Science.gov

Sample records for preischaemic erythropoietin administration

  1. Erythropoietin.

    PubMed

    Bunn, H Franklin

    2013-03-01

    During the past century, few proteins have matched erythropoietin (Epo) in capturing the imagination of physiologists, molecular biologists, and, more recently, physicians and patients. Its appeal rests on its commanding role as the premier erythroid cytokine, the elegant mechanism underlying the regulation of its gene, and its remarkable impact as a therapeutic agent, arguably the most successful drug spawned by the revolution in recombinant DNA technology. This concise review will begin with a synopsis of the colorful history of this protein, culminating in its purification and molecular cloning. It then covers in more detail the contemporary understanding of Epo's physiology as well as its structure and interaction with its receptor. A major part of this article focuses on the regulation of the Epo gene and the discovery of HIF, a transcription factor that plays a cardinal role in molecular adaptation to hypoxia. In the concluding section, a synopsis of Epo's role in disorders of red blood cell production will be followed by an assessment of the remarkable impact of Epo therapy in the treatment of anemias, as well as concerns that provide a strong impetus for the development of even safer and more effective treatment. PMID:23457296

  2. Erythropoietin.

    PubMed

    Jelkmann, Wolfgang

    2016-01-01

    Total hemoglobin (Hb) mass is an important determinant of aerobic power. The glycoprotein erythropoietin (Epo) promotes the production of red blood cells (RBCs). The present article reviews the regulation of erythropoiesis and ways of its manipulation. The various Epos, e.g. recombinant human (rh)Epo and (epoetin), and their long-acting analogues can be misused by cheating athletes, but the drugs are detectable by chemical tests, because their glycan isoform structures differ from those of endogenous Epo. Still, anti-doping control has become more difficult, since additional erythropoiesis-stimulating agents have become available (Epo mimetics, activin inhibitors, and small-molecule chemical drugs activating EPO expression). A major problem is created by hypoxia-inducible factor (HIF) stabilizers (e.g. α-ketoglutarate competitors and Co2+ salt) which activate HIFs and thus increase EPO expression. Direct EPO transfer is theoretically also possible but medically little advanced. To overcome weaknesses of direct testing of biological fluids, the World Anti-Doping Agency has implemented the Athlete Biological Passport for continuous monitoring of RBC parameters of athletes. Blood doping is assumed when distinct parameters (blood Hb concentration and reticulocytes) change in a nonphysiological way. PMID:27348128

  3. The role of pre-ischaemic application of the nitric oxide donor spermine/nitric oxide complex in enhancing flap survival in a rat model.

    PubMed

    Küntscher, M V; Juran, S; Menke, H; Gebhard, M M; Erdmann, D; Germann, G

    2002-07-01

    Spermine/nitric oxide complex (Sper/NO) is a new nitric oxide (NO) donor with a long half-life providing controlled biological release of NO in vivo. The purpose of this study was to determine whether flap survival could be improved by pre-ischaemic or post-ischaemic intravenous administration of Sper/NO. We divided 37 male Wistar rats into four experimental groups. An extended epigastric adipocutaneous flap was raised in each animal. The mean area of flap necrosis was assessed for all groups on the fifth postoperative day, using planimetry software. The average area of flap necrosis was mean +/- s.d. = 68.2%+/-18.1% in the control group, and 29.7% +/- 13.3% in the non-ischaemic controls. The group with pre-ischaemic application of Sper/NO demonstrated an average flap necrosis of mean+/-s.d. = 11.2%+/-5.9%, whereas this increased to 59.2%+/-14.4% in the group receiving Sper/NO 5 min prior to reperfusion. The group with pre-ischaemic application of Sper/NO showed a significantly lower area of flap necrosis than either of the control groups or the group receiving Sper/NO just prior to reperfusion (P < 0.05). The group receiving Sper/NO just prior to reperfusion demonstrated a significantly higher mean area of flap necrosis than the non-ischaemic controls (P < 0.05), but did not differ significantly from the control group. Our data show that pharmacological preconditioning and enhancement of flap survival can be achieved by intravenous administration of Sper/NO. The application of Sper/NO at the end of the ischaemia period or in the early reperfusion period provides no protection against ischaemia-reperfusion injury. PMID:12372374

  4. Effects of Erythropoietin Administration on Adrenal Glands of Landrace/Large White Pigs after Ventricular Fibrillation.

    PubMed

    Faa, Armando; Faa, Gavino; Papalois, Apostolos; Obinu, Eleonora; Locci, Giorgia; Pais, Maria Elena; Lelovas, Pavlos; Barouxis, Dimitrios; Pantazopoulos, Charalampos; Vasileiou, Panagiotis V; Iacovidou, Nicoletta; Xanthos, Theodoros

    2016-01-01

    Aim. To evaluate the effects of erythropoietin administration on the adrenal glands in a swine model of ventricular fibrillation and resuscitation. Methods. Ventricular fibrillation was induced via pacing wire forwarded into the right ventricle in 20 female Landrace/Large White pigs, allocated into 2 groups: experimental group treated with bolus dose of erythropoietin (EPO) and control group which received normal saline. Cardiopulmonary resuscitation (CPR) was performed immediately after drug administration as per the 2010 European Resuscitation Council (ERC) guidelines for Advanced Life Support (ALS) until return of spontaneous circulation (ROSC) or death. Animals who achieved ROSC were monitored, mechanically ventilated, extubated, observed, and euthanized. At necroscopy, adrenal glands samples were formalin-fixed, paraffin-embedded, and routinely processed. Sections were stained with hematoxylin-eosin. Results. Oedema and apoptosis were the most frequent histological changes and were detected in all animals in the adrenal cortex and in the medulla. Mild and focal endothelial lesions were also detected. A marked interindividual variability in the degree of the intensity of apoptosis and oedema at cortical and medullary level was observed within groups. Comparing the two groups, higher levels of pathological changes were detected in the control group. No significant difference between the two groups was observed regarding the endothelial changes. Conclusions. In animals exposed to ventricular fibrillation, EPO treatment has protective effects on the adrenal gland. PMID:27504455

  5. Effects of Erythropoietin Administration on Adrenal Glands of Landrace/Large White Pigs after Ventricular Fibrillation

    PubMed Central

    Faa, Gavino; Papalois, Apostolos; Obinu, Eleonora; Locci, Giorgia; Pais, Maria Elena; Lelovas, Pavlos; Barouxis, Dimitrios; Pantazopoulos, Charalampos; Vasileiou, Panagiotis V.; Iacovidou, Nicoletta; Xanthos, Theodoros

    2016-01-01

    Aim. To evaluate the effects of erythropoietin administration on the adrenal glands in a swine model of ventricular fibrillation and resuscitation. Methods. Ventricular fibrillation was induced via pacing wire forwarded into the right ventricle in 20 female Landrace/Large White pigs, allocated into 2 groups: experimental group treated with bolus dose of erythropoietin (EPO) and control group which received normal saline. Cardiopulmonary resuscitation (CPR) was performed immediately after drug administration as per the 2010 European Resuscitation Council (ERC) guidelines for Advanced Life Support (ALS) until return of spontaneous circulation (ROSC) or death. Animals who achieved ROSC were monitored, mechanically ventilated, extubated, observed, and euthanized. At necroscopy, adrenal glands samples were formalin-fixed, paraffin-embedded, and routinely processed. Sections were stained with hematoxylin-eosin. Results. Oedema and apoptosis were the most frequent histological changes and were detected in all animals in the adrenal cortex and in the medulla. Mild and focal endothelial lesions were also detected. A marked interindividual variability in the degree of the intensity of apoptosis and oedema at cortical and medullary level was observed within groups. Comparing the two groups, higher levels of pathological changes were detected in the control group. No significant difference between the two groups was observed regarding the endothelial changes. Conclusions. In animals exposed to ventricular fibrillation, EPO treatment has protective effects on the adrenal gland. PMID:27504455

  6. Erythropoietin improves mood and modulates the cognitive and neural processing of emotion 3 days post administration.

    PubMed

    Miskowiak, Kamilla; Inkster, Becky; Selvaraj, Sudhakar; Wise, Richard; Goodwin, Guy M; Harmer, Catherine J

    2008-02-01

    Erythropoietin (Epo) has neuroprotective and neurotrophic effects and is a promising candidate for treatment of neurodegenerative and psychiatric disorder. Recently, we demonstrated that Epo modulates memory-relevant hippocampal response and fear processing in human models of antidepressant drug action 1 week post-administration, and improves self-reported mood for 3 days immediately following administration. The present study explored the effects of Epo (40 000 IU) vs saline on self-reported mood and on neural and cognitive function in healthy volunteers 3 days post-administration to test the reliability of the rapid mood improvement and its neuropsychological basis. Neuronal responses during the processing of happy and fearful faces were investigated using functional magnetic resonance imaging (fMRI); facial expression recognition performance was assessed after the fMRI scan. Daily ratings of mood were obtained for 3 days after Epo/saline administration. During faces processing Epo enhanced activation in the left amygdala and right precuneus to happy and fearful expressions. This was paired with improved recognition of all facial expressions, in particular of low intensity happiness and fear. This is similar to behavioral effects observed with acute administration of serotonergic antidepressants. Consistent with our previous finding, Epo improved self-reported mood for all 3 days post-administration. Together, these results suggest that characterization of the effects of Epo in a clinically depressed group is warranted. PMID:17473836

  7. Preclinical evaluation of erythropoietin administration in a model of radiation-induced kidney dysfunction

    SciTech Connect

    Andratschke, Nicolaus; Schnaitera, Andrea; Weber, Wolfgang A.; Caia, Lu; Schill, Sabine; Wiedenmann, Nicole; Schwaiger, Markus; Molls, Michael; Nieder, Carsten . E-mail: cnied@hotmail.com

    2006-04-01

    Purpose: To test whether the clinically available growth factor erythropoietin (EPO) influences radiation-induced normal-tissue damage in a model of kidney dysfunction. Methods: Animal experiments were conducted to test the role of EPO administration in a C3H mouse model of unilateral kidney irradiation with 6, 8, and 10 Gy and to assess the effects of 2 different dose levels of EPO. The kidney function was assessed before radiotherapy, as well as 19, 25, 31, and 37 weeks thereafter by means of {sup 99m}Tc-dimercaptosuccinat scans (static scintigraphy). Results: Concomitant EPO administration significantly increased the degree of radiation-induced kidney dysfunction. A dose of 2,000 IU/kg body weight per injection tended to cause more damage than the lower dose of 500 IU/kg. Conclusion: Administration of growth factors concomitant to radiotherapy might modify the development of kidney dysfunction. Although insulin-like growth factor-1 has previously been shown to protect the kidney, such an effect could not be demonstrated for EPO. The latter agent even increased the development of nephropathy.

  8. Erythropoietin administration protects retinal neurons from acute ischemia-reperfusion injury

    PubMed Central

    Junk, Anna K.; Mammis, Antonios; Savitz, Sean I.; Singh, Manjeet; Roth, Steven; Malhotra, Samit; Rosenbaum, Pearl S.; Cerami, Anthony; Brines, Michael; Rosenbaum, Daniel M.

    2002-01-01

    Erythropoietin (EPO) plays an important role in the brain's response to neuronal injury. Systemic administration of recombinant human EPO (rhEPO) protects neurons from injury after middle cerebral artery occlusion, traumatic brain injury, neuroinflammation, and excitotoxicity. Protection is in part mediated by antiapoptotic mechanisms. We conducted parallel studies of rhEPO in a model of transient global retinal ischemia induced by raising intraocular pressure, which is a clinically relevant model for retinal diseases. We observed abundant expression of EPO receptor (EPO-R) throughout the ischemic retina. Neutralization of endogenous EPO with soluble EPO-R exacerbated ischemic injury, which supports a crucial role for an endogenous EPO/EPO-R system in the survival and recovery of neurons after an ischemic insult. Systemic administration of rhEPO before or immediately after retinal ischemia not only reduced histopathological damage but also promoted functional recovery as assessed by electroretinography. Exogenous EPO also significantly diminished terminal deoxynucleotidyltransferase-mediated dUTP end labeling labeling of neurons in the ischemic retina, implying an antiapoptotic mechanism of action. These results further establish EPO as a neuroprotective agent in acute neuronal ischemic injury. PMID:12130665

  9. Prolonged administration of recombinant human erythropoietin increases submaximal performance more than maximal aerobic capacity.

    PubMed

    Thomsen, J J; Rentsch, R L; Robach, P; Calbet, J A L; Boushel, R; Rasmussen, P; Juel, C; Lundby, C

    2007-11-01

    The effects of recombinant human erythropoietin (rHuEpo) treatment on aerobic power (VO2max) are well documented, but little is known about the effects of rHuEpo on submaximal exercise performance. The present study investigated the effect on performance (ergometer cycling, 20-30 min at 80% of maximal attainable workload), and for this purpose eight subjects received either 5,000 IU rHuEpo or placebo every second day for 14 days, and subsequently a single dose of 5,000 IU/placebo weekly/10 weeks. Exercise performance was evaluated before treatment and after 4 and 11 weeks of treatment. With rHuEpo treatment VO2max increased (P<0.05) by 12.6 and 11.6% in week 4 and 11, respectively, and time-to-exhaustion (80% VO2max) was increased by 54.0 and 54.3% (P<0.05) after 4 and 11 weeks of treatment, respectively. However, when normalizing the workload to the same relative intensity (only done at time point week 11), TTE was decreased by 26.8% as compared to pre rHuEpo administration. In conclusion, in healthy non-athlete subjects rHuEpo administration prolongs submaximal exercise performance by about 54% independently of the approximately 12% increase in VO2max. PMID:17668232

  10. Blood transcriptional signature of recombinant human erythropoietin administration and implications for antidoping strategies.

    PubMed

    Durussel, Jérôme; Haile, Diresibachew W; Mooses, Kerli; Daskalaki, Evangelia; Beattie, Wendy; Mooses, Martin; Mekonen, Wondyefraw; Ongaro, Neford; Anjila, Edwin; Patel, Rajan K; Padmanabhan, Neal; McBride, Martin W; McClure, John D; Pitsiladis, Yannis P

    2016-03-01

    Recombinant human erythropoietin (rHuEPO) is frequently abused by athletes as a performance-enhancing drug, despite being prohibited by the World Anti-Doping Agency. Although the methods to detect blood doping, including rHuEPO injections, have improved in recent years, they remain imperfect. In a proof-of-principle study, we identified, replicated, and validated the whole blood transcriptional signature of rHuEPO in endurance-trained Caucasian males at sea level (n = 18) and Kenyan endurance runners at moderate altitude (n = 20), all of whom received rHuEPO injections for 4 wk. Transcriptional profiling shows that hundreds of transcripts were altered by rHuEPO in both cohorts. The main regulated expression pattern, observed in all participants, was characterized by a "rebound" effect with a profound upregulation during rHuEPO and a subsequent downregulation up to 4 wk postadministration. The functions of the identified genes were mainly related to the functional and structural properties of the red blood cell. Of the genes identified to be differentially expressed during and post-rHuEPO, we further confirmed a whole blood 34-transcript signature that can distinguish between samples collected pre-, during, and post-rHuEPO administration. By providing biomarkers that can reveal rHuEPO use, our findings represent an advance in the development of new methods for the detection of blood doping. PMID:26757800

  11. Early administration of recombinant erythropoietin improves hemoglobin recovery after reduced intensity conditioned allogeneic stem cell transplantation.

    PubMed

    Ivanov, V; Faucher, C; Mohty, M; Bilger, K; Ladaique, P; Sainty, D; Arnoulet, C; Chabannon, C; Vey, N; Camerlo, J; Bouabdallah, R; Viens, P; Maraninchi, D; Bardou, V J; Esterni, B; Blaise, D

    2005-11-01

    The use of recombinant human erythropoietin (rHuEPO) has been controversial after myeloablative allogeneic Stem cell transplantation (allo-SCT). Reduced intensity conditioning regimens (RIC) offer a novel approach that might translate into a different profile of erythropoietic recovery. We treated 20 consecutive patients with rHuEPO early after matched sibling RIC allo-SCT. Conditioning included fludarabine, busulfan and antithymocyte globulin. EPO treatment was analyzed in terms of toxicity, impact on the frequency of Red blood cell transfusions (RBCT) and kinetics of Hemoglobin recovery within the 60 days post-allo-SCT. Results were compared with 27 matched patients who did not receive rHuEPO. In the first 2 months after allo-SCT all patients receiving rHuEPO (100%) achieved an Hb level > 11 g/dl at a median of 30 (15-35) days post-allo-SCT, as compared to only 63% of the patients not receiving rHuEPO (P = 0.007) at a median of 35 (20-55) days (P = 0.03). A total of 70% (95% CI, 50-90) of rHuEPO patients maintained an Hb over 11 g/dl in the second month as compared to only 19% (95% CI, 4-34) in the other group (P = 0.0004). For patients receiving RBCT, the use of rHuEPO was associated with a trend towards reduced RBCT requirements. This pilot study suggests a potential benefit of early administration of rHuEPO after RIC allo-SCT on early erythropoietic recovery. PMID:16151421

  12. Effects of prolonged recombinant human erythropoietin administration on muscle membrane transport systems and metabolic marker enzymes.

    PubMed

    Juel, C; Thomsen, J J; Rentsch, R L; Lundby, C

    2007-12-01

    Adaptations to chronic hypoxia involve changes in membrane transport proteins. The underlying mechanism of this response may be related to concomitant occurring changes in erythropoietin (Epo) levels. We therefore tested the direct effects of recombinant human erythropoietin (rHuEpo) treatment on the expression of muscle membrane transport proteins. Likewise, improvements in performance may involve upregulation of metabolic enzymes. Since Epo is known to augment performance we tested the effect of rHuEpo on some marker enzymes that are related to aerobic capacity. For these purposes eight subjects received 5,000 IU rHuEpo every second day for 14 days, and subsequently a single dose of 5,000 IU weekly for 12 weeks. Muscle biopsies were obtained before and after 14 weeks of rHuEpo treatment. The treatment increased hematocrit (from 44.7 to 48.8%), maximal oxygen uptake by 8.1%, and submaximal performance by approximately 54%. Membrane transport systems and carbonic anhydrases involved in pH regulation remained unchanged. Of the Na(+), K(+)-pump isoforms only the density of the alpha2 subunit was decreased (by 22%) after treatment. The marker enzymes cytochrom c and hexokinase remained unchanged with the treatment. In conclusion, changes in muscle membrane transport proteins and selected muscle enzymes do not contribute to the Epo-induced improvement in performance. PMID:17882450

  13. A mouse model of adult-onset anaemia due to erythropoietin deficiency.

    PubMed

    Yamazaki, Shun; Souma, Tomokazu; Hirano, Ikuo; Pan, Xiaoqing; Minegishi, Naoko; Suzuki, Norio; Yamamoto, Masayuki

    2013-01-01

    Erythropoietin regulates erythropoiesis in a hypoxia-inducible manner. Here we generate inherited super-anaemic mice (ISAM) as a mouse model of adult-onset anaemia caused by erythropoietin deficiency. ISAM express erythropoietin in the liver but lack erythropoietin production in the kidney. Around weaning age, when the major erythropoietin-producing organ switches from the liver to the kidney, ISAM develop anaemia due to erythropoietin deficiency, which is curable by administration of recombinant erythropoietin. In ISAM severe chronic anaemia enhances transgenic green fluorescent protein and Cre expression driven by the complete erythropoietin-gene regulatory regions, which facilitates efficient labelling of renal erythropoietin-producing cells. We show that the majority of cortical and outer medullary fibroblasts have the innate potential to produce erythropoietin, and also reveal a new set of erythropoietin target genes. ISAM are a useful tool for the evaluation of erythropoiesis-stimulating agents and to trace the dynamics of erythropoietin-producing cells. PMID:23727690

  14. Erythropoietin in cardiac disease: new features of an old drug.

    PubMed

    Ruifrok, Willem-Peter T; de Boer, Rudolf A; Westenbrink, B Daan; van Veldhuisen, Dirk J; van Gilst, Wiek H

    2008-05-13

    Erythropoietin is a haematopoietic hormone with extensive non-haematopoietic effects. The discovery of an erythropoietin receptor outside the haematopoietic system has fuelled the research into the beneficial effects of erythropoietin for various conditions, predominantly in cardiovascular disease. Experimental evidence has revealed the cytoprotective and angiogenic properties of erythropoietin and it seems that the erythropoietin-erythropoietin receptor system provides a powerful backbone against acute and chronic myocardial ischemia, each gaining from the different properties of erythropoietin. Clinical trials in which erythropoietin was titrated to achieve certain haematocrit levels have generated equivocal results. It has been suggested that a (too) high haematocrit is undesirable in cardiovascular disease. We have shown that intermittent (low-dose) erythropoietin administration, that does not increase haematocrit substantially, suffices to activate the beneficial downstream pathways of erythropoietin. We postulate that intermittent administration or a lower than conventional dose of erythropoietin, not only aimed at increasing haemoglobin at high levels, will provide powerful cellular protection and will improve cardiac outcome, without the side effects of erythropoietin associated with increased haematocrit. PMID:18407263

  15. Chronic administration of small nonerythropoietic peptide sequence of erythropoietin effectively ameliorates the progression of postmyocardial infarction-dilated cardiomyopathy.

    PubMed

    Ahmet, Ismayil; Tae, Hyun-Jin; Brines, Michael; Cerami, Anthony; Lakatta, Edward G; Talan, Mark I

    2013-06-01

    The cardioprotective properties of erythropoietin (EPO) in preclinical studies are well documented, but erythropoietic and prothrombotic properties of EPO preclude its use in chronic heart failure (CHF). We tested the effect of long-term treatment with a small peptide sequence within the EPO molecule, helix B surface peptide (HBSP), that possesses tissue-protective, but not erythropoietic properties of EPO, on mortality and cardiac remodeling in postmyocardial infarction-dilated cardiomyopathy in rats. Starting 2 weeks after permanent left coronary artery ligation, rats received i.p. injections of HBSP (60 µg/kg) or saline two times per week for 10 months. Treatment did not elicit an immune response, and did not affect the hematocrit. Compared with untreated rats, HBSP treatment reduced mortality by 50% (P < 0.05). Repeated echocardiography demonstrated remarkable attenuation of left ventricular dilatation (end-diastolic volume: 41 versus 86%; end-systolic volume: 44 versus 135%; P < 0.05), left ventricle functional deterioration (ejection fraction: -4 versus -63%; P < 0.05), and myocardial infarction (MI) expansion (3 versus 38%; P < 0.05). A hemodynamic assessment at study termination demonstrated normal preload independent stroke work (63 ± 5 versus 40 ± 4; P < 0.05) and arterioventricular coupling (1.2 ± 0.2 versus 2.7 ± 0.7; P < 0.05). Histologic analysis revealed reduced apoptosis (P < 0.05) and fibrosis (P < 0.05), increased cardiomyocyte density (P < 0.05), and increased number of cardiomyocytes in myocardium among HBSP-treated rats. The results indicate that HBSP effectively reduces mortality, ameliorates the MI expansion and CHF progression, and preserves systolic reserve in the rat post-MI model. There is also a possibility that HBSP promoted the increase of the myocytes number in the myocardial wall remote from the infarct. Thus, HBSP peptide merits consideration for clinical testing. PMID:23584743

  16. The Impact of Tumor Expression of Erythropoietin Receptors and Erythropoietin on Clinical Outcome of Esophageal Cancer Patients Treated With Chemoradiation

    SciTech Connect

    Rades, Dirk Golke, Helmut; Schild, Steven E.; Kilic, Ergin

    2008-05-01

    Background: To investigate the impact of tumor erythropoietin receptors (Epo-R) and erythropoietin (Epo) expression in 64 patients with Stage III esophageal cancer receiving or not receiving erythropoietin during chemoradiation. Materials and Methods: The impact of tumor Epo-R expression, Epo expression, and 10 additional factors (age, Karnofsky-Performance-Score [KPS], tumor length, T and N stage, histology and grading, hemoglobin during radiotherapy, erythropoietin administration, surgery) on overall survival (OS) and locoregional control (LC) was evaluated. Results: Improved OS was associated with low ({<=}20%) Epo expression (p = 0.049), KPS >80 (p 0.008), T3 stage (p = 0.010), hemoglobin {>=}12 g/dL (p < 0.001), and surgery (p = 0.010). Erythropoietin receptor expression showed a trend (p = 0.09). Locoregional control was associated with T stage (p = 0.005) and hemoglobin (p < 0.001), almost with erythropoietin administration (p = 0.06). On multivariate analyses, OS was associated with KPS (p = 0.045) and hemoglobin (p = 0.032), LC with hemoglobin (p < 0.001). Patients having low expression of both Epo-R and Epo had better OS (p = 0.003) and LC (p = 0.043) than others. Two-year OS was nonsignificantly better (p = 0.25) in patients with low Epo-R expression receiving erythropoietin (50%) than in those with higher Epo-R expression receiving erythropoietin (21%), low Epo-R expression/no erythropoietin administration (29%), or higher Epo-R expression/no erythropoietin administration (18%). Two-year LC rates were, respectively, 65%, 31%, 26%, and 29% (p = 0.20). Results for Epo expression were similar. Conclusions: Higher Epo-R expression or Epo expression seemed to be associated with poorer outcomes. Patients with low expression levels receiving erythropoietin seemed to do better than patients with higher expression levels or not receiving erythropoietin. The data need to be confirmed in a larger series of patients.

  17. [Evaluation of the efficacy of recombinant human erythropoietin (rHuEPO) administration on penile erection in males undergoing hemodialysis and effect on pituitary-gonadal function].

    PubMed

    Kuwahara, M; Takagi, N; Nishitani, M; Matsushita, K; Ohta, K; Nakamura, K; Fujisaki, N

    1995-04-01

    Recombinant human erythropoietin (rHuEPO) was administered to males undergoing hemodialysis, and its effects on penile erection and hypothalamus-pituitary-gonadal hormone levels were studied. The subject consisted of 18 males undergoing hemodialysis ranging in age from 22 to 58 years (mean 45.3 years). Chronic glomerulonephritis was present in 16, and diabetic nephropathy in 2, as underlying disease. rHuEPO was administered intravenously at 1,500 U 3 times a week with a target to increase the Ht value to 25% or above. Penile erection was evaluated subjectively by a questionnaire based on a visual analogue scale and objectively by semi quantitative measurement of nocturnal penile tumescence (NPT) using an erectometer. Of the 18 patients, subjective improvements in penile erection were observed in 13 (72%), and objective improvements in NPT were observed in 10 (56%). The administration of rHuEPO may alleviate hyperprolactinemia but was found to have no effect on the FSH, LH, Zn, or HS-PTH level. rHuEPO was suggested to be fairly effective for the treatment of sexual disorders. PMID:7776560

  18. Clinical Trial of Erythropoietin in Young Children With Cerebral Palsy.

    PubMed

    Cho, Kye Hee; Min, Kyunghoon; Lee, Seung Hoon; Lee, SunHee; An, SeongSoo A; Kim, MinYoung

    2016-09-01

    This study was conducted to assess the safety and efficacy of recombinant human erythropoietin in young children with cerebral palsy aged between 6 months and 3 years. All participants received subcutaneous recombinant human erythropoietin and 8 weeks of rehabilitation therapy. Adverse events, changes of vital signs, and hematologic tests were monitored up to 8 weeks postinjection. Functional measures of development at 4 and 8 weeks postinjection were compared with baseline values, and improvements were compared with those of an age-matched historical control group. Nine participants completed the trial from June 2012 to February 2015. No adverse events were related to recombinant human erythropoietin. Erythropoiesis was noted, although within normal range. Functional improvements were observed in all participants (P < .05) and increases in motor function were higher in recombinant human erythropoietin group than the control group. Accordingly, recombinant human erythropoietin administration was safe without any significant adverse events and improved the functional outcomes in young children with cerebral palsy. PMID:27233796

  19. 21 CFR 864.7250 - Erythropoietin assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Erythropoietin assay. 864.7250 Section 864.7250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7250...

  20. 21 CFR 864.7250 - Erythropoietin assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Erythropoietin assay. 864.7250 Section 864.7250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7250...

  1. 21 CFR 864.7250 - Erythropoietin assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Erythropoietin assay. 864.7250 Section 864.7250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7250...

  2. 21 CFR 864.7250 - Erythropoietin assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Erythropoietin assay. 864.7250 Section 864.7250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7250...

  3. 21 CFR 864.7250 - Erythropoietin assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Erythropoietin assay. 864.7250 Section 864.7250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7250...

  4. Endocrine effects of erythropoietin.

    PubMed

    Carlson, H E; Graber, M L; Gelato, M C; Hershman, J M

    1995-06-01

    Uremic men may manifest a variety of hormonal abnormalities, including decreased serum concentrations of testosterone and thyroid hormones and increased serum levels of growth hormone and prolactin. Some previous investigations have reported that erythropoietin therapy may reverse these hormonal changes. To investigate this possibility further, we measured serum prolactin, testosterone, LH, FSH, TSH, free thyroxine, triiodothyronine, growth hormone and IGF-I in 21 generally elderly male hemodialysis patients before and during erythropoietin therapy; many of the patients also received an anabolic steroid or metoclopramide treatment. Despite a significant erythropoietic response in a majority of the subjects, no significant changes were seen in any of the hormonal parameters other than a small decrease in serum growth hormone concentrations. Advanced age and chronic illness in our patients may have played a role in limiting the hormonal response reported by others. PMID:8593965

  5. Erythropoietin binding protein from mammalian serum

    DOEpatents

    Clemons, G.K.

    1997-04-29

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described. 11 figs.

  6. Erythropoietin binding protein from mammalian serum

    DOEpatents

    Clemons, Gisela K.

    1997-01-01

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described.

  7. Renal Cell Protection of Erythropoietin beyond Correcting The Anemia in Chronic Kidney Disease Patients.

    PubMed

    Nasri, Hamid

    2014-01-01

    -erythropoietic tissue/ organ protective efficacy of erythropoietin has become evident, especially in the kidneys (5-12). Various investigations have shown the kidney protective property of erythropoietin in acute kidney injury. In a study to evaluate the ameliorative effects of erythropoietin on renal tubular cells, we studied 40 male rats. We found that erythropoietin was able to prevent the increase in serum creatinine and blood urea nitrogen. Furthermore, co-administration of gentamicin and erythropoietin effectively reduced kidney tissue damage compared to the control group. However, the protective properties of erythropoietin were also evident in our study. When the drug was applied after gentamicin- induced tubular damage we were able to show that the drug was still effective after tissue injury onset. This indicates that erythropoietin may have curative effects in addition to its preventive properties (13). Thus, erythropoietin is a promising kidney protective agent to prevent, ameliorate or attenuate tubular damage induced by gentamicin or other nephrotoxic agents that act in a similar manner to this drug (14-17). Recent studies have elucidated the cellular mechanism involved in kidney erythropoietin production and the consequent events that lead to kidney fibrosis, showing that they are closely related to each other (18-20). In contrast to previous findings, fibroblasts originating from damaged renal tubular epithelial cells do not have an important role in kidney fibrosis, but renal erythropoietin- producing cells, stemming from neural crests, have been shown to trans-differentiate into myofibroblasts after long-term exposure to inflammatory situations related to kidney fibrosis. In fact, almost all myofibroblasts expressing α-smooth muscle actin originate from renal erythropoietin-producing cells, which are naturally peritubular interstitial fibroblastic cells expressing neural cell marker genes but not α-smooth muscle actin. Macrophages and myofibroblasts are responsible

  8. Neuroprotective Effect of Erythropoietin in Postoperation Cervical Spinal Cord Injury: Case Report and Review

    PubMed Central

    Nekoui, Alireza; Del Carmen Escalante Tresierra, Violeta; Abdolmohammadi, Sadegh; Shedid, Daniel; Blaise, Gilbert

    2015-01-01

    Introduction: New research shows shown that erythropoietin has neuro-protective effects. In preclinical trial and human clinical trials, it was demonstrated that erythropoietin is effective treatment for spinal cord injury. Early administration of medications after injury increases the hope of attenuating secondary damage and maximizing an improved outcome. Case presentation: A 42-year-old female patient presented with gait instability and progressive weakness in her right leg over a 6-year period. She was diagnosed as myelomalacia and was candidate for cervical discectomy. After surgery, she suffered from right hemiplegia due to spinal cord injury that did not respond well to routine treatment. Darbepoetin alpha (Aranesp) 100 mcg, subcutaneous daily for three days, was added to the patient’s treatment seven days after trauma and resulted in rapid improvement. The patient recovered progressively and was discharged from the hospital ten days after erythropoietin therapy. Conclusions: This case report supports the beneficial role of erythropoietin in function, maintenance, and recovery of neurons. Erythropoietin is a double-edge sword, as long-term erythropoietin therapy has some complications, like thromboembolism and stroke. Recent studies suggested that erythropoietin should be given as single high dose to exert a rapid neuro-protective effect with minimal hematopoietic side effects. We believe that the effects and other adverse consequences of erythropoietin and its non-erythropoietic derivatives should be evaluated in clinical trials. PMID:26705520

  9. The discovery of erythropoietin.

    PubMed

    Erslev, A J

    1993-01-01

    A personal vignette of life as a resident and fellow at the Yale New Haven Hospital in the early 1950s follows. John Peters and his associates created a superb renal center at Yale New Haven, and they instilled in me a respect for quantitative measurements and a love for simple physiologic concepts. The environment was ideal for clinical and laboratory research, and it enabled me to show the existence of a regulatory erythropoietic hormone. I consider it a tribute to Dr. Peters that erythropoietin was later found to be produced by the kidneys and that it, as a recombinant drug, has helped ameliorate the anemia of uremia. PMID:8324267

  10. Erythropoietin use and abuse.

    PubMed

    John, M Joseph; Jaison, Vineeth; Jain, Kunal; Kakkar, Naveen; Jacob, Jubbin J

    2012-03-01

    Recombinant human erythropoietin (rhEPO) is arguably the most successful therapeutic application of recombinant DNA technology till date. It was isolated in 1977 and the gene decoded in 1985. Since then, it has found varied applications, especially in stimulating erythropoiesis in anemia due to chronic conditions like renal failure, myelodysplasia, infections like HIV, in prematurity, and in reducing peri-operative blood transfusions. The discovery of erythropoietin receptor (EPO-R) and its presence in non-erythroid cells has led to several areas of research. Various types of rhEPO are commercially available today with different dosage schedules and modes of delivery. Their efficacy in stimulating erythropoiesis is dose dependent and differs according to the patient's disease and nutritional status. EPO should be used carefully according to guidelines as unsolicited use can result in serious adverse effects. Because of its capacity to improve oxygenation, it has been abused by athletes participating in endurance sports and detecting this has proved to be a challenge. PMID:22470858

  11. Physiology and Pharmacology of Erythropoietin

    PubMed Central

    Jelkmann, Wolfgang

    2013-01-01

    Summary Human erythropoietin (Epo) is a 30.4 kDa glycoprotein hormone composed of a single 165 amino acid residues chain to which four glycans are attached. The kidneys are the primary sources of Epo, its synthesis is controlled by hypoxia-inducible transcription factors (HIFs). Epo is an essential factor for the viability and proliferation of erythrocytic progenitors. Whether Epo exerts cytoprotection outside the bone marrow still needs to be clarified. Epo deficiency is the primary cause of the anemia in chronic kidney disease (CKD). Treatment with recombinant human Epo (rhEpo, epoetin) can be beneficial not only in CKD but also for other indications, primarily anemia in cancer patients receiving chemotherapy. Considering unwanted events, the administration of rhEpo or its analogs may increase the incidence of thromboembolism. The expiry of the patents for the original epoetins has initiated the production of similar biological medicinal products (‘biosimilars’). Furthermore, analogs (darbepoetin alfa, methoxy PEG-epoetin beta) with prolonged survival in circulation have been developed (‘biobetter’). New erythropoiesis-stimulating agents are in clinical trials. These include compounds that augment erythropoiesis directly (e.g. Epo mimetic peptides or activin A binding protein) and chemicals that act indirectly by stimulating endogenous Epo synthesis (HIF stabilizers). PMID:24273483

  12. Human Cytomegalovirus Inhibits Erythropoietin Production

    PubMed Central

    Dzabic, Mensur; Bakker, Frank; Davoudi, Belghis; Jeffery, Hannah; Religa, Piotr; Bojakowski, Krzysztof; Yaiw, Koon-Chu; Rahbar, Afsar; Söderberg-Naucler, Cecilia

    2014-01-01

    Anemia is a feature of CKD and a complication of renal transplantation, often caused by impaired production of erythropoietin. The kidney is a target organ for human cytomegalovirus (hCMV) in such patients, but it is not known whether hCMV effects erythropoietin production. We found that kidneys from patients with CKD were positive for hCMV protein and that blood levels of hCMV IgG inversely correlated with red blood cell count. In mice, systemic murine cytomegalovirus infection decreased serum erythropoietin levels. In human erythropoietin-producing cells, hCMV inhibited hypoxia-induced expression of erythropoietin mRNA and protein. hCMV early gene expression was responsible, as ultraviolet-inactivated virus had no effect and valganciclovir treatment showed that late gene expression was nonessential. Hypoxia-induced gene transcription is controlled by the transcription factors hypoxia-inducible transcription factor (HIF)-1α and HIF2α, which are constitutively produced but stable only under low oxygen conditions. We found that hCMV inhibited constitutive production of HIF2α mRNA. HIF2α is thought to be the master regulator of erythropoietin transcription. Single-cell analysis revealed that nuclear accumulation of HIF2α was inhibited in hCMV-infected cells, and the extent of inhibition correlated with hCMV protein expression. Our findings suggest that renal hCMV infection could induce or exacerbate anemia in patients. PMID:24722450

  13. [Overview of erythropoietin].

    PubMed

    Lacombe, C; Mayeux, P; Casadevall, N

    1991-01-01

    Erythropoietin (Epo) is a glycoprotein that promotes the proliferation and differentiation of erythrocyte precursors. The major site of Epo production is the kidney and the liver is the main extra renal site of Epo production. Epo producing cells were identified by in situ hybridization, in the kidney, they are peritubular cells, most likely endothelial cells of the cortex and outer medulla; in the liver, they are mainly hepatocytes. The Epo secretion is stimulated by hypoxia, which is detected by an oxygen sensor. The Epo receptor is a multimeric protein, one chain which binds Epo has been cloned. However the structure of the Epo receptor is still puzzling, and one or more accessory chains remain to be identified. Since the clonage of the Epo gene, recombinant Epo has been available and allowed the treatment of patients with renal diseases with a constant efficacy. PMID:1662784

  14. Recombinant Human Erythropoietin

    PubMed Central

    Bartels, Claudia; Späte, Kira; Krampe, Henning

    2008-01-01

    Treatment of multiple sclerosis (MS) is still unsatisfactory and essentially non-existing for the progressive course of the disease. Recombinant human erythropoietin (EPO) may be a promising neuroprotective/neuroregenerative treatment of MS. In the nervous system, EPO acts anti-apoptotic, antioxidative, anti-inflammatory, neurotrophic and plasticity-modulating. Beneficial effects have been shown in animal models of various neurological and psychiatric diseases, including different models of experimental autoimmune encephalomyelitis. EPO is also effective in human brain disease, as shown in double-blind placebo-controlled clinical studies on ischemic stroke and chronic schizophrenia. An exploratory study on chronic progressive MS yielded lasting improvement in motor and cognitive performance upon high-dose long-term EPO treatment. PMID:21180577

  15. [Erythropoietin levels in human tear fluid].

    PubMed

    Zakharov, Iu M; Rykun, V S; Bagautdinov, D E; Romanenko, E A

    2010-11-01

    Erythropoietin level was evaluated in blood plasma and tear fluid of humans with normal functions of eye and normal blood characteristics. We examined 21 patients. Principle ability of erythropoietin level detection in patient's tear fluid ascertained. PMID:21427970

  16. Anemia of renal failure. Use of erythropoietin.

    PubMed

    Humphries, J E

    1992-05-01

    Chronic renal failure is almost invariably accompanied by symptomatic anemia. It has been demonstrated that the primary cause of this anemia is inadequate production of erythropoietin by the diseased kidneys. The isolation of erythropoietin, followed by the cloning and expression of the human erythropoietin gene, made possible clinical trials of rHuEPO in uremic patients. rHuEPO produced dramatic increases in the hematocrit in almost all patients treated and also ameliorated many symptoms, such as lethargy, dizziness, and poor appetite, that had long been attributed to the effect of uremic toxins. Adverse effects of treatment with rHuEPO noted in the early clinical trials included hypertension, seizures, arteriovenous fistula or shunt thrombosis, and hyperkalemia. Further study of rHuEPO has shown that many of these side effects may be no more frequent in patients receiving rHuEPO than in other uremic patients not receiving rHuEPO. Reduction of the rHuEPO dosage and subcutaneous administration produce less rapid increases in the hematocrit and may lessen the incidence and severity of these side effects. rHuEPO therapy places great demands on both the body's iron stores and the capacity to rapidly transfer iron from storage sites to the erythroid progenitor cells. Thus, almost all patients treated with rHuEPO become iron deficient and require oral or parenteral iron replacement. Response to rHuEPO in uremic patients is diminished if the anemia is complicated by iron deficiency, inflammatory disorders, aluminum overload, or deficiency of folate or vitamin B12. rHuEPO therapy is safe and effective in the treatment of the anemia of chronic renal failure. The use of rHuEPO leads to enhanced quality of life and eliminates the need for red cell transfusions. In addition to hemodialysis patients, predialysis patients and those on CAPD benefit from and are candidates for rHuEPO therapy. PMID:1578966

  17. Erythropoietin Neuroprotection in Neonatal Cardiac Surgery: A Phase I/II Safety and Efficacy Trial

    PubMed Central

    Andropoulos, Dean B.; Brady, Ken; Easley, R. Blaine; Dickerson, Heather A.; Voigt, Robert G.; Shekerdemian, Lara S.; Meador, Marcie R.; Eisenman, Carol A.; Hunter, Jill V.; Turcich, Marie; Rivera, Carlos; McKenzie, E. Dean; Heinle, Jeffrey S.; Fraser, Charles D.

    2012-01-01

    Objectives Neonates undergoing complex congenital heart surgery have a significant incidence of neurological problems. Erythropoietin has anti-apoptotic, anti-excitatory, and anti-inflammatory properties to prevent neuronal cell death in animal models, and improves neurodevelopmental outcomes in full term neonates with hypoxic ischemic encephalopathy. We designed a prospective phase I/II trial of erythropoietin neuroprotection in neonatal cardiac surgery to assess safety, and indicate efficacy. Methods Neonates undergoing surgery for D-transposition of the great vessels, hypoplastic left heart syndrome, or aortic arch reconstruction were randomized to 3 perioperative doses of erythropoietin, or placebo. Neurodevelopmental testing with Bayley Scales of Infant and Toddler Development III was performed at age 12 months. Results 59 patients received study drug. Safety profile, including MRI brain injury, clinical events, and death, was not different between groups. 3 patients in each group died. 42 patients (22 erythropoietin, 20 placebo, 79% of survivors) returned for 12-month follow-up. The mean Cognitive Scores were erythropoietin, 101.1 ± 13.6, placebo, 106.3 ± 10.8 (p=0.19); Language Scores were erythropoietin 88.5 ± 12.8, placebo 92.4 ± 12.4 (p=0.33); and Motor Scores were erythropoietin 89.9 ± 12.3, placebo 92.6 ± 14.1, (p=0.51). Conclusions Safety profile for erythropoietin administration was not different than placebo. Neurodevelopmental outcomes were not different between groups, however this pilot study was not powered to definitively address this outcome. Lessons learned from the current study suggest optimized study design features for a larger prospective trial to definitively address the utility of erythropoietin for neuroprotection in this population. PMID:23102686

  18. Erythropoietin and diabetes mellitus

    PubMed Central

    Maiese, Kenneth

    2015-01-01

    Erythropoietin (EPO) is a 30.4 kDa growth factor and cytokine that governs cell proliferation, immune modulation, metabolic homeostasis, vascular function, and cytoprotection. EPO is under investigation for the treatment of variety of diseases, but appears especially suited for the treatment of disorders of metabolism that include diabetes mellitus (DM). DM and the complications of this disease impact a significant portion of the global population leading to disability and death with currently limited therapeutic options. In addition to its utility for the treatment of anemia, EPO can improve cardiac function, reduce fatigue, and improve cognition in patients with DM as well as regulate cellular energy metabolism, obesity, tissue repair and regeneration, apoptosis, and autophagy in experimental models of DM. Yet, EPO can have adverse effects that involve the vasculature system and unchecked cellular proliferation. Critical to the cytoprotective capacity and the potential for a positive clinical outcome with EPO are the control of signal transduction pathways that include protein kinase B, the mechanistic target of rapamycin, Wnt signaling, mammalian forkhead transcription factors of the O class, silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae), and AMP activated protein kinase. Therapeutic strategies that can specifically target and control EPO and its signaling pathways hold great promise for the development of new and effective clinical treatments for DM and the complications of this disorder. PMID:26516410

  19. Biology of erythropoietin.

    PubMed

    Lacombe, C; Mayeux, P

    1998-08-01

    Erythropoietin (Epo) controls the proliferation, differentiation and survival of the erythroid progenitors. This cytokine was cloned in 1985 and rapidly became used for treatment of anemia of renal failure, opening the way to the first clinical trials of a hematopoietic growth factor. The clonage of one chain of the Epo receptor followed in 1989, thereby opening the research on intracellular signal transduction induced by Epo. Epo is synthesized mainly by the kidney and the liver and sequences required for tissue-specific expression have been localized in the Epo gene. A 3'enhancer is responsible for hypoxia-inducible Epo gene expression. HIF-1 alpha and beta proteins bind to this enhancer. Gene regulation by hypoxia is widespread in many cells and involves numerous genes in addition to the Epo gene. The Epo receptor belongs to the cytokine receptor family and includes a p66 chain which is dimerized upon Epo activation; two accessory proteins defined by cross-linking remain to be characterized. Epo binding induces the stimulation of Jak2 tyrosine kinase. Jak2 activation leads to the tyrosine phosphorylation of several proteins including the Epo receptor itself. As a result, different intracellular pathways are activated: Ras/MAP kinase, phosphatidylinositol 3-kinase and STAT transcription factors. However, the exact mechanisms by which the proliferation and/or the differentiation of erythroid cells are regulated after Epo stimulation are not known. Furthermore, target disruption of both Epo and Epo receptor showed that Epo was not involved in the commitment of the erythroid lineage and seemed to act mainly as a survival factor. PMID:9793257

  20. Effect of erythropoietin on the micronucleus test.

    PubMed

    Suzuki, Y; Nagae, Y; Ishikawa, T; Watanabe, Y; Nagashima, T; Matsukubo, K; Shimizu, H

    1989-01-01

    The micronucleus test is used widely as an in vivo short-term assay for potential carcinogens. In the present study, results of the micronucleus test were affected by the rate of erythropoiesis in the bone marrow erythropoietin, a growth factor for the erythroblast, which was used to induce erythropoiesis. The highest frequency of micronucleated polychromatic erythrocytes (MPCE) and a dose-response relationship between erythropoietin doses and MPCE frequency were seen 30 hr after injection of 1,1-dimethylhydrazine (DMH) to mice administered 24 hr previously with erythropoietin. The effect of erythropoietin was maximal when erythropoietin was given 24 hr before DMH, indicating that accelerating the multiplication of erythroblasts will increase the frequency of micronuclei induced by mutagens. Induction of MPCE in the bone marrow by four other compounds--benzo(a)pyrene, 2-naphthylamine, mitomycin C, and vincristine--was also increased by pretreatment with erythropoietin. PMID:2737182

  1. Reevaluation of erythropoietin production by the nephron.

    PubMed

    Nagai, Takanori; Yasuoka, Yukiko; Izumi, Yuichiro; Horikawa, Kahori; Kimura, Miho; Nakayama, Yushi; Uematsu, Takayuki; Fukuyama, Takashi; Yamazaki, Taiga; Kohda, Yukimasa; Hasuike, Yukiko; Nanami, Masayoshi; Kuragano, Takahiro; Kobayashi, Noritada; Obinata, Masuo; Tomita, Kimio; Tanoue, Akito; Nakanishi, Takeshi; Kawahara, Katsumasa; Nonoguchi, Hiroshi

    2014-06-27

    Erythropoietin production has been reported to occur in the peritubular interstitial fibroblasts in the kidney. Since the erythropoietin production in the nephron is controversial, we reevaluated the erythropoietin production in the kidney. We examined mRNA expressions of erythropoietin and HIF PHD2 using high-sensitive in situ hybridization system (ISH) and protein expression of HIF PHD2 using immunohistochemistry in the kidney. We further investigated the mechanism of erythropoietin production by hypoxia in vitro using human liver hepatocell (HepG2) and rat intercalated cell line (IN-IC cells). ISH in mice showed mRNA expression of erythropoietin in proximal convoluted tubules (PCTs), distal convoluted tubules (DCTs) and cortical collecting ducts (CCDs) but not in the peritubular cells under normal conditions. Hypoxia induced mRNA expression of erythropoietin largely in peritubular cells and slightly in PCTs, DCTs, and CCDs. Double staining with AQP3 or AE1 indicated that erythropoietin mRNA expresses mainly in β-intercalated or non α/non β-intercalated cells of the collecting ducts. Immunohistochemistry in rat showed the expression of HIF PHD2 in the collecting ducts and peritubular cells and its increase by anemia in peritubular cells. In IN-IC cells, hypoxia increased mRNA expression of erythropoietin, erythropoietin concentration in the medium and protein expression of HIF PHD2. These data suggest that erythropoietin is produced by the cortical nephrons mainly in the intercalated cells, but not in the peritubular cells, in normal hematopoietic condition and by mainly peritubular cells in hypoxia, suggesting the different regulation mechanism between the nephrons and peritubular cells. PMID:24832733

  2. Recombinant erythropoietin in clinical practice

    PubMed Central

    Ng, T; Marx, G; Littlewood, T; Macdougall, I

    2003-01-01

    The introduction of recombinant human erythropoietin (RHuEPO) has revolutionised the treatment of patients with anaemia of chronic renal disease. Clinical studies have demonstrated that RHuEPO is also useful in various non-uraemic conditions including haematological and oncological disorders, prematurity, HIV infection, and perioperative therapies. Besides highlighting both the historical and functional aspects of RHuEPO, this review discusses the applications of RHuEPO in clinical practice and the potential problems of RHuEPO treatment. PMID:12897214

  3. Erythropoietin attenuates the sequels of ischaemic spinal cord injury with enhanced recruitment of CD34+ cells in mice

    PubMed Central

    Hirano, Koji; Wagner, Klaus; Mark, Peter; Pittermann, Erik; Gäbel, Ralf; Furlani, Dario; Li, Wenzhong; Vollmar, Brigitte; Yamada, Tomomi; Steinhoff, Gustav; Ma, Nan

    2012-01-01

    Abstract Erythropoietin has been shown to promote tissue regeneration after ischaemic injury in various organs. Here, we investigated whether Erythropoietin could ameliorate ischaemic spinal cord injury in the mouse and sought an underlying mechanism. Spinal cord ischaemia was developed by cross-clamping the descending thoracic aorta for 7 or 9 min. in mice. Erythropoietin (5000 IU/kg) or saline was administrated 30 min. before aortic cross-clamping. Neurological function was assessed using the paralysis score for 7 days after the operation. Spinal cords were histologically evaluated 2 and 7 days after the operation. Immunohistochemistry was used to detect CD34+ cells and the expression of brain-derived neurotrophic factor and vascular endothelial growth factor. Each mouse exhibited either mildly impaired function or complete paralysis at day 2. Erythropoietin-treated mice with complete paralysis demonstrated significant improvement of neurological function between day 2 and 7, compared to saline-treated mice with complete paralysis. Motor neurons in erythropoietin-treated mice were more preserved at day 7 than those in saline-treated mice with complete paralysis. CD34+ cells in the lumbar spinal cord of erythropoietin-treated mice were more abundant at day 2 than those of saline-treated mice. Brain-derived neurotrophic factor and vascular endothelial growth factor were markedly expressed in lumbar spinal cords in erythropoietin-treated mice at day 7. Erythropoietin demonstrated neuroprotective effects in the ischaemic spinal cord, improving neurological function and attenuating motor neuron loss. These effects may have been mediated by recruited CD34+ cells, and enhanced expression of brain-derived neurotrophic factor and vascular endothelial growth factor. PMID:22145921

  4. Erythropoietin: still on the neuroprotection road

    PubMed Central

    del Barco, Diana García; Coro-Antich, Rosa M.

    2012-01-01

    Acute stroke is one of the major causes of death and disabilities. Since the 1980s many clinical studies have been conducted to evaluate neuroprotective approaches to treat this important brain vascular event. However, to date the only drug approved (recombinant tissue plasminogen activator [rtPA]) represents a thrombolytic, nonneuroprotective approach. An important neuroprotective strategy is based on erythropoietin (EPO). Exogenously administered EPO exhibits neuroprotective effects in numerous animal models, through the activation of anti-apoptotic, anti-oxidant and anti-inflammatory pathways as well as through the stimulation of angiogenic and neurogenic events. The capability of EPO to cross the blood–brain barrier after systemic administration and its effective therapeutic window are advantages for human acute stroke therapy. However, a multicenter stroke trial where recombinant human EPO (rhEPO) was combined with rtPA had negative outcomes. The present paper reviews the EPO neuroprotective strategy and its mechanisms in ischemic stroke and in other human nervous system diseases. PMID:22590480

  5. Monitoring recombinant human erythropoietin abuse among athletes.

    PubMed

    Citartan, Marimuthu; Gopinath, Subash C B; Chen, Yeng; Lakshmipriya, Thangavel; Tang, Thean-Hock

    2015-01-15

    The illegal administration of recombinant human erythropoietin (rHuEPO) among athletes is largely preferred over blood doping to enhance stamina. The advent of recombinant DNA technology allowed the expression of EPO-encoding genes in several eukaryotic hosts to produce rHuEPO, and today these performance-enhancing drugs are readily available. As a mimetic of endogenous EPO (eEPO), rHuEPO augments the oxygen carrying capacity of blood. Thus, monitoring the illicit use of rHuEPO among athletes is crucial in ensuring an even playing field and maintaining the welfare of athletes. A number of rHuEPO detection methods currently exist, including measurement of hematologic parameters, gene-based detection methods, glycomics, use of peptide markers, electrophoresis, isoelectric focusing (IEF)-double immunoblotting, aptamer/antibody-based methods, and lateral flow tests. This review gleans these different strategies and highlights the leading molecular recognition elements that have potential roles in rHuEPO doping detection. PMID:25058943

  6. Erythropoietin treatment for non-uremic patients: a personal view.

    PubMed

    Biesma, D H

    1999-01-01

    The correction of anemia in patients with chronic renal failure (CRF) has become the most important application of recombinant human erythropoietin (rHuEpo). The merits of rHuEpo therapy in patients with CRF are overt. Firstly, patients with CRF have an absolute deficiency in endogenous erythropoietin production and a relatively low maintenance dose of rHuEpo (often less than 100 IU/kg body weight per week) is effective in avoiding regular transfusions in the majority of the patients with CRF. Secondly, rHuEpo is able to avoid long-term complications of frequent transfusions (hemochromatosis, transfusion-transmissible diseases). Thirdly, patients with uremia notice a considerable improvement in quality of life (QOL) after initiation of rHuEpo. These advantages justify administration of this costly drug in CRF patients. The use of rHuEpo outside the setting of uremia do, however, not cover the complete spectrum of beneficial effects as compared to its use in (pre)dialysis patients. The aim of this overview is to provide some annotations on recently approved (cisplatin-induced anemia, preoperative anemia, zidovudine-related anemia) and possibly future (several types of malignancy and inflammation) indications for rHuEpo in non-uremic patients, leaving out the correction of anemia due to relatively uncommon disorders in the Dutch population (such as sickle cell anemia and thalassemia). PMID:10048290

  7. Hepatic erythropoietin response in cirrhosis.

    PubMed

    Risør, Louise M; Fenger, Mogens; Olsen, Niels V; Møller, Søren

    2016-05-01

    Background Erythropoietin (EPO) is produced in the liver during fetal life, but after birth the production shifts to the kidneys. The liver maintains a production capacity of 10% of the total EPO-production, but can be up-regulated to 100%. Previous studies have demonstrated both elevated and reduced concentrations of EPO in cirrhosis. Increased EPO concentrations could be expected due to anemia, hypoxia, renal hypoperfusion, or EPO-mediated hepatoprotective mechanisms. In contrast, poor hepatic production capacity may cause reduced EPO concentrations in cirrhosis. In the present paper we aimed to study hepatic and renal venous concentrations of EPO in relation to the severity of the disease. Materials and methods We included 24 patients with alcoholic cirrhosis and eight age-matched healthy controls. All had a full catheterization performed with the determination of EPO concentrations in the hepatic, renal and femoral veins and artery. All patients were clinically, biochemically, and hemodynamically characterized. Results The median arterial EPO concentrations in the cirrhotic patients and controls were 7.1 mIU/mL (range 3.5-179) and 7.2 mIU/mL (range 3.8-15.3), respectively. In the patient group we found no significant correlations to stage of disease of hemodynamic derangement. Conclusion We found no significant differences in EPO concentrations across the liver, kidney, or peripheral circulation in the patient or control groups; and no significant correlations to clinical, biochemical, or hemodynamic characteristics. This suggests that hepatic EPO synthesis is not enhanced in cirrhosis, but larger scale studies are needed to clarify this question. PMID:26924722

  8. Caveat Oncologist: Clinical Findings and Consequences of Distributing Counterfeit Erythropoietin in the United States

    PubMed Central

    Qureshi, Zaina P.; Norris, LeAnn; Sartor, Oliver; McKoy, June M.; Armstrong, John; Raisch, Dennis W.; Garg, Vishvas; Stafkey-Mailey, Dana; Bennett, Charles Lee

    2012-01-01

    Purpose: Counterfeit pharmaceuticals pose risks domestically. Because of their cost, cancer pharmaceuticals are vulnerable. We review findings from a domestic counterfeiting episode involving erythropoietin and outline anticounterfeiting recommendations for policy makers, patients, and health care professionals. Materials and Methods: Information was obtained on patients who received counterfeit erythropoietin, its distribution, and criminal investigations into counterfeiting networks. Interview sources included a physician, an attorney, employees of the Florida Department of Health and Human Services and the US Food and Drug Administration's (FDA) Office of Criminal Investigation, manufacturers, and wholesalers. Other sources included the book “Dangerous Doses,” LexisNexis (search terms “counterfeit” and “erythropoietin”) and the FDA database. Results: Counterfeit product consisted of 2,000 U vials with counterfeit labels denoting 40,000 U. The counterfeiters, in collaboration with a Miami pharmacy, purchased 110,000 erythropoietin 2,000 U vials and affixed counterfeit labels to each vial. Products were then sold via the pharmaceutical “gray market” to wholesalers, then pharmacy chains. Investigations by Florida government officials implicated 17 persons, all of whom were found guilty of trafficking in counterfeit pharmaceuticals. Despite the large size of the operation, the FDA received reports of only 12 patients who had received counterfeit erythropoietin and detailed information for only two individuals. A 17-year-old liver transplant recipient and a 61-year-old patient with breast cancer experienced loss of efficacy after receiving counterfeit erythropoietin. Conclusion: Wider use of FDA anticounterfeit initiatives, limiting pharmaceutical suppliers to reputable distributors, and educating providers and patients about signs of counterfeit drugs can improve the safety of cancer pharmaceuticals. PMID:23077434

  9. Development of a new radioimmunoassay for erythropoietin using recombinant erythropoietin

    SciTech Connect

    Mason-Garcia, M.; Beckman, B.S.; Brookins, J.W.; Powell, J.S.; Lanham, W.; Blaisdell, S.; Keay, L.; Li, S.C.; Fisher, J.W. )

    1990-11-01

    The development of a 24 hour radioimmunoassay for erythropoietin (EPO) using EPO derived from recombinant DNA as both immunogen and ligand is described in the present paper. Mixed breed rabbits immunized with 10 micrograms/kg of EPO derived from a stably transfected cell line (MD) produced antibodies to EPO with high titer (up to 1:896,000 final dilution in the tube), high affinity (8.4 x 10(11) liter/M), and good specificity. Purified EPO from the above source or from AmGen Biologicals (AG) were successfully radioiodinated with the chloramine-T method and used as ligand in the radioimmunoassay. Standard dose-response curves prepared with EPO from both commercial sources were not significantly different and showed a sensitivity of 0.75 to 0.96 mU/tube. The dose-response curves in both systems also showed parallelism with serially diluted serum from a patient with aplastic anemia. Within-assay and between-assay precision were determined by assaying multiple replicates of a serum pool. Recovery of exogenous EPO added to a serum pool averaged 97% for both systems. The range of normal human serum EPO was determined by assaying the sera of 153 hematologically-normal adult subjects and was found to be 1.1 to 27.3 mU/ml for MD EPO and 0.5 to 16.7 mU/ml for AG EPO. Sera from several patients with hematologic abnormalities were also assayed, including those of 36 patients with anemia of end-stage renal disease (mean +/- SEM, 29.5 +/- 4.0 mU/ml; P less than 0.01). In conclusion, this new, more rapid and sensitive radioimmunoassay system can be used to measure EPO levels in sera from normal human subjects and patients with several types of anemia, and should also be very useful in therapeutic drug monitoring of patients receiving EPO from various commercial sources.

  10. DNA methyltransferase inhibition restores erythropoietin production in fibrotic murine kidneys.

    PubMed

    Chang, Yu-Ting; Yang, Ching-Chin; Pan, Szu-Yu; Chou, Yu-Hsiang; Chang, Fan-Chi; Lai, Chun-Fu; Tsai, Ming-Hsuan; Hsu, Huan-Lun; Lin, Ching-Hung; Chiang, Wen-Chih; Wu, Ming-Shiou; Chu, Tzong-Shinn; Chen, Yung-Ming; Lin, Shuei-Liong

    2016-02-01

    Renal erythropoietin-producing cells (REPCs) remain in the kidneys of patients with chronic kidney disease, but these cells do not produce sufficient erythropoietin in response to hypoxic stimuli. Treatment with HIF stabilizers rescues erythropoietin production in these cells, but the mechanisms underlying the decreased response of REPCs in fibrotic kidneys to anemic stimulation remain elusive. Here, we show that fibroblast-like FOXD1+ progenitor-derived kidney pericytes, which are characterized by the expression of α1 type I collagen and PDGFRβ, produce erythropoietin through HIF2α regulation but that production is repressed when these cells differentiate into myofibroblasts. DNA methyltransferases and erythropoietin hypermethylation are upregulated in myofibroblasts. Exposure of myofibroblasts to nanomolar concentrations of the demethylating agent 5-azacytidine increased basal expression and hypoxic induction of erythropoietin. Mechanistically, the profibrotic factor TGF-β1 induced hypermethylation and repression of erythropoietin in pericytes; these effects were prevented by 5-azacytidine treatment. These findings shed light on the molecular mechanisms underlying erythropoietin repression in kidney myofibroblasts and demonstrate that clinically relevant, nontoxic doses of 5-azacytidine can restore erythropoietin production and ameliorate anemia in the setting of kidney fibrosis in mice. PMID:26731474

  11. Recombinant Erythropoietin in Humans Has a Prolonged Effect on Circulating Erythropoietin Isoform Distribution

    PubMed Central

    Aachmann-Andersen, Niels Jacob; Just Christensen, Søren; Lisbjerg, Kristian; Oturai, Peter; Meinild-Lundby, Anne-Kristine; Holstein-Rathlou, Niels-Henrik; Lundby, Carsten; Vidiendal Olsen, Niels

    2014-01-01

    The membrane-assisted isoform immunoassay (MAIIA) quantitates erythropoietin (EPO) isoforms as percentages of migrated isoforms (PMI). We evaluated the effect of recombinant human EPO (rhEPO) on the distribution of EPO isoforms in plasma in a randomized, placebo-controlled, double-blinded, cross-over study. 16 healthy subjects received either low-dose Epoetin beta (5000 IU on days 1, 3, 5, 7, 9, 11 and 13); high-dose Epoetin beta (30.000 IU on days 1, 2 and 3 and placebo on days 5, 7, 9, 11 and 13); or placebo on all days. PMI on days 4, 11 and 25 was determined by interaction of N-acetyl glucosamine with the glycosylation dependent desorption of EPO isoforms. At day 25, plasma-EPO in both rhEPO groups had returned to values not different from the placebo group. PMI with placebo, reflecting the endogenous EPO isoforms, averaged 82.5 (10.3) % (mean (SD)). High-dose Epoetin beta decreased PMI on days 4 and 11 to 31.0 (4.2)% (p<0.00001) and 45.2 (7.3)% (p<0.00001). Low-dose Epoetin beta decreased PMI on days 4 and 11 to 46.0 (12.8)% (p<0.00001) and 46.1 (10.4)% (p<0.00001). In both rhEPO groups, PMI on day 25 was still decreased (high-dose Epoetin beta: 72.9 (19.4)% (p = 0.029); low-dose Epoetin beta: 73.1 (17.8)% (p = 0.039)). In conclusion, Epoetin beta leaves a footprint in the plasma-EPO isoform pattern. MAIIA can detect changes in EPO isoform distribution up til at least three weeks after administration of Epoetin beta even though the total EPO concentration has returned to normal. PMID:25335123

  12. CLINICAL APPLICATION OF RECOMBINANT ERYTHROPOIETIN IN BETA-THALASSAEMIA INTERMEDIA.

    PubMed

    Asadov, Ch; Alimirzoyeva, Z; Hasanova, M; Mammadova, T; Shirinova, A

    2016-06-01

    Research objective is to study the efficacy of recombinant erythropoietin (epoetin alfa) as alternative method of treatment beta-thalassemia intermedia. Study involved 58 patients with beta-thalassemia intermedia (23 women and 35 men). In all observed patients was defined levels of hemoglobin (Hb), red blood cells (RBC), erythrocyte indexes (MCV, MCH, MCHC), hemoglobin fractions (HbA, HbA2, HbF), serum ferritin, serum erythropoietin before and after administrated rEPO. All patients received rEPO during 6 month at the dose - 10000 IU subcutaneously. The majority of patients - 39 (67%) had a good response to rEPO (increase in hemoglobin level more than 20 g/l); 16 patients (28%) had a mean response (increase in Hb 10 - 20 g/l); in 3 (5%) patients occurred poor response to rEPO therapy (increase in Hb <10 g/l). After rEPO treatment of beta-thalassemia intermedia patients there was a statistically significant change in the number of RBC, levels of HbF and sEPO. The evaluation of interdependence between the indices of the baseline sEPO and increased Hb values in patients after rEPO treatment revealed the presence of the reverse direct relationship (r=-0.67). Based on the results, it can be concluded that the use of rEPO in complex therapy of beta-thalassemia intermedia leads to increased levels of Hb and consequently reducing the need for blood transfusions, and accordingly expected to prevent severe complications of blood transfusion (alloimmunization, hypersplenism, iron overload, contamination transmissible infections) facilitating normal growth and development, and a better quality of life. PMID:27441542

  13. Pure red cell aplasia secondary to treatment with erythropoietin.

    PubMed

    Locatelli, Francesco; Del Vecchio, Lucia

    2003-01-01

    Pure red cell aplasia (PRCA) is a rare condition defined as severe anemia secondary to the virtual absence of red blood cell precursors in the bone marrow. In the setting of patients treated with rHuEPO, the disease is generated by epoetin-induced antibodies that neutralise all the exogenous rHuEPO and cross-react with endogenous erythropoietin. As a result, serum erythropoietin levels are undetectable and erythropoiesis becomes ineffective. Only 4 cases of PRCA associated with rh-EPO have been reported before 1998. Thereafter, a sharp increase in the incidence of this rare condition has been reported, mainly associated with epoetin alpha use outside the United States. A number of possible mechanisms leading to PRCA development have been identified. Among these, modification of drug formulation and down stream processing probably has had a major role. Indeed, in 1998 the formulation of epoetin alpha in Europe was modified because of the fear of the "mad cow" syndrome. However, differences in molecule structure and glycosylation among different epoetins can not be excluded. It should also be underlined that the rise in the incidence of PRCA cases has been coincident with a major shift from intravenous to subcutaneous administration of rHuEPO. The abrupt rise in the incidence of PRCA cases observed in the last few years, deserves particular attention; however, we have to balance its severity, but extreme rarity, with the high number of chronic kidney disease patients who die each year because of cardiovascular disease that could partially be reduced by anemia treatment. PMID:14696747

  14. Erythropoietin May Improve Anemia in Patients with Autoimmune Hemolytic Anemia Associated with Reticulocytopenia

    PubMed Central

    Arbach, Olga; Funck, Robert; Seibt, Frank; Salama, Abdulgabar

    2012-01-01

    Background Management of patients with autoimmune hemolytic anemia (AIHA) and reticulocytopenia remains challenging. Case Reports Two patients with decompensated AIHA who were receiving immunosuppressive drugs were treated with erythropoietin (EPO). Administration of EPO increased reticulocyte counts and hemoglobin concentrations in both cases. One patient completely recovered following a short course of treatment. Hemolysis could be compensated in the second patient using only mild doses of immunosuppressive drugs in combination with EPO. Conclusion The administration of EPO should be considered in patients with therapy-refractory AIHA, particularly in the presence of reticulocytopenia. PMID:22851939

  15. Erythropoietin May Improve Anemia in Patients with Autoimmune Hemolytic Anemia Associated with Reticulocytopenia.

    PubMed

    Arbach, Olga; Funck, Robert; Seibt, Frank; Salama, Abdulgabar

    2012-06-01

    BACKGROUND: Management of patients with autoimmune hemolytic anemia (AIHA) and reticulocytopenia remains challenging. CASE REPORTS: Two patients with decompensated AIHA who were receiving immunosuppressive drugs were treated with erythropoietin (EPO). Administration of EPO increased reticulocyte counts and hemoglobin concentrations in both cases. One patient completely recovered following a short course of treatment. Hemolysis could be compensated in the second patient using only mild doses of immunosuppressive drugs in combination with EPO. CONCLUSION: The administration of EPO should be considered in patients with therapy-refractory AIHA, particularly in the presence of reticulocytopenia. PMID:22851939

  16. Molecular and cellular aspects of erythropoietin and erythropoiesis

    SciTech Connect

    Rich, I.N.

    1987-01-01

    This book contains over 30 papers. Some of the titles are: The Molecular Biology of Erythropoietin and the Expression of its Gene; The Molecolar Biology of Erythropoietin; Retroviral Vectors for Gene Transfer and Expression in Haematopietic Cells; Monocyte-Macrophage Mediated Suppression of Erythoropoieis in Renal Anemaia; and Standards for the Assay of Eythropoietin.

  17. Procedures for monitoring recombinant erythropoietin and analogs in doping.

    PubMed

    Lamon, Séverine; Robinson, Neil; Saugy, Martial

    2010-03-01

    Hemoglobin concentration is one of the principal factors of aerobic power and, consequently, of performance in many types of physical activities. The use of recombinant human erythropoietin is, therefore, particularly powerful for improving the physical performances of patients, and, more generally, improving their quality of life. This article discusses procedures for monitoring recombinant erythropoietin and its analogues in doping for athletic performance. PMID:20122455

  18. Recombinant human erythropoietin therapy in critically ill Jehovah's Witnesses.

    PubMed

    Ball, Amanda M; Winstead, P Shane

    2008-11-01

    Blood transfusions and blood products are often given as a life-saving measure in patients with critical illness. However, some patients, such as Jehovah's Witnesses, may refuse their administration due to religious beliefs. Jehovah's Witnesses accept most available medical treatments, but not blood transfusions or blood products due to their religion's interpretation of several passages from the Bible. Since recombinant human erythropoietin (rHuEPO) became available, several cases have been reported in which rHuEPO was successfully administered to critically ill Jehovah's Witnesses. Administration of rHuEPO in combination with other blood conservation techniques has been shown to increase hemoglobin levels and survival in patients who experienced trauma, burns, general surgery, or gastrointestinal hemorrhage. We performed a literature search of the MEDLINE and International Pharmaceutical Abstracts databases of rHuEPO therapy in the Jehovah's Witness population. Fourteen cases were identified in which rHuEPO was administered to Jehovah's Witnesses who required the drug for critical care resuscitation as an alternative to blood products. In each clinical situation, rHuEPO enhanced erythropoiesis; however, time to the start of treatment, dosages, route of administration, and treatment duration varied widely. Supplementation with adjunctive agents, such as iron, folic acid, and vitamin B12, was also beneficial. Use of rHuEPO in Jehovah's Witnesses may provide an alternative to blood transfusions or blood products. Other alternatives, such as hemoglobin-based oxygen carriers and perfluorocarbons, are also being explored. PMID:18956998

  19. State-of-the-art biosimilar erythropoietins in the management of renal anemia: lessons learned from Europe and implications for US nephrologists.

    PubMed

    Covic, Adrian; Abraham, Ivo

    2015-09-01

    The European Medicines Agency (EMA), under a strictly regulated pathway, has approved several biosimilar products since 2005, including biosimilar versions of the erythropoiesis-stimulating agent (ESA) epoetin alfa since 2007. Subsequent to these approvals, the use of biosimilar epoetin alfa in the management of renal anemia has grown steadily throughout Europe. With the enactment of the US Biologics Price Competition and Innovation Act of 2009, a US Food and Drug Administration regulatory approval process for biosimilars was legalized. Thus, biosimilar erythropoietin products are expected to be available for prescription in the USA by mid-decade, presumably at a price that is competitive with the originator brand-name reference products. In this paper, we describe the status of originator and biosimilar ESAs, review the clinical development and regulatory approval of biosimilar erythropoietins in Europe, and summarize relevant efficacy and safety information of biosimilar erythropoietins in relation to their reference products to provide a background for US nephrologists as they appraise biosimilar erythropoietins as treatment options for renal anemia. Key lessons learned from Europe are that (a) EMA-approved biosimilar erythropoietins have comparable efficacy and safety profiles to their reference product erythropoietin; (b) pharmacovigilance preapproval and postapproval are critical, especially with regard to immunogenicity and vascular thromboembolic events; (c) strict preapproval and postapproval requirements must guide the regulatory pathway for biosimilars; and (d) high-quality manufacturing and production processes must be established to ensure quality biosimilar products. The availability of biosimilar erythropoietins in the USA will provide nephrologists with alternative effective, and potentially more affordable, treatment options for patients with renal anemia. PMID:26223197

  20. The role of erythropoietin and erythropoietin receptor in malignant laryngeal tumors.

    PubMed

    Vukelic, Jelena; Dobrila-Dintinjana, Renata; Jonjic, Nives; Dekanic, Andrea; Ilijic, Vjekoslav

    2013-12-01

    Erythropoietin (Epo) is a glycoprotein hormone responsible for erythropoiesis. Its effect is realized by binding erythropoietin receptor (EpoR) expressed on erythroid progenitor cells. Hypoxia is the main stimulus for the secretion of erythropoietin. Anemia is an independent negative prognostic factor for survival in patients with malignant diseases. Synthetic forms of erythropoietin are used in clinical oncology practice to increase the level of hemoglobin. As well as endogenous they can bind to EpoR. Considering the fact that most effects of synthetic Epo are negative, the role of endogenous Epo/EpoR has become an extremely important issue. The authors do not agree on most items related to the effects of exogenous Epo and EpoR in patients with head and neck carcinomas. We are investigating the expression of Epo/EpoR in the tissue of malignant laryngeal carcinoma. Our hypothesis is that less differentiated laryngeal carcinomas will have a higher level of endogenous Epo/EpoR expression. Therefore, in patients with positive Epo/EpoR we expect shorter survival and poorer locoregional disease control. We anticipate that our hypothesis may help to provide the role of endogenous Epo/EpoR in patients with malignant tumors of the larynx. If the assumptions of this study are confirmed, the patients with laryngeal carcinomas whose tumor cells express Epo/EpoR should not be considered for the treatment of anemia with recombinant erythropoietin in any case. We also point out that our research will expand the knowledge of the biology of laryngeal tumor cells and that the results could be utilized as basic knowledge in development of future therapeutic strategies. PMID:24134826

  1. Erythropoietin Pathway: A Potential Target for the Treatment of Depression.

    PubMed

    Ma, Chongyang; Cheng, Fafeng; Wang, Xueqian; Zhai, Changming; Yue, Wenchao; Lian, Yajun; Wang, Qingguo

    2016-01-01

    During the past decade, accumulating evidence from both clinical and experimental studies has indicated that erythropoietin may have antidepressant effects. In addition to the kidney and liver, many organs have been identified as secretory tissues for erythropoietin, including the brain. Its receptor is expressed in cerebral and spinal cord neurons, the hypothalamus, hippocampus, neocortex, dorsal root ganglia, nerve axons, and Schwann cells. These findings may highlight new functions for erythropoietin, which was originally considered to play a crucial role in the progress of erythroid differentiation. Erythropoietin and its receptor signaling through JAK2 activate multiple downstream signaling pathways including STAT5, PI3K/Akt, NF-κB, and MAPK. These factors may play an important role in inflammation and neuroprogression in the nervous system. This is particularly true for the hippocampus, which is possibly related to learning, memory, neurocognitive deficits and mood alterations. Thus, the influence of erythropoietin on the downstream pathways known to be involved in the treatment of depression makes the erythropoietin-related pathway an attractive target for the development of new therapeutic approaches. Focusing on erythropoietin may help us understand the pathogenic mechanisms of depression and the molecular basis of its treatment. PMID:27164096

  2. Erythropoietin protects cardiac myocytes against anthracycline-induced apoptosis

    SciTech Connect

    Fu Ping; Arcasoy, Murat O. . E-mail: arcas001@mc.duke.edu

    2007-03-09

    The cardiotoxic adverse effects of anthracycline antibiotics limit their therapeutic utility as essential components of chemotherapy regimens for hematologic and solid malignancies. Here we show that the hematopoietic cytokine erythropoietin attenuates doxorubicin-induced apoptosis of primary neonatal rat ventricular cardiomyocytes in a dose-dependent manner. Erythropoietin treatment induced rapid, time-dependent phosphorylation of MAP kinases (MAPK) Erk1/2 and the phosphatidylinositol 3-kinase substrate Akt. Treatment of cardiomyocytes with inhibitors of phosphatidylinositol 3-kinase (LY294002) or Akt (Akti-1/2) abolished the protective effect of erythropoietin, whereas treatment with MAPK kinase (MEK1) inhibitor U0126 did not. Erythropoietin also induced the phosphorylation of GSK-3{beta}, a downstream target of PI3K-Akt. Because phosphorylation is known to inactivate GSK-3{beta}, we investigated whether GSK-3{beta} inhibition is cardioprotective. We found that GSK-3{beta} inhibitors SB216763 or lithium chloride blocked doxorubicin-induced cardiomyocyte apoptosis in a manner similar to erythropoietin, suggesting that GSK-3{beta} inhibition is involved in erythropoietin-mediated cardioprotection. Erythropoietin may serve as a novel cardioprotective agent against anthracycline-induced cardiotoxicity.

  3. Erythropoietin Pathway: A Potential Target for the Treatment of Depression

    PubMed Central

    Ma, Chongyang; Cheng, Fafeng; Wang, Xueqian; Zhai, Changming; Yue, Wenchao; Lian, Yajun; Wang, Qingguo

    2016-01-01

    During the past decade, accumulating evidence from both clinical and experimental studies has indicated that erythropoietin may have antidepressant effects. In addition to the kidney and liver, many organs have been identified as secretory tissues for erythropoietin, including the brain. Its receptor is expressed in cerebral and spinal cord neurons, the hypothalamus, hippocampus, neocortex, dorsal root ganglia, nerve axons, and Schwann cells. These findings may highlight new functions for erythropoietin, which was originally considered to play a crucial role in the progress of erythroid differentiation. Erythropoietin and its receptor signaling through JAK2 activate multiple downstream signaling pathways including STAT5, PI3K/Akt, NF-κB, and MAPK. These factors may play an important role in inflammation and neuroprogression in the nervous system. This is particularly true for the hippocampus, which is possibly related to learning, memory, neurocognitive deficits and mood alterations. Thus, the influence of erythropoietin on the downstream pathways known to be involved in the treatment of depression makes the erythropoietin-related pathway an attractive target for the development of new therapeutic approaches. Focusing on erythropoietin may help us understand the pathogenic mechanisms of depression and the molecular basis of its treatment. PMID:27164096

  4. Local Erythropoietin Injection in Tibiofibular Fracture Healing

    PubMed Central

    Bakhshi, Hooman; Kazemian, Gholamhossein; Emami, Mohammad; Nemati, Ali; Karimi Yarandi, Hossein; Safdari, Farshad

    2013-01-01

    Background Erythropoietin (EPO), in addition to its function as an erythropoiesis regulator has a regenerative activity on some nonhematopoietic tissues. Animal studies have suggested a role for erythropoietin in bone healing. Objectives The present study aimed to evaluate the effects of local EPO injection in healing of tibiofibular fractures. Materials and Methods In a prospective double blind study, 60 patients with tibiofibular fracture were divided to equal EPO or placebo groups, randomly. Patients received local injection of either EPO or a placebo to the site of fracture two weeks after surgical fixation. Patients were followed by clinical and radiographic examination to determine the union rate. The period of fracture union and incidence of nonunion were compared between the two groups. Results The demographic data and types of fractures were similar in the both groups. The mean duration of the fracture union was 2.1 weeks shorter in those treated with EPO (P = 0.01). Nonunion was observed in 6 patients of the control group and 2 receiving EPO (P = 0.02). No patient experienced any adverse effect from local EPO injections. Conclusions EPO injection into the site of tibiofibular fractures may possibly accelerate healing. PMID:24350133

  5. Depressed serum erythropoietin in pregnant women with elevated blood lead.

    PubMed

    Graziano, J H; Slavkovic, V; Factor-Litvak, P; Popovac, D; Ahmedi, X; Mehmeti, A

    1991-01-01

    During the course of a prospective study of lead exposure and pregnancy outcome in 1,502 women, we tested the hypothesis that environmental lead exposure is associated with depressed serum erythropoietin concentration. At mid-pregnancy and at delivery, blood samples were stratified by hemoglobin concentration; within each hemoglobin stratum, sera of women with the lowest and highest whole blood lead concentrations were selected for serum erythropoietin analysis. Analysis of variance revealed that women with higher blood lead levels had inappropriately low serum erythropoietin at both mid-pregnancy and at delivery. Thus, depressed serum erythropoietin appears to indicate lead nephrotoxicity, and it may also be responsible for the anemia associated with lead poisoning. PMID:1772259

  6. Erythropoietin as a new therapeutic opportunity in brain inflammation and neurodegenerative diseases.

    PubMed

    Merelli, A; Czornyj, L; Lazarowski, A

    2015-01-01

    Highly expressed Erythropoietin Receptor (EPO-R) has been detected in several nonhematopoietic hypoxic cells, including cells from different brain areas in response to many different types of cell injury. In brain, hypoxia-ischemia (HI) can induce a wide spectrum of biologic responses, where inflammation and apoptosis are the main protagonists. Inflammation, as a primary brain insult, can induce a chronic hypoxic condition, producing the continuous cycle of inflammation-hypoxia that increases the apoptotic-cell number. It has also been demonstrated that administration of erythropoietin (EPO) prevented the neuronal death induced by HI, as well as the induction of lipid peroxidation in the hippocampus in a rodent model of Alzheimer's disease. Anti-apoptotic, anti-inflammatory, anti-oxidant, and/or cell-proliferative effects of EPO, have been observed in all type of cells expressing EPO-R, resulting in a potential tool for neuroprotection, neuroreparation, or neurogenesis of brain damaged areas. The nasal route is an alternative way of drugs administration that has been successfully exploited for bypassing the blood brain barrier, and subsequently delivering EPO and other molecules to central nervous system. Intranasal administration of EPO could be a new therapeutic opportunity in several brain damages that includes hypoxia, inflammation, neurodegenerative process, and apoptosis. PMID:25405533

  7. Erythropoietin stimulation decreases hepcidin expression through hematopoietic activity on bone marrow cells in mice.

    PubMed

    Sasaki, Yusuke; Noguchi-Sasaki, Mariko; Yasuno, Hideyuki; Yorozu, Keigo; Shimonaka, Yasushi

    2012-12-01

    Erythropoiesis-stimulating agents (ESA) are now central to the treatment of renal anemia and are associated with improved clinical outcomes. It is well known that erythropoietin (EPO) is a key regulator of erythropoiesis through its promotion of red blood cell production. In order to investigate the role of ESA on iron metabolism, we analyzed the regulation of the iron regulatory hormone hepcidin by ESA treatment in a bone marrow transplant model in mouse. After treating C57BL/6 mice with continuous erythropoietin receptor activator (C.E.R.A.), recombinant human epoetin-β (rhEPO), or recombinant human carbamylated epoetin-β (rhCEPO), we investigated serum hepcidin concentrations and parameters of erythropoiesis. Serum hepcidin concentrations after rhEPO treatment were analyzed in mice subjected to total body irradiation followed by bone marrow transplantation. C.E.R.A. administration caused long-term downregulation of serum hepcidin levels. Serum hepcidin levels in rhEPO-treated mice decreased significantly, whereas there was no change in rhCEPO-treated mice. The reduction in circulating hepcidin levels after rhEPO administration was not observed in irradiated mice. Finally, bone marrow transplantation recovered the response to rhEPO administration that downregulates hepcidin concentration in irradiated mice. These results indicate that ESA treatment downregulates serum hepcidin concentrations, mainly by indirect mechanisms affecting hematopoietic activity in bone marrow cells. PMID:23160767

  8. Biotinylated recombinant human erythropoietins: Bioactivity and utility as receptor ligand

    SciTech Connect

    Wojchowski, D.M.; Caslake, L. )

    1989-08-15

    Recombinant human erythropoietin labeled covalently with biotin at sialic acid moieties has been prepared, and has been shown to possess high biological activity plus utility as a receptor ligand. Initially, the effects on biological activity of covalently attaching biotin to erythropoietin alternatively at carboxylate, amino, or sialic acid groups were compared. Biotinylation of erythropoietin at carboxylate groups using biotin-amidocaproyl hydrazide plus 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide led to substantial biological inactivation, although biotinylated molecules retained detectable activity when prepared at low stoichiometries. Biotinylation at amino groups using sulfosuccinimidyl 6-(biotinamido) hexanoate resulted in a high level of biological inactivation with little, if any, retention of biological activity, regardless of labeling stoichiometries. Biotinylation at sialic acid moieties using periodate and biotinamidocaproyl hydrazide proceeded efficiently (greater than 95% and 80% labeling efficiencies for human urinary and recombinant erythropoietin, respectively) and yielded stably biotinylated erythropoietin molecules possessing comparably high biological activity (ie, 45% of the activity of unmodified hormone). Utility of recombinant biotin-(sialyl)-erythropoietin (in combination with 125I-streptavidin) in the assay of cell surface receptors was demonstrated using two distinct murine erythroleukemia cell lines, Friend 745 and Rauscher Red 1. The densities and affinities of specific hormone binding sites were 116 +/- 4 sites, 3.3 +/- 0.4 nmol/L kd and 164 +/- 5 sites, 2.7 +/- 0.4 nmol/L kd, respectively. It is predicted that the present development of biotin-(sialyl)-erythropoietin as a chemically and biologically stable, bioactive ligand will assist in advancing an understanding of the regulated expression and physicochemistry of the human and murine erythropoietin receptors.

  9. Erythropoietin in cancer: the new face of an old friend.

    PubMed

    Megalakaki, C

    2008-01-01

    During the last decade, anemia, a very common situation in patients with malignant diseases, either associated with chemotherapy or not, is being treated with recombinant erythropoietin (rEPO). Recent experimental findings have elucidated the role of EPO as a strongly anti-apoptotic agent in multiple non-erythroid and neoplastic tissues. The discovery of probably functional EPO receptors (EPOR) on malignant cells, hinting that EPO may act as a tumor growth factor, raised embarrassing thoughts regarding the routine administration of erythropoiesis-stimulating agents (ESAs). In addition, the results of a few clinical trials showing a negative impact on overall survival of rEPO-treated cancer patients, although strongly criticized for several methodological pitfalls, led the FDA to force a "black label" warning concerning the use of rEPO and to recommend that physicians should use the lowest possible dose of ESAs in chemotherapy-treated cancer patients. This recommendation comes in accord with the recent guidelines of European Organisation for Research and Treatment of Cancer (EORTC) which are reviewed in this paper, along with the structure of EPO and EPOR, the role of EPO on normal and malignant cells and the clinical applications of EPO. PMID:18404780

  10. Endogenous Erythropoietin Protects Neuroretinal Function in Ischemic Retinopathy

    PubMed Central

    Mowat, Freya M.; Gonzalez, Francisco; Luhmann, Ulrich F.O.; Lange, Clemens A.; Duran, Yanai; Smith, Alexander J.; Maxwell, Patrick H.; Ali, Robin R.; Bainbridge, James W.B.

    2012-01-01

    Because retinal ischemia is a common cause of vision loss, we sought to determine the effects of ischemia on neuroretinal function and survival in murine oxygen-induced retinopathy (OIR) and to define the role of endogenous erythropoietin (EPO) in this model. OIR is a reproducible model of ischemia-induced retinal neovascularization; it is used commonly to develop antiangiogenic strategies. We investigated the effects of ischemia in murine OIR on retinal function and neurodegeneration by electroretinography and detailed morphology. OIR was associated with significant neuroretinal dysfunction, with reduced photopic and scotopic ERG responses and reduced b-wave/a-wave ratios consistent with specific inner-retinal dysfunction. OIR resulted in significantly increased apoptosis and atrophy of the inner retina in areas of ischemia. EPO deficiency in heterozygous Epo-Tag transgenic mice was associated with more profound retinal dysfunction after OIR, indicated by a significantly greater suppression of ERG amplitudes, but had no measurable effect on the extent of retinal ischemia, preretinal neovascularization, or neuroretinal degeneration in OIR. Systemic administration of recombinant EPO protected EPO-deficient mice against this additional suppression, but EPO supplementation in wild-type animals with OIR did not rescue neuroretinal dysfunction or degeneration. Murine OIR offers a valuable model of ischemic neuroretinal dysfunction and degeneration in which to investigate adaptive tissue responses and evaluate novel therapeutic approaches. Endogenous EPO can protect neuroretinal function in ischemic retinopathy. PMID:22342523

  11. Human Erythropoietin Dimers with Markedly Enhanced in vivo Activity

    NASA Astrophysics Data System (ADS)

    Sytkowski, Arthur J.; Dotimas Lunn, Elizabeth; Davis, Kerry Lynn; Feldman, Laurie; Siekman, Suvia

    1998-02-01

    Human erythropoietin, a widely used and important therapeutic glycoprotein, has a relatively short plasma half-life due to clearance by glomerular filtration as well as by other mechanisms. We hypothesized that an erythropoietin species with a larger molecular size would exhibit an increased plasma half-life and, potentially, an enhanced biological activity. We now report the production of biologically active erythropoietin dimers and trimers by chemical crosslinking of the conventional monomeric form. We imparted free sulfhydryl residues to a pool of erythropoietin monomer by chemical modification. A second pool was reacted with another modifying reagent to yield monomer with male-imido groups. Upon mixing these two pools, covalently linked dimers and trimers were formed that were biologically active in vitro. The plasma half-life of erythropoietin dimers in rabbits was >24 h compared with 4 h for the monomers. Importantly, erythropoietin dimers were biologically active in vivo as shown by their ability to increase the hematocrits of mice when injected subcutaneously. In addition, the dimers exhibited >26-fold higher activity in vivo than did the monomers and were very effective after only one dose. Dimeric and other oligomeric forms of Epo may have an important role in therapy.

  12. Erythropoietin Levels in Elderly Patients with Anemia of Unknown Etiology

    PubMed Central

    Sriram, Swetha; Martin, Alison; Xenocostas, Anargyros; Lazo-Langner, Alejandro

    2016-01-01

    Background In many elderly patients with anemia, a specific cause cannot be identified. This study investigates whether erythropoietin levels are inappropriately low in these cases of “anemia of unknown etiology” and whether this trend persists after accounting for confounders. Methods This study includes all anemic patients over 60 years old who had erythropoietin measured between 2005 and 2013 at a single center. Three independent reviewers used defined criteria to assign each patient’s anemia to one of ten etiologies: chronic kidney disease, iron deficiency, chronic disease, confirmed myelodysplastic syndrome (MDS), suspected MDS, vitamin B12 deficiency, folate deficiency, anemia of unknown etiology, other etiology, or multifactorial etiology. Iron deficiency anemia served as the comparison group in all analyses. We used linear regression to model the relationship between erythropoietin and the presence of each etiology, sequentially adding terms to the model to account for the hemoglobin concentration, estimated glomerular filtration rate (eGFR) and Charlson Comorbidity Index. Results A total of 570 patients met the inclusion criteria. Linear regression analysis showed that erythropoietin levels in chronic kidney disease, anemia of chronic disease and anemia of unknown etiology were lower by 48%, 46% and 27%, respectively, compared to iron deficiency anemia even after adjusting for hemoglobin, eGFR and comorbidities. Conclusions We have shown that erythropoietin levels are inappropriately low in anemia of unknown etiology, even after adjusting for confounders. This suggests that decreased erythropoietin production may play a key role in the pathogenesis of anemia of unknown etiology. PMID:27310832

  13. Erythropoietin is involved in hemoprotein syntheses in developing human decidua.

    PubMed

    Shiota, Mitsuru; Yasuda, Yoshiko; Shimaoka, Masao; Tsuritani, Mitsuhiro; Koike, Eiji; Oiki, Masaaki; Matsubara, Junko; Taketani, Shigeru; Murakami, Hitoshi; Yamasaki, Harufumi; Okumoto, Katsumi; Hoshiai, Hiroshi

    2013-03-01

    Before establishment of feto-placental circulation, decidua can synthesize hemoproteins to maintain oxygen homeostasis in situ. Using the human decidua of induced abortions ranging from 5 to 8 weeks of gestation, we determined the expression levels of erythropoietin, erythropoietin receptor, cytoglobin, myoglobin, embryonic-, fetal- and adult hemoglobin mRNA by quantitative RT-PCR analysis and identified their proteins by Western blot and immunohistochemical analyses. Erythropoietin signaling was demonstrated in phosphatidylinositol-3-kinase/protein kinase B pathway by Western blot, and the transcriptional factors for erythroid and non-erythroid heme synthesis were examined by RT-PCR analysis. In decidua, erythropoietin and its receptor mRNAs, erythropoietin receptor protein and phosphatidylinositol-3-kinase, were expressed with a peak at 6 weeks of gestation. Moreover, the decidua during 5 to 8 weeks of gestation expressed embryonic, fetal and adult hemoglobins additionally cytoglobin and myoglobin at transcriptional and protein levels. The heme portion of these hemoproteins is considered to be synthesized by non-erythroid δ-aminolevulinate synthase. These hemoproteins were discernible especially in decidual cells concomitant with cytotrophoblast cells and macrophage in these developing decidua. Considering the different capacity for oxygen binding and dissociation among hemoglobins with the oxygen storage capacity for cytoglobin and myoglobin, these hemoproteins appear to play a role in oxygen demand in decidua in situ before development of feto-placental circulation under the control of erythropoietin signaling. PMID:23480354

  14. [Expression of erythropoietin receptor in leukemia cells and relation of erythropoietin level with leukemic anemia].

    PubMed

    Feng, Mei; Li, Yu-Cui

    2008-12-01

    This study was purposed to investigate the expression of erythropoietin receptor (EPOR) in leukemic cells and the relationship of serum erythropoietin level with anemia in acute leukemia patients, so as to provide a new theoretical basis for the cytokine therapy in acute leukemia with anemia. The EPOR in 30 AL patients was detected by using reverse transcription polymerase chain reaction (RT-PCR), the level of serum erythropoietin was detected by chemiluminescence analysis, the hemoglobin level was assayed by automatic blood counting instrument. The results indicated that EPOR was expressed in 18 out of 30 AL patients, the expression rate of EPOR in AL patients was 60%, however, but the EPOR expression rate in AML was 61.9% (13/21) and 55.6% (5/9) in ALL, the EPOR expression rate was no significant difference between AML and ALL. The EPOR expression rate was significantly lower than that in control group (86.7%) (p<0.05). The relative level of EPOR expression in AML was higher than that in ALL (p<0.05), the average level of EPOR expression in AL was significantly lower than that in control group (p<0.01). The level of sEPO in 30 AL patients was significantly higher than that in control group (p<0.01), and there was negative correlation between the levels of sEPO and Hb (p<0.01). It is concluded that the EPOR is expressed in cells of AL, but the expressive level is low. The EPOR expression rate shows no significant difference between AML and ALL. The mechanism of negative feedback to anemia in acute leukemia is intact. Anemia of acute leukemia is not completely associated with inadequate erythropoietin production and relates to hemopoiesis defect that considered as the main reason. Recombinant human erythropoietin is widely used in treatment of anemia caused by acute leukemia. Whether the treatment with rh-EPO for acute leukemia with anemia will enhance the proliferation of leukemia cells, this problem should be explored further. PMID:19099624

  15. Renal protective effects of erythropoietin on ischemic reperfusion injury.

    PubMed

    Moriyama, Manabu T; Tanaka, Tatsuro; Morita, Nobuyo; Ishii, Takeo; Chikazawa, Ippei; Suga, Kodai; Miyazawa, Katsuhito; Suzuki, Koji

    2010-01-01

    While the problem of organ shortage has not yet been solved, the number of patients who need to be treated with dialysis due to end-stage renal disease (ESRD) is increasing each year. With the aim of eliminating dialytic therapy as much as possible, the opportunities for organ donation from expansive criteria donor (ECD) or marginal donors due to cardiac death have been increasing. With the purpose of extracting organs in a state in which the function is preserved as much as possible, we reexamined the conditions of tissue disorders resulting from temporary ischemia of the organs as well as changes in tissue function and the effects on the preservation of renal function over time by using rat models in order to clinically utilize erythropoietin, which has inhibitory effects on ischemia-reperfusion disorder, as has been conventionally reported. With 8- to 9-week-old Wister male rats, after the right kidney had been resected under general anesthesia, the left renal artery was clamped to inhibit the blood flow for 45 min. At 30 min before inhibiting the blood flow and after releasing the inhibited blood flow, 100 U/kg of recombinant human erythropoietin (rhEPO) was administered via the inferior vena cava and the abdominal cavity, and then the tissues and blood samples were extracted at 6 and 24 h after the release. The renal tissue specimens were evaluated using H&E staining and TUNEL staining in order to observe differences in the expression of apoptosis as well as the renal function and changes in the emergence of active oxygen were investigated by using samples that had been obtained from drawn blood. Moreover, we examined the degree of renal dysfunction by means of neutrophil gelatinase-associated lipocalin (NGAL) in the spot urine samples. The changes in renal function, which were observed according to the serum creatinine level, showed that the renal function was preserved with a significant difference in the rhEPO administration group. The liver deviation

  16. Regeneration in the nervous system with erythropoietin

    PubMed Central

    Maiese, Kenneth

    2015-01-01

    Globally, greater than 30 million individuals are afflicted with disorders of the nervous system accompanied by tens of thousands of new cases annually with limited, if any, treatment options. Erythropoietin (EPO) offers an exciting and novel therapeutic strategy to address both acute and chronic neurodegenerative disorders. EPO governs a number of critical protective and regenerative mechanisms that can impact apoptotic and autophagic programmed cell death pathways through protein kinase B (Akt), sirtuins, mammalian forkhead transcription factors, and wingless signaling. Translation of the cytoprotective pathways of EPO into clinically effective treatments for some neurodegenerative disorders has been promising, but additional work is necessary. In particular, development of new treatments with erythropoiesis-stimulating agents such as EPO brings several important challenges that involve detrimental vascular outcomes and tumorigenesis. Future work that can effectively and safely harness the complexity of the signaling pathways of EPO will be vital for the fruitful treatment of disorders of the nervous system. PMID:26549969

  17. Pharmacological Effects of Erythropoietin and its Derivative Carbamyl erythropoietin in Cerebral White Matter Injury

    NASA Astrophysics Data System (ADS)

    Liu, Wei

    Periventricular leukomalacia (PVL) is the predominant form of brain injury in the premature infant and the most common cause of cerebral palsy, yet no therapy currently exists for this serious human disorder. As PVL often occurs in preterm infants suffering from cerebral hypoxia/ischemia with or without prior exposure to maternal-fetal infection/inflammation, we used hypoxia/ischemia with or without lipopolysaccharide (LPS) injection, to produce clinically relevant PVL-like lesions in the white matter in postnatal day six (P6) mice. We studied the white matter pathology under different conditions, such as different durations of hypoxia and different doses of LPS, to evaluate the effects of those etiological factors on neonatal white matter injury. Distinct related pathological events were investigated at different time points during the progression of PVL. We used immunohistochemistry, histological analysis, and electron microscopy (EM) to study demylination that occurs in the white matter area, which is consistent with the pathology of human PVL. Previous studies have shown that erythropoietin (EPO) and its derivative carbamylated EPO (CEPO) are neuroprotective in various experimental models of brain injury. However, none of these studies investigated their efficacy against white matter injury using appropriate animal models of PVL. We produced unilateral or bilateral white matter injury in P6 mice using unilateral carotid ligation (UCL) followed by hypoxia (6% oxygen, 35 min) or by UCL/hypoxia plus LPS injection, respectively. We administered a single intraperitoneal (i.p.) dose of EPO or CEPO (5000 IU/kg) immediately after the insult, and found both drugs to provide significant protection against white matter injury in PVL mice compared to vehicle-treated groups. In addition, EPO and CEPO treatments attenuated neurobehavioral dysfunctions in an acute manner after PVL injury. EPO and CEPO have relatively few adverse effects, and thus may be a therapeutic agent

  18. The effects of erythropoietin signaling on telomerase regulation in non-erythroid malignant and non-malignant cells

    SciTech Connect

    Uziel, Orit; Kanfer, Gil; Beery, Einat; Yelin, Dana; Shepshelovich, Daniel; Bakhanashvili, Mary; Nordenberg, Jardena; Lahav, Meir

    2014-07-18

    Highlights: • We assumed that some of erythropoietin adverse effects may be mediated by telomerase activity. • EPO administration increased telomerase activity, cells proliferation and migration. • The inhibition of telomerase modestly repressed the proliferative effect of erythropoietin. • Telomere shortening caused by long term inhibition of the enzyme totally abolished that effect. • This effect was mediated via the Lyn–AKT axis and not by the canonical JAK2–STAT pathway. - Abstract: Treatment with erythropoietin (EPO) in several cancers is associated with decreased survival due to cancer progression. Due to the major importance of telomerase in cancer biology we hypothesized that some of these effects may be mediated through EPO effect on telomerase. For this aim we explored the possible effects of EPO on telomerase regulation, cell migration and chemosensitivity in non-erythroid malignant and non-malignant cells. Cell proliferation, telomerase activity (TA) and cell migration increased in response to EPO. EPO had no effect on cancer cells sensitivity to cisplatinum and on the cell cycle status. The inhibition of telomerase modestly repressed the proliferative effect of EPO. Telomere shortening caused by long term inhibition of the enzyme abolished the effect of EPO, suggesting that EPO effects on cancer cells are related to telomere dynamics. TA was correlated with the levels of Epo-R. The increase in TA was mediated post-translationally through the Lyn-Src and not the canonical JAK2 pathway.

  19. The neuroprotective role of erythropoietin in the management of acute ischaemic stroke: from bench to bedside.

    PubMed

    Ntaios, G; Savopoulos, C; Chatzinikolaou, A; Hatzitolios, A I

    2008-12-01

    Recombinant human erythropoietin was produced soon after the discovery of the erythropoietin gene in 1985 and since then, it is used in various clinical conditions such as chronic renal failure. Moreover, experimental studies have shown that erythropoietin exerts neuroprotective action as well. Recently, a clinical trial yielded promising results concerning the use of erythropoietin in stroke management. In this review, we summarize the main data which suggest that recombinant human erythropoietin and its analogues may indeed have a role in stroke treatment. PMID:18513348

  20. Erythropoietin Stimulates Tumor Growth via EphB4.

    PubMed

    Pradeep, Sunila; Huang, Jie; Mora, Edna M; Nick, Alpa M; Cho, Min Soon; Wu, Sherry Y; Noh, Kyunghee; Pecot, Chad V; Rupaimoole, Rajesha; Stein, Martin A; Brock, Stephan; Wen, Yunfei; Xiong, Chiyi; Gharpure, Kshipra; Hansen, Jean M; Nagaraja, Archana S; Previs, Rebecca A; Vivas-Mejia, Pablo; Han, Hee Dong; Hu, Wei; Mangala, Lingegowda S; Zand, Behrouz; Stagg, Loren J; Ladbury, John E; Ozpolat, Bulent; Alpay, S Neslihan; Nishimura, Masato; Stone, Rebecca L; Matsuo, Koji; Armaiz-Peña, Guillermo N; Dalton, Heather J; Danes, Christopher; Goodman, Blake; Rodriguez-Aguayo, Cristian; Kruger, Carola; Schneider, Armin; Haghpeykar, Shyon; Jaladurgam, Padmavathi; Hung, Mien-Chie; Coleman, Robert L; Liu, Jinsong; Li, Chun; Urbauer, Diana; Lopez-Berestein, Gabriel; Jackson, David B; Sood, Anil K

    2015-11-01

    While recombinant human erythropoietin (rhEpo) has been widely used to treat anemia in cancer patients, concerns about its adverse effects on patient survival have emerged. A lack of correlation between expression of the canonical EpoR and rhEpo's effects on cancer cells prompted us to consider the existence of an alternative Epo receptor. Here, we identified EphB4 as an Epo receptor that triggers downstream signaling via STAT3 and promotes rhEpo-induced tumor growth and progression. In human ovarian and breast cancer samples, expression of EphB4 rather than the canonical EpoR correlated with decreased disease-specific survival in rhEpo-treated patients. These results identify EphB4 as a critical mediator of erythropoietin-induced tumor progression and further provide clinically significant dimension to the biology of erythropoietin. PMID:26481148

  1. Erythropoietin Restores Long-Term Neurocognitive Function Involving Mechanisms of Neuronal Plasticity in a Model of Hyperoxia-Induced Preterm Brain Injury.

    PubMed

    Hoeber, Daniela; Sifringer, Marco; van de Looij, Yohan; Herz, Josephine; Sizonenko, Stéphane V; Kempe, Karina; Serdar, Meray; Palasz, Joanna; Hadamitzky, Martin; Endesfelder, Stefanie; Fandrey, Joachim; Felderhoff-Müser, Ursula; Bendix, Ivo

    2016-01-01

    Cerebral white and grey matter injury is the leading cause of an adverse neurodevelopmental outcome in prematurely born infants. High oxygen concentrations have been shown to contribute to the pathogenesis of neonatal brain damage. Here, we focused on motor-cognitive outcome up to the adolescent and adult age in an experimental model of preterm brain injury. In search of the putative mechanisms of action we evaluated oligodendrocyte degeneration, myelination, and modulation of synaptic plasticity-related molecules. A single dose of erythropoietin (20,000 IU/kg) at the onset of hyperoxia (24 hours, 80% oxygen) in 6-day-old Wistar rats improved long-lasting neurocognitive development up to the adolescent and adult stage. Analysis of white matter structures revealed a reduction of acute oligodendrocyte degeneration. However, erythropoietin did not influence hypomyelination occurring a few days after injury or long-term microstructural white matter abnormalities detected in adult animals. Erythropoietin administration reverted hyperoxia-induced reduction of neuronal plasticity-related mRNA expression up to four months after injury. Thus, our findings highlight the importance of erythropoietin as a neuroregenerative treatment option in neonatal brain injury, leading to improved memory function in adolescent and adult rats which may be linked to increased neuronal network connectivity. PMID:27493706

  2. Erythropoietin Restores Long-Term Neurocognitive Function Involving Mechanisms of Neuronal Plasticity in a Model of Hyperoxia-Induced Preterm Brain Injury

    PubMed Central

    Sifringer, Marco; van de Looij, Yohan; Herz, Josephine; Sizonenko, Stéphane V.; Kempe, Karina; Palasz, Joanna; Hadamitzky, Martin; Fandrey, Joachim

    2016-01-01

    Cerebral white and grey matter injury is the leading cause of an adverse neurodevelopmental outcome in prematurely born infants. High oxygen concentrations have been shown to contribute to the pathogenesis of neonatal brain damage. Here, we focused on motor-cognitive outcome up to the adolescent and adult age in an experimental model of preterm brain injury. In search of the putative mechanisms of action we evaluated oligodendrocyte degeneration, myelination, and modulation of synaptic plasticity-related molecules. A single dose of erythropoietin (20,000 IU/kg) at the onset of hyperoxia (24 hours, 80% oxygen) in 6-day-old Wistar rats improved long-lasting neurocognitive development up to the adolescent and adult stage. Analysis of white matter structures revealed a reduction of acute oligodendrocyte degeneration. However, erythropoietin did not influence hypomyelination occurring a few days after injury or long-term microstructural white matter abnormalities detected in adult animals. Erythropoietin administration reverted hyperoxia-induced reduction of neuronal plasticity-related mRNA expression up to four months after injury. Thus, our findings highlight the importance of erythropoietin as a neuroregenerative treatment option in neonatal brain injury, leading to improved memory function in adolescent and adult rats which may be linked to increased neuronal network connectivity. PMID:27493706

  3. Safety of Intravitreally Administered Recombinant Erythropoietin (An AOS Thesis)

    PubMed Central

    Tsai, James C.

    2008-01-01

    Purpose This study investigated the safety and potential retinal toxicity of intravitreally administered erythropoietin (EPO) in a rodent animal model. Methods Forty-two healthy Sprague-Dawley rats were divided into one of 7 groups (N = 6 per group): control, sham injection, vehicle injection, and EPO injections of 50 ng (5 U), 100 ng (10 U), 250 ng (25 U), and 625 ng (62.5 U). Only the right eye was treated in each animal. Standard full-field dark- and light-adapted electroretinography (ERG) was obtained at 1 day prior to injection and then on postinjection days 3, 7, 14, and 21. Intraocular pressure (IOP) was measured at the conclusion of each ERG recording. Animals were sacrificed and the eyes underwent histologic examination with light microscopy and hematoxylin-eosin staining. Results Rod peak, scotopic, and photopic responses (amplitude and latency) were not statistically different in the animals receiving 50 to 100 ng EPO. In the 250-ng group, the photopic b-wave amplitude at day 21 was elevated (P <.05), whereas in the 625-ng group, the scotopic OP3 latency ratio was higher at baseline (P <.05). No significant histologic abnormalities were noted except for one animal (625-ng group) with qualitative differences in retinal layer thickness and cellular density. Conclusions Intravitreal administration of EPO (at doses up to 625 ng) does not cause adverse effects on retinal function as assessed by ERG. Moreover, single intravitreal dosing does not appear to elicit retinal neovascularization. Further investigation is warranted to assess fully the potential of this neuroprotective cytokine as a treatment for glaucoma. PMID:19277250

  4. Erythropoietin in the treatment of carbon monoxide neurotoxicity in rat.

    PubMed

    Moallem, Seyed Adel; Mohamadpour, Amir Hooshang; Abnous, Khalil; Sankian, Mojtaba; Sadeghnia, Hamid Reza; Tsatsakis, Aristidis; Shahsavand, Shabnam

    2015-12-01

    Erythropoietin (EPO) plays a critical role in the development of the nervous system. In this study, the effects of EPO in carbon monoxide (CO) neurotoxicity were examined. Rats were exposed to 3000 ppm CO for 1 h and then different doses of EPO were administrated intraperitoneally. After 24 h, glial fibrillary acidic protein (GFAP) levels in the serum were determined and water content of brain and the extravasation of a tracer (Evans blue) were measured. Brain lipid peroxidation, myeloperoxidase activity Myelin basic protein (MBP) and BAX/BcL2 protein relative expressions were determined. Cation exchange chromatography was used to evaluate MBP alterations. Seven days after exposure, pathological assessment was performed after Klüver-Barrera staining. EPO reduced malondialdehyde levels at all doses (2500, 5000 and 10,000 u/kg). Lower doses of EPO (625, 1250, 2500 u/kg) significantly decreased the elevated serum levels of GFAP. EPO could not reduce the water content of the edematous poisoned brains. However, at 5000 and 10,000 u/kg it protected the blood brain barrier against integrity loss as a result of CO. EPO could significantly decrease the MPO activity. CO-mediated oxidative stress caused chemical alterations in MBP and EPO could partially prevent these biochemical changes. Fewer vacuoles and demyelinated fibers were found in the EPO-treated animals. EPO (5000 u/kg) could restore the MBP density. CO increased brain BAX/Bcl-2 ratio 38.78%. EPO reduced it 38.86%. These results reveal that EPO could relatively prevent different pathways of neurotoxicity by CO poisoning and thus has the potential to be used as a novel approach to manage this poisoning. PMID:26416356

  5. Erythropoietin upregulation in pulmonary arterial hypertension.

    PubMed

    Karamanian, Vanesa A; Harhay, Michael; Grant, Gregory R; Palevsky, Harold I; Grizzle, William E; Zamanian, Roham T; Ihida-Stansbury, Kaori; Taichman, Darren B; Kawut, Steven M; Jones, Peter L

    2014-06-01

    The pathophysiologic alterations of patients with pulmonary arterial hypertension (PAH) are diverse. We aimed to determine novel pathogenic pathways from circulating proteins in patients with PAH. Multianalyte profiling (MAP) was used to measure 90 specifically selected antigens in the plasma of 113 PAH patients and 51 control patients. Erythropoietin (EPO) functional activity was assessed via in vitro pulmonary artery endothelial cell networking and smooth muscle cell proliferation assays. Fifty-eight patients had idiopathic PAH, whereas 55 had other forms of PAH; 5 had heritable PAH, 18 had connective tissue disease (15 with scleroderma and 3 with lupus erythematosis), 13 had portopulmonary hypertension, 6 had PAH associated with drugs or toxins, and 5 had congenital heart disease. The plasma-antigen profile of PAH revealed increased levels of several novel biomarkers, including EPO. Immune quantitative and histochemical studies revealed that EPO not only was significantly elevated in the plasma of PAH patients but also promoted pulmonary artery endothelial cell network formation and smooth muscle cell proliferation. MAP is a hypothesis-generating approach to identifying novel pathophysiologic pathways in PAH. EPO is upregulated in the circulation and lungs of patients with PAH and may affect endothelial and smooth muscle cell proliferation. PMID:25006446

  6. Erythropoietin and polyneuropathy in older persons

    PubMed Central

    Lauretani, Fulvio; Bandinelli, Stefania; Strotmeyer, Elsa S.; Corsi, Anna Maria; Di Iorio, Angelo; Guralnik, Jack M.; Ferrucci, Luigi

    2016-01-01

    Introduction Recent studies demonstrated that erythropoietin (EPO) have a number of non-erythropoietic effects including neuroprotection and vascular protection. Materials Using data from a representative sample of older persons, we tested the hypothesis that EPO levels are correlated with peripheral nerve parameters (NVC and CMAP) assessed by surface ENG and with clinically diagnosed polyneuropathy. We selected 972 participants (aged 60–98 years) with complete data for the analyses. Results We found a significant association between EPO and age-adjusted NCV and CMAP (for NCV: 0.57 ± 0.26; p = 0.03 and for CMAP: 0.54 ± 0.23; p = 0.02). In logistic regression models adjusting for age, sex and multiple potential confounders, higher EPO levels were associated with a significantly lower probability of having a clinical diagnosis of polyneuropathy (OR = 0.43; 95% CI: 0.22–0.84). Discussion These findings suggest that EPO is implicated in the pathogenesis of polyneuropathy in older persons. Whether low EPO is a risk factor for polyneuropathy should be tested in future longitudinal analyses. PMID:18439654

  7. EPO's alter ego: erythropoietin has multiple actions.

    PubMed

    Lappin, Terence R; Maxwell, A Peter; Johnston, Patrick G

    2002-01-01

    Many cancer patients suffer from anemia, which has a major detrimental effect on their quality of life. Recombinant human erythropoietin (rHuEPO) is now widely used in cancer patients, as it improves hematocrit, lowers blood transfusion requirements, and improves quality of life. Recent research indicates that EPO has pleiotropic effects on the body well beyond the maintenance of red cell mass, but the mechanisms involved in relieving fatigue and improving quality of life in cancer patients are poorly understood. EPO receptors (EPO-Rs) have been detected in many different cells and tissues, providing evidence for autocrine, paracrine, and endocrine functions of EPO. Apart from its endocrine function, EPO may have a generalized role as an antiapoptotic agent that is associated with enhancement of muscle tone, mucosal status, and gonadal and cognitive function. The recent discovery of EPO-Rs in breast tumor vasculature, while raising important questions about the possible effects of pharmacological doses of rHuEPO on tumor cells, also suggests that the receptors could provide a useful target for drugs attached to EPO. PMID:12456956

  8. Cytoprotective effect of glutaraldehyde erythropoietin on HEK293 kidney cells after silver nanoparticle exposure.

    PubMed

    Sooklert, Kanidta; Chattong, Supreecha; Manotham, Krissanapong; Boonwong, Chawikan; Klaharn, I-yanut; Jindatip, Depicha; Sereemaspun, Amornpun

    2016-01-01

    The toxic effects from exposure to silver nanoparticles (AgNPs), which are broadly present in many consumer products, have long raised concerns. Many studies have focused on the mechanisms of nanosilver, which cause toxicity in human cells, but little is known about prevention of this type of injury. This study investigated the in vitro effects of glutaraldehyde erythropoietin (GEPO), a cytoprotective compound derived from erythropoietin, in terms of cell protection against AgNP-induced injury. HEK293 cells were pretreated with or without GEPO before administration of AgNPs. The protective effects of GEPO in this cell line were assessed by the percentage of viable cells, alterations of cell morphology, and the proliferative capability of the cells. In addition, we assessed the role of GEPO in lowering cellular oxidative stress and regulating expression of the anti-apoptotic protein Bcl2. The results showed rescue effects on the percentage of viable and proliferative cells among GEPO pretreated cells. Pretreatment with GEPO maintained the normal cell shape and ultrastructural morphology. Moreover, GEPO reduced the generation of reactive oxygen species in cells and activated expression of Bcl2, which are the major mechanisms in protection against cellular toxicity induced by AgNPs. In conclusion, our study showed that the cytotoxic effects from exposure to AgNPs can be prevented by GEPO. PMID:26929619

  9. Cytoprotective effect of glutaraldehyde erythropoietin on HEK293 kidney cells after silver nanoparticle exposure

    PubMed Central

    Sooklert, Kanidta; Chattong, Supreecha; Manotham, Krissanapong; Boonwong, Chawikan; Klaharn, I-yanut; Jindatip, Depicha; Sereemaspun, Amornpun

    2016-01-01

    The toxic effects from exposure to silver nanoparticles (AgNPs), which are broadly present in many consumer products, have long raised concerns. Many studies have focused on the mechanisms of nanosilver, which cause toxicity in human cells, but little is known about prevention of this type of injury. This study investigated the in vitro effects of glutaraldehyde erythropoietin (GEPO), a cytoprotective compound derived from erythropoietin, in terms of cell protection against AgNP-induced injury. HEK293 cells were pretreated with or without GEPO before administration of AgNPs. The protective effects of GEPO in this cell line were assessed by the percentage of viable cells, alterations of cell morphology, and the proliferative capability of the cells. In addition, we assessed the role of GEPO in lowering cellular oxidative stress and regulating expression of the anti-apoptotic protein Bcl2. The results showed rescue effects on the percentage of viable and proliferative cells among GEPO pretreated cells. Pretreatment with GEPO maintained the normal cell shape and ultrastructural morphology. Moreover, GEPO reduced the generation of reactive oxygen species in cells and activated expression of Bcl2, which are the major mechanisms in protection against cellular toxicity induced by AgNPs. In conclusion, our study showed that the cytotoxic effects from exposure to AgNPs can be prevented by GEPO. PMID:26929619

  10. Neurobehavioral and cytotoxic effects of vanadium during oligodendrocyte maturation: a protective role for erythropoietin.

    PubMed

    Mustapha, Oluwaseun; Oke, Bankole; Offen, Nils; Sirén, Anna-Leena; Olopade, James

    2014-07-01

    Vanadium exposure has been known to lead to lipid peroxidation, demyelination and oligodendrocytes depletion. We investigated behaviour and glial reactions in juvenile mice after early neonatal exposure to vanadium, and examined the direct effects of vanadium in oligodendrocyte progenitor cultures from embryonic mice. Neonatal pups exposed to vanadium via lactation for 15 and 22 days all had lower body weights. Behavioural tests showed in most instances a reduction in locomotor activity and negative geotaxis. Brain analyses revealed astrocytic activation and demyelination in the vanadium exposed groups compared to the controls. In cell culture, exposure of oligodendrocytes to 300 μM sodium metavanadate significantly increased cell death. Expression of the oligodendrocyte specific proteins, 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) and oligodendrocyte specific protein (OSP/Claudin) were reduced upon vanadium treatment while simultaneous administration of erythropoietin (EPO; 4-12 U/ml) counteracted vanadium-toxicity. The data suggest that oligodendrocyte damage may explain the increased vulnerability of the juvenile brain to vanadium and support a potential for erythropoietin as a protective agent against vanadium-toxicity during perinatal brain development and maturation. PMID:24927405

  11. Carbamylated Erythropoietin: A Prospective Drug Candidate for Neuroprotection

    PubMed Central

    Chen, Jianmin; Yang, Zheng; Zhang, Xiao

    2015-01-01

    Carbamylated erythropoietin (cEpo), which is neuroprotective but lacks hematopoietic activity, has been attracting rising concerns. However, the cellular and molecular mechanisms involved in the process of neuroprotection of cEpo are not well known. Based on several recent reports, the neuroprotective effects of cEpo are illustrated, and signaling pathways involved in the different effects of erythropoietin and cEpo are discussed. These newly reported researches may shed new light on the development and application of cEpo, a prospective drug candidate for neuroprotection. PMID:26862298

  12. Expression of platelet-derived growth factor BB, erythropoietin and erythropoietin receptor in canine and feline osteosarcoma.

    PubMed

    Meyer, F R L; Steinborn, R; Grausgruber, H; Wolfesberger, B; Walter, I

    2015-10-01

    The discovery of expression of the erythropoietin receptor (EPO-R) on neoplastic cells has led to concerns about the safety of treating anaemic cancer patients with EPO. In addition to its endocrine function, the receptor may play a role in tumour progression through an autocrine mechanism. In this study, the expression of EPO, EPO-R and platelet-derived growth factor BB (PDGF-BB) was analysed in five feline and 13 canine osteosarcomas using immunohistochemistry (IHC) and reverse transcription polymerase chain reaction (RT-PCR). EPO expression was positive in all tumours by IHC, but EPO mRNA was only detected in 38% of the canine and 40% of the feline samples. EPO-R was expressed in all samples by quantitative RT-PCR (RT-qPCR) and IHC. EPO-R mRNA was expressed at higher levels in all feline tumours, tumour cell lines, and kidney when compared to canine tissues. PDGF-BB expression was variable by IHC, but mRNA was detected in all samples. To assess the functionality of the EPO-R on tumour cells, the proliferation of canine and feline osteosarcoma cell lines was evaluated after EPO administration using an alamarBlue assay and Ki67 immunostaining. All primary cell lines responded to EPO treatment in at least one of the performed assays, but the effect on proliferation was very low indicating only a weak responsiveness of EPO-R. In conclusion, since EPO and its receptor are expressed by canine and feline osteosarcomas, an autocrine or paracrine tumour progression mechanism cannot be excluded, although in vitro data suggest a minimal role of EPO-R in osteosarcoma cell proliferation. PMID:26189892

  13. Expression of platelet-derived growth factor BB, erythropoietin and erythropoietin receptor in canine and feline osteosarcoma

    PubMed Central

    Meyer, F.R.L.; Steinborn, R.; Grausgruber, H.; Wolfesberger, B.; Walter, I.

    2015-01-01

    The discovery of expression of the erythropoietin receptor (EPO-R) on neoplastic cells has led to concerns about the safety of treating anaemic cancer patients with EPO. In addition to its endocrine function, the receptor may play a role in tumour progression through an autocrine mechanism. In this study, the expression of EPO, EPO-R and platelet-derived growth factor BB (PDGF-BB) was analysed in five feline and 13 canine osteosarcomas using immunohistochemistry (IHC) and reverse transcription polymerase chain reaction (RT-PCR). EPO expression was positive in all tumours by IHC, but EPO mRNA was only detected in 38% of the canine and 40% of the feline samples. EPO-R was expressed in all samples by quantitative RT-PCR (RT-qPCR) and IHC. EPO-R mRNA was expressed at higher levels in all feline tumours, tumour cell lines, and kidney when compared to canine tissues. PDGF-BB expression was variable by IHC, but mRNA was detected in all samples. To assess the functionality of the EPO-R on tumour cells, the proliferation of canine and feline osteosarcoma cell lines was evaluated after EPO administration using an alamarBlue assay and Ki67 immunostaining. All primary cell lines responded to EPO treatment in at least one of the performed assays, but the effect on proliferation was very low indicating only a weak responsiveness of EPO-R. In conclusion, since EPO and its receptor are expressed by canine and feline osteosarcomas, an autocrine or paracrine tumour progression mechanism cannot be excluded, although in vitro data suggest a minimal role of EPO-R in osteosarcoma cell proliferation. PMID:26189892

  14. [Arterial hypertension in patients with chronic kidney insufficiency in hemodialysis with erythropoietin].

    PubMed

    Martins Prata, M; Teixeira de Sousa, F; Barbas, J; Vinhaś, J; Marques da Costa, A

    1990-02-01

    The purpose of this study was to evaluate the effect of the partial correction of anaemia with recombinant human erythropoietin (rHuEPO) on the blood pressure (BP) of patients on chronic haemodialysis (HD). A group of 50 patients (26 men and 24 woman, mean age of 50 +/- 19.0 and range of 21 to 67) with basal levels of haemoglobin (Hb) less than or equal to 8 g/dl was evaluated before and during treatment with rHuEPO. Recombinant erythropoietin was started at 50 U/kh I.V. 3 times a week, immediately after each session of HD, for 4 weeks, and this dose was increased in steps of 25 U/kg until and Hb level of 12 g/dl or a maximum dose of 100 U/kg were reached. Before the administration of rHuEPO 33 patients (67.3%) were normotensives and 16 (32.6%) were hypertensives treated and well controlled. During the period of administration of rHuEPO 10 of the normotensives (30.3%) and 5 (31.3%) of the hypertensives patients showed an increase in the B.P. There was no correlation between the frequency of increase in B.P. and sex, age, length of time on HD and previous levels of B.P., but that frequency was higher in the patients with the lowest basal levels of haematocrit (Hct) and with the greatest increases in Hct (delta Hct). An immediate effect of I.V. administration of rHuE-PO on B.P. levels was not found. Finally we discuss the etiopathologic factors eventually responsible for the increase in BP and suggest some rules to be observed in the therapeutic use of rHuEPO. PMID:2346662

  15. Erythropoietin production by PDGFR-β(+) cells.

    PubMed

    Gerl, Katharina; Nolan, Karen A; Karger, Christian; Fuchs, Michaela; Wenger, Roland H; Stolt, Claus C; Willam, Carsten; Kurtz, Armin; Kurt, Birgül

    2016-08-01

    PDGFR-β-expressing cells of the kidneys are considered as a relevant site of erythropoietin (EPO) production. The origin of these cells, their contribution to renal EPO production, and if PDGFR-β-positive cells in other organs are also capable to express EPO are less clear. We addressed these questions in mice, in which hypoxia-inducible transcription factors were stabilized in PDGFR-β(+) cells by inducible deletion of the von Hippel-Lindau (Vhl) protein. Vhl deletion led to a 600-fold increase of plasma EPO concentration, 170-fold increase of renal EPO messenger RNA (mRNA) levels, and an increase of hematocrit values up to 70 %. Intrarenal localization of EPO-expressing cells coincided with the zonal heterogeneity and distribution of cells expressing PDGFR-β. Amongst a variety of extrarenal organs only adrenal glands showed significant EPO mRNA expression after Vhl deletion in PDGFR-β(+) cells. EPO mRNA, plasma EPO, and hematocrit fell to subnormal values if HIF-2α, but not HIF-1α, was deleted either alone or in combination with Vhl in PDGFR-β(+) cells. Treatment of mice with a prolyl-hydroxylase inhibitor caused an increase of EPO mRNA abundance and plasma EPO concentrations in wild-type mice and in mice lacking HIF-1α in PDGFR-β(+) cells but exerted no effect in mice lacking HIF-2α in PDGFR-β(+) cells. These findings suggest that PDGFR-β(+) cells are the only relevant site of EPO expression in the kidney and that HIF-2 is the essential transcription factor triggering EPO expression therein. Moreover, our findings suggest that PDGFR-β(+) cells elaborating EPO might arise from the metanephric mesenchyme, rather than from the neural crest. PMID:27220347

  16. Increased Synthesis of Liver Erythropoietin with CKD.

    PubMed

    de Seigneux, Sophie; Lundby, Anne-Kristine Meinild; Berchtold, Lena; Berg, Anders H; Saudan, Patrick; Lundby, Carsten

    2016-08-01

    Anemia of CKD seems to be related to impaired production of renal erythropoietin (Epo). The glycosylation pattern of Epo depends on the synthesizing cell and thus, can indicate its origin. We hypothesized that synthesis of Epo from nonkidney cells increases to compensate for insufficient renal Epo production during CKD. We determined plasma Epo levels and Epo glycosylation patterns in 33 patients with CKD before undergoing dialysis and nine patients with CKD undergoing dialysis. We compared these values with values obtained in healthy volunteers and other controls. Although patients with CKD before undergoing dialysis had median (interquartile range) Epo levels higher than those of healthy controls (13.8 IU/L; interquartile range, 10.0-20.7 IU/L versus 8.4 IU/L; interquartile range, 7.6-9.0 IU/L; P<0.01), these patients were moderately anemic (mean±SD; hemoglobin =118±17 g/L). Detected as the percentage of migrated isoforms (PMI), Epo glycosylation in patients with CKD before undergoing dialysis (PMI=36.1±11.7%) differed from that in healthy controls (PMI=9.2±3.8%; P<0.01) but not from that in umbilical cord plasma (PMI=53.9±10.6%; P>0.05), which contains mainly liver-derived Epo. Furthermore, glycosylation modification correlated with eGFR loss. These results suggest that patients with CKD maintain persistent Epo synthesis despite declining renal function, and this maintenance may result in part from increased liver Epo synthesis. PMID:26757994

  17. Anti-Erythropoietin Antibody Associated Pure Red Cell Aplasia Resolved after Liver Transplantation

    PubMed Central

    Hung, Annie K.; Guy, Jennifer; Behler, Caroline M.; Lee, Eugene E.

    2015-01-01

    Patients undergoing antiviral therapy for chronic hepatitis C often develop anemia secondary to ribavirin and interferon. Recombinant erythropoietin has been used to improve anemia associated with antiviral therapy and to minimize dose reductions, which are associated with decreased rates of sustained virologic response. A rare potential side effect of recombinant erythropoietin is anti-erythropoietin antibody associated pure red cell aplasia. In chronic kidney disease patients with this entity, there have been good outcomes associated with renal transplant and subsequent immunosuppression. In this case, a chronic liver disease patient developed anti-erythropoietin associated pure red cell aplasia and recovered after liver transplantation and immunosuppression. It is unclear whether it is the transplanted organ, the subsequent immunosuppression, or the combination that contributed to the response. In conclusion, anti-erythropoietin associated pure red cell aplasia is a serious complication of erythropoietin therapy, but this entity should not be considered a contraindication for solid organ transplantation. PMID:26240773

  18. The micronucleus test and erythropoiesis. Effects of erythropoietin and a mutagen on the ratio of polychromatic to normochromatic erythrocytes (P/N ratio).

    PubMed

    Suzuki, Y; Nagae, Y; Li, J; Sakaba, H; Mozawa, K; Takahashi, A; Shimizu, H

    1989-11-01

    It is considered that a decrease of the ratio of polychromatic erythrocytes (PCE) to normochromatic erythrocytes (NCE) (P/N) in the micronucleus test is an indicator of bone marrow toxicity induced by mutagens. However, the exact meaning of fluctuation in the P/N ratio is not yet known. We have studied this point by counting the total number of erythrocytes and nucleated cells in the bone marrow following various treatments. The P/N ratio decreased gradually with time after administration of mitomycin C. Our data suggest that the decrease of P/N ratio was attributable to an increase in the numbers of the denominator, i.e. NCE, caused by rapid differentiation and multiplication or denucleation of erythroblasts which remained in the bone marrow instead of entering the peripheral blood stream. A decrease of P/N ratio was also observed in the early phase after administration of erythropoietin, an agent which induces differentiation and multiplication of erythroblasts. This phenomenon might result from an increase of PCE delivery into the blood circulation. However, following the initial decrease, the P/N ratio increased gradually 48 h after administration of erythropoietin. It is supposed that this increase probably resulted from an increase in PCE in the bone marrow due to the direct effects of erythropoietin on erythropoiesis. The drastic change in erythropoiesis in the bone marrow induced by either mutagen or erythropoietin treatment will affect the fluctuations of the P/N ratio or the number of micronucleated erythrocytes per non-micronucleated erythocytes in the micronucleus test. This contrasts with the original explanation for such fluctuations which attributed them to replenishment of the marrow by peripheral blood. PMID:2516221

  19. Erythropoietin, uncertainty principle and cancer related anaemia

    PubMed Central

    Clark, Otavio; Adams, Jared R; Bennett, Charles L; Djulbegovic, Benjamin

    2002-01-01

    Background This study was designed to evaluate if erythropoietin (EPO) is effective in the treatment of cancer related anemia, and if its effect remains unchanged when data are analyzed according to various clinical and methodological characteristics of the studies. We also wanted to demonstrate that cumulative meta-analysis (CMA) can be used to resolve uncertainty regarding clinical questions. Methods Systematic Review (SR) of the published literature on the role of EPO in cancer-related anemia. A cumulative meta-analysis (CMA) using a conservative approach was performed to determine the point in time when uncertainty about the effect of EPO on transfusion-related outcomes could be considered resolved. Participants: Patients included in randomized studies that compared EPO versus no therapy or placebo. Main outcome measures: Number of patients requiring transfusions. Results Nineteen trials were included. The pooled results indicated a significant effect of EPO in reducing the number of patients requiring transfusions [odds ratio (OR) = 0.41; 95%CI: 0.33 to 0.5; p < 0.00001;relative risk (RR) = 0.61; 95% CI: 0.54 to 0.68]. The results remain unchanged after the sensitivity analyses were performed according to the various clinical and methodological characteristics of the studies. The heterogeneity was less pronounced when OR was used instead of RR as the measure of the summary point estimate. Analysis according to OR was not heterogeneous, but the pooled RR was highly heterogeneous. A stepwise metaregression analysis did point to the possibility that treatment effect could have been exaggerated by inadequacy in allocation concealment and that larger treatment effects are seen at hb level > 11.5 g/dl. We identified 1995 as the point in time when a statistically significant effect of EPO was demonstrated and after which we considered that uncertainty about EPO efficacy was resolved. Conclusion EPO is effective in the treatment of anemia in cancer patients. This

  20. Cross-sectional analysis of erythropoietin use in CPD: its relation to azotemic index clearances.

    PubMed

    Fox, L; Tzamaloukas, A H; Antoniou, S; Katsoudas, S; Tzouganatou, A; Chisam, G; Goldman, R S; Kakavas, J; Dimitriadis, A; Nicolopoulou, N

    1995-01-01

    The association between the use of erythropoietin and urea or creatinine clearance was studied in two populations on continuous peritoneal dialysis (CPD) residing either at an altitude of 1600 m (n = 194) or at sea level (n = 108). Among peritoneal and total KT/V urea and creatinine clearance (CCr) indices, only total CCr was lower in the high altitude group receiving erythropoietin than in the corresponding group not receiving erythropoietin (68.0 +/- 34.9 vs 82.9 +/- 40.9 L/1.73 m2 weekly, p < 0.01). However, 24-hour urine volume and urinary KT/V urea and CCr were consistently lower in the groups receiving erythropoietin than in those not receiving erythropoietin. Total weekly KT/V urea < or = 1.70 and CCr < or = 52 L/1.73 m2 were considered indicators of inadequate CPD. Although the percent of patients receiving erythropoietin did not differ overall between groups with adequate and those with inadequate CPD, a trend towards more frequent use of erythropoietin was found in the sea level group with inadequate CCr versus the group with adequate CCr (28.2% vs 16.9%, p = 0.084). In CPD decreased renal function is associated with more frequent use of erythropoietin. Whether inadequate total urea or creatinine clearance is also associated with more frequent erythropoietin use requires further study. PMID:8534715

  1. Paraneoplastic Erythrocytosis of Colon Cancer, with Serum Erythropoietin within the Normal Reference Range

    PubMed Central

    Kitayama, Hiromitsu; Kondo, Tomohiro; Sugiyama, Junko; Hirayama, Michiaki; Oyamada, Yumiko; Tsuji, Yasushi

    2016-01-01

    Patient: Female, 75 Final Diagnosis: Erythropoietin-secreting colon cancer Symptoms: None Medication: — Clinical Procedure: Immunohistochemistry Specialty: Hematology Objective: Rare disease Background: Paraneoplastic erythrocytosis can be brought on by ectopic erythropoietin production usually in kidney, brain, and liver tumor with increase of serum erythropoietin level. We report here a paraneoplastic erythrocytosis of colon cancer with serum erythropoietin within the normal reference, which required an immunohistologic test for erythropoietin-antibody to be diagnosed. Case Report: Our case report was of a 75-year-old woman with erythrocytosis. Her hemoglobin and serum erythropoietin levels were 191 g/dL and 12.6 IU/L (reference range, 9.1–32.8), respectively. Colonoscopy revealed an advanced sigmoid colon tumor 20 mm in diameter. She underwent colectomy, and immunohistochemical examination showed the colon adenocarcinoma was focally positive for erythropoietin-antibody. One month after the surgery, her hemoglobin level decreased to 117 g/L. Conclusions: Colon cancer can cause paraneoplastic erythrocytosis, and it is important to consider not simply the absolute serum erythropoietin level but also the serum erythropoietin level relative to simultaneously measured hemoglobin level. We should include paraneoplastic erythrocytosis as a differential diagnosis in cases of high hemoglobin level unexplained by other diseases. PMID:27318703

  2. Survival and proliferative roles of erythropoietin beyond the erythroid lineage

    PubMed Central

    Noguchi, Constance Tom; Wang, Li; Rogers, Heather M.; Teng, Ruifeng; Jia, Yi

    2011-01-01

    Since the isolation and purification of erythropoietin (EPO) in 1977, the essential role of EPO for mature red blood cell production has been well established. The cloning and production of recombinant human EPO led to its widespread use in treating patients with anaemia. However, the biological activity of EPO is not restricted to regulation of erythropoiesis. EPO receptor (EPOR) expression is also found in endothelial, brain, cardiovascular and other tissues, although at levels considerably lower than that of erythroid progenitor cells. This review discusses the survival and proliferative activity of EPO that extends beyond erythroid progenitor cells. Loss of EpoR expression in mouse models provides evidence for the role of endogenous EPO signalling in nonhaematopoietic tissue during development or for tissue maintenance and/or repair. Determining the extent and distribution of receptor expression provides insights into the potential protective activity of erythropoietin in brain, heart and other nonhaematopoietic tissues. PMID:19040789

  3. Antioxidant Effect of Erythropoietin during Experimental Chronic Renal Failure.

    PubMed

    Osikov, M V; Telesheva, L F; Ageev, Yu I

    2015-12-01

    The effects of erythropoietin (Epokrin, 900 U/kg) on the parameters of free radical oxidation in the plasma and lymphocytes of peripheral blood were studied in rats with chronic renal failure. We observed accumulation of primary (diene conjugates) and secondary (ketodienes, and conjugated trienes) LPO products in the heptane and isopropanol fractions of blood plasma and a decrease in superoxide dismutase and catalase activities in blood plasma. In lymphocytes, the concentration of primary, secondary and end-products (Schiff bases) of LPO increased in the isopropanol fraction of lipid extract. Treatment with erythropoietin was followed by a decrease in the level of primary and end-products of LPO in the isopropanol fraction of lipid extract of the plasma and lymphocytes and an increase in of superoxide dismutase and catalase activities in the plasma. The content of primary LPO products in the isopropanol fraction of the plasma progressively decreased with increasing superoxide dismutase and catalase activities in the plasma. PMID:26639466

  4. Optimization of erythropoietin production with controlled glycosylation-PEGylated erythropoietin produced in glycoengineered Pichia pastoris.

    PubMed

    Nett, Juergen H; Gomathinayagam, Sujatha; Hamilton, Stephen R; Gong, Bing; Davidson, Robert C; Du, Min; Hopkins, Daniel; Mitchell, Teresa; Mallem, Muralidhar R; Nylen, Adam; Shaikh, Seemab S; Sharkey, Nathan; Barnard, Gavin C; Copeland, Victoria; Liu, Liming; Evers, Raymond; Li, Yan; Gray, Peter M; Lingham, Russell B; Visco, Denise; Forrest, Gail; DeMartino, Julie; Linden, Thomas; Potgieter, Thomas I; Wildt, Stefan; Stadheim, Terrance A; d'Anjou, Marc; Li, Huijuan; Sethuraman, Natarajan

    2012-01-01

    Pichia pastoris is a methylotropic yeast that has gained great importance as an organism for protein expression in recent years. Here, we report the expression of recombinant human erythropoietin (rhEPO) in glycoengineered P. pastoris. We show that glycosylation fidelity is maintained in fermentation volumes spanning six orders of magnitude and that the protein can be purified to high homogeneity. In order to increase the half-life of rhEPO, the purified protein was coupled to polyethylene glycol (PEG) and then compared to the currently marketed erythropoiesis stimulating agent, Aranesp(®) (darbepoetin). In in vitro cell proliferation assays the PEGylated protein was slightly, and the non-PEGylated protein was significantly more active than comparator. Pharmacodynamics as well as pharmacokinetic activity of PEGylated rhEPO in animals was comparable to that of Aranesp(®). Taken together, our results show that glycoengineered P. pastoris is a suitable production host for rhEPO, yielding an active biologic that is comparable to those produced in current mammalian host systems. PMID:22100268

  5. Recombinant epoetins do not stimulate tumor growth in erythropoietin receptor-positive breast carcinoma models.

    PubMed

    LaMontagne, Kenneth R; Butler, Jeannene; Marshall, Deborah J; Tullai, Jennifer; Gechtman, Ze'ev; Hall, Chassidy; Meshaw, Alan; Farrell, Francis X

    2006-02-01

    We investigated the significance of erythropoietin receptor (EPOR) expression following treatment with recombinant human erythropoietin (rHuEPO; epoetin alpha) and the effect of recombinant epoetins (epoetin alpha, epoetin beta, and darbepoetin alpha) alone or in combination with anticancer therapy on tumor growth in two well-established preclinical models of breast carcinoma (MDA-MB-231 and MCF-7 cell lines). Expression and localization of EPOR under hypoxic and normoxic conditions in MDA-MB-231 and MCF-7 cells were evaluated by immunoblotting, flow cytometry, and immunohistochemistry. EPOR binding was evaluated using [125I]rHuEPO. Proliferation, migration, and signaling in MDA-MB-231 and MCF-7 cells following treatment with rHuEPO were evaluated. Tumor growth was assessed following administration of recombinant epoetins alone and in combination with paclitaxel (anticancer therapy) in orthotopically implanted MDA-MB-231 and MCF-7 breast carcinoma xenograft models in athymic mice. EPOR expression was detected in both tumor cell lines. EPOR localization was found to be exclusively cytosolic and no specific [125I]rHuEPO binding was observed. There was no stimulated migration, proliferation, or activation of mitogen-activated protein kinase and AKT following rHuEPO treatment. In mice, treatment with recombinant epoetins alone and in combination with paclitaxel resulted in equivalent tumor burdens compared with vehicle-treated controls. Results from our study suggest that although EPOR expression was observed in two well-established breast carcinoma cell lines, it was localized to a cytosolic distribution and did not transduce a signaling cascade in tumors that leads to tumor growth. The addition of recombinant epoetins to paclitaxel did not affect the outcome of paclitaxel therapy in breast carcinoma xenograft models. These results show that recombinant epoetins do not evoke a physiologic response on EPOR-bearing tumor cells as assessed by numerous variables

  6. Paraneoplastic Erythrocytosis of Colon Cancer, with Serum Erythropoietin within the Normal Reference Range.

    PubMed

    Kitayama, Hiromitsu; Kondo, Tomonhiro; Sugiyama, Junko; Hirayama, Michiaki; Oyamada, Yumiko; Tsuji, Yasushi

    2016-01-01

    BACKGROUND Paraneoplastic erythrocytosis can be brought on by ectopic erythropoietin production usually in kidney, brain, and liver tumor with increase of serum erythropoietin level. We report here a paraneoplastic erythrocytosis of colon cancer with serum erythropoietin within the normal reference, which required an immunohistologic test for erythropoietin-antibody to be diagnosed. CASE REPORT Our case report was of a 75-year-old woman with erythrocytosis. Her hemoglobin and serum erythropoietin levels were 191 g/dL and 12.6 IU/L (reference range, 9.1-32.8), respectively. Colonoscopy revealed an advanced sigmoid colon tumor 20 mm in diameter. She underwent colectomy, and immunohistochemical examination showed the colon adenocarcinoma was focally positive for erythropoietin-antibody. One month after the surgery, her hemoglobin level decreased to 117 g/L. CONCLUSIONS Colon cancer can cause paraneoplastic erythrocytosis, and it is important to consider not simply the absolute serum erythropoietin level but also the serum erythropoietin level relative to simultaneously measured hemoglobin level. We should include paraneoplastic erythrocytosis as a differential diagnosis in cases of high hemoglobin level unexplained by other diseases. PMID:27318703

  7. Designing a small molecule erythropoietin mimetic.

    PubMed

    Guarnieri, Frank

    2015-01-01

    Erythropoietin (EPO) is a protein made by the kidneys in response to low red blood cell count that is secreted into the bloodstream and binds to a receptor on hematopoietic stem cells in the bone marrow inducing them to become new red blood cells. EPO made with recombinant DNA technology was brought to market in the 1980s to treat anemia caused by kidney disease and cancer chemotherapy. Because EPO infusion was able to replace blood transfusions in many cases, it rapidly became a multibillion dollar per year drug and as the first biologic created with recombinant technology it launched the biotech industry. For many years intense research was focused on creating a small molecule orally available EPO mimetic. The Robert Wood Johnson (RWJ) group seemed to definitively establish that only large peptides with a minimum of 60 residues could replace EPO, as anything less was not a full agonist. An intense study of the published work led me to hypothesize that the size of the mimetic is not the real issue, but the symmetry making and breaking of the EPO receptor induced by the ligand is the key to activating the stem cells. This analysis meant that residues in the binding site of the receptor deemed absolutely essential for ligand binding and activation from mutagenesis experiments, were probably not really that important. My fundamental hypotheses were: (a) the symmetric state of the homodimeric receptor is the most stable state and thus must be the off-state, (b) a highly localized binding site exists at a pivot point where the two halves of the receptor meet, (c) small molecules can be created that have high potency for this site that will be competitive with EPO and thus can displace the protein-protein interaction, (d) small symmetric molecules will stabilize the symmetric off-state of the receptor, and (e) a key asymmetry in the small molecule will stabilize a mirror image asymmetry in the receptor resulting in the stabilization of the on-state and proliferation of

  8. Phagocyte respiratory burst activates macrophage erythropoietin signalling to promote acute inflammation resolution.

    PubMed

    Luo, Bangwei; Wang, Jinsong; Liu, Zongwei; Shen, Zigang; Shi, Rongchen; Liu, Yu-Qi; Liu, Yu; Jiang, Man; Wu, Yuzhang; Zhang, Zhiren

    2016-01-01

    Inflammation resolution is an active process, the failure of which causes uncontrolled inflammation which underlies many chronic diseases. Therefore, endogenous pathways that regulate inflammation resolution are fundamental and of wide interest. Here, we demonstrate that phagocyte respiratory burst-induced hypoxia activates macrophage erythropoietin signalling to promote acute inflammation resolution. This signalling is activated following acute but not chronic inflammation. Pharmacological or genetical inhibition of the respiratory burst suppresses hypoxia and macrophage erythropoietin signalling. Macrophage-specific erythropoietin receptor-deficient mice and chronic granulomatous disease (CGD) mice, which lack the capacity for respiratory burst, display impaired inflammation resolution, and exogenous erythropoietin enhances this resolution in WT and CGD mice. Mechanistically, erythropoietin increases macrophage engulfment of apoptotic neutrophils via PPARγ, promotes macrophage removal of debris and enhances macrophage migration to draining lymph nodes. Together, our results provide evidences of an endogenous pathway that regulates inflammation resolution, with important implications for treating inflammatory conditions. PMID:27397585

  9. Investigation of purification process stresses on erythropoietin peptide mapping profile

    PubMed Central

    Sepahi, Mina; Kaghazian, Hooman; Hadadian, Shahin; Norouzian, Dariush

    2015-01-01

    Background: Full compliance of recombinant protein peptide mapping chromatogram with the standard reference material, is one of the most basic quality control tests of biopharmaceuticals. Changing a single amino acid substitution or side chain diversity for a given peptide changes protein hydrophobicity and causes peak shape or retention time alteration in a peptide mapping assay. In this work, the effect of different stresses during the recombinant erythropoietin (EPO) purification process, including pH 4, pH 5, and room temperature were checked on product peptide mapping results. Materials and Methods: Cell culture harvest was purified under stress by different chromatographic techniques consisting of gel filtration, anionic ion exchange, concentration by ultrafiltration, and high resolution size exclusion chromatography. To induce more pH stresses, the purified EPO was exposed to pH stress 4 and 5 by exchanging buffer by a 10 KDa dialysis sac overnight. The effects of temperature and partial deglycosylation (acid hydrolysis) on purified EPO were also studied by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and peptide mapping analysis. Removal of sialic acid by mild hydrolysis was performed by exposure to two molar acetic acid at 80°C for 3 h. Results: No significant effect was observed between intact and stressed erythropoietin peptide mapping profiles and SDS-PAGE results. To validate the sensibility of the technique, erythropoietin was partially acid hydrolyzed and significant changes in the chromatographic peptide map of the intact form and a reduction on its molecular weight were detected, which indicates some partial deglycosylation. Conclusions: Purification process does not alter the peptide mapping profile and purification process stresses are not the cause of peptide mapping noncompliance. PMID:26261816

  10. Combination of exercise training and erythropoietin prevents cancer-induced muscle alterations

    PubMed Central

    Pin, Fabrizio; Busquets, Silvia; Toledo, Miriam; Camperi, Andrea; Lopez-Soriano, Francisco J.; Costelli, Paola; Argilés, Josep M.; Penna, Fabio

    2015-01-01

    Cancer cachexia is a syndrome characterized by loss of skeletal muscle mass, inflammation, anorexia and anemia, contributing to patient fatigue and reduced quality of life. In addition to nutritional approaches, exercise training (EX) has been proposed as a suitable tool to manage cachexia. In the present work the effect of mild exercise training, coupled to erythropoietin (EPO) administration to prevent anemia, has been tested in tumor-bearing mice. In the C26 hosts, acute exercise does not prevent and even worsens muscle wasting. Such pattern is prevented by EPO co-administration or by the adoption of a chronic exercise protocol. EX and EPO co-treatment spares oxidative myofibers from atrophy and counteracts the oxidative to glycolytic shift, inducing PGC-1α. LLC hosts are responsive to exercise and their treatment with the EX-EPO combination prevents the loss of muscle strength and the onset of mitochondrial ultrastructural alterations, while increases muscle oxidative capacity and intracellular ATP content, likely depending on PGC-1α induction and mitophagy promotion. Consistently, muscle-specific PGC-1α overexpression prevents LLC-induced muscle atrophy and Atrogin-1 hyperexpression. Overall, the present data suggest that low intensisty exercise can be an effective tool to be included in combined therapeutic approaches against cancer cachexia, provided that anemia is coincidently treated in order to enhance the beneficial action of exercise. PMID:26636649

  11. Nonclinical evaluation of the potential for mast cell activation by an erythropoietin analog.

    PubMed

    Weaver, James L; Boyne, Michael; Pang, Eric; Chimalakonda, Krishna; Howard, Kristina E

    2015-09-15

    The erythropoietin analog peginesatide was withdrawn from marketing due to unexpected severe anaphylactic reactions associated with administration of the multi-use formulation. The adverse events occurred rapidly following the first ever administration of the drug with most affected patients becoming symptomatic in less than 30min. This is most consistent with an anaphylactoid reaction due to direct activation of mast cells. Laboratory evaluation was undertaken using rat peritoneal mast cells as the model system. Initial studies showed that high concentrations of the formulated drug as well as formulated vehicle alone could cause mast cell degranulation as measured by histamine release. The purified active drug was not able to cause histamine release whereas the vehicle filtrate and lab created drug vehicle were equally potent at causing histamine release. Individual formulations of vehicle leaving one component out showed that histamine release was due to phenol. Dose response studies with phenol showed a very sharp dose response curve that was similar in three buffer systems. Cellular analysis by flow cytometry showed that the histamine release was not due to cell death, and that changes in light scatter parameters consistent with degranulation were rapidly observed. Limited testing with primary human mast cells showed a similar dose response of histamine release with exposure to phenol. To provide in vivo confirmation, rats were injected with vehicle formulated with various concentrations of phenol via a jugular vein cannula. Significant release of histamine was detected in blood samples taken 2min after dosing at the highest concentrations tested. PMID:26079829

  12. Erythropoietin ameliorates the motor and cognitive function impairments in a rat model of hepatic cirrhosis.

    PubMed

    Aghaei, Iraj; Nazeri, Masoud; Shabani, Mohammad; Mossavinasab, Marziehsadat; Mirhosseini, Fatemeh Khaleghi; Nayebpour, Mohsen; Dalili, Afshin

    2015-02-01

    Hepatic encephalopathy (HE) is a serious consequence of hepatic cirrhosis (HC). Previous studies have demonstrated cognitive impairments in both clinical and animal experiments of HC. Some potential therapeutic agents have been used to alleviate the cognitive symptoms in the animal models of HC. In the current study, the possible effect of erythropoietin (ERY) as a potent neuroprotective agent on motor and cognitive impairments induced by HC has been studied. Male Wistar rats (180-200 g) underwent bile duct ligation (BDL) or sham surgery. Administration of ERY (5,000 IU/kg, i.p., daily for three days) was initiated 2 weeks after surgery and lasted for the next 28 days. Open field, rotarod, Morris water maze and passive avoidance learning was used to evaluate the motor and cognitive function of the animals. ANOVA and repeated measures ANOVA were used to analyze the data. p < 0.05 was considered statistically significant. BDL rats had an increased level of hepatic enzymes and bilirubin. Impairment of balance function by BDL was reversed by ERY. Spatial and passive avoidance learning impairments observed in BDL rats were also reversed by chronic administration of ERY. ERY can be offered as a potential neuroprotective agent in the treatment of patients with HC that manifest mental dysfunctions. Though further studies are needed to clarify the exact mechanisms, the neuroprotective properties of ERY against BDL impairments were demonstrated in the current study. PMID:25115607

  13. Development of a VHH-Based Erythropoietin Quantification Assay.

    PubMed

    Kol, Stefan; Kallehauge, Thomas Beuchert; Adema, Simon; Hermans, Pim

    2015-08-01

    Erythropoietin (EPO) quantification during cell line selection and bioreactor cultivation has traditionally been performed with ELISA or HPLC. As these techniques suffer from several drawbacks, we developed a novel EPO quantification assay. A camelid single-domain antibody fragment directed against human EPO was evaluated as a capturing antibody in a label-free biolayer interferometry-based quantification assay. Human recombinant EPO can be specifically detected in Chinese hamster ovary cell supernatants in a sensitive and pH-dependent manner. This method enables rapid and robust quantification of EPO in a high-throughput setting. PMID:25764454

  14. Effects of Intraosseous Erythropoietin during Hemorrhagic Shock in Swine

    PubMed Central

    Borovnik-Lesjak, Vesna; Whitehouse, Kasen; Baetiong, Alvin; Miao, Yang; Currie, Brian M.; Velmurugan, Sathya; Radhakrishnan, Jeejabai; Gazmuri, Raúl J.

    2014-01-01

    Objective To determine whether erythropoietin given during hemorrhagic shock (HS) ameliorates organ injury while improving resuscitation and survival. Methods Three series of 24 pigs each were studied. In an initial series, 50% of the blood volume (BV) was removed in 30 minutes and normal saline (threefold the blood removed) started at minute 90 infusing each third in 30, 60, and 150 minutes with shed blood reinfused at minute 330 (HS-50BV). In a second series, the same HS-50BV protocol was used but removing an additional 15% of BV from minute 30 to 60 (HS-65BV). In a final series, blood was removed as in HS-65BV and intraosseous vasopressin given from minute 30 (0.04 U/kg min−1) until start of shed blood reinfusion at minute 150 (HS-65BV+VP). Normal saline was reduced to half the blood removed and given from minute 90 to 120 in half of the animals. In each series, animals were randomized 1∶1 to receive erythropoietin (1,200 U/kg) or control solution intraosseously after removing 10% of the BV. Results In HS-50BV, O2 consumption remained near baseline yielding minimal lactate increases, 88% resuscitability, and 60% survival at 72 hours. In HS-65BV, O2 consumption was reduced and lactate increased yielding 25% resuscitability. In HS-65BV+VP, vasopressin promoted hemodynamic stability yielding 92% resuscitability and 83% survival at 72 hours. Erythropoietin did not affect resuscitability or subsequent survival in any of the series but increased interleukin-10, attenuated lactate increases, and ameliorated organ injury based on lesser troponin I, AST, and ALT increases and lesser neurological deficits in the HS-65BV+VP series. Conclusions Erythropoietin given during HS in swine failed to alter resuscitability and 72 hour survival regardless of HS severity and concomitant treatment with fluids and vasopressin but attenuated acute organ injury. The studies also showed the efficacy of vasopressin and restrictive fluid resuscitation for hemodynamic stabilization and

  15. Pharmacokinetics of erythropoietin in intact and anephric dogs

    SciTech Connect

    Fu, J.S.; Lertora, J.J.; Brookins, J.; Rice, J.C.; Fisher, J.W.

    1988-06-01

    The present studies were performed to determine the pharmacokinetic parameters of erythropoietin in intact and anephric dogs by use of unlabeled crude native erythropoietin (nEp) and iodine 125-labeled purified recombinant erythropoietin (rEp) given by intravenous infusion for 15 minutes. Sephadex G-75 gel filtration was used to confirm that the 125I-rEp molecule remained iodinated in dog plasma during the 24-hour period of these studies. The plasma disappearance of erythropoietin conformed to a biexponential equation for both nEp and 125I-rEp, with the central compartment being larger than the peripheral compartment. The mean distribution half-life of 75.3 +/- 21.2 minutes for nEp was significantly (p less than 0.05) longer than that of 125I-rEp (23.7 +/- 5.0 minutes) in intact dogs. The intercompartmental clearance (CIic) for nEp (0.018 +/- 0.006 L/kg/hr) was significantly smaller than that of 125I-rEp (0.068 +/- 0.018 L/kg/hr) in intact dogs (p less than 0.05). There were no significant differences in apparent volume of distribution, elimination half-life, and elimination clearance (CIe) for nEp and rEp in intact dogs. The mean elimination half-life for 125I-rEp in intact dogs (9.0 +/- 0.6 hours) and anephric dogs (13.8 +/- 1.4 hours) was significantly different (p less than 0.05). The CIe for 125I-rEp in anephric dogs (0.008 +/- 0.001 L/kg/hr) was significantly (p less than 0.05) smaller than that of 125I-rEp in intact dogs (0.011 +/- 0.001 L/kg/hr). There were no significant differences in apparent volume of distribution, distribution half-life, and CIic for 125I-rEp in intact and anephric dogs.

  16. [Treatment of anemia in patients with chronic renal insufficiency with recombinant human erythropoietin].

    PubMed

    Djukanović, Lj; Lezaić, V

    1996-01-01

    The discovery of recombinant human erythropoietin has enabled treatment of anaemia in patients whose anaemia was primarily caused by the lack of erythropoietin. This agent was most widely used in the treatment of anaemia in chronic renal failure patients. Non-regulated hypertension is considered to be the only absolute contraindication for recombinant human erythropoietin application, but thrombocytosis, predisposition to thromboses of arterio-venous fistulae, and convulsions are regarded as relative contraindications. Recombinant human erythropoietin may be administered intravenously, but the subcutaneous route is considered more rational. The treatment is initiated by low doses with gradual dose increase, what enables gradual anaemia correction and prevents the appearance of adverse effects. Haemoglobin level of around 100 g/l is considered the target haemoglobin level. The majority of patients respond well to treatment by human recombinant erythropoietin and the absence of anaemia improvement may be the result of iron deficiency, occult haemorrhages, chronic infection, inadequate dialysis, secondary hyperparathyroidism, aluminium intoxication. Anaemia improvement during the treatment with recombinant erythropoietin leads to the improvement of function of most organs and the quality of life in general as well as avoidance of blood transfusions and their adverse effects. The most frequent adverse effect of recombinant erythropoietin is the development of iron deficiency or hypertension aggravation. PMID:9102827

  17. Endogenous erythropoietin varies significantly with inflammation-related proteins in extremely premature newborns

    PubMed Central

    Logan, J. Wells; Allred, Elizabeth N.; Fichorova, Raina N.; Engelke, Stephen; Dammann, Olaf; Leviton, Alan

    2014-01-01

    Introduction Erythropoietin, a pluripotent glycoprotein essential for erythropoiesis, fetal growth, and development, has recently been implicated in innate immune regulation. Data from the ELGAN Study allowed us to evaluate relationships between endogenous erythropoietin and 25 inflammation-related proteins in extremely premature newborns. Methods We measured the concentrations of 25 inflammation-related proteins and of erythropoietin in blood spots collected on postnatal days 1, 7, and 14 from 936 infants born before 28 weeks gestation. We calculated the odds that infants with an inflammation-related protein in the highest quartile for gestational age and collection day had an erythropoietin concentration in the highest or lowest quartile. Results The proportion of children with inflammation-associated protein concentrations in the top quartile tended to increase monotonically with increasing quartile of EPO concentrations on 2 of the 3 days assessed. To a large extent, on each of the 3 days assessed, the odds ratios for an erythropoietin concentration in the top quartile were significantly elevated among those with an inflammation-related protein concentration in the top quartile. Conclusions Our findings suggest that in very preterm newborns, circulating levels of endogenous erythropoietin vary significantly with circulating levels of inflammation-related proteins. Elevation of endogenous erythropoietin might not be an epiphenomenon, but instead might contribute to subsequent events, by either promoting or reducing inflammation, or by promoting an anti-injury or repair capability. PMID:25022958

  18. The erythropoietin receptor and its expression in tumor cells and other tissues.

    PubMed

    Farrell, Francis; Lee, Adrian

    2004-01-01

    Erythropoietin (EPO) is the primary regulator of erythropoiesis, stimulating growth, preventing apoptosis, and promoting differentiation of red blood cell progenitors. The EPO receptor belongs to the cytokine receptor superfamily. Although the primary role of EPO is the regulation of red blood cell production, EPO and its receptor have been localized to several nonhematopoietic tissues and cells, including the central nervous system (CNS), endothelial cells, solid tumors, the liver, and the uterus. The presence of EPO receptors and the possibility of EPO signaling in these tissues and cells have led to numerous studies of the effects of EPO at these sites. In particular, expression of EPO and the EPO receptor in cancer cells has generated much interest because of concern that administration of recombinant human erythropoietin (rHuEPO) to patients with breast and other cancer cells expressing the EPO receptor may promote tumor growth via the induction of cell proliferation or angiogenesis. However, evidence supporting a growth-promoting effect has been inconclusive. Moreover, several preclinical studies have shown a beneficial effect of EPO on delaying tumor growth. Further, it is conceivable that increased expression of EPO could reduce tumor hypoxia and ameliorate the deleterious effects of hypoxia on tumor growth, metastasis, and treatment resistance. On the other hand, EPO has also been shown to produce an angiogenic effect in vascular endothelial cells in vitro. However, there is no evidence that these effects occur in vivo to promote tumor growth. EPO and EPO receptors are expressed in neural tissue, and they are upregulated there by hypoxia. Animal studies have shown that administration of epoetin alfa (an rHuEPO) reduces tissue injury due to ischemic stroke, blunt trauma, and experimental autoimmune encephalomyelitis. These findings suggest that epoetin alfa may provide a therapeutic benefit in patients with stroke, trauma, epilepsy, and other CNS

  19. Erythropoietin Activates Mitochondrial Biogenesis and Couples Red Cell Mass to Mitochondrial Mass in the Heart

    EPA Science Inventory

    RATIONALE: Erythropoietin (EPO) is often administered to cardiac patients with anemia, particularly from chronic kidney disease, and stimulation of erythropoiesis may stabilize left ventricular and renal function by recruiting protective effects beyond the correction of anemia. O...

  20. Erythropoietin reduces storage lesions and decreases apoptosis indices in blood bank red blood cells

    PubMed Central

    Penuela, Oscar Andrés; Palomino, Fernando; Gómez, Lina Andrea

    2015-01-01

    Background Recent evidence shows a selective destruction of the youngest circulating red blood cells (neocytolysis) trigged by a drop in erythropoietin levels. Objective The aim of this study was to evaluate the effect of recombinant human erythropoietin beta on the red blood cell storage lesion and apoptosis indices under blood bank conditions. Methods Each one of ten red blood cell units preserved in additive solution 5 was divided in two volumes of 100 mL and assigned to one of two groups: erythropoietin (addition of 665 IU of recombinant human erythropoietin) and control (isotonic buffer solution was added). The pharmacokinetic parameters of erythropoietin were estimated and the following parameters were measured weekly, for six weeks: Immunoreactive erythropoietin, hemolysis, percentage of non-discocytes, adenosine triphosphate, glucose, lactate, lactate dehydrogenase, and annexin-V/esterase activity. The t-test or Wilcoxon's test was used for statistical analysis with significance being set for a p-value <0.05. Results Erythropoietin, when added to red blood cell units, has a half-life >6 weeks under blood bank conditions, with persistent supernatant concentrations of erythropoietin during the entire storage period. Adenosine triphosphate was higher in the Erythropoietin Group in Week 6 (4.19 ± 0.05 μmol/L vs. 3.53 ± 0.02 μmol/L; p-value = 0.009). The number of viable cells in the Erythropoietin Group was higher than in the Control Group (77% ± 3.8% vs. 71% ± 2.3%; p-value <0.05), while the number of apoptotic cells was lower (9.4% ± 0.3% vs. 22% ± 0.8%; p-value <0.05). Conclusions Under standard blood bank conditions, an important proportion of red blood cells satisfy the criteria of apoptosis. Recombinant human erythropoietin beta seems to improve storage lesion parameters and mitigate apoptosis. PMID:26969770

  1. The relationship of provider organizational status and erythropoietin dosing in end stage renal disease patients.

    PubMed

    de Lissovoy, G; Powe, N R; Griffiths, R I; Watson, A J; Anderson, G F; Greer, J W; Herbert, R J; Eggers, P W; Milam, R A; Whelton, P K

    1994-02-01

    Controversy exists as to whether provider organizational characteristics such as profit status and setting are associated with the content of medical care or efficiency with which care is rendered. Following FDA approval of human recombinant erythropoietin (EPO) for use in clinical practice, Medicare approved coverage for beneficiaries in its end stage renal disease program and established a fixed payment per dose. Because cost of EPO administration varied positively with dose, providers could realize larger profit with prescription of smaller doses. We used Medicare claims data to assess EPO use by renal dialysis providers one year after FDA approval (June 1990) as a function of provider ownership (for-profit, not-for-profit, government agency) and setting (hospital-based, free-standing). Mean dose of EPO was 236 units greater (P = 0.0001) for not-for-profit freestanding facilities, 593 units greater (P = 0.0001) for government facilities, and 555 units greater for not-for-profit hospitals (P = 0.0001) than among for-profit freestanding providers. With fixed payment per dose of EPO, for-profit, freestanding providers prescribed EPO more often and administered smaller doses than not-for-profit or government providers, behavior that is consistent with profit maximization. PMID:8302105

  2. Nonerythropoietic Erythropoietin-Derived Peptide Suppresses Adipogenesis, Inflammation, Obesity and Insulin Resistance

    PubMed Central

    Liu, Yuqi; Luo, Bangwei; Shi, Rongchen; Wang, Jinsong; Liu, Zongwei; Liu, Wei; Wang, Shufeng; Zhang, Zhiren

    2015-01-01

    Erythropoietin (EPO) has been identified as being crucial for obesity modulation; however, its erythropoietic activity may limit its clinical application. EPO-derived Helix B-surface peptide (pHBSP) is nonerythrogenic but has been reported to retain other functions of EPO. The current study aimed to evaluate the effects and potential mechanisms of pHBSP in obesity modulation. We found that pHBSP suppressed adipogenesis, adipokine expression and peroxisome proliferator-activated receptor γ (PPARγ) levels during 3T3-L1 preadipocyte maturation through the EPO receptor (EPOR). In addition, also through EPOR, pHBSP attenuated macrophage inflammatory activation and promoted PPARγ expression. Furthermore, PPARγ deficiency partly ablated the anti-inflammatory activity of pHBSP in macrophages. Correspondingly, pHBSP administration to high-fat diet (HFD)-fed mice significantly improved obesity, insulin resistance (IR) and adipose tissue inflammation without stimulating hematopoiesis. Therefore, pHBSP can significantly protect against obesity and IR partly by inhibiting adipogenesis and inflammation. These findings have therapeutic implications for metabolic disorders, such as obesity and diabetes. PMID:26459940

  3. Erythropoietin promotes breast tumorigenesis through tumor-initiating cell self-renewal

    PubMed Central

    Zhou, Bing; Damrauer, Jeffrey S.; Bailey, Sean T.; Hadzic, Tanja; Jeong, Youngtae; Clark, Kelly; Fan, Cheng; Murphy, Laura; Lee, Cleo Y.; Troester, Melissa A.; Miller, C. Ryan; Jin, Jian; Darr, David; Perou, Charles M.; Levine, Ross L.; Diehn, Maximilian; Kim, William Y.

    2014-01-01

    Erythropoietin (EPO) is a hormone that induces red blood cell production. In its recombinant form, EPO is the one of most prescribed drugs to treat anemia, including that arising in cancer patients. In randomized trials, EPO administration to cancer patients has been associated with decreased survival. Here, we investigated the impact of EPO modulation on tumorigenesis. Using genetically engineered mouse models of breast cancer, we found that EPO promoted tumorigenesis by activating JAK/STAT signaling in breast tumor-initiating cells (TICs) and promoted TIC self renewal. We determined that EPO was induced by hypoxia in breast cancer cell lines, but not in human mammary epithelial cells. Additionally, we demonstrated that high levels of endogenous EPO gene expression correlated with shortened relapse-free survival and that pharmacologic JAK2 inhibition was synergistic with chemotherapy for tumor growth inhibition in vivo. These data define an active role for endogenous EPO in breast cancer progression and breast TIC self-renewal and reveal a potential application of EPO pathway inhibition in breast cancer therapy. PMID:24435044

  4. Erythropoietin Attenuates Loss of Potassium Chloride Co-Transporters Following Prenatal Brain Injury

    PubMed Central

    Jantzie, L.L.; Getsy, P. M.; Firl, D. J.; Wilson, C.G.; Miller, R.H; Robinson, S.

    2014-01-01

    Therapeutic agents that restore the inhibitory actions of γ-amino butyric acid (GABA) by modulating intracellular chloride concentrations will provide novel avenues to treat stroke, chronic pain, epilepsy, autism, neurodegenerative and cognitive disorders. During development upregulation of the potassium-chloride co-transporter KCC2, and the resultant switch from excitatory to inhibitory responses to GABA guides the formation of essential inhibitory circuits. Importantly, maturation of inhibitory mechanisms is also central to the development of excitatory circuits and proper balance between excitatory and inhibitory networks in the developing brain. Loss of KCC2 expression occurs in postmortem samples from human preterm infant brains with white matter lesions. Here we show late gestation brain injury in a rat model of extreme prematurity impairs the developmental upregulation of potassium chloride co-transporters during a critical postnatal period of circuit maturation in CA3 hippocampus by inducing a sustained loss of oligomeric KCC2 via a calpain-dependent mechanism. Further, administration of erythropoietin (EPO) in a clinically relevant postnatal dosing regimen following the prenatal injury protects the developing brain by reducing calpain activity, restoring oligomeric KCC2 expression and attenuating KCC2 fragmentation, thus providing the first report of a safe therapy to address deficits in KCC2 expression. Together, these data indicate it is possible to reverse abnormalities in KCC2 expression during the postnatal period, and potentially reverse deficits in inhibitory circuit formation central to cognitive impairment and epileptogenesis. PMID:24983520

  5. Erythropoietin promotes breast tumorigenesis through tumor-initiating cell self-renewal.

    PubMed

    Zhou, Bing; Damrauer, Jeffrey S; Bailey, Sean T; Hadzic, Tanja; Jeong, Youngtae; Clark, Kelly; Fan, Cheng; Murphy, Laura; Lee, Cleo Y; Troester, Melissa A; Miller, C Ryan; Jin, Jian; Darr, David; Perou, Charles M; Levine, Ross L; Diehn, Maximilian; Kim, William Y

    2014-02-01

    Erythropoietin (EPO) is a hormone that induces red blood cell production. In its recombinant form, EPO is the one of most prescribed drugs to treat anemia, including that arising in cancer patients. In randomized trials, EPO administration to cancer patients has been associated with decreased survival. Here, we investigated the impact of EPO modulation on tumorigenesis. Using genetically engineered mouse models of breast cancer, we found that EPO promoted tumorigenesis by activating JAK/STAT signaling in breast tumor-initiating cells (TICs) and promoted TIC self renewal. We determined that EPO was induced by hypoxia in breast cancer cell lines, but not in human mammary epithelial cells. Additionally, we demonstrated that high levels of endogenous EPO gene expression correlated with shortened relapse-free survival and that pharmacologic JAK2 inhibition was synergistic with chemotherapy for tumor growth inhibition in vivo. These data define an active role for endogenous EPO in breast cancer progression and breast TIC self-renewal and reveal a potential application of EPO pathway inhibition in breast cancer therapy. PMID:24435044

  6. HPLC-MS/MS investigation of biochemical markers for the disclosure of erythropoietin abuse in sports

    NASA Astrophysics Data System (ADS)

    Appolonova, S. A.; Dikunets, M. A.; Rodchenkov, G. M.

    2009-04-01

    The polypeptide hormone erythropoietin (EPO), which is a forbidden doping drug, was determined by high-performance liquid chromatography combined with tandem mass spectrometry (HPLC-MS/MS). The hypothesis about the influence of EPO on the asymmetric dimethylarginine (ADMA)-dimethylargininedime-thylaminohydrolase (DDAH)-NO-synthase system was verified. Changes in this system can serve as indirect biochemical markers of the presence of the forbidden EPO drug in the organism. In the test group, the concentrations of biochemical markers varied from 10 to 40 μg/ml for ADMA and symmetrical DMA (SDMA) and from 0.5 to 10 μg/ml for arginine and citrulline. A single intravenous administration of r-HuEPO (Epocrin, 2000 ME/day) for two volunteers reliably increased ADMA, SDMA, arginine, and citrulline concentrations to 40-270 μg/ml, 40-240μg/ml, 10-60 μg/ml, and 12-140 μg/ml, respectively, with respect to the reference values. The simultaneous increase in arginine, methylarginines, and citrulline contents could be an indirect marker of EPO abuse. The method is recommended for fast screening analysis.

  7. Non-cardiac benefits of human recombinant erythropoietin in end stage renal failure and anaemia.

    PubMed Central

    Morris, K P; Sharp, J; Watson, S; Coulthard, M G

    1993-01-01

    Recombinant human erythropoietin (r-HuEpo) is now available to correct the anaemia of end stage renal failure. The clinical consequences of increasing the haemoglobin concentration in children on dialysis are incompletely documented; a placebo controlled study is essential when assessing subjective changes, for example in appetite or other aspects of quality of life. A single blind, placebo controlled crossover study in 11 children with end stage renal failure was performed to assess the clinical benefits resulting from correction of anaemia. Ten of the 11 children completed 36 weeks of the study and seven completed both 24 week limbs. Subcutaneous administration of r-HuEpo twice a week resulted in an increase in haemoglobin concentration, from 73 to 112 g/l. This was associated with an objective improvement in exercise tolerance, and a subjective improvement in physical performance and health, and better school attendance. No consistent effect was seen on appetite, growth, psychosocial functioning, biochemical control, or peritoneal dialysis efficiency. A small but clinically unimportant increase in systolic and diastolic blood pressure was seen in five children. One child on antihypertensive treatment required an increase in dosage during r-HuEpo while another child required a reduction in treatment. These findings, together with the important cardiac benefits previously described during r-HuEpo treatment, support the use of r-HuEpo in all children with end stage renal failure and anaemia. PMID:8257180

  8. Endogenous Erythropoietin as Part of the Cytokine Network in the Pathogenesis of Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Mengozzi, Manuela; Cervellini, Ilaria; Bigini, Paolo; Martone, Sara; Biondi, Antonella; Pedotti, Rosetta; Gallo, Barbara; Barbera, Sara; Mennini, Tiziana; Boraso, Mariaserena; Marinovich, Marina; Petit, Edwige; Bernaudin, Myriam; Bianchi, Roberto; Viviani, Barbara; Ghezzi, Pietro

    2008-01-01

    Erythropoietin (EPO) is of great interest as a therapy for many of the central nervous system (CNS) diseases and its administration is protective in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Endogenous EPO is induced by hypoxic/ischemic injury, but little is known about its expression in other CNS diseases. We report here that EPO expression in the spinal cord is induced in mouse models of chronic or relapsing-remitting EAE, and is prominently localized to motoneurons. We found a parallel increase of hypoxia-inducible transcription factor (HIF)-1α, but not HIF-2α, at the mRNA level, suggesting a possible role of non-hypoxic factors in EPO induction. EPO mRNA in the spinal cord was co-expressed with interferon (IFN)–γ and tumor necrosis factor (TNF), and these cytokines inhibited EPO production in vitro in both neuronal and glial cells. Given the known inhibitory effect of EPO on neuroinflammation, our study indicates that EPO should be viewed as part of the inflammatory/anti-inflammatory network in MS. PMID:18670620

  9. Effects of Erythropoietin on Adipose Tissue: A Possible Strategy in Refilling

    PubMed Central

    Sabbatini, Maurizio; Bosetti, Michela; Borrone, Alessia; Boldorini, Renzo; Taveggia, Antonio; Verna, Giovanni; Cannas, Mario

    2015-01-01

    Background: The increased resorption and the difficulty of the fat graft take following autologous fat transplantation procedure are associated with reduced fat tissue revascularization and increased apoptosis of adipose cells. We suppose that the lipofilling procedure induces an inflammatory environment within the fat graft mass, whose evolution influences the efficacy of autologous fat graft survival. Erythropoietin (EPO) is a glycoprotein hormone known to exert angiogenetic and anti-inflammatory effects; therefore, our purpose was to investigate its reaction with adipose tissue used in lipofilling. Methods: Fat masses were harvested using manual suction lipectomy and then seeded on dishes in appropriate culture and treated for 3 weeks with 3 doses of EPO. CD31 and CD68 immunohistochemistry was used to identify microvessels and several infiltrating leukocyte cells. Results: Following EPO administration, we have detected an increase in the number of CD31-positive microvessel endothelium cells and CD31-positive small leukocytes and a reduction of CD68-positive cells. These effects were more conspicuous following higher EPO dose. Conclusions: Our findings evidence EPO treatment as a useful strategy to sustain the revascularization of grafted tissue and to reduce its inflammatory state. PMID:26034645

  10. [Erythropoietin level in tear and blood plasma of people with myopia including those who wear soft contact lens].

    PubMed

    Zakharov, Iu M; Bagautdinov, D E; Rykun, V S

    2012-05-01

    Erythropoietin level was evaluated in tear film and blood plasma of 63 people with emmetropia (30 people) and myopia (33 people). 17 myopic volunteers wear soft contact lens. There were no statistically significant differences between erythropoietin level in tear samples of emmetropic people, myopic people, and people who wear soft contact lens. Physiological level of erythropoietin in tear of myopic volunteers wearing soft contact lens was established. PMID:22838201

  11. Elevated Erythropoietin and Multicystic Neoplasm of the Pancreas

    PubMed Central

    Nai, Qiang; Regeti, Kalyani; Arshed, Sabrina; Hossain, Mohammed Amzad; Zhang, Ping; Luo, Hongxiu; Singh, Shilpi; Mathew, Teena; Islam, Mohammed; Sen, Shuvendu; Yousif, Abdalla M.; Duhl, Jozsef

    2015-01-01

    Cystic lesions of the pancreas are more frequently recognized due to the widespread use of improved imaging techniques. There are a variety of pancreatic cystic lesions with different clinical presentations and malignant potentials, and their management depends on the type of the cysts. Although the early recognition of a cystic neoplasm with malignant potential provides an opportunity of early surgical treatment, the precise diagnosis of the cystic neoplasm can be a challenge, largely due to the lack of reliable biomarkers of malignant transformation. We report a case of a large, multicystic neoplasm within the body and tail of the pancreas complicated by elevated erythropoietin, which is likely related to the malignant transformation of the pancreatic neoplasm. PMID:25873882

  12. Elevated erythropoietin and multicystic neoplasm of the pancreas.

    PubMed

    Nai, Qiang; Regeti, Kalyani; Arshed, Sabrina; Hossain, Mohammed Amzad; Zhang, Ping; Luo, Hongxiu; Singh, Shilpi; Mathew, Teena; Islam, Mohammed; Sen, Shuvendu; Yousif, Abdalla M; Duhl, Jozsef

    2015-01-01

    Cystic lesions of the pancreas are more frequently recognized due to the widespread use of improved imaging techniques. There are a variety of pancreatic cystic lesions with different clinical presentations and malignant potentials, and their management depends on the type of the cysts. Although the early recognition of a cystic neoplasm with malignant potential provides an opportunity of early surgical treatment, the precise diagnosis of the cystic neoplasm can be a challenge, largely due to the lack of reliable biomarkers of malignant transformation. We report a case of a large, multicystic neoplasm within the body and tail of the pancreas complicated by elevated erythropoietin, which is likely related to the malignant transformation of the pancreatic neoplasm. PMID:25873882

  13. Erythropoietin guides multipotent hematopoietic progenitor cells toward an erythroid fate

    PubMed Central

    Grover, Amit; Mancini, Elena; Moore, Susan; Mead, Adam J.; Atkinson, Deborah; Rasmussen, Kasper D.; O’Carroll, Donal; Jacobsen, Sten Eirik W.

    2014-01-01

    The erythroid stress cytokine erythropoietin (Epo) supports the development of committed erythroid progenitors, but its ability to act on upstream, multipotent cells remains to be established. We observe that high systemic levels of Epo reprogram the transcriptomes of multi- and bipotent hematopoietic stem/progenitor cells in vivo. This induces erythroid lineage bias at all lineage bifurcations known to exist between hematopoietic stem cells (HSCs) and committed erythroid progenitors, leading to increased erythroid and decreased myeloid HSC output. Epo, therefore, has a lineage instructive role in vivo, through suppression of non-erythroid fate options, demonstrating the ability of a cytokine to systematically bias successive lineage choices in favor of the generation of a specific cell type. PMID:24493804

  14. Is erythropoietin gene a modifier factor in amyotrophic lateral sclerosis?

    PubMed

    Ghezzi, Serena; Del Bo, Roberto; Scarlato, Marina; Nardini, Martina; Carlesi, Cecilia; Prelle, Alessandro; Corti, Stefania; Mancuso, Michelangelo; Briani, Chiara; Siciliano, Gabriele; Murri, Luigi; Bresolin, Nereo; Comi, Giacomo Pietro

    2009-05-01

    To investigate the role of erythropoietin (EPO) as genetic determinant in the susceptibility to sporadic amyotrophic lateral sclerosis (SALS). We sequenced a 259-bp region spanning the 3'hypoxia-responsive element of the EPO gene in 222 Italian SALS patients and 204 healthy subjects, matched for age and ethnic origin. No potentially causative variation was detected in SALS subjects; in addition, two polymorphic variants (namely C3434T and G3544T) showed the same genotype and haplotype frequencies in patients and controls. Conversely, a weak but significant association between G3544T and age of disease onset was observed (p=0.04). Overall, our data argue against the hypothesis of EPO as a genetic risk factor for motor neuron dysfunction, at least in Italian population. However, further studies on larger cohort of patients are needed to confirm the evidence of EPO gene as modifier factor. PMID:17888545

  15. Erythropoietin and cerebral vascular protection: role of nitric oxide.

    PubMed

    Santhanam, Anantha Vijay R; Katusic, Zvonimir S

    2006-11-01

    Cerebral vasospasm after subarachnoid hemorrhage (SAH) is a major clinical problem causing cerebral ischemia and infarction. The pathogenesis of vasospasm is related to a number of pathological processes including endothelial damage and alterations in vasomotor function leading to narrowing of arterial diameter and a subsequent decrease in cerebral blood flow. Discovery of the tissue protective effects of erythropoietin (EPO) stimulated the search for therapeutic application of EPO for the prevention and treatment of cerebrovascular disease. Recent studies have identified the role of EPO in vascular protection mediated by the preservation of endothelial cell integrity and stimulation of angiogenesis. In this review, we discuss the EPO-induced activation of endothelial nitric oxide (NO) synthase and its contribution to the prevention of cerebral vasospasm. PMID:17049112

  16. Small peptides as potent mimetics of the protein hormone erythropoietin.

    PubMed

    Wrighton, N C; Farrell, F X; Chang, R; Kashyap, A K; Barbone, F P; Mulcahy, L S; Johnson, D L; Barrett, R W; Jolliffe, L K; Dower, W J

    1996-07-26

    Random phage display peptide libraries and affinity selective methods were used to isolate small peptides that bind to and activate the receptor for the cytokine erythropoietin (EPO). In a panel of in vitro biological assays, the peptides act as full agonists and they can also stimulate erythropoiesis in mice. These agonists are represented by a 14- amino acid disulfide-bonded, cyclic peptide with the minimum consensus sequence YXCXXGPXTWXCXP, where X represents positions allowing occupation by several amino acids. The amino acid sequences of these peptides are not found in the primary sequence of EPO. The signaling pathways activated by these peptides appear to be identical to those induced by the natural ligand. This discovery may form the basis for the design of small molecule mimetics of EPO. PMID:8662529

  17. Renal erythropoietin-producing cells in health and disease

    PubMed Central

    Souma, Tomokazu; Suzuki, Norio; Yamamoto, Masayuki

    2015-01-01

    Erythropoietin (Epo) is an indispensable erythropoietic hormone primarily produced from renal Epo-producing cells (REPs). Epo production in REPs is tightly regulated in a hypoxia-inducible manner to maintain tissue oxygen homeostasis. Insufficient Epo production by REPs causes renal anemia and anemia associated with chronic disorders. Recent studies have broadened our understanding of REPs from prototypic hypoxia-responsive cells to dynamic fibrogenic cells. In chronic kidney disease, REPs are the major source of scar-forming myofibroblasts and actively produce fibrogenic molecules, including inflammatory cytokines. Notably, myofibroblast-transformed REPs (MF-REPs) recover their original physiological properties after resolution of the disease insults, suggesting that renal anemia and fibrosis could be reversible to some extent. Therefore, understanding the plasticity of REPs will lead to the development of novel targeted therapeutics for both renal fibrosis and anemia. This review summarizes the regulatory mechanisms how hypoxia-inducible Epo gene expression is attained in health and disease conditions. PMID:26089800

  18. Erythropoietin Action in Stress Response, Tissue Maintenance and Metabolism

    PubMed Central

    Zhang, Yuanyuan; Wang, Li; Dey, Soumyadeep; Alnaeeli, Mawadda; Suresh, Sukanya; Rogers, Heather; Teng, Ruifeng; Noguchi, Constance Tom

    2014-01-01

    Erythropoietin (EPO) regulation of red blood cell production and its induction at reduced oxygen tension provides for the important erythropoietic response to ischemic stress. The cloning and production of recombinant human EPO has led to its clinical use in patients with anemia for two and half decades and has facilitated studies of EPO action. Reports of animal and cell models of ischemic stress in vitro and injury suggest potential EPO benefit beyond red blood cell production including vascular endothelial response to increase nitric oxide production, which facilitates oxygen delivery to brain, heart and other non-hematopoietic tissues. This review discusses these and other reports of EPO action beyond red blood cell production, including EPO response affecting metabolism and obesity in animal models. Observations of EPO activity in cell and animal model systems, including mice with tissue specific deletion of EPO receptor (EpoR), suggest the potential for EPO response in metabolism and disease. PMID:24918289

  19. Erythropoietin action in stress response, tissue maintenance and metabolism.

    PubMed

    Zhang, Yuanyuan; Wang, Li; Dey, Soumyadeep; Alnaeeli, Mawadda; Suresh, Sukanya; Rogers, Heather; Teng, Ruifeng; Noguchi, Constance Tom

    2014-01-01

    Erythropoietin (EPO) regulation of red blood cell production and its induction at reduced oxygen tension provides for the important erythropoietic response to ischemic stress. The cloning and production of recombinant human EPO has led to its clinical use in patients with anemia for two and half decades and has facilitated studies of EPO action. Reports of animal and cell models of ischemic stress in vitro and injury suggest potential EPO benefit beyond red blood cell production including vascular endothelial response to increase nitric oxide production, which facilitates oxygen delivery to brain, heart and other non-hematopoietic tissues. This review discusses these and other reports of EPO action beyond red blood cell production, including EPO response affecting metabolism and obesity in animal models. Observations of EPO activity in cell and animal model systems, including mice with tissue specific deletion of EPO receptor (EpoR), suggest the potential for EPO response in metabolism and disease. PMID:24918289

  20. The neuronal control of hypoxic ventilation: erythropoietin and sexual dimorphism.

    PubMed

    Gassmann, Max; Tissot van Patot, Martha; Soliz, Jorge

    2009-10-01

    Using mice, we demonstrated that when oxygen supply is lowered, erythropoietin (Epo), the main regulator of red blood cell production, modulates the ventilatory response by interacting with central (brainstem) and peripheral (carotid bodies) respiratory centers. We showed that enhanced Epo levels in the brainstem increased the hypoxic ventilatory response, and that intracerebroventricular injection of an Epo antagonist (soluble Epo receptor) abolished the ventilatory acclimatization to hypoxia. More recently, we have found that the impact of Epo on ventilation occurs in a sex-dependent manner. Keeping in mind that women are less susceptible to several respiratory sicknesses and syndromes than men, we suggest that Epo plays a key role in sexually-dimorphic hypoxic ventilation. Accordingly, we foresee that Epo has a potential therapeutic use as treatment for hypoxia-associated ventilatory diseases. PMID:19845617

  1. Erythropoietin in sports: a new look at an old problem.

    PubMed

    Scott, Joshua; Phillips, George C

    2005-08-01

    Erythropoietin (EPO) is found naturally in the human body and has been commercially available as recombinant human EPO (rEPO) for almost 20 years. Although the positive benefits of rEPO cannot be denied for those who suffer from anemia, athletes have also used the drug as an ergogenic aid. It has replaced conventional "blood doping" as the drug of choice to improve performance in contests requiring aerobic potential. Testing for the drug in the past has proven difficult due to several factors. The similarities in structure and metabolism of EPO and rEPO allow those who choose to abuse rEPO to avoid detection. Due to the inherent danger of abusing rEPO and its analogues, the various governing bodies of international sports continue to improve testing methods for this illegal substance. PMID:16004833

  2. Human rhabdomyosarcoma cells express functional erythropoietin receptor: Potential therapeutic implications

    PubMed Central

    PONIEWIERSKA-BARAN, AGATA; SUSZYNSKA, MALWINA; SUN, WENYUE; ABDELBASET-ISMAIL, AHMED; SCHNEIDER, GABRIELA; BARR, FREDERIC G.; RATAJCZAK, MARIUSZ Z.

    2015-01-01

    The erythropoietin receptor (EpoR) is expressed by cells from the erythroid lineage; however, evidence has accumulated that it is also expressed by some solid tumors. This is an important observation, because recombinant erythropoietin (EPO) is employed in cancer patients to treat anemia related to chemo/radiotherapy. In our studies we employed eight rhabdomyosarcoma (RMS) cell lines (three alveolar-type RMS cell lines and five embrional-type RMS cell lines), and mRNA samples obtained from positive, PAX7-FOXO1-positive, and fusion-negative RMS patient samples. Expression of EpoR was evaluated by RT-PCR, gene array and FACS. The functionality of EpoR in RMS cell lines was evaluated by chemotaxis, adhesion, and direct cell proliferation assays. In some of the experiments, RMS cells were exposed to vincristine (VCR) in the presence or absence of EPO to test whether EPO may impair the therapeutic effect of VCR. We report for a first time that functional EpoR is expressed in human RMS cell lines as well as by primary tumors from RMS patients. Furthermore, EpoR is detectably expressed in both embryonal and alveolar RMS subtypes. At the functional level, several human RMS cell lines responded to EPO stimulation by enhanced proliferation, chemotaxis, cell adhesion, and phosphorylation of MAPKp42/44 and AKT. Moreover, RMS cells became more resistant to VCR treatment in the presence of EPO. Our findings have important potential clinical implications, indicating that EPO supplementation in RMS patients may have the unwanted side effect of tumor progression. PMID:26412593

  3. Human rhabdomyosarcoma cells express functional erythropoietin receptor: Potential therapeutic implications.

    PubMed

    Poniewierska-Baran, Agata; Suszynska, Malwina; Sun, Wenyue; Abdelbaset-Ismail, Ahmed; Schneider, Gabriela; Barr, Frederic G; Ratajczak, Mariusz Z

    2015-11-01

    The erythropoietin receptor (EpoR) is expressed by cells from the erythroid lineage; however, evidence has accumulated that it is also expressed by some solid tumors. This is an important observation, because recombinant erythropoietin (EPO) is employed in cancer patients to treat anemia related to chemo/radiotherapy. In our studies we employed eight rhabdomyosarcoma (RMS) cell lines (three alveolar-type RMS cell lines and five embrional-type RMS cell lines), and mRNA samples obtained from positive, PAX7-FOXO1-positive, and fusion-negative RMS patient samples. Expression of EpoR was evaluated by RT-PCR, gene array and FACS. The functionality of EpoR in RMS cell lines was evaluated by chemotaxis, adhesion, and direct cell proliferation assays. In some of the experiments, RMS cells were exposed to vincristine (VCR) in the presence or absence of EPO to test whether EPO may impair the therapeutic effect of VCR. We report for a first time that functional EpoR is expressed in human RMS cell lines as well as by primary tumors from RMS patients. Furthermore, EpoR is detectably expressed in both embryonal and alveolar RMS subtypes. At the functional level, several human RMS cell lines responded to EPO stimulation by enhanced proliferation, chemotaxis, cell adhesion, and phosphorylation of MAPKp42/44 and AKT. Moreover, RMS cells became more resistant to VCR treatment in the presence of EPO. Our findings have important potential clinical implications, indicating that EPO supplementation in RMS patients may have the unwanted side effect of tumor progression. PMID:26412593

  4. The pleiotropic effects of erythropoietin in the central nervous system.

    PubMed

    Buemi, M; Cavallaro, E; Floccari, F; Sturiale, A; Aloisi, C; Trimarchi, M; Corica, F; Frisina, N

    2003-03-01

    Erythropoietin (Epo) is a hydrophobic sialoglycoproteic hormone produced by the kidney and responsible for the proliferation, maturation, and differentiation of the precursors of the erythroid cell line. Human recombinant erythropoietin (rHuEpo) is used to treat different types of anemia, not only in uremic patients but also in newborns with anemia of prematurity, in patients with cancer-related anemia or myeloproliferative disease, thalassemias, bone marrow transplants, or those with chronic infectious diseases. The pleiotropic functions of Epo are well known. It has been shown that this hormone can modulate the inflammatory and immune response, has direct hemodynamic and vasoactive effects, could be considered a proangiogenic factor because of its interaction with vascular endothelial growth factor, and its ability to stimulate mitosis and motility of endothelial cells. The multifunctional role of Epo has further been confirmed by the discovery in the central nervous system of a specific Epo/Epo receptor (EpoR) system. Both Epo and EpoR are expressed by astrocytes and neurons and Epo is present in the cerebrospinal fluid (CSF). Therefore, novel functions of Epo, tissue-specific regulation, and the mechanisms of action have been investigated. In this review we have tried to summarize the current data on the role of Epo on brain function. We discuss the different sites of cerebral expression and mechanisms of regulation of Epo and its receptor and its role in the development and maturation of the brain. Second, we discuss the neurotrophic and neuroprotective function of Epo in different conditions of neuronal damage, such as hypoxia, cerebral ischemia, and subarachnoid hemorrhage, and the consequent possibility that rHuEpo therapy could soon be used in clinical practice to limit neuronal damage induced by these diseases. PMID:12638727

  5. Nonclinical evaluation of the potential for mast cell activation by an erythropoietin analog

    SciTech Connect

    Weaver, James L.

    2015-09-15

    The erythropoietin analog peginesatide was withdrawn from marketing due to unexpected severe anaphylactic reactions associated with administration of the multi-use formulation. The adverse events occurred rapidly following the first ever administration of the drug with most affected patients becoming symptomatic in less than 30 min. This is most consistent with an anaphylactoid reaction due to direct activation of mast cells. Laboratory evaluation was undertaken using rat peritoneal mast cells as the model system. Initial studies showed that high concentrations of the formulated drug as well as formulated vehicle alone could cause mast cell degranulation as measured by histamine release. The purified active drug was not able to cause histamine release whereas the vehicle filtrate and lab created drug vehicle were equally potent at causing histamine release. Individual formulations of vehicle leaving one component out showed that histamine release was due to phenol. Dose response studies with phenol showed a very sharp dose response curve that was similar in three buffer systems. Cellular analysis by flow cytometry showed that the histamine release was not due to cell death, and that changes in light scatter parameters consistent with degranulation were rapidly observed. Limited testing with primary human mast cells showed a similar dose response of histamine release with exposure to phenol. To provide in vivo confirmation, rats were injected with vehicle formulated with various concentrations of phenol via a jugular vein cannula. Significant release of histamine was detected in blood samples taken 2 min after dosing at the highest concentrations tested. - Highlights: • Peginesatide caused severe anaphylactoid reactions in 0.2% of patients. • Both formulated drug and vehicle cause degranulation of rat mast cells. • Phenol was identified as the vehicle component causing degranulation. • Human mast cells show similar dose response to phenol as rat mast cells

  6. Mutant Erythropoietin without Erythropoietic Activity is Neuroprotective against Ischemic Brain Injury

    PubMed Central

    Gan, Yu; Xing, Juan; Jing, Zheng; Stetler, R. Anne; Zhang, Feng; Luo, Yumin; Ji, Xunmin; Gao, Yanqin; Cao, Guodong

    2012-01-01

    Background and Purpose Erythropoietin (EPO) confers potent neuroprotection against ischemic injury. However, treatment for stroke requires high doses and multiple administrations of EPO, which may cause deleterious side effects due to its erythropoietic activity. This study identifies a novel non-erythropoietic mutant EPO (MEPO) and investigates its potential neuroprotective effects and underlying mechanism in animal model of cerebral ischemia. Methods We constructed a series of MEPOs, each containing a single amino acid mutation within the erythropoietic motif, and tested their erythropoietic activity. Using cortical neuronal cultures exposed to NMDA neurotoxicity and a murine model of transient middle cerebral artery occlusion (MCAO), neuroprotection and neurofunctional outcomes were assessed as well as activation of intracellular signaling pathways. Results The serine to isoleucine mutation at position 104 (S104I-EPO) completely abolished the erythropoietic and platelet-stimulating activity of EPO. Administration of S104I-EPO significantly inhibited NMDA-induced neuronal death in primary cultures, and protected against cerebral infarction and neurological deficits with an efficacy similar to that of wild-type EPO. Both S104I-EPO and wild-type EPO activated similar pro-survival signaling pathways, such as PI3K/AKT, MAPK/ERK1/2 and STAT5. Inhibition of PI3K/AKT or MAPK/ERK1/2 signaling pathways significantly attenuated the neuroprotective effects of S104I-EPO, indicating that activation of these pathways underlies the neuroprotective mechanism of MEPO against cerebral ischemia. Conclusions S104I-EPO confers neuroprotective effects comparable to those of wild-type EPO against ischemic brain injury, with the added benefit of lacking erythropoietic and platelet-stimulating side effects. Our novel findings suggest that the non-erythropoietic mutant EPO is a legitimate candidate for ischemic stroke intervention. PMID:22984011

  7. Effect of Vascular Endothelial Growth Factor and Erythropoietin on Functional Activity of Fibroblasts and Multipotent Mesenchymal Stromal Cells.

    PubMed

    Bondarenko, N A; Nikonorova, Yu V; Surovtseva, M A; Lykov, A P; Poveshchenko, O V; Poveshchenko, A F; Pokushalov, E A; Romanov, A B; Konenkov, V I

    2016-02-01

    The study examined the effect of VEGF and erythropoietin on proliferative and migratory activities of skin fibroblasts and multipotent mesenchymal stromal cells of human adipose tissue. VEGF stimulated proliferation and migration of fi broblasts, but produced no significant effect on functional activity of multipotent mesenchymal stem cells. Erythropoietin stimulated proliferation of both cell types, but did not affect their migration. PMID:26899850

  8. Erythropoietin critically regulates the terminal maturation of murine and human primitive erythroblasts.

    PubMed

    Malik, Jeffrey; Kim, Ah Ram; Tyre, Kaitlin A; Cherukuri, Anjuli R; Palis, James

    2013-11-01

    Primitive erythroid cells, the first red blood cells produced in the mammalian embryo, are necessary for embryonic survival. Erythropoietin and its receptor EpoR, are absolutely required for survival of late-stage definitive erythroid progenitors in the fetal liver and adult bone marrow. Epo- and Epor-null mice die at E13.5 with a lack of definitive erythrocytes. However, the persistence of circulating primitive erythroblasts raises questions about the role of erythropoietin/EpoR in primitive erythropoiesis. Using Epor-null mice and a novel primitive erythroid 2-step culture we found that erythropoietin is not necessary for specification of primitive erythroid progenitors. However, Epor-null embryos develop a progressive, profound anemia by E12.5 as primitive erythroblasts mature as a synchronous cohort. This anemia results from reduced primitive erythroblast proliferation associated with increased p27 expression, from advanced cellular maturation, and from markedly elevated rates of apoptosis associated with an imbalance in pro- and anti-apoptotic gene expression. Both mouse and human primitive erythroblasts cultured without erythropoietin also undergo accelerated maturation and apoptosis at later stages of maturation. We conclude that erythropoietin plays an evolutionarily conserved role in promoting the proliferation, survival, and appropriate timing of terminal maturation of primitive erythroid precursors. PMID:23894012

  9. Bone marrow mesenchymal stem cells transplantation promotes the release of endogenous erythropoietin after ischemic stroke

    PubMed Central

    Lv, Wen; Li, Wen-yu; Xu, Xiao-yan; Jiang, Hong; Bang, Oh Yong

    2015-01-01

    This study investigated whether bone marrow mesenchymal stem cell (BMSC) transplantation protected ischemic cerebral injury by stimulating endogenous erythropoietin. The model of ischemic stroke was established in rats through transient middle cerebral artery occlusion. Twenty-four hours later, 1 × 106 human BMSCs (hBMSCs) were injected into the tail vein. Fourteen days later, we found that hBMSCs promoted the release of endogenous erythropoietin in the ischemic region of rats. Simultaneously, 3 μg/d soluble erythropoietin receptor (sEPOR) was injected into the lateral ventricle, and on the next 13 consecutive days. sEPOR blocked the release of endogenous erythropoietin. The neurogenesis in the subventricular zone was less in the hBMSCs + sEPOR group than in the hBMSCs + heat-denatured sEPOR group. The adhesive-removal test result and the modified Neurological Severity Scores (mNSS) were lower in the hBMSCs + sEPOR group than in the heat-denatured sEPOR group. The adhesive-removal test result and mNSS were similar between the hBMSCs + heat-denatured sEPOR group and the hBMSCs + sEPOR group. These findings confirm that BMSCs contribute to neurogenesis and improve neurological function by promoting the release of endogenous erythropoietin following ischemic stroke. PMID:26487854

  10. Cell-type-specific and hypoxia-inducible expression of the human erythropoietin gene in transgenic mice.

    PubMed Central

    Semenza, G L; Koury, S T; Nejfelt, M K; Gearhart, J D; Antonarakis, S E

    1991-01-01

    Synthesis of erythropoietin, the primary humoral regulator of erythropoiesis, in liver and kidney is inducible by anemia or hypoxia. Analysis of human erythropoietin gene expression in transgenic mice revealed that sequences located 6-14 kilobases 5' to the gene direct expression to the kidney, whereas sequences within the immediate 3'-flanking region control hepatocyte-specific expression. Human erythropoietin transcription initiation sites were differentially utilized in liver and kidney. Inducible transgene expression was precisely targeted to peritubular interstitial cells in the renal cortex that synthesize endogenous mouse erythropoietin. These studies demonstrate that multiple erythropoietin gene regulatory elements control cell-type-specific expression and inducibility by a fundamental physiologic stimulus, hypoxia. Images PMID:1924331

  11. No evidence for protective erythropoietin alpha signalling in rat hepatocytes

    PubMed Central

    2009-01-01

    Background Recombinant human erythropoietin alpha (rHu-EPO) has been reported to protect the liver of rats and mice from ischemia-reperfusion injury. However, direct protective effects of rHu-EPO on hepatocytes and the responsible signalling pathways have not yet been described. The aim of the present work was to study the protective effect of rHu-EPO on warm hypoxia-reoxygenation and cold-induced injury to hepatocytes and the rHu-EPO-dependent signalling involved. Methods Loss of viability of isolated rat hepatocytes subjected to hypoxia/reoxygenation or incubated at 4°C followed by rewarming was determined from released lactate dehydrogenase activity in the absence and presence of rHu-EPO (0.2–100 U/ml). Apoptotic nuclear morphology was assessed by fluorescence microscopy using the nuclear fluorophores H33342 and propidium iodide. Erythropoietin receptor (EPOR), EPO and Bcl-2 mRNAs were quantified by real time PCR. Activation of JAK-2, STAT-3 and STAT-5 in hepatocytes and rat livers perfused in situ was assessed by Western blotting. Results In contrast to previous in vivo studies on ischemia-reperfusion injury to the liver, rHu-EPO was without any protective effect on hypoxic injury, hypoxia-reoxygenation injury and cold-induced apoptosis to isolated cultured rat hepatocytes. EPOR mRNA was identified in these cells but specific detection of the EPO receptor protein was not possible due to the lack of antibody specificity. Both, in the cultured rat hepatocytes (10 U/ml for 15 minutes) and in the rat liver perfused in situ with rHu-EPO (8.9 U/ml for 15 minutes) no evidence for EPO-dependent signalling was found as indicated by missing effects of rHu-EPO on phosphorylation of JAK-2, STAT-3 and STAT-5 and on the induction of Bcl-2 mRNA. Conclusion Together, these results indicate the absence of any protective EPO signalling in rat hepatocytes. This implies that the protection provided by rHu-EPO in vivo against ischemia-reperfusion and other causes of liver injury

  12. The anemia of microgravity and recumbency. Role of sympathetic neural control of erythropoietin production

    NASA Astrophysics Data System (ADS)

    Robertson, David; Krantz, Sanford B.; Biaggioni, Italo

    We hypothesize that reduced sympathetic stimulation of erythropoietin production may maintain the anemia which develops in virtually all space travellers. We tested this hypothesis in a human model of reduced sympathetic activity. Thirty-three patients with the Bradbury-Eggleston syndrome were divided into three groups according to their hemoglobin (Hgb) level. Patients with low Hgb had lower upright norepinephrine and lower upright renin. Patients with anemia also had inappropriately low plasma erythropoietin levels. We administered recombinant erythropoietin (Epogen) 25-50 units/kg s.c. 3 times per week and found that the anemia seen in autonomic failure could be reversed by this treatment. These results support the hypothesis that erythropoiesis is modulated by the sympathetic nervous system and that such mechanisms may also operate in the microgravity environment where sympathetic activity is reduced.

  13. Functional analysis of an oxygen-regulated transcriptional enhancer lying 3' to the mouse erythropoietin gene.

    PubMed Central

    Pugh, C W; Tan, C C; Jones, R W; Ratcliffe, P J

    1991-01-01

    Erythropoietin, the major hormone controlling red-cell production, is regulated in part through oxygen-dependent changes in the rate of transcription of its gene. Using transient transfection in HepG2 cells, we have defined a DNA sequence, located 120 base pairs 3' to the poly(A)-addition site of the mouse erythropoietin gene, that confers oxygen-regulated expression on a variety of heterologous promoters. The sequence has the typical features of a eukaryotic enhancer. Approximately 70 base pairs are necessary for full activity, but reiteration restores activity to shorter inactive sequences. This enhancer operates in HepG2 and Hep3B cells, but not in Chinese hamster ovary cells or mouse erythroleukemia cells, and responds to cobalt but not to cyanide or 2-deoxyglucose, thus reflecting the physiological control of erythropoietin production accurately. Images PMID:1961720

  14. A single subcutaneous bolus of erythropoietin normalizes cerebral blood flow autoregulation after subarachnoid haemorrhage in rats

    PubMed Central

    Springborg, Jacob Bertram; Ma, XiaoDong; Rochat, Per; Knudsen, Gitte Moos; Amtorp, Ole; Paulson, Olaf B; Juhler, Marianne; Olsen, Niels Vidiendal

    2002-01-01

    Systemic administration of recombinant erythropoietin (EPO) has been demonstrated to mediate neuroprotection. This effect of EPO may in part rely on a beneficial effect on cerebrovascular dysfunction leading to ischaemic neuronal damage. We investigated the in vivo effects of subcutaneously administered recombinant EPO on impaired cerebral blood flow (CBF) autoregulation after experimental subarachnoid haemorrhage (SAH).Four groups of male Sprague-Dawley rats were studied: group A, sham operation plus vehicle; group B, sham operation plus EPO; group C, SAH plus vehicle; group D, SAH plus EPO. SAH was induced by injection of 0.07 ml of autologous blood into the cisterna magna. EPO (400 iu kg−1 s.c.) or vehicle was given immediately after the subarachnoid injection of blood or saline. Forty-eight hours after the induction of SAH, CBF autoregulatory function was evaluated using the intracarotid 133Xe method.CBF autoregulation was preserved in both sham-operated groups (lower limits of mean arterial blood pressure: 91±3 and 98±3 mmHg in groups A and B, respectively). In the vehicle treated SAH-group, autoregulation was abolished and the relationship between CBF and blood pressure was best described by a single linear regression line. A subcutaneous injection of EPO given immediately after the induction of SAH normalized autoregulation of CBF (lower limit in group D: 93±4 mmHg, NS compared with groups A and B).Early activation of endothelial EPO receptors may represent a potential therapeutic strategy in the treatment of cerebrovascular perturbations after SAH. PMID:11834631

  15. Discovery and Characterization of Nonpeptidyl Agonists of the Tissue-Protective Erythropoietin Receptor.

    PubMed

    Miller, James L; Church, Timothy J; Leonoudakis, Dmitri; Lariosa-Willingham, Karen; Frigon, Normand L; Tettenborn, Connie S; Spencer, Jeffrey R; Punnonen, Juha

    2015-08-01

    Erythropoietin (EPO) and its receptor are expressed in a wide variety of tissues, including the central nervous system. Local expression of both EPO and its receptor is upregulated upon injury or stress and plays a role in tissue homeostasis and cytoprotection. High-dose systemic administration or local injection of recombinant human EPO has demonstrated encouraging results in several models of tissue protection and organ injury, while poor tissue availability of the protein limits its efficacy. Here, we describe the discovery and characterization of the nonpeptidyl compound STS-E412 (2-[2-(4-chlorophenoxy)ethoxy]-5,7-dimethyl-[1,2,4]triazolo[1,5-a]pyrimidine), which selectively activates the tissue-protective EPO receptor, comprising an EPO receptor subunit (EPOR) and the common β-chain (CD131). STS-E412 triggered EPO receptor phosphorylation in human neuronal cells. STS-E412 also increased phosphorylation of EPOR, CD131, and the EPO-associated signaling molecules JAK2 and AKT in HEK293 transfectants expressing EPOR and CD131. At low nanomolar concentrations, STS-E412 provided EPO-like cytoprotective effects in primary neuronal cells and renal proximal tubular epithelial cells. The receptor selectivity of STS-E412 was confirmed by a lack of phosphorylation of the EPOR/EPOR homodimer, lack of activity in off-target selectivity screening, and lack of functional effects in erythroleukemia cell line TF-1 and CD34(+) progenitor cells. Permeability through artificial membranes and Caco-2 cell monolayers in vitro and penetrance across the blood-brain barrier in vivo suggest potential for central nervous system availability of the compound. To our knowledge, STS-E412 is the first nonpeptidyl, selective activator of the tissue-protective EPOR/CD131 receptor. Further evaluation of the potential of STS-E412 in central nervous system diseases and organ protection is warranted. PMID:26018904

  16. Protective effects of BMSCs in combination with erythropoietin in bronchopulmonary dysplasia-induced lung injury.

    PubMed

    Zhang, Zhao-Hua; Pan, Yan-Yan; Jing, Rui-Sheng; Luan, Yun; Zhang, Luan; Sun, Chao; Kong, Feng; Li, Kai-Lin; Wang, Yi-Biao

    2016-08-01

    Bronchopulmonary dysplasia (BPD) is the most common type of chronic lung disease in infancy, for which no effective therapy is currently available. The aim of the present study was to investigate the effect of treatment with bone marrow mesenchymal stem cells (BMSCs) in combination with recombinant human erythropoietin (rHuEPO) on BPD‑induced mouse lung injury, and discuss the underlying mechanism. The BPD model was established by the exposure of neonatal mice to continuous high oxygen exposure for 14 days, following which 1x106 BMSCs and 5,000 U/kg rHuEPO were injected into the mice 1 h prior to and 7 days following exposure to hyperoxia. The animals received four treatments in total (n=10 in each group). After 14 days, the body weights, airway structure, and levels of matrix metalloproteinase‑9 (MMP‑9) and vascular endothelial growth factor (VEGF) were detected using histological and immunohistochemical analyses. The effect on cell differentiation was observed by examining the presence of platelet endothelial cell adhesion molecule (PECAM) and VEGF using immunofluorescence. Compared with the administration of BMSCs alone, the body weight, airway structure, and the levels of MMP‑9 and VEGF were significantly improved in the BMSCs/rHuEPO group. The results of the present study demonstrated that the intravenous injection of BMSCs significantly improved lung damage in the hyperoxia‑exposed neonatal mouse model. Furthermore, the injection of BMSCs in combination with intraperitoneal injection of rHuEPO had a more marked effect, compared with BMSCs alone, and the mechanism may be mediated by the promoting effects of BMSCs and EPO. The results of the present study provided information, which may assist in future clinical trials. PMID:27279073

  17. Alternative erythropoietin-mediated signaling prevents secondary microvascular thrombosis and inflammation within cutaneous burns.

    PubMed

    Bohr, Stefan; Patel, Suraj J; Shen, Keyue; Vitalo, Antonia G; Brines, Michael; Cerami, Anthony; Berthiaume, Francois; Yarmush, Martin L

    2013-02-26

    Alternate erythropoietin (EPO)-mediated signaling via the heteromeric receptor composed of the EPO receptor and the β-common receptor (CD131) exerts the tissue-protective actions of EPO in various types of injuries. Herein we investigated the effects of the EPO derivative helix beta surface peptide (synonym: ARA290), which specifically triggers alternate EPO-mediated signaling, but does not bind the erythropoietic EPO receptor homodimer, on the progression of secondary tissue damage following cutaneous burns. For this purpose, a deep partial thickness cutaneous burn injury was applied on the back of mice, followed by systemic administration of vehicle or ARA290 at 1, 12, and 24 h postburn. With vehicle-only treatment, wounds exhibited secondary microvascular thrombosis within 24 h postburn, and subsequent necrosis of the surrounding tissue, thus converting to a full-thickness injury within 48 h. On the other hand, when ARA290 was systemically administered, patency of the microvasculature was maintained. Furthermore, ARA290 mitigated the innate inflammatory response, most notably tumor necrosis factor-alpha-mediated signaling. These findings correlated with long-term recovery of initially injured yet viable tissue components. In conclusion, ARA290 may be a promising therapeutic approach to prevent the conversion of partial- to full-thickness burn injuries. In a clinical setting, the decrease in burn depth and area would likely reduce the necessity for extensive surgical debridement as well as secondary wound closure by means of skin grafting. This use of ARA290 is consistent with its tissue-protective properties previously reported in other models of injury, such as myocardial infarction and hemorrhagic shock. PMID:23401545

  18. Alternative erythropoietin-mediated signaling prevents secondary microvascular thrombosis and inflammation within cutaneous burns

    PubMed Central

    Bohr, Stefan; Patel, Suraj J.; Shen, Keyue; Vitalo, Antonia G.; Brines, Michael; Cerami, Anthony; Berthiaume, Francois; Yarmush, Martin L.

    2013-01-01

    Alternate erythropoietin (EPO)–mediated signaling via the heteromeric receptor composed of the EPO receptor and the β-common receptor (CD131) exerts the tissue-protective actions of EPO in various types of injuries. Herein we investigated the effects of the EPO derivative helix beta surface peptide (synonym: ARA290), which specifically triggers alternate EPO-mediated signaling, but does not bind the erythropoietic EPO receptor homodimer, on the progression of secondary tissue damage following cutaneous burns. For this purpose, a deep partial thickness cutaneous burn injury was applied on the back of mice, followed by systemic administration of vehicle or ARA290 at 1, 12, and 24 h postburn. With vehicle-only treatment, wounds exhibited secondary microvascular thrombosis within 24 h postburn, and subsequent necrosis of the surrounding tissue, thus converting to a full-thickness injury within 48 h. On the other hand, when ARA290 was systemically administered, patency of the microvasculature was maintained. Furthermore, ARA290 mitigated the innate inflammatory response, most notably tumor necrosis factor-alpha–mediated signaling. These findings correlated with long-term recovery of initially injured yet viable tissue components. In conclusion, ARA290 may be a promising therapeutic approach to prevent the conversion of partial- to full-thickness burn injuries. In a clinical setting, the decrease in burn depth and area would likely reduce the necessity for extensive surgical debridement as well as secondary wound closure by means of skin grafting. This use of ARA290 is consistent with its tissue-protective properties previously reported in other models of injury, such as myocardial infarction and hemorrhagic shock. PMID:23401545

  19. Postmortem serum erythropoietin levels in establishing the cause of death and survival time at medicolegal autopsy.

    PubMed

    Quan, L; Zhu, B-L; Ishikawa, T; Michiue, T; Zhao, D; Li, D-R; Ogawa, M; Maeda, H

    2008-11-01

    Circulating erythropoietin (EPO) is mainly produced in the kidneys, depending on blood oxygen level. The present study investigated the postmortem serum EPO levels with regard to the cause of death and survival time. Serial medicolegal autopsy cases of postmortem time within 48 h (n = 536) were examined. Serum EPO levels were within the clinical reference range in most cases. Uremic patients with medical administration of an EPO agent (n = 11) showed a markedly high level (140-4,850 mU/ml; median, 1,798 mU/ml). Otherwise, an elevation in serum EPO level (>30 mU/ml) was mainly seen in protracted deaths due to blunt injury and fire fatality, depending on the survival time (r = 0.69, p < 0.0001, and r = 0.45, p < 0.0001, respectively), and in subacute deaths from gastrointestinal bleeding and infectious diseases. However, mildly to moderately elevated serum EPO levels were sporadically found in acute deaths due to mechanical asphyxiation, fire fatality, and acute ischemic heart disease, and in fatal hypothermia cases, especially for elderly subjects. Protracted deaths due to mechanical asphyxiation and ischemic heart disease did not show any survival time-dependent increase in serum EPO level (p > 0.05). EPO was immunohistochemically detected in the tubular epithelia and interstitial cells, showing no evident difference among the causes of death, independent of survival time or serum level. These findings suggest that serum EPO can be used as a marker for investigating anemia and/or hypoxia as a consequence of fatal insult in subacute or prolonged deaths, or a predisposition to traumatic deaths or fatal heart attacks in acute deaths. PMID:18682967

  20. Novel serum biomarkers for erythropoietin use in humans: a proteomic approach.

    PubMed

    Christensen, Britt; Sackmann-Sala, Lucila; Cruz-Topete, Diana; Jørgensen, Jens Otto L; Jessen, Niels; Lundby, Carsten; Kopchick, John J

    2011-01-01

    Erythropoietin (Epo) is produced primarily in the kidneys upon low blood oxygen availability and stimulates erythropoiesis in the bone marrow. Recombinant human Epo (rHuEpo), a drug developed to increase arterial oxygen content in patients, is also illicitly used by athletes to improve their endurance performance. Therefore, a robust and sensitive test to detect its abuse is needed. The aim of the present study was to investigate potential human serum biomarkers of Epo abuse employing a proteomic approach. Eight healthy male subjects were injected subcutaneously with rHuEpo (5,000 IU) every second day for a 16-day period. Serum was collected before starting the treatment regime and again at days 8 and 16 during the treatment period. Samples were homogenized and proteins separated by two-dimensional gel electrophoresis (2DE). Spots that changed significantly in response to rHuEpo treatment were identified by mass spectrometry. Both the number of reticulocytes and erythrocytes increased throughout the study, leading to a significant increase in hematocrit and hemoglobin content. In addition, transferrin levels increased but the percentage of iron bound to transferrin and ferritin levels decreased. Out of 97 serum proteins, seven were found to decrease significantly at day 16 compared with pre-Epo administration, and were identified as four isoforms of haptoglobin, two isoforms of transferrin, and a mixture of hemopexin and albumin. In support, total serum haptoglobin levels were found to be significantly decreased at both days 8 and 16. Thus a 2DE proteomic approach for discovery of novel markers of Epo action appears feasible. PMID:20966191

  1. The non-haematopoietic biological effects of erythropoietin.

    PubMed

    Arcasoy, Murat O

    2008-04-01

    In the haematopoietic system, the principal function of erythropoietin (Epo) is the regulation of red blood cell production, mediated by its specific cell surface receptor (EpoR). Following the cloning of the Epo gene (EPO) and characterization of the selective haematopoietic action of Epo in erythroid lineage cells, recombinant Epo forms (epoetin-alfa, epoetin-beta and the long-acting analogue darbepoetin-alfa) have been widely used for treatment of anaemia in chronic kidney disease and chemotherapy-induced anaemia in cancer patients. Ubiquitous EpoR expression in non-erythroid cells has been associated with the discovery of diverse biological functions for Epo in non-haematopoietic tissues. During development, Epo-EpoR signalling is required not only for fetal liver erythropoiesis, but also for embryonic angiogenesis and brain development. A series of recent studies suggest that endogenous Epo-EpoR signalling contributes to wound healing responses, physiological and pathological angiogenesis, and the body's innate response to injury in the brain and heart. Epo and its novel derivatives have emerged as major tissue-protective cytokines that are being investigated in the first human studies involving neurological and cardiovascular diseases. This review focuses on the scientific evidence documenting the biological effects of Epo in non-haematopoietic tissues and discusses potential future applications of Epo and its derivatives in the clinic. PMID:18324962

  2. Erythropoietin and the brain: from neurodevelopment to neuroprotection.

    PubMed

    Buemi, M; Cavallaro, E; Floccari, F; Sturiale, A; Aloisi, C; Trimarchi, M; Grasso, G; Corica, F; Frisina, N

    2002-09-01

    It is now widely known that erythropoietin (Epo) does not only affect the haematopoietic system, but it can be considered a multifunctional trophic factor with an effect on the general homoeostasis of the entire organism. The recent discovery of a specific Epo/Epo-receptor system in the central nervous system (CNS) and cerebrospinal fluid, independently of the haematopoietic system, has further paved the way for new studies aimed at investigating the different sites of cerebral expression of Epo and its receptor, the regulation of their expression and, finally, the effects that this hormone has on the development and maturation of the brain. A further aim has been to investigate how it influences CNS homoeostasis and neurotransmission in adult brain. Attention has also been focused on the neurotrophic and neuroprotective function of Epo in different conditions of neuronal damage, such as hypoxia, cerebral ischaemia and subarachnoid haemorrhage, and therefore on the possibility that human recombinant Epo therapy could soon be used in clinical practice, also to limit neuronal damage induced by these diseases. PMID:12193153

  3. Antioxidants may Attenuate Plasma Erythropoietin Decline after Hyperbaric Oxygen Diving.

    PubMed

    Mutzbauer, T S; Schneider, M; Neubauer, B; Weiss, M; Tetzlaff, K

    2015-11-01

    According to previous studies, plasma erythropoietin (EPO) may decrease after hyperbaric oxygen exposure due to oxidative stress. It is hypothesized that the decrease of EPO can be attenuated by oxygen free radical scavengers.The aim of the present study was to evaluate whether EPO plasma levels can be influenced by oral application of vitamin C and E before repeated hyperbaric oxygen exposure during diving. 16 healthy male police task force divers performed 3 morning dives on oxygen within a regular diving schedule on 3 consecutive days. They were randomized into either the placebo group or the vitamin group, receiving 1 g ascorbic acid and 600 IU D-α-tocopherol orally 60 min before the dive. Blood samples for EPO measurement were taken on days 1, 2, and 3 at T1, T3 and T5 60 min before and at T2, T4 and T6 60 min after each dive, respectively. A moderate decrease of EPO was observed beginning at T3 until T6 in the placebo group. The EPO concentrations in the vitamin group did not show relevant variations compared to baseline. Radical scavenging vitamins C and D may counteract hyperbaric oxygen related mechanisms reducing EPO production in hyperbaric oxygen exposure during diving. PMID:26258821

  4. Erythropoietin receptor signals both proliferation and erythroid-specific differentiation.

    PubMed Central

    Liboi, E; Carroll, M; D'Andrea, A D; Mathey-Prevot, B

    1993-01-01

    Ectopic expression of the erythropoietin receptor (EPO-R) in Ba/F3, an interleukin 3-dependent progenitor cell line, confers EPO-dependent cell growth. To examine whether the introduced EPO-R could affect differentiation, we isolated Ba/F3-EPO-R subclones in interleukin 3 and assayed for the induction of beta-globin mRNA synthesis after exposure to EPO. Detection of beta-globin mRNA was observed within 3 days of EPO treatment, with peak levels accumulating after 10 days. When EPO was withdrawn, expression of beta-globin mRNA persisted in most clones, suggesting that commitment to erythroid differentiation had occurred. Although EPO-R expression also supports EPO-dependent proliferation of CTLL-2, a mature T-cell line, those cells did not produce globin transcripts, presumably because they lack requisite cellular factors involved in erythrocyte differentiation. We conclude that the EPO-R transmits signals important for both proliferation and differentiation along the erythroid lineage. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8248252

  5. Erythropoietin as a Neuroprotectant for Neonatal Brain Injury: Animal Models

    PubMed Central

    Traudt, Christopher M.; Juul, Sandra E.

    2016-01-01

    Prematurity and perinatal hypoxia-ischemia are common problems that result in significant neurodevelopmental morbidity and high mortality worldwide. The Vannucci model of unilateral brain injury was developed to model perinatal brain injury due to hypoxia-ischemia. Because the rodent brain is altricial, i.e., it develops postnatally, investigators can model either preterm or term brain injury by varying the age at which injury is induced. This model has allowed investigators to better understand developmental changes that occur in susceptibility of the brain to injury, evolution of brain injury over time, and response to potential neuroprotective treatments. The Vannucci model combines unilateral common carotid artery ligation with a hypoxic insult. This produces injury of the cerebral cortex, basal ganglia, hippocampus, and periventricular white matter ipsilateral to the ligated artery. Varying degrees of injury can be obtained by varying the depth and duration of the hypoxic insult. This chapter details one approach to the Vannucci model and also reviews the neuroprotective effects of erythropoietin (Epo), a neuroprotective treatment that has been extensively investigated using this model and others. PMID:23456865

  6. Erythropoietin regulates Treg cells in asthma through TGFβ receptor signaling

    PubMed Central

    Wan, Guoshi; Wei, Bing

    2015-01-01

    Asthma is a chronic inflammatory disorder of the airways, the development of which is suppressed by regulatory T cells (Treg). Erythropoietin (EPO) is originally defined as a hematopoietic growth factor. Recently, the anti-inflammatory effects of EPO in asthma have been acknowledged. However, the underlying mechanisms remain ill-defined. Here, we showed that EPO treatment significantly reduced the severity of an ovalbumin (OVA)-induced asthma in mice, seemingly through promoting Foxp3-mediated activation of Treg cells in OVA-treated mouse lung. The activation of Treg cells resulted from increases in transforming growth factor β1 (TGFβ1), which were mainly produced by M2 macrophages (M2M). In vitro, Co-culture with M2M increased Foxp3 levels in Treg cells and the Treg cell number, in a TGFβ receptor signaling dependent manner. Moreover, elimination of macrophages abolished the therapeutic effects of EPO in vivo. Together, our data suggest that EPO may increase M2M, which activate Treg cells through TGFβ receptor signaling to mitigate the severity of asthma. PMID:26807178

  7. Expression of functionally active sialylated human erythropoietin in plants

    PubMed Central

    Jez, Jakub; Castilho, Alexandra; Grass, Josephine; Vorauer-Uhl, Karola; Sterovsky, Thomas; Altmann, Friedrich; Steinkellner, Herta

    2013-01-01

    Recombinant human erythropoietin (rhEPO), a glycohormone, is one of the leading biopharmaceutical products. The production of rhEPO is currently restricted to mammalian cell expression systems because of rhEPO's highly complex glycosylation pattern, which is a major determinant for drug-efficacy. Here we evaluate the ability of plants to produce different glycoforms of rhEPO. cDNA constructs were delivered to Nicotiana benthamiana (N. benthamiana) and transiently expressed by a viral based expression system. Expression levels up to 85 mg rhEPO/kg fresh leaf material were achieved. Moreover, co-expression of rhEPO with six mammalian genes required for in planta protein sialylation resulted in the synthesis of rhEPO decorated mainly with bisialylated N-glycans (NaNa), the most abundant glycoform of circulating hEPO in patients with anemia. A newly established peptide tag (ELDKWA) fused to hEPO was particularly well-suited for purification of the recombinant hormone based on immunoaffinity. Subsequent lectin chromatography allowed enrichment of exclusively sialylated rhEPO. All plant-derived glycoforms exhibited high biological activity as determined by a cell-based receptor-binding assay. The generation of rhEPO carrying largely homogeneous glycosylation profiles (GnGnXF, GnGn, and NaNa) will facilitate further investigation of functionalities with potential implications for medical applications. PMID:23325672

  8. Regulated expression of erythropoietin by two human hepatoma cell lines

    SciTech Connect

    Goldberg, M.A.; Glass, G.A.; Cunningham, J.M.; Bunn, H.F.

    1987-11-01

    The development of a cell culture system that produces erythropoietin (Epo) in a regulated manner has been the focus of much effort. The authors have screened multiple renal and hepatic cell lines for either constitutive or regulated expression of Epo. Only the human hepatoma cell lines, Hep3B and HepG2, made significant amounts of Epo as measured both by radioimmunoassay and in vitro bioassay (as much as 330 milliunits per 10/sup 6/ cells in 24 hr). The constitutive production of Epo increased dramatically as a function of cell density in both cell lines. At cell densities < 3.3 x 10/sup 5/ cells per cm/sup 2/, there was little constitutive release of Epo in the medium. With Hep3B cells grown at low cell densities, a mean 18-fold increase in Epo expression was seen in response to hypoxia and a 6-fold increase was observed in response to incubation in medium containing 50 ..mu..M cobalt(II) chloride. At similar low cell densities, Epo production in HepG2 cells could be enhanced an average of about 3-fold by stimulation with either hypoxia or cobalt(II) chloride. Upon such stimulation, both cell lines demonstrated markedly elevated levels of Epo mRNA. Hence, both Hep3B and HepG2 cell lines provide an excellent in vitro system in which to study the physiological regulation of Epo expression.

  9. Erythropoietin reduces the expression of myostatin in mdx dystrophic mice.

    PubMed

    Feder, D; Rugollini, M; Santomauro, A; Oliveira, L P; Lioi, V P; Santos, R dos; Ferreira, L G; Nunes, M T; Carvalho, M H; Delgado, P O; Carvalho, A A S; Fonseca, F L A

    2014-11-01

    Erythropoietin (EPO) has been well characterized as a renal glycoprotein hormone regulating red blood cell production by inhibiting apoptosis of erythrocyte progenitors in hematopoietic tissues. EPO exerts regulatory effects in cardiac and skeletal muscles. Duchenne muscular dystrophy is a lethal degenerative disorder of skeletal and cardiac muscle. In this study, we tested the possible therapeutic beneficial effect of recombinant EPO (rhEPO) in dystrophic muscles in mdx mice. Total strength was measured using a force transducer coupled to a computer. Gene expression for myostatin, transforming growth factor-β1 (TGF-β1), and tumor necrosis factor-α (TNF-α) was determined by quantitative real time polymerase chain reaction. Myostatin expression was significantly decreased in quadriceps from mdx mice treated with rhEPO (rhEPO = 0.60 ± 0.11, control = 1.07 ± 0.11). On the other hand, rhEPO had no significant effect on the expression of TGF-β1 (rhEPO = 0.95 ± 0.14, control = 1.05 ± 0.16) and TNF-α (rhEPO = 0.73 ± 0.20, control = 1.01 ± 0.09). These results may help to clarify some of the direct actions of EPO on skeletal muscle. PMID:25296358

  10. Erythropoietin regulates Treg cells in asthma through TGFβ receptor signaling.

    PubMed

    Wan, Guoshi; Wei, Bing

    2015-01-01

    Asthma is a chronic inflammatory disorder of the airways, the development of which is suppressed by regulatory T cells (Treg). Erythropoietin (EPO) is originally defined as a hematopoietic growth factor. Recently, the anti-inflammatory effects of EPO in asthma have been acknowledged. However, the underlying mechanisms remain ill-defined. Here, we showed that EPO treatment significantly reduced the severity of an ovalbumin (OVA)-induced asthma in mice, seemingly through promoting Foxp3-mediated activation of Treg cells in OVA-treated mouse lung. The activation of Treg cells resulted from increases in transforming growth factor β1 (TGFβ1), which were mainly produced by M2 macrophages (M2M). In vitro, Co-culture with M2M increased Foxp3 levels in Treg cells and the Treg cell number, in a TGFβ receptor signaling dependent manner. Moreover, elimination of macrophages abolished the therapeutic effects of EPO in vivo. Together, our data suggest that EPO may increase M2M, which activate Treg cells through TGFβ receptor signaling to mitigate the severity of asthma. PMID:26807178

  11. Hepatic erythropoietin response in cirrhosis. A contemporary review.

    PubMed

    Risør, Louise Madeleine; Fenger, Mogens; Olsen, Niels Vidiendal; Møller, Søren

    2016-01-01

    The main function of erythropoietin (EPO) is to maintain red blood cell mass, but in recent years, increasing evidence has suggested a wider biological role not solely related to erythropoiesis, e.g. angiogenesis and tissue protection. EPO is produced in the liver during fetal life, but the main production shifts to the kidney after birth. The liver maintains a production capacity of up to 10% of the total EPO synthesis in healthy controls, but can be up-regulated to 90-100%. However, the hepatic EPO synthesis has been shown not to be adequate for correction of anemia in the absence of renal-derived EPO. Elevated circulating EPO has been reported in a number of diseases, but data from cirrhotic patients are sparse and the level of plasma EPO in patients with cirrhosis is controversial. Cirrhosis is characterized by liver fibrosis, hepatic dysfunction and the release of proinflammatory cytokines, which lead to arterial hypotension, hepatic nephropathy and anemia. An increase in EPO due to renal hypoperfusion, hypoxia and anemia or an EPO-mediated hepato-protective and regenerative mechanism is plausible. However, poor hepatic synthesis capacity, a decreasing co-factor level and inflammatory feedback mechanisms may explain a potential insufficient EPO response in end-stage cirrhosis. Finally, the question remains as to whether a potential increase in EPO production in certain stages of cirrhosis originates from the kidney or liver. This paper aims to review contemporary aspects of EPO relating to chronic liver disease. PMID:26919118

  12. Neuroprotective role of erythropoietin by antiapoptosis in the retina.

    PubMed

    Chung, Hyewon; Lee, Hyunju; Lamoke, Folami; Hrushesky, William J M; Wood, Patricia A; Jahng, Wan Jin

    2009-08-01

    Erythropoietin (EPO) stimulates red blood cell production, in part by inhibiting apoptosis of the red blood cell precursors. The erythropoietic effects of EPO are circadian stage dependent. Retinal injury due to light occurs through oxidative mechanisms and is manifest by retinal and retinal pigment epithelium (RPE) cells apoptosis. The visual cycle might be circadian coordinated as a means of effectively protecting the retina from the detrimental effects of light-induced, oxygen-dependent, free radical-mediated damage, especially at the times of day when light is more intense. We show that the retinal expression of EPO and its receptor (EPOR), as well as subsequent Janus kinase 2 (Jak2) phosphorylations, are each tightly linked to a specific time after oxidative stress and in anticipation of daily light onset. This is consistent with physiological protection against daily light-induced, oxidatively mediated retinal apoptosis. In vitro, we verify that EPO protects RPE cells from light, hyperoxia, and hydrogen peroxide-induced retinal cell apoptosis, and that these stimuli increase EPO and EPOR expression in cultured RPE cells. Together, these data support the premise that EPO and its EPOR interactions represent an important retinal shield from physiologic and pathologic light-induced oxidative injury. PMID:19301424

  13. Effect of single doses of methoxypolyethylene glycol-epoetin beta (CERA, Mircera™) and epoetin delta (Dynepo™) on isoelectric erythropoietin profiles and haematological parameters.

    PubMed

    Dehnes, Yvette; Hemmersbach, Peter

    2011-05-01

    Erythropoietin (EPO) has been misused in sports for many years due to its performance-enhancing effect. In the last decade, detection of abuse has been possible with isoelectric focusing (IEF) based on the different isoform profiles of endogenous and recombinant EPO. The release of new EPOs on the market, such as the recombinant erythropoietin epoetin delta (Dynepo™) and the chemically modified EPO, CERA (Mircera™) potentially represents analytical challenges to the fight against doping. This study set out to investigate the possibility of and the time window for detecting the administration of a single dose of Dynepo™ and CERA. Our results are in agreement with earlier findings that detection of Dynepo™ is best achieved by combining IEF with SDS-PAGE. Haematological parameters were monitored for possible effects due to the long half-life (130 hours) of CERA in blood. Interestingly, although several haematological parameters were significantly changed after the injection of CERA, the endogenous EPO signal was still present in all collected samples. Due to the long half-life and the large size of the CERA molecule (about 60 kDa), it was uncertain whether CERA would be excreted into urine in detectable amounts unless urine collection was preceded by strenuous physical exercise. We find that CERA can be detected in urine without prior exercise in several, but not all, subjects. CERA is nevertheless best detected in serum with regard to both probability and length of detection, in addition to stability in matrix over time. PMID:21387570

  14. Diabetic Retinopathy Risk Factors: Plasma Erythropoietin as a Risk Factor for Proliferative Diabetic Retinopathy

    PubMed Central

    Gholamhossein, Yaghoobi; Asghar, Zarban

    2014-01-01

    Purpose The purpose of this study was to evaluate whether any stage of diabetic retinopathy (DR) is associated with levels of plasma erythropoietin and other plasma parameters. Methods It was examined a representative sample of 180 type 2 diabetes patients aged 40 to 79 years. Ophthalmic examination including a funduscopic examination, performed by an experienced ophthalmologist and the retinal finding were classified according to the grading system for diabetic retinopathy of ETDRS (Early Treatment Diabetic Retinopathy Study). It was measured the levels of plasma erythropoietin, cholesterol, triglyceride, apolipoproteins A and B, C-reactive protein, fasting blood glucose and hemoglobin A1C (HbA1C) in 88 DR patients and 92 controls without DR. Risk factors correlated with DR were compared between groups. Results The study group of 180 patients included 72 males and 108 females. The mean age of the patients with and without DR was 57.36 ± 8.87 years and 55.33 ± 8.28 years, respectively. Of the 88 patients with DR, only 9 (10%) had proliferative DR and the rest suffered from non-proliferative DR. The mean plasma levels of erythropoietin in proliferative DR group showed a significant difference in comparison to other groups. The mean plasma levels of cholesterol, triglyceride, apolipoproteins A and B, C-reactive protein, and fasting blood glucose were not significantly different in the three groups except for HbA1C. The absolute relative risk (ARR) also showed that erythropoietin was an increasing risk for proliferative DR (ARR, 1.17; 95% confidence interval, 1.060 to 1.420; odds ratio,1.060). Conclusions Of the factors studied, erythropoietin level showed significant increase in proliferative DR group. The stepwise raised in mean plasma erythropoietin level which demonstrates significant correlation with proliferative DR versus remaining two groups, will be an indication of its role in proliferative DR. PMID:25276078

  15. The anemia of primary autonomic failure and its reversal with recombinant erythropoietin

    NASA Technical Reports Server (NTRS)

    Biaggioni, I.; Robertson, D.; Krantz, S.; Jones, M.; Haile, V.

    1994-01-01

    OBJECTIVE: To determine if chronic sympathetic deprivation is associated with anemia and a low erythropoietin response. DESIGN: Survey of the prevalence and characteristics of anemia in patients with severe primary autonomic failure. SETTING: A referral service for autonomic failure in a tertiary teaching hospital. PATIENTS: 84 patients with primary autonomic failure who had symptomatic orthostatic hypotension. INTERVENTION: Open-label trial with human recombinant erythropoietin. RESULTS: Anemia was present in 32 of 84 patients (38%; 95% Cl, 27% to 50%). Plasma norepinephrine levels, measured in patients standing upright, were lower in the patient group with lower hemoglobin levels. Mean values in 22 patients with a hemoglobin level of less than 120 g/L were as follows: hemoglobin, 108 g/L (range, 87 to 118 g/L); hematocrit, 0.33; corrected reticulocyte counts, 0.008; mean corpuscular volume, 89 fL (89 microns 3); serum iron, 16.5 mumol/L (92 micrograms/dL); total iron binding capacity, 43.3 mumol/L (242 micrograms/dL); ferritin, 184 micrograms/L; serum vitamin B12, 410 pmol/L (556 pg/mL); and serum folate, 22.7 nmol/L (10 ng/mL). No relation was found between serum erythropoietin and blood hemoglobin levels. In seven of nine patients with autonomic failure who had hemoglobin levels less than 120 g/L, serum erythropoietin levels decreased below the 95% confidence interval corresponding to patients with iron deficiency anemia. Therapy with recombinant erythropoietin improved mean hemoglobin levels (from 108 to 133 g/L) in all patients treated (n = 5) at relatively low doses (25 to 50 units/kg body weight, subcutaneously, three times a week). CONCLUSIONS: Our data support the hypothesis that the sympathetic nervous system stimulates erythropoiesis in humans because anemia is a frequent occurrence in patients with severe autonomic failure and is associated with a blunted erythropoietin response.

  16. Erythropoietin messenger RNA levels in developing mice and transfer of /sup 125/I-erythropoietin by the placenta

    SciTech Connect

    Koury, M.J.; Bondurant, M.C.; Graber, S.E.; Sawyer, S.T.

    1988-07-01

    Erythropoietin (EP) mRNA was measured in normal and anemic mice during fetal and postnatal development. Normal fetal livers at 14 d of gestation contained a low level of EP mRNA. By day 19 of gestation, no EP mRNA was detected in normal or anemic fetal livers or normal fetal kidneys, but anemic fetal kidneys had low levels of EP mRNA. Newborn through adult stage mice responded to anemia by accumulating renal and hepatic EP mRNA. However, total liver EP mRNA was considerably less than that of the kidneys. Juvenile animals, 1-4 wk old, were hyperresponsive to anemia in that they produced more EP mRNA than adults. Moreover, nonanemic juveniles had readily measured renal EP mRNA, whereas the adult level was at the lower limit of detection. Because of the very low level of fetal EP mRNA, placental transfer of EP was evaluated. When administered to the pregnant mouse, /sup 125/I-EP was transferred in significant amounts to the fetuses. These results indicate that in mice the kidney is the main organ of EP production at all stages of postnatal development and that adult kidney may also play some role in providing EP for fetal erythropoiesis via placental transfer of maternal hormone.

  17. Effect of recombinant human erythropoietin on mitomycin C-induced oxidative stress and genotoxicity in rat kidney and heart tissues.

    PubMed

    Rjiba-Touati, K; Ayed-Boussema, I; Guedri, Y; Achour, A; Bacha, H; Abid-Essefi, S

    2016-01-01

    Mitomycin C (MMC) is an antineoplastic agent used for the treatment of several human malignancies. Nevertheless, the prolonged use of the drug may result in a serious heart and kidney injuries. Recombinant human erythropoietin (rhEPO) has recently been shown to exert an important cytoprotective effect in experimental brain injury and ischemic acute renal failure. The aim of the present work is to investigate the cardioprotective and renoprotective effects of rhEPO against MMC-induced oxidative damage and genotoxicity. Our results showed that MMC induced oxidative stress and DNA damage. rhEPO administration in any treatment conditions decreased oxidative damage induced by MMC. It reduced malondialdehyde and protein carbonyl levels. rhEPO ameliorated reduced glutathione plus oxidized glutathione modulation and the increased catalase activity after MMC treatment. Furthermore, rhEPO restored DNA damage caused by MMC. We concluded that rhEPO administration especially in pretreatment condition protected rats against MMC-induced heart and renal oxidative stress and genotoxicity. PMID:25733728

  18. Erythropoietin-enhanced endothelial progenitor cell recruitment in peripheral blood and renal vessels during experimental acute kidney injury in rats.

    PubMed

    Cakiroglu, Figen; Enders-Comberg, Sora Maria; Pagel, Horst; Rohwedel, Jürgen; Lehnert, Hendrik; Kramer, Jan

    2016-03-01

    Beneficial effects of erythropoietin (EPO) have been reported in acute kidney injury (AKI) when administered prior to induction of AKI. We studied the effects of EPO administration on renal function shortly after ischemic AKI. For this purpose, rats were subjected to renal ischemia for 30 min and EPO was administered at a concentration of 500 U/kg either i.v. as a single shot directly after ischemia or with an additional i.p. dose until 3 days after surgery. The results were compared with AKI rats without EPO application and a sham-operated group. Renal function was assessed by measurement of serum biochemical markers, histological grading, and using an isolated perfused kidney (IPK) model. Furthermore, we performed flow cytometry to analyze the concentration of endothelial progenitor cells (EPCs) in the peripheral blood and renal vessels. Following EPO application, there was only a statistically non-significant tendency of serum creatinine and urea to improve, particularly after daily EPO application. Renal vascular resistance and the renal perfusion rate were not significantly altered. In the histological analysis, acute tubular necrosis was only marginally ameliorated following EPO administration. In summary, we could not demonstrate a significant improvement in renal function when EPO was applied after AKI. Interestingly, however, EPO treatment resulted in a highly significant increase in CD133- and CD34-positive EPC both in the peripheral blood and renal vessels. PMID:26616141

  19. Localized and Sustained Delivery of Erythropoietin from PLGA Microspheres Promotes Functional Recovery and Nerve Regeneration in Peripheral Nerve Injury

    PubMed Central

    Zhang, Wei; Gao, Yuan; Zhou, Yan; Liu, Jianheng; Zhang, Licheng; Long, Anhua; Zhang, Lihai; Tang, Peifu

    2015-01-01

    Erythropoietin (EPO) has been demonstrated to exert neuroprotective effects on peripheral nerve injury recovery. Though daily intraperitoneal injection of EPO during a long period of time was effective, it was a tedious procedure. In addition, only limited amount of EPO could reach the injury sites by general administration, and free EPO is easily degraded in vivo. In this study, we encapsulated EPO in poly(lactide-co-glycolide) (PLGA) microspheres. Both in vitro and in vivo release assays showed that the EPO-PLGA microspheres allowed sustained release of EPO within a period of two weeks. After administration of such EPO-PLGA microspheres, the peripheral nerve injured rats had significantly better recovery compared with those which received daily intraperitoneal injection of EPO, empty PLGA microspheres, or saline treatments. This was supported by the functional, electrophysiological, and histological evaluations of the recovery done at week 8 postoperatively. We conclude that sustained delivery of EPO could be achieved by using EPO-PLGA microspheres, and such delivery method could further enhance the recovery function of EPO in nerve injury recovery. PMID:25821803

  20. Erythropoietin in heart failure and other cardiovascular diseases: hematopoietic and pleiotropic effects.

    PubMed

    Manolis, Antonis S; Tzeis, Stylianos; Triantafyllou, Kostas; Michaelidis, John; Pyrros, Ioannis; Sakellaris, Nikolaos; Kranidis, Athanasios; Melita, Helen

    2005-10-01

    Erythropoietin is a hypoxia-induced hormone that is a major regulator of normal erythropoiesis. Over the last decade, the production of recombinant human erythropoietin has revolutionized the treatment of anemia associated with chronic renal failure, and has led to a greater understanding of anemia pathophysiology and to the elucidation of the interactions of erythropoietin, iron, and erythropoiesis. Anemia has been shown to be independently associated with increased mortality and disease progression. Potential survival benefits associated with correction of anemia have expanded considerably the indications of erythropoietin use in various patient populations and are leading to consideration of earlier, more aggressive treatment of mild to moderate anemia. The results of such treatment are promising in a variety of new clinical settings, including anemia associated with congestive heart failure. Furthermore, the erythropoietin receptor is widely distributed in the cardiovascular system, including endothelial cells, smooth muscle cells and cardiomyocytes and preclinical studies have established erythropoietin to be a pleiotropic cytokine with anti-apoptotic activity and tissue-protective actions in the cardiovascular system, beyond correction of hemoglobin levels. Despite some potential adverse effects, such as hypertension, and the occurrence of erythropoietin resistance, early studies in heart failure patients with anemia suggest that erythropoietin therapy is safe and effective in reducing left ventricular hypertrophy, enhancing exercise performance and increasing ejection fraction. Anemia is found in about one-third of all cases of congestive heart failure (CHF). The most likely common cause is chronic renal insufficiency, which is present in about half of all CHF cases. However, anemia can occur in CHF without renal insufficiency and is likely to be due to excessive cytokine production. The anemia itself can worsen cardiac function, both because it causes

  1. Charting a course for erythropoietin in traumatic brain injury

    PubMed Central

    Maiese, Kenneth

    2016-01-01

    Traumatic brain injury (TBI) is a severe public health problem that impacts more than four million individuals in the United States alone and is increasing in incidence on a global scale. Importantly, TBI can result in acute as well as chronic impairments for the nervous system leaving individuals with chronic disability and in instances of severe trauma, death becomes the ultimate outcome. In light of the significant negative health consequences of TBI, multiple therapeutic strategies are under investigation, but those focusing upon the cytokine and growth factor erythropoietin (EPO) have generated a great degree of enthusiasm. EPO can control cell death pathways tied to apoptosis and autophagy as well oversees processes that affect cellular longevity and aging. In vitro studies and experimental animal models of TBI have shown that EPO can restore axonal integrity, promote cellular proliferation, reduce brain edema, and preserve cellular energy homeostasis and mitochondrial function. Clinical studies for neurodegenerative disorders that involve loss of cognition or developmental brain injury support a positive role for EPO to prevent or reduce injury in the nervous system. However, recent clinical trials with EPO and TBI have not produced such clear conclusions. Further clinical studies are warranted to address the potential efficacy of EPO during TBI, the concerns with the onset, extent, and duration of EPO therapeutic strategies, and to focus upon the specific downstream pathways controlled by EPO such as protein kinase B (Akt), mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), sirtuins, wingless pathways, and forkhead transcription factors for improved precision against the detrimental effects of TBI. PMID:27081573

  2. Erythropoietin for Neuroprotection in Neonatal Encephalopathy: Safety and Pharmacokinetics

    PubMed Central

    Bauer, Larry A.; Ballard, Roberta A.; Ferriero, Donna M.; Glidden, David V.; Mayock, Dennis E.; Chang, Taeun; Durand, David J.; Song, Dongli; Bonifacio, Sonia L.; Gonzalez, Fernando F.; Glass, Hannah C.; Juul, Sandra E.

    2012-01-01

    OBJECTIVE: To determine the safety and pharmacokinetics of erythropoietin (Epo) given in conjunction with hypothermia for hypoxic-ischemic encephalopathy (HIE). We hypothesized that high dose Epo would produce plasma concentrations that are neuroprotective in animal studies (ie, maximum concentration = 6000–10 000 U/L; area under the curve = 117 000–140 000 U*h/L). METHODS: In this multicenter, open-label, dose-escalation, phase I study, we enrolled 24 newborns undergoing hypothermia for HIE. All patients had decreased consciousness and acidosis (pH < 7.00 or base deficit ≥ 12), 10-minute Apgar score ≤ 5, or ongoing resuscitation at 10 minutes. Patients received 1 of 4 Epo doses intravenously: 250 (N = 3), 500 (N = 6), 1000 (N = 7), or 2500 U/kg per dose (N = 8). We gave up to 6 doses every 48 hours starting at <24 hours of age and performed pharmacokinetic and safety analyses. RESULTS: Patients received mean 4.8 ± 1.2 Epo doses. Although Epo followed nonlinear pharmacokinetics, excessive accumulation did not occur during multiple dosing. At 500, 1000, and 2500 U/kg Epo, half-life was 7.2, 15.0, and 18.7 hours; maximum concentration was 7046, 13 780, and 33 316 U/L, and total Epo exposure (area under the curve) was 50 306, 131 054, and 328 002 U*h/L, respectively. Drug clearance at a given dose was slower than reported in uncooled preterm infants. No deaths or serious adverse effects were seen. CONCLUSIONS: Epo 1000 U/kg per dose intravenously given in conjunction with hypothermia is well tolerated and produces plasma concentrations that are neuroprotective in animals. A large efficacy trial is needed to determine whether Epo add-on therapy further improves outcome in infants undergoing hypothermia for HIE. PMID:23008465

  3. Erythropoietin ameliorates hyperglycemia in type 1-like diabetic rats

    PubMed Central

    Niu, Ho-Shan; Chang, Chin-Hong; Niu, Chiang-Shan; Cheng, Juei-Tang; Lee, Kung-Shing

    2016-01-01

    Background Erythropoietin (EPO) is widely used in diabetic patients receiving hemodialysis. The role of EPO in glucose homeostasis remains unclear. Therefore, we investigated the effect of EPO on hyperglycemia in rats with type 1-like diabetes. Methods Rats with streptozotocin-induced type 1-like diabetes (STZ rats) were used to estimate the blood glucose-lowering effects of EPO, and changes in the expression levels of glucose transporter 4 (GLUT4) and the hepatic enzyme phosphoenolpyruvate carboxykinase (PEPCK) were identified by Western blot analysis. Results EPO attenuated the hyperglycemia in the STZ rats in a dose-dependent manner without altering the hematopoietic parameters, including the hematocrit and number of red blood cells. The involvement of the EPO receptor (EPOR) was identified using EPOR-specific antibodies. In addition, injection of EPO enhanced the glucose utilization, which was assessed using an intravenous glucose tolerance test in rats. However, blood insulin was not changed by EPO in this assay, showing the insulinotropic action of EPO. Moreover, EPO treatment increased the insulin sensitivity. Western blots indicated that the phosphorylation of AMP-activated protein kinase was enhanced by EPO to support the signaling caused by EPOR activation. Furthermore, the decrease in the GLUT4 level in skeletal muscle was reversed by EPO, and the increase in the PEPCK expression in liver was reduced by EPO, as shown in STZ rats. Conclusion Taken together, the results show that EPO injection may reduce hyperglycemia in diabetic rats through activation of EPO receptors. Therefore, EPO is useful for managing diabetic disorders, particularly hyperglycemia-associated changes. In addition, EPO receptor will be a good target for the development of antihyperglycemic agent(s) in the future. PMID:27350742

  4. [Erythropoietin and drug resistance in breast and ovarian cancers].

    PubMed

    Szenajch, Jolanta M; Synowiec, Agnieszka E

    2016-01-01

    Recombinant human erythropoietin (rhEPO) is used in breast and ovarian cancer patients to alleviate cancer- and chemotherapy-related anemia. Some clinical trials have reported that rhEPO may adversely impact survival and increase the risk of thrombovascular events in patients with breast cancer but not with ovarian cancer. The latter may potentially benefit the most from rhEPO treatment due to the nephrotoxic and myelosuppresive effects of standard platinum-based chemotherapy used in ovarian cancer disease. However, over the last decade the preclinical data have revealed that EPO is not only the principal growth factor and the hormone which regulates erythropoiesis, but also a cytokine with a pleiotropic activity which also can affect cancer cells. EPO can stimulate survival, ability to form metastases and drug resistance not only in continuous breast- and ovarian cancer cell lines but also in breast cancer stem-like cells. EPO receptor (EPOR) can also be constitutively active in both these cancers and, in breast cancer cells, may act in an interaction with estrogen receptor (ER) and epidermal growth factor receptor-2 (HER-2). EPOR, by an EPO-independent mechanism, promotes proliferation of breast cancer cells in cooperation with estrogen receptor, resulting in decreased effectiveness of tamoxifen treatment. In another interaction, as a result of the molecular antagonism between EPOR and HER2, rhEPO protects breast cancer cells against trastuzumab. Both clinical and preclinical evidence strongly suggest the urgent need to reevaluate the traditional use of rhEPO in the oncology setting. PMID:27321103

  5. Cost-effectiveness of continuous erythropoietin receptor activator in anemia

    PubMed Central

    Schmid, Holger

    2014-01-01

    Background Erythropoiesis-stimulating agents (ESAs) are the mainstay of anemia therapy. Continuous erythropoietin receptor activator (CERA) is a highly effective, long-acting ESA developed for once-monthly dosing. A multitude of clinical studies has evaluated the safety and efficiency of this treatment option for patients with renal anemia. In times of permanent financial pressure on health care systems, the cost-effectiveness of CERA should be of particular importance for payers and clinicians. Objective To critically analyze, from the nephrologists’ point of view, the published literature focusing on the cost-effectiveness of CERA for anemia treatment. Methods The detailed literature search covered electronic databases including MEDLINE, PubMed, and Embase, as well as international conference abstract databases. Results Peer-reviewed literature analyzing the definite cost-effectiveness of CERA is scarce, and most of the available data originate from conference abstracts. Identified data are restricted to the treatment of anemia due to chronic kidney disease. Although the majority of studies suggest a considerable cost advantage for CERA, the published literature cannot easily be compared. While time and motion studies clearly indicate that a switch to CERA could minimize health care staff time in dialysis units, the results of studies comparing direct costs are more ambivalent, potentially reflecting the differences between health care systems and variability between centers. Conclusion Analyzed data are predominantly insufficient; they miss clear evidence and have to thus be interpreted with great caution. In this day and age of financial restraints, results from well-designed, head-to-head studies with clearly defined endpoints have to prove whether CERA therapy can achieve cost savings without compromising anemia management. PMID:25050070

  6. Targeted erythropoietin selectively stimulates red blood cell expansion in vivo.

    PubMed

    Burrill, Devin R; Vernet, Andyna; Collins, James J; Silver, Pamela A; Way, Jeffrey C

    2016-05-10

    The design of cell-targeted protein therapeutics can be informed by natural protein-protein interactions that use cooperative physical contacts to achieve cell type specificity. Here we applied this approach in vivo to the anemia drug erythropoietin (EPO), to direct its activity to EPO receptors (EPO-Rs) on red blood cell (RBC) precursors and prevent interaction with EPO-Rs on nonerythroid cells, such as platelets. Our engineered EPO molecule was mutated to weaken its affinity for EPO-R, but its avidity for RBC precursors was rescued via tethering to an antibody fragment that specifically binds the human RBC marker glycophorin A (huGYPA). We systematically tested the impact of these engineering steps on in vivo markers of efficacy, side effects, and pharmacokinetics. huGYPA transgenic mice dosed with targeted EPO exhibited elevated RBC levels, with only minimal platelet effects. This in vivo selectivity depended on the weakening EPO mutation, fusion to the RBC-specific antibody, and expression of huGYPA. The terminal plasma half-life of targeted EPO was ∼28.3 h in transgenic mice vs. ∼15.5 h in nontransgenic mice, indicating that huGYPA on mature RBCs acted as a significant drug sink but did not inhibit efficacy. In a therapeutic context, our targeting approach may allow higher restorative doses of EPO without platelet-mediated side effects, and also may improve drug pharmacokinetics. These results demonstrate how rational drug design can improve in vivo specificity, with potential application to diverse protein therapeutics. PMID:27114509

  7. Hyperproduction of erythropoietin in nonanemic lead-exposed children.

    PubMed Central

    Factor-Litvak, P; Slavkovich, V; Liu, X; Popovac, D; Preteni, E; Capuni-Paracka, S; Hadzialjevic, S; Lekic, V; LoIacono, N; Kline, J; Graziano, J

    1998-01-01

    Lead (Pb) poisoning has numerous effects on the erythropoietic system, but the precise mechanism whereby high dose exposure causes anemia is not entirely clear. We previously reported that Pb exposure is associated with depressed serum erythropoietin (EPO) in pregnant women residing in a Pb mining town and in a nonexposed town in Kosovo, Yugoslavia. In a prospective study, we tested the hypothesis that blood Pb concentration (BPb) may be associated with depressed EPO in children. BPb, hemoglobin (Hgb), and serum EPO were measured at ages 4.5, 6.5, and 9.5 years in 211, 178, and 234 children, respectively. At 4.5 years of age, mean BPbs were 38.9 and 9.0 microg/dl in the exposed and nonexposed towns, respectively; BPbs gradually declined to 28.2 and 6.5 microg/dl, respectively, by age 9.5 years. No differences were found in Hgb at any age. At age 4. 5 years, a positive association between BPb and EPO (beta = 0.21; p = 0.0001), controlled for Hgb, was found. The magnitude of this association declined to 0.11 at age 6.5 years (p = 0.0103) and 0.03 at age 9.5 years (p = 0.39). These results were confirmed using repeated measures analyses. We concluded that in Pb-exposed children, the maintenance of normal Hgb requires hyperproduction of EPO. With advancing age (and continuing exposure), this compensatory mechanism appears to be failing, suggesting a gradual loss of renal endocrine function due to Pb exposure. Images Figure 1 Figure 2 PMID:9618353

  8. Erythropoietin Augments Survival of Glioma Cells After Radiation and Temozolomide

    SciTech Connect

    Hassouna, Imam; Sperling, Swetlana; Kim, Ella; Schulz-Schaeffer, Walter; Rave-Fraenk, Margret; Hasselblatt, Martin; Jelkmann, Wolfgang; Giese, Alf; Ehrenreich, Hannelore

    2008-11-01

    Purpose: Despite beneficial effects of irradiation/chemotherapy on survival of glioblastoma (GBM) patients, collateral damage to intact neural tissue leads to 'radiochemobrain' and reduced quality of life in survivors. For prophylactic neuroprotection, erythropoietin (EPO) is a promising candidate, provided that concerns regarding potential tumor promoting effects are alleviated. Methods and Materials: Human GBM-derived cell lines U87, G44, G112, and the gliosarcoma-derived line G28 were treated with EPO, with and without combinations of irradiation or temozolomide (TMZ). Responsiveness of glioma cells to EPO was measured by cell migration from spheroids, cell proliferation, and clonogenic survival. Implantation of U87 cells into brains of nude mice, followed 5 days later by EPO treatment (5,000 U/kg intraperitoneal every other day for 2 weeks) should reveal effects of EPO on tumor growth in vivo. Reverse transcriptase-polymerase chain reaction was performed for EPOR, HIF-1{alpha}, and epidermal growth factor receptor (EGFR)vIII in cell lines and 22 human GBM specimens. Results: EPO did not modulate basal glioma cell migration and stimulated proliferation in only one of four cell lines. Importantly, EPO did not enhance tumor growth in mouse brains. Preincubation of glioma cells with EPO for 3 h, followed by irradiation and TMZ for another 24 h, resulted in protection against chemoradiation-induced cytotoxicity in three cell lines. Conversely, EPO induced a dose-dependent decrease in survival of G28 gliosarcoma cells. In GBM specimens, expression of HIF-1{alpha} correlated positively with expression of EPOR and EGFRvIII. EPOR and EGFRvIII expression did not correlate. Conclusions: EPO is unlikely to appreciably influence basal glioma growth. However, concomitant use of EPO with irradiation/chemotherapy in GBM patients is not advisable.

  9. Effects of systemic erythropoietin on ischemic wound healing in rats.

    PubMed

    Arslantaş, Mustafa Kemal; Arslantaş, Reyhan; Tozan, Emine Nur

    2015-03-01

    Results of in vivo studies have shown erythropoietin (EPO) is associated with anti-inflammatory, anti-apoptotic, and cell protective effects on wound healing. These effects are dose-dependent. The aim of this study was to evaluate whether the duration of EPO treatment affects the healing process in the ischemic wound. Forty-two (42) Sprague-Dawley rats were anesthetized, wounded with H-shaped flaps, and randomized to 2 groups; Group 1 received 400 u/kg/day EPO and Group 2 received a saline solution, both via intraperitoneal injection following the wounding. All substances were administered once daily at the same time for up to 10 days after surgery. At days 3, 5, and 10, 7 rats from each group were sacrificed. Skin samples were stained with hematoxylin/eosin, viewed under an optical microscope at 10X and 40X magnification, and analyzed by blinded investigators for re-epithelialization, neovascularization amount and maturation of granulation tissue, inflammatory cells, and ulcer healing using an evaluation scale where 0 = none; 1 = partial; 2 = complete, but immature/thin: and 4 = complete and mature. Blood hemoglobin and hematocrit levels also were measured. Data were analyzed using ANOVA one-way test (P <0.05). Hemoglobin and hematocrit levels rose while subsequent doses of EPO were administered over time, accompanied by a transient surge in healing on day 5, when differences in healing scores were significant. Flap necrosis, ulceration, and abscess were noted on post-wounding day 10 near the pedicle. The study showed EPO therapy can improve wound healing early in the post-wounding period but can reduce wound healing after post-injury treatment day 5. Further research is necessary, particularly to establish how EPO influences the microcirculation and rheology. PMID:25751848

  10. Predicting erythropoietin resistance in hemodialysis patients with type 2 diabetes

    PubMed Central

    2013-01-01

    Background Resistance to ESAs (erythropoietin stimulating agents) is highly prevalent in hemodialysis patients with diabetes and associated with an increased mortality. The aim of this study was to identify predictors for ESA resistance and to develop a prediction model for the risk stratification in these patients. Methods A post-hoc analysis was conducted of the 4D study, including 1015 patients with type 2 diabetes undergoing hemodialysis. Determinants of ESA resistance were identified by univariate logistic regression analyses. Subsequently, multivariate models were performed with stepwise inclusion of significant predictors from clinical parameters, routine laboratory and specific biomarkers. Results In the model restricted to clinical parameters, male sex, shorter dialysis vintage, lower BMI, history of CHF, use of ACE-inhibitors and a higher heart rate were identified as independent predictors of ESA resistance. In regard to routine laboratory markers, lower albumin, lower iron saturation, higher creatinine and higher potassium levels were independently associated with ESA resistance. With respect to specific biomarkers, higher ADMA and CRP levels as well as lower Osteocalcin levels were predictors of ESA resistance. Conclusions Easily obtainable clinical parameters and routine laboratory parameters can predict ESA resistance in diabetic hemodialysis patients with good discrimination. Specific biomarkers did not meaningfully further improve the risk prediction of ESA resistance. Routinely assessed data can be used in clinical practice to stratify patients according to the risk of ESA resistance, which may help to assign appropriate treatment strategies. Clinical trial registration The study was registered at the German medical authority (BfArM; registration number 401 3206). The sponsor protocol ID and clinical trial unique identified number was CT-981-423-239. The results of the study are published and available at http

  11. Exploring recombinant human erythropoietin in chronic progressive multiple sclerosis.

    PubMed

    Ehrenreich, Hannelore; Fischer, Benjamin; Norra, Christine; Schellenberger, Felix; Stender, Nike; Stiefel, Michael; Sirén, Anna-Leena; Paulus, Walter; Nave, Klaus-Armin; Gold, Ralf; Bartels, Claudia

    2007-10-01

    The neurodegenerative aspects of chronic progressive multiple sclerosis (MS) have received increasing attention in recent years, since anti-inflammatory and immunosuppressive treatment strategies have largely failed. However, successful neuroprotection and/or neuroregeneration in MS have not been demonstrated yet. Encouraged by the multifaceted neuroprotective effects of recombinant human erythropoietin (rhEPO) in experimental models, we performed an investigator-driven, exploratory open label study (phase I/IIa) in patients with chronic progressive MS. Main study objectives were (i) evaluating safety of long-term high-dose intravenous rhEPO treatment in MS, and (ii) collecting first evidence of potential efficacy on clinical outcome parameters. Eight MS patients, five randomly assigned to high-dose (48,000 IU), three to low-dose (8000 IU) rhEPO treatment, and, as disease controls, two drug-naïve Parkinson patients (receiving 48,000 IU) were followed over up to 48 weeks: A 6-week lead-in phase, a 12-week treatment phase with weekly EPO, another 12-week treatment phase with bi-weekly EPO, and a 24-week post-treatment phase. Clinical and electrophysiological improvement of motor function, reflected by a reduction in expanded disability status scale (EDSS), and of cognitive performance was found upon high-dose EPO treatment in MS patients, persisting for three to six months after cessation of EPO application. In contrast, low-dose EPO MS patients and drug-naïve Parkinson patients did not improve in any of the parameters tested. There were no adverse events, no safety concerns and a surprisingly low need of blood-lettings. This first pilot study demonstrates the necessity and feasibility of controlled trials using high-dose rhEPO in chronic progressive MS. PMID:17728357

  12. Lack of permeability of the human placenta for erythropoietin.

    PubMed

    Schneider, H; Malek, A

    1995-01-01

    Measurements of erythropoietin in fetal blood obtained by cordocentesis or in umbilical cordblood and maternal blood have shown a lack of correlation indicating an independent regulation of EPO concentration in fetal and maternal compartments. There is a good correlation between amniotic fluid EPO concentration in fetal blood levels. Fetal EPO concentration therefore might serve as an indicator of chronic fetal hypoxia with fetal EPO production being responsive to tissue hypoxia early on in pregnancy. The lack of human placental permeability for EPO was further investigated using a dual in vitro perfusion system of an isolated cotyledon in freshly delivered term placentae. With recirculation of both circuits trace amounts of EPO (0.04% of the amount added to the maternal compartment) were transferred to the fetal side during 4-5 hours of perfusion. This transfer is comparable to the rate determined in the same experiments for albumine, and the biological significance of this very slow transfer is questionable. A very low rate of diffusion across the human placenta has also been shown for dextran, horseradish peroxidase and heparin using an in vitro perfusion system. The only exception among macromolecules are immunoglobulines G, which towards the end of pregnancy are transferred by an Fc-receptor mediated transcellular mechanism from the mother to the fetus. It is concluded, that there is no easy exchange of EPO across the human placenta between maternal and fetal compartments. Changes in EPO concentration in the fetal compartment therefore could serve as indicator of fetal hypoxia. A therapeutic application of EPO in the mother for the treatment of chronic anemia would not have any effect on fetal tissues.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7658324

  13. Erythropoietin receptor is expressed on human peripheral blood T and B lymphocytes and monocytes and is modulated by recombinant human erythropoietin treatment.

    PubMed

    Lisowska, Katarzyna A; Debska-Slizień, Alicja; Bryl, Ewa; Rutkowski, Bolesław; Witkowski, Jacek M

    2010-08-01

    Erythropoietin receptor (EPO-R) appears on the cell surface in the early stages of erythropoiesis. It has also been found on endothelial cells and polymorphonuclear leukocytes, suggesting erythropoietin (EPO) role beyond erythropoiesis itself. Earlier reports have shown that treatment with recombinant human erythropoietin (rhEPO) in chronic renal failure (CRF) patients improves interleukin-2 production and restores the T lymphocyte function. We decided to investigate possible expression of EPO-R on circulating peripheral blood lymphocytes and monocytes of CRF patients in order to assess the possibility of rhEPO direct action on these cells. Flow cytometry was used for detection and quantification of EPO-R, and reverse transcription polymerase chain reaction for detection of the EPO receptor mRNA. Our results show for the first time the existence of EPO-R on cell surface of human T and B lymphocytes and monocytes as well as at the transcriptional activity of the EPO-R gene in these cells, both in healthy and CRF individuals. We have also found significant differences between the numbers of EPO-R molecules on T and B lymphocytes of CRF patients not treated and treated with rhEPO and healthy control. Discovery of EPO-R expression on human lymphocytes suggests that EPO is probably able to directly modulate some signaling pathways important for these cells. PMID:20528849

  14. Enhanced brain release of erythropoietin, cytokines and NO during carotid clamping.

    PubMed

    Carelli, Stephana; Ghilardi, Giorgio; Bianciardi, Paola; Latorre, Elisa; Rubino, Federico; Bissi, Marina; Di Giulio, Anna Maria; Samaja, Michele; Gorio, Alfredo

    2016-02-01

    Although effective and safe, carotid endarterectomy (CEA) implies a reduced blood flow to the brain and likely an ischemia/reperfusion event. The high rate of uneventful outcomes associated with CEA suggests the activation of brain endogenous protection mechanisms aimed at limiting the possible ischemia/reperfusion damage. This study aims at assessing whether CEA triggers protective mechanisms such as brain release of erythropoietin and nitric oxide. CEA was performed in 12 patients; blood samples were withdrawn simultaneously from the surgically exposed ipsilateral jugular and leg veins before, during (2 and 40 min) and after clamp removal (2 min). Plasma antioxidant capacity, carbonylated proteins, erythropoietin, nitrates and nitrites (NOx) were determined. No changes in intraoperative EEG, peripheral and transcranial blood oxygen saturation were detectable, and no patients showed any neurologic sign after the intervention. Antioxidant capacity and protein carbonylation in plasma were unaffected. Differently, erythropoietin, VEGF, TNF-α and NOx increased during clamping in the jugular blood (2 and 40 min), while no changes were observed in the peripheral circulation. These results show that blood erythropoietin, VEGF, TNF-α, and NOx increased in the brain during uncomplicated CEA. This may represent an endogenous self-activated neuroprotective mechanism aimed at the prevention of ischemia/reperfusion damage. PMID:26494654

  15. Effect of Erythropoietin on Lymphocytes Apoptosis in Experimental Chronic Renal Failure.

    PubMed

    Osikov, M V; Telesheva, L F; Ageev, Yu I

    2015-07-01

    Recombinant human erythropoietin was injected intraperitoneally in a total dose of 900 U/kg to rats with experimental chronic renal failure. Suspension of lymphocytes from animals with chronic renal failure was used in vitro, erythropoietin was used in concentrations of 30, 15, 7.5, 3.75, and 1.88 U/liter. Intact cells (Annexin-5-FITC(-)/7-AAD(-)), cells with early signs of apoptosis (Annexin-5-FITC(+)/7-AAD(-)), cells with late signs of apoptosis and partially necrotic cells (Annexin-5-FITC(+)/7-AAD(+)), as well as cells with early signs of necrosis (Annexin-5-FITC(-)/7-AAD(+)) were differentiated by fl ow cytometry. It was found that the number of peripheral blood lymphocytes with early and late signs of apoptosis and necrosis increased in chronic renal failure. Erythropoietin at a total dose of 900 U/kg reduced the number of blood lymphocytes with signs of apoptosis and necrosis and thus elevated the number of intact lymphocytes. Erythropoietin in concentrations ranging from 1.88 to 30.0 U/liter dose dependently lowered the number of lymphocytes with early signs of apoptosis and the number of lymphocytes with the signs of late apoptosis and necrosis in vitro. PMID:26205722

  16. Gene-gene interaction of erythropoietin gene polymorphisms and diabetic retinopathy in Chinese Han.

    PubMed

    Fan, YanFei; Fu, Yin-Yu; Chen, Zhi; Hu, Yuan-Yuan; Shen, Jie

    2016-08-01

    The aim of this study was to investigate the association of three single nucleotide polymorphisms in the erythropoietin gene polymorphisms with diabetic retinopathy and additional role of gene-gene interaction on diabetic retinopathy risk. A total of 1193 patients (579 men, 614 women) with type 2 diabetes mellitus were selected, including 397 diabetic retinopathy patients and 796 controls (type 2 diabetes mellitus patients without diabetic retinopathy); the mean age of all participants was 56.7 ± 13.9 years. Three single nucleotide polymorphisms were selected: rs507392, rs1617640, and rs551238. The t-test was used for comparison of erythropoietin protein level erythropoietin levels in patients having different erythropoietin genotypes. Logistic regression model was used to examine the association between three single nucleotide polymorphisms and diabetic retinopathy. Odds ratio (OR) and 95% confident interval (95% CI) were calculated. Generalized multifactor dimensionality reduction was employed to analyze the impact of interaction among three single nucleotide polymorphisms on CVD risk. After covariates adjustment, the carriers of homozygous mutant of three single nucleotide polymorphisms have higher diabetic retinopathy risk than those with wild-type homozygotes, OR (95% CI) were 2.04 (1.12-2.35), 1.87 (1.10-2.41) and 1.15 (1.06-1.76), respectively. Generalized multifactor dimensionality reduction model indicated a significant three-locus model (p = 0.0010) involving rs507392, rs1617640, and rs551238. Overall, the three-locus models had a cross-validation consistency of 10 of 10, and had the testing accuracy of 60.72%. Subjects with TC or CC-TG or GG-AC or CC genotype have the highest diabetic retinopathy risk. In conclusion, our results support an important association of rs507392, rs1617640 and rs551238 minor allele of erythropoietin with increased diabetic retinopathy risk, and additional interaction among three single nucleotide polymorphisms. PMID

  17. Serum erythropoietin and outcome after ischaemic stroke: a prospective study

    PubMed Central

    Åberg, N David; Stanne, Tara M; Jood, Katarina; Schiöler, Linus; Blomstrand, Christian; Andreasson, Ulf; Blennow, Kaj; Zetterberg, Henrik; Isgaard, Jörgen; Jern, Christina; Svensson, Johan

    2016-01-01

    Objectives Erythropoietin (EPO), which is inversely associated with blood haemoglobin (Hb), exerts neuroprotective effects in experimental ischaemic stroke (IS). However, clinical treatment trials have so far been negative. Here, in patients with IS, we analysed whether serum EPO is associated with (1) initial stroke severity, (2) recovery and (3) functional outcome. Design Prospective. Controls available at baseline. Setting A Swedish hospital-initiated study with outpatient follow-up after 3 months. Participants Patients (n=600; 64% males, mean age 56 years, controls n=600) were included from the Sahlgrenska Academy Study on IS (SAHLSIS). Primary and secondary outcome measures In addition to EPO and Hb, initial stroke severity was assessed by the Scandinavian Stroke Scale (SSS) and compared with SSS after 3 months (follow-up) as a measure of recovery. Functional outcome was evaluated using the modified Rankin Scale (mRS) at follow-up. Serum EPO and SSS were divided into quintiles in the multivariate regression analyses. Results Serum EPO was 21% and 31% higher than in controls at the acute phase of IS and follow-up, respectively. In patients, acute serum EPO was 19.5% higher in severe versus mild IS. The highest acute EPO quintile adjusted for sex, age and Hb was associated with worse stroke severity quintile (OR 1.70, 95% CI 1.00 to 2.87), better stroke recovery quintile (OR 1.93, CI 1.09 to 3.41) and unfavourable mRS 3–6 (OR 2.59, CI 1.15 to 5.80). However, the fourth quintile of EPO increase (from acute to follow-up) was associated with favourable mRS 0–2 (OR 3.42, CI 1.46 to 8.03). Only the last association withstood full adjustment. Conclusions The crude associations between EPO and worse stroke severity and outcome lost significance after multivariate modelling. However, in patients in whom EPO increased, the association with favourable outcome remained after adjustment for multiple covariates. PMID:26916692

  18. Erythropoietin Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy.

    PubMed

    Bramlett, Helen M; Dietrich, W Dalton; Dixon, C Edward; Shear, Deborah A; Schmid, Kara E; Mondello, Stefania; Wang, Kevin K W; Hayes, Ronald L; Povlishock, John T; Tortella, Frank C; Kochanek, Patrick M

    2016-03-15

    Experimental studies targeting traumatic brain injury (TBI) have reported that erythropoietin (EPO) is an endogenous neuroprotectant in multiple models. In addition to its neuroprotective effects, it has also been shown to enhance reparative processes including angiogenesis and neurogenesis. Based on compelling pre-clinical data, EPO was tested by the Operation Brain Trauma Therapy (OBTT) consortium to evaluate therapeutic potential in multiple TBI models along with biomarker assessments. Based on the pre-clinical TBI literature, two doses of EPO (5000 and 10,000 IU/kg) were tested given at 15 min after moderate fluid percussion brain injury (FPI), controlled cortical impact (CCI), or penetrating ballistic-like brain injury (PBBI) with subsequent behavioral, histopathological, and biomarker outcome assessments. There was a significant benefit on beam walk with the 5000 IU dose in CCI, but no benefit on any other motor task across models in OBTT. Also, no benefit of EPO treatment across the three TBI models was noted using the Morris water maze to assess cognitive deficits. Lesion volume analysis showed no treatment effects after either FPI or CCI; however, with the 5000 IU/kg dose of EPO, a paradoxical increase in lesion volume and percent hemispheric tissue loss was seen after PBBI. Biomarker assessments included measurements of glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase-L1 (UCH-L1) in blood at 4 or 24 h after injury. No treatment effects were seen on biomarker levels after FPI, whereas treatment at either dose exacerbated the increase in GFAP at 24 h in PBBI but attenuated 24-4 h delta UCH-L1 levels at high dose in CCI. Our data indicate a surprising lack of efficacy of EPO across three established TBI models in terms of behavioral, histopathological, and biomarker assessments. Although we cannot rule out the possibility that other doses or more prolonged treatment could show different effects, the lack of efficacy of EPO reduced

  19. Inhibition of fibrosis and inflammation by triple therapy with pirfenidone, edaravone and erythropoietin in rabbits with drug-induced lung injury: comparison of CT imaging and pathological findings.

    PubMed

    Watanabe, Shobu; Nitta, Norihisa; Sonoda, Akinaga; Nitta-Seko, Ayumi; Ohta, Shinichi; Tsuchiya, Keiko; Otani, Hideji; Tomozawa, Yuki; Nagatani, Yukihiro; Mukaisho, Kenichi; Takahashi, Masashi; Murata, Kiyoshi

    2013-11-01

    In a rabbit model of bleomycin-induced lung injury, computed tomography (CT) and pathological studies were conducted to investigate whether the progression of this injury is inhibited by pirfenidone and by triple therapy with pirfenidone, edaravone and erythropoietin. We divided nine rabbits with bleomycin-induced lung injury into three equally sized groups. Group 1 served as the control, group 2 received pirfenidone alone and group 3 was treated with pirfenidone, edaravone and erythropoietin. Multidetector CT (MDCT) scans were acquired immediately after the administration of bleomycin, and further scans were performed on days 14 and 28. The area of abnormal opacity was calculated. The rabbit lungs were removed and the size of abnormal areas in macroscopic specimens was calculated and the degree of fibrosis and inflammation in microscopic specimens was scored. In order, the average size of the area of abnormal opacity on CT scans was largest in group 1, followed by groups 2 and 3. On day 28, the area of opacity was significantly smaller in group 3 than in group 1 (P=0.071). The average size of the area of abnormal opacity on macroscopic findings was largest in group 1, followed in order by groups 2 and 3; the difference between group 1 and 3 was significant (P<0.05). The average fibrosis score was highest in group 3 followed by groups 2 and 1. By contrast, the average inflammation score was highest in group 2 followed by groups 1 and 3. Although the administration of pirfenidone alone slowed the progression of bleomycin-induced lung injury, the triple-drug combination was more effective. PMID:24223628

  20. An in vivo model to assess factors that may stimulate the generation of an immune reaction to erythropoietin.

    PubMed

    Ryan, Mary H; Heavner, George A; Brigham-Burke, Michael; McMahon, Frank; Shanahan, Mary F; Gunturi, Srinivas R; Sharma, Basant; Farrell, Francis X

    2006-04-01

    The incidence of pure red cell aplasia (PRCA) in patients with chronic kidney disease associated with the subcutaneous (s.c.) administration of epoetin alfa (EPREX) began to increase in 1998. As part of an intensive investigation into the reasons for this increase, in vivo models were developed to assess the ability of potential causative factors to stimulate an immune response to recombinant human erythropoietin (rHuEPO). It was difficult to generate anti-EPO antibodies in mice. In animals injected with rHuEPO alone, anti-EPO antibodies were either absent or present at very low levels. The addition of an adjuvant to the immunization protocol was able to increase both the frequency of occurrence and titer of the immune response and resulted in the generation of anti-EPO antibodies that, in most cases, recognized both human and mouse EPO. Some mice exhibited a reduction in hematocrit, suggesting neutralization of endogenous EPO by anti-EPO antibodies. To evaluate the primary lead identified in the technical investigation, leachates from the uncoated syringe stoppers of EPREX syringes, a surrogate antigen (chicken egg albumin, OVA) was used to avoid possible interferences that could arise from the use of an endogenous protein like EPO. These leachates yielded a positive, concentration-dependent antibody response in the OVA animal model, demonstrating their adjuvant properties and providing support for the hypothesis generated through the technical investigation that leachates were capable of enhancing the immune response to rHuEPO. PMID:16504928

  1. Patients with anaemia can shift from kidney to liver production of erythropoietin as shown by glycoform analysis.

    PubMed

    Lönnberg, Maria; Garle, Mats; Lönnberg, Lina; Birgegård, Gunnar

    2013-01-01

    The primary production site of erythropoietin (EPO) is shifted from the liver to the kidney shortly after birth. Under conditions of lost or reduced kidney production, it is valuable to measure the production capacity of the liver. However, there is a lack of urine or serum based methods that can distinguish endogenous EPO produced in different cell types. Here is presented a method based on chromatographic interaction with the lectin wheat germ agglutinin (WGA) that can distinguish presumably liver-produced EPO, found in anaemic patients receiving epoetin and darbepoetin, from kidney-produced EPO found in healthy individuals. All the tested samples from haemodialysis patients with end-stage renal disease showed a presence of liver EPO. In some samples, the liver-produced EPO made up 90-100% of total EPO at a concentration of 8-10 ng/L in urine, which indicates that the liver has a quite high production capacity, although not adequate for the degree of anaemia. This glycoform analysis has made it possible to affirm that some anaemic patients can increase their liver-production of EPO. The use of such a method can give better insight into the regulation of non-renal endogenous EPO production, a potential source of EPO intended to replace administration of exogenous EPO. PMID:23666255

  2. Mathematical modeling reveals differential effects of erythropoietin on proliferation and lineage commitment of human hematopoietic progenitors in early erythroid culture

    PubMed Central

    Ward, Daniel; Carter, Deborah; Homer, Martin; Marucci, Lucia; Gampel, Alexandra

    2016-01-01

    Erythropoietin is essential for the production of mature erythroid cells, promoting both proliferation and survival. Whether erythropoietin and other cytokines can influence lineage commitment of hematopoietic stem and progenitor cells is of significant interest. To study lineage restriction of the common myeloid progenitor to the megakaryocyte/erythroid progenitor of peripheral blood CD34+ cells, we have shown that the cell surface protein CD36 identifies the earliest lineage restricted megakaryocyte/erythroid progenitor. Using this marker and carboxyfluorescein succinimidyl ester to track cell divisions in vitro, we have developed a mathematical model that accurately predicts population dynamics of erythroid culture. Parameters derived from the modeling of cultures without added erythropoietin indicate that the rate of lineage restriction is not affected by erythropoietin. By contrast, megakaryocyte/erythroid progenitor proliferation is sensitive to erythropoietin from the time that CD36 first appears at the cell surface. These results shed new light on the role of erythropoietin in erythropoiesis and provide a powerful tool for further study of hematopoietic progenitor lineage restriction and erythropoiesis. PMID:26589912

  3. Mathematical modeling reveals differential effects of erythropoietin on proliferation and lineage commitment of human hematopoietic progenitors in early erythroid culture.

    PubMed

    Ward, Daniel; Carter, Deborah; Homer, Martin; Marucci, Lucia; Gampel, Alexandra

    2016-03-01

    Erythropoietin is essential for the production of mature erythroid cells, promoting both proliferation and survival. Whether erythropoietin and other cytokines can influence lineage commitment of hematopoietic stem and progenitor cells is of significant interest. To study lineage restriction of the common myeloid progenitor to the megakaryocyte/erythroid progenitor of peripheral blood CD34(+) cells, we have shown that the cell surface protein CD36 identifies the earliest lineage restricted megakaryocyte/erythroid progenitor. Using this marker and carboxyfluorescein succinimidyl ester to track cell divisions in vitro, we have developed a mathematical model that accurately predicts population dynamics of erythroid culture. Parameters derived from the modeling of cultures without added erythropoietin indicate that the rate of lineage restriction is not affected by erythropoietin. By contrast, megakaryocyte/erythroid progenitor proliferation is sensitive to erythropoietin from the time that CD36 first appears at the cell surface. These results shed new light on the role of erythropoietin in erythropoiesis and provide a powerful tool for further study of hematopoietic progenitor lineage restriction and erythropoiesis. PMID:26589912

  4. Contrasting effect of recombinant human erythropoietin on breast cancer cell response to cisplatin induced cytotoxicity

    PubMed Central

    Trost, Nina; Juvan, Peter; Sersa, Gregor; Debeljak, Natasa

    2012-01-01

    Background Human recombinant erythropoietin (rHuEpo) that is used for the treatment of the chemotherapy-induced anaemia in cancer patients was shown to cause detrimental effects on the course of disease due to increased adverse events inflicting patient’s survival, potentially related to rHuEpo-induced cancer progression. In this study, we elucidate the effect of rHuEpo administration on breast cancer cell proliferation and gene expression after cisplatin (cDDP) induced cytotoxicity. Materials and methods Two breast carcinoma models, MCF-7 and MDA-MB-231 cell lines, were used differing in oestrogen (ER) and progesterone (PR) receptors and p53 status. Cells were cultured with or without rHuEpo for 24 h or 9 weeks and their growth characteristics after cDDP treatment were assessed together with expression of genes involved in the p53-signaling pathway. Results Short-term exposure of breast cancer cells to rHuEpo lowers their proliferation and reduces cDDP cytotoxic potency. In contrast, long-term exposure of MCF-7 cells to rHuEpo increases proliferation and predisposes MCF-7 cells to cDDP cytotoxicity, but has no effect on MDA-MB-231 cells. MDA-MB-231 cells show altered level of ERK phosphorylation, indicating involvement of MAPK signalling pathway. Gene expression analysis of p53-dependent genes and bcl-2 gene family members confirmed differences between long and short-term rHuEpo effects, indicating the most prominent changes in BCL2 and BAD expression. Conclusions Proliferation and survival characteristics of MCF-7 cells are reversely modulated by the length of the rHuEpo exposure. On the other hand, MDA-MB-231 cells are almost irresponsive to long-term rHuEpo, supposedly due to the mutated p53 and ER(+)/PR(−) status. The p53 and ER/PR status may predict tumour response on rHuEpo and cDDP treatment. PMID:23077460

  5. Evaluation of an in vitro cell culture assay for the potency assessment of recombinant human erythropoietin.

    PubMed

    Machado, Francine T; Maldaner, Fernanda P S; Perobelli, Rafaela F; Xavier, Bruna; da Silva, Francielle S; de Freitas, Guilherme W; Bartolini, Paolo; Ribela, M Tereza C P; Dalmora, Sérgio L

    2016-05-01

    Recombinant human erythropoietin is a sialoglycoprotein that stimulates erythropoiesis. To assess potency of human erythropoietin produced by recombinant technology, we investigated an in vitro TF-1 cell proliferation assay, which was applied in conjunction with a reversed-phase liquid chromatography method for the determination of the content of sialic acids. The results obtained, which were higher than 126.8ng/μg, were compared with those obtained with the in vivo normocythaemic mouse bioassay. The in vitro assay resulted in a non-significant lower mean difference of the estimated potencies (0.61% ± 0.026, p > 0.05). The use of this combination of methods represents an advance toward the establishment of alternative in vitro approaches, in the context of the Three Rs, for the potency assessment of biotechnology-derived medicines. PMID:27256453

  6. The combined effect of erythropoietin and granulocyte macrophage colony stimulating factor on liver regeneration after major hepatectomy in rats

    PubMed Central

    2010-01-01

    Background The liver presents a remarkable capacity for regeneration after hepatectomy but the exact mechanisms and mediators involved are not yet fully clarified. Erythropoietin (EPO) and Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) have been shown to promote liver regeneration after major hepatectomy. Aim of this experimental study is to compare the impact of exogenous administration of EPO, GM-CSF, as well as their combination on the promotion of liver regeneration after major hepatectomy. Methods Wistar rats were submitted to 70% major hepatectomy. The animals were assigned to 4 experimental groups: a control group (n = 21) that received normal saline, an EPO group (n = 21), that received EPO 500 IU/kg, a GM-CSF group (n = 21) that received 20 mcg/kg of GM-CSF and a EPO+GMCSF group (n = 21) which received a combination of the above. Seven animals of each group were killed on the 1st, 3rd and 7th postoperative day and their remnant liver was removed to evaluate liver regeneration by immunochemistry for PCNA and Ki 67. Results Our data suggest that EPO and GM-CSF increases liver regeneration following major hepatectomy when administered perioperatively. EPO has a more significant effect than GM-CSF (p < 0.01). When administering both, the effect of EPO seems to fade as EPO and GM-CSF treated rats have decreased regeneration compared to EPO administration alone (p < 0.01). Conclusion EPO, GM-CSF and their combination enhance liver regeneration after hepatectomy in rats when administered perioperatively. However their combination has a weaker effect on liver regeneration compared to EPO alone. Further investigation is needed to assess the exact mechanisms that mediate this finding. PMID:20604971

  7. "Effects of recombinant human erythropoietin high mimicking abuse doses on oxidative stress processes in rats".

    PubMed

    Bianchi, Sara; Fusi, Jonathan; Franzoni, Ferdinando; Giovannini, Luca; Galetta, Fabio; Mannari, Claudio; Guidotti, Emanuele; Tocchini, Leonardo; Santoro, Gino

    2016-08-01

    Although many studies highlight how long-term moderate dose of Recombinant Human Erythropoietin (rHuEPO) treatments result in beneficial and antioxidants effects, few studies take into account the effects that short-term high doses of rHuEPO (mimicking abuse conditions) might have on the oxidative stress processes. Thus, the aim of this study was to investigate the in vivo antioxidant activity of rHuEPO, administered for a short time and at high doses to mimic its sports abuse as doping. Male Wistar healthy rats (n=36) were recruited for the study and were treated with three different concentrations of rHuEPO: 7.5, 15, 30μg/kg. Plasma concentrations of erythropoietin, 8-epi Prostaglandin F2α, plasma and urinary concentrations of NOx were evaluated with specific assay kit, while hematocrit levels were analyzed with an automated cell counter. Antioxidant activity of rHuEPO was assessed analyzing the possible variation of the plasma scavenger capacity against hydroxylic and peroxylic radicals by TOSC (Total Oxyradical Scavenging Capacity) assay. Statistical analyses showed higher hematocrit values, confirmed by a statistically significant increase of plasmatic EPO concentration. An increase in plasma scavenging capacity against peroxyl and hydroxyl radicals, in 8-isoprostane plasmatic concentrations and in plasmatic and urinary levels of NOX were also found in all the treated animals, though not always statistically significant. Our results confirm the literature data regarding the antioxidant action of erythropoietin administered at low doses and for short times, whereas they showed an opposite incremental oxidative stress action when erythropoietin is administered at high doses. PMID:27470373

  8. Changes in erythropoietin levels during space flight or space flight simulation

    NASA Technical Reports Server (NTRS)

    Dunn, C. D. R.; Hen, J. P.

    1980-01-01

    Two hundred and seventy samples from 24 subjects involved in 3 bedrest studies and from 3 subjects involved in Spacelab Mission Development Test 3 were assayed for erythropoietin (Ep), in an in vitro fetal mouse liver cell assay, and for ferritin using a commercially available immunoradiometric assay kit. No trends or significant changes in serum Ep were observed. Serum ferritin concentrations tended to increases slightly during the 'missions', reflecting a redirection of iron from the suppressed erythron into iron stores.

  9. Erythropoietin gene delivery using an arginine-grafted bioreducible polymer system.

    PubMed

    Nam, Hye Yeong; Lee, Youngsook; Lee, Minhyung; Shin, Sug Kyun; Kim, Tae-il; Kim, Sung Wan; Bull, David A

    2012-02-10

    Erythropoietin (EPO) plays a key regulatory role in the formation of new red blood cells (RBCs). Erythropoietin may also have a role as a therapeutic agent to counteract ischemic injury in neural, cardiac and endothelial cells. One of the limitations preventing the therapeutic application of EPO is its short half-life. The goal of this study was to develop a gene delivery system for the prolonged and controlled release of EPO. The arginine grafted bioreducible polymer (ABP) and its PEGylated version, ABP-PEG10, were utilized to study the expression efficiency and therapeutic effectiveness of this erythropoietin gene delivery system in vitro. Poly(ethylene glycol) (PEG) modification of the ABP was employed to inhibit the particle aggregation resulting from the interactions between cationic polyplexes and the negatively charged proteins typically present in serum. Both the ABP and the ABP-PEG10 carriers demonstrated efficient transfection and long-term production of EPO in a variety of cell types. The expressed EPO protein stimulated hematopoietic progenitor cells to form significant numbers of cell colonies in vitro. These data confirm that this EPO gene delivery system using a bioreducible polymeric carrier, either ABP or ABP-PEG 10, merits further testing as a potential therapeutic modality for a variety of clinically important disease states. PMID:22062693

  10. Expression of GPI anchored human recombinant erythropoietin in CHO cells is devoid of glycosylation heterogeneity.

    PubMed

    Singh, Pankaj Kumar; Devasahayam, Mercy; Devi, Sobita

    2015-04-01

    Erythropoietin is a glycohormone involved in the regulation of the blood cell levels. It is a 166 amino acid protein having 3 N-glycosylation and one O-linked glycosylation sites, and is used to treat anaemia related illness. Though human recombinant erythropoietin (rEPO) is produced in CHO cells, the loss in quality control is 80% due to incomplete glycosylation of the rEPO with low levels of fully glycosylated active rEPO. Here, we describe the expression from CHO cells of fully glycosylated human rEPO when expressed as a GPI anchored molecule (rEPO-g). The results demonstrated the production of a homogenous completely glycosylated human rEPO-g as a 42 kD band without any low molecular weight glycoform variants as shown by affinity chromatography followed by SDS-PAGE and anti-human EPO specific western blot. The western blot using specific monoclonal antibody is the available biochemical technique to prove the presence of homogeneity in the expressed recombinant protein. The GPI anchor can be removed during the purification process to yield a therapeutically relevant recombinant erythropoietin molecule cells with a higher in vivo biological activity due to its high molecular weight of 40 kD. This is possibly the first report on the production of a homogenous and completely glycosylated human rEPO from CHO cells for efficient therapy. PMID:26011979

  11. The influence of the pleiotropic action of erythropoietin and its derivatives on nephroprotection

    PubMed Central

    Bartnicki, Piotr; Kowalczyk, Mariusz; Rysz, Jacek

    2013-01-01

    Erythropoietin (EPO) is traditionally described as a hematopoietic cytokine or growth hormone regulating proliferation, differentiation, and survival of erythroid progenitors. The use of EPO in patients with chronic kidney disease (CKD) was a milestone achievement in the treatment of anemia. However, EPO involves some degree of risk, which increases with increasing hemoglobin levels. A growing number of studies have assessed the renoprotective effects of EPO in acute kidney injury (AKI) or CKD. Analysis of the biological effects of erythropoietin and pathophysiology of CKD in these studies suggests that treatment with erythropoiesis-stimulating agents (ESAs) may exert renoprotection by pleiotropic actions on several targets and directly or indirectly slow the progression of CKD. By reducing ischemia and oxidative stress or strengthening anti-apoptotic processes, EPO may prevent the development of interstitial fibrosis and the destruction of tubular cells. Furthermore, it could have a direct protective impact on the integrity of the interstitial capillary network through its effects on endothelial cells and promotion of vascular repair, or modulate inflammation response. Thus, it is biologically plausible to suggest that correcting anemia with ESAs could slow the progression of CKD. The aim of this article is to discuss these possible renoprotection mechanisms and provide a comprehensive overview of erythropoietin and its derivatives. PMID:23872600

  12. Reactivity of patients with maintenance hemodialysis to erythropoietin in the treatment of renal anemia.

    PubMed

    Hu, J P; Cheng, X; Xu, X F; Yu, G J; Luo, F; Zhang, G S; Yang, N; Shen, P; Yan, X Y

    2016-01-01

    To explore the reactivity of patients with renal anemia (MHD) to erythropoietin (EPO) in maintenance hemodialysis (HD), 31 patients were enrolled in this study. According to the level of serum ferritin (SF), they were divided into two groups; one group received treatment using recombinant human erythropoietin (rHuEPO) and the other group was given iron sucrose. Taking terminal EPO dosage, terminal erythropoietin resistance index (ERI) and rate of change of ERI (ΔERII) as target indexes, the influence of SF level on dosage of EPO was evaluated after usage conditions of relevant substances in a 3-month period. The results revealed that differences of dialysis age, albumin (ALB), blood calcium, initial and terminal SF, variable quantity of hemoglobin (Hb), terminal EPO and ERI between two groups had statistical significance. Furthermore, SF level and terminal EPO (r = -0.37, P < 0. 05) as well as SF level and terminal ERI (r = - 0.39, P <0.05) were negatively correlated. Difference of terminal ERI between the two groups had statistical significance. It can therefore be summarized that supplementing an iron agent intravenously to maintain SF level between 500 ng/ml and 1200 ng/ml may improve reactivity of patients with MHD to EPO. In addition, rHuEPO therapy in treating anemia of patients with MHD has the same effect with intravenous drug delivery, less side effects and is easy to administer. PMID:27358145

  13. Physician Education: The Erythropoietin Receptor and Signal Transduction.

    PubMed

    Yoshimura; Arai

    1996-01-01

    ERYTHROPOIETIN (EPO): Erythropoietin (EPO) is a hormone that promotes the proliferation and differentiation of erythroid progenitor cells and regulates the number of erythrocytes in peripheral blood. EPO is produced mainly by the kidneys, and transcription of the EPO gene is promoted by a reduction in the oxygen concentration in the blood. The existence of EPO was suggested near the end of the 19th century by the discovery that hypoxia increases the production of red blood cells. EPO was identified as a serum factor in the 1950s, and in 1970 Miyake and coworkers succeeded in purifying it by using the urine of patients with aplastic anemia as a starting material. The human EPO gene was cloned in 1985 using a partial amino acid sequence from this purified EPO, and it is well known that recombinant EPO is currently used as a drug to treat anemia associated with chronic renal failure and other illnesses. ACTION OF EPO: When human bone marrow cells are cultured in a semisolid medium containing EPO, they form small erythroblast colonies in five to seven days, and by day 10 large erythroblast colonies appear that resemble fireworks ("burst" colonies). The original cells in the former colonies are called colony forming units-erythroid (CFU-E) or late-stage erythroblast progenitor cells and in the latter colonies they are called burst forming units-erythroid (BFU-E) or early-stage erythroblast progenitor cells. As shown in Figure 1, red blood cells are produced through differentiation from stem cells to BFU-E, CFU-E, and erythroblasts. Although EPO acts on both BFU-E and CFU-E cells, CFU-E cells show greater sensitivity to EPO, and other factors such as stem cell factor (SCF), interleukin (IL)-3, IL-4, and granulocyte macrophage colony-stimulating factor (GM-CSF) must be present together with EPO for BFU-E cell proliferation. In erythroblasts beyond the CFU-E stage, sensitivity to EPO decreases as the cells mature. THE EPO RECEPTOR AND THE CYTOKINE RECEPTOR FAMILY: The EPO

  14. Chronic Treatment With an Erythropoietin Receptor Ligand Prevents Chronic Kidney Disease-Induced Enlargement of Myocardial Infarct Size.

    PubMed

    Nishizawa, Keitaro; Yano, Toshiyuki; Tanno, Masaya; Miki, Takayuki; Kuno, Atsushi; Tobisawa, Toshiyuki; Ogasawara, Makoto; Muratsubaki, Shingo; Ohno, Kouhei; Ishikawa, Satoko; Miura, Tetsuji

    2016-09-01

    Chronic kidney disease (CKD) is known to increase myocardial infarct size after ischemia/reperfusion. However, a strategy to prevent the CKD-induced myocardial susceptibility to ischemia/reperfusion injury has not been developed. Here, we examined whether epoetin β pegol, a continuous erythropoietin receptor activator (CERA), normalizes myocardial susceptibility to ischemia/reperfusion injury by its effects on protective signaling and metabolomes in CKD. CKD was induced by 5/6 nephrectomy in rats (subtotal nephrectomy, SNx), whereas sham-operated rats served controls (Sham). Infarct size as percentage of area at risk after 20-minutes coronary occlusion/2-hour reperfusion was larger in SNx than in Sham: 60.0±4.0% versus 43.9±2.2%. Administration of CERA (0.6 μg/kg SC every 7 days) for 4 weeks reduced infarct size in SNx (infarct size as percentage of area at risk=36.9±3.9%), although a protective effect was not detected for the acute injection of CERA. Immunoblot analyses revealed that myocardial phospho-Akt-Ser473 levels under baseline conditions and on reperfusion were lower in SNx than in Sham, and CERA restored the Akt phosphorylation on reperfusion. Metabolomic analyses showed that glucose 6-phosphate and glucose 1-phosphate were reduced and malate:aspartate ratio was 1.6-fold higher in SNx than in Sham, suggesting disturbed flux of malate-aspartate shuttle by CKD. The CERA improved the malate:aspartate ratio in SNx to the control level. In H9c2 cells, mitochondrial Akt phosphorylation by insulin-like growth factor-1 was attenuated by malate-aspartate shuttle inhibition. In conclusion, the results suggest that a CERA prevents CKD-induced susceptibility of the myocardium to ischemia/reperfusion injury by restoration of Akt-mediated signaling possibly via normalized malate-aspartate shuttle flux. PMID:27456523

  15. Early adoption of cyclosporine and recombinant human erythropoietin: clinical, economic, and policy issues with emergence of high-cost drugs.

    PubMed

    Powe, N R; Eggers, P W; Johnson, C B

    1994-07-01

    The discovery of new drugs and their introduction into US markets will become an intense area of focus should health care reform result in Medicare insurance coverage for prescription drugs. Particular attention will be focused on high-cost drugs. Two high-cost drugs, cyclosporine and recombinant human erythropoietin (rHuEPO), introduced into the clinical management of patients with kidney disease during the past decade, provide some experience concerning the forces affecting the use of expensive drugs in a cost-conscious health care system. The decision to prescribe a drug will depend on provider's judgements of the drug's clinical benefits and costs compared with those of other possible therapies. It may also depend on payment policy. Both cyclosporine and rHuEPO were adopted rapidly and extensively by providers of end-stage renal disease care following US Food and Drug Administration approval, despite their high costs. Both drugs were remarkably effective, relatively safe, and able to be administered without great difficulty compared with the therapies they have replaced. There was no additional payment to hospitals for the initial use of cyclosporine, which was introduced in 1983 at the time when Medicare's prospective payment was established, since choice of immunosuppressive agent did not affect the fixed, per-admission payment determined by the diagnosis-related group for kidney transplantation. Medicare coverage for continuing outpatient use of cyclosporine was not initially provided, in contrast to rHuEPO, which was introduced in 1989 with Medicare outpatient coverage and payment of 80% of the allowed charge. Despite their high costs and different methods of insurance payment both drugs achieved a rather quick and high penetration rate into their respective populations.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8023822

  16. High-dose recombinant human erythropoietin for treatment of anemia in myelodysplastic syndromes and paroxysmal nocturnal hemoglobinuria: a pilot study.

    PubMed

    Stebler, C; Tichelli, A; Dazzi, H; Gratwohl, A; Nissen, C; Speck, B

    1990-12-01

    In a dose escalation study we tested the feasibility and tolerance of high-dose recombinant human erythropoietin (r-HuEPO) therapy in four patients with ineffective erythropoiesis due to myelodysplastic syndromes (MDS) or paroxysmal nocturnal hemoglobinuria (PNH). Recombinant human EPO was administered i.v. with an initial dose of 50 U/kg body weight (BW) three times per week. The dose was increased by steps of 25 or 50 U/kg bW with intervals of 1-4 weeks up to a maximum dose of 500 U/kg BW three times per week. All patients were treated as outpatients. Pre-study treatment with cyclosporin A and/or Danazol was continued in three patients. In one patient r-HuEPO was discontinued after 20 weeks because of relapse of severe aplastic anemia. No major side effects were observed even at the maximum dose. One patient with PNH showed an increase of hemoglobin from 89 to 139 g/liter that permitted monthly phlebotomies to reduce his iron overload. In one patient with MDS the reticulocyte count increased from 2.5 to 50 x 10(9)/liter, and the transfusion requirement decreased to 2 U every 3-4 weeks instead of every 2 weeks. Two patients did not complete the whole treatment period and showed no rise in reticulocyte count. We conclude that high dose r-HuEPO therapy is feasible in patients with anemia due to MDS or PNH. High-dose r-HuEPO appears to have some effect on anemia due to ineffective erythropoiesis in a subgroup of patients. Further studies are needed to identify potential responders and to define the optimal administration of r-HuEPO. PMID:2226680

  17. Short-Term Erythropoietin Treatment Does Not Substantially Modulate Monocyte Transcriptomes of Patients with Combined Heart and Renal Failure

    PubMed Central

    Wesseling, Sebastiaan; Joles, Jaap A.; Bergevoet, Marloes W.; Pepers-de Kort, Floor; Doevendans, Pieter A.; Yasui, Yutaka; Liu, Qi; Verhaar, Marianne C.; Gaillard, Carlo A.; Braam, Branko

    2012-01-01

    Background Combined heart and renal failure is associated with high cardiovascular morbidity and mortality. Anti-oxidant and anti-inflammatory, non-hematopoietic effects of erythropoietin (EPO) treatment have been proposed. Monocytes may act as biosensors of the systemic environment. We hypothesized that monocyte transcriptomes of patients with cardiorenal syndrome (CRS) reflect the pathophysiology of the CRS and respond to short-term EPO treatment at a recommended dose for treatment of renal anemia. Methods Patients with CRS and anemia (n = 18) included in the EPOCARES trial were matched to healthy controls (n = 12). Patients were randomized to receive 50 IU/kg/week EPO or not. RNA from CD14+-monocytes was subjected to genome wide expression analysis (Illumina) at baseline and 18 days (3 EPO injections) after enrolment. Transcriptomes from patients were compared to healthy controls and effect of EPO treatment was evaluated within patients. Results In CRS patients, expression of 471 genes, including inflammation and oxidative stress related genes was different from healthy controls. Cluster analysis did not separate patients from healthy controls. The 6 patients with the highest hsCRP levels had more differentially expressed genes than the 6 patients with the lowest hsCRP levels. Analysis of the variation in log2 ratios of all individual 18 patients indicated that 4 of the 18 patients were different from the controls, whereas the other 14 were quite similar. After short-term EPO treatment, every patient clustered to his or her own baseline transcriptome. Two week EPO administration only marginally affected expression profiles on average, however, individual gene responses were variable. Conclusions In stable, treated CRS patients with mild anemia, monocyte transcriptomes were modestly altered, and indicated imprints of inflammation and oxidative stress. EPO treatment with a fixed dose has hematopoietic effects, had no appreciable beneficial actions on

  18. Remote conditioning or erythropoietin before surgery primes kidneys to clear ischemia-reperfusion-damaged cells: a renoprotective mechanism?

    PubMed

    Gardner, David S; Welham, Simon J M; Dunford, Louise J; McCulloch, Thomas A; Hodi, Zsolt; Sleeman, Philippa; O'Sullivan, Saoirse; Devonald, Mark A J

    2014-04-15

    Acute kidney injury is common, serious with no specific treatment. Ischemia-reperfusion is a common cause of acute kidney injury (AKI). Clinical trials suggest that preoperative erythropoietin (EPO) or remote ischemic preconditioning may have a renoprotective effect. Using a porcine model of warm ischemia-reperfusion-induced AKI (40-min bilateral cross-clamping of renal arteries, 48-h reperfusion), we examined the renoprotective efficacy of EPO (1,000 iu/kg iv.) or remote ischemic preconditioning (3 cycles, 5-min inflation/deflation to 200 mmHg of a hindlimb sphygmomanometer cuff). Ischemia-reperfusion induced significant kidney injury at 24 and 48 h (χ(2), 1 degree of freedom, >10 for 6/7 histopathological features). At 2 h, a panel of biomarkers including plasma creatinine, neutrophil gelatinase-associated lipocalin, and IL-1β, and urinary albumin:creatinine could be used to predict histopathological injury. Ischemia-reperfusion increased cell proliferation and apoptosis in the renal cortex but, for pretreated groups, the apoptotic cells were predominantly intratubular rather than interstitial. At 48-h reperfusion, plasma IL-1β and the number of subcapsular cells in G2-M arrest were reduced after preoperative EPO, but not after remote ischemic preconditioning. These data suggest an intrarenal mechanism acting within cortical cells that may underpin a renoprotective function for preoperative EPO and, to a limited extent, remote ischemic preconditioning. Despite equivocal longer-term outcomes in clinical studies investigating EPO as a renoprotective agent in AKI, optimal clinical dosing and administration have not been established. Our data suggest further clinical studies on the potential renoprotective effect of EPO and remote ischemic preconditioning are justified. PMID:24523383

  19. Protection against ischemia/reperfusion–induced renal injury by co–treatment with erythropoietin and sodium selenite

    PubMed Central

    LIU, LU; LIU, CHAO; HOU, LAN; LV, JUAN; WU, FANG; YANG, XUEFEI; REN, SHUTING; JI, WENJUN; WANG, MENG; CHEN, LINA

    2015-01-01

    Ischemia/reperfusion injury (IRI) has lzong been an area of concern and focus of investigations. Erythropoietin (EPO) exhibits multiple protective effects, and selenium is an antioxidant trace element in the body, however, there have been no reports concerning the effects of EPO combined with sodium selenite on IRI. In the present study, a mouse model of renal IRI (RIRI) was pre–treated with EPO and sodium selenite to determine the most appropriate combination ratio of the two for further investigation. The results revealed that EPO and sodium selenite had synergistic protective effects in RIRI. EPO was identified as the predominant treatment component, with sodium selenite serving as an adjuvant, and combination treatment was markedly more effective, compared with treatment with either drug alone. The optimal ratio of treatment was 10:1 (10 IU EPO: 1 µg sodium selenite). The results indicated that RIRI markedly induced renal injury, as evidenced by elevated levels of blood urea nitrogen (BUN), as well as higher pathological scores, based on hematoxylin and eosin staining. Pre–treatment with EPO and sodium selenite significantly decreased serum expression levels of BUN and malonaldehyde, and increased the expression levels of superoxide dismutase, glutathione peroxidase and nitric oxide (NO), compared with the model group. Furthermore, co treatment with EPO and sodium selenite upregulated the protein expression levels of phosphatidylinositol 3 kinase (PI3K) in renal tissue samples. Together, the results suggested that co administration of EPO and sodium selenite effectively ameliorates IRI induced renal injury by reducing oxidative stress and activating the PI3K/NO signaling pathway. PMID:26647839

  20. Effects of erythropoietin on posttraumatic place learning in fimbria-fornix transected rats after a 30-day postoperative pause.

    PubMed

    Malá, Hana; Rodriguez Castro, Maria; Dall Jørgensen, Katrine; Mogensen, Jesper

    2007-10-01

    Human recombinant erythropoietin (EPO) has been shown to exert neuroprotective effects following both vascular and mechanical brain injury. Previously, we showed that behavioral symptoms associated with mechanical lesions of the hippocampus are nearly abolished due to EPO treatment. In these studies, the EPO administration took place simultaneously with the infliction of brain injury and the rehabilitation training started 6-7 days postoperatively. In the present study, we tested whether the therapeutic effect of EPO on the acquisition of an allocentric eight-arm radial maze spatial task also manifests itself if the rehabilitative training is postponed. Postoperatively, the animals were left without any specific stimulation for 30 days. The current results show an improved behavioral performance of the EPO-treated lesioned group relative to the saline-treated lesioned group, and confirm EPO's therapeutic effect even in case of postponed rehabilitation. However, compared to the control group, the EPO-treated lesioned group demonstrated an impaired task acquisition. All subjects eventually recovered functionally. Subsequently, the animals were given behavioral challenges during which the cue constellation in the room was changed. The challenges revealed that, although the EPO-treated lesion group had achieved the same level of task proficiency as the control group, the cognitive mechanisms mediating the task performance in the EPO-treated lesion group (as well as in the saline-treated lesion group) were dissimilar from those mediating the task in the control group. Both the EPO-treated and the saline-treated lesion group demonstrated an increased dependency on the original cue configuration. PMID:17970627

  1. Mimicking hypoxia to treat anemia: HIF-stabilizer BAY 85-3934 (Molidustat) stimulates erythropoietin production without hypertensive effects.

    PubMed

    Flamme, Ingo; Oehme, Felix; Ellinghaus, Peter; Jeske, Mario; Keldenich, Jörg; Thuss, Uwe

    2014-01-01

    Oxygen sensing by hypoxia-inducible factor prolyl hydroxylases (HIF-PHs) is the dominant regulatory mechanism of erythropoietin (EPO) expression. In chronic kidney disease (CKD), impaired EPO expression causes anemia, which can be treated by supplementation with recombinant human EPO (rhEPO). However, treatment can result in rhEPO levels greatly exceeding the normal physiological range for endogenous EPO, and there is evidence that this contributes to hypertension in patients with CKD. Mimicking hypoxia by inhibiting HIF-PHs, thereby stabilizing HIF, is a novel treatment concept for restoring endogenous EPO production. HIF stabilization by oral administration of the HIF-PH inhibitor BAY 85-3934 (molidustat) resulted in dose-dependent production of EPO in healthy Wistar rats and cynomolgus monkeys. In repeat oral dosing of BAY 85-3934, hemoglobin levels were increased compared with animals that received vehicle, while endogenous EPO remained within the normal physiological range. BAY 85-3934 therapy was also effective in the treatment of renal anemia in rats with impaired kidney function and, unlike treatment with rhEPO, resulted in normalization of hypertensive blood pressure in a rat model of CKD. Notably, unlike treatment with the antihypertensive enalapril, the blood pressure normalization was achieved without a compensatory activation of the renin-angiotensin system. Thus, BAY 85-3934 may provide an approach to the treatment of anemia in patients with CKD, without the increased risk of adverse cardiovascular effects seen for patients treated with rhEPO. Clinical studies are ongoing to investigate the effects of BAY 85-3934 therapy in patients with renal anemia. PMID:25392999

  2. Activation of aryl hydrocarbon receptor mediates suppression of hypoxia-inducible factor-dependent erythropoietin expression by indoxyl sulfate.

    PubMed

    Asai, Hirobumi; Hirata, Junya; Hirano, Ayumi; Hirai, Kazuya; Seki, Sayaka; Watanabe-Akanuma, Mie

    2016-01-15

    Indoxyl sulfate (IS) is a representative uremic toxin that accumulates in the blood of patients with chronic kidney disease (CKD). In addition to the involvement in the progression of CKD, a recent report indicates that IS suppresses hypoxia-inducible factor (HIF)-dependent erythropoietin (EPO) production, suggesting that IS may also contribute to the progression of renal anemia. In this report, we provide evidence that aryl hydrocarbon receptor (AhR) mediates IS-induced suppression of HIF activation and subsequent EPO production. In HepG2 cells, IS at concentrations similar to the blood levels in CKD patients suppressed hypoxia- or cobalt chloride-induced EPO mRNA expression and transcriptional activation of HIF. IS also induced AhR activation, and AhR blockade resulted in abolishment of IS-induced suppression of HIF activation. The HIF transcription factor is a heterodimeric complex composed of HIF-α subunits (HIF-1α and HIF-2α) and AhR nuclear translocator (ARNT). IS suppressed nuclear accumulation of the HIF-α-ARNT complex accompanied by an increase of the AhR-ARNT complex in the nucleus, implying the involvement of interactions among AhR, HIF-α, and ARNT in the suppression mechanism. In rats, oral administration of indole, a metabolic precursor of IS, inhibited bleeding-induced elevation of renal EPO mRNA expression and plasma EPO concentration and strongly induced AhR activation in the liver and renal cortex tissues. Collectively, this study is the first to elucidate the detailed mechanism by which AhR plays an indispensable role in the suppression of HIF activation by IS. Hence, IS-induced activation of AhR may be a potential therapeutic target for treating renal anemia. PMID:26561638

  3. Erythropoietin-induced changes in brain gene expression reveal induction of synaptic plasticity genes in experimental stroke

    PubMed Central

    Mengozzi, Manuela; Cervellini, Ilaria; Villa, Pia; Erbayraktar, Zübeyde; Gökmen, Necati; Yilmaz, Osman; Erbayraktar, Serhat; Manohasandra, Mathini; Van Hummelen, Paul; Vandenabeele, Peter; Chernajovsky, Yuti; Annenkov, Alexander; Ghezzi, Pietro

    2012-01-01

    Erythropoietin (EPO) is a neuroprotective cytokine in models of ischemic and nervous system injury, where it reduces neuronal apoptosis and inflammatory cytokines and increases neurogenesis and angiogenesis. EPO also improves cognition in healthy volunteers and schizophrenic patients. We studied the effect of EPO administration on the gene-expression profile in the ischemic cortex of rats after cerebral ischemia at early time points (2 and 6 h). EPO treatment up-regulated genes already increased by ischemia. Hierarchical clustering and analysis of overrepresented functional categories identified genes implicated in synaptic plasticity—Arc, BDNF, Egr1, and Egr2, of which Egr2 was the most significantly regulated. Up-regulation of Arc, BDNF, Dusp5, Egr1, Egr2, Egr4, and Nr4a3 was confirmed by quantitative PCR. We investigated the up-regulation of Egr2/Krox20 further because of its role in neuronal plasticity. Its elevation by EPO was confirmed in an independent in vivo experiment of cerebral ischemia in rats. Using the rat neuroblastoma B104, we found that wild-type cells that do not express EPO receptor (EPOR) do not respond to EPO by inducing Egr2. However, EPOR-expressing B104 cells induce Egr2 early upon incubation with EPO, indicating that Egr2 induction is a direct effect of EPO and that EPOR mediates this effect. Because these changes occur in vivo before decreased inflammatory cytokines or neuronal apoptosis is evident, these findings provide a molecular mechanism for the neuroreparative effects of cytokines and suggest a mechanism of neuroprotection by which promotion of a plastic phenotype results in decreased inflammation and neuronal death. PMID:22645329

  4. Mimicking Hypoxia to Treat Anemia: HIF-Stabilizer BAY 85-3934 (Molidustat) Stimulates Erythropoietin Production without Hypertensive Effects

    PubMed Central

    Flamme, Ingo; Oehme, Felix; Ellinghaus, Peter; Jeske, Mario; Keldenich, Jörg; Thuss, Uwe

    2014-01-01

    Oxygen sensing by hypoxia-inducible factor prolyl hydroxylases (HIF-PHs) is the dominant regulatory mechanism of erythropoietin (EPO) expression. In chronic kidney disease (CKD), impaired EPO expression causes anemia, which can be treated by supplementation with recombinant human EPO (rhEPO). However, treatment can result in rhEPO levels greatly exceeding the normal physiological range for endogenous EPO, and there is evidence that this contributes to hypertension in patients with CKD. Mimicking hypoxia by inhibiting HIF-PHs, thereby stabilizing HIF, is a novel treatment concept for restoring endogenous EPO production. HIF stabilization by oral administration of the HIF-PH inhibitor BAY 85-3934 (molidustat) resulted in dose-dependent production of EPO in healthy Wistar rats and cynomolgus monkeys. In repeat oral dosing of BAY 85-3934, hemoglobin levels were increased compared with animals that received vehicle, while endogenous EPO remained within the normal physiological range. BAY 85-3934 therapy was also effective in the treatment of renal anemia in rats with impaired kidney function and, unlike treatment with rhEPO, resulted in normalization of hypertensive blood pressure in a rat model of CKD. Notably, unlike treatment with the antihypertensive enalapril, the blood pressure normalization was achieved without a compensatory activation of the renin–angiotensin system. Thus, BAY 85-3934 may provide an approach to the treatment of anemia in patients with CKD, without the increased risk of adverse cardiovascular effects seen for patients treated with rhEPO. Clinical studies are ongoing to investigate the effects of BAY 85-3934 therapy in patients with renal anemia. PMID:25392999

  5. Differential short-term regional effects of early high dose erythropoietin on white matter in preterm lambs after mechanical ventilation.

    PubMed

    Barton, Samantha K; McDougall, Annie R A; Melville, Jacqueline M; Moss, Timothy J M; Zahra, Valerie A; Lim, Tammy; Crossley, Kelly J; Polglase, Graeme R; Tolcos, Mary

    2016-03-01

    Inadvertently injurious ventilation of preterm neonates in the delivery room can cause cerebral white matter (WM) inflammation and injury. We investigated the impact of an early high dose of recombinant human erythropoietin (EPO) on ventilation-induced WM changes in preterm lambs. Injurious ventilation, targeting a V(T) of 15 ml kg(-1) with no positive end-expiratory pressure, was initiated for 15 min in preterm lambs (0.85 gestation). Conventional ventilation was continued for a further 105 min. Lambs received either 5000 IU kg(-1) of EPO (EPREX®; Vent+EPO; n = 6) or vehicle (Vent; n = 8) via an umbilical vein at 4 ± 2 min. Markers of WM injury and inflammation were assessed using quantitative real-time PCR (qPCR) and immunohistochemistry and compared to a group of unventilated controls (UVC; n = 4). In Vent+EPO lambs compared to Vent lambs: (i) interleukin (IL)-1β and IL-6 mRNA levels in the periventricular WM and IL-8 mRNA levels in the subcortical WM were higher (P < 0.05 for all); (ii) the density of microglia within the aggregations was not different in the periventricular WM and was lower in the subcortical WM (P = 0.001); (iii) the density of astrocytes was lower in the subcortical WM (P = 0.002); (iv) occludin and claudin-1 mRNA levels were higher in the periventricular WM (P < 0.02 for all) and (vi) the number of blood vessels with protein extravasation was lower (P < 0.05). Recombinant human EPO had variable regional effects within the WM when administered during injurious ventilation. The adverse short-term outcomes discourage the use of early high dose EPO administration in preterm ventilated babies. PMID:26332509

  6. A Review of Safety, Efficacy, and Utilization of Erythropoietin, Darbepoetin, and Peginesatide for Patients with Cancer or Chronic Kidney Disease: A Report from the Southern Network on Adverse Reactions (SONAR)

    PubMed Central

    Bennett, Charles L.; Spiegel, David M.; Macdougall, Iain C.; Norris, LeAnn; Qureshi, Zaina P.; Sartor, Oliver; Lai, Stephen Y.; Tallman, Martin S.; Raisch, Dennis W.; Smith, Sheila Weiss; Silver, Samuel; Murday, Alanna S.; Armitage, James O.; Goldsmith, David

    2014-01-01

    The erythropoiesis-stimulating agents (ESAs) erythropoietin and darbepoetin prevent transfusions among chemotherapy-associated anemia patients. Clinical trials, meta-analyses, and guidelines identify mortality, tumor progression, and venous thromboembolism (VTE) risks with ESA administration in this setting. Product labels advise against administering ESAs with potentially curative chemotherapy (United States) or to conduct risk–benefit assessments (Europe/Canada). Since 2007, fewer chemotherapy-associated anemia patients in the United States and Europe receive ESAs. ESAs and the erythropoietin receptor agonist peginesatide prevent transfusions among chronic kidney disease (CKD) patients; clinical trials, guidelines, and meta-analyses demonstrate myocardial infarction, stroke, VTE, or mortality risks with ESAs targeting high hemoglobin levels. U.S. labels recommend administering ESAs or peginesatide at doses sufficient to prevent transfusions among dialysis CKD patients. For dialysis CKD patients, Canadian and European labels recommend targeting hemoglobin levels of 10 to 12 g/dL and 11 to 12 g/dL, respectively, with ESAs. ESA utilization for dialysis CKD patients has decreased in the United States. PMID:23111861

  7. Hypoxia-inducible nuclear factors bind to an enhancer element located 3' to the human erythropoietin gene.

    PubMed Central

    Semenza, G L; Nejfelt, M K; Chi, S M; Antonarakis, S E

    1991-01-01

    Human erythropoietin gene expression in liver and kidney is inducible by anemia or hypoxia. DNase I-hypersensitive sites were identified 3' to the human erythropoietin gene in liver nuclei. A 256-base-pair region of 3' flanking sequence was shown by DNase I protection and electrophoretic mobility-shift assays to bind four or more different nuclear factors, at least two of which are induced by anemia in both liver and kidney, and the region functioned as a hypoxia-inducible enhancer in transient expression assays. These results provide insight into the molecular basis for the regulation of gene expression by a fundamental physiologic stimulus, hypoxia. Images PMID:2062846

  8. Is the haematopoietic effect of testosterone mediated by erythropoietin? The results of a clinical trial in older men.

    PubMed

    Maggio, M; Snyder, P J; Ceda, G P; Milaneschi, Y; Luci, M; Cattabiani, C; Masoni, S; Vignali, A; Volpi, R; Lauretani, F; Peachey, H; Valenti, G; Cappola, A R; Longo, D; Ferrucci, L

    2013-01-01

    The stimulatory effects of testosterone on erythropoiesis are very well known, but the mechanisms underlying the erythropoietic action of testosterone are still poorly understood, although erythropoietin has long been considered a potential mediator. A total of 108 healthy men >65 years old with serum testosterone concentration <475 ng/dL were recruited by direct mailings to alumni of the University of Pennsylvania and Temple University, and randomized to receive a 60-cm(2) testosterone or placebo patch for 36 months. Ninety-six subjects completed the trial. We used information and stored serum specimens from this trial to test the hypothesis that increasing testosterone increases haemoglobin by stimulating erythropoietin production. We used information of 67 men, 43 in the testosterone group and 24 in the placebo group who had banked specimens available for assays of testosterone, haemoglobin and erythropoietin at baseline and after 36 months. The original randomized clinical study was primarily designed to verify the effects of testosterone on bone mineral density. The primary outcome of this report was to investigate whether or not transdermal testosterone increases haemoglobin by increasing erythropoietin levels. The mean age ± SD of the 67 subjects at baseline was 71.8 ± 4.9 years. Testosterone replacement therapy for 36 months, as compared with placebo, induced a significant increase in haemoglobin (0.86 ± 0.31 g/dL, p = 0.01), but no change in erythropoietin levels (-0.24 ± 2.16 mIU/mL, p = 0.91). Included time-varying measure of erythropoietin did not significantly account for the effect of testosterone on haemoglobin (Treatment-by-time: β = 0.93, SE = 0.33, p = 0.01). No serious adverse effect was observed. Transdermal testosterone treatment of older men for 36 months significantly increased haemoglobin, but not erythropoietin levels. The haematopoietic effect of testosterone does not appear to be mediated by stimulation of

  9. Effect of Tumor Necrosis Factor-Alpha on Erythropoietin- and Erythropoietin Receptor-Induced Erythroid Progenitor Cell Proliferation in β-Thalassemia/Hemoglobin E Patients

    PubMed Central

    Tanyong, Dalina I; Panichob, Prapaporn; Kheansaard, Wasinee; Fucharoen, Suthat

    2015-01-01

    Objective: Thalassemia is one of the genetic diseases that cause anemia and ineffective erythropoiesis. Increased levels of several inflammatory cytokines have been reported in β-thalassemia and might contribute to ineffective erythropoiesis. However, the mechanism by which tumor necrosis factor-alpha (TNF-α) is involved in ineffective erythropoiesis in thalassemic patients remains unclear. The objective of this study is to investigate the effect of TNF-α on the erythropoietin (EPO) and erythropoietin receptor (EPOR) expression involved in proliferation of β-thalassemia/hemoglobin (Hb) E erythroid progenitor cells compared with cells from healthy subjects. Materials and Methods: CD34-positive cells were isolated from heparinized blood by using the EasySep® CD34 selection kit. Cells were then cultured with suitable culture medium in various concentrations of EPO for 14 days. The effect of TNF-α on percent cell viability was analyzed by trypan blue staining. In addition, the percentage of apoptosis and levels of EPOR protein were measured by flow cytometry. Results: Upon EPO treatment, a higher cell number was observed for erythroid progenitor cells from both healthy participants and β-thalassemia/Hb E patients. However, a reduction of apoptosis was found in EPO-treated cells especially for β-thalassemia/Hb E patients. Interestingly, TNF-α caused higher levels of cell apoptosis and lower levels of EPOR protein in thalassemic erythroid progenitor cells. Conclusion: TNF-α caused a reduction in the level of EPOR protein and EPO-induced erythroid progenitor cell proliferation. It is possible that TNF-α could be involved in the mechanism of ineffective erythropoiesis in β-thalassemia/Hb E patients. PMID:26376749

  10. Long-term reversal of chronic anemia using a hypoxia-regulated erythropoietin gene therapy.

    PubMed

    Binley, Katie; Askham, Zoe; Iqball, Sharifah; Spearman, Hayley; Martin, Leigh; de Alwis, Mahesh; Thrasher, Adrian J; Ali, Robin R; Maxwell, Patrick H; Kingsman, Susan; Naylor, Stuart

    2002-10-01

    Anemia is a common clinical problem, and there is much interest in its role in promoting left ventricular hypertrophy through increasing cardiac workload. Normally, red blood cell production is adjusted through the regulation of erythropoietin (Epo) production by the kidney. One important cause of anemia is relative deficiency of Epo, which occurs in most types of renal disease. Clinically, this can be corrected by supplementation with recombinant Epo. Here we describe an oxygen-regulated gene therapy approach to treating homozygous erythropoietin-SV40 T antigen (Epo-TAg(h)) mice with relative erythropoietin deficiency. We used vectors in which murine Epo expression was directed by an Oxford Biomedica hypoxia response element (OBHRE) or a constitutive cytomegalovirus (CMV) promoter. Both corrected anemia, but CMV-Epo-treated mice acquired fatal polycythemia. In contrast, OBHRE-Epo corrected the hematocrit level in anemic mice to a normal physiologic level that stabilized without resulting in polycythemia. Importantly, the OBHRE-Epo vector had no significant effect on the hematocrit of control mice. Homozygous Epo-TAg(h) mice display cardiac hypertrophy, a common adaptive response in patients with chronic anemia. In the OBHRE-Epo-treated Epo-TAg(h) mice, we observed a significant reversal of cardiac hypertrophy. We conclude that the OBHRE promoter gives rise to physiologically regulated Epo secretion such that the hematocrit level is corrected to healthy in anemic Epo-TAg(h) mice. This establishes that a hypoxia regulatory mechanism similar to the natural mechanism can be achieved, and it makes EPO gene therapy more attractive and safer in clinical settings. We envisage that this control system will allow regulated delivery of therapeutic gene products in other ischemic settings. PMID:12239150

  11. Release of erythropoietin and neuron-specific enolase after breath holding in competing free divers.

    PubMed

    Kjeld, T; Jattu, T; Nielsen, H B; Goetze, J P; Secher, N H; Olsen, N V

    2015-06-01

    Free diving is associated with extreme hypoxia. This study evaluated the combined effect of maximal static breath holding and underwater swimming on plasma biomarkers of tissue hypoxemia: erythropoietin, neuron-specific enolase and S100B, C-reactive protein, pro-atrial natriuretic peptide, and troponin T. Venous blood samples were obtained from 17 competing free divers before and 3 h after sessions of static apnea and underwater swimming. The heart was evaluated by echocardiography. Static apnea for 293 ± 78 s (mean ± SD) and subsequent 88 ± 21 m underwater swimming increased plasma erythropoietin from 10.6 ± 3.4 to 12.4 ± 4.1 mIU/L (P = 0.013) and neuron-specific enolase from 14.5 ± 5.3 to 24.6 ± 6.4 ng/mL (P = 0.017); C-reactive protein decreased from 0.84 ± 1.0 to 0.71 ± 0.67 mmol/L (P = 0.013). In contrast, plasma concentrations of S100B (P = 0.394), pro-atrial natriuretic peptide (P = 0.549), and troponin T (P = 0.125) remained unchanged and, as assessed by echocardiography, the heart was not affected. In competitive free divers, bouts of static and dynamic apnea increase plasma erythropoietin and neuron-specific enolase, suggesting that renal and neural tissue, rather than the heart, is affected by the hypoxia developed during apnea and underwater swimming. PMID:25142912

  12. Oxidative stress during erythropoietin hyporesponsiveness anemia at end stage renal disease: Molecular and biochemical studies.

    PubMed

    Khalil, Samar K M; Amer, H A; El Behairy, Adel M; Warda, Mohamad

    2016-05-01

    Inflammation and oxidative stress are two faces of one coin in end stage renal disease patients (ESRD) on maintenance hemodialysis. Their interconnection induces anemia complicated with erythropoietin hyporesponsiveness. The biochemical bases behind the resistance to erythropoietin therapy with frequent hemoglobinemia, oxidative stress and iron status have not been fully understood. Here two equal groups (40 patients each) of responders and non-responders to recombinant human erythropoietin therapy (higher than 300 IU/kg/wk of epoetin) were investigated. Hematological and biochemical analyses of collected blood and serum samples were performed along with serum electrophoretic protein footprinting. The leukocytic DNA fragmentation was used to evaluate the degree of oxidative insult. The good responders showed lower erythrocyte malondialdehyde (E-MDA) level and less DNA fragmentation of circulating leukocytes than poor responders with elevated hemoglobin, albumin, A/G ratio, total iron, and ferritin levels. Contrariwise, lower erythrocyte superoxide dismutase (E-SOD) and catalase activities in EPO poor responder group were noticed. Neither other serum constituents nor electrophoretic protein pattern showed any difference between the two groups. There were higher levels of inflammatory markers, interleukin-6 (IL6) and C-reactive protein (CRP) in EPO poor responder than good responder. The negative correlations between Hb and both IL6 and CRP levels in the present data remotely indicate a positive correlation between inflammatory markers and severity of anemia. A direct correlation between Hb and antioxidant enzymes (E-SOD and catalase) was noticed, while inverse correlation with E-MDA was recorded. The study proved that oral supplementation of vitamin C to ESRD patients might mitigate the previously elevated serum MDA level in these patients. PMID:27222740

  13. In vivo stimulatory effect of erythropoietin on endothelial nitric oxide synthase in cerebral arteries.

    PubMed

    Santhanam, Anantha Vijay R; Smith, Leslie A; Nath, Karl A; Katusic, Zvonimir S

    2006-08-01

    The discovery of tissue protective effects of erythropoietin has stimulated significant interest in erythropoietin (Epo) as a novel therapeutic approach to vascular protection. The present study was designed to determine the cerebral vascular effects of recombinant Epo in vivo. Recombinant adenoviral vectors (10(9) plaque-forming units/animal) encoding genes for human erythropoietin (AdEpo) and beta-galactosidase (AdLacZ) were injected into the cisterna magna of rabbits. After 48 h, basilar arteries were harvested for analysis of vasomotor function, Western blotting, and measurement of cGMP levels. Gene transfer of AdEpo increased the expressions of recombinant Epo and its receptor in the basilar arteries. Arteries exposed to recombinant Epo demonstrated attenuation of contractile responses to histamine (10(-9) to 10(-5) mol/l) (P < 0.05, n = 5). Endothelium-dependent relaxations to acetylcholine (10(-9) to 10(-5) mol/l) were significantly augmented (P < 0.05, n = 5), whereas endothelium-independent relaxations to a nitric oxide (NO) donor 2-(N,N-diethylamino)diazenolate-2-oxide sodium salt remained unchanged in AdEpo-transduced basilar arteries. Transduction with AdEpo increased the protein expression of endothelial NO synthase (eNOS) and phosphorylated the S1177 form of the enzyme. Basal levels of cGMP were significantly elevated in arteries transduced with AdEpo consistent with increased NO production. Our studies suggest that in cerebral circulation, Epo enhances endothelium-dependent vasodilatation mediated by NO. This effect could play an important role in the vascular protective effect of Epo. PMID:16565320

  14. Lung disease severity, chronic inflammation, iron deficiency, and erythropoietin response in adults with cystic fibrosis.

    PubMed

    Fischer, R; Simmerlein, R; Huber, R M; Schiffl, H; Lang, S M

    2007-12-01

    Chronic lung disorders are usually associated with a hypoxia driven increase in red cell mass. However, patients with cystic fibrosis (CF) often have normal or decreased haemoglobin levels. The present prospective observational study in cystic fibrosis patients was performed to determine which factors were involved in alterations in the hematopoetic response to corresponding arterial oxygen pressure. Sixty adult patients (age 21-51) with stable CF were included. They all had vitamin A, D, E, and K but no vitamin B12 supplementation. Twenty-five patients were on oral Fe(2+) (100 mg/day). Resting arterial blood gases, lung function, complete blood counts, parameters of iron status, CRP, sputum microbiology and serum erythropoietin were measured at recruitment and after 3 and 6 months. Patients had varying degrees of pulmonary functional impairment and 9% were hypoxemic (arterial oxygen pressure <60 mm Hg). Low-grade systemic inflammation (CRP > 0.5 mg/dl) was present in 40% of the patients, who all had bacterial colonization. None of the patient had erythrocytosis and 12 patients had anemia. There was no significant difference in iron status between patients with or without chronic iron supplementation and erythropoietin levels were normal. During the 6 months observation period no significant changes occurred. The patients exhibited an impaired erythropoietic response to hypoxemia with normal or low hematocrit in spite of chronic lung disease which might be caused by chronic inflammation associated with CF. Linear multivariate regression analysis revealed CRP levels but neither iron substitution, nor erythropoietin levels nor lung function parameters as independent determinant of haemoglobin levels. CF may be associated with anemia of variable severity as expression of the chronic inflammation present in these patients. The therapeutic consequences are to treat the underlying inflammation rather than to supplement iron. PMID:17948283

  15. Oxidative stress during erythropoietin hyporesponsiveness anemia at end stage renal disease: Molecular and biochemical studies

    PubMed Central

    Khalil, Samar K.M.; Amer, H.A.; El Behairy, Adel M.; Warda, Mohamad

    2016-01-01

    Inflammation and oxidative stress are two faces of one coin in end stage renal disease patients (ESRD) on maintenance hemodialysis. Their interconnection induces anemia complicated with erythropoietin hyporesponsiveness. The biochemical bases behind the resistance to erythropoietin therapy with frequent hemoglobinemia, oxidative stress and iron status have not been fully understood. Here two equal groups (40 patients each) of responders and non-responders to recombinant human erythropoietin therapy (higher than 300 IU/kg/wk of epoetin) were investigated. Hematological and biochemical analyses of collected blood and serum samples were performed along with serum electrophoretic protein footprinting. The leukocytic DNA fragmentation was used to evaluate the degree of oxidative insult. The good responders showed lower erythrocyte malondialdehyde (E-MDA) level and less DNA fragmentation of circulating leukocytes than poor responders with elevated hemoglobin, albumin, A/G ratio, total iron, and ferritin levels. Contrariwise, lower erythrocyte superoxide dismutase (E-SOD) and catalase activities in EPO poor responder group were noticed. Neither other serum constituents nor electrophoretic protein pattern showed any difference between the two groups. There were higher levels of inflammatory markers, interleukin-6 (IL6) and C-reactive protein (CRP) in EPO poor responder than good responder. The negative correlations between Hb and both IL6 and CRP levels in the present data remotely indicate a positive correlation between inflammatory markers and severity of anemia. A direct correlation between Hb and antioxidant enzymes (E-SOD and catalase) was noticed, while inverse correlation with E-MDA was recorded. The study proved that oral supplementation of vitamin C to ESRD patients might mitigate the previously elevated serum MDA level in these patients. PMID:27222740

  16. Erythropoietin ameliorates podocyte injury in advanced diabetic nephropathy in the db/db mouse.

    PubMed

    Loeffler, Ivonne; Rüster, Christiane; Franke, Sybille; Liebisch, Marita; Wolf, Gunter

    2013-09-15

    Podocyte damage and accumulation of advanced glycation end products (AGEs) are characteristics of diabetic nephropathy (DN). The pathophysiology of AGE-challenged podocytes, such as hypertrophy, apoptosis, and reduced cell migration, is closely related to the induction of the cell cycle inhibitor p27(Kip1) and to the inhibition of neuropilin 1 (NRP1). We have previously demonstrated that treatment with erythropoietin is associated with protective effects for podocytes in vitro. db/db mice with overt DN aged 15-16 wk were treated with either placebo, epoetin-β, or continuous erythropoietin receptor activator (CERA) for 2 wk. db/db mice compared with nondiabetic db/m control mice revealed the expected increases in body weight, blood glucose, albumin-to-creatinine ratio, and AGE accumulation. Whereas there were no differences in body weight, hyperglycemia and AGEs were observed among diabetic mice that received epoetin-β compared with CERA and placebo treatment, indicating that epoetin-β/CERA treatment does not interfere with the development of diabetes in this model. However, the albumin-to-creatinine ratio was significantly lower in db/db mice treated with epoetin-β or CERA. Furthermore, kidney weights in db/db mice were increased compared with db/m control mice, indicating renal hypertrophy, whereas the increase in renal weight in epoetin-β- or CERA-treated db/db mice was significantly lower than in placebo-treated control mice. Induction of p27(Kip1) and suppression of NRP1 were significantly reduced in the epoetin-β treatment group versus the CERA treatment group. Furthermore, erythropoietin treatment diminished the diabetes-induced podocyte loss. Together, independently from hematopoetic effects, epoetin-β or CERA treatment was associated with protective changes in DN, especially that NRP1 and p27(Kip1) expressions as well as numbers of podocytes returned to normal levels. Our data show, for the first time, that medication of overt DN with erythropoietin

  17. Administrative Synergy

    ERIC Educational Resources Information Center

    Hewitt, Kimberly Kappler; Weckstein, Daniel K.

    2012-01-01

    One of the biggest obstacles to overcome in creating and sustaining an administrative professional learning community (PLC) is time. Administrators are constantly deluged by the tyranny of the urgent. It is a Herculean task to carve out time for PLCs, but it is imperative to do so. In this article, the authors describe how an administrative PLC…

  18. [Infantile pyknocytosis: A cause of noenatal hemolytic anemia. Is recombinant erythropoietin an alternative to transfusion?].

    PubMed

    Bagou, M; Rolland, E; Gay, C; Patural, H

    2016-01-01

    Infantile pyknocytosis is a neonatal hemolytic disorder which causes anemia and icterus and is characterized by the presence of an increased number of distorted red blood cells called pyknocytes. Resolution spontaneously occurs in the first semester of life. It has been generally described as a rare entity, with an occasional family history. We report seven cases of infantile pyknocytosis observed in our hospital in 3 years. Most of the infants presented with hemolytic icterus and profound anemia that was reaching its peak by the 3rd week of life. Three neonates received one to three red blood cell transfusions, according to former recommendations. However, the following four received a treatment with recombinant erythropoietin administered subcutaneously. Only one of these four cases required a transfusion. All of them were free of hematological disease 2-3 months after completion of treatment. Infantile pyknocytosis is a recognized cause of neonatal hemolytic anemia, which requires careful examination of red cell morphology on a peripheral blood smear. The cause of this transient disorder remains unknown. Our observations show that recombinant erythropoietin therapy is effective in treating infantile pyknocytosis and increases the reticulocyte response, thus improving the hemoglobin level. PMID:26563723

  19. Ameliorative Effect of Recombinant Human Erythropoietin and Ischemic Preconditioning on Renal Ischemia Reperfusion Injury in Rats

    PubMed Central

    Elshiekh, Mohammed; Kadkhodaee, Mehri; Seifi, Behjat; Ranjbaran, Mina; Ahghari, Parisa

    2015-01-01

    Background: Ischemia-reperfusion (IR) injury is one of the most common causes of renal dysfunction. There is increasing evidence about the role of the reactive oxygen species (ROS) in these injuries and endogenous antioxidants seem to have an important role in decreasing the renal tissue injury. Objectives: The aim of this study was to compare the effect of recombinant human erythropoietin (EPO) and ischemic preconditioning (IPC) on renal IR injury. Materials and Methods: Twenty four male Wistar rats were allocated into four experimental groups: sham-operated, IR, EPO + IR, and IPC + IR. Rats were underwent 50 minutes bilateral ischemia followed by 24 hours reperfusion. Erythropoietin (5000 IU/kg, i.p) was administered 30 minutes before onset of ischemia. Ischemic preconditioning was performed by three cycles of 3 minutes ischemia followed by 3 minutes reperfusion. Plasma concentrations of urea and creatinine were measured. Kidney samples were taken for reactive oxidative species (ROS) measurement including superoxide dismutase (SOD) activity, glutathione (GSH) contents, and malondialdehyde (MDA) levels. Results: Compared to the sham group, IR led to renal dysfunction as evidenced by significantly higher plasma urea and creatinine. Treatment with EPO or IPC decreased urea, creatinine, and renal MDA levels and increased SOD activity and GSH contents in the kidney. Conclusions: Pretreatment with EPO and application of IPC significantly ameliorated the renal injury induced by bilateral renal IR. However, both treatments attenuated renal dysfunction and oxidative stress in kidney tissues. There were no significant differences between pretreatment with EPO or application of IPC. PMID:26866008

  20. Erythropoietin and IGF-1 signaling synchronize cell proliferation and maturation during erythropoiesis.

    PubMed

    Kadri, Zahra; Lefevre, Carine; Goupille, Olivier; Penglong, Tipparat; Granger-Locatelli, Marine; Fucharoen, Suthat; Maouche-Chretien, Leila; Leboulch, Philippe; Chretien, Stany

    2015-12-15

    Tight coordination of cell proliferation and differentiation is central to red blood cell formation. Erythropoietin controls the proliferation and survival of red blood cell precursors, while variations in GATA-1/FOG-1 complex composition and concentrations drive their maturation. However, clear evidence of cross-talk between molecular pathways is lacking. Here, we show that erythropoietin activates AKT, which phosphorylates GATA-1 at Ser310, thereby increasing GATA-1 affinity for FOG-1. In turn, FOG-1 displaces pRb/E2F-2 from GATA-1, ultimately releasing free, proproliferative E2F-2. Mice bearing a Gata-1(S310A) mutation suffer from fatal anemia when a compensatory pathway for E2F-2 production involving insulin-like growth factor-1 (IGF-1) signaling is simultaneously abolished. In the context of the GATA-1(V205G) mutation resulting in lethal anemia, we show that the Ser310 cannot be phosphorylated and that constitutive phosphorylation at this position restores partial erythroid differentiation. This study sheds light on the GATA-1 pathways that synchronize cell proliferation and differentiation for tissue homeostasis. PMID:26680303

  1. Exploring Erythropoietin and G-CSF Combination Therapy in Chronic Stroke Patients.

    PubMed

    Shin, Yoon-Kyum; Cho, Sung-Rae

    2016-01-01

    Erythropoietin (EPO) and granulocyte-colony stimulating factor (G-CSF) are known to have neuroprotective actions. Based on previous reports showing the synergistic effects of EPO+G-CSF combination therapy in experimental models, we investigated the safety of EPO+G-CSF combination therapy in patients with chronic stroke. In a pilot study, 3 patients were treated with EPO and G-CSF for 5 consecutive days, with follow-up on day 30. In an exploratory double-blind study, 6 patients were allocated to treatment with either EPO+G-CSF or placebo. Treatment was applied once a day for 5 days per month over 3 months. Participants were followed up for 6 months. To substantiate safety, vital signs, adverse events, and hematological values were measured on days 0, 5, and 30 in each cycle and on day 180. Functional outcomes were determined on day 0 and 180. In the laboratory measurements, EPO+G-CSF combination therapy significantly elevated erythropoietin, CD34⁺ hematopoietic stem cells, white blood cells, and neutrophils on day 5 of each cycle. There were no observations of serious adverse events. In the functional outcomes, the grip power of the dominant hand was increased in the EPO+G-CSF treatment group. In conclusion, this exploratory study suggests a novel strategy of EPO+G-CSF combination therapy for stroke patients. PMID:27043535

  2. Simulated microgravity induce apoptosis and down-regulation of erythropoietin receptor of UT-7/EPO cells

    NASA Astrophysics Data System (ADS)

    Zou, Li-xue; Cui, Shao-yan; Zhong, Jian; Yi, Zong-chun; Sun, Yan; Fan, Yu-bo; Zhuang, Feng-yuan

    2010-11-01

    Hematopoietic progenitor cell proliferation can be alternated on either spaceflight or under simulated microgravity experiments on the ground; however, the underlying mechanism remains largely unknown. In the present study, we have demonstrated that exposure of human erythropoietin (EPO)-dependent leukemia cell line UT-7/EPO cells to conditions of simulated microgravity with a rotary culture instrument significantly inhibited the cellular proliferation rate. Adding higher concentrations of EPO to the culture medium failed to improve the inhibitory status. Cell apoptosis was detected by fluorescence staining of cell nuclei and a flow cytometry assay using Annexin V/PI double staining. This microgravity-induced apoptosis in UT-7/EPO cells could be blocked by a pancaspase inhibitor Z-VAD-FMK. Immunoblotting demonstrated that rotary culture resulted in a reduction of the expression of Bcl-xL, an anti-apoptotic protein, and the cleavage of caspase-3. Furthermore, rotary culture reduced surface localization and protein content, as well as the mRNA expression of erythropoietin receptor (EPOR) of UT-7/EPO. Take together, the findings indicated that simulated microgravity may induce mitochondrial related apoptosis of UT-7/EPO cell through depressing the EPO-EPOR pathway.

  3. Erythropoietin and IGF-1 signaling synchronize cell proliferation and maturation during erythropoiesis

    PubMed Central

    Kadri, Zahra; Lefevre, Carine; Goupille, Olivier; Penglong, Tipparat; Granger-Locatelli, Marine; Fucharoen, Suthat; Maouche-Chretien, Leila; Leboulch, Philippe; Chretien, Stany

    2015-01-01

    Tight coordination of cell proliferation and differentiation is central to red blood cell formation. Erythropoietin controls the proliferation and survival of red blood cell precursors, while variations in GATA-1/FOG-1 complex composition and concentrations drive their maturation. However, clear evidence of cross-talk between molecular pathways is lacking. Here, we show that erythropoietin activates AKT, which phosphorylates GATA-1 at Ser310, thereby increasing GATA-1 affinity for FOG-1. In turn, FOG-1 displaces pRb/E2F-2 from GATA-1, ultimately releasing free, proproliferative E2F-2. Mice bearing a Gata-1S310A mutation suffer from fatal anemia when a compensatory pathway for E2F-2 production involving insulin-like growth factor-1 (IGF-1) signaling is simultaneously abolished. In the context of the GATA-1V205G mutation resulting in lethal anemia, we show that the Ser310 cannot be phosphorylated and that constitutive phosphorylation at this position restores partial erythroid differentiation. This study sheds light on the GATA-1 pathways that synchronize cell proliferation and differentiation for tissue homeostasis. PMID:26680303

  4. White matter changes in patients with Friedreich ataxia after treatment with erythropoietin

    PubMed Central

    Egger, Karl; Clemm von Hohenberg, Christian; Schocke, Michael F; Guttmann, Charles RG; Wassermann, Demian; Wigand, Marlene C; Nachbauer, Wolfgang; Kremser, Christian; Sturm, Brigitte; Scheiber-Mojdehkar, Barbara; Kubicki, Marek; Shenton, Martha E; Boesch, Sylvia

    2013-01-01

    Background and Purpose Erythropoietin (EPO) has received growing attention because of its neuro-regenerative properties. Preclinical and clinical evidence supports its therapeutic potential in brain conditions like stroke, multiple sclerosis and schizophrenia. Also in Friedreich ataxia, clinical improvement after EPO therapy was shown. The aim of the present study was to assess possible therapy-associated brain white-matter changes in these patients. Methods Nine patients with Friedreich ataxia underwent Diffusion Tensor Imaging (DTI) before and after EPO treatment. Tract-based spatial statistics (TBSS) was used for longitudinal comparison. Results We detected widespread longitudinal increase in fractional anisotropy (FA) and axial diffusivity (D||) in cerebral hemispheres bilaterally (p<0.05, corrected), while no changes were observed within the cerebellum, medulla oblongata and pons. Conclusions To the best of our knowledge, this is the first DTI study to investigate the effects of erythropoietin in a neurodegenerative disease. Anatomically, the diffusivity changes appear disease-unspecific, and their biological underpinnings deserve further study. PMID:24015771

  5. Upregulation of erythropoietin receptor in UT-7/EPO cells inhibits simulated microgravity-induced cell apoptosis

    NASA Astrophysics Data System (ADS)

    Zou, Li-xue; Cui, Shao-yan; Zhong, Jian; Yi, Zong-chun; Sun, Yan; Fan, Yu-bo; Zhuang, Feng-yuan

    2011-07-01

    Hematopoietic progenitor cell proliferation can be altered in either spaceflight or under simulated microgravity experiments on the ground, however, the underlying mechanism remains unknown. Our previous study showed that exposure of the human erythropoietin (EPO)-dependent leukemia cell line UT-7/EPO to conditions of simulated microgravity significantly inhibited the cellular proliferation rate and induced cell apoptosis. We postulated that the downregulation of the erythropoietin receptor (EPOR) expression in UT-7/EPO cells under simulated microgravity may be a possible reason for microgravity triggered apoptosis. In this paper, a human EPOR gene was transferred into UT-7/EPO cells and the resulting expression of EPOR on the surface of UT-7/EPO cells increased approximately 61% ( p < 0.05) as selected by the antibiotic G418. It was also shown through cytometry assays and morphological observations that microgravity-induced apoptosis markedly decreased in these UT-7/EPO-EPOR cells. Thus, we concluded that upregulation of EPOR in UT-7/EPO cells could inhibit the simulated microgravity-induced cell apoptosis in this EPO dependent cell line.

  6. KIAA0101 is associated with human renal cell carcinoma proliferation and migration induced by erythropoietin

    PubMed Central

    Fan, Shengjun; Li, Xin; Tie, Lu; Pan, Yan; Li, Xuejun

    2016-01-01

    Erythropoietin (EPO) is a frequently prescribed anti-anemic drug for patients with advanced renal carcinoma. However, recent evidence from clinical studies suggested that EPO accelerated tumor progression and jeopardized the 5-year survival. Herein, we show, starting from the in silico microarray bioinformatics analysis, that activation of Erythropoietin signaling pathway enhanced renal clear carcinoma (RCC) progression. EPO accelerated the proliferative and migratory ability in 786-O and Caki-2 cells. Moreover, comparative proteomics expression profiling suggested that exogenous EPO stimulated RCC progression via up-regulation of KIAA0101 expression. Loss of KIAA0101 impeded the undesirable propensity of EPO in RCC. Finally, low expression of KIAA0101 was associated with the excellent prognosis and prognosticated a higher 5-year survival in human patients with renal carcinoma. Overall, KIAA0101 appears to be a key promoter of RCC malignancy induced by EPO, which provide mechanistic insights into KIAA0101 functions, and pave the road to develop new therapeutics for treatment of cancer-related and chemotherapy-induced anemia in patients with RCC. PMID:26575329

  7. Exploring Erythropoietin and G-CSF Combination Therapy in Chronic Stroke Patients

    PubMed Central

    Shin, Yoon-Kyum; Cho, Sung-Rae

    2016-01-01

    Erythropoietin (EPO) and granulocyte-colony stimulating factor (G-CSF) are known to have neuroprotective actions. Based on previous reports showing the synergistic effects of EPO+G-CSF combination therapy in experimental models, we investigated the safety of EPO+G-CSF combination therapy in patients with chronic stroke. In a pilot study, 3 patients were treated with EPO and G-CSF for 5 consecutive days, with follow-up on day 30. In an exploratory double-blind study, 6 patients were allocated to treatment with either EPO+G-CSF or placebo. Treatment was applied once a day for 5 days per month over 3 months. Participants were followed up for 6 months. To substantiate safety, vital signs, adverse events, and hematological values were measured on days 0, 5, and 30 in each cycle and on day 180. Functional outcomes were determined on day 0 and 180. In the laboratory measurements, EPO+G-CSF combination therapy significantly elevated erythropoietin, CD34+ hematopoietic stem cells, white blood cells, and neutrophils on day 5 of each cycle. There were no observations of serious adverse events. In the functional outcomes, the grip power of the dominant hand was increased in the EPO+G-CSF treatment group. In conclusion, this exploratory study suggests a novel strategy of EPO+G-CSF combination therapy for stroke patients. PMID:27043535

  8. Therapeutic impact of erythropoietin-encapsulated liposomes targeted to bone marrow on renal anemia.

    PubMed

    Miyazaki, Yuri; Taguchi, Kazuaki; Sou, Keitaro; Watanabe, Hiroshi; Ishima, Yu; Miyakawa, Toshikazu; Mitsuya, Hiroaki; Fukagawa, Masafumi; Otagiri, Masaki; Maruyama, Toru

    2014-11-01

    Bone marrow is a key element in the diagnosis of disorders of erythropoiesis, including anemia, and a potential target in their treatment. However, because efficient delivery of diagnostic and therapeutic agents to bone marrow is difficult, such delivery is achieved by administering drugs in large quantities that often have adverse effects. Here, we achieved selective delivery of recombinant human erythropoietin (rHuEPO) to bone marrow, via its encapsulation in liposomes with l-glutamic acid, N-(3-carboxy-1-oxopropyl)-, 1,5-dihexadecyl ester (SA) (liposome-EPO). The result, in a rabbit model of renal anemia, was a beneficial effect on hematopoiesis, better than with rHuEPO alone. Also, we determined that liposome-EPO delivery to bone marrow depended on specific uptake by bone marrow macrophages because of the presence of SA. These results indicate both that liposome-EPO is a new, promising erythropoietin-stimulating agent and that liposomes with SA have potential for diagnostic and therapeutic applications in diseases originating from bone marrow. PMID:25255196

  9. Comparative structural study of N-linked oligosaccharides of urinary and recombinant erythropoietins.

    PubMed

    Tsuda, E; Goto, M; Murakami, A; Akai, K; Ueda, M; Kawanishi, G; Takahashi, N; Sasaki, R; Chiba, H; Ishihara, H

    1988-07-26

    The structures of the N-linked oligosaccharides of the urinary erythropoietin (u-EPO) purified from urine of aplastic anemic patients were analyzed and compared with those for recombinant erythropoietin (r-EPO) prepared with baby hamster kidney (BHK) cells. Asparagine-linked neutral oligosaccharides were released from each EPO protein by N-oligosaccharide glycopeptidase (almond) digestion. The reducing ends of the oligosaccharide chains thus obtained were aminated with a fluorescent reagent, 2-aminopyridine, and the mixture of pyridylamino derivatives of the oligosaccharides was separated by high-performance liquid chromatography (HPLC) on an ODS silica column. More than 8 and 13 kinds of oligosaccharide fractions for u-EPO and r-EPO (BHK), respectively, were completely separated by the one-step HPLC procedure. The structure of each oligosaccharide thus isolated was analyzed by a combination of sequential exoglycosidase digestion and another kind of HPLC with an amide-silica column. Furthermore, high-resolution proton nuclear magnetic resonance (1H NMR) spectroscopy and methylation analyses were carried out in the case of r-EPO (BHK).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3179269

  10. Benefits and risks of protracted treatment with human recombinant erythropoietin in patients having haemodialysis.

    PubMed Central

    Casati, S; Passerini, P; Campise, M R; Graziani, G; Cesana, B; Perisic, M; Ponticelli, C

    1987-01-01

    Fourteen patients with uraemic anaemia and having regular haemodialysis were given human recombinant erythropoietin in increasing doses, beginning with 24 U/kg thrice weekly. One patient was dropped from the study because of recurrent thrombosis of vascular access sites. In the other 13 patients, followed up for a mean of 9.1 months (range 8-11), haemoglobin concentrations increased from 62 (SD 8) to 105 (9) g/l. No antierythropoietin antibodies were detected during the study. The correction of anaemia was associated with a tendency to hyperkalaemia and a mild increase of unconjugated bilirubinaemia. In eight previously hypertensive patients antihypertensive treatment had to be reinforced, but in normotensive patients blood pressure did not change. Thrombosis of arteriovenous fistulas occurred in two patients and a cerebral ischaemic lesion in one. Protracted treatment with human recombinant erythropoietin evidently can maintain normal haemoglobin concentrations in uraemic patients over time. Full correction of anaemia, however, may trigger some vascular problems, particularly in hypertensive patients and those with a tendency to thromboembolism. PMID:3120854

  11. Erythropoietin enhances whole body lipid oxidation during prolonged exercise in humans.

    PubMed

    Caillaud, Corinne; Connes, Philippe; Ben Saad, Helmi; Mercier, Jacques

    2015-03-01

    Animal studies have suggested that erythropoietin, besides its well-known hematopoietic effects, can modulate metabolism and prevent fat accumulation. We investigated the effects of repeated injections of recombinant human erythropoietin (EPO) on the balance of substrate oxidation during aerobic exercise in humans. Twelve healthy aerobically trained males received subcutaneously either moderate dose of EPO (50 U/kg, EPO) or saline injections (NaCl 0.9 %, control) three times a week for 4 weeks. Body weight, % fat, maximal aerobic capacity, and substrate utilization during exercise were assessed before and after treatment, while hemoglobin and hematocrit were monitored regularly during the treatment. Carbohydrate and fat oxidation were evaluated via indirect calorimetry, during a submaximal exercise performed at 75 % of the participants' maximal aerobic capacity (V̇(O2max)) for 60 min. Results showed that 4 weeks of EPO treatment significantly enhanced fat oxidation (+56 % in EPO versus -9 % in control) during exercise, independent of its effects on hematological parameters or V̇(O2max). This study shows that EPO can modulate substrate utilization during exercise, leading to enhanced fat utilization and lower use of carbohydrates. This opens new research directions exploring whether systemic EPO levels, in physiological conditions, participate to the modulation of fat oxidation. PMID:25567744

  12. CNS Hypoxia Is More Pronounced in Murine Cerebral than Noncerebral Malaria and Is Reversed by Erythropoietin

    PubMed Central

    Hempel, Casper; Combes, Valery; Hunt, Nicholas Henry; Kurtzhals, Jørgen Anders Lindholm; Grau, Georges Emile Raymond

    2011-01-01

    Cerebral malaria (CM) is associated with high mortality and risk of sequelae, and development of adjunct therapies is hampered by limited knowledge of its pathogenesis. To assess the role of cerebral hypoxia, we used two experimental models of CM, Plasmodium berghei ANKA in CBA and C57BL/6 mice, and two models of malaria without neurologic signs, P. berghei K173 in CBA mice and P. berghei ANKA in BALB/c mice. Hypoxia was demonstrated in brain sections using intravenous pimonidazole and staining with hypoxia-inducible factor-1α–specific antibody. Cytopathic hypoxia was studied using poly (ADP-ribose) polymerase-1 (PARP-1) gene knockout mice. The effect of erythropoietin, an oxygen-sensitive cytokine that mediates protection against CM, on cerebral hypoxia was studied in C57BL/6 mice. Numerous hypoxic foci of neurons and glial cells were observed in mice with CM. Substantially fewer and smaller foci were observed in mice without CM, and hypoxia seemed to be confined to neuronal cell somas. PARP-1–deficient mice were not protected against CM, which argues against a role for cytopathic hypoxia. Erythropoietin therapy reversed the development of CM and substantially reduced the degree of neural hypoxia. These findings demonstrate cerebral hypoxia in malaria, strongly associated with cerebral dysfunction and a possible target for adjunctive therapy. PMID:21854739

  13. Anaemia of rheumatoid arthritis: serum erythropoietin concentrations and red cell distribution width in relation to iron status.

    PubMed Central

    Nielsen, O J; Andersen, L S; Ludwigsen, E; Bouchelouche, P; Hansen, T M; Birgens, H; Hansen, N E

    1990-01-01

    Immunoreactive serum erythropoietin concentrations were measured in 35 patients with anaemia associated with active rheumatoid arthritis. Based on an evaluation of stainable iron in the bone marrow (marrow iron grade 0-4) and serum ferritin concentrations (concentrations less than or equal to 60 micrograms/l compatible with iron deficiency) the anaemia was found to be complicated by iron deficiency in 19/35 (54%) of the patients. The mean serum erythropoietin level (57.6 (SD) 27.3) U/l) was sufficiently raised for the degree of anaemia irrespective of the size of the marrow iron stores. Thus the data do not support the contention that suppressed secretion of erythropoietin is involved in the pathogenesis of anaemia of chronic disorders. There was a significant inverse correlation between the haemoglobin concentration and log serum erythropoietin in the patients with rheumatoid arthritis. In the patients with adequate iron stores, but not in the iron depleted patients, there was a tendency for serum erythropoietin concentrations to correlate positively both with C reactive protein and erythrocyte sedimentation rate. Red cell distribution width (mean (SD) 16.3 (1.8)%) was above normal (11.5-14.5%) both in the iron replete and the iron depleted patients, and the mean red cell distribution width values did not differ significantly among the two subpopulations. The plasma lactoferrin concentration (mean (SD) 137.6 (109.9) micrograms/l) was normal and did not differ significantly between the iron deficient patients and those with adequate iron. PMID:2383057

  14. Effects of ganglioside G(M1) and erythropoietin on spinal cord lesions in rats: functional and histological evaluations

    PubMed Central

    Marcon, Raphael Martus; Cristante, Alexandre Fogaça; de Barros Filho, Tarcísio Eloy Pessoa; Ferreira, Ricardo; dos Santos, Gustavo Bispo

    2016-01-01

    OBJECTIVE: To evaluate the functional and histological effects of ganglioside G(M1) and erythropoietin after experimental spinal cord contusion injury. METHODS: Fifty male Wistar rats underwent experimental spinal cord lesioning using an NYU-Impactor device and were randomly divided into the following groups, which received treatment intraperitoneally. The G(M1) group received ganglioside G(M1) (30 mg/kg); the erythropoietin group received erythropoietin (1000 IU/kg); the combined group received both drugs; and the saline group received saline (0.9%) as a control. A fifth group was the laminectomy group, in which the animals were subjected to laminectomy alone, without spinal lesioning or treatment. The animals were evaluated according to the Basso, Beattie and Bresnahan (BBB) scale, motor evoked potential recordings and, after euthanasia, histological analysis of spinal cord tissue. RESULTS: The erythropoietin group had higher BBB scores than the G(M1) group. The combined group had the highest BBB scores, and the saline group had the lowest BBB scores. No significant difference in latency was observed between the three groups that underwent spinal cord lesioning and intervention. However, the combined group showed a significantly higher signal amplitude than the other treatment groups or the saline group (p<0.01). Histological tissue analysis showed no significant difference between the groups. Axonal index was significantly enhanced in the combined group than any other intervention (p<0.01). CONCLUSION: G(M1) and erythropoietin exert therapeutic effects on axonal regeneration and electrophysiological and motor functions in rats subjected to experimental spinal cord lesioning and administering these two substances in combination potentiates their effects. PMID:27438570

  15. Modernizing Administration.

    ERIC Educational Resources Information Center

    Lombardi, Vincent L.; Hildebrand, Verna

    1981-01-01

    Suggests assignment of research duties and rotation of teaching and management roles for college administrators, to increase their effectiveness and diminish the negative effects of declining enrollments. (JD)

  16. Administrative Support.

    ERIC Educational Resources Information Center

    Doran, Dorothy; And Others

    This guide is intended to assist business education teachers in administrative support courses. The materials presented are based on the Arizona validated occupational competencies and tasks for the occupations of receptionist, secretary, and administrative assistant. Word processing skills have been infused into each of the three sections. The…

  17. Administrative Ecology

    ERIC Educational Resources Information Center

    McGarity, Augustus C., III; Maulding, Wanda

    2007-01-01

    This article discusses how all four facets of administrative ecology help dispel the claims about the "impossibility" of the superintendency. These are personal ecology, professional ecology, organizational ecology, and community ecology. Using today's superintendency as an administrative platform, current literature describes a preponderance of…

  18. Effect of recombinant human erythropoietin on insulin resistance in hemodialysis patients.

    PubMed

    Khedr, Essam; El-Sharkawy, Magdy; Abdulwahab, Saed; Eldin, Essam Nor; Ali, Medhat; Youssif, Abla; Ahmed, Bassam

    2009-07-01

    Insulin resistance is a characteristic feature of uremia. Insulin resistance and concomitant hyperinsulinemia are present irrespective of the type of renal disease. Treatment with recombinant human erythropoietin (rHuEPO) was said to be associated with improvement in insulin sensitivity in uremic patients. The aim of this study was to compare insulin resistance in adult uremic hemodialysis (HD) patients including diabetic patients treated with or without rHuEPO. A total of 59 HD patients were studied, patients were divided into 2 groups of subjects: 30 HD patients on regular rHuEPO treatment (group A), and 29 HD patients not receiving rHuEPO (group B) diabetic patients were not excluded. Full medical history and clinical examination, hematological parameters, lipid profile, serum albumin, parathyroid horomone, Kt/V, fasting glucose, and insulin levels were measured in all subjects. Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) was used to compare insulin resistance. The results of this study showed that the mean insulin level of HD patients treated with rHuEPO (group A) (17.5 +/- 10.6 microU/mL) was significantly lower than patients without rHuEPO (group B) (28.8 +/- 7.7 microU/mL), (P<0.001). Homeostasis Model Assessment of Insulin Resistance levels in group A were significantly lower than in group B (3.8 +/- 2.97, 7.98 +/- 4.9, respectively, P<0.001). Insulin resistance reflected by HOMA-IR levels among diabetic patients in group A was significantly lower than among diabetic patients in group B (3.9 +/- 3.2, 9.4 +/- 7.2, respectively, P<0.001). Also, HOMA-IR levels among nondiabetic patients in group A were significantly lower than among nondiabetic patients in group B (3.7 +/- 2.85, 6.9 +/- 1.43, respectively, P<0.01). We found a statistically significant negative correlation between duration of erythropoietin treatment, fasting blood glucose, insulin levels, and insulin resistance (r=-0.62, -0.71, and -0.57, P<0.001). Patients treated with r

  19. The Relation of Erythropoietin Towards Hemoglobin and Hematocrit in Varying Degrees of Renal Insufficiency

    PubMed Central

    Panjeta, Mirsad; Tahirovic, Ismet; Karamehic, Jasenko; Sofic, Emin; Ridic, Ognjen; Coric, Jozo

    2015-01-01

    Introduction: Hypoxia is a basic stimulant in production of erythropoietin (EPO). The primary function of erythrocytes is the transport of oxygen to tissues. Erythropoietin stimulates erythropoiesis which leads to increased production of erythrocytes- their total mass. This increases the capacity of the blood to carry oxygen, reduces the hypoxic stimulus and provides a negative feedback of stopping EPO production. The aim of this study was to establish a quantitative relationship between the concentration of erythropoietin, hemoglobin and hematocrit in different values of renal insufficiency. Material and methods: The survey was conducted on 562 subjects divided into two groups: with and without renal insufficiency. EPO, hemoglobin, hematocrit, serum creatinine and additional parameters iron, vitamin B12, and folic acid were determined by using immunochemical and spectrophotometric methods and glomerular filtration rate (GFR) was calculated as well. Results: EPO values (median) grow to the first degree of renal insufficiency, as compared to EPO values of healthy subjects, this increase is statistically significant, p=0.002. With further deterioration of renal function the values of EPO between all pathological groups are decreasing, and this decrease is statistically significant between first and second degree of renal insufficiency (RI) p<0.001. In the group of healthy subjects EPO is correlated rho = -0.532, p <0.0005 with hematocrit. The correlations are negative and strong and can be predicted by regression line (EP0 = 41.375- Hct * .649; EPO = 61.41–Hb * 0.355). In the group of subjects with the first degree of renal insufficiency EPO is in correlation with hematocrit rho=-0.574, p<0, 0005. It is also correlated with hemoglobin rho=-0.580, p< 0.0005. The correlation is negative (EP0= 42.168- Hct * 0.678). In the group of subjects with the third degree of renal insufficiency EPO is in correlation with hemoglobin rho=0.257, p=0.028. The correlation is medium

  20. Erythropoietin administration alone or in combination with endurance training affects neither skeletal muscle morphology nor angiogenesis in healthy young men.

    PubMed

    Larsen, Mads S; Vissing, Kristian; Thams, Line; Sieljacks, Peter; Dalgas, Ulrik; Nellemann, Birgitte; Christensen, Britt

    2014-10-01

    The aim was to investigate the ability of an erythropoiesis-stimulating agent (ESA), alone or in combination with endurance training, to induce changes in human skeletal muscle fibre and vascular morphology. In a comparative study, 36 healthy untrained men were randomly dispersed into the following four groups: sedentary-placebo (SP, n = 9); sedentary-ESA (SE, n = 9); training-placebo (TP, n = 10); or training-ESA (TE, n = 8). The ESA or placebo was injected once weekly. Training consisted of progressive bicycling three times per week for 10 weeks. Before and after the intervention period, muscle biopsies and magnetic resonance images were collected from the thigh muscles, blood was collected, body composition measured and endurance exercise performance evaluated. The ESA treatment (SE and TE) led to elevated haematocrit, and both ESA treatment and training (SE, TP and TE) increased maximal O2 uptake. With regard to skeletal muscle morphology, TP alone exhibited increases in whole-muscle cross-sectional area and fibre diameter of all fibre types. Also exclusively for TP was an increase in type IIa fibres and a corresponding decrease in type IIx fibres. Furthermore, an overall training effect (TP and TE) was statistically demonstrated in whole-muscle cross-sectional area, muscle fibre diameter and type IIa and type IIx fibre distribution. With regard to muscle vascular morphology, TP and TE both promoted a rise in capillary to muscle fibre ratio, with no differences between the two groups. There were no effects of ESA treatment on any of the muscle morphological parameters. Despite the haematopoietic effects of ESA, we provide novel evidence that endurance training rather than ESA treatment induces adaptational changes in angiogenesis and muscle morphology. PMID:25128327

  1. Chemical synthesis of erythropoietin glycoforms for insights into the relationship between glycosylation pattern and bioactivity

    PubMed Central

    Murakami, Masumi; Kiuchi, Tatsuto; Nishihara, Mika; Tezuka, Katsunari; Okamoto, Ryo; Izumi, Masayuki; Kajihara, Yasuhiro

    2016-01-01

    The role of sialyloligosaccharides on the surface of secreted glycoproteins is still unclear because of the difficulty in the preparation of sialylglycoproteins in a homogeneous form. We selected erythropoietin (EPO) as a target molecule and designed an efficient synthetic strategy for the chemical synthesis of a homogeneous form of five EPO glycoforms varying in glycosylation position and the number of human-type biantennary sialyloligosaccharides. A segment coupling strategy performed by native chemical ligation using six peptide segments including glycopeptides yielded homogeneous EPO glycopeptides, and folding experiments of these glycopeptides afforded the correctly folded EPO glycoforms. In an in vivo erythropoiesis assay in mice, all of the EPO glycoforms displayed biological activity, in particular the EPO bearing three sialyloligosaccharides, which exhibited the highest activity. Furthermore, we observed that the hydrophilicity and biological activity of the EPO glycoforms varied depending on the glycosylation pattern. This knowledge will pave the way for the development of homogeneous biologics by chemical synthesis. PMID:26824070

  2. Is erythropoietin a worthy candidate for traumatic brain injury or are we heading the wrong way?

    PubMed Central

    Grasso, Giovanni; Alafaci, Concetta; Ghezzi, Pietro

    2016-01-01

    Traumatic brain injury (TBI) is a leading cause of death and disability in the modern society. Although primary prevention is the only strategy that can counteract the primary brain damage, numerous preclinical studies have been accumulated in order to find therapeutic strategies against the secondary damage. In this scenario erythropoietin (EPO) has been shown to be a promising candidate as neuroprotective agent. A recent clinical trial, however, has shown that EPO has not an overall effect on outcomes following TBI thus renewing old concerns.  However, the results of a prespecified sensitivity analysis indicate that the effect of EPO on mortality remains still unclear. In the light of these observations, further investigations are needed to resolve doubts on EPO effectiveness in order to provide a more solid base for tailoring conclusive clinical trials. PMID:27239280

  3. Validation of model virus removal and inactivation capacity of an erythropoietin purification process.

    PubMed

    Pérez, Mayté; Rodríguez, Elias; Rodríguez, María; Paez, Rolando; Ruibal, Ignacio; Noa, Enrique; García, Osnel; Moya, Galina; Martínez, Mayda; Marcelo, José; Martínez, Anazuria; Dubal, Marta; Navea, Leonor; Valdés, Rodolfo

    2011-11-01

    Human erythropoietin (hEpo) production requires mammalian cells able to make complex post-translational modifications to guaranty its biological activity. As mammalian cell can be reservoir of pathogenic viruses and several animal origin components are usually used in the cultivation of mammalian cells, hEpo contamination with viruses is something of great concern. As consequence, this study investigated the viral removal and inactivation capacity of a recombinant-hEpo (rec-hEpo) purification process. Canine parvovirus, Human poliovirus type-2, Bovine viral diarrhea virus and Human immunodeficiency virus type-1 were used for measuring process viral removal and inactivation capacities. In conclusion, this study corroborated that the assessed rec-hEpo purification process has enough capacity (5.0-19.4 Logs) for removing and inactivating these model viruses and sodium hydroxide demonstrated to be a robust sanitization solution for chromatography columns (5.0 (PV-2)-6.7 (CPV) Logs). PMID:21982851

  4. Increased erythropoietin levels as a biomarker of pancreatic adenocarcinoma: A case report

    PubMed Central

    KHAN, RAFAY; NAI, QIANG; ZHANG, PING; LUO, HONGXIU; SEN, SHRAMAN; SIDHOM, IBRAHIM; MATHEW, TEENA; ISLAM, MOHAMMAD; SEN, SHUVENDU; YOUSIF, ABDALLA

    2016-01-01

    Pancreatic cancer is one of the deadliest cancers commonly diagnosed at an advanced stage. Early diagnosis is crucial for the timely and potentially curative treatment of this highly fatal disease. Although screening tests have improved the survival rate in malignancies such as colon, breast, cervical and prostate cancer, there is currently no effective screening method available for the early detection of pancreatic cancer. As the sensitivity and specificity of existing biomarkers, such as carbohydrate antigen 19-9, for the early detection of pancreatic cancer is low, there is a pressing need for the identification of novel cancer markers. An increase in erythropoietin (EPO) levels has been observed in several cases of pancreatic neoplasms. However, the potential role of EPO as a biomarker of pancreatic cancer or malignant transformation requires further investigation. We herein present a case of increased EPO levels in an adult male patient with stage IV pancreatic cancer. PMID:26870372

  5. Inhibitory effect of zinc on stimulated erythropoietin synthesis in HepG2 cells.

    PubMed Central

    Dittmer, J; Bauer, C

    1992-01-01

    The effect of zinc on erythropoietin (EPO) synthesis in HepG2 cells was investigated. The increase in EPO synthesis induced by Co2+ (50 microM), Ni2+ (300 microM) or oxygen (1% O2) was inhibited by the presence of ZnCl2 (50-150 microM) in the tissue-culture medium, whereas basal EPO synthesis was unaffected. The effect was reflected by corresponding changes in the EPO mRNA level. These effects of zinc on EPO synthesis could not be mimicked by CdCl2 (less than or equal to 2 microM). Addition of FeCl3 to the medium appeared to decrease the inhibitory effect of zinc on hypoxia-induced EPO synthesis, implying that zinc may interfere with an iron-dependent step in EPO regulation. Images Fig. 1. PMID:1322122

  6. Role of cytochrome P sub 450 in the control of the production of erythropoietin

    SciTech Connect

    Fandrey, J.; Seydel, F.P.; Siegers, C.P.; Jelkmann, W. )

    1990-01-01

    Effects of agents affecting cytochrome P{sub 450} were studied on the production of erythropoietin (Epo) in cultures of the human hepatoma cell line HepG2. Epo was measured by radioimmunoassay of the culture media after 24 h of incubation. The addition of phenobarbital or 3-methylcholanthrene, which induce cytochrome P{sub 450}, significantly enhanced the formation of Epo. Likewise, the thyroid hormones T{sub 3} and T{sub 4} stimulated the rate of the production of Epo. On the other hand, the formation of Epo was lowered following the addition of diethyl-dithiocarbamate or cysteamine chloride, which inhibit cytochrome P{sub 450}. These findings support the idea that O{sub 2} sensitive hemoproteins of the microsomal mixed-functional oxidases play a role in the control of the synthesis of Epo.

  7. Erythropoietin promotes hippocampal neurogenesis in in-vitro models of neonatal stroke

    PubMed Central

    Osredkar, Damjan; Sall, Jeffrey W; Bickler, Philip E; Ferriero, Donna M

    2010-01-01

    The hippocampus is often injured in neonatal stroke. We have investigated the effect of erythropoietin (EPO) on oxygen-glucose deprived hippocampal slices and hypoxic progenitor cells. EPO improved survival of the organotypic hippocampal slices with significantly less cell death in the dentate gyrus and an increased number of proliferating cells 4-5 days after insult. Significantly fewer markers of neurogenesis were seen after the insult but when EPO was added to the culture medium, neurogenesis was sustained. When hippocampal progenitor cultures were stimulated into differentiation, more cells chose a neuronal cell fate when treated with EPO. These findings support the hypothesis that EPO not only prevents ischemia induced cell death but promotes neuronal cell fate committment in in-vitro models of neonatal stroke. PMID:20117210

  8. Erythropoietin Supports the Survival of Prostate Cancer, But Not Growth and Bone Metastasis

    PubMed Central

    Shiozawa, Yusuke; McGee, Samantha; Pienta, Michael J.; McGregor, Natalie; Jung, Younghun; Yumoto, Kenji; Wang, Jingcheng; Berry, Janice E.; Pienta, Kenneth J.; Taichman, Russell S.

    2014-01-01

    Erythropoietin (Epo) is used in clinical settings to enhance hematopoietic function and to improve the quality of life for patients undergoing chemotherapy by reducing fatigue and the need for transfusions. However, several meta-analyses have revealed that Epo treatments are associated with an increased risk of mortality in cancer patients. In this study, we examined the role of Epo in prostate cancer (PCa) progression, using in vitro cell culture systems and in vivo bone metastatic assays. We found that Epo did not stimulate the proliferation of PCa cell lines, but did protect PCa cells from apoptosis. In animal models of PCa metastasis, no evidence was found to support the hypothesis that Epo enhances metastasis. Together, these findings suggest that Epo may be useful for treating severe anemia in PCa patients without increasing metastatic risk. PMID:23696192

  9. [Pharma-clinics. Doping with erythropoietin or the misuse of therapeutic advances].

    PubMed

    Scheen, A J

    1998-08-01

    Sport performance depends on the capacity of oxygen transport to the exercising skeletal muscles. Performance may be increased thanks to an haematocrit augmentation, either by training in high altitude, using blood transfusions, or injecting erythropoietin (Epo). Since the synthesis of Epo by bioengineering, doping with recombinant human Epo has become popular in sports in general, and in cycling in particular. This new kind of doping might have been responsible for several sudden deaths in young athletes, essentially in racing cyclists. Until now, such a doping is hardly to be detected. However, it should deserve careful consideration from both public health authorities and sports communities in order to stop what could become a real plague. PMID:9810213

  10. Cytoprotective Effect of Recombinant Human Erythropoietin Produced in Transgenic Tobacco Plants

    PubMed Central

    Kittur, Farooqahmed S.; Bah, Mamudou; Archer-Hartmann, Stephanie; Hung, Chiu-Yueh; Azadi, Parastoo; Ishihara, Mayumi; Sane, David C.; Xie, Jiahua

    2013-01-01

    Asialo-erythropoietin, a desialylated form of human erythropoietin (EPO) lacking hematopoietic activity, is receiving increased attention because of its broader protective effects in preclinical models of tissue injury. However, attempts to translate its protective effects into clinical practice is hampered by unavailability of suitable expression system and its costly and limit production from expensive mammalian cell-made EPO (rhuEPOM) by enzymatic desialylation. In the current study, we took advantage of a plant-based expression system lacking sialylating capacity but possessing an ability to synthesize complex N-glycans to produce cytoprotective recombinant human asialo-rhuEPO. Transgenic tobacco plants expressing asialo-rhuEPO were generated by stably co-expressing human EPO and β1,4-galactosyltransferase (GalT) genes under the control of double CaMV 35S and glyceraldehyde-3-phosphate gene (GapC) promoters, respectively. Plant-produced asialo-rhuEPO (asialo-rhuEPOP) was purified by immunoaffinity chromatography. Detailed N-glycan analysis using NSI-FTMS and MS/MS revealed that asialo-rhuEPOP bears paucimannosidic, high mannose-type and complex N-glycans. In vitro cytoprotection assays showed that the asialo-rhuEPOP (20 U/ml) provides 2-fold better cytoprotection (44%) to neuronal-like mouse neuroblastoma cells from staurosporine-induced cell death than rhuEPOM (21%). The cytoprotective effect of the asialo-rhuEPOP was found to be mediated by receptor-initiated phosphorylation of Janus kinase 2 (JAK2) and suppression of caspase 3 activation. Altogether, these findings demonstrate that plants are a suitable host for producing cytoprotective rhuEPO derivative. In addition, the general advantages of plant-based expression system can be exploited to address the cost and scalability issues related to its production. PMID:24124563

  11. The pharmacokinetics and pharmacodynamics of recombinant human erythropoietin in haemodialysis patients.

    PubMed Central

    Brockmöller, J; Köchling, J; Weber, W; Looby, M; Roots, I; Neumayer, H H

    1992-01-01

    1. The pharmacokinetics of and therapeutic response to recombinant human erythropoietin (rcEPO) were studied in 12 patients under chronic haemodialysis on a thrice weekly intravenous rcEPO treatment scheme. The kinetics of rcEPO were also assessed after a subcutaneous injection during the initial period and during maintenance treatment. RcEPO was measured in plasma by radioimmunoassay. 2. After the first i.v. dose plasma erythropoietin concentrations were best described by a monoexponential disposition function with a mean (+/- s.d.) elimination half-life of 5.4 +/- 1.7 h. The volume of distribution was 70 +/- 5.2 ml kg-1 and the clearance was 10.1 +/- 3.5 ml h-1 kg-1 (n = 12). 3. After 3 months of continuous therapy, the plasma half-life of rcEPO decreased by 15% (P < 0.05, mean half-life during steady state: 4.6 +/- 2.8 h), while mean clearance and volume of distribution remained constant. 4. After the first s.c. injection the mean (+/- s.d.) absorption time was 22 +/- 11 h and systemic availability was 44 +/- 7%. 5. Changes in haemoglobin concentrations were described by a linear additive dose-response model, defined by an efficacy constant (Keff) and the mean erythrocyte lifetime (MRTHb). The sample mean (+/- s.d.) Keff was 0.043 +/- 0.017 g dl-1 Hb per 1000 units rcEPO and MRTHb was 10.02 +/- 1.75 weeks. The net effect of rcEPO treatment was described by the area under the unit-dose-response curve (AUEC) with a mean (+/- s.d.) value of 0.45 +/- 0.23 g dl-1 weeks. 6. RcEPO clearance showed a significant positive correlation (r2 = 0.41) with the effectiveness of rcEPO therapy, as measured by the parameters Keff or AUEC. PMID:1493082

  12. The effect of recombinant human erythropoietin on the development of retinopathy of prematurity.

    PubMed

    Shah, Nishant; Jadav, Pushkaraj; Jean-Baptiste, Dominique; Weedon, Jay; Cohen, Lourdes M; Kim, M Roger

    2010-01-01

    In addition to its hematopoietic effects, erythropoietin causes an increased release of endothelin-1 and the stimulation of angiogenesis and thereby it may have possible role in development of retinopathy of prematurity (ROP). Our objective was to determine if an association exists between recombinant human erythropoietin (rhEPO) treatment and the development of ROP. Our case-control study involved 85 very low birthweight infants with birthweights <1500 g born during 2003 and 2004. All the infants were divided into two groups on the basis of whether they got rhEPO or not. The rhEPO was given at the dose of 200 to 250 units/kg/dose three times a week for 10 doses. Further duration of rhEPO therapy was decided on the basis of the clinical response. Ophthalmological examinations were done at the age of 5 to 6 weeks and were repeated 1 to 4 weeks after the first examination according to the severity of the ROP disease during their in-hospital stay. Of 85 infants, 56 (66%) received rhEPO and 29 (34%) did not. In the rhEPO-treated group, 12 infants (21%) had ROP; in the non-rhEPO group, 11 infants (38%) developed ROP. This difference is not statistically significant (odds ratio = 2.63; P = 0.10). There was no correlation between the use of rhEPO and the stage of ROP (random sample = -0.01; P = 0.89). There was no significant difference in the incidence of plus, prethreshold, or threshold disease and the treatment required for ROP between the rhEPO-treated and the nontreated group. The study showed there is no significant difference in the incidence and severity of ROP between the rhEPO-treated and nontreated group. PMID:19565433

  13. Erythropoietin is involved in the angiogenic potential of bone marrow macrophages in multiple myeloma.

    PubMed

    De Luisi, Annunziata; Binetti, Laura; Ria, Roberto; Ruggieri, Simona; Berardi, Simona; Catacchio, Ivana; Racanelli, Vito; Pavone, Vincenzo; Rossini, Bernardo; Vacca, Angelo; Ribatti, Domenico

    2013-10-01

    Erythropoietin (Epo) is the crucial cytokine regulator of red blood cell production, and recombinant human erythropoietin (rHuEpo) is widely used in clinical practice for the treatment of anemia, primarily in kidney disease and in cancer. Increasing evidence suggests several biological roles for Epo and its receptor, Epo-R, unrelated to erythropoiesis, including angiogenesis. Epo-R has been found expressed in various non-haematopoietic cells and tissues, and in cancer cells. Here, we detected the expression of Epo-R in bone marrow-derived macrophages (BMMAs) from multiple myeloma (MM) and monoclonal gammopathy of undetermined significance (MGUS) patients and assessed whether Epo/Epo-R axis plays a role in MM macrophage-mediated angiogenesis. We found that Epo-R is over-expressed in BMMAs from MM patients with active disease compared to MGUS patients. The treatment of BMMAs with rHuEpo significantly increased the expression and secretion of key pro-angiogenic mediators, such as vascular endothelial growth factor, hepatocyte growth factor and monocyte chemotactic protein (MCP-1/CCL-2), through activation of JAK2/STAT5 and PI3 K/Akt pathways. In addition, the conditioned media harvested from rHuEpo-treated BMMAs enhanced bone marrow-derived endothelial cell migration and capillary morphogenesis in vitro, and induced angiogenesis in the chorioallantoic membrane of chick embryos in vivo. Furthermore, we found an increase in the circulating levels of several pro-angiogenic cytokines in serum of MM patients with anemia under treatment with Epo. Our findings highlight the direct effect of rHuEpo on macrophage-mediated production of pro-angiogenic factors, suggesting that Epo/Epo-R pathway may be involved in the regulation of angiogenic response occurring in MM. PMID:23881169

  14. Erythropoietin and Its Derivates Modulate Mitochondrial Dysfunction after Diffuse Traumatic Brain Injury.

    PubMed

    Millet, Anne; Bouzat, Pierre; Trouve-Buisson, Thibaut; Batandier, Cécile; Pernet-Gallay, Karin; Gaide-Chevronnay, Lucie; Barbier, Emmanuel L; Debillon, Thierry; Fontaine, Eric; Payen, Jean-François

    2016-09-01

    Inhibiting the opening of mitochondrial permeability transition pore (mPTP), thereby maintaining the mitochondrial membrane potential and calcium homeostasis, could reduce the induction of cell death. Although recombinant human erythropoietin (rhEpo) and carbamylated erythropoietin (Cepo) were shown to prevent apoptosis after traumatic brain injury (TBI), their impact on mPTP is yet unknown. Thirty minutes after diffuse TBI (impact-acceleration model), rats were intravenously administered a saline solution (TBI-saline), 5000 UI/kg rhEpo (TBI-rhEpo) or 50 μg/kg Cepo (TBI-Cepo). A fourth group received no TBI insult (sham-operated) (n = 11 rats per group). Post-traumatic brain edema was measured using magnetic resonance imaging. A first series of experiments was conducted 2 h after TBI (or equivalent) to investigate the mitochondrial function with the determination of thresholds for mPTP opening and ultrastructural mitochondrial changes. In addition, the intramitochondrial calcium content [Caim] was measured. In a second series of experiments, brain cell apoptosis was assessed at 24 h post-injury. TBI-rhEpo and TBI-Cepo groups had a reduced brain edema compared with TBI-saline. They had higher threshold for mPTP opening with succinate as substrate: 120 (120-150) (median, interquartiles) and 100 (100-120) versus 80 (60-90) nmol calcium/mg protein in TBI-saline, respectively (p < 0.05). Similar findings were shown with glutamate-malate as substrate. TBI-rhEpo and Cepo groups had less morphological mitochondrial disruption in astrocytes. The elevation in [Caim] after TBI was not changed by rhEpo and Cepo treatment. Finally, rhEpo and Cepo reduced caspase-3 expression at 24 h post-injury. These results indicate that rhEpo and Cepo could modulate mitochondrial dysfunction after TBI. The mechanisms involved are discussed. PMID:26530102

  15. The SH2B1 Adaptor Protein Associates with a Proximal Region of the Erythropoietin Receptor*

    PubMed Central

    Javadi, Mojib; Hofstätter, Edda; Stickle, Natalie; Beattie, Bryan K.; Jaster, Robert; Carter-Su, Christin; Barber, Dwayne L.

    2012-01-01

    Gene targeting experiments have shown that the cytokine erythropoietin (EPO), its cognate erythropoietin receptor (EPO-R), and associated Janus tyrosine kinase, JAK2, are all essential for erythropoiesis. Structural-functional and murine knock-in experiments have suggested that EPO-R Tyr-343 is important in EPO-mediated mitogenesis. Although Stat5 binds to EPO-R phosphotyrosine 343, the initial Stat5-deficient mice did not have profound erythroid abnormalities suggesting that additional Src homology 2 (SH2) domain-containing effectors may bind to EPO-R Tyr-343 and couple to downstream signaling pathways. We have utilized cloning of ligand target (COLT) screening to demonstrate that EPO-R Tyr(P)-343 and Tyr(P)-401 bind to the SH2 domain-containing adaptor protein SH2B1β. Immunoprecipitation and in vitro mixing experiments reveal that EPO-R binds to SH2B1 in an SH2 domain-dependent manner and that the sequence that confers SH2B1 binding to the EPO-R is pYXXL. Previous studies have shown that SH2B1 binds directly to JAK2, but we show that in hematopoietic cells, SH2B1β preferentially associates with the EPO-R. SH2B1 is capable of constitutive association with EPO-R, which is necessary for its optimal SH2-dependent recruitment to EPO-R-Tyr(P)-343/Tyr(P)-401. We also demonstrate that SH2B1 is responsive to EPO stimulation and becomes phosphorylated, most likely on serines/threonines, in an EPO dose- and time-dependent manner. In the absence of SH2B1, we observe enhanced activation of signaling pathways downstream of the EPO-R, indicating that SH2B1 is a negative regulator of EPO signaling. PMID:22669948

  16. The SH2B1 adaptor protein associates with a proximal region of the erythropoietin receptor.

    PubMed

    Javadi, Mojib; Hofstätter, Edda; Stickle, Natalie; Beattie, Bryan K; Jaster, Robert; Carter-Su, Christin; Barber, Dwayne L

    2012-07-27

    Gene targeting experiments have shown that the cytokine erythropoietin (EPO), its cognate erythropoietin receptor (EPO-R), and associated Janus tyrosine kinase, JAK2, are all essential for erythropoiesis. Structural-functional and murine knock-in experiments have suggested that EPO-R Tyr-343 is important in EPO-mediated mitogenesis. Although Stat5 binds to EPO-R phosphotyrosine 343, the initial Stat5-deficient mice did not have profound erythroid abnormalities suggesting that additional Src homology 2 (SH2) domain-containing effectors may bind to EPO-R Tyr-343 and couple to downstream signaling pathways. We have utilized cloning of ligand target (COLT) screening to demonstrate that EPO-R Tyr(P)-343 and Tyr(P)-401 bind to the SH2 domain-containing adaptor protein SH2B1β. Immunoprecipitation and in vitro mixing experiments reveal that EPO-R binds to SH2B1 in an SH2 domain-dependent manner and that the sequence that confers SH2B1 binding to the EPO-R is pYXXL. Previous studies have shown that SH2B1 binds directly to JAK2, but we show that in hematopoietic cells, SH2B1β preferentially associates with the EPO-R. SH2B1 is capable of constitutive association with EPO-R, which is necessary for its optimal SH2-dependent recruitment to EPO-R-Tyr(P)-343/Tyr(P)-401. We also demonstrate that SH2B1 is responsive to EPO stimulation and becomes phosphorylated, most likely on serines/threonines, in an EPO dose- and time-dependent manner. In the absence of SH2B1, we observe enhanced activation of signaling pathways downstream of the EPO-R, indicating that SH2B1 is a negative regulator of EPO signaling. PMID:22669948

  17. Widespread Expression of Erythropoietin Receptor in Brain and Its Induction by Injury

    PubMed Central

    Ott, Christoph; Martens, Henrik; Hassouna, Imam; Oliveira, Bárbara; Erck, Christian; Zafeiriou, Maria-Patapia; Peteri, Ulla-Kaisa; Hesse, Dörte; Gerhart, Simone; Altas, Bekir; Kolbow, Tekla; Stadler, Herbert; Kawabe, Hiroshi; Zimmermann, Wolfram-Hubertus; Nave, Klaus-Armin; Schulz-Schaeffer, Walter; Jahn, Olaf; Ehrenreich, Hannelore

    2015-01-01

    Erythropoietin (EPO) exerts potent neuroprotective, neuroregenerative and procognitive functions. However, unequivocal demonstration of erythropoietin receptor (EPOR) expression in brain cells has remained difficult since previously available anti-EPOR antibodies (EPOR-AB) were unspecific. We report here a new, highly specific, polyclonal rabbit EPOR-AB directed against different epitopes in the cytoplasmic tail of human and murine EPOR and its characterization by mass spectrometric analysis of immuno-precipitated endogenous EPOR, Western blotting, immunostaining and flow cytometry. Among others, we applied genetic strategies including overexpression, Lentivirus-mediated conditional knockout of EpoR and tagged proteins, both on cultured cells and tissue sections, as well as intracortical implantation of EPOR-transduced cells to verify specificity. We show examples of EPOR expression in neurons, oligodendroglia, astrocytes and microglia. Employing this new EPOR-AB with double-labeling strategies, we demonstrate membrane expression of EPOR as well as its localization in intracellular compartments such as the Golgi apparatus. Moreover, we show injury-induced expression of EPOR. In mice, a stereotactically applied stab wound to the motor cortex leads to distinct EpoR expression by reactive GFAP-expressing cells in the lesion vicinity. In a patient suffering from epilepsy, neurons and oligodendrocytes of the hippocampus strongly express EPOR. To conclude, this new analytical tool will allow neuroscientists to pinpoint EPOR expression in cells of the nervous system and to better understand its role in healthy conditions, including brain development, as well as under pathological circumstances, such as upregulation upon distress and injury. PMID:26349059

  18. Effect of erythropoietin on hepatic cytochrome P450 expression and function in an adenine-fed rat model of chronic kidney disease

    PubMed Central

    Feere, D A; Velenosi, T J; Urquhart, B L

    2015-01-01

    BACKGROUND AND PURPOSE Erythropoietin (EPO) is used to treat anaemia associated with chronic kidney disease (CKD). Hypoxia is associated with anaemia and is known to cause a decrease in cytochrome P450 (P450) expression. As EPO production is regulated by hypoxia, we investigated the role of EPO on P450 expression and function. EXPERIMENTAL APPROACH Male Wistar rats were subjected to a 0.7% adenine diet for 4 weeks to induce CKD. The diet continued for an additional 2 weeks while rats received EPO by i.p. injection every other day. Following euthanasia, hepatic P450 mRNA and protein expression were determined. Hepatic enzyme activity of selected P450s was determined and chromatin immunoprecipitation was used to characterize binding of nuclear receptors involved in the transcriptional regulation of CYP2C and CYP3A. KEY RESULTS EPO administration decreased hepatic mRNA and protein expression of CYP3A2 (P < 0.05), but not CYP2C11. Similarly, EPO administration decreased CYP3A2 protein expression by 81% (P < 0.001). A 32% decrease (P < 0.05) in hepatic CYP3A enzymatic activity (Vmax) was observed for the formation of 6βOH-testosterone in the EPO-treated group. Decreases in RNA pol II recruitment (P < 0.01), hepatocyte nuclear factor 4α binding (P < 0.05) and pregnane X receptor binding (P < 0.01) to the promoter region of CYP3A were also observed in EPO-treated rats. CONCLUSIONS AND IMPLICATIONS Our data show that EPO decreases the expression and function of CYP3A, but not CYP2C in rat liver. PMID:25219905

  19. Treatment of optic neuritis with erythropoietin (TONE): a randomised, double-blind, placebo-controlled trial—study protocol

    PubMed Central

    Diem, Ricarda; Molnar, Fanni; Beisse, Flemming; Gross, Nikolai; Drüschler, Katharina; Heinrich, Sven P; Joachimsen, Lutz; Rauer, Sebastian; Pielen, Amelie; Sühs, Kurt-Wolfram; Linker, Ralf Andreas; Huchzermeyer, Cord; Albrecht, Philipp; Hassenstein, Andrea; Aktas, Orhan; Guthoff, Tanja; Tonagel, Felix; Kernstock, Christoph; Hartmann, Kathrin; Kümpfel, Tania; Hein, Katharina; van Oterendorp, Christian; Grotejohann, Birgit; Ihorst, Gabriele; Maurer, Julia; Müller, Matthias; Volkmann, Martin; Wildemann, Brigitte; Platten, Michael; Wick, Wolfgang; Heesen, Christoph; Schiefer, Ulrich; Wolf, Sebastian; Lagrèze, Wolf A

    2016-01-01

    Introduction Optic neuritis leads to degeneration of retinal ganglion cells whose axons form the optic nerve. The standard treatment is a methylprednisolone pulse therapy. This treatment slightly shortens the time of recovery but does not prevent neurodegeneration and persistent visual impairment. In a phase II trial performed in preparation of this study, we have shown that erythropoietin protects global retinal nerve fibre layer thickness (RNFLT-G) in acute optic neuritis; however, the preparatory trial was not powered to show effects on visual function. Methods and analysis Treatment of Optic Neuritis with Erythropoietin (TONE) is a national, randomised, double-blind, placebo-controlled, multicentre trial with two parallel arms. The primary objective is to determine the efficacy of erythropoietin compared to placebo given add-on to methylprednisolone as assessed by measurements of RNFLT-G and low-contrast visual acuity in the affected eye 6 months after randomisation. Inclusion criteria are a first episode of optic neuritis with decreased visual acuity to ≤0.5 (decimal system) and an onset of symptoms within 10 days prior to inclusion. The most important exclusion criteria are history of optic neuritis or multiple sclerosis or any ocular disease (affected or non-affected eye), significant hyperopia, myopia or astigmatism, elevated blood pressure, thrombotic events or malignancy. After randomisation, patients either receive 33 000 international units human recombinant erythropoietin intravenously for 3 consecutive days or placebo (0.9% saline) administered intravenously. With an estimated power of 80%, the calculated sample size is 100 patients. The trial started in September 2014 with a planned recruitment period of 30 months. Ethics and dissemination TONE has been approved by the Central Ethics Commission in Freiburg (194/14) and the German Federal Institute for Drugs and Medical Devices (61-3910-4039831). It complies with the Declaration of Helsinki

  20. Effects of an 8-weeks erythropoietin treatment on mitochondrial and whole body fat oxidation capacity during exercise in healthy males.

    PubMed

    Guadalupe-Grau, Amelia; Plenge, Ulla; Helbo, Signe; Kristensen, Marianne; Andersen, Peter Riis; Fago, Angela; Belhage, Bo; Dela, Flemming; Helge, Jørn Wulff

    2015-01-01

    The present investigation was performed to elucidate if the non-erythropoietic ergogenic effect of a recombinant erythropoietin treatment results in an impact on skeletal muscle mitochondrial and whole body fatty acid oxidation capacity during exercise, myoglobin concentration and angiogenesis. Recombinant erythropoietin was administered by subcutaneous injections (5000 IU) in six healthy male volunteers (aged 21 ± 2 years; fat mass 18.5 ± 2.3%) over 8 weeks. The participants performed two graded cycle ergometer exercise tests before and after the intervention where VO2max and maximal fat oxidation were measured. Biopsies of the vastus lateralis muscle were obtained before and after the intervention. Recombinant erythropoietin treatment increased mitochondrial O2 flux during ADP stimulated state 3 respiration in the presence of complex I and II substrates (malate, glutamate, pyruvate, succinate) with additional electron input from β-oxidation (octanoylcarnitine) (from 60 ± 13 to 87 ± 24 pmol · s(-1) · mg(-1) P < 0.01). β-hydroxy-acyl-CoA-dehydrogenase activity was higher after treatment (P < 0.05), whereas citrate synthase activity also tended to increase (P = 0.06). Total myoglobin increased by 16.5% (P < 0.05). Capillaries per muscle area tended to increase (P = 0.07), whereas capillaries per fibre as well as the total expression of vascular endothelial growth factor remained unchanged. Whole body maximal fat oxidation was not increased after treatment. Eight weeks of recombinant erythropoietin treatment increases mitochondrial fatty acid oxidation capacity and myoglobin concentration without any effect on whole body maximal fat oxidation. PMID:25259652

  1. Is there a dissociation of erythropoietic proliferation and serum erythropoietin levels in renal failure patients on longterm haemodialysis treatment.

    PubMed

    Walle, A J; Niedermayer, W

    1980-01-01

    The demonstration of a sustained erythropoietin (EP) -- haematocrit (HCT) feedback mechanism would underline the importance of EP as a stimulant agent for the erythropoietic proliferation (EPRO) in chronic uraemia. Hypertransfusion showed a significant suppression of EPRO without a concomitant suppression of the pretransfusional immunodetectable (id) serum EP levels. We conclude that idEP is not the major direct mediator of EPRO in short term regulatory mechanisms in the anaemia of uraemia. PMID:7243765

  2. A Simple Three-Step Method for Design and Affinity Testing of New Antisense Peptides: An Example of Erythropoietin

    PubMed Central

    Štambuk, Nikola; Manojlović, Zoran; Turčić, Petra; Martinić, Roko; Konjevoda, Paško; Weitner, Tin; Wardega, Piotr; Gabričević, Mario

    2014-01-01

    Antisense peptide technology is a valuable tool for deriving new biologically active molecules and performing peptide–receptor modulation. It is based on the fact that peptides specified by the complementary (antisense) nucleotide sequences often bind to each other with a higher specificity and efficacy. We tested the validity of this concept on the example of human erythropoietin, a well-characterized and pharmacologically relevant hematopoietic growth factor. The purpose of the work was to present and test simple and efficient three-step procedure for the design of an antisense peptide targeting receptor-binding site of human erythropoietin. Firstly, we selected the carboxyl-terminal receptor binding region of the molecule (epitope) as a template for the antisense peptide modeling; Secondly, we designed an antisense peptide using mRNA transcription of the epitope sequence in the 3'→5' direction and computational screening of potential paratope structures with BLAST; Thirdly, we evaluated sense–antisense (epitope–paratope) peptide binding and affinity by means of fluorescence spectroscopy and microscale thermophoresis. Both methods showed similar Kd values of 850 and 816 µM, respectively. The advantages of the methods were: fast screening with a small quantity of the sample needed, and measurements done within the range of physicochemical parameters resembling physiological conditions. Antisense peptides targeting specific erythropoietin region(s) could be used for the development of new immunochemical methods. Selected antisense peptides with optimal affinity are potential lead compounds for the development of novel diagnostic substances, biopharmaceuticals and vaccines. PMID:24865486

  3. A simple three-step method for design and affinity testing of new antisense peptides: an example of erythropoietin.

    PubMed

    Štambuk, Nikola; Manojlović, Zoran; Turčić, Petra; Martinić, Roko; Konjevoda, Paško; Weitner, Tin; Wardega, Piotr; Gabričević, Mario

    2014-01-01

    Antisense peptide technology is a valuable tool for deriving new biologically active molecules and performing peptide-receptor modulation. It is based on the fact that peptides specified by the complementary (antisense) nucleotide sequences often bind to each other with a higher specificity and efficacy. We tested the validity of this concept on the example of human erythropoietin, a well-characterized and pharmacologically relevant hematopoietic growth factor. The purpose of the work was to present and test simple and efficient three-step procedure for the design of an antisense peptide targeting receptor-binding site of human erythropoietin. Firstly, we selected the carboxyl-terminal receptor binding region of the molecule (epitope) as a template for the antisense peptide modeling; Secondly, we designed an antisense peptide using mRNA transcription of the epitope sequence in the 3'→5' direction and computational screening of potential paratope structures with BLAST; Thirdly, we evaluated sense-antisense (epitope-paratope) peptide binding and affinity by means of fluorescence spectroscopy and microscale thermophoresis. Both methods showed similar Kd values of 850 and 816 µM, respectively. The advantages of the methods were: fast screening with a small quantity of the sample needed, and measurements done within the range of physicochemical parameters resembling physiological conditions. Antisense peptides targeting specific erythropoietin region(s) could be used for the development of new immunochemical methods. Selected antisense peptides with optimal affinity are potential lead compounds for the development of novel diagnostic substances, biopharmaceuticals and vaccines. PMID:24865486

  4. Erythropoietin promotes peripheral nerve regeneration in rats by upregulating expression of insulin-like growth factor-1

    PubMed Central

    Wang, Wei; Li, Dongsheng; Li, Qing; Wang, Lei; Bai, Guang; Yang, Tao; Li, Qiang; Zhu, Zhitu

    2015-01-01

    Introduction Erythropoietin (EPO) has been shown to have beneficial effects on peripheral nerve damage, but its mechanism of action remains incompletely understood. In this study we hypothesized that EPO promotes peripheral nerve repair via neurotrophic factor upregulation. Material and methods Thirty adult male Wistar rats were employed to establish a sciatic nerve injury model. They were then randomly divided into two groups to be subjected to different treatment: 0.9% saline (group A) and 5000 U/kg EPO (group B). The walking behavior of rats was evaluated by footprint analysis, and the nerve regeneration was assessed by electron microscopy. The expression of insulin-like growth factor-1 (IGF-1) in the injured sciatic nerves was detected by immunohistochemical analysis. Results Compared to saline treatment, EPO treatment led to the growth of myelin sheath, the recovery of normal morphology of axons and Schwann cells, and higher density of myelinated nerve fibers. Erythropoietin treatment promoted the recovery of SFI in the injured sciatic nerves. In addition, EPO treatment led to increased IGF-1 expression in the injured sciatic nerves. Conclusions Erythropoietin may promote peripheral nerve repair in a rat model of sciatic nerve injury through the upregulation of IGF-1 expression. These findings reveal a novel mechanism underlying the neurotrophic effects of EPO. PMID:25995763

  5. Erythropoietin test

    MedlinePlus

    ... kidney. These cells release more EPO when blood oxygen level is low. How the Test is Performed A blood sample is needed. How ... your doctor about the meaning of your specific test result. What ... in response to an event such as low blood oxygen level. The condition may occur at high altitudes ...

  6. Administrative IT

    ERIC Educational Resources Information Center

    Grayson, Katherine, Ed.

    2006-01-01

    When it comes to Administrative IT solutions and processes, best practices range across the spectrum. Enterprise resource planning (ERP), student information systems (SIS), and tech support are prominent and continuing areas of focus. But widespread change can also be accomplished via the implementation of campuswide document imaging and sharing,…

  7. Engineering Administration.

    ERIC Educational Resources Information Center

    Naval Personnel Program Support Activity, Washington, DC.

    This book is intended to acquaint naval engineering officers with their duties in the engineering department. Standard shipboard organizations are analyzed in connection with personnel assignments, division operations, and watch systems. Detailed descriptions are included for the administration of directives, ship's bills, damage control, training…

  8. ADMINISTRATIVE CLIMATE.

    ERIC Educational Resources Information Center

    BRUCE, ROBERT L.; CARTER, G.L., JR.

    IN THE COOPERATIVE EXTENSION SERVICE, STYLES OF LEADERSHIP PROFOUNDLY AFFECT THE QUALITY OF THE SERVICE RENDERED. ACCORDINGLY, MAJOR INFLUENCES ON ADMINISTRATIVE CLIMATE AND EMPLOYEE PRODUCTIVITY ARE EXAMINED IN ESSAYS ON (1) SOURCES OF JOB SATISFACTION AND DISSATISFACTION, (2) MOTIVATIONAL THEORIES BASED ON JOB-RELATED SATISFACTIONS AND NEEDS,…

  9. Database Administrator

    ERIC Educational Resources Information Center

    Moore, Pam

    2010-01-01

    The Internet and electronic commerce (e-commerce) generate lots of data. Data must be stored, organized, and managed. Database administrators, or DBAs, work with database software to find ways to do this. They identify user needs, set up computer databases, and test systems. They ensure that systems perform as they should and add people to the…

  10. Erythropoietin improves the accumulation and therapeutic effects of carboplatin by enhancing tumor vascularization and perfusion.

    PubMed

    Doleschel, Dennis; Rix, Anne; Arns, Susanne; Palmowski, Karin; Gremse, Felix; Merkle, Ruth; Salopiata, Florian; Klingmüller, Ursula; Jarsch, Michael; Kiessling, Fabian; Lederle, Wiltrud

    2015-01-01

    Recombinant human erythropoietin (rhuEpo) is currently under debate for the treatment of chemotherapy-induced anemia due to clinical trials showing adverse effects in Epo-treated patients and the discovery of the erythropoietin-receptor (EpoR) in tumor and endothelial cells. Here, using Epo-Cy5.5 as theranostic near-infrared fluorescent probe we analyzed the effects of rhuEpo as co-medication to carboplatin in non-small-cell-lung-cancer (NSCLC)-xenografts with different tumor cell EpoR-expression (H838 ~8-fold higher than A549). Nude mice bearing subcutaneous A549 and H838 NSCLC-xenografts received either only carboplatin or carboplatin and co-medication of rhuEpo in two different doses. Tumor sizes and relative blood volumes (rBV) were longitudinally measured by 3D-contrast-enhanced ultrasound (3D-US). Tumoral EpoR-levels were determined by combined fluorescence molecular tomography (FMT)/ micro computed tomography (µCT) hybrid imaging. We found that rhuEpo predominantly acted on the tumor endothelium. In both xenografts, rhuEpo co-medication significantly increased vessel densities, diameters and the amount of perfused vessels. Accordingly, rhuEpo induced EpoR-phoshorylation and stimulated proliferation of endothelial cells. However, compared with solely carboplatin-treated tumors, tumor growth was significantly slower in the groups co-medicated with rhuEpo. This is explained by the Epo-mediated vascular remodeling leading to improved drug delivery as obvious by a more than 2-fold higher carboplatin accumulation and significantly enhanced tumor apoptosis. In addition, co-medication of rhuEpo reduced tumor hypoxia and diminished intratumoral EpoR-levels which continuously increased during carboplatin (Cp) -treatment. These findings suggest that co-medication of rhuEpo in well balanced doses can be used to improve the accumulation of anticancer drugs. Doses and indications may be personalized and refined using theranostic EpoR-probes. PMID:26000061

  11. Hypoxic pulmonary vasoconstriction, carotid body function and erythropoietin production in adult rats perinatally exposed to hyperoxia

    PubMed Central

    Prieto-Lloret, Jesus; Ramirez, Maria; Olea, Elena; Moral-Sanz, Javier; Cogolludo, Angel; Castañeda, Javier; Yubero, Sara; Agapito, Teresa; Gomez-Niño, Angela; Rocher, Asuncion; Rigual, Ricardo; Obeso, Ana; Perez-Vizcaino, Francisco; González, Constancio

    2015-01-01

    Adult mammalians possess three cell systems that are activated by acute bodily hypoxia: pulmonary artery smooth muscle cells (PASMC), carotid body chemoreceptor cells (CBCC) and erythropoietin (EPO)-producing cells. In rats, chronic perinatal hyperoxia causes permanent carotid body (CB) atrophy and functional alterations of surviving CBCC. There are no studies on PASMC or EPO-producing cells. Our aim is to define possible long-lasting functional changes in PASMC or EPO-producing cells (measured as EPO plasma levels) and, further, to analyse CBCC functional alterations. We used 3- to 4-month-old rats born and reared in a normal atmosphere or exposed to perinatal hyperoxia (55–60% O2 for the last 5–6 days of pregnancy and 4 weeks after birth). Perinatal hyperoxia causes an almost complete loss of hypoxic pulmonary vasoconstriction (HPV), which was correlated with lung oxidative status in early postnatal life and prevented by antioxidant supplementation in the diet. O2-sensitivity of K+ currents in the PASMC of hyperoxic animals is normal, indicating that their inhibition is not sufficient to trigger HPV. Perinatal hyperoxia also abrogated responses elicited by hypoxia on catecholamine and cAMP metabolism in the CB. An increase in EPO plasma levels elicited by hypoxia was identical in hyperoxic and control animals, implying a normal functioning of EPO-producing cells. The loss of HPV observed in adult rats and caused by perinatal hyperoxia, comparable to oxygen therapy in premature infants, might represent a previously unrecognized complication of such a medical intervention capable of aggravating medical conditions such as regional pneumonias, atelectases or general anaesthesia in adult life. Key points Adult animals that have been perinatally exposed to oxygen-rich atmospheres (hyperoxia), recalling those used for oxygen therapy in infants, exhibit a loss of hypoxic pulmonary vasoconstriction, whereas vasoconstriction elicited by depolarizing agents is

  12. Nitric oxide and hypoxia stimulate erythropoietin receptor via MAPK kinase in endothelial cells.

    PubMed

    Cokic, Bojana B Beleslin; Cokic, Vladan P; Suresh, Sukanya; Wirt, Stacey; Noguchi, Constance Tom

    2014-03-01

    Erythropoietin receptor (EPOR) expression level determines the extent of erythropoietin (EPO) response. Previously we showed that EPOR expression in endothelial cells is increased at low oxygen tension and that EPO stimulation of endothelial cells during hypoxia can increase endothelial nitric oxide (NO) synthase (eNOS) expression and activation as well as NO production. We now observe that while EPO can stimulate NO production, NO in turn can regulate EPOR expression. Human umbilical vein endothelial cells (HUVEC) treated with 10-50 μM of NO donor diethylenetriamine NONOate (DETANO) for 24h showed significant induction of EPOR gene expression at 5% and 2% of oxygen. Also human bone marrow microvascular endothelial cell line (TrHBMEC) cultured at 21 and 2% oxygen with 50 μM DETANO demonstrated a time and oxygen dependent induction of EPOR mRNA expression after 24 and 48 h, particularly at low oxygen tension. EPOR protein was also induced by DETANO at 2% oxygen in TrHBMEC and HUVEC. The activation of signaling pathways by NO donor stimulation appeared to be distinct from EPO stimulation. In reporter gene assays, DETANO treatment of HeLa cells at 2% oxygen increased EPOR promoter activity indicated by a 48% increase in luciferase activity with a 2 kb EPOR promoter fragment and a 71% increase in activity with a minimal EPOR promoter fragment containing 0.2 kb 5'. We found that DETANO activated MAPK kinase in TrHBMEC both in normoxia and hypoxia, while MAPK kinase inhibition showed significant reduction of EPOR mRNA gene expression at low oxygen tension, suggesting MAPK involvement in NO mediated induction of EPOR. Furthermore, DETANO stimulated Akt anti-apoptotic activity after 30 min in normoxia, whereas it inhibited Akt phosphorylation in hypoxia. In contrast, EPO did not significantly increase MAPK activity while EPO stimulated Akt phosphorylation in TrHBMEC in normoxia and hypoxia. These observations provide a new effect of NO on EPOR expression to enhance EPO

  13. Erythropoietin Improves the Accumulation and Therapeutic Effects of Carboplatin by Enhancing Tumor Vascularization and Perfusion

    PubMed Central

    Doleschel, Dennis; Rix, Anne; Arns, Susanne; Palmowski, Karin; Gremse, Felix; Merkle, Ruth; Salopiata, Florian; Klingmüller, Ursula; Jarsch, Michael; Kiessling, Fabian; Lederle, Wiltrud

    2015-01-01

    Recombinant human erythropoietin (rhuEpo) is currently under debate for the treatment of chemotherapy-induced anemia due to clinical trials showing adverse effects in Epo-treated patients and the discovery of the erythropoietin-receptor (EpoR) in tumor and endothelial cells. Here, using Epo-Cy5.5 as theranostic near-infrared fluorescent probe we analyzed the effects of rhuEpo as co-medication to carboplatin in non-small-cell-lung-cancer (NSCLC)-xenografts with different tumor cell EpoR-expression (H838 ~8-fold higher than A549). Nude mice bearing subcutaneous A549 and H838 NSCLC-xenografts received either only carboplatin or carboplatin and co-medication of rhuEpo in two different doses. Tumor sizes and relative blood volumes (rBV) were longitudinally measured by 3D-contrast-enhanced ultrasound (3D-US). Tumoral EpoR-levels were determined by combined fluorescence molecular tomography (FMT)/ micro computed tomography (µCT) hybrid imaging. We found that rhuEpo predominantly acted on the tumor endothelium. In both xenografts, rhuEpo co-medication significantly increased vessel densities, diameters and the amount of perfused vessels. Accordingly, rhuEpo induced EpoR-phoshorylation and stimulated proliferation of endothelial cells. However, compared with solely carboplatin-treated tumors, tumor growth was significantly slower in the groups co-medicated with rhuEpo. This is explained by the Epo-mediated vascular remodeling leading to improved drug delivery as obvious by a more than 2-fold higher carboplatin accumulation and significantly enhanced tumor apoptosis. In addition, co-medication of rhuEpo reduced tumor hypoxia and diminished intratumoral EpoR-levels which continuously increased during carboplatin (Cp) -treatment. These findings suggest that co-medication of rhuEpo in well balanced doses can be used to improve the accumulation of anticancer drugs. Doses and indications may be personalized and refined using theranostic EpoR-probes. PMID:26000061

  14. TRPC3 is the erythropoietin-regulated calcium channel in human erythroid cells.

    PubMed

    Tong, Qin; Hirschler-Laszkiewicz, Iwona; Zhang, Wenyi; Conrad, Kathleen; Neagley, David W; Barber, Dwayne L; Cheung, Joseph Y; Miller, Barbara A

    2008-04-18

    Erythropoietin (Epo) stimulates a significant increase in the intracellular calcium concentration ([Ca(2+)](i)) through activation of the murine transient receptor potential channel TRPC2, but TRPC2 is a pseudogene in humans. TRPC3 expression increases on normal human erythroid progenitors during differentiation. Here, we determined that erythropoietin regulates calcium influx through TRPC3. Epo stimulation of HEK 293T cells transfected with Epo receptor and TRPC3 resulted in a dose-dependent increase in [Ca(2+)](i), which required extracellular calcium influx. Treatment with the phospholipase C (PLC) inhibitor U-73122 or down-regulation of PLCgamma1 by RNA interference inhibited the Epo-stimulated increase in [Ca(2+)](i) in TRPC3-transfected HEK 293T cells and in primary human erythroid precursors, demonstrating a requirement for PLC. TRPC3 associated with PLCgamma, and substitution of predicted PLCgamma Src homology 2 binding sites (Y226F, Y555F, Y648F, and Y674F) on TRPC3 reduced the interaction of TRPC3 with PLCgamma and inhibited the rise in [Ca(2+)](i). Substitution of Tyr(226) alone with phenylalanine significantly reduced the Epo-stimulated increase in [Ca(2+)](i) but not the association of PLCgamma with TRPC3. PLC activation results in production of inositol 1,4,5-trisphosphate (IP(3)). To determine whether IP(3) is involved in Epo activation of TRPC3, TRPC3 mutants were prepared with substitution or deletion of COOH-terminal IP(3) receptor (IP(3)R) binding domains. In cells expressing TRPC3 with mutant IP(3)R binding sites and Epo receptor, interaction of IP(3)R with TRPC3 was abolished, and Epo-modulated increase in [Ca(2+)](i) was reduced. Our data demonstrate that Epo modulates TRPC3 activation through a PLCgamma-mediated process that requires interaction of PLCgamma and IP(3)R with TRPC3. They also show that TRPC3 Tyr(226) is critical in Epo-dependent activation of TRPC3. These data demonstrate a redundancy of TRPC channel activation mechanisms by

  15. Effects of erythropoietin on systemic hematocrit and oxygen transport in the splenectomized horse.

    PubMed

    McKeever, Kenneth H; McNally, Beth A; Hinchcliff, Kenneth W; Lehnhard, Robert A; Poole, David C

    2016-05-01

    To test the hypotheses that erythropoietin (rhuEPO) treatment increases systemic hematocrit, maximal O2 uptake (VO2max, by elevated perfusive and diffusive O2 conductances) and performance five female horses (4-13 years) received 15 IU/kg rhuEPO (erythropoietin) three times per week for three weeks. These horses had been splenectomized over 1 year previously to avoid confounding effects from the mobilization of splenic red blood cell reserves. Each horse performed three maximal exercise tests (one per month) on an inclined (4°) treadmill to the limit of tolerance; two control trials and one following EPO treatment. Measurements of hemoglobin concentration ([Hb] and hematocrit), plasma and blood volume, VO2, cardiac output as well as arterial and mixed venous blood gases were made at rest and during maximal exercise. EPO increased resting [Hb] by 18% from 13.3 ± 0.6 to 15.7 ± 0.8 g/dL (mean ± SD) corresponding to an increased hematocrit from 36 ± 2 to 46 ± 2% concurrent with 23 and 10% reductions in plasma and blood volume, respectively (all P<0.05). EPO elevated VO2max by 20% from 25.7 ± 1.7 to 30.9 ± 3.4 L/min (P<0.05) via a 17% increase in arterial O2 content and 18% greater arteriovenous O2 difference in the face of an unchanged cardiac output. To achieve the greater VO2max after EPO, diffusive O2 conductance increased ∼ 30% (from 580 ± 76 to 752 ± 166 mL O2/mmHg/min, P<0.05) which was substantially greater than the elevation of perfusive O2 conductance. These effects of EPO were associated with an increased exercise performance (total running time: control, 216 ± 72; EPO, 264 ± 48 s, P<0.05). We conclude that EPO substantially increases VO2max and performance in the splenectomized horse via improved perfusive and diffusive O2 transport. PMID:26853328

  16. Evaluation of the osteogenesis and angiogenesis effects of erythropoietin and the efficacy of deproteinized bovine bone/recombinant human erythropoietin scaffold on bone defect repair.

    PubMed

    Li, Donghai; Deng, Liqing; Xie, Xiaowei; Yang, Zhouyuan; Kang, Pengde

    2016-06-01

    Erythropoietin (EPO) could promote the angiogenesis and may also play a role in bone regeneration. This study was conducted to evaluate the osteogenesis and angiogenesis effects of EPO and the efficacy of deproteinized bovine bone/recombinant human EPO scaffold on bone defect repair. Twenty-four healthy adult goats were chosen to build goat defects model and randomly divided into four groups. The goats were treated with DBB/rhEPO scaffolds (group A), porous DBB scaffolds (group B), autogenous cancellous bone graft (group C), and nothing (group D). Animals were evaluated with radiological and histological methods at 4, 8 and 12 weeks after surgery. The grey value of radiographs was used to evaluate the healing of the defects and the outcome revealed that the group A had a better outcome of defect healing compared with group B (P < 0.05). However, the grey values in group A were lower than group C at week 4 and week 8 (P < 0.05), but at week 12 their difference had no statistical significance (P > 0.05). The newly formed bone area was calculated from histological sections and the results demonstrated that the amount of new bone in group A increased significantly compared with that in group B (P < 0.05) but was inferior to that in group C (P > 0.05) at 4, 8, 12 weeks respectively. In addition, the expression of vascular endothelial growth factor (VEGF) by immunohistochemical testing and real-time polymerase chain reaction at 12 weeks in group A was significantly higher than that in group B (P < 0.05), and also better than that in group C at week 4 and week 8 (P < 0.05), but at week 12 their difference had no statistical significance (P > 0.05). Therefore, EPO has significant effects on bone formation and angiogenesis, and has capacity to promote the repair of bone defects. It is worthy of being recommended to further studies. PMID:27091043

  17. Prognostic Impact of Erythropoietin Expression and Erythropoietin Receptor Expression on Locoregional Control and Survival of Patients Irradiated for Stage II/III Non-Small-Cell Lung Cancer

    SciTech Connect

    Rades, Dirk; Setter, Cornelia; Dahl, Olav; Schild, Steven E.; Noack, Frank

    2011-06-01

    Purpose: Prognostic factors can guide the physician in selecting the optimal treatment for an individual patient. This study investigates the prognostic value of erythropoietin (EPO) and EPO receptor (EPO-R) expression of tumor cells for locoregional control and survival in non-small-cell lung cancer (NSCLC) patients. Methods and Materials: Fourteen factors were investigated in 62 patients irradiated for stage II/III NSCLC, as follows: age, gender, Karnofsky performance score (KPS), histology, grading, TNM/American Joint Committee on Cancer (AJCC) stage, surgery, chemotherapy, pack years (average number of packages of cigarettes smoked per day multiplied by the number of years smoked), smoking during radiotherapy, hemoglobin levels during radiotherapy, EPO expression, and EPO-R expression. Additionally, patients with tumors expressing both EPO and EPO-R were compared to those expressing either EPO or EPO-R and to those expressing neither EPO nor EPO-R. Results: On univariate analysis, improved locoregional control was associated with AJCC stage II cancer (p < 0.048), surgery (p < 0.042), no smoking during radiotherapy (p = 0.024), and no EPO expression (p = 0.001). A trend was observed for a KPS of >70 (p = 0.08), an N stage of 0 to 1 (p = 0.07), and no EPO-R expression (p = 0.10). On multivariate analysis, AJCC stage II and no EPO expression remained significant. No smoking during radiotherapy was almost significant. On univariate analysis, improved survival was associated with N stage 0 to 1 (p = 0.009), surgery (p = 0.039), hemoglobin levels of {>=}12 g/d (p = 0.016), and no EPO expression (p = 0.001). On multivariate analysis, N stage 0 to 1 and no EPO expression maintained significance. Hemoglobin levels of {>=}12 g/d were almost significant. On subgroup analyses, patients with tumors expressing both EPO and EPO-R had worse outcomes than those expressing either EPO or EPO-R and those expressing neither EPO nor RPO-R. Conclusions: EPO expression of tumor cells

  18. Erythropoietin and its carbamylated derivative prevent the development of experimental diabetic autonomic neuropathy in STZ-induced diabetic NOD-SCID mice.

    PubMed

    Schmidt, Robert E; Green, Karen G; Feng, Dongyan; Dorsey, Denise A; Parvin, Curtis A; Lee, Jin-Moo; Xiao, Qinlgi; Brines, Michael

    2008-01-01

    Autonomic neuropathy is a significant diabetic complication resulting in increased morbidity and mortality. Studies of autopsied diabetic patients and several rodent models demonstrate that the neuropathologic hallmark of diabetic sympathetic autonomic neuropathy in prevertebral ganglia is the occurrence of synaptic pathology resulting in distinctive dystrophic neurites ("neuritic dystrophy"). Our prior studies show that neuritic dystrophy is reversed by exogenous IGF-I administration without altering the metabolic severity of diabetes, i.e. functioning as a neurotrophic substance. The description of erythropoietin (EPO) synergy with IGF-I function and the recent discovery of EPO's multifaceted neuroprotective role suggested it might substitute for IGF-I in treatment of diabetic autonomic neuropathy. Our current studies demonstrate EPO receptor (EPO-R) mRNA in a cDNA set prepared from NGF-maintained rat sympathetic neuron cultures which decreased with NGF deprivation, a result which demonstrates clearly that sympathetic neurons express EPO-R, a result confirmed by immunohistochemistry. Treatment of STZ-diabetic NOD-SCID mice have demonstrated a dramatic preventative effect of EPO and carbamylated EPO (CEPO, which is neuroprotective but not hematopoietic) on the development of neuritic dystrophy. Neither EPO nor CEPO had a demonstrable effect on the metabolic severity of diabetes. Our results coupled with reported salutary effects of EPO on postural hypotension in a few clinical studies of EPO-treated anemic diabetic and non-diabetic patients may reflect a primary neurotrophic effect of EPO on the sympathetic autonomic nervous system, rather than a primary hematopoietic effect. These findings may represent a major clinical advance since EPO has been widely and safely used in anemic patients due to a variety of clinical conditions. PMID:17967455

  19. Erythropoietin attenuates renal and pulmonary injury in polymicrobial induced-sepsis through EPO-R, VEGF and VEGF-R2 modulation.

    PubMed

    Heitrich, Mauro; García, Daiana Maria de Los Ángeles; Stoyanoff, Tania Romina; Rodríguez, Juan Pablo; Todaro, Juan Santiago; Aguirre, María Victoria

    2016-08-01

    Sepsis remains the most important cause of acute kidney injury (AKI) and acute lung injury (ALI) in critically ill patients. The cecal ligation and puncture (CLP) model in experimental mice reproduces most of the clinical features of sepsis. Erythropoietin (EPO) is a well-known cytoprotective multifunctional hormone, which exerts anti-inflammatory, anti-oxidant, anti-apoptotic and pro-angiogenic effects in several tissues. The aim of this study was to evaluate the underlying mechanisms of EPO protection through the expression of the EPO/EPO receptor (EPO-R) and VEGF/VEF-R2 systems in kidneys and lungs of mice undergoing CLP-induced sepsis. Male inbred Balb/c mice were divided in three experimental groups: Sham, CLP, and CLP+EPO (3000IU/kg sc). Assessment of renal functional parameters, survival, histological examination, immunohistochemistry and/or Western blottings of EPO-R, VEGF and VEGF-R2 were performed at 18h post-surgery. Mice demonstrated AKI by elevation of serum creatinine and renal histologic damage. EPO treatment attenuates renal dysfunction and ameliorates kidney histopathologic changes. Additionally, EPO administration attenuates deleterious septic damage in renal cortex through the overexpression of EPO-R in tubular interstitial cells and the overexpression of the pair VEGF/VEGF-R2. Similarly CLP- induced ALI, as evidenced by parenchymal lung histopathologic alterations, was ameliorated through pulmonary EPO-R, VEGF and VEGF-R2 over expression suggesting and improvement in endothelial survival and functionality. This study demonstrates that EPO exerts protective effects in kidneys and lungs in mice with CLP-induced sepsis through the expression of EPO-R and the regulation of the VEGF/VEGF-R2 pair. PMID:27470403

  20. Restoration of Haemoglobin Level Using Hydrodynamic Gene Therapy with Erythropoietin Does Not Alleviate the Disease Progression in an Anaemic Mouse Model for TGFβ1-Induced Chronic Kidney Disease

    PubMed Central

    Pedersen, Lea; Wogensen, Lise; Marcussen, Niels; Cecchi, Claudia R.; Dalsgaard, Trine; Dagnæs-Hansen, Frederik

    2015-01-01

    Erythropoietin, Epo, is a 30.4 kDa glycoprotein hormone produced primarily by the fetal liver and the adult kidney. Epo exerts its haematopoietic effects by stimulating the proliferation and differentiation of erythrocytes with subsequent improved tissue oxygenation. Epo receptors are furthermore expressed in non-haematopoietic tissue and today, Epo is recognised as a cytokine with many pleiotropic effects. We hypothesize that hydrodynamic gene therapy with Epo can restore haemoglobin levels in anaemic transgenic mice and that this will attenuate the extracellular matrix accumulation in the kidneys. The experiment is conducted by hydrodynamic gene transfer of a plasmid encoding murine Epo in a transgenic mouse model that overexpresses TGF-β1 locally in the kidneys. This model develops anaemia due to chronic kidney disease characterised by thickening of the glomerular basement membrane, deposition of mesangial matrix and mild interstitial fibrosis. A group of age matched wildtype littermates are treated accordingly. After a single hydrodynamic administration of plasmid DNA containing murine EPO gene, sustained high haemoglobin levels are observed in both transgenic and wildtype mice from 7.5 ± 0.6 mmol/L to 9.4 ± 1.2 mmol/L and 10.7 ± 0.3 mmol/L to 15.5 ± 0.5 mmol/L, respectively. We did not observe any effects in the thickness of glomerular or tubular basement membrane, on the expression of different collagen types in the kidneys or in kidney function after prolonged treatment with Epo. Thus, Epo treatment in this model of chronic kidney disease normalises haemoglobin levels but has no effect on kidney fibrosis or function. PMID:26046536

  1. Efficacy & safety of continuous erythropoietin receptor activator (CERA) in treating renal anaemia in diabetic patients with chronic kidney disease not on dialysis

    PubMed Central

    Vankar, Sameer G.; Dutta, Pinaki; Kohli, H.S.; Bhansali, Anil

    2014-01-01

    Background & objectives: Chronic kidney disease (CKD) patients on dialysis regularly receive erythropoiesis stimulating agent (ESA) for treating renal anaemia during their dialysis unlike those who are not on dialysis. In such patients, the longer acting ESA can be helpful in reducing their frequent visits to the health care facilities and improving their compliance. This study was aimed to examine the efficacy and safety of continuous erythropoietin receptor activator (CERA), a long acting ESA in treating renal anaemia in patients with diabetic CKD not on dialysis. Methods: In this prospective, open-labelled, pilot clinical study, 35 adult type 2 diabetes patients with nephropathy and renal anaemia, who were not on dialysis nor receiving treatment with ESA were administered CERA subcutaneously once in two weeks for a period of 24 weeks. The primary efficacy end point was to evaluate the Hb response (Hb rise of ≥1 g/dl above the baseline or Hb level ≥11 g/dl) during the study period. Results: All patients showed Hb rise ≥1 g/dl during the study period and 80 per cent patients could achieve Hb value ≥11 g/dl. The maximum median Hb rise of 1.2 g/dl occurred in the initial 6 weeks after starting the treatment. The mean creatinine clearance (CrCl) improved by 2.8 ml/min, with mean Hb rise of 2.6 g/dl from the baseline after administration of CERA. Worsening of blood pressure (BP) control (42.9%) was the most common adverse event. Interpretation & conclusions: CERA once in two weeks was found to be efficacious in correcting anaemia in the ESA-naïve patients with diabetic nephropathy who are not on dialysis. However, regular monitoring of blood pressure is required while on treatment with CERA. PMID:24604046

  2. Intravitreal injection of erythropoietin protects against retinal vascular regression at the early stage of diabetic retinopathy in streptozotocin-induced diabetic rats.

    PubMed

    Mitsuhashi, Junko; Morikawa, Shunichi; Shimizu, Kazuhiko; Ezaki, Taichi; Yasuda, Yoshiko; Hori, Sadao

    2013-01-01

    A single intravitreal injection of erythropoietin (EPO) (50 ng/eye) or phosphate-buffered saline was administered to 5-week-old Sprague-Dawley rats at the onset of diabetes mellitus (DM) to determine and evaluate the protective effect of EPO on retinal microvessels. DM was induced by an intraperitoneal injection of streptozotocin (STZ; 60 mg/kg body weight). Morphological changes in microvessels in flat retinal preparations were evaluated during the subsequent 4 weeks by three-dimensional imaging of all blood vessels stained with fluorescein isothiocyanate-conjugated tomato lectin, following immunofluorescence techniques. No marked differences were observed in the shape or density of retinal vessels and the number of retinal capillary branches of the four groups [control, EPO, DM, and DM/EPO] up to 4 weeks after STZ administration. We also observed unique type IV collagen-positive filamentous structures that lacked both cellular elements and blood circulation (lectin-/type IV+ acellular strands), suggesting regressed vessel remnants. The lectin-/type IV+ acellular strands were detected soon after the onset of DM in the diabetic rats, and the number of these structures increased in the DM group (P < 0.01). A single intravitreal injection of EPO caused a significant reduction in the number of lectin-/type IV+ acellular strands to levels observed in the control group. However, the lectin-/type IV+ acellular strands were observed in the central area of the retina near the optic disc in all four groups. Intravitreal injection of EPO resulted in downregulation of the EPO receptor, vascular endothelial growth factor (VEGF), and VEGF receptor at 4 weeks. We conclude that EPO may play a primary role against the progression of diabetic retinopathy by reducing blood vessel degeneration at a very early disease stage. PMID:23178551

  3. Trends in the Treatment of Anemia Using Recombinant Human Erythropoietin in Patients with HIV Infection

    PubMed Central

    Sullivan, Patrick S; Hanson, Debra L; Richardson, James T; Brooks, John T

    2011-01-01

    Background: Treating anemia with erythropoietin (EPO) to hemoglobin (Hb) endpoints >11 g/dL may increase risk of serious adverse cardiovascular events. Methods: We used medical records data (1996-2003 from the Adolescent Spectrum of HIV Disease Project [ASD] and 1996-2006 from the HIV Outpatient Study [HOPS]) to describe EPO prescription patterns for mildly, moderately, or severely anemic HIV-infected patients. We calculated proportions prescribed EPO and treated to Hb>12 g/dL, and tested for trends over time. We calculated median hemoglobin at first EPO prescription, and described temporal changes using linear regression. Results: Among 37,395 patients in ASD and 7,005 patients in HOPS, EPO prescription increased over time for moderately anemic patients; for patients with severe anemia, EPO prescription increased only among ASD patients. Hb at EPO prescription decreased over time in ASD patients (median=8.5 g/dL), but not in HOPS patients (median 9.5 g/dL). Percentage of EPO-treated patients with post-treatment Hb>12 g/dL was 18.3% in ASD and stable, and was 56.7% in HOPS and increased over time (p = 0.03). Conclusions: Through 2006, EPO prescription increased over time for patients with moderate or severe anemia. Many patients treated with EPO had post-treatment Hb>12 g/dL. Based on 2011 FDA recommendations, changes in previous prescription practices will be needed. PMID:22253666

  4. Interleukin 2 and erythropoietin activate STAT5/MGF via distinct pathways.

    PubMed Central

    Wakao, H; Harada, N; Kitamura, T; Mui, A L; Miyajima, A

    1995-01-01

    Signal transducers and activators of transcription (STAT) proteins play an important role in cytokine signal transduction in conjunction with Janus kinases (JAKs). MGF/STAT5 is known as prolactin regulated STAT. Here we demonstrate that interleukin 2 (IL-2) as well as erythropoietin (EPO) stimulate STAT5 and induce tyrosine phosphorylation of STAT5. These IL-2- and EPO-induced STATs have an identical DNA binding specificity and immunoreactivity. We also show that IL-4 induces a DNA binding factor which possesses similar, but distinct, DNA binding specificity from that of STAT5 and is immunologically different from STAT5. Analysis of two EPO receptor (EPOR) transfected CTLL-2 cell lines discloses that IL-2 activates JAK1 and JAK3 as well as STAT5, while EPO stimulates STAT5 and JAK2 in EPO-responsive CTLL-2 cells (ERT/E2). On the contrary, EPO activates neither JAK2 nor STAT5 in other cell lines that failed to respond to EPO (ERT cells). EPOR and JAK2 associate with each other regardless of EPO presence in ERT/E2 cells, however, such an interaction is not present in ERT cells. Thus, EPOR and JAK2 association seems to be important for EPO responsiveness in CTLL-2 cells. Images PMID:7781605

  5. Exogenous erythropoietin provides neuroprotection of grafted dopamine neurons in a rodent model of Parkinson's disease.

    PubMed

    Kanaan, Nicholas M; Collier, Timothy J; Marchionini, Deanna M; McGuire, Susan O; Fleming, Matthew F; Sortwell, Caryl E

    2006-01-12

    Parkinson's disease (PD) is a neurodegenerative disease marked by severe loss of dopamine (DA) neurons in the nigrostriatal system, which results in depletion of striatal DA. Transplantation of embryonic ventral mesencephalic (VM) DA neurons into the striatum is a currently explored experimental treatment aimed at replacing lost DA in the nigrostriatal system, but is plagued with poor survival (5-20%) of implanted neurons. Here, we tested the ability of erythropoietin (Epo) to provide neuroprotection for embryonic day 14 (E14) VM DA neurons. Epo was tested in vitro for the ability to augment tyrosine hydroxylase-immunoreactive (TH-ir) neuron survival under normal cell culture conditions. In vitro, Epo did not increase the number of TH-ir neurons when administered at the time of plating the E14 VM cells in culture. We also tested the efficacy of Epo to enhance E14 VM transplants in vivo. Rats unilaterally lesioned with 6-hydroxydopamine received transplants that were incubated in Epo. Treatment with Epo produced significant increases in TH-ir neuron number, soma size, and staining intensity. Animals receiving Epo-treated grafts exhibited significantly accelerated functional improvements and significantly greater overall improvements from rotational asymmetry compared to control grafted rats. These data indicate that the survival of embryonic mesencephalic TH-ir neurons is increased when Epo is administered with grafted cells in a rodent model of PD. As direct neurotrophic effects of Epo were not observed in vitro, the mechanism of Epo neuroprotection remains to be elucidated. PMID:16368081

  6. Effectiveness of low-dose erythropoietin in predialysis chronic renal failure patients.

    PubMed

    Mitwalli, A; Abuaisha, H; al Wakeel, J; al Mohaya, S; Alam, A A; el Gamal, H; Fayed, H

    1993-01-01

    Recombinant human erythropoietin (rHuEpo) has been shown to be both effective and usually safe in patients with chronic renal failure who have not yet reached the stage requiring dialysis. There are, however, disturbing reports on the possibility of deterioration of the reserve renal function in association with rHuEpo therapy. Most of the published studies have used rHuEpo in doses of 50-150 U/kg three times weekly subcutaneously. An open-label trial of rHuEpo therapy was conducted on 21 patients with chronic renal failure treated sequentially at a referral hospital, rHuEpo was used in doses of 50 U/kg twice weekly for 4 weeks followed by 25 U/kg twice weekly for 8 weeks subcutaneously, a regimen substantially lower than current recommendations. This was associated with a gentle but significant increase in haematocrit (P < 0.05) and haemoglobin (P < 0.05), while the serum creatinine and the reciprocal of the creatinine remained stable, with a tendency to improve rather than worsen (P = 0.06). We conclude that there is no need to aim at a rapid increase in haematocrit and haemoglobin by rHuEpo therapy; rather a gentle increase using modest doses is both effective and safe. PMID:8272220

  7. Involvement of SH2-containing phosphotyrosine phosphatase Syp in erythropoietin receptor signal transduction pathways.

    PubMed

    Tauchi, T; Feng, G S; Shen, R; Hoatlin, M; Bagby, G C; Kabat, D; Lu, L; Broxmeyer, H E

    1995-03-10

    Erythropoietin (Epo) regulates the proliferation and differentiation of erythroid precursors. The phosphorylation of proteins at tyrosine residues is critical in the growth signaling induced by Epo. This mechanism is regulated by the activities of both protein-tyrosine kinases and protein tyrosine phosphatases. The discovery of phosphotyrosine phosphatases that contain SH2 domains suggests roles for these molecules in growth factor signaling pathways. We found that Syp, a phosphotyrosine phosphatase, widely expressed in all tissues in mammals became phosphorylated on tyrosine after stimulation with Epo in M07ER cells engineered to express high levels of human EpoR. Syp was complexed with Grb2 in Epo-stimulated M07ER cells. Direct binding between Syp and Grb2 was also observed in vitro. Furthermore, Syp appeared to bind directly to tyrosine-phosphorylated EpoR in M07ER cells. Both NH2-terminal and COOH-terminal SH2 domains of Syp, made as glutathione S-transferase fusion proteins, were able to bind to the tyrosine-phosphorylated EpoR in vitro. These results suggest that Syp may be an important signaling component downstream of the EpoR and may regulate the proliferation and differentiation of hematopoietic cells. PMID:7534299

  8. The brain erythropoietin system and its potential for therapeutic exploitation in brain disease.

    PubMed

    Hasselblatt, Martin; Ehrenreich, Hannelore; Sirén, Anna-Leena

    2006-04-01

    The discovery of the broad neuroprotective potential of erythropoietin (EPO), an endogenous hematopoietic growth factor, has opened new therapeutic avenues in the treatment of brain diseases. EPO expression in the brain is induced by hypoxia. Practically all brain cells are capable of production and release of EPO and expression of its receptor. EPO exerts multifaceted protective effects on brain cells. It protects neuronal cells from noxious stimuli such as hypoxia, excess glutamate, serum deprivation or kainic acid exposure in vitro by targeting a variety of mechanisms and involves neuronal, glial and endothelial cell functions. In rodent models of ischemic stroke, EPO reduces infarct volume and improves functional outcome, but beneficial effects have also been observed in animal models of subarachnoid hemorrhage, intracerebral hemorrhage, traumatic brain injury, and spinal cord injury. EPO has a convenient therapeutic window upon ischemic stroke and favorable pharmacokinetics. Results from first therapeutic trials in humans are promising, but will need to be validated in larger trials. The safety profile and effectiveness of EPO in a wide variety of neurologic disease models make EPO a candidate compound for a potential first-line therapeutic for neurologic emergencies. PMID:16628067

  9. Recombinant human erythropoietin (rHuEPO): more than just the correction of uremic anemia.

    PubMed

    Buemi, Michele; Aloisi, Carmela; Cavallaro, Emanuela; Corica, Francesco; Floccari, Fulvio; Grasso, Giovanni; Lasco, Antonino; Pettinato, Giuseppina; Ruello, Antonella; Sturiale, Alessio; Frisina, Nicola

    2002-01-01

    Hematopoiesis is controlled by numerous interdependent humoral and endocrine factors. Erythropoietin (EPO), a hydrophobic sialoglycoproteic hormone, plays a crucial role in the regulation of hematopoiesis, and induces proliferation, maturation and differentiation of the erythroid cell line precursors. Thanks to recombinant DNA techniques, different recombinant hormones can now be produced at low cost and in large amounts. This has led to greater understanding of the pathophysiological factors regulating hematopoiesis. This in turn, hasprompted the search for new therapeutic approaches. EPO might also be used to treat patients with different types of anemia: uremics, newborns, patients with anemia from cancer or myeloproliferative disease, thalassemia, bone marrow transplants, chronic infectious diseases. Besides erythroid cells, EPO affects other blood cell lines, such as myeloid cells, lymphocytes and megakaryocytes. It can also enhance polymorphonuclear cell phagocytosis and reduce macrophage activation, thus modulating the inflammatory process. Hematopoietic and endothelial cells probably have the same origin, and the discovery of eyrthropoietin receptors also on mesangial, myocardial and smooth muscle cells has prompted research into the non-erythropoietic function of the hormone. EPO has an important, direct, hemodynamic and vasoactive effect, which does not depend only on an increase in hematocrit and viscosity. Moreover, EPO and its receptors have been found in the brain, suggesting a role in preventing neuronal death. Finally, the recently discovered interaction between EPO and vascular endothelial growth factor (VEGF), and the ability of EPO to stimulate endothelial cell mitosis and motility may be of importance in neovascularization and wound healing. PMID:12018644

  10. Erythropoietin 2nd cerebral protection after acute injuries: a double-edged sword?

    PubMed

    Velly, L; Pellegrini, L; Guillet, B; Bruder, N; Pisano, P

    2010-12-01

    Over the past 15 years, a large body of evidence has revealed that the cytokine erythropoietin exhibits non-erythropoietic functions, especially tissue-protective effects. The discovery of EPO and its receptors in the central nervous system and the evidence that EPO is made locally in response to injury as a protective factor in the brain have raised the possibility that recombinant human EPO (rhEPO) could be administered as a cytoprotective agent after acute brain injuries. This review highlights the potential applications of rhEPO as a neuroprotectant in experimental and clinical settings such as ischemia, traumatic brain injury, and subarachnoid and intracerebral hemorrhage. In preclinical studies, EPO prevented apoptosis, inflammation, and oxidative stress induced by injury and exhibited strong neuroprotective and neurorestorative properties. EPO stimulates vascular repair by facilitating endothelial progenitor cell migration into the brain and neovascularisation, and it promotes neurogenesis. In humans, small clinical trials have shown promising results but large prospective randomized studies failed to demonstrate a benefit of EPO for brain protection and showed unwanted side effects, especially thrombotic complications. Recently, regions have been identified within the EPO molecule that mediate tissue protection, allowing the development of non-erythropoietic EPO variants for neuroprotection conceptually devoid of side effects. The efficacy and the safety profile of these new compounds are still to be demonstrated to obtain, in patients, the benefits observed in experimental studies. PMID:20732352

  11. Glycosylation characterization of recombinant human erythropoietin produced in glycoengineered Pichia pastoris by mass spectrometry.

    PubMed

    Gong, Bing; Burnina, Irina; Stadheim, Terrance A; Li, Huijuan

    2013-12-01

    Glycosylation plays a critical role in the in vivo efficacy of both endogenous and recombinant erythropoietin (EPO). Using mass spectrometry, we characterized the N-/O-linked glycosylation of recombinant human EPO (rhEPO) produced in glycoengineered Pichia pastoris and compared with the glycosylation of Chinese hamster ovary (CHO) cell-derived rhEPO. While the three predicted N-linked glycosylation sites (Asn24, Asn38 and Asn83) showed complete site occupancy, Pichia- and CHO-derived rhEPO showed distinct differences in the glycan structures with the former containing sialylated bi-antennary glycoforms and the latter containing a mixture of sialylated bi-, tri- and tetra-antennary structures. Additionally, the N-linked glycans from Pichia-produced rhEPO were similar across all three sites. A low level of O-linked mannosylation was detected on Pichia-produced rhEPO at position Ser126, which is also the O-linked glycosylation site for endogenous human EPO and CHO-derived rhEPO. In summary, the mass spectrometric analyses revealed that rhEPO derived from glycoengineered Pichia has a highly uniform bi-antennary N-linked glycan composition and preserves the orthogonal O-linked glycosylation site present on endogenous human EPO and CHO-derived rhEPO. PMID:24338886

  12. Erythropoietin exerts direct immunomodulatory effects on the cytokine production by activated human T-lymphocytes.

    PubMed

    Todosenko, N M; Shmarov, V A; Malashchenko, V V; Meniailo, M E; Melashchenko, O B; Gazatova, N D; Goncharov, A G; Seledtsov, V I

    2016-07-01

    The effect of erythropoietin-β (Epo-β) on the functional profile of activated human T-lymphocytes remains largely unknown, which hinders clinical application of Epo as an immunomodulatory agent. We studied the direct impact of Epo on the activation status of human T lymphocytes following activation by particles loaded with antibodies (Abs) against human CD2, CD3, and CD28. T cell activation was assessed by the surface expression of CD38 activation marker. Epo did not significantly affect activation status of both CD4(+) and CD4(-) T cells, as well as of naive (CD45RA(+)CD197(+)), central memory (CD45RA(-)CD197(+)), effector memory (CD45RA(-)CD197(-)), and terminally-differentiated (CD45RA(+)CD197(-)) T cells. However, Epo markedly augmented production of IL-2, IL-4 and IL10 by activated T cells with concomitant reduction in IFN-γ secretion. Taken together, our data showed that Epo could directly down-regulate pro-inflammatory T cell responses without affecting T cell activation status. PMID:27208431

  13. Carbamylated erythropoietin protects the kidneys from ischemia-reperfusion injury without stimulating erythropoiesis

    SciTech Connect

    Imamura, Ryoichi; Isaka, Yoshitaka . E-mail: isaka@att.med.osaka-u.ac.jp; Ichimaru, Naotsugu; Takahara, Shiro; Okuyama, Akihiko

    2007-02-16

    Several studies have shown that erythropoietin (EPO) can protect the kidneys from ischemia-reperfusion injury and can raise the hemoglobin (Hb) concentration. Recently, the EPO molecule modified by carbamylation (CEPO) has been identified and was demonstrated to be able to protect several organs without increasing the Hb concentration. We hypothesized that treatment with CEPO would protect the kidneys from tubular apoptosis and inhibit subsequent tubulointerstitial injury without erythropoiesis. The therapeutic effect of CEPO was evaluated using a rat ischemia-reperfusion injury model. Saline-treated kidneys exhibited increased tubular apoptosis with interstitial expression of {alpha}-smooth muscle actin ({alpha}-SMA), while EPO treatment inhibited tubular apoptosis and {alpha}-SMA expression to some extent. On the other hand, CEPO-treated kidneys showed minimal tubular apoptosis with limited expression of {alpha}-SMA. Moreover, CEPO significantly promoted tubular epithelial cell proliferation without erythropoiesis. In conclusion, we identified a new therapeutic approach using CEPO to protect kidneys from ischemia-reperfusion injury.

  14. Sexual dimorphism of erythropoietin-degrading activity in mouse submaxillary gland extracts

    SciTech Connect

    Tam, R.C.; Bedwell, J.; Cotes, P.M.; Reed, P.J.

    1989-02-01

    In the course of investigation of submaxillary gland (SG) extracts from mice as a possible source of extra-renal erythropoietin (EPO) we have extended our previous studies of the degradation of EPO added to SG and kidney extracts. The discrepancy between estimates of EPO obtained with two radioimmunoassays (RIAs) differing only in time of incubation with /sup 125/I-labeled recombinant human EPO (r-HuEPO) (20 h and 72 h) has been used as an indicator of tracer degradation occurring during the RIA incubation. Degradation of /sup 125/I-labeled r-HuEPO by male mouse SG extracts was not prevented by addition of inhibitors of monodeiodinases or proteolytic enzymes. Degradation of added /sup 125/I-labeled r-HuEPO was monitored using gel filtration fast protein liquid chromatography. SG extracts from male and androgen-treated female mice both degraded tracer r-HuEPO to a greater extent than extracts from female mice. Tracer degradation increased with time and tissue concentration and could give rise to invalid estimates of EPO in SG extracts by RIA. In contrast, none of the kidney extracts degraded r-HuEPO. Recovery of mouse serum EPO added to and incubated with male mouse SG or kidney extracts was 13% and 93%, respectively, estimated by RIA under conditions that excluded degradation of the RIA tracer antigen.

  15. Measurement of sialic acid content is insufficient to assess bioactivity of recombinant human erythropoietin.

    PubMed

    Yanagihara, Shigehiro; Taniguchi, Yuya; Hosono, Mareto; Yoshioka, Eiji; Ishikawa, Rika; Shimada, Yoshihiro; Kadoya, Toshihiko; Kutsukake, Kazuhiro

    2010-01-01

    Assessment of biological potency and its comparison with clinical effects are important in the quality control of therapeutic glycoproteins. Animal models are usually used for evaluating bioactivity of these compounds. However, alternative methods are required to simplify the bioassay and avoid ethical issues associated with animal studies. Negatively charged sialic acid residues are known to be critical for in vivo bioactivity of recombinant human erythropoietin (rhEPO). In this study, we used capillary zone electrophoresis, a charge-based separation method, to estimate the sialic acid content for predicting in vivo bioactivity of rhEPO. In vivo bioactivities of rhEPO subfractions were measured and compared with sialylation levels. The results obtained indicated that in vivo bioactivity of rhEPO is not simply correlated with the sialylation level, which suggests that it is difficult to predict biological potency from the sialic acid content alone. N-Glycan moieties as well as sialic acid residues may have a significant impact on in vivo bioactivity of rhEPO. PMID:20823580

  16. Resistance to Recombinant Human Erythropoietin Therapy in a Rat Model of Chronic Kidney Disease Associated Anemia

    PubMed Central

    Garrido, Patrícia; Ribeiro, Sandra; Fernandes, João; Vala, Helena; Rocha-Pereira, Petronila; Bronze-da-Rocha, Elsa; Belo, Luís; Costa, Elísio; Santos-Silva, Alice; Reis, Flávio

    2015-01-01

    This study aimed to elucidate the mechanisms explaining the persistence of anemia and resistance to recombinant human erythropoietin (rHuEPO) therapy in a rat model of chronic kidney disease (CKD)-associated anemia with formation of anti-rHuEPO antibodies. The remnant kidney rat model of CKD induced by 5/6 nephrectomy was used to test a long-term (nine weeks) high dose of rHuEPO (200 UI/kg bw/week) treatment. Hematological and biochemical parameters were evaluated as well as serum and tissue (kidney, liver and/or duodenum) protein and/or gene expression of mediators of erythropoiesis, iron metabolism and tissue hypoxia, inflammation, and fibrosis. Long-term treatment with a high rHuEPO dose is associated with development of resistance to therapy as a result of antibodies formation. In this condition, serum EPO levels are not deficient and iron availability is recovered by increased duodenal absorption. However, erythropoiesis is not stimulated, and the resistance to endogenous EPO effect and to rHuEPO therapy results from the development of a hypoxic, inflammatory and fibrotic milieu in the kidney tissue. This study provides new insights that could be important to ameliorate the current therapeutic strategies used to treat patients with CKD-associated anemia, in particular those that become resistant to rHuEPO therapy. PMID:26712750

  17. Sorting of growth hormone-erythropoietin fusion proteins in rat salivary glands

    SciTech Connect

    Samuni, Yuval Zheng Changyu; Cawley, Niamh X.; Cotrim, Ana P.; Loh, Y. Peng; Baum, Bruce J.

    2008-08-15

    Neuroendocrine and exocrine cells secrete proteins in either a constitutive manner or via the regulated secretory pathway (RSP), but the specific sorting mechanisms involved are not fully understood. After gene transfer to rat salivary glands, the transgenic model proteins human growth hormone (hGH) and erythropoietin (hEpo) are secreted primarily into saliva (RSP; exocrine) and serum (constitutive; endocrine), respectively. We hypothesized that fusion of hGH at either the C-terminus or the N-terminus of hEpo would re-direct hEpo from the bloodstream into saliva. We constructed and expressed two fusion proteins, hEpo-hGH and hGH-hEpo, using serotype 5-adenoviral vectors, and delivered them to rat submandibular glands in vivo via retroductal cannulation. Both the hEpo-hGH and hGH-hEpo fusion proteins, but not hEpo alone, were secreted primarily into saliva (p < 0.0001 and p = 0.0083, respectively). These in vivo studies demonstrate for the first time that hGH, in an N- as well as C-terminal position, influences the secretion of a constitutive pathway protein.

  18. Calmodulin physically interacts with the erythropoietin receptor and enhances Jak2-mediated signaling

    SciTech Connect

    Kakihana, Kazuhiko; Yamamoto, Masahide; Iiyama, Mitsuko; Miura, Osamu . E-mail: miura.hema@tmd.ac.jp

    2005-09-23

    Stimulation of the erythropoietin receptor (EpoR) induces a transient increase in intracellular Ca{sup 2+} level as well as activation of the Jak2 tyrosine kinase to stimulate various downstream signaling pathways. Here, we demonstrate that the universal Ca{sup 2+} receptor calmodulin (CaM) binds EpoR in a Ca{sup 2+}-dependent manner in vitro. Binding studies using various EpoR mutants in hematopoietic cells showed that CaM binds the membrane-proximal 65-amino-acid cytoplasmic region (amino acids 258-312) of EpoR that is critical for activation of Jak2-mediated EpoR signaling. Structurally unrelated CaM antagonists, W-13 and CMZ, inhibited activation of Jak2-mediated EpoR signaling pathways, whereas W-12, a W-13 analog, did not show any significant inhibitory effect. Moreover, overexpression of CaM augmented Epo-induced tyrosine phosphorylation of the EpoR. W-13, but not W-12, also inhibited Epo-induced proliferation and survival. Together, these results indicate that CaM binds to the membrane-proximal EpoR cytoplasmic region and plays an essential role in activation of Jak2-mediated EpoR signaling.

  19. Erythropoietin, a Novel Versatile Player Regulating Energy Metabolism beyond the Erythroid System

    PubMed Central

    Wang, Li; Di, Lijun; Noguchi, Constance Tom

    2014-01-01

    Erythropoietin (EPO), the required cytokine for promoting the proliferation and differentiation of erythroid cells to stimulate erythropoiesis, has been reported to act as a pleiotropic cytokine beyond hematopoietic system. The various activities of EPO are determined by the widespread distribution of its cell surface EPO receptor (EpoR) in multiple tissues including endothelial, neural, myoblasts, adipocytes and other cell types. EPO activity has been linked to angiogenesis, neuroprotection, cardioprotection, stress protection, anti-inflammation and especially the energy metabolism regulation that is recently revealed. The investigations of EPO activity in animals and the expression analysis of EpoR provide more insights on the potential of EPO in regulating energy metabolism and homeostasis. The findings of crosstalk between EPO and some important energy sensors and the regulation of EPO in the cellular respiration and mitochondrial function further provide molecular mechanisms for EPO activity in metabolic activity regulation. In this review, we will summarize the roles of EPO in energy metabolism regulation and the activity of EPO in tissues that are tightly associated with energy metabolism. We will also discuss the effects of EPO in regulating oxidative metabolism and mitochondrial function, the interactions between EPO and important energy regulation factors, and the protective role of EPO from stresses that are related to metabolism, providing a brief overview of previously less appreciated EPO biological function in energy metabolism and homeostasis. PMID:25170305

  20. Erythropoietin Exacerbates Inflammation and Increases the Mortality of Histoplasma capsulatum-Infected Mice

    PubMed Central

    Locachevic, Gisele Aparecida; Pereira, Priscilla Aparecida Tartari; Secatto, Adriana; Fontanari, Caroline; Galvão, Alyne Fávero; Prado, Morgana Kelly Borges; Zoccal, Karina Furlani; Petta, Tânia; Moraes, Luiz Alberto Beraldo; Ramos, Simone Gusmão; de Castro, Fabíola Attie; Sorgi, Carlos Artério; Faccioli, Lúcia Helena

    2015-01-01

    Erythropoietin (EPO) is a key hormone involved in red blood cell formation, but its effects on nonerythroid cells, such as macrophages, have not been described. Macrophages are key cells in controlling histoplasmosis, a fungal infection caused by Histoplasma capsulatum (Hc). Considering that little is known about EPO's role during fungal infections and its capacity to activate macrophages, in this study we investigated the impact of EPO pretreatment on the alveolar immune response during Hc infection. The consequence of EPO pretreatment on fungal infection was determined by evaluating animal survival, fungal burden, activation of bronchoalveolar macrophages, inflammatory mediator release, and lung inflammation. Pretreatment with EPO diminished mononuclear cell numbers, increased the recruitment of F4/80+/CD80+ and F4/80+/CD86+ cells to the bronchoalveolar space, induced higher production of IFN-γ, IL-6, MIP-1α, MCP-1, and LTB4, reduced PGE2 concentration, and did not affect fungal burden. As a consequence, we observed an increase in lung inflammation with extensive tissue damage that might account for augmented mouse mortality after infection. Our results demonstrate for the first time that EPO treatment has a deleterious impact on lung immune responses during fungal infection. PMID:26538835

  1. Recombinant human erythropoietin-induced erythropoiesis regulates hepcidin expression over iron status in the rat.

    PubMed

    Ribeiro, Sandra; Garrido, Patrícia; Fernandes, João; Rocha, Susana; Rocha-Pereira, Petronila; Costa, Elísio; Belo, Luís; Reis, Flávio; Santos-Silva, Alice

    2016-07-01

    The crosstalk between several factors controlling hepcidin synthesis is poorly clarified for different physiological and pathological conditions. Our aim was to study the impact of increasing recombinant human erythropoietin (rHuEPO) doses on erythropoiesis, iron metabolism and hepcidin, using a rat model. Male Wistar rats were divided in 5 groups: control (vehicle) and rHuEPO-treated groups (100, 200, 400 and 600IU/kgbody weight/week), 3 times per week, during 3weeks. Hematological and iron data were evaluated. The expression of several genes involved in iron metabolism was analyzed by qPCR. Liver hepcidin protein was evaluated by Western Blot. The rHuEPO treatment induced erythropoiesis and increased transferrin saturation (TSAT) in a dose dependent manner. Tf receptor 2 (TfR2), hemojuvelin (HJV) and bone morphogenetic protein 6 (BMP6) were up-regulated in rHuEPO200 group. Matriptase-2 was down-regulated in rHuEPO200 group, and up-regulated in the other rHuEPO-treated groups. Hepcidin synthesis was increased in rHuEPO200 group, and repressed in the rHuEPO400 and rHuEPO600 groups. Our study showed that when a high erythropoietic stimulus occurs, hepcidin synthesis is mainly regulated by TSAT; however, when the erythropoiesis rate reaches a specific threshold, extramedullary hematopoiesis is triggered, and the control of hepcidin synthesis is switched to matriptase-2, thus inhibiting hepcidin synthesis. PMID:27282570

  2. Erythropoietin-driven proliferation of cells with mutations in the tumor suppressor gene TSC2

    PubMed Central

    Ikeda, Yoshihiko; Taveira-DaSilva, Angelo M.; Pacheco-Rodriguez, Gustavo; Steagall, Wendy K.; El-Chemaly, Souheil; Gochuico, Bernadette R.; May, Rose M.; Hathaway, Olanda M.; Li, Shaowei; Wang, Ji-an; Darling, Thomas N.; Stylianou, Mario

    2011-01-01

    Lymphangioleiomyomatosis (LAM) is characterized by cystic lung destruction, resulting from proliferation of smooth-muscle-like cells, which have mutations in the tumor suppressor genes TSC1 or TSC2. Among 277 LAM patients, severe disease was associated with hypoxia and elevated red blood cell indexes that accompanied reduced pulmonary function. Because high red cell indexes could result from hypoxemia-induced erythropoietin (EPO) production, and EPO is a smooth muscle cell mitogen, we investigated effects of EPO in human cells with genetic loss of tuberin function, and we found that EPO increased proliferation of human TSC2−/−, but not of TSC2+/−, cells. A discrete population of cells grown from explanted lungs was characterized by the presence of EPO receptor and loss of heterozygosity for TSC2, consistent with EPO involvement. In LAM cells from lung nodules, EPO was localized to the extracellular matrix, supporting evidence for activation of an EPO-driven signaling pathway. Although the high red cell mass of LAM patients could be related to advanced disease, we propose that EPO, synthesized in response to episodic hypoxia, may increase disease progression by enhancing the proliferation of LAM cells. PMID:21036916

  3. Effects of Erythropoietin in Murine-Induced Pluripotent Cell-Derived Panneural Progenitor Cells

    PubMed Central

    Offen, Nils; Flemming, Johannes; Kamawal, Hares; Ahmad, Ruhel; Wolber, Wanja; Geis, Christian; Zaehres, Holm; Schöler, Hans R; Ehrenreich, Hannelore; Müller, Albrecht M; Sirén, Anna-Leena

    2013-01-01

    Induced cell fate changes by reprogramming of somatic cells offers an efficient strategy to generate autologous pluripotent stem (iPS) cells from any adult cell type. The potential of iPS cells to differentiate into various cell types is well established, however the efficiency to produce functional neurons from iPS cells remains modest. Here, we generated panneural progenitor cells (pNPCs) from mouse iPS cells and investigated the effect of the neurotrophic growth factor erythropoietin (EPO) on their survival, proliferation and neurodifferentiation. Under neural differentiation conditions, iPS-derived pNPCs gave rise to microtubule-associated protein-2 positive neuronlike cells (34% to 43%) and platelet-derived growth factor receptor positive oligodendrocytelike cells (21% to 25%) while less than 1% of the cells expressed the astrocytic marker glial fibrillary acidic protein. Neuronlike cells generated action potentials and developed active presynaptic terminals. The pNPCs expressed EPO receptor (EPOR) mRNA and displayed functional EPOR signaling. In proliferating cultures, EPO (0.1–3 U/mL) slightly improved pNPC survival but reduced cell proliferation and neurosphere formation in a concentration-dependent manner. In differentiating cultures EPO facilitated neurodifferentiation as assessed by the increased number of β-III-tubulin positive neurons. Our results show that EPO inhibits iPS pNPC self-renewal and promotes neurogenesis. PMID:24408113

  4. Otoprotective effects of erythropoietin on Cdh23erl/erl mice

    PubMed Central

    Han, Fengchan; Yu, Heping; Zheng, Tihua; Ma, Xiufang; Zhao, Xin; Li, Ping; Le, Linda; Su, Yipeng; Zheng, Qing Yin

    2013-01-01

    The Cdh23erl/erl mice are a novel mouse model for DFNB12 and characterized by progressive hearing loss. In this study, erythropoietin (EPO) was given to the Cdh23erl/erl mice by intraperitoneally injection every other day from P7 for seven weeks. PBS treated or untreated Cdh23erl/erl mice were used as controls. Auditory-evoked brainstem response (ABR) thresholds and distortion product oto-acoustic emission (DPOAE) were measured in the mouse groups at age of 4, 6 and 8 weeks. The results show that EPO can significantly decrease the ABR thresholds in the Cdh23erl/erl mice as compared with those of the untreated mice at stimulus frequencies of click, 8-, 16- and 32- kHz at three time points. Meanwhile, DPOAE amplitudes in the EPO treated Cdh23erl/erl mouse group were significantly higher than those of the untreated groups at f2 frequency of 15,383 Hz at the three time points. Furthermore, the mean percentage of OHC loss at middle through basal turns of cochleae was significantly lower in EPO-treated Cdh23erl/erl mice than in the untreated mice (P < 0.05). This is the first report that EPO acts as an otoprotectant in a DFNB12 mouse model with progressive hearing loss. PMID:23384607

  5. Methylprednisolone neutralizes the beneficial effects of erythropoietin in experimental spinal cord injury

    PubMed Central

    Gorio, Alfredo; Madaschi, Laura; Di Stefano, Barbara; Carelli, Stephana; Di Giulio, Anna Maria; De Biasi, Silvia; Coleman, Thomas; Cerami, Anthony; Brines, Michael

    2005-01-01

    Inflammation plays a major pathological role in spinal cord injury (SCI). Although antiinflammatory treatment using the glucocorticoid methyprednisolone sodium succinate (MPSS) improved outcomes in several multicenter clinical trials, additional clinical experience suggests that MPSS is only modestly beneficial in SCI and poses a risk for serious complications. Recent work has shown that erythropoietin (EPO) moderates CNS tissue injury, in part by reducing inflammation, limiting neuronal apoptosis, and restoring vascular autoregulation. We determined whether EPO and MPSS act synergistically in SCI. Using a rat model of contusive SCI, we compared the effects of EPO [500-5,000 units/kg of body weight (kg-bw)] with MPSS (30 mg/kg-bw) for proinflammatory cytokine production, histological damage, and motor function at 1 month after a compression injury. Although high-dose EPO and MPSS suppressed proinflammatory cytokines within the injured spinal cord, only EPO was associated with reduced microglial infiltration, attenuated scar formation, and sustained neurological improvement. Unexpectedly, coadministration of MPSS antagonized the protective effects of EPO, even though the EPO receptor was up-regulated normally after injury. These data illustrate that the suppression of proinflammatory cytokines alone does not necessarily prevent secondary injury and suggest that glucocorticoids should not be coadministered in clinical trials evaluating the use of EPO for treatment of SCI. PMID:16260722

  6. Recombinant human erythropoietin α modulates the effects of radiotherapy on colorectal cancer microvessels

    PubMed Central

    Ceelen, W; Boterberg, T; Smeets, P; Van Damme, N; Demetter, P; Zwaenepoel, O; Cesteleyn, L; Houtmeyers, P; Peeters, M; Pattyn, P

    2007-01-01

    Recent data suggest that recombinant human erythropoietin (rhEPO) modulates tumour growth and therapy response. The purpose of the present study was to examine the modulation of radiotherapy (RT) effects on tumour microvessels by rhEPO in a rat colorectal cancer model. Before and after 5 × 5 Gy of RT, dynamic contrast-enhanced -magnetic resonance imaging was performed and endothelial permeability surface product (PS), plasma flow (F), and blood volume (V) were modelled. Imaging was combined with pO2 measurements, analysis of microvessel density, microvessel diameter, microvessel fractal dimension, and expression of vascular endothelial growth factor (VEGF), hypoxia-inducible factor-1 α (HIF-1α), Bax, and Bcl-2. We found that RT significantly reduced PS and V in control rats, but not in rhEPO-treated rats, whereas F was unaffected by RT. Oxygenation was significantly better in rhEPO-treated animals, and RT induced a heterogeneous reoxygenation in both groups. Microvessel diameter was significantly larger in rhEPO animals, whereas VEGF expression was significantly lower in the rhEPO group. No differences were observed in HIF-1α, Bax, or Bcl-2 expression. We conclude that rhEPO results in spatially heterogeneous modulation of RT effects on tumour microvessels. Direct effects of rhEPO on neoplastic endothelium are likely to explain these findings in addition to indirect effects induced by increased oxygenation. PMID:17299396

  7. Safety and angiogenic effects of systemic gene delivery of a modified erythropoietin

    PubMed Central

    de Lucas Cerrillo, Ana; Bond, Wesley S.; Rex, Tonia S.

    2015-01-01

    Erythropoietin (EPO) is critical for red blood cell production and is also an effective neuroprotective agent. However, it may also contribute to pathological angiogenesis. Here we investigate the angiogenic potential of EPO and a mutant form with attenuated erythropoietic activity, EPO-R76E, on primary human retinal microvascular endothelial cells (HRMEC) and in the adult retina. Assays of death, proliferation, and tube-formation were performed on HRMECs exposed to EPO, EPO-R76E, or media alone. Postnatal day 9 wild-type mice were injected intramuscularly with adeno-associated virus vectors expressing either enhanced green fluorescent protein or EpoR76E. At 3 months, levels of EPO-R76E in the eye were quantified, and the health of the retinal vasculature was assessed by fluorescein angiography and isolectin immunolabeling. Immunohistochemistry, histology, and electroretinogram assessments were performed as measures of retinal health. Neither EPO nor EPO-R76E induced proliferation or tube-formation in HRMEC under the conditions used. EPO-R76E decreased HRMEC death in a dose-dependent manner. Long-term systemic gene delivery of EPO-R76E was safe in terms of retinal vasculature, histology, and the electroretinogram in vivo. Our results show that EPO-R76E can block HRMEC death, consistent with its role in erythropoiesis and neuroprotection. In addition, long-term gene delivery of EPO-R76E is safe in the adult retina. PMID:25716531

  8. Sustained release formulation of erythropoietin using hyaluronic acid hydrogels crosslinked by Michael addition.

    PubMed

    Hahn, Sei Kwang; Oh, Eun Ju; Miyamoto, Hajime; Shimobouji, Tsuyoshi

    2006-09-28

    A novel sustained release formulation of erythropoietin (EPO) was successfully developed using hyaluronic acid (HA) hydrogels crosslinked by Michael addition. Adipic acid dihydrazide grafted HA (HA-ADH) was prepared and then modified into methacrylated HA (HA-MA). (1)H NMR analysis showed that the degrees of HA-ADH and HA-MA modification were 69 and 29 mol%, respectively. Using the specific crosslinkers of dithiothreitol (DTT) and peptide linker, EPO was loaded during HA-MA hydrogel preparation by Michael addition chemistry between thiol and methacrylate groups. The amount of EPO recovered from both hydrogels after degradation with hyaluronidase SD (HAse SD) was about 90%. The crosslinking reaction with peptide linker (GCYKNRDCG) was faster than that with DTT. The gelation time was about 30 min for peptide linker and 180 min for DTT. In vitro release test of EPO from HA-MA hydrogel at 37 degrees C showed that EPO was released rapidly for 2 days and then slowly up to 7 days from HA-MA hydrogels. The released EPO appeared to be intact from the analysis with RP-HPLC. According to in vivo release test of EPO from HA-MA hydrogels crosslinked with the peptide linker in Sprague-Dawley (SD) rats, elevated plasma concentration of EPO was maintained up to 7 days. There was no adverse effect during and after the in vivo tests. PMID:16781096

  9. Erythropoietin, but not the correction of anemia alone, protects from chronic kidney allograft injury.

    PubMed

    Cassis, Paola; Gallon, Lorenzo; Benigni, Ariela; Mister, Marilena; Pezzotta, Anna; Solini, Samantha; Gagliardini, Elena; Cugini, Daniela; Abbate, Mauro; Aiello, Sistiana; Rocchetta, Federica; Scudeletti, Pierangela; Perico, Norberto; Noris, Marina; Remuzzi, Giuseppe

    2012-05-01

    Anemia can contribute to chronic allograft injury by limiting oxygen delivery to tissues, particularly in the tubulointerstitium. To determine mechanisms by which erythropoietin (EPO) prevents chronic allograft injury we utilized a rat model of full MHC-mismatched kidney transplantation (Wistar Furth donor and Lewis recipients) with removal of the native kidneys. EPO treatment entirely corrected post-transplant anemia. Control rats developed progressive proteinuria and graft dysfunction, tubulointerstitial damage, inflammatory cell infiltration, and glomerulosclerosis, all prevented by EPO. Normalization of post-transplant hemoglobin levels by blood transfusions, however, had no impact on chronic allograft injury, indicating that EPO-mediated graft protection went beyond the correction of anemia. Compared to syngeneic grafts, control allografts had loss of peritubular capillaries, higher tubular apoptosis, tubular and glomerular oxidative injury, and reduced expression of podocyte nephrin; all prevented by EPO treatment. The effects of EPO were associated with preservation of intragraft expression of angiogenic factors, upregulation of the anti-apoptotic factor p-Akt in tubuli, and increased expression of Bcl-2. Inhibition of p-Akt by Wortmannin partially antagonized the effect of EPO on allograft injury and tubular apoptosis, and prevented EPO-induced Bcl-2 upregulation. Thus non-erythropoietic derivatives of EPO may be useful to prevent chronic renal allograft injury. PMID:22318420

  10. Erythropoietin protects myocardin-expressing cardiac stem cells against cytotoxicity of tumor necrosis factor-{alpha}

    SciTech Connect

    Madonna, Rosalinda; Shelat, Harnath; Xue, Qun; Willerson, James T.; De Caterina, Raffaele; Geng, Yong-Jian

    2009-10-15

    Cardiac stem cells are vulnerable to inflammation caused by infarction or ischemic injury. The growth factor, erythropoietin (Epo), ameliorates the inflammatory response of the myocardium to ischemic injury. This study was designed to assess the role of Epo in regulation of expression and activation of the cell death-associated intracellular signaling components in cardiac myoblasts stimulated with the proinflammatory cytokine tumor necrosis factor (TNF)-{alpha}. Cardiac myoblasts isolated from canine embryonic hearts characterized by expression of myocardin A, a promyogenic transcription factor for cardiovascular muscle development were pretreated with Epo and then exposed to TNF-{alpha}. Compared to untreated cells, the Epo-treated cardiac myoblasts exhibited better morphology and viability. Immunoblotting revealed lower levels of active caspase-3 and reductions in iNOS expression and NO production in Epo-treated cells. Furthermore, Epo pretreatment reduced nuclear translocation of NF-{kappa}B and inhibited phosphorylation of inhibitor of kappa B (I{kappa}B) in TNF-{alpha}-stimulated cardiac myoblasts. Thus, Epo protects cardiac myocyte progenitors or myoblasts against the cytotoxic effects of TNF-{alpha} by inhibiting NF-{kappa}B-mediated iNOS expression and NO production and by preventing caspase-3 activation.

  11. Evaluation of protein N-glycosylation in 2-DE: Erythropoietin as a study case.

    PubMed

    Llop, Esther; Gallego, Ricardo Gutiérrez; Belalcazar, Viviana; Gerwig, Gerrit J; Kamerling, Johannis P; Segura, Jordi; Pascual, José A

    2007-12-01

    The structure, function, and physico-chemical properties of many proteins are determined by PTM, being glycosylation the most complex. This study describes how a combination of typical proteomics methods (2-DE) combines with glycomics strategies (HPLC, MALDI-TOF-MS, exoglycosidases sequencing) to yield comprehensive data about single spot-microheterogeneity, providing meaningful information for the detection of disease markers, pharmaceutical industry, antidoping control, etc. Recombinant erythropoietin and its hyperglycosylated analogue darbepoetin-alpha were chosen as showcases because of their relevance in these fields and the analytical challenge they represent. The combined approach yielded good results in terms of sample complexity (mixture glycoforms), reproducibility, sensitivity ( approximately 25 pmoles of glycoprotein/spot), and identification of the underlying protein. Heterogeneity was present in all spots but with a clear tendency; spots proximal to the anode contained the highest amount of tetra-antennary tetra-sialylated glycans, whereas the opposite occurred for spots proximal to the cathode with the majority of the structures being undersialylated. Spot microheterogeneity proved a consequence of the multiple glycosylation sites as they contributed directly to the number of possibilities to account for a discrete charge in a single spot. The interest of this combined glycoproteomics method resides in the efficiency for detecting and quantifying subtle dissimilarities originated from altered ratios of identical glycans including N-acetyl-lactosamine repeats, acetylation, or antigenic epitopes, that do not significantly contribute to the electrophoretic mobility, but affect the glycan microheterogeneity and the potential underlying related functionality. PMID:17973294

  12. Undifferentiated sarcoma of the liver: a case study of an erythropoietin-secreting tumor.

    PubMed

    Lin, JoAnn M; Heath, Jonathon E; Twaddell, William S; Castellani, Rudy J

    2014-09-01

    Undifferentiated embryonal sarcoma of the liver (UESL) is an uncommon hepatic tumor usually found in children, with rare cases reported in adults. We present a case of a 53-year-old woman with an undifferentiated sarcoma of the liver (USL), which resembles UESL, who initially presented with a markedly elevated hematocrit (61.2%). Cytogenetic studies for polycythemia vera were negative, but the patient's erythropoietin (EPO) was elevated. A computed tomography scan and subsequent partial hepatectomy revealed a well-circumscribed, partially cystic mass in the right lobe of the liver measuring 34 cm. Following surgery, the patient's EPO level and hematocrit dropped to within normal range and remained so for 1 year, at which point it rose again. A subsequent magnetic resonance imaging scan showed a liver mass at the previous resection margin, consistent with a recurrence. In this case study, we describe the first reported USL resembling an UESL that secretes EPO, which was a useful marker of tumor recurrence. PMID:24038117

  13. Renal epithelium regulates erythropoiesis via HIF-dependent suppression of erythropoietin.

    PubMed

    Farsijani, Navid M; Liu, Qingdu; Kobayashi, Hanako; Davidoff, Olena; Sha, Feng; Fandrey, Joachim; Ikizler, T Alp; O'Connor, Paul M; Haase, Volker H

    2016-04-01

    The adult kidney plays a central role in erythropoiesis and is the main source of erythropoietin (EPO), an oxygen-sensitive glycoprotein that is essential for red blood cell production. Decreases of renal pO2 promote hypoxia-inducible factor 2-mediated (HIF-2-mediated) induction of EPO in peritubular interstitial fibroblast-like cells, which serve as the cellular site of EPO synthesis in the kidney. It is not clear whether HIF signaling in other renal cell types also contributes to the regulation of EPO production. Here, we used a genetic approach in mice to investigate the role of renal epithelial HIF in erythropoiesis. Specifically, we found that HIF activation in the proximal nephron via induced inactivation of the von Hippel-Lindau tumor suppressor, which targets the HIF-α subunit for proteasomal degradation, led to rapid development of hypoproliferative anemia that was associated with a reduction in the number of EPO-producing renal interstitial cells. Moreover, suppression of renal EPO production was associated with increased glucose uptake, enhanced glycolysis, reduced mitochondrial mass, diminished O2 consumption, and elevated renal tissue pO2. Our genetic analysis suggests that tubulointerstitial cellular crosstalk modulates renal EPO production under conditions of epithelial HIF activation in the kidney. PMID:26927670

  14. Erythropoietin production in neuroepithelial and neural crest cells during primitive erythropoiesis.

    PubMed

    Suzuki, Norio; Hirano, Ikuo; Pan, Xiaoqing; Minegishi, Naoko; Yamamoto, Masayuki

    2013-01-01

    Erythropoietin (Epo) supports both primitive erythropoiesis in the yolk sac and definitive erythropoiesis in the fetal liver and bone marrow. Although definitive erythropoiesis requires kidney- and liver-secreted Epo, it is unclear which cells produce Epo for primitive erythropoiesis. Here we find neural Epo-producing (NEP) cells in mid-gestational stage embryos using mouse lines that express green fluorescent protein (GFP) under the Epo gene regulation. In these mice, GFP is expressed exclusively in a subpopulation of neural and neural crest cells at embryonic day 9.0 when Epo-deficient embryos exhibit abnormalities in primitive erythropoiesis. The GFP-positive NEP cells express Epo mRNA and the ex vivo culture of embryonic day 8.5 neural tubes results in the secretion of Epo, which is able to induce the proliferation and differentiation of yolk sac-derived erythroid cells. These results thus suggest that NEP cells secrete Epo and might support the development of primitive erythropoiesis. PMID:24309470

  15. A/sub 1/ and A/sub 2/ adenosine receptor regulation of erythropoietin production

    SciTech Connect

    Ueno, M.; Brookins, J.; Beckman, B.; Fisher, J.W.

    1988-01-01

    The effects of adenosine (ADE) and ADE agonists on erythropoietin (Ep) production were determined using percent (%) /sup 59/Fe incorporation in red cells of exhypoxic polycythemic mice. The hemisulfate salt of ADE produced a significant increase in % /sup 59/Fe incorporation in response to hypoxia in concentrations of 400 to 1600 nmol/kg/day. 5'-N-ethyl-carboxamideadenosine (NECA), a selective A/sub 2/ receptor agonist, increased radioiron incorporation in a dose-dependent manner. In contrast, N/sup 6/-cyclohexyladenosine (CHA), a selective A/sub 1/ receptor agonist, did not affect radioiron incorporation in concentrations up to 1600 nmol/kg/day. Albuterol, a beta 2-adrenergic agonist, enhanced % /sup 59/Fe incorporation in polycythemic mice and low doses of CHA, which were not effective alone on % /sup 59/Fe incorporation in polycythemic mice exposed to hypoxia, inhibited the enhancement in radioiron induced by albuterol plus hypoxia. Theophylline, a well-known antagonist of ADE receptors, blocked the ADE and NECA enhancement in radioiron incorporation at a dose of theophylline alone which produced only a slight enhancement of % /sup 59/Fe incorporation.

  16. Roles of renal erythropoietin-producing (REP) cells in the maintenance of systemic oxygen homeostasis.

    PubMed

    Suzuki, Norio; Yamamoto, Masayuki

    2016-01-01

    Erythropoietic induction is critical for enhancing the efficiency of oxygen delivery during the chronic phase of the systemic hypoxia response. The erythroid growth factor erythropoietin (Epo) triggers the erythropoietic induction through the activation of erythroid genes related to cell survival, differentiation, and iron metabolism. Because Epo is produced in renal Epo-producing (REP) cells in a hypoxia-inducible manner, REP cells serve as a control center for the systemic hypoxia response. In fact, the loss of Epo production in REP cells causes chronic severe anemia in genetically modified mice, and REP cell-specific inactivation of PHD2 (prolyl-hydroxylase domain enzyme 2) results in erythrocytosis via overexpression of the Epo gene due to the constitutive activation of HIF2α (hypoxia-inducible transcription factor 2α). REP cells are located in the interstitial spaces between renal tubules and capillaries, where the oxygen supply is low but oxygen consumption is high, for the highly sensitive detection of decreased oxygen supplies to the body. Under disease conditions, REP cells transform to myofibroblasts and lose their Epo-producing ability. Therefore, elucidation of Epo gene regulation and REP cell features directly contributes to understanding the pathology of chronic kidney disease. To further analyze REP cells, we introduce a newly established mouse line in which REP cells are efficiently labeled with fluorescent protein. PMID:26452589

  17. Progress in detecting cell-surface protein receptors: the erythropoietin receptor example.

    PubMed

    Elliott, Steve; Sinclair, Angus; Collins, Helen; Rice, Linda; Jelkmann, Wolfgang

    2014-02-01

    Testing for the presence of specific cell-surface receptors (such as EGFR or HER2) on tumor cells is an integral part of cancer care in terms of treatment decisions and prognosis. Understanding the strengths and limitations of these tests is important because inaccurate results may occur if procedures designed to prevent false-negative or false-positive outcomes are not employed. This review discusses tests commonly used to identify and characterize cell-surface receptors, such as the erythropoietin receptor (EpoR). First, a summary is provided on the biology of the Epo/EpoR system, describing how EpoR is expressed on erythrocytic progenitors and precursors in the bone marrow where it mediates red blood cell production in response to Epo. Second, studies are described that investigated whether erythropoiesis-stimulating agents could stimulate tumor progression in cancer patients and whether EpoR is expressed and functional on tumor cells or on endothelial cells. The methods used in these studies included immunohistochemistry, Northern blotting, Western blotting, and binding assays. This review summarizes the strengths and limitations of these methods. Critically analyzing data from tests for cell-surface receptors such as EpoR requires understanding the techniques utilized and demonstrating that results are consistent with current knowledge about receptor biology. PMID:24337485

  18. Erythropoietin gene expression: developmental-stage specificity, cell-type specificity, and hypoxia inducibility.

    PubMed

    Suzuki, Norio

    2015-01-01

    Erythrocytes play an essential role in the delivery of oxygen from the lung to every organ; a decrease in erythrocytes (anemia) causes hypoxic stress and tissue damage. To maintain oxygen homeostasis in adult mammals, when the kidney senses hypoxia, it secretes an erythroid growth factor, erythropoietin (Epo), which stimulates erythropoiesis in the bone marrow. Recently, studies using genetically modified mice have shown that the in vivo expression profile of the Epo gene changes dramatically during development. The first Epo-producing cells emerge in the neural crest and neuroepithelium of mid-stage embryos and support primitive erythropoiesis in the yolk sac. Subsequently, Epo from the hepatocytes stimulates erythropoiesis in the fetal liver of later stage embryos in a paracrine manner. In fact, erythroid lineage cells comprise the largest cell population in the fetal liver, and hepatocytes are distributed among the erythroid cell clusters. Adult erythropoiesis in the bone marrow requires Epo that is secreted by renal Epo-producing cells (REP cells). REP cells are widely distributed in the renal cortex and outer medulla. Hypoxia-inducible Epo production both in hepatocytes and REP cells is controlled at the gene transcription level that is mainly mediated by the hypoxia-inducible transcription factor (HIF) pathway. These mouse studies further provide insights into the molecular mechanisms of the cell-type specific, hypoxia-inducible expression of the Epo gene, which involves multiple sets of cis- and trans-regulatory elements. PMID:25786542

  19. Midazolam inhibits the hypoxia-induced up-regulation of erythropoietin in the central nervous system.

    PubMed

    Matsuyama, Tomonori; Tanaka, Tomoharu; Tatsumi, Kenichiro; Daijo, Hiroki; Kai, Shinichi; Harada, Hiroshi; Fukuda, Kazuhiko

    2015-08-15

    Erythropoietin (EPO), a regulator of red blood cell production, is endogenously expressed in the central nervous system. It is mainly produced by astrocytes under hypoxic conditions and has proven to have neuroprotective and neurotrophic effects. In the present study, we investigated the effect of midazolam on EPO expression in primary cultured astrocytes and the mouse brain. Midazolam was administered to 6-week-old BALB/c male mice under hypoxic conditions and pregnant C57BL/6N mice under normoxic conditions. Primary cultured astrocytes were also treated with midazolam under hypoxic conditions. The expression of EPO mRNA in mice brains and cultured astrocytes was studied. In addition, the expression of hypoxia-inducible factor (HIF), known as the main regulator of EPO, was evaluated. Midazolam significantly reduced the hypoxia-induced up-regulation of EPO in BALB/c mice brains and primary cultured astrocytes and suppressed EPO expression in the fetal brain. Midazolam did not affect the total amount of HIF proteins but significantly inhibited the nuclear expression of HIF-1α and HIF-2α proteins. These results demonstrated the suppressive effects of midazolam on the hypoxia-induced up-regulation of EPO both in vivo and in vitro. PMID:26001375

  20. Erythropoietin Exacerbates Inflammation and Increases the Mortality of Histoplasma capsulatum-Infected Mice.

    PubMed

    Locachevic, Gisele Aparecida; Pereira, Priscilla Aparecida Tartari; Secatto, Adriana; Fontanari, Caroline; Galvão, Alyne Fávero; Prado, Morgana Kelly Borges; Zoccal, Karina Furlani; Petta, Tânia; Moraes, Luiz Alberto Beraldo; Ramos, Simone Gusmão; de Castro, Fabíola Attie; Sorgi, Carlos Artério; Faccioli, Lúcia Helena

    2015-01-01

    Erythropoietin (EPO) is a key hormone involved in red blood cell formation, but its effects on nonerythroid cells, such as macrophages, have not been described. Macrophages are key cells in controlling histoplasmosis, a fungal infection caused by Histoplasma capsulatum (Hc). Considering that little is known about EPO's role during fungal infections and its capacity to activate macrophages, in this study we investigated the impact of EPO pretreatment on the alveolar immune response during Hc infection. The consequence of EPO pretreatment on fungal infection was determined by evaluating animal survival, fungal burden, activation of bronchoalveolar macrophages, inflammatory mediator release, and lung inflammation. Pretreatment with EPO diminished mononuclear cell numbers, increased the recruitment of F4/80(+)/CD80(+) and F4/80(+)/CD86(+) cells to the bronchoalveolar space, induced higher production of IFN-γ, IL-6, MIP-1α, MCP-1, and LTB4, reduced PGE2 concentration, and did not affect fungal burden. As a consequence, we observed an increase in lung inflammation with extensive tissue damage that might account for augmented mouse mortality after infection. Our results demonstrate for the first time that EPO treatment has a deleterious impact on lung immune responses during fungal infection. PMID:26538835

  1. Erythropoietin is a hypoxia inducible factor-induced protective molecule in experimental autoimmune neuritis.

    PubMed

    Luo, Bangwei; Jiang, Man; Yang, Xiaofeng; Zhang, Zhiyuan; Xiong, Jian; Schluesener, Hermann J; Zhang, Zhiren; Wu, Yuzhang

    2013-08-01

    Experimental autoimmune neuritis (EAN), an autoantigen-specific T-cell-mediated disease model for human demyelinating inflammatory disease of the peripheral nervous system, is characterized by self-limitation. Here we investigated the regulation and contribution of erythropoietin (EPO) in EAN self-limitation. In EAN sciatic nerves, hypoxia, and protein and mRNA levels of hypoxia-inducible factor 1α (HIF-1α), HIF-2α, EPO and EPO receptor (EPOR) were induced in parallel at disease peak phase but reduced at recovery periods. Further, the deactivation of HIF reduced EAN-induced EPO/EPOR upregulation in EAN, suggesting the central contribution of HIF to EPO/EPOR induction. The deactivation of EPOR signalling exacerbated EAN progression, implying that endogenous EPO contributed to EAN recovery. Exogenous EPO treatment greatly improved EAN recovery. In addition, EPO was shown to promote Schwann cell survival and myelin production. In EAN, EPO treatment inhibited lymphocyte proliferation and altered helper T cell differentiation by inducing increase of Foxp3(+)/CD4(+) regulatory T cells and decrease of IFN-γ(+)/CD4(+) Th1 cells. Furthermore, EPO inhibited inflammatory macrophage activation and promoted its phagocytic activity. In summary, our data demonstrated that EPO was induced in EAN by HIF and contributed to EAN recovery, and endogenous and exogenous EPO could effectively suppress EAN by attenuating inflammation and exerting direct cell protection, indicating that EPO contributes to the self-recovery of EAN and could be a potent candidate for treatment of autoimmune neuropathies. PMID:23603807

  2. Inhibitory effects of tetradecanoylphorbol acetate and diacylglycerol on erythropoietin production in human renal carcinoma cell cultures

    SciTech Connect

    Hagiwara, Masamichi; Nagakura, Kazuhiko; Ueno, Munehisa; Fisher, J.W. )

    1987-11-01

    A human renal carcinoma from a patient with an erythrocytosis, serially transplanted into athymic nude mice, was grown in primary monolayer cell cultures. After reaching confluency the cultured cells formed multicellular hemicysts (domes) which became more abundant as the cultures approached saturation density. Erythropoietin (Ep) production by this renal carcinoma in culture was only slightly increased at the time of semiconfluency but showed a marked increase in Ep levels in the culture medium after the cultures reached confluency, in parallel with an increase in dome formation. The phorbol ester tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) showed a significant dose-related inhibitory effect on Ep production and dome formation in the renal carcinoma cell cultures, suggesting an important role of protein kinase C, the only known receptor for TPA, in inhibiting the expression of differentiated phenotypes in the renal carcinoma cells. These studies suggest a role of the inositol-lipid second messenger path and protein kinase C in the regulation of Ep production.

  3. Distinct subpopulations of FOXD1 stroma-derived cells regulate renal erythropoietin.

    PubMed

    Kobayashi, Hanako; Liu, Qingdu; Binns, Thomas C; Urrutia, Andres A; Davidoff, Olena; Kapitsinou, Pinelopi P; Pfaff, Andrew S; Olauson, Hannes; Wernerson, Annika; Fogo, Agnes B; Fong, Guo-Hua; Gross, Kenneth W; Haase, Volker H

    2016-05-01

    Renal peritubular interstitial fibroblast-like cells are critical for adult erythropoiesis, as they are the main source of erythropoietin (EPO). Hypoxia-inducible factor 2 (HIF-2) controls EPO synthesis in the kidney and liver and is regulated by prolyl-4-hydroxylase domain (PHD) dioxygenases PHD1, PHD2, and PHD3, which function as cellular oxygen sensors. Renal interstitial cells with EPO-producing capacity are poorly characterized, and the role of the PHD/HIF-2 axis in renal EPO-producing cell (REPC) plasticity is unclear. Here we targeted the PHD/HIF-2/EPO axis in FOXD1 stroma-derived renal interstitial cells and examined the role of individual PHDs in REPC pool size regulation and renal EPO output. Renal interstitial cells with EPO-producing capacity were entirely derived from FOXD1-expressing stroma, and Phd2 inactivation alone induced renal Epo in a limited number of renal interstitial cells. EPO induction was submaximal, as hypoxia or pharmacologic PHD inhibition further increased the REPC fraction among Phd2-/- renal interstitial cells. Moreover, Phd1 and Phd3 were differentially expressed in renal interstitium, and heterozygous deficiency for Phd1 and Phd3 increased REPC numbers in Phd2-/- mice. We propose that FOXD1 lineage renal interstitial cells consist of distinct subpopulations that differ in their responsiveness to Phd2 inactivation and thus regulation of HIF-2 activity and EPO production under hypoxia or conditions of pharmacologic or genetic PHD inactivation. PMID:27088801

  4. Packing Density of the Erythropoietin Receptor Transmembrane Domain Correlates with Amplification of Biological Responses

    SciTech Connect

    Becker, Verena; Sengupta, D; Ketteler, Robin; Ullmann, G. Matthias; Smith, Jeremy C; Klingmuller, Ursula

    2008-10-01

    The formation of signal-promoting dimeric or oligomeric receptor complexes at the cell surface is modulated by self-interaction of their transmembrane (TM) domains. To address the importance of TM domain packing density for receptor functionality, we examined a set of asparagine mutants in the TM domain of the erythropoietin receptor (EpoR). We identified EpoR-T242N as a receptor variant that is present at the cell surface similar to wild-type EpoR but lacks visible localization in vesicle-like structures and is impaired in efficient activation of specific signaling cascades. Analysis by a molecular modeling approach indicated an increased interhelical distance for the EpoR-T242N TM dimer. By employing the model, we designed additional mutants with increased or decreased packing volume and confirmed a correlation between packing volume and biological responsiveness. These results propose that the packing density of the TM domain provides a novel layer for fine-tuned regulation of signal transduction and cellular decisions.

  5. Erythropoietin prevents endothelial dysfunction in GTP-cyclohydrolase I-deficient hph1 mice

    PubMed Central

    d'Uscio, Livius V.; Santhanam, Anantha V.R.; Katusic, Zvonimir S.

    2014-01-01

    In the present study, we used the mutant hph-1 mouse model, that has deficiency in GTP-cyclohydrolase I (GTPCH I) activity, to test the hypothesis that erythropoietin (EPO) protects aortic wall from oxidative stress induced by uncoupling of endothelial nitric oxide synthase (eNOS). Both GTPCH I activity and tetrahydrobiopterin (BH4) levels were reduced in hph-1 mice while 7,8-dihydrobiopterin (7,8-BH2) levels were significantly increased. Furthermore, BH4 deficiency caused increased production of superoxide anion and hydrogen peroxide in the aorta thus resulting in impairment of endothelium-dependent relaxations to acetylcholine. Treatment of hph1 mice with recombinant human EPO (1000 U/kg, s.c. for three days) significantly decreased superoxide anion production by eNOS and improved BH4 to 7,8-BH2 ratio in aortas. EPO also significantly decreased production of hydrogen peroxide and improved endothelium-dependent relaxations in aortas of hph1 mice. In addition, EPO treatment increased protein expressions of copper-/zinc-superoxide dismutase, manganese-superoxide dismutase, and catalase in the aorta of hph1 mice. Our findings demonstrate that treatment with EPO prevented oxidative stress and endothelial dysfunction caused by eNOS uncoupling. Increased vascular expressions of antioxidants appear to be an important molecular mechanism underlying vascular protection by EPO during chronic BH4 deficiency. PMID:25490417

  6. Predicted structural change in erythropoietin of plateau zokors--adaptation to high altitude.

    PubMed

    Wang, Zhenlong; Zhang, Yanming

    2012-06-15

    Erythropoietin (EPO) is a glycoprotein hormone, expressed mainly in fetus liver and adult kidneys. EPO plays an important role in enhancing red blood cell formation in bone marrow under hypoxia. Plateau zokor (Myospalax baileyi), an subterranean burrowing endemic rodent inhabiting areas of 2 800-4 200 m above sea level on Qinghai-Tibet Plateau, is a typical high hypoxia tolerant mammal with high ratio of oxygen utilization in adaptation to the harsh plateau environment. To investigate the possible mechanisms of adaptation of plateau zokor EPO to high altitude, the complete cDNA and amino acid sequences of plateau zokor EPO have been described. Phylogenetic tree of Epo showed the convergence of the Spalax and Myospalax, indicating that, the convergent evolution was driven by similar hypoxic ecological niches. Our results showed that some common sites under positive selection in zokor (116M and 144A) and Spalax (102R, 116M, 144A and 152P) are the important sites for Epo biological activity. This study thus reports a gene level observation which may be involved in adaptation to underground life at high altitude. PMID:22425647

  7. Erythropoietin promotes bone formation through EphrinB2/EphB4 signaling.

    PubMed

    Li, C; Shi, C; Kim, J; Chen, Y; Ni, S; Jiang, L; Zheng, C; Li, D; Hou, J; Taichman, R S; Sun, H

    2015-03-01

    Recent studies have demonstrated that erythropoietin (EPO) has extensive nonhematopoietic biological functions. However, little is known about how EPO regulates bone formation, although several studies suggested that EPO can affect bone homeostasis. In this study, we investigated the effects of EPO on the communication between osteoclasts and osteoblasts through the ephrinB2/EphB4 signaling pathway. We found that EPO slightly promotes osteoblastic differentiation with the increased expression of EphB4 in ST2 cells. However, EPO increased the expression of Nfatc1 and ephrinB2 but decreased the expression of Mmp9 in RAW264.7 cells, resulting in an increase of ephrinB2-expressing osteoclasts and a decrease in resorption activity. The stimulation of ephrinB2/EphB4 signaling via ephrinB2-Fc significantly promoted EPO-mediated osteoblastic differentiation in ST2 cells. EphB4 knockdown through EphB4 shRNA inhibited EPO-mediated osteoblastic phenotypes. Furthermore, in vivo assays clearly demonstrated that EPO efficiently induces new bone formation in the alveolar bone regeneration model. Taken together, these results suggest that ephrinB2/EphB4 signaling may play an important role in EPO-mediated bone formation. PMID:25586589

  8. Erythropoietin mediated bone formation is regulated by mTOR signaling.

    PubMed

    Kim, Jinkoo; Jung, Younghun; Sun, Hongli; Joseph, Jeena; Mishra, Anjali; Shiozawa, Yusuke; Wang, Jingcheng; Krebsbach, Paul H; Taichman, Russell S

    2012-01-01

    The role of erythropoietin (Epo) and Epo/Epo receptor (EpoR) signaling pathways for production of red blood cells are well established. However, little is known about Epo/EpoR signaling in non-hematopoietic cells. Recently, we demonstrated that Epo activates JAK/STAT signaling in hematopoietic stem cells (HSCs), leading to the production of bone morphogenetic protein 2 (BMP2) and bone formation and that Epo also directly activates mesenchymal cells to form osteoblasts in vitro. In this study, we investigated the effects of mTOR signaling on Epo-mediated osteoblastogenesis and osteoclastogenesis. We found that mTOR inhibition by rapamycin blocks Epo-dependent and -independent osteoblastic phenotypes in human bone marrow stromal cells (hBMSCs) and ST2 cells, respectively. Furthermore, we found that rapamycin inhibits Epo-dependent and -independent osteoclastogenesis in mouse bone marrow mononuclear cells and Raw264.7 cells. Finally, we demonstrated that Epo increases NFATc1 expression and decreases cathepsin K expression in an mTOR-independent manner, resulting in an increase of osteoclast numbers and a decrease in resorption activity. Taken together, these results strongly indicate that mTOR signaling plays an important role in Epo-mediated bone homeostasis. PMID:21898543

  9. General Anesthetics Inhibit Erythropoietin Induction under Hypoxic Conditions in the Mouse Brain

    PubMed Central

    Tanaka, Tomoharu; Kai, Shinichi; Koyama, Tomohiro; Daijo, Hiroki; Adachi, Takehiko; Fukuda, Kazuhiko; Hirota, Kiichi

    2011-01-01

    Background Erythropoietin (EPO), originally identified as a hematopoietic growth factor produced in the kidney and fetal liver, is also endogenously expressed in the central nervous system (CNS). EPO in the CNS, mainly produced in astrocytes, is induced under hypoxic conditions in a hypoxia-inducible factor (HIF)-dependent manner and plays a dominant role in neuroprotection and neurogenesis. We investigated the effect of general anesthetics on EPO expression in the mouse brain and primary cultured astrocytes. Methodology/Principal Findings BALB/c mice were exposed to 10% oxygen with isoflurane at various concentrations (0.10–1.0%). Expression of EPO mRNA in the brain was studied, and the effects of sevoflurane, halothane, nitrous oxide, pentobarbital, ketamine, and propofol were investigated. In addition, expression of HIF-2α protein was studied by immunoblotting. Hypoxia-induced EPO mRNA expression in the brain was significantly suppressed by isoflurane in a concentration-dependent manner. A similar effect was confirmed for all other general anesthetics. Hypoxia-inducible expression of HIF-2α protein was also significantly suppressed with isoflurane. In the experiments using primary cultured astrocytes, isoflurane, pentobarbital, and ketamine suppressed hypoxia-inducible expression of HIF-2α protein and EPO mRNA. Conclusions/Significance Taken together, our results indicate that general anesthetics suppress activation of HIF-2 and inhibit hypoxia-induced EPO upregulation in the mouse brain through a direct effect on astrocytes. PMID:22216265

  10. Erythropoietin Slows Photoreceptor Cell Death in a Mouse Model of Autosomal Dominant Retinitis Pigmentosa

    PubMed Central

    Kasmala, Lorraine; Bond, Wesley S.; de Lucas Cerrillo, Ana M.; Wynn, Kristi; Lewin, Alfred S.

    2016-01-01

    Purpose To test the efficacy of systemic gene delivery of a mutant form of erythropoietin (EPO-R76E) that has attenuated erythropoietic activity, in a mouse model of autosomal dominant retinitis pigmentosa. Methods Ten-day old mice carrying one copy of human rhodopsin with the P23H mutation and both copies of wild-type mouse rhodopsin (hP23H RHO+/-,mRHO+/+) were injected into the quadriceps with recombinant adeno-associated virus (rAAV) carrying either enhanced green fluorescent protein (eGFP) or EpoR76E. Visual function (electroretinogram) and retina structure (optical coherence tomography, histology, and immunohistochemistry) were assessed at 7 and 12 months of age. Results The outer nuclear layer thickness decreased over time at a slower rate in rAAV.EpoR76E treated as compared to the rAAV.eGFP injected mice. There was a statistically significant preservation of the electroretinogram at 7, but not 12 months of age. Conclusions Systemic EPO-R76E slows death of the photoreceptors and vision loss in hP23H RHO+/-,mRHO+/+ mice. Treatment with EPO-R76E may widen the therapeutic window for retinal degeneration patients by increasing the number of viable cells. Future studies might investigate if co-treatment with EPO-R76E and gene replacement therapy is more effective than gene replacement therapy alone. PMID:27299810

  11. BET bromodomain inhibition rescues erythropoietin differentiation of human erythroleukemia cell line UT7

    SciTech Connect

    Goupille, Olivier; Penglong, Tipparat; Lefevre, Carine; Granger, Marine; Kadri, Zahra; Fucharoen, Suthat; Maouche-Chretien, Leila; Leboulch, Philippe; Chretien, Stany

    2012-12-07

    Highlights: Black-Right-Pointing-Pointer UT7 erythroleukemia cells are known to be refractory to differentiate. Black-Right-Pointing-Pointer Brief JQ1 treatment initiates the first steps of erythroid differentiation program. Black-Right-Pointing-Pointer Engaged UT7 cells then maturate in the presence of erythropoietin. Black-Right-Pointing-Pointer Sustained JQ1 treatment inhibits both proliferation and erythroid differentiation. -- Abstract: Malignant transformation is a multistep process requiring oncogenic activation, promoting cellular proliferation, frequently coupled to inhibition of terminal differentiation. Consequently, forcing the reengagement of terminal differentiation of transformed cells coupled or not with an inhibition of their proliferation is a putative therapeutic approach to counteracting tumorigenicity. UT7 is a human leukemic cell line able to grow in the presence of IL3, GM-CSF and Epo. This cell line has been widely used to study Epo-R/Epo signaling pathways but is a poor model for erythroid differentiation. We used the BET bromodomain inhibition drug JQ1 to target gene expression, including that of c-Myc. We have shown that only 2 days of JQ1 treatment was required to transitory inhibit Epo-induced UT7 proliferation and to restore terminal erythroid differentiation. This study highlights the importance of a cellular erythroid cycle break mediated by c-Myc inhibition before initiation of the erythropoiesis program and describes a new model for BET bromodomain inhibitor drug application.

  12. Renal epithelium regulates erythropoiesis via HIF-dependent suppression of erythropoietin

    PubMed Central

    Farsijani, Navid M.; Liu, Qingdu; Davidoff, Olena; Sha, Feng; Fandrey, Joachim; Ikizler, T. Alp; O’Connor, Paul M.

    2016-01-01

    The adult kidney plays a central role in erythropoiesis and is the main source of erythropoietin (EPO), an oxygen-sensitive glycoprotein that is essential for red blood cell production. Decreases of renal pO2 promote hypoxia-inducible factor 2–mediated (HIF-2–mediated) induction of EPO in peritubular interstitial fibroblast-like cells, which serve as the cellular site of EPO synthesis in the kidney. It is not clear whether HIF signaling in other renal cell types also contributes to the regulation of EPO production. Here, we used a genetic approach in mice to investigate the role of renal epithelial HIF in erythropoiesis. Specifically, we found that HIF activation in the proximal nephron via induced inactivation of the von Hippel–Lindau tumor suppressor, which targets the HIF-α subunit for proteasomal degradation, led to rapid development of hypoproliferative anemia that was associated with a reduction in the number of EPO-producing renal interstitial cells. Moreover, suppression of renal EPO production was associated with increased glucose uptake, enhanced glycolysis, reduced mitochondrial mass, diminished O2 consumption, and elevated renal tissue pO2. Our genetic analysis suggests that tubulointerstitial cellular crosstalk modulates renal EPO production under conditions of epithelial HIF activation in the kidney. PMID:26927670

  13. Subcutaneous recombinant human erythropoietin in children with renal anemia on continuous ambulatory peritoneal dialysis.

    PubMed

    Aufricht, C; Balzar, E; Steger, H; Lothaller, M A; Frenzel, K; Kohlhauser, C; Kiss, H; Khoss, A E; Kernova, T

    1993-11-01

    Subcutaneous recombinant human erythropoietin (rHuEpo) treatment of renal anemia was performed in four boys and eight girls on CAPD, aged 0.8-12.5 (mean 7.4) years. In contrast to previous studies, our therapeutic goal was not set with a hematocrit of 30% but with full correction of anemia. Following a maximum weekly rHuEpo dosage of median 120 (range 100-240) IU/kg body weight, hematocrit increased in 10 children from 24 (14-29)% within 12 (4-17) weeks to 40.1 (33.5-48.4)%. The weekly increase in hematocrit was 1.27 (0.5-3.1)%. The corrected reticulocyte count increased from 1.3 (0.7-1.8)% to 2.3 (1.4-3.9)% within 4 (2-6) weeks. Eight children fulfilled the protocol; six with an uncomplicated course were able to maintain a hematocrit of 37.1 (35.1-42.7)% with only one sc medication per week of approximately two-thirds of their highest weekly rHuEpo dosage. No serious adverse effect of rHuEpo therapy was observed. PMID:8111178

  14. Enhanced Delivery of Erythropoietin Across the Blood-Brain Barrier for Neuroprotection against Ischemic Neuronal Injury

    PubMed Central

    Zhang, Feng; Xing, Juan; Liou, Anthony Kian-Fong; Wang, Suping; Gan, Yu; Luo, Yumin; Ji, Xuming; Stetler, R. Anne; Chen, Jun; Cao, Guodong

    2010-01-01

    Due to limited penetration of the BBB, many therapeutic agents in clinical use require higher doses in order to reach effective concentrations in brain. In some instances, these high doses elicit severe side effects. In the case of erythropoietin (EPO), an established neuroprotectant against ischemic brain injury, its low BBB permeability requires such a high therapeutic dose that it can induce dangerous complications such as polycythmia and secondary stroke. The purpose of this study is to generate a modified EPO that has increased facility crossing the BBB without losing its neuroprotective element. We have engineered a fusion protein (EPO-TAT) by tagging a protein transduction domain derived from HIV TAT to the EPO protein. This sequence enhanced the capacity of EPO to cross the BBB in animals at least twofold when IP administered and up to five-fold when IV administered. In vitro experiments showed that this EPO fusion protein retained all its protective properties against neuronal death elicited by oxygen-glucose deprivation and NMDA insults. The needed therapeutic dose of the EPO-TAT was decreased by ~10-fold compared to that of regular EPO to achieve equivalent neuroprotection in terms of reducing volume of infarction induced by middle cerebral artery occlusion in mice. Our results support the approach of using a protein transduction domain coupled to therapeutic agents. In this way, not only can the therapeutic doses be lowered, but agents without BBB permeability may now be available for clinical applications. PMID:20577577

  15. Erythropoietin Improves the Survival of Fat Tissue after Its Transplantation in Nude Mice

    PubMed Central

    Hamed, Saher; Egozi, Dana; Kruchevsky, Danny; Teot, Luc; Gilhar, Amos; Ullmann, Yehuda

    2010-01-01

    Background Autologous transplanted fat has a high resorption rate, providing a clinical challenge for the means to reduce it. Erythropoietin (EPO) has non-hematopoietic targets, and we hypothesized that EPO may improve long-term fat graft survival because it has both pro-angiogenic and anti-apoptotic properties. We aimed to determine the effect of EPO on the survival of human fat tissue after its transplantation in nude mice. Methodology/Principal Findings Human fat tissue was injected subcutaneously into immunologically-compromised nude mice, and the grafts were then treated with either 20 IU or 100 IU EPO. At the end of the 15-week study period, the extent of angiogenesis, apoptosis, and histology were assessed in the fat grafts. The results were compared to vascular endothelial growth factor (VEGF)-treated and phosphate-buffered saline (PBS)-treated fat grafts. The weight and volume of the EPO-treated grafts were higher than those of the PBS-treated grafts, whose weights and volumes were not different from those of the VEGF-treated grafts. EPO treatment also increased the expression of angiogenic factors and microvascular density, and reduced inflammation and apoptosis in a dose-dependent manner in the fat grafts. Conclusions/Significance Our data suggest that stimulation of angiogenesis by a cluster of angiogenic factors and decreased fat cell apoptosis account for potential mechanisms that underlie the improved long-term survival of fat transplants following EPO treatment. PMID:21085572

  16. Oxidative stress due to aluminum exposure induces eryptosis which is prevented by erythropoietin.

    PubMed

    Vota, Daiana M; Crisp, Renée L; Nesse, Alcira B; Vittori, Daniela C

    2012-05-01

    The widespread use of aluminum (Al) provides easy exposure of humans to the metal and its accumulation remains a potential problem. In vivo and in vitro assays have associated Al overload with anemia. To better understand the mechanisms by which Al affects human erythrocytes, morphological and biochemical changes were analyzed after long-term treatment using an in vitro model. The appearance of erythrocytes with abnormal shapes suggested metal interaction with cell surface, supported by the fact that high amounts of Al attached to cell membrane. Long-term incubation of human erythrocytes with Al induced signs of premature erythrocyte death (eryptosis), such as phosphatidylserine externalization, increased intracellular calcium, and band 3 degradation. Signs of oxidative stress, such as significant increase in reactive oxygen species in parallel with decrease in the amount of reduced glutathione, were also observed. These oxidative effects were completely prevented by the antioxidant N-acetylcysteine. Interestingly, erythrocytes were also protected from the prooxidative action of Al by the presence of erythropoietin (EPO). In conclusion, results provide evidence that chronic Al exposure may lead to biochemical and morphological alterations similar to those shown in eryptosis induced by oxidant compounds in human erythrocytes. The antieryptotic effect of EPO may contribute to enhance the knowledge of its physiological role on erythroid cells. Irrespective of the antioxidant mechanism, this property of EPO, shown in this model of Al exposure, let us suggest potential benefits by EPO treatment of patients with anemia associated to altered redox environment. PMID:22174104

  17. Constitutive Overexpression of Human Erythropoietin Protects the Mouse Retina against Induced But Not Inherited Retinal Degeneration

    PubMed Central

    Grimm, Christian; Wenzel, Andreas; Stanescu, Dinu; Samardzija, Marijana; Hotop, Svenja; Groszer, Mathias; Naash, Muna; Gassmann, Max; Remé, Charlotte

    2010-01-01

    Elevation of erythropoietin (Epo) concentrations by hypoxic preconditioning or application of recombinant human Epo (huEpo) protects the mouse retina against light-induced degeneration by inhibiting photoreceptor cell apoptosis. Because photoreceptor apoptosis is also the common path to cell loss in retinal dystrophies such as retinitis pigmentosa (RP), we tested whether high levels of huEpo would reduce apoptotic cell death in two mouse models of human RP. We combined the two respective mutant mouse lines with a transgenic line (tg6) that constitutively overexpresses huEpo mainly in neural tissues. Transgenic expression of huEpo caused constitutively high levels of Epo in the retina and protected photoreceptors against light-induced degeneration; however, the presence of high levels of huEpo did not affect the course or the extent of retinal degeneration in a light-independent (rd1) and a light-accelerated (VPP) mouse model of RP. Similarly, repetitive intraperitoneal injections of recombinant huEpo did not protect the retina in the rd1 and the VPP mouse. Lack of neuroprotection by Epo in the two models of inherited retinal degeneration was not caused by adaptational downregulation of Epo receptor. Our results suggest that apoptotic mechanisms during acute, light-induced photoreceptor cell death differ from those in genetically based retinal degeneration. Therapeutic intervention with cell death in inherited retinal degeneration may therefore require different drugs and treatments. PMID:15215287

  18. Redundant and selective roles for erythropoietin receptor tyrosines in erythropoiesis in vivo.

    PubMed

    Longmore, G D; You, Y; Molden, J; Liu, K D; Mikami, A; Lai, S Y; Pharr, P; Goldsmith, M A

    1998-02-01

    Cytokine receptors have been shown in cell culture systems to use phosphotyrosine residues as docking sites for certain signal transduction intermediates. Studies using various cellular backgrounds have yielded conflicting information about the importance of such residues. The present studies were undertaken to determine whether or not tyrosine residues within the erythropoietin receptor (EPOR) are essential for biologic activity during hematopoiesis in vivo. A variant of the EPOR was constructed that contains both a substitution (R129C) causing constitutive receptor activation as well as replacement of all eight cytoplasmic tyrosines by phenylalanines (cEPORYF). A comparison between animals exposed to recombinant retroviruses expressing cEPOR and cEPORYF showed that efficient red blood cell (RBC) development in vivo is dependent on the pressence of tyrosine residues in the cytoplasmic domain of the EPOR. In addition, an inefficient EPOR tyrosine independent pathway supporting RBC development was detected. Tyrosine add-back mutants showed that multiple individual tyrosines have the capacity to restore full erythropoietic potential to the EPOR as determined in whole animals. The analysis of primary erythroid progenitors transduced with the various cEPOR tyrosine mutants and tyrosine add-backs showed that only tyrosine 343 (Y1) and tyrosine 479 (Y8) were capable of supporting immature burst-forming unit-erythroid progenitor development. Thus, this receptor is characterized by striking functional redundancy of tyrosines in a biologically relevant context. However, selective tyrosine residues may be uniquely important for early signals supporting erythroid development. PMID:9446647

  19. Resistance to Recombinant Human Erythropoietin Therapy in a Rat Model of Chronic Kidney Disease Associated Anemia.

    PubMed

    Garrido, Patrícia; Ribeiro, Sandra; Fernandes, João; Vala, Helena; Rocha-Pereira, Petronila; Bronze-da-Rocha, Elsa; Belo, Luís; Costa, Elísio; Santos-Silva, Alice; Reis, Flávio

    2016-01-01

    This study aimed to elucidate the mechanisms explaining the persistence of anemia and resistance to recombinant human erythropoietin (rHuEPO) therapy in a rat model of chronic kidney disease (CKD)-associated anemia with formation of anti-rHuEPO antibodies. The remnant kidney rat model of CKD induced by 5/6 nephrectomy was used to test a long-term (nine weeks) high dose of rHuEPO (200 UI/kg bw/week) treatment. Hematological and biochemical parameters were evaluated as well as serum and tissue (kidney, liver and/or duodenum) protein and/or gene expression of mediators of erythropoiesis, iron metabolism and tissue hypoxia, inflammation, and fibrosis. Long-term treatment with a high rHuEPO dose is associated with development of resistance to therapy as a result of antibodies formation. In this condition, serum EPO levels are not deficient and iron availability is recovered by increased duodenal absorption. However, erythropoiesis is not stimulated, and the resistance to endogenous EPO effect and to rHuEPO therapy results from the development of a hypoxic, inflammatory and fibrotic milieu in the kidney tissue. This study provides new insights that could be important to ameliorate the current therapeutic strategies used to treat patients with CKD-associated anemia, in particular those that become resistant to rHuEPO therapy. PMID:26712750

  20. Postmortem serum erythropoietin level as a marker of survival time in injury deaths.

    PubMed

    Quan, L; Zhu, B-L; Ishikawa, T; Michiue, T; Zhao, D; Ogawa, M; Maeda, H

    2010-07-15

    Circulating erythropoietin (EPO) is mainly derived from the kidneys, and the serum concentration is rapidly increased in response to anemia and hypoxia. The present study investigated postmortem serum EPO levels in injury death cases (n=185, postmortem time<48 h, survival time <7 days: sharp instrument injury, n=44 and blunt injury, n=141) with regard to survival time, compared with C-reactive protein (CRP) as a marker of inflammation. Serum levels of both markers were independent of postmortem time. A survival time-dependent increase in serum EPO up to about 100 mU/ml was seen within 6h of sharp instrument injury to the heart or a proximal major vessel (thoracic aorta or subclavian/carotid artery) and blunt injury with massive hemorrhages, showing high correlations (r=0.957 and r=0.822, respectively, P<0.0001), whereas the increase was insignificant (P>0.05) for sharp instrument injury to a peripheral vessel or lungs/abdominal viscera and blunt injury with minor hemorrhages over the same survival period. A further increase (>100 mU/ml) was often detected in cases of death about 24h after blunt injury, irrespective of the type of injury. In contrast, a gradual increase in serum CRP level was seen about 12-24h after blunt injury. These findings suggest that serum EPO can be a marker for investigating survival time within 6h of major injury involving acute massive hemorrhaging. PMID:20430543

  1. Erythropoietin regulates POMC expression via STAT3 and potentiates leptin response.

    PubMed

    Dey, Soumyadeep; Li, Xiaoxia; Teng, Ruifeng; Alnaeeli, Mawadda; Chen, ZhiYong; Rogers, Heather; Noguchi, Constance Tom

    2016-02-01

    The arcuate nucleus of the hypothalamus is essential for metabolic homeostasis and responds to leptin by producing several neuropeptides including proopiomelanocortin (POMC). We previously reported that high-dose erythropoietin (Epo) treatment in mice while increasing hematocrit reduced body weight, fat mass, and food intake and increased energy expenditure. Moreover, we showed that mice with Epo receptor (EpoR) restricted to erythroid cells (ΔEpoRE) became obese and exhibited decreased energy expenditure. Epo/EpoR signaling was found to promote hypothalamus POMC expression independently from leptin. Herein we used WT and ΔEpoRE mice and hypothalamus-derived neural culture system to study the signaling pathways activated by Epo in POMC neurons. We show that Epo stimulation activated STAT3 signaling and upregulated POMC expression in WT neural cultures. ΔEpoRE mice hypothalamus showed reduced POMC levels and lower STAT3 phosphorylation, with and without leptin treatment, compared to in vivo and ex vivo WT controls. Collectively, these data show that Epo regulates hypothalamus POMC expression via STAT3 activation, and provide a previously unrecognized link between Epo and leptin response. PMID:26563310

  2. [The observation of therapy of anemia in chronic renal failure with recombinant human erythropoietin].

    PubMed

    Jiang, Y; Liu, P; Wang, E J

    1994-02-01

    Anemia is one of the serious complications of chronic renal failure, therapy with recombinant human erythropoietin (r-HuEPO) can correct such anemia officiently. For most patients, the initial dose of r-HuEPO is 100U/kg, by intravenously or subcutaneous, three times a week. After 6 weeks of treatment, Hb could increase to 100g/L, and Hct to above 0.33-0.35. Then 500/kg 3 time a week can be used as maintaining dose. 4 patients need maintaining dose of 150U/kg, for pulmonary infection, poor nutrition, and poor iron supply. Therefore, during the treatment, iron folie acid and Vit B12 should be applied sufficiently and treat the infection effectively with the increasing of Hb and Hct, 2/3 of the patients have hypertension which can be controlled with medication. If there is thrombosis in the dialyzer, the dose of heparin should be increased. The patients on r-HuEPO should be dialysised sufficiently to prevent hyperkalemia. PMID:8070295

  3. Erythropoietin promotes deleterious cardiovascular effects and mortality risk in a rat model of chronic sports doping.

    PubMed

    Piloto, Nuno; Teixeira, Helena M; Teixeira-Lemos, Edite; Parada, Belmiro; Garrido, Patrícia; Sereno, José; Pinto, Rui; Carvalho, Lina; Costa, Elísio; Belo, Luís; Santos-Silva, Alice; Teixeira, Frederico; Reis, Flávio

    2009-12-01

    Athletes who abuse recombinant human erythropoietin (rhEPO) consider only the benefit to performance and usually ignore the potential short and long-term liabilities. Elevated haematocrit and dehydratation associated with intense exercise may reveal undetected cardiovascular risk, but the mechanisms underlying it remain to be fully explained. This study aimed to evaluate the cardiovascular effects of rhEPO in rats under chronic aerobic exercise. A ten week protocol was performed in four male Wistar rat groups: control--sedentary; rhEPO--50 IU kg(-1), 3 times/wk; exercised (EX)--swimming for 1 h, 3 times/wk; EX + rhEPO. One rat of the EX + rhEPO group suffered a sudden death episode during the week 8. rhEPO in trained rats promoted erythrocyte count increase, hypertension, heart hypertrophy, sympathetic and serotonergic overactivation. The suddenly died rat's tissues presented brain with vascular congestion; left ventricular hypertrophy, together with a "cardiac-liver", suggesting the hypothesis of heart failure as cause of sudden death. In conclusion, rhEPO doping in rats under chronic exercise promotes not only the expected RBC count increment, suggesting hyperviscosity, but also other serious deleterious cardiovascular and thromboembolic modifications, including mortality risk, which might be known and assumed by all sports authorities, including athletes and their physicians. PMID:19859831

  4. Human Erythropoietin Gene Delivery Using an Arginine-grafted Bioreducible Polymer System

    PubMed Central

    Lee, Youngsook; Nam, Hye Yeong; Kim, Jaesung; Lee, Minhyung; Yockman, James W; Shin, Sug Kyun; Kim, Sung Wan

    2012-01-01

    Erythropoiesis-stimulating agents are widely used to treat anemia for chronic kidney disease (CKD) and cancer, however, several clinical limitations impede their effectiveness. Nonviral gene therapy systems are a novel solution to these problems as they provide stable and low immunogenic protein expression levels. Here, we show the application of an arginine-grafted bioreducible poly(disulfide amine) (ABP) polymer gene delivery system as a platform for in vivo transfer of human erythropoietin plasmid DNA (phEPO) to produce long-term, therapeutic erythropoiesis. A single systemic injection of phEPO/ABP polyplex led to higher hematocrit levels over a 60-day period accompanied with reticulocytosis and high hEPO protein expression. In addition, we found that the distinct temporal and spatial distribution of phEPO/ABP polyplexes contributed to increased erythropoietic effects compared to those of traditional EPO therapies. Overall, our study suggests that ABP polymer-based gene therapy provides a promising clinical strategy to reach effective therapeutic levels of hEPO gene. PMID:22472948

  5. Distinct subpopulations of FOXD1 stroma-derived cells regulate renal erythropoietin

    PubMed Central

    Liu, Qingdu; Binns, Thomas C.; Davidoff, Olena; Kapitsinou, Pinelopi P.; Pfaff, Andrew S.; Olauson, Hannes; Fogo, Agnes B.; Fong, Guo-Hua; Gross, Kenneth W.

    2016-01-01

    Renal peritubular interstitial fibroblast-like cells are critical for adult erythropoiesis, as they are the main source of erythropoietin (EPO). Hypoxia-inducible factor 2 (HIF-2) controls EPO synthesis in the kidney and liver and is regulated by prolyl-4-hydroxylase domain (PHD) dioxygenases PHD1, PHD2, and PHD3, which function as cellular oxygen sensors. Renal interstitial cells with EPO-producing capacity are poorly characterized, and the role of the PHD/HIF-2 axis in renal EPO-producing cell (REPC) plasticity is unclear. Here we targeted the PHD/HIF-2/EPO axis in FOXD1 stroma-derived renal interstitial cells and examined the role of individual PHDs in REPC pool size regulation and renal EPO output. Renal interstitial cells with EPO-producing capacity were entirely derived from FOXD1-expressing stroma, and Phd2 inactivation alone induced renal Epo in a limited number of renal interstitial cells. EPO induction was submaximal, as hypoxia or pharmacologic PHD inhibition further increased the REPC fraction among Phd2–/– renal interstitial cells. Moreover, Phd1 and Phd3 were differentially expressed in renal interstitium, and heterozygous deficiency for Phd1 and Phd3 increased REPC numbers in Phd2–/– mice. We propose that FOXD1 lineage renal interstitial cells consist of distinct subpopulations that differ in their responsiveness to Phd2 inactivation and thus regulation of HIF-2 activity and EPO production under hypoxia or conditions of pharmacologic or genetic PHD inactivation. PMID:27088801

  6. Erythropoietin regulates POMC expression via STAT3 and potentiates leptin response

    PubMed Central

    Teng, Ruifeng; Alnaeeli, Mawadda; Chen, ZhiYong; Rogers, Heather; Noguchi, Constance Tom

    2015-01-01

    The arcuate-nucleus of the hypothalamus is essential for metabolic-homeostasis and responds to leptin by producing several neuropeptides including proopiomelanocortin (POMC). We previously reported that high-dose erythropoietin (Epo)-treatment in mice while increasing hematocrit, reduced body-weight, fat-mass, and food intake, and increased energy-expenditure. Moreover, we showed that mice with Epo receptor (EpoR) restricted to erythroid cells (ΔEpoRE) became obese and exhibited decreased energy-expenditure. Epo/EpoR-signaling was found to promote hypothalamus POMC-expression independently from leptin. Herein we used wild-type (WT) and ΔEpoRE-mice and hypothalamus-derived neural-culture system to study the signaling pathways activated by Epo in POMC neurons. We show that Epo-stimulation activated STAT3-signaling and up-regulated POMC expression in WT neural cultures. ΔEpoRE-mice hypothalamus showed reduced POMC levels, and lower STAT3-phosphorylation, with and without leptin-treatment, compared to in vivo and ex vivo WT controls. Collectively, these data show that Epo regulates hypothalamus POMC-expression via STAT3-activation, and provide a previously unrecognized link between Epo- and leptin-response. PMID:26563310

  7. Recombinant Human Erythropoietin Therapy for a Jehovah's Witness Child With Severe Anemia due to Hemolytic-Uremic Syndrome.

    PubMed

    Woo, Da Eun; Lee, Jae Min; Kim, Yu Kyung; Park, Yong Hoon

    2016-02-01

    Patients with hemolytic-uremic syndrome (HUS) can rapidly develop profound anemia as the disease progresses, as a consequence of red blood cell (RBC) hemolysis and inadequate erythropoietin synthesis. Therefore, RBC transfusion should be considered in HUS patients with severe anemia to avoid cardiac or pulmonary complications. Most patients who are Jehovah's Witnesses refuse blood transfusion, even in the face of life-threatening medical conditions due to their religious convictions. These patients require management alternatives to blood transfusions. Erythropoietin is a glycopeptide that enhances endogenous erythropoiesis in the bone marrow. With the availability of recombinant human erythropoietin (rHuEPO), several authors have reported its successful use in patients refusing blood transfusion. However, the optimal dose and duration of treatment with rHuEPO are not established. We report a case of a 2-year-old boy with diarrhea-associated HUS whose family members are Jehovah's Witnesses. He had severe anemia with acute kidney injury. His lowest hemoglobin level was 3.6 g/dL, but his parents refused treatment with packed RBC transfusion due to their religious beliefs. Therefore, we treated him with high-dose rHuEPO (300 IU/kg/day) as well as folic acid, vitamin B12, and intravenous iron. The hemoglobin level increased steadily to 7.4 g/dL after 10 days of treatment and his renal function improved without any complications. To our knowledge, this is the first case of successful rHuEPO treatment in a Jehovah's Witness child with severe anemia due to HUS. PMID:26958070

  8. Recombinant Human Erythropoietin Therapy for a Jehovah's Witness Child With Severe Anemia due to Hemolytic-Uremic Syndrome

    PubMed Central

    Woo, Da Eun; Lee, Jae Min; Kim, Yu Kyung

    2016-01-01

    Patients with hemolytic-uremic syndrome (HUS) can rapidly develop profound anemia as the disease progresses, as a consequence of red blood cell (RBC) hemolysis and inadequate erythropoietin synthesis. Therefore, RBC transfusion should be considered in HUS patients with severe anemia to avoid cardiac or pulmonary complications. Most patients who are Jehovah's Witnesses refuse blood transfusion, even in the face of life-threatening medical conditions due to their religious convictions. These patients require management alternatives to blood transfusions. Erythropoietin is a glycopeptide that enhances endogenous erythropoiesis in the bone marrow. With the availability of recombinant human erythropoietin (rHuEPO), several authors have reported its successful use in patients refusing blood transfusion. However, the optimal dose and duration of treatment with rHuEPO are not established. We report a case of a 2-year-old boy with diarrhea-associated HUS whose family members are Jehovah's Witnesses. He had severe anemia with acute kidney injury. His lowest hemoglobin level was 3.6 g/dL, but his parents refused treatment with packed RBC transfusion due to their religious beliefs. Therefore, we treated him with high-dose rHuEPO (300 IU/kg/day) as well as folic acid, vitamin B12, and intravenous iron. The hemoglobin level increased steadily to 7.4 g/dL after 10 days of treatment and his renal function improved without any complications. To our knowledge, this is the first case of successful rHuEPO treatment in a Jehovah's Witness child with severe anemia due to HUS. PMID:26958070

  9. THE COMBINATION OF α-LIPOIC ACID INTAKE WITH ECCENTRIC EXERCISE MODULATES ERYTHROPOIETIN RELEASE

    PubMed Central

    Morawin, B.; Turowski, D.; Naczk, M.; Siatkowski, I.

    2014-01-01

    The generation of reactive nitrogen/oxygen species (RN/OS) represents an important mechanism in erythropoietin (EPO) expression and skeletal muscle adaptation to physical and metabolic stress. RN/OS generation can be modulated by intense exercise and nutrition supplements such as α-lipoic acid, which demonstrates both anti- and pro-oxidative action. The study was designed to show the changes in the haematological response through the combination of α-lipoic acid intake with running eccentric exercise. Sixteen healthy young males participated in the randomised and placebo-controlled study. The exercise trial involved a 90-min run followed by a 15-min eccentric phase at 65% VO2max (-10% gradient). It significantly increased serum concentrations of nitric oxide (NO), hydrogen peroxide (H2O2) and pro-oxidative products such as 8-isoprostanes (8-iso), lipid peroxides (LPO) and protein carbonyls (PC). α-Lipoic acid intake (Thiogamma: 1200 mg daily for 10 days prior to exercise) resulted in a 2-fold elevation of serum H2O2 concentration before exercise, but it prevented the generation of NO, 8-iso, LPO and PC at 20 min, 24 h, and 48 h after exercise. α-Lipoic acid also elevated serum EPO level, which highly correlated with NO/H2O2 ratio (r = 0.718, P < 0.01). Serum total creatine kinase (CK) activity, as a marker of muscle damage, reached a peak at 24 h after exercise (placebo 732 ± 207 IU · L-1, α-lipoic acid 481 ± 103 IU · L-1), and correlated with EPO (r = 0.478, P < 0.01) in the α-lipoic acid group. In conclusion, the intake of high α-lipoic acid modulates RN/OS generation, enhances EPO release and reduces muscle damage after running eccentric exercise. PMID:25177095

  10. Serum erythropoietin concentrations in symptomatic infants during the anaemia of prematurity.

    PubMed

    Meyer, J; Sive, A; Jacobs, P

    1992-07-01

    A comparison was carried out between a series of neonates who weighed less than 1500 g at birth and received red cell transfusions for symptomatic anaemia of prematurity (group 1, n = 14) and controls of similar gestational age and weight, who remained well and were not transfused during their nursery stay (group 2, n = 10). Mean (SD) haemoglobin concentrations at birth were 163 (12) g/l and 183 (17) g/l (p = 0.004), respectively. Transfusion resulted in significantly better weight gain in six infants who had been growing poorly:mean (SE) 8.8 (2.8) g/day improved to 23.3 (2.1) g/day (p less than 0.002). Geometric mean (SD) serum immunoreactive erythropoietin (SiEp) concentrations (17.7 (1.3) U/l) for the whole group of infants were similar to those of normal adults (17.4 (4.7) U/l) despite considerably reduced haemoglobin values. There was a significant inverse correlation between haemoglobin and log SiEp concentrations in the infants requiring transfusion (r = -0.43; p less than 0.01), but this was not apparent in the untransfused babies. Moreover, at haemoglobin concentrations below 120 g/l the mean (SE) SiEp concentration of 20 (1.08) U/l in group 1 was significantly higher than in group 2 (14 (1.06) U/l; p = 0.002). These data suggest that an increased concentration of SiEp early in the course of the anaemia of prematurity helps to identify those infants who would benefit from red cell transfusions, but that clinical criteria, although ill defined, do so equally well. PMID:1519982

  11. Promoter polymorphism of the erythropoietin gene in severe diabetic eye and kidney complications

    PubMed Central

    Tong, Zongzhong; Yang, Zhenglin; Patel, Shrena; Chen, Haoyu; Gibbs, Daniel; Yang, Xian; Hau, Vincent S.; Kaminoh, Yuuki; Harmon, Jennifer; Pearson, Erik; Buehler, Jeanette; Chen, Yuhong; Yu, Baifeng; Tinkham, Nicholas H.; Zabriskie, Norman A.; Zeng, Jiexi; Luo, Ling; Sun, Jennifer K.; Prakash, Manvi; Hamam, Rola N.; Tonna, Stephen; Constantine, Ryan; Ronquillo, Cecinio C.; Sadda, SriniVas; Avery, Robert L.; Brand, John M.; London, Nyall; Anduze, Alfred L.; King, George L.; Bernstein, Paul S.; Watkins, Scott; Jorde, Lynn B.; Li, Dean Y.; Aiello, Lloyd Paul; Pollak, Martin R.; Zhang, Kang

    2008-01-01

    Significant morbidity and mortality among patients with diabetes mellitus result largely from a greatly increased incidence of microvascular complications. Proliferative diabetic retinopathy (PDR) and end stage renal disease (ESRD) are two of the most common and severe microvascular complications of diabetes. A high concordance exists in the development of PDR and ESRD in diabetic patients, as well as strong familial aggregation of these complications, suggesting a common underlying genetic mechanism. However, the precise gene(s) and genetic variant(s) involved remain largely unknown. Erythropoietin (EPO) is a potent angiogenic factor observed in the diabetic human and mouse eye. By a combination of case–control association and functional studies, we demonstrate that the T allele of SNP rs1617640 in the promoter of the EPO gene is significantly associated with PDR and ESRD in three European-American cohorts [Utah: P = 1.91 × 10−3; Genetics of Kidneys in Diabetes (GoKinD) Study: P = 2.66 × 10−8; and Boston: P = 2.1 × 10−2]. The EPO concentration in human vitreous body was 7.5-fold higher in normal subjects with the TT risk genotype than in those with the GG genotype. Computational analysis suggests that the risk allele (T) of rs1617640 creates a matrix match with the EVI1/MEL1 or AP1 binding site, accounting for an observed 25-fold enhancement of luciferase reporter expression as compared with the G allele. These results suggest that rs1617640 in the EPO promoter is significantly associated with PDR and ESRD. This study identifies a disease risk-associated gene and potential pathway mediating severe diabetic microvascular complications. PMID:18458324

  12. The greatly misunderstood erythropoietin resistance index and the case for a new responsiveness measure.

    PubMed

    Chait, Yossi; Kalim, Sahir; Horowitz, Joseph; Hollot, Christopher V; Ankers, Elizabeth D; Germain, Michael J; Thadhani, Ravi I

    2016-07-01

    Introduction The optimal use of erythropoiesis stimulating agents (ESAs) to treat anemia in end stage renal disease remains controversial due to reported associations with adverse events. In analyzing these associations, studies often utilize ESA resistance indices (ERIs), to characterize a patient's response to ESA. In this study, we examine whether ERI is an adequate measure of ESA resistance. Methods We used retrospective data from a nonconcurrent cohort study of incident hemodialysis patients in the United States (n = 9386). ERI is defined as average weekly erythropoietin (EPO) dose per kg body weight (wt) per average hemoglobin (Hgb), over a 3-month period (ERI = (EPO/wt)/Hgb). Linear regression was used to demonstrate the relationship between ERI and weight-adjusted EPO. The coefficient of variation was used to compare the variability of Hgb with that of weight-adjusted EPO to explain this relationship. This analysis was done for each quarter during the first year of dialysis. Findings ERI is strongly linearly related with weight-adjusted EPO dose in each of the four quarters by the equation ERI = 0.0899*(EPO/wt) (range of R(2)  = 0.97-0.98) and weakly linearly related to 1/Hgb (range of R(2)  = 0.06-0.16). These correlations hold independent of age, sex, hgb level, ERI level, and epo-naïve stratifications. Discussion ERI is strongly linearly related to weight-adjusted (and nonweight-adjusted) EPO dose by a "universal," not patient-specific formula, and thus is a surrogate of EPO dose. Therefore, associations between ERI and clinical outcomes are associations between a confounded EPO dose and those outcomes. PMID:26843352

  13. Erythropoietin Pretreatment Attenuates Seawater Aspiration-Induced Acute Lung Injury in Rats.

    PubMed

    Ji, Mu-huo; Tong, Jian-hua; Tan, Yuan-hui; Cao, Zhen-yu; Ou, Cong-yang; Li, Wei-yan; Yang, Jian-jun; Peng, Y G; Zhu, Si-hai

    2016-02-01

    Seawater drowning-induced acute lung injury (ALI) is a serious clinical condition characterized by increased alveolar-capillary permeability, excessive inflammatory responses, and refractory hypoxemia. However, current therapeutic options are largely supportive; thus, it is of great interest to search for alternative agents to treat seawater aspiration-induced ALI. Erythropoietin (EPO) is a multifunctional agent with antiinflammatory, antioxidative, and antiapoptotic properties. However, the effects of EPO on seawater aspiration-induced ALI remain unclear. In the present study, male rats were randomly assigned to the naive group, normal saline group, seawater group, or seawater + EPO group. EPO was administered intraperitoneally at 48 and 24 h before seawater aspiration. Arterial blood gas analysis was performed with a gas analyzer at baseline, 30 min, 1 h, 4 h, and 24 h after seawater aspiration, respectively. Histological scores, computed tomography scan, nuclear factor kappa B p65, inducible nitric oxide synthase, caspase-3, tumor necrosis factor-alpha, interleukin (IL)-1β, IL-6, IL-10, wet-to-dry weight ratio, myeloperoxidase activity, malondialdehyde, and superoxide dismutase in the lung were determined 30 min after seawater aspiration. Our results showed that EPO pretreatment alleviated seawater aspiration-induced ALI, as indicated by increased arterial partial oxygen tension and decreased lung histological scores. Furthermore, EPO pretreatment attenuated seawater aspiration-induced increase in the expressions of pulmonary nuclear factor kappa B p65, inducible nitric oxide synthase, caspase-3, tumor necrosis factor-alpha, IL-1β, myeloperoxidase activity, and malondialdehyde when compared with the seawater group. Collectively, our study suggested that EPO pretreatment attenuates seawater aspiration-induced ALI by down-regulation of pulmonary pro-inflammatory cytokines, oxidative stress, and apoptosis. PMID:26454446

  14. Agonists of the tissue-protective erythropoietin receptor in the treatment of Parkinson's disease.

    PubMed

    Punnonen, Juha; Miller, James L; Collier, Timothy J; Spencer, Jeffrey R

    2015-01-01

    Parkinson's disease (PD) is a neurodegenerative disease affecting more than a million people in the USA alone. While there are effective symptomatic treatments for PD, there is an urgent need for new therapies that slow or halt the progressive death of dopaminergic neurons. Significant progress has been made in understanding the pathophysiology of PD, which has substantially facilitated the discovery efforts to identify novel drugs. The tissue-protective erythropoietin (EPO) receptor, EPOR/CD131, has emerged as one promising target for disease-modifying therapies. Recombinant human EPO (rhEPO), several variants of EPO, EPO-mimetic peptides, cell-based therapies using cells incubated with or expressing EPO, gene therapy vectors encoding EPO, and small molecule EPO mimetic compounds all show potential as therapeutic candidates. Agonists of the EPOR/CD131 receptor demonstrate potent anti-apoptotic, antioxidant, and anti-inflammatory effects and protect neurons, including dopaminergic neurons, from diverse insults in vitro and in vivo. When delivered directly to the striatum, rhEPO protects dopaminergic neurons in animal models of PD. Early-stage clinical trials testing systemic rhEPO have provided encouraging results, while additional controlled studies are required to fully assess the potential of the treatment. Poor CNS availability of proteins and challenges related to invasive delivery limit delivery of EPO protein. Several variants of EPO and small molecule agonists of the EPO receptors are making progress in preclinical studies and may offer solutions to these challenges. While EPO was initially discovered as the primary modulator of erythropoiesis, the discovery and characterization of the tissue-protective EPOR/CD131 receptor offer an opportunity to selectively target the neuroprotective receptor as an approach to identify disease-modifying treatments for PD. PMID:25832721

  15. Recent advances and clinical application of erythropoietin and erythropoiesis-stimulating agents.

    PubMed

    Tanaka, Tetsuhiro; Nangaku, Masaomi

    2012-05-15

    Erythropoietin (EPO) is an essential glycoprotein that facilitates red blood cell maturation from erythroid progenitors and mediates erythropoiesis. The use of recombinant human EPO (rhEPO) dramatically changed management of anemic patients with chronic kidney disease and improved their quality of life. EPO is mainly produced in the fetal liver and the postnatal kidney, although the molecular determinants for tissue-specific expression are elusive. Meanwhile, recent advances established a role of hypoxia-inducible factors (HIF) in transcriptionally upregulating EPO in hypoxia. Out of three HIF- isoforms, HIF-2 appears to play a central role. Prolyl hydroxylase domain-containing protein (PHD), a key regulator connecting oxygen availability and HIF-α expression, is also involved in hypoxic induction of EPO mRNA and the precise roles of PHD paralogs in erythropoiesis are now beginning to be uncovered. On the other hand, widespread expression of EPO receptors (EPOR) beyond erythroid progenitors led to the discovery of non-hematopoietic, pleiotropic roles of EPO in the brain, the heart and the kidney. The precise signal transduction pathways of pleiotropic EPO remain unclear, but carbamylated EPO, which fails to bind to the canonical EPOR homodimers or transduce the JAK2-STAT5 signaling, conferred organ protection through multimeric receptors composed of EPO-R and the common β subunit (βCR). The clinical benefit of normalization of anemia in pre-dialysis CKD by EPO therapy is controversial and recent large-scale, randomized-controlled trials do not favor normalization of anemia by EPO in improving cardiovascular as well as renal outcomes. The optimal EPO therapy should be determined based on the clinical context of individual patients. PMID:22414872

  16. Comparison of serum erythropoietin levels in smokers and nonsmokers with periodontitis: A biochemical study

    PubMed Central

    Singh, Vatsala; Tanwar, Abhishek Singh; Hungund, Arathi Shital; Hungund, Shital Ajit; Nagaraja, Chaitra

    2016-01-01

    Aims: This study was carried out to compare serum erythropoietin (Epo) levels in smokers and nonsmokers with periodontitis. Materials and Methods: Fifty-one subjects of both sexes (age range: 30–65 years) with chronic periodontitis (CP) participated in this study. Seventeen patients with generalized CP, nonsmokers without anemia were included in Group I (control group), 17 patients with generalized CP, nonsmokers with anemia were included in Group II, and 17 patients who were smokers, having generalized CP were included in Group III. Peripheral blood samples were obtained and assessed for the number of erythrocytes (total red blood cell [TRBC]), hemoglobin (Hb), and Epo levels. Statistical Analysis Used: One-way analysis of variance and Tukey–Kramer multiple comparisons test to assess the statistical difference between groups. Results: Epo levels varied considerably between the 3 groups. Highest values of Epo were seen in Group III with mean Epo value = 42.81 ± 15, followed by Group II Epo value = 35.21 ± 10.9, then Group I Epo value = 22.06 ± 4.19. Smokers in Group III with CP showed more prevalence toward higher values of Hb% (mean Hb = 12.06 ± 0.84) while there was no statistical difference in the values of TRBC values among the 3 groups (Group I TRBC value = 3.87 ± 0.38, Group II TRBC value = 4.01 ± 0.83, and Group III TRBC value = 3.88 ± 0.45). Conclusion: Periodontitis patients were seen to have lower Epo values further strengthening the hypothesis that CP may lead to anemia of chronic disease. In smokers, higher Hb values were seen with higher Epo levels. It indicates that periodontitis individually and along with smoking may affect anemic status of smokers. Thus, Epo levels may be better means to assess anemic status of smokers than relying only on Hb values.

  17. Effect of ethnicity on erythropoietin therapy response for hemodialysis patients: a retrospective study.

    PubMed

    Al-Khalaf, Bader; Al-Khalaf, Nour; Mustafa, Seham

    2013-10-01

    Anemia is a common feature in chronic kidney disease patients due to deficiency of erythropoietin (EPO). Diseased kidneys are unable to produce EPO, which enhances red blood cell production from the bone marrow. Recombinant human EPO in hemodialysis patients was introduced with perfect outcomes as a hormonal substitutive treatment. Some ethnic minority groups have high prevalence of anemia associated with chronic kidney diseases. The aim of this study is to evaluate the differences between African Caribbeans and Caucasians' EPO therapy response with regard to hemoglobin (Hb), some factors affecting it and some comorbid conditions. A retrospective study for 6 months of 100 patients on hemodialysis was conducted on two ethnic minorities groups; 46 patients were African Caribbean and 54 patients were Caucasian, who received EPO therapy at once or three times weekly dose at the Hanbury Dialysis Unit of Royal London Hospital. There were three types of EPO therapy used: Aranesp, Mircera and Neorecormon. Forty-six patients were African Caribbean and 54 patients were Caucasian. There were 63.4% of patients treated by Aranesp while 13% were given Mircera; 22.8% of the sample used Neorecorman. It was shown that the chosen comorbid conditions had higher percentage in the African Caribbeans than in Caucasians. Diabetic and/or hypertensive patients are almost double the patient numbers. In addition, sickle cell anemia is only present in African Caribbeans. There were 43.5% of African Caribbeans and 81.1% of Caucasians who met the standards of Hb level. There was no significant difference between African Caribbeans and Caucasians regarding parathyroid hormone, c-reactive protein, B12, mean corpuscular volume, ferritin, and folate. In this study, there was a significant difference in the Hb levels between African Caribbean and Caucasian groups. Sixty percent of African Caribbeans had mean Hb less than normal levels. However, they received lower EPO dose than Caucasians. As a

  18. Enhancement of ventricular-subventricular zone-derived neurogenesis and oligodendrogenesis by erythropoietin and its derivatives

    PubMed Central

    Kaneko, Naoko; Kako, Eisuke; Sawamoto, Kazunobu

    2013-01-01

    In the postnatal mammalian brain, stem cells in the ventricular-subventricular zone (V-SVZ) continuously generate neuronal and glial cells throughout life. Genetic labeling of cells of specific lineages have demonstrated that the V-SVZ is an important source of the neuroblasts and/or oligodendrocyte progenitor cells (OPCs) that migrate toward injured brain areas in response to several types of insult, including ischemia and demyelinating diseases. However, this spontaneous regeneration is insufficient for complete structural and functional restoration of the injured brain, so interventions to enhance these processes are sought for clinical applications. Erythropoietin (EPO), a clinically applied erythropoietic factor, is reported to have cytoprotective effects in various kinds of insult in the central nervous system. Moreover, recent studies suggest that EPO promotes the V-SVZ-derived neurogenesis and oligodendrogenesis. EPO increases the proliferation of progenitors in the V-SVZ and/or the migration and differentiation of their progenies in and around injured areas, depending on the dosage, timing, and duration of treatment, as well as the type of animal model used. On the other hand, EPO has undesirable side effects, including thrombotic complications. We recently demonstrated that a 2-week treatment with the EPO derivative asialo-EPO promotes the differentiation of V-SVZ-derived OPCs into myelin-forming mature oligodendrocytes in the injured white matter of neonatal mice without causing erythropoiesis. Here we present an overview of the multifaceted effects of EPO and its derivatives in the V-SVZ and discuss the possible applications of these molecules in regenerative medicine. PMID:24348331

  19. Role of ATP-dependent K channels in the effects of erythropoietin in renal ischaemia injury

    PubMed Central

    Yilmaz, Tonguç Utku; Yazihan, Nuray; Dalgic, Aydın; Kaya, Ezgi Ermis; Salman, Bulent; Kocak, Mehtap; Akcil, Ethem

    2015-01-01

    Background & objectives: Erythropoietin (EPO) has cytoprotective and anti-apoptotic effects in pathological conditions, including hypoxia and ischaemia-reperfusion injury. One of the targets to protect against injury is ATP-dependent potassium (KATP) channels. These channels could be involved in EPO induced ischaemic preconditoning like a protective effect. We evaluated the cell cytoprotective effects of EPO in relation to KATP channel activation in the renal tubular cell culture model under hypoxic/normoxic conditions. Methods: Dose and time dependent effects of EPO, KATP channel blocker glibenclamide and KATP channel opener diazoxide on cellular proliferation were evaluated by colorimetric assay MTT [3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide] under normoxic and hypoxic conditions in human renal proximal tubular cell line (CRL-2830). Evaluation of the dose and time dependent effects of EPO, glibenclamide and diazoxide on apoptosis was done by caspase-3 activity levels. Hypoxia inducible factor-1 alpha (HIF-1 α) mRNA levels were measured by semi-quantative reverse transcription polymerase chain reaction (RT)-PCR. Kir 6.1 protein expresion was evalutaed by Western blot. Results: Glibenclamide treatment decreased the number of living cells in a time and dose dependent manner, whereas EPO and diazoxide treatments increased. Glibenclamide (100 μM) treatment significantly blocked the anti-apoptotic effects of EPO (10 IU/ml) under both normoxic and hypoxic conditions. EPO (10 IU/ml) and diazoxide (100 μM) treatments significantly increased (P<0.01) whereas glibenclamide decreased (P<0.05) HIF-1 α mRNA expression. Glibenclamide significantly (P<0.01) decreased EPO induced HIF-1 α mRNA expression when compared with the EPO alone group. Interpretation & conclusions: Our results showed that the cell proliferative, cytoprotective and anti-apoptotic effects of EPO were associated with KATP channels in the renal tubular cell culture model under hypoxic

  20. Establishment of the first WHO Erythropoietin antibody reference panel: Report of an international collaborative study.

    PubMed

    Wadhwa, Meenu; Mytych, Daniel T; Bird, Chris; Barger, Troy; Dougall, Thomas; Han, Hong; Rigsby, Peter; Kromminga, Arno; Thorpe, Robin

    2016-08-01

    A panel of 9 fully human monoclonal antibodies against human erythropoietin (EPO) with defined characteristics (non-neutralizing, neutralizing, various isotypes, affinities) representative of those evident in antibody-mediated pure red cell aplasia (PRCA) and non-PRCA patients were formulated and lyophilized. The panel was evaluated in a multi-centre international collaborative study comprising eighteen different laboratories using different assay platforms including those in routine use. These included binding assays, some based on use of novel technologies and neutralization assays predominantly employing EPO responsive cell-lines. Results showed that detection and titre varied depending on antibody characteristics and the method used. Only selective assay platforms were capable of detecting the diverse repertoire of EPO antibodies in the panel indicating that some clinically relevant antibodies are likely to be missed in some assays. Importantly, the clinical samples from PRCA patients were distinguished as antibody-positive and the healthy donor serum as antibody negative across all different platforms tested. For neutralization, data was generally consistent across the assays for the different samples regardless of the cell-line and the assay conditions. The heterogeneity in data from the study clearly indicated the need for reference standards for consistency in detecting and measuring EPO antibodies across different assay platforms for monitoring the safety and efficacy of erythropoiesis stimulating agents. Therefore, the WHO ECBS at its meeting in October'15 established the EPO antibody panel, available from NIBSC, to facilitate decision-making on assay selection for testing antibodies against human EPO, for evaluating assay performance of antibody assays for clinical use, for assay validation and for standardization. PMID:27173074

  1. Lenalidomide Stabilizes the Erythropoietin Receptor by Inhibiting the E3 Ubiquitin Ligase RNF41.

    PubMed

    Basiorka, Ashley A; McGraw, Kathy L; De Ceuninck, Leentje; Griner, Lori N; Zhang, Ling; Clark, Justine A; Caceres, Gisela; Sokol, Lubomir; Komrokji, Rami S; Reuther, Gary W; Wei, Sheng; Tavernier, Jan; List, Alan F

    2016-06-15

    In a subset of patients with non-del(5q) myelodysplastic syndrome (MDS), lenalidomide promotes erythroid lineage competence and effective erythropoiesis. To determine the mechanism by which lenalidomide promotes erythropoiesis, we investigated its action on erythropoietin receptor (EpoR) cellular dynamics. Lenalidomide upregulated expression and stability of JAK2-associated EpoR in UT7 erythroid cells and primary CD71+ erythroid progenitors. The effects of lenalidomide on receptor turnover were Type I cytokine receptor specific, as evidenced by coregulation of the IL3-Rα receptor but not c-Kit. To elucidate this mechanism, we investigated the effects of lenalidomide on the E3 ubiquitin ligase RNF41. Lenalidomide promoted EpoR/RNF41 association and inhibited RNF41 auto-ubiquitination, accompanied by a reduction in EpoR ubiquitination. To confirm that RNF41 is the principal target responsible for EpoR stabilization, HEK293T cells were transfected with EpoR and/or RNF41 gene expression vectors. Steady-state EpoR expression was reduced in EpoR/RNF41 cells, whereas EpoR upregulation by lenalidomide was abrogated, indicating that cellular RNF41 is a critical determinant of drug-induced receptor modulation. Notably, shRNA suppression of CRBN gene expression failed to alter EpoR upregulation, indicating that drug-induced receptor modulation is independent of cereblon. Immunohistochemical staining showed that RNF41 expression decreased in primary erythroid cells of lenalidomide-responding patients, suggesting that cellular RNF41 expression merits investigation as a biomarker for lenalidomide response. Our findings indicate that lenalidomide has E3 ubiquitin ligase inhibitory effects that extend to RNF41 and that inhibition of RNF41 auto-ubiquitination promotes membrane accumulation of signaling competent JAK2/EpoR complexes that augment Epo responsiveness. Cancer Res; 76(12); 3531-40. ©2016 AACR. PMID:27197154

  2. Photoaffinity labeling of the erythropoietin receptor and its identification in a ligand-free form

    SciTech Connect

    Hosoi, Takayuki; Sawyer, S.T.; Krantz, S.B. )

    1991-01-01

    Pure human recombinant erythropoietin (EP) was acylated through a primary amino residue with a cross-linking reagent, N-((3-((4-((p-azido-m-({sup 125}I)iodophenyl)azo)benzoyl)amino)propanoyl)oxy)-succinimide (Denny-Jaffe reagent), which is photoreactive and cleavable at the azo residue. The resulting conjugated hormone (DJ-EP) was purified from unmodified EP by reverse-phase high-pressure liquid chromatography and maintained its capacity to bind to receptors for EP on erythroid progenitor cells. The receptor for EP was previously identified as two related proteins of 100 and 85 kDa molecular mass by chemical cross-linking to {sup 125}I-EP. Recently, D'Andrea and co-workers cloned a cDNA that codes for a protein of 55-66 kDa, which is thought to be the EP receptor. In this report, cross-linking to the receptor through the monofunctional DJ-EP labeled the same 140- and 125-kDa molecular mass bands cross-linked with {sup 125}I-EP and disuccinimidyl suberate. Furthermore, cleavage of the azo bond of the DJ-EP receptor complex by sodium dithionite demonstrated that proteins of 105 and 90 kDa were labeled in ligand-free form by DJ-EP. This result demonstrates that artifactual cross-linking of multiple proteins or other artifacts of cross-linking do not explain the difference in molecular mass of the EP receptor identified by cross-linking and the receptor identified by expression cloning.

  3. Erythropoietin Modulates Cerebral and Serum Degradation Products from Excess Calpain Activation following Prenatal Hypoxia-Ischemia.

    PubMed

    Jantzie, Lauren L; Winer, Jesse L; Corbett, Christopher J; Robinson, Shenandoah

    2016-01-01

    Preterm infants suffer central nervous system (CNS) injury from hypoxia-ischemia and inflammation - termed encephalopathy of prematurity. Mature CNS injury activates caspase and calpain proteases. Erythropoietin (EPO) limits apoptosis mediated by activated caspases, but its role in modulating calpain activation has not yet been investigated extensively following injury to the developing CNS. We hypothesized that excess calpain activation degrades developmentally regulated molecules essential for CNS circuit formation, myelination and axon integrity, including neuronal potassium-chloride co-transporter (KCC2), myelin basic protein (MBP) and phosphorylated neurofilament (pNF), respectively. Further, we predicted that post-injury EPO treatment could mitigate CNS calpain-mediated degradation. Using prenatal transient systemic hypoxia-ischemia (TSHI) in rats to mimic CNS injury from extreme preterm birth, and postnatal EPO treatment with a clinically relevant dosing regimen, we found sustained postnatal excess cortical calpain activation following prenatal TSHI, as shown by the cleavage of alpha II-spectrin (αII-spectrin) into 145-kDa αII-spectrin degradation products (αII-SDPs) and p35 into p25. Postnatal expression of the endogenous calpain inhibitor calpastatin was also reduced following prenatal TSHI. Calpain substrate expression following TSHI, including cortical KCC2, MBP and NF, was modulated by postnatal EPO treatment. Calpain activation was reflected in serum levels of αII-SDPs and KCC2 fragments, and notably, EPO treatment also modulated KCC2 fragment levels. Together, these data indicate that excess calpain activity contributes to the pathogenesis of encephalopathy of prematurity. Serum biomarkers of calpain activation may detect ongoing cerebral injury and responsiveness to EPO or similar neuroprotective strategies. PMID:26551007

  4. Treatment of Mild Traumatic Brain Injury with an Erythropoietin-Mimetic Peptide

    PubMed Central

    Garcia, Robert; Sujit Kumar Gaddam, Samson; Grill, Raymond J.; Cerami Hand, Carla; Siva Tian, Tian; Hannay, H. Julia

    2013-01-01

    Abstract Mild traumatic brain injury (mTBI) results in an estimated 75–90% of the 1.7 million TBI-related emergency room visits each year. Post-concussion symptoms, which can include impaired memory problems, may persist for prolonged periods of time in a fraction of these cases. The purpose of this study was to determine if an erythropoietin-mimetic peptide, pyroglutamate helix B surface peptide (pHBSP), would improve neurological outcomes following mTBI. Sixty-four rats were randomly assigned to pHBSP or control (inactive peptide) 30 μg/kg IP every 12 h for 3 days, starting at either 1 hour (early treatment) or 24 h (delayed treatment), after mTBI (cortical impact injury 3 m/sec, 2.5 mm deformation). Treatment with pHBSP resulted in significantly improved performance on the Morris water maze task. Rats that received pHBSP required 22.3±1.3 sec to find the platform, compared to 26.3±1.3 sec in control rats (p=0.022). The rats that received pHBSP also traveled a significantly shorter distance to get to the platform, 5.0±0.3 meters, compared to 6.1±0.3 meters in control rats (p=0.019). Motor tasks were only transiently impaired in this mTBI model, and no treatment effect on motor performance was observed with pHBSP. Despite the minimal tissue injury with this mTBI model, there was significant activation of inflammatory cells identified by labeling with CD68, which was reduced in the pHBSP-treated animals. The results suggest that pHBSP may improve cognitive function following mTBI. PMID:22827443

  5. Soluble expression and partial purification of recombinant human erythropoietin from E. coli.

    PubMed

    Jeong, Taeck-Hyun; Son, Young-Jin; Ryu, Han-Bong; Koo, Bon-Kyung; Jeong, Seung-Mi; Hoang, Phuong; Do, Bich Hang; Song, Jung-A; Chong, Seon-Ha; Robinson, Robert Charles; Choe, Han

    2014-03-01

    Human erythropoietin (hEpo) is an essential regulator of erythrocyte production that induces the division and differentiation of erythroid progenitor cells in the bone marrow into mature erythrocytes. It is widely used for the treatment of anemia resulting from chronic kidney disease, chemotherapy, and cancer-related therapies. Active hEpo, and hEpo analogs, have been purified primarily from mammalian cells, which has several disadvantages, including low yields and high production costs. Although an Escherichia coli (E. coli) expression system may provide economic production of therapeutic proteins, it has not been used for the production of recombinant hEpo (rhEpo) because it aggregates in inclusion bodies in the E. coli cytoplasm and is not modified post-translationally. We investigated the soluble overexpression of active rhEpo with various protein tags in E. coli, and found out that several tags increased the solubility of rhEpo. Among them maltose binding protein (MBP)-tagged rhEpo was purified using affinity and gel filtration columns. Non-denaturing electrophoresis and MALDI-TOF MS analysis demonstrated that the purified rhEpo had two intra-disulfide bonds identical to those of the native hEpo. An in vitro proliferation assay showed that rhEpo purified from E. coli had similar biological activity as rhEpo derived from CHO cells. Therefore, we report for the first time that active rhEpo was overexpressed as a soluble form in the cytoplasm of E. coli and purified it in simple purification steps. We hope that our results offer opportunities for progress in rhEpo therapeutics. PMID:24412408

  6. Age-dependent expression of the erythropoietin gene in rat liver and kidneys.

    PubMed Central

    Eckardt, K U; Ratcliffe, P J; Tan, C C; Bauer, C; Kurtz, A

    1992-01-01

    Using RNAse protection, we have made quantitative measurements of erythropoietin (EPO) mRNA in liver and kidneys of developing rats (days 1-54), to determine the relative contribution of both organs to the total EPO mRNA, to monitor changes which occur with development, and to compare the hypoxia-induced accumulation of EPO mRNA with the changes in serum EPO concentrations. To determine whether developmental and organ-specific responsiveness is related to the type of hypoxic stimulus, normobaric hypoxia was compared with exposure to carbon monoxide (functional anemia). Under both stimuli EPO mRNA concentration in liver was maximal on day 7 and declined during development. In contrast, EPO mRNA concentration in kidney increased during development from day 1 when it was 30-65% the hepatic concentration to day 54 when it was 12-fold higher than in liver. When organ weight was considered the liver was found to contain the majority of EPO mRNA in the first three to four weeks of life, and although, in stimulated animals, the hepatic proportion declined from 85-91% on day 1, it remained approximately 33% at day 54 and was similar for the two types of stimuli. When normalized for body weight the sum of renal and hepatic EPO mRNA in animals of a particular age was related linearly to serum hormone concentrations. However, the slope of this regression increased progressively with development, suggesting age-dependent alterations in translational efficiency or EPO metabolism. Images PMID:1541670

  7. Plasma soluble erythropoietin receptor is decreased during sleep in Andean highlanders with Chronic Mountain Sickness.

    PubMed

    Villafuerte, Francisco C; Corante, Noemí; Anza-Ramírez, Cecilia; Figueroa-Mujíca, Rómulo; Vizcardo-Galindo, Gustavo; Mercado, Andy; Macarlupú, José Luis; León-Velarde, Fabiola

    2016-07-01

    Excessive erythrocytosis (EE) is the main sign of Chronic Mountain Sickness (CMS), a highly prevalent syndrome in Andean highlanders. Low pulse O2 saturation (SpO2) during sleep and serum androgens have been suggested to contribute to EE in CMS patients. However, whether these factors have a significant impact on the erythropoietin (Epo) system leading to EE is still unclear. We have recently shown that morning soluble Epo receptor (sEpoR), an endogenous Epo antagonist, is decreased in CMS patients suggesting increased Epo availability (increased Epo/sEpoR). The present study aimed to characterize the nocturnal concentration profile of sEpoR and Epo and their relationship with SpO2, Hct, and serum testosterone in healthy highlanders (HH) and CMS patients. Epo and sEpoR concentrations were evaluated every 4 h (6 PM to 6 AM) and nighttime SpO2 was continuously monitored (10 PM to 6 AM) in 39 male participants (CMS, n = 23; HH, n = 16) aged 21-65 yr from Cerro de Pasco, Peru (4,340 m). CMS patients showed higher serum Epo concentrations throughout the night and lower sEpoR from 10 PM to 6 AM. Consequently, Epo/sEpoR was significantly higher in the CMS group at every time point. Mean sleep-time SpO2 was lower in CMS patients compared with HH, while the percentage of sleep time spent with SpO2 < 80% was higher. Multiple-regression analysis showed mean sleep-time SpO2 and Epo/sEpoR as significant predictors of hematocrit corrected for potential confounders (age, body mass index, and testosterone). Testosterone levels were associated neither with Hct nor with erythropoietic factors. In conclusion, our results show sustained erythropoietic stimulus driven by the Epo system in CMS patients, further enhanced by a continuous exposure to accentuated nocturnal hypoxemia. PMID:27125843

  8. Erythropoietin Does Not Enhance Skeletal Muscle Protein Synthesis Following Exercise in Young and Older Adults

    PubMed Central

    Lamon, Séverine; Zacharewicz, Evelyn; Arentson-Lantz, Emily; Gatta, Paul A. Della; Ghobrial, Lobna; Gerlinger-Romero, Frederico; Garnham, Andrew; Paddon-Jones, Douglas; Russell, Aaron P.

    2016-01-01

    Purpose: Erythropoietin (EPO) is a renal cytokine that is primarily involved in hematopoiesis while also playing a role in non-hematopoietic tissues expressing the EPO-receptor (EPOR). The EPOR is present in human skeletal muscle. In mouse skeletal muscle, EPO stimulation can activate the AKT serine/threonine kinase 1 (AKT) signaling pathway, the main positive regulator of muscle protein synthesis. We hypothesized that a single intravenous EPO injection combined with acute resistance exercise would have a synergistic effect on skeletal muscle protein synthesis via activation of the AKT pathway. Methods: Ten young (24.2 ± 0.9 years) and 10 older (66.6 ± 1.1 years) healthy subjects received a primed, constant infusion of [ring-13C6] L-phenylalanine and a single injection of 10,000 IU epoetin-beta or placebo in a double-blind randomized, cross-over design. 2 h after the injection, the subjects completed an acute bout of leg extension resistance exercise to stimulate skeletal muscle protein synthesis. Results: Significant interaction effects in the phosphorylation levels of the members of the AKT signaling pathway indicated a differential activation of protein synthesis signaling in older subjects when compared to young subjects. However, EPO offered no synergistic effect on vastus lateralis mixed muscle protein synthesis rate in young or older subjects. Conclusions: Despite its ability to activate the AKT pathway in skeletal muscle, an acute EPO injection had no additive or synergistic effect on the exercise-induced activation of muscle protein synthesis or muscle protein synthesis signaling pathways. PMID:27458387

  9. Selectively crosslinked hyaluronic acid hydrogels for sustained release formulation of erythropoietin.

    PubMed

    Motokawa, Keiko; Hahn, Sei Kwang; Nakamura, Teruo; Miyamoto, Hajime; Shimoboji, Tsuyoshi

    2006-09-01

    A novel sustained release formulation of erythropoietin (EPO) was developed using hyaluronic acid (HA) hydrogels. For the preparation of HA hydrogels, adipic acid dihydrazide grafted HA (HA-ADH) was synthesized and analyzed with (1)H NMR. The degree of HA-ADH modification was about 69%. EPO was in situ encapsulated into HA-ADH hydrogels through a selective cross-linking reaction of bis(sulfosuccinimidyl) suberate (BS(3)) to hydrazide group (pK(a) = 3.0) of HA-ADH rather than to amine group (pK(a) > 9) of EPO. The denaturation of EPO during HA-ADH hydrogel synthesis was drastically reduced with decreasing pH from 7.4 to 4.8. The specific reactivity of BS(3) to hydrazide at pH = 4.8 might be due to its low pK(a) compared with that of amine. In vitro release of EPO in phosphate buffered saline at 37 degrees C showed that EPO was released rapidly for 2 days and then slowly up to 4 days from HA-ADH hydrogels. When the hydrogels were dried at 37 degrees C for a day, however, longer release of EPO up to 3 weeks could be demonstrated. According to in vivo release test of EPO from HA-ADH hydrogels in SD rats, elevated EPO concentration higher than 0.1 ng/mL could be maintained from 7 days up to 18 days depending on the preparation methods of HA-ADH hydrogels. There was no adverse effect during and after HA-ADH hydrogel implantation. PMID:16721757

  10. Protective action of erythropoietin on neuronal damage induced by activated microglia.

    PubMed

    Wenker, Shirley D; Chamorro, María E; Vittori, Daniela C; Nesse, Alcira B

    2013-04-01

    Inflammation is a physiological defense response, but may also represent a potential pathological process in neurological diseases. In this regard, microglia have a crucial role in either progression or amelioration of degenerative neuronal damage. Because of the role of hypoxia in pro-inflammatory mechanisms in the nervous system, and the potential anti-inflammatory protective effect of erythropoietin (Epo), we focused our investigation on the role of this factor on activation of microglia and neuroprotection. Activation of microglial cells (EOC-2) was achieved by chemical hypoxia induced by cobalt chloride (CoCl2 ) and characterized by increased levels of nitrite, tumor necrosis factor-α and reactive oxygen species production, as well as up-regulation of inducible nitric oxide synthase expression. Under these conditions, cell proliferation data and proliferating cell nuclear antigen (PCNA) staining demonstrated a mitogenic effect of chemical hypoxia. Even though pre-treatment with Epo did not prevent nitrite production, inducible nitric oxide synthase protein expression or tumor necrosis factor-α secretion, it prevented the oxidative stress induced by CoCl2 as well as cell proliferation. Neuronal cells (SH-SY5Y) cultured in the presence of conditioned medium from activated EOC-2 cells or macrophages (RAW 264.7) developed significant apoptosis, an effect that was abolished by Epo via Epo/Epo receptor activation. The results show that even though Epo did not exert a direct anti-inflammatory effect on microglia activation, it did increase the resistance of neurons to subsequent damage from pro-inflammatory agents. In addition to its anti-apoptotic ability, the Epo antioxidant effect may have an indirect influence on neuronal survival by modulation of the pro-inflammatory environment. PMID:23384249

  11. Endoplasmic reticulum stress signal impairs erythropoietin production: a role for ATF4.

    PubMed

    Chiang, Chih-Kang; Nangaku, Masaomi; Tanaka, Tetsuhiro; Iwawaki, Takao; Inagi, Reiko

    2013-02-15

    Hypoxia upregulates the hypoxia-inducible factor (HIF) pathway and the endoplasmic reticulum (ER) stress signal, unfolded protein response (UPR). The cross talk of both signals affects the pathogenic alteration by hypoxia. Here we showed that ER stress induced by tunicamycin or thapsigargin suppressed inducible (CoCl(2) or hypoxia) transcription of erythropoietin (EPO), a representative HIF target gene, in HepG2. This suppression was inversely correlated with UPR activation, as estimated by expression of the UPR regulator glucose-regulated protein 78, and restored by an ER stress inhibitor, salubrinal, in association with normalization of the UPR state. Importantly, the decreased EPO expression was also observed in HepG2 overexpressing UPR activating transcription factor (ATF)4. Overexpression of mutated ATF4 that lacks the transcriptional activity did not alter EPO transcriptional regulation. Transcriptional activity of the EPO 3'-enhancer, which is mainly regulated by HIF, was abolished by both ER stressors and ATF4 overexpression, while nuclear HIF accumulation or expression of other HIF target genes was not suppressed by ER stress. Chromatin immunoprecipitation analysis identified a novel ATF4 binding site (TGACCTCT) within the EPO 3'-enhancer region, suggesting a distinct role for ATF4 in UPR-dependent suppression of the enhancer. Induction of ER stress in rat liver and kidney by tunicamycin decreased the hepatic and renal mRNA and plasma level of EPO. Collectively, ER stress selectively impairs the transcriptional activity of EPO but not of other HIF target genes. This effect is mediated by suppression of EPO 3'-enhancer activity via ATF4 without any direct effect on HIF, indicating that UPR contributes to oxygen-sensing regulation of EPO. PMID:23242184

  12. Erythropoietin Synthesis in Renal Myofibroblasts Is Restored by Activation of Hypoxia Signaling.

    PubMed

    Souma, Tomokazu; Nezu, Masahiro; Nakano, Daisuke; Yamazaki, Shun; Hirano, Ikuo; Sekine, Hiroki; Dan, Takashi; Takeda, Kotaro; Fong, Guo-Hua; Nishiyama, Akira; Ito, Sadayoshi; Miyata, Toshio; Yamamoto, Masayuki; Suzuki, Norio

    2016-02-01

    Erythropoietin (Epo) is produced by renal Epo-producing cells (REPs) in a hypoxia-inducible manner. The conversion of REPs into myofibroblasts and coincident loss of Epo-producing ability are the major cause of renal fibrosis and anemia. However, the hypoxic response of these transformed myofibroblasts remains unclear. Here, we used complementary in vivo transgenic and live imaging approaches to better understand the importance of hypoxia signaling in Epo production. Live imaging of REPs in transgenic mice expressing green fluorescent protein from a modified Epo-gene locus revealed that healthy REPs tightly associated with endothelium by wrapping processes around capillaries. However, this association was hampered in states of renal injury-induced inflammation previously shown to correlate with the transition to myofibroblast-transformed renal Epo-producing cells (MF-REPs). Furthermore, activation of hypoxia-inducible factors (HIFs) by genetic inactivation of HIF-prolyl hydroxylases (PHD1, PHD2, and PHD3) selectively in Epo-producing cells reactivated Epo production in MF-REPs. Loss of PHD2 in REPs restored Epo-gene expression in injured kidneys but caused polycythemia. Notably, combined deletions of PHD1 and PHD3 prevented loss of Epo expression without provoking polycythemia. Mice with PHD-deficient REPs also showed resistance to LPS-induced Epo repression in kidneys, suggesting that augmented HIF signaling counterbalances inflammatory stimuli in regulation of Epo production. Thus, augmentation of HIF signaling may be an attractive therapeutic strategy for treating renal anemia by reactivating Epo synthesis in MF-REPs. PMID:26054543

  13. Oral Zinc Supplementation Reduces the Erythropoietin Responsiveness Index in Patients on Hemodialysis

    PubMed Central

    Kobayashi, Hiroki; Abe, Masanori; Okada, Kazuyoshi; Tei, Ritsukou; Maruyama, Noriaki; Kikuchi, Fumito; Higuchi, Terumi; Soma, Masayoshi

    2015-01-01

    Background: In hemodialysis (HD) patients, zinc depletion caused by inadequate intake, malabsorption, and removal by HD treatment leads to erythropoiesis-stimulating agent (ESA) hyporesponsiveness. This study investigated the effects of zinc supplementation in HD patients with zinc deficiency on changes in the erythropoietin responsiveness index (ERI). Methods: Patients on HD with low serum zinc levels (<65 μg/dL) were randomly assigned to two groups: The polaprezinc group (who received daily polaprezinc, containing 34 mg/day of zinc) (n = 35) and the control group (no supplementation) (n = 35) for 12 months. All the 70 patients had been taking epoetin alpha as treatment for renal anemia. ERI was measured with the following equation: Weekly ESA dose (units)/dry weight (kg)/hemoglobin (g/dL). Results: There were no significant changes in hemoglobin levels within groups or between the control and polaprezinc groups during the study period. Although reticulocyte counts were increased immediately after zinc supplementation, this change was transient. Serum zinc levels were significantly increased and serum copper levels were significantly decreased in the polaprezinc group after three months; this persisted throughout the study period. Although there was no significant change in the serum iron or transferrin saturation levels in the polaprezinc group during the study period, serum ferritin levels significantly decreased following polaprezinc treatment. Further, in the polaprezinc group, ESA dosage and ERI were significantly decreased at 10 months and nine months, respectively, as compared with the baseline value. Multiple stepwise regression analysis revealed that the change in the serum zinc level was an independent predictor of lowered ERI. Conclusions: Zinc supplementation reduces ERI in patients undergoing HD and may be a novel therapeutic strategy for patients with renal anemia and low serum zinc levels. PMID:25988769

  14. Effects of Recombinant Human Erythropoietin on Resistance Artery Endothelial Function in Stage 4 Chronic Kidney Disease

    PubMed Central

    Briet, Marie; Barhoumi, Tlili; Mian, Muhammad Oneeb Rehman; Sierra, Cristina; Boutouyrie, Pierre; Davidman, Michael; Bercovitch, David; Nessim, Sharon J.; Frisch, Gershon; Paradis, Pierre; Lipman, Mark L.; Schiffrin, Ernesto L.

    2013-01-01

    Background Recent studies have raised concern about the safety of erythropoiesis‐stimulating agents because of evidence of increased risk of hypertension and cardiovascular morbidity and mortality in chronic kidney disease (CKD) patients. In the present study, we investigated the effects of recombinant human erythropoietin (EPO) on endothelial function of gluteal subcutaneous resistance arteries isolated from 17 stage 4 patients (estimated glomerular filtration rate 21.9±7.4 mL/min per 1.73 m2) aged 63±13 years. Methods and Results Arteries were mounted on a pressurized myograph. EPO impaired endothelium‐dependent relaxation in a concentration‐dependent manner. The maximal response to acetylcholine with EPO at 1, 10, and 20 IU/mL was reduced by 12%, 34%, and 43%, respectively, compared with the absence of EPO (P<0.001). EPO‐induced endothelial dysfunction was significantly associated with carotid stiffness and history of cardiovascular events. EPO had no effect on norepinephrine‐induced vasoconstriction or sodium nitroprusside–induced relaxation. ABT‐627, an endothelin type A receptor antagonist, and tempol, a superoxide dismutase mimetic, partially reversed the altered endothelial function in the presence of EPO (P<0.01). Increased expression of endothelin‐1 was found in the vessel wall after incubation with EPO. Conclusions EPO alters endothelial function of resistance arteries in CKD patients via a mechanism involving in part oxidative stress and signaling through an endothelin type A receptor. EPO‐induced endothelial dysfunction could contribute to deleterious effects of EPO described in large interventional trials. PMID:23584809

  15. Erythropoietin doping in cycling: lack of evidence for efficacy and a negative risk–benefit

    PubMed Central

    Heuberger, Jules A A C; Cohen Tervaert, Joost M; Schepers, Femke M L; Vliegenthart, Adriaan D B; Rotmans, Joris I; Daniels, Johannes M A; Burggraaf, Jacobus; Cohen, Adam F

    2013-01-01

    Imagine a medicine that is expected to have very limited effects based upon knowledge of its pharmacology and (patho)physiology and that is studied in the wrong population, with low-quality studies that use a surrogate end-point that relates to the clinical end-point in a partial manner at most. Such a medicine would surely not be recommended. The use of recombinant human erythropoietin (rHuEPO) to enhance performance in cycling is very common. A qualitative systematic review of the available literature was performed to examine the evidence for the ergogenic properties of this drug, which is normally used to treat anaemia in chronic renal failure patients. The results of this literature search show that there is no scientific basis from which to conclude that rHuEPO has performance-enhancing properties in elite cyclists. The reported studies have many shortcomings regarding translation of the results to professional cycling endurance performance. Additionally, the possibly harmful side-effects have not been adequately researched for this population but appear to be worrying, at least. The use of rHuEPO in cycling is rife but scientifically unsupported by evidence, and its use in sports is medical malpractice. What its use would have been, if the involved team physicians had been trained in clinical pharmacology and had investigated this properly, remains a matter of speculation. A single well-controlled trial in athletes in real-life circumstances would give a better indication of the real advantages and risk factors of rHuEPO use, but it would be an oversimplification to suggest that this would eradicate its use. PMID:23216370

  16. Erythropoietin for the Treatment of Subarachnoid Hemorrhage: A Feasible Ingredient for a Successful Medical Recipe

    PubMed Central

    Grasso, Giovanni; Tomasello, Giovanni; Noto, Marcello; Alafaci, Concetta; Cappello, Francesco

    2015-01-01

    Subarachnoid hemorrhage (SAH) following aneurysm bleeding accounts for 6% to 8% of all cerebrovascular accidents. Although an aneurysm can be effectively managed by surgery or endovascular therapy, delayed cerebral ischemia is diagnosed in a high percentage of patients resulting in significant morbidity and mortality. Cerebral vasospasm occurs in more than half of all patients after aneurysm rupture and is recognized as the leading cause of delayed cerebral ischemia after SAH. Hemodynamic strategies and endovascular procedures may be considered for the treatment of cerebral vasospasm. In recent years, the mechanisms contributing to the development of vasospasm, abnormal reactivity of cerebral arteries and cerebral ischemia following SAH, have been investigated intensively. A number of pathological processes have been identified in the pathogenesis of vasospasm, including endothelial injury, smooth muscle cell contraction from spasmogenic substances produced by the subarachnoid blood clots, changes in vascular responsiveness and inflammatory response of the vascular endothelium. To date, the current therapeutic interventions remain ineffective as they are limited to the manipulation of systemic blood pressure, variation of blood volume and viscosity and control of arterial carbon dioxide tension. In this scenario, the hormone erythropoietin (EPO) has been found to exert neuroprotective action during experimental SAH when its recombinant form (rHuEPO) is administered systemically. However, recent translation of experimental data into clinical trials has suggested an unclear role of recombinant human EPO in the setting of SAH. In this context, the aim of the current review is to present current evidence on the potential role of EPO in cerebrovascular dysfunction following aneurysmal subarachnoid hemorrhage. PMID:26581085

  17. Diurnal changes of arterial oxygen saturation and erythropoietin concentration in male and female highlanders.

    PubMed

    Cristancho, Edgar; Riveros, Alain; Sánchez, Armando; Peñuela, Oscar; Böning, Dieter

    2016-09-01

    In Caucasians and Native Americans living at altitude, hemoglobin mass is increased in spite of erythropoietin concentrations ([Epo]) not markedly differing from sea level values. We hypothesized that a nocturnal decrease of arterial oxygen saturation (SaO2) causes a temporary rise of [Epo] not detected by morning measurements. SaO2 (continuous, finger oximeter) and [Epo] (ELISA, every 4 h) were determined in young highlanders (altitude 2600 m) during 24 h of usual daily activity. In Series I (six male, nine female students), SaO2 fell during the night with the nadir occurring between 01:00 and 03:00; daily means (range 92.4-95.2%) were higher in females (+1.7%, P < 0.01). [Epo] showed opposite changes with zenith occurring at 04:00 without a sex difference. Mean daily values (22.9 ± 10.7SD U/L) were higher than values obtained at 08:00 (17.2 ± 9.5 U/L, P < 0.05). In Series II (seven females), only SaO2 was measured. During follicular and luteal phases, SaO2 variation was similar to Series I, but the rhythm was disturbed during menstruation. While daily [Epo] variations at sea level are not homogeneous, there is a diurnal variation at altitude following changes in SaO2 Larger hypoventilation-dependent decreases of alveolar PO2 decreases during the night probably cause a stronger reduction of SaO2 in highlanders compared to lowlanders. This variation might be enlarged by a diurnal fluctuation of Hb concentration. In spite of a lower [Hb], the higher SaO2 in women compared to men led to a similar arterial oxygen content, likely explaining the absence of differences in [Epo] between sexes. PMID:27597764

  18. The Greatly Misunderstood Erythropoietin Resistance Index and the Case for a New Responsiveness Measure

    PubMed Central

    Chait, Y; Kalim, S; Horowitz, J; Hollot, CH; Ankers, ED; Germain, MJ; Thadhani, RI

    2016-01-01

    Background The optimal use of erythropoiesis stimulating agents (ESAs) to treat anemia in end stage renal disease (ESRD) remains controversial due to reported associations with adverse events. In analyzing these associations, studies often utilize ESA resistance indices (ERIs), to characterize a patient’s response to ESA. In this study, we examine whether ERI is an adequate measure of ESA resistance. Methods We used retrospective data from a non-concurrent cohort study of incident hemodialysis patients in the United States (n=9386). ERI is defined as average weekly erythropoietin (EPO) dose per kg body weight (wt) per average hemoglobin (Hgb), over a 3-month period (ERI = (EPO/wt)/Hgb). Linear regression was used to demonstrate the relationship between ERI and weight-adjusted EPO. The coefficient of variation (CV) was used to compare the variability of Hgb with that of weight-adjusted EPO in order to explain this relationship. This analysis was done for each quarter during the first year of dialysis. Results ERI is strongly linearly related with weight-adjusted EPO dose in each of the 4 quarters by the equation ERI = 0.0899*(EPO/wt) (range of R2 = 0.97–0.98) and weakly linearly related to 1/Hgb (range of R2 = 0.06–0.16). These correlations hold independent of age, sex, hgb level, ERI level, and epo-naïve stratifications. Conclusions ERI is strongly linearly related to weight-adjusted (and non-weight-adjusted) EPO dose by a “universal”, not patient-specific formula, and thus is a surrogate of EPO dose. Therefore, associations between ERI and clinical outcomes are associations between a confounded EPO dose and those outcomes. PMID:26843352

  19. Plasma soluble erythropoietin receptor is decreased during sleep in Andean highlanders with Chronic Mountain Sickness

    PubMed Central

    Corante, Noemí; Anza-Ramírez, Cecilia; Figueroa-Mujíca, Rómulo; Vizcardo-Galindo, Gustavo; Mercado, Andy; Macarlupú, José Luis; León-Velarde, Fabiola

    2016-01-01

    Excessive erythrocytosis (EE) is the main sign of Chronic Mountain Sickness (CMS), a highly prevalent syndrome in Andean highlanders. Low pulse O2 saturation (SpO2) during sleep and serum androgens have been suggested to contribute to EE in CMS patients. However, whether these factors have a significant impact on the erythropoietin (Epo) system leading to EE is still unclear. We have recently shown that morning soluble Epo receptor (sEpoR), an endogenous Epo antagonist, is decreased in CMS patients suggesting increased Epo availability (increased Epo/sEpoR). The present study aimed to characterize the nocturnal concentration profile of sEpoR and Epo and their relationship with SpO2, Hct, and serum testosterone in healthy highlanders (HH) and CMS patients. Epo and sEpoR concentrations were evaluated every 4 h (6 PM to 6 AM) and nighttime SpO2 was continuously monitored (10 PM to 6 AM) in 39 male participants (CMS, n = 23; HH, n = 16) aged 21-65 yr from Cerro de Pasco, Peru (4,340 m). CMS patients showed higher serum Epo concentrations throughout the night and lower sEpoR from 10 PM to 6 AM. Consequently, Epo/sEpoR was significantly higher in the CMS group at every time point. Mean sleep-time SpO2 was lower in CMS patients compared with HH, while the percentage of sleep time spent with SpO2 < 80% was higher. Multiple-regression analysis showed mean sleep-time SpO2 and Epo/sEpoR as significant predictors of hematocrit corrected for potential confounders (age, body mass index, and testosterone). Testosterone levels were associated neither with Hct nor with erythropoietic factors. In conclusion, our results show sustained erythropoietic stimulus driven by the Epo system in CMS patients, further enhanced by a continuous exposure to accentuated nocturnal hypoxemia. PMID:27125843

  20. Optimal hematocrit for maximal exercise performance in acute and chronic erythropoietin-treated mice.

    PubMed

    Schuler, Beat; Arras, Margarete; Keller, Stephan; Rettich, Andreas; Lundby, Carsten; Vogel, Johannes; Gassmann, Max

    2010-01-01

    Erythropoietin (Epo) treatment increases hematocrit (Htc) and, consequently, arterial O(2) content. This in turn improves exercise performance. However, because elevated blood viscosity associated with increasing Htc levels may limit cardiac performance, it was suggested that the highest attainable Htc may not necessarily be associated with the highest attainable exercise capacity. To test the proposed hypothesis that an optimal Htc in acute and chronic Epo-treated mice exists--i.e., the Htc that facilitates the greatest O(2) flux during maximal exercise--Htc levels of wild-type mice were acutely elevated by administering novel erythropoiesis-stimulating protein (NESP; wtNESP). Furthermore, in the transgenic mouse line tg6 that reaches Htc levels of up to 0.9 because of constitutive overexpression of human Epo, the Htc was gradually reduced by application of the hemolysis-inducing compound phenylhydrazine (PHZ; tg6PHZ). Maximal cardiovascular performance was measured by using telemetry in all exercising mice. Highest maximal O(2) uptake (VO(2max)) and maximal time to exhaustion at submaximal exercise intensities were reached at Htc values of 0.58 and 0.57 for wtNESP, and 0.68 and 0.66 for tg6PHZ, respectively. Rate pressure product, and thus also maximal working capacity of the heart, increased with elevated Htc values. Blood viscosity correlated with VO(2max). Apart from the confirmation of the Htc hypothesis, we conclude that tg6PHZ adapted better to varying Htc values than wtNESP because of the higher optimal Htc of tg6PHZ compared to wtNESP. Of note, blood viscosity plays a critical role in limiting exercise capacity. PMID:19966291

  1. Circulating growth arrest-specific protein 6 levels are associated with erythropoietin resistance in hemodialysis patients.

    PubMed

    Chen, Miao-Pei; Chen, Chien-Wen; Chen, Jin-Shuen; Mao, Hung-Chung; Chou, Chu-Lin

    2016-01-01

    Growth arrest-specific protein 6 (Gas6) works synergistically with erythropoietin (EPO) to increase the proliferation and maturation of erythroblasts. However, the role of Gas 6 levels on EPO resistance in hemodialysis (HD) patients remains unclear. Therefore, the objective of this study was the first to examine the correlation between plasma Gas6 levels and EPO resistance in HD patients. We enrolled 134 HD patients and 85 healthy individuals. The HD patients were divided into 2 groups: 98 non-EPO-resistant patients and 36 EPO-resistant patients. Plasma levels of Gas6, interleukin 6 (IL-6), high-sensitivity C-reactive protein (hs-CRP), and albumin were quantified. Compared with non-EPO-resistant patients, EPO-resistant patients had elevated plasma concentrations of Gas6 (15.4 ± 3.3 vs. 13.7 ± 3.2 ng/mL, P = 0.006), IL-6 (3.1 ± 3.1 vs. 2.1 ± 1.5 pg/mL, P = 0.009), and hs-CRP (12.7 ± 25.2 vs. 4.5 ± 5.5 mg/L, P = 0.002). In EPO-resistant HD patients, plasma Gas6 levels were negatively correlated with albumin levels (r = -0.388, P < 0.021). Elevated Gas6 levels are associated with EPO resistance in HD patients. Also, EPO resistance is related to inflammation and malnutrition. Thus, circulating Gas6 levels could be used as the potential marker in HD patients with EPO resistance. PMID:26788441

  2. EPOR-Based Purification and Analysis of Erythropoietin Mimetic Peptides from Human Urine by Cys-Specific Cleavage and LC/MS/MS

    NASA Astrophysics Data System (ADS)

    Vogel, Matthias; Thomas, Andreas; Schänzer, Wilhelm; Thevis, Mario

    2015-09-01

    The development of a new class of erythropoietin mimetic agents (EMA) for treating anemic conditions has been initiated with the discovery of oligopeptides capable of dimerizing the erythropoietin (EPO) receptor and thus stimulating erythropoiesis. The most promising amino acid sequences have been mounted on various different polymeric structures or carrier molecules to obtain highly active EPO-like drugs exhibiting beneficial and desirable pharmacokinetic profiles. Concomitant with creating new therapeutic options, erythropoietin mimetic peptide (EMP)-based drug candidates represent means to artificially enhance endurance performance and necessitate coverage by sports drug testing methods. Therefore, the aim of the present study was to develop a strategy for the comprehensive detection of EMPs in doping controls, which can be used complementary to existing protocols. Three model EMPs were used to provide proof-of-concept data. Following EPO receptor-facilitated purification of target analytes from human urine, the common presence of the cysteine-flanked core structure of EMPs was exploited to generate diagnostic peptides with the aid of a nonenzymatic cleavage procedure. Sensitive detection was accomplished by targeted-SIM/data-dependent MS2 analysis. Method characterization was conducted for the EMP-based drug peginesatide concerning specificity, linearity, precision, recovery, stability, ion suppression/enhancement, and limit of detection (LOD, 0.25 ng/mL). Additionally, first data for the identification of the erythropoietin mimetic peptides EMP1 and BB68 were generated, demonstrating the multi-analyte testing capability of the presented approach.

  3. ARA 290, a Nonerythropoietic Peptide Engineered from Erythropoietin, Improves Metabolic Control and Neuropathic Symptoms in Patients with Type 2 Diabetes

    PubMed Central

    Brines, Michael; Dunne, Ann N; van Velzen, Monique; Proto, Paolo L; Ostenson, Claes-Goran; Kirk, Rita I; Petropoulos, Ioannis N; Javed, Saad; Malik, Rayaz A; Cerami, Anthony; Dahan, Albert

    2014-01-01

    Although erythropoietin ameliorates experimental type 2 diabetes with neuropathy, serious side effects limit its potential clinical use. ARA 290, a nonhematopoietic peptide designed from the structure of erythropoietin, interacts selectively with the innate repair receptor that mediates tissue protection. ARA 290 has shown efficacy in preclinical and clinical studies of metabolic control and neuropathy. To evaluate the potential activity of ARA 290 in type 2 diabetes and painful neuropathy, subjects were enrolled in this phase 2 study. ARA 290 (4 mg) or placebo were self-administered subcutaneously daily for 28 d and the subjects followed for an additional month without further treatment. No potential safety issues were identified. Subjects receiving ARA 290 exhibited an improvement in hemoglobin A1c (Hb A1c) and lipid profiles throughout the 56 d observation period. Neuropathic symptoms as assessed by the PainDetect questionnaire improved significantly in the ARA 290 group. Mean corneal nerve fiber density (CNFD) was reduced significantly compared with normal controls and subjects with a mean CNFD >1 standard deviation from normal showed a significant increase in CNFD compared with no change in the placebo group. These observations suggest that ARA 290 may benefit both metabolic control and neuropathy in subjects with type 2 diabetes and deserves continued clinical evaluation. PMID:25387363

  4. Evolving insights into the synergy between erythropoietin and thrombopoietin and the bipotent erythroid/megakaryocytic progenitor cell.

    PubMed

    Papayannopoulou, Thalia; Kaushansky, Kenneth

    2016-08-01

    Although the synergy between erythropoietin and thrombopoietin has previously been pointed out, the clonal demonstration of a human bipotent erythroid/megakaryocytic progenitor (MEP) was first published in Experimental Hematology (Papayannopoulou T, Brice M, Farrer D, Kaushansky K. Exp Hematol. 1996;24:660-669) and later in the same year in Blood (Debili N, Coulombel L, Croisille L, et al. Blood. 1996;88:1284-1296). This demonstration, and the fact that both bipotent and monopotent erythroid or megakaryocytic progenitors co-express markers of both lineages and respond to both lineage-specific transcription factors, has provided a background for the extensive use of MEP assessment by fluorescence-activated cell sorting in many subsequent studies. Beyond this, the demonstration of shared regulatory elements and the presence of single mutations affecting both lineages have inspired further studies to decipher how the shift in transcription factor networks occurs from one lineage to the other. Furthermore, in addition to shared effects, erythropoietin and thrombopoietin have additional independent effects. Most notable for thrombopoietin is its effect on hematopoietic stem cells illustrated by in vitro and in vivo approaches. PMID:26773569

  5. The erythropoietin receptor transmembrane region is necessary for activation by the Friend spleen focus-forming virus gp55 glycoprotein.

    PubMed Central

    Zon, L I; Moreau, J F; Koo, J W; Mathey-Prevot, B; D'Andrea, A D

    1992-01-01

    The erythropoietin receptor (EPO-R), a member of the cytokine receptor superfamily, can be activated by binding either erythropoietin (EPO) or gp55, the Friend spleen focus-forming virus glycoprotein. The highly specific interaction between gp55 and EPO-R triggers cell proliferation and thereby causes the first stage of Friend virus-induced erythroleukemia. We have generated functional chimeric receptors containing regions of the EPO-R and the interleukin-3 receptor (AIC2A polypeptide), a related cytokine receptor which does not interact with gp55. All chimeric receptors were expressed at similar levels, had similar binding affinities for EPO, and conferred EPO-dependent cell growth. Only those chimeric receptors which contained the EPO-R transmembrane region were activated by gp55. These results demonstrate that the transmembrane region of the EPO-R is critical for activation by gp55. In addition, analysis of a soluble, secreted EPO-R and cysteine point mutants of the EPO-R show that the extracytoplasmic region of the EPO-R specifically interacts with gp55. Images PMID:1320192

  6. Far-western blotting as a solution to the non-specificity of the anti-erythropoietin receptor antibody

    PubMed Central

    Fecková, Barbora; Kimáková, Patrícia; Ilkovičová, Lenka; Szentpéteriová, Erika; Debeljak, Nataša; Solárová, Zuzana; Sačková, Veronika; Šemeláková, Martina; Bhide, Mangesh; Solár, Peter

    2016-01-01

    The erythropoietin receptor (EpoR) is a member of the cytokine receptor family. The interaction between erythropoietin (Epo) and EpoR is important for the production and maturation of erythroid cells, resulting in the stimulation of hematopoiesis. The fact that EpoR was also detected in neoplastic cells has opened the question about the relevance of anemia treatment with recombinant Epo in cancer patients. Numerous studies have reported pro-stimulating and anti-apoptotic effects of Epo in cancer cells, thus demonstrating EpoR functionality in these cells. By contrast, a previous study claims the absence of EpoR in tumor cells. This apparent discrepancy is based, according to certain authors, on the use of non-specific anti-EpoR antibodies. With the aim of bypassing the direct detection of EpoR with an anti-EpoR antibody, the present authors propose a far-western blot methodology, which in addition, confirms the interaction of Epo with EpoR. Applying this technique, the presence of EpoR and its interaction with Epo in human ovarian adenocarcinoma A2780 and normal human umbilical vein endothelial cells was confirmed. Furthermore, modified immunoprecipitation of EpoR followed by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry analysis confirmed a 57 kDa protein as a human Epo-interacting protein in both cell lines. PMID:27446474

  7. Methylation impact analysis of erythropoietin (EPO) Gene to hypoxia inducible factor-1α (HIF-1α) activity.

    PubMed

    Dewi, Firli Rahmah Primula; Fatchiyah, Fatchiyah

    2013-01-01

    Erythropoietin (EPO) is a glycoprotein hormone that play a role as key regulator in the production of red blood cells. The promoter region of EPO is methylated in normoxic (non-hypoxia) condition, but not in hypoxic condition. Methylation of the EPO enhancer region decline the transcription activity of EPO gene. The aim of this study is to investigate how different methylation percentage affected on the regulation and transcriptional activity of EPO gene. The DNA sequence of erythropoietin gene and protein sequence was retrieved from the sequence database of NCBI. DNA structure was constructed using 3D-DART web server and modeling structure of HIF1 predicted using SWISS-MODEL web server. Methylated DNA sequence of EPO gene using performed with YASARA View software and docking of EPO gene and transcription factor HIF1 analyzed by using HADDOCK webserver. Our result showed that binding energy in 46% methylated DNA was higher (-161,45 kcal/mol) than in unmethylated DNA (-194,16 kcal/mol) and 8% methylated DNA (-175,94 kcal/mol). So, we presume that a silencing mechanism of the Epo gene by methylation is correlated with the binding energy, which is required for interaction. A higher methylation percentage correlates with a higher binding energy which can cause an unstable interaction between DNA and transcription factor. In conclution, methylation of promoter and enhancer region of Epo gene leads to silencing. PMID:24023421

  8. Effects of ammonia on CHO cell growth, erythropoietin production, and glycosylation.

    PubMed

    Yang, M; Butler, M

    2000-05-20

    The effect of ammonium chloride was determined on a culture of CHO cells transfected with the human erythropoietin (EPO) gene. Cell growth was inhibited above a culture concentration of 5 mM NH(4)Cl with an IC-50 determined to be 33 mM. The specific production of EPO increased with the addition of NH(4)Cl above 5 mM. At 10 mM NH(4)Cl, the final cell density after 4 days in culture was significantly lower but the final yield of EPO was significantly higher. This appeared to be due to continued protein production after cell growth had ceased. The metabolic effects of added NH(4)Cl included higher specific consumption rates of glucose and glutamine and an increased rate of production of alanine, glycine, and glutamate. The EPO analyzed from control cultures had a molecular weight range of 33-39 kDa and an isoelectric point range of 4.06-4.67. Seven distinct isoforms of the molecule were identified by two-dimensional electrophoresis. This molecular heterogeneity was ascribed to variable glycosylation. Complete enzymatic de-glycosylation resulted in a single molecular form with a molecular mass of 18 kDa. Addition of NH(4)Cl to the cultures caused a significant increase in the heterogeneity of the glycoforms as shown by an increased molecular weight and pI range. Enzymatic de-sialylation of the EPO from the ammonia-treated and control cultures resulted in identical electrophoretic patterns. This indicated that the effect of ammonia was in the reduction of terminal sialylation of the glycan structures which accounted for the increased pI. Selective removal of the N-glycan structures by PNGase F resulted in two bands identified as the O-glycan linked structure (19 kDa) and the completely de-glycosylated structure (18 kDa). The proportion of the O-linked glycan structure was reduced, and its pI increased in cultures to which ammonia was added. Thus, the glycosylation pattern altered by the presence of ammonia included a reduction in terminal sialylation of all the glycans

  9. Erythropoietin in amyotrophic lateral sclerosis: a multicentre, randomised, double blind, placebo controlled, phase III study

    PubMed Central

    Lauria, Giuseppe; Dalla Bella, Eleonora; Antonini, Giovanni; Borghero, Giuseppe; Capasso, Margherita; Caponnetto, Claudia; Chiò, Adriano; Corbo, Massimo; Eleopra, Roberto; Fazio, Raffaella; Filosto, Massimiliano; Giannini, Fabio; Granieri, Enrico; La Bella, Vincenzo; Logroscino, Giancarlo; Mandrioli, Jessica; Mazzini, Letizia; Monsurrò, Maria Rosaria; Mora, Gabriele; Pietrini, Vladimiro; Quatrale, Rocco; Rizzi, Romana; Salvi, Fabrizio; Siciliano, Gabriele; Sorarù, Gianni; Volanti, Paolo; Tramacere, Irene; Filippini, Graziella

    2015-01-01

    Objective To assess the efficacy of recombinant human erythropoietin (rhEPO) in amyotrophic lateral sclerosis (ALS). Methods Patients with probable laboratory-supported, probable or definite ALS were enrolled by 25 Italian centres and randomly assigned (1:1) to receive intravenous rhEPO 40 000 IU or placebo fortnightly as add-on treatment to riluzole 100 mg daily for 12 months. The primary composite outcome was survival, tracheotomy or >23 h non-invasive ventilation (NIV). Secondary outcomes were ALSFRS-R, slow vital capacity (sVC) and quality of life (ALSAQ-40) decline. Tolerability was evaluated analysing adverse events (AEs) causing withdrawal. The randomisation sequence was computer-generated by blocks, stratified by centre, disease severity (ALSFRS-R cut-off score of 33) and onset (spinal or bulbar). The main outcome analysis was performed in all randomised patients and by intention-to-treat for the entire population and patients stratified by severity and onset. The study is registered, EudraCT 2009-016066-91. Results We randomly assigned 208 patients, of whom 5 (1 rhEPO and 4 placebo) withdrew consent and 3 (placebo) became ineligible (retinal thrombosis, respiratory insufficiency, SOD1 mutation) before receiving treatment; 103 receiving rhEPO and 97 placebo were eligible for analysis. At 12 months, the annualised rate of death (rhEPO 0.11, 95% CI 0.06 to 0.20; placebo: 0.08, CI 0.04 to 0.17), tracheotomy or >23 h NIV (rhEPO 0.16, CI 0.10 to 0.27; placebo 0.18, CI 0.11 to 0.30) did not differ between groups, also after stratification by onset and ALSFRS-R at baseline. Withdrawal due to AE was 16.5% in rhEPO and 8.3% in placebo. No differences were found for secondary outcomes. Conclusions RhEPO 40 000 IU fortnightly did not change the course of ALS. PMID:25595151

  10. Determinants of erythropoietin release in response to short-term hypobaric hypoxia

    NASA Technical Reports Server (NTRS)

    Ge, Ri-Li; Witkowski, S.; Zhang, Y.; Alfrey, C.; Sivieri, M.; Karlsen, T.; Resaland, G. K.; Harber, M.; Stray-Gundersen, J.; Levine, B. D.

    2002-01-01

    We measured blood erythropoietin (EPO) concentration, arterial O(2) saturation (Sa(O(2))), and urine PO(2) in 48 subjects (32 men and 16 women) at sea level and after 6 and 24 h at simulated altitudes of 1,780, 2,085, 2,454, and 2,800 m. Renal blood flow (Doppler) and Hb were determined at sea level and after 6 h at each altitude (n = 24) to calculate renal O(2) delivery. EPO increased significantly after 6 h at all altitudes and continued to increase after 24 h at 2,454 and 2,800 m, although not at 1,780 or 2,085 m. The increase in EPO varied markedly among individuals, ranging from -41 to 400% after 24 h at 2,800 m. Similar to EPO, urine PO(2) decreased after 6 h at all altitudes and returned to baseline by 24 h at the two lowest altitudes but remained decreased at the two highest altitudes. Urine PO(2) was closely related to EPO via a curvilinear relationship (r(2) = 0.99), although also with prominent individual variability. Renal blood flow remained unchanged at all altitudes. Sa(O(2)) decreased slightly after 6 h at the lowest altitudes but decreased more prominently at the highest altitudes. There were only modest, albeit statistically significant, relationships between EPO and Sa(O(2)) (r = 0.41, P < 0.05) and no significant relationship with renal O(2) delivery. These data suggest that 1) the altitude-induced increase in EPO is "dose" dependent: altitudes > or =2,100-2,500 m appear to be a threshold for stimulating sustained EPO release in most subjects; 2) short-term acclimatization may restore renal tissue oxygenation and restrain the rise in EPO at the lowest altitudes; and 3) there is marked individual variability in the erythropoietic response to altitude that is only partially explained by "upstream" physiological factors such as those reflecting O(2) delivery to EPO-producing tissues.

  11. Elevated Endogenous Erythropoietin Concentrations Are Associated with Increased Risk of Brain Damage in Extremely Preterm Neonates

    PubMed Central

    Korzeniewski, Steven J.; Allred, Elizabeth; Logan, J. Wells; Fichorova, Raina N.; Engelke, Stephen; Kuban, Karl C. K.; O’Shea, T. Michael; Paneth, Nigel; Holm, Mari; Dammann, Olaf; Leviton, Alan

    2015-01-01

    Background We sought to determine, in very preterm infants, whether elevated perinatal erythropoietin (EPO) concentrations are associated with increased risks of indicators of brain damage, and whether this risk differs by the co-occurrence or absence of intermittent or sustained systemic inflammation (ISSI). Methods Protein concentrations were measured in blood collected from 786 infants born before the 28th week of gestation. EPO was measured on postnatal day 14, and 25 inflammation-related proteins were measured weekly during the first 2 postnatal weeks. We defined ISSI as a concentration in the top quartile of each of 25 inflammation-related proteins on two separate days a week apart. Hypererythropoietinemia (hyperEPO) was defined as the highest quartile for gestational age on postnatal day 14. Using logistic regression and multinomial logistic regression models, we compared risks of brain damage among neonates with hyperEPO only, ISSI only, and hyperEPO+ISSI, to those who had neither hyperEPO nor ISSI, adjusting for gestational age. Results Newborns with hyperEPO, regardless of ISSI, were more than twice as likely as those without to have very low (< 55) Mental (OR 2.3; 95% CI 1.5-3.5) and/or Psychomotor (OR 2.4; 95% CI 1.6-3.7) Development Indices (MDI, PDI), and microcephaly at age two years (OR 2.4; 95%CI 1.5-3.8). Newborns with both hyperEPO and ISSI had significantly increased risks of ventriculomegaly, hemiparetic cerebral palsy, microcephaly, and MDI and PDI < 55 (ORs ranged from 2.2-6.3), but not hypoechoic lesions or other forms of cerebral palsy, relative to newborns with neither hyperEPO nor ISSI. Conclusion hyperEPO, regardless of ISSI, is associated with elevated risks of very low MDI and PDI, and microcephaly, but not with any form of cerebral palsy. Children with both hyperEPO and ISSI are at higher risk than others of very low MDI and PDI, ventriculomegaly, hemiparetic cerebral palsy, and microcephaly. PMID:25793991

  12. Association of Erythropoietin-Stimulating Agent Responsiveness with Mortality in Hemodialysis and Peritoneal Dialysis Patients.

    PubMed

    Bae, Myoung Nam; Kim, Su Hyun; Kim, Young Ok; Jin, Dong Chan; Song, Ho Chul; Choi, Euy Jin; Kim, Yong-Lim; Kim, Yon-Su; Kang, Shin-Wook; Kim, Nam-Ho; Yang, Chul Woo; Kim, Yong Kyun

    2015-01-01

    Erythropoiesis-stimulating agent (ESA) responsiveness has been reported to be associated with increased mortality in hemodialysis (HD) patients. ESA requirement to obtain the same hemoglobin (Hb) level is different between HD and peritoneal dialysis (PD) patients. In this study, we investigated the impact of ESA responsiveness on mortality between both HD and PD patients. Prevalent HD and PD patients were selected from the Clinical Research Center registry for end-stage renal disease, a prospective cohort study in Korea. ESA responsiveness was estimated using an erythropoietin resistant index (ERI) (U/kg/week/g/dL). Patients were divided into three groups by tertiles of ERI. ESA responsiveness was also assessed based on a combination of ESA dosage and hemoglobin (Hb) levels. The primary outcome was all-cause mortality. A total of 1,594 HD and 876 PD patients were included. The median ESA dose and ERI were lower in PD patients compared with HD patients (ESA dose: 4000 U/week vs 6000 U/week, respectively. P<0.001, ERI: 7.0 vs 10.4 U/kg/week/g/dl, respectively. P<0.001). The median follow-up period was 40 months. In HD patients, the highest ERI tertile was significantly associated with higher risk for all-cause mortality (HR 1.96, 95% CI, 1.07 to 3.59, P = 0.029). HD patients with high-dose ESA and low Hb levels (ESA hypo-responsiveness) had a significantly higher risk of all-cause mortality (HR 2.24, 95% CI, 1.16 to 4.31, P = 0.016). In PD patients, there was no significant difference in all-cause mortality among the ERI groups (P = 0.247, log-rank test). ESA hypo-responsiveness was not associated with all-cause mortality (HR = 1.75, 95% CI, 0.58 to 5.28, P = 0.319). Our data showed that ESA hypo-responsiveness was associated with an increased risk of all-cause mortality in HD patients. However, in PD patients, ESA hypo-responsiveness was not related to all-cause mortality. These finding suggest the different prognostic value of ESA responsiveness between HD and PD

  13. Recombinant erythropoietin increases blood pressure in experimental hypertension and uraemia without change in vascular cytosolic calcium.

    PubMed

    Roger, S D; Fluck, R J; McMahon, A C; Raine, A E

    1996-01-01

    The mechanism of erythropoietin-induced hypertension in dialysis patients is unclear. Intracellular calcium ([Ca2+]i) may be altered in both hypertension and uraemia, and the effects of both uraemia and r-HuEPO on vascular smooth muscle [Ca2+]i and blood pressure (BP) in Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR) were therefore studied. Male WKY and SHR underwent partial nephrectomy or sham operation. Three weeks later a 28-day period of treatment with either r-HuEPO 100 U/kg, s.c., 3 times/week or buffer was commenced (n = 10-12 for each subgroup). BP was measured weekly, by noninvasive Doppler tail-cuff assessment. [Ca2+]i was measured following loading with fura-2 in pooled, primary aortic vascular smooth muscle cells (VSMC). Serum urea and creatinine rose 3- to 4-fold after partial nephrectomy. Treatment with r-HuEPO did not change renal function further in either uraemic or control WKY or SHR. Haemoglobin increased in both non-uraemic WKY (16.2-20.3 g/dl) and SHR (16.4-20.5 g/dl) and uraemic animals (WKY 13.9-20.9; SHR 13.8-18.8 g/dl; p < 0.01 for all changes) following 4 weeks of r-HuEPO treatment. BP was unaffected by r-HuEPO in WKY but increased in nonuraemic SHR (210-250; p < 0.01) and in uraemic SHR (224-251 mm Hg; p < 0.001) at 4 weeks. VSMC [Ca2+]i was higher in SHR than WKY (121 vs. 83 nmol/l; MANOVA p < 0.05) but no effect of uraemia or r-HuEPO on [Ca2+]i was detected. In conclusion, the hypertensive effects of r-HuEPO are augmented both in a genetic model of hypertension and in uraemia. Although VSMC [Ca2+]i was elevated in SHR, the further increase in BP induced by r-HuEPO was not associated with alterations in VSMC cytosolic calcium. PMID:8773347

  14. Recombinant human erythropoietin in very elderly patients with myelodysplastic syndromes: results from a retrospective study.

    PubMed

    Tatarelli, Caterina; Piccioni, Anna Lina; Maurillo, Luca; Naso, Virginia; Battistini, Roberta; D'Andrea, Mariella; Criscuolo, Marianna; Nobile, Carolina; Villivà, Nicoletta; Mancini, Stefano; Neri, Benedetta; Breccia, Massimo; Fenu, Susanna; Buccisano, Francesco; Voso, Maria Teresa; Latagliata, Roberto; Aloe Spiriti, Maria Antonietta

    2014-08-01

    Myelodysplastic syndromes (MDS) are common in elderly patients. Recombinant human erythro-poietin (rHuEPO) has been widely used to treat anemia in lower risk MDS patients, but few data are known about rHuEPO treatment in the very elderly patient group. In order to investigate the role of rHuEPO treatment in terms of response, overall survival (OS), and toxicity in a very elderly MDS patient group, 93 MDS patients treated with rHuEPO when aged ≥80 years were selected among MDS cases enrolled in a retrospective multicenter study by the cooperative group Gruppo Romano Mielodisplasie (GROM) from Jan 2002 to Dec 2010. At baseline, median age was 82.7 (range 80-99.1) with a median hemoglobin (Hb) level of 9 g/dl (range 6-10.8). The initial dose of rHuEPO was standard (epoetin alpha 40,000 IU/week or epoetin beta 30,000 IU/week) in 59 (63.4 %) patients or high in 34 (36.6 %) (epoetin alpha 80,000 IU/week) patients. We observed an erythroid response (ER) in 59 (63.4 %) patients. No thrombotic event was reported. Independent predictive factors for ER were low transfusion requirement before treatment (p = 0.004), ferritin <200 ng/ml (p = 0.017), Hb >8 g/dl (p = 0.034), and a high-dose rHuEPO treatment (p = 0.032). Median OS from rHuEPO start was 49.3 months (95 % CI 27.5-68.4) in responders versus 30.6 months (95 % CI 7.3-53.8) in resistant patients (p = 0.185). In conclusion, rHuEPO treatment is safe and effective also in the very elderly MDS patients. However, further larger studies are warranted to evaluate if EPO treatment could be worthwhile in terms of quality of life and cost-efficacy in very old patients. PMID:24647684

  15. Concurrent erythropoietin and hypothermia treatment improve outcomes in a term nonhuman primate model of perinatal asphyxia

    PubMed Central

    Traudt, Christopher M.; McPherson, Ronald J.; Bauer, Larry A.; Richards, Todd L.; Burbacher, Thomas M.; McAdams, Ryan M.; Juul, Sandra E.

    2013-01-01

    Background Up to 65% of untreated infants suffering from moderate to severe hypoxic-ischemic encephalopathy (HIE) are at risk of death or major disability. Therapeutic hypothermia (HT) reduces this risk to approximately 50% (number needed to treat 7-9). Erythropoietin (Epo) is a neuroprotective treatment that is promising as an adjunctive therapy to decrease HIE-induced injury because Epo decreases apoptosis, inflammation, and oxidative injury, and promotes glial cell survival, and angiogenesis. We hypothesized that HT and concurrent Epo will be safe, effective, improve survival and reduce moderate-severe cerebral palsy (CP) in a term nonhuman primate model of perinatal asphyxia. Methodology 35 Macaca nemestrina were delivered after 15-18 min of umbilical cord occlusion (UCO) and randomized to saline (n=14), HT only (n=9) or HT+Epo (n=12). There were 12 unasphyxiated controls. Epo (3500 U/kg × 1 followed by 3 doses of 2500 U/Kg, or Epo 1000 U/kg/d × 4 doses) was given on days 1, 2, 3, and 7. Timed blood samples were collected to measure plasma Epo concentrations. Animals underwent MRI/MRS and diffusion tensor imaging (DTI) at < 72 hours of age and again at 9 months. A battery of weekly developmental assessments was performed. Results UCO resulted in death or moderate-severe CP in 43% of saline, 44% of HT, and 0% of HT+Epo treated animals. Compared to non-UCO control animals, UCO animals exhibit poor weight gain, behavioral impairment, poor cerebellar growth and abnormal brain DTI. Compared to UCO saline, UCO HT+Epo improved motor and cognitive responses, cerebellar growth, DTI measures, and produced a death/disability relative risk reduction of 0.911 (95% CI −0.429 to 0.994), an absolute risk reduction of 0.395 (95% CI 0.072 to 0.635), and a number needed to treat of 2 (95% CI 14 to 2). HT+Epo effects on DTI included improved mode of anisotropy, fractional anisotropy, relative anisotropy and volume ratio as compared to UCO saline treated infants. No adverse

  16. Immunochromatographic removal of albumin in erythropoietin biopharmaceutical formulations for its analysis by capillary electrophoresis.

    PubMed

    Lara-Quintanar, Pilar; Lacunza, Izaskun; Sanz, Jesus; Diez-Masa, Jose Carlos; de Frutos, Mercedes

    2007-06-15

    Human serum albumin (HSA) is added to some pharmaceutical preparations as an excipient. This is the case for some of the commercial preparations of recombinant erythropoietin (rEPO). Differences in the number of the sialic acid moieties in the different rEPO glycoforms confer to these forms different net charges and different bioactivity. Knowledge of the isoforms present in each pharmaceutical product is then of interest. Differences in net charge of the rEPO forms make possible their separation by electrophoretical methods. However it has been observed in our laboratory that the amount of HSA usually present in these drug formulations interferes or even precludes separation of rEPO bands by capillary zone electrophoresis (CZE). In this work, an immunochromatographic method to remove HSA from rEPO biopharmaceutical formulations and a procedure to concentrate the sample that is needed to be performed prior to the analysis by CZE are developed. A home-made computer program to compare the percentage of correct assignments of electrophoretical bands provided by different migration parameters is used to study the effect of HSA remaining in samples on the accuracy of assignment of rEPO bands. When there exists a residual concentration of HSA in the sample (<2mg/ml) only the effective electrophoretic mobility is a reliable migration parameter to assign rEPO bands with a 100% of correct assignment. This parameter allows the correct assignment of bands of rEPO from pharmaceutical products formulated with HSA after immunochromatographic removal of HSA. Electrophoretical bands found in epoetin alpha, one of the commercial formulations of rEPO, are independent of the molecular mass of the excipients. The methodology used in this work for the analysis by CZE and the assignment of rEPO isoforms, as well as for the immunochromatographic HSA removal in the pharmaceutical products could be of high interest for the health authorities to control the quality of the product in

  17. Effect of recombinant human erythropoietin treatment on blood pressure and some haematological parameters in healthy men.

    PubMed

    Berglund, B; Ekblom, B

    1991-02-01

    The aim of this study was to evaluate the effect of treatment with subcutaneous injections of recombinant human erythropoietin (rhEpo), 20-40 IU kg-1 body weight, 3 times a week, on resting blood pressure, blood pressure response during submaximal exercise, some haematological parameters, and subjective side-effects in 15 healthy male subjects. RhEpo increased both haemoglobin (Hb) concentration and haematocrit (Hct) significantly, the values for Hb being 152 +/- 4.2 g l-1 before treatment and 169 +/- 9.3 g l-1 (mean values +/- SD) after 6 weeks of rhEpo treatment (P less than 0.001). The corresponding values for Hct were 44.5 +/- 1.5% and 49.7 +/- 1.9% (P less than 0.001), respectively. The systolic and diastolic blood pressure values at rest were unchanged after rhEpo treatment. A marked increase in systolic blood pressure was observed during submaximal exercise at 200 W, the initial and final values being 177 +/- 14.2 mmHg and 191 +/- 19.5 mmHg (P less than 0.01), respectively. Heart rate during exercise at 200 W was significantly lower after rhEpo treatment than before it: 144 +/- 15 beats min-1 compared to 136 +/- 8 beats min-1 (P less than 0.001). The leucocyte count remained unchanged after rhEpo treatment, but there was a significant decrease (P less than 0.05) in the number of lymphocytes. Reticulocyte and platelet counts were unchanged. Serum (S) ferritin decreased from 87.3 +/- 41.8 mmol l-1 to 59.3 +/- 27.8 mmol l-1 after rhEpo treatment (P less than 0.001). Serum-Na, S-K, S-Ca, S-creatinine, S-bilirubin, S-aspartate aminotransferase (ASAT), S-alanine aminotransferase (ALAT), and S-lactate dehydrogenase (LD) were unchanged after rhEpo treatment. No subjective side-effects were reported. In conclusion, low doses of rhEpo increased Hb levels and Hct by more than 10% after 6 weeks. Blood pressure at rest was unchanged, but rhEpo induced a markedly accentuated blood pressure reaction during exercise. A minor decrease in the lymphocyte count was observed

  18. Intervention With an Erythropoietin-Derived Peptide Protects Against Neuroglial and Vascular Degeneration During Diabetic Retinopathy

    PubMed Central

    McVicar, Carmel M.; Hamilton, Ross; Colhoun, Liza M.; Gardiner, Tom A.; Brines, Michael; Cerami, Anthony; Stitt, Alan W.

    2011-01-01

    OBJECTIVE Erythropoietin (EPO) may be protective for early stage diabetic retinopathy, although there are concerns that it could exacerbate retinal angiogenesis and thrombosis. A peptide based on the EPO helix-B domain (helix B-surface peptide [pHBSP]) is nonerythrogenic but retains tissue-protective properties, and this study evaluates its therapeutic potential in diabetic retinopathy. RESEARCH DESIGN AND METHODS After 6 months of streptozotocin-induced diabetes, rats (n = 12) and age-matched nondiabetic controls (n = 12) were evenly split into pHBSP and scrambled peptide groups and injected daily (10 μg/kg per day) for 1 month. The retina was investigated for glial dysfunction, microglial activation, and neuronal DNA damage. The vasculature was dual stained with isolectin and collagen IV. Retinal cytokine expression was quantified using real-time RT-PCR. In parallel, oxygen-induced retinopathy (OIR) was used to evaluate the effects of pHBSP on retinal ischemia and neovascularization (1–30 μg/kg pHBSP or control peptide). RESULTS pHBSP or scrambled peptide treatment did not alter hematocrit. In the diabetic retina, Müller glial expression of glial fibrillary acidic protein was increased when compared with nondiabetic controls, but pHBSP significantly reduced this stress-related response (P < 0.001). CD11b+ microglia and proinflammatory cytokines were elevated in diabetic retina responses, and some of these responses were attenuated by pHBSP (P < 0.01–0.001). pHBSP significantly reduced diabetes-linked DNA damage as determined by 8-hydroxydeoxyguanosine and transferase-mediated dUTP nick-end labeling positivity and also prevented acellular capillary formation (P < 0.05). In OIR, pHBSP had no effect on preretinal neovascularization at any dose. CONCLUSIONS Treatment with an EPO-derived peptide after diabetes is fully established can significantly protect against neuroglial and vascular degenerative pathology without altering hematocrit or exacerbating

  19. Comparative Effects of Aerobic Training and Erythropoietin on Oxygen Uptake in Untrained Humans.

    PubMed

    Sieljacks, Peter; Thams, Line; Nellemann, Birgitte; Larsen, Mads Sørensen; Vissing, Kristian; Christensen, Britt

    2016-08-01

    Sieljacks, P, Thams, L, Nellemann, B, Larsen, MS, Vissing, K, and Christensen, B. Comparative effects of aerobic training and erythropoietin on oxygen uptake in untrained humans. J Strength Cond Res 30(8): 2307-2317, 2016-The present study examines responses to 10 weeks of aerobic training and/or erythropoiesis-stimulating agent (ESA) treatment on maximal oxygen uptake (V[Combining Dot Above]O2max). Thirty-six healthy, untrained men were randomly assigned to sedentary-placebo (n = 9), sedentary-ESA (SE) (n = 9), training-placebo (TP) (n = 10), or training-ESA (TE) (n = 8). The participants were treated subcutaneously once weekly with ESA (darbepoietin-α, week 1-3; 40 μg and week 4-10; 20 μg) or a placebo for 10 weeks. The training consisted of supervised cycling 3 times per week for 1 hour at an average of 65% of maximal watt, with a progressive overload during the intervention period. V[Combining Dot Above]O2max, wattmax, and hematological values were measured throughout the study. In addition, the total training workload and estimated energy consumption were recorded after each training session. ESA treatment increased hemoglobin (∼11 and ∼14%, p < 0.001) and hematocrit (∼12 and ∼13%, p < 0.001) in the SE and TE groups, respectively. The relative (but not absolute) increases in V[Combining Dot Above]O2max were more pronounced (p < 0.01) in TE (27 ± 6%), compared with SE (15 ± 4%) but not TP (19 ± 4%), indicating that training is superior to ESA in stimulating V[Combining Dot Above]O2max in untrained men. The increased oxygen uptake in the TE group did not result in higher absolute training workloads than in the TP group. In untrained men, training exhibits a greater stimulus for improvements in V[Combining Dot Above]O2max than ESA treatment, without pronounced additive effects, which is supported by similar average training workloads and energy consumption in TP and TE. Thus, in untrained men, training alone seems sufficient to induce improvement in

  20. Association of Erythropoietin-Stimulating Agent Responsiveness with Mortality in Hemodialysis and Peritoneal Dialysis Patients

    PubMed Central

    Bae, Myoung Nam; Kim, Su Hyun; Kim, Young Ok; Jin, Dong Chan; Song, Ho Chul; Choi, Euy Jin; Kim, Yong-Lim; Kim, Yon-Su; Kang, Shin-Wook; Kim, Nam-Ho; Yang, Chul Woo; Kim, Yong Kyun

    2015-01-01

    Erythropoiesis-stimulating agent (ESA) responsiveness has been reported to be associated with increased mortality in hemodialysis (HD) patients. ESA requirement to obtain the same hemoglobin (Hb) level is different between HD and peritoneal dialysis (PD) patients. In this study, we investigated the impact of ESA responsiveness on mortality between both HD and PD patients. Prevalent HD and PD patients were selected from the Clinical Research Center registry for end-stage renal disease, a prospective cohort study in Korea. ESA responsiveness was estimated using an erythropoietin resistant index (ERI) (U/kg/week/g/dL). Patients were divided into three groups by tertiles of ERI. ESA responsiveness was also assessed based on a combination of ESA dosage and hemoglobin (Hb) levels. The primary outcome was all-cause mortality. A total of 1,594 HD and 876 PD patients were included. The median ESA dose and ERI were lower in PD patients compared with HD patients (ESA dose: 4000 U/week vs 6000 U/week, respectively. P<0.001, ERI: 7.0 vs 10.4 U/kg/week/g/dl, respectively. P<0.001). The median follow-up period was 40 months. In HD patients, the highest ERI tertile was significantly associated with higher risk for all-cause mortality (HR 1.96, 95% CI, 1.07 to 3.59, P = 0.029). HD patients with high-dose ESA and low Hb levels (ESA hypo-responsiveness) had a significantly higher risk of all-cause mortality (HR 2.24, 95% CI, 1.16 to 4.31, P = 0.016). In PD patients, there was no significant difference in all-cause mortality among the ERI groups (P = 0.247, log-rank test). ESA hypo-responsiveness was not associated with all-cause mortality (HR = 1.75, 95% CI, 0.58 to 5.28, P = 0.319). Our data showed that ESA hypo-responsiveness was associated with an increased risk of all-cause mortality in HD patients. However, in PD patients, ESA hypo-responsiveness was not related to all-cause mortality. These finding suggest the different prognostic value of ESA responsiveness between HD and PD

  1. Senior Administrators Should Have Administrative Contracts.

    ERIC Educational Resources Information Center

    Posner, Gary J.

    1987-01-01

    Recognizing that termination is viewed by the employee as the equivalent to capital punishment of a career, an administrative contract can reduce the emotional and financial entanglements that often result. Administrative contracts are described. (MLW)

  2. A dimeric peptide with erythropoiesis-stimulating activity uniquely affects erythropoietin receptor ligation and cell surface expression.

    PubMed

    Verma, Rakesh; Green, Jennifer M; Schatz, Peter J; Wojchowski, Don M

    2016-08-01

    Erythropoiesis-stimulating agents (ESAs) that exert long-acting antianemia effects have been developed recently, but their mechanisms are poorly understood. Analyses reveal unique erythropoietin receptor (EPOR)-binding properties for one such ESA, the synthetic EPOR agonist peginesatide. Compared with recombinant human EPO and darbepoietin, peginesatide exhibited a slow on rate, but sustained EPOR residency and resistant displacement. In EPO-dependent human erythroid progenitor UT7epo cells, culture in peginesatide unexpectedly upmodulated endogenous cell surface EPOR levels with parallel increases in full-length EPOR-68K levels. These unique properties are suggested to contribute to the durable activity of this (and perhaps additional) dimeric peptide hematopoietic growth factor receptor agonist. PMID:27174804

  3. Lentiviral vector platform for improved erythropoietin expression concomitant with shRNA mediated host cell elastase down regulation.

    PubMed

    Dhamne, Hemant; Chande, Ajit G; Mukhopadhyaya, Robin

    2014-01-01

    Lentiviral vector (LV) mediated gene transfer holds great promise to develop stable cell lines for sustained transgene expression providing a valuable alternative to the conventional plasmid transfection based recombinant protein production methods. We report here making a third generation HIV-2 derived LV containing erythropoietin (EPO) gene expression cassette to generate a stable HEK293 cell line secreting EPO constitutively. A high producer cell clone was obtained by limiting dilution and was adapted to serum free medium. The suspension adapted cell clone stably produced milligram per liter quantities of EPO. Subsequent host metabolic engineering using lentiviral RNAi targeted to block an endogenous candidate protease elastase, identified through an in silico approach, resulted in appreciable augmentation of EPO expression above the original level. This study of LV based improved glycoprotein expression with host cell metabolic engineering for stable production of protein therapeutics thus exemplifies the versatility of LV and is of significant future biopharmaceutical importance. PMID:24325878

  4. Beyond anaemia management: evolving role of erythropoietin therapy in neurological disorders, multiple myeloma and tumour hypoxia models.

    PubMed

    Boogaerts, Marc; Mittelman, Moshe; Vaupel, Peter

    2005-01-01

    Recombinant human erythropoietin (epoetin) has become the standard of care in the treatment of anaemia resulting from cancer and its treatment, and chronic kidney disease. The discovery that erythropoietin and its receptor are located in regions outside the erythropoietic system has led to interest in the potential role of epoetin in other tissues, such as the central nervous system. Animal studies have shown that systemically applied epoetin can cross the blood-brain barrier, where it reduces tissue injury associated with stroke, blunt trauma and experimental autoimmune encephalomyelitis. Pilot studies in humans have shown that epoetin treatment given within 8 h of stroke reduces infarct size and results in a significantly better outcome when compared with placebo treatment. Studies also suggest that epoetin has the potential to improve cognitive impairment associated with adjuvant chemotherapy in patients with cancer. Anaemia is a major factor causing tumour hypoxia, a condition that can promote changes within neoplastic cells that further tumour survival and malignant progression and also reduces the effectiveness of several anticancer therapies including radiotherapy and oxygen-dependent cytotoxic agents. Use of epoetin to prevent or correct anaemia has the potential to reduce tumour hypoxia and improve treatment outcome. Several therapeutic studies in anaemic animals with experimental tumours have shown a beneficial effect of epoetin on delaying tumour growth. Furthermore, clinical observations in patients with multiple myeloma and animal studies have suggested that epoetin has an antimyeloma effect, mediated via the immune system through activation of CD8+ T cells. Therefore, the role of epoetin may go well beyond that of increasing haemoglobin levels in anaemic patients, although additional studies are required to confirm these promising results. PMID:16244507

  5. Dose equivalence between continuous erythropoietin receptor activator (CERA), Darbepoetin and Epoetin in patients with advanced chronic kidney disease

    PubMed Central

    Vega, A; Abad, S; Verdalles, U; Aragoncillo, I; Velazquez, K; Quiroga, B; Escudero, V; López-Gómez, JM

    2014-01-01

    Background: Anemia is a prevalent situation in patients with chronic kidney disease (CKD) and can be well managed with erythropoiesis-stimulating agents (ESAs). Continuous erythropoietin receptor activator (CERA) has a long half-life that allows to be administered once monthly. The lowest recommended dose for patients with non dialysis CKD is 120 μg per month. The objectives were to assess the efficacy of subcutaneous monthly dosing of CERA in CKD stages 4 and 5 not on dialysis, and to determine the equivalent dose to epoetin β and darbepoetin α. Methods: This is a cohort study. A 30-patient group that ESAs was changed to CERA (μg/month) was used as treatment group. We used the following clinically-based equivalent dosing: epoetin β (IU/week) and darbepoetin α (μg/week): 3000/15= 50; 4000/20=75; 6000/30=100; 8000/40=150. Another group of 30 patients with similar characteristics was used as control group and received the same epoetin β and darbepoetin α doses. Results: The mean CERA initial dose and at 6 months was 81.9 ± 35.2 and 82.0 ± 37.82 μg/month (p=0.37). The mean erythropoietin resistance index (ERI) and hemoglobin at baseline and at 6 months in the CERA group and in the control group were not statistically significant. Conclusion: Monthly dosing treatment with CERA is safe and effective. A dose of 75-100 μg/month is enough to maintain stable levels of hemoglobin. Hippokratia 2014; 18 (4): 315-318. PMID:26052197

  6. Novice Administrators: Personality and Administrative Style Changes.

    ERIC Educational Resources Information Center

    Schmidt, Linda J.; Kosmoski, Georgia J.; Pollack, Dennis R.

    Since the advent of effective-schools research findings, educational administration experts have advocated a democratic and collegial leadership style for school administrators. This paper provides the findings of a study that examined 43 beginning administrators (25 females, 32 Caucasians, 9 African-Americans, 2 Hispanics) to determine what…

  7. Organization/Administration.

    ERIC Educational Resources Information Center

    Chaffee, Ellen Earle

    Patterns that emerged from reviewing 26 syllabi for courses on organization and administration in higher education are discussed, and six sample syllabi are presented. The syllabi focused more on organization than administration. Of the 26 syllabi, 19 dealt with organization and administration generally; 5 with administration in a specific…

  8. Identification of Cell Type-Specific Differences in Erythropoietin Receptor Signaling in Primary Erythroid and Lung Cancer Cells.

    PubMed

    Merkle, Ruth; Steiert, Bernhard; Salopiata, Florian; Depner, Sofia; Raue, Andreas; Iwamoto, Nao; Schelker, Max; Hass, Helge; Wäsch, Marvin; Böhm, Martin E; Mücke, Oliver; Lipka, Daniel B; Plass, Christoph; Lehmann, Wolf D; Kreutz, Clemens; Timmer, Jens; Schilling, Marcel; Klingmüller, Ursula

    2016-08-01

    Lung cancer, with its most prevalent form non-small-cell lung carcinoma (NSCLC), is one of the leading causes of cancer-related deaths worldwide, and is commonly treated with chemotherapeutic drugs such as cisplatin. Lung cancer patients frequently suffer from chemotherapy-induced anemia, which can be treated with erythropoietin (EPO). However, studies have indicated that EPO not only promotes erythropoiesis in hematopoietic cells, but may also enhance survival of NSCLC cells. Here, we verified that the NSCLC cell line H838 expresses functional erythropoietin receptors (EPOR) and that treatment with EPO reduces cisplatin-induced apoptosis. To pinpoint differences in EPO-induced survival signaling in erythroid progenitor cells (CFU-E, colony forming unit-erythroid) and H838 cells, we combined mathematical modeling with a method for feature selection, the L1 regularization. Utilizing an example model and simulated data, we demonstrated that this approach enables the accurate identification and quantification of cell type-specific parameters. We applied our strategy to quantitative time-resolved data of EPO-induced JAK/STAT signaling generated by quantitative immunoblotting, mass spectrometry and quantitative real-time PCR (qRT-PCR) in CFU-E and H838 cells as well as H838 cells overexpressing human EPOR (H838-HA-hEPOR). The established parsimonious mathematical model was able to simultaneously describe the data sets of CFU-E, H838 and H838-HA-hEPOR cells. Seven cell type-specific parameters were identified that included for example parameters for nuclear translocation of STAT5 and target gene induction. Cell type-specific differences in target gene induction were experimentally validated by qRT-PCR experiments. The systematic identification of pathway differences and sensitivities of EPOR signaling in CFU-E and H838 cells revealed potential targets for intervention to selectively inhibit EPO-induced signaling in the tumor cells but leave the responses in erythroid

  9. Identification of Cell Type-Specific Differences in Erythropoietin Receptor Signaling in Primary Erythroid and Lung Cancer Cells

    PubMed Central

    Salopiata, Florian; Depner, Sofia; Wäsch, Marvin; Böhm, Martin E.; Mücke, Oliver; Plass, Christoph; Lehmann, Wolf D.; Kreutz, Clemens; Timmer, Jens; Klingmüller, Ursula

    2016-01-01

    Lung cancer, with its most prevalent form non-small-cell lung carcinoma (NSCLC), is one of the leading causes of cancer-related deaths worldwide, and is commonly treated with chemotherapeutic drugs such as cisplatin. Lung cancer patients frequently suffer from chemotherapy-induced anemia, which can be treated with erythropoietin (EPO). However, studies have indicated that EPO not only promotes erythropoiesis in hematopoietic cells, but may also enhance survival of NSCLC cells. Here, we verified that the NSCLC cell line H838 expresses functional erythropoietin receptors (EPOR) and that treatment with EPO reduces cisplatin-induced apoptosis. To pinpoint differences in EPO-induced survival signaling in erythroid progenitor cells (CFU-E, colony forming unit-erythroid) and H838 cells, we combined mathematical modeling with a method for feature selection, the L1 regularization. Utilizing an example model and simulated data, we demonstrated that this approach enables the accurate identification and quantification of cell type-specific parameters. We applied our strategy to quantitative time-resolved data of EPO-induced JAK/STAT signaling generated by quantitative immunoblotting, mass spectrometry and quantitative real-time PCR (qRT-PCR) in CFU-E and H838 cells as well as H838 cells overexpressing human EPOR (H838-HA-hEPOR). The established parsimonious mathematical model was able to simultaneously describe the data sets of CFU-E, H838 and H838-HA-hEPOR cells. Seven cell type-specific parameters were identified that included for example parameters for nuclear translocation of STAT5 and target gene induction. Cell type-specific differences in target gene induction were experimentally validated by qRT-PCR experiments. The systematic identification of pathway differences and sensitivities of EPOR signaling in CFU-E and H838 cells revealed potential targets for intervention to selectively inhibit EPO-induced signaling in the tumor cells but leave the responses in erythroid

  10. Increased bone formation in a rabbit long-bone defect model after single local and single systemic application of erythropoietin.

    PubMed

    Omlor, Georg W; Kleinschmidt, Kerstin; Gantz, Simone; Speicher, Anja; Guehring, Thorsten; Richter, Wiltrud

    2016-08-01

    Background and purpose - Delayed bone healing with non-union is a common problem. Further options to increase bone healing together with surgery are needed. We therefore evaluated a 1-dose single application of erythropoietin (EPO), applied either locally to the defect or systemically during surgery, in a critical-size rabbit long-bone defect. Material and methods - 19 New Zealand White rabbits received a 15-mm defect in the radius diaphysis. An absorbable gelatin sponge was soaked with saline (control group and systemic treatment group) or EPO (local treatment group) and implanted into the gap. The systemic treatment group received EPO subcutaneously. In vivo micro-CT analysis was performed 4, 8, and 12 weeks postoperatively. Vascularization was evaluated histologically. Results - Semiquantitative histomorphometric and radiological evaluation showed increased bone formation (2.3- to 2.5-fold) in both treatment groups after 12 weeks compared to the controls. Quantitative determination of bone volume and tissue volume showed superior bone healing after EPO treatment at all follow-up time points, with the highest values after 12 weeks in locally treated animals (3.0- to 3.4-fold). More vascularization was found in both EPO treatment groups. Interpretation - Initial single dosing with EPO was sufficient to increase bone healing substantially after 12 weeks of follow-up. Local application inside the defect was most effective, and it can be administered directly during surgery. Apart from effects on ossification, systemic and local EPO treatment leads to increased callus vascularization. PMID:27348783

  11. Inhibiting PPARγ by erythropoietin while upregulating TAZ by IGF1 synergistically promote osteogenic differentiation of mesenchymal stem cells.

    PubMed

    Zhou, Jianwei; Wei, Fangyuan; Ma, Yuquan

    2016-09-01

    Erythropoietin (EPO) is reported to promote osteogenesis and inhibit adipogenesis of mesenchymal stem cells (MSC) through inhibiting PPARγ, while insulin-like growth factor 1 (IGF1) is able to enhance osteogenesis via upregulating transcriptional coactivator with PDZ-binding motif (TAZ). The different targets of EPO and IGF1 suggested their potential synergism to enhance osteogenesis. In this study, we aimed to determine the potential synergism of EPO and IGF1 and its efficacy on MSC differentiation. Rat adipose-derived mesenchymal stem cells (ADSCs) were separately treated with EPO, IGF1 and EPO/IGF1. It was observed that the co-treatment using EPO and IGF1 was able to potently promote the osteogenic differentiation of rat ADSCs compared with EPO or IGF1 alone, which offered a promising effective option to strengthen bone tissue regeneration for bone defects. Further, we demonstrated that the enhanced osteogenic differentiation by EPO and IGF1 co-treatment was almost counteracted by activating PPARγ through PPARγ agonist, RSG, and blocking TAZ through TAZ silencing RNA, siTAZ. Thus, it could be concluded that EPO and IGF1 possessed a potent synergism in promoting osteogenic differentiation, and the synergism was mainly attributed to co-regulation of different osteogenic regulators PPARγ and TAZ, which were targeted genes of EPO and IGF1 respectively. PMID:27422606

  12. Role of erythropoietin in the angiogenic activity of bone marrow endothelial cells of MGUS and multiple myeloma patients

    PubMed Central

    Ferrucci, Arianna; Ria, Roberto; Ruggieri, Simona; Racanelli, Vito; Rao, Luigia; Annese, Tiziana; Nico, Beatrice; Vacca, Angelo; Ribatti, Domenico

    2016-01-01

    Increasing evidences suggest several biological roles for erythropoietin and its receptor (Epo and EpoR), unrelated to erythropoiesis, including angiogenesis. Here, we detected the expression of EpoR in bone marrow-derived endothelial cells from monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma (MM) patients (MGECs and MMECs, respectively) and assessed whether Epo plays a role in MGECs- and MMECs-mediated angiogenesis. We show that EpoR is expressed by both MGECs and MMECs even though at a higher level in the first ones. Both EC types respond to rHuEpo in terms of cell proliferation, whereas other responses, including activation of JAK2/STAT5 and PI3K/Akt pathways, cell migration and capillarogenesis are enhanced by Epo in MGECs, but not in MMECs. In addition, the conditioned media of both Epo-treated cells induce a strong angiogenic response in vivo in the chorioallantoic membrane assay, comparable to that of vascular endothelial growth factor (VEGF). Overall, these data highlight the effect of Epo on MGECs- and MMECs-mediated angiogenesis: MGECs are more responsive to Epo treatment than MMECs, probably because over-angiogenic phenotype of MMECs is already activated by their autocrine/paracrine loops occurring in the “angiogenic switch” from MGUS. PMID:26919105

  13. Oncostatin M receptor β and cysteine/histidine-rich 1 are biomarkers of the response to erythropoietin in hemodialysis patients.

    PubMed

    Merchant, Michael L; Gaweda, Adam E; Dailey, Andrew J; Wilkey, Daniel W; Zhang, Xiaolan; Rovin, Brad H; Klein, Jon B; Brier, Michael E

    2011-03-01

    Biomarkers that evaluate the response to erythropoietic-stimulating agents largely measure inflammation and iron availability. While these are important factors in modifying an individual's response to these agents, they do not address all aspects of a poor response. To clarify this, we isolated peptides in the serum of good and poor responders to erythropoietin in order to identify biomarkers of stimulating agent response. Ninety-one candidate biomarker targets were identified and characterized using mass spectrometry, of which tandem mass spectroscopy provided partial amino-acid sequence information of 17 different peptides for 16 peptide masses whose abundance significantly differed between poor and good responders. The analysis concluded that three peptides associated with a poor response were derived from oncostatin M receptor β (OSMRβ). The 13 serum peptides associated with a good response were derived from fibrinogen α and β, coagulation factor XIII, complement C3, and cysteine/histidine rich 1(CYHR1). Poor response was most strongly associated with the OSMRβ fragment with the largest molecular weight, while a good response was most strongly associated with CYHR1. Immunoblots found the abundance of intact OSMRβ and CYHR1 significantly differed between good and poor responders. Thus, two measurable biomarkers of the response to erythropoietic-stimulating agents are present in the serum of treated patients. PMID:21150872

  14. Oncostatin M receptor β and cysteine/histidine-rich 1 are biomarkers of the response to erythropoietin in hemodialysis patients

    PubMed Central

    Merchant, Michael L.; Gaweda, Adam E.; Dailey, Andrew J.; Wilkey, Daniel W.; Zhang, Xiaolan; Rovin, Brad H.

    2013-01-01

    Biomarkers that evaluate the response to erythropoietic-stimulating agents largely measure inflammation and iron availability. While these are important factors in modifying an individual’s response to these agents, they do not address all aspects of a poor response. To clarify this, we isolated peptides in the serum of good and poor responders to erythropoietin in order to identify biomarkers of stimulating agent response. Ninety-one candidate biomarker targets were identified and characterized using mass spectrometry, of which tandem mass spectroscopy provided partial amino-acid sequence information of 17 different peptides for 16 peptide masses whose abundance significantly differed between poor and good responders. The analysis concluded that three peptides associated with a poor response were derived from oncostatin M receptor β (OSMRβ). The 13 serum peptides associated with a good response were derived from fibrinogen α and β, coagulation factor XIII, complement C3, and cysteine/histidine rich 1(CYHR1). Poor response was most strongly associated with the OSMRβ fragment with the largest molecular weight, while a good response was most strongly associated with CYHR1. Immunoblots found the abundance of intact OSMRβ and CYHR1 significantly differed between good and poor responders. Thus, two measurable biomarkers of the response to erythropoietic-stimulating agents are present in the serum of treated patients. PMID:21150872

  15. Erythropoietin improves neuronal proliferation in dentate gyrus of hippocampal formation in an animal model of Alzheimer's disease

    PubMed Central

    Arabpoor, Zohreh; Hamidi, Gholamali; Rashidi, Bahman; Shabrang, Moloud; Alaei, Hojjatallah; Sharifi, Mohammad Reza; Salami, Mahmoud; Dolatabadi, Hamid Reza Dehghani; Reisi, Parham

    2012-01-01

    Background: Alzheimer's disease (AD) is a prevalent disorder with severe learning and memory defects. Because it has been demonstrated that erythropoietin (EPO) has positive effects on the central nervous system, the aim of this study was to evaluate the effect of EPO on neuronal proliferation in dentate gyrus of hippocampal formation in a well-defined model for AD. Materials and Methods: A rat model of sporadic dementia of Alzheimer's type was established by a bilateral intracerebroventricular injection of streptozotocin (ICV-STZ). Impairment of learning and memory was confirmed 2 weeks after ICV-STZ injection by passive avoidance learning test and then rats were divided into fourgroups:Control, control-EPO, Alzheimer and Alzheimer-EPO. EPO was injected intraperitoneally every other day with a dose of 5000 IU/kg and, finally, the rats were anesthetized and decapitated for immunohistochemical study and neurogenesis investigation (by Ki67 method) in dentate gyrus of hippocampal formation. Results: The results driven from the histological study showed that EPO significantly increases neuronal proliferation in dentate gyrus of hippocampus in the Alzheimer-EPO group compared with the control, control-EPO and Alzheimer groups; however, there were no differences between the other groups. Conclusion: Our results show that even though EPO in intact animals doesnot change neurogenesis in dentate gyrus, it can nonetheless significantly increase neurogenesis if there is an underlying disorder like neurodegenerative diseases. PMID:23326781

  16. Role of erythropoietin in the angiogenic activity of bone marrow endothelial cells of MGUS and multiple myeloma patients.

    PubMed

    Lamanuzzi, Aurelia; Saltarella, Ilaria; Ferrucci, Arianna; Ria, Roberto; Ruggieri, Simona; Racanelli, Vito; Rao, Luigia; Annese, Tiziana; Nico, Beatrice; Vacca, Angelo; Ribatti, Domenico

    2016-03-22

    Increasing evidences suggest several biological roles for erythropoietin and its receptor (Epo and EpoR), unrelated to erythropoiesis, including angiogenesis. Here, we detected the expression of EpoR in bone marrow-derived endothelial cells from monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma (MM) patients (MGECs and MMECs, respectively) and assessed whether Epo plays a role in MGECs- and MMECs-mediated angiogenesis. We show that EpoR is expressed by both MGECs and MMECs even though at a higher level in the first ones. Both EC types respond to rHuEpo in terms of cell proliferation, whereas other responses, including activation of JAK2/STAT5 and PI3K/Akt pathways, cell migration and capillarogenesis are enhanced by Epo in MGECs, but not in MMECs. In addition, the conditioned media of both Epo-treated cells induce a strong angiogenic response in vivo in the chorioallantoic membrane assay, comparable to that of vascular endothelial growth factor (VEGF). Overall, these data highlight the effect of Epo on MGECs- and MMECs-mediated angiogenesis: MGECs are more responsive to Epo treatment than MMECs, probably because over-angiogenic phenotype of MMECs is already activated by their autocrine/paracrine loops occurring in the "angiogenic switch" from MGUS. PMID:26919105

  17. Increased Fetal Plasma Erythropoietin in Monochorionic Twin Pregnancies With Selective Intrauterine Growth Restriction and Abnormal Umbilical Artery Doppler.

    PubMed

    Chang, Yao-Lung; Chao, An-Shine; Peng, Hsiu-Huei; Chang, Shuenn-Dyh; Su, Sheng-Yuan; Chen, Kuan-Ju; Cheng, Po-Jen; Wang, Tzu-Hao

    2016-08-01

    Hypoxia is the primary stimulus for the production of erythropoietin (EPO) in both fetal and adult life. Here, we investigated fetal plasma EPO concentrations in monochorionic (MC) twin pregnancies with selective intrauterine growth restriction (sIUGR) and abnormal umbilical artery (UA) Doppler. We diagnosed sIUGR in presence of (1) birth-weight discordance >20% and (2) either twin with a birth weight <10th percentile. An abnormal UA Doppler was defined as a persistent absent-reverse end diastolic flow (AREDF). The intertwin EPO ratio was calculated as the plasma EPO level of the smaller (or small-for-gestational-age) twin divided by the EPO concentration of the larger (or appropriate-for-gestational-age (AGA)) twin. Thirty-two MC twin pairs were included. Of these, 17 pairs were normal twins (Group 1), seven pairs were twins with sIUGR without UA Doppler abnormalities (Group 2), and eight pairs were twins with sIUGR and UA Doppler abnormalities (Group 3). The highest EPO ratio was identified in Group 3 (p < .001) but no significant differences were observed between Groups 1 and 2. Fetal hemoglobin levels did not differ significantly in the three groups, and fetal EPO concentration did not correlate with gestational age at birth. We conclude that fetal plasma EPO concentrations are selectively increased in MC twin pregnancies with sIUGR and abnormal UA Doppler, possibly as a result of uncompensated hypoxia. PMID:27161360

  18. Inhibition of adipogenic differentiation of bone marrow mesenchymal stem cells by erythropoietin via activating ERK and P38 MAPK.

    PubMed

    Liu, G X; Zhu, J C; Chen, X Y; Zhu, A Z; Liu, C C; Lai, Q; Chen, S T

    2015-01-01

    We examined whether erythropoietin (EPO) can inhibit adipogenic differentiation of mesenchymal stem cells (MSCs) in the mouse bone marrow and its underlying mechanism. We separated and extracted mouse bone marrow MSCs and induced adipogenic differen-tiation using 3-isobutyl-1-methylxanthine, insulin, and dexamethasone. Different concentrations of EPO were added to the cells and observed by Oil Red O staining on the 20th day to quantitatively analyze the degree of cell differentiation. mRNA expression levels of peroxysome proliferator-activated receptor γ (PPARγ), CCAAT enhancer binding protein α, and adiponectin were analyzed by real-time quantitative polymerase chain reaction, and the activity of PPARγ, extracellular sig-nal-regulated kinase (ERK), and p38 mitogen-activated protein kinase (p38 MAPK) were determined by western blotting. EPO significantly inhibited adipogenic differentiation of MSCs after 20 days and reduced absorbance values by Oil Red O staining without affecting proliferation activity. EPO downregulated the mRNA expression of PPARγ, CCAAT enhancer binding protein α, fatty acid binding protein 4, and adiponec-tin during adipogenesis and increased protein phosphorylation of ERK, p38 MAPK, and PPARγ during differentiation. EPO downregulated the mRNA expression of PPARγ, CCAAT enhancer binding protein α, fatty acid binding protein 4, and adiponectin by increasing protein phosphor-ylation of ERK, p38 MAPK, and PPARγ during differentiation, which inhibited adipogenic differentiation of MSCs. PMID:26125905

  19. [Improvement of sexual function in hemodialyzed male patients with chronic renal failure treated with erythropoietin (rHuEPO)].

    PubMed

    Trembecki, J; Kokot, F; Wiecek, A; Marcinkowski, W; Rudka, R

    1995-01-01

    The present study aimed to assess the influence of long-term recombinant human erythropoietin therapy on selected parameters of sexual function in haemodialyzed males with chronic renal failure and severe nephrogenic anaemia. All patients were randomized into two groups. The first one consisted of 11 patients treated for 12 months with rHuEPO in order to achieve and maintain a target Hct value of 30-35% (EPO group). The other 9 male patients were only carefully monitored clinically and biochemically for 12 months similarly as patients of the EPO group but were not treated with rHuEPO (No-EPO group). After 12 months of monitoringan an anonimous questionnaire was completed by the patients describing selected parameters of quality of life and sexual function. Haemodialyzed males treated with rHuEPO showed a significantly higher score of improvement of well-being, exercise tolerance, erection quality and libido as compared with patients not treated with rHuEPO. Results obtained in this study suggest, that EPO therapy shows a beneficial effect on sexual function in haemodialyzed patients with chronic renal failure. PMID:8834648

  20. Chemical and biological assessment of Jujube (Ziziphus jujuba)-containing herbal decoctions: Induction of erythropoietin expression in cultures.

    PubMed

    Lam, Candy T W; Chan, Pui H; Lee, Pinky S C; Lau, Kei M; Kong, Ava Y Y; Gong, Amy G W; Xu, Miranda L; Lam, Kelly Y C; Dong, Tina T X; Lin, Huangquan; Tsim, Karl W K

    2016-07-15

    Jujubae Fructus, known as jujube or Chinese date, is the fruit of Ziziphus jujuba (Mill.), which not only serves as daily food, but acts as tonic medicine and health supplement for blood nourishment and sedation. According to Chinese medicine, jujube is commonly included in herbal mixtures, as to prolong, enhance and harmonize the efficiency of herbal decoction, as well as to minimize the toxicity. Here, we aim to compare the chemical and pharmacological properties of three commonly used jujube-containing decoctions, including Guizhi Tang (GZT), Neibu Dangguijianzhong Tang (NDT) and Zao Tang (ZOT). These decoctions share common herbs, i.e. Glycyrrhizae Radix et Rhizoma Praeparata cum Melle, Zingiberis Rhizoma Recens and Jujube, and they have the same proposed hematopoietic functions. The amount of twelve marker biomolecules deriving from different herbs in the decoctions were determined by LC-MS, and which served as parameters for chemical standardization. In general, three decoctions showed common chemical profiles but with variations in solubilities of known active ingredients. The chemical standardized decoctions were tested in cultured Hep3B cells. The herbal treatment stimulated the amount of mRNA and protein expressions of erythropoietin (EPO) via the activation of hypoxia response elements: the three herbal decoctions showed different activation. The results therefore demonstrated the hematopoietic function of decoctions and explained the enhancement of jujube function within a herbal mixture. PMID:26432380

  1. TNF-alpha-induced apoptosis is prevented by erythropoietin treatment on SH-SY5Y cells

    SciTech Connect

    Pregi, Nicolas Wenker, Shirley; Vittori, Daniela; Leiros, Claudia Perez; Nesse, Alcira

    2009-02-01

    The growth factor erythropoietin (Epo) has shown neuronal protective action in addition to its well known proerythroid activity. Furthermore, Epo has dealt with cellular inflammation by inhibiting the expression of several proinflammatory cytokines, such as IL-1 and TNF-{alpha}. The action of TNF can have both apoptotic and antiapoptotic consequences due to altered balance between different cell signalling pathways. This work has focused on the apoptotic effects of this cytokine and the potential protective action of Epo. The model we used was neuroblastoma SH-SY5Y cells cultured in the presence of 25 ng/ml TNF-{alpha} or pretreated with 25 U/ml Epo for 12 h before the addition of TNF-{alpha}. Apoptosis was evaluated by differential cell count after Hoechst staining, analysis of DNA ladder pattern, and measurement of caspase activity. Despite its ability to induce NF-{kappa}B nuclear translocation, TNF-{alpha} induced cell death, which was found to be associated to upregulation of TNF Receptor 1 expression. On the other hand, cells activated by Epo became resistant to cell death. Prevention of death receptor upregulation and caspase activation may explain this antiapoptotic effect of Epo, which may be also favoured by the induction of a higher expression of protective factors, such as Bcl-2 and NF-{kappa}B, through mechanisms involving Jak/STAT and PI3K signalling pathways.

  2. Human recombinant erythropoietin does not promote cancer growth in presence of functional receptors expressed in cancer cells.

    PubMed

    Belda-Iniesta, Cristóbal; Perona, Rosario; Carpeño, Javier de Castro; Cejas, Paloma; Casado, Enrique; Manguan-García, Cristina; Ibanez de Caceres, Inmaculada; Sanchez-Perez, Isabel; Andreu, Francisco Bernabeu; Ferreira, Javier Alves; Aguilera, Alfredo; de la Peña, Javier; Perez-Sánchez, Elia; Madero, Rosario; Feliu, Jaime; Sereno, María; González-Barón, Manuel

    2007-10-01

    Human recombinant erythropoietin (hrEPO) therapy might be associated with tumor progression and death. This effect has been suggested to be secondary to rhEPO binding to its receptor (EPOR) expressed on cancer cells. However, there are several concerns about EPOR functionality when expressed on cancer cells. In this paper we have provided evidence that EPOR expressed in cancer cells could be implicated in proliferation events because a transfection of EPOR siRNA to EPOR-expressing bladder cancer cells resulted in a marked reduction in cell growth. However, these cell lines do not grow in the presence of hrEPO. Furthermore, bladder cancer patients that expressed EPOR in tumor samples had a reduced survival in absence of rhEPO treatment. Therefore, EPOR is implicated in bladder cancer growth but this effect appears to be independent from rhEPO supplementation. Reports which suggest that rhEPO promotes cancer growth due to the expression of EPOR in cancer cells must be observed with caution since in the presence of functional EPOR rhEPO does not promote growth. PMID:17938574

  3. Erythropoietin withdrawal alters interactions between young red blood cells, splenic endothelial cells, and macrophages: an in vitro model of neocytolysis

    NASA Technical Reports Server (NTRS)

    Trial, J.; Rice, L.; Alfrey, C. P.

    2001-01-01

    BACKGROUND: We have described the rapid destruction of young red blood cells (neocytolysis) in astronauts adapting to microgravity, in polycythemic high altitude dwellers who descend to sea level, and in patients with kidney disorders. This destruction results from a decrease in erythropoietin (EPO) production. We hypothesized that such EPO withdrawal could trigger physiological changes in cells other than red cell precursors and possibly lead to the uptake and destruction of young red cells by altering endothelial cell-macrophage interactions, most likely occurring in the spleen. METHODS: We identified EPO receptors on human splenic endothelial cells (HSEC) and investigated the responses of these cells to EPO withdrawal. RESULTS: A monolayer of HSEC, unlike human endothelial cells from aorta, glomerulus, or umbilical vein, demonstrated an increase in permeability upon EPO withdrawal that was accompanied by unique morphological changes. When HSEC were cultured with monocyte-derived macrophages (but not when either cell type was cultured alone), EPO withdrawal induced an increased ingestion of young red cells by macrophages when compared with the constant presence or absence of EPO. CONCLUSIONS: HSEC may represent a unique cell type that is able to respond to EPO withdrawal by increasing permeability and interacting with phagocytic macrophages, which leads to neocytolysis.

  4. The effect of hemin-induced oxidative stress on erythropoietin production in HepG2 cells.

    PubMed

    Nishimura, Kazuhiko; Tokida, Masahiro; Katsuyama, Hideaki; Nakagawa, Hiroshi; Matsuo, Saburo

    2014-11-01

    Erythropoietin (EPO) and iron are both indispensable hematopoietic factors and are often studied in humans and rodents. Iron activates prolyl hydroxylases (PHDs) and promotes the degradation of the α-subunit of hypoxia inducible factor (HIF), which regulates EPO production. Iron also causes oxidative stress. Oxidative stress leads to alterations in the levels of multiple factors that regulate HIF and EPO production. It is thought that iron influences EPO production by altering two pathways, namely PHDs activity and oxidative stress. We studied the differential effect of varying concentrations of hemin, an iron-containing porphyrin, on EPO production in HepG2 cells. Hemin at 100 µM reduced EPO mRNA expression. The hemin-induced reduction of EPO mRNA levels was attenuated at concentrations greater than 200 µM and EPO production increased in the presence of 500 µM hemin. In comparison, protoporphyrin IX, iron-free hemin did not influence EPO mRNA expression. Additionally, malondialdehyde (MDA) concentrations and superoxide dismutase (SOD) activity significantly increased with 300 µM hemin. Importantly, the antioxidant tempol inhibited the hemin-induced (500 µM) increase in EPO mRNA levels. In conclusion, these results suggest that restraint of EPO production by hemin was offset by the promotion of EPO production by hemin-induced oxidative stress at hemin concentrations greater than 300 µM. PMID:24962609

  5. Erythropoietin Levels Increase during Cerebral Malaria and Correlate with Heme, Interleukin-10 and Tumor Necrosis Factor-Alpha in India

    PubMed Central

    Dalko, Esther; Tchitchek, Nicolas; Pays, Laurent; Herbert, Fabien; Cazenave, Pierre-André; Ravindran, Balachandran; Sharma, Shobhona; Nataf, Serge; Das, Bidyut; Pied, Sylviane

    2016-01-01

    Cerebral malaria (CM) caused by Plasmodium falciparum parasites often leads to the death of infected patients or to persisting neurological sequelae despite anti-parasitic treatments. Erythropoietin (EPO) was recently suggested as a potential adjunctive treatment for CM. However diverging results were obtained in patients from Sub-Saharan countries infected with P. falciparum. In this study, we measured EPO levels in the plasma of well-defined groups of P. falciparum-infected patients, from the state of Odisha in India, with mild malaria (MM), CM, or severe non-CM (NCM). EPO levels were then correlated with biological parameters, including parasite biomass, heme, tumor necrosis factor (TNF)-α, interleukin (IL)-10, interferon gamma-induced protein (IP)-10, and monocyte chemoattractant protein (MCP)-1 plasma concentrations by Spearman’s rank and multiple correlation analyses. We found a significant increase in EPO levels with malaria severity degree, and more specifically during fatal CM. In addition, EPO levels were also found correlated positively with heme, TNF-α, IL-10, IP-10 and MCP-1 during CM. We also found a significant multivariate correlation between EPO, TNF-α, IL-10, IP-10 MCP-1 and heme, suggesting an association of EPO with a network of immune factors in CM patients. The contradictory levels of circulating EPO reported in CM patients in India when compared to Africa highlights the need for the optimization of adjunctive treatments according to the targeted population. PMID:27441662

  6. Translation of the human erythropoietin transcript is regulated by an upstream open reading frame in response to hypoxia.

    PubMed

    Barbosa, Cristina; Romão, Luísa

    2014-05-01

    Erythropoietin (EPO) is a key mediator hormone for hypoxic induction of erythropoiesis that also plays important nonhematopoietic functions. It has been shown that EPO gene expression regulation occurs at different levels, including transcription and mRNA stabilization. In this report, we show that expression of EPO is also regulated at the translational level by an upstream open reading frame (uORF) of 14 codons. As judged by comparisons of protein and mRNA levels, the uORF acts as a cis-acting element that represses translation of the main EPO ORF in unstressed HEK293, HepG2, and HeLa cells. However, in response to hypoxia, this repression is significantly released, specifically in HeLa cells, through a mechanism that involves processive scanning of ribosomes from the 5' end of the EPO transcript and enhanced ribosome bypass of the uORF. In addition, we demonstrate that in HeLa cells, hypoxia induces the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) concomitantly with a significant increase of EPO protein synthesis. These findings provide a framework for understanding that production of high levels of EPO induced by hypoxia also involves regulation at the translational level. PMID:24647661

  7. Erythropoietin Levels Increase during Cerebral Malaria and Correlate with Heme, Interleukin-10 and Tumor Necrosis Factor-Alpha in India.

    PubMed

    Dalko, Esther; Tchitchek, Nicolas; Pays, Laurent; Herbert, Fabien; Cazenave, Pierre-André; Ravindran, Balachandran; Sharma, Shobhona; Nataf, Serge; Das, Bidyut; Pied, Sylviane

    2016-01-01

    Cerebral malaria (CM) caused by Plasmodium falciparum parasites often leads to the death of infected patients or to persisting neurological sequelae despite anti-parasitic treatments. Erythropoietin (EPO) was recently suggested as a potential adjunctive treatment for CM. However diverging results were obtained in patients from Sub-Saharan countries infected with P. falciparum. In this study, we measured EPO levels in the plasma of well-defined groups of P. falciparum-infected patients, from the state of Odisha in India, with mild malaria (MM), CM, or severe non-CM (NCM). EPO levels were then correlated with biological parameters, including parasite biomass, heme, tumor necrosis factor (TNF)-α, interleukin (IL)-10, interferon gamma-induced protein (IP)-10, and monocyte chemoattractant protein (MCP)-1 plasma concentrations by Spearman's rank and multiple correlation analyses. We found a significant increase in EPO levels with malaria severity degree, and more specifically during fatal CM. In addition, EPO levels were also found correlated positively with heme, TNF-α, IL-10, IP-10 and MCP-1 during CM. We also found a significant multivariate correlation between EPO, TNF-α, IL-10, IP-10 MCP-1 and heme, suggesting an association of EPO with a network of immune factors in CM patients. The contradictory levels of circulating EPO reported in CM patients in India when compared to Africa highlights the need for the optimization of adjunctive treatments according to the targeted population. PMID:27441662

  8. Recombinant human erythropoietin in the prevention of late anemia in intrauterine transfused neonates with Rh-isoimmunization.

    PubMed

    Zuppa, Antonio Alberto; Alighieri, Giovanni; Calabrese, Valentina; Visintini, Federica; Cota, Francesco; Carducci, Chiara; Antichi, Eleonora; Noia, Giuseppe Antonio; Fortunato, Giuseppe; Romagnoli, Costantino

    2010-04-01

    The majority of neonates with Rh-isoimmunization develops late anemia between the second and the sixth week of life. We report the effectiveness of recombinant human erythropoietin (rHuEPO) in preventing late anemia in 25 intrauterine and nonintrauterine-transfused neonates. The neonates were treated from 11+/-4 days after birth to 26+/-14 days (400 U/kg/d of rHuEpo, administered subcutaneously). During rHuEpo therapy, vitamin E, calcium folinate, and iron maltose were administered intramuscularly on a daily basis. Hematocrit, platelet, and neutrophil counts did not differ significantly before and after 21-days therapy. However, average values for reticulocyte showed a significant increase. The hematocrit values in the non-intrauterine transfusion (IUT) group increased progressively from the beginning to the end of the treatment, whereas that in the IUT group remained stable. Reticulocyte count increased during treatment in both groups, but it was significantly elevated in the non-IUT group only. Moreover, we observed that only neonates transfused with IUTs needed transfusions before and after treatment. This study suggests the effectiveness of rHuEpo therapy in the treatment of neonates with Rh-isoimmunization and it highlights how IUTs decrease the neonatal response efficacy. Larger, better if multicentric, randomized controlled trial are needed to definitely state whether rHuEPO safely decreases the incidence of late onset anemia. PMID:20216236

  9. Selectable retrovirus vectors encoding Friend virus gp55 or erythropoietin induce polycythemia with different phenotypic expression and disease progression.

    PubMed Central

    Ahlers, N; Hunt, N; Just, U; Laker, C; Ostertag, W; Nowock, J

    1994-01-01

    The Friend spleen focus-forming virus induces a massive expansion of erythroid progenitor cells resulting in polycythemia and splenomegaly. The pathogenic agent is the membrane glycoprotein gp55, encoded by the env gene. Recent evidence indicates that gp55 binds to and activates the erythropoietin (Epo) receptor. It is not clear, however, whether gp55 completely mimics the natural receptor ligand (Epo). To directly compare both effectors, we constructed selectable retroviral vectors which carry either the env or the Epo gene. The selection marker allowed for clonal analysis of infected cells. After infection of DBA/2J mice, the spleen weight, hematological indices, and Epo titer of peripheral blood were monitored. Although both viruses induced an acute erythrocytosis, there were significant differences in disease phenotype and progression. The Epo virus caused an enhanced increase of hematocrit and erythrocytes, whereas with the env virus the pool of late progenitors (CFU-erythroid) was dramatically expanded, resulting in a more severe splenomegaly. The distribution of cytologically recognizable erythroid precursors was shifted towards immature cell types by the env vector compared with Epo. These data suggest that Epo and gp55 differentially affect proliferation and differentiation. Gp55 appears to promote proliferation over differentiation, whereas Epo preferentially drives differentiation. Images PMID:7933106

  10. β Common Receptor Mediates Erythropoietin-Conferred Protection on OxLDL-Induced Lipid Accumulation and Inflammation in Macrophages

    PubMed Central

    Lu, Kuo-Yun; Yu, Yuan-Bin; Tsai, Feng-Chuan

    2015-01-01

    Erythropoietin (EPO), the key factor for erythropoiesis, also protects macrophage foam cells from lipid accumulation, yet the definitive mechanisms are not fully understood. β common receptor (βCR) plays a crucial role in the nonhematopoietic effects of EPO. In the current study, we investigated the role of βCR in EPO-mediated protection in macrophages against oxidized low-density lipoprotein- (oxLDL-) induced deregulation of lipid metabolism and inflammation. Here, we show that βCR expression was mainly in foamy macrophages of atherosclerotic aortas from apolipoprotein E-deficient mice. Results of confocal microscopy and immunoprecipitation analyses revealed that βCR was colocalized and interacted with EPO receptor (EPOR) in macrophages. Inhibition of βCR activation by neutralizing antibody or small interfering RNA (siRNA) abolished the EPO-conferred protection in oxLDL-induced lipid accumulation. Furthermore, EPO-promoted cholesterol efflux and upregulation of ATP-binding cassette (ABC) transporters ABCA1 and ABCG1 were prevented by pretreatment with βCR neutralizing antibody or βCR siRNA. Additionally, blockage of βCR abrogated the EPO-conferred anti-inflammatory action on oxLDL-induced production of macrophage inflammatory protein-2. Collectively, our findings suggest that βCR may play an important role in the beneficial effects of EPO against oxLDL-elicited dysfunction of macrophage foam cells. PMID:26101463

  11. Silencing erythropoietin receptor on glioma cells reinforces efficacy of temozolomide and X-rays through senescence and mitotic catastrophe

    PubMed Central

    Pérès, Elodie A.; Gérault, Aurélie N.; Valable, Samuel; Roussel, Simon; Toutain, Jérôme; Divoux, Didier; Guillamo, Jean-Sébastien; Sanson, Marc; Bernaudin, Myriam; Petit, Edwige

    2015-01-01

    Hypoxia-inducible genes may contribute to therapy resistance in glioblastoma (GBM), the most aggressive and hypoxic brain tumours. It has been recently reported that erythropoietin (EPO) and its receptor (EPOR) are involved in glioma growth. We now investigated whether EPOR signalling may modulate the efficacy of the GBM current treatment based on chemotherapy (temozolomide, TMZ) and radiotherapy (X-rays). Using RNA interference, we showed on glioma cell lines (U87 and U251) that EPOR silencing induces a G2/M cell cycle arrest, consistent with the slowdown of glioma growth induced by EPOR knock-down. In vivo, we also reported that EPOR silencing combined with TMZ treatment is more efficient to delay tumour recurrence and to prolong animal survival compared to TMZ alone. In vitro, we showed that EPOR silencing not only increases the sensitivity of glioma cells to TMZ as well as X-rays but also counteracts the hypoxia-induced chemo- and radioresistance. Silencing EPOR on glioma cells exposed to conventional treatments enhances senescence and induces a robust genomic instability that leads to caspase-dependent mitotic death by increasing the number of polyploid cells and cyclin B1 expression. Overall these data suggest that EPOR could be an attractive target to overcome therapeutic resistance toward ionising radiation or temozolomide. PMID:25544764

  12. Administration for Community Living

    MedlinePlus

    ... by Acting Assistant Secretary for Aging and ACL Administrator Edwin Walker at the HCBS Conference (08/29/ ... Remarks by Assistant Secretary on Aging and ACL Administrator Kathy Greenlee at the n4a Answers on Aging ...

  13. The New Administrative Computing.

    ERIC Educational Resources Information Center

    Green, Kenneth C.

    1988-01-01

    The past decade has seen dramatic changes in administrative computing, including more systems, more applications, a new group of computer users, and new opportunities for computer use in campus administration. (Author/MSE)

  14. Transportation Security Administration

    MedlinePlus

    ... content Official website of the Department of Homeland Security Transportation Security Administration When I fly can I bring my... ... to know if you could bring through the security checkpoint. Main menu Administrator Travel Security Screening Special ...

  15. Investigation the efficacy of intra-articular prolotherapy with erythropoietin and dextrose and intra-articular pulsed radiofrequency on pain level reduction and range of motion improvement in primary osteoarthritis of knee

    PubMed Central

    Rahimzadeh, Poupak; Imani, Farnad; Faiz, Seyed Hamid Reza; Entezary, Saeed Reza; Nasiri, Ali Akbar; Ziaeefard, Mohsen

    2014-01-01

    Background: Osteoarthritis is one of the most common diseases and the knee is the most commonly affected joint. Intra-articular prolotherapy is being utilized in acute and chronic pain management setting. This study was designed to compare the efficacy of three methods of intra-articular knee joint therapies with erythropoietin, dextrose, and pulsed radiofrequency. Materials and Methods: After approval by the Ethics Committee and explaining the therapeutic method to volunteers, 70 patients who were suffering from primary knee osteoarthrosis went through one of the treatment methods (erythropoietin, dextrose, and pulsed radiofrequency). The study was double-blind randomized clinical trial performed from December 2012 to July 2013. Patients’ pain level was assessed through the visual analog pain scale (VAS), and range of motion (ROM) was measured by goniometric method. Furthermore, patients’ satisfaction was assessed before and after different treatment methods in weeks 2, 4, and 12. For analysis, Chi-square, one-way ANOVA, and repeated measured ANOVA were utilized. Results: The demographic results among the three groups did not indicate any statistical difference. The mean VAS in erythropoietin group in the 2nd, 4th, and 12th weeks was 3.15 ± 1.08, 3.15 ± 1.08, and 3.5 ± 1.23, respectively (P ≤ 0.005). Knee joint ROM in the erythropoietin group in the 2nd, 4th, and 12th weeks was 124 ± 1.50, 124 ± 1.4, and 123 ± 1.53 respectively (P ≤ 0.005). Satisfaction score in the 12th week in erythropoietin group was extremely satisfied 15%, satisfied 55%, and moderately satisfied 30%, (P = 0.005). No specific side-effects were observed. Conclusion: Intra-articular prolotherapy with erythropoietin was more effective in terms of pain level reduction and ROM improvement compared with dextrose and pulsed radiofrequency. PMID:25422652

  16. [Evaluation of erythropoiesis under the influence of recombinant human erythropoietin (R-EPO) in dialyzed patients].

    PubMed

    Debska-Slizień, A; Kabata, J; Rutkowski, B; Ciesielski, D; Jankowska-Gan, E; Manitius, A

    1991-06-01

    5 deeply anemic (Hb less than 8 g/dl, Ht less than 25%) dialyzed patients with chronic renal failure were treated during four months with r-Epo. Blood cells morphological parameters were estimated using hematological autoanalyser Technicon H1. Satisfactory increase of the Hb levels and RBC counts were observed in 4 patients, in one the improvement was insignificant. We observed three types of response to r-Epo treatment: 1) macrocytic type, 2) hypochromic type, and 3) non-hypochromic type, without lasting macrocytosis. Our results suggest that type of erythropoiesis depends on other active biological substances (iron, folic acid, vit. B12) necessary for correcting erythropoiesis. r-Epo administration appeared to be a safe and effective method of anaemia treatment in dialyzed patients. Its administration eliminated blood transfusion for six months. PMID:1896397

  17. NASA, NOAA administrators nominated

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    President Ronald Reagan recently said he intended to nominate James Montgomery Beggs as NASA Administrator and John V. Byrne as NOAA Administrator. These two positions are key scientific posts that have been vacant since the start of the Reagan administration on January 20. The President also said he intends to nominate Hans Mark as NASA Deputy Administrator. At press time, Reagan had not designated his nominee for the director of the Office of Science and Technology Policy.

  18. A Philosophy of Administration.

    ERIC Educational Resources Information Center

    Bruening, William H.

    Justification is given for paying relatively large salaries to college administrators, specifically the president or chancellor and the chief academic officer. Three administrative task areas are discussed as criteria: management, administration per se, and leadership. It is contended that only leadership can be used as a criterion for…

  19. School Business Administration.

    ERIC Educational Resources Information Center

    Jordan, K. Forbis; And Others

    This textbook reviews the principal concerns within each of 13 major responsibility areas in school business administration. The first chapter assesses the political, social, and economic context in which schools function and school administrators work. The role and function of the school business administrator within this context is addressed in…

  20. Analytics of nonpeptidic erythropoietin mimetic agents in sports drug testing employing high-resolution/high-accuracy liquid chromatography-mass spectrometry.

    PubMed

    Vogel, Matthias; Dib, Josef; Tretzel, Laura; Piper, Thomas; Thomas, Andreas; Schänzer, Wilhelm; Thevis, Mario

    2016-09-01

    Since its release as anti-anemic drug, recombinant erythropoietin (rEPO) gradually entered the illicit way to sports competitions as endurance-enhancing drug. Novel modifications biopharmaceutically introduced into the rEPO molecule in the form of carbohydrate or polyethylene glycol moieties made robust and sensitive test methods vital to doping controls in order to provide the necessary tools enabling the conviction of dishonest athletes. Modern protein analysis by means of gel electrophoretic separation and western blotting represents the status quo in rEPO anti-doping analysis. However, new therapeutically promising erythropoietin receptor activating compounds have been developed that exhibit cytokine hormone-mimicking properties but lack any protein structure. Progression to evade parenteral application and substitute for rEPO by low molecular mass and orally available compounds is still one of the major objectives in pharmaceutical research. In this approach, four promising in-house synthesized nonpeptidic erythropoietin mimetic agents, namely compound 129, compound 163, A1B10C1, and A5B10C4 were thoroughly evaluated by employing high-resolution/high-accuracy liquid chromatography tandem mass spectrometry experiments. Characteristic product ions were determined supporting the identification of these drugs and putative metabolites as well as related compounds in future doping controls. Test methods employing direct urine injection and receptor affinity purification strategies were assessed, which demonstrated that EPO receptor purification is of limited utility for nonpeptidic EPOR agonists while direct urine injection allowed for comprehensive method characterization. Thereby, achieved limits of detection were 1 ng/mL for compounds 129/163 and 5 ng/mL for A1B10C1/A5B10C4. PMID:27438721

  1. A Nonerythropoietic Peptide that Mimics the 3D Structure of Erythropoietin Reduces Organ Injury/Dysfunction and Inflammation in Experimental Hemorrhagic Shock

    PubMed Central

    Patel, Nimesh SA; Nandra, Kiran K; Brines, Michael; Collino, Massimo; Wong, WS Fred; Kapoor, Amar; Benetti, Elisa; Goh, Fera Y; Fantozzi, Roberto; Cerami, Anthony; Thiemermann, Christoph

    2011-01-01

    Recent studies have shown that erythropoietin, critical for the differentiation and survival of erythrocytes, has cytoprotective effects in a wide variety of tissues, including the kidney and lung. However, erythropoietin has been shown to have a serious side effect—an increase in thrombovascular effects. We investigated whether pyroglutamate helix B-surface peptide (pHBSP), a nonerythropoietic tissue-protective peptide mimicking the 3D structure of erythropoietin, protects against the organ injury/ dysfunction and inflammation in rats subjected to severe hemorrhagic shock (HS). Mean arterial blood pressure was reduced to 35 ± 5 mmHg for 90 min followed by resuscitation with 20 mL/kg Ringer Lactate for 10 min and 50% of the shed blood for 50 min. Rats were euthanized 4 h after the onset of resuscitation. pHBSP was administered 30 min or 60 min into resuscitation. HS resulted in significant organ injury/dysfunction (renal, hepatic, pancreas, neuromuscular, lung) and inflammation (lung). In rats subjected to HS, pHBSP significantly attenuated (i) organ injury/dysfunction (renal, hepatic, pancreas, neuromuscular, lung) and inflammation (lung), (ii) increased the phosphorylation of Akt, glycogen synthase kinase-3β and endothelial nitric oxide synthase, (iii) attenuated the activation of nuclear factor (NF)-κB and (iv) attenuated the increase in p38 and extracellular signal-regulated kinase (ERK)1/2 phosphorylation. pHBSP protects against multiple organ injury/dysfunction and inflammation caused by severe hemorrhagic shock by a mechanism that may involve activation of Akt and endothelial nitric oxide synthase, and inhibition of glycogen synthase kinase-3β and NF-κB. PMID:21607291

  2. Hormone dependency of chromosome aberrations induced by 7,12-dimethylbenz(a)anthracene in rat bone marrow cells: site-specific increase by erythropoietin

    SciTech Connect

    Ueda, N.; Suglyama, T.; Chattopadhyay, S.C.; Goto-Mimura, K.; Maeda, S.

    1981-08-01

    The frequency of chromosome aberrations (CA) 6 hours after iv injection of 50 mg 7,12-dimethylbenz(a)anthracene (DMBA0/kg was studied in bone marrow cells of the noninbred Long-Evans rat under various hematopoietic conditions. The percentage of metaphase cells with CA was enhanced by anemia and suppressed by polycythemia. The low incidence of CA in polycythemic rats was reversed by 6 U of sheep erythropoietin (EP) injected at the time of DMBA treatment. The interchromosomal and intrachromosomal distribution of CA indicated that hematopoietic stimuli, more specifically EP, greatly enhanced DMBA-induced CA in specific chromosomal regions.

  3. The erythropoietin receptor is not required for the development, function, and aging of rods and cells in the retinal periphery

    PubMed Central

    Caprara, Christian; Britschgi, Corinne; Samardzija, Marijana

    2014-01-01

    Purpose Erythropoietin (EPO) was originally described for its antiapoptotic effects on erythroid progenitor cells in bone marrow. In recent years, however, EPO has also been shown to be cytoprotective in several tissues, including the retina. There, exogenous application of EPO was reported to exert neuro- and vasoprotection in several models of retinal injury. EPO and the erythropoietin receptor (EPOR) are expressed in the retina, but the role of endogenous EPO-EPOR signaling in this tissue remains elusive. Here, we investigated the consequences for cell physiology and survival when EpoR is ablated in rod photoreceptors or in the peripheral retina. Methods Two mouse lines were generated harboring a cyclization recombinase (CRE)-mediated knockdown of EpoR in rod photoreceptors (EpoRflox/flox;Opn-Cre) or in a heterogeneous cell population of the retinal periphery (EpoRflox/flox;α-Cre). The function of the retina was measured with electroretinography. Retinal morphology was analyzed in tissue sections. The vasculature of the retina was investigated on flatmount preparations, cryosections, and fluorescein angiography. Retinal nuclear layers were isolated by laser capture microdissection to test for EpoR expression. Gene expression analysis was performed with semiquantitative real-time PCR. To test if the absence of EPOR potentially increases retinal susceptibility to hypoxic stress, the knockdown mice were exposed to hypoxia. Results Newborn mice had lower retinal expression levels of EpoR and soluble EpoR (sEpoR) than the adult wild-type mice. In the adult mice, the EpoR transcripts were elevated in the inner retinal layers, while expression in the photoreceptors was low. CRE-mediated deletion in the EpoRflox/flox;Opn-Cre mice led to a decrease in EpoR mRNA expression in the outer nuclear layer. A significant decrease in EpoR expression was measured in the retina of the EpoRflox/flox;α-Cre mice, accompanied by a strong and significant decrease in sEpoR expression

  4. Comparison of the effects of erythropoietin and anakinra on functional recovery and gene expression in a traumatic brain injury model

    PubMed Central

    Anderson, Gail D.; Peterson, Todd C.; Vonder Haar, Cole; Kantor, Eric D.; Farin, Fred M.; Bammler, Theo K.; MacDonald, James W.; Hoane, Michael R.

    2013-01-01

    The goal of this study was to compare the effects of two inflammatory modulators, erythropoietin (EPO) and anakinra, on functional recovery and brain gene expression following a cortical contusion impact (CCI) injury. Dosage regimens were designed to provide serum concentrations in the range obtained with clinically approved doses. Functional recovery was assessed using both motor and spatial learning tasks and neuropathological measurements conducted in the cortex and hippocampus. Microarray-based transcriptional profiling was used to determine the effect on gene expression at 24 h, 72 h, and 7 days post-CCI. Ingenuity Pathway Analysis was used to evaluate the effect on relevant functional categories. EPO and anakinra treatment resulted in significant changes in brain gene expression in the CCI model demonstrating acceptable brain penetration. At all three time points, EPO treatment resulted in significantly more differentially expressed genes than anakinra. For anakinra at 24 h and EPO at 24 h, 72 h, and 7 days, the genes in the top 3 functional categories were involved in cellular movement, inflammatory response and cell-to-cell signaling. For EPO, the majority of the genes in the top 10 canonical pathways identified were associated with inflammatory and immune signaling processes. This was true for anakinra only at 24 h post-traumatic brain injury (TBI). The immunomodulation effects of EPO and anakinra did not translate into positive effects on functional behavioral and lesion studies. Treatment with either EPO or anakinra failed to induce significant beneficial effects on recovery of function or produce any significant effects on the prevention of injury induced tissue loss at 30 days post-injury. In conclusion, treatment with EPO or anakinra resulted in significant effects on gene expression in the brain without affecting functional outcome. This suggests that targeting these inflammatory processes alone may not be sufficient for preventing secondary injuries

  5. The Influence of Artificially Introduced N-Glycosylation Sites on the In Vitro Activity of Xenopus laevis Erythropoietin

    PubMed Central

    Nagasawa, Kazumichi; Meguro, Mizue; Sato, Kei; Tanizaki, Yuta; Nogawa-Kosaka, Nami; Kato, Takashi

    2015-01-01

    Erythropoietin (EPO), the primary regulator of erythropoiesis, is a heavily glycosylated protein found in humans and several other mammals. Intriguingly, we have previously found that EPO in Xenopus laevis (xlEPO) has no N-glycosylation sites, and cross-reacts with the human EPO (huEPO) receptor despite low homology with huEPO. In this study, we introduced N-glycosylation sites into wild-type xlEPO at the positions homologous to those in huEPO, and tested whether the glycosylated mutein retained its biological activity. Seven xlEPO muteins, containing 1–3 additional N-linked carbohydrates at positions 24, 38, and/or 83, were expressed in COS-1 cells. The muteins exhibited lower secretion efficiency, higher hydrophilicity, and stronger acidic properties than the wild type. All muteins stimulated the proliferation of both cell lines, xlEPO receptor-expressing xlEPOR-FDC/P2 cells and huEPO receptor-expressing UT-7/EPO cells, in a dose-dependent manner. Thus, the muteins retained their in vitro biological activities. The maximum effect on xlEPOR-FDC/P2 proliferation was decreased by the addition of N-linked carbohydrates, but that on UT-7/EPO proliferation was not changed, indicating that the muteins act as partial agonists to the xlEPO receptor, and near-full agonists to the huEPO receptor. Hence, the EPO-EPOR binding site in X. laevis locates the distal region of artificially introduced three N-glycosylation sites, demonstrating that the vital conformation to exert biological activity is conserved between humans and X. laevis, despite the low similarity in primary structures of EPO and EPOR. PMID:25898205

  6. Erythropoietin activates two distinct signaling pathways required for the initiation and the elongation of c-myc

    NASA Technical Reports Server (NTRS)

    Chen, C.; Sytkowski, A. J.

    2001-01-01

    Erythropoietin (Epo) stimulation of erythroid cells results in the activation of several kinases and a rapid induction of c-myc expression. Protein kinase C is necessary for Epo up-regulation of c-myc by promoting elongation at the 3'-end of exon 1. PKCepsilon mediates this signal. We now show that Epo triggers two signaling pathways to c-myc. Epo rapidly up-regulated Myc protein in BaF3-EpoR cells. The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 blocked Myc up-regulation in a concentration-dependent manner but had no effect on the Epo-induced phosphorylation of ERK1 and ERK2. LY294002 also had no effect on Epo up-regulation of c-fos. MEK1 inhibitor PD98059 blocked both the c-myc and the c-fos responses to Epo. PD98059 and the PKC inhibitor H7 also blocked the phosphorylation of ERK1 and ERK2. PD98059 but not LY294002 inhibited Epo induction of ERK1 and ERK2 phosphorylation in normal erythroid cells. LY294002 blocked transcription of c-myc at exon 1. PD98059 had no effect on transcription from exon 1 but, rather, blocked Epo-induced c-myc elongation at the 3'-end of exon 1. These results identify two Epo signaling pathways to c-myc, one of which is PI3K-dependent operating on transcriptional initiation, whereas the other is mitogen-activated protein kinase-dependent operating on elongation.

  7. Aqueous humor erythropoietin levels in open-angle glaucoma patients with and without TTR V30M familial amyloid polyneuropathy

    PubMed Central

    Moreira, Luciana M.; Oliveira, João C.; Menéres, Maria J.; Pessoa, Bernardete B.; Matos, Maria E.; Costa, Paulo P.; Torres, Paulo A.

    2014-01-01

    Purpose Glaucoma is the leading cause of irreversible blindness in familial amyloidotic polyneuropathy (FAP) patients. Erythropoietin (EPO) is a cytokine that has been shown to play a role in neuroprotection and is endogenously produced in the eye. EPO levels in the aqueous humor are increased in eyes with glaucoma. In this study, we evaluated the EPO concentration in the aqueous humor of FAP and non-FAP patients, with and without glaucoma. Methods Undiluted aqueous humor samples were obtained from 42 eyes that underwent glaucoma surgery, phacoemulsification, or vitrectomy. EPO concentration in the aqueous humor and blood were measured using the Immulite 2000 Xpi using an automatic analyzer (Siemens Healthcare Diagnostics). Results The mean EPO concentration in the aqueous humor of non-FAP glaucoma eyes group 2 (75.73±13.25 mU/ml) was significantly higher than non-FAP cataract eyes (17.22±5.33 mU/ml; p<0.001), FAP glaucoma eyes (18.82±10.16 mU/ml; p<0.001), and FAP nonglaucoma eyes (20.62±6.22 mU/ml; p<0.001). There was no statistically significant difference between FAP nonglaucoma eyes versus non-FAP cataract eyes (p = 0.23) and FAP glaucoma eyes versus FAP nonglaucoma eyes (p = 0.29). In the glaucoma groups, there was no correlation between the aqueous humor EPO concentration and the ocular pressure (p = 0.95) and mean deviation (p = 0.41). There was no correlation between the EPO serum concentration and EPO aqueous humor concentration in our patients (p = 0.77). Conclusions Unlike other glaucomatous patients, FAP patients with glaucoma do not show increased and potentially neuroprotective endocular EPO production in the aqueous humor and may need more aggressive glaucoma management. PMID:25018619

  8. Prolactin, growth hormone, erythropoietin and granulocyte-macrophage colony stimulating factor induce MGF-Stat5 DNA binding activity.

    PubMed Central

    Gouilleux, F; Pallard, C; Dusanter-Fourt, I; Wakao, H; Haldosen, L A; Norstedt, G; Levy, D; Groner, B

    1995-01-01

    The molecular components which mediate cytokine signaling from the cell membrane to the nucleus were studied. Upon the interaction of cytokines with their receptors, members of the janus kinase (Jak) family of cytoplasmic protein tyrosine kinases and of the signal transducers and activators of transcription (Stat) family of transcription factors are activated through tyrosine phosphorylation. It has been suggested that the Stat proteins are substrates of the Jak protein tyrosine kinases. MGF-Stat5 is a member of the Stat family which has been found to confer the prolactin response. MGF-Stat5 can be phosphorylated and activated in its DNA binding activity by Jak2. The activation of MGF-Stat5 is not restricted to prolactin. Erythropoietin (EPO) and growth hormone (GH) stimulate the DNA binding activity of MGF-Stat5 in COS cells transfected with vectors encoding EPO receptor and MGF-Stat5 or vectors encoding GH receptor and MGF-Stat5. The activation of DNA binding by prolactin, EPO and GH requires the phosphorylation of tyrosine residue 694 of MGF-Stat5. The transcriptional induction of a beta-casein promoter luciferase construct in transiently transfected COS cells is specific for the prolactin activation of MGF-Stat5; it is not observed in EPO- and GH-treated cells. In the UT7 human hematopoietic cell line, EPO and granulocyte-macrophage colony stimulating factor activate the DNA binding activity of a factor closely related to MGF-Stat5 with respect to its immunological reactivity, DNA binding specificity and molecular weight. These results suggest that MGF-Stat5 regulates physiological processes in mammary epithelial cells, as well as in hematopoietic cells.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:7744007

  9. Erythropoietin Ameliorates Neonatal Hypoxia-Ischemia-Induced Neurobehavioral Deficits, Neuroinflammation, and Hippocampal Injury in the Juvenile Rat

    PubMed Central

    Lan, Kuo-Mao; Tien, Lu-Tai; Cai, Zhengwei; Lin, Shuying; Pang, Yi; Tanaka, Sachiko; Rhodes, Philip G.; Bhatt, Abhay J.; Savich, Renate D.; Fan, Lir-Wan

    2016-01-01

    The hematopoietic growth factor erythropoietin (EPO) has been shown to be neuroprotective against hypoxia-ischemia (HI) in Postnatal Day 7 (P7)–P10 or adult animal models. The current study was aimed to determine whether EPO also provides long-lasting neuroprotection against HI in P5 rats, which is relevant to immature human infants. Sprague-Dawley rats at P5 were subjected to right common carotid artery ligation followed by an exposure to 6% oxygen with balanced nitrogen for 1.5 h. Human recombinant EPO (rEPO, at a dose of 5 units/g) was administered intraperitoneally one hour before or immediately after insult, followed by additional injections at 24 and 48 h post-insult. The control rats were injected with normal saline following HI. Neurobehavioral tests were performed on P8 and P20, and brain injury was examined on P21. HI insult significantly impaired neurobehavioral performance including sensorimotor, locomotor activity and cognitive ability on the P8 and P20 rats. HI insult also resulted in brain inflammation (as indicated by microglia activation) and neuronal death (as indicated by Jade B positive staining) in the white matter, striatum, cortex, and hippocampal areas of the P21 rat. Both pre- and post-treatment with rEPO significantly improved neurobehavioral performance and protected against the HI-induced neuronal death, microglia activation (OX42+) as well as loss of mature oligodendrocytes (APC-CC1+) and hippocampal neurons (Nissl+). The long-lasting protective effects of rEPO in the neonatal rat HI model suggest that to exert neurotrophic activity in the brain might be an effective approach for therapeutic treatment of neonatal brain injury induced by hypoxia-ischemia. PMID:26927081

  10. The effect of high altitude on platelet counts, thrombopoietin and erythropoietin levels in young Bolivian airmen visiting the Andes

    NASA Astrophysics Data System (ADS)

    Hudson, J. G.; Bowen, Angela L.; Navia, Pilar; Rios-Dalenz, Jaime; Pollard, Andrew J.; Williams, David; Heath, Donald

    Recognition of thrombosis as a complication of exposure to high altitude has stimulated interest in rheological changes resulting from hypobaric hypoxia. Previous studies of platelet counts at high altitude have yielded conflicting results and have not been studied in conjunction with potential mediating cytokines. We studied the effects of high-altitude exposure on platelet numbers, thrombopoietin (tpo) and erythropoietin (epo) levels in man. A group of 28 volunteers from the Bolivian Airforce stationed at Santa Cruz (600 m altitude) were studied 48 h and 1 week after their ascent to La Paz (3600 m). In addition 105 volunteers based at Santa Cruz for at least 1 year were compared with 175 age- and sex-matched residents at El Alto (4200 m). Platelet counts were measured immediately after sampling and serum samples assayed for tpo and epo. In the ascending group, mean platelet counts were 251×109, 367×109 and 398×109/l at 600 m and following 48 h and 1 week at 3600 m respectively. Mean tpo levels were 132.5, 76 and 92 pg/ml with epo values of 2.98, 11.6 and 7.9 mIU/ml respectively. In the resident populations mean platelet counts were 271×109/l in the low- and 471×109/l in the high-altitude groups. Mean tpo and epo levels measured 69.3 pg/ml and 4.5 mIU/ml respectively at 600 m and 58.5 pg/ml and 5.1 mIU/ml at 4200 m. In conclusion we have demonstrated a significant and sustained elevation in platelet numbers within 48 h of ascent to high altitude. Our findings do not support a role for tpo as a mediator of the increased platelet count. However, these data do not discount epo as a potential candidate.