Science.gov

Sample records for preimplantation mammalian development

  1. Apoptotic processes during mammalian preimplantation development.

    PubMed

    Fabian, Dusan; Koppel, Juraj; Maddox-Hyttel, Poul

    2005-07-15

    The paper provides a review of the current state of knowledge on apoptosis during normal preimplantation development based on the literature and on the authors' own findings. Information is focused on the occurrence and the characteristics of spontaneous apoptotic processes. Reports concerning the chronology and the incidence of programmed cell death in mouse, cow, pig and human embryos in early preimplantation stages up to the blastocyst stage are summarized. In addition, specific attributes of the apoptotic process in mammalian preimplantation development are provided, including the description of both morphological and biochemical features of cell death. PMID:15955348

  2. Regulation of the Embryonic Cell Cycle During Mammalian Preimplantation Development.

    PubMed

    Palmer, N; Kaldis, P

    2016-01-01

    The preimplantation development stage of mammalian embryogenesis consists of a series of highly conserved, regulated, and predictable cell divisions. This process is essential to allow the rapid expansion and differentiation of a single-cell zygote into a multicellular blastocyst containing cells of multiple developmental lineages. This period of development, also known as the germinal stage, encompasses several important developmental transitions, which are accompanied by dramatic changes in cell cycle profiles and dynamics. These changes are driven primarily by differences in the establishment and enforcement of cell cycle checkpoints, which must be bypassed to facilitate the completion of essential cell cycle events. Much of the current knowledge in this area has been amassed through the study of knockout models in mice. These mouse models are powerful experimental tools, which have allowed us to dissect the relative dependence of the early embryonic cell cycles on various aspects of the cell cycle machinery and highlight the extent of functional redundancy between members of the same gene family. This chapter will explore the ways in which the cell cycle machinery, their accessory proteins, and their stimuli operate during mammalian preimplantation using mouse models as a reference and how this allows for the usually well-defined stages of the cell cycle to be shaped and transformed during this unique and critical stage of development. PMID:27475848

  3. The influence of growth factors on the development of preimplantation mammalian embryos.

    PubMed

    Díaz-Cueto, L; Gerton, G L

    2001-01-01

    The development of the preimplantation mammalian embryo from a fertilized egg to a blastocyst capable of implanting in the uterus is a complex process. Cell division must be carefully programmed. The embryonic genome must be activated at the appropriate stage of development, and the pattern of gene expression must be carefully coordinated for the initiation of the correct program of differentiation. Cell fates must be chosen to establish specific cell types such as the inner cell mass and the trophectoderm, which give rise to the embryo proper and the placenta, respectively. This review summarizes recent findings concerning the influence of growth factors on the development of preimplantation mammalian embryos. Maternal factors secreted into the lumen of the female reproductive tract as well as substances synthesized by the developing embryo itself help to regulate this process. Studies of embryos in culture and investigations using homologous recombination to create embryos and animals null for specific genes have enabled the identification of several growth factors that appear essential for preimplantation mammalian embryo development. Some of the factors are required maternal factors; others are embryo-derived autocrine and paracrine factors. Studies using molecular biology are beginning to identify differences in the patterns of genes expressed by naturally derived embryos and those developing in culture. The knowledge gained from studies on growth factors, media, embryonic development, and gene expression should help improve culture conditions for embryos and will provide for safer outcomes from assisted reproductive procedures in human and animal clinics. PMID:11750739

  4. Impact of maternal malnutrition during the periconceptional period on mammalian preimplantation embryo development.

    PubMed

    Velazquez, M A

    2015-04-01

    During episodes of undernutrition and overnutrition the mammalian preimplantation embryo undergoes molecular and metabolic adaptations to cope with nutrient deficits or excesses. Maternal adaptations also take place to keep a nutritional microenvironment favorable for oocyte development and embryo formation. This maternal-embryo communication takes place via several nutritional mediators. Although adaptive responses to malnutrition by both the mother and the embryo may ensure blastocyst formation, the resultant quality of the embryo can be compromised, leading to early pregnancy failure. Still, studies have shown that, although early embryonic mortality can be induced during malnutrition, the preimplantation embryo possesses an enormous plasticity that allows it to implant and achieve a full-term pregnancy under nutritional stress, even in extreme cases of malnutrition. This developmental strategy, however, may come with a price, as shown by the adverse developmental programming induced by even subtle nutritional challenges exerted exclusively during folliculogenesis and the preimplantation period, resulting in offspring with a higher risk of developing deleterious phenotypes in adulthood. Overall, current evidence indicates that malnutrition during the periconceptional period can induce cellular and molecular alterations in preimplantation embryos with repercussions for fertility and postnatal health. PMID:25498236

  5. GENE EXPRESSION IN PRE-IMPLANTATION MAMMALIAN EMBRYOS

    EPA Science Inventory

    The pre-implantation mammalian embryo is initially under the control of maternal informational macromolecules that are accumulated during oogenesis. ubsequently, the genetic program of development becomes dependent upon new transcription derived from activation of the embryonic g...

  6. Epigenetic Dynamics During Preimplantation Development

    PubMed Central

    Marcho, Chelsea; Cui, Wei; Mager, Jesse

    2015-01-01

    Successful mammalian development requires descendants of single-cell zygotes to differentiate into diverse cell types even though they contain the same genetic material. Preimplantation dynamics are first driven by the necessity of reprogramming haploid parental epigenomes to reach a totipotent state. This process requires extensive erasure of epigenetic marks shortly after fertilization. During the few short days after formation of the zygote, epigenetic programs are established and are essential for the first lineage decisions and differentiation. Here we review the current understanding of DNA methylation and histone modification dynamics responsible for these early changes during mammalian preimplantation development. In particular we highlight insights that have been gained through next generation sequencing technologies comparing human embryos to other models as well as the recent discoveries of active DNA demethylation mechanisms at play during preimplantation. PMID:26031750

  7. Dynamic transcriptional symmetry-breaking in pre-implantation mammalian embryo development revealed by single-cell RNA-seq.

    PubMed

    Shi, Junchao; Chen, Qi; Li, Xin; Zheng, Xiudeng; Zhang, Ying; Qiao, Jie; Tang, Fuchou; Tao, Yi; Zhou, Qi; Duan, Enkui

    2015-10-15

    During mammalian pre-implantation embryo development, when the first asymmetry emerges and how it develops to direct distinct cell fates remain longstanding questions. Here, by analyzing single-blastomere transcriptome data from mouse and human pre-implantation embryos, we revealed that the initial blastomere-to-blastomere biases emerge as early as the first embryonic cleavage division, following a binomial distribution pattern. The subsequent zygotic transcriptional activation further elevated overall blastomere-to-blastomere biases during the two- to 16-cell embryo stages. The trends of transcriptional asymmetry fell into two distinct patterns: for some genes, the extent of asymmetry was minimized between blastomeres (monostable pattern), whereas other genes, including those known to be lineage specifiers, showed ever-increasing asymmetry between blastomeres (bistable pattern), supposedly controlled by negative or positive feedbacks. Moreover, our analysis supports a scenario in which opposing lineage specifiers within an early blastomere constantly compete with each other based on their relative ratio, forming an inclined 'lineage strength' that pushes the blastomere onto a predisposed, yet flexible, lineage track before morphological distinction. PMID:26395495

  8. Cell Arrest and Cell Death in Mammalian Preimplantation Development: Lessons from the Bovine Model

    PubMed Central

    Leidenfrost, Sandra; Boelhauve, Marc; Reichenbach, Myriam; Güngör, Tuna; Reichenbach, Horst-Dieter; Sinowatz, Fred; Wolf, Eckhard; Habermann, Felix A.

    2011-01-01

    Background The causes, modes, biological role and prospective significance of cell death in preimplantation development in humans and other mammals are still poorly understood. Early bovine embryos represent a very attractive experimental model for the investigation of this fundamental and important issue. Methods and Findings To obtain reference data on the temporal and spatial occurrence of cell death in early bovine embryogenesis, three-dimensionally preserved embryos of different ages and stages of development up to hatched blastocysts were examined in toto by confocal laser scanning microscopy. In parallel, transcript abundance profiles for selected apoptosis-related genes were analyzed by real-time reverse transcriptase-polymerase chain reaction. Our study documents that in vitro as well as in vivo, the first four cleavage cycles are prone to a high failure rate including different types of permanent cell cycle arrest and subsequent non-apoptotic blastomere death. In vitro produced and in vivo derived blastocysts showed a significant incidence of cell death in the inner cell mass (ICM), but only in part with morphological features of apoptosis. Importantly, transcripts for CASP3, CASP9, CASP8 and FAS/FASLG were not detectable or found at very low abundances. Conclusions In vitro and in vivo, errors and failures of the first and the next three cleavage divisions frequently cause immediate embryo death or lead to aberrant subsequent development, and are the main source of developmental heterogeneity. A substantial occurrence of cell death in the ICM even in fast developing blastocysts strongly suggests a regular developmentally controlled elimination of cells, while the nature and mechanisms of ICM cell death are unclear. Morphological findings as well as transcript levels measured for important apoptosis-related genes are in conflict with the view that classical caspase-mediated apoptosis is the major cause of cell death in early bovine development. PMID

  9. Preimplantation Stress and Development

    PubMed Central

    Feuer, Sky; Rinaudo, Paolo

    2013-01-01

    The developmental origins of health and disease hypothesis holds that inappropriate environmental cues in utero, a period marked by tremendous developmental sensitivity, facilitate cellular reprogramming to ultimately predispose disease in adulthood. In this review, we analyze if stress during early stages of development can affect future health. This has wide clinical importance, given that 5 million children have been conceived with assisted reproductive technologies (ART). Because the primary outcome of assisted reproduction procedures is delivery at term of a live, healthy baby, the postnatal effects occurring outside of the neonatal period are often overlooked. To this end, the long-term outcome of ART is appropriately the most relevant concern of the field today. Evidence of adverse consequences is controversial. The majority of studies have concluded no obvious problems in IVF-conceived children, although a number of isolated cases of imprinted diseases, cancers, or malformations have been reported. Given that animal studies suggest alteration of metabolic pathways following preimplantation stress, it will be of great importance to follow-up ART individuals as they enter later stages of adult life. PMID:24203919

  10. Apoptosis in mammalian preimplantation embryos: regulation by survival factors.

    PubMed

    Brison, Daniel R.

    2000-01-01

    The formation of a developmentally competent mammalian blastocyst requires the transition from a unicellular state, the fertilized zygote, to a differentiated multicellular structure. In common with other developing organisms, generation of the required cell population involves the processes of cell division, differentiation and cell death, all of which can be regulated by peptide growth factors. Cell death in the preimplantation embryo occurs by apoptosis and, by analogy with other systems, may serve to eliminate unwanted cells during the critical developmental transitions that take place during this period. Cells may be eliminated because they are abnormal or possess defects, including damaged DNA or chromosomal abnormalities. At the early cleavage stages, apoptosis may be associated with activation of the embryonic genome and may contribute to the blastomere fragmentation commonly observed in human IVF embryos. The major wave of apoptosis occurs in a number of species in the inner cell mass of the blastocyst, as identified using nuclear labelling including terminal transferase-mediated dUTP nick end labelling (TUNEL) and fluorescence and confocal microscopy. Apoptosis may protect the integrity and cellular composition of the inner cell mass, by eliminating damaged cells or possibly those with an inappropriate phenotype. Preimplantation embryos express genes involved in the regulation and execution of apoptosis and their cells can undergo this default pathway in the absence of exogenous survival signals. Evidence is now accumulating from several species that apoptosis in the embryo is regulated by soluble peptide growth factors acting as survival factors in an autocrine or paracrine manner. To date, these include transforming growth factor alpha and members of the insulin-like growth factor family. Apoptosis may also be affected by environmental factors, including culture conditions and the composition of media. The regulation of apoptosis in the preimplantation

  11. The landscape of accessible chromatin in mammalian preimplantation embryos.

    PubMed

    Wu, Jingyi; Huang, Bo; Chen, He; Yin, Qiangzong; Liu, Yang; Xiang, Yunlong; Zhang, Bingjie; Liu, Bofeng; Wang, Qiujun; Xia, Weikun; Li, Wenzhi; Li, Yuanyuan; Ma, Jing; Peng, Xu; Zheng, Hui; Ming, Jia; Zhang, Wenhao; Zhang, Jing; Tian, Geng; Xu, Feng; Chang, Zai; Na, Jie; Yang, Xuerui; Xie, Wei

    2016-06-30

    In mammals, extensive chromatin reorganization is essential for reprogramming terminally committed gametes to a totipotent state during preimplantation development. However, the global chromatin landscape and its dynamics in this period remain unexplored. Here we report a genome-wide map of accessible chromatin in mouse preimplantation embryos using an improved assay for transposase-accessible chromatin with high throughput sequencing (ATAC-seq) approach with CRISPR/Cas9-assisted mitochondrial DNA depletion. We show that despite extensive parental asymmetry in DNA methylomes, the chromatin accessibility between the parental genomes is globally comparable after major zygotic genome activation (ZGA). Accessible chromatin in early embryos is widely shaped by transposable elements and overlaps extensively with putative cis-regulatory sequences. Unexpectedly, accessible chromatin is also found near the transcription end sites of active genes. By integrating the maps of cis-regulatory elements and single-cell transcriptomes, we construct the regulatory network of early development, which helps to identify the key modulators for lineage specification. Finally, we find that the activities of cis-regulatory elements and their associated open chromatin diminished before major ZGA. Surprisingly, we observed many loci showing non-canonical, large open chromatin domains over the entire transcribed units in minor ZGA, supporting the presence of an unusually permissive chromatin state. Together, these data reveal a unique spatiotemporal chromatin configuration that accompanies early mammalian development. PMID:27309802

  12. Epigenetics in preimplantation mammalian development.

    PubMed

    Canovas, Sebastian; Ross, Pablo Juan

    2016-07-01

    Fertilization is a very dynamic period of comprehensive chromatin remodeling, from which two specialized cells result in a totipotent zygote. The formation of a totipotent cell requires extensive epigenetic remodeling that, although independent of modifications in the DNA sequence, still entails a profound cell-fate change, supported by transcriptional profile modifications. As a result of finely tuned interactions between numerous mechanisms, the goal of fertilization is to form a full healthy new individual. To avoid the persistence of alterations in epigenetic marks, the epigenetic information contained in each gamete is reset during early embryogenesis. Covalent modification of DNA by methylation, as well as posttranslational modifications of histone proteins and noncoding RNAs, appears to be the main epigenetic mechanisms that control gene expression. These allow different cells in an organism to express different transcription profiles, despite each cell containing the same DNA sequence. In the context of replacement of spermatic protamine with histones from the oocyte, active cell division, and specification of different lineages, active and passive mechanisms of epigenetic remodeling have been revealed as critical for editing the epigenetic profile of the early embryo. Importantly, redundant factors and mechanisms are likely in place, and only a few have been reported as critical for fertilization or embryo survival by the use of knockout models. The aim of this review is to highlight the main mechanisms of epigenetic remodeling that ensue after fertilization in mammals. PMID:27165992

  13. Establishing Chromatin Regulatory Landscape during Mouse Preimplantation Development.

    PubMed

    Lu, Falong; Liu, Yuting; Inoue, Azusa; Suzuki, Tsukasa; Zhao, Keji; Zhang, Yi

    2016-06-01

    How the chromatin regulatory landscape in the inner cell mass cells is established from differentially packaged sperm and egg genomes during preimplantation development is unknown. Here, we develop a low-input DNase I sequencing (liDNase-seq) method that allows us to generate maps of DNase I-hypersensitive site (DHS) of mouse preimplantation embryos from 1-cell to morula stage. The DHS landscape is progressively established with a drastic increase at the 8-cell stage. Paternal chromatin accessibility is quickly reprogrammed after fertilization to the level similar to maternal chromatin, while imprinted genes exhibit allelic accessibility bias. We demonstrate that transcription factor Nfya contributes to zygotic genome activation and DHS formation at the 2-cell stage and that Oct4 contributes to the DHSs gained at the 8-cell stage. Our study reveals the dynamic chromatin regulatory landscape during early development and identifies key transcription factors important for DHS establishment in mammalian embryos. PMID:27259149

  14. Detrimental Effects of Microgravity on Mouse Preimplantation Development In Vitro

    PubMed Central

    Wakayama, Sayaka; Kawahara, Yumi; Li, Chong; Yamagata, Kazuo; Yuge, Louis; Wakayama, Teruhiko

    2009-01-01

    Sustaining life beyond Earth either on space stations or on other planets will require a clear understanding of how the space environment affects key phases of mammalian reproduction. However, because of the difficulty of doing such experiments in mammals, most studies of reproduction in space have been carried out with other taxa, such as sea urchins, fish, amphibians or birds. Here, we studied the possibility of mammalian fertilization and preimplantation development under microgravity (µG) conditions using a three-dimensional (3D) clinostat, which faithfully simulates 10–3 G using 3D rotation. Fertilization occurred normally in vitro under µG. However, although we obtained 75 healthy offspring from µG-fertilized and -cultured embryos after transfer to recipient females, the birth rate was lower than among the 1G controls. Immunostaining demonstrated that in vitro culture under µG caused slower development and fewer trophectoderm cells than in 1G controls but did not affect polarization of the blastocyst. These results suggest for the first time that fertilization can occur normally under µG environment in a mammal, but normal preimplantation embryo development might require 1G. PMID:19707597

  15. A medium-chain fatty acid as an alternative energy source in mouse preimplantation development

    PubMed Central

    Yamada, Mitsutoshi; Takanashi, Kazumi; Hamatani, Toshio; Hirayama, Akiyoshi; Akutsu, Hidenori; Fukunaga, Tomoko; Ogawa, Seiji; Sugawara, Kana; Shinoda, Kosaku; Soga, Tomoyoshi; Umezawa, Akihiro; Kuji, Naoaki; Yoshimura, Yasunori; Tomita, Masaru

    2012-01-01

    To further optimize the culturing of preimplantation embryos, we undertook metabolomic analysis of relevant culture media using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). We detected 28 metabolites: 23 embryo-excreted metabolites including 16 amino acids and 5 media-derived metabolites (e.g., octanoate, a medium-chain fatty acid (MCFA)). Due to the lack of information on MCFAs in mammalian preimplantation development, this study examined octanoate as a potential alternative energy source for preimplantation embryo cultures. No embryos survived in culture media lacking FAs, pyruvate, and glucose, but supplementation of octanoate rescued the embryonic development. Immunoblotting showed significant expression of acyl-CoA dehydrogenase and hydroxyacyl-CoA dehydrogenase, important enzymes for ß-oxidation of MCFAs, in preimplantation embryo. Furthermore, CE-TOFMS traced [1-13C8] octanoate added to the culture media into intermediate metabolites of the TCA cycle via ß-oxidation in mitochondria. These results are the first demonstration that octanoate could provide an efficient alternative energy source throughout preimplantation development. PMID:23226596

  16. Cell identity in the preimplantation mammalian embryo: an epigenetic perspective from the mouse

    PubMed Central

    Torres-Padilla, Maria Elena

    2008-01-01

    The early preimplantation mouse embryo is a unique system where it is possible to explore the foundations of totipotency and differentiation. Following fertilization, a single cell, the zygote, will give rise to all tissues of the organism. The first signs of differentiation in the embryo are evident at the blastocyst stage with the formation of the trophectoderm, a differentiated tissue that envelopes the inner cell mass. The question of when and how the cells start to be different from each other in the embryo is central to developmental biology: as cell fate decisions are undertaken, loss of totipotency comes about. Although the blastomeres of the preimplantation embryo are totipotent, as the embryo develops some differences appear to develop between them which are, at least partially, related to the epigenetic information of each of these cells. The hypothesis of epigenetic asymmetries acting as driver for lineage allocation is presented. Although there are now some indications that epigenetic mechanisms are involved in cell fate determination, much work is needed to discover how such mechanisms are set in play upon fertilization and how they are transmitted through cell division. These considerations are further discussed in the context of preimplantation genetic diagnosis: does it matter to the embryo which cell is used for genetic diagnosis? The exquisite complexity and richness of chromatin-regulated events in the early embryo will certainly be the subject of exciting research in the future. PMID:18272526

  17. Preimplantation genetic diagnosis: development and regulation.

    PubMed

    Thomas, C

    2006-06-01

    Pre-implantation genetic diagnosis (PGD) is used to biopsy and analyse embryos created through in vitro fertilisation (IVF) to avoid implanting an embryo affected by a mutation or chromosomal abnormality associated with serious illness. It reduces the chance that the parents will be faced with a difficult decision of whether to terminate the pregnancy, if the disorder is detected during the course of gestation. PGD is widely accepted for this purpose although there have been suggestions that such procedures have the effect of de-valuing persons in the community with disabilities. PGD potentially has other more controversial purposes, including the selection of the sex of the baby for personal preferences such as balancing the family, rather than to avoid a sex-linked disorder. Recently PGD has become available to create a donor child who is Human Leukocyte Antigen (HLA) matched with a sibling in need of stem cell transplant. In most cases the intention is to utilise the cord blood. However, an HLA-matched child could potentially be required to be a donor of tissues and organs throughout life. This may arise should the initial cord blood donation fail for any one of several reasons, such as inadequate cord blood cell dose, graft failure after cord blood transplant, or the recipient child experiencing a recurrence of the original illness after transplant. However, such on-going demands could also arise if a HLA-matched child was fortuitously conceived by natural means. As such, the issue is not PGD, but rather whether to harvest bone marrow or a solid organ from a child. This raises the question of whether there should be limits and procedures to protect such children from exploitation until they achieve sufficient competence to be able to make mature and autonomous decisions about whether to donate, even if the consequence may in some cases be that it is too late to save the sibling. Additionally, the parents may not be able to make a dispassionate decision, when

  18. Metabolism of Preimplantation Embryo Development: A Bystander or an Active Participant?

    PubMed

    Kaneko, K J

    2016-01-01

    Unicellular organisms are exquisitely sensitive to nutrient availability in the environment and have evolved elaborate mechanisms to sense the levels and types of nutrients, altering gene expression patterns accordingly to adjust the metabolic activities required to survive. Thus, environmental cues induce adaptive metabolic differentiation through transcriptional and posttranscriptional changes. Similarly, preimplantation embryos are exposed to various environmental cues within the maternal reproductive tract prior to implantation. Because only "simple" culture conditions are required, it is assumed that these embryos are genetically preprogrammed to develop with little influence from the environment, with the exception of few "necessities" provided by the environment. However, a wealth of literature now suggests that the developing embryos are greatly influenced by the maternal environment. Even though the developing embryos have the capacity and plasticity to deal with nutritional imbalance posed by an altered maternal environment, there is often a trade-off to the overall fitness of those embryos later in life. Despite these studies that underline the general importance of the reproductive environment during development, it is thought that the primary driver of mammalian development is strictly genetic and that metabolic adaptation by the preimplantation embryo is secondary to genetic control. In this review, I propose that not only does the maternal environment of developing preimplantation embryos influence developmental potential, pregnancy outcomes, and postnatal disease states, but that it has an active role in induction and potentiation of the first differentiation event, the production of trophectoderm and inner cell mass lineages. PMID:27475855

  19. Roles of one-carbon metabolism in preimplantation period--effects on short-term development and long-term programming--.

    PubMed

    Ikeda, Shuntaro; Koyama, Hiroyuki; Sugimoto, Miki; Kume, Shinichi

    2012-01-01

    One-carbon metabolism (OCM) can be seen as integrated metabolic pathways centered on the metabolism of two nutritional substances, folate and methionine. Mammalian oocytes and preimplantation embryos express almost all enzymes that participate in OCM, suggesting that they can independently metabolize OCM nutrients. A deficiency or excess of OCM nutrients and their metabolites during in vitro culture affects preimplantation development of mammalian embryos. Recent in vivo studies have demonstrated that specific OCM dietary interventions during the periconceptional (mainly oocyte growth and preimplantation) period can cause epigenetic alterations in DNA of offspring and program the long-term consequences in their health in adulthood. The epigenetic processes are likely to be implicated in the effects of OCM nutrients; however, understanding their effects at the level of specific genes and their implications in assisted reproductive technology will require further investigations. PMID:22450283

  20. Cell death is involved in sexual dimorphism during preimplantation development.

    PubMed

    Oliveira, C S; Saraiva, N Z; de Lima, M R; Oliveira, L Z; Serapião, R V; Garcia, J M; Borges, C A V; Camargo, L S A

    2016-02-01

    In bovine preimplantation development, female embryos progress at lower rates and originate smaller blastocysts than male counterparts. Although sex-specific gene expression patterns are reported, when and how sex dimorphism is established is not clear. Differences among female and male early development can be useful for human assisted reproductive medicine, when X-linked disorders risk is detected, and for genetic breeding programs, especially in dairy cattle, which requires female animals for milk production. The aim of this study was to characterize the development of female and male embryos, attempting to identify sex effects during preimplantation development and the role of cell death in this process. Using sex-sorted semen from three different bulls for fertilization, we compared kinetics of bovine sex-specific embryos in six time points, and cell death was assessed in viable embryos. For kinetics analysis, we detected an increased population of female embryos arrested at 48 and 120h.p.i., suggesting this time points as delicate stages of development for female embryos that should be considered for testing improvement strategies for assisted reproductive technologies. Assessing viable embryos quality, we found 144h.p.i. is the first time point when viable embryos are phenotypically distinct: cell number is decreased, and apoptosis and cell fragmentation are increased in female embryos at this stage. These new results lead us to propose that sex dimorphism in viable embryos is established during morula-blastocyst transition, and cell death is involved in this process. PMID:26752320

  1. Exogenous retroelement integration in sperm and embryos affects preimplantation development.

    PubMed

    Kitsou, C; Lazaros, L; Bellou, S; Vartholomatos, G; Sakaloglou, P; Hatzi, E; Markoula, S; Zikopoulos, K; Tzavaras, T; Georgiou, I

    2016-09-01

    Retroelement transcripts are present in male and female gametes, where they are typically regulated by methylation, noncoding RNAs and transcription factors. Such transcripts are required for occurrence of retrotransposition events, while failure of retrotransposition control may exert negative effects on cellular function and proliferation. In order to investigate the occurrence of retrotransposition events in mouse epididymal spermatozoa and to address the impact of uncontrolled retroelement RNA expression in early preimplantation embryos, we performed in vitro fertilization experiments using spermatozoa preincubated with plasmid vectors containing the human retroelements LINE-1, HERVK-10 or the mouse retroelement VL30, tagged with an enhanced green fluorescence (EGFP) gene-based cassette. Retrotransposition events in mouse spermatozoa and embryos were detected using PCR, FACS analysis and confocal microscopy. Our findings show that: (i) sperm cell incorporates exogenous retroelements and favors retrotransposition events, (ii) the inhibition of spermatozoa reverse transcriptase can decrease the retrotransposition frequency in sperm cells, (iii) spermatozoa can transfer exogenous human or mouse retroelements to the oocyte during fertilization and (iv) retroelement RNA overexpression affects embryo morphology and impairs preimplantation development. These findings suggest that the integration of exogenous retroelements in the sperm genome, as well as their transfer into the mouse oocyte, could give rise to new retrotransposition events and genetic alterations in mouse spermatozoa and embryos. PMID:27450800

  2. Mammalian development in space

    NASA Technical Reports Server (NTRS)

    Ronca, April E.

    2003-01-01

    Life on Earth, and thus the reproductive and ontogenetic processes of all extant species and their ancestors, evolved under the constant influence of the Earth's l g gravitational field. These considerations raise important questions about the ability of mammals to reproduce and develop in space. In this chapter, I review the current state of our knowledge of spaceflight effects on developing mammals. Recent studies are revealing the first insights into how the space environment affects critical phases of mammalian reproduction and development, viz., those events surrounding fertilization, embryogenesis, pregnancy, birth, postnatal maturation and parental care. This review emphasizes fetal and early postnatal life, the developmental epochs for which the greatest amounts of mammalian spaceflight data have been amassed. The maternal-offspring system, the coordinated aggregate of mother and young comprising mammalian development, is of primary importance during these early, formative developmental phases. The existing research supports the view that biologically meaningful interactions between mothers and offspring are changed in the weightlessness of space. These changes may, in turn, cloud interpretations of spaceflight effects on developing offspring. Whereas studies of mid-pregnant rats in space have been extraordinarily successful, studies of young rat litters launched at 9 days of postnatal age or earlier, have been encumbered with problems related to the design of in-flight caging and compromised maternal-offspring interactions. Possibilities for mammalian birth in space, an event that has not yet transpired, are considered. In the aggregate, the results indicate a strong need for new studies of mammalian reproduction and development in space. Habitat development and systematic ground-based testing are important prerequisites to future research with young postnatal rodents in space. Together, the findings support the view that the environment within which young

  3. Characterization of SCF-Complex during Bovine Preimplantation Development

    PubMed Central

    Benesova, Veronika; Kinterova, Veronika; Kanka, Jiri; Toralova, Tereza

    2016-01-01

    The degradation of maternal proteins is one of the most important events during early development, and it is presumed to be essential for embryonic genome activation (EGA), but the precise mechanism is still not known. It is thought that a large proportion of the degradation of maternal proteins is mediated by the ubiquitin-proteolytic system. In this study we focused on the expression of the Skp1-Cullin1-F-box (SCF) complex, a modular RING-type E3 ubiquitin-ligase, during bovine preimplantation development. The complex consists of three invariable components—Cul1, Skp1, Rbx1 and F-box protein, which determines the substrate specificity. The protein level and mRNA expression of all three invariable members were determined. Cul1 and Skp1 mRNA synthesis was activated at early embryonic stages, at the 4c and early 8c stage, respectively, which suggests that these transcripts are necessary for preparing the embryo for EGA. CUL1 protein level increased from MII to the morula stage, with a significant difference between MII and L8c, and between MII and the morula. The CUL1 protein was localized primarily to nuclei and to a lesser extent to the cytoplasm, with a lower signal in the inner cell mass (ICM) compared to the trophectoderm (TE) at the blastocyst stage. The level of SKP1 protein significantly increased from MII oocytes to 4c embryos, but then significantly decreased again. The localization of the SKP1 protein was analysed throughout the cell and similarly to CUL1 at the blastocyst stage, the staining was less intensive in the ICM. There were no statistical differences in RBX1 protein level and localization. The active SCF-complex, which is determined by the interaction of Cul1 and Skp1, was found throughout the whole embryo during preimplantation development, but there was a difference at the blastocyst stage, which exhibits a much stronger signal in the TE than in the ICM. These results suggest that all these genes could play an important role during

  4. Requirement for nuclear autoantigenic sperm protein mRNA expression in bovine preimplantation development.

    PubMed

    Nagatomo, Hiroaki; Kohri, Nanami; Akizawa, Hiroki; Hoshino, Yumi; Yamauchi, Nobuhiko; Kono, Tomohiro; Takahashi, Masashi; Kawahara, Manabu

    2016-03-01

    Nuclear autoantigenic sperm protein (NASP) is associated with DNA replication, cell proliferation, and cell cycle progression through its specific binding to histones. The aim of this study was to examine the roles of NASP in bovine preimplantation embryonic development. Using NASP gene knockdown (KD), we confirmed the reduction of NASP messenger RNA (mRNA) expression during preimplantation development. NASP KD did not affect cleavage but significantly decreased development of embryos into the blastocyst stage. Furthermore, blastocyst hatching was significantly decreased in NASP KD embryos. Cell numbers in the inner cell mass of NASP KD blastocysts were also decreased compared to those of controls. These results suggest that NASP mRNA expression is required for preimplantation development into the blastocyst stage in cattle. PMID:26690724

  5. Cell fate regulation in early mammalian development

    NASA Astrophysics Data System (ADS)

    Oron, Efrat; Ivanova, Natalia

    2012-08-01

    Preimplantation development in mammals encompasses a period from fertilization to implantation and results in formation of a blastocyst composed of three distinct cell lineages: epiblast, trophectoderm and primitive endoderm. The epiblast gives rise to the organism, while the trophectoderm and the primitive endoderm contribute to extraembryonic tissues that support embryo development after implantation. In many vertebrates, such as frog or fish, maternally supplied lineage determinants are partitioned within the egg. Cell cleavage that follows fertilization results in polarization of these factors between the individual blastomeres, which become restricted in their developmental fate. In contrast, the mouse oocyte and zygote lack clear polarity and, until the eight-cell stage, individual blastomeres retain the potential to form all lineages. How are cell lineages specified in the absence of a maternally supplied blueprint? This is a fundamental question in the field of developmental biology. The answer to this question lies in understanding the cell-cell interactions and gene networks involved in embryonic development prior to implantation and using this knowledge to create testable models of the developmental processes that govern cell fates. We provide an overview of classic and contemporary models of early lineage development in the mouse and discuss the emerging body of work that highlights similarities and differences between blastocyst development in the mouse and other mammalian species.

  6. Sperm-borne miRNAs and endo-siRNAs are important for fertilization and preimplantation embryonic development.

    PubMed

    Yuan, Shuiqiao; Schuster, Andrew; Tang, Chong; Yu, Tian; Ortogero, Nicole; Bao, Jianqiang; Zheng, Huili; Yan, Wei

    2016-02-15

    Although it is believed that mammalian sperm carry small noncoding RNAs (sncRNAs) into oocytes during fertilization, it remains unknown whether these sperm-borne sncRNAs truly have any function during fertilization and preimplantation embryonic development. Germline-specific Dicer and Drosha conditional knockout (cKO) mice produce gametes (i.e. sperm and oocytes) partially deficient in miRNAs and/or endo-siRNAs, thus providing a unique opportunity for testing whether normal sperm (paternal) or oocyte (maternal) miRNA and endo-siRNA contents are required for fertilization and preimplantation development. Using the outcome of intracytoplasmic sperm injection (ICSI) as a readout, we found that sperm with altered miRNA and endo-siRNA profiles could fertilize wild-type (WT) eggs, but embryos derived from these partially sncRNA-deficient sperm displayed a significant reduction in developmental potential, which could be rescued by injecting WT sperm-derived total or small RNAs into ICSI embryos. Disrupted maternal transcript turnover and failure in early zygotic gene activation appeared to associate with the aberrant miRNA profiles in Dicer and Drosha cKO spermatozoa. Overall, our data support a crucial function of paternal miRNAs and/or endo-siRNAs in the control of the transcriptomic homeostasis in fertilized eggs, zygotes and two-cell embryos. Given that supplementation of sperm RNAs enhances both the developmental potential of preimplantation embryos and the live birth rate, it might represent a novel means to improve the success rate of assisted reproductive technologies in fertility clinics. PMID:26718009

  7. Simulated Microgravity Influences Bovine Oocyte In Vitro Fertilization and Preimplantation Embryo Development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of this study was to investigate whether in vitro fertilization and preimplantation embryos exposed to a simulated microgravity environment in vitro would improve, or be deleterious to, their fertilization and embryonic development. A Rotating Cell Culture System™ (RCCS) bioreactor with a Hi...

  8. Ganglioside GD1a promotes oocyte maturation, furthers preimplantation development, and increases blastocyst quality in pigs.

    PubMed

    Kim, Jin-Woo; Park, Hyo-Jin; Chae, Sung-Kyu; Ahn, Jae-Hyun; DO, Geon-Yeop; Choo, Young-Kug; Park, Joung Jun; Jung, Bae Dong; Kim, Sun-Uk; Chang, Kyu-Tae; Koo, Deog-Bon

    2016-06-17

    Gangliosides are key lipid molecules required for the regulation of cellular processes such as proliferation, differentiation, and cell signaling, including signaling of epidermal growth factor receptor (EGFR). Epidermal growth factor (EGF) has long been considered a potential regulator of meiotic and cytoplasmic maturation in mammalian oocytes. However, there is no report on the direct effect of ganglioside GD1a in porcine oocyte maturation. In this study, we first investigated a functional link between GD1a and meiotic maturation during in vitro maturation (IVM) of porcine embryos. Moreover, we confirmed the effect of exogenous GD1a treatment on blastocyst development, quality, and fertilization rate in early embryonic development. First, we observed that the protein level of ST3GAL2, a GD1a synthesizing enzyme, significantly increased (P < 0.01) in cumulus-oocyte-complexes (COCs) during IVM progress. The proportion of arrested germinal vesicles (GV) increased in oocytes treated with EGF+GD1a (41.6 ± 1.5%) at the IVM I stage. Upon completion of meiotic maturation, the proportion of metaphase II (M II) was significantly higher (P < 0.05) in the EGF+GD1a (89.9 ± 3.6%) treated group. After IVF, the percentage of penetrated oocytes was significantly higher (P < 0.05) in the EGF+GD1a (89.1 ± 2.3%) treated group than in the control group. Furthermore, exogenous GD1a treatment improved the developmental competence and quality of blastocysts during preimplantation embryo development stage. These results suggest that ganglioside GD1a may play an important role in IVM mechanisms of porcine maturation capacity. Furthermore, our findings will be helpful for better promoting the embryo development and blastocyst quality in pigs. PMID:26860251

  9. Ganglioside GD1a promotes oocyte maturation, furthers preimplantation development, and increases blastocyst quality in pigs

    PubMed Central

    KIM, Jin-Woo; PARK, Hyo-Jin; CHAE, Sung-Kyu; AHN, Jae-Hyun; DO, Geon-Yeop; CHOO, Young-Kug; PARK, Joung Jun; JUNG, Bae Dong; KIM, Sun-Uk; CHANG, Kyu-Tae; KOO, Deog-Bon

    2016-01-01

    Gangliosides are key lipid molecules required for the regulation of cellular processes such as proliferation, differentiation, and cell signaling, including signaling of epidermal growth factor receptor (EGFR). Epidermal growth factor (EGF) has long been considered a potential regulator of meiotic and cytoplasmic maturation in mammalian oocytes. However, there is no report on the direct effect of ganglioside GD1a in porcine oocyte maturation. In this study, we first investigated a functional link between GD1a and meiotic maturation during in vitro maturation (IVM) of porcine embryos. Moreover, we confirmed the effect of exogenous GD1a treatment on blastocyst development, quality, and fertilization rate in early embryonic development. First, we observed that the protein level of ST3GAL2, a GD1a synthesizing enzyme, significantly increased (P < 0.01) in cumulus-oocyte-complexes (COCs) during IVM progress. The proportion of arrested germinal vesicles (GV) increased in oocytes treated with EGF+GD1a (41.6 ± 1.5%) at the IVM I stage. Upon completion of meiotic maturation, the proportion of metaphase II (M II) was significantly higher (P < 0.05) in the EGF+GD1a (89.9 ± 3.6%) treated group. After IVF, the percentage of penetrated oocytes was significantly higher (P < 0.05) in the EGF+GD1a (89.1 ± 2.3%) treated group than in the control group. Furthermore, exogenous GD1a treatment improved the developmental competence and quality of blastocysts during preimplantation embryo development stage. These results suggest that ganglioside GD1a may play an important role in IVM mechanisms of porcine maturation capacity. Furthermore, our findings will be helpful for better promoting the embryo development and blastocyst quality in pigs. PMID:26860251

  10. Stress exposure during the preimplantation period affects blastocyst lineages and offspring development.

    PubMed

    Burkuš, Ján; Kačmarová, Martina; Kubandová, Janka; Kokošová, Natália; Fabianová, Kamila; Fabian, Dušan; Koppel, Juraj; Čikoš, Štefan

    2015-01-01

    We found retardation of preimplantation embryo growth after exposure to maternal restraint stress during the preimplantation period in our previous study. In the present study, we evaluated the impact of preimplantation maternal restraint stress on the distribution of inner cell mass (ICM) and trophectoderm (TE) cells in mouse blastocysts, and its possible effect on physiological development of offspring. We exposed spontaneously ovulating female mice to restraint stress for 30 min three times a day during the preimplantation period, and this treatment caused a significant increase in blood serum corticosterone concentration. Microscopic evaluation of embryos showed that restraint stress significantly decreased cell counts per blastocyst. Comparing the effect of restraint stress on the two blastocyst cell lineages, we found that the reduction in TE cells was more substantial than the reduction in ICM cells, which resulted in an increased ICM/TE ratio in blastocysts isolated from stressed dams compared with controls. Restraint stress reduced the number of implantation sites in uteri, significantly delayed eye opening in delivered mice, and altered their behavior in terms of two parameters (scratching on the base of an open field test apparatus, time spent in central zone) as well. Moreover, prenatally stressed offspring had significantly lower body weights and in 5-week old females delivered from stressed dams, fat deposits were significantly lower. Our results indicate that exposure to stress during very early pregnancy can have a negative impact on embryonic development with consequences reaching into postnatal life. PMID:25985793

  11. Stress exposure during the preimplantation period affects blastocyst lineages and offspring development

    PubMed Central

    BURKUŠ, Ján; KAČMAROVÁ, Martina; KUBANDOVÁ, Janka; KOKOŠOVÁ, Natália; FABIANOVÁ, Kamila; FABIAN, Dušan; KOPPEL, Juraj; ČIKOŠ, Štefan

    2015-01-01

    We found retardation of preimplantation embryo growth after exposure to maternal restraint stress during the preimplantation period in our previous study. In the present study, we evaluated the impact of preimplantation maternal restraint stress on the distribution of inner cell mass (ICM) and trophectoderm (TE) cells in mouse blastocysts, and its possible effect on physiological development of offspring. We exposed spontaneously ovulating female mice to restraint stress for 30 min three times a day during the preimplantation period, and this treatment caused a significant increase in blood serum corticosterone concentration. Microscopic evaluation of embryos showed that restraint stress significantly decreased cell counts per blastocyst. Comparing the effect of restraint stress on the two blastocyst cell lineages, we found that the reduction in TE cells was more substantial than the reduction in ICM cells, which resulted in an increased ICM/TE ratio in blastocysts isolated from stressed dams compared with controls. Restraint stress reduced the number of implantation sites in uteri, significantly delayed eye opening in delivered mice, and altered their behavior in terms of two parameters (scratching on the base of an open field test apparatus, time spent in central zone) as well. Moreover, prenatally stressed offspring had significantly lower body weights and in 5-week old females delivered from stressed dams, fat deposits were significantly lower. Our results indicate that exposure to stress during very early pregnancy can have a negative impact on embryonic development with consequences reaching into postnatal life. PMID:25985793

  12. Similar kinetics for 5-methylcytosine and 5-hydroxymethylcytosine during human preimplantation development in vitro.

    PubMed

    Petrussa, Laetitia; Van de Velde, Hilde; De Rycke, Martine

    2016-07-01

    After fertilization, the mammalian embryo undergoes epigenetic reprogramming with genome-wide DNA demethylation and subsequent remethylation. Oxidation of 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) was suggested to be an intermediate step in the DNA demethylation pathway. Other evidence, such as the stability of 5hmC in specific tissues, suggests that 5hmC constitutes a new epigenetic modification with its own biological function. Since few studies have been conducted on human material compared to animal models and species-specific epigenetic differences have been reported, we studied global DNA methylation and hydroxymethylation patterns in human in vitro preimplantation embryos using immunocytochemistry, comparing these patterns in good-quality and abnormally developing embryos. Our data showed that DNA methylation and hydroxymethylation modifications co-exist. 5mC and 5hmC signals were found in oocytes and in paternal and maternal pronuclei of zygotes, present in non-reciprocal patterns-which contrasts published data for the mouse. These two epigenetic modifications are present between Days 1 and 7 of in vitro development, with 5mC levels declining over cell divisions without noticeable remethylation during this period. A main decline in 5mC and 5hmC occurred as the embryo progressed from compaction to the blastocyst stage. No difference in (hydroxy)methylation was found between the inner cell mass and trophectoderm. When comparing normally and abnormally developing embryos, DNA (hydroxy)methylation reprogramming was abnormal in poor-quality embryos, especially during the first cleavages. Mol. Reprod. Dev. 83: 594-605, 2016 © 2016 Wiley Periodicals, Inc. PMID:27163211

  13. Removal of O-GlcNAcylation is important for pig preimplantation development.

    PubMed

    Shibutani, Mihiro; Mori, Takeshi; Miyano, Takashi; Miyake, Masashi

    2015-01-01

    Glucose has been recognized as an energy source for a long time, but it has recently been suggested that the hexosamine biosynthesis pathway (HBP) and downstream protein O-GlcNAcylation have important functions in mouse preimplantation development. Thus, whether or not O-GlcNAcylation was present and what functions O-GlcNAcylation has in pig preimplantation development were investigated in the present study. The expressions of mRNA of glutaminefructose-6-phosphate aminotransferase (Gfpt), O-GlcNAc transferase (Ogt) and O-GlcNAcase (Oga), which are involved in the HBP and O-GlcNAc cycling, were examined in pig parthenogenetic diploids at each preimplantation developmental stage. Gfpt and Ogt were detected in diploids at all stages. Though Oga was detected at all stages except the 4-cell stage, OGA proteins were detected in diploids from the 2-cell to blastocyst stage. Furthermore, O-GlcNAcylated proteins in MII oocytes and diploids were also detected by immunofluorescence at every stage. Inhibition of OGT by 4.0 mM BADGP did not affect development up to the blastocyst stage, while inhibition of OGA by 300 µM PUGNAc decreased the proportion of diploids beyond the 4-cell stage. Four-cell diploids cultured with PUGNAc until 48 h developed to the blastocyst stage after culture in a PUGNAc-free medium until 144 h after electrostimulation. RNA polymerase II (Pol II) phosphorylation, which indicates the onset of mRNA transcription, was detected in nuclei of diploids in the control group at 48 h but not in the PUGNAc-treated group. These results indicate that HBP and O-GlcNAcylation have important functions in pig preimplantation development and that inhibition of OGA is fatal for development. It is also suggested that OGA inhibition disrupts normal Pol II regulation and may cause a zygotic gene activation error. PMID:26004176

  14. Effects of American Ginseng on Preimplantation Development and Pregnancy in Mice.

    PubMed

    Belanger, Danyka; Calder, Michele D; Gianetto-Berruti, Alessandra; Lui, Edmund M; Watson, Andrew J; Feyles, Valter

    2016-01-01

    In North America, a high proportion of pregnant women use herbal medications including North American ginseng. This medicinal plant contains high amounts of triterpene saponins (ginsenosides), which are the main bioactive compounds. It is important to assess ginseng's impact on all reproductive functions to ensure the safety of pregnant women and fetuses. In this study, we defined the concentration-responsive effects of North American alcoholic and aqueous ginseng extracts on preimplantation development in vitro and on pregnancy and post-partum development in the mouse. Two-cell mouse embryos were cultured with 5 different concentrations of whole ginseng root extracts, or ginsenosides Rb1, Rg1 and Re alone, a combinatorial ginsenoside solution and a crude polysaccharide fraction solution. Embryonic development and recovery from each treatment was assessed. To investigate the in vivo effects of ginseng extracts, female mice were gavaged with 50[Formula: see text]mg/kg/day, 500[Formula: see text]mg/kg/day or 2000[Formula: see text]mg/kg/day of either extract (treatment) or water (sham) for 2 weeks prior to mating and throughout gestation. Gestation period, litter size, pup growth and pup sex ratio were evaluated. Oral ginseng consumption did not significantly affect fertility or pregnancy in the mouse. High doses of ginseng (2000[Formula: see text]mg/kg/day) decreased maternal weight gain. Direct treatment of preimplantation embryos in vitro demonstrated that ALC and AQ extract treatment reduced development in a concentration responsive manner, while only ALC extract effects were largely reversible. Treatments with individual or combinatorial ginsenosides, or the polysaccharide fraction solution alone did not impair preimplantation development, in vitro. In conclusion, maternal oral consumption of ginseng has little negative impact on pregnancy in the mouse, however, direct exposure to ginseng extract during mouse preimplantation development in vitro is detrimental

  15. Injection of ligand-free gold and silver nanoparticles into murine embryos does not impact pre-implantation development

    PubMed Central

    Taylor, Ulrike; Garrels, Wiebke; Barchanski, Annette; Peterson, Svea; Sajti, Laszlo; Lucas-Hahn, Andrea; Gamrad, Lisa; Baulain, Ulrich; Klein, Sabine; Kues, Wilfried A

    2014-01-01

    Summary Intended exposure to gold and silver nanoparticles has increased exponentially over the last decade and will continue to rise due to their use in biomedical applications. In particular, reprotoxicological aspects of these particles still need to be addressed so that the potential impacts of this development on human health can be reliably estimated. Therefore, in this study the toxicity of gold and silver nanoparticles on mammalian preimplantation development was assessed by injecting nanoparticles into one blastomere of murine 2 cell-embryos, while the sister blastomere served as an internal control. After treatment, embryos were cultured and embryo development up to the blastocyst stage was assessed. Development rates did not differ between microinjected and control groups (gold nanoparticles: 67.3%, silver nanoparticles: 61.5%, sham: 66.2%, handling control: 79.4%). Real-time PCR analysis of six developmentally important genes (BAX, BCL2L2, TP53, OCT4, NANOG, DNMT3A) did not reveal an influence on gene expression in blastocysts. Contrary to silver nanoparticles, exposure to comparable Ag+-ion concentrations resulted in an immediate arrest of embryo development. In conclusion, the results do not indicate any detrimental effect of colloidal gold or silver nanoparticles on the development of murine embryos. PMID:24991505

  16. The primate-specific noncoding RNA HPAT5 regulates pluripotency during human preimplantation development and nuclear reprogramming

    PubMed Central

    Durruthy-Durruthy, Jens; Sebastiano, Vittorio; Wossidlo, Mark; Cepeda, Diana; Cui, Jun; Grow, Edward J; Davila, Jonathan; Mall, Moritz; Wong, Wing H; Wysocka, Joanna; Au, Kin Fai; Pera, Renee A Reijo

    2016-01-01

    Long intergenic noncoding RNAs (lincRNAs) are derived from thousands of loci in mammalian genomes and are frequently enriched in transposable elements (TEs). Although families of TE-derived lincRNAs have recently been implicated in the regulation of pluripotency, little is known of the specific functions of individual family members. Here we characterize three new individual TE-derived human lincRNAs, human pluripotency-associated transcripts 2, 3 and 5 (HPAT2, HPAT3 and HPAT5). Loss-of-function experiments indicate that HPAT2, HPAT3 and HPAT5 function in preimplantation embryo development to modulate the acquisition of pluripotency and the formation of the inner cell mass. CRISPR-mediated disruption of the genes for these lincRNAs in pluripotent stem cells, followed by whole-transcriptome analysis, identifies HPAT5 as a key component of the pluripotency network. Protein binding and reporter-based assays further demonstrate that HPAT5 interacts with the let-7 microRNA family. Our results indicate that unique individual members of large primate-specific lincRNA families modulate gene expression during development and differentiation to reinforce cell fate. PMID:26595768

  17. Environmental and epigenetic effects upon preimplantation embryo metabolism and development

    PubMed Central

    Chason, Rebecca J; Csokmay, John; Segars, James H.; DeCherney, Alan H.; Armant, D. Randall

    2011-01-01

    In vitro fertilization has provided a unique window into the metabolic processes that drive embryonic growth and development from a fertilized ovum to a competent blastocyst. Post-fertilization development is dependent upon a dramatic reshuffling of the parental genomes during meiosis, as well as epigenetic changes that provide a new and autonomous set of instructions to guide cellular differentiation both in the embryo and beyond. While early literature focused simply on the substrates and culture conditions required for progress through embryonic development, more recent insights lead us to suggest that the surrounding environment can alter the epigenome, which can, in turn, impact embryonic metabolism and developmental competence. PMID:21741268

  18. Single-cell RNA sequencing: revealing human pre-implantation development, pluripotency and germline development.

    PubMed

    Petropoulos, S; Panula, S P; Schell, J P; Lanner, F

    2016-09-01

    Early human development is a dynamic, heterogeneous, complex and multidimensional process. During the first week, the single-cell zygote undergoes eight to nine rounds of cell division generating the multicellular blastocyst, which consists of hundreds of cells forming spatially organized embryonic and extra-embryonic tissues. At the level of transcription, degradation of maternal RNA commences at around the two-cell stage, coinciding with embryonic genome activation. Although numerous efforts have recently focused on delineating this process in humans, many questions still remain as thorough investigation has been limited by ethical issues, scarce availability of human embryos and the presence of minute amounts of DNA and RNA. In vitro cultures of embryonic stem cells provide some insight into early human development, but such studies have been confounded by analysis on a population level failing to appreciate cellular heterogeneity. Recent technical developments in single-cell RNA sequencing have provided a novel and powerful tool to explore the early human embryo in a systematic manner. In this review, we will discuss the advantages and disadvantages of the techniques utilized to specifically investigate human development and consider how the technology has yielded new insights into pre-implantation development, embryonic stem cells and the establishment of the germ line. PMID:27046137

  19. Dynamics of histone H3 acetylation in the nucleosome core during mouse pre-implantation development.

    PubMed

    Ziegler-Birling, Céline; Daujat, Sylvain; Schneider, Robert; Torres-Padilla, Maria-Elena

    2016-08-01

    In mammals, the time period that follows fertilization is characterized by extensive chromatin remodeling, which enables epigenetic reprogramming of the gametes. Major changes in chromatin structure persist until the time of implantation, when the embryo develops into a blastocyst, which comprises the inner cell mass and the trophectoderm. Changes in DNA methylation, histone variant incorporation, and covalent modifications of the histones tails have been intensively studied during pre-implantation development. However, modifications within the core of the nucleosomes have not been systematically analyzed. Here, we report the first characterization and temporal analysis of 3 key acetylated residues in the core of the histone H3: H3K64ac, H3K122ac, and H3K56ac, all located at structurally important positions close to the DNA. We found that all 3 acetylations occur during pre-implantation development, but with different temporal kinetics. Globally, H3K64ac and H3K56ac were detected throughout cleavage stages, while H3K122ac was only weakly detectable during this time. Our work contributes to the understanding of the contribution of histone modifications in the core of the nucleosome to the "marking" of the newly established embryonic chromatin and unveils new modification pathways potentially involved in epigenetic reprogramming. PMID:26479850

  20. Leptin and ObRa/MEK signalling in mouse oocyte maturation and preimplantation embryo development.

    PubMed

    Ye, Yinghui; Kawamura, Kazuhiro; Sasaki, Mitsue; Kawamura, Nanami; Groenen, Peter; Sollewijn Gelpke, Maarten D; Kumagai, Jin; Fukuda, Jun; Tanaka, Toshinobu

    2009-08-01

    Recent studies indicate that LH stimulates production of ovarian paracrine factors that induce meiosis of the oocyte. DNA microarray analyses of ovarian transcripts were performed in mice and major increases of a short isoform of leptin receptor, ObRa, were identified by the preovulatory LH/human chorionic gonadotrophin (HCG) surge. In oocytes, the level of ObRa transcripts was increased shortly after HCG stimulation, whereas the level of ObRb transcripts was not changed. Leptin was produced by cumulus, granulosa, theca and interstitial cells of ovaries and its transcript level was not regulated during gonadotrophin treatment. Treatment with leptin promoted germinal vesicle breakdown (GVBD) in oocytes within preovulatory follicles, and enhance first polar body extrusion in both cumulus-oocyte complexes and denuded oocytes. The leptin-promoted GVBD and first polar body extrusion were blocked by a mitogen-activated protein kinase extracellular signal regulated kinase kinases (MEK)1/2 inhibitor, U0126, but not its inactive analogue U0124. Furthermore, leptin promoted fertilization of oocytes and the in-vitro development of zygotes to preimplantation embryos. These findings suggest paracrine roles of leptin in the enhancement of nuclear maturation of oocytes through MEK1/2 signalling, and in the promotion of cytoplasmic maturation essential for successful oocyte development to the preimplantation embryos. PMID:19712552

  1. Development of the Mammalian Kidney.

    PubMed

    McMahon, Andrew P

    2016-01-01

    The basic unit of kidney function is the nephron. In the mouse, around 14,000 nephrons form in a 10-day period extending into early neonatal life, while the human fetus forms the adult complement of nephrons in a 32-week period completed prior to birth. This review discusses our current understanding of mammalian nephrogenesis: the contributing cell types and the regulatory processes at play. A conceptual developmental framework has emerged for the mouse kidney. This framework is now guiding studies of human kidney development enabled in part by in vitro systems of pluripotent stem cell-seeded nephrogenesis. A near future goal will be to translate our developmental knowledge-base to the productive engineering of new kidney structures for regenerative medicine. PMID:26969971

  2. Cell death in mammalian development.

    PubMed

    Penaloza, C; Orlanski, S; Ye, Y; Entezari-Zaher, T; Javdan, M; Zakeri, Z

    2008-01-01

    During embryogenesis there is an exquisite orchestration of cellular division, movement, differentiation, and death. Cell death is one of the most important aspects of organization of the developing embryo, as alteration in timing, level, or pattern of cell death can lead to developmental anomalies. Cell death shapes the embryo and defines the eventual functions of the organs. Cells die using different paths; understanding which path a dying cell takes helps us define the signals that regulate the fate of the cell. Our understanding of cell death in development stems from a number of observations indicating genetic regulation of the death process. With today's increased knowledge of the pathways of cell death and the identification of the genes whose products regulate the pathways we know that, although elimination of some of these gene products has no developmental phenotype, alteration of several others has profound effects. In this review we discuss the types and distributions of cell death seen in developing mammalian embryos as well as the gene products that may regulate the process. PMID:18220829

  3. Microwells support high-resolution time-lapse imaging and development of preimplanted mouse embryos

    PubMed Central

    Chung, Yu-Hsiang; Hsiao, Yi-Hsing; Kao, Wei-Lun; Hsu, Chia-Hsien; Chen, Chihchen

    2015-01-01

    A vital aspect affecting the success rate of in vitro fertilization is the culture environment of the embryo. However, what is not yet comprehensively understood is the affect the biochemical, physical, and genetic requirements have over the dynamic development of human or mouse preimplantation embryos. The conventional microdrop technique often cultures embryos in groups, which limits the investigation of the microenvironment of embryos. We report an open microwell platform, which enables micropipette manipulation and culture of embryos in defined sub-microliter volumes without valves. The fluidic environment of each microwell is secluded from others by layering oil on top, allowing for non-invasive, high-resolution time-lapse microscopy, and data collection from each individual embryo without confounding factors. We have successfully cultured mouse embryos from the two-cell stage to completely hatched blastocysts inside microwells with an 89% success rate (n = 64), which is comparable to the success rate of the contemporary practice. Development timings of mouse embryos that developed into blastocysts are statistically different to those of embryos that failed to form blastocysts (p–value < 10−10, two-tailed Student's t-test) and are robust indicators of the competence of the embryo to form a blastocyst in vitro with 94% sensitivity and 100% specificity. Embryos at the cleavage- or blastocyst-stage following the normal development timings were selected and transferred to the uteri of surrogate female mice. Fifteen of twenty-two (68%) blastocysts and four of ten (40%) embryos successfully developed into normal baby mice following embryo transfer. This microwell platform, which supports the development of preimplanted embryos and is low-cost, easy to fabricate and operate, we believe, opens opportunities for a wide range of applications in reproductive medicine and cell biology. PMID:26015830

  4. Polycomb gene expression and histone H3 lysine 27 trimethylation changes during bovine preimplantation development.

    PubMed

    Ross, Pablo J; Ragina, Neli P; Rodriguez, Ramon M; Iager, Amy E; Siripattarapravat, Kannika; Lopez-Corrales, Nestor; Cibelli, Jose B

    2008-12-01

    Trimethylation of histone H3 at lysine 27 (H3K27me3) is established by polycomb group genes and is associated with stable and heritable gene silencing. The aim of this study was to characterize the expression of polycomb genes and the dynamics of H3K27me3 during bovine oocyte maturation and preimplantation development. Oocytes and in vitro-produced embryos were collected at different stages of development. Polycomb gene expression was analyzed by real-time quantitative RT-PCR and immunofluorescence. Global H3K27me3 levels were determined by semiquantitative immunofluorescence. Transcripts for EZH2, EED, and SUZ12 were detected at all stages analyzed, with EZH2 levels being the highest of the three at early stages of development. By the time the embryo reached the blastocyst stage, the level of PcG gene mRNA levels significantly increased. Immunofluorescence staining indicated nuclear expression of EZH2 at all stages while nuclear localized EED and SUZ12 were only evident at the morula and blastocyst stages. Semiquantitative analysis of H3K27me3 levels showed that nuclear fluorescence intensity was the highest in immature oocytes, which steadily decreased after fertilization to reach a nadir at the eight-cell stage, and then increased at the blastocyst stage. These results suggest that the absence of polycomb repressive complex 2 proteins localized to the nucleus of early embryos could be responsible for the gradual decrease in H3K27me3 during early preimplantation development. PMID:18784248

  5. Dynamic patterns of histone H3 lysine 4 methyltransferases and demethylases during mouse preimplantation development.

    PubMed

    Shao, Gen-Bao; Chen, Jun-Chao; Zhang, Liu-Ping; Huang, Pan; Lu, Hong-Yan; Jin, Jie; Gong, Ai-Hua; Sang, Jian-Rong

    2014-08-01

    Extensive and dynamic chromatin remodeling occurs after fertilization, including DNA methylation and histone modifications. These changes underlie the transition from gametic to embryonic chromatin and are thought to facilitate early embryonic development. Histone H3 lysine 4 methylation (H3K4me) is an important epigenetic mechanism that associates with gene-specific activation and functions in development. However, dynamic regulation of H3K4me during early embryonic development remains unclear. Herein, the authors examined the dynamic changes of H3K4me and its key regulators (Ash1l, Ash2l, Kmt2a, Kmt2b, Kmt2c, Setd1a, Setd7, Kdm1a, Kdm1b, Kdm5a, Kdm5b, Kdm5c, and Kdm5d) in mouse oocytes and preimplantation embryos. An increase in levels of H3K4me2 and me3 was observed at the one- to two-cell stages (P < 0.05), corresponding to the period of embryonic genome activation (EGA). Subsequently, the H3K4me2 level dramatically decreased at the four-cell stage and remained at low level until the blastocyst stage (P < 0.05), whereas the H3K4me3 level transiently decreased in the four-cell embryos but steadily increased to the peak in the blastocysts (P < 0.05). The high level of H3K4me2 during the EGA was coinciding with a peak expression of its methyltransferase, ASH2L, which may stabilize this methylation level during this period. Correspondingly, a concomitant decrease in levels of its demethylases, KDM5B and KDM1A, was observed. H3K4me3 was correlated to the expression of its methyltransferase (KMT2B) and demethylase (KDM5A). Thus, these enzymes may function for the EGA and the first lineage segregation in preimplantation mouse embryos. PMID:24619213

  6. Glucose affects monocarboxylate cotransporter (MCT) 1 expression during mouse preimplantation development.

    PubMed

    Jansen, Sarah; Esmaeilpour, Tahereh; Pantaleon, Marie; Kaye, Peter L

    2006-03-01

    Cleavage-stage embryos have an absolute requirement for pyruvate and lactate, but as the morula compacts, it switches to glucose as the preferred energy source to fuel glycolysis. Substrates such as glucose, amino acids, and lactate are moved into and out of cells by facilitated diffusion. In the case of lactate and pyruvate, this occurs via H+-monocarboxylate cotransporter (MCT) proteins. To clarify the role of MCT in development, transport characteristics for DL-lactate were examined, as were mRNA expression and protein localisation for MCT1 and MCT3, using confocal laser scanning immunofluorescence in freshly collected and cultured embryos. Blastocysts demonstrated significantly higher affinity for DL-lactate than zygotes (Km 20 +/- 10 vs 87 +/- 35 mmol lactate/l; P = 0.03 by linear regression) but was similar for all stages. For embryos derived in vivo and those cultured with glucose, MCT1 mRNA was present throughout preimplantation development, protein immunoreactivity appearing diffuse throughout the cytoplasm with brightest intensity in the outer cortical region of blastomeres. In expanding blastocysts, MCT1 became more prominent in the cytoplasmic cortex of blastomeres, with brightest intensity in the polar trophectoderm. Without glucose, MCT1 mRNA was not expressed, and immunoreactivity dramatically reduced in intensity as morulae died. MCT3 mRNA and immunoreactivity were not detected in early embryos. The differential expression of MCT1 in the presence or absence of glucose demonstrates that it is important in the critical regulation of pH and monocarboxylate transport during preimplantation development, and implies a role for glucose in the control of MCT1, but not MCT3, expression. PMID:16514190

  7. Remodeling of the Nuclear Envelope and Lamina during Bovine Preimplantation Development and Its Functional Implications.

    PubMed

    Popken, Jens; Graf, Alexander; Krebs, Stefan; Blum, Helmut; Schmid, Volker J; Strauss, Axel; Guengoer, Tuna; Zakhartchenko, Valeri; Wolf, Eckhard; Cremer, Thomas

    2015-01-01

    The present study demonstrates a major remodeling of the nuclear envelope and its underlying lamina during bovine preimplantation development. Up to the onset of major embryonic genome activation (MGA) at the 8-cell stage nuclei showed a non-uniform distribution of nuclear pore complexes (NPCs). NPCs were exclusively present at sites where DNA contacted the nuclear lamina. Extended regions of the lamina, which were not contacted by DNA, lacked NPCs. In post-MGA nuclei the whole lamina was contacted rather uniformly by DNA. Accordingly, NPCs became uniformly distributed throughout the entire nuclear envelope. These findings shed new light on the conditions which control the integration of NPCs into the nuclear envelope. The switch from maternal to embryonic production of mRNAs was accompanied by multiple invaginations covered with NPCs, which may serve the increased demands of mRNA export and protein import. Other invaginations, as well as interior nuclear segments and vesicles without contact to the nuclear envelope, were exclusively positive for lamin B. Since the abundance of these invaginations and vesicles increased in concert with a massive nuclear volume reduction, we suggest that they reflect a mechanism for fitting the nuclear envelope and its lamina to a shrinking nuclear size during bovine preimplantation development. In addition, a deposit of extranuclear clusters of NUP153 (a marker for NPCs) without associated lamin B was frequently observed from the zygote stage up to MGA. Corresponding RNA-Seq data revealed deposits of spliced, maternally provided NUP153 mRNA and little unspliced, newly synthesized RNA prior to MGA, which increased strongly at the initiation of embryonic expression of NUP153 at MGA. PMID:25932910

  8. Remodeling of the Nuclear Envelope and Lamina during Bovine Preimplantation Development and Its Functional Implications

    PubMed Central

    Popken, Jens; Graf, Alexander; Krebs, Stefan; Blum, Helmut; Schmid, Volker J.; Strauss, Axel; Guengoer, Tuna; Zakhartchenko, Valeri; Wolf, Eckhard; Cremer, Thomas

    2015-01-01

    The present study demonstrates a major remodeling of the nuclear envelope and its underlying lamina during bovine preimplantation development. Up to the onset of major embryonic genome activation (MGA) at the 8-cell stage nuclei showed a non-uniform distribution of nuclear pore complexes (NPCs). NPCs were exclusively present at sites where DNA contacted the nuclear lamina. Extended regions of the lamina, which were not contacted by DNA, lacked NPCs. In post-MGA nuclei the whole lamina was contacted rather uniformly by DNA. Accordingly, NPCs became uniformly distributed throughout the entire nuclear envelope. These findings shed new light on the conditions which control the integration of NPCs into the nuclear envelope. The switch from maternal to embryonic production of mRNAs was accompanied by multiple invaginations covered with NPCs, which may serve the increased demands of mRNA export and protein import. Other invaginations, as well as interior nuclear segments and vesicles without contact to the nuclear envelope, were exclusively positive for lamin B. Since the abundance of these invaginations and vesicles increased in concert with a massive nuclear volume reduction, we suggest that they reflect a mechanism for fitting the nuclear envelope and its lamina to a shrinking nuclear size during bovine preimplantation development. In addition, a deposit of extranuclear clusters of NUP153 (a marker for NPCs) without associated lamin B was frequently observed from the zygote stage up to MGA. Corresponding RNA-Seq data revealed deposits of spliced, maternally provided NUP153 mRNA and little unspliced, newly synthesized RNA prior to MGA, which increased strongly at the initiation of embryonic expression of NUP153 at MGA. PMID:25932910

  9. Glutathione and cysteine enhance porcine preimplantation embryo development in vitro after intracytoplasmic sperm injection.

    PubMed

    Li, Xiao Xia; Lee, Kyung-Bon; Lee, Ji Hye; Kim, Keun Jung; Kim, Eun Young; Han, Kil-Woo; Park, Kang-Sun; Yu, Jung; Kim, Min Kyu

    2014-01-15

    Because intracytoplasmic sperm injection (ICSI) had been introduced to animal science, not only reproductive biology of domestic animals, but also medicine to treat infertility has been developed. This assisted reproductive technology is beneficial for generating transgenic animals, especially pigs, because polyspermy is the greatest hurdle in porcine IVF when researchers make highly qualified preimplantation embryos. However, ICSI-derived embryos expressed high level of reactive oxygen species (ROS), which are known to cause serious dysfunction during preimplantation development. The objective of this study was to investigate the developmental competence, ROS level, and apoptosis index when glutathione (GSH) or cysteine was supplemented into the in vitro culture medium for ICSI-derived porcine embryos. First, we evaluated the effect of different concentrations of GSH or cysteine on developmental ability of porcine ICSI-derived embryos. The cleavage rate (79.6%) and the blastocyst formation rate (20.9%) were significantly improved in culture medium supplemented with 1 mmol/L GSH compared with other concentrations or no supplementation. Also, 1.71 mmol/L cysteine showed a significantly higher proportion of cleavage (80.7%) and blastocyst formation (22.5%) than other cysteine-supplemented groups. Next, we confirmed that intracellular ROS level was significantly reduced in the group of blastocysts cultured with GSH or cysteine after ICSI compared with the no supplementation group. Finally, we found that terminal uridine nick-end labeling index, fragmentation, and total apoptosis were significantly decreased and the total cell number was significantly increased in blastocysts when ICSI-derived embryos were cultured with supplementation of 1.71 mmol/L cysteine or 1 mmol/L GSH. Taken together, these results strongly indicate that GSH or cysteine can improve the developmental competence of porcine ICSI-derived embryos by reducing intracellular ROS level and the apoptosis

  10. Genetic Analysis of Human Preimplantation Embryos.

    PubMed

    Garcia-Herrero, S; Cervero, A; Mateu, E; Mir, P; Póo, M E; Rodrigo, L; Vera, M; Rubio, C

    2016-01-01

    Preimplantation development comprises the initial stages of mammalian development, before the embryo implants into the mother's uterus. In normal conditions, after fertilization the embryo grows until reaching blastocyst stage. The blastocyst grows as the cells divide and the cavity expands, until it arrives at the uterus, where it "hatches" from the zona pellucida to implant into the uterine wall. Nevertheless, embryo quality and viability can be affected by chromosomal abnormalities, most of which occur during gametogenesis and early embryo development; human embryos produced in vitro are especially vulnerable. Therefore, the selection of chromosomally normal embryos for transfer in assisted reproduction can improve outcomes in poor-prognosis patients. Additionally, in couples with an inherited disorder, early diagnosis could prevent pregnancy with an affected child and would, thereby, avoid the therapeutic interruption of pregnancy. These concerns have prompted advancements in the use of preimplantation genetic diagnosis (PGD). Genetic testing is applied in two different scenarios: in couples with an inherited genetic disorder or carriers of a structural chromosomal abnormality, it is termed PGD; in infertile couples with increased risk of generating embryos with de novo chromosome abnormalities, it is termed preimplantation genetic screening, or PGS. PMID:27475859

  11. Aberrant DNA methylation reprogramming in bovine SCNT preimplantation embryos

    PubMed Central

    Zhang, Sheng; Chen, Xin; Wang, Fang; An, Xinglan; Tang, Bo; Zhang, Xueming; Sun, Liguang; Li, Ziyi

    2016-01-01

    DNA methylation reprogramming plays important roles in mammalian embryogenesis. Mammalian somatic cell nuclear transfer (SCNT) embryos with reprogramming defects fail to develop. Thus, we compared DNA methylation reprogramming in preimplantation embryos from bovine SCNT and in vitro fertilization (IVF) and analyzed the influence of vitamin C (VC) on the reprogramming of DNA methylation. The results showed that global DNA methylation followed a typical pattern of demethylation and remethylation in IVF preimplantation embryos; however, the global genome remained hypermethylated in SCNT preimplantation embryos. Compared with the IVF group, locus DNA methylation reprogramming showed three patterns in the SCNT group. First, some pluripotency genes (POU5F1 and NANOG) and repeated elements (satellite I and α-satellite) showed insufficient demethylation and hypermethylation in the SCNT group. Second, a differentially methylated region (DMR) of an imprint control region (ICR) in H19 exhibited excessive demethylation and hypomethylation. Third, some pluripotency genes (CDX2 and SOX2) were hypomethylated in both the IVF and SCNT groups. Additionally, VC improved the DNA methylation reprogramming of satellite I, α-satellite and H19 but not that of POU5F1 and NANOG in SCNT preimplantation embryos. These results indicate that DNA methylation reprogramming was aberrant and that VC influenced DNA methylation reprogramming in SCNT embryos in a locus-specific manner. PMID:27456302

  12. Effects of alcohols on murine preimplantation development: relationship to relative membrane disordering potency.

    PubMed

    Kowalczyk, C L; Stachecki, J J; Schultz, J F; Leach, R E; Armant, D R

    1996-05-01

    During in vitro culture of murine preimplantation embryos, we have observed that exposure to 0.1% ethanol induces an immediate increase in intracellular calcium levels and subsequently accelerates embryogenesis. If the observed effects of ethanol on developing embryos is mediated by its membrane disordering potency, we hypothesized that the relative membrane disordering potencies of related alcohols would correspondingly effect embryonic intracellular calcium levels and developmental rates. Two-cell embryos were exposed to 0.1% ethanol or 0.05 to 1.0% (w/v) n-butanol, n-propanol, isopropanol, 1,2-propanediol, glycerol, or methanol for 24 hr at 37 degrees C, and development to the blastocyst stage was monitored after 5 days. n-Butanol, n-propanol, isopropanol, and methanol treatment caused a dose-dependent inhibition (p < 0.01) of development to the blastocyst stage, whereas 1,2-propanediol or glycerol neither accelerated nor inhibited development. In a second experiment, 8-cell morulae were treated with 1,2-propanediol or glycerol, and cavitation rates were examined. There was no significant difference from control embryos in the onset of cavitation or the blastocoel expansion rate of 1,2-propanediol- or glycerol-exposed embryos, whereas exposure to 0.1% ethanol accelerate cavitation (p > 0.05). In a third experiment, morulae were exposed to 0.1% or 1.0% of each alcohol and were monitored for changes in intracellular calcium levels using the fluorescent indicator, fluo-3-acetoxymethyl ester. There was an immediate increase in intracellular calcium levels when morulae were treated with 1.0% ethanol or n-butanol, but only ethanol induced an increase (p < 0.05) in the level of intracellular calcium at 0.1%. These data suggest that ethanol is unique in its ability to accelerate embryogenesis and that the membrane disordering potency of ethanol does not directly underlie its effects on intracellular calcium release and the acceleration of preimplantation development

  13. Inhibitory effects of preimplantation exposure to bisphenol-A on blastocyst development and implantation

    PubMed Central

    Pan, Xiaoyan; Wang, Xuenan; Sun, Yanmei; Dou, Zhaohua; Li, Zhixin

    2015-01-01

    The effect of preimplantation exposure to bisphenol-A (BPA) on blastocyst development and implantation is investigated. Mice were orally administered with BPA (200, 400, 600, and 800 mg/kg/day) from Day 0.5 to Day 3.5 of their pregnancy. Blastocyst development was examined on Day 4 of pregnancy. With 400 mg/kg/day BPA, implantation site number and implantation rate significantly reduced. With 600 and 800 mg/kg/day BPA, no implantation site was observed. BPA at 800 mg/kg/day significantly reduced blastocyst development rate and hatching rate. With 400 and 600 mg/kg/day BPA, Blastocyst development rate showed no significant difference whereas hatching rate was lower. With 400, 600, and 800 mg/kg/day BPA, some embryos were detected in the fallopian tube and hatched blastocysts showed greatly increased apoptosis level and endothelial nitric oxide synthase expression. In summary, high concentration BPA delayed the transfer of embryos to the uterus, damaged blastocyst development before implantation, and inhibited embryo implantation. PMID:26309523

  14. Impact of cytokine expression in the pre-implanted donor lung on the development of chronic lung allograft dysfunction subtypes.

    PubMed

    Saito, T; Takahashi, H; Kaneda, H; Binnie, M; Azad, S; Sato, M; Waddell, T K; Cypel, M; Liu, M; Keshavjee, S

    2013-12-01

    The long-term success of lung transplantation continues to be challenged by the development of chronic lung allograft dysfunction (CLAD). The purpose of this study was to investigate the relationship between cytokine expression levels in pre-implanted donor lungs and the posttransplant development of CLAD and its subtypes, bronchiolitis obliterans syndrome (BOS) and restrictive allograft syndrome (RAS). Of 109 patients who underwent bilateral lung or heart-lung transplantation and survived for more than 3 months, 50 BOS, 21 RAS and 38 patients with No CLAD were identified by pulmonary function test results. Using donor lung tissue biopsies sampled from each patient, expression levels of IL-6, IL-1β, IL-8, IL-10, interferon-γ and tumor necrosis factor-α mRNA were measured. IL-6 expression levels were significantly higher in pre-implanted lungs of patients that ultimately developed BOS compared to RAS and No CLAD (p = 0.025 and 0.011, respectively). Cox regression analysis demonstrated an association between high IL-6 expression levels and BOS development (hazard ratio = 4.98; 95% confidence interval = 2.42-10.2, p < 0.001). In conclusion, high IL-6 mRNA expression levels in pre-implanted donor lungs were associated with the development of BOS, not RAS. This association further supports the contention that early graft injury impacts on both late graft function and early graft function. PMID:24164971

  15. Functional characterization of CDX2 during bovine preimplantation development in vitro.

    PubMed

    Goissis, Marcelo D; Cibelli, Jose B

    2014-10-01

    Placental defects are common in bovine embryos produced using assisted reproductive techniques. A proper understanding of the events leading to inner cell mass (ICM) and trophectoderm (TE) specification could help identify the origins of such developmental failures. We focused on caudal-type homeobox transcription factor 2 (CDX2) since it has a specific role during TE differentiation in mouse embryos. Of all the preimplantation stages analyzed, CDX2 protein was present only at the blastocyst stage. To further understand the roles of CDX2 during bovine development, we depleted CDX2 mRNA; despite a significant loss of detectable protein, embryos were able to form blastocysts at the same rate as controls. Embryos lacking CDX2 did not show abnormalities in the number of TE, ICM, or total cells in the blastocyst. Expression of the developmentally important genes SOX2, POU5F1, and NANOG, or TE markers such as IFN-T and KRT18 were not affected by the reduction in CDX2 levels, nor was the localization of SOX2 and POU5F1 protein. Using a functional barrier assay, we observed that the TE epithelial layer of embryos lacking CDX2 had lost its integrity. Our results thus indicate that CDX2 is not required for TE formation during bovine development; nevertheless, it is necessary for maintaining TE integrity. PMID:25251051

  16. Maternal Setdb1 Is Required for Meiotic Progression and Preimplantation Development in Mouse.

    PubMed

    Kim, Jeesun; Zhao, Hongbo; Dan, Jiameng; Kim, Soojin; Hardikar, Swanand; Hollowell, Debra; Lin, Kevin; Lu, Yue; Takata, Yoko; Shen, Jianjun; Chen, Taiping

    2016-04-01

    Oocyte meiotic progression and maternal-to-zygote transition are accompanied by dynamic epigenetic changes. The functional significance of these changes and the key epigenetic regulators involved are largely unknown. Here we show that Setdb1, a lysine methyltransferase, controls the global level of histone H3 lysine 9 di-methyl (H3K9me2) mark in growing oocytes. Conditional deletion of Setdb1 in developing oocytes leads to meiotic arrest at the germinal vesicle and meiosis I stages, resulting in substantially fewer mature eggs. Embryos derived from these eggs exhibit severe defects in cell cycle progression, progressive delays in preimplantation development, and degeneration before reaching the blastocyst stage. Rescue experiments by expressing wild-type or inactive Setdb1 in Setdb1-deficient oocytes suggest that the catalytic activity of Setdb1 is essential for meiotic progression and early embryogenesis. Mechanistically, up-regulation of Cdc14b, a dual-specificity phosphatase that inhibits meiotic progression, greatly contributes to the meiotic arrest phenotype. Setdb1 deficiency also leads to derepression of transposons and increased DNA damage in oocytes, which likely also contribute to meiotic defects. Thus, Setdb1 is a maternal-effect gene that controls meiotic progression and is essential for early embryogenesis. Our results uncover an important link between the epigenetic machinery and the major signaling pathway governing meiotic progression. PMID:27070551

  17. Maternal Setdb1 Is Required for Meiotic Progression and Preimplantation Development in Mouse

    PubMed Central

    Dan, Jiameng; Kim, Soojin; Hardikar, Swanand; Hollowell, Debra; Lin, Kevin; Lu, Yue; Takata, Yoko; Shen, Jianjun; Chen, Taiping

    2016-01-01

    Oocyte meiotic progression and maternal-to-zygote transition are accompanied by dynamic epigenetic changes. The functional significance of these changes and the key epigenetic regulators involved are largely unknown. Here we show that Setdb1, a lysine methyltransferase, controls the global level of histone H3 lysine 9 di-methyl (H3K9me2) mark in growing oocytes. Conditional deletion of Setdb1 in developing oocytes leads to meiotic arrest at the germinal vesicle and meiosis I stages, resulting in substantially fewer mature eggs. Embryos derived from these eggs exhibit severe defects in cell cycle progression, progressive delays in preimplantation development, and degeneration before reaching the blastocyst stage. Rescue experiments by expressing wild-type or inactive Setdb1 in Setdb1-deficient oocytes suggest that the catalytic activity of Setdb1 is essential for meiotic progression and early embryogenesis. Mechanistically, up-regulation of Cdc14b, a dual-specificity phosphatase that inhibits meiotic progression, greatly contributes to the meiotic arrest phenotype. Setdb1 deficiency also leads to derepression of transposons and increased DNA damage in oocytes, which likely also contribute to meiotic defects. Thus, Setdb1 is a maternal-effect gene that controls meiotic progression and is essential for early embryogenesis. Our results uncover an important link between the epigenetic machinery and the major signaling pathway governing meiotic progression. PMID:27070551

  18. Studies on lysophosphatidic acid action during in vitro preimplantation embryo development.

    PubMed

    Boruszewska, D; Sinderewicz, E; Kowalczyk-Zieba, I; Grycmacher, K; Woclawek-Potocka, I

    2016-01-01

    Assisted reproductive technologies, including in vitro embryo production (IVP), have been successfully used in animal reproduction to optimize breeding strategies for improved production and health in animal husbandry. Despite the progress in IVP techniques over the years, further improvements in in vitro embryo culture systems are required for the enhancement of oocyte and embryo developmental competence. One of the most important issues associated with IVP procedures is the optimization of the in vitro culture of oocytes and embryos. Studies in different species of animals and in humans have identified important roles for receptor-mediated lysophosphatidic acid (LPA) signaling in multiple aspects of human and animal reproductive tract function. The data on LPA signaling in the ovary and uterus suggest that LPA can directly contribute to embryo-maternal interactions via its influence on early embryo development beginning from the influence of the ovarian environment on the oocyte to the influence of the uterine environment on the preimplantation embryo. This review discusses the current status of LPA as a potential supplement in oocyte maturation, fertilization, and embryo culture media and current views on the potential involvement of the LPA signaling pathway in early embryo development. PMID:26379100

  19. Gene activation-associated long noncoding RNAs function in mouse preimplantation development

    PubMed Central

    Hamazaki, Nobuhiko; Uesaka, Masahiro; Nakashima, Kinichi; Agata, Kiyokazu; Imamura, Takuya

    2015-01-01

    In mice, zygotic activation occurs for a wide variety of genes, mainly at the 2-cell stage. Long noncoding RNAs (lncRNAs) are increasingly being recognized as modulators of gene expression. In this study, directional RNA-seq of MII oocytes and 2-cell embryos identified more than 1000 divergently transcribed lncRNA/mRNA gene pairs. Expression of these bidirectional promoter-associated noncoding RNAs (pancRNAs) was strongly associated with the upregulation of their cognate genes. Conversely, knockdown of three abundant pancRNAs led to reduced mRNA expression, accompanied by sustained DNA methylation even in the presence of enzymes responsible for DNA demethylation. In particular, microinjection of siRNA against the abundant pancRNA partner of interleukin 17d (Il17d) mRNA at the 1-cell stage caused embryonic lethality, which was rescued by supplying IL17D protein in vitro at the 4-cell stage. Thus, this novel class of lncRNAs can modulate the transcription machinery in cis to activate zygotic genes and is important for preimplantation development. PMID:25633350

  20. β-catenin-mediated adhesion is required for successful preimplantation mouse embryo development.

    PubMed

    Messerschmidt, Daniel; de Vries, Wilhelmine N; Lorthongpanich, Chanchao; Balu, Sathish; Solter, Davor; Knowles, Barbara B

    2016-06-01

    β-catenin (CTNNB1) is integral to cell adhesion and to the canonical Wnt signaling pathway. The effects of maternal and zygotic CTNNB1 on embryogenesis have each been separately assessed, whereas the effect of its total absence has not. As the 'traditional' conditional Ctnnb1 knockout alleles give rise to truncated CTNNB1 fragments, we designed a new knockout allele incapable of CTNNB1 production. Mouse embryos lacking intact maternal/zygotic CTNNB1 from two knockout strains were examined in detail. Preimplantation embryos are formed, yet abnormalities in their size and shape were found throughout pre- and early postimplantation development. In the absence of the zona pellucida, embryos lacking CTNNB1 undergo fission and these separated blastomeres can become small trophoblastic vesicles, which in turn induce decidual reactions. Comparing the severity of this defective adhesion phenotype in embryos bearing the null allele with those carrying the 'traditional' knockout allele suggests a hypomorphic effect of the truncated CTNNB1 protein fragment, an important observation with possible impact on previous and future studies. PMID:27246714

  1. Effects of T-2 mycotoxin on in vitro development and chromatin status of mouse embryos in preimplantation stages.

    PubMed

    Somoskői, Bence; Kovács, Melinda; Cseh, Sándor

    2016-07-01

    T-2 toxin is a mycotoxin produced by phytopathogenic fungi of the Fusarium genus and has many well-studied deleterious effects on mammalian cells and reproductive tract. Despite the wide scale studies, the effects on preimplantation stage embryos are lacking. The aim of our study was to investigate the impact of T-2 on the cleavage stage of mouse embryos with regard to development to blastocysts and nuclear chromatin status.Six-weeks-old BDF1 female mice were superovulated and placed together overnight with mature males. Zygotes were flushed 20 h after human chorionic gonadotropin injection and divided randomly into treated (supplemented with 0.5, 0.75, and 1 ng/ml T-2) and nontreated (control) groups. Embryos were cultured in vitro for 96 h. Developmental stage was evaluated in the 72(nd)- and 96(th)-h for assessment of development dynamics. At the end of culture period, blastocysts from treated and control groups with normal morphology were selected for nuclear chromatin analysis. Blastocysts were categorized (grade A, B, and C) depending on the proportion of blasomeres with micronuclei and/or lobulated nuclei.Our data show significant decrease in the proportions of blastocysts in the 0.75 and 1 ng/ml toxin-supplemented groups compared with the control group. Blastocyst rate did not differ in embryos treated with 0.5 ng/ml T-2 but 24 h delay was found in blastocoel formation in all the treated groups. Only grade A (21.1%) and B (78.9%) blastocysts were found in low-toxin-contaminated group similar to the control ones (50-50%). Grade C embryos appeared in the 0.75 ng/ml (10%) treated group and the rate increased significantly (33.3%) in the highest contaminated group.T-2 mycotoxin has a harmful effect on early embryo development which results in decreased blastocyst proportion, delayed blastulation, and increased rate of chromatin damage. PMID:25425537

  2. Detection of apoptosis in mammalian development.

    PubMed

    Lin, Lin; Penaloza, Carlos; Ye, Yixia; Lockshin, Richard A; Zakeri, Zahra

    2009-01-01

    Mammalian development is dependent on an intricate orchestration of cell proliferation and death. Deregulation in the levels, localization, and type of cell death can lead to disease and even death of the developing embryo. The mechanisms involved in such deregulation are many; alterations and or manipulations of these can aid in the detection, prevention and possible treatments of any effects this de-regulation may have. Here we describe how cell death can be detected during mammalian development, using diverse staining and microscopy methods, while taking advantage of the advancements in cell death mechanisms, derived from biochemical and teratological studies in the field. PMID:19609762

  3. Dynamic imaging of preimplantation embryos in the murine oviduct

    NASA Astrophysics Data System (ADS)

    Burton, Jason C.; Wang, Shang; Larina, Irina V.

    2015-03-01

    Studying the dynamic events involved in early preimplantation embryo development during their transport from the ovary to the uterus is of great significance to improve the understanding of infertility, and eventually to help reduce the infertility rate. The mouse is a widely used mammalian model in reproductive biology, however, dynamic imaging studies of mouse preimplantation embryos have been very limited due to the lack of proper imaging tools for such analysis. Here, we introduce an innovative approach, which can potentially be used for three-dimensional imaging and tracking of murine oocytes with optical coherence tomography (OCT) as they exit the ovary and migrate through the oviduct to the uterus. The imaging is performed with spectral-domain OCT system operating at 70 kHz A-scan rate. The preimplantation embryos and surrounding cumulus cells can be clearly visualized. Results from our experiments indicate that OCT has great potential for dynamic imaging of the oviduct and oocyte tracking, which provides the foundation for future investigations aimed at understanding dynamic events during preimplantation stages in normal development as well as in mouse models of infertility.

  4. Jumonji domain-containing protein 3 regulates histone 3 lysine 27 methylation during bovine preimplantation development

    PubMed Central

    Canovas, Sebastian; Cibelli, Jose B.; Ross, Pablo J.

    2012-01-01

    Understanding the mechanisms of epigenetic remodeling that follow fertilization is a fundamental step toward understanding the bases of early embryonic development and pluripotency. Extensive and dynamic chromatin remodeling is observed after fertilization, including DNA methylation and histone modifications. These changes underlie the transition from gametic to embryonic chromatin and are thought to facilitate embryonic genome activation. In particular, trimethylation of histone 3 lysine 27 (H3K27me3) is associated with gene-specific transcription repression. Global levels of this epigenetic mark are high in oocyte chromatin and decrease to minimal levels at the time of embryonic genome activation. We provide evidence that the decrease in H3K27me3 observed during early development is cell-cycle independent, suggesting an active mechanism for removal of this epigenetic mark. Among H3K27me3-specific demethylases, Jumonji domain-containing protein 3 (JMJD3), but not ubiquitously transcribed tetratricopeptide repeat X (UTX), present high transcript levels in oocytes. Soon after fertilization JMJD3 protein levels increase, concurrent with a decrease in mRNA levels. This pattern of expression suggests maternal inheritance of JMJD3. Knockdown of JMJD3 by siRNA injection in parthenogenetically activated metaphase II oocytes resulted in inhibition of the H3K27me3 decrease normally observed in preimplantation embryos. Moreover, knockdown of JMJD3 in oocytes reduced the rate of blastocyst development. Overall, these results indicate that JMJD3 is involved in active demethylation of H3K27me3 during early embryo development and that this mark plays an important role during the progression of embryos to blastocysts. PMID:22308433

  5. Jumonji domain-containing protein 3 regulates histone 3 lysine 27 methylation during bovine preimplantation development.

    PubMed

    Canovas, Sebastian; Cibelli, Jose B; Ross, Pablo J

    2012-02-14

    Understanding the mechanisms of epigenetic remodeling that follow fertilization is a fundamental step toward understanding the bases of early embryonic development and pluripotency. Extensive and dynamic chromatin remodeling is observed after fertilization, including DNA methylation and histone modifications. These changes underlie the transition from gametic to embryonic chromatin and are thought to facilitate embryonic genome activation. In particular, trimethylation of histone 3 lysine 27 (H3K27me3) is associated with gene-specific transcription repression. Global levels of this epigenetic mark are high in oocyte chromatin and decrease to minimal levels at the time of embryonic genome activation. We provide evidence that the decrease in H3K27me3 observed during early development is cell-cycle independent, suggesting an active mechanism for removal of this epigenetic mark. Among H3K27me3-specific demethylases, Jumonji domain-containing protein 3 (JMJD3), but not ubiquitously transcribed tetratricopeptide repeat X (UTX), present high transcript levels in oocytes. Soon after fertilization JMJD3 protein levels increase, concurrent with a decrease in mRNA levels. This pattern of expression suggests maternal inheritance of JMJD3. Knockdown of JMJD3 by siRNA injection in parthenogenetically activated metaphase II oocytes resulted in inhibition of the H3K27me3 decrease normally observed in preimplantation embryos. Moreover, knockdown of JMJD3 in oocytes reduced the rate of blastocyst development. Overall, these results indicate that JMJD3 is involved in active demethylation of H3K27me3 during early embryo development and that this mark plays an important role during the progression of embryos to blastocysts. PMID:22308433

  6. Involvement of mouse and porcine PLCζ-induced calcium oscillations in preimplantation development of mouse embryos

    SciTech Connect

    Yoneda, Akihiro; Watanabe, Tomomasa

    2015-05-01

    In mammals, phospholipase Cζ (PLCζ) has the ability to trigger calcium (Ca{sup 2+}) oscillations in oocytes, leading to oocyte activation. Although there is a species-specific difference in the PLCζ-induced Ca{sup 2+} oscillatory pattern, whether PLCζ-induced Ca{sup 2+} oscillations affect preimplantation embryonic development remains unclear. Here, we show that Ca{sup 2+} oscillations in mouse PLCζ cRNA-injected oocytes stopped just before pronuclear formation, while that in porcine PLCζ cRNA-injected oocytes continued for several hours after pronuclei had been formed. This difference of Ca{sup 2+} oscillations in oocytes after pronuclear formation was dependent on the difference in the nuclear localization signal (NLS) sequence of PLCζ between the mouse and pig. However, mouse and porcine PLCζ cRNA-injected oocytes parthenogenetically developed to blastocysts regardless of the absence or presence of Ca{sup 2+} oscillations after pronuclear formation. Furthermore, the developmental rate of mouse or porcine PLCζ-activated oocytes injected with round spermatids to the blastocyst stage was not significantly different from that of strontium-activated oocytes injected with round spermatids. These results suggest that the PLCζ-induced Ca{sup 2+} oscillatory pattern in mouse oocytes is dependent on the NLS sequence of PLCζ and injection of PLCζ may be a useful method for activation of round spermatid-injected and somatic nuclear transferred oocytes. - Highlights: • Porcine PLCζ-induced Ca{sup 2+} oscillations continued after pronuclear formation. • The Ca{sup 2+} oscillatory pattern was dependent on the difference in the NLS sequence of PLCζ. • PLCζ-activated oocytes parthenogenetically developed to blastocysts. • PLCζ-activated oocytes injected with round spermatids developed to blastocysts.

  7. l-Carnitine affects preimplantation embryo development toward infertility in mice.

    PubMed

    Kyvelidou, Christiana; Sotiriou, Dimitris; Antonopoulou, Tania; Tsagkaraki, Margarita; Tserevelakis, George J; Filippidis, George; Athanassakis, Irene

    2016-10-01

    l-Carnitine (l-Cn), despite the beneficial role as energy-generating substance delivering long-chain fatty acids to the β-oxidation pathway in mitochondria, has been accused to cause an endometriosis-like state to BALB/c mice manifested by increased inflammatory cytokines in serum and peritoneal fluid, accumulation of immune cells in the peritoneal cavity and uterine walls and most importantly, correlating to infertility. Exploring this type of infertility, the effect of l-Cn on preimplantation embryo development, ovarian integrity and systemic maternal immunity was studied. Using nonlinear microscopy analysis, which was shown to be a powerful tool for determining embryo quality by quantitatively estimating the lipid body (LB) content of the cells, it was shown that in vitro and in vivo administration of l-Cn significantly decreased LB mean area in zygotes. Daily intraperitoneal administration of 2.5mg l-Cn for 3, 4 and 7days to mice significantly decreased the percent of normal zygotes. However, only the 7-day treatment persisted by affecting 2- and 8-cell stage embryos, while almost abolishing blastocyst development. Such effects were accompanied by abnormal ovarian histology, showing increased numbers of corpora luteus and elevated progesterone concentration in the serum. In addition, it was shown that the 7-day l-Cn treatment pushed maternal systemic immunity toward inflammation and immunosuppression by increasing CD11b-, CD25- and CD11bGr1-positive cells in spleen, which opposed the necessity for immunostimulation at these early stages of pregnancy. In conclusion, the results presented here demonstrated that elevated doses of l-Cn affect early stages of embryo development, leading to infertility. PMID:27402869

  8. Lack of maternal glutamate cysteine ligase modifier subunit (Gclm) decreases oocyte glutathione concentrations and disrupts preimplantation development in mice.

    PubMed

    Nakamura, Brooke N; Fielder, Thomas J; Hoang, Yvonne D; Lim, Jinhwan; McConnachie, Lisa A; Kavanagh, Terrance J; Luderer, Ulrike

    2011-07-01

    Glutathione (GSH) is the most abundant intracellular thiol and an important regulator of cellular redox status. Mice that lack the modifier subunit of glutamate cysteine ligase (Gclm), the rate-limiting enzyme in GSH synthesis, have decreased GSH synthesis. Nicotinamide nucleotide transhydrogenase, an inner mitochondrial membrane protein, catalyzes the interconversion of reduced nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide phosphate; reduced nicotinamide adenine dinucleotide phosphate is required for reduction of GSH disulfide. Previous work supports roles for GSH in preimplantation development. We hypothesized that Gclm-/- mice have increased preimplantation embryonic mortality and that this effect is enhanced by absence of a functioning Nnt gene. Gclm-/- females produced significantly fewer pups per litter than Gclm+/+ littermates. Numbers of oocytes ovulated in a natural estrous cycle or upon superovulation did not differ by genotype. Fewer uterine implantation sites were observed in the Gclm-/- females. Prepubertal Gclm-/- and Gclm+/+ females were superovulated, then mated overnight with a Gclm+/+ male. At 0.5 d postcoitum, Gclm-/- females had significantly lower percentages of zygotes with two pronuclei and higher percentages of zygotes with one pronucleus than Gclm+/+ or Gclm+/- females. At 3.5 d postcoitum, a significantly lower percentage of blastocyst stage embryos was recovered from uteri of Gclm-/- females than Gclm+/+ females. Embryonic development to the blastocyst stage, but not the two-cell stage, was significantly decreased after in vitro fertilization of oocytes from Gclm-/- females compared with Gclm+/+ females. The Nnt mutation did not enhance the effects of Gclm genotype on female fertility. These results demonstrate critical roles for maternal GSH in supporting normal preimplantation development. PMID:21558310

  9. Glia in mammalian development and disease.

    PubMed

    Zuchero, J Bradley; Barres, Ben A

    2015-11-15

    Glia account for more than half of the cells in the mammalian nervous system, and the past few decades have witnessed a flood of studies that detail novel functions for glia in nervous system development, plasticity and disease. Here, and in the accompanying poster, we review the origins of glia and discuss their diverse roles during development, in the adult nervous system and in the context of disease. PMID:26577203

  10. Lanosterol influences cytoplasmic maturation of pig oocytes in vitro and improves preimplantation development of cloned embryos.

    PubMed

    Lee, Sanghoon; Jin, Jun-Xue; Khoirinaya, Candrani; Kim, Geon A; Lee, Byeong Chun

    2016-03-01

    Lanosterol is a precursor of meiosis-activating sterols in the cholesterol biosynthetic pathway and induces a physiological signal that instructs the oocyte to reinitiate meiosis. In this study, we examined the effect of lanosterol on IVM of porcine oocytes, specifically on nuclear maturation, cytoplasmic maturation by investigating intracellular glutathione (GSH) levels and lipid content, embryonic development after parthenogenetic activation and somatic cell nuclear transfer (SCNT), and on gene expression in cumulus cells, oocytes, and SCNT-derived blastocysts. There was no significant difference in nuclear maturation rates between the control and treatment groups (10, 50, and 100 μM of lanosterol added to IVM culture medium). Supplementation with 50-μM lanosterol significantly increased lipid content and GSH levels and decreased reactive oxygen species levels compared with the control. In addition, oocytes treated with 50 μM of lanosterol exhibited significantly increased blastocyst formation rates and total cell numbers after parthenogenetic activation (30.3% and 63.9 vs. 21.6% and 36.5, respectively) and SCNT (18.2% and 53.7 vs. 12.6% and 37.5, respectively), when compared with the control group. Cumulus cells treated with 50 μM of lanosterol showed significantly increased 14α-demethylase, Δ14-reductase, and Δ7-reductase mRNA transcript levels. Significantly increased PPARγ, SREBF1, GPX1, and Bcl-2 and decreased Bax transcript levels were observed in mature oocytes treated with 50 μM of lanosterol compared with the control. SCNT blastocysts derived from 50-μM lanosterol-treated oocytes had significantly higher POU5F1, FGFR2, and Bcl-2 transcript levels than control SCNT-derived blastocysts. In conclusion, supplementation with 50 μM of lanosterol during IVM improves preimplantation development of SCNT embryos by elevating lipid content of oocytes, increasing GSH levels, decreasing reactive oxygen species levels, and regulating genes related to the

  11. The Maternal Effect Genes UTX and JMJD3 Play Contrasting Roles in Mus musculus Preimplantation Embryo Development.

    PubMed

    Yang, Lei; Song, Li-Shuang; Liu, Xue-Fei; Xia, Qing; Bai, Li-Ge; Gao, Li; Gao, Guang-Qi; Wang, Yu; Wei, Zhu-Ying; Bai, Chun-Ling; Li, Guang-Peng

    2016-01-01

    During the process of embryonic development in mammals, epigenetic modifications must be erased and reconstructed. In particular, the trimethylation of histone 3 lysine 27 (H3K27me3) is associated with gene-specific transcriptional repression and contributes to the maintenance of the pluripotent embryos. In this study, we determined that the global levels of the H3K27me3 marker were elevated in MII oocyte chromatin and decrease to minimal levels at the 8-cell and morula stages. When the blastocyst hatched, H3K27me3 was re-established in the inner cell mass. We also determined that H3K27me3-specific demethylases, UTX and JMJD3, were observed at high transcript and protein levels in mouse preimplantation embryos. In the activated oocytes, when the H3K27me3 disappeared at the 8-cell stage, the UTX (but not JMJD3) protein levels were undetectable. Using RNA interference, we suppressed UTX and JMJD3 gene expression in the embryos and determined that the functions of UTX and JMJD3 were complementary. When JMJD3 levels were decreased by RNA interference, the embryo development rate and quality were improved, but the knockdown of UTX produced the opposite results. Understanding the epigenetic mechanisms controlling preimplantation development is critical to comprehending the basis of embryonic development and to devise methods and approaches to treat infertility. PMID:27384759

  12. The Maternal Effect Genes UTX and JMJD3 Play Contrasting Roles in Mus musculus Preimplantation Embryo Development

    PubMed Central

    Yang, Lei; Song, Li-Shuang; Liu, Xue-Fei; Xia, Qing; Bai, Li-Ge; Gao, Li; Gao, Guang-Qi; Wang, Yu; Wei, Zhu-Ying; Bai, Chun-Ling; Li, Guang-Peng

    2016-01-01

    During the process of embryonic development in mammals, epigenetic modifications must be erased and reconstructed. In particular, the trimethylation of histone 3 lysine 27 (H3K27me3) is associated with gene-specific transcriptional repression and contributes to the maintenance of the pluripotent embryos. In this study, we determined that the global levels of the H3K27me3 marker were elevated in MII oocyte chromatin and decrease to minimal levels at the 8-cell and morula stages. When the blastocyst hatched, H3K27me3 was re-established in the inner cell mass. We also determined that H3K27me3-specific demethylases, UTX and JMJD3, were observed at high transcript and protein levels in mouse preimplantation embryos. In the activated oocytes, when the H3K27me3 disappeared at the 8-cell stage, the UTX (but not JMJD3) protein levels were undetectable. Using RNA interference, we suppressed UTX and JMJD3 gene expression in the embryos and determined that the functions of UTX and JMJD3 were complementary. When JMJD3 levels were decreased by RNA interference, the embryo development rate and quality were improved, but the knockdown of UTX produced the opposite results. Understanding the epigenetic mechanisms controlling preimplantation development is critical to comprehending the basis of embryonic development and to devise methods and approaches to treat infertility. PMID:27384759

  13. Molecular analysis of radiation-induced albino (c)-locus mutations that cause death at preimplantation stages of development

    SciTech Connect

    Rinchik, E.M. ); Toenjes, R.R.; Paul, D. ); Potter, M.D. )

    1993-12-01

    Deletion mutations at the albino (c) locus have been useful for continuing the development of fine-structure physical and functional maps of the Fes-Hbb region of mouse chromosome 7. This report describes the molecular analysis of a number of radiation-induced c deletions that, when homozygous, cause death of the embryo during preimplantation stages. The distal extent of these deletions defines a locus, pid, (preimplantation development) genetically associated with this phenotype. The proximal breakpoints of eight of these deletions were mapped with respect to the Tyr (tyrosinase; albino) gene as well as to anonymous loci within the Fah-Tyr region that are defined by the Pmv-31 viral integration site and by chromosome-microdissection clones. Rearrangements corresponding to the proximal breakpoints of two of these deletions were detected by Southern blot analysis, and a size-altered restriction fragment carrying the breakpoint of one of them was cloned. A probe derived from this deletion fusion fragment defines a locus, D7Rn6, which maps within (or distal to) the pid region, and which discriminates among the distal extents of deletions eliciting the pid phenotype. Extension of physical maps from D7Rn6 should provide access both to the pid region and to loci mapping distal to pid that are defined by N-ethyl-N-nitrosourea-induced lethal mutations. 36 refs., 10 figs.

  14. Neonatal Phytoestrogen Exposure Alters Oviduct Mucosal Immune Response to Pregnancy and Affects Preimplantation Embryo Development in the Mouse1

    PubMed Central

    Jefferson, Wendy N.; Padilla-Banks, Elizabeth; Phelps, Jazma Y.; Cantor, Amy M.; Williams, Carmen J.

    2012-01-01

    ABSTRACT Treatment of neonatal mice with the phytoestrogen genistein (50 mg/kg/day) results in complete female infertility caused in part by preimplantation embryo loss in the oviduct between Days 2 and 3 of pregnancy. We previously demonstrated that oviducts of genistein-treated mice are “posteriorized” as compared to control mouse oviducts because they express numerous genes normally restricted to posterior regions of the female reproductive tract (FRT), the cervix and vagina. We report here that neonatal genistein treatment resulted in substantial changes in oviduct expression of genes important for the FRT mucosal immune response, including immunoglobulins, antimicrobials, and chemokines. Some of the altered immune response genes were chronically altered beginning at the time of neonatal genistein treatment, indicating that these alterations were a result of the posteriorization phenotype. Other alterations in oviduct gene expression were observed only in early pregnancy, immediately after the FRT was exposed to inflammatory or antigenic stimuli from ovulation and mating. The oviduct changes affected development of the surviving embryos by increasing the rate of cleavage and decreasing the trophectoderm-to-inner cell mass cell ratio at the blastocyst stage. We conclude that both altered immune responses to pregnancy and deficits in oviduct support for preimplantation embryo development in the neonatal genistein model are likely to contribute to infertility phenotype. PMID:22553218

  15. Targeting gene expression in the preimplantation mouse embryo using morpholino antisense oligonucleotides.

    PubMed

    Siddall, Laura S; Barcroft, Lisa C; Watson, Andrew J

    2002-12-01

    Morpholino antisense oligonucleotides act by blocking translation of their target gene products and are effective tools for down-regulating gene expression. The current study was conducted to define treatment conditions for the use of morpholino oligonucleotides (MOs) in mammalian preimplantation embryos, and to employ MOs to target genes and study gene function in the early embryo. For the first time, ethoxylated polyethylenimine (EPEI), Lipofectin or Lysolecithin delivery agents were employed in combination with a fluorescent control MO and an alpha-catenin specific MO, to down-regulate gene expression during murine preimplantation development. Experiments applied to both two- and eight-cell stage murine preimplantation embryos contrasted the efficacy of MO concentrations of 1, 2, 5, 10, and 20 microM and treatment delivery times of 3, 6, 24, and 48 hr. Continuous treatment of two-cell embryos with Lipofectin and 20 microM alpha-catenin MO for 48 hr resulted in a significant (P < 0.05) reduction in development to the blastocyst stage and was accompanied by a marked reduction in alpha-catenin protein. These results indicate that morpholino antisense oligonucleotides are effective tools for down-regulating gene expression during mammalian preimplantation development. PMID:12412042

  16. Mammalian Kidney Development: Principles, Progress, and Projections

    PubMed Central

    Little, Melissa H.; McMahon, Andrew P.

    2012-01-01

    The mammalian kidney is a vital organ with considerable cellular complexity and functional diversity. Kidney development is notable for requiring distinct but coincident tubulogenic processes involving reciprocal inductive signals between mesenchymal and epithelial progenitor compartments. Key molecular pathways mediating these interactions have been identified. Further, advances in the analysis of gene expression and gene activity, coupled with a detailed knowledge of cell origins, are enhancing our understanding of kidney morphogenesis and unraveling the normal processes of postnatal repair and identifying disease-causing mechanisms. This article focuses on recent insights into central regulatory processes governing organ assembly and renal disease, and predicts future directions for the field. PMID:22550230

  17. Light-sheet imaging of mammalian development.

    PubMed

    de Medeiros, Gustavo; Balázs, Bálint; Hufnagel, Lars

    2016-07-01

    Tackling modern cell and developmental biology questions requires fast 3D imaging with sub-cellular resolution over extended periods of time. Fluorescence microscopy has emerged as a powerful tool to image biological samples with high spatial and temporal resolution with molecular specificity. In particular, the highly efficient illumination and detection scheme of light-sheet fluorescence microscopy is starting to revolutionize the way we can monitor cellular and developmental processes in vivo. Here we summarize the state-of-the art of light-sheet imaging with a focus on mammalian development - from instrumentation, mounting and sample handling to data processing. PMID:27288888

  18. Actin Disorganization Plays a Vital Role in Impaired Embryonic Development of In Vitro-Produced Mouse Preimplantation Embryos

    PubMed Central

    Tan, Kun; An, Lei; Wang, Shu-Min; Wang, Xiao-Dong; Zhang, Zhen-Ni; Miao, Kai; Sui, Lin-Lin; He, Shu-Zhi; Nie, Jing-Zhou; Wu, Zhong-Hong; Tian, Jian-Hui

    2015-01-01

    Assisted reproductive technology (ART) is being increasingly applied to overcome infertility. However, the in vitro production process, the main procedure of ART, can lead to aberrant embryonic development and health-related problems in offspring. Understanding the mechanisms underlying the ART-induced side effects is important to improve the ART process. In this study, we carried out comparative transcriptome profiling between in vivo- (IVO) and in vitro- produced (IVP) mouse blastocysts. Our results suggested that aberrant actin organization might be a major factor contributing to the impaired development of IVP embryos. To test this, we examined the effect of actin disorganization on the development of IVP preimplantation embryos. Specific disruption of actin organization by cytochalasin B (CB) indicated that well-organized actin is essential for in vitro embryonic development. Supplementing the culture medium with 10–9 M melatonin, a cytoskeletal modulator in adult somatic cells, significantly reversed the disrupted expression patterns of genes related to actin organization, including Arhgef2, Bcl2, Coro2b, Flnc, and Palld. Immunofluorescence analysis showed that melatonin treatment of IVP embryos significantly improved the distribution and organization of actin filaments (F-actin) from the 8-cell stage onwards. More importantly, we found that melatonin alleviated the CB-mediated aberrant F-actin distribution and organization and rescued CB-induced impaired embryonic development. This is the first study to indicate that actin disorganization is implicated in impaired development of IVP embryos during the preimplantation stage. We also demonstrated that improving actin organization is a promising strategy to optimize existing IVP systems. PMID:26076347

  19. Conceptus development and transcriptome at preimplantation stages in lactating dairy cows of distinct genetic groups and estrous cyclic statuses.

    PubMed

    Ribeiro, E S; Monteiro, A P A; Bisinotto, R S; Lima, F S; Greco, L F; Ealy, A D; Thatcher, W W; Santos, J E P

    2016-06-01

    The objectives were to compare development and transcriptome of preimplantation conceptuses 15 d after synchronized ovulation and artificial insemination (AI) according to the genetic background of the cow and estrous cyclicity at the initiation of the synchronization program. On d 39±3 postpartum, Holstein cows that were anovular (HA; n=10), Holstein cows that were estrous cyclic (HC; n=25), and Jersey/Holstein crossbred cows that were estrous cyclic (CC; n=25) were randomly selected in a grazing herd and subjected to the Ovsynch protocol. All cows were inseminated on d 49±3 postpartum, which was considered study d 0. Blood was sampled and analyzed for concentrations of progesterone, estradiol, insulin, and insulin-like growth factor 1 (IGF-1) on study d -10, -3, -1, 7, and 15 relative to AI. On study d 15, uteri were flushed and recovered fluid had IFN-τ concentrations measured and subjected to metabolomic analysis. Morphology of the recovered conceptuses was evaluated, and mRNA was extracted and subjected to transcriptome microarray analysis. Compared with HC, CC presented greater concentrations of progesterone and estradiol in plasma, with corpora lutea and preovulatory follicles of similar size. Conceptuses from CC were larger, tended to secrete greater amounts of IFN-τ, and had greater transcript expression of peroxisome proliferator-activated receptor gamma (PPARγ), an important transcription factor that coordinates lipid metabolism and elongation at preimplantation development. In addition, pregnant CC had greater concentrations of anandamide in the uterine flush, which might be important for elongation of the conceptus and early implantation. Conceptuses from HA were also longer and secreted greater amounts of IFN-τ than conceptuses from HC, likely because of the distinct progesterone profiles before and after AI. Nonetheless, anovular cows had reduced concentrations of IGF-1 in plasma, and their conceptuses presented remarkable transcriptomic

  20. The Anti-Apoptotic Role of Berberine in Preimplantation Embryo In Vitro Development through Regulation of miRNA-21

    PubMed Central

    Liu, Xiao-Ran; Cao, Yong-Chun; Zhen, Di; Jia, Zi-Ye; Jiang, Jin-Qi; Tian, Jian-Hui; Gao, Jian-Ming

    2015-01-01

    Traditional Chinese medicinal herbs containing berberine have been historically used to prevent miscarriage. Here, we investigated whether the anti-apoptotic effects of berberine on pre-implantation embryonic development are regulated by miRNA-21. Mouse pronuclear embryos were cultured in medium with or without berberine, and some were then microinjected with a miRNA-21 inhibitor. The in vitro developmental rates of 2- and 4-cell embryos and blastocysts, blastocyst cell numbers, apoptotic rates, and apoptotic cell numbers were measured in each group. Furthermore, we examined the transcription levels of miRNA-21 and its target genes (caspase-3, PTEN, and Bcl-2) and their translation levels. Comparisons were made with in vivo-developed and untreated embryos. We found that berberine significantly increased the developmental rates and cell numbers of mouse blastocysts and decreased apoptotic cell rates in vitro. Berberine also significantly increased miRNA-21 and Bcl-2 transcription levels and significantly decreased caspase-3 and PTEN transcription levels. In embryos treated with a miRNA-21 inhibitor, the results followed the opposite trend; PTEN and caspase-3 transcription levels increased significantly, while the transcription level of Bcl-2 decreased significantly. Additionally, berberine treatment significantly increased the Bcl-2 protein level and significantly decreased the caspase-3 and PTEN protein levels in blastocysts, but there were no significant differences observed in the levels of these proteins in 2- and 4-cell embryos. This study revealed that miRNA-21 is important for pre-implantation embryonic development, especially blastocyst development in vitro. Berberine elevates miRNA-21 expression, decreases PTEN and caspase-3 levels, increases Bcl-2 levels, and exerts anti-apoptotic and pro-growth effects. PMID:26042820

  1. Global Epigenomic Reconfiguration During Mammalian Brain Development

    PubMed Central

    Nery, Joseph R.; Urich, Mark; Puddifoot, Clare A.; Johnson, Nicholas D.; Lucero, Jacinta; Huang, Yun; Dwork, Andrew J.; Schultz, Matthew D.; Yu, Miao; Tonti-Filippini, Julian; Heyn, Holger; Hu, Shijun; Wu, Joseph C.; Rao, Anjana; Esteller, Manel; He, Chuan; Haghighi, Fatemeh G.; Sejnowski, Terrence J.; Behrens, M. Margarita; Ecker, Joseph R.

    2013-01-01

    DNA methylation is implicated in mammalian brain development and plasticity underlying learning and memory. We report the genome-wide composition, patterning, cell specificity, and dynamics of DNA methylation at single-base resolution in human and mouse frontal cortex throughout their lifespan. Widespread methylome reconfiguration occurs during fetal to young adult development, coincident with synaptogenesis. During this period, highly conserved non-CG methylation (mCH) accumulates in neurons, but not glia, to become the dominant form of methylation in the human neuronal genome. Moreover, we found an mCH signature that identifies genes escaping X-chromosome inactivation. Last, whole-genome single-base resolution 5-hydroxymethylcytosine (hmC) maps revealed that hmC marks fetal brain cell genomes at putative regulatory regions that are CG-demethylated and activated in the adult brain and that CG demethylation at these hmC-poised loci depends on Tet2 activity. PMID:23828890

  2. Mammalian oocyte growth and development in vitro.

    PubMed

    Eppig, J J; O'Brien, M; Wigglesworth, K

    1996-06-01

    This paper is a review of the current status of technology for mammalian oocyte growth and development in vitro. It compares and contrasts the characteristics of the various culture systems that have been devised for the culture of either isolated preantral follicles or the oocyte-granulosa cell complexes form preantral follicles. The advantages and disadvantages of these various systems are discussed. Endpoints for the evaluation of oocyte development in vitro, including oocyte maturation and embryogenesis, are described. Considerations for the improvement of the culture systems are also presented. These include discussions of the possible effects of apoptosis and inappropriate differentiation of oocyte-associated granulosa cells on oocyte development. Finally, the potential applications of the technology for oocyte growth and development in vitro are discussed. For example, studies of oocyte development in vitro could help to identify specific molecules produced during oocyte development that are essential for normal early embryogenesis and perhaps recognize defects leading to infertility or abnormalities in embryonic development. Moreover, the culture systems may provide the methods necessary to enlarge the populations of valuable agricultural, pharmaceutical product-producing, and endangered animals, and to rescue the oocytes of women about to undergo clinical procedures that place oocytes at risk. PMID:9115726

  3. Ontogenetic development of the mammalian circadian system.

    PubMed

    Weinert, Dietmar

    2005-01-01

    This review summarizes the current knowledge about the ontogenetic development of the circadian system in mammals. The developmental changes of overt rhythms are discussed, although the main focus of the review is the underlying neuronal and molecular mechanisms. In addition, the review describes ontogenetic development, not only as a process of morpho-functional maturation. The need of repeated adaptations and readaptations due to changing developmental stage and environmental conditions is also considered. The review analyzes mainly rodent data, obtained from the literature and from the author's own studies. Results from other species, including humans, are presented to demonstrate common features and species-dependent differences. The review first describes the development of the suprachiasmatic nuclei as the central pacemaker system and shows that intrinsic circadian rhythms are already generated in the mammalian fetus. As in adult organisms, the period length is different from 24 h and needs continuous correction by environmental periodicities, or zeitgebers. The investigation of the ontogenetic development of the mechanisms of entrainment reveals that, at prenatal and early postnatal stages, non-photic cues deriving from the mother are effective. Light-dark entrainment develops later. At a certain age, both photic and non-photic zeitgebers may act in parallel, even though the respective time information is 12 h out of phase. That leads to a temporary internal desynchronization. Because rhythmic information needs to be transferred to effector organs, the corresponding neural and humoral signalling pathways are also briefly described. Finally, to be able to transform a rhythmic signal into an overt rhythm, the corresponding effector organs must be functionally mature. As many of these organs are able to generate their own intrinsic rhythms, another aspect of the review is dedicated to the development of peripheral oscillators and mechanisms of their entrainment

  4. Evidence of Selection against Complex Mitotic-Origin Aneuploidy during Preimplantation Development

    PubMed Central

    McCoy, Rajiv C.; Demko, Zachary P.; Ryan, Allison; Banjevic, Milena; Hill, Matthew; Sigurjonsson, Styrmir; Rabinowitz, Matthew; Petrov, Dmitri A.

    2015-01-01

    Whole-chromosome imbalances affect over half of early human embryos and are the leading cause of pregnancy loss. While these errors frequently arise in oocyte meiosis, many such whole-chromosome abnormalities affecting cleavage-stage embryos are the result of chromosome missegregation occurring during the initial mitotic cell divisions. The first wave of zygotic genome activation at the 4–8 cell stage results in the arrest of a large proportion of embryos, the vast majority of which contain whole-chromosome abnormalities. Thus, the full spectrum of meiotic and mitotic errors can only be detected by sampling after the initial cell divisions, but prior to this selective filter. Here, we apply 24-chromosome preimplantation genetic screening (PGS) to 28,052 single-cell day-3 blastomere biopsies and 18,387 multi-cell day-5 trophectoderm biopsies from 6,366 in vitro fertilization (IVF) cycles. We precisely characterize the rates and patterns of whole-chromosome abnormalities at each developmental stage and distinguish errors of meiotic and mitotic origin without embryo disaggregation, based on informative chromosomal signatures. We show that mitotic errors frequently involve multiple chromosome losses that are not biased toward maternal or paternal homologs. This outcome is characteristic of spindle abnormalities and chaotic cell division detected in previous studies. In contrast to meiotic errors, our data also show that mitotic errors are not significantly associated with maternal age. PGS patients referred due to previous IVF failure had elevated rates of mitotic error, while patients referred due to recurrent pregnancy loss had elevated rates of meiotic error, controlling for maternal age. These results support the conclusion that mitotic error is the predominant mechanism contributing to pregnancy losses occurring prior to blastocyst formation. This high-resolution view of the full spectrum of whole-chromosome abnormalities affecting early embryos provides insight

  5. In vitro development of preimplantation porcine embryos using alginate hydrogels as a three-dimensional extracellular matrix.

    PubMed

    Sargus-Patino, Catherine N; Wright, Elane C; Plautz, Sarah A; Miles, Jeremy R; Vallet, Jeff L; Pannier, Angela K

    2014-08-01

    Between Days 10 and 12 of gestation, porcine embryos undergo a dramatic morphological change, known as elongation, with a corresponding increase in oestrogen production that triggers maternal recognition of pregnancy. Elongation deficiencies contribute to embryonic loss, but exact mechanisms of elongation are poorly understood due to the lack of an effective in vitro culture system. Our objective was to use alginate hydrogels as three-dimensional scaffolds that can mechanically support the in vitro development of preimplantation porcine embryos. White cross-bred gilts were bred at oestrus (Day 0) to Duroc boars and embryos were recovered on Days 9, 10 or 11 of gestation. Spherical embryos were randomly assigned to be encapsulated within double-layered 0.7% alginate beads or remain as non-encapsulated controls (ENC and CONT treatment groups, respectively) and were cultured for 96h. Every 24h, half the medium was replaced with fresh medium and an image of each embryo was recorded. At the termination of culture, embryo images were used to assess morphological changes and cell survival. 17β-Oestradiol levels were measured in the removed media by radioimmunoassay. Real-time polymerase chain reaction was used to analyse steroidogenic transcript expression at 96h in ENC and CONT embryos, as well as in vivo-developed control embryos (i.e. spherical, ovoid and tubular). Although no differences in cell survival were observed, 32% (P<0.001) of the surviving ENC embryos underwent morphological changes characterised by tubal formation with subsequent flattening, whereas none of the CONT embryos exhibited morphological changes. Expression of steroidogenic transcripts STAR, CYP11A1 and CYP19A1 was greater (P<0.07) in ENC embryos with morphological changes (ENC+) compared with CONT embryos and ENC embryos with no morphological changes (ENC-), and was more similar to expression of later-stage in vivo-developed controls. Furthermore, a time-dependent increase (P<0.001) in 17

  6. Three-Dimensional Distribution of UBF and Nopp140 in Relationship to Ribosomal DNA Transcription During Mouse Preimplantation Development.

    PubMed

    Koné, Maïmouna Coura; Fleurot, Renaud; Chebrout, Martine; Debey, Pascale; Beaujean, Nathalie; Bonnet-Garnier, Amélie

    2016-04-01

    The nucleolus is a dynamic nuclear compartment that is mostly involved in ribosome subunit biogenesis; however, it may also play a role in many other biological processes, such as stress response and the cell cycle. Mainly using electron microscopy, several studies have tried to decipher how active nucleoli are set up during early development in mice. In this study, we analyzed nucleologenesis during mouse early embryonic development using 3D-immunofluorescent detection of UBF and Nopp140, two proteins associated with different nucleolar compartments. UBF is a transcription factor that helps maintain the euchromatic state of ribosomal genes; Nopp140 is a phosphoprotein that has been implicated in pre-rRNA processing. First, using detailed image analyses and the in situ proximity ligation assay technique, we demonstrate that UBF and Nopp140 dynamic redistribution between the two-cell and blastocyst stages (time of implantation) is correlated with morphological and structural modifications that occur in embryonic nucleolar compartments. Our results also support the hypothesis that nucleoli develop at the periphery of nucleolar precursor bodies. Finally, we show that the RNA polymerase I inhibitor CX-5461: 1) disrupts transcriptional activity, 2) alters preimplantation development, and 3) leads to a complete reorganization of UBF and Nopp140 distribution. Altogether, our results underscore that highly dynamic changes are occurring in the nucleoli of embryos and confirm a close link between ribosomal gene transcription and nucleologenesis during the early stages of development. PMID:26984997

  7. Functions of miRNAs during Mammalian Heart Development

    PubMed Central

    Yan, Shun; Jiao, Kai

    2016-01-01

    MicroRNAs (miRNAs) play essential roles during mammalian heart development and have emerged as attractive therapeutic targets for cardiovascular diseases. The mammalian embryonic heart is mainly derived from four major cell types during development. These include cardiomyocytes, endocardial cells, epicardial cells, and neural crest cells. Recent data have identified various miRNAs as critical regulators of the proper differentiation, proliferation, and survival of these cell types. In this review, we briefly introduce the contemporary understanding of mammalian cardiac development. We also focus on recent developments in the field of cardiac miRNAs and their functions during the development of different cell types. PMID:27213371

  8. DNA repair in mammalian embryos.

    PubMed

    Jaroudi, Souraya; SenGupta, Sioban

    2007-01-01

    Mammalian cells have developed complex mechanisms to identify DNA damage and activate the required response to maintain genome integrity. Those mechanisms include DNA damage detection, DNA repair, cell cycle arrest and apoptosis which operate together to protect the conceptus from DNA damage originating either in parental gametes or in the embryo's somatic cells. DNA repair in the newly fertilized preimplantation embryo is believed to rely entirely on the oocyte's machinery (mRNAs and proteins deposited and stored prior to ovulation). DNA repair genes have been shown to be expressed in the early stages of mammalian development. The survival of the embryo necessitates that the oocyte be sufficiently equipped with maternal stored products and that embryonic gene expression commences at the correct time. A Medline based literature search was performed using the keywords 'DNA repair' and 'embryo development' or 'gametogenesis' (publication dates between 1995 and 2006). Mammalian studies which investigated gene expression were selected. Further articles were acquired from the citations in the articles obtained from the preliminary Medline search. This paper reviews mammalian DNA repair from gametogenesis to preimplantation embryos to late gestational stages. PMID:17141556

  9. Calcium signaling in mammalian egg activation and embryo development: Influence of subcellular localization

    PubMed Central

    Miao, Yi-Liang; Williams, Carmen J.

    2012-01-01

    Calcium (Ca2+) signals drive the fundamental events surrounding fertilization and the activation of development in all species examined to date. Initial studies of Ca2+ signaling at fertilization in marine animals were tightly linked to new discoveries of bioluminescent proteins and their use as fluorescent Ca2+ sensors. Since that time, there has been rapid progress in our understanding of the key functions for Ca2+ in many cell types and the impact of cellular localization on Ca2+ signaling pathways. In this review, which focuses on mammalian egg activation, we consider how Ca2+ is regulated and stored at different stages of oocyte development and examine the functions of molecules that serve as both regulators of Ca2+ release and effectors of Ca2+ signals. We then summarize studies exploring how Ca2+ directs downstream effectors mediating both egg activation and later signaling events required for successful preimplantation embryo development. Throughout this review, we focus attention on how localization of Ca2+ signals influences downstream signaling events, and attempt to highlight gaps in our knowledge that are ripe areas for future research. PMID:22888043

  10. Neonatal exposure to genistein disrupts ability of female mouse reproductive tract to support preimplantation embryo development and implantation.

    PubMed

    Jefferson, Wendy N; Padilla-Banks, Elizabeth; Goulding, Eugenia H; Lao, Shin-Ping C; Newbold, Retha R; Williams, Carmen J

    2009-03-01

    Female mice treated neonatally with the phytoestrogen genistein (50 mg/kg/day) have multioocyte follicles, lack regular estrous cyclicity, and are infertile even after superovulation. To determine the cause of their infertility, we examined oocyte developmental competence and timing of embryo loss. Eggs obtained by superovulation of genistein-treated or control females were equally capable of being fertilized in vitro and cultured to the blastocyst stage. However, if eggs were fertilized in vivo, retrieved at the pronucleus stage, and cultured, there was a significant reduction in the percentage of embryos from genistein-treated females reaching the blastocyst stage. When these blastocysts were transferred to pseudopregnant recipients, the number of live pups produced was similar to that in controls. Preimplantation embryo development in vivo was examined by flushing embryos from the oviduct and/or uterus. Similar numbers of one-cell and two-cell embryos were obtained from genistein-treated and control females. However, significantly fewer embryos (<50%) were obtained from genistein-treated females on postcoital Days 3 and 4. To determine if neonatal genistein treatment altered the ability of the uterus to support implantation, blastocysts from control donors were transferred to control and genistein-treated pseudopregnant recipients. These experiments demonstrated that genistein-treated females are not capable of supporting normal implantation of control embryos. Taken together, these results suggest that oocytes from mice treated neonatally with genistein are developmentally competent; however, the oviductal environment and the uterus have abnormalities that contribute to the observed reproductive failure. PMID:19005167

  11. Maternal diabetes promotes mTORC1 downstream signalling in rabbit preimplantation embryos.

    PubMed

    Gürke, Jacqueline; Schindler, Maria; Pendzialek, S Mareike; Thieme, René; Grybel, Katarzyna J; Heller, Regine; Spengler, Katrin; Fleming, Tom P; Fischer, Bernd; Navarrete Santos, Anne

    2016-05-01

    The mammalian target of rapamycin complex 1 (mTORC1) is known to be a central cellular nutrient sensor and master regulator of protein metabolism; therefore, it is indispensable for normal embryonic development. We showed previously in a diabetic pregnancy that embryonic mTORC1 phosphorylation is increased in case of maternal hyperglycaemia and hypoinsulinaemia. Further, the preimplantation embryo is exposed to increased L-leucine levels during a diabetic pregnancy. To understand how mTOR signalling is regulated in preimplantation embryos, we examined consequences of L-leucine and glucose stimulation on mTORC1 signalling and downstream targets in in vitro cultured preimplantation rabbit blastocysts and in vivo. High levels of L-leucine and glucose lead to higher phosphorylation of mTORC1 and its downstream target ribosomal S6 kinase 1 (S6K1) in these embryos. Further, L-leucine supplementation resulted in higher embryonic expression of genes involved in cell cycle (cyclin D1; CCND1), translation initiation (eukaryotic translation initiation factor 4E; EIF4E), amino acid transport (large neutral amino acid transporter 2; Lat2: gene SLC7A8) and proliferation (proliferating cell nuclear antigen; PCNA) in a mTORC1-dependent manner. Phosphorylation of S6K1 and expression patterns of CCND1 and EIF4E were increased in embryos from diabetic rabbits, while the expression of proliferation marker PCNA was decreased. In these embryos, protein synthesis was increased and autophagic activity was decreased. We conclude that mammalian preimplantation embryos sense changes in nutrient supply via mTORC1 signalling. Therefore, mTORC1 may be a decisive mediator of metabolic programming in a diabetic pregnancy. PMID:26836250

  12. Antioxidant Capacity of Melatonin on Preimplantation Development of Fresh and Vitrified Rabbit Embryos: Morphological and Molecular Aspects

    PubMed Central

    Mehaisen, Gamal M. K.; Saeed, Ayman M.; Gad, Ahmed; Abass, Ahmed O.; Arafa, Mahmoud; El-Sayed, Ashraf

    2015-01-01

    Embryo cryopreservation remains an important technique to enhance the reconstitution and distribution of animal populations with high genetic merit. One of the major detrimental factors to this technique is the damage caused by oxidative stress. Melatonin is widely known as an antioxidant with multi-faceted ways to counteract the oxidative stress. In this paper, we investigated the role of melatonin in protecting rabbit embryos during preimplantation development from the potential harmful effects of oxidative stress induced by in vitro culture or vitrification. Rabbit embryos at morula stages were cultured for 2 hr with 0 or 10−3 M melatonin (C or M groups). Embryos of each group were either transferred to fresh culture media (CF and MF groups) or vitrified/devitrified (CV and MV groups), then cultured in vitro for 48 hr until the blastocyst stage. The culture media were used to measure the activity of antioxidant enzymes: glutathione-s-transferase (GST) and superoxide dismutase (SOD), as well as the levels of two oxidative substrates: lipid peroxidation (LPO) and nitric oxide (NO). The blastocysts from each group were used to measure the expression of developmental-related genes (GJA1, POU5F1 and Nanog) and oxidative-stress-response-related genes (NFE2L2, SOD1 and GPX1). The data showed that melatonin promoted significantly (P<0.05) the blastocyst rate by 17% and 12% in MF and MV groups compared to their controls (CF and CV groups). The GST and SOD activity significantly increased by the treatment of melatonin in fresh or vitrified embryos, while the levels of LPO and NO decreased (P<0.05). Additionally, melatonin considerably stimulated the relative expression of GJA1, NFE2L2 and SOD1 genes in MF and MV embryos compared to CF group. Furthermore, melatonin significantly ameliorated the reduction of POU5F1 and GPX1 expression induced by vitrification. The results obtained from the current investigation provide new and clear molecular aspects regarding the

  13. The histone demethylase JMJD2C is stage-specifically expressed in preimplantation mouse embryos and is required for embryonic development.

    PubMed

    Wang, Jianle; Zhang, Miao; Zhang, Yu; Kou, Zhaohui; Han, Zhiming; Chen, Da-Yuan; Sun, Qing-Yuan; Gao, Shaorong

    2010-01-01

    Epigenetic modifications play a pivotal role in embryonic development by dynamically regulating DNA methylation and chromatin modifications. Although recent studies have shown that core histone methylation is reversible, very few studies have investigated the functions of the newly discovered histone demethylases during embryonic development. In the present study, we investigated the expression characteristics and function of JMJD2C, a histone demethylase that belongs to the JmjC-domain-containing histone demethylases, during preimplantation embryonic development of the mouse. We found that JMJD2C is stage-specifically expressed during preimplantation development, with the highest activity being observed from the two-cell to the eight-cell stage. Depletion of JMJD2C in metaphase II oocytes followed by parthenogenetic activation causes a developmental arrest before the blastocyst stage. Moreover, consistent with a previous finding in embryonic stem (ES) cells, depletion of JMJD2C causes a significant down-regulation of the pluripotency gene Nanog in embryos. However, contrary to a previous report in ES cells, we observed that other pluripotency genes, Pou5f1 and Sox2, are also significantly down-regulated in JMJD2C-depleted embryos. Furthermore, the depletion of JMJD2C in early embryos also caused significant down-regulation of the Myc and Klf4 genes, which are associated with cell proliferation. Our data suggest that the deregulation of these critical genes synergistically causes the developmental defects observed in JMJD2C-depleted embryos. PMID:19696013

  14. Timing of human preimplantation embryonic development is confounded by embryo origin

    PubMed Central

    Kirkegaard, K.; Sundvall, L.; Erlandsen, M.; Hindkjær, J.J.; Knudsen, U.B.; Ingerslev, H.J.

    2016-01-01

    STUDY QUESTION To what extent do patient- and treatment-related factors explain the variation in morphokinetic parameters proposed as embryo viability markers? SUMMARY ANSWER Up to 31% of the observed variation in timing of embryo development can be explained by embryo origin, but no single factor elicits a systematic influence. WHAT IS KNOWN ALREADY Several studies report that culture conditions, patient characteristics and treatment influence timing of embryo development, which have promoted the perception that each clinic must develop individual models. Most of the studies have, however, treated embryos from one patient as independent observations, and only very few studies that evaluate the influence from patient- and treatment-related factors on timing of development or time-lapse parameters as predictors of viability have controlled for confounding, which implies a high risk of overestimating the statistical significance of potential correlations. STUDY DESIGN, SIZE, DURATION Infertile patients were prospectively recruited to a cohort study at a hospital fertility clinic from February 2011 to May 2013. Patients aged <38 years without endometriosis were eligible if ≥8 oocytes were retrieved. Patients were included only once. All embryos were monitored for 6 days in a time-lapse incubator. PARTICIPANTS/MATERIALS, SETTING, METHODS A total of 1507 embryos from 243 patients were included. The influence of fertilization method, BMI, maternal age, FSH dose and number of previous cycles on timing of t2-t5, duration of the 2- and 3-cell stage, and development of a blastocoel (tEB) and full blastocoel (tFB) was tested in multivariate, multilevel linear regression analysis. Predictive parameters for live birth were tested in a logistic regression analysis for 223 single transferred blastocysts, where time-lapse parameters were investigated along with patient and embryo characteristics. MAIN RESULTS AND THE ROLE OF CHANCE Moderate intra-class correlation coefficients

  15. Where hearing starts: the development of the mammalian cochlea.

    PubMed

    Basch, Martin L; Brown, Rogers M; Jen, Hsin-I; Groves, Andrew K

    2016-02-01

    The mammalian cochlea is a remarkable sensory organ, capable of perceiving sound over a range of 10(12) in pressure, and discriminating both infrasonic and ultrasonic frequencies in different species. The sensory hair cells of the mammalian cochlea are exquisitely sensitive, responding to atomic-level deflections at speeds on the order of tens of microseconds. The number and placement of hair cells are precisely determined during inner ear development, and a large number of developmental processes sculpt the shape, size and morphology of these cells along the length of the cochlear duct to make them optimally responsive to different sound frequencies. In this review, we briefly discuss the evolutionary origins of the mammalian cochlea, and then describe the successive developmental processes that lead to its induction, cell cycle exit, cellular patterning and the establishment of topologically distinct frequency responses along its length. PMID:26052920

  16. Where hearing starts: The development of the mammalian cochlea

    PubMed Central

    Basch, Martin L.; Brown, Rogers M.; Jen, Hsin-I; Groves, Andrew K.

    2016-01-01

    The mammalian cochlea is a remarkable sensory organ, capable of perceiving sound over a range of 1012 in pressure and discriminating both infrasonic and ultrasonic frequencies in different species. The sensory hair cells of the mammalian cochlea are exquisitely sensitive, responding to atomic-level deflections at speeds on the order of tens of microseconds. The number and placement of hair cells are precisely determined during inner ear development, and a large number of developmental processes sculpt the shape, size and morphology of these cells along the length of the cochlear duct to make them optimally responsive to different sound frequencies. In this review, we briefly discuss the evolutionary origins of the mammalian cochlea, and then describe the successive developmental processes that lead to its induction, cell cycle exit, cellular patterning and the establishment of topologically distinct frequency responses along its length. PMID:26052920

  17. Lung development of monotremes: evidence for the mammalian morphotype.

    PubMed

    Ferner, Kirsten; Zeller, Ulrich; Renfree, Marilyn B

    2009-02-01

    The reproductive strategies and the extent of development of neonates differ markedly between the three extant mammalian groups: the Monotremata, Marsupialia, and Eutheria. Monotremes and marsupials produce highly altricial offspring whereas the neonates of eutherian mammals range from altricial to precocial. The ability of the newborn mammal to leave the environment in which it developed depends highly on the degree of maturation of the cardio-respiratory system at the time of birth. The lung structure is thus a reflection of the metabolic capacity of neonates. The lung development in monotremes (Ornithorhynchus anatinus, Tachyglossus aculeatus), in one marsupial (Monodelphis domestica), and one altricial eutherian (Suncus murinus) species was examined. The results and additional data from the literature were integrated into a morphotype reconstruction of the lung structure of the mammalian neonate. The lung parenchyma of monotremes and marsupials was at the early terminal air sac stage at birth, with large terminal air sacs. The lung developed slowly. In contrast, altricial eutherian neonates had more advanced lungs at the late terminal air sac stage and postnatally, lung maturation proceeded rapidly. The mammalian lung is highly conserved in many respects between monotreme, marsupial, and eutherian species and the structural differences in the neonatal lungs can be explained mainly by different developmental rates. The lung structure of newborn marsupials and monotremes thus resembles the ancestral condition of the mammalian lung at birth, whereas the eutherian newborns have a more mature lung structure. PMID:19051249

  18. The Role of Autophagy in Mammalian Development

    PubMed Central

    Cecconi, Francesco; Levine, Beth

    2009-01-01

    Autophagy is important for the degradation of bulk cytoplasm, long-lived proteins, and entire organelles. In lower eukaryotes, autophagy functions as a cell death mechanism or as a stress response during development. However, autophagy’s significance in vertebrate development, and the role (if any) of vertebrate-specific factors in its regulation, remains unexplained. Through careful analysis of the current autophagy gene mutant mouse models, we propose that in mammals, autophagy may be involved in specific cytosolic rearrangements needed for proliferation, death, and differentiation during embryogenesis and postnatal development. Thus, autophagy is a process of cytosolic “renovation,” crucial in cell fate decisions. PMID:18804433

  19. Biocompatibility assessment of fibrous nanomaterials in mammalian embryos.

    PubMed

    Munk, Michele; Camargo, Luiz S A; Quintão, Carolina C R; Silva, Saulo R; Souza, Eliza D; Raposo, Nádia R B; Marconcini, Jose M; Jorio, Ado; Ladeira, Luiz O; Brandão, Humberto M

    2016-07-01

    Currently there is a growing interest in the use of nanotechnology in reproductive medicine and reproductive biology. However, their toxic effects on mammalian embryos remain poorly understood. In this work, we evaluate the biocompatibility of two fibrous nanomaterials (NMs): cotton cellulose nanofibers (CNF) and carboxylated multiwalled carbon nanotubes (MWCNT-COOH), by performing an investigation of the embryonic development, gene expression (biomarkers focused on cell stress, apoptosis and totipotency) and in situ apoptosis in bovine embryos. Exposure to NMs did not interfere in preimplantation development or in the incidence of apoptosis in the bovine embryo, but they did affect the gene expression. The results presented are important for an understanding of the toxicity of cotton CNF and MWCNT-COOH on mammalian embryos. To our knowledge, we report the first evaluation of biocompatibility between these NMs on preimplantation embryos, which may open a new window for reproductive biomedical applications. PMID:26949162

  20. Phylogenetic memory of developing mammalian dentition.

    PubMed

    Peterkova, Renata; Lesot, Hervé; Peterka, Miroslav

    2006-05-15

    Structures suppressed during evolution can be retraced due to atavisms and vestiges. Atavism is an exceptional emergence of an ancestral form in a living individual. In contrast, ancestral vestige regularly occurs in all members of an actual species. We surveyed data about the vestigial and atavistic teeth in mammals, updated them by recent findings in mouse and human embryos, and discussed their ontogenetic and evolutionary implications. In the mouse incisor and diastema regions, dental placodes are transiently distinct being morphologically similar to the early tooth primordia in reptiles. Two large vestigial buds emerge in front of the prospective first molar and presumably correspond to the premolars eliminated during mouse evolution. The incorporation of the posterior premolar vestige into the lower first molar illustrates the putative mechanism of evolutionary disappearance of the last premolar in the mice. In mutant mice, devious development of the ancestral tooth primordia might lead to their revivification and origin of atavistic supernumerary teeth. Similarity in the developmental schedule between three molars in mice and the respective third and fourth deciduous premolar and the first molar in humans raises a question about putative homology of these teeth. The complex patterning of the vestibular and dental epithelium in human embryos is reminiscent of the pattern of "Zahnreihen" in lower vertebrates. A hypothesis was presented about the developmental relationship between the structures at the external aspect of the dentition in mammals (oral vestibule, pre-lacteal teeth, paramolar cusps/teeth), the tooth glands in reptiles, and the earliest teeth in lower vertebrates. PMID:16463376

  1. The Effects of Calcitonin on the Development of and Ca2+ Levels in Heat-shocked Bovine Preimplantation Embryos In Vitro

    PubMed Central

    KAMANO, Shumpei; IKEDA, Shuntaro; SUGIMOTO, Miki; KUME, Shinichi

    2014-01-01

    Intracellular calcium homeostasis is essential for proper cell function. We investigated the effects of heat shock on the development of and the intracellular Ca2+ levels in bovine preimplantation embryos in vitro and the effects of calcitonin (CT), a receptor-mediated Ca2+ regulator, on heat shock-induced events. Heat shock (40.5 C for 10 h between 20 and 30 h postinsemination) of in vitro-produced bovine embryos did not affect the cleavage rate; however, it significantly decreased the rates of development to the 5- to 8-cell and blastocyst stages as compared with those of the control cultured for the entire period at 38.5 C (P < 0.05). The relative intracellular Ca2+ levels at the 1-cell stage (5 h after the start of heat shock), as assessed by Fluo-8 AM, a fluorescent probe for Ca2+, indicated that heat shock significantly lowered the Ca2+ level as compared with the control level. Semiquantitative reverse transcription PCR and western blot analyses revealed the expression of CT receptor in bovine preimplantation embryos. The addition of CT (10 nM) to the culture medium ameliorated the heat shock-induced impairment of embryonic development beyond the 5- to 8-cell stage. The Ca2+ level in the heat-shocked embryos cultured with CT was similar to that of the control embryos, suggesting that heat shock lowers the Ca2+ level in fertilized embryos in vitro and that a lower Ca2+ level is implicated in heat shock-induced impairment of embryonic development. Intracellular Ca2+-mobilizing agents, e.g., CT, may effectively circumvent the detrimental effects of heat shock on early embryonic development. PMID:24899099

  2. Expression and localization of heterogeneous nuclear ribonucleoprotein K in mouse ovaries and preimplantation embryos.

    PubMed

    Zhang, Ping; Wang, Ningling; Lin, Xianhua; Jin, Li; Xu, Hong; Li, Rong; Huang, Hefeng

    2016-02-26

    Heterogeneous nuclear ribonucleoprotein K (hnRNP K), an evolutionarily conserved protein, is involved in several important cellular processes that are relevant to cell proliferation, differentiation, apoptosis, and cancer development. However, details of hnRNP K expression during mammalian oogenesis and preimplantation embryo development are lacking. The present study investigates the expression and cellular localization of K protein in the mouse ovaries and preimplantation embryos using immunostaining. We demonstrate, for the first time, that hnRNP K is abundantly expressed in the nuclei of mouse oocytes in primordial, primary and secondary follicles. In germ vesicle (GV)-stage oocytes, hnRNP K accumulates in the germinal vesicle in a spot distribution manner. After germinal vesicle breakdown, speckled hnRNP K is diffusely distributed in the cytoplasm. However, after fertilization, the K protein relocates into the female and male pronucleus and persists in the blastomere nuclei. Localization of K protein in the human ovary and ovarian granulosa cell tumor (GCT) was also investigated. Overall, this study provides important morphological evidence to better understand the possible roles of hnRNP K in mammalian oogenesis and early embryo development. PMID:26850853

  3. Studies toward birth and early mammalian development in space

    NASA Astrophysics Data System (ADS)

    Ronca, April E.

    2003-10-01

    Sustaining life beyond Earth on either space stations or other planets will require a clear understanding of how the space environment affects key phases of mammalian reproduction and development. Pregnancy, parturition (birth) and the early development of offspring are complex processes essential for successful reproduction and the proliferation of mammalian species. While no mammal has yet undergone birth within the space environment, studies spanning the gravity continuum from 0- to 2-g are revealing startling insights into how reproduction and development may proceed under gravitational conditions deviating from those typically experienced on Earth. In this report, I review studies of pregnant Norway rats and their offspring flown in microgravity (μg) onboard the NASA Space Shuttle throughout the period corresponding to mid- to late gestation, and analogous studies of pregnant rats exposed to hypergravity ( ht) onboard the NASA Ames Research Center 24-ft centrifuge. Studies of postnatal rats flown in space or exposed to centrifugation are reviewed. Although many important questions remain unanswered, the available data suggest that numerous aspects of pregnancy, birth and early mammalian development can proceed under altered gravity conditions. Published by Elsevier Ltd on behalf of COSPAR.

  4. The mammalian oocyte orchestrates the rate of ovarian follicular development

    PubMed Central

    Eppig, John J.; Wigglesworth, Karen; Pendola, Frank L.

    2002-01-01

    The development of both the mammalian oocyte and the somatic cell compartments of the ovarian follicle is highly coordinated; this coordination ensures that the ovulated oocyte is ready to undergo fertilization and subsequent embryogenesis. Disruption of this synchrony results in oocyte developmental failure. Communication between the oocyte and companion somatic cells is essential for successful development of both follicular compartments. However, it was not previously known whether one cell type, either the somatic or the germ cell compartment, determines the overall rate of follicular development. To test the hypothesis that the oocyte orchestrates the rate of follicle development, mid-sized oocytes isolated from secondary follicles were transferred back to primordial follicles, the earliest stage of follicular development. This transfer doubled the rate of follicular development and the differentiation of follicular somatic cells. Oocyte development in these accelerated follicles appeared normal; recovered oocytes were competent to undergo fertilization and embryonic development. These results demonstrate that oocytes orchestrate and coordinate the development of mammalian ovarian follicles and that the rate of follicular development is based on a developmental program intrinsic to the oocyte. PMID:11867735

  5. Linking development with generation of novelty in mammalian teeth

    PubMed Central

    Jernvall, Jukka

    2000-01-01

    The evolution of mammalian teeth is characterized by the frequent and convergent evolution of new cusps. The evolution of new cusps can be linked to tooth development via population-level variation. This allows testing whether development increases the capacity to evolve, or evolvability, by facilitating and even directing morphological change. In a population sample of living seals, variation in cusp number of individual teeth is from three to five cusps, the variably present cusps being the shortest ones that also develop last. By factoring in recent evidence on development, I show that the variation in cusp number can be explained by a patterning cascade mode of cusp development that cumulatively increases and directs height variation in short cusps. The biased variation in seal tooth cusps supports the recognition of teeth as highly evolvable because only small developmental changes are needed to produce large changes in size and number of small cusps. This evolvability of tooth cusps may have facilitated the fast and independent acquisition of new cusps in mammalian evolution. In phylogenetic studies, small cusps may be unreliable as phylogenetic signals. Population level variation can be a powerful tool in testing and generating hypotheses in developmental evolution studies. PMID:10706636

  6. Retinoic acid regulates embryonic development of mammalian submandibular salivary glands.

    PubMed

    Wright, Diana M; Buenger, Deanna E; Abashev, Timur M; Lindeman, Robert P; Ding, Jixiang; Sandell, Lisa L

    2015-11-01

    Organogenesis is orchestrated by cell and tissue interactions mediated by molecular signals. Identification of relevant signals, and the tissues that generate and receive them, are important goals of developmental research. Here, we demonstrate that Retinoic Acid (RA) is a critical signaling molecule important for morphogenesis of mammalian submandibular salivary glands (SMG). By examining late stage RA deficient embryos of Rdh10 mutant mice we show that SMG development requires RA in a dose-dependent manner. Additionally, we find that active RA signaling occurs in SMG tissues, arising earlier than any other known marker of SMG development and persisting throughout gland morphogenesis. At the initial bud stage of development, we find RA production occurs in SMG mesenchyme, while RA signaling occurs in epithelium. We also demonstrate active RA signaling occurs in glands cultured ex vivo, and treatment with an inhibitor of RA signaling blocks growth and branching. Together these data identify RA signaling as a direct regulator of SMG organogenesis. PMID:26278034

  7. The environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin disrupts morphogenesis of the rat pre-implantation embryo

    PubMed Central

    Hutt, Karla J; Shi, Zhanquan; Albertini, David F; Petroff, Brian K

    2008-01-01

    Background Environmental toxicants, whose actions are often mediated through the aryl hydrocarbon receptor (AhR) pathway, pose risks to the health and well-being of exposed species, including humans. Of particular concern are exposures during the earliest stages of development that while failing to abrogate embryogenesis, may have long term effects on newborns or adults. The purpose of this study was to evaluate the effect of maternal exposure to the AhR-specific ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the development of rat pre-implantation embryos with respect to nuclear and cytoskeletal architecture and cell lineage allocation. Results We performed a systematic 3 dimensional (3D) confocal microscopy analysis of rat pre-implantation embryos following maternal exposure to environmentally relevant doses of TCDD. Both chronic (50 ng/kg/wk for 3 months) and acute (50 ng/kg and 1 μg/kg at proestrus) maternal TCDD exposure disrupted morphogenesis at the compaction stage (8–16 cell), with defects including monopolar spindle formation, f-actin capping and fragmentation due to aberrant cytokinesis. Additionally, the size, shape and position of nuclei were modified in compaction stage pre-implantation embryos collected from treated animals. Notably, maternal TCDD exposure did not compromise survival to blastocyst, which with the exception of nuclear shape, were morphologically similar to control blastocysts. Conclusion We have identified the compaction stage of pre-implantation embryogenesis as critically sensitive to the effects of TCDD, while survival to the blastocyst stage is not compromised. To the best of our knowledge this is the first in vivo study to demonstrate a critical window of pre-implantation mammalian development that is vulnerable to disruption by an AhR ligand at environmentally relevant doses. PMID:18171477

  8. Evolution and development of the mammalian cerebral cortex

    PubMed Central

    Molnár, Zoltán; Kaas, Jon H.; de Carlos, Juan A.; Hevner, Robert F.; Lein, Ed; Němec, Pavel

    2014-01-01

    Comparative developmental studies of the mammalian brain can identify key changes that can generate the diverse structures and functions of brains. We have studied how the neocortex of early mammals became organized into functionally distinct areas, and how the current level of cortical cellular and laminar specialization arose from the simpler premammalian cortex. We demonstrate the neocortical organization in early mammals that is most informative for an understanding of how the large, complex human brain evolved from a long line of ancestors. The radial and tangential enlargement of the cortex was driven by changes in the patterns of cortical neurogenesis, including alterations in the proportions of distinct progenitor types. Some cortical cell populations travel to the cortex through tangential migration, others migrate radially. A number of recent studies have begun to characterize the chick, mouse, human and non-human primate cortical transcriptome to help us understand how gene expression relates to the development, and to the anatomical and functional organization of the adult neocortex. Although all mammalian forms share the basic layout of cortical areas, the areal proportions and distributions are driven by distinct evolutionary pressures acting on sensory and motor experiences during the individual ontogenies. PMID:24776993

  9. Expression and distribution of forkhead activin signal transducer 2 (FAST2) during follicle development in mouse ovaries and pre-implantation embryos.

    PubMed

    Wang, Guiping; Liu, Linlin; Guo, Shujuan; Zhang, Cong

    2016-07-01

    Xenopus forkhead activin signal transducer 1 (xFAST 1) was first characterized in Xenopus as the transcriptional partner for Smad proteins. FAST2, which is the xFAST 1 homologues in mouse, is expressed during early developmental stages of the organism. However, the function of FAST2 in mouse ovaries and pre-implantation embryos is unclear. Therefore, we investigated its expression during these processes. In postnatal mice, FAST2 was expressed in oocytes and thecal cells from postnatal day (PD) 1 to PD 21. In gonadotropin-induced immature mice, FAST2 was expressed in oocytes, thecal cells and newly formed corpora lutea (CLs), but was expressed at a lower level in degenerated CLs. Similar results were observed upon western blot analyses. In meloxicam-treated immature mice, ovulation was inhibited and FAST2 was expressed in thecal cells, luteinized granulosa cells and entrapped oocytes. Immunofluorescence results showed that FAST2 was expressed in the cytoplasm and nucleus but not the nucleolus from the zygote to 8-cell embryo stage, after which it was localized to the cytoplasm of the morulae and inner cell mass of the blastocysts. Taken together, these observations suggest that FAST2 is expressed in a cell-specific manner during ovarian follicle development, ovulation, luteinization and early embryonic development, and that FAST2 might play important roles in these physiological processes. PMID:27432806

  10. Studies Toward Birth and Early Mammalian Development in Space

    NASA Technical Reports Server (NTRS)

    Ronca, April E.; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    Successful reproduction is the hallmark of a species' ability to adapt to its environment and must be realized to sustain life beyond Earth. Before taking this immense step, we need to understand the effects of altered gravity on critical phases of mammalian reproduction, viz., those events surrounding pregnancy, birth and the early development of offspring. No mammal has yet undergone birth in space. however studies spanning the gravity continuum from 0 to 2-g are revealing insights into how birth and early postnatal development will proceed in space. In this presentation, I will report the results of behavioral studies of rat mothers and offspring exposed from mid- to late pregnancy to either hypogravity (0-g) or hypergravity (1.5 or 2-g).

  11. Non-coding RNAs in mammalian sexual development.

    PubMed

    McFarlane, L; Wilhelm, D

    2009-01-01

    The present decade is witnessing a paradigm shift in our understanding of gene regulation. RNA, once relegated to an intermediary between DNA and protein, has emerged as a key contributor in the coordination of complex developmental pathways. For sexually reproducing organisms, propagation of the species is accomplished via an elaborate sexual phenotype. In mammals this consists of a highly complex cell lineage that has the capacity for intricate self-differentiation whilst maintaining the potential to generate all cell types upon fertilization. In addition, mammals possess a diverse range of somatic reproductive tissues and organs that often undergo dynamic morphological changes in response to a variety of external and internal cues. Although the protein component required to mediate these processes continues to be vigorously investigated, it is becoming increasingly apparent that an understanding of the non-coding RNA (ncRNA) component is required to develop a comprehensive picture of mammalian sexual development. PMID:20197714

  12. Two stages in the development of a mammalian retinocollicular projection.

    PubMed

    Mark, R F; Freeman, T C; Ding, Y; Marotte, L R

    1993-11-18

    The retinocollicular projection in the marsupial mammal the wallaby Macropus eugenii, has been investigated anatomically to determine the order in the developing projection and electrophysiologically to determine the time of onset of synaptic transmission by recording evoked potentials in the colliculus in response to stimulation of the optic nerve. There are two clear stages: a protracted period when retinal axons grow into the colliculus in coarse retinotopic order with no recordable electrical activity followed by the formation of terminal zones in retinotopically correct positions, the loss of more widely distributed axons and the onset of evoked potentials. The two stages are not seen in non-mammalian vertebrates where the projection is functional from the beginning. PMID:8110999

  13. Mammalian development does not recapitulate suspected key transformations in the evolutionary detachment of the mammalian middle ear.

    PubMed

    Ramírez-Chaves, Héctor E; Wroe, Stephen W; Selwood, Lynne; Hinds, Lyn A; Leigh, Chris; Koyabu, Daisuke; Kardjilov, Nikolay; Weisbecker, Vera

    2016-01-13

    The ectotympanic, malleus and incus of the developing mammalian middle ear (ME) are initially attached to the dentary via Meckel's cartilage, betraying their origins from the primary jaw joint of land vertebrates. This recapitulation has prompted mostly unquantified suggestions that several suspected--but similarly unquantified--key evolutionary transformations leading to the mammalian ME are recapitulated in development, through negative allometry and posterior/medial displacement of ME bones relative to the jaw joint. Here we show, using µCT reconstructions, that neither allometric nor topological change is quantifiable in the pre-detachment ME development of six marsupials and two monotremes. Also, differential ME positioning in the two monotreme species is not recapitulated. This challenges the developmental prerequisites of widely cited evolutionary scenarios of definitive mammalian middle ear (DMME) evolution, highlighting the requirement for further fossil evidence to test these hypotheses. Possible association between rear molar eruption, full ME ossification and ME detachment in marsupials suggests functional divergence between dentary and ME as a trigger for developmental, and possibly also evolutionary, ME detachment. The stable positioning of the dentary and ME supports suggestions that a 'partial mammalian middle ear' as found in many mammaliaforms--probably with a cartilaginous Meckel's cartilage--represents the only developmentally plausible evolutionary DMME precursor. PMID:26763693

  14. Coculture of Preimplantation Embryos With Outgrowth Embryos Improves Embryonic Developmental Competence in Mice.

    PubMed

    Kim, Jihyun; Lee, Jaewang; Kim, Seok Hyun; Jun, Jin Hyun

    2016-07-01

    Mammalian embryonic development is an intricate succession of physiological and morphological events. Many studies have focused on optimizing in vitro culture systems for improvement in embryonic development. In this study, we established a novel coculture method with outgrowth embryos and investigated how this coculture system improves the preimplantation and peri-implantation embryonic development both in vitro and in utero. We found that outgrowth embryos secrete vesicles, as observed by time-lapse monitoring and scanning electron microscopy. Coculture with outgrowth embryos also significantly increased the percentages of morula, blastocyst, hatching, and outgrowth (P < .01). The total number of cells and inner cell mass were increased, and apoptotic index was decreased (P < .05) by upregulating Survivin and Lif messenger RNA expression levels (P < .05) in the coculture compared to the control group. Furthermore, implantation rates in utero after embryo transfer were significantly higher for cocultured embryos than those for the control group (P < .05). We conclude that embryotrophic factors secreted from outgrowth embryos could improve the developmental competence of in vitro cultured mouse preimplantation embryos. Findings of specific embryotrophic factors from outgrowth embryos might be valuable for advancing reproductive technologies in the future. PMID:26704525

  15. Reprogenetics: Preimplantational genetics diagnosis

    PubMed Central

    Coco, Roberto

    2014-01-01

    Preimplantational Genetics Diagnosis (PGD) is requested by geneticists and reproductive specialists. Usually geneticists ask for PGD because one or both members of the couple have an increased genetic risk for having an affected offspring. On the other hand, reproductive specialists ask for embryo aneuploidy screening (PGS) to assures an euploid embryo transfer, with the purpose to achieve an ongoing pregnancy, although the couple have normal karyotypes. As embryonic aneuploidies are responsible for pre and post implantation abortions, it is logical to considerer that the screening of the embryonic aneuploidies prior to embryo transfer could improve the efficiency of the in vitro fertilization procedures. Nevertheless, it is still premature to affirm this until well-designed clinical trials were done, especially in women of advanced age where the rate of embryos with aneuploidies is much greater. Although the indications of PGD are similar to conventional prenatal diagnosis (PND), PGD has less ethical objections than the PND. As with the PGD/PGS results only unaffected embryos are transferred, both methods can avoid the decision to interrupt the pregnancy due to a genetic problem; this makes an important difference when compared to conventional prenatal diagnosis. PMID:24764761

  16. The role of Six1 in mammalian auditory system development.

    PubMed

    Zheng, Weiming; Huang, Li; Wei, Zhu-Bo; Silvius, Derek; Tang, Bihui; Xu, Pin-Xian

    2003-09-01

    The homeobox Six genes, homologues to Drosophila sine oculis (so) gene, are expressed in multiple organs during mammalian development. However, their roles during auditory system development have not been studied. We report that Six1 is required for mouse auditory system development. During inner ear development, Six1 expression was first detected in the ventral region of the otic pit and later is restricted to the middle and ventral otic vesicle within which, respectively, the vestibular and auditory epithelia form. By contrast, Six1 expression is excluded from the dorsal otic vesicle within which the semicircular canals form. Six1 is also expressed in the vestibuloacoustic ganglion. At E15.5, Six1 is expressed in all sensory epithelia of the inner ear. Using recently generated Six1 mutant mice, we found that all Six1(+/-) mice showed some degree of hearing loss because of a failure of sound transmission in the middle ear. By contrast, Six1(-/-) mice displayed malformations of the auditory system involving the outer, middle and inner ears. The inner ear development in Six1(-/-) embryos arrested at the otic vesicle stage and all components of the inner ear failed to form due to increased cell death and reduced cell proliferation in the otic epithelium. Because we previously reported that Six1 expression in the otic vesicle is Eya1 dependent, we first clarified that Eya1 expression was unaffected in Six1(-/-) otic vesicle, further demonstrating that the Drosophila Eya-Six regulatory cassette is evolutionarily conserved during mammalian inner ear development. We also analyzed several other otic markers and found that the expression of Pax2 and Pax8 was unaffected in Six1(-/-) otic vesicle. By contrast, Six1 is required for the activation of Fgf3 expression and the maintenance of Fgf10 and Bmp4 expression in the otic vesicle. Furthermore, loss of Six1 function alters the expression pattern of Nkx5.1 and Gata3, indicating that Six1 is required for regional

  17. Polyamide Nanogels from GRAS Components and Their Toxicity in Mouse Pre-implantation Embryos

    PubMed Central

    Prasad, Priyaa; Molla, Mijanur Rahaman; Cui, Wei; Canakci, Mine; Osborne, Barbara; Mager, Jesse; Thayumanavan, S.

    2016-01-01

    Safe delivery systems that can not only encapsulate hydrophobic drug molecules, but also release them in response to specific triggers, are important in several therapeutic and biomedical applications. In this paper, we have designed a nanogel based on molecules that are generally recognized as safe (GRAS). We have shown that the resultant polymeric nanogels exhibit responsive molecular release, and also show high in vitro cellular viability on HEK 293T, HeLa, MCF 7 and A549 cell lines. The toxicity of these nanogels was further evaluated with a highly sensitive assay using mouse preimplantation embryo development, where blastocysts were formed after four days of in vitro culture and live pups were born when morulae/early blastocysts were transferred to the uteri of surrogate recipients. Our results indicate that these nanogels are non-toxic during mammalian development and do not alter normal growth or early embryo success rate. PMID:26367020

  18. ENU mutagenesis reveals that Notchless homolog 1 (Drosophila) affects Cdkn1a and several members of the Wnt pathway during murine pre-implantation development

    PubMed Central

    2012-01-01

    Background Our interests lie in determining the genes and genetic pathways that are important for establishing and maintaining maternal-fetal interactions during pregnancy. Mutation analysis targeted to a 34 Mb domain flanked by Trp53 and Wnt3 demonstrates that this region of mouse chromosome 11 contains a large number of essential genes. Two mutant alleles (l11Jus1 and l11Jus4), which fall into the same complementation group, survive through implantation but fail prior to gastrulation. Results Through a positional cloning strategy, we discovered that these homozygous mutant alleles contain non-conservative missense mutations in the Notchless homolog 1 (Drosophila) (Nle1) gene. NLE1 is a member of the large WD40-repeat protein family, and is thought to signal via the canonical NOTCH pathway in vertebrates. However, the phenotype of the Nle1 mutant mice is much more severe than single Notch receptor mutations or even in animals in which NOTCH signaling is blocked. To test the hypothesis that NLE1 functions in multiple signaling pathways during pre-implantation development, we examined expression of multiple Notch downstream target genes, as well as select members of the Wnt pathway in wild-type and mutant embryos. We did not detect altered expression of any primary members of the Notch pathway or in Notch downstream target genes. However, our data reveal that Cdkn1a, a NOTCH target, was upregulated in Nle1 mutants, while several members of the Wnt pathway are downregulated. In addition, we found that Nle1 mutant embryos undergo caspase-mediated apoptosis as hatched blastocysts, but not as morulae or blastocysts. Conclusions Taken together, these results uncover potential novel functions for NLE1 in the WNT and CDKN1A pathways during embryonic development in mammals. PMID:23231322

  19. Monotreme ossification sequences and the riddle of mammalian skeletal development.

    PubMed

    Weisbecker, Vera

    2011-05-01

    The developmental differences between marsupials, placentals, and monotremes are thought to be reflected in differing patterns of postcranial development and diversity. However, developmental polarities remain obscured by the rarity of monotreme data. Here, I present the first postcranial ossification sequences of the monotreme echidna and platypus, and compare these with published data from other mammals and amniotes. Strikingly, monotreme stylopodia (humerus, femur) ossify after the more distal zeugopodia (radius/ulna, tibia/fibula), resembling only the European mole among all amniotes assessed. European moles also share extreme humeral adaptations to rotation digging and/or swimming with monotremes, suggesting a causal relationship between adaptation and ossification heterochrony. Late femoral ossification with respect to tibia/fibula in monotremes and moles points toward developmental integration of the serially homologous fore- and hindlimb bones. Monotreme cervical ribs and coracoids ossify later than in most amniotes but are similarly timed as homologous ossifications in therians, where they are lost as independent bones. This loss may have been facilitated by a developmental delay of coracoids and cervical ribs at the base of mammals. The monotreme sequence, although highly derived, resembles placentals more than marsupials. Thus, marsupial postcranial development, and potentially related diversity constraints, may not represent the ancestral mammalian condition. PMID:21521190

  20. Contrasting changes in transport of glycine vs proline at fertilization and during preimplantation development of mouse embryos

    SciTech Connect

    Haghighat, N.; Van Winkle, L.J.

    1987-05-01

    Na/sup +/ dependent glycine transport decreased steadily during cleavage of mouse embryos and then increased dramatically upon formation of early blastocysts (approx. 80 h post coitus), while proline uptake increased several-fold upon fertilization of eggs and then decreased through the blastocyst stage. V/sub max/ and K/sub m/ values for Gly transport in unfertilized eggs, 8-cell embryos and blastocysts were 9.5, 4.0 and 20 fmol. (egg or embryo)/sup -1/ min/sup -1/ and 93, 94 and 30 ..mu..M, respectively. Gly transport in 2-cell embryos was Cl-dependent and sigmoidally related to the (Na/sup +/), whereas Cl/sup -/-dependent Gly uptake was linearly related to (Na/sup +/) in blastocysts. Uptake of 1.0 ..mu..M (/sup 3/H)Gly in cleavage stages was inhibited by 10 mM sarcosine but not by Glu, Ser, or Lys and only weakly by MeAIB, BCO and pipecolate, whereas BCO, Ser, Lys, Pipecolate, Ala and Leu strongly inhibited transport in blastocysts; and Lys inhibition was unequivocally competitive (K/sub i/ approx. 70 ..mu..M). Na/sup +/-dependent uptake of 0.9 ..mu..M L-(/sup 3/H)Pro was inhibited strongly by only pipecolate in unfertilized eggs, but MeAIB and BCO were also strong inhibitors in zygotes. Fertilization was also accompanied by an increase in the V/sub max/ (0.9 vs 6.7 fmol. cell/sup -1/ min/sup -1/) and K/sub m/ (66 vs 230 ..mu..m) values for proline transport. This appears to be the first report of a change in amino acid transport upon fertilization of mammalian eggs, although transport of several amino acids increases dramatically in sea urchin zygotes.

  1. p38 (Mapk14/11) occupies a regulatory node governing entry into primitive endoderm differentiation during preimplantation mouse embryo development.

    PubMed

    Thamodaran, Vasanth; Bruce, Alexander W

    2016-09-01

    During mouse preimplantation embryo development, the classically described second cell-fate decision involves the specification and segregation, in blastocyst inner cell mass (ICM), of primitive endoderm (PrE) from pluripotent epiblast (EPI). The active role of fibroblast growth factor (Fgf) signalling during PrE differentiation, particularly in the context of Erk1/2 pathway activation, is well described. However, we report that p38 family mitogen-activated protein kinases (namely p38α/Mapk14 and p38β/Mapk11; referred to as p38-Mapk14/11) also participate in PrE formation. Specifically, functional p38-Mapk14/11 are required, during early-blastocyst maturation, to assist uncommitted ICM cells, expressing both EPI and earlier PrE markers, to fully commit to PrE differentiation. Moreover, functional activation of p38-Mapk14/11 is, as reported for Erk1/2, under the control of Fgf-receptor signalling, plus active Tak1 kinase (involved in non-canonical bone morphogenetic protein (Bmp)-receptor-mediated PrE differentiation). However, we demonstrate that the critical window of p38-Mapk14/11 activation precedes the E3.75 timepoint (defined by the initiation of the classical 'salt and pepper' expression pattern of mutually exclusive EPI and PrE markers), whereas appropriate lineage maturation is still achievable when Erk1/2 activity (via Mek1/2 inhibition) is limited to a period after E3.75. We propose that active p38-Mapk14/11 act as enablers, and Erk1/2 as drivers, of PrE differentiation during ICM lineage specification and segregation. PMID:27605380

  2. ANEUPLOIDY TEST DEVELOPMENT: KINETOCHORE STAINING IN MAMMALIAN SYSTEMS

    EPA Science Inventory

    The purpose of the project was to determine the feasibility of using human-derived antibodies against the chromosomal kinetochore region coupled with immunofluorescence staining as a method for evaluating the induction of aneuploidy in mammalian cells in vitro and in vivo. The te...

  3. Lipid rafts enriched in monosialylGb5Cer carrying the stage-specific embryonic antigen-4 epitope are involved in development of mouse preimplantation embryos at cleavage stage

    PubMed Central

    2011-01-01

    Background Lipid rafts enriched in glycosphingolipids (GSLs), cholesterol and signaling molecules play an essential role not only for signal transduction started by ligand binding, but for intracellular events such as organization of actin, intracellular traffic and cell polarity, but their functions in cleavage division of preimplantation embryos are not well known. Results Here we show that monosialylGb5Cer (MSGb5Cer)-enriched raft domains are involved in development during the cleavage stage of mouse preimplantation embryos. MSGb5Cer preferentially localizes at the interfaces between blastomeres in mouse preimplantation embryos. Live-imaging analysis revealed that MSGb5Cer localizes in cleavage furrows during cytokinesis, and that by accumulating at the interfaces, it thickens them. Depletion of cholesterol from the cell membrane with methyl-beta-cyclodextrin (MbCD) reduced the expression of MSGb5Cer and stopped cleavage. Extensive accumulation of MSGb5Cer at the interfaces by cross-linking with anti-MSGb5Cer Mab (6E2) caused F-actin to aggregate at the interfaces and suppressed the localization of E-cadherin at the interfaces, which resulted in the cessation of cleavage. In addition, suppression of actin polymerization with cytochalasin D (CCD) decreased the accumulation of MSGb5Cer at the interfaces. In E-cadherin-targeted embryos, the MSGb5Cer-enriched raft membrane domains accumulated heterotopically. Conclusions These results indicate that MSGb5Cer-enriched raft membrane domains participate in cytokinesis in a close cooperation with the cortical actin network and the distribution of E-cadherin. PMID:21489308

  4. [Pre-implantation genetic diagnosis: indications, techniques, and results].

    PubMed

    Veiga, A; Boada, M; Barri, P N

    1998-01-01

    The combination of the technique of In Vitro Fertilization (IVF) and molecular genetics has led to the development of Preimplantation Genetic Diagnosis (PGD). Oocyte and embryo biopsy, Fluorescent in situ Hybridization (FISH) and Polymerase Chain Reaction (PCR) allow diagnostic procedures in couples with high risk and also certain IVF couples. We present a review of PGD indications, techniques and results. PMID:9810133

  5. Early embryonic development and preimplantation changes in the uterus of the bat Rhinopoma hardwickei hardwickei (Gray) (Rhinopomatidae).

    PubMed

    Karim, K B; Fazil, M

    1987-04-01

    Rhinopoma hardwickei hardwickei has an annual reproductive cycle. Although many of the females become inseminated from the latter half of February until about the middle of April, ovulation has not been recorded until the 11th of March. A single follicle reached full development and released one ovum from either of the ovaries with nearly equal frequency, and a single conceptus was carried in the ipsilateral uterine cornu during each cycle. The embryo descended into the uterus as an early morula and attained the bilaminar blastocyst stage before undergoing implantation. As the morula advanced in age, the embryonic surface of the zona became progressively more basophilic. Hence in advanced morulae, the inner surface of the zona pellucida took a dark stain with hematoxylin and appeared like a distinct thin membrane, while the rest of the thickness of the zona was eosinophilic. Although progestational changes commenced in both uterine cornua, they became augmented in the uterine cornu on the side of ovulation and blastocyst attachment. After blastocyst attachment, the contralateral cornu reverted to an anestrus condition. The progestational changes became less conspicuous from the cranial to the caudal end of the uterus. Evidently, there was a linear gradient in the progestational response of the uterus with the cranial end being most responsive and the caudal end least responsive. The precise mechanism which brings this about is not known. PMID:3604954

  6. Genes and Conditions Controlling Mammalian Pre- and Post-implantation Embryo Development

    PubMed Central

    Anifandis, G.; Messini, C.I.; Dafopoulos, K.; Messinis, I.E.

    2015-01-01

    Embryo quality during the in vitro developmental period is of great clinical importance. Experimental genetic studies during this period have demonstrated the association between specific gene expression profiles and the production of healthy blastocysts. Although the quality of the oocyte may play a major role in embryo development, it has been well established that the post – fertilization period also has an important and crucial role in the determination of blastocyst quality. A variety of genes (such as OCT, SOX2, NANOG) and their related signaling pathways as well as transcription molecules (such as TGF-β, BMP) have been implicated in the pre- and post-implantation period. Furthermore, DNA methylation has been lately characterized as an epigenetic mark since it is one of the most important processes involved in the maintenance of genome stability. Physiological embryo development appears to depend upon the correct DNA methylation pattern. Due to the fact that soon after fertilization the zygote undergoes several morphogenetic and developmental events including activation of embryonic genome through the transition of the maternal genome, a diverse gene expression pattern may lead to clinically important conditions, such as apoptosis or the production of a chromosomically abnormal embryo. The present review focused on genes and their role during pre-implantation embryo development, giving emphasis on the various parameters that may alter gene expression or DNA methylation patterns. The pre-implantation embryos derived from in vitro culture systems (in vitro fertilization) and the possible effects on gene expression after the prolonged culture conditions are also discussed. PMID:25937812

  7. Effects of simulated weightlessness on mammalian development. Part 1: Development of clinostat for mammalian tissue culture and use in studies on meiotic maturation of mouse oocytes

    NASA Technical Reports Server (NTRS)

    Wolegemuth, D. J.; Grills, G. S.

    1984-01-01

    The effects of weightlessness on three aspects of mammalian reproduction: oocyte development, fertilization, and early embryogenesis was studied. Zero-gravity conditions within the laboratory by construction of a clinostat designed to support in vitro tissue culture were simulated and the effects of simulated weightlessness on meiotic maturation in mammalian oocytes using mouse as the model system were studied. The timing and frequency of germinal vesicule breakdown and polar body extrusion, and the structural and numerical properties of meiotic chromosomes at Metaphase and Metaphase of meiosis are assessed.

  8. Teratological research using in vitro systems. I. Mammalian whole embryo culture.

    PubMed Central

    Flynn, T J

    1987-01-01

    Approximately 390 literature references (through spring 1986) were reviewed for mammalian whole embryo culture procedures, with particular attention to the development of those cultures as systems for teratogenicity testing. The existing procedures could be conveniently divided into three groups, which are defined by the periods of embryogenesis that they embrace: preimplantation, peri-implantation, and post-implantation culture systems. The literature on peri-implantation embryo culture was sparse, and it did not appear that this procedure is being actively developed as a teratogen screening test. The extensive literature on both preimplantation and postimplantation embryo culture suggested considerable use of these two methods in evaluating embryotoxicants. The following discussion was compiled from information gleaned from all references. However, in the interest of brevity, only representative articles are specifically cited. Because the background and methodology for each system are distinct, each system will be discussed separately. PMID:3304996

  9. Site-specific modification of genome with cell-permeable Cre fusion protein in preimplantation mouse embryo

    SciTech Connect

    Kim, Kyoungmi; Kim, Hwain; Lee, Daekee

    2009-10-09

    Site-specific recombination (SSR) by Cre recombinase and its target sequence, loxP, is a valuable tool in genetic analysis of gene function. Recently, several studies reported successful application of Cre fusion protein containing protein transduction peptide for inducing gene modification in various mammalian cells including ES cell as well as in the whole animal. In this study, we show that a short incubation of preimplantation mouse embryos with purified cell-permeable Cre fusion protein results in efficient SSR. X-Gal staining of preimplantation embryos, heterozygous for Gtrosa26{sup tm1Sor}, revealed that treatment of 1-cell or 2-cell embryos with 3 {mu}M of Cre fusion protein for 2 h leads to Cre-mediated excision in 70-85% of embryos. We have examined the effect of the concentration of the Cre fusion protein and the duration of the treatment on embryonic development, established a condition for full term development and survival to adulthood, and demonstrated the germ line transmission of excised Gtrosa26 allele. Potential applications and advantages of the highly efficient technique described here are discussed.

  10. Knockdown of gene expression by antisense morpholino oligos in preimplantation mouse embryos cultured in vitro.

    PubMed

    Sato, Yuki; Sato, Shiori; Kikuchi, Takahiro; Nonaka, Asumi; Kumagai, Yuki; Sasaki, Akira; Kobayashi, Masayuki

    2016-09-15

    Knockdown of gene expression by antisense morpholino oligos (MOs) is a simple and effective method for analyzing the roles of genes in mammalian cells. Here, we demonstrate the efficient delivery of MOs by Endo-Porter (EP), a special transfection reagent for MOs, into preimplantation mouse embryos cultured in vitro. A fluorescein-labeled control MO was applied for monitoring the incorporation of MOs into developing 2-cell embryos in the presence of varying amounts of EP and bovine serum albumin. In optimized conditions, fluorescence was detected in 2-cell embryos within a 3-h incubation period. In order to analyze the validity of the optimized conditions, an antisense Oct4 MO was applied for knockdown of the synthesis of OCT4 protein in developing embryos from the 2-cell stage. In blastocysts, the antisense Oct4 MO induced a decrease in the amount in OCT4 protein to less than half. An almost complete absence of OCT4-positive cells and nearly complete disappearance of the inner cell mass in the outgrowths of blastocysts were also noted. These phenotypes corresponded with those of Oct4-deficient mouse embryos. Overall, we suggest that the delivery of MOs using EP is useful for the knockdown of gene expression in preimplantation mouse embryos cultured in vitro. PMID:27381842

  11. Impairment of Preimplantation Porcine Embryo Development by Histone Demethylase KDM5B Knockdown Through Disturbance of Bivalent H3K4me3-H3K27me3 Modifications1

    PubMed Central

    Huang, Jiaojiao; Zhang, Hongyong; Wang, Xianlong; Dobbs, Kyle B.; Yao, Jing; Qin, Guosong; Whitworth, Kristin; Walters, Eric M.; Prather, Randall S.; Zhao, Jianguo

    2015-01-01

    ABSTRACT KDM5B (JARID1B/PLU1) is a H3K4me2/3 histone demethylase that is implicated in cancer development and proliferation and is also indispensable for embryonic stem cell self-renewal, cell fate, and murine embryonic development. However, little is known about the role of KDM5B during preimplantation embryo development. Here we show that KDM5B is critical to porcine preimplantation development. KDM5B was found to be expressed in a stage-specific manner, consistent with demethylation of H3K4me3, with the highest expression being observed from the 4-cell to the blastocyst stages. Knockdown of KDM5B by morpholino antisense oligonucleotides injection impaired porcine embryo development to the blastocyst stage. The impairment of embryo development might be caused by increased expression of H3K4me3 at the 4-cell and blastocyst stages, which disturbs the balance of bivalent H3K4me3-H3K27me3 modifications at the blastocyst stage. Decreased abundance of H3K27me3 at blastocyst stage activates multiple members of homeobox genes (HOX), which need to be silenced for faithful embryo development. Additionally, the histone demethylase KDM6A was found to be upregulated by knockdown of KDM5B, which indicated it was responsible for the decreased abundance of H3K27me3 at the blastocyst stage. The transcriptional levels of Ten-Eleven Translocation gene family members (TET1, TET2, and TET3) are found to be increased by knockdown of KDM5B, which indicates cross talk between histone modifications and DNA methylation. The studies above indicate that KDM5B is required for porcine embryo development through regulating the balance of bivalent H3K4me3-H3K27me3 modifications. PMID:25609834

  12. Intracellular protein degradation in mammalian cells: recent developments.

    PubMed

    Knecht, Erwin; Aguado, Carmen; Cárcel, Jaime; Esteban, Inmaculada; Esteve, Juan Miguel; Ghislat, Ghita; Moruno, José Félix; Vidal, José Manuel; Sáez, Rosana

    2009-08-01

    In higher organisms, dietary proteins are broken down into amino acids within the digestive tract but outside the cells, which incorporate the resulting amino acids into their metabolism. However, under certain conditions, an organism loses more nitrogen than is assimilated in the diet. This additional loss was found in the past century to come from intracellular proteins and started an intensive research that produced an enormous expansion of the field and a dispersed literature. Therefore, our purpose is to provide an updated summary of the current knowledge on the proteolytic machinery involved in intracellular protein degradation and its physiological and pathological relevance, especially addressed to newcomers in the field who may find further details in more specialized reviews. However, even providing a general overview, this is an extremely wide field and, therefore, we mainly focus on mammalian cells, while other cells will be mentioned only for comparison purposes. PMID:19399586

  13. Characterization of BRD4 during Mammalian Postmeiotic Sperm Development

    PubMed Central

    Bryant, Jessica M.; Donahue, Greg; Wang, Xiaoshi; Meyer-Ficca, Mirella; Luense, Lacey J.; Weller, Angela H.; Bartolomei, Marisa S.; Blobel, Gerd A.; Meyer, Ralph G.; Garcia, Benjamin A.

    2015-01-01

    During spermiogenesis, the postmeiotic phase of mammalian spermatogenesis, transcription is progressively repressed as nuclei of haploid spermatids are compacted through a dramatic chromatin reorganization involving hyperacetylation and replacement of most histones with protamines. Although BRDT functions in transcription and histone removal in spermatids, it is unknown whether other BET family proteins play a role. Immunofluorescence of spermatogenic cells revealed BRD4 in a ring around the nuclei of spermatids containing hyperacetylated histones. The ring lies directly adjacent to the acroplaxome, the cytoskeletal base of the acrosome, previously linked to chromatin reorganization. The BRD4 ring does not form in acrosomal mutant mice. Chromatin immunoprecipitation followed by sequencing in spermatids revealed enrichment of BRD4 and acetylated histones at the promoters of active genes. BRD4 and BRDT show distinct and synergistic binding patterns, with a pronounced enrichment of BRD4 at spermatogenesis-specific genes. Direct association of BRD4 with acetylated H4 decreases in late spermatids as acetylated histones are removed from the condensing nucleus in a wave following the progressing acrosome. These data provide evidence of a prominent transcriptional role for BRD4 and suggest a possible removal mechanism for chromatin components from the genome via the progressing acrosome as transcription is repressed and chromatin is compacted during spermiogenesis. PMID:25691659

  14. Preimplantation factor (PIF) promotes human trophoblast invasion.

    PubMed

    Moindjie, Hadia; Santos, Esther Dos; Loeuillet, Laurence; Gronier, Héloise; de Mazancourt, Philippe; Barnea, Eytan R; Vialard, François; Dieudonne, Marie-Noëlle

    2014-11-01

    Preimplantation factor (PIF) is a peptide secreted by viable mammalian embryos. Moreover, it can be detected in the circulation of pregnant women. Recently, it was shown that PIF promotes invasion in trophoblast cell lines in vitro. Successful human embryo implantation depends on a deep and highly controlled invasion of extravillous trophoblast (EVT) in the maternal endometrium. Trophoblast invasion is regulated in part by matrix metalloproteinase (MMP) activity and integrin expression. The present study demonstrates the presence of PIF in early pregnancy and characterizes its effects on primary human trophoblast invasion. At the fetomaternal interface, intense PIF labeling by immunohistochemistry was present during early gestation in villous trophoblasts and EVTs. A decrease of labeling was observed at term. Furthermore, PIF significantly promoted invasion of human EVT isolated from first-trimester placenta. The proinvasive regulatory effect of PIF in EVT was associated with 1) increased MMP9 activity and 2) reduced tissue inhibitor of metalloproteinase-1 (TIMP1) mRNA expression. PIF also regulated alpha v and alpha 1 integrin mRNA expressions. Last, the proinvasive effect of PIF appeared to be mediated by the mitogen-activated protein kinase (MAPK), phosphoinositide-3-kinase (PI3K), and Janus-kinase signal transducer and activator of transcription (JAK-STAT) signaling pathways. In summary, this work describes the direct, positive effect of PIF on the control of human trophoblastic cell invasion by modulation of MMP/TIMP balance and integrin expression. Moreover, these results suggest that PIF is involved in pathological pregnancies characterized by insufficient or excessive trophoblast invasion. PMID:25232018

  15. [Preimplantation Genetic Diagnosis by Blastocentesis: Problems and Perspectives].

    PubMed

    Zhigalina, D I; Skryabin, N A; Artyukhova, V G; Svetlakov, A V; Lebedev, I N

    2016-01-01

    The discovery of cell-free DNA in blastocoele fluid opens new perspectives for the development of preimplantation genetic diagnosis of human chromosomal and genetic diseases. In this review we analyzed the results of the first studies, which made it possible to evaluate the effectiveness of the application of a new source of biological material and showed a high degree of agreement between the results of molecular karyotyping with cell-free DNA and blastocyst cells. The results suggest the possibility of developing a noninvasive method of preimplantation genetic diagnosis, which may open a new round of progress in the field of assisted reproductive technologies and the genetics of early stages of human ontogenesis. PMID:27183788

  16. Some process control/design considerations in the development of a microgravity mammalian cell bioreactor

    NASA Technical Reports Server (NTRS)

    Goochee, Charles F.

    1987-01-01

    The purpose is to review some of the physical/metabolic factors which must be considered in the development of an operating strategy for a mammalian cell bioreactor. Emphasis is placed on the dissolved oxygen and carbon dioxide requirements of growing mammalian epithelial cells. Literature reviews concerning oxygen and carbon dioxide requirements are discussed. A preliminary, dynamic model which encompasses the current features of the NASA bioreactor is presented. The implications of the literature survey and modeling effort on the design and operation of the NASA bioreactor are discussed.

  17. Embryonic development of circadian clocks in the mammalian suprachiasmatic nuclei

    PubMed Central

    Landgraf, Dominic; Koch, Christiane E.; Oster, Henrik

    2014-01-01

    In most species, self-sustained molecular clocks regulate 24-h rhythms of behavior and physiology. In mammals, a circadian pacemaker residing in the hypothalamic suprachiasmatic nucleus (SCN) receives photic signals from the retina and synchronizes subordinate clocks in non-SCN tissues. The emergence of circadian rhythmicity during development has been extensively studied for many years. In mice, neuronal development in the presumptive SCN region of the embryonic hypothalamus occurs on days 12–15 of gestation. Intra-SCN circuits differentiate during the following days and retinal projections reach the SCN, and thus mediate photic entrainment, only after birth. In contrast the genetic components of the clock gene machinery are expressed much earlier and during midgestation SCN explants and isolated neurons are capable of generating molecular oscillations in culture. In vivo metabolic rhythms in the SCN, however, are observed not earlier than the 19th day of rat gestation, and rhythmic expression of clock genes is hardly detectable until after birth. Together these data indicate that cellular coupling and, thus, tissue-wide synchronization of single-cell rhythms, may only develop very late during embryogenesis. In this mini-review we describe the developmental origin of the SCN structure and summarize our current knowledge about the functional initiation and entrainment of the circadian pacemaker during embryonic development. PMID:25520627

  18. Gene Coexpression and Evolutionary Conservation Analysis of the Human Preimplantation Embryos.

    PubMed

    Liu, Tiancheng; Yu, Lin; Ding, Guohui; Wang, Zhen; Liu, Lei; Li, Hong; Li, Yixue

    2015-01-01

    Evolutionary developmental biology (EVO-DEVO) tries to decode evolutionary constraints on the stages of embryonic development. Two models--the "funnel-like" model and the "hourglass" model--have been proposed by investigators to illustrate the fluctuation of selective pressure on these stages. However, selective indices of stages corresponding to mammalian preimplantation embryonic development (PED) were undetected in previous studies. Based on single cell RNA sequencing of stages during human PED, we used coexpression method to identify gene modules activated in each of these stages. Through measuring the evolutionary indices of gene modules belonging to each stage, we observed change pattern of selective constraints on PED for the first time. The selective pressure decreases from the zygote stage to the 4-cell stage and increases at the 8-cell stage and then decreases again from 8-cell stage to the late blastocyst stages. Previous EVO-DEVO studies concerning the whole embryo development neglected the fluctuation of selective pressure in these earlier stages, and the fluctuation was potentially correlated with events of earlier stages, such as zygote genome activation (ZGA). Such oscillation in an earlier stage would further affect models of the evolutionary constraints on whole embryo development. Therefore, these earlier stages should be measured intensively in future EVO-DEVO studies. PMID:26273607

  19. Constraints on Mammalian forelimb development: insights from developmental disparity.

    PubMed

    Ross, Darcy; Marcot, Jonathan D; Betteridge, Keith J; Nascone-Yoder, Nanette; Bailey, C Scott; Sears, Karen E

    2013-12-01

    Tetrapod limb development has been studied extensively for decades, yet the strength and role of developmental constraints in this process remains unresolved. Mammals exhibit a particularly wide array of limb morphologies associated with various locomotion modes and behaviors, providing a useful system for identifying periods of developmental constraint and conserved developmental mechanisms or morphologies. In this study, landmark-based geometric morphometrics are used to investigate levels and patterns of morphological diversity (disparity) among the developing forelimbs of four mammals with diverse limb morphologies: mice, opossums, horses, and pigs. Results indicate that disparity among the forelimbs of these species slightly decreases or stays the same from the appearance of the limb ridge to the bud stage, and increases dramatically from the paddle through tissue regression stages. Heterochrony exhibited by the precocial opossum limb was not found to drive these patterns of morphological disparity, suggesting that the low disparity of the middle stages of limb development (e.g., paddle stage) is driven by processes operating within the limb and is likely not a result of embryo-wide constraint. PMID:24299415

  20. Insight into PreImplantation Factor (PIF*) Mechanism for Embryo Protection and Development: Target Oxidative Stress and Protein Misfolding (PDI and HSP) through Essential RIPK Binding Site

    PubMed Central

    Barnea, Eytan R.; Lubman, David M.; Liu, Yan-Hui; Absalon-Medina, Victor; Hayrabedyan, Soren; Todorova, Krassimira; Gilbert, Robert O.; Guingab, Joy; Barder, Timothy J.

    2014-01-01

    Background Endogenous PIF, upon which embryo development is dependent, is secreted only by viable mammalian embryos, and absent in non-viable ones. Synthetic PIF (sPIF) administration promotes singly cultured embryos development and protects against their demise caused by embryo-toxic serum. To identify and characterize critical sPIF-embryo protein interactions novel biochemical and bio-analytical methods were specifically devised. Methods FITC-PIF uptake/binding by cultured murine and equine embryos was examined and compared with scrambled FITC-PIF (control). Murine embryo (d10) lysates were fractionated by reversed-phase HPLC, fractions printed onto microarray slides and probed with Biotin-PIF, IDE and Kv1.3 antibodies, using fluorescence detection. sPIF-based affinity column was developed to extract and identify PIF-protein interactions from lysates using peptide mass spectrometry (LC/MS/MS). In silico evaluation examined binding of PIF to critical targets, using mutation analysis. Results PIF directly targets viable cultured embryos as compared with control peptide, which failed to bind. Multistep Biotin-PIF targets were confirmed by single-step PIF-affinity column based isolation. PIF binds protein disulfide isomerases a prolyl-4-hydroxylase β-subunit, (PDI, PDIA4, PDIA6-like) containing the antioxidant thioredoxin domain. PIF also binds protective heat shock proteins (70&90), co-chaperone, BAG-3. Remarkably, PIF targets a common RIPK site in PDI and HSP proteins. Further, single PIF amino acid mutation significantly reduced peptide-protein target bonding. PIF binds promiscuous tubulins, neuron backbones and ACTA-1,2 visceral proteins. Significant anti-IDE, while limited anti-Kv1.3b antibody-binding to Biotin-PIF positive lysates HPLC fractions were documented. Conclusion Collectively, data identifies PIF shared targets on PDI and HSP in the embryo. Such are known to play a critical role in protecting against oxidative stress and protein misfolding. PIF

  1. Development-Inspired Reprogramming of the Mammalian Central Nervous System

    PubMed Central

    Amamoto, Ryoji; Arlotta, Paola

    2014-01-01

    In 2012, John Gurdon and Shinya Yamanaka shared the Nobel Prize for the exciting demonstration that the identity of differentiated cells is not irreversibly determined but can be changed back to a pluripotent state under appropriate instructive signals. The principle that differentiated cells can revert to an embryonic state and even be converted directly from one cell-type into another not only turns fundamental principles of development on their head but also has profound implications for regenerative medicine. Replacement of diseased tissue with newly reprogrammed cells and modeling of human disease are concrete opportunities. Here, we focus on the central nervous system to consider whether and how reprogramming of cell identity may impact regeneration and modeling of a system historically considered immutable and hardwired. PMID:24482482

  2. Preimplantation genetic diagnosis for hemoglobinopathies.

    PubMed

    Kuliev, Anver; Pakhalchuk, Tatiana; Verlinsky, Oleg; Rechitsky, Svetlana

    2011-01-01

    Hemoglobinopathies are the most frequent indications for preimplantation genetic diagnosis (PGD), allowing couples at-risk of bearing offspring with thalassemia and sickle cell disease to reproduce without fear of having an affected child. The present experience includes PGD for sickle cell disease, α- and β-thalassemia (α- and β-thal). We present here the results of the world's largest experience of over 395 PGD cycles for hemoglobin (Hb) disorders, resulting in the birth of 98 healthy, hemoglobinopathy-free children, with seven pregnancies still ongoing. One-third of these cases were performed in combination with HLA typing, allowing the birth of unaffected children who were also HLA identical to the affected siblings with hemoglobinopathies in these families, with successful or pending stem cell transplantation in a dozen of them. The results show that PGD is presently a practical approach for prevention of hemoglobinopathies, gradually also becoming a useful approach to improving access to HLA-compatible stem cell transplantation for this group of diseases. PMID:21910603

  3. HDAC1 and HDAC2 in mouse oocytes and preimplantation embryos: Specificity versus compensation.

    PubMed

    Ma, P; Schultz, R M

    2016-07-01

    Oocyte and preimplantation embryo development entail dynamic changes in chromatin structure and gene expression, which are regulated by a number of maternal and zygotic epigenetic factors. Histone deacetylases (HDACs), which tighten chromatin structure, repress transcription and gene expression by removing acetyl groups from histone or non-histone proteins. HDAC1 and HDAC2 are two highly homologous Class I HDACs and display compensatory or specific roles in different cell types or in response to different stimuli and signaling pathways. We summarize here the current knowledge about the functions of HDAC1 and HDAC2 in regulating histone modifications, transcription, DNA methylation, chromosome segregation, and cell cycle during oocyte and preimplantation embryo development. What emerges from these studies is that although HDAC1 and HDAC2 are highly homologous, HDAC2 is more critical than HDAC1 for oocyte development and reciprocally, HDAC1 is more critical than HDAC2 for preimplantation development. PMID:27082454

  4. PreImplantation factor promotes neuroprotection by targeting microRNA let-7

    PubMed Central

    Mueller, Martin; Zhou, Jichun; Yang, Lihua; Gao, Yuan; Wu, Fuju; Schoeberlein, Andreina; Surbek, Daniel; Barnea, Eytan R.; Paidas, Michael; Huang, Yingqun

    2014-01-01

    Dysfunction and loss of neurons are the major characteristics of CNS disorders that include stroke, multiple sclerosis, and Alzheimer’s disease. Activation of the Toll-like receptor 7 by extracellular microRNA let-7, a highly expressed microRNA in the CNS, induces neuronal cell death. Let-7 released from injured neurons and immune cells acts on neighboring cells, exacerbating CNS damage. Here we show that a synthetic peptide analogous to the mammalian PreImplantation factor (PIF) secreted by developing embryos and which is present in the maternal circulation during pregnancy inhibits the biogenesis of let-7 in both neuronal and immune cells of the mouse. The synthetic peptide, sPIF, destabilizes KH-type splicing regulatory protein (KSRP), a key microRNA-processing protein, in a Toll-like receptor 4 (TLR4)–dependent manner, leading to decreased production of let-7. Furthermore, s.c. administration of sPIF into neonatal rats following hypoxic-ischemic brain injury robustly rescued cortical volume and number of neurons and decreased the detrimental glial response, as is consistent with diminished levels of KSRP and let-7 in sPIF-treated brains. Our results reveal a previously unexpected mechanism of action of PIF and underscore the potential clinical utility of sPIF in treating hypoxic-ischemic brain damage. The newly identified PIF/TLR4/KSRP/let-7 regulatory axis also may operate during embryo implantation and development. PMID:25205808

  5. Antagonist Xist and Tsix co-transcription during mouse oogenesis and maternal Xist expression during pre-implantation development calls into question the nature of the maternal imprint on the X chromosome

    PubMed Central

    Deuve, Jane Lynda; Bonnet-Garnier, Amélie; Beaujean, Nathalie; Avner, Philip; Morey, Céline

    2015-01-01

    During the first divisions of the female mouse embryo, the paternal X-chromosome is coated by Xist non-coding RNA and gradually silenced. This imprinted X-inactivation principally results from the apposition, during oocyte growth, of an imprint on the X-inactivation master control region: the X-inactivation center (Xic). This maternal imprint of yet unknown nature is thought to prevent Xist upregulation from the maternal X (XM) during early female development. In order to provide further insight into the XM imprinting mechanism, we applied single-cell approaches to oocytes and pre-implantation embryos at different stages of development to analyze the expression of candidate genes within the Xic. We show that, unlike the situation pertaining in most other cellular contexts, in early-growing oocytes, Xist and Tsix sense and antisense transcription occur simultaneously from the same chromosome. Additionally, during early development, Xist appears to be transiently transcribed from the XM in some blastomeres of late 2-cell embryos concomitant with the general activation of the genome indicating that XM imprinting does not completely suppress maternal Xist transcription during embryo cleavage stages. These unexpected transcriptional regulations of the Xist locus call for a re-evaluation of the early functioning of the maternal imprint on the X-chromosome and suggest that Xist/Tsix antagonist transcriptional activities may participate in imprinting the maternal locus as described at other loci subject to parental imprinting. PMID:26267271

  6. Human oocytes and preimplantation embryos express mRNA for growth hormone receptor.

    PubMed

    Ménézo, Y J; el Mouatassim, S; Chavrier, M; Servy, E J; Nicolet, B

    2003-11-01

    Human genetic expression of growth hormone receptor (GHR) gene was qualitatively analysed using reverse transcription polymerase chain reaction (RT-PCR) in cumulus cells, immature germinal vesicle (GV) and mature metaphase II (MII) stage oocytes and preimplantation human embryos. The transcripts encoding GHR were detected in cumulus cells and also in naked oocytes, either mature or not. In this case, a nested PCR is needed, as for early embryo preimplantation stages, before genomic activation. The GHR gene is highly expressed from the 4-day morula onwards. This suggests that GHR transcription follows a classical scheme associated with genomic activation. It is probable that, in human, growth hormone plays a role in the final stages of oocyte maturation and early embryogenesis as it does for several other mammalian species. PMID:15085728

  7. Preimplantation genetic diagnosis in Saudi Arabia

    PubMed Central

    Abotalib, Zeinab

    2013-01-01

    Preimplantation genetic diagnosis (PGD) testing is the practice of obtaining a cellular biopsy sample from a developing human oocyte or embryo, acquired via a cycle of in vitro fertilization (IVF); evaluating the genetic composition of this sample; and using this information to determine which embryos will be optimal for subsequent uterine transfer. PGD has become an increasingly useful adjunct to IVF procedures. The ability to provide couples who are known carriers of genetic abnormalities the opportunity to deliver healthy babies has opened a new frontier in reproductive medicine. The purpose of the PGD is enables us to choose which embryos will be implanted into the mother. In the present study 137 families who had undergone IVF at Habib Medical Centre, were enrolled for the PGD analysis. The couple visited the clinic for the sex selection, recurrent fetal loss and with the recurrent IVF failure. 802 embryos were tested by the biopsy method and 512 are found to be normal and 290 were abnormal embryos. In this study only 24% of the embryos were transferred and the remaining was not transferred because of the abnormalities or undesired sex of the embryos. The structural and numerical abnormalities were found to be 16.8%. PMID:23750087

  8. Preimplantation genetic diagnosis in Saudi Arabia.

    PubMed

    Abotalib, Zeinab

    2013-01-01

    Preimplantation genetic diagnosis (PGD) testing is the practice of obtaining a cellular biopsy sample from a developing human oocyte or embryo, acquired via a cycle of in vitro fertilization (IVF); evaluating the genetic composition of this sample; and using this information to determine which embryos will be optimal for subsequent uterine transfer. PGD has become an increasingly useful adjunct to IVF procedures. The ability to provide couples who are known carriers of genetic abnormalities the opportunity to deliver healthy babies has opened a new frontier in reproductive medicine. The purpose of the PGD is enables us to choose which embryos will be implanted into the mother. In the present study 137 families who had undergone IVF at Habib Medical Centre, were enrolled for the PGD analysis. The couple visited the clinic for the sex selection, recurrent fetal loss and with the recurrent IVF failure. 802 embryos were tested by the biopsy method and 512 are found to be normal and 290 were abnormal embryos. In this study only 24% of the embryos were transferred and the remaining was not transferred because of the abnormalities or undesired sex of the embryos. The structural and numerical abnormalities were found to be 16.8%. PMID:23750087

  9. Preimplantation genetic diagnosis--an overview.

    PubMed

    Ogilvie, Caroline Mackie; Braude, Peter R; Scriven, Paul N

    2005-03-01

    Since the early 1990s, preimplantation genetic diagnosis (PGD) has been expanding in scope and applications. Selection of female embryos to avoid X-linked disease was carried out first by polymerase chain reaction, then by fluorescence in situ hybridization (FISH), and an ever-increasing number of tests for monogenic diseases have been developed. Couples with chromosome rearrangements such as Robertsonian and reciprocal translocations form a large referral group for most PGD centers and present a special challenge, due to the large number of genetically unbalanced embryos generated by meiotic segregation. Early protocols used blastomeres biopsied from cleavage-stage embryos; testing of first and second polar bodies is now a routine alternative, and blastocyst biopsy can also be used. More recently, the technology has been harnessed to provide PGD-AS, or aneuploidy screening. FISH probes specific for chromosomes commonly found to be aneuploid in early pregnancy loss are used to test blastomeres for aneuploidy, with the aim of replacing euploid embryos and increasing pregnancy rates in groups of women who have poor IVF success rates. More recent application of PGD to areas such as HLA typing and social sex selection have stoked public controversy and concern, while provoking interesting ethical debates and keeping PGD firmly in the public eye. PMID:15749997

  10. Identification of molecular compartments and genetic circuitry in the developing mammalian kidney

    PubMed Central

    Yu, Jing; Valerius, M. Todd; Duah, Mary; Staser, Karl; Hansard, Jennifer K.; Guo, Jin-jin; McMahon, Jill; Vaughan, Joe; Faria, Diane; Georgas, Kylie; Rumballe, Bree; Ren, Qun; Krautzberger, A. Michaela; Junker, Jan P.; Thiagarajan, Rathi D.; Machanick, Philip; Gray, Paul A.; van Oudenaarden, Alexander; Rowitch, David H.; Stiles, Charles D.; Ma, Qiufu; Grimmond, Sean M.; Bailey, Timothy L.; Little, Melissa H.; McMahon, Andrew P.

    2012-01-01

    Lengthy developmental programs generate cell diversity within an organotypic framework, enabling the later physiological actions of each organ system. Cell identity, cell diversity and cell function are determined by cell type-specific transcriptional programs; consequently, transcriptional regulatory factors are useful markers of emerging cellular complexity, and their expression patterns provide insights into the regulatory mechanisms at play. We performed a comprehensive genome-scale in situ expression screen of 921 transcriptional regulators in the developing mammalian urogenital system. Focusing on the kidney, analysis of regional-specific expression patterns identified novel markers and cell types associated with development and patterning of the urinary system. Furthermore, promoter analysis of synexpressed genes predicts transcriptional control mechanisms that regulate cell differentiation. The annotated informational resource (www.gudmap.org) will facilitate functional analysis of the mammalian kidney and provides useful information for the generation of novel genetic tools to manipulate emerging cell populations. PMID:22510988

  11. [Pre-implant esthetic study].

    PubMed

    Missika, P; Khayat, P

    1990-09-01

    The first dental prostheses used on Branemark implants were aesthetically disappointing both for the dentists and their patients. Therefore the authors will consider the various aesthetic problems encountered when treating loss of teeth with implant systems. The problems related to resorption are numerous: large bone losses are resolved by adapting removable acrylic, carrying out bone transplants immediately fixed by the implants, using filling materials, or complete dentures fixed with attachments supported by the implants. Periodontal surgery often provides a solution to the problem of gum visibility at the level of the maxillary anterior teeth. The problems related to the site where implants emerge can often be avoided by consultation between the surgeon and the prosthodontist and by flexing a surgical guide compiled from a pre-prosthetic analysis of the clinical situation. The aesthetic problems related to the actual implant systems are dependent on three factors: When the prosthesis is directly screwed onto the implant, the axis of the implant determines the axis of the dental prosthesis and can lead to the emergence of the screw on the buccal surface; With angulated cores, orientated screws provide the required solution. The implant material, when metallic leads to an unsightly border at the gingival level. Ceramic implants, or the "ceraming" of titanium, provide a solution to this problem. In case of diastema the use of an implant system gives the best choice in comparison to the more conventional treatments. In conclusion, the authors point out the importance of pre-implant analysis which must give an evaluation of the aesthetic result. The fragility of the aesthetic evaluation should encourage dentists to obtain the "clear and written consent" of their patients, accepting the risks run by treatment of this kind. PMID:2268774

  12. Behavioral biology of mammalian reproduction and development for a space station

    NASA Technical Reports Server (NTRS)

    Alberts, J. R.

    1983-01-01

    Space Station research includes two kinds of adaption to space: somatic (the adjustments made by an organism, within its lifetime, in response to local conditions), and transgenerational adaption (continuous exposure across sequential life cycles of genetic descendents). Transgenerational effects are akin to evolutionary process. Areas of a life Sciences Program in a space station address the questions of the behavioral biology of mammalian reproduction and development, using the Norway rat as the focus of experimentation.

  13. DEVELOPMENT, STANDARDIZATION AND VALIDATION OF THE MAMMALIAN IN VIVO ASSAYS IN THE PROPOSED TIER I SCREENING BATTERY FOR ENDOCRINE DISRUPTORS

    EPA Science Inventory

    This research directly supports the development, standardization and validation of several Tier 1 screening mammalian in vivo assays. Through the development and use of many of these assays for testing specific hypothesis in their respective research programs, these investigato...

  14. MicroRNA expression and its association with DNA repair in preimplantation embryos

    PubMed Central

    TULAY, Pinar; SENGUPTA, Sioban B.

    2016-01-01

    Active DNA repair pathways are crucial for preserving genomic integrity and are likely among the complex mechanisms involved in the normal development of preimplantation embryos. MicroRNAs (miRNA), short non-coding RNAs, are key regulators of gene expression through the post-transcriptional and post-translational modification of mRNA. The association of miRNA expression with infertility or polycystic ovarian syndrome has been widely investigated; however, there are limited data regarding the importance of miRNA regulation in DNA repair during preimplantation embryo development. In this article, we review normal miRNA biogenesis and consequences of aberrant miRNA expression in the regulation of DNA repair in gametes and preimplantation embryos. PMID:26853522

  15. Transcription-independent heritability of induced histone modifications in the mouse preimplantation embryo.

    PubMed

    VerMilyea, Matthew D; O'Neill, Laura P; Turner, Bryan M

    2009-01-01

    Enzyme-catalyzed, post-translational modifications of core histones have been implicated in the complex changes in gene expression that drive early mammalian development. However, until recently the small number of cells available from the preimplantation embryo itself has prevented quantitative analysis of histone modifications at key regulator genes. The possible involvement of histone modifications in the embryo's response to extracellular signals, or as determinants of cell fate or lineage progression, remains unclear. Here we describe the use of a recently-developed chromatin immunoprecipitation technique (CChIP) to assay histone modification levels at key regulator genes (Pou5f1, Nanog, Cdx2, Hoxb1, Hoxb9) as mouse embryos progress from 8-cell to blastocyst in culture. Only by the blastocyst stage, when the embryonic (Inner Cell Mass) and extra-embryonic (Trophoblast) lineages are compared, do we see the expected association between histone modifications previously linked to active and silent chromatin, and transcriptional state. To explore responses to an environmental signal, we exposed embryos to the histone deacetylase inhibitor, anti-epileptic and known teratogen valproic acid (VPA), during progression from 8-cell to morula stage. Such treatment increased H4 acetylation and H3 lysine 4 methylation at the promoters of Hoxb1 and Hoxb9, but not the promoters of Pou5f1, Nanog,Cdx2 or the housekeeping gene Gapdh. Despite the absence of detectable Hoxb transcription, these VPA-induced changes were heritable, following removal of the inhibitor, at least until the blastocyst stage. The selective hyperacetylation of Hoxb promoters in response to a histone deacetylase inhibitor, suggests that Hox genes have a higher turnover of histone acetates than other genes in the preimplantation embryo. To explain the heritability, through mitosis, of VPA-induced changes in histone modification at Hoxb promoters, we describe how an epigenetic feed-forward loop, based on cross

  16. Exposure of preimplantation embryos to low-dose bisphenol A impairs testes development and suppresses histone acetylation of StAR promoter to reduce production of testosterone in mice.

    PubMed

    Hong, Juan; Chen, Fang; Wang, Xiaoli; Bai, Yinyang; Zhou, Rong; Li, Yingchun; Chen, Ling

    2016-05-15

    Previous studies have shown that bisphenol A (BPA) is a potential endocrine disruptor and testicular toxicant. The present study focused on exploring the impact of exposure to low dose of BPA on male reproductive development during the early embryo stage and the underlying mechanisms. BPA (20 μg/kg/day) was orally administered to female mice on days 1-5 of gestation. The male offspring were euthanized at PND10, 20, 24, 35 or PND50. We found that the mice exposed to BPA before implantation (BPA-mice) displayed retardation of testicular development with reduction of testosterone level. The diameter and epithelium height of seminiferous tubules were reduced in BPA-mice at PND35. The numbers of spermatogenic cells at different stages were significantly reduced in BPA-mice at PND50. BPA-mice showed a persistent reduction in serum and testicular testosterone levels starting from PND24, whereas GnRH mRNA was significantly increased at PND35 and PND50. The expressions of testicular StAR and P450scc in BPA-mice also decreased relative to those of the controls at PND35 and PND50. Further analysis found that the levels of histone H3 and H3K14 acetylation (Ac-H3 and H3K14ac) in the promoter of StAR were decreased relative to those of control mice, whereas the level of Ac-H3 in the promoter of P450scc was not significantly different between the groups. These results provide evidence that exposure to BPA in preimplantation embryo retards the development of testes by reducing histone acetylation of the StAR promoter to disrupt the testicular testosterone synthesis. PMID:26975478

  17. Creb1 regulates late stage mammalian lung development via respiratory epithelial and mesenchymal-independent mechanisms.

    PubMed

    Antony, N; McDougall, A R; Mantamadiotis, T; Cole, T J; Bird, A D

    2016-01-01

    During mammalian lung development, the morphological transition from respiratory tree branching morphogenesis to a predominantly saccular architecture, capable of air-breathing at birth, is dependent on physical forces as well as molecular signaling by a range of transcription factors including the cAMP response element binding protein 1 (Creb1). Creb1(-/-) mutant mice exhibit complete neonatal lethality consistent with a lack of lung maturation beyond the branching phase. To further define its role in the developing mouse lung, we deleted Creb1 separately in the respiratory epithelium and mesenchyme. Surprisingly, we found no evidence of a morphological lung defect nor compromised neonatal survival in either conditional Creb1 mutant. Interestingly however, loss of mesenchymal Creb1 on a genetic background lacking the related Crem protein showed normal lung development but poor neonatal survival. To investigate the underlying requirement for Creb1 for normal lung development, Creb1(-/-) mice were re-examined for defects in both respiratory muscles and glucocorticoid hormone signaling, which are also required for late stage lung maturation. However, these systems appeared normal in Creb1(-/-) mice. Together our results suggest that the requirement of Creb1 for normal mammalian lung morphogenesis is not dependent upon its expression in lung epithelium or mesenchyme, nor its role in musculoskeletal development. PMID:27150575

  18. Creb1 regulates late stage mammalian lung development via respiratory epithelial and mesenchymal-independent mechanisms

    PubMed Central

    Antony, N.; McDougall, A. R.; Mantamadiotis, T.; Cole, T. J.; Bird, A. D.

    2016-01-01

    During mammalian lung development, the morphological transition from respiratory tree branching morphogenesis to a predominantly saccular architecture, capable of air-breathing at birth, is dependent on physical forces as well as molecular signaling by a range of transcription factors including the cAMP response element binding protein 1 (Creb1). Creb1−/− mutant mice exhibit complete neonatal lethality consistent with a lack of lung maturation beyond the branching phase. To further define its role in the developing mouse lung, we deleted Creb1 separately in the respiratory epithelium and mesenchyme. Surprisingly, we found no evidence of a morphological lung defect nor compromised neonatal survival in either conditional Creb1 mutant. Interestingly however, loss of mesenchymal Creb1 on a genetic background lacking the related Crem protein showed normal lung development but poor neonatal survival. To investigate the underlying requirement for Creb1 for normal lung development, Creb1−/− mice were re-examined for defects in both respiratory muscles and glucocorticoid hormone signaling, which are also required for late stage lung maturation. However, these systems appeared normal in Creb1−/− mice. Together our results suggest that the requirement of Creb1 for normal mammalian lung morphogenesis is not dependent upon its expression in lung epithelium or mesenchyme, nor its role in musculoskeletal development. PMID:27150575

  19. Histone H3.3 maintains genome integrity during mammalian development

    PubMed Central

    Jang, Chuan-Wei; Shibata, Yoichiro; Starmer, Joshua; Yee, Della; Magnuson, Terry

    2015-01-01

    Histone H3.3 is a highly conserved histone H3 replacement variant in metazoans and has been implicated in many important biological processes, including cell differentiation and reprogramming. Germline and somatic mutations in H3.3 genomic incorporation pathway components or in H3.3 encoding genes have been associated with human congenital diseases and cancers, respectively. However, the role of H3.3 in mammalian development remains unclear. To address this question, we generated H3.3-null mouse models through classical genetic approaches. We found that H3.3 plays an essential role in mouse development. Complete depletion of H3.3 leads to developmental retardation and early embryonic lethality. At the cellular level, H3.3 loss triggers cell cycle suppression and cell death. Surprisingly, H3.3 depletion does not dramatically disrupt gene regulation in the developing embryo. Instead, H3.3 depletion causes dysfunction of heterochromatin structures at telomeres, centromeres, and pericentromeric regions of chromosomes, leading to mitotic defects. The resulting karyotypical abnormalities and DNA damage lead to p53 pathway activation. In summary, our results reveal that an important function of H3.3 is to support chromosomal heterochromatic structures, thus maintaining genome integrity during mammalian development. PMID:26159997

  20. Preimplantation death of xenomitochondrial mouse embryo harbouring bovine mitochondria

    PubMed Central

    Kawahara, Manabu; Koyama, Shiori; Iimura, Satomi; Yamazaki, Wataru; Tanaka, Aiko; Kohri, Nanami; Sasaki, Keisuke; Takahashi, Masashi

    2015-01-01

    Mitochondria, cellular organelles playing essential roles in eukaryotic cell metabolism, are thought to have evolved from bacteria. The organization of mtDNA is remarkably uniform across species, reflecting its vital and conserved role in oxidative phosphorylation (OXPHOS). Our objectives were to evaluate the compatibility of xenogeneic mitochondria in the development of preimplantation embryos in mammals. Mouse embryos harbouring bovine mitochondria (mtB-M embryos) were prepared by the cell-fusion technique employing the haemagglutinating virus of Japan (HVJ). The mtB-M embryos showed developmental delay at embryonic days (E) 3.5 after insemination. Furthermore, none of the mtB-M embryos could implant into the maternal uterus after embryo transfer, whereas control mouse embryos into which mitochondria from another mouse had been transferred developed as well as did non-manipulated embryos. When we performed quantitative PCR (qPCR) of mouse and bovine ND5, we found that the mtB-M embryos contained 8.3% of bovine mitochondria at the blastocyst stage. Thus, contamination with mitochondria from another species induces embryonic lethality prior to implantation into the maternal uterus. The heteroplasmic state of these xenogeneic mitochondria could have detrimental effects on preimplantation development, leading to preservation of species-specific mitochondrial integrity in mammals. PMID:26416548

  1. Advances in Mammalian Cell Line Development Technologies for Recombinant Protein Production

    PubMed Central

    Lai, Tingfeng; Yang, Yuansheng; Ng, Say Kong

    2013-01-01

    From 2006 to 2011, an average of 15 novel recombinant protein therapeutics have been approved by US Food and Drug Administration (FDA) annually. In addition, the expiration of blockbuster biologics has also spurred the emergence of biosimilars. The increasing numbers of innovator biologic products and biosimilars have thus fuelled the demand of production cell lines with high productivity. Currently, mammalian cell line development technologies used by most biopharmaceutical companies are based on either the methotrexate (MTX) amplification technology or the glutamine synthetase (GS) system. With both systems, the cell clones obtained are highly heterogeneous, as a result of random genome integration by the gene of interest and the gene amplification process. Consequently, large numbers of cell clones have to be screened to identify rare stable high producer cell clones. As such, the cell line development process typically requires 6 to 12 months and is a time, capital and labour intensive process. This article reviews established advances in protein expression and clone screening which are the core technologies in mammalian cell line development. Advancements in these component technologies are vital to improve the speed and efficiency of generating robust and highly productive cell line for large scale production of protein therapeutics. PMID:24276168

  2. The evolution of basal progenitors in the developing non-mammalian brain.

    PubMed

    Nomura, Tadashi; Ohtaka-Maruyama, Chiaki; Yamashita, Wataru; Wakamatsu, Yoshio; Murakami, Yasunori; Calegari, Federico; Suzuki, Kunihiro; Gotoh, Hitoshi; Ono, Katsuhiko

    2016-01-01

    The amplification of distinct neural stem/progenitor cell subtypes during embryogenesis is essential for the intricate brain structures present in various vertebrate species. For example, in both mammals and birds, proliferative neuronal progenitors transiently appear on the basal side of the ventricular zone of the telencephalon (basal progenitors), where they contribute to the enlargement of the neocortex and its homologous structures. In placental mammals, this proliferative cell population can be subdivided into several groups that include Tbr2(+) intermediate progenitors and basal radial glial cells (bRGs). Here, we report that basal progenitors in the developing avian pallium show unique morphological and molecular characteristics that resemble the characteristics of bRGs, a progenitor population that is abundant in gyrencephalic mammalian neocortex. Manipulation of LGN (Leu-Gly-Asn repeat-enriched protein) and Cdk4/cyclin D1, both essential regulators of neural progenitor dynamics, revealed that basal progenitors and Tbr2(+) cells are distinct cell lineages in the developing avian telencephalon. Furthermore, we identified a small population of subapical mitotic cells in the developing brains of a wide variety of amniotes and amphibians. Our results suggest that unique progenitor subtypes are amplified in mammalian and avian lineages by modifying common mechanisms of neural stem/progenitor regulation during amniote brain evolution. PMID:26732839

  3. The evolution of basal progenitors in the developing non-mammalian brain

    PubMed Central

    Nomura, Tadashi; Ohtaka-Maruyama, Chiaki; Yamashita, Wataru; Wakamatsu, Yoshio; Murakami, Yasunori; Calegari, Federico; Suzuki, Kunihiro; Gotoh, Hitoshi; Ono, Katsuhiko

    2016-01-01

    The amplification of distinct neural stem/progenitor cell subtypes during embryogenesis is essential for the intricate brain structures present in various vertebrate species. For example, in both mammals and birds, proliferative neuronal progenitors transiently appear on the basal side of the ventricular zone of the telencephalon (basal progenitors), where they contribute to the enlargement of the neocortex and its homologous structures. In placental mammals, this proliferative cell population can be subdivided into several groups that include Tbr2+ intermediate progenitors and basal radial glial cells (bRGs). Here, we report that basal progenitors in the developing avian pallium show unique morphological and molecular characteristics that resemble the characteristics of bRGs, a progenitor population that is abundant in gyrencephalic mammalian neocortex. Manipulation of LGN (Leu-Gly-Asn repeat-enriched protein) and Cdk4/cyclin D1, both essential regulators of neural progenitor dynamics, revealed that basal progenitors and Tbr2+ cells are distinct cell lineages in the developing avian telencephalon. Furthermore, we identified a small population of subapical mitotic cells in the developing brains of a wide variety of amniotes and amphibians. Our results suggest that unique progenitor subtypes are amplified in mammalian and avian lineages by modifying common mechanisms of neural stem/progenitor regulation during amniote brain evolution. PMID:26732839

  4. Practices and ethical concerns regarding preimplantation diagnosis. Who regulates preimplantation genetic diagnosis in Brazil?

    PubMed Central

    Damian, B.B.; Bonetti, T.C.S.; Horovitz, D.D.G.

    2014-01-01

    Preimplantation genetic diagnosis (PGD) was originally developed to diagnose embryo-related genetic abnormalities for couples who present a high risk of a specific inherited disorder. Because this technology involves embryo selection, the medical, bioethical, and legal implications of the technique have been debated, particularly when it is used to select features that are not related to serious diseases. Although several initiatives have attempted to achieve regulatory harmonization, the diversity of healthcare services available and the presence of cultural differences have hampered attempts to achieve this goal. Thus, in different countries, the provision of PGD and regulatory frameworks reflect the perceptions of scientific groups, legislators, and society regarding this technology. In Brazil, several texts have been analyzed by the National Congress to regulate the use of assisted reproduction technologies. Legislative debates, however, are not conclusive, and limited information has been published on how PGD is specifically regulated. The country requires the development of new regulatory standards to ensure adequate access to this technology and to guarantee its safe practice. This study examined official documents published on PGD regulation in Brazil and demonstrated how little direct oversight of PGD currently exists. It provides relevant information to encourage reflection on a particular regulation model in a Brazilian context, and should serve as part of the basis to enable further reform of the clinical practice of PGD in the country. PMID:25493379

  5. Development of an Improved Mammalian Overexpression Method for Human CD62L

    PubMed Central

    Brown, Haley A.; Roth, Gwynne; Holzapfel, Genevieve; Shen, Sarek; Rahbari, Kate; Ireland, Joanna; Zou, Zhongcheng; Sun, Peter D.

    2014-01-01

    We have previously developed a glutamine synthetase (GS)-based mammalian recombinant protein expression system that is capable of producing 5 to 30 mg/L recombinant proteins. The over expression is based on multiple rounds of target gene amplification driven by methionine sulfoximine (MSX), an inhibitor of glutamine synthetase. However, like other stable mammalian over expression systems, a major shortcoming of the GS-based expression system is its lengthy turn-around time, typically taking 4–6 months to produce. To shorten the construction time, we replaced the muti-round target gene amplifications with single-round in situ amplifications, thereby shortening the cell line construction to 2 months. The single-round in situ amplification method resulted in highest recombinant CD62L expressing CHO cell lines producing ~5mg/L soluble CD62L, similar to those derived from the multi-round amplification and selection method. In addition, we developed a MSX resistance assay as an alternative to utilizing ELISA for evaluating the expression level of stable recombinant CHO cell lines. PMID:25286402

  6. Development of an improved mammalian overexpression method for human CD62L.

    PubMed

    Brown, Haley A; Roth, Gwynne; Holzapfel, Genevieve; Shen, Sarek; Rahbari, Kate; Ireland, Joanna; Zou, Zhongcheng; Sun, Peter D

    2015-01-01

    We have previously developed a glutamine synthetase (GS)-based mammalian recombinant protein expression system that is capable of producing 5-30mg/L recombinant proteins. The over expression is based on multiple rounds of target gene amplification driven by methionine sulfoximine (MSX), an inhibitor of glutamine synthetase. However, like other stable mammalian over expression systems, a major shortcoming of the GS-based expression system is its lengthy turn-around time, typically taking 4-6months to produce. To shorten the construction time, we replaced the multi-round target gene amplifications with single-round in situ amplifications, thereby shortening the cell line construction to 2months. The single-round in situ amplification method resulted in highest recombinant CD62L expressing CHO cell lines producing ∼5mg/L soluble CD62L, similar to those derived from the multi-round amplification and selection method. In addition, we developed a MSX resistance assay as an alternative to utilizing ELISA for evaluating the expression level of stable recombinant CHO cell lines. PMID:25286402

  7. The role of BAF (mSWI/SNF) complexes in mammalian neural development

    PubMed Central

    Son, Esther Y.; Crabtree, Gerald R.

    2015-01-01

    The BAF (mammalian SWI/SNF) complexes are a family of multi-subunit ATP-dependent chromatin remodelers that use ATP hydrolysis to alter chromatin structure. Distinct BAF complex compositions are possible through combinatorial assembly of homologous subunit families and can serve non-redundant functions. In mammalian neural development, developmental stage-specific BAF assemblies are found in ES cells, neural progenitors and postmitotic neurons. In particular, the neural progenitor-specific BAF complexes are essential for controlling the kinetics and mode of neural progenitor cell division, while neuronal BAF function is necessary for the maturation of postmitotic neuronal phenotypes as well as long-term memory formation. The microRNA-mediated mechanism for transitioning from npBAF to nBAF complexes is instructive for the neuronal fate and can even convert fibroblasts into neurons. The high frequency of BAF subunit mutations in neurological disorders underscores the rate-determining role of BAF complexes in neural development, homeostasis and plasticity. PMID:25195934

  8. Cellular and molecular events on the development of mammalian thyroid C cells.

    PubMed

    Kameda, Yoko

    2016-03-01

    Thyroid C cells synthesize and secrete calcitonin, a serum calcium-lowering hormone. This review provides our current understanding of mammalian thyroid C cells from the molecular and morphological perspectives. Several transcription factors and signaling molecules involved in the development of C cells have been identified, and genes expressed in the pharyngeal pouch endoderm, neural crest-derived mesenchyme in the pharyngeal arches, and ultimobranchial body play critical roles for the development of C cells. It has been generally accepted, without much-supporting evidence, that mammalian C cells, as well as the avian cells, are derived from the neural crest. However, by fate mapping of neural crest cells in both Wnt1-Cre/R26R and Connexin(Cxn)43-lacZ transgenic mice, we showed that neural crest cells colonize neither the fourth pharyngeal pouch nor the ultimobranchial body. E-cadherin, an epithelial cell marker, is expressed in thyroid C cells and their precursors, the fourth pharyngeal pouch and ultimobranchial body. Furthermore, E-cadherin is colocalized with calcitonin in C cells. Recently, lineage tracing in Sox17-2A-iCre/R26R mice has clarified that the pharyngeal endoderm-derived cells give rise to C cells. Together, these findings indicate that mouse thyroid C cells are endodermal in origin. Developmental Dynamics 245:323-341, 2016. © 2015 Wiley Periodicals, Inc. PMID:26661795

  9. Heat Shock Memory in Preimplantation Mouse Embryos

    PubMed Central

    Jia, Yanwei; Hartshorn, Cristina; Hartung, Odelya; Wangh, Lawrence J.

    2010-01-01

    To investigate the consequences of possible physiological stress to embryos caused by the in vitro fertilization procedures, we used as a model heat shock response in preimplantation mouse embryos. A heat shock “memory” was discovered that renders cleavage-stage embryos more responsive at the transcriptional level to secondary perturbation with very low doses of heat, even several cell cycles after the initial stress has occurred. PMID:20378108

  10. An Important Role of Pumilio 1 in Regulating the Development of the Mammalian Female Germline.

    PubMed

    Mak, Winifred; Fang, Caodi; Holden, Tobias; Dratver, Milana Bockhur; Lin, Haifan

    2016-06-01

    Pumilio/FBF (PUF) proteins are a highly conserved family of translational regulators. The Drosophila PUF protein, Pumilio, is crucial for germline establishment and fertility. In mammals, primordial folliculogenesis is a key process that establishes the initial cohort of female mammalian germ cells prior to birth, and this primordial follicle pool is a prerequisite for female reproductive competence. We sought to understand whether PUF proteins have a conserved role in mammals during primordial folliculogenesis and female reproductive competency. In mammals, two homologs of Pumilio exist: Pumilio 1 (Pum1) and Pum2. Here, we report that PUMILIO (PUM) 1 plays an important role in the establishment of the primordial follicle pool, meiosis, and female reproductive competency, whereas PUM2 does not have a detectable function in these processes. Furthermore, we show that PUM1 facilitates the transition of the late meiotic prophase I oocyte from pachytene to diplotene stage by regulating SYCP1 protein. Our study reveals an important role of translational regulation in mammalian female germ cell development. PMID:27170441

  11. Development and evolution of the mammalian limb: adaptive diversification of nails, hooves, and claws.

    PubMed

    Hamrick, M W

    2001-01-01

    Paleontological evidence indicates that the evolutionary diversification of mammals early in the Cenozoic era was characterized by an adaptive radiation of distal limb structures. Likewise, neontological data show that morphological variation in distal limb integumentary appendages (e.g., nails, hooves, and claws) can be observed not only among distantly related mammalian taxa but also among closely related species within the same clade. Comparative analysis of nail, claw, and hoof morphogenesis reveals relatively subtle differences in mesenchymal and epithelial patterning underlying these adult differences in distal limb appendage morphology. Furthermore, studies of regulatory gene expression during vertebrate claw development demonstrate that many of the signaling molecules involved in patterning ectodermal derivatives such as teeth, hair, and feathers are also involved in organizing mammalian distal limb appendages. For example, Bmp4 signaling plays an important role during the recruitment of mesenchymal cells into the condensations forming the terminal phalanges, whereas Msx2 affects the length of nails and claws by suppressing proliferation of germinal epidermal cells. Evolutionary changes in the form of distal integumentary appendages may therefore result from changes in gene expression during formation of mesenchymal condensations (Bmp4, posterior Hox genes), induction of the claw fold and germinal matrix (shh), and/or proliferation of epidermal cells in the claw matrix (Msx1, Msx2). The prevalence of convergences and parallelisms in nail and claw structure among mammals underscores the existence of multiple morphogenetic pathways for evolutionary change in distal limb appendages. PMID:11710767

  12. Placental, Matrilineal, and Epigenetic Mechanisms Promoting Environmentally Adaptive Development of the Mammalian Brain

    PubMed Central

    Broad, Kevin D.; Rocha-Ferreira, Eridan; Hristova, Mariya

    2016-01-01

    The evolution of intrauterine development, vivipary, and placentation in eutherian mammals has introduced new possibilities and constraints in the regulation of neural plasticity and development which promote neural function that is adaptive to the environment that a developing brain is likely to encounter in the future. A range of evolutionary adaptations associated with placentation transfers disproportionate control of this process to the matriline, a period unique in mammalian development in that there are three matrilineal genomes interacting in the same organism at the same time (maternal, foetal, and postmeiotic oocytes). The interactions between the maternal and developing foetal hypothalamus and placenta can provide a template by which a mother can transmit potentially adaptive information concerning potential future environmental conditions to the developing brain. In conjunction with genomic imprinting, it also provides a template to integrate epigenetic information from both maternal and paternal lineages. Placentation also hands ultimate control of genomic imprinting and intergenerational epigenetic information transfer to the matriline as epigenetic markers undergo erasure and reprogramming in the developing oocyte. These developments, in conjunction with an expanded neocortex, provide a unique evolutionary template by which matrilineal transfer of maternal care, resources, and culture can be used to promote brain development and infant survival. PMID:27069693

  13. From Meiosis to Mitosis: The Astonishing Flexibility of Cell Division Mechanisms in Early Mammalian Development.

    PubMed

    Bury, L; Coelho, P A; Glover, D M

    2016-01-01

    The execution of female meiosis and the establishment of the zygote is arguably the most critical stage of mammalian development. The egg can be arrested in the prophase of meiosis I for decades, and when it is activated, the spindle is assembled de novo. This spindle must function with the highest of fidelity and yet its assembly is unusually achieved in the absence of conventional centrosomes and with minimal influence of chromatin. Moreover, its dramatic asymmetric positioning is achieved through remarkable properties of the actin cytoskeleton to ensure elimination of the polar bodies. The second meiotic arrest marks a uniquely prolonged metaphase eventually interrupted by egg activation at fertilization to complete meiosis and mark a period of preparation of the male and female pronuclear genomes not only for their entry into the mitotic cleavage divisions but also for the imminent prospect of their zygotic expression. PMID:27475851

  14. Foetal and placental growth in the mouse after pre-implantation development in vitro under oxygen concentrations of 5 and 20%.

    PubMed

    Harlow, G M; Quinn, P

    1979-06-01

    Blastocysts which developed from two-cell mouse embryos in culture tubes containing an atmosphere with 20% oxygen had approximately 20% fewer blastomeres than blastocysts which developed under an oxygen concentration of 5%. When these smaller blastocysts were transferred to the uteri of pseudopregnant foster mothers, the foetuses developing were as viable as those developing from blastocysts cultured under 5% oxygen, indicating their ability to regulate for a lower blastomere number by at least day 17 of development. The transfer operation itself had no adverse effect on foetal or placental growth. However, culture of blastocysts in vitro did depress foetal though not placental growth, suggesting that the inner cell mass is more susceptible than the trophectoderm to culture in vitro. Foetal but not placental growth was lower following the transfer of blastocysts to a day-3 rather than a day-4 uterus. Four cases of placental fusion were found. In one case, the foetuses were contained within the same embryonic sac and may have been twins. PMID:508209

  15. Improved preimplantation development of bovine ICSI embryos generated with spermatozoa pretreated with membrane-destabilizing agents lysolecithin and Triton X-100.

    PubMed

    Zambrano, Fabiola; Aguila, Luis; Arias, María E; Sánchez, Raúl; Felmer, Ricardo

    2016-10-01

    In cattle, intracytoplasmic sperm injection (ICSI) has a low efficiency. The acrosome content may be responsible for this effect because of the large amount of hydrolytic enzymes that are released within the oocyte. With the aim of removing the acrosome and destabilize the membranes, cryopreserved bovine spermatozoa were treated with lysolecithin (LL) and Triton X-100 (TX) at different concentrations. We evaluated the membrane integrity, the acrosome integrity, DNA integrity, and the variation of phospholipase C zeta. The rates of development (cleavage and blastocysts) were also evaluated along with pronuclear formation and the embryo quality. Spermatozoa incubated with LL and TX (0.01%, 0.02%, 0.03%, and 0.04%) decreased (P < 0.0001) sperm viability in a dose-dependent manner. The acrosome reaction was also increased (P < 0.0001) in all tested concentrations of LL and TX achieving 100% at 0.05% concentration in both treatments. Terminal deoxynucleotidyl transferase dUTP nick-end labeling assay reported an increase (P < 0.05) in DNA fragmentation only with the highest concentration of LL (0.06%), whereas all concentrations assessed of TX reported an increased respect to the control. Phospholipase C zeta expression decreased (P < 0.05) in spermatozoa treated with LL and TX at all concentrations tested. A higher cleavage rate was observed in ICSI-TX (66%) and ICSI-LL (65%) groups compared with the untreated control group (51%) and the blastocyst formation rate significantly increased in the ICSI-LL group (29%) compared with the control (21%). No differences were observed in the pronuclear formation and quality of the embryos. In conclusion, the destabilization of the plasma membrane and the release of the acrosomal content with LL and TX before ICSI improve the rate of embryonic development, without affecting the quality of the embryos produced by this technique. PMID:27325573

  16. Cilostamide and forskolin treatment during pre-IVM improves preimplantation development of cloned embryos by influencing meiotic progression and gap junction communication in pigs.

    PubMed

    Park, Bola; Lee, Hanna; Lee, Yongjin; Elahi, Fazle; Lee, Joohyeong; Lee, Seung Tae; Park, Choon-Keun; Hyun, Sang-Hwan; Lee, Eunsong

    2016-08-01

    This study was conducted to evaluate the effects of treatment with the cAMP modulators cilostamide and/or forskolin during pre-IVM culture on meiotic progression, gap junction communication, intraoocyte cAMP level and glutathione content, embryonic development after parthenogenesis, and somatic cell nuclear transfer in pigs. Cumulus-oocyte complexes were cultured for 24 hours in unsupplemented medium or media containing 20 μM cilostamide and/or 50 μM forskolin. After pre-IVM, oocytes were cultured for 41 to 44 hours in a standard IVM medium to induce oocyte maturation. When the nuclear status of oocytes was examined after pre-IVM for 24 hours, a higher (P < 0.01) proportion of oocytes treated with forskolin (85.5%) and cilostamide + forskolin (92.6%) remained at the germinal vesicle stage compared with untreated (20.6%) and cilostamide-treated oocytes (54.7%). cAMP level in pre-IVM oocytes was significantly increased by combined treatment with cilostamide + forskolin (21.38 fmol/oocyte) relative to the no pre-IVM control, no treatment, cilostamide, and forskolin groups (2.85, 1.88, 1.74, and 8.95 fmol/oocyte, respectively). Forskolin with or without cilostamide significantly maintained open-gap junction communication relative to no treatment. Blastocyst formation in parthenogenesis was significantly (P < 0.01) improved by forskolin (65.3%) relative to other treatments (28.3% to 48.1%). Supplementation of pre-IVM with dibutyryl cAMP showed similar blastocyst formation as forskolin treatment (61.1% and 61.0%, respectively). In somatic cell nuclear transfer, simultaneous treatment with cilostamide + forskolin significantly (P < 0.05) increased embryonic development to the blastocyst stage (42.9%) relative to the no pre-IVM, control, and cilostamide groups (32.3, 28.6, and 32.8%, respectively). The glutathione contents in pre-IVM oocytes were increased by no treatment, forskolin, and cilostamide + forskolin (1.38, 1.39, and 1.27 pixels

  17. New Advances of Preimplantation and Prenatal Genetic Screening and Noninvasive Testing as a Potential Predictor of Health Status of Babies

    PubMed Central

    2014-01-01

    The current morphologically based selection of human embryos for transfer cannot detect chromosome aneuploidies. So far, only biopsy techniques have been able to screen for chromosomal aneuploidies in the in vitro fertilization (IVF) embryos. Preimplantation genetic diagnosis (PGD) or screening (PGS) involves the biopsy of oocyte polar bodies or embryonic cells and has become a routine clinical procedure in many IVF clinics worldwide, including recent development of comprehensive chromosome screening of all 23 pairs of chromosomes by microarrays for aneuploidy screening. The routine preimplantation and prenatal genetic diagnosis (PND) require testing in an aggressive manner. These procedures may be invasive to the growing embryo and fetus and potentially could compromise the clinical outcome. Therefore the aim of this review is to summarize not only the new knowledge on preimplantation and prenatal genetic diagnosis in humans, but also on the development of potential noninvasive embryo and fetal testing that might play an important role in the future. PMID:24783200

  18. Preimplantation genetic testing in the 21st century: uncharted territory.

    PubMed

    Brezina, Paul R

    2013-02-10

    The past hundred years have given birth to arguably the most profound changes in society, medicine, and technology the world has ever witnessed. Genetics is one such field that has enjoyed a meteoric rise during this time. Progressing from Mendelian genetics to the discovery of DNA to the ability to sequence the human genome, perhaps no other discipline holds more promise to affect future change than genetics. Technology currently exists to evaluate some of the genetic information held by developing embryos in the context of an in vitro fertilization (IVF) cycle. This information is then used to determine which embryos are selected for uterine transfer. Many societies have enacted legislation to protect against possible abuses utilizing this technology. However, it is incumbent upon society to continue ensuring that preimplantation genetic diagnosis (PGD)-and genetic testing in general-is applied in a way that utilizes its potential in a responsible manner to improve health care. PMID:24453515

  19. Preimplantation Genetic Testing in the 21st Century: Uncharted Territory

    PubMed Central

    Brezina, Paul R.

    2013-01-01

    The past hundred years have given birth to arguably the most profound changes in society, medicine, and technology the world has ever witnessed. Genetics is one such field that has enjoyed a meteoric rise during this time. Progressing from Mendelian genetics to the discovery of DNA to the ability to sequence the human genome, perhaps no other discipline holds more promise to affect future change than genetics. Technology currently exists to evaluate some of the genetic information held by developing embryos in the context of an in vitro fertilization (IVF) cycle. This information is then used to determine which embryos are selected for uterine transfer. Many societies have enacted legislation to protect against possible abuses utilizing this technology. However, it is incumbent upon society to continue ensuring that preimplantation genetic diagnosis (PGD)—and genetic testing in general—is applied in a way that utilizes its potential in a responsible manner to improve health care. PMID:24453515

  20. Recent advances in preimplantation genetic diagnosis and screening.

    PubMed

    Lu, Lina; Lv, Bo; Huang, Kevin; Xue, Zhigang; Zhu, Xianmin; Fan, Guoping

    2016-09-01

    Preimplantation genetic diagnosis/screening (PGD/PGS) aims to help couples lower the risks of transmitting genetic defects to their offspring, implantation failure, and/or miscarriage during in vitro fertilization (IVF) cycles. However, it is still being debated with regard to the practicality and diagnostic accuracy of PGD/PGS due to the concern of invasive biopsy and the potential mosaicism of embryos. Recently, several non-invasive and high-throughput assays have been developed to help overcome the challenges encountered in the conventional invasive biopsy and low-throughput analysis in PGD/PGS. In this mini-review, we will summarize the recent progresses of these new methods for PGD/PGS and discuss their potential applications in IVF clinics. PMID:27272212

  1. Kremen1 regulates mechanosensory hair cell development in the mammalian cochlea and the zebrafish lateral line

    PubMed Central

    Mulvaney, Joanna F.; Thompkins, Cathrine; Noda, Teppei; Nishimura, Koji; Sun, Willy W.; Lin, Shuh-Yow; Coffin, Allison; Dabdoub, Alain

    2016-01-01

    Here we present spatio-temporal localization of Kremen1, a transmembrane receptor, in the mammalian cochlea, and investigate its role in the formation of sensory organs in mammal and fish model organisms. We show that Kremen1 is expressed in prosensory cells during cochlear development and in supporting cells of the adult mouse cochlea. Based on this expression pattern, we investigated whether Kremen1 functions to modulate cell fate decisions in the prosensory domain of the developing cochlea. We used gain and loss-of-function experiments to show that Kremen1 is sufficient to bias cells towards supporting cell fate, and is implicated in suppression of hair cell formation. In addition to our findings in the mouse cochlea, we examined the effects of over expression and loss of Kremen1 in the zebrafish lateral line. In agreement with our mouse data, we show that over expression of Kremen1 has a negative effect on the number of mechanosensory cells that form in the zebrafish neuromasts, and that fish lacking Kremen1 protein develop more hair cells per neuromast compared to wild type fish. Collectively, these data support an inhibitory role for Kremen1 in hair cell fate specification. PMID:27550540

  2. Kremen1 regulates mechanosensory hair cell development in the mammalian cochlea and the zebrafish lateral line.

    PubMed

    Mulvaney, Joanna F; Thompkins, Cathrine; Noda, Teppei; Nishimura, Koji; Sun, Willy W; Lin, Shuh-Yow; Coffin, Allison; Dabdoub, Alain

    2016-01-01

    Here we present spatio-temporal localization of Kremen1, a transmembrane receptor, in the mammalian cochlea, and investigate its role in the formation of sensory organs in mammal and fish model organisms. We show that Kremen1 is expressed in prosensory cells during cochlear development and in supporting cells of the adult mouse cochlea. Based on this expression pattern, we investigated whether Kremen1 functions to modulate cell fate decisions in the prosensory domain of the developing cochlea. We used gain and loss-of-function experiments to show that Kremen1 is sufficient to bias cells towards supporting cell fate, and is implicated in suppression of hair cell formation. In addition to our findings in the mouse cochlea, we examined the effects of over expression and loss of Kremen1 in the zebrafish lateral line. In agreement with our mouse data, we show that over expression of Kremen1 has a negative effect on the number of mechanosensory cells that form in the zebrafish neuromasts, and that fish lacking Kremen1 protein develop more hair cells per neuromast compared to wild type fish. Collectively, these data support an inhibitory role for Kremen1 in hair cell fate specification. PMID:27550540

  3. Early Developmental and Evolutionary Origins of Gene Body DNA Methylation Patterns in Mammalian Placentas.

    PubMed

    Schroeder, Diane I; Jayashankar, Kartika; Douglas, Kory C; Thirkill, Twanda L; York, Daniel; Dickinson, Pete J; Williams, Lawrence E; Samollow, Paul B; Ross, Pablo J; Bannasch, Danika L; Douglas, Gordon C; LaSalle, Janine M

    2015-08-01

    Over the last 20-80 million years the mammalian placenta has taken on a variety of morphologies through both divergent and convergent evolution. Recently we have shown that the human placenta genome has a unique epigenetic pattern of large partially methylated domains (PMDs) and highly methylated domains (HMDs) with gene body DNA methylation positively correlating with level of gene expression. In order to determine the evolutionary conservation of DNA methylation patterns and transcriptional regulatory programs in the placenta, we performed a genome-wide methylome (MethylC-seq) analysis of human, rhesus macaque, squirrel monkey, mouse, dog, horse, and cow placentas as well as opossum extraembryonic membrane. We found that, similar to human placenta, mammalian placentas and opossum extraembryonic membrane have globally lower levels of methylation compared to somatic tissues. Higher relative gene body methylation was the conserved feature across all mammalian placentas, despite differences in PMD/HMDs and absolute methylation levels. Specifically, higher methylation over the bodies of genes involved in mitosis, vesicle-mediated transport, protein phosphorylation, and chromatin modification was observed compared with the rest of the genome. As in human placenta, higher methylation is associated with higher gene expression and is predictive of genic location across species. Analysis of DNA methylation in oocytes and preimplantation embryos shows a conserved pattern of gene body methylation similar to the placenta. Intriguingly, mouse and cow oocytes and mouse early embryos have PMD/HMDs but their placentas do not, suggesting that PMD/HMDs are a feature of early preimplantation methylation patterns that become lost during placental development in some species and following implantation of the embryo. PMID:26241857

  4. Early Developmental and Evolutionary Origins of Gene Body DNA Methylation Patterns in Mammalian Placentas

    PubMed Central

    Schroeder, Diane I.; Jayashankar, Kartika; Douglas, Kory C.; Thirkill, Twanda L.; York, Daniel; Dickinson, Pete J.; Williams, Lawrence E.; Samollow, Paul B.; Ross, Pablo J.; Bannasch, Danika L.; Douglas, Gordon C.; LaSalle, Janine M.

    2015-01-01

    Over the last 20-80 million years the mammalian placenta has taken on a variety of morphologies through both divergent and convergent evolution. Recently we have shown that the human placenta genome has a unique epigenetic pattern of large partially methylated domains (PMDs) and highly methylated domains (HMDs) with gene body DNA methylation positively correlating with level of gene expression. In order to determine the evolutionary conservation of DNA methylation patterns and transcriptional regulatory programs in the placenta, we performed a genome-wide methylome (MethylC-seq) analysis of human, rhesus macaque, squirrel monkey, mouse, dog, horse, and cow placentas as well as opossum extraembryonic membrane. We found that, similar to human placenta, mammalian placentas and opossum extraembryonic membrane have globally lower levels of methylation compared to somatic tissues. Higher relative gene body methylation was the conserved feature across all mammalian placentas, despite differences in PMD/HMDs and absolute methylation levels. Specifically, higher methylation over the bodies of genes involved in mitosis, vesicle-mediated transport, protein phosphorylation, and chromatin modification was observed compared with the rest of the genome. As in human placenta, higher methylation is associated with higher gene expression and is predictive of genic location across species. Analysis of DNA methylation in oocytes and preimplantation embryos shows a conserved pattern of gene body methylation similar to the placenta. Intriguingly, mouse and cow oocytes and mouse early embryos have PMD/HMDs but their placentas do not, suggesting that PMD/HMDs are a feature of early preimplantation methylation patterns that become lost during placental development in some species and following implantation of the embryo. PMID:26241857

  5. FURTHER DEVELOPMENT OF A MAMMALIAN DNA ALKALINE UNWINDING BIOASSAY WITH POTENTIAL APPLICATION TO HAZARD IDENTIFICATION FOR CONTAMINANTS FROM ENVIRONMENTAL SAMPLES

    EPA Science Inventory

    Recently, the authors detailed a DNA alkaline unwinding assay (DAUA) that can be used to rapidly measure chemically induced strand breaks in mammalian cells. Further developments of the assay include: studies on the relationship between DNA adducts and DNA strand breaks; evaluati...

  6. A Novel 4EHP-GIGYF2 Translational Repressor Complex Is Essential for Mammalian Development

    PubMed Central

    Morita, Masahiro; Ler, Lian Wee; Fabian, Marc R.; Siddiqui, Nadeem; Mullin, Michael; Henderson, Valerie C.; Alain, Tommy; Fonseca, Bruno D.; Karashchuk, Galina; Bennett, Christopher F.; Kabuta, Tomohiro; Higashi, Shinji; Larsson, Ola; Topisirovic, Ivan; Smith, Robert J.; Gingras, Anne-Claude

    2012-01-01

    The binding of the eukaryotic initiation factor 4E (eIF4E) to the mRNA 5′ cap structure is a rate-limiting step in mRNA translation initiation. eIF4E promotes ribosome recruitment to the mRNA. In Drosophila, the eIF4E homologous protein (d4EHP) forms a complex with binding partners to suppress the translation of distinct mRNAs by competing with eIF4E for binding the 5′ cap structure. This repression mechanism is essential for the asymmetric distribution of proteins and normal embryonic development in Drosophila. In contrast, the physiological role of the mammalian 4EHP (m4EHP) was not known. In this study, we have identified the Grb10-interacting GYF protein 2 (GIGYF2) and the zinc finger protein 598 (ZNF598) as components of the m4EHP complex. GIGYF2 directly interacts with m4EHP, and this interaction is required for stabilization of both proteins. Disruption of the m4EHP-GIGYF2 complex leads to increased translation and perinatal lethality in mice. We propose a model by which the m4EHP-GIGYF2 complex represses translation of a subset of mRNAs during embryonic development, as was previously reported for d4EHP. PMID:22751931

  7. Development of a Safeguard System Using an Episomal Mammalian Artificial Chromosome for Gene and Cell Therapy.

    PubMed

    Uno, Narumi; Uno, Katsuhiro; Komoto, Shinya; Suzuki, Teruhiko; Hiratsuka, Masaharu; Osaki, Mitsuhiko; Kazuki, Yasuhiro; Oshimura, Mitsuo

    2015-01-01

    The development of a safeguard system to remove tumorigenic cells would allow safer clinical applications of stem cells for the treatment of patients with an intractable disease including genetic disorders. Such safeguard systems should not disrupt the host genome and should have long-term stability. Here, we attempted to develop a tumor-suppressing mammalian artificial chromosome containing a safeguard system that uses the immune rejection system against allogeneic tissue from the host. For proof-of-concept of the safeguard system, B16F10 mouse melanoma cells expressing the introduced H2-K(d) major histocompatibility complex (MHC class I)-allogenic haplotype were transplanted into recipient C57BL/6J mice expressing MHC H2-K(b). Subcutaneous implantation of B16F10 cells into C57BL/6J mice resulted in high tumorigenicity. The volume of tumors derived from B16F10 cells expressing allogenic MHC H2-K(d) was decreased significantly (P < 0.01). Suppression of MHC H2-K(d)-expressing tumors in C57BL/6J mice was enhanced by immunization with MHC H2-K(d)-expressing splenocytes (P < 0.01). These results suggest that the safeguard system is capable of suppressing tumor formation by the transplanted cells. PMID:26670279

  8. Mammalian COPII coat component SEC24C is required for embryonic development in mice.

    PubMed

    Adams, Elizabeth J; Chen, Xiao-Wei; O'Shea, K Sue; Ginsburg, David

    2014-07-25

    COPII-coated vesicles mediate the transport of newly synthesized proteins from the endoplasmic reticulum to the Golgi. SEC24 is the COPII component primarily responsible for recruitment of protein cargoes into nascent vesicles. There are four Sec24 paralogs in mammals, with mice deficient in SEC24A, -B, and -D exhibiting a wide range of phenotypes. We now report the characterization of mice with deficiency in the fourth Sec24 paralog, SEC24C. Although mice haploinsufficient for Sec24c exhibit no apparent abnormalities, homozygous deficiency results in embryonic lethality at approximately embryonic day 7. Tissue-specific deletion of Sec24c in hepatocytes, pancreatic cells, smooth muscle cells, and intestinal epithelial cells results in phenotypically normal mice. Thus, SEC24C is required in early mammalian development but is dispensable in a number of tissues, likely as a result of compensation by other Sec24 paralogs. The embryonic lethality resulting from loss of SEC24C occurs considerably later than the lethality previously observed in SEC24D deficiency; it is clearly distinct from the restricted neural tube phenotype of Sec24b null embryos and the mild hypocholesterolemic phenotype of adult Sec24a null mice. Taken together, these results demonstrate that the four Sec24 paralogs have developed unique functions over the course of vertebrate evolution. PMID:24876386

  9. Mammalian Brain Development is Accompanied by a Dramatic Increase in Bipolar DNA Methylation.

    PubMed

    Sun, Ming-An; Sun, Zhixiong; Wu, Xiaowei; Rajaram, Veena; Keimig, David; Lim, Jessica; Zhu, Hongxiao; Xie, Hehuang

    2016-01-01

    DNA methylation is an epigenetic mechanism critical for tissue development and cell specification. Mammalian brains consist of many different types of cells with assumedly distinct DNA methylation profiles, and thus some genomic loci may demonstrate bipolar DNA methylation pattern, i.e. hypermethylated in one cell subset but hypomethylated in others. Currently, how extensive methylation patterns vary among brain cells is unknown and bipolar methylated genomic loci remain largely unexplored. In this study, we implemented a procedure to infer cell-subset specific methylated (CSM) loci from the methylomes of human and mouse frontal cortices at different developmental stages. With the genome-scale hairpin bisulfite sequencing approach, we demonstrated that the majority of CSM loci predicted likely resulted from the methylation differences among brain cells rather than from asymmetric DNA methylation between DNA double strands. Correlated with enhancer-associated histone modifications, putative CSM loci increased dramatically during early stages of brain development and were enriched for GWAS variants associated with neurological disorder-related diseases/traits. Altogether, this study provides a procedure to identify genomic regions showing methylation differences in a mixed cell population and our results suggest that a set of cis-regulatory elements are primed in early postnatal life whose functions may be compromised in human neurological disorders. PMID:27585862

  10. Mammalian Brain Development is Accompanied by a Dramatic Increase in Bipolar DNA Methylation

    PubMed Central

    Sun, Ming-an; Sun, Zhixiong; Wu, Xiaowei; Rajaram, Veena; Keimig, David; Lim, Jessica; Zhu, Hongxiao; Xie, Hehuang

    2016-01-01

    DNA methylation is an epigenetic mechanism critical for tissue development and cell specification. Mammalian brains consist of many different types of cells with assumedly distinct DNA methylation profiles, and thus some genomic loci may demonstrate bipolar DNA methylation pattern, i.e. hypermethylated in one cell subset but hypomethylated in others. Currently, how extensive methylation patterns vary among brain cells is unknown and bipolar methylated genomic loci remain largely unexplored. In this study, we implemented a procedure to infer cell-subset specific methylated (CSM) loci from the methylomes of human and mouse frontal cortices at different developmental stages. With the genome-scale hairpin bisulfite sequencing approach, we demonstrated that the majority of CSM loci predicted likely resulted from the methylation differences among brain cells rather than from asymmetric DNA methylation between DNA double strands. Correlated with enhancer-associated histone modifications, putative CSM loci increased dramatically during early stages of brain development and were enriched for GWAS variants associated with neurological disorder-related diseases/traits. Altogether, this study provides a procedure to identify genomic regions showing methylation differences in a mixed cell population and our results suggest that a set of cis-regulatory elements are primed in early postnatal life whose functions may be compromised in human neurological disorders. PMID:27585862

  11. Expanding the test set: Chemicals with potential to disrupt mammalian brain development.

    PubMed

    Mundy, William R; Padilla, Stephanie; Breier, Joseph M; Crofton, Kevin M; Gilbert, Mary E; Herr, David W; Jensen, Karl F; Radio, Nicholas M; Raffaele, Kathleen C; Schumacher, Kelly; Shafer, Timothy J; Cowden, John

    2015-01-01

    High-throughput test methods including molecular, cellular, and alternative species-based assays that examine critical events of normal brain development are being developed for detection of developmental neurotoxicants. As new assays are developed, a "training set" of chemicals is used to evaluate the relevance of individual assays for specific endpoints. Different training sets are necessary for each assay that would comprise a developmental neurotoxicity test battery. In contrast, evaluation of the predictive ability of a comprehensive test battery requires a set of chemicals that have been shown to alter brain development after in vivo exposure ("test set"). Because only a small number of substances have been well documented to alter human neurodevelopment, we have proposed an expanded test set that includes chemicals demonstrated to adversely affect neurodevelopment in animals. To compile a list of potential developmental neurotoxicants, a literature review of compounds that have been examined for effects on the developing nervous system was conducted. The search was limited to mammalian studies published in the peer-reviewed literature and regulatory studies submitted to the U.S. EPA. The definition of developmental neurotoxicity encompassed changes in behavior, brain morphology, and neurochemistry after gestational or lactational exposure. Reports that indicated developmental neurotoxicity was observed only at doses that resulted in significant maternal toxicity or were lethal to the fetus or offspring were not considered. As a basic indication of reproducibility, we only included a chemical if data on its developmental neurotoxicity were available from more than one laboratory (defined as studies originating from laboratories with a different senior investigator). Evidence from human studies was included when available. Approximately 100 developmental neurotoxicity test set chemicals were identified, with 22% having evidence in humans. PMID:26476195

  12. Vitrified/warmed single blastocyst transfer in preimplantation genetic diagnosis/preimplantation genetic screening cycles

    PubMed Central

    Huang, Jin; Li, Rong; Lian, Ying; Chen, Lixue; Shi, Xiaodan; Qiao, Jie; Liu, Ping

    2015-01-01

    Objective: To investigate the single blastocyst transfer in preimplantation genetic diagnosis (PGD)/preimplantation genetic screening (PGS) cycles. Methods: 80 PGD/PGS cycles undergoing blastocyst biopsy were studied. There were 88 warming cycles during the study period. Only one warmed blastocyst was transferred per cycle. The outcomes were followed up to the infants were born. Results: The embryo implantation rate was 54.55% (48/88). The clinical pregnancy rate was 54.55% (48/88) per transfer cycle and 60% (48/80) per initial PGD/PGS cycle. There was no multi-pregnant in this study. The live birth rate was 42.05% (37/88) per transfer cycle and 46.25% (37/80) per initial PGD/PGS cycle. Conclusion: In PGD/PGS cycles, single blastocyst transfer reduces the multiple pregnancy rate without affecting the clinical outcomes. PMID:26885112

  13. Analysis of gene–environment interactions in postnatal development of the mammalian intestine

    PubMed Central

    Rakoff-Nahoum, Seth; Kong, Yong; Kleinstein, Steven H.; Subramanian, Sathish; Ahern, Philip P.; Gordon, Jeffrey I.; Medzhitov, Ruslan

    2015-01-01

    Unlike mammalian embryogenesis, which takes place in the relatively predictable and stable environment of the uterus, postnatal development can be affected by a multitude of highly variable environmental factors, including diet, exposure to noxious substances, and microorganisms. Microbial colonization of the intestine is thought to play a particularly important role in postnatal development of the gastrointestinal, metabolic, and immune systems. Major changes in environmental exposure occur right after birth, upon weaning, and during pubertal maturation into adulthood. These transitions include dramatic changes in intestinal contents and require appropriate adaptations to meet changes in functional demands. Here, we attempt to both characterize and provide mechanistic insights into postnatal intestinal ontogeny. We investigated changes in global intestinal gene expression through postnatal developmental transitions. We report profound alterations in small and large intestinal transcriptional programs that accompany both weaning and puberty in WT mice. Using myeloid differentiation factor 88 (MyD88)/TIR-domain-containing adapter-inducing interferon-β (TRIF) double knockout littermates, we define the role of toll-like receptors (TLRs) and interleukin (IL)-1 receptor family member signaling in postnatal gene expression programs and select ontogeny-specific phenotypes, such as vascular and smooth muscle development and neonatal epithelial and mast cell homeostasis. Metaanalysis of the effect of the microbiota on intestinal gene expression allowed for mechanistic classification of developmentally regulated genes by TLR/IL-1R (TIR) signaling and/or indigenous microbes. We find that practically every aspect of intestinal physiology is affected by postnatal transitions. Developmental timing, microbial colonization, and TIR signaling seem to play distinct and specific roles in regulation of gene-expression programs throughout postnatal development. PMID:25691701

  14. Epigenetic regulation of Atoh1 guides hair cell development in the mammalian cochlea.

    PubMed

    Stojanova, Zlatka P; Kwan, Tao; Segil, Neil

    2015-10-15

    In the developing cochlea, sensory hair cell differentiation depends on the regulated expression of the bHLH transcription factor Atoh1. In mammals, if hair cells die they do not regenerate, leading to permanent deafness. By contrast, in non-mammalian vertebrates robust regeneration occurs through upregulation of Atoh1 in the surviving supporting cells that surround hair cells, leading to functional recovery. Investigation of crucial transcriptional events in the developing organ of Corti, including those involving Atoh1, has been hampered by limited accessibility to purified populations of the small number of cells present in the inner ear. We used µChIP and qPCR assays of FACS-purified cells to track changes in the epigenetic status of the Atoh1 locus during sensory epithelia development in the mouse. Dynamic changes in the histone modifications H3K4me3/H3K27me3, H3K9ac and H3K9me3 reveal a progression from poised, to active, to repressive marks, correlating with the onset of Atoh1 expression and its subsequent silencing during the perinatal (P1 to P6) period. Inhibition of acetylation blocked the increase in Atoh1 mRNA in nascent hair cells, as well as ongoing hair cell differentiation during embryonic organ of Corti development ex vivo. These results reveal an epigenetic mechanism of Atoh1 regulation underlying hair cell differentiation and subsequent maturation. Interestingly, the H3K4me3/H3K27me3 bivalent chromatin structure observed in progenitors persists at the Atoh1 locus in perinatal supporting cells, suggesting an explanation for the latent capacity of these cells to transdifferentiate into hair cells, and highlighting their potential as therapeutic targets in hair cell regeneration. PMID:26487780

  15. The roles of endoplasmic reticulum stress response in female mammalian reproduction.

    PubMed

    Yang, Yanzhou; Pei, Xiuying; Jin, Yaping; Wang, Yanrong; Zhang, Cheng

    2016-03-01

    Endoplasmic reticulum stress (ERS) activates a protective pathway, called the unfold protein response, for maintaining cellular homeostasis, but cellular apoptosis is triggered by excessive or persistent ERS. Several recent studies imply that the ERS response might have broader physiological roles in the various reproductive processes of female mammals, including embryo implantation, decidualization, preimplantation embryonic development, follicle atresia, and the development of the placenta. This review summarizes the existing data concerning the molecular and biological roles of the ERS response. The study of the functions of the ERS response in mammalian reproduction might provide novel insights into and an understanding of reproductive cell survival and apoptosis under physiological and pathological conditions. The ERS response is a novel signaling pathway for reproductive cell survival and apoptosis. Infertility might be a result of disturbing the ERS response during the process of female reproduction. PMID:26022337

  16. Methionine-dependent histone methylation at developmentally important gene loci in mouse preimplantation embryos.

    PubMed

    Kudo, Mari; Ikeda, Shuntaro; Sugimoto, Miki; Kume, Shinichi

    2015-12-01

    The involvement of specific nutrients in epigenetic gene regulation is a possible mechanism underlying nutrition-directed phenotypic alteration. However, the involvement of nutrients in gene-specific epigenetic regulation remains poorly understood. Methionine has been received attention as a possible nutrient involved in epigenetic modifications, as it is a precursor of the universal methyl donor for epigenetic methylation of DNA and histones. In the present study, the disruption of methionine metabolism by ethionine, an antimetabolite of methionine, induced abnormally higher expression of genes related to cell lineage differentiation and resulted in impaired blastocyst development of mouse preimplantation embryos in vitro. These effects were mitigated by the presence of methionine. Importantly, ethionine treatment induced lower trimethylation of histone H3 lysine 9 but did not affect methylation of DNA in the promoter regions of the examined genes. These results demonstrated that intact methionine metabolism is required for proper epigenetic histone modifications and normal expression of developmentally important genes during preimplantation development. PMID:26372092

  17. Quantitative analysis of gene expression in preimplantation mouse embryos using green fluorescent protein reporter.

    PubMed

    Medvedev, Serguei Yuri; Tokunaga, Tomoyuki; Schultz, Richard M; Furukawa, Tsutomu; Nagai, Takashi; Yamaguchi, Manabu; Hosoe, Misa; Yakovlev, Alexander F; Takahashi, Seiya; Izaike, Yoshiaki

    2002-07-01

    We have developed a method to monitor noninvasively, quantitatively, and in real-time transcription in living preimplantation mouse embryos by measuring expression of a short half-life form of enhanced green fluorescent protein (EGFP) following microinjection of a plasmid-borne EGFP reporter gene. A standard curve was established by injecting known amounts of recombinant green fluorescent protein, and transcriptional activity was then determined by interpolating the amount of fluorescence in the DNA-injected embryos. This approach permitted multiple measurements in single embryos with no significant detrimental effect on embryonic development as long as light exposure was brief (<30 sec) and no more than two measurements were made each day. This method should facilitate analysis of the regulation of gene expression in preimplantation embryos; in particular, during the maternal-to-zygotic transition, and in other species in which limited numbers of embryos are available. PMID:12080029

  18. Distinct nuclear localization patterns of DNA methyltransferases in developing and mature mammalian retina.

    PubMed

    Nasonkin, Igor O; Lazo, Kevin; Hambright, Dustin; Brooks, Matthew; Fariss, Robert; Swaroop, Anand

    2011-07-01

    DNA methyltransferases--DNMT1, DNMT3a, and DNMT3b--produce methylation patterns that dynamically regulate chromatin remodeling and gene expression. The vertebrate retina provides an ideal model to elucidate molecular control of neurogenesis as all neuronal cell types and Müller glia are generated in a conserved order from common pools of progenitor cells. As a prelude to exploring epigenetic regulation of mammalian retinal development, we investigated the expression of Dnmt1, Dnmt3a, and Dnmt3b in the mouse retina from embryonic day (E) 10.5 to 10 months of age. High levels of transcripts for all three Dnmt genes were observed in early stages of retinal differentiation, with significantly reduced expression after birth. Although DNMT1 protein is abundant in retinal progenitors at E10.5, it becomes restricted to postmitotic cells by E15.5. Most cells in the postnatal retina show nuclear immunostaining of DNMT1; however, the photoreceptors exhibit distinctive patterns. In rods, weak expression of DNMT1 is detected in perinuclear region and in the nucleus, whereas a strong nuclear labeling is evident in cones. DNMT3a and DNMT3b show a discrete pattern in developing retina with high expression at E11.5, little or no immunostaining by E15.5, and then postnatal expression overlapping with DNMT1 in early born neurons (ganglion, amacrine and horizontal cells, and cones). Robust nuclear localization of DNMTs in cones compared to rods suggests a potential role of DNA methylation in differential remodeling of chromatin in these two specialized neurons. Our studies indicate that DNA methyltransferases contribute to the establishment and maturation of cell fates during retinal development. PMID:21452232

  19. Dynamic expression of chromatin modifiers during developmental transitions in mouse preimplantation embryos

    PubMed Central

    Nestorov, Peter; Hotz, Hans-Rudolf; Liu, Zichuan; Peters, Antoine H.F.M.

    2015-01-01

    During mouse preimplantation development, major changes in cell fate are accompanied by extensive alterations of gene expression programs. Embryos first transition from a maternal to zygotic program and subsequently specify the pluripotent and the trophectodermal cell lineages. These processes are regulated by key transcription factors, likely in cooperation with chromatin modifiers that control histone and DNA methylation. To characterize the spatiotemporal expression of chromatin modifiers in relation to developmental transitions, we performed gene expression profiling of 156 genes in individual oocytes and single blastomeres of developing mouse embryos until the blastocyst stage. More than half of the chromatin modifiers displayed either maternal or zygotic expression. We also detected lineage-specific expression of several modifiers, including Ezh1, Prdm14, Scmh1 and Tet1 underscoring possible roles in cell fate decisions. Members of the SET-domain containing SMYD family showed differential gene expression during preimplantation development. We further observed co-expression of genes with opposing biochemical activities, such as histone methyltransferases and demethylases, suggesting the existence of a dynamic chromatin steady-state during preimplantation development. PMID:26403153

  20. PreImplantation factor (PIF) detection in maternal circulation in early pregnancy correlates with live birth (bovine model)

    PubMed Central

    2013-01-01

    Background Early identification of viable pregnancy is paramount for successful reproduction. Detection of specific signals from pre-implantation viable embryos in normal pregnancy circulation would indicate initiation of embryo-maternal interaction and create a continuum to accurately reflect embryo/fetal well-being post-implantation. Viable mammalian embryos secrete PreImplantation Factor (PIF), a biomarker which plays key, multi-targeted roles to promote implantation, trophoblast invasion and modulate maternal innate and adaptive immunity toward acceptance. Anti-PIF monoclonal antibody (mAb-based chemiluminescent ELISA) accurately detects PIF in singly cultured embryos media and its increased levels correlate with embryo development up to the blastocyst stage. Herein reported that PIF levels (ELISA) in early maternal serum correlate with pregnancy outcome. Methods Artificially inseminated (AI) blind-coded Angus cattle (N = 21-23) serum samples (day10,15 & 20 post-AI) with known calf birth were blindly tested, using both non-pregnant heifers (N = 30) and steer serum as negative controls. Assay properties and anti-PIF monoclonal antibody specificity were determined by examining linearity, spike and recovery experiments and testing the antibody against 234 different circulating proteins by microarray. Endogenous PIF was detected using <3 kDa filter separation followed by anti-PIF mAb-based affinity chromatography and confirmed by ELISA and HPLC. PIF expression was established in placenta using anti-PIF mAb-based IHC. Results PIF detects viable pregnancy at day 10 post-AI with 91.3% sensitivity, reaching 100% by day 20 and correlating with live calf birth. All non-pregnant samples were PIF negative. PIF level in pregnant samples was a stringent 3 + SD higher as compared to heifers and steer sera. Assay is linear and spike and recovery data demonstrates lack of serum interference. Anti-PIF mAb is specific and does not interact with circulating proteins

  1. Preimplantation genetic diagnosis for inherited neurological disorders.

    PubMed

    Tur-Kaspa, Ilan; Jeelani, Roohi; Doraiswamy, P Murali

    2014-07-01

    Preimplantation genetic diagnosis (PGD) is an option for couples at risk of having offspring with an inherited debilitating or fatal neurological disorder who wish to conceive a healthy child. PGD has been carried out for conditions with various modes of inheritance, including spinal muscular atrophy, Huntington disease, fragile X syndrome, and chromosomal or mitochondrial disorders, and for susceptibility genes for cancers with nervous system involvement. Most couples at risk of transmitting a genetic mutation would opt for PGD over prenatal testing and possible termination of a pregnancy. The aim of this Perspectives article is to assist neurologists in counselling and treating patients who wish to explore the option of PGD to enable conception of an unaffected child. PGD can be accomplished for most disorders in which the genetic basis is known, and we argue that it is time for clinicians and neurological societies to consider the evidence and to formulate guidelines for the responsible integration of PGD into modern preventative neurology. PMID:24866878

  2. Preimplantation genetic diagnosis and the 'new' eugenics.

    PubMed

    King, D S

    1999-04-01

    Preimplantation genetic diagnosis (PID) is often seen as an improvement upon prenatal testing. I argue that PID may exacerbate the eugenic features of prenatal testing and make possible an expanded form of free-market eugenics. The current practice of prenatal testing is eugenic in that its aim is to reduce the numbers of people with genetic disorders. Due to social pressures and eugenic attitudes held by clinical geneticists in most countries, it results in eugenic outcomes even though no state coercion is involved. I argue that technological advances may soon make PID widely accessible. Because abortion is not involved, and multiple embryos are available, PID is radically more effective as a tool of genetic selection. It will also make possible selection on the basis of non-pathological characteristics, leading, potentially, to a full-blown free-market eugenics. For these reasons, I argue that PID should be strictly regulated. PMID:10226925

  3. The interferon α-responsive gene, Ifrg15, plays vital roles during mouse early embryonic development.

    PubMed

    Yang, Ye; Wang, Jiayi; Zhao, Chun; Chen, Xiaojiao; Chen, Li; Zhang, Junqiang; Huo, Ran; Liu, Chang; Tong, Hua; Ling, Xiufeng

    2016-08-01

    The interferon alpha-responsive gene (Ifrg15) mRNA is highly expressed in various stages during preimplantation mammalian embryo development. Unfortunately, few studies have investigated the effect of Ifrg15 in this process. In mammals, the fusion of male and female pronuclei generates a diploid zygote, and is an important step for subsequent cleavage and blastocyst formation. Here, by using RNA interference, rescue experiments, immunofluorescence staining and live cell observations, we found that preimplantation embryo development was arrested at the 1-cell stage after knocking down Ifrg15 expression. This induced DNA damage and prevented the cleavage of embryos. Furthermore, the effect of Ifrg15 deficiency in arresting preimplantation embryo development produced by specific short interfering RNA microinjection was concentration-dependent. Using transcriptome expression profiles, gene ontogeny functional annotation and enrichment analysis, we gained 197 enriched pathways based on 1445 differentially expressed genes (DEGs). Of these, 12 pathways and about one third of the DEGs were involved in DNA damage, DNA repair, cell cycle, and developmental processes. Thus, the IFRG15 protein might be an important molecule for maintaining genomic integrity and stability through upregulating or downregulating a cascade of genes to permit normal preimplantation embryo development. PMID:26911731

  4. In vitro maturation and in vitro fertilization of mouse oocytes and preimplantation embryo culture.

    PubMed

    Kidder, Benjamin L

    2014-01-01

    Epigenetic regulation of gene expression in the germline is important for reproductive success of mammals. Misregulation of genes whose expression is correlated with reproductive success may result in subfertility or infertility. To study epigenetic events that occur during oocyte maturation and preimplantation embryo development, it is important to generate large numbers of ovarian follicles and embryos. Oocyte maturation can be modeled using in vitro maturation (IVM), which is a system of maturing ovarian follicles in a culture dish. In addition, fertilization and early embryogenesis can be modeled using in vitro fertilization (IVF), which involves the fertilization of mature oocytes with capacitated sperm in a culture dish. Here, we describe protocols for in vitro maturation (IVM) and in vitro fertilization (IVF) of mouse oocytes and preimplantation embryo culture. These protocols are suitable for the study of oocyte and embryo biology and the production of embryonic mice. PMID:24743999

  5. Deficiency in the response to DNA double-strand breaks in mouse early preimplantation embryos

    SciTech Connect

    Yukawa, Masashi; Oda, Shoji; Mitani, Hiroshi; Nagata, Masao; Aoki, Fugaku . E-mail: aokif@k.u-tokyo.ac.jp

    2007-06-29

    DNA double-strand breaks (DSBs) are caused by various environmental stresses, such as ionizing radiation and DNA-damaging agents. When DSBs occur, cell cycle checkpoint mechanisms function to stop the cell cycle until all DSBs are repaired; the phosphorylation of H2AX plays an important role in this process. Mouse preimplantation-stage embryos are hypersensitive to ionizing radiation, and X-irradiated mouse zygotes are arrested at the G2 phase of the first cell cycle. To investigate the mechanisms responding to DNA damage at G2 in mouse preimplantation embryos, we examined G2/M checkpoint and DNA repair mechanisms in these embryos. Most of the one- and two-cell embryos in which DSBs had been induced by {gamma}-irradiation underwent a delay in cleavage and ceased development before the blastocyst stage. In these embryos, phosphorylated H2AX ({gamma}-H2AX) was not detected in the one- or two-cell stages by immunocytochemistry, although it was detected after the two-cell stage during preimplantation development. These results suggest that the G2/M checkpoint and DNA repair mechanisms have insufficient function in one- and two-cell embryos, causing hypersensitivity to {gamma}-irradiation. In addition, phosphorylated ataxia telangiectasia mutated protein and DNA protein kinase catalytic subunits, which phosphorylate H2AX, were detected in the embryos at one- and two-cell stages, as well as at other preimplantation stages, suggesting that the absence of {gamma}-H2AX in one- and two-cell embryos depends on some factor(s) other than these kinases.

  6. Mammalian target of rapamycin is essential for cardiomyocyte survival and heart development in mice

    SciTech Connect

    Zhang, Pengpeng; Shan, Tizhong; Liang, Xinrong; Deng, Changyan; Kuang, Shihuan

    2014-09-12

    Highlights: • mTOR is a critical regulator of many biological processes yet its function in heart is not well understood. • MCK-Cre/Mtor{sup flox/flox} mice were established to delete Mtor in cardiomyocytes. • The mTOR-mKO mice developed normally but die prematurely within 5 weeks after birth due to heart disease. • The mTOR-mKO mice had dilated myocardium and increased cell death. • mTOR-mKO hearts had reduced expression of metabolic genes and activation of mTOR target proteins. - Abstract: Mammalian target of rapamycin (mTOR) is a critical regulator of protein synthesis, cell proliferation and energy metabolism. As constitutive knockout of Mtor leads to embryonic lethality, the in vivo function of mTOR in perinatal development and postnatal growth of heart is not well defined. In this study, we established a muscle-specific mTOR conditional knockout mouse model (mTOR-mKO) by crossing MCK-Cre and Mtor{sup flox/flox} mice. Although the mTOR-mKO mice survived embryonic and perinatal development, they exhibited severe postnatal growth retardation, cardiac muscle pathology and premature death. At the cellular level, the cardiac muscle of mTOR-mKO mice had fewer cardiomyocytes due to apoptosis and necrosis, leading to dilated cardiomyopathy. At the molecular level, the cardiac muscle of mTOR-mKO mice expressed lower levels of fatty acid oxidation and glycolysis related genes compared to the WT littermates. In addition, the mTOR-mKO cardiac muscle had reduced Myh6 but elevated Myh7 expression, indicating cardiac muscle degeneration. Furthermore, deletion of Mtor dramatically decreased the phosphorylation of S6 and AKT, two key targets downstream of mTORC1 and mTORC2 mediating the normal function of mTOR. These results demonstrate that mTOR is essential for cardiomyocyte survival and cardiac muscle function.

  7. Self-correction of chromosomal abnormalities in human preimplantation embryos and embryonic stem cells.

    PubMed

    Bazrgar, Masood; Gourabi, Hamid; Valojerdi, Mojtaba Rezazadeh; Yazdi, Poopak Eftekhari; Baharvand, Hossein

    2013-09-01

    Aneuploidy is commonly seen in human preimplantation embryos, most particularly at the cleavage stage because of genome activation by third cell division. Aneuploid embryos have been used for the derivation of normal embryonic stem cell (ESC) lines and developmental modeling. This review addresses aneuploidies in human preimplantation embryos and human ESCs and the potential of self-correction of these aberrations. Diploid-aneuploid mosaicism is the most frequent abnormality observed; hence, embryos selected by preimplantation genetic diagnosis at the cleavage or blastocyst stage could be partly abnormal. Differentiation is known as the barrier for eliminating mosaic embryos by death and/or decreased division of abnormal cells. However, some mosaicisms, such as copy number variations could be compatible with live birth. Several reasons have been proposed for self-correction of aneuploidies during later stages of development, including primary misdiagnosis, allocation of the aneuploidy in the trophectoderm, cell growth advantage of diploid cells in mosaic embryos, lagging of aneuploid cell division, extrusion or duplication of an aneuploid chromosome, and the abundance of DNA repair gene products. Although more studies are needed to understand the mechanisms of self-correction as a rare phenomenon, most likely, it is related to overcoming mosaicism. PMID:23557100

  8. Effects of Simulated Weightlessness on Mammalian Development. Part 2: Meiotic Maturation of Mouse Oocytes During Clinostat Rotation

    NASA Technical Reports Server (NTRS)

    Wolgemuth, D. J.; Grills, G. S.

    1985-01-01

    In order to understand the role of gravity in basic cellular processes that are important during development, the effects of a simulated microgravity environment on mammalian gametes and early embryos cultured in vitro are examined. A microgravity environment is simulated by use of a clinostat, which essentially reorients cells relative to the gravity vector. Initial studies have focused on assessing the effects of clinostat rotation on the meiotic progression of mouse oocytes. Modifications centered on providing the unique in vitro culture of the clinostat requirements of mammalian oocytes and embryos: 37 C temperature, constant humidity, and a 5% CO2 in air environment. The oocytes are observed under the dissecting microscope for polar body formation and gross morphological appearance. They are then processed for cytogenetic analysis.

  9. Snail Coordinately Regulates Downstream Pathways to Control Multiple Aspects of Mammalian Neural Precursor Development

    PubMed Central

    Zander, Mark A.; Burns, Sarah E.; Yang, Guang; Kaplan, David R.

    2014-01-01

    The Snail transcription factor plays a key role in regulating diverse developmental processes but is not thought to play a role in mammalian neural precursors. Here, we have examined radial glial precursor cells of the embryonic murine cortex and demonstrate that Snail regulates their survival, self-renewal, and differentiation into intermediate progenitors and neurons via two distinct and separable target pathways. First, Snail promotes cell survival by antagonizing a p53-dependent death pathway because coincident p53 knockdown rescues survival deficits caused by Snail knockdown. Second, we show that the cell cycle phosphatase Cdc25b is regulated by Snail in radial precursors and that Cdc25b coexpression is sufficient to rescue the decreased radial precursor proliferation and differentiation observed upon Snail knockdown. Thus, Snail acts via p53 and Cdc25b to coordinately regulate multiple aspects of mammalian embryonic neural precursor biology. PMID:24719096

  10. Mammalian sleep

    NASA Astrophysics Data System (ADS)

    Staunton, Hugh

    2005-05-01

    This review examines the biological background to the development of ideas on rapid eye movement sleep (REM sleep), so-called paradoxical sleep (PS), and its relation to dreaming. Aspects of the phenomenon which are discussed include physiological changes and their anatomical location, the effects of total and selective sleep deprivation in the human and animal, and REM sleep behavior disorder, the latter with its clinical manifestations in the human. Although dreaming also occurs in other sleep phases (non-REM or NREM sleep), in the human, there is a contingent relation between REM sleep and dreaming. Thus, REM is taken as a marker for dreaming and as REM is distributed ubiquitously throughout the mammalian class, it is suggested that other mammals also dream. It is suggested that the overall function of REM sleep/dreaming is more important than the content of the individual dream; its function is to place the dreamer protagonist/observer on the topographical world. This has importance for the developing infant who needs to develop a sense of self and separateness from the world which it requires to navigate and from which it is separated for long periods in sleep. Dreaming may also serve to maintain a sense of ‘I’ness or “self” in the adult, in whom a fragility of this faculty is revealed in neurological disorders.

  11. Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development

    PubMed Central

    2011-01-01

    Background We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. Results The genome has been sequenced to 2 × coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. Conclusions Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution. PMID:21854559

  12. Recent advances in developing molecular tools for targeted genome engineering of mammalian cells.

    PubMed

    Lim, Kwang-il

    2015-01-01

    Various biological molecules naturally existing in diversified species including fungi, bacteria, and bacteriophage have functionalities for DNA binding and processing. The biological molecules have been recently actively engineered for use in customized genome editing of mammalian cells as the molecule-encoding DNA sequence information and the underlying mechanisms how the molecules work are unveiled. Excitingly, multiple novel methods based on the newly constructed artificial molecular tools have enabled modifications of specific endogenous genetic elements in the genome context at efficiencies that are much higher than that of the conventional homologous recombination based methods. This minireview introduces the most recently spotlighted molecular genome engineering tools with their key features and ongoing modifications for better performance. Such ongoing efforts have mainly focused on the removal of the inherent DNA sequence recognition rigidity from the original molecular platforms, the addition of newly tailored targeting functions into the engineered molecules, and the enhancement of their targeting specificity. Effective targeted genome engineering of mammalian cells will enable not only sophisticated genetic studies in the context of the genome, but also widely-applicable universal therapeutics based on the pinpointing and correction of the disease-causing genetic elements within the genome in the near future. PMID:25104401

  13. Mammalian Par3 regulates progenitor cell asymmetric division via Notch signaling in the developing neocortex

    PubMed Central

    Bultje, Ronald S.; Castaneda-Castellanos, David R.; Jan, Lily Yeh; Jan, Yuh-Nung; Kriegstein, Arnold R.; Shi, Song-Hai

    2009-01-01

    Asymmetric cell division of radial glial progenitors produces neurons while allowing self-renewal; however, little is known about the mechanism that generates asymmetry in daughter cell fate specification. Here we found that mammalian partition defective protein 3 (mPar3), a key cell polarity determinant, exhibits dynamic distribution in radial glial progenitors. While it is enriched at the lateral membrane domain in the ventricular endfeet during interphase, mPar3 becomes dispersed and shows asymmetric localization as cell cycle progresses. Either removal or ectopic expression of mPar3 prevents radial glial progenitors from dividing asymmetrically yet generates different outcomes in daughter cell fate specification. Furthermore, the expression level of mPar3 affects Notch signaling, and manipulations of Notch signaling or Numb expression suppress mPar3 regulation of radial glial cell division and daughter cell fate specification. These results reveal a critical molecular pathway underlying asymmetric cell division of radial glial progenitors in the mammalian neocortex. PMID:19640478

  14. Towards quantitative metabolomics of mammalian cells: development of a metabolite extraction protocol.

    PubMed

    Dietmair, Stefanie; Timmins, Nicholas E; Gray, Peter P; Nielsen, Lars K; Krömer, Jens O

    2010-09-15

    Metabolomics aims to quantify all metabolites within an organism, thereby providing valuable insight into the metabolism of cells. To study intracellular metabolites, they are first extracted from the cells. The ideal extraction procedure should immediately quench metabolism and quantitatively extract all metabolites, a significant challenge given the rapid turnover and physicochemical diversity of intracellular metabolites. We have evaluated several quenching and extraction solutions for their suitability for mammalian cells grown in suspension. Quenching with 60% methanol (buffered or unbuffered) resulted in leakage of intracellular metabolites from the cells. In contrast, quenching with cold isotonic saline (0.9% [w/v] NaCl, 0.5 degrees C) did not damage cells and effectively halted conversion of ATP to ADP and AMP, indicative of metabolic arrest. Of the 12 different extraction methods tested, cold extraction in 50% aqueous acetonitrile was superior to other methods. The recovery of a mixture of standards was excellent, and the concentration of extracted intracellular metabolites was higher than for the other methods tested. The final protocol is easy to implement and can be used to study the intracellular metabolomes of mammalian cells. PMID:20435011

  15. Demands for carbohydrates as major energy substrates depend on the preimplantation developmental stage in pig embryos: Differential use of fructose by parthenogenetic diploids before and after the 4-cell stage in the pig

    PubMed Central

    SHIBUTANI, Mihiro; LEE, Jibak; MIYANO, Takashi; MIYAKE, Masashi

    2015-01-01

    The embryo culture technique has been improving, but the detailed demands for energy substrates such as glucose, fructose, pyruvate and lactate of preimplantation embryos are still unclear. In the present study, the demands of pig preimplantation embryos at each different developmental stage were investigated by use of parthenogenetic diploids as a model of pig preimplantation embryos. Pig parthenogenetic diploids showed different use of glucose and fructose before and after the 4-cell stage. Although glucose supported the development of pig embryos throughout the preimplantation stages and even maintained the expansion and hatching of blastocysts, it suppressed development to the blastocyst stage when glucose coexisted with pyruvate and lactate from 4 h after activation, but not after 48 h (early 4-cell stage). Since ketohexokinase that metabolizes fructose was not expressed in 2-cell and 4-cell diploids, a medium that included only fructose as a major energy substrate did not support early cleavage of pig diploids beyond the 4-cell stage, and almost no diploids developed to the morula stage just as in a medium without carbohydrates. These results may explain the different suppressive effects on pig preimplantation development between glucose and fructose when pyruvate and lactate were present in a medium. In addition, 4-cell diploids that had been cultured in a medium with pyruvate and lactate developed to the expanded blastocyst stage without any carbohydrates as a major energy substrate. These results show that the demands for carbohydrates are different depending on the developmental stage in pig preimplantation embryos. PMID:25736264

  16. The biology and dynamics of mammalian cortical granules

    PubMed Central

    2011-01-01

    Cortical granules are membrane bound organelles located in the cortex of unfertilized oocytes. Following fertilization, cortical granules undergo exocytosis to release their contents into the perivitelline space. This secretory process, which is calcium dependent and SNARE protein-mediated pathway, is known as the cortical reaction. After exocytosis, the released cortical granule proteins are responsible for blocking polyspermy by modifying the oocytes' extracellular matrices, such as the zona pellucida in mammals. Mammalian cortical granules range in size from 0.2 um to 0.6 um in diameter and different from most other regulatory secretory organelles in that they are not renewed once released. These granules are only synthesized in female germ cells and transform an egg upon sperm entry; therefore, this unique cellular structure has inherent interest for our understanding of the biology of fertilization. Cortical granules are long thought to be static and awaiting in the cortex of unfertilized oocytes to be stimulated undergoing exocytosis upon gamete fusion. Not till recently, the dynamic nature of cortical granules is appreciated and understood. The latest studies of mammalian cortical granules document that this organelle is not only biochemically heterogeneous, but also displays complex distribution during oocyte development. Interestingly, some cortical granules undergo exocytosis prior to fertilization; and a number of granule components function beyond the time of fertilization in regulating embryonic cleavage and preimplantation development, demonstrating their functional significance in fertilization as well as early embryonic development. The following review will present studies that investigate the biology of cortical granules and will also discuss new findings that uncover the dynamic aspect of this organelle in mammals. PMID:22088197

  17. Developing a de novo targeted knock-in method based on in utero electroporation into the mammalian brain.

    PubMed

    Tsunekawa, Yuji; Terhune, Raymond Kunikane; Fujita, Ikumi; Shitamukai, Atsunori; Suetsugu, Taeko; Matsuzaki, Fumio

    2016-09-01

    Genome-editing technology has revolutionized the field of biology. Here, we report a novel de novo gene-targeting method mediated by in utero electroporation into the developing mammalian brain. Electroporation of donor DNA with the CRISPR/Cas9 system vectors successfully leads to knock-in of the donor sequence, such as EGFP, to the target site via the homology-directed repair mechanism. We developed a targeting vector system optimized to prevent anomalous leaky expression of the donor gene from the plasmid, which otherwise often occurs depending on the donor sequence. The knock-in efficiency of the electroporated progenitors reached up to 40% in the early stage and 20% in the late stage of the developing mouse brain. Furthermore, we inserted different fluorescent markers into the target gene in each homologous chromosome, successfully distinguishing homozygous knock-in cells by color. We also applied this de novo gene targeting to the ferret model for the study of complex mammalian brains. Our results demonstrate that this technique is widely applicable for monitoring gene expression, visualizing protein localization, lineage analysis and gene knockout, all at the single-cell level, in developmental tissues. PMID:27578183

  18. Early mammalian development under conditions of reorientation relative to the gravity vector

    NASA Technical Reports Server (NTRS)

    Wolgemuth, D. J.; Grills, G. S.

    1985-01-01

    A clinostat was used to assess the effects of reorientation relative to the gravity vector on mammalian germ cells cultured in vitro. Previous studies using this system revealed an inhibition of meiotic maturation of mouse oocytes. In the present study, the effects of clinostat rotation on in vitro fertilization were examined. The frequency of fertilization of experimental cultures did not vary from that of the clinostat vertical control cultures at either of the rotation rates examined. Importantly, no abnormalities of fertilization, such as parthenogenetic activation, fragmentation, or polyspermy were seen. It is concluded that the initial events of fertilization were unaffected by this treatment, although the developmental potential of these embryos remains to be assessed.

  19. Mammalian Target of Rapamycin: Its Role in Early Neural Development and in Adult and Aged Brain Function.

    PubMed

    Garza-Lombó, Carla; Gonsebatt, María E

    2016-01-01

    The kinase mammalian target of rapamycin (mTOR) integrates signals triggered by energy, stress, oxygen levels, and growth factors. It regulates ribosome biogenesis, mRNA translation, nutrient metabolism, and autophagy. mTOR participates in various functions of the brain, such as synaptic plasticity, adult neurogenesis, memory, and learning. mTOR is present during early neural development and participates in axon and dendrite development, neuron differentiation, and gliogenesis, among other processes. Furthermore, mTOR has been shown to modulate lifespan in multiple organisms. This protein is an important energy sensor that is present throughout our lifetime its role must be precisely described in order to develop therapeutic strategies and prevent diseases of the central nervous system. The aim of this review is to present our current understanding of the functions of mTOR in neural development, the adult brain and aging. PMID:27378854

  20. Mammalian Target of Rapamycin: Its Role in Early Neural Development and in Adult and Aged Brain Function

    PubMed Central

    Garza-Lombó, Carla; Gonsebatt, María E.

    2016-01-01

    The kinase mammalian target of rapamycin (mTOR) integrates signals triggered by energy, stress, oxygen levels, and growth factors. It regulates ribosome biogenesis, mRNA translation, nutrient metabolism, and autophagy. mTOR participates in various functions of the brain, such as synaptic plasticity, adult neurogenesis, memory, and learning. mTOR is present during early neural development and participates in axon and dendrite development, neuron differentiation, and gliogenesis, among other processes. Furthermore, mTOR has been shown to modulate lifespan in multiple organisms. This protein is an important energy sensor that is present throughout our lifetime its role must be precisely described in order to develop therapeutic strategies and prevent diseases of the central nervous system. The aim of this review is to present our current understanding of the functions of mTOR in neural development, the adult brain and aging. PMID:27378854

  1. Effect of Maternal Methionine Supplementation on the Transcriptome of Bovine Preimplantation Embryos

    PubMed Central

    Peñagaricano, Francisco; Souza, Alex H.; Carvalho, Paulo D.; Driver, Ashley M.; Gambra, Rocio; Kropp, Jenna; Hackbart, Katherine S.; Luchini, Daniel; Shaver, Randy D.; Wiltbank, Milo C.; Khatib, Hasan

    2013-01-01

    Maternal nutrition exclusively during the periconceptional period can induce remarkable effects on both oocyte maturation and early embryo development, which in turn can have lifelong consequences. The objective of this study was to evaluate the effect of maternal methionine supplementation on the transcriptome of bovine preimplantation embryos. Holstein cows were randomly assigned to one of two treatments differing in level of dietary methionine (1.89 Met vs. 2.43 Met % of metabolizable protein) from calving until embryo flushing. High quality preimplantation embryos from individual cows were pooled and then analyzed by RNA sequencing. Remarkably, a subtle difference in methionine supplementation in maternal diet was sufficient to cause significant changes in the transcriptome of the embryos. A total of 276 genes out of 10,662 showed differential expression between treatments (FDR <0.10). Interestingly, several of the most significant genes are related to embryonic development (e.g., VIM, IFI6, BCL2A1, and TBX15) and immune response (e.g., NKG7, TYROBP, SLAMF7, LCP1, and BLA-DQB). Likewise, gene set enrichment analysis revealed that several Gene Ontology terms, InterPro entries, and KEGG pathways were enriched (FDR <0.05) with differentially expressed genes involved in embryo development and immune system. The expression of most genes was decreased by maternal methionine supplementation, consistent with reduced transcription of genes with increased methylation of specific genes by increased methionine. Overall, our findings provide evidence that supplementing methionine to dams prior to conception and during the preimplantation period can modulate gene expression in bovine blastocysts. The ramifications of the observed gene expression changes for subsequent development of the pregnancy and physiology of the offspring warrant further investigation in future studies. PMID:23991086

  2. Mammalian aromatases.

    PubMed

    Conley, A; Hinshelwood, M

    2001-05-01

    Aromatase is the enzyme complex that catalyses the synthesis of oestrogens from androgens, and therefore it has unique potential to influence the physiological balance between the sex steroid hormones. Both aromatase cytochrome P450 (P450arom) and NADPH-cytochrome P450 reductase (reductase), the two essential components of the enzyme complex, are highly conserved among mammals and vertebrates. Aromatase expression occurs in the gonads and brain, and is essential for reproductive development and fertility. Of interest are the complex mechanisms involving alternative promoter utilization that have evolved to control tissue-specific expression in these tissues. In addition, in a number of species, including humans, expression of aromatase has a broader tissue distribution, including placenta, adipose and bone. The relevance of oestrogen synthesis and possibly androgen metabolism in these peripheral sites of expression is now becoming clear from studies in P450arom knockout (ArKO) mice and from genetic defects recognized recently in both men and women. Important species differences in the physiological roles of aromatase expression are also likely to emerge, despite the highly conserved nature of the enzyme system. The identification of functionally distinct, tissue-specific isozymes of P450arom in at least one mammal, pigs, and several species of fish indicates that there are additional subtle, but physiologically significant, species-specific roles for aromatase. Comparative studies of mammalian and other vertebrate aromatases will expand understanding of the role played by this ancient enzyme system in the evolution of reproduction and the adaptive influence of oestrogen synthesis on general health and well being. PMID:11427156

  3. Functional characterization of SOX2 in bovine preimplantation embryos.

    PubMed

    Goissis, Marcelo D; Cibelli, Jose B

    2014-02-01

    To date, efforts to establish pluripotent embryonic stem cells from bovine embryos have failed. The lack of reliable pluripotency markers is an important drawback when attempting to derive these cells. This study aimed to identify genes upregulated in the inner cell mass (ICM) of bovine blastocysts, and we selected SOX2 for further characterization. Spatial and temporal localization of the SOX2 protein revealed that its expression starts at the 16-cell stage and then becomes restricted to the ICMs of blastocysts. To study the role of SOX2 during the early development of bovine embryos, we designed siRNA to target SOX2. We began by injecting this siRNA into zygotes; the rate at which blastocysts developed declined compared to noninjected or scramble-injected controls. When only one blastomere of a two-cell embryo was injected with SOX2 siRNA, we observed development rates similar to those of controls. Daughter cells of the injected blastomere were tracked by TRITC fluorescence and found to contribute to the ICM, as select cells also lacked SOX2. Gene expression analysis revealed a decrease in SOX2 and NANOG gene expression in siRNA-injected embryos, but OCT4 expression remained unchanged. We conclude that SOX2 localizes exclusively in the ICM of bovine blastocysts, and its downregulation negatively impacts preimplantation development; however, it is still unclear as to why downregulation of SOX2 in one cell of a two-cell embryo does not affect the composition of the ICM. PMID:24389873

  4. Regulation of histone H3 lysine 9 methylation in oocytes and early pre-implantation embryos.

    PubMed

    Liu, Honglin; Kim, Jin-Moon; Aoki, Fugaku

    2004-05-01

    Epigenetic modifications of the genome, such as covalent modification of histone residues, ensure appropriate gene activation during pre-implantation development, and are probably involved in the asymmetric reprogramming of the parental genomes after fertilization. We investigated the methylation patterns of histone H3 at lysine 9 (H3/K9), and the regulatory mechanism involved in the asymmetric remodeling of parental genomes during early preimplantation development in mice. Immunocytochemistry with an antibody that specifically recognizes methylated H3/K9 showed a very weak or absent methylation signal in the male pronucleus, whereas a distinct methylation signal was detected in the female pronucleus. This asymmetric H3/K9 methylation pattern in the different parental genomes persisted until the two-cell stage. However, de novo methylation of H3/K9 occurred and the asymmetry was lost during the four-cell stage. The unmethylated male pronucleus underwent de novo methylation when it was transferred into enucleated GV- or MII-stage oocytes, which suggests that histone H3 methylase is active before fertilization, but not afterwards, and that the asymmetric methylation pattern is generated by this change in methylase activity in the cytoplasm after fertilization. Thus, histone H3 is methylated only in the maternal chromosomes, which are present in the oocytes before fertilization, and is not methylated in the paternal chromosomes, which are absent. The maintenance of asymmetric H3/K9 methylation patterns in early embryos is an active process that depends on protein synthesis and zygotic transcription, as de novo methylation in the male pronucleus occurred when either protein synthesis or gene expression was inhibited by cycloheximide or alpha-amanitin, respectively. In addition, corresponding de novo methylation of H3/K9 and DNA occurred when the male pronucleus was transferred to an enucleated GV oocyte. Our results suggest that H3/K9 methylation is an epigenetic

  5. Abscisic Acid: A Phytohormone and Mammalian Cytokine as Novel Pharmacon with Potential for Future Development into Clinical Applications.

    PubMed

    Sakthivel, Priya; Sharma, Niharika; Klahn, Philipp; Gereke, Marcus; Bruder, Dunja

    2016-01-01

    The isoprenoid stress-associated phytohormone abscisic acid (ABA) has recently been recognized to possess multifaceted biological functions in mammals and to exert potent curative effects in a number of clinically relevant human diseases. Studies with human specimens have unequivocally shown that ABA retains its stress-related functional attributes, previously identified in plants, which contribute to enhanced inflammatory defense mechanisms in mammals. Besides, studies performed in animal models revealed prominent anti-inflammatory properties of ABA as indicated by a marked reduction of immune cell infiltrates at the sites of inflammation. Thus, ABA treatment ultimately leads to the profound improvement of both non-communicable and communicable diseases which are associated with an overall alleviated course of inflammation. In addition to its action on the mammalian immune system, ABA was also shown to exert diverse physiological functions on non-immune components. One of the most remarkable features of ABA is to stimulate and expand mesenchymal stem cells, which may open a new avenue for its potential use in the field of regenerative medicine. Furthermore, ABA has been reported to play an important role in the maintenance of glycemic control. In this review, we summarize current understanding of the significance of ABA in the mammalian system, its prophylactic and therapeutic effects in various disease settings and the future directions for the development of ABA as novel drug candidate for the improved treatment of inflammatory and infectious human diseases. PMID:27048335

  6. The gyrification of mammalian cerebral cortex: quantitative evidence of anisomorphic surface expansion during phylogenetic and ontogenetic development.

    PubMed

    Mayhew, T M; Mwamengele, G L; Dantzer, V; Williams, S

    1996-02-01

    Describing the shapes of 3D objects has proved to be as problematical in biology as in other areas. In an attempt to tackle this problem, established stereological methods (the Cavalieri principle and vertical sectioning) have been used to estimate a 3D shape-dependent quantity which can detect anisomorphic changes and is related to the degree of cortical convolution or gyrification. This isomophy factor is employed to assess phylogenetic and ontogenetic changes in the mammalian cerebral cortex. Gross anatomical differences between cerebral hemispheres of adult domestic mammals (horses, oxen, pigs, goats, dogs, cats and rabbits) were tested by paying attention to species, laterality and sex differences. Human fetal brains were also studied. Mean body weights of domestic mammals varied from 4 kg to 460 kg and brain weights from 10 g to 636 g. Fetuses weighed 39-610 g (crown-rump lengths 85-185 mm) and brain volumes were 4-56 cm3. Isomorphy factors were derived from estimates of hemisphere volumes and cortical surface areas. Hemisphere shape varied between species but no lateral or sex differences were detected. It is concluded that these mammalian brains are, in terms of their gross anatomy, symmetric and not sexually dimorphic. Fetal brains became more convoluted during uterine development. The isomorphy factor offers a convenient measure of gyrification which demonstrates that brains become more convoluted as they enlarge. PMID:8655415

  7. Effect of incubation volume and embryo density on the development and viability of mouse embryos in vitro.

    PubMed

    Lane, M; Gardner, D K

    1992-04-01

    The morphology, cleavage rate and viability of preimplantation embryos from random bred Swiss mice were assessed after culture in different incubation volumes and embryo densities. Decreasing the incubation volume, from 320 to 20 microliters, significantly increased blastocyst cell number (P less than 0.01) and embryo development after transfer (P less than 0.01). Increasing the number of embryos incubated per drop from 1 to 16 significantly increased the number of two-cell embryos reaching the blastocyst stage in 5 or 320 microliters. Culturing embryos in groups significantly increased blastocyst cell numbers in all volumes employed and elevated embryo viability. Such observations are consistent with the hypothesis that the preimplantation mammalian embryo produces a factor(s) which can stimulate its own development. The results of this study have implications for clinical in-vitro fertilization, where embryos are routinely cultured individually in relatively large volumes. PMID:1522203

  8. Melatonin inhibits paraquat-induced cell death in bovine preimplantation embryos.

    PubMed

    Pang, Yun-Wei; Sun, Ye-Qing; Sun, Wei-Jun; Du, Wei-Hua; Hao, Hai-Sheng; Zhao, Shan-Jiang; Zhu, Hua-Bin

    2016-03-01

    Preimplantation embryos are sensitive to oxidative stress-induced damage that can be caused by reactive oxygen species (ROS) originating from normal embryonic metabolism and/or the external surroundings. Paraquat (PQ), a commonly used pesticide and potent ROS generator, can induce embryotoxicity. The present study aimed to investigate the effects of melatonin on PQ-induced damage during embryonic development in bovine preimplantation embryos. PQ treatment significantly reduced the ability of bovine embryos to develop to the blastocyst stage, and the addition of melatonin markedly reversed the developmental failure caused by PQ (20.9% versus 14.3%). Apoptotic assay showed that melatonin pretreatment did not change the total cell number in blastocysts, but the incidence of apoptotic nuclei and the release of cytochrome c were significantly decreased. Using real-time quantitative polymerase chain reaction analysis, we found that melatonin pre-incubation significantly altered the expression levels of genes associated with redox signaling, particularly by attenuating the transcript level of Txnip and reinforcing the expression of Trx. Furthermore, melatonin pretreatment significantly reduced the expression of the pro-apoptotic caspase-3 and Bax, while the expression of the anti-apoptotic Bcl-2 and XIAP was unaffected. Western blot analysis showed that melatonin protected bovine embryos from PQ-induced damage in a p38-dependent manner, but extracellular signal-regulated kinase (ERK) and c-JUN N-terminal kinase (JNK) did not appear to be involved. Together, these results identify an underlying mechanism by which melatonin enhances the developmental potential of bovine preimplantation embryos under oxidative stress conditions. PMID:26607207

  9. Variation in mammalian proximal femoral development: comparative analysis of two distinct ossification patterns

    PubMed Central

    Serrat, Maria A; Reno, Philip L; McCollum, Melanie A; Meindl, Richard S; Lovejoy, C Owen

    2007-01-01

    The developmental anatomy of the proximal femur is complex. In some mammals, including humans, the femoral head and greater trochanter emerge as separate ossification centres within a common chondroepiphysis and remain separate throughout ontogeny. In other species, these secondary centres coalesce within the chondroepiphysis to form a single osseous epiphysis much like the proximal humerus. These differences in femoral ontogeny have not been previously addressed, yet are critical to an understanding of femoral mineralization and architecture across a wide range of mammals and may have key implications for understanding and treating hip abnormalities in humans. We evaluated femora from 70 mammalian species and categorized each according to the presence of a ‘separate’ or ‘coalesced’ proximal epiphysis based on visual assessment. We found that ossification type varies widely among mammals: taxa in the ‘coalesced’ group include marsupials, artiodactyls, perissodactyls, bats, carnivores and several primates, while the ‘separate’ group includes hominoids, many rodents, tree shrews and several marine species. There was no clear relationship to body size, phylogeny or locomotion, but qualitative and quantitative differences between the groups suggest that ossification type may be primarily an artefact of femoral shape and neck length. As some osseous abnormalities of the human hip appear to mimic the normal morphology of species with coalesced epiphyses, these results may provide insight into the aetiology and treatment of human hip disorders such as femoroacetabular impingement and early-onset osteoarthritis. PMID:17331175

  10. BMP-FGF Signaling Axis Mediates Wnt-Induced Epidermal Stratification in Developing Mammalian Skin

    PubMed Central

    Zhu, Xiao-Jing; Liu, YuDong; Dai, Zhong-Min; Zhang, Xiaoyun; Yang, XueQin; Li, Yan; Qiu, Mengsheng; Fu, Jiang; Hsu, Wei; Chen, YiPing; Zhang, Zunyi

    2014-01-01

    Epidermal stratification of the mammalian skin requires proliferative basal progenitors to generate intermediate cells that separate from the basal layer and are replaced by post-mitotic cells. Although Wnt signaling has been implicated in this developmental process, the mechanism underlying Wnt-mediated regulation of basal progenitors remains elusive. Here we show that Wnt secreted from proliferative basal cells is not required for their differentiation. However, epidermal production of Wnts is essential for the formation of the spinous layer through modulation of a BMP-FGF signaling cascade in the dermis. The spinous layer defects caused by disruption of Wnt secretion can be restored by transgenically expressed Bmp4. Non-cell autonomous BMP4 promotes activation of FGF7 and FGF10 signaling, leading to an increase in proliferative basal cell population. Our findings identify an essential BMP-FGF signaling axis in the dermis that responds to the epidermal Wnts and feedbacks to regulate basal progenitors during epidermal stratification. PMID:25329657

  11. Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells.

    PubMed

    Grow, Edward J; Flynn, Ryan A; Chavez, Shawn L; Bayless, Nicholas L; Wossidlo, Mark; Wesche, Daniel J; Martin, Lance; Ware, Carol B; Blish, Catherine A; Chang, Howard Y; Pera, Renee A Reijo; Wysocka, Joanna

    2015-06-11

    Endogenous retroviruses (ERVs) are remnants of ancient retroviral infections, and comprise nearly 8% of the human genome. The most recently acquired human ERV is HERVK(HML-2), which repeatedly infected the primate lineage both before and after the divergence of the human and chimpanzee common ancestor. Unlike most other human ERVs, HERVK retained multiple copies of intact open reading frames encoding retroviral proteins. However, HERVK is transcriptionally silenced by the host, with the exception of in certain pathological contexts such as germ-cell tumours, melanoma or human immunodeficiency virus (HIV) infection. Here we demonstrate that DNA hypomethylation at long terminal repeat elements representing the most recent genomic integrations, together with transactivation by OCT4 (also known as POU5F1), synergistically facilitate HERVK expression. Consequently, HERVK is transcribed during normal human embryogenesis, beginning with embryonic genome activation at the eight-cell stage, continuing through the emergence of epiblast cells in preimplantation blastocysts, and ceasing during human embryonic stem cell derivation from blastocyst outgrowths. Remarkably, we detected HERVK viral-like particles and Gag proteins in human blastocysts, indicating that early human development proceeds in the presence of retroviral products. We further show that overexpression of one such product, the HERVK accessory protein Rec, in a pluripotent cell line is sufficient to increase IFITM1 levels on the cell surface and inhibit viral infection, suggesting at least one mechanism through which HERVK can induce viral restriction pathways in early embryonic cells. Moreover, Rec directly binds a subset of cellular RNAs and modulates their ribosome occupancy, indicating that complex interactions between retroviral proteins and host factors can fine-tune pathways of early human development. PMID:25896322

  12. Mammalian pheromones.

    PubMed

    Liberles, Stephen D

    2014-01-01

    Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors. PMID:23988175

  13. Mammalian Pheromones

    PubMed Central

    Liberles, Stephen D.

    2015-01-01

    Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d ) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors. PMID:23988175

  14. [Molecular Karyotyping of Cell-Free DNA from Blastocoele Fluid as a Basis for Noninvasive Preimplantation Genetic Screening of Aneuploidy].

    PubMed

    Skryabin, N A; Lebedev, I N; Artukhova, V G; Zhigalina, D I; Stepanov, I A; Krivoschekova, G V; Svetlakov, A V

    2015-11-01

    The discovery of DNA fragments in the blastocoele fluid is promising for the development of new noninvasive methods for the preimplantation genetic diagnosis of chromosomal diseases. However, to date there are no data confirming the concordance between the molecular karyotype of cell-free DNA from blastocoele fluid and the blastocyst cells per se. This paper reports on this concordance according to the results of molecular-cytogenetic analysis of the chromosomal set with the use of comparative genomic hybridization. PMID:26845860

  15. The primate preimplantation embryo is a target for relaxin during early pregnancy

    PubMed Central

    VandeVoort, Catherine A.; Mtango, Namdori R.; Latham, Keith E.; StewartPhD, Dennis R.

    2011-01-01

    OBJECTIVE To determine if preimplantation embryos are targets for relaxin secreted from the corpus luteum of the menstrual cycle. DESIGN Rhesus monkey oocytes obtained from females undergoing controlled ovarian hyperstimulation were inseminated and the resulting embryos were cultured in medium with or without recombinant human relaxin (20 ng/ml) for 8 days. SETTING Research laboratory. ANIMALS Rhesus monkey. INTERVENTIONS Controlled ovarian stimulation to obtain oocytes for in vitro produced embryos that were cultured with or without human recombinant relaxin. MAIN OUTCOME MEASURES The rate of blastocyst development and the percentage of blastocysts and ICM/TE ratio were measured on Day 8 of culture. The presence of relaxin receptor (RXFP1) mRNA in 8 cell embryos was observed by array hybridization. RESULTS RXFP1 receptor expression was localized to the inner cell mass of blastocysts as shown by immunohistochemistry. The percentage of embryos that developed to blastocyst and the inner cell mass/ trophectoderm cell ratio was unchanged with relaxin supplementation, however the relaxin-treated embryos developed into blastocysts significantly sooner than untreated embryos. CONCLUSIONS These results are the first evidence that the preimplantation primate embryo is a target for relaxin and that the addition of relaxin to in vitro culture medium enhances rhesus monkey embryo development. PMID:21645893

  16. Discovery of a Novel Prolactin in Non-Mammalian Vertebrates: Evolutionary Perspectives and Its Involvement in Teleost Retina Development

    PubMed Central

    Huang, Xigui; Hui, Michelle N. Y.; Liu, Yun; Yuen, Don S. H.; Zhang, Yong; Chan, Wood Yee; Lin, Hao Ran; Cheng, Shuk Han; Cheng, Christopher H. K.

    2009-01-01

    Background The three pituitary hormones, viz. prolactin (PRL), growth hormone (GH) and somatolactin (SL), together with the mammalian placental lactogen (PL), constitute a gene family of hormones with similar gene structure and encoded protein sequences. These hormones are believed to have evolved from a common ancestral gene through several rounds of gene duplication and subsequent divergence. Principal Findings In this study, we have identified a new PRL-like gene in non-mammalian vertebrates through bioinformatics and molecular cloning means. Phylogenetic analyses showed that this novel protein is homologous to the previously identified PRL. A receptor transactivation assay further showed that this novel protein could bind to PRL receptor to trigger the downstream post-receptor event, indicating that it is biologically active. In view of its close phylogenetic relationship with PRL and also its ability to activate PRL receptor, we name it as PRL2 and the previously identified PRL as PRL1. All the newly discovered PRL2 sequences possess three conserved disulfide linkages with the exception of the shark PRL2 which has only two. In sharp contrast to the classical PRL1 which is predominantly expressed in the pituitary, PRL2 was found to be mainly expressed in the eye and brain of the zebrafish but not in the pituitary. A largely reduced inner nuclear layer of the retina was observed after morpholino knockdown of zebrafish PRL2, indicating its role on retina development in teleost. Significance The discovery of this novel PRL has revitalized our understanding on the evolution of the GH/PRL/SL/PL gene family. Its unique expression and functions in the zebrafish eye also provide a new avenue of research on the neuroendocrine control of retina development in vertebrates. PMID:19584915

  17. Loss- and Gain-of-function Approach to Investigate Early Cell Fate Determinants in Preimplantation Mouse Embryos.

    PubMed

    Lee, Jae H; Cho, Yong Ii; Choi, Sung S; Kim, Hae-Won; Min, Churl K; Lee, Sang J

    2016-01-01

    Gene silencing and overexpression techniques are instrumental for the identification of genes involved in embryonic development. Direct target gene modification in preimplantation embryos provides a means to study the underlying mechanisms of genes implicated in, for instance, cellular differentiation into the trophectoderm (TE) and the inner cell mass (ICM). Here, we describe a protocol that examines the role of neogenin as an authentic receptor for initial cell fate determination in preimplantation mouse embryos. First, we discuss the experimental manipulations that were used to produce gain and loss of neogenin function by microinjecting neogenin cDNA and shRNA; the effectiveness of this approach was confirmed by a strong correlation between the pair-wise expression levels of either red fluorescent protein (RFP) or green fluorescent protein (GFP) and the immunocytochemical quantification of neogenin expression. Secondly, overexpression of neogenin in preimplantation mouse embryos leads to normal ICM development while neogenin knockdown causes the ICM to develop abnormally, implying that neogenin could be a receptor that relays extracellular cues to drive blastomeres to early cell fates. Given the success of this detailed protocol in investigating the function of a novel embryonic developmental stage-specific receptor, we propose that it has the potential to aid in exploration and identification of other stage-specific genes during embryogenesis. PMID:27341639

  18. Role of lipids on elongation of the preimplantation conceptus in ruminants.

    PubMed

    Ribeiro, Eduardo S; Santos, José E P; Thatcher, William W

    2016-10-01

    Elongation of the preimplantation conceptus is a prerequisite for successful pregnancy in ruminants and depends on histotroph secretion by the endometrium. Lipids are an essential component of the histotroph, and recent studies indicate that lipids have important roles in the elongation phase of conceptus development. The onset of elongation is marked by dynamic changes in the transcriptome of trophectoderm cells, which are associated with lipid metabolism. During elongation, the trophectoderm increases transcript expression of genes related to uptake, metabolism and de novo biosynthesis of fatty acids and prostaglandins. Expression of the gene PPARG increases substantially, and activation of the transcription factor PPARG by binding of lipid ligands appears to be crucial for the coordination of cell biology during elongation. Lipids accumulated in the epithelial cells of the endometrium during diestrus are likely the most important source of fatty acids for utilization by the conceptus and become available in the uterine lumen through exporting of exosomes, microvesicles, carrier proteins and lipoproteins. Targeting of uterine lipid metabolism and PPARG activity during preimplantation conceptus development through nutraceutical diets may be a good strategy to improve pregnancy survival and reproductive efficiency in ruminants. PMID:27335133

  19. Effects of ammonium dinitramide on preimplantation embryos in Sprague-Dawley rats.

    PubMed

    Graeter, L J; Wolfe, R E; Kinkead, E R; Flemming, C D

    1998-01-01

    Ammonium dinitramide (ADN) is a class 1.1 oxidizer that may be used in rocket propellants and explosives. Previous studies have shown that ADN is a female reproductive toxicant, causing implantation failure in Sprague-Dawley rats when it is administered during the preimplantation period of gestation. The purpose of this follow-up study was to identify the mechanism(s) associated with implantation failure following exposure to ADN. Mated female rats were treated with 2.0 grams per liter (g l-1) ADN in their drinking water for 24, 48, 72, or 96 h before preimplantation embryos were harvested from the oviducts or uterine horns. On gestation day 1 (GD-1), comparable numbers of morphologically normal two-cell embryos were harvested from the oviducts of the treatment and control groups. On GD-2, the development of the embryos harvested from the treated animals was either slowed or halted when compared to the control embryos. By GD-4, 98% of the embryos harvested from the control group had developed to the morula or blastocyst stage; these were collected from the uterine horns. On GD-4 in the treated group, 41% of the harvested embryos remained at the two- to six-cell stage and 59% were degenerate; 82% of these embryos were collected from the oviducts. These data suggest that the implantation failure seen in animals treated with ADN is due to embryolethality. PMID:9891911

  20. Preimplantation genetic diagnosis for cystic fibrosis: a case report

    PubMed Central

    Biazotti, Maria Cristina Santoro; Pinto, Walter; de Albuquerque, Maria Cecília Romano Maciel; Fujihara, Litsuko Shimabukuro; Suganuma, Cláudia Haru; Reigota, Renata Bednar; Bertuzzo, Carmen Sílvia

    2015-01-01

    Cystic fibrosis is an autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator gene. This disorder produces a variable phenotype including lung disease, pancreatic insufficiency, and meconium ileus plus bilateral agenesis of the vas deferens causing obstructive azoospermia and male infertility. Preimplantation genetic diagnosis is an alternative that allows identification of embryos affected by this or other genetic diseases. We report a case of couple with cystic fibrosis; the woman had the I148 T mutation and the man had the Delta F508 gene mutation. The couple underwent in vitro fertilization, associated with preimplantation genetic diagnosis, and with subsequent selection of healthy embryos for uterine transfer. The result was an uneventful pregnancy and delivery of a healthy male baby. PMID:25993078

  1. Preimplantation genetic diagnosis for cystic fibrosis: a case report.

    PubMed

    Biazotti, Maria Cristina Santoro; Pinto Junior, Walter; Albuquerque, Maria Cecília Romano Maciel de; Fujihara, Litsuko Shimabukuro; Suganuma, Cláudia Haru; Reigota, Renata Bednar; Bertuzzo, Carmen Sílvia

    2015-01-01

    Cystic fibrosis is an autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator gene. This disorder produces a variable phenotype including lung disease, pancreatic insufficiency, and meconium ileus plus bilateral agenesis of the vas deferens causing obstructive azoospermia and male infertility. Preimplantation genetic diagnosis is an alternative that allows identification of embryos affected by this or other genetic diseases. We report a case of couple with cystic fibrosis; the woman had the I148 T mutation and the man had the Delta F508 gene mutation. The couple underwent in vitro fertilization, associated with preimplantation genetic diagnosis, and with subsequent selection of healthy embryos for uterine transfer. The result was an uneventful pregnancy and delivery of a healthy male baby. PMID:25993078

  2. Early preimplantation cells expressing Cdx2 exhibit plasticity of specification to TE and ICM lineages through positional changes.

    PubMed

    Toyooka, Yayoi; Oka, Sanae; Fujimori, Toshihiko

    2016-03-01

    The establishment of the trophectoderm (TE) and the inner cell mass (ICM) is the first cell lineage segregation to occur in mouse preimplantation development. These two cell lineages arise in a position-dependent manner at the blastocyst stage: the outer cells form TE, which will generate the future placenta, while the inner cells give rise to the ICM, from which the epiblast (EPI) and primitive endoderm (PrE) arise. Previous studies have shown that a portion of cells relocate from the outside position to the inside during this preimplantation stage, but few studies have investigated the correlation between cell relocation and the expression of key transcription factors critical for cell differentiation. To monitor cell movement and the status of the TE-specification pathway in living embryos, we established Cdx2-GFP reporter mice allowing us to visualize the expression of Caudal-type transcriptional factor (Cdx2), a key regulator of the initiation of TE differentiation. Observation of Cdx2-GFP preimplantation embryos by live cell imaging revealed that all cells localized in an initial outer position initiated the expression of Cdx2. Subsequently, cells that changed their position from an outer to an inner position downregulated Cdx2 expression and contributed to the ICM. Finally we showed that internalized cells likely contribute to both the EPI and PrE. Our datas indicate that cells expressing even high levels of Cdx2 can internalize, deactivate an activated TE-specification molecular pathway and integrate into the pluripotent cell population. PMID:26806703

  3. Selection and Expression Profiles of Reference Genes in Mouse Preimplantation Embryos of Different Ploidies at Various Developmental Stages

    PubMed Central

    Gu, Yanli; Shen, Xinghui; Zhou, Dongjie; Wang, Zhendong; Zhang, Na; Shan, Zhiyan; Jin, Lianhong; Lei, Lei

    2014-01-01

    Real-time reverse transcription quantitative polymerase chain reaction (qPCR) has become the most frequently used system for studies of gene expression. Manystudies have provided reliable evidence that the transcription levels of reference genes are not constant at different developmental stages and in different experimental conditions. However, suitable reference genes which are stably expressed in polyploid preimplantation embryos of different developmental stages have not yet been identified. Therefore, it is critical to verify candidate reference genes to analyze gene expression accurately in both diploid and polyploid embryos. We examined the expression levels of 12 candidate reference genes in preimplantation embryos of four different ploidies at six developmental stages. Stability analysis of the reference genes was performed by four independent software programs, and the stability of three genes was evaluated by comparison with the Oct4 expression level during preimplantation development in diploid embryos. The expression levels of most genes in the polyploid embryos were higher than that in the diploid embryos, but the increasing degree were disproportionate with the ploidies. There were no significant difference in reference gene expressions among embryos of different ploidies when they reached the morula stage, and the expression level remained flat until the blastocyst stage. Ubc, Ppia, and Pgk1 were the three most stable reference genes in diploid and polyploid embryos. PMID:24927500

  4. The Impact of Biopsy on Human Embryo Developmental Potential during Preimplantation Genetic Diagnosis.

    PubMed

    Cimadomo, Danilo; Capalbo, Antonio; Ubaldi, Filippo Maria; Scarica, Catello; Palagiano, Antonio; Canipari, Rita; Rienzi, Laura

    2016-01-01

    Preimplantation Genetic Diagnosis and Screening (PGD/PGS) for monogenic diseases and/or numerical/structural chromosomal abnormalities is a tool for embryo testing aimed at identifying nonaffected and/or euploid embryos in a cohort produced during an IVF cycle. A critical aspect of this technology is the potential detrimental effect that the biopsy itself can have upon the embryo. Different embryo biopsy strategies have been proposed. Cleavage stage blastomere biopsy still represents the most commonly used method in Europe nowadays, although this approach has been shown to have a negative impact on embryo viability and implantation potential. Polar body biopsy has been proposed as an alternative to embryo biopsy especially for aneuploidy testing. However, to date no sufficiently powered study has clarified the impact of this procedure on embryo reproductive competence. Blastocyst stage biopsy represents nowadays the safest approach not to impact embryo implantation potential. For this reason, as well as for the evidences of a higher consistency of the molecular analysis when performed on trophectoderm cells, blastocyst biopsy implementation is gradually increasing worldwide. The aim of this review is to present the evidences published to date on the impact of the biopsy at different stages of preimplantation development upon human embryos reproductive potential. PMID:26942198

  5. The Impact of Biopsy on Human Embryo Developmental Potential during Preimplantation Genetic Diagnosis

    PubMed Central

    Cimadomo, Danilo; Capalbo, Antonio; Ubaldi, Filippo Maria; Scarica, Catello; Palagiano, Antonio; Canipari, Rita; Rienzi, Laura

    2016-01-01

    Preimplantation Genetic Diagnosis and Screening (PGD/PGS) for monogenic diseases and/or numerical/structural chromosomal abnormalities is a tool for embryo testing aimed at identifying nonaffected and/or euploid embryos in a cohort produced during an IVF cycle. A critical aspect of this technology is the potential detrimental effect that the biopsy itself can have upon the embryo. Different embryo biopsy strategies have been proposed. Cleavage stage blastomere biopsy still represents the most commonly used method in Europe nowadays, although this approach has been shown to have a negative impact on embryo viability and implantation potential. Polar body biopsy has been proposed as an alternative to embryo biopsy especially for aneuploidy testing. However, to date no sufficiently powered study has clarified the impact of this procedure on embryo reproductive competence. Blastocyst stage biopsy represents nowadays the safest approach not to impact embryo implantation potential. For this reason, as well as for the evidences of a higher consistency of the molecular analysis when performed on trophectoderm cells, blastocyst biopsy implementation is gradually increasing worldwide. The aim of this review is to present the evidences published to date on the impact of the biopsy at different stages of preimplantation development upon human embryos reproductive potential. PMID:26942198

  6. PRMT5 Protects Genomic Integrity during Global DNA Demethylation in Primordial Germ Cells and Preimplantation Embryos

    PubMed Central

    Kim, Shinseog; Günesdogan, Ufuk; Zylicz, Jan J.; Hackett, Jamie A.; Cougot, Delphine; Bao, Siqin; Lee, Caroline; Dietmann, Sabine; Allen, George E.; Sengupta, Roopsha; Surani, M. Azim

    2014-01-01

    Summary Primordial germ cells (PGCs) and preimplantation embryos undergo epigenetic reprogramming, which includes comprehensive DNA demethylation. We found that PRMT5, an arginine methyltransferase, translocates from the cytoplasm to the nucleus during this process. Here we show that conditional loss of PRMT5 in early PGCs causes complete male and female sterility, preceded by the upregulation of LINE1 and IAP transposons as well as activation of a DNA damage response. Similarly, loss of maternal-zygotic PRMT5 also leads to IAP upregulation. PRMT5 is necessary for the repressive H2A/H4R3me2s chromatin modification on LINE1 and IAP transposons in PGCs, directly implicating this modification in transposon silencing during DNA hypomethylation. PRMT5 translocates back to the cytoplasm subsequently, to participate in the previously described PIWI-interacting RNA (piRNA) pathway that promotes transposon silencing via de novo DNA remethylation. Thus, PRMT5 is directly involved in genome defense during preimplantation development and in PGCs at the time of global DNA demethylation. PMID:25457166

  7. Preimplantation Genetic Diagnosis: Prenatal Testing for Embryos Finally Achieving Its Potential

    PubMed Central

    Stern, Harvey J.

    2014-01-01

    Preimplantation genetic diagnosis was developed nearly a quarter-century ago as an alternative form of prenatal diagnosis that is carried out on embryos. Initially offered for diagnosis in couples at-risk for single gene genetic disorders, such as cystic fibrosis, spinal muscular atrophy and Huntington disease, preimplantation genetic diagnosis (PGD) has most frequently been employed in assisted reproduction for detection of chromosome aneuploidy from advancing maternal age or structural chromosome rearrangements. Major improvements have been seen in PGD analysis with movement away from older, less effective technologies, such as fluorescence in situ hybridization (FISH), to newer molecular tools, such as DNA microarrays and next generation sequencing. Improved results have also started to be seen with decreasing use of Day 3 blastomere biopsy in favor of polar body or Day 5 trophectoderm biopsy. Discussions regarding the scientific, ethical, legal and social issues surrounding the use of sequence data from embryo biopsy have begun and must continue to avoid concern regarding eugenic or inappropriate use of this technology. PMID:26237262

  8. BMP receptor IA is required in mammalian neural crest cells for development of the cardiac outflow tract and ventricular myocardium

    PubMed Central

    Stottmann, Rolf W.; Choi, Murim; Mishina, Yuji; Meyers, Erik N.; Klingensmith, John

    2010-01-01

    Summary The neural crest is a multipotent, migratory cell population arising from the border of the neural and surface ectoderm. In mouse, the initial migratory neural crest cells occur at the five-somite stage. Bone morphogenetic proteins (BMPs), particularly BMP2 and BMP4, have been implicated as regulators of neural crest cell induction, maintenance, migration, differentiation and survival. Mouse has three known BMP2/4 type I receptors, of which Bmpr1a is expressed in the neural tube sufficiently early to be involved in neural crest development from the outset; however, earlier roles in other domains obscure its requirement in the neural crest. We have ablated Bmpr1a specifically in the neural crest, beginning at the five-somite stage. We find that most aspects of neural crest development occur normally; suggesting that BMPRIA is unnecessary for many aspects of early neural crest biology. However, mutant embryos display a shortened cardiac outflow tract with defective septation, a process known to require neural crest cells and to be essential for perinatal viability. Surprisingly, these embryos die in mid-gestation from acute heart failure, with reduced proliferation of ventricular myocardium. The myocardial defect may involve reduced BMP signaling in a novel, minor population of neural crest derivatives in the epicardium, a known source of ventricular myocardial proliferation signals. These results demonstrate that BMP2/4 signaling in mammalian neural crest derivatives is essential for outflow tract development and may regulate a crucial proliferation signal for the ventricular myocardium. PMID:15073157

  9. From zebrafish heart jogging genes to mouse and human orthologs: using Gene Ontology to investigate mammalian heart development.

    PubMed Central

    Lovering, Ruth C

    2014-01-01

    For the majority of organs in developing vertebrate embryos, left-right asymmetry is controlled by a ciliated region; the left-right organizer node in the mouse and human, and the Kuppfer’s vesicle in the zebrafish. In the zebrafish, laterality cues from the Kuppfer’s vesicle determine asymmetry in the developing heart, the direction of ‘heart jogging’ and the direction of ‘heart looping’.  ‘Heart jogging’ is the term given to the process by which the symmetrical zebrafish heart tube is displaced relative to the dorsal midline, with a leftward ‘jog’. Heart jogging is not considered to occur in mammals, although a leftward shift of the developing mouse caudal heart does occur prior to looping, which may be analogous to zebrafish heart jogging. Previous studies have characterized 30 genes involved in zebrafish heart jogging, the majority of which have well defined orthologs in mouse and human and many of these orthologs have been associated with early mammalian heart development.    We undertook manual curation of a specific set of genes associated with heart development and we describe the use of Gene Ontology term enrichment analyses to examine the cellular processes associated with heart jogging.  We found that the human, mouse and zebrafish ‘heart jogging orthologs’ are involved in similar organ developmental processes across the three species, such as heart, kidney and nervous system development, as well as more specific cellular processes such as cilium development and function. The results of these analyses are consistent with a role for cilia in the determination of left-right asymmetry of many internal organs, in addition to their known role in zebrafish heart jogging.    This study highlights the importance of model organisms in the study of human heart development, and emphasises both the conservation and divergence of developmental processes across vertebrates, as well as the limitations of this approach. PMID:24627794

  10. From zebrafish heart jogging genes to mouse and human orthologs: using Gene Ontology to investigate mammalian heart development.

    PubMed

    Khodiyar, Varsha K; Howe, Doug; Talmud, Philippa J; Breckenridge, Ross; Lovering, Ruth C

    2013-01-01

    For the majority of organs in developing vertebrate embryos, left-right asymmetry is controlled by a ciliated region; the left-right organizer node in the mouse and human, and the Kuppfer's vesicle in the zebrafish. In the zebrafish, laterality cues from the Kuppfer's vesicle determine asymmetry in the developing heart, the direction of 'heart jogging' and the direction of 'heart looping'.  'Heart jogging' is the term given to the process by which the symmetrical zebrafish heart tube is displaced relative to the dorsal midline, with a leftward 'jog'. Heart jogging is not considered to occur in mammals, although a leftward shift of the developing mouse caudal heart does occur prior to looping, which may be analogous to zebrafish heart jogging. Previous studies have characterized 30 genes involved in zebrafish heart jogging, the majority of which have well defined orthologs in mouse and human and many of these orthologs have been associated with early mammalian heart development.    We undertook manual curation of a specific set of genes associated with heart development and we describe the use of Gene Ontology term enrichment analyses to examine the cellular processes associated with heart jogging.  We found that the human, mouse and zebrafish 'heart jogging orthologs' are involved in similar organ developmental processes across the three species, such as heart, kidney and nervous system development, as well as more specific cellular processes such as cilium development and function. The results of these analyses are consistent with a role for cilia in the determination of left-right asymmetry of many internal organs, in addition to their known role in zebrafish heart jogging.    This study highlights the importance of model organisms in the study of human heart development, and emphasises both the conservation and divergence of developmental processes across vertebrates, as well as the limitations of this approach. PMID:24627794