction and provides a signal-to-noise ratio and a precision score that helps in the evaluation of the significance of the predicted results. Using a set of miRNA targets recently identified through the pSILAC method, the performance of several computational target prediction programs was assessed. DIANA-microT 3.0 achieved there with 66% the highest ratio of correctly predicted targets over all predicted targets. The DIANA-microT web server is freely available at www.microrna.gr/microT. PMID:19406924

  6. Functional Imaging of Implicit Marijuana Associations during performance on an Implicit Association Test (IAT)

    PubMed Central

    Ames, Susan L.; Grenard, Jerry L.; Stacy, Alan W.; Xiao, Lin; He, Qinghua; Wong, Savio W.; Xue, Gui; Wiers, Reinout W.; Bechara, Antoine

    2013-01-01

    This research evaluated the neural correlates of implicit associative memory processes (habit-based processes) through the imaging (fMRI) of a marijuana Implicit Association Test. Drug-related associative memory effects have been shown to consistently predict level of drug use. To observe differences in neural activity of associative memory effects, this study compared 13 heavy marijuana users and 15 non-using controls, ranging in age from 18 to 25, during performance of a marijuana Implicit Association Test (IAT). Group by condition interactions in the putamen, caudate, and right inferior frontal gyrus were observed. Relative to non-users, marijuana users showed greater bilateral activity in the dorsal striatum (caudate and putamen) during compatible trials focused on perceived positive outcomes of use. Alternatively, relative to the marijuana-using group, the non-users showed greater activity in the right inferior frontal gyrus during incompatible trials, which require more effortful processing of information. Further, relative to fixation, heavy users showed bilateral activity in the caudate and putamen, hippocampus and some frontal regions during compatible trials and no significant activity during incompatible trials. The non-using group showed greater activity in frontal regions during incompatible trials relative to fixation and no significant activity during compatible trials. These findings are consistent with a dual process framework of appetitive behaviors proposing that (1) implicit associations underlying habit are mediated through neural circuitry dependent on the striatum, and (2) deliberative/controlled behaviors are mediated through circuitry more dependent on the prefrontal cortex. PMID:24029699

  7. A bridge-functional-based classical mapping method for predicting the correlation functions of uniform electron gases at finite temperature

    SciTech Connect

    Liu, Yu; Wu, Jianzhong

    2014-02-28

    Efficient and accurate prediction of the correlation functions of uniform electron gases is of great importance for both practical and theoretical applications. This paper presents a bridge-functional-based classical mapping method for calculating the correlation functions of uniform spin-unpolarized electron gases at finite temperature. The bridge functional is formulated by following Rosenfeld's universality ansatz in combination with the modified fundamental measure theory. The theoretical predictions are in good agreement with recent quantum Monte Carlo results but with negligible computational cost, and the accuracy is better than a previous attempt based on the hypernetted-chain approximation. We find that the classical mapping method is most accurate if the effective mass of electrons increases as the density falls.

  8. Gene-Specific Function Prediction for Non-Synonymous Mutations in Monogenic Diabetes Genes

    PubMed Central

    Li, Quan; Liu, Xiaoming; Gibbs, Richard A.; Boerwinkle, Eric; Polychronakos, Constantin; Qu, Hui-Qi

    2014-01-01

    The rapid progress of genomic technologies has been providing new opportunities to address the need of maturity-onset diabetes of the young (MODY) molecular diagnosis. However, whether a new mutation causes MODY can be questionable. A number of in silico methods have been developed to predict functional effects of rare human mutations. The purpose of this study is to compare the performance of different bioinformatics methods in the functional prediction of nonsynonymous mutations in each MODY gene, and provides reference matrices to assist the molecular diagnosis of MODY. Our study showed that the prediction scores by different methods of the diabetes mutations were highly correlated, but were more complimentary than replacement to each other. The available in silico methods for the prediction of diabetes mutations had varied performances across different genes. Applying gene-specific thresholds defined by this study may be able to increase the performance of in silico prediction of disease-causing mutations. PMID:25136813

  9. Many amino acid substitution variants identified in DNA repair genes during human population screenings are predicted to impact protein function

    SciTech Connect

    Xi, T; Jones, I M; Mohrenweiser, H W

    2003-11-03

    Over 520 different amino acid substitution variants have been previously identified in the systematic screening of 91 human DNA repair genes for sequence variation. Two algorithms were employed to predict the impact of these amino acid substitutions on protein activity. Sorting Intolerant From Tolerant (SIFT) classified 226 of 508 variants (44%) as ''Intolerant''. Polymorphism Phenotyping (PolyPhen) classed 165 of 489 amino acid substitutions (34%) as ''Probably or Possibly Damaging''. Another 9-15% of the variants were classed as ''Potentially Intolerant or Damaging''. The results from the two algorithms are highly associated, with concordance in predicted impact observed for {approx}62% of the variants. Twenty one to thirty one percent of the variant proteins are predicted to exhibit reduced activity by both algorithms. These variants occur at slightly lower individual allele frequency than do the variants classified as ''Tolerant'' or ''Benign''. Both algorithms correctly predicted the impact of 26 functionally characterized amino acid substitutions in the APE1 protein on biochemical activity, with one exception. It is concluded that a substantial fraction of the missense variants observed in the general human population are functionally relevant. These variants are expected to be the molecular genetic and biochemical basis for the associations of reduced DNA repair capacity phenotypes with elevated cancer risk.

  10. Machine learning classification of resting state functional connectivity predicts smoking status

    PubMed Central

    Pariyadath, Vani; Stein, Elliot A.; Ross, Thomas J.

    2014-01-01

    Machine learning-based approaches are now able to examine functional magnetic resonance imaging data in a multivariate manner and extract features predictive of group membership. We applied support vector machine (SVM)-based classification to resting state functional connectivity (rsFC) data from nicotine-dependent smokers and healthy controls to identify brain-based features predictive of nicotine dependence. By employing a network-centered approach, we observed that within-network functional connectivity measures offered maximal information for predicting smoking status, as opposed to between-network connectivity, or the representativeness of each individual node with respect to its parent network. Further, our analysis suggests that connectivity measures within the executive control and frontoparietal networks are particularly informative in predicting smoking status. Our findings suggest that machine learning-based approaches to classifying rsFC data offer a valuable alternative technique to understanding large-scale differences in addiction-related neurobiology. PMID:24982629

  11. Disrupted prediction-error signal in psychosis: evidence for an associative account of delusions

    PubMed Central

    Corlett, P. R.; Murray, G. K.; Honey, G. D.; Aitken, M. R. F.; Shanks, D. R.; Robbins, T.W.; Bullmore, E.T.; Dickinson, A.; Fletcher, P. C.

    2012-01-01

    Delusions are maladaptive beliefs about the world. Based upon experimental evidence that prediction error—a mismatch between expectancy and outcome—drives belief formation, this study examined the possibility that delusions form because of disrupted prediction-error processing. We used fMRI to determine prediction-error-related brain responses in 12 healthy subjects and 12 individuals (7 males) with delusional beliefs. Frontal cortex responses in the patient group were suggestive of disrupted prediction-error processing. Furthermore, across subjects, the extent of disruption was significantly related to an individual’s propensity to delusion formation. Our results support a neurobiological theory of delusion formation that implicates aberrant prediction-error signalling, disrupted attentional allocation and associative learning in the formation of delusional beliefs. PMID:17690132

  12. Bidirectional associations between sleep (quality and duration) and psychosocial functioning across the university years.

    PubMed

    Tavernier, Royette; Willoughby, Teena

    2014-03-01

    Despite extensive research on sleep and psychosocial functioning, an important gap within the literature is the lack of inquiry into the direction of effects between these 2 constructs. The purpose of the present 3-year longitudinal study was to examine bidirectional associations between sleep (quality and duration) and 3 indices of psychosocial functioning (intrapersonal adjustment, friendship quality, and academic achievement). We also assessed the role of gender as a possible moderator of the patterns of results. Participants were 942 (71.5% female) emerging adults enrolled at a mid-sized university in southern Ontario, Canada, who ranged in age from 17 to 25 years (M = 19.01 years, SD = 0.90) at the first assessment. Students completed surveys in the winter term for 3 consecutive years, beginning in their first year of university. Survey measures included demographics, sleep quality and duration, intrapersonal adjustment (depressive symptoms, stress, and self-esteem), friendship quality, and academic achievement. Results of path analyses indicated a significant bidirectional association between sleep quality and intrapersonal adjustment. We also found evidence for unidirectional associations, such that better friendship quality and higher academic achievement predicted better sleep quality over time. Overall, psychosocial functioning was more strongly associated with sleep quality relative to sleep duration. Our findings highlight the importance of a longitudinal and holistic approach in understanding the link between sleep and psychosocial functioning among emerging adults at university. PMID:23978302

  13. Immunosenescence and macrophage functional plasticity: dysregulation of macrophage function by age-associated microenvironmental changes

    PubMed Central

    Stout, Robert D.; Suttles, Jill

    2005-01-01

    Summary The macrophage lineage displays extreme functional and phenotypic heterogeneity which appears to due in large part to the ability of macrophages to functionally adapt to changes in their tissue microenvironment. This functional plasticity plays a critical role in their ability to respond to tissue damage and/or infection and to contribute to clearance of damaged tissue and invading microorganisms, to contribute to recruitment of the adaptive immune system, and to contribute to resolution of the wound and of the immune response. Evidence has accumulated that environmental influences, such as stromal function and imbalances in hormones and cytokines, contribute significantly to the dysfunction of the adaptive immune system. The innate immune sytem also appears to be dysfunctional in aged animals and humans. Herein, the hypothesis is presented and discussed that the observed age-associated “dysfunction” of macrophages is the result of their functional adaptation to the age-associated changes in tissue environments. The resultant loss of orchestration of the manifold functional capabilities of macrophages would undermine the efficacy of both the innate and adaptive immune systems. If the macrophages maintain functional plasticity during this dysregulation, they would be a prime target of cytokine therapy that could enhance both innate and adaptive immune systems. PMID:15882345

  14. Predictive Criteria to Study the Pathogenesis of Malaria-Associated ALI/ARDS in Mice

    PubMed Central

    Ortolan, Luana S.; Sercundes, Michelle K.; Debone, Daniela; Hagen, Stefano C. F.; D' Império Lima, Maria Regina; Alvarez, José M.; Marinho, Claudio R. F.; Epiphanio, Sabrina

    2014-01-01

    Malaria-associated acute lung injury/acute respiratory distress syndrome (ALI/ARDS) often results in morbidity and mortality. Murine models to study malaria-associated ALI/ARDS have been described; we still lack a method of distinguishing which mice will develop ALI/ARDS before death. This work aimed to characterize malaria-associated ALI/ARDS in a murine model and to demonstrate the first method to predict whether mice are suffering from ALI/ARDS before death. DBA/2 mice infected with Plasmodium berghei ANKA developing ALI/ARDS or hyperparasitemia (HP) were compared using histopathology, PaO2 measurement, pulmonary X-ray, breathing capacity, lung permeability, and serum vascular endothelial growth factor (VEGF) levels according to either the day of death or the suggested predictive criteria. We proposed a model to predict malaria-associated ALI/ARDS using breathing patterns (enhanced pause and frequency respiration) and parasitemia as predictive criteria from mice whose cause of death was known to retrospectively diagnose the sacrificed mice as likely to die of ALI/ARDS as early as 7 days after infection. Using this method, we showed increased VEGF levels and increased lung permeability in mice predicted to die of ALI/ARDS. This proposed method for accurately identifying mice suffering from ALI/ARDS before death will enable the use of this model to study the pathogenesis of this disease. PMID:25276057

  15. Reactive oxygen species–associated molecular signature predicts survival in patients with sepsis

    PubMed Central

    Zhou, Tong; Wang, Ting; Slepian, Marvin J.; Garcia, Joe G. N.; Hecker, Louise

    2016-01-01

    Abstract Sepsis-related multiple organ dysfunction syndrome is a leading cause of death in intensive care units. There is overwhelming evidence that oxidative stress plays a significant role in the pathogenesis of sepsis-associated multiple organ failure; however, reactive oxygen species (ROS)–associated biomarkers and/or diagnostics that define mortality or predict survival in sepsis are lacking. Lung or peripheral blood gene expression analysis has gained increasing recognition as a potential prognostic and/or diagnostic tool. The objective of this study was to identify ROS-associated biomarkers predictive of survival in patients with sepsis. In-silico analyses of expression profiles allowed the identification of a 21-gene ROS-associated molecular signature that predicts survival in sepsis patients. Importantly, this signature performed well in a validation cohort consisting of sepsis patients aggregated from distinct patient populations recruited from different sites. Our signature outperforms randomly generated signatures of the same signature gene size. Our findings further validate the critical role of ROSs in the pathogenesis of sepsis and provide a novel gene signature that predicts survival in sepsis patients. These results also highlight the utility of peripheral blood molecular signatures as biomarkers for predicting mortality risk in patients with sepsis, which could facilitate the development of personalized therapies. PMID:27252846

  16. Indirect association of DAT1 genotype with executive function through white matter volume in orbitofrontal cortex

    PubMed Central

    Chung, Tammy; Ferrell, Robert; Clark, Duncan B.

    2015-01-01

    The dopamine transporter (DAT1) gene has been associated with impulsivity and executive functioning. Further, DAT1 has been associated with brain structural characteristics and resting state connectivity. This study tested an indirect effect model in which DAT1 genotype (9-repeat carriers vs. 10-repeat homozygotes) is linked to phenotypes representing impulsivity and executive function (planning behavior) through effects on white matter (WM) volumes in prefrontal cortex (PFC), particularly orbitofrontal cortex (OFC). Adolescents (ages 14–18, n=38), were recruited from substance use treatment (n=22) and the community (n=16) to increase phenotype variation. Results indicated that DAT1 10/10 genotype was associated with lower WM volume in the PFC, specifically the left OFC. Further, lower WM volume in the left OFC predicted more difficulties in self-reported planning behavior, but not impulsivity. Indirect effect analysis indicated that lower WM volume in the left OFC mediated the association between DAT1 10/10 genotype and difficulties in planning behavior. Results suggest a brain structural mechanism, involving lower WM volume in the left OFC, as a link in the association between DAT1 genotype and a specific aspect of executive function. Genetic effects on regional WM volume that are linked to behavioral outcomes could ultimately inform the development of tailored interventions that address an individual’s unique risk factors. PMID:25704259

  17. Functional imaging of an alcohol-Implicit Association Test (IAT)

    PubMed Central

    Ames, Susan L.; Grenard, Jerry L.; He, Qinghua; Stacy, Alan W.; Wong, Savio W.; Xiao, Lin; Xue, Gui; Bechara, Antoine

    2014-01-01

    This research assessed activation in neural substrates involved in implicit associative processes through the imaging (functional magnetic resonance imaging) of an alcohol-Implicit Association Test (IAT) focused on positive outcomes of alcohol use. Comparisons involved 17 heavy and 19 light drinkers, ranging in age from 18 to 22, during compatible and incompatible association task trials. Behaviorally, a significant IAT effect was found with heavy drinkers showing stronger positive implicit associations toward alcohol use than light drinkers. Imaging data revealed heavy drinkers showed greater activity during compatible trials relative to incompatible trials in the left putamen and insula while no significant difference in activity between conditions was found in the light drinkers. Light drinkers showed significantly more activity in the left orbital frontal cortex during both compatible and incompatible trials than heavy drinkers, and the dorsolateral prefrontal cortex was engaged more in both light and heavy drinkers during incompatible trials relative to compatible trials. Further, within-group analyses showed significant amygdala activity along with the putamen and insula among heavy drinkers during compatible trials relative to incompatible trials. These results are consistent with a dual process framework of appetitive behaviors proposing that (1) implicit associations underlying habit are mediated through neural circuitry dependent on the striatum, and (2) controlled behaviors are mediated through neural circuitry more dependent on the prefrontal cortex. This is the first study to evaluate the neural mechanisms elicited by an alcohol-IAT, providing an additional step toward increasing understanding of associative habit processes and their regulatory influence over addictive behaviors. PMID:23822813

  18. Sex Hormones Are Associated with Right Ventricular Structure and Function

    PubMed Central

    Ventetuolo, Corey E.; Ouyang, Pamela; Bluemke, David A.; Tandri, Harikrishna; Barr, R. Graham; Bagiella, Emilia; Cappola, Anne R.; Bristow, Michael R.; Johnson, Craig; Kronmal, Richard A.; Kizer, Jorge R.; Lima, Joao A. C.; Kawut, Steven M.

    2011-01-01

    Rationale: Sex hormones have effects on the left ventricle, but hormonal influences on the right ventricle (RV) are unknown. Objectives: We hypothesized that sex hormones would be associated with RV morphology in a large cohort free of cardiovascular disease. Methods: Sex hormones were measured by immunoassay and RV ejection fraction (RVEF), stroke volume (RVSV), mass, end-diastolic volume, and end-systolic volume (RVESV) were measured by cardiac magnetic resonance imaging in 1,957 men and 1,738 postmenopausal women. The relationship between each hormone and RV parameter was assessed by multivariate linear regression. Measurements and Main Results: Higher estradiol levels were associated with higher RVEF (β per 1 ln[nmol/L], 0.88; 95% confidence interval [CI], 0.32 to 1.43; P = 0.002) and lower RVESV (β per 1 ln[nmol/L], −0.87; 95% CI, −1.67 to −0.08; P = 0.03) in women using hormone therapy. In men, higher bioavailable testosterone levels were associated with higher RVSV (β per 1 ln[nmol/L], 1.97; 95% CI, 0.20 to 3.73; P = 0.03) and greater RV mass and volumes (P ≤ 0.01). Higher dehydroepiandrosterone levels were associated with higher RVSV (β per 1 ln[nmol/L], 1.37; 95% CI, 0.15 to 2.59; P = 0.03) and greater RV mass (β per 1 ln[nmol/L], 0.25; 95% CI, 0.00 to 0.49; P = 0.05) and volumes (P ≤ 0.001) in women. Conclusions: Higher estradiol levels were associated with better RV systolic function in women using hormone therapy. Higher levels of androgens were associated with greater RV mass and volumes in both sexes. PMID:20889903

  19. An Evaluation of the Predictive Validity of Confidence Ratings in Identifying Functional Behavioral Assessment Hypothesis Statements

    ERIC Educational Resources Information Center

    Borgmeier, Chris; Horner, Robert H.

    2006-01-01

    Faced with limited resources, schools require tools that increase the accuracy and efficiency of functional behavioral assessment. Yarbrough and Carr (2000) provided evidence that informant confidence ratings of the likelihood of problem behavior in specific situations offered a promising tool for predicting the accuracy of function-based…

  20. Childhood Sexual Abuse Moderates the Association between Sexual Functioning and Sexual Distress in Women

    PubMed Central

    Stephenson, Kyle R.; Hughan, Corey P.; Meston, Cindy M.

    2012-01-01

    Objective To assess the degree to which a history of CSA moderates the association between sexual functioning and sexual distress in women. Method Women with (n = 105, M age = 33.71, 66.1% Caucasian) and without (n = 71, M age = 32.63, 74.7% Caucasian) a history of CSA taking part in a larger clinical trial completed self-report questionnaires at intake including the Sexual Satisfaction Scale for Women (SSS-W), the Female Sexual Function Index (FSFI), and the Trauma History Questionnaire (THQ). Results Desire, arousal, lubrication, and orgasm interacted with sexual abuse status in predicting sexual distress such that sexual functioning was more weakly associated with distress for women with a history of CSA. This disconnect was more pronounced for women who were abused by a family member. Conclusion CSA status serves as an important moderator of the association between sexual functioning and sexual distress in women. Specifically, women with a history of CSA show higher levels of distress in the context of good sexual functioning as compared to women without a history of CSA. Possible explanations and clinical implications are discussed. PMID:22391416

  1. Structure-function associations in hippocampus in bipolar disorder.

    PubMed

    Chepenik, Lara G; Wang, Fei; Spencer, Linda; Spann, Marisa; Kalmar, Jessica H; Womer, Fay; Kale Edmiston, E; Pittman, Brian; Blumberg, Hilary P

    2012-04-01

    Hippocampus volume decreases and verbal memory deficits have been reported in bipolar disorder (BD) as independent observations. We investigated potential associations between these deficits in subjects with BD. Hippocampus volumes were measured on magnetic resonance images of 31 subjects with BD and 32 healthy comparison (HC) subjects. The California Verbal Learning Test-Second Edition (CVLT) assessed verbal memory function in these subjects. Compared to the HC group, the BD group showed both significantly smaller hippocampus volumes and impaired performance on CVLT tests of immediate, short delay and long delay cued and free recall. Further, smaller hippocampus volume correlated with impaired performance in BD. Post hoc analyses revealed a trend towards improved memory in BD subjects taking antidepressant medications. These results support associations between morphological changes in hippocampus structure in BD and verbal memory impairment. They provide preliminary evidence pharmacotherapy may reverse hippocampus-related memory deficits. PMID:22342942

  2. Demographic, physical, and radiographic factors associated with functional flatfoot deformity.

    PubMed

    Shibuya, Naohiro; Kitterman, Ryan T; LaFontaine, Javier; Jupiter, Daniel C

    2014-01-01

    In 1 of our previous studies, the occurrence of self-reported flatfoot was associated with self-reported increased age, male gender, Asian and African American races, veteran status, poor health, increased body mass index, callus, bunion, hammertoe, and arthritis. However, we had to rely on survey data to identify these risk factors, and the accuracy of the survey results was unknown. Therefore, we decided to identify the risk factors associated with flatfeet using objectively and more accurately measured data. A total of 94 patients were enrolled in the present study. The demographic data and physical and radiographic examination results were recorded by the investigators in the clinic. The data were then analyzed to identify the factors unique to flatfoot, measured and defined using a plantar pressure measurement system during natural gait. We learned that a painful tibialis posterior tendon was associated with flatfoot. The calcaneal inclination angle was also decreased in the flatfoot group. The talar declination, intermetatarsal, hallux abductus, and calcaneal cuboid angles, and static calcaneal stance eversion were elevated in the flatfoot group compared with the non-flatfoot group. Systematic evaluation of these associated factors will help in the understanding of the functional status of the flatfoot deformity. PMID:24418401

  3. Associations among false belief understanding, counterfactual reasoning, and executive function.

    PubMed

    Guajardo, Nicole R; Parker, Jessica; Turley-Ames, Kandi

    2009-09-01

    The primary purposes of the present study were to clarify previous work on the association between counterfactual thinking and false belief performance to determine (1) whether these two variables are related and (2) if so, whether executive function skills mediate the relationship. A total of 92 3-, 4-, and 5-year-olds completed false belief, counterfactual, working memory, representational flexibility, and language measures. Counterfactual reasoning accounted for limited unique variance in false belief. Both working memory and representational flexibility partially mediated the relationship between counterfactual and false belief. Children, like adults, also generated various types of counterfactual statements to differing degrees. Results demonstrated the importance of language and executive function for both counterfactual and false belief. Implications are discussed. PMID:19994575

  4. The mucosa-associated lymphoid tissue structure, function, and derangements.

    PubMed

    Zarzaur, B L; Kudsk, K A

    2001-06-01

    Nearly 50% of the immune cells in the body lie just beneath the moist mucosal surfaces at intestinal and extra-intestinal sites. The study of this mucosal immune system in response to shock and to route and type of nutrition provides a cogent explanation for the reduced incidence of pneumonia with enteral feeding. Changes in immune cell mass and function are associated with deterioration of previously established immunity at mucosal surfaces, especially the respiratory tract. By understanding the mechanisms involved in this breakdown, therapeutic strategies can be developed to reduce septic complications in critical illness. PMID:11386611

  5. Functional network topology associated with posttraumatic stress disorder in veterans

    PubMed Central

    Kennis, M.; van Rooij, S.J.H.; van den Heuvel, M.P.; Kahn, R.S.; Geuze, E.

    2015-01-01

    Posttraumatic stress disorder (PTSD) is a disabling disorder associated with resting state functional connectivity alterations. However, whether specific brain regions are altered in PTSD or whether the whole brain network organization differs remains unclear. PTSD can be treated with trauma-focused therapy, although only half of the patients recover after treatment. In order to better understand PTSD psychopathology our aim was to study resting state networks in PTSD before and after treatment. Resting state functional magnetic resonance images were obtained from veterans with PTSD (n = 50) and controls (combat and civilian controls; n = 54) to explore which network topology properties (degree and clustering coefficient) of which brain regions are associated with PTSD. Then, PTSD-associated brain regions were investigated before and after treatment. PTSD patients were subdivided in persistent (n = 22) and remitted PTSD patients (n = 17), and compared with combat controls (n = 22), who were also reassessed. Prior to treatment associations with PTSD were found for the degree of orbitofrontal, and temporoparietal brain regions, and for the clustering coefficient of the anterior cingulate cortex. No significant effects were found over the course of treatment. Our results are in line with previous resting state studies, showing resting state connectivity alterations in the salience network and default mode network in PTSD, and also highlight the importance of other brain regions. However, network metrics do not seem to change over the course of treatment. This study contributes to a better understanding of the psychopathology of PTSD. PMID:26900570

  6. The remarkable properties of the associated Romanovski functions

    NASA Astrophysics Data System (ADS)

    Fakhri, H.; Mojaveri, B.

    2011-05-01

    For n and m<-\\frac{1}{2} with n - m - q >= 0 a non-negative integer, we introduce a differential equation for the associated Romanovski functions R(q, β)n, m(x), so that its form remains invariant under the transformation n → 2q - n - 1. Introducing the Rodrigues formula for both regions n and n\\gt q-\\frac{1}{2}, we obtain simultaneously and separately realization of the laddering equations with respect to the labels n and m by means of two pairs of ladder operators. Also, the square integrability and orthogonality of the functions are considered in cases β ≠ 0 and β = 0 with respect to the weight functions \\frac{e^{\\beta \\arctan x}}{(1+x^2)^{q}} and (1 + x2)-1 - q, respectively. Exponential generating functions for the infinite sequences with the same n in both regions n and n\\gt q-\\frac{1}{2} as well as for the infinite ones with given even and odd values of n - m - q are separately calculated. As an application to supersymmetric quantum mechanics, we show that there exist four different methods for generating the spectrum of the noncentral hyperbolic Scarf potential.

  7. Factors associated with cognitive function in older adults in Mexico

    PubMed Central

    Miu, Jenny; Negin, Joel; Salinas-Rodriguez, Aarón; Manrique-Espinoza, Betty; Sosa-Ortiz, Ana Luisa; Cumming, Robert; Kowal, Paul

    2016-01-01

    Background As populations age, cognitive decline and dementia pose significant burdens for societies and health care systems, including low- and middle-income countries such as Mexico. Minor age-related declines in cognitive function appear to represent a stable but heterogeneous phase in the continuum between normal cognitive ageing and dementia. Loss of cognitive function has impacts at societal and individual levels and understanding the risk factors can help provide a framework for health policies and interventions to target at-risk groups. Design A cohort of older Mexican adults (50+) from the World Health Organization's Study on global AGEing and adult health (WHO SAGE) was used to examine cognitive function, including a total of 2315 respondents, with 325 respondents aged 80 years and older. Cognition was objectively evaluated using verbal recall, verbal fluency, forward digit span and backward digit span, with differences in an overall cognitive score assessed against sociodemographic variables, and associated factors using linear regression. Results The most significant predictors of poorer cognitive function were found to be older age (β=−13.88), rural living (β=−2.25), low income (β=−8.28), self-reported severe or extreme memory difficulties (β=−6.62), and difficulty with two or more activities of daily living (β=−2.02). Conclusions These findings can inform public health initiatives to address cognitive impairment in ageing populations in Mexico and other middle-income countries. PMID:27032808

  8. Exon skipping causes atypical phenotypes associated with a loss-of-function mutation in FLNA by restoring its protein function.

    PubMed

    Oda, Hirotsugu; Sato, Tatsuhiro; Kunishima, Shinji; Nakagawa, Kenji; Izawa, Kazushi; Hiejima, Eitaro; Kawai, Tomoki; Yasumi, Takahiro; Doi, Hiraku; Katamura, Kenji; Numabe, Hironao; Okamoto, Shinya; Nakase, Hiroshi; Hijikata, Atsushi; Ohara, Osamu; Suzuki, Hidenori; Morisaki, Hiroko; Morisaki, Takayuki; Nunoi, Hiroyuki; Hattori, Seisuke; Nishikomori, Ryuta; Heike, Toshio

    2016-03-01

    Loss-of-function mutations in filamin A (FLNA) cause an X-linked dominant disorder with multiple organ involvement. Affected females present with periventricular nodular heterotopia (PVNH), cardiovascular complications, thrombocytopenia and Ehlers-Danlos syndrome. These mutations are typically lethal to males, and rare male survivors suffer from failure to thrive, PVNH, and severe cardiovascular and gastrointestinal complications. Here we report two surviving male siblings with a loss-of-function mutation in FLNA. They presented with multiple complications, including valvulopathy, intestinal malrotation and chronic intestinal pseudo-obstruction (CIPO). However, these siblings had atypical clinical courses, such as a lack of PVNH and a spontaneous improvement of CIPO. Trio-based whole-exome sequencing revealed a 4-bp deletion in exon 40 that was predicted to cause a lethal premature protein truncation. However, molecular investigations revealed that the mutation induced in-frame skipping of the mutated exon, which led to the translation of a mutant FLNA missing an internal region of 41 amino acids. Functional analyses of the mutant protein suggested that its binding affinity to integrin, as well as its capacity to induce focal adhesions, were comparable to those of the wild-type protein. These results suggested that exon skipping of FLNA partially restored its protein function, which could contribute to amelioration of the siblings' clinical courses. This study expands the diversity of the phenotypes associated with loss-of-function mutations in FLNA. PMID:26059841

  9. Executive functioning predicts reading, mathematics, and theory of mind during the elementary years.

    PubMed

    Cantin, Rachelle H; Gnaedinger, Emily K; Gallaway, Kristin C; Hesson-McInnis, Matthew S; Hund, Alycia M

    2016-06-01

    The goal of this study was to specify how executive functioning components predict reading, mathematics, and theory of mind performance during the elementary years. A sample of 93 7- to 10-year-old children completed measures of working memory, inhibition, flexibility, reading, mathematics, and theory of mind. Path analysis revealed that all three executive functioning components (working memory, inhibition, and flexibility) mediated age differences in reading comprehension, whereas age predicted mathematics and theory of mind directly. In addition, reading mediated the influence of executive functioning components on mathematics and theory of mind, except that flexibility also predicted mathematics directly. These findings provide important details about the development of executive functioning, reading, mathematics, and theory of mind during the elementary years. PMID:26914106

  10. Phagonaute: A web-based interface for phage synteny browsing and protein function prediction.

    PubMed

    Delattre, Hadrien; Souiai, Oussema; Fagoonee, Khema; Guerois, Raphaël; Petit, Marie-Agnès

    2016-09-01

    Distant homology search tools are of great help to predict viral protein functions. However, due to the lack of profile databases dedicated to viruses, they can lack sensitivity. We constructed HMM profiles for more than 80,000 proteins from both phages and archaeal viruses, and performed all pairwise comparisons with HHsearch program. The whole resulting database can be explored through a user-friendly "Phagonaute" interface to help predict functions. Results are displayed together with their genetic context, to strengthen inferences based on remote homology. Beyond function prediction, this tool permits detections of co-occurrences, often indicative of proteins completing a task together, and observation of conserved patterns across large evolutionary distances. As a test, Herpes simplex virus I was added to Phagonaute, and 25% of its proteome matched to bacterial or archaeal viral protein counterparts. Phagonaute should therefore help virologists in their quest for protein functions and evolutionary relationships. PMID:27254594

  11. Association between renal function and cardiovascular structure and function in heart failure with preserved ejection fraction

    PubMed Central

    Gori, Mauro; Senni, Michele; Gupta, Deepak K.; Charytan, David M.; Kraigher-Krainer, Elisabeth; Pieske, Burkert; Claggett, Brian; Shah, Amil M.; Santos, Angela B. S.; Zile, Michael R.; Voors, Adriaan A.; McMurray, John J. V.; Packer, Milton; Bransford, Toni; Lefkowitz, Martin; Solomon, Scott D.

    2014-01-01

    Aim Renal dysfunction is a common comorbidity in patients with heart failure and preserved ejection fraction (HFpEF). We sought to determine whether renal dysfunction was associated with measures of cardiovascular structure/function in patients with HFpEF. Methods We studied 217 participants from the PARAMOUNT study with HFpEF who had echocardiography and measures of kidney function. We evaluated the relationships between renal dysfunction [estimated glomerular filtration rate (eGFR) >30 and <60 mL/min/1.73 m2 and/or albuminuria] and cardiovascular structure/function. Results The mean age of the study population was 71 years, 55% were women, 94% hypertensive, and 40% diabetic. Impairment of at least one parameter of kidney function was present in 62% of patients (16% only albuminuria, 23% only low eGFR, 23% both). Renal dysfunction was associated with abnormal LV geometry (defined as concentric hypertrophy, or eccentric hypertrophy, or concentric remodelling) (adjusted P = 0.048), lower midwall fractional shortening (MWFS) (P = 0.009), and higher NT-proBNP (P = 0.006). Compared with patients without renal dysfunction, those with low eGFR and no albuminuria had a higher prevalence of abnormal LV geometry (P = 0.032) and lower MWFS (P < 0.01), as opposed to those with only albuminuria. Conversely, albuminuria alone was associated with greater LV dimensions (P < 0.05). Patients with combined renal impairment had mixed abnormalities (higher LV wall thicknesses, NT-proBNP; lower MWFS). Conclusion Renal dysfunction, as determined by both eGFR and albuminuria, is highly prevalent in HFpEF, and associated with cardiac remodelling and subtle systolic dysfunction. The observed differences in cardiac structure/function between each type of renal damage suggest that both parameters of kidney function might play a distinct role in HFpEF. PMID:24980489

  12. Interleukin-6 predicts short-term global functional decline in the oldest old: results from the BELFRAIL study.

    PubMed

    Adriaensen, Wim; Matheï, Catharina; Vaes, Bert; van Pottelbergh, Gijs; Wallemacq, Pierre; Degryse, Jean-Marie

    2014-01-01

    The chronic inflammatory state at old age may contribute to the pathophysiology of or reflect chronic conditions resulting in loss of physical and mental functioning. Therefore, our objective was to examine the predictive value of a large battery of serum inflammatory markers as risk indicators for global functional decline and its specific physical and mental determinants in the oldest old. Global functional decline and specific aspects of physical and mental functional decline were assessed during an average of 1.66 years (±0.21) in a sample of 303 persons aged 80 years or older of the BELFRAIL study. Serum levels of 14 inflammatory proteins, including cytokines, growth factors, and acute phase proteins, were measured at baseline. Almost 20 % of the participants had a significant global functional decline over time. Interleukin (IL)-6 serum levels were uniquely positively associated with global functional decline, even after correcting for multiple confounders (odds ratio 1.51). Odds ratios for the individual aspects (physical dependency, physical performance, cognition, and depression) of functioning were lower, and composite scores of physical or mental decline were not significant. The proportion of global functional decline exhibited a dose-response curve with increasing levels of IL-6. Thus, IL-6 is an independent risk indicator for accelerated global functional decline in the oldest old. Our results suggest that simple serum levels of IL-6 may be very useful in short-term identification or evaluation of global functional status in the oldest old. PMID:25410483

  13. A Prediction Model for Functional Outcomes in Spinal Cord Disorder Patients Using Gaussian Process Regression.

    PubMed

    Lee, Sunghoon Ivan; Mortazavi, Bobak; Hoffman, Haydn A; Lu, Derek S; Li, Charles; Paak, Brian H; Garst, Jordan H; Razaghy, Mehrdad; Espinal, Marie; Park, Eunjeong; Lu, Daniel C; Sarrafzadeh, Majid

    2016-01-01

    Predicting the functional outcomes of spinal cord disorder patients after medical treatments, such as a surgical operation, has always been of great interest. Accurate posttreatment prediction is especially beneficial for clinicians, patients, care givers, and therapists. This paper introduces a prediction method for postoperative functional outcomes by a novel use of Gaussian process regression. The proposed method specifically considers the restricted value range of the target variables by modeling the Gaussian process based on a truncated Normal distribution, which significantly improves the prediction results. The prediction has been made in assistance with target tracking examinations using a highly portable and inexpensive handgrip device, which greatly contributes to the prediction performance. The proposed method has been validated through a dataset collected from a clinical cohort pilot involving 15 patients with cervical spinal cord disorder. The results show that the proposed method can accurately predict postoperative functional outcomes, Oswestry disability index and target tracking scores, based on the patient's preoperative information with a mean absolute error of 0.079 and 0.014 (out of 1.0), respectively. PMID:25423659

  14. Early functional magnetic resonance imaging activations predict language outcome after stroke.

    PubMed

    Saur, Dorothee; Ronneberger, Olaf; Kümmerer, Dorothee; Mader, Irina; Weiller, Cornelius; Klöppel, Stefan

    2010-04-01

    An accurate prediction of system-specific recovery after stroke is essential to provide rehabilitation therapy based on the individual needs. We explored the usefulness of functional magnetic resonance imaging scans from an auditory language comprehension experiment to predict individual language recovery in 21 aphasic stroke patients. Subjects with an at least moderate language impairment received extensive language testing 2 weeks and 6 months after left-hemispheric stroke. A multivariate machine learning technique was used to predict language outcome 6 months after stroke. In addition, we aimed to predict the degree of language improvement over 6 months. 76% of patients were correctly separated into those with good and bad language performance 6 months after stroke when based on functional magnetic resonance imaging data from language relevant areas. Accuracy further improved (86% correct assignments) when age and language score were entered alongside functional magnetic resonance imaging data into the fully automatic classifier. A similar accuracy was reached when predicting the degree of language improvement based on imaging, age and language performance. No prediction better than chance level was achieved when exploring the usefulness of diffusion weighted imaging as well as functional magnetic resonance imaging acquired two days after stroke. This study demonstrates the high potential of current machine learning techniques to predict system-specific clinical outcome even for a disease as heterogeneous as stroke. Best prediction of language recovery is achieved when the brain activation potential after system-specific stimulation is assessed in the second week post stroke. More intensive early rehabilitation could be provided for those with a predicted poor recovery and the extension to other systems, for example, motor and attention seems feasible. PMID:20299389

  15. Prediction accuracy measurements as a fitness function for software effort estimation.

    PubMed

    Urbanek, Tomas; Prokopova, Zdenka; Silhavy, Radek; Vesela, Veronika

    2015-01-01

    This paper evaluates the usage of analytical programming and different fitness functions for software effort estimation. Analytical programming and differential evolution generate regression functions. These functions are evaluated by the fitness function which is part of differential evolution. The differential evolution requires a proper fitness function for effective optimization. The problem is in proper selection of the fitness function. Analytical programming and different fitness functions were tested to assess insight to this problem. Mean magnitude of relative error, prediction 25 %, mean squared error (MSE) and other metrics were as possible candidates for proper fitness function. The experimental results shows that means squared error performs best and therefore is recommended as a fitness function. Moreover, this work shows that analytical programming method is viable method for calibrating use case points method. All results were evaluated by standard approach: visual inspection and statistical significance. PMID:26697288

  16. Validation of Skeletal Muscle cis-Regulatory Module Predictions Reveals Nucleotide Composition Bias in Functional Enhancers

    PubMed Central

    Kwon, Andrew T.; Chou, Alice Yi; Arenillas, David J.; Wasserman, Wyeth W.

    2011-01-01

    We performed a genome-wide scan for muscle-specific cis-regulatory modules (CRMs) using three computational prediction programs. Based on the predictions, 339 candidate CRMs were tested in cell culture with NIH3T3 fibroblasts and C2C12 myoblasts for capacity to direct selective reporter gene expression to differentiated C2C12 myotubes. A subset of 19 CRMs validated as functional in the assay. The rate of predictive success reveals striking limitations of computational regulatory sequence analysis methods for CRM discovery. Motif-based methods performed no better than predictions based only on sequence conservation. Analysis of the properties of the functional sequences relative to inactive sequences identifies nucleotide sequence composition can be an important characteristic to incorporate in future methods for improved predictive specificity. Muscle-related TFBSs predicted within the functional sequences display greater sequence conservation than non-TFBS flanking regions. Comparison with recent MyoD and histone modification ChIP-Seq data supports the validity of the functional regions. PMID:22144875

  17. Predicting Functional Cortical ROIs via DTI-Derived Fiber Shape Models

    PubMed Central

    Zhang, Tuo; Guo, Lei; Li, Kaiming; Jing, Changfeng; Yin, Yan; Zhu, Dajiang; Cui, Guangbin; Li, Lingjiang

    2012-01-01

    Studying structural and functional connectivities of human cerebral cortex has drawn significant interest and effort recently. A fundamental and challenging problem arises when attempting to measure the structural and/or functional connectivities of specific cortical networks: how to identify and localize the best possible regions of interests (ROIs) on the cortex? In our view, the major challenges come from uncertainties in ROI boundary definition, the remarkable structural and functional variability across individuals and high nonlinearities within and around ROIs. In this paper, we present a novel ROI prediction framework that localizes ROIs in individual brains based on their learned fiber shape models from multimodal task-based functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) data. In the training stage, shape models of white matter fibers are learnt from those emanating from the functional ROIs, which are activated brain regions detected from task-based fMRI data. In the prediction stage, functional ROIs are predicted in individual brains based only on DTI data. Our experiment results show that the average ROI prediction error is around 3.94 mm, in comparison with benchmark data provided by working memory and visual task-based fMRI. Our work demonstrated that fiber bundle shape models derived from DTI data are good predictors of functional cortical ROIs. PMID:21705394

  18. Improved Displacement Transfer Functions for Structure Deformed Shape Predictions Using Discretely Distributed Surface Strains

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2012-01-01

    In the formulations of earlier Displacement Transfer Functions for structure shape predictions, the surface strain distributions, along a strain-sensing line, were represented with piecewise linear functions. To improve the shape-prediction accuracies, Improved Displacement Transfer Functions were formulated using piecewise nonlinear strain representations. Through discretization of an embedded beam (depth-wise cross section of a structure along a strain-sensing line) into multiple small domains, piecewise nonlinear functions were used to describe the surface strain distributions along the discretized embedded beam. Such piecewise approach enabled the piecewise integrations of the embedded beam curvature equations to yield slope and deflection equations in recursive forms. The resulting Improved Displacement Transfer Functions, written in summation forms, were expressed in terms of beam geometrical parameters and surface strains along the strain-sensing line. By feeding the surface strains into the Improved Displacement Transfer Functions, structural deflections could be calculated at multiple points for mapping out the overall structural deformed shapes for visual display. The shape-prediction accuracies of the Improved Displacement Transfer Functions were then examined in view of finite-element-calculated deflections using different tapered cantilever tubular beams. It was found that by using the piecewise nonlinear strain representations, the shape-prediction accuracies could be greatly improved, especially for highly-tapered cantilever tubular beams.

  19. Functional characterization of sonic hedgehog mutations associated with holoprosencephaly.

    PubMed

    Traiffort, Elisabeth; Dubourg, Christèle; Faure, Hélène; Rognan, Didier; Odent, Sylvie; Durou, Marie-Renée; David, Véronique; Ruat, Martial

    2004-10-01

    Mutations of the developmental gene Sonic hedgehog (SHH) and alterations of SHH signaling have been associated with holoprosencephaly (HPE), a rare disorder characterized by a large spectrum of brain and craniofacial anomalies. Based on the crystal structure of mouse N-terminal and Drosophila C-terminal hedgehog proteins, we have developed three-dimensional models of the corresponding human proteins (SHH-N, SHH-C) that have allowed us to identify within these two domains crucial regions associated with HPE missense mutations. We have further characterized the functional consequences linked to 11 of these mutations. In transfected HEK293 cells, the production of the active SHH-N fragment was dramatically impaired for eight mutants (W117R, W117G, H140P, T150R, C183F, L271P, I354T, A383T). The supernatants from these cell cultures showed no significant SHH-signaling activity in a reporter cell-based assay. Two mutants (G31R, D222N) were associated with a lower production of SHH-N and signaling activity. Finally, one mutant harboring the A226T mutation displays an activity comparable with the wild-type protein. This work demonstrates that most of the HPE-associated SHH mutations analyzed have a deleterious effect on the availability of SHH-N and its biological activity. However, because of the lack of correlation between genotype and phenotype for SHH-associated mutations, our study suggests that other factors intervene in the development of the spectrum of HPE anomalies. PMID:15292211

  20. Evaluation of DNA Variants Associated with Androgenetic Alopecia and Their Potential to Predict Male Pattern Baldness

    PubMed Central

    Marcińska, Magdalena; Pośpiech, Ewelina; Abidi, Sarah; Andersen, Jeppe Dyrberg; van den Berge, Margreet; Carracedo, Ángel; Eduardoff, Mayra; Marczakiewicz-Lustig, Anna; Morling, Niels; Sijen, Titia; Skowron, Małgorzata; Söchtig, Jens; Syndercombe-Court, Denise; Weiler, Natalie; Schneider, Peter M.; Ballard, David; Børsting, Claus; Parson, Walther; Phillips, Chris; Branicki, Wojciech

    2015-01-01

    Androgenetic alopecia, known in men as male pattern baldness (MPB), is a very conspicuous condition that is particularly frequent among European men and thus contributes markedly to variation in physical appearance traits amongst Europeans. Recent studies have revealed multiple genes and polymorphisms to be associated with susceptibility to MPB. In this study, 50 candidate SNPs for androgenetic alopecia were analyzed in order to verify their potential to predict MPB. Significant associations were confirmed for 29 SNPs from chromosomes X, 1, 5, 7, 18 and 20. A simple 5-SNP prediction model and an extended 20-SNP model were developed based on a discovery panel of 305 males from various European populations fitting one of two distinct phenotype categories. The first category consisted of men below 50 years of age with significant baldness and the second; men aged 50 years or older lacking baldness. The simple model comprised the five best predictors: rs5919324 near AR, rs1998076 in the 20p11 region, rs929626 in EBF1, rs12565727 in TARDBP and rs756853 in HDAC9. The extended prediction model added 15 SNPs from five genomic regions that improved overall prevalence-adjusted predictive accuracy measured by area under the receiver characteristic operating curve (AUC). Both models were evaluated for predictive accuracy using a test set of 300 males reflecting the general European population. Applying a 65% probability threshold, high prediction sensitivity of 87.1% but low specificity of 42.4% was obtained in men aged <50 years. In men aged ≥50, prediction sensitivity was slightly lower at 67.7% while specificity reached 90%. Overall, the AUC=0.761 calculated for men at or above 50 years of age indicates these SNPs offer considerable potential for the application of genetic tests to predict MPB patterns, adding a highly informative predictive system to the emerging field of forensic analysis of externally visible characteristics. PMID:26001114

  1. The Association between Resting Functional Connectivity and Visual Creativity

    PubMed Central

    Li, Wenfu; Yang, Junyi; Zhang, Qinglin; Li, Gongying; Qiu, Jiang

    2016-01-01

    Resting-state functional connectivity (RSFC), the temporal correlation of intrinsic activation between different brain regions, has become one of the most fascinating field in the functional imaging studies. To better understand the association between RSFC and individual creativity, we used RSFC and the figure Torrance Tests of Creative Thinking (TTCT-F) to investigate the relationship between creativity measured by TTCT and RSFC within two different brain networks, default mode network and the cognitive control network, in a large healthy sample (304). We took the medial prefrontal cortex (MPFC) and the bilateral dorsolateral prefrontal cortices (DLPFC) to be the seed regions and investigated the association across subjects between the score of TTCT-F and the strength of RSFC between these seed regions and other voxels in the whole brain. Results revealed that the strength of RSFC with the MPFC was significantly and negatively correlated with the score of TTCT-F in the precuneus. Meanwhile, we also found that the strength of RSFC with the left DLPFC was significantly and positively correlated with the score of TTCT-F in the right DLPFC. It suggests that the decreased RSFC within DMN and the increased RSFC within CCN presents a potential interaction mechanism between different region for higher creativity. PMID:27138732

  2. Functional brain networks associated with eating behaviors in obesity.

    PubMed

    Park, Bo-Yong; Seo, Jongbum; Park, Hyunjin

    2016-01-01

    Obesity causes critical health problems including diabetes and hypertension that affect billions of people worldwide. Obesity and eating behaviors are believed to be closely linked but their relationship through brain networks has not been fully explored. We identified functional brain networks associated with obesity and examined how the networks were related to eating behaviors. Resting state functional magnetic resonance imaging (MRI) scans were obtained for 82 participants. Data were from an equal number of people of healthy weight (HW) and non-healthy weight (non-HW). Connectivity matrices were computed with spatial maps derived using a group independent component analysis approach. Brain networks and associated connectivity parameters with significant group-wise differences were identified and correlated with scores on a three-factor eating questionnaire (TFEQ) describing restraint, disinhibition, and hunger eating behaviors. Frontoparietal and cerebellum networks showed group-wise differences between HW and non-HW groups. Frontoparietal network showed a high correlation with TFEQ disinhibition scores. Both frontoparietal and cerebellum networks showed a high correlation with body mass index (BMI) scores. Brain networks with significant group-wise differences between HW and non-HW groups were identified. Parts of the identified networks showed a high correlation with eating behavior scores. PMID:27030024

  3. The Association between Resting Functional Connectivity and Visual Creativity.

    PubMed

    Li, Wenfu; Yang, Junyi; Zhang, Qinglin; Li, Gongying; Qiu, Jiang

    2016-01-01

    Resting-state functional connectivity (RSFC), the temporal correlation of intrinsic activation between different brain regions, has become one of the most fascinating field in the functional imaging studies. To better understand the association between RSFC and individual creativity, we used RSFC and the figure Torrance Tests of Creative Thinking (TTCT-F) to investigate the relationship between creativity measured by TTCT and RSFC within two different brain networks, default mode network and the cognitive control network, in a large healthy sample (304). We took the medial prefrontal cortex (MPFC) and the bilateral dorsolateral prefrontal cortices (DLPFC) to be the seed regions and investigated the association across subjects between the score of TTCT-F and the strength of RSFC between these seed regions and other voxels in the whole brain. Results revealed that the strength of RSFC with the MPFC was significantly and negatively correlated with the score of TTCT-F in the precuneus. Meanwhile, we also found that the strength of RSFC with the left DLPFC was significantly and positively correlated with the score of TTCT-F in the right DLPFC. It suggests that the decreased RSFC within DMN and the increased RSFC within CCN presents a potential interaction mechanism between different region for higher creativity. PMID:27138732

  4. Affected functional networks associated with sentence production in classic galactosemia.

    PubMed

    Timmers, Inge; van den Hurk, Job; Hofman, Paul Am; Zimmermann, Luc Ji; Uludağ, Kâmil; Jansma, Bernadette M; Rubio-Gozalbo, M Estela

    2015-08-01

    Patients with the inherited metabolic disorder classic galactosemia have language production impairments in several planning stages. Here, we assessed potential deviations in recruitment and connectivity across brain areas responsible for language production that may explain these deficits. We used functional magnetic resonance imaging (fMRI) to study neural activity and connectivity while participants carried out a language production task. This study included 13 adolescent patients and 13 age- and gender-matched healthy controls. Participants passively watched or actively described an animated visual scene using two conditions, varying in syntactic complexity (single words versus a sentence). Results showed that patients recruited additional and more extensive brain regions during sentence production. Both groups showed modulations with syntactic complexity in left inferior frontal gyrus (IFG), a region associated with syntactic planning, and in right insula. In addition, patients showed a modulation with syntax in left superior temporal gyrus (STG), whereas the controls did not. Further, patients showed increased activity in right STG and right supplementary motor area (SMA). The functional connectivity data showed similar patterns, with more extensive connectivity with frontal and motor regions, and restricted and weaker connectivity with superior temporal regions. Patients also showed higher baseline cerebral blood flow (CBF) in right IFG and trends towards higher CBF in bilateral STG, SMA and the insula. Taken together, the data demonstrate that language abnormalities in classic galactosemia are associated with specific changes within the language network. These changes point towards impairments related to both syntactic planning and speech motor planning in these patients. PMID:25979518

  5. Functional brain networks associated with eating behaviors in obesity

    PubMed Central

    Park, Bo-yong; Seo, Jongbum; Park, Hyunjin

    2016-01-01

    Obesity causes critical health problems including diabetes and hypertension that affect billions of people worldwide. Obesity and eating behaviors are believed to be closely linked but their relationship through brain networks has not been fully explored. We identified functional brain networks associated with obesity and examined how the networks were related to eating behaviors. Resting state functional magnetic resonance imaging (MRI) scans were obtained for 82 participants. Data were from an equal number of people of healthy weight (HW) and non-healthy weight (non-HW). Connectivity matrices were computed with spatial maps derived using a group independent component analysis approach. Brain networks and associated connectivity parameters with significant group-wise differences were identified and correlated with scores on a three-factor eating questionnaire (TFEQ) describing restraint, disinhibition, and hunger eating behaviors. Frontoparietal and cerebellum networks showed group-wise differences between HW and non-HW groups. Frontoparietal network showed a high correlation with TFEQ disinhibition scores. Both frontoparietal and cerebellum networks showed a high correlation with body mass index (BMI) scores. Brain networks with significant group-wise differences between HW and non-HW groups were identified. Parts of the identified networks showed a high correlation with eating behavior scores. PMID:27030024

  6. Genes2FANs: connecting genes through functional association networks

    PubMed Central

    2012-01-01

    Background Protein-protein, cell signaling, metabolic, and transcriptional interaction networks are useful for identifying connections between lists of experimentally identified genes/proteins. However, besides physical or co-expression interactions there are many ways in which pairs of genes, or their protein products, can be associated. By systematically incorporating knowledge on shared properties of genes from diverse sources to build functional association networks (FANs), researchers may be able to identify additional functional interactions between groups of genes that are not readily apparent. Results Genes2FANs is a web based tool and a database that utilizes 14 carefully constructed FANs and a large-scale protein-protein interaction (PPI) network to build subnetworks that connect lists of human and mouse genes. The FANs are created from mammalian gene set libraries where mouse genes are converted to their human orthologs. The tool takes as input a list of human or mouse Entrez gene symbols to produce a subnetwork and a ranked list of intermediate genes that are used to connect the query input list. In addition, users can enter any PubMed search term and then the system automatically converts the returned results to gene lists using GeneRIF. This gene list is then used as input to generate a subnetwork from the user’s PubMed query. As a case study, we applied Genes2FANs to connect disease genes from 90 well-studied disorders. We find an inverse correlation between the counts of links connecting disease genes through PPI and links connecting diseases genes through FANs, separating diseases into two categories. Conclusions Genes2FANs is a useful tool for interpreting the relationships between gene/protein lists in the context of their various functions and networks. Combining functional association interactions with physical PPIs can be useful for revealing new biology and help form hypotheses for further experimentation. Our finding that disease genes in

  7. Local structure based method for prediction of the biochemical function of proteins: Applications to glycoside hydrolases.

    PubMed

    Parasuram, Ramya; Mills, Caitlyn L; Wang, Zhouxi; Somasundaram, Saroja; Beuning, Penny J; Ondrechen, Mary Jo

    2016-01-15

    Thousands of protein structures of unknown or uncertain function have been reported as a result of high-throughput structure determination techniques developed by Structural Genomics (SG) projects. However, many of the putative functional assignments of these SG proteins in the Protein Data Bank (PDB) are incorrect. While high-throughput biochemical screening techniques have provided valuable functional information for limited sets of SG proteins, the biochemical functions for most SG proteins are still unknown or uncertain. Therefore, computational methods for the reliable prediction of protein function from structure can add tremendous value to the existing SG data. In this article, we show how computational methods may be used to predict the function of SG proteins, using examples from the six-hairpin glycosidase (6-HG) and the concanavalin A-like lectin/glucanase (CAL/G) superfamilies. Using a set of predicted functional residues, obtained from computed electrostatic and chemical properties for each protein structure, it is shown that these superfamilies may be sorted into functional families according to biochemical function. Within these superfamilies, a total of 18 SG proteins were analyzed according to their predicted, local functional sites: 13 from the 6-HG superfamily, five from the CAL/G superfamily. Within the 6-HG superfamily, an uncharacterized protein BACOVA_03626 from Bacteroides ovatus (PDB 3ON6) and a hypothetical protein BT3781 from Bacteroides thetaiotaomicron (PDB 2P0V) are shown to have very strong active site matches with exo-α-1,6-mannosidases, thus likely possessing this function. Also in this superfamily, it is shown that protein BH0842, a putative glycoside hydrolase from Bacillus halodurans (PDB 2RDY), has a predicted active site that matches well with a known α-L-galactosidase. In the CAL/G superfamily, an uncharacterized glycosyl hydrolase family 16 protein from Mycobacterium smegmatis (PDB 3RQ0) is shown to have local structural

  8. Genome-Wide Association Mapping and Genomic Prediction Elucidate the Genetic Architecture of Morphological Traits in Arabidopsis.

    PubMed

    Kooke, Rik; Kruijer, Willem; Bours, Ralph; Becker, Frank; Kuhn, André; van de Geest, Henri; Buntjer, Jaap; Doeswijk, Timo; Guerra, José; Bouwmeester, Harro; Vreugdenhil, Dick; Keurentjes, Joost J B

    2016-04-01

    Quantitative traits in plants are controlled by a large number of genes and their interaction with the environment. To disentangle the genetic architecture of such traits, natural variation within species can be explored by studying genotype-phenotype relationships. Genome-wide association studies that link phenotypes to thousands of single nucleotide polymorphism markers are nowadays common practice for such analyses. In many cases, however, the identified individual loci cannot fully explain the heritability estimates, suggesting missing heritability. We analyzed 349 Arabidopsis accessions and found extensive variation and high heritabilities for different morphological traits. The number of significant genome-wide associations was, however, very low. The application of genomic prediction models that take into account the effects of all individual loci may greatly enhance the elucidation of the genetic architecture of quantitative traits in plants. Here, genomic prediction models revealed different genetic architectures for the morphological traits. Integrating genomic prediction and association mapping enabled the assignment of many plausible candidate genes explaining the observed variation. These genes were analyzed for functional and sequence diversity, and good indications that natural allelic variation in many of these genes contributes to phenotypic variation were obtained. For ACS11, an ethylene biosynthesis gene, haplotype differences explaining variation in the ratio of petiole and leaf length could be identified. PMID:26869705

  9. Predicting taxonomic and functional structure of microbial communities in acid mine drainage.

    PubMed

    Kuang, Jialiang; Huang, Linan; He, Zhili; Chen, Linxing; Hua, Zhengshuang; Jia, Pu; Li, Shengjin; Liu, Jun; Li, Jintian; Zhou, Jizhong; Shu, Wensheng

    2016-06-01

    Predicting the dynamics of community composition and functional attributes responding to environmental changes is an essential goal in community ecology but remains a major challenge, particularly in microbial ecology. Here, by targeting a model system with low species richness, we explore the spatial distribution of taxonomic and functional structure of 40 acid mine drainage (AMD) microbial communities across Southeast China profiled by 16S ribosomal RNA pyrosequencing and a comprehensive microarray (GeoChip). Similar environmentally dependent patterns of dominant microbial lineages and key functional genes were observed regardless of the large-scale geographical isolation. Functional and phylogenetic β-diversities were significantly correlated, whereas functional metabolic potentials were strongly influenced by environmental conditions and community taxonomic structure. Using advanced modeling approaches based on artificial neural networks, we successfully predicted the taxonomic and functional dynamics with significantly higher prediction accuracies of metabolic potentials (average Bray-Curtis similarity 87.8) as compared with relative microbial abundances (similarity 66.8), implying that natural AMD microbial assemblages may be better predicted at the functional genes level rather than at taxonomic level. Furthermore, relative metabolic potentials of genes involved in many key ecological functions (for example, nitrogen and phosphate utilization, metals resistance and stress response) were extrapolated to increase under more acidic and metal-rich conditions, indicating a critical strategy of stress adaptation in these extraordinary communities. Collectively, our findings indicate that natural selection rather than geographic distance has a more crucial role in shaping the taxonomic and functional patterns of AMD microbial community that readily predicted by modeling methods and suggest that the model-based approach is essential to better understand natural

  10. Prognostic Factors Predicting Early Recovery of Pre-fracture Functional Mobility in Elderly Patients With Hip Fracture

    PubMed Central

    Lee, Daegu; Jo, Jae Yong; Jung, Ji Sun

    2014-01-01

    Objective To investigate the prognostic factors predicting the recovery of pre-fracture functional mobility, we evaluated this by the use of ambulatory assistive devices in short-term follow-up. Methods Five hundred and fifty-three elderly patients who had undergone hip fracture operations from January 2006 to June 2013 were enrolled in this retrospective study. Clinical characteristics and predicted factors affecting functional recovery, such as the delay of rehabilitation after the operation, were reviewed. The functional status of the gait was classified as either a bedridden state, wheelchair-bound state, walker gait, single cane gait, and self-gait without any ambulatory assistance device. When this functional grade in patients who recovered after the surgery was compared to before the surgery, this state was considered 'functional recovery'. Results One hundred and ninety-two patients (34.7%) showed recovery of preoperative mobility in the first month after their operation. Multiple logistic regression analysis identified that the following four factors were significantly associated with a deterioration of functional recovery: old age (odds ratio [OR], 0.95; 95% confidence interval [CI], 0.92-0.97), delays in rehabilitation after operation (OR, 0.94; 95% CI, 0.89-0.98), the presence of cognitive dysfunction (OR, 0.36; 95% CI, 0.18-0.71), and trochanteric fracturing (OR, 0.58; 95% CI, 0.36-0.94). Conclusion We found that old age, cognitive dysfunction, trochanteric fracture type, and delay of rehabilitation were associated with the deterioration of functional recovery after a hip fracture operation in the short-term. Therefore, early rehabilitation was required to acquire functional recovery after a hip fracture operation in the short-term. PMID:25566483

  11. Counseling the post-radical prostatectomy patients about functional recovery: high predictiveness of current status

    PubMed Central

    Vickers, Andrew J.; Kent, Matthew; Mulhall, John; Sandhu, Jaspreet

    2014-01-01

    Objectives To develop prediction models to help counsel post-radical prostatectomy patients about functional recovery. Methods The study included 2162 patients undergoing radical prostatectomy at a major cancer center who reported urinary and erectile function at one year or at two years and at least 1 prior follow-up at 3, 6, 9, or 12 months. We created logistic regression models predicting function at one or two years on the basis of function at 3, 6, 9, and 12 months (2 years only), with the additional predictors of age, stage, grade, PSA, nerve-sparing status and baseline functional score. Results No variable other than current functional score had a consistent, statistically significant relationship with outcome. The area-under-the-curves for predicting function at 2 years based on current function alone at 3, 6, 9, and 12 months were, respectively, 0.796, 0.831, 0.882, and 0.885 for erectile function and 0.789, 0.862, 0.869 and 0.876 for urinary function. Patients using one pad at 6 months had only a 50% probability of being pad free at 2 years; this dropped to 36% for patients using 2 pads. This suggests that there is an opportunity for early identification and possible referral of patients likely to have long-term urinary dysfunction. Conclusions Assessment of urinary and erectile function in the first post-operative year is strongly predictive of long-term outcome and can guide patient counseling and decisions about rehabilitative treatments. PMID:24824411

  12. Kamin Blocking Is Associated with Reduced Medial-Frontal Gyrus Activation: Implications for Prediction Error Abnormality in Schizophrenia

    PubMed Central

    Cross, Benjamin; Corcoran, Rhiannon

    2012-01-01

    The following study used 3-T functional magnetic resonance imaging (fMRI) to investigate the neural signature of Kamin blocking. Kamin blocking is an associative learning phenomenon seen where prior association of a stimulus (A) with an outcome blocks subsequent learning to an added stimulus (B) when both stimuli are later presented together (AB) with the same outcome. While there are a number of theoretical explanations of Kamin blocking, it is widely considered to exemplify the use of prediction error in learning, where learning occurs in proportion to the difference between expectation and outcome. In Kamin blocking as stimulus A fully predicts the outcome no prediction error is generated by the addition of stimulus B to form the compound stimulus AB, hence learning about it is “blocked”. Kamin blocking is disrupted in people with schizophrenia, their relatives and healthy individuals with high psychometrically-defined schizotypy. This disruption supports suggestions that abnormal prediction error is a core deficit that can help to explain the symptoms of schizophrenia. The present study tested 9 healthy volunteers on an f-MRI adaptation of Oades' “mouse in the house task”, the only task measuring Kamin blocking that shows disruption in schizophrenia patients that has been independently replicated. Participant's Kamin blocking scores were found to inversely correlate with Kamin-blocking-related activation within the prefrontal cortex, specifically the medial frontal gyrus. The medial frontal gyrus has been associated with the psychological construct of uncertainty, which we suggest is consistent with disrupted Kamin blocking and demonstrated in people with schizophrenia. These data suggest that the medial frontal gyrus merits further investigation as a potential locus of reduced Kamin blocking and abnormal prediction error in schizophrenia. PMID:23028415

  13. Use of multivariate linear regression and support vector regression to predict functional outcome after surgery for cervical spondylotic myelopathy.

    PubMed

    Hoffman, Haydn; Lee, Sunghoon I; Garst, Jordan H; Lu, Derek S; Li, Charles H; Nagasawa, Daniel T; Ghalehsari, Nima; Jahanforouz, Nima; Razaghy, Mehrdad; Espinal, Marie; Ghavamrezaii, Amir; Paak, Brian H; Wu, Irene; Sarrafzadeh, Majid; Lu, Daniel C

    2015-09-01

    This study introduces the use of multivariate linear regression (MLR) and support vector regression (SVR) models to predict postoperative outcomes in a cohort of patients who underwent surgery for cervical spondylotic myelopathy (CSM). Currently, predicting outcomes after surgery for CSM remains a challenge. We recruited patients who had a diagnosis of CSM and required decompressive surgery with or without fusion. Fine motor function was tested preoperatively and postoperatively with a handgrip-based tracking device that has been previously validated, yielding mean absolute accuracy (MAA) results for two tracking tasks (sinusoidal and step). All patients completed Oswestry disability index (ODI) and modified Japanese Orthopaedic Association questionnaires preoperatively and postoperatively. Preoperative data was utilized in MLR and SVR models to predict postoperative ODI. Predictions were compared to the actual ODI scores with the coefficient of determination (R(2)) and mean absolute difference (MAD). From this, 20 patients met the inclusion criteria and completed follow-up at least 3 months after surgery. With the MLR model, a combination of the preoperative ODI score, preoperative MAA (step function), and symptom duration yielded the best prediction of postoperative ODI (R(2)=0.452; MAD=0.0887; p=1.17 × 10(-3)). With the SVR model, a combination of preoperative ODI score, preoperative MAA (sinusoidal function), and symptom duration yielded the best prediction of postoperative ODI (R(2)=0.932; MAD=0.0283; p=5.73 × 10(-12)). The SVR model was more accurate than the MLR model. The SVR can be used preoperatively in risk/benefit analysis and the decision to operate. PMID:26115898

  14. Use of multivariate linear regression and support vector regression to predict functional outcome after surgery for cervical spondylotic myelopathy

    PubMed Central

    Hoffman, Haydn; Lee, Sunghoon Ivan; Garst, Jordan H.; Lu, Derek S.; Li, Charles H.; Nagasawa, Daniel T.; Ghalehsari, Nima; Jahanforouz, Nima; Razaghy, Mehrdad; Espinal, Marie; Ghavamrezaii, Amir; Paak, Brian H.; Wu, Irene; Sarrafzadeh, Majid; Lu, Daniel C.

    2016-01-01

    This study introduces the use of multivariate linear regression (MLR) and support vector regression (SVR) models to predict postoperative outcomes in a cohort of patients who underwent surgery for cervical spondylotic myelopathy (CSM). Currently, predicting outcomes after surgery for CSM remains a challenge. We recruited patients who had a diagnosis of CSM and required decompressive surgery with or without fusion. Fine motor function was tested preoperatively and postoperatively with a handgrip-based tracking device that has been previously validated, yielding mean absolute accuracy (MAA) results for two tracking tasks (sinusoidal and step). All patients completed Oswestry disability index (ODI) and modified Japanese Orthopaedic Association questionnaires preoperatively and postoperatively. Preoperative data was utilized in MLR and SVR models to predict postoperative ODI. Predictions were compared to the actual ODI scores with the coefficient of determination (R2) and mean absolute difference (MAD). From this, 20 patients met the inclusion criteria and completed follow-up at least 3 months after surgery. With the MLR model, a combination of the preoperative ODI score, preoperative MAA (step function), and symptom duration yielded the best prediction of postoperative ODI (R2 = 0.452; MAD = 0.0887; p = 1.17 × 10−3). With the SVR model, a combination of preoperative ODI score, preoperative MAA (sinusoidal function), and symptom duration yielded the best prediction of postoperative ODI (R2 = 0.932; MAD = 0.0283; p = 5.73 × 10−12). The SVR model was more accurate than the MLR model. The SVR can be used preoperatively in risk/benefit analysis and the decision to operate. PMID:26115898

  15. Critical Thresholds of Antioxidant and Immune Function Parameters for Se deficiency Prediction in Dairy Cows.

    PubMed

    Wu, Ling; Zhang, Hongyou; Xu, Chuang; Xia, Cheng

    2016-08-01

    The aim of this study was to determine the plasma selenium (Se) levels of lactating cows and to evaluate its association with antioxidant ability and immune function. In a descriptive study, 20 healthy Holstein cows with normal Se level (C) and 30 Holstein cows with subclinical Se deficiency (T) were randomly selected between 14 and 21 days postpartum from a dairy farm, according to a cutoff point of 70 mg/L Se in plasma. Analysis of biochemical parameters of antioxidant and immune function were performed on all the cows, and the risk prediction thresholds for subclinical Se deficiency were determined by area under receiver operating characteristic curve. Cows in the T group had significantly lower plasma Se concentrations compared with cows in the C group (52.16 ± 8.81 vs. 80.37 ± 8.46 μg/L, P = 0.02). There was a marked decrease in plasma glutathione peroxidase (GSH-Px) activity in the T group that correlated positively with the plasma Se level (R = 0.65, P = 0.00), and a significant increase of plasma methane dicarboxylic aldehyde (MDA), total nitric oxide synthase, and lipid peroxidation that correlated negatively with plasma Se levels (R = -0.47, P = 0.01; R = -0.33, P = 0.04; R = -0.40, P = 0.03). Furthermore, there were significantly lower plasma tumor necrosis factor-α and immunoglobulin G levels in the T group that correlated positively with plasma Se levels (R = 0.41, P = 0.01 and R = 0.45, P = 0.01), and a markedly lower plasma interleukin-6 level that correlated negatively with plasma Se levels (R = -0.38, P = 0.02). In addition, if plasma GSH-Px activity was less than 42.37 U/ml, the risk of Se deficiency was significantly increased in lactating cows. These results suggest that low plasma Se levels may reduce the antioxidant ability and immune function, and the risk of low plasma Se level may be predicted effectively by plasma GSH-Px activity in lactating cows. PMID:26743861

  16. Can structural or functional changes following traumatic brain injury in the rat predict the epileptic outcome?

    PubMed Central

    Shultz, Sandy R; Cardamone, Lisa; Liu, Ying R; Hogan, R. Edward; Maccotta, Luigi; Wright, David K; Zheng, Ping; Koe, Amelia; Gregoire, Marie-Claude; Williams, John P; Hicks, Rodney J; Jones, Nigel C; Myers, Damian E; O’Brien, Terence J; Bouilleret, Viviane

    2014-01-01

    Summary Purpose Post-traumatic epilepsy (PTE) occurs in a proportion of traumatic brain injury (TBI) cases, significantly compounding the disability, risk of injury, and death for sufferers. To date, predictive biomarkers for PTE have not been identified. This study used the lateral fluid percussion injury (LFPI) rat model of TBI to investigate whether structural, functional, and behavioral changes post-TBI relate to the later development of PTE. Methods Adult male Wistar rats underwent LFPI or sham-injury. Serial MR and PET imaging, and behavioral analyses were performed over six months post-injury. Rats were then implanted with recording electrodes and monitored for two consecutive weeks using video-EEG to assess for PTE. Of the LFPI rats, 52% (n=12) displayed spontaneous recurring seizures and/or epileptic discharges on the video-EEG recordings. Key findings MRI volumetric and signal analysis of changes in cortex, hippocampus, thalamus, and amygdala, 18F-FDG PET analysis of metabolic function, and behavioral analysis of cognitive and emotional changes, at one week, one month, three months, and six months post-LFPI, all failed to identify significant differences on univariate analysis between the epileptic and non-epileptic groups. However, hippocampal surface shape analysis using high dimensional mapping-large deformation identified significant changes in the ipsilateral hippocampus at one week post-injury relative to baseline that differed between rats that would go onto become epileptic versus those who did not. Furthermore, a multivariate logistic regression model that incorporated the one week, one month, and three month 18F-FDG PET parameters from the ipsilateral hippocampus was able to correctly predict the epileptic outcome in all of the LFPI cases. As such, these subtle changes in the ipsilateral hippocampus at acute phases after LFPI may be related to PTE and require further examination. Significance These findings suggest PTE may be independent of

  17. [Mathematic concept model of accumulation of functional disorders associated with environmental factors].

    PubMed

    Zaĭtseva, N V; Trusov, P V; Kir'ianov, D A

    2012-01-01

    The mathematic concept model presented describes accumulation of functional disorders associated with environmental factors, plays predictive role and is designed for assessments of possible effects caused by heterogenous factors with variable exposures. Considering exposure changes with self-restoration process opens prospects of using the model to evaluate, analyse and manage occupational risks. To develop current theoretic approaches, the authors suggested a model considering age-related body peculiarities, systemic interactions of organs, including neuro-humoral regulation, accumulation of functional disorders due to external factors, rehabilitation of functions during treatment. General objective setting covers defining over a hundred unknow coefficients that characterize speed of various processes within the body. To solve this problem, the authors used iteration approach, successive identification, that starts from the certain primary approximation of the model parameters and processes subsequent updating on the basis of new theoretic and empirical knowledge. PMID:23461190

  18. Ink and Holes: Correlates and Predictive Associations of Body Modification among Adolescents

    ERIC Educational Resources Information Center

    Dukes, Richard L.; Stein, Judith A.

    2011-01-01

    We examined correlates and predictive associations of tattoos and body piercings among 1,462 Colorado students in grades 9 to 12. More boys (19%) than girls (17%) reported tattoos, but more girls (42%) than boys (16%) reported piercings (earlobes not included). Older students reported more body modification. Structural equation models showed that…

  19. Bidirectional Associations between Temperament and Parenting and the Prediction of Adjustment Problems in Middle Childhood

    ERIC Educational Resources Information Center

    Lengua, L.J.; Kovacs, E.A.

    2005-01-01

    This study examined longitudinal associations between child temperament (fearfulness, irritability, positive emotionality, self-regulation) and parenting (acceptance, involvement, inconsistent discipline) in predicting children's internalizing and externalizing problems using a community sample (N = 92) of children (ages 8-11) and their mothers.…

  20. Pain predictability reverses valence ratings of a relief-associated stimulus

    PubMed Central

    Andreatta, Marta; Mühlberger, Andreas; Glotzbach-Schoon, Evelyn; Pauli, Paul

    2013-01-01

    Relief from pain is positively valenced and entails reward-like properties. Notably, stimuli that became associated with pain relief elicit reward-like implicit responses too, but are explicitly evaluated by humans as aversive. Since the unpredictability of pain makes pain more aversive, this study examined the hypotheses that the predictability of pain also modulates the valence of relief-associated stimuli. In two studies, we presented one conditioned stimulus (FORWARDCS+) before a painful unconditioned stimulus (US), another stimulus (BACKWARDCS+) after the painful US, and a third stimulus (CS−) was never associated with the US. In Study 1, FORWARDCS+ predicted half of the USs while the other half was delivered unwarned and followed by BACKWARDCS+. In Study 2, all USs were predicted by FORWARDCS+ and followed by BACKWARDCS+. In Study 1 both FORWARDCS+ and BACKWARDCS+ were rated as negatively valenced and high arousing after conditioning, while BACKWARDCS+ in Study 2 acquired positive valence and low arousal. Startle amplitude was significantly attenuated to BACKWARDCS+ compared to FORWARDCS+ in Study 2, but did not differ among CSs in Study 1. In summary, predictability of aversive events reverses the explicit valence of a relief-associated stimulus. PMID:24068989

  1. Predicting Success Using HESI A2 Entrance Tests in an Associate Degree Nursing Program

    ERIC Educational Resources Information Center

    Bodman, Susan

    2012-01-01

    A challenge presented to nurse educators is retention of nursing students. This has led nursing faculty to review admission requirements and question how well entrance tests predict success in Associate Degree Nursing Programs. The purpose of this study was to investigate the relationship between the HESI Admission Assessment Exam (HESI A2) and…

  2. Associations between Young Children's Emotion Attributions and Prediction of Outcome in Differing Social Situations

    ERIC Educational Resources Information Center

    Eivers, Areana R.; Brendgen, Mara; Borge, Anne I. H.

    2010-01-01

    Associations between young children's attributions of emotion at different points in a story, and with regard to their own prediction about the story's outcome, were investigated using two hypothetical scenarios of social and emotional challenge (social entry and negative event). First grade children (N = 250) showed an understanding that emotions…

  3. Which Variables Associated with Data-Driven Instruction Are Believed to Best Predict Urban Student Achievement?

    ERIC Educational Resources Information Center

    Greer, Wil

    2013-01-01

    This study identified the variables associated with data-driven instruction (DDI) that are perceived to best predict student achievement. Of the DDI variables discussed in the literature, 51 of them had a sufficient enough research base to warrant statistical analysis. Of them, 26 were statistically significant. Multiple regression and an…

  4. High peripheral blood th17 percent associated with poor lung function in cystic fibrosis.

    PubMed

    Mulcahy, Emily M; Hudson, Jo B; Beggs, Sean A; Reid, David W; Roddam, Louise F; Cooley, Margaret A

    2015-01-01

    People with cystic fibrosis (CF) have been reported to make lung T cell responses that are biased towards T helper (Th) 2 or Th17. We hypothesized that CF-related T cell regulatory defects could be detected by analyzing CD4+ lymphocyte subsets in peripheral blood. Peripheral blood mononuclear cells from 42 CF patients (6 months-53 years old) and 78 healthy controls (2-61 years old) were analyzed for Th1 (IFN-γ+), Th2 (IL-4+), Th17 (IL-17+), Treg (FOXP3+), IL-10+ and TGF-β+ CD4+ cells. We observed higher proportions of Treg, IL-10+ and TGF-β+ CD4+ cells in CF adults (≥ 18 years old), but not children/adolescents, compared with controls. Within the CF group, high TGF-β+% was associated with chronic Pseudomonas aeruginosa lung infection (p < 0.006). We observed no significant differences between control and CF groups in the proportions of Th1, Th2 or Th17 cells, and no association within the CF group of any subset with sex, CFTR genotype, or clinical exacerbation. However, high Th17% was strongly associated with poor lung function (FEV1 % predicted) (p = 0.0008), and this association was strongest when both lung function testing and blood sampling were performed within one week. Our results are consistent with reports of CF as a Th17 disease and suggest that peripheral blood Th17 levels may be a surrogate marker of lung function in CF. PMID:25803862

  5. Predicting predation through prey ontogeny using size-dependent functional response models.

    PubMed

    McCoy, Michael W; Bolker, Benjamin M; Warkentin, Karen M; Vonesh, James R

    2011-06-01

    The functional response is a critical link between consumer and resource dynamics, describing how a consumer's feeding rate varies with prey density. Functional response models often assume homogenous prey size and size-independent feeding rates. However, variation in prey size due to ontogeny and competition is ubiquitous, and predation rates are often size dependent. Thus, functional responses that ignore prey size may not effectively predict predation rates through ontogeny or in heterogeneous populations. Here, we use short-term response-surface experiments and statistical modeling to develop and test prey size-dependent functional responses for water bugs and dragonfly larvae feeding on red-eyed treefrog tadpoles. We then extend these models through simulations to predict mortality through time for growing prey. Both conventional and size-dependent functional response models predicted average overall mortality in short-term mixed-cohort experiments, but only the size-dependent models accurately captured how mortality was spread across sizes. As a result, simulations that extrapolated these results through prey ontogeny showed that differences in size-specific mortality are compounded as prey grow, causing predictions from conventional and size-dependent functional response models to diverge dramatically through time. Our results highlight the importance of incorporating prey size when modeling consumer-prey dynamics in size-structured, growing prey populations. PMID:21597252

  6. Application of Gap-Constraints Given Sequential Frequent Pattern Mining for Protein Function Prediction

    PubMed Central

    Park, Hyeon Ah; Kim, Taewook; Li, Meijing; Shon, Ho Sun; Park, Jeong Seok; Ryu, Keun Ho

    2015-01-01

    Objectives Predicting protein function from the protein–protein interaction network is challenging due to its complexity and huge scale of protein interaction process along with inconsistent pattern. Previously proposed methods such as neighbor counting, network analysis, and graph pattern mining has predicted functions by calculating the rules and probability of patterns inside network. Although these methods have shown good prediction, difficulty still exists in searching several functions that are exceptional from simple rules and patterns as a result of not considering the inconsistent aspect of the interaction network. Methods In this article, we propose a novel approach using the sequential pattern mining method with gap-constraints. To overcome the inconsistency problem, we suggest frequent functional patterns to include every possible functional sequence—including patterns for which search is limited by the structure of connection or level of neighborhood layer. We also constructed a tree-graph with the most crucial interaction information of the target protein, and generated candidate sets to assign by sequential pattern mining allowing gaps. Results The parameters of pattern length, maximum gaps, and minimum support were given to find the best setting for the most accurate prediction. The highest accuracy rate was 0.972, which showed better results than the simple neighbor counting approach and link-based approach. Conclusion The results comparison with other approaches has confirmed that the proposed approach could reach more function candidates that previous methods could not obtain. PMID:25938021

  7. On Calculations of Legendre Functions and Associated Legendre Functions of the First Kind of Complex Degree

    NASA Astrophysics Data System (ADS)

    Thylwe, Karl-Erik; McCabe, Patrick

    2015-07-01

    Formulas for calculating Legendre functions and associated Legendre functions of the first kind of complex degree using an Ermakov-Lewis invariant are presented. These formulas are straight-forward to implement numerically and are motivated by the lack of computational routines in standard university tools like those of MatLab and Maple. Angular waves propagating in opposite directions are also obtained. The results are particularly useful in complex angular momentum theories and nearside/farside analysis of spin-dependent angular scattering from central potentials.

  8. Association weight matrix: a network-based approach towards functional genome-wide association studies.

    PubMed

    Reverter, Antonio; Fortes, Marina R S

    2013-01-01

    In this chapter we describe the Association Weight Matrix (AWM), a novel procedure to exploit the results from genome-wide association studies (GWAS) and, in combination with network inference algorithms, generate gene networks with regulatory and functional significance. In simple terms, the AWM is a matrix with rows represented by genes and columns represented by phenotypes. Individual {i, j}th elements in the AWM correspond to the association of the SNP in the ith gene to the jth phenotype. While our main objective is to provide a recipe-like tutorial on how to build and use AWM, we also take the opportunity to briefly reason the logic behind each step in the process. To conclude, we discuss the impact on AWM of issues like the number of phenotypes under scrutiny, the density of the SNP chip and the choice of contrast upon which to infer the cause-effect regulatory interactions. PMID:23756904

  9. A scoring function based on solvation thermodynamics for protein structure prediction

    PubMed Central

    Du, Shiqiao; Harano, Yuichi; Kinoshita, Masahiro; Sakurai, Minoru

    2012-01-01

    We predict protein structure using our recently developed free energy function for describing protein stability, which is focused on solvation thermodynamics. The function is combined with the current most reliable sampling methods, i.e., fragment assembly (FA) and comparative modeling (CM). The prediction is tested using 11 small proteins for which high-resolution crystal structures are available. For 8 of these proteins, sequence similarities are found in the database, and the prediction is performed with CM. Fairly accurate models with average Cα root mean square deviation (RMSD) ∼ 2.0 Å are successfully obtained for all cases. For the rest of the target proteins, we perform the prediction following FA protocols. For 2 cases, we obtain predicted models with an RMSD ∼ 3.0 Å as the best-scored structures. For the other case, the RMSD remains larger than 7 Å. For all the 11 target proteins, our scoring function identifies the experimentally determined native structure as the best structure. Starting from the predicted structure, replica exchange molecular dynamics is performed to further refine the structures. However, we are unable to improve its RMSD toward the experimental structure. The exhaustive sampling by coarse-grained normal mode analysis around the native structures reveals that our function has a linear correlation with RMSDs < 3.0 Å. These results suggest that the function is quite reliable for the protein structure prediction while the sampling method remains one of the major limiting factors in it. The aspects through which the methodology could further be improved are discussed.

  10. Prediction of postoperative pulmonary function following thoracic operations. Value of ventilation-perfusion scanning

    SciTech Connect

    Bria, W.F.; Kanarek, D.J.; Kazemi, H.

    1983-08-01

    Surgical resection of lung cancer is frequently required in patients with severely impaired lung function resulting from chronic obstructive pulmonary disease. Twenty patients with obstructive lung disease and cancer (mean preoperative forced expiratory volume in 1 second (FEV1) . 1.73 L) were studied preoperatively and postoperatively by spirometry and radionuclide perfusion, single-breath ventilation, and washout techniques to test the ability of these methods to predict preoperatively the partial loss of lung function by the resection. Postoperative FEV1 and forced vital capacity (FVC) were accurately predicted by the formula: postoperative FEV1 (or FVC) . preoperative FEV1 X percent function of regions of lung not to be resected (r . 0.88 and 0.95, respectively). Ventilation and perfusion scans are equally effective in prediction. Washout data add to the sophistication of the method by permitting the qualitative evaluation of ventilation during tidal breathing. Criteria for patients requiring the study are suggested.

  11. Perinatal medical variables predict executive function within a sample of preschoolers born very low birth weight.

    PubMed

    Duvall, Susanne W; Erickson, Sarah J; MacLean, Peggy; Lowe, Jean R

    2015-05-01

    The goal was to identify perinatal predictors of early executive dysfunction in preschoolers born very low birth weight. Fifty-seven preschoolers completed 3 executive function tasks: Dimensional Change Card Sort-Separated (inhibition, working memory, and cognitive flexibility), Bear Dragon (inhibition and working memory), and Gift Delay Open (inhibition). Relationships between executive function and perinatal medical severity factors (gestational age, days on ventilation, size for gestational age, maternal steroids, and number of surgeries) and chronological age were investigated by multiple linear regression and logistic regression. Different perinatal medical severity factors were predictive of executive function tasks, with gestational age predicting Bear Dragon and Gift Open; and number of surgeries and maternal steroids predicting performance on Dimensional Change Card Sort-Separated. By understanding the relationship between perinatal medical severity factors and preschool executive outcomes, we can identify children at highest risk for future executive dysfunction, thereby focusing targeted early intervention services. PMID:25117418

  12. Cognitive Functioning Predicts Driver Safety On Road-Tests 1 and 2 Years Later

    PubMed Central

    Aksan, Nazan; Anderson, Steven W.; Dawson, Jeffrey D.; Johnson, Amy M.; Uc, Ergun Y.; Rizzo, Matthew

    2011-01-01

    BACKGROUND Our ability to predict aging related declines in driving performance from off-road assessments have clinical practice and social policy implications. OBJECTIVES 1) To describe longitudinal changes in mean-level and evaluate rank-order stability in potential predictors of driving safety (visual sensory, motor, visual attention, and cognitive functioning) and safety errors during an 18-mile on-road-drive-test among older adults. 2) To evaluate the relative predictive power of earlier visual sensory, motor, visual attention, and cognitive functioning on future safety errors controlling for earlier driving capacity. DESIGN A three-year longitudinal observational study; SETTING A large teaching hospital in the Mid-West; PARTICIPANTS 111 neurologically normal older adults (60 to 89 years at baseline); MEASUREMENTS Safety errors based on video review of a standard 18-mile on-road driving test served as the outcome measure. Comprehensive battery of tests on the predictor side included visual sensory functioning, motor functioning, cognitive functioning, and a measure of Useful Field of View. RESULTS Longitudinal changes in mean-levels of safety errors and cognitive functioning were small from year-to-year. Relative rank-order stability between consecutive assessments was moderate in overall safety errors, it was moderate to strong in visual attention and cognitive functioning. While prospective bivariate correlations ranged from fair to moderate between safety errors and predictors, only functioning in the cognitive domain predicted future driver performance one and two-years later in multivariate analyses. CONCLUSION Normative aging related declines in driver performance as assessed by on-road tests emerge slowly. The findings clearly demonstrated that even in the presence conservative controls, such as previous driving ability, age, visual sensory and motor functioning, cognitive functioning predicted future driving performance on-road one and two-years later

  13. Prediction of Detailed Enzyme Functions and Identification of Specificity Determining Residues by Random Forests

    PubMed Central

    Nagao, Chioko; Nagano, Nozomi; Mizuguchi, Kenji

    2014-01-01

    Determining enzyme functions is essential for a thorough understanding of cellular processes. Although many prediction methods have been developed, it remains a significant challenge to predict enzyme functions at the fourth-digit level of the Enzyme Commission numbers. Functional specificity of enzymes often changes drastically by mutations of a small number of residues and therefore, information about these critical residues can potentially help discriminate detailed functions. However, because these residues must be identified by mutagenesis experiments, the available information is limited, and the lack of experimentally verified specificity determining residues (SDRs) has hindered the development of detailed function prediction methods and computational identification of SDRs. Here we present a novel method for predicting enzyme functions by random forests, EFPrf, along with a set of putative SDRs, the random forests derived SDRs (rf-SDRs). EFPrf consists of a set of binary predictors for enzymes in each CATH superfamily and the rf-SDRs are the residue positions corresponding to the most highly contributing attributes obtained from each predictor. EFPrf showed a precision of 0.98 and a recall of 0.89 in a cross-validated benchmark assessment. The rf-SDRs included many residues, whose importance for specificity had been validated experimentally. The analysis of the rf-SDRs revealed both a general tendency that functionally diverged superfamilies tend to include more active site residues in their rf-SDRs than in less diverged superfamilies, and superfamily-specific conservation patterns of each functional residue. EFPrf and the rf-SDRs will be an effective tool for annotating enzyme functions and for understanding how enzyme functions have diverged within each superfamily. PMID:24416252

  14. Evaluation of the predictive capacity of DNA variants associated with straight hair in Europeans.

    PubMed

    Pośpiech, Ewelina; Karłowska-Pik, Joanna; Marcińska, Magdalena; Abidi, Sarah; Andersen, Jeppe Dyrberg; van den Berge, Margreet; Carracedo, Ángel; Eduardoff, Mayra; Freire-Aradas, Ana; Morling, Niels; Sijen, Titia; Skowron, Małgorzata; Söchtig, Jens; Syndercombe-Court, Denise; Weiler, Natalie; Schneider, Peter M; Ballard, David; Børsting, Claus; Parson, Walther; Phillips, Chris; Branicki, Wojciech

    2015-11-01

    DNA-based prediction of hair morphology, defined as straight, curly or wavy hair, could contribute to an improved description of an unknown offender and allow more accurate forensic reconstructions of physical appearance in the field of forensic DNA phenotyping. Differences in scalp hair morphology are significant at the worldwide scale and within Europe. The only genome-wide association study made to date revealed the Trichohyalin gene (TCHH) to be significantly associated with hair morphology in Europeans and reported weaker associations for WNT10A and FRAS1 genes. We conducted a study that centered on six SNPs located in these three genes with a sample of 528 individuals from Poland. The predictive capacity of the candidate DNA variants was evaluated using logistic regression; classification and regression trees; and neural networks, by applying a 10-fold cross validation procedure. Additionally, an independent test set of 142 males from six European populations was used to verify performance of the developed prediction models. Our study confirmed association of rs11803731 (TCHH), rs7349332 (WNT10A) and rs1268789 (FRAS1) SNPs with hair morphology. The combined genotype risk score for straight hair had an odds ratio of 2.7 and these predictors explained ∼ 8.2% of the total variance. The selected three SNPs were found to predict straight hair with a high sensitivity but low specificity when a 10-fold cross validation procedure was applied and the best results were obtained using the neural networks approach (AUC=0.688, sensitivity=91.2%, specificity=23.0%). Application of the neural networks model with 65% probability threshold on an additional test set gave high sensitivity (81.4%) and improved specificity (50.0%) with a total of 78.7% correct calls, but a high non-classification rate (66.9%). The combined TTGGGG SNP genotype for rs11803731, rs7349332, rs1268789 (European frequency=4.5%) of all six straight hair-associated alleles was identified as the best

  15. The Association of Intelligence, Visual-Motor Functioning, and Personality Characteristics With Adaptive Behavior in Individuals With Williams Syndrome.

    PubMed

    Fu, Trista J; Lincoln, Alan J; Bellugi, Ursula; Searcy, Yvonne M

    2015-07-01

    Williams syndrome (WS) is associated with deficits in adaptive behavior and an uneven adaptive profile. This study investigated the association of intelligence, visual-motor functioning, and personality characteristics with the adaptive behavior in individuals with WS. One hundred individuals with WS and 25 individuals with developmental disabilities of other etiologies were included in this study. This study found that IQ and visual-motor functioning significantly predicted adaptive behavior in individuals of WS. Visual-motor functioning especially predicted the most amount of unique variance in overall adaptive behavior and contributed to the variance above and beyond that of IQ. Present study highlights the need for interventions that address visual-motor and motor functioning in individuals with WS. PMID:26161466

  16. Impaired Spatio-Temporal Predictive Motor Timing Associated with Spinocerebellar Ataxia Type 6.

    PubMed

    Broersen, Robin; Onuki, Yoshiyuki; Abdelgabar, Abdel R; Owens, Cullen B; Picard, Samuel; Willems, Jessica; Boele, Henk-Jan; Gazzola, Valeria; Van der Werf, Ysbrand D; De Zeeuw, Chris I

    2016-01-01

    Many daily life activities demand precise integration of spatial and temporal information of sensory inputs followed by appropriate motor actions. This type of integration is carried out in part by the cerebellum, which has been postulated to play a central role in learning and timing of movements. Cerebellar damage due to atrophy or lesions may compromise forward-model processing, in which both spatial and temporal cues are used to achieve prediction for future motor states. In the present study we sought to further investigate the cerebellar contribution to predictive and reactive motor timing, as well as to learning of sequential order and temporal intervals in these tasks. We tested patients with spinocerebellar ataxia type 6 (SCA6) and healthy controls for two related motor tasks; one requiring spatio-temporal prediction of dynamic visual stimuli and another one requiring reactive timing only. We found that healthy controls established spatio-temporal prediction in their responses with high temporal precision, which was absent in the cerebellar patients. SCA6 patients showed lower predictive motor timing, coinciding with a reduced number of correct responses during the 'anticipatory' period on the task. Moreover, on the task utilizing reactive motor timing functions, control participants showed both sequence order and temporal interval learning, whereas patients only showed sequence order learning. These results suggest that SCA6 affects predictive motor timing and temporal interval learning. Our results support and highlight cerebellar contribution to timing and argue for cerebellar engagement during spatio-temporal prediction of upcoming events. PMID:27571363

  17. Impaired Spatio-Temporal Predictive Motor Timing Associated with Spinocerebellar Ataxia Type 6

    PubMed Central

    Onuki, Yoshiyuki; Abdelgabar, Abdel R.; Owens, Cullen B.; Picard, Samuel; Willems, Jessica; Boele, Henk-Jan; Gazzola, Valeria; Van der Werf, Ysbrand D.; De Zeeuw, Chris I.

    2016-01-01

    Many daily life activities demand precise integration of spatial and temporal information of sensory inputs followed by appropriate motor actions. This type of integration is carried out in part by the cerebellum, which has been postulated to play a central role in learning and timing of movements. Cerebellar damage due to atrophy or lesions may compromise forward-model processing, in which both spatial and temporal cues are used to achieve prediction for future motor states. In the present study we sought to further investigate the cerebellar contribution to predictive and reactive motor timing, as well as to learning of sequential order and temporal intervals in these tasks. We tested patients with spinocerebellar ataxia type 6 (SCA6) and healthy controls for two related motor tasks; one requiring spatio-temporal prediction of dynamic visual stimuli and another one requiring reactive timing only. We found that healthy controls established spatio-temporal prediction in their responses with high temporal precision, which was absent in the cerebellar patients. SCA6 patients showed lower predictive motor timing, coinciding with a reduced number of correct responses during the ‘anticipatory’ period on the task. Moreover, on the task utilizing reactive motor timing functions, control participants showed both sequence order and temporal interval learning, whereas patients only showed sequence order learning. These results suggest that SCA6 affects predictive motor timing and temporal interval learning. Our results support and highlight cerebellar contribution to timing and argue for cerebellar engagement during spatio-temporal prediction of upcoming events. PMID:27571363

  18. Prediction of Dynamic Response for Ti/TiB Functionally Graded Beams

    SciTech Connect

    Tuegel, Eric J.; Byrd, Larry W.; Beberniss, Timothy J.

    2008-02-15

    Functionally graded ceramic-metal materials are candidates for use in aerospace structures that are exposed to high temperatures. These structures will experience other demands such as significant pressure fluctuations that will cause panels to vibrate at high frequencies. These materials must be engineered for specific applications. Standard engineering methods were used to predict the response of Ti/TiB cantilever beams to quasi-static and dynamic loadings. Experiments were performed and compared to the predictions. The predictions and experiments did not agree due to significant uncertainty about the elastic modulus of TiB.

  19. NARX prediction of some rare chaotic flows: Recurrent fuzzy functions approach

    NASA Astrophysics Data System (ADS)

    Goudarzi, Sobhan; Jafari, Sajad; Moradi, Mohammad Hassan; Sprott, J. C.

    2016-02-01

    The nonlinear and dynamic accommodating capability of time domain models makes them a useful representation of chaotic time series for analysis, modeling and prediction. This paper is devoted to the modeling and prediction of chaotic time series with hidden attractors using a nonlinear autoregressive model with exogenous inputs (NARX) based on a novel recurrent fuzzy functions (RFFs) approach. Case studies of recently introduced chaotic systems with hidden attractors plus classical chaotic systems demonstrate that the proposed modeling methodology exhibits better prediction performance from different viewpoints (short term and long term) compared to some other existing methods.

  20. Perceived Threat Associated with Police Officers and Black Men Predicts Support for Policing Policy Reform.

    PubMed

    Skinner, Allison L; Haas, Ingrid J

    2016-01-01

    Racial disparities in policing and recent high-profile incidents resulting in the deaths of Black men have ignited a national debate on policing policies. Given evidence that both police officers and Black men may be associated with threat, we examined the impact of perceived threat on support for reformed policing policies. Across three studies we found correlational evidence that perceiving police officers as threatening predicts increased support for reformed policing practices (e.g., limiting the use of lethal force and matching police force demographics to those of the community). In contrast, perceiving Black men as threatening predicted reduced support for policing policy reform. Perceived threat also predicted willingness to sign a petition calling for police reform. Experimental evidence indicated that priming participants to associate Black men with threat could also reduce support for policing policy reform, and this effect was moderated by internal motivation to respond without prejudice. Priming participants to associate police officers with threat did not increase support for policing policy reform. Results indicate that resistance to policing policy reform is associated with perceiving Black men as threatening. Moreover, findings suggest that publicizing racially charged police encounters, which may conjure associations between Black men and threat, could reduce support for policing policy reform. PMID:27462294

  1. Perceived Threat Associated with Police Officers and Black Men Predicts Support for Policing Policy Reform

    PubMed Central

    Skinner, Allison L.; Haas, Ingrid J.

    2016-01-01

    Racial disparities in policing and recent high-profile incidents resulting in the deaths of Black men have ignited a national debate on policing policies. Given evidence that both police officers and Black men may be associated with threat, we examined the impact of perceived threat on support for reformed policing policies. Across three studies we found correlational evidence that perceiving police officers as threatening predicts increased support for reformed policing practices (e.g., limiting the use of lethal force and matching police force demographics to those of the community). In contrast, perceiving Black men as threatening predicted reduced support for policing policy reform. Perceived threat also predicted willingness to sign a petition calling for police reform. Experimental evidence indicated that priming participants to associate Black men with threat could also reduce support for policing policy reform, and this effect was moderated by internal motivation to respond without prejudice. Priming participants to associate police officers with threat did not increase support for policing policy reform. Results indicate that resistance to policing policy reform is associated with perceiving Black men as threatening. Moreover, findings suggest that publicizing racially charged police encounters, which may conjure associations between Black men and threat, could reduce support for policing policy reform. PMID:27462294

  2. Automated Prediction of CMEs Using Machine Learning of CME - Flare Associations

    NASA Astrophysics Data System (ADS)

    Qahwaji, R.; Colak, T.; Al-Omari, M.; Ipson, S.

    2008-04-01

    Machine-learning algorithms are applied to explore the relation between significant flares and their associated CMEs. The NGDC flares catalogue and the SOHO/LASCO CME catalogue are processed to associate X and M-class flares with CMEs based on timing information. Automated systems are created to process and associate years of flare and CME data, which are later arranged in numerical-training vectors and fed to machine-learning algorithms to extract the embedded knowledge and provide learning rules that can be used for the automated prediction of CMEs. Properties representing the intensity, flare duration, and duration of decline and duration of growth are extracted from all the associated (A) and not-associated (NA) flares and converted to a numerical format that is suitable for machine-learning use. The machine-learning algorithms Cascade Correlation Neural Networks (CCNN) and Support Vector Machines (SVM) are used and compared in our work. The machine-learning systems predict, from the input of a flare’s properties, if the flare is likely to initiate a CME. Intensive experiments using Jack-knife techniques are carried out and the relationships between flare properties and CMEs are investigated using the results. The predictive performance of SVM and CCNN is analysed and recommendations for enhancing the performance are provided.

  3. Genome-Wide Association and Functional Follow-Up Reveals New Loci for Kidney Function

    PubMed Central

    Fuchsberger, Christian; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Taliun, Daniel; Li, Man; Gao, Xiaoyi; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C.; O'Seaghdha, Conall M.; Glazer, Nicole; Isaacs, Aaron; Liu, Ching-Ti; Smith, Albert V.; O'Connell, Jeffrey R.; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Johnson, Andrew D.; Gierman, Hinco J.; Feitosa, Mary; Hwang, Shih-Jen; Atkinson, Elizabeth J.; Lohman, Kurt; Cornelis, Marilyn C.; Johansson, Åsa; Tönjes, Anke; Dehghan, Abbas; Chouraki, Vincent; Holliday, Elizabeth G.; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y.; Murgia, Federico; Trompet, Stella; Imboden, Medea; Kollerits, Barbara; Pistis, Giorgio; Harris, Tamara B.; Launer, Lenore J.; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D.; Boerwinkle, Eric; Schmidt, Helena; Cavalieri, Margherita; Rao, Madhumathi; Hu, Frank B.; Demirkan, Ayse; Oostra, Ben A.; de Andrade, Mariza; Turner, Stephen T.; Ding, Jingzhong; Andrews, Jeanette S.; Freedman, Barry I.; Koenig, Wolfgang; Illig, Thomas; Döring, Angela; Wichmann, H.-Erich; Kolcic, Ivana; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E.; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H.; Wright, Alan F.; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Endlich, Karlhans; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K.; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G.; Rivadeneira, Fernando; Aulchenko, Yurii S.; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Ketkar, Shamika; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Giulianini, Franco; Krämer, Bernhard K.; Portas, Laura; Ford, Ian; Buckley, Brendan M.; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Metzger, Marie; Mitchell, Paul; Ciullo, Marina; Kim, Stuart K.; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J. Wouter; Probst-Hensch, Nicole M.; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R.; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; Siscovick, David S.; van Duijn, Cornelia M.; Borecki, Ingrid; Kardia, Sharon L. R.; Liu, Yongmei; Curhan, Gary C.; Rudan, Igor; Gyllensten, Ulf; Wilson, James F.; Franke, Andre; Pramstaller, Peter P.; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline C. M.; Hayward, Caroline; Ridker, Paul; Parsa, Afshin; Bochud, Murielle; Heid, Iris M.; Goessling, Wolfram; Chasman, Daniel I.; Kao, W. H. Linda; Fox, Caroline S.

    2012-01-01

    Chronic kidney disease (CKD) is an important public health problem with a genetic component. We performed genome-wide association studies in up to 130,600 European ancestry participants overall, and stratified for key CKD risk factors. We uncovered 6 new loci in association with estimated glomerular filtration rate (eGFR), the primary clinical measure of CKD, in or near MPPED2, DDX1, SLC47A1, CDK12, CASP9, and INO80. Morpholino knockdown of mpped2 and casp9 in zebrafish embryos revealed podocyte and tubular abnormalities with altered dextran clearance, suggesting a role for these genes in renal function. By providing new insights into genes that regulate renal function, these results could further our