Science.gov

Sample records for premixed combustion progress

  1. Studies in premixed combustion

    SciTech Connect

    Sivashinsky, G.I.

    1992-01-01

    This report discusses the following topics on premixed combustion: theory of turbulent flame propagation; pattern formation in premixed flames and related problems; and pattern formation in extended systems. (LSP)

  2. Studies in premixed combustion. Progress report, November 1, 1990--October 31, 1992

    SciTech Connect

    Sivashinsky, G.I.

    1992-08-01

    This report discusses the following topics on premixed combustion: theory of turbulent flame propagation; pattern formation in premixed flames and related problems; and pattern formation in extended systems. (LSP)

  3. Studies in premixed combustion. Annual progress report, November 1, 1992--October 31, 1993

    SciTech Connect

    Sivashinsky, G.I.

    1993-03-01

    During the period under review, significant progress was been made in studying the intrinsic dynamics of premixed flames and the problems of flame-flow interaction. (1) A weakly nonlinear model for Bunsen burner stabilized flames was proposed and employed for the simulation of three-dimensional polyhedral flames -- one of the most graphic manifestations of thermal-diffusive instability in premixed combustion. (2) A high-precision large-scale numerical simulation of Bunsen burner tip structure was conducted. The results obtained supported the earlier conjecture that the tip opening observed in low Lewis number systems is a purely optical effect not involving either flame extinction or leakage of unburned fuel. (3) A one-dimensional model describing a reaction wave moving through a unidirectional periodic flow field is proposed and studied numerically. For long-wavelength fields the system exhibits a peculiar non-uniqueness of possible propagation regimes. The transition from one regime to another occurs in a manner of hysteresis.

  4. Lean premixed/prevaporized combustion

    NASA Technical Reports Server (NTRS)

    Lefebvre, A. H. (Editor)

    1977-01-01

    Recommendations were formulated on the status and application of lean premixed/prevaporized combustion to the aircraft gas turbine for the reduction of pollutant emissions. The approach taken by the NASA Stratospheric Cruise Emission Reduction Program (SCERP) in pursuing the lean premixed/prevaporized combustion technique was also discussed. The proceedings contains an overview of the SCERP program, the discussions and recommendations of the participants, and an overall summary.

  5. Mechanisms of combustion limits in premixed gas flames at microgravity

    NASA Technical Reports Server (NTRS)

    Ronney, Paul D.

    1991-01-01

    A three-year experimental and theoretical research program on the mechanisms of combustion limits of premixed gasflames at microgravity was conducted. Progress during this program is identified and avenues for future studies are discussed.

  6. Oscillating combustion from a premix fuel nozzle

    SciTech Connect

    Richards, G.A.; Yip, M.J.

    1995-08-01

    Stringent emissions requirements for stationary gas turbines have produced new challenges in combustor design. In the past, very low NOx pollutant emissions have been achieved through various combustion modifications, such as steam or water injection, or post-combustion cleanup methods such as selective catalytic reduction (SCR). An emerging approach to NOx abatement is lean premix combustion. Lean premix combustion avoids the cost and operational problems associated with other NOx control methods. By premixing fuel and air at very low equivalence ratios, the high temperatures which produce NOx are avoided. The challenges of premix combustion include avoiding flashback, and ensuring adequate fuel/air premixing. In addition, the combustion must be stable. The combustor should not operate so close to extinction that a momentary upset will extinguish the flame (static stability), and the flame should not oscillate (dynamic stability). Oscillations are undesirable because the associated pressure fluctuations can shorten component lifetime. Unfortunately, experience has shown that premix fuel nozzles burning natural gas are susceptible to oscillations. Eliminating these oscillations can be a costly and time consuming part of new engine development. As part of the U.S. Department of Energy`s Advanced Turbine Systems Program, the Morgantown Energy Technology Center (METC) is investigating the issue of combustion oscillations produced by lean premix fuel nozzles. METC is evaluating various techniques to stabilize oscillating combustion in gas turbines. Tests results from a premix fuel nozzle using swirl stabilization and a pilot flame are reported here.

  7. Design factors for stable lean premix combustion

    SciTech Connect

    Richards, G.A.; Yip, M.J.; Gemmen, R.S.

    1995-10-01

    The Advanced Turbine Systems (ATS) program includes the development of low-emission combustors. Low emissions have already been achieved by premixing fuel and air to avoid the hot gas pockets produced by nozzles without premixing. While the advantages of premixed combustion have been widely recognized, turbine developers using premixed nozzles have experienced repeated problems with combustion oscillations. Left uncontrolled, these oscillations can lead to pressure fluctuations capable of damaging engine hardware. Elimination of such oscillations is often difficult and time consuming - particularly when oscillations are discovered in the last stages of engine development. To address this issue, METC is studying oscillating combustion from lean premixing fuel nozzles. These tests are providing generic information on the mechanisms that contribute to oscillating behavior in gas turbines. METC is also investigating the use of so-called {open_quotes}active{close_quotes} control of combustion oscillations. This technique periodically injects fuel pulses into the combustor to disrupt the oscillating behavior. Recent results on active combustion control are presented in Gemmen et al. (1995) and Richards et al. (1995). This paper describes the status of METC efforts to avoid oscillations through simple design changes.

  8. A filtered tabulated chemistry model for LES of premixed combustion

    SciTech Connect

    Fiorina, B.; Auzillon, P.; Darabiha, N.; Gicquel, O.; Veynante, D.; Vicquelin, R.

    2010-03-15

    A new modeling strategy called F-TACLES (Filtered Tabulated Chemistry for Large Eddy Simulation) is developed to introduce tabulated chemistry methods in Large Eddy Simulation (LES) of turbulent premixed combustion. The objective is to recover the correct laminar flame propagation speed of the filtered flame front when subgrid scale turbulence vanishes as LES should tend toward Direct Numerical Simulation (DNS). The filtered flame structure is mapped using 1-D filtered laminar premixed flames. Closure of the filtered progress variable and the energy balance equations are carefully addressed in a fully compressible formulation. The methodology is first applied to 1-D filtered laminar flames, showing the ability of the model to recover the laminar flame speed and the correct chemical structure when the flame wrinkling is completely resolved. The model is then extended to turbulent combustion regimes by including subgrid scale wrinkling effects in the flame front propagation. Finally, preliminary tests of LES in a 3-D turbulent premixed flame are performed. (author)

  9. Simulation of lean premixed turbulent combustion

    SciTech Connect

    Bell, John B.; Day, Marcus S.; Almgren, Ann S.; Lijewski, MichaelJ.; Rendleman, Charles A.; Cheng, Robert K.; Shepherd, Ian G.

    2006-06-25

    There is considerable technological interest in developingnew fuel-flexible combustion systems that can burn fuels such ashydrogenor syngas. Lean premixed systems have the potential to burn thesetypes of fuels with high efficiency and low NOx emissions due to reducedburnt gas temperatures. Although traditional scientific approaches basedon theory and laboratory experiment have played essential roles indeveloping our current understanding of premixed combustion, they areunable to meet the challenges of designing fuel-flexible lean premixedcombustion devices. Computation, with itsability to deal with complexityand its unlimited access to data, hasthe potential for addressing thesechallenges. Realizing this potential requires the ability to perform highfidelity simulations of turbulent lean premixed flames under realisticconditions. In this paper, we examine the specialized mathematicalstructure of these combustion problems and discuss simulation approachesthat exploit this structure. Using these ideas we can dramatically reducecomputational cost, making it possible to perform high-fidelitysimulations of realistic flames. We illustrate this methodology byconsidering ultra-lean hydrogen flames and discuss how this type ofsimulation is changing the way researchers study combustion.

  10. A model for premixed combustion oscillations

    SciTech Connect

    Janus, M.C.; Richards, G.A.

    1996-03-01

    Combustion oscillations are receiving renewed research interest due to increasing application of lean premix (LPM) combustion to gas turbines. A simple, nonlinear model for premixed combustion is described; it was developed to explain experimental results and to provide guidance for developing active control schemes based on nonlinear concepts. The model can be used to quickly examine instability trends associated with changes in equivalence ratio, mass flow rate, geometry, ambient conditions, etc. The model represents the relevant processes occurring in a fuel nozzle and combustor analogous to current LPM turbine combustors. Conservation equations for the nozzle and combustor are developed from simple control volume analysis, providing ordinary differential equations that can be solved on a PC. Combustion is modeled as a stirred reactor, with bimolecular reaction between fuel and air. Although focus is on the model, it and experimental results are compared to understand effects of inlet air temperature and open loop control schemes. The model shows that both are related to changes in transport time.

  11. PDF Modeling of Turbulent Lean Premixed Combustion

    SciTech Connect

    Yilmaz, S.L.; •Givi, P.; Strakey, P.A.

    2007-10-01

    The joint velocity-scalar-frequency probability density function (PDF) methodology is employed for prediction of a bluff-body stabilized lean premixed methane-air flame. A reduced mechanism with CO and NO chemistry is used to describe fuel oxidation. The predicted mean and rms values of the velocity, temperature and concentrations of major and minor species are compared with laboratory measurements. This technical effort was performed in support of the National Energy Technology Laboratory’s on-going research in “Assessment of Turbo-Chemistry Models for Gas Turbine Combustion Emissions” under the RDS contract DE-AC26-04NT41817.

  12. Internal combustion engine using premixed combustion of stratified charges

    DOEpatents

    Marriott, Craig D.; Reitz, Rolf D. (Madison, WI

    2003-12-30

    During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.

  13. Lean, premixed, prevaporized combustion for aircraft gas turbine engines

    NASA Technical Reports Server (NTRS)

    Mularz, E. J.

    1979-01-01

    The application of lean, premixed, prevaporized combustion to aircraft turbine engine systems can result in benefits in terms of superior combustion performance, improved combustor and turbine durability, and environmentally acceptable pollutant emissions. Lean, premixed prevaporized combustion is particularly attractive for reducing the oxides of nitrogen emissions during high altitude cruise. The NASA stratospheric cruise emission reduction program will evolve and demonstrate lean, premixed, prevaporized combustion technology for aircraft engines. This multiphased program is described. In addition, the various elements of the fundamental studies phase of the program are reviewed, and results to date of many of these studies are summarized.

  14. Dry low NOx combustion system with pre-mixed direct-injection secondary fuel nozzle

    DOEpatents

    Zuo, Baifang; Johnson, Thomas; Ziminsky, Willy; Khan, Abdul

    2013-12-17

    A combustion system includes a first combustion chamber and a second combustion chamber. The second combustion chamber is positioned downstream of the first combustion chamber. The combustion system also includes a pre-mixed, direct-injection secondary fuel nozzle. The pre-mixed, direct-injection secondary fuel nozzle extends through the first combustion chamber into the second combustion chamber.

  15. Numerical simulation of premixed turbulent methane combustion

    SciTech Connect

    Bell, John B.; Day, Marcus S.; Grcar, Joseph F.

    2001-12-14

    In this paper we study the behavior of a premixed turbulent methane flame in three dimensions using numerical simulation. The simulations are performed using an adaptive time-dependent low Mach number combustion algorithm based on a second-order projection formulation that conserves both species mass and total enthalpy. The species and enthalpy equations are treated using an operator-split approach that incorporates stiff integration techniques for modeling detailed chemical kinetics. The methodology also incorporates a mixture model for differential diffusion. For the simulations presented here, methane chemistry and transport are modeled using the DRM-19 (19-species, 84-reaction) mechanism derived from the GRIMech-1.2 mechanism along with its associated thermodynamics and transport databases. We consider a lean flame with equivalence ratio 0.8 for two different levels of turbulent intensity. For each case we examine the basic structure of the flame including turbulent flame speed and flame surface area. The results indicate that flame wrinkling is the dominant factor leading to the increased turbulent flame speed. Joint probability distributions are computed to establish a correlation between heat release and curvature. We also investigate the effect of turbulent flame interaction on the flame chemistry. We identify specific flame intermediates that are sensitive to turbulence and explore various correlations between these species and local flame curvature. We identify different mechanisms by which turbulence modulates the chemistry of the flame.

  16. Apparatus for the premixed gas phase combustion of liquid fuels

    SciTech Connect

    Roffe, G.A.; Trucco, H.A.

    1981-04-21

    This invention relates to improvements in the art of liquid fuel combustion and, more particularly, concerns a method and apparatus for the controlled gasification of liquid fuels, the thorough premixing of the then gasified fuel with air and the subsequent gas-phase combustion of the mixture to produce a flame substantially free of soot, carbon monoxide, nitric oxide and unburned fuel.

  17. Combustion-acoustic stability analysis for premixed gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Darling, Douglas; Radhakrishnan, Krishnan; Oyediran, Ayo; Cowan, Lizabeth

    1995-01-01

    Lean, prevaporized, premixed combustors are susceptible to combustion-acoustic instabilities. A model was developed to predict eigenvalues of axial modes for combustion-acoustic interactions in a premixed combustor. This work extends previous work by including variable area and detailed chemical kinetics mechanisms, using the code LSENS. Thus the acoustic equations could be integrated through the flame zone. Linear perturbations were made of the continuity, momentum, energy, chemical species, and state equations. The qualitative accuracy of our approach was checked by examining its predictions for various unsteady heat release rate models. Perturbations in fuel flow rate are currently being added to the model.

  18. Partially premixed prevalorized kerosene spray combustion in turbulent flow

    SciTech Connect

    Chrigui, M.; Ahmadi, W.; Sadiki, A.; Janicka, J.; Moesl, K.

    2010-04-15

    A detailed numerical simulation of kerosene spray combustion was carried out on a partially premixed, prevaporized, three-dimensional configuration. The focus was on the flame temperature profile dependency on the length of the pre-vaporization zone. The results were analyzed and compared to experimental data. A fundamental study was performed to observe the temperature variation and flame flashback. Changes were made to the droplet diameter, kerosene flammability limits, a combustion model parameter and the location of the combustion initialization. Investigations were performed for atmospheric pressure, inlet air temperature of 90 C and a global equivalence ratio of 0.7. The simulations were carried out using the Eulerian Lagrangian procedure under a fully two-way coupling. The Bray-Moss-Libby model was adjusted to account for the partially premixed combustion. (author)

  19. Characterization of oscillations during premix gas turbine combustion

    SciTech Connect

    Richards, G.A.; Janus, M.C.

    1998-04-01

    The use of premix combustion in stationary gas turbines can produce very low levels of NO{sub x} emissions. This benefit is widely recognized, but turbine developers routinely encounter problems with combustion oscillations during the testing of new premix combustors. Because of the associated pressure fluctuations, combustion oscillations must be eliminated in a final combustor design. Eliminating these oscillations is often time-consuming and costly because there is no single approach to solve an oscillation problem. Previous investigations of combustion stability have focused on rocket applications, industrial furnaces, and some aeroengine gas turbines. Comparatively little published data is available for premixed combustion at conditions typical of an industrial gas turbine. In this paper, the authors report experimental observations of oscillations produced by a fuel nozzle typical of industrial gas turbines. Tests are conducted in a specially designed combustor capable of providing the acoustic feedback needed to study oscillations. Tests results are presented for pressures up to 10 atmospheres, theoretical considerations, it is expected that oscillations can be characterized by a nozzle reference velocity, with operating pressure playing a smaller role. This expectation is compared to observed data that shows both the benefits and limitations of characterizing the combustor oscillating behavior in terms of a reference velocity rather than other engine operating parameters. This approach to characterizing oscillations is then used to evaluate how geometric changes to the fuel nozzle will affect the boundary between stable and oscillating combustion.

  20. Tabulated Combustion Model Development For Non-Premixed Flames

    NASA Astrophysics Data System (ADS)

    Kundu, Prithwish

    D diffusion flame solver. The proposed model did not use progress variables like the traditional chemistry tabulation methods. The resulting model demonstrated an order of magnitude computational speed up over the RIF model. The results were validated across a wide range of operating conditions for diesel injections and the results were in close agreement to those of the experimental data. History of scalar dissipation rates plays a very important role in non premixed flames. However, tabulated methods have not been able to incorporate this physics in their models. A comparative approach is developed that can quantify these effects and find correlations with flow variables. A new model is proposed to include these effects in tabulated combustion models. The model is initially validated for 1D counterflow diffusion flame problems at engine conditions. The model is further implemented and validated in a 3D RANS code across a range of operating conditions for spray flames.

  1. A model for premixed combustion oscillations

    SciTech Connect

    Janus, M.C.; Richards, G.A.

    1996-09-01

    This paper describes a simulation based on a time dependent, nonlinear control volume analysis. The combustion is modeled as a well-stirred reactor having finite kinetics. Flow properties and species in the nozzle, combustion, and tailpipe regions are determined using a control volume formulation of the conservation equation.

  2. Pulsed jet combustion generator for non-premixed charge engines

    DOEpatents

    Oppenheim, A. K.; Stewart, H. E.

    1990-01-01

    A device for introducing fuel into the head space of cylinder of non-premixed charge (diesel) engines is disclosed, which distributes fuel in atomized form in a plume, whose fluid dynamic properties are such that the compression heated air in the cylinder head space is entrained into the interior of the plume where it is mixed with and ignites the fuel in the plume interior, to thereby control combustion, particularly by use of a multiplicity of individually controllable devices per cylinder.

  3. Analysis of Lean Premixed/Prevaporized Combustion with KIVA-2

    NASA Technical Reports Server (NTRS)

    Deur, J. M.; Kundu, K. P.; Darling, D. D.; Cline, M. C.; Micklow, G. J.; Harper, M. R.; Simons, T. A.

    1994-01-01

    Requirements to reduce the emissions of pollutants from gas turbines used in aircraft propulsion and ground based power generation have led to consideration of lean premixed/prevaporized (LPP) combustion concept. This paper describes some of the LPP flame tube analyses performed at the NASA Research Center with KIVA-2, a well-known multi-dimensional CFD code for problems including sprays, turbulence, and combustion. Modifications to KIVA-2's boundary condition and chemistry treatments have been made to meet the needs of the present study. The study itself focuses on two key aspects of the LPP concept, low emissions and flame stability (including flashback and lean blowoff.

  4. Results of a model for premixed combustion oscillations

    SciTech Connect

    Janus, M.C.; Richards, G.A.

    1996-09-01

    Combustion oscillations are receiving renewed research interest due to increasing use of lean premix (LPM) combustion to gas turbines. A simple, nonlinear model for premixed combustion is described in this paper. The model was developed to help explain specific experimental observations and to provide guidance for development of active control schemes based on nonlinear concepts. The model can be used to quickly examine instability trends associated with changes in equivalence ratio, mass flow rate, geometry, ambient conditions, etc. The model represents the relevant processes occurring in a fuel nozzle and combustor which are analogous to current LPM turbine combustors. Conservation equations for the fuel nozzle and combustor are developed from simple control volume analysis, providing a set of ordinary differential equations that can be solved on a personal computer. Combustion is modeled as a stirred reactor, with a bimolecular reaction rate between fuel and air. A variety of numerical results and comparisons to experimental data are presented to demonstrate the utility of the model. Model results are used to understand the fundamental mechanisms which drive combustion oscillations, effects of inlet air temperature and nozzle geometry on instability, and effectiveness of open loop control schemes.

  5. Results of a model for premixed combustion oscillation

    SciTech Connect

    Janus, M.C.; Richards, G.A.

    1996-12-31

    Combustion oscillations are receiving renewed research interest due to the increasing application of lean premix (LPM) combustion to gas turbines. A simple, nonlinear model for premixed combustion is described in this paper. The model was developed to help explain specific experimental observations, and to provide guidance for the development of active control schemes based on nonlinear concepts. The model can be used to quickly examine instability trends associated with changes in equivalence ratio, mass flow rate, geometry, ambient conditions, and other pertinent factors. The model represents the relevant processes occurring in a fuel nozzle and combustor which are analogous to current LPM turbine combustors. Conservation equations for the fuel nozzle and combustor are developed from simple control volume analysis, providing a set of ordinary differential equations that can be solved on a personal computer. Combustion is modeled as a stirred reactor, with a bi- molecular reaction rate between fuel and air. A variety of numerical results and comparisons to experimental data are presented to demonstrate the utility of the model. Model results are used to understand the fundamental mechanisms which drive combustion oscillations, the effects of inlet air temperature and nozzle geometry on instability, and the effectiveness of active control schemes. The technique used in the model may also be valuable to understand oscillations in low NO{sub x} industrial burners.

  6. Subfilter Scale Combustion Modelling for Large Eddy Simulation of Turbulent Premixed Flames

    NASA Astrophysics Data System (ADS)

    Shahbazian, Nasim

    Large eddy simulation (LES) is a powerful computational tool for modelling turbulent combustion processes. However, for reactive flows, LES is still under significant development. In particular, for turbulent premixed flames, a considerable complication of LES is that the flame thickness is generally much smaller than the LES filter width such that the flame front and chemical reactions cannot be resolved on the grid. Accurate and robust subfilter-scale (SFS) models of the unresolved turbulence-chemistry interactions are therefore required and studies are needed to evaluate and improve them. In this thesis, a detailed comparison and evaluation of five different SFS models for turbulence- chemistry interactions in LES of premixed flames is presented. These approaches include both flamelet- and non-flamelet-based models, coupled with simple or tabulated chemistry. The mod- elling approaches considered herein are: algebraic- and transport-equation variants of the flame surface density (FSD) model, the presumed conditional moment (PCM) with flame prolongation of intrinsic low-dimensional manifold (FPI) tabulated chemistry, or PCM-FPI approach, evaluated with two different presumed probability density function (PDF) models; and conditional source-term estimation (CSE) approach. The predicted LES solutions are compared to the existing laboratory-scale experimental observation of Bunsen-type turbulent premixed methane-air flames, corresponding to lean and stoichiometric conditions lying from the upper limit of the flamelet regime to well within the thin reaction zones regime of the standard regimes diagram. Direct comparison of different SFS approaches allows investigation of stability and performance of the models, while the weaknesses and strengths of each approach are identified. Evaluation of algebraic and transported FSD models highlights the importance of non-equilibrium transport in turbulent premixed flames. The effect of the PDF type for the reaction progress

  7. Lean Premixed Combustion/Active Control

    SciTech Connect

    D. J. Seery

    2000-02-01

    An experimental comparison between two contrasting fuel-air swirlers for industrial gas turbine applications was undertaken at the United Technologies Research Center. The first, termed an Aerodynamic nozzle, relied on the prevailing aerodynamic forces to stabilize the downstream combustion zone. The second configuration relied on a conventional bluff plate for combustion stability and was hence named a Bluff-Body nozzle. Performance mapping over the power curve revealed the acoustic superiority of the Bluff-Body nozzle. Two dimensional Rayleigh indices calculated from CCD images identified larger acoustic driving zones associated with the Aerodynamic nozzle relative to its bluff counterpart. The Bluff-Body's success is due to increased flame stabilization (superior anchoring ability) which reduced flame motion and thermal/acoustic coupling.

  8. FUEL INTERCHANGEABILITY FOR LEAN PREMIXED COMBUSTION IN GAS TURBINE ENGINES

    SciTech Connect

    Don Ferguson; Geo. A. Richard; Doug Straub

    2008-06-13

    In response to environmental concerns of NOx emissions, gas turbine manufacturers have developed engines that operate under lean, pre-mixed fuel and air conditions. While this has proven to reduce NOx emissions by lowering peak flame temperatures, it is not without its limitations as engines utilizing this technology are more susceptible to combustion dynamics. Although dependent on a number of mechanisms, changes in fuel composition can alter the dynamic response of a given combustion system. This is of particular interest as increases in demand of domestic natural gas have fueled efforts to utilize alternatives such as coal derived syngas, imported liquefied natural gas and hydrogen or hydrogen augmented fuels. However, prior to changing the fuel supply end-users need to understand how their system will respond. A variety of historical parameters have been utilized to determine fuel interchangeability such as Wobbe and Weaver Indices, however these parameters were never optimized for today’s engines operating under lean pre-mixed combustion. This paper provides a discussion of currently available parameters to describe fuel interchangeability. Through the analysis of the dynamic response of a lab-scale Rijke tube combustor operating on various fuel blends, it is shown that commonly used indices are inadequate for describing combustion specific phenomena.

  9. A numerical investigation of premixed combustion in wave rotors

    NASA Technical Reports Server (NTRS)

    Nalim, M. Razi; Paxson, Daniel E.

    1996-01-01

    Wave rotor cycles which utilize premixed combustion processes within the passages are examined numerically using a one-dimensional CFD-based simulation. Internal-combustion wave rotors are envisioned for use as pressure-gain combustors in gas turbine engines. The simulation methodology is described, including a presentation of the assumed governing equations for the flow and reaction in the channels, the numerical integration method used, and the modeling of external components such as recirculation ducts. A number of cycle simulations are then presented which illustrate both turbulent-deflagration and detonation modes of combustion. Estimates of performance and rotor wall temperatures for the various cycles are made, and the advantages and disadvantages of each are discussed.

  10. Premixed flame propagation in combustible particle cloud mixtures

    NASA Technical Reports Server (NTRS)

    Seshadri, K.; Yang, B.

    1993-01-01

    The structures of premixed flames propagating in combustible systems, containing uniformly distributed volatile fuel particles, in an oxidizing gas mixtures is analyzed. The experimental results show that steady flame propagation occurs even if the initial equivalence ratio of the combustible mixture based on the gaseous fuel available in the particles, phi(u) is substantially larger than unity. A model is developed to explain these experimental observations. In the model it is presumed that the fuel particles vaporize first to yield a gaseous fuel of known chemical composition which then reacts with oxygen in a one-step overall process. It is shown that the interplay of vaporization kinetics and oxidation process, can result in steady flame propagation in combustible mixtures where the value of phi(u) is substantially larger than unity. This prediction is in agreement with experimental observations.

  11. Development of a Premixed Combustion Capability for Scramjet Combustion Experiments

    NASA Technical Reports Server (NTRS)

    Rockwell, Robert D.; Goyne, Christopher P.; Rice, Brian E.; Chelliah, Harsha; McDaniel, James C.; Edwards, Jack R.; Cantu, Luca M. L.; Gallo, Emanuela C. A.; Cutler, Andrew D.; Danehy, Paul M.

    2015-01-01

    Hypersonic air-breathing engines rely on scramjet combustion processes, which involve high speed, compressible, and highly turbulent flows. The combustion environment and the turbulent flames at the heart of these engines are difficult to simulate and study in the laboratory under well controlled conditions. Typically, wind-tunnel testing is performed that more closely approximates engine testing rather than a careful investigation of the underlying physics that drives the combustion process. The experiments described in this paper, along with companion data sets being developed separately, aim to isolate the chemical kinetic effects from the fuel-air mixing process in a dual-mode scramjet combustion environment. A unique fuel injection approach is taken that produces a nearly uniform fuel-air mixture at the entrance to the combustor. This approach relies on the precombustion shock train upstream of the dual-mode scramjet combustor. A stable ethylene flame anchored on a cavity flameholder with a uniformly mixed combustor inflow has been achieved in these experiments allowing numerous companion studies involving coherent anti-Stokes Raman scattering (CARS), particle image velocimetry (PIV), and planar laser induced fluorescence (PLIF) to be performed.

  12. Partially-Premixed Flames in Internal Combustion Engines

    SciTech Connect

    Robert W. Pitz; Michael C. Drake; Todd D. Fansler; Volker Sick

    2003-11-05

    This was a joint university-industry research program funded by the Partnerships for the Academic-Industrial Research Program (PAIR). The research examined partially premixed flames in laboratory and internal combustion engine environments at Vanderbilt University, University of Michigan, and General Motors Research and Development. At Vanderbilt University, stretched and curved ''tubular'' premixed flames were measured in a unique optically accessible burner with laser-induced spontaneous Raman scattering. Comparisons of optically measured temperature and species concentration profiles to detailed transport, complex chemistry simulations showed good correspondence at low-stretch conditions in the tubular flame. However, there were significant discrepancies at high-stretch conditions near flame extinction. The tubular flame predictions were found to be very sensitive to the specific hydrogen-air chemical kinetic mechanism and four different mechanisms were compared. In addition, the thermo-diffusive properties of the deficient reactant, H2, strongly affected the tubular flame structure. The poor prediction near extinction is most likely due to deficiencies in the chemical kinetic mechanisms near extinction. At the University of Michigan, an optical direct-injected engine was built up for laser-induced fluorescence imaging experiments on mixing and combustion under stratified charge combustion conditions with the assistance of General Motors. Laser attenuation effects were characterized both experimentally and numerically to improve laser imaging during the initial phase of the gasoline-air mixture development. Toluene was added to the isooctane fuel to image the fuel-air equivalence ratio in an optically accessible direct-injected gasoline engine. Temperature effects on the toluene imaging of fuel-air equivalence ratio were characterized. For the first time, oxygen imaging was accomplished in an internal combustion engine by combination of two fluorescence trackers

  13. A second-order closure prediction of premixed turbulent combustion in jets

    NASA Astrophysics Data System (ADS)

    Davé, N.; Kollmann, W.

    1987-02-01

    In this paper, a numerical prediction is reported involving second-order closure of a turbulent flow of a vertically burning, lean mixture of premixed combustible gases discharging from a pipe and developing into a turbulent combusting roundjet. Classical closures are used where available. Expressions for the chemical reaction rate term and other unclosed terms related to variable density flow in the Favre-averaged turbulent transport equations are based on the Bray-Moss-Libby aerothermochemistry for premixed turbulent combustion, extended to variable enthalpy systems. Mixing of hot burned and cool ambient gases and the attendant buoyancy effects are found to be significant physical phenomena in the behavior of such lean premixed combusting jets. Results of the simulation are compared with experimental data of Yoshida [Proceedings of the Eighteenth International Symposium on Combustion (The Combustion Institute, Pittsburgh, 1981), p. 931] with which reasonable numerical agreement is obtained. Reasons for discrepancies and possible lines for future research are discussed.

  14. Numerical modeling of combustion dynamics in a lean premixed combustor

    SciTech Connect

    Cannon, S.M.; Smith, C.E.

    1998-07-01

    The objective of this study was to evaluate the ability of a time-accurate, 2-D axi-symmetric CFD model to accurately predict combustion dynamics in a premixed pipe combustor driven by mixture feed variation. Independently measured data, including the magnitude and frequency of combustor pressure, were used to evaluate the model. The Smagorinsky, RGN k-{var{underscore}epsilon}, and molecular viscosity models were used to describe the subgrid turbulence, and a one-step, finite-rate reaction to equilibrium products model was used to describe the subgrid chemistry. Swirl source terms were included within the premix passage's computational domain and allowed the model to retain known boundary conditions at the choked flow inlet and the constant pressure exit. To ensure pressure waves were accurately captured, 1-D numerical analyses were first performed to assess the effects of boundary conditions, temporal and spatial differencing, time step, and grid size. It was found that the selected numerical details produced little numerical dissipation of the pressure waves. Then, 2-D axisymmetric analyses were performed in which the inlet temperature was varied. It was found that increases in the inlet temperature (keeping a constant mass flow rate) had a large effect on the unsteady combustor behavior since reaction and advection rates were increased. The correct trend of decreasing rms pressures with increasing inlet temperature was predicted. This agreement in rms pressure behavior supports the ability of the CFD model to accurately capture unsteady heat release and its coupling with resonant acoustic waves in multi-dimensional combustor systems. The effect of subgrid turbulence model was small for the unstable cases studied here.

  15. Large eddy simulation of premixed and non-premixed combustion in a Stagnation Point Reverse Flow combustor

    NASA Astrophysics Data System (ADS)

    Undapalli, Satish

    A new combustor referred to as Stagnation Point Reverse Flow (SPRF) combustor has been developed at Georgia Tech to meet the increasingly stringent emission regulations. The combustor incorporates a novel design to meet the conflicting requirements of low pollution and high stability in both premixed and non-premixed modes. The objective of this thesis work is to perform Large Eddy Simulations (LES) on this lab-scale combustor and elucidate the underlying physics that has resulted in its excellent performance. To achieve this, numerical simulations have been performed in both the premixed and non-premixed combustion modes, and velocity field, species field, entrainment characteristics, flame structure, emissions, and mixing characteristics have been analyzed. Simulations have been carried out first for a non-reactive case to resolve relevant fluid mechanics without heat release by the computational grid. The computed mean and RMS quantities in the non-reacting case compared well with the experimental data. Next, the simulations were extended for the premixed reactive case by employing different sub-grid scale combustion chemistry closures: Eddy Break Up (EBU), Artificially Thickened Flame (TF) and Linear Eddy Mixing (LEM) models. Results from the EBU and TF models exhibit reasonable agreement with the experimental velocity field. However, the computed thermal and species fields have noticeable discrepancies. Only LEM with LES (LEMLES), which is an advanced scalar approach, has been able to accurately predict both the velocity and species fields. Scalar mixing plays an important role in combustion, and this is solved directly at the sub-grid scales in LEM. As a result, LEM accurately predicts the scalar fields. Due to the two way coupling between the super-grid and sub-grid quantities, the velocity predictions also compare very well with the experiments. In other approaches, the sub-grid effects have been either modeled using conventional approaches (EBU) or need

  16. Influence of drop size distribution and fuel vapor fraction on premixed spray combustion

    NASA Astrophysics Data System (ADS)

    Machiroutu, Sridhar Venkatabojji

    Premixed spray combustion is affected by fuel and oxidizer properties, mixture equivalence ratio and spray quality. The spray quality is characterized by a mean droplet diameter (SMD) and a droplet size distribution (DSD). Prior experimental studies have considered only the influence of SMD, in part due to the difficulty in controlling the DSD independently. The present work provides experimental evidence demonstrating the effect of the fuel droplet size distribution and fuel vapor fraction on premixed spray combustion. Combustion experiments were performed in a pilot-ignited, continuous flow, tubular, vertical test rig wherein fuel sprays were injected into an air stream. A novel twin-atomizer technique that allowed control over overall equivalence ratio, SMD, DSD, and fuel vapor fraction of the premixed spray was used to generate test sprays. A line-of-sight, infrared (IR) extinction technique was developed to quantify the fuel vapor fraction in premixed sprays. Radial distributions of fuel vapor were evaluated using an 'onion peeling' deconvolution technique. Combustion of test sprays indicated flame propagation among regions of high fuel vapor fraction to generate a high rate of combustion. In lean premixed sprays, the presence of a low fuel vapor concentration does not impact the combustion process. Experimental evidence demonstrating the enhancement of flame propagation velocity for optimal SMDs of ethanol sprays has been found. It was observed that test sprays with narrower DSDs have faster burning rates and more complete combustion. The DSD of the sprays were characterized with a droplet surface-area-based standard deviation of the DSD.

  17. A test device for premixed gas turbine combustion oscillations

    SciTech Connect

    Richards, G.A.; Gemmen, R.S.; Yip, M.J.

    1996-03-01

    This report discusses design and operation of a single-nozzle test combustor for studying lean, premixed combustion oscillations from gas turbine fuel nozzles. It was used to study oscillations from a prototype fuel nozzle that produced oscillations during testing in a commercial engine. Similar, but not identical, oscillations were recorded in the test device. Basic requirements of the device design were that the flame geometry be maintained and acoustic losses be minimized; this was achieved by using a Helmholtz resonator as the combustor geometry. Surprisingly, the combustor oscillated strongly at several frequencies, without modification of the resonator. Brief survey of operating conditions suggests that it may be helpful to characterize oscillating behavior in terms of reference velocity and inlet air temperature with the rig backpressure playing a smaller role. The preliminary results do not guarantee that the single-nozzle test device will reproduce arbitrary oscillations that occur on a complete engine test. Nozzle/nozzle interactions may complicate the response, and oscillations controlled by acoustic velocities transverse to the nozzle axis may not be reproduced in a test device that relies on a bulk Helmholtz mode. Nevertheless, some oscillations can be reproduced, and the single-nozzle test device allows both active and passive control strategies to be tested relatively inexpensively.

  18. Study on the potential of BML-approach and G-equation concept-based models for predicting swirling partially premixed combustion systems: URANS computations

    SciTech Connect

    Schneider, E.; Maltsev, A.; Sadiki, A.; Janicka, J.

    2008-03-15

    In this work the potential of two combustion modeling approaches (BML and G-equation based models) for partially premixed flames in combustion systems of various complexities is investigated using URANS computations. The first configuration consists of a nonconfined swirled premixed methane/air flame (swirl number 0.75) exhibiting partially premixed effects due to coflowing. The system is studied either in the isothermal case or in the reacting mode and for different thermal powers. The second configuration represents a model GT combustion chamber and features the main properties of real GT combustors: a confined swirled flow with multiple recirculation zones and reattachment points, resulting in a partially premixed methane/air aerodynamically stabilized flame and an additional diffusion flame formed by the fuel and oxidizer not consumed in the premixed flame. This makes it possible to subject the modeling to variation of different parameters, such as confinement, Re-number or flame power, or adiabatic or nonadiabatic conditions. For this purpose an extended Bray-Moss-Libby model and a G-equation-based approach, both coupled to the mixture fraction transport equation to account for partially premixed effects, are used following the so-called conditional progress variable approach (CPVA). The radiation effects are also taken into account. To account for the turbulence-chemistry interaction, a (multivariate) presumed PDF approach is applied. The results are compared with LDV, Raman, and PLIF measurements. Beyond a pure validation, the URANS is used to capture the presence of the precessing vortex core and to analyze the performance of different modeling strategies of partially premixed combustion in capturing the expansion ratio, species formation conditioned on the flame front, and flame front stabilization. It appears that the combustion models used are able to achieve plausible results in the complex combustion systems under study, while the BML-based model

  19. Experimental investigation of the liquid fuel evaporation in a premix duct for lean premixed and prevaporized combustion

    SciTech Connect

    Brandt, M.; Gugel, K.O.; Hassa, C.

    1997-10-01

    Liquid fuel evaporation was investigated in a premix duct, operating at conditions expected for lean premixed and prevaporized combustion. Results from a flat prefilming airblast atomizer are presented. Kerosine Jet A was used in all experiments. Air pressure, air temperature, and liquid fuel flow rate were varied separately; their relative influences on atomization, evaporation, and fuel dispersion are discussed. The results show that at pressures up to 15 bars and temperatures up to 850 K, nearly complete evaporation of the fuel was achieved, without autoignition of the fuel. For the configuration tested, the fuel distributions of the liquid and evaporated fuel show very little difference in their dispersion characteristics and were not much affected by a variation of the operating conditions.

  20. DNS assessment of relation between mean reaction and scalar dissipation rates in the flamelet regime of premixed turbulent combustion

    NASA Astrophysics Data System (ADS)

    Nikolaevich Lipatnikov, Andrei; Nishiki, Shinnosuke; Hasegawa, Tatsuya

    2015-05-01

    The linear relation between the mean rate of product creation and the mean scalar dissipation rate, derived in the seminal paper by K.N.C. Bray ['The interaction between turbulence and combustion', Proceedings of the Combustion Institute, Vol. 17 (1979), pp. 223-233], is the cornerstone for models of premixed turbulent combustion that deal with the dissipation rate in order to close the reaction rate. In the present work, this linear relation is straightforwardly validated by analysing data computed earlier in the 3D Direct Numerical Simulation (DNS) of three statistically stationary, 1D, planar turbulent flames associated with the flamelet regime of premixed combustion. Although the linear relation does not hold at the leading and trailing edges of the mean flame brush, such a result is expected within the framework of Bray's theory. However, the present DNS yields substantially larger (smaller) values of an input parameter cm (or K2 = 1/(2cm - 1)), involved by the studied linear relation, when compared to the commonly used value of cm = 0.7 (or K2 = 2.5). To gain further insight into the issue and into the eventual dependence of cm on mixture composition, the DNS data are combined with the results of numerical simulations of stationary, 1D, planar laminar methane-air flames with complex chemistry, with the results being reported in terms of differently defined combustion progress variables c, i.e. the normalised temperature, density, or mole fraction of CH4, O2, CO2 or H2O. Such a study indicates the dependence of cm both on the definition of c and on the equivalence ratio. Nevertheless, K2 and cm can be estimated by processing the results of simulations of counterpart laminar premixed flames. Similar conclusions were also drawn by skipping the DNS data, but invoking a presumed beta probability density function in order to evaluate cm for the differently defined c's and various equivalence ratios.

  1. IMPORTANCE OF THE NITROUS OXIDE PATHWAY TO NOX IN LEAN-PREMIXED COMBUSTION

    EPA Science Inventory

    The paper reports results of a study addressing the importance of the different chemical pathways responsible for nitrogen oxides (NOx) formation in lean-premixed combustion, and especially the role of the nitrous oxide pathway relative to the traditional Zeldovich pathway. he pr...

  2. Characterization of complexities in combustion instability in a lean premixed gas-turbine model combustor

    NASA Astrophysics Data System (ADS)

    Gotoda, Hiroshi; Amano, Masahito; Miyano, Takaya; Ikawa, Takuya; Maki, Koshiro; Tachibana, Shigeru

    2012-12-01

    We characterize complexities in combustion instability in a lean premixed gas-turbine model combustor by nonlinear time series analysis to evaluate permutation entropy, fractal dimensions, and short-term predictability. The dynamic behavior in combustion instability near lean blowout exhibits a self-affine structure and is ascribed to fractional Brownian motion. It undergoes chaos by the onset of combustion oscillations with slow amplitude modulation. Our results indicate that nonlinear time series analysis is capable of characterizing complexities in combustion instability close to lean blowout.

  3. Characterization of complexities in combustion instability in a lean premixed gas-turbine model combustor.

    PubMed

    Gotoda, Hiroshi; Amano, Masahito; Miyano, Takaya; Ikawa, Takuya; Maki, Koshiro; Tachibana, Shigeru

    2012-12-01

    We characterize complexities in combustion instability in a lean premixed gas-turbine model combustor by nonlinear time series analysis to evaluate permutation entropy, fractal dimensions, and short-term predictability. The dynamic behavior in combustion instability near lean blowout exhibits a self-affine structure and is ascribed to fractional Brownian motion. It undergoes chaos by the onset of combustion oscillations with slow amplitude modulation. Our results indicate that nonlinear time series analysis is capable of characterizing complexities in combustion instability close to lean blowout. PMID:23278063

  4. Swozzle based burner tube premixer including inlet air conditioner for low emissions combustion

    DOEpatents

    Tuthill, Richard Sterling; Bechtel, II, William Theodore; Benoit, Jeffrey Arthur; Black, Stephen Hugh; Bland, Robert James; DeLeonardo, Guy Wayne; Meyer, Stefan Martin; Taura, Joseph Charles; Battaglioli, John Luigi

    2002-01-01

    A burner for use in a combustion system of a heavy-duty industrial gas turbine includes a fuel/air premixer having an air inlet, a fuel inlet, and an annular mixing passage. The fuel/air premixer mixes fuel and air into a uniform mixture for injection into a combustor reaction zone. The burner also includes an inlet flow conditioner disposed at the air inlet of the fuel/air premixer for controlling a radial and circumferential distribution of incoming air. The pattern of perforations in the inlet flow conditioner is designed such that a uniform air flow distribution is produced at the swirler inlet annulus in both the radial and circumference directions. The premixer includes a swozzle assembly having a series of preferably air foil shaped turning vanes that impart swirl to the airflow entering via the inlet flow conditioner. Each air foil contains internal fuel flow passages that introduce natural gas fuel into the air stream via fuel metering holes that pass through the walls of the air foil shaped turning vanes. By injecting fuel in this manner, an aerodynamically clean flow field is maintained throughout the premixer. By injecting fuel via two separate passages, the fuel/air mixture strength distribution can be controlled in the radial direction to obtain optimum radial concentration profiles for control of emissions, lean blow outs, and combustion driven dynamic pressure activity as machine and combustor load are varied.

  5. Swirl effects on combustion characteristics of premixed flames

    SciTech Connect

    Daurer, M.; Gupta, A.K.; Lewis, M.J.

    1998-07-01

    The effects of swirl direction on the structure of two different premixed flames are investigated in a double concentric premixed swirl burner. The flames were stabilized with two annular jets and a central pipe. Mean and fluctuating temperatures, thermal integral and micro time scales and direct flame photographs were taken to receive information about global flame structures, flame stability and the distribution of the thermal field in these flames. Direct flame photographs, compensated temperature data as well as thermal micro-time scales of temperature data are presented to give a complete insight in the thermal distribution in these flames. It was found that the swirl direction of the stabilizing annular jets seems to take great influence on flame symmetry. The flame with the counter-swirling jets showed a very unsymmetrical behavior which was confirmed in flame photographs, temperature maps and time scales.

  6. a Second-Order Closure Prediction of Premixed Turbulent Combustion in Jets

    NASA Astrophysics Data System (ADS)

    Dave, Nikhil

    1985-12-01

    This thesis is a report on work carried out and results obtained in the prediction of a turbulent flow of premixed combustible gases discharging from a pipe and developing into a turbulent, combusting roundjet. The expressions for the chemical reaction rate term and other unclosed terms in the Favre averaged turbulent transport equations at the level of second-order closure are based on the Bray-Moss-Libby aerothermochemistry for premixed turbulent combustion, extended to variable enthalpy systems as in Bray, Champion, Dave, Libby (referenced herein). The numerical technique used is a parabolic solver developed by Kollmann from the GENMIX program due to Patankar and Spalding. Various test cases such as constant density and variable density jets are calculated using the program and the results are compared herein with experimentally observed values. Results for premixed turbulent combusting jets are compared with experimental data of Yoshida and of Shepherd and Moss. Buoyancy is found to play an important role in the behavior of these primixed combusting jets. Reasonable numerical agreement is obtained with the results of Yoshida, and good qualitative agreement is obtained with the data of Shepherd and Moss. Reasons for the discrepancies and limitations of the numerical simulation are discussed.

  7. Numerical analysis of reaction-diffusion effects on species mixing rates in turbulent premixed methane-air combustion

    SciTech Connect

    Richardson, E.S.; Grout, R.W.; Chen, J.H.; Sankaran, R.

    2010-03-15

    The scalar mixing time scale, a key quantity in many turbulent combustion models, is investigated for reactive scalars in premixed combustion. Direct numerical simulations (DNS) of three-dimensional, turbulent Bunsen flames with reduced methane-air chemistry have been analyzed in the thin reaction zones regime. Previous conclusions from single step chemistry DNS studies are confirmed regarding the role of dilatation and turbulence-chemistry interactions on the progress variable dissipation rate. Compared to the progress variable, the mixing rates of intermediate species is found to be several times greater. The variation of species mixing rates are explained with reference to the structure of one-dimensional premixed laminar flames. According to this analysis, mixing rates are governed by the strong gradients which are imposed by flamelet structures at high Damkoehler numbers. This suggests a modeling approach to estimate the mixing rate of individual species which can be applied, for example, in transported probability density function simulations. Flame-turbulence interactions which modify the flamelet based representation are analyzed. (author)

  8. Hydrodynamic instability and shear layer effects in turbulent premixed combustion

    NASA Astrophysics Data System (ADS)

    Schlimpert, S.; Feldhusen, A.; Grimmen, J. H.; Roidl, B.; Meinke, M.; Schröder, W.

    2016-01-01

    A turbulent premixed plane jet flame is analyzed by large-eddy simulations. The analysis shows that the flame front wrinkling is strongly influenced by the shear layer effect when the gas expansion effects are small leading to larger flame front amplitudes at the flame base than at high gas expansion ratios. However, the hydrodynamic instability effect induces a continuously increasing flame front amplitude which yields an enhanced flame pocket generation at the flame tip. Both phenomena influence the magnitude of the turbulent burning area and burning area rate response through the flame front deflections which are determined by the contribution coefficient. This coefficient represents the mutual interaction between the flame and the flow. At low gas expansion ratios, the total heat release rate spectra of the turbulent flame are wider in terms of dominant modes at Strouhal numbers which are linked to the mean flame height oscillations. Thus, at low gas expansion ratios, the vortex-flame interaction is less damped by the flame in the sense that vortices can perturb the flame front stronger. The total heat release rate trend of St-2.2 previously found for a round jet flame is also determined for the current slot jet at realistic gas expansion ratios indicating a general tendency to transfer energy from large to small flame structures. At high gas expansion ratios, an increasing Markstein length leads to an energy transfer between neighboring dominant modes in the low frequency range 1 < St < 10 and the burning area rate response becomes more important for the total heat release rate spectra of the turbulent slot flames which agrees with recent findings for a laminar premixed plane flame.

  9. Bluff-body stabilized flame dynamics of lean premixed syngas combustion

    NASA Astrophysics Data System (ADS)

    Im, Hong G.; Kim, Yu Jeong; Lee, Bok Jik; Kaust Team

    2015-11-01

    Recently, syngas combustion has been actively investigated for the potential application to integrated gasification combined cycle (IGCC) systems. While lean premixed combustion is attractive for both reduced emission and enhanced efficiency, flame instability becomes often an issue. Bluff-bodies have been adopted as effective flame holders for practical application of premixed flames. In the present study, high-fidelity direct numerical simulations are conducted to investigate the dynamics of lean premixed syngas flames stabilized on a bluff-body, in particular at the near blow-off regime of the flame. A two-dimensional domain of 4 mm height and 20 mm length with a flame holder of a 1 mm-by-1 mm square geometry is used. For a syngas mixture with the equivalence ratio of 0.5 and the CO:H2 ratio of 1, several distinct flame modes are identified as the inflow velocity approaches to the blowoff limit. The sequences of extinction pathway and combustion characteristics are discussed.

  10. Hybrid lean premixing catalytic combustion system for gas turbines

    DOEpatents

    Critchley, Ian L.

    2003-12-09

    A system and method of combusting a hydrocarbon fuel is disclosed. The system combines the accuracy and controllability of an air staging system with the ultra-low emissions achieved by catalytic combustion systems without the need for a pre-heater. The result is a system and method that is mechanically simple and offers ultra-low emissions over a wide range of power levels, fuel properties and ambient operating conditions.

  11. Pulsed jet combustion generator for premixed charge engines

    DOEpatents

    Oppenheim, A. K.; Stewart, H. E.; Hom, K.

    1990-01-01

    A method and device for generating pulsed jets which will form plumes comprising eddie structures, which will entrain a fuel/air mixture from the head space of an internal combustion engine, and mixing this fuel/air mixture with a pre-ignited fuel/air mixture of the plumes thereby causing combustion of the reactants to occur within the interior of the eddie structures.

  12. Pdf modeling for premixed turbulent combustion based on the properties of iso-concentration surfaces

    NASA Technical Reports Server (NTRS)

    Vervisch, L.; Kollmann, W.; Bray, K. N. C.; Mantel, T.

    1994-01-01

    In premixed turbulent flames the presence of intense mixing zones located in front of and behind the flame surface leads to a requirement to study the behavior of iso-concentration surfaces defined for all values of the progress variable (equal to unity in burnt gases and to zero in fresh mixtures). To support this study, some theoretical and mathematical tools devoted to level surfaces are first developed. Then a database of direct numerical simulations of turbulent premixed flames is generated and used to investigate the internal structure of the flame brush, and a new pdf model based on the properties of iso-surfaces is proposed.

  13. Effect of degree of fuel vaporization upon emissions for a premixed prevaporized combustion system

    NASA Technical Reports Server (NTRS)

    Cooper, L. P.

    1979-01-01

    An experimental and analytical study of the combustion of partially vaporized fuel/air mixtures was performed to assess the impact of the degree of fuel vaporization upon emissions for a premixing-prevaporizing flametube combustor. Data collected showed near-linear increases in NOx emmissions with decreasing vaporization at equivalence ratios of 0.6. For equivalence ratios of 0.72, the degree of vaporization had very little impact on NOx emissions. A simple mechanism which accounts for the combustion of liquid droplets in partially vaporized mixtures was found to agree with the measured results with fair accuracy with respect to both trends and magnitudes.

  14. Basic Study on the Generation of RF Plasmas in Premixed Oxy-combustion with Methane

    NASA Astrophysics Data System (ADS)

    Osaka, Yugo; Kobayashi, Noriyuki; Razzak, M. A.; Ohno, Noriyasu; Takamura, Shuichi; Uesugi, Yoshihiko

    Oxy-combustion generates a high temperature field (above 3000 K), which is applied to next generation power plants and high temperature industrial technologies because of N2 free processes. However, the combustion temperature is so high that the furnace wall may be fatally damaged. In addition, it is very difficult to control the heat flux and chemical species' concentrations because of rapid chemical reactions. We have developed a new method for controlling the flame by electromagnetic force on this field. In this paper, we experimentally investigated the power coupling between the premixed oxy-combustion with methane and radio frequency (RF) power through the induction coil. By optimizing the power coupling, we observed that the flame can absorb RF power up to 1.5 kW. Spectroscopic measurements also showed an increase in the emission intensity from OH radicals in the flame, indicating improved combustibility.

  15. Lean Premixed Combustion Stabilized by Low Swirl a Promising Concept for Practical Applications

    NASA Technical Reports Server (NTRS)

    Cheng, R. K.

    1999-01-01

    Since its inception, the low-swirl burner (LSB) has shown to be a useful laboratory apparatus for fundamental studies of premixed turbulent flames. The LSB operates under wide ranges of equivalence ratios, flow rates, and turbulence intensities. Its flame is lifted and detached from the burner and allows easy access for laser diagnostics. The flame brush is axisymmetric and propagates normal to the incident reactants. Therefore, the LSB is well suited for investigating detailed flame structures and empirical coefficients such as flame speed, turbulence transport, and flame generated turbulence. Due to its capability to stabilize ultra-lean premixed turbulent flames (phi approx. = 0.55), the LSB has generated interest from the gas appliance industry for use as an economical low-NO(x) burner. Lean premixed combustion emits low levels of NO(x), due primarily to the low flame temperature. Therefore, it is a very effective NO(x) prevention method without involving selective catalytic reduction (SCR), fuel-air staging, or flue gas recirculation (FGR). En the gas turbine industry, substantial research efforts have already been undertaken and engines with lean premixed combustors are already in use. For commercial and residential applications, premixed pulsed combustors and premixed ceramic matrix burners are commercially available. These lean premixed combustion technologies, however, tend to be elaborate but have relatively limited operational flexibility, and higher capital, operating and maintenance costs. Consequently, these industries are continuing the development of lean premixed combustion technologies as well as exploring new concepts. This paper summarizes the research effects we have undertaken in the past few years to demonstrate the feasibility of applying the low-swirl flame stabilization method for a wide range of heating and power generation systems. The principle of flame stabilization by low-swirl is counter to the conventional high-swirl methods that

  16. Lean premixed combustion stabilized by radiation feedback and heterogeneous catalysis

    SciTech Connect

    Dibble, R.W.; Jyh-Yuan Chen; Sawyer, R.F.

    1995-10-01

    Gas-turbine based systems are becoming the preferred approach to electric power generation from gaseous and liquid fossil-fuels and from biomass. As coal gasification becomes, gas turbines will also become important in the generation of electricity from coal. In smaller, distributed installations, gas turbines will also become important in the generation of electricity from coal. In smaller, distributed installations, gas turbines offer the prospect of cogeneration of electricity and heat, with increased efficiency and reduced pollutant emissions. One of the most important problems facing combustion-based power generation is the control of air pollutants, primarily nitrogen oxides (NO{sub x}, consisting of NO and NO{sub 2}) and carbon monoxide (CO). Nitric oxide (NO) is formed during gas-phase combustion and is the precursor of nitrogen dioxide (NO{sub 2}), the principal component of photochemical smog. Recent research into the mechanisms and control of NO{sub x} formation has been spurred by increasingly stringent emission standards. The principal objective of this research project is the development of effective models for the simulation of catalytic combustion applications.

  17. PREMIXED FLAME PROPAGATION AND MORPHOLOGY IN A CONSTANT VOLUME COMBUSTION CHAMBER

    SciTech Connect

    Hariharan, A; Wichman, IS

    2014-06-04

    This work presents an experimental and numerical investigation of premixed flame propagation in a constant volume rectangular channel with an aspect ratio of six (6) that serves as a combustion chamber. Ignition is followed by an accelerating cusped finger-shaped flame-front. A deceleration of the flame is followed by the formation of a "tulip"-shaped flame-front. Eventually, the flame is extinguished when it collides with the cold wall on the opposite channel end. Numerical computations are performed to understand the influence of pressure waves, instabilities, and flow field effects causing changes to the flame structure and morphology. The transient 2D numerical simulation results are compared with transient 3D experimental results. Issues discussed are the appearance of oscillatory motions along the flame front and the influences of gravity on flame structure. An explanation is provided for the formation of the "tulip" shape of the premixed flame front.

  18. Low and High Temperature Combustion Chemistry of Butanol Isomers in Premixed Flames and Autoignition Systems

    SciTech Connect

    Sarathy, S M; Pitz, W J; Westbrook, C K; Mehl, M; Yasunaga, K; Curran, H J; Tsujimura, T; Osswald, P; Kohse-Hoinghaus, K

    2010-12-12

    Butanol is a fuel that has been proposed as a bio-derived alternative to conventional petroleum derived fuels. The structural isomer in traditional 'bio-butanol' fuel is n-butanol, but newer conversion technologies produce iso-butanol as a fuel. In order to better understand the combustion chemistry of bio-butanol, this study presents a comprehensive chemical kinetic model for all the four isomers of butanol (e.g., 1-, 2-, iso- and tert-butanol). The proposed model includes detailed high temperature and low temperature reaction pathways. In this study, the primary experimental validation target for the model is premixed flat low-pressure flame species profiles obtained using molecular beam mass spectrometry (MBMS). The model is also validated against previously published data for premixed flame velocity and n-butanol rapid compression machine and shock tube ignition delay. The agreement with these data sets is reasonably good. The dominant reaction pathways at the various pressures and temperatures studied are elucidated. At low temperature conditions, we found that the reaction of alphahydroxybutyl with O{sub 2} was important in controlling the reactivity of the system, and for correctly predicting C{sub 4} aldehyde profiles in low pressure premixed flames. Enol-keto isomerization reactions assisted by HO{sub 2} were also found to be important in converting enols to aldehydes and ketones in the low pressure premixed flames. In the paper, we describe how the structural features of the four different butanol isomers lead to differences in the combustion properties of each isomer.

  19. A test device for premixed gas turbine combustion oscillations

    SciTech Connect

    Richards, G.A.; Gemmen, R.S.; Yip, M.J.

    1996-09-01

    This paper discusses the design and operation of a test combustor suitable for studying combustion oscillations caused by a commercial-scale gas turbine fuel nozzle. Aside from the need to be conducted at elevated pressures and temperatures, it is desirable for the experimental device to be flexible in its geometry so as to provide an acoustic environment representative of the commercial device. The combustor design, capabilities, and relevant instrumentation for such a device are presented, along with initial operating experience and preliminary data that suggests the importance of nozzle reference velocity and air temperature.

  20. Lean premixed combustion stabilized by radiation feedback and heterogeneous catalysis

    SciTech Connect

    Dibble, R.W.; Chen, J.Y.; Sawyer, R.F.

    1995-12-31

    Gas-turbine based systems are becoming the preferred approach to electric power generation from gaseous and liquid fossil-fuels and from biomass. As coal gasification becomes more prevalent, gas turbines will also become important in the generation of electricity from coal. In smaller, distributed installations, gas turbines offer the prospect of cogeneration of electricity and heat, with increased efficiency and reduced pollutant emissions. One of the most important problems facing combustion-based power generation is the control of air pollutants, primarily nitrogen oxides and carbon monoxide. Catalytic combustion over noble-metal catalysts offers a method for controlling NO{sub x} emissions. This report describes tests on a gas-fired catalytic combustor and the development of a mathematical model to describe the process. The authors anticipate that the models they develop under this research program will be useful by industry and researchers alike in the design of both experiments and practical gas turbine catalytic combustors. The model--which includes transport codes, mechanisms, and postprocessing routines--is portable and can be run on UNIX workstations. Intelligent design of experiments, guided by this model, can reduce unnecessary expenditures of time and money spent in the laboratory. Likewise, the development of low-NO{sub x} gas turbine systems can be accelerated by using these models to test the effectiveness of combustor designs prior to engaging in time-consuming prototyping.

  1. The coupling between flame surface dynamics and species mass conservation in premixed turbulent combustion

    NASA Technical Reports Server (NTRS)

    Trouve, A.; Veynante, D.; Bray, K. N. C.; Mantel, T.

    1994-01-01

    Current flamelot models based on a description of the flame surface dynamics require the closure of two inter-related equations: a transport equation for the mean reaction progress variable, (tilde)c, and a transport equation for the flame surface density, Sigma. The coupling between these two equations is investigated using direct numerical simulations (DNS) with emphasis on the correlation between the turbulent fluxes of (tilde)c, bar(pu''c''), and Sigma, (u'')(sub S)Sigma. Two different DNS databases are used in the present work: a database developed at CTR by A. Trouve and a database developed by C. J. Rutland using a different code. Both databases correspond to statistically one-dimensional premixed flames in isotropic turbulent flow. The run parameters, however, are significantly different, and the two databases correspond to different combustion regimes. It is found that in all simulated flames, the correlation between bar(pu''c'') and (u'')(sub S)Sigma is always strong. The sign, however, of the turbulent flux of (tilde)c or Sigma with respect to the mean gradients, delta(tilde)c/delta(x) or delta(Sigma)/delta(x), is case-dependent. The CTR database is found to exhibit gradient turbulent transport of (tilde)c and Sigma, whereas the Rutland DNS features counter-gradient diffusion. The two databases are analyzed and compared using various tools (a local analysis of the flow field near the flame, a classical analysis of the conservation equation for (tilde)(u''c''), and a thin flame theoretical analysis). A mechanism is then proposed to explain the discrepancies between the two databases and a preliminary simple criterion is derived to predict the occurrence of gradient/counter-gradient turbulent diffusion.

  2. Sensitivity of Combustion-Acoustic Instabilities to Boundary Conditions for Premixed Gas Turbine Combustors

    NASA Technical Reports Server (NTRS)

    Darling, Douglas; Radhakrishnan, Krishnan; Oyediran, Ayo

    1995-01-01

    Premixed combustors, which are being considered for low NOx engines, are susceptible to instabilities due to feedback between pressure perturbations and combustion. This feedback can cause damaging mechanical vibrations of the system as well as degrade the emissions characteristics and combustion efficiency. In a lean combustor instabilities can also lead to blowout. A model was developed to perform linear combustion-acoustic stability analysis using detailed chemical kinetic mechanisms. The Lewis Kinetics and Sensitivity Analysis Code, LSENS, was used to calculate the sensitivities of the heat release rate to perturbations in density and temperature. In the present work, an assumption was made that the mean flow velocity was small relative to the speed of sound. Results of this model showed the regions of growth of perturbations to be most sensitive to the reflectivity of the boundary when reflectivities were close to unity.

  3. Studies in premixed combustion. [Benjamin Levich Inst. for Physico-Chemical Hydrodynamics, City College of CUNY, New York, New York

    SciTech Connect

    Sivashinsky, G.I.

    1993-01-01

    During the period under review, significant progress was been made in studying the intrinsic dynamics of premixed flames and the problems of flame-flow interaction. (1) A weakly nonlinear model for Bunsen burner stabilized flames was proposed and employed for the simulation of three-dimensional polyhedral flames -- one of the most graphic manifestations of thermal-diffusive instability in premixed combustion. (2) A high-precision large-scale numerical simulation of Bunsen burner tip structure was conducted. The results obtained supported the earlier conjecture that the tip opening observed in low Lewis number systems is a purely optical effect not involving either flame extinction or leakage of unburned fuel. (3) A one-dimensional model describing a reaction wave moving through a unidirectional periodic flow field is proposed and studied numerically. For long-wavelength fields the system exhibits a peculiar non-uniqueness of possible propagation regimes. The transition from one regime to another occurs in a manner of hysteresis.

  4. Route to chaos for combustion instability in ducted laminar premixed flames

    NASA Astrophysics Data System (ADS)

    Kabiraj, Lipika; Saurabh, Aditya; Wahi, Pankaj; Sujith, R. I.

    2012-06-01

    Complex thermoacoustic oscillations are observed experimentally in a simple laboratory combustor that burns lean premixed fuel-air mixture, as a result of nonlinear interaction between the acoustic field and the combustion processes. The application of nonlinear time series analysis, particularly techniques based on phase space reconstruction from acquired pressure data, reveals rich dynamical behavior and the existence of several complex states. A route to chaos for thermoacoustic instability is established experimentally for the first time. We show that, as the location of the heat source is gradually varied, self-excited periodic thermoacoustic oscillations undergo transition to chaos via the Ruelle-Takens scenario.

  5. Model-based control of thermoacoustic instabilities in partially premixed lean combustion - a design case study

    NASA Astrophysics Data System (ADS)

    Yuan, Xiao-Chuan; Glover, Keith

    2013-11-01

    Self-excited oscillation is becoming a major issue in low-emission, lean partially premixed combustion systems, and active control has been shown to be a feasible method to suppress such instabilities. A number of robust control methods are employed to obtain a feedback controller and it is observed that the robustness to system uncertainty is significantly better for a low complexity controller in spite of the norms being similar. Moreover, we demonstrate that closed-loop stability for such a complex system can be proved via use of the integral quadratic constraint method. Open- and closed-loop nonlinear simulations are provided.

  6. Stochastic modeling of unsteady extinction in turbulent non-premixed combustion

    DOE PAGESBeta

    Lackmann, T.; Hewson, J. C.; Knaus, R. C.; Kerstein, A. R.; Oevermann, M.

    2016-07-19

    Turbulent fluctuations of the scalar dissipation rate have a major impact on extinction in non-premixed combustion. Recently, an unsteady extinction criterion has been developed (Hewson, 2013) that predicts extinction dependent on the duration and the magnitude of dissipation rate fluctuations exceeding a critical quenching value; this quantity is referred to as the dissipation impulse. Furthermore, the magnitude of the dissipation impulse corresponding to unsteady extinction is related to the difficulty with which a flamelet is exintguished, based on the steady-state S-curve.

  7. A dynamic model for the turbulent burning velocity for large eddy simulation of premixed combustion

    SciTech Connect

    Knudsen, E.; Pitsch, H.

    2008-09-15

    Turbulent premixed combustion is particularly difficult to describe using large eddy simulation (LES). In LES, premixed flame structures typically exist on subfilter length scales. Consequently, premixed LES models must be capable of describing how completely unresolved flame structures propagate under the influence of completely unresolved eddies. This description is usually accomplished through the implementation of a model for the turbulent burning velocity. Here, a dynamic model for describing the turbulent burning velocity in the context of LES is presented. This model uses a new surface filtering procedure that is consistent with standard LES filtering. Additionally, it only uses information that comes directly from the flame front. This latter attribute is important for two reasons. First, it guarantees that the model can be consistently applied when level set methods, where arbitrary constraints can be imposed on field variables away from fronts, are used to track the flame. Second, it forces the model to recognize that the physics governing flame front propagation are only valid locally at the front. Results showing model validation in the context of direct numerical simulation (DNS), and model application in the context of LES, are presented. (author)

  8. Evaluation of a hybrid kinetics/mixing-controlled combustion model for turbulent premixed and diffusion combustion using KIVA-2

    NASA Technical Reports Server (NTRS)

    Nguyen, H. Lee; Wey, Ming-Jyh

    1990-01-01

    Two dimensional calculations were made of spark ignited premixed-charge combustion and direct injection stratified-charge combustion in gasoline fueled piston engines. Results are obtained using kinetic-controlled combustion submodel governed by a four-step global chemical reaction or a hybrid laminar kinetics/mixing-controlled combustion submodel that accounts for laminar kinetics and turbulent mixing effects. The numerical solutions are obtained by using KIVA-2 computer code which uses a kinetic-controlled combustion submodel governed by a four-step global chemical reaction (i.e., it assumes that the mixing time is smaller than the chemistry). A hybrid laminar/mixing-controlled combustion submodel was implemented into KIVA-2. In this model, chemical species approach their thermodynamics equilibrium with a rate that is a combination of the turbulent-mixing time and the chemical-kinetics time. The combination is formed in such a way that the longer of the two times has more influence on the conversion rate and the energy release. An additional element of the model is that the laminar-flame kinetics strongly influence the early flame development following ignition.

  9. Evaluation of a hybrid kinetics/mixing-controlled combustion model for turbulent premixed and diffusion combustion using KIVA-2

    NASA Astrophysics Data System (ADS)

    Nguyen, H. Lee; Wey, Ming-Jyh

    Two dimensional calculations were made of spark ignited premixed-charge combustion and direct injection stratified-charge combustion in gasoline fueled piston engines. Results are obtained using kinetic-controlled combustion submodel governed by a four-step global chemical reaction or a hybrid laminar kinetics/mixing-controlled combustion submodel that accounts for laminar kinetics and turbulent mixing effects. The numerical solutions are obtained by using KIVA-2 computer code which uses a kinetic-controlled combustion submodel governed by a four-step global chemical reaction (i.e., it assumes that the mixing time is smaller than the chemistry). A hybrid laminar/mixing-controlled combustion submodel was implemented into KIVA-2. In this model, chemical species approach their thermodynamics equilibrium with a rate that is a combination of the turbulent-mixing time and the chemical-kinetics time. The combination is formed in such a way that the longer of the two times has more influence on the conversion rate and the energy release. An additional element of the model is that the laminar-flame kinetics strongly influence the early flame development following ignition.

  10. Evaluation of a hybrid kinetics/mixing-controlled combustion model for turbulent premixed and diffusion combustion using KIVA-II

    NASA Technical Reports Server (NTRS)

    Nguyen, H. Lee; Wey, Ming-Jyh

    1990-01-01

    Two-dimensional calculations were made of spark ignited premixed-charge combustion and direct injection stratified-charge combustion in gasoline fueled piston engines. Results are obtained using kinetic-controlled combustion submodel governed by a four-step global chemical reaction or a hybrid laminar kinetics/mixing-controlled combustion submodel that accounts for laminar kinetics and turbulent mixing effects. The numerical solutions are obtained by using KIVA-2 computer code which uses a kinetic-controlled combustion submodel governed by a four-step global chemical reaction (i.e., it assumes that the mixing time is smaller than the chemistry). A hybrid laminar/mixing-controlled combustion submodel was implemented into KIVA-2. In this model, chemical species approach their thermodynamics equilibrium with a rate that is a combination of the turbulent-mixing time and the chemical-kinetics time. The combination is formed in such a way that the longer of the two times has more influence on the conversion rate and the energy release. An additional element of the model is that the laminar-flame kinetics strongly influence the early flame development following ignition.

  11. Numerical study of premixed HCCI engine combustion and its sensitivity to computational mesh and model uncertainties

    NASA Astrophysics Data System (ADS)

    Kong, Song-Charng; Reitz, Rolf D.

    2003-06-01

    This study used a numerical model to investigate the combustion process in a premixed iso-octane homogeneous charge compression ignition (HCCI) engine. The engine was a supercharged Cummins C engine operated under HCCI conditions. The CHEMKIN code was implemented into an updated KIVA-3V code so that the combustion could be modelled using detailed chemistry in the context of engine CFD simulations. The model was able to accurately simulate the ignition timing and combustion phasing for various engine conditions. The unburned hydrocarbon emissions were also well predicted while the carbon monoxide emissions were under predicted. Model results showed that the majority of unburned hydrocarbon is located in the piston-ring crevice region and the carbon monoxide resides in the vicinity of the cylinder walls. A sensitivity study of the computational grid resolution indicated that the combustion predictions were relatively insensitive to the grid density. However, the piston-ring crevice region needed to be simulated with high resolution to obtain accurate emissions predictions. The model results also indicated that HCCI combustion and emissions are very sensitive to the initial mixture temperature. The computations also show that the carbon monoxide emissions prediction can be significantly improved by modifying a key oxidation reaction rate constant.

  12. The effect of nitrogen on biogas flame propagation characteristic in premix combustion

    NASA Astrophysics Data System (ADS)

    Anggono, Willyanto; Suprianto, Fandi D.; Hartanto, Tan Ivan; Purnomo, Kenny; Wijaya, Tubagus P.

    2016-03-01

    Biogas is one of alternative energy and categorized as renewable energy. The main sources of biogas come from animal waste, garbage, and household waste that are organic waste. Primarily, over 50% of this energy contains methane (CH4). The other substances or inhibitors are nitrogen and carbon dioxide. Previously, carbon dioxide effect on biogas combustion is already experimented. The result shows that carbon dioxide reduces the flame propagation speed of biogas combustion. Then, nitrogen as an inhibitor obviously also brings some effects to the biogas combustion, flame propagation speed, and flame characteristics. Spark ignited cylinder is used for the premixed biogas combustion research. An acrylic glass is used as the material of this transparent cylinder chamber. The cylinder is filled with methane (CH4), oxygen (O2), and nitrogen (N2) with particular percentage. In this experiment, the nitrogen composition are set to 0%, 5%, 10%, 20%, 30%, 40%, and 50%. The result shows that the flame propagation speed is reduced in regard to the increased level of nitrogen. It can also be implied that nitrogen can decrease the biogas combustion rate.

  13. Combustion oscillation monitoring using flame ionization in a turbulent premixed combustor

    SciTech Connect

    Chorpening, B.T.; Thornton, J.D.; Huckaby, E.D.; Benson, K.J.

    2007-04-01

    To achieve very low NOx emission levels, lean-premixed gas turbine combustors have been commercially implemented that operate near the fuel-lean flame extinction limit. Near the lean limit, however, flashback, lean blow off, and combustion dynamics have appeared as problems during operation. To help address these operational problems, a combustion control and diagnostics sensor (CCADS) for gas turbine combustors is being developed. CCADS uses the electrical properties of the flame to detect key events and monitor critical operating parameters within the combustor. Previous development efforts have shown the capability of CCADS to monitor flashback and equivalence ratio. Recent work has focused on detecting and measuring combustion instabilities. A highly instrumented atmospheric combustor has been used to measure the pressure oscillations in the combustor, the OH emission, and the flame ion field at the premix injector outlet and along the walls of the combustor. This instrumentation allows examination of the downstream extent of the combustion field using both the OH emission and the corresponding electron and ion distribution near the walls of the combustor. In most cases, the strongest pressure oscillation dominates the frequency behavior of the OH emission and the flame ion signals. Using this highly instrumented combustor, tests were run over a matrix of equivalence ratios from 0.6 to 0.8, with an inlet reference velocity of 25 m/s 82 ft/ s . The acoustics of the fuel system for the combustor were tuned using an active-passive technique with an adjustable quarter-wave resonator. Although several statistics were investigated for correlation with the dynamic pressure in the combustor, the best correlation was found with the standard deviation of the guard current. The data show a monotonic relationship between the standard deviation of the guard current (the current through the flame at the premix injector outlet) and the standard deviation of the chamber

  14. Combustion dynamics linked to flame behaviour in a partially premixed swirled industrial burner

    SciTech Connect

    Biagioli, Fernando; Guethe, Felix; Schuermans, Bruno

    2008-07-15

    Previous work [Biagioli, F., Stabilization mechanism of turbulent premixed flames in strongly swirled flows, Combustion, Theory and Modelling 10 (3) (2006) 389-412; Guethe, F., Lachner, R., Schuermans, B., Biagioli, F., Geng, W., Inauen, A., Schenker, S., Bombach, R., Hubschmid, W., Flame imaging on the ALSTOM EV-burner: thermo acoustic pulsations and CFD-validation, in: AIAA Paper 2006-437 presented at the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January 9-12, 2006] has shown that turbulent dry low NO{sub x} (partially premixed) flames in high swirl conical burners may be subject to a large change of their anchoring location at the symmetry axis when a critical value of the bulk equivalence ratio is reached, i.e. they are bi-stable. This flame behavior is linked here to combustion pressure dynamics measured in an atmospheric test rig for a prototype version of the Alstom EnVironmental (EV) conical burner. The link is made via the solution of the problem of the 'travelling flameholder', which shows that the unsteady displacement of the flame anchoring location implies an unsteady variation of the flame surface area and therefore unsteady heat release. The relevance of this source of unsteady heat release - which is different from more usual ones due to variations in turbulent burning rate and in the sensible enthalpy jump across the flame - to the generation of combustion dynamics in strongly swirled flows is confirmed here by the strong positive correlation between the tendency of the flame to be displaced and the measured amplitude of pressure pulsations. (author)

  15. The evolution equation for the flame surface density in turbulent premixed combustion

    NASA Technical Reports Server (NTRS)

    Trouve, Arnaud

    1993-01-01

    The mean reaction rate in flamelet models for turbulent premixed combustion depends on two basic quantities: a mean chemical rate, called the flamelet speed, and the flame surface density. Our previous work had been primarily focused on the problem of the structure and topology of turbulent premixed flames, and it was then determined that the flamelet speed, when space-averaged, is only weakly sensitive to the turbulent flow field. Consequently, the flame surface density is the key quantity that conveys most of the effects of the turbulence on the rate of energy release. In flamelet models, this quantity is obtained via a modeled transport equation called the Sigma-equation. Past theoretical work has produced a rigorous approach that leads to an exact but unclosed formulation for the turbulent Sigma-equation. In the exact Sigma-equation, it appears that the dynamical properties of the flame surface density are determined by a single parameter, namely the turbulent flame stretch. Unfortunately, the turbulent flame stretch as well as the flame surface density is not available from experiments, and, in the absence of experimental data, little is known on the validity of the closure assumptions used in current flamelet models. Direct Numerical Simulation (DNS) is the alternative approach to get basic information on these fundamental quantities. In the present work, three-dimensional DNS of premixed flames in isotropic turbulent flow is used to estimate the different terms appearing in the Sigma-equation. A new methodology is proposed to provide the source and sink terms for the flame surface density, resolved both temporally and spatially throughout the turbulent flame brush. Using this methodology, our objective is to extract the turbulent flame stretch from the DNS data base and then perform extensive comparisons with flamelet models. Thanks to the detailed information produced by the DNS-based analysis, it is expected that this type of comparison will not only

  16. Dynamic formulation of thickened flame model for LES of premixed turbulent combustion.

    NASA Astrophysics Data System (ADS)

    Meneveau, C.; Nottin, C.; Veynante, D.

    2000-11-01

    As demonstrated in Colin et al. (Phys. Fluids 12, p. 1843, 2000) the thickened flame model for LES of premixed combustion (TFLES) has a number of attractive features such as correct asymptotics in the limit of DNS, in the case of a thickened laminar, steady flame, etc.. For the general case of turbulent, unsteady and curved, premixed flames, the model requires empirical parameters to be specified. With the aim of decreasing the dependence on empirical parameters, the dynamic procedure is applied to this problem. We find that the traditional application of the Germano identity, which seeks undetermined multiplicative model coefficients, fails because of a trivial cancellation of the coefficients when inserted in the Germano identity. We suggest that this is a general problem when applying the dynamic model to phenomena that occur at very disparate length-scales (here the true reaction occurs in a region which is typically much thinner than the LES grid-size). On the other hand, we find that the dynamic procedure is well-posed when searching for unknown scaling exponents (instead of coefficients). A new power-law formulation of dynamic TFLES is developed, and tested using a fully compressible, sixth-order finite-difference code (NTMIX). Applications to several cases are discussed: (a) 1-D laminar flame, (b) laminar flame-vortex interaction, and (c) flame propagation through 2-D decaying isotropic turbulence.

  17. Progress towards diesel combustion modeling

    SciTech Connect

    Rutland, C.J.; Ayoub, N.; Han, Z.

    1995-12-31

    Progress on the development and validation of a CFD model for diesel engine combustion and flow is described. A modified version of the KIVA code is used for the computations, with improved submodels for liquid breakup, drop distortion and drag, spray/wall impingement with rebounding, sliding and breaking-up drops, wall heat transfer with unsteadiness and compressibility, multistep kinetics ignition and laminar-turbulent characteristic time combustion models, Zeldovich NOx formation, and soot formation with Nagle Strickland-Constable oxidation. The code also considers piston-cylinder-liner crevice flows and allows computations of the intake flow process in the realistic engine geometry with two moving intake valves. Significant progress has been made using a modified RNG {kappa}-{var_epsilon} turbulence model, and a multicomponent fuel vaporization model and a flamelet combustion model have been implemented. Model validation experiments have been performed using a single-cylinder heavy duty truck engine that features state-of-the-art high pressure electronic fuel injection and emissions instrumentation. In addition to cylinder pressure, heat release, and emissions measurements, new combustion visualization experiments have also been performed using an endoscope system that takes the place of one of the exhaust valves. Modifications to the engine geometry for optical access were minimal, thus ensuring that the results represent the actual engine. The intake flow CFD modeling results show that the details of the intake flow process influence the engine performance. Comparisons with the measured engine cylinder pressure, heat release, soot and NOx emission data, and the combustion visualization flame images show that the CFD model results are generally in good agreement with the experiments. In particular, the model is able to correctly predict the soot-NOx trade-off trend as a function of injection timing. 44 refs., 21 figs., 6 tabs.

  18. Modelling of the subgrid scale wrinkling factor for large eddy simulation of turbulent premixed combustion

    NASA Astrophysics Data System (ADS)

    Thiesset, Fabien; Maurice, Guillaume; Halter, Fabien; Mazellier, Nicolas; Chauveau, Christian; Gökalp, Iskender

    2016-05-01

    We propose a model for assessing the unresolved wrinkling factor in the large eddy simulation of turbulent premixed combustion. It relies essentially on a power-law dependence of the wrinkling factor on the filter size and an original expression for the 'active' corrugating strain rate. The latter is written as the turbulent strain multiplied by an efficiency function that accounts for viscous effects and the kinematic constraint of Peters. This yields functional expressions for the fractal dimension and the inner cut-off length scale, the latter being (i) filter-size independent and (ii) consistent with the Damköhler asymptotic behaviours at both large and small Karlovitz numbers. A new expression for the wrinkling factor that incorporates finite Reynolds number effects is further proposed. Finally, the model is successfully assessed on an experimental filtered database.

  19. Combustion characteristics of pulverized coal and air/gas premixed flame in a double swirl combustor

    SciTech Connect

    Kamal, M.M.

    2009-07-01

    An experimental work was performed to investigate the co-firing of pulverized coal and premixed gas/air streams in a double swirl combustor. The results showed that the NOx emissions are affected by the relative rates of thermal NOx formation and destruction via the pyrolysis of the fuel-N species in high temperature fuel-rich zones. Various burner designs were tested in order to vary the temperature history and the residence time across both coal and gas flames inside the furnace. It was found that by injecting the coal with a gas/air mixture as a combined central jet surrounded by a swirled air stream, a double flame envelope develops with high temperature fuel-rich conditions in between the two reaction zones such that the pyrolysis reactions to N{sub 2} are accelerated. A further reduction in the minimum NOx emissions, as well as in the minimum CO concentrations, was reported for the case where the coal particles are fed with the gas/air mixture in the region between the two swirled air streams. On the other hand, allocating the gas/air mixture around the swirled air-coal combustion zone provides an earlier contact with air and retards the NOx reduction mechanism in such a way that the elevated temperatures around the coal particles allow higher overall NOx emissions. The downstream impingement of opposing air jets was found more efficient than the impinging of particle non-laden premixed flames for effective NOx reduction. In both cases, there is an upstream flow from the stagnation region to the coal primary combustion region, but with the case of air impingement, the hot fuel-rich zone develops earlier. The optimum configuration was found by impinging all jets of air and coal-gas/air mixtures that pronounced minimum NOx and CO concentrations of 310 and 480ppm, respectively.

  20. Cyclic Combustion Variations in Dual Fuel Partially Premixed Pilot-Ignited Natural Gas Engines

    SciTech Connect

    Srinivasan, K. K.; Krishnan, S. R.

    2012-05-09

    Dual fuel pilot ignited natural gas engines are identified as an efficient and viable alternative to conventional diesel engines. This paper examines cyclic combustion fluctuations in conventional dual fuel and in dual fuel partially premixed low temperature combustion (LTC). Conventional dual fueling with 95% (energy basis) natural gas (NG) substitution reduces NOx emissions by almost 90%t relative to straight diesel operation; however, this is accompanied by 98% increase in HC emissions, 10 percentage points reduction in fuel conversion efficiency (FCE) and 12 percentage points increase in COVimep. Dual fuel LTC is achieved by injection of a small amount of diesel fuel (2-3 percent on an energy basis) to ignite a premixed natural gas–air mixture to attain very low NOx emissions (less than 0.2 g/kWh). Cyclic variations in both combustion modes were analyzed by observing the cyclic fluctuations in start of combustion (SOC), peak cylinder pressures (Pmax), combustion phasing (Ca50), and the separation between the diesel injection event and Ca50 (termed “relative combustion phasing”). For conventional dual fueling, as % NG increases, Pmax decreases, SOC and Ca50 are delayed, and cyclic variations increase. For dual fuel LTC, as diesel injection timing is advanced from 20° to 60°BTDC, the relative combustion phasing is identified as an important combustion parameter along with SoC, Pmax, and CaPmax. For both combustion modes, cyclic variations were characterized by alternating slow and fast burn cycles, especially at high %NG and advanced injection timings. Finally

  1. Emissions from premixed charge compression ignition (PCCI) combustion and affect on emission control devices

    SciTech Connect

    Parks, II, James E; Kass, Michael D; Huff, Shean P; Barone, Teresa L; Lewis Sr, Samuel Arthur; Prikhodko, Vitaly Y; Storey, John Morse

    2010-01-01

    A light-duty diesel engine has been operated in advanced combustion modes known generally as premixed charge compression ignition (PCCI). The emissions have been characterized for several load and speed combinations. Fewer NO{sub x} and particulate matter (PM) emissions are produced by PCCI, but higher CO and hydrocarbon (HC) emissions result. In addition, the nature of the PM differs from conventional combustion; the PM is smaller and has a much higher soluble organic fraction (SOF) content (68% vs. 30% for conventional combustion). Three catalyst technologies were studied to determine the affects of HECC on catalyst performance; the technologies were a lean NO{sub x} trap (LNT), diesel oxidation catalyst (DOC), and diesel particulate filter (DPF). The LNT benefited greatly from the reduced NO{sub x} emissions associated with PCCI. NO{sub x} capacity requirements are reduced as well as overall tailpipe NO{sub x} levels particularly at low load and temperature conditions where regeneration of the LNT is difficult. The DOC performance requirements for PCCI are more stringent due to the higher CO and HC emissions; however, the DOC was effective at controlling the higher CO and HC emissions at conditions above the light-off temperature. Below light-off, CO and HC emissions are problematic. The study of DPF technology focused on the fuel penalties associated with DPF regeneration or 'desoot' due to the different PM loading rates from PCCI vs. conventional combustion. Less frequent desoot events were required from the lower PM from PCCI and, when used in conjunction with an LNT, the lower PM from less frequent LNT regeneration. The lower desoot frequency leads a {approx}3% fuel penalty for a mixture of PCCI and conventional loads vs. {approx}4% for conventional only combustion.

  2. Sub-grid scale combustion models for large eddy simulation of unsteady premixed flame propagation around obstacles.

    PubMed

    Di Sarli, Valeria; Di Benedetto, Almerinda; Russo, Gennaro

    2010-08-15

    In this work, an assessment of different sub-grid scale (sgs) combustion models proposed for large eddy simulation (LES) of steady turbulent premixed combustion (Colin et al., Phys. Fluids 12 (2000) 1843-1863; Flohr and Pitsch, Proc. CTR Summer Program, 2000, pp. 61-82; Kim and Menon, Combust. Sci. Technol. 160 (2000) 119-150; Charlette et al., Combust. Flame 131 (2002) 159-180; Pitsch and Duchamp de Lageneste, Proc. Combust. Inst. 29 (2002) 2001-2008) was performed to identify the model that best predicts unsteady flame propagation in gas explosions. Numerical results were compared to the experimental data by Patel et al. (Proc. Combust. Inst. 29 (2002) 1849-1854) for premixed deflagrating flame in a vented chamber in the presence of three sequential obstacles. It is found that all sgs combustion models are able to reproduce qualitatively the experiment in terms of step of flame acceleration and deceleration around each obstacle, and shape of the propagating flame. Without adjusting any constants and parameters, the sgs model by Charlette et al. also provides satisfactory quantitative predictions for flame speed and pressure peak. Conversely, the sgs combustion models other than Charlette et al. give correct predictions only after an ad hoc tuning of constants and parameters. PMID:20471163

  3. Turbulence, combustion, pollutant, and stability characterization of a premixed, step combustor

    NASA Technical Reports Server (NTRS)

    Ganji, A. T.; Sawyer, R. F.

    1980-01-01

    A two dimensional combustion tunnel was constructed to study a lean premixed turbulent propane/air flame stablized behind a rearward facing step. Studied were: (1) the existence and importance of large coherent structures in turbulent reacting and nonreacting free shear layers behind the steps; (2) the effect of inlet temperature and reference velocity on combustion efficiency; (3) CO, NO2 and NO sub x production in the flame; and (4) the blowout and upstream propagation of the flame. In the ranges studied, the large coherent structures dominated both the reacting and the nonreacting free shear layers behind the step. The growth of the vortices and the propagation of the flamer were intimately linked. Vortex pairing was observed to be one of the mechanisms for introduction of fresh reactants into the shear layer and growth of the shear layer. Probe composition measurements of the flame showed that, in the recirculation zone, the reaction was above 99 percent complete, CO and unburnt hydrocarbons were above the equilibrium level NO sub x concentration was far below the equilibrium level and NO2 comprised a negligible fraction of NO sub x.

  4. Experimental study of the premixed combustion within the nonhomogeneous porous ceramic media

    SciTech Connect

    Hsu, P.F.

    1996-12-01

    An experimental investigation of premixed methane-air combustion within the one-dimensional porous ceramic burners for various burner configurations is presented. The burner is nonhomogeneous because of different pore size ceramic block used in different section of the burner. Therefore, the thermophysical and transport properties are nonuniform along the burner core length. The burners are constructed of partially stabilized zirconia. The CO and NO{sub x} emissions, flame speed, and flame stability are examined and compared at lean equivalence ratios for five different burner configurations. The sandwich-structured burner has very favorable flame stabilizing characteristic due to the radiation reflecting region. While the combustion proceeds at faster rate than other burner configurations, the radiation reflecting region and the exit surface have low temperature. Thus the NO{sub x} emission can be kept at the same low level as the other burner configurations exhibit., It is found that the sandwich-structured burner has the potential for applications such as the liquid waste and volatile organic compounds incinerations. By placing a radiant shield during the emission sampling to simulated hot exit boundary condition, no discernible effect is found on the emission levels.

  5. The evolution equation for the flame surface density in turbulent premixed combustion

    NASA Technical Reports Server (NTRS)

    Trouve, A.; Poinsot, T.

    1992-01-01

    One central ingredient in flamelet models for turbulent premixed combustion is the flame surface density. This quantity conveys most of the effects of the turbulence on the rate of energy release and is obtained via a modeled transport equation, called the Sigma-equation. Past theoretical work has produced a rigorous approach that leads to an exact, but unclosed, formulation for the turbulent Sigma-equation. In this exact Sigma-equation, it appears that the dynamical properties of the flame surface density are determined by a single parameter, namely the turbulent flame stretch. Unfortunately, the flame surface density and the turbulent flame stretch are not available from experiments and, in the absence of experimental data, little is known on the validity of the closure assumptions used in current flamelet models. Direct Numerical Simulation (DNS) is the obvious, complementary approach to get basic information on these fundamental quantities. Three-dimensional DNS of premixed flames in isotropic turbulent flow is used to estimate the different terms appearing in the Sigma-equation. A new methodology is proposed to provide the source and sink terms for the flame surface density, resolved both temporally and spatially throughout the turbulent flame brush. Using this methodology, the effects of the Lewis number on the rate of production of flame surface area are described in great detail and meaningful comparisons with flamelet models can be performed. The analysis reveals in particular the tendency of the models to overpredict flame surface dissipation as well as their inability to reproduce variations due to thermo-diffusive phenomena. Thanks to the detailed information produced by a DNS-based analysis, this type of comparison not only underscores the shortcomings of current models but also suggests ways to improve them.

  6. Origin of activated combustion in steady-state premixed burner flame with superposition of dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Zaima, Kazunori; Akashi, Haruaki; Sasaki, Koichi

    2016-01-01

    The objective of this work is to understand the mechanism of plasma-assisted combustion in a steady-state premixed burner flame. We examined the spatiotemporal variation of the density of atomic oxygen in a premixed burner flame with the superposition of dielectric barrier discharge (DBD). We also measured the spatiotemporal variations of the optical emission intensities of Ar and OH. The experimental results reveal that atomic oxygen produced in the preheating zone by electron impact plays a key role in the activation of combustion reactions. This understanding is consistent with that described in our previous paper indicating that the production of “cold OH(A2Σ+)” via CHO + O → OH(A2Σ+) + CO has the sensitive response to the pulsed current of DBD [K. Zaima and K. Sasaki, Jpn. J. Appl. Phys. 53, 110309 (2014)].

  7. Effect of Premixed Fuel Preparation for Partially Premixed Combustion with a Low Octane Gasoline on a Light-Duty Multi-Cylinder Compression Ignition Engine

    DOE PAGESBeta

    Dempsey, Adam B.; Curran, Scott; Wagner, Robert M.; Cannella, William C.

    2015-05-12

    Gasoline compression ignition concepts with the majority of the fuel being introduced early in the cycle are known as partially premixed combustion (PPC). Previous research on single- and multi-cylinder engines has shown that PPC has the potential for high thermal efficiency with low NOx and soot emissions. A variety of fuel injection strategies has been proposed in the literature. These injection strategies aim to create a partially stratified charge to simultaneously reduce NOx and soot emissions while maintaining some level of control over the combustion process through the fuel delivery system. The impact of the direct injection strategy to createmore » a premixed charge of fuel and air has not previously been explored, and its impact on engine efficiency and emissions is not well understood. This paper explores the effect of sweeping the direct injected pilot timing from -91° to -324° ATDC, which is just after the exhaust valve closes for the engine used in this study. During the sweep, the pilot injection consistently contained 65% of the total fuel (based on command duration ratio), and the main injection timing was adjusted slightly to maintain combustion phasing near top dead center. A modern four cylinder, 1.9 L diesel engine with a variable geometry turbocharger, high pressure common rail injection system, wide included angle injectors, and variable swirl actuation was used in this study. The pistons were modified to an open bowl configuration suitable for highly premixed combustion modes. The stock diesel injection system was unmodified, and the gasoline fuel was doped with a lubricity additive to protect the high pressure fuel pump and the injectors. The study was conducted at a fixed speed/load condition of 2000 rpm and 4.0 bar brake mean effective pressure (BMEP). The pilot injection timing sweep was conducted at different intake manifold pressures, swirl levels, and fuel injection GTP-15-1067, Dempsey 2 pressures. The gasoline used in this study

  8. Effect of Premixed Fuel Preparation for Partially Premixed Combustion with a Low Octane Gasoline on a Light-Duty Multi-Cylinder Compression Ignition Engine

    SciTech Connect

    Dempsey, Adam B.; Curran, Scott; Wagner, Robert M.; Cannella, William C.

    2015-05-12

    Gasoline compression ignition concepts with the majority of the fuel being introduced early in the cycle are known as partially premixed combustion (PPC). Previous research on single- and multi-cylinder engines has shown that PPC has the potential for high thermal efficiency with low NOx and soot emissions. A variety of fuel injection strategies has been proposed in the literature. These injection strategies aim to create a partially stratified charge to simultaneously reduce NOx and soot emissions while maintaining some level of control over the combustion process through the fuel delivery system. The impact of the direct injection strategy to create a premixed charge of fuel and air has not previously been explored, and its impact on engine efficiency and emissions is not well understood. This paper explores the effect of sweeping the direct injected pilot timing from -91° to -324° ATDC, which is just after the exhaust valve closes for the engine used in this study. During the sweep, the pilot injection consistently contained 65% of the total fuel (based on command duration ratio), and the main injection timing was adjusted slightly to maintain combustion phasing near top dead center. A modern four cylinder, 1.9 L diesel engine with a variable geometry turbocharger, high pressure common rail injection system, wide included angle injectors, and variable swirl actuation was used in this study. The pistons were modified to an open bowl configuration suitable for highly premixed combustion modes. The stock diesel injection system was unmodified, and the gasoline fuel was doped with a lubricity additive to protect the high pressure fuel pump and the injectors. The study was conducted at a fixed speed/load condition of 2000 rpm and 4.0 bar brake mean effective pressure (BMEP). The pilot injection timing sweep was conducted at different intake manifold pressures, swirl levels, and fuel injection GTP-15-1067, Dempsey 2 pressures. The gasoline used in this study has

  9. Modeling and simulation of combustion dynamics in lean-premixed swirl-stabilized gas-turbine engines

    NASA Astrophysics Data System (ADS)

    Huang, Ying

    This research focuses on the modeling and simulation of combustion dynamics in lean-premixed gas-turbines engines. The primary objectives are: (1) to establish an efficient and accurate numerical framework for the treatment of unsteady flame dynamics; and (2) to investigate the parameters and mechanisms responsible for driving flow oscillations in a lean-premixed gas-turbine combustor. The energy transfer mechanisms among mean flow motions, periodic motions and background turbulent motions in turbulent reacting flow are first explored using a triple decomposition technique. Then a comprehensive numerical study of the combustion dynamics in a lean-premixed swirl-stabilized combustor is performed. The analysis treats the conservation equations in three dimensions and takes into account finite-rate chemical reactions and variable thermophysical properties. Turbulence closure is achieved using a large-eddy-simulation (LES) technique. The compressible-flow version of the Smagorinsky model is employed to describe subgrid-scale turbulent motions and their effect on large-scale structures. A level-set flamelet library approach is used to simulate premixed turbulent combustion. In this approach, the mean flame location is modeled using a level-set G-equation, where G is defined as a distance function. Thermophysical properties are obtained using a presumed probability density function (PDF) along with a laminar flamelet library. The governing equations and the associated boundary conditions are solved by means of a four-step Runge-Kutta scheme along with the implementation of the message passing interface (MPI) parallel computing architecture. The analysis allows for a detailed investigation into the interaction between turbulent flow motions and oscillatory combustion of a swirl-stabilized injector. Results show good agreement with an analytical solution and experimental data in terms of acoustic properties and flame evolution. A study of flame bifurcation from a stable

  10. Premixed Atmosphere and Convection Influences on Flame Inhibition and Combustion (Pacific)

    NASA Technical Reports Server (NTRS)

    Honda, Linton K.; Ronney, Paul D.

    1997-01-01

    Flame spread over flat solid fuel beds is a useful paradigm for studying the behavior of more complex two-phase nonpremixed flames. For practical applications, two of the most important elements of flame spreading are the effects of (1) the ambient atmosphere (e.g. pressure and composition) and (2) the flow environment on the spread rate and extinction conditions. Concerning (1), studies of flame spread in vitiated air and non-standard atmospheres such as those found in undersea vessels and spacecraft are particularly important for the assessment of fire hazards in these environments as well as determination of the effectiveness of fire suppressants. Concerning (2), the flow environment may vary widely even when no forced flow is present because of buoyancy effects. Consequently, the goal of this work is to employ microgravity (micro g) experiments to extend previous studies of the effects of ambient atmosphere and the flow environment on flame spread through the use of microgravity (micro g) experiments. Because of the considerable differences between upward (concurrent-flow) and downward (opposed-flow) flame spread at 1g (Williams, 1976, Fernandez-Pello, 1984), in this work both upward and downward 1g spread are tested. Two types of changes to the oxidizing atmosphere are considered in this work. One is the addition of sub-flammability-limit concentrations of a gaseous fuel ('partially premixed' atmospheres). This is of interest because in fires in enclosures, combustion may occur under poorly ventilated conditions, so that oxygen is partially depleted from the air and is replaced by combustible gases such as fuel vapors, H2 or CO. Subsequent fire spread over the solid fuel could occur under conditions of varying oxygen and gaseous fuel content. The potential significance of flame spread under vitiated or partially premixed conditions has been noted previously (Beyler, 1984). The second change is the diluent type, which affects the radiative properties of the

  11. Micro-Mixing Lean-Premix System for Ultra-Low Emission Hydrogen/Syngas Combustion

    SciTech Connect

    Erlendur Steinthorsson; Brian Hollon; Adel Mansour

    2010-06-30

    The focus of this project was to develop the next generation of fuel injection technologies for environmentally friendly, hydrogen syngas combustion in gas turbine engines that satisfy DOE's objectives of reducing NOx emissions to 3 ppm. Building on Parker Hannifin's proven Macrolamination technology for liquid fuels, Parker developed a scalable high-performing multi-point injector that utilizes multiple, small mixing cups in place of a single conventional large-scale premixer. Due to the small size, fuel and air mix rapidly within the cups, providing a well-premixed fuel-air mixture at the cup exit in a short time. Detailed studies and experimentation with single-cup micro-mixing injectors were conducted to elucidate the effects of various injector design attributes and operating conditions on combustion efficiency, lean stability and emissions and strategies were developed to mitigate the impact of flashback. In the final phase of the program, a full-scale 1.3-MWth multi-cup injector was built and tested at pressures from 6.9bar (100psi) to 12.4bar (180psi) and flame temperatures up to 2000K (3150 F) using mixtures of hydrogen and natural gas as fuel with nitrogen and carbon dioxide as diluents. The injector operated without flash back on fuel mixtures ranging from 100% natural gas to 100% hydrogen and emissions were shown to be insensitive to combustor pressure. NOx emissions of 3-ppm were achieved at a flame temperature of 1750K (2690 F) when operating on a fuel mixture containing 50% hydrogen and 50% natural gas by volume with 40% nitrogen dilution and 1.5-ppm NOx was achieved at a flame temperature of 1680K (2564 F) using only 10% nitrogen dilution. NOx emissions of 3.5-ppm were demonstrated at a flame temperature of 1730K (2650 F) with only 10% carbon dioxide dilution. Finally, 3.6-ppm NOx emissions were demonstrated at a flame temperature over 1600K (2420 F) when operating on 100% hydrogen fuel with 30% carbon dioxide dilution. Superior operability was

  12. Effect of degree of fuel vaporization upon emissions for a premixed prevaporized combustion system. [for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Cooper, L. P.

    1979-01-01

    An experimental and analytical study of the combustion of partially vaporized fuelair mixtures was performed to assess the impact of the degree of fuel vaporization upon emissions for a premixing-prevaporizing flametube combustor. Data collected show near linear increases in nitrogen oxide emissions with decreasing vaporization at equivalence ratios of 0.6. For equivalence ratio of 0.72, the degree of vaporization had very little impact on nitrogen oxide emissions. A simple mechanism which accounts for the combustion of liquid droplets in partially vaporized mixtures was found to agree with the measured results with fair accuracy with respect to both trends and magnitudes.

  13. Effect of degree of fuel vaporization upon emissions for a premixed partially vaporized combustion system. [for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Cooper, L. P.

    1980-01-01

    An experimental and analytical study of the combustion of partially vaporized fuel-air mixtures was performed to assess the impact of the degree of fuel vaporization upon emissions for a premixing-prevaporizing flametube combustor. Data collected in this study showed near linear increases in nitric oxide emissions with decreasing vaporization at equivalence ratios of 0.6. For equivalence ratios of 0.72, the degree of vaporization had very little impact on nitric oxide emissions. A simple mechanism which accounts for the combustion of liquid droplets in partially vaporized mixtures was found to agree with the measured results with fair accuracy with respect to both trends and magnitudes.

  14. Premixed Turbulent Flame Propagation in Microgravity

    NASA Technical Reports Server (NTRS)

    Menon, S.; Disseau, M.; Chakravarthy, V. K.; Jagoda, J.

    1997-01-01

    Papers included address the following topics: (1) Turbulent premixed flame propagation in microgravity; (2) The effect of gravity on turbulent premixed flame propagation - a preliminary cold flow study; and (3) Characteristics of a subgrid model for turbulent premixed combustion.

  15. Two-Dimensional Failure Waves and Ignition Fronts in Premixed Combustion

    NASA Technical Reports Server (NTRS)

    Vedarajan, T. G.; Buckmaster J.; Ronney, P.

    1998-01-01

    This paper is a continuation of our work on edge-flames in premixed combustion. An edge-flame is a two-dimensional structure constructed from a one-dimensional configuration that has two stable solutions (bistable equilibrium). Edge-flames can display wavelike behavior, advancing as ignition fronts or retreating as failure waves. Here we consider two one-dimensional configurations: twin deflagrations in a straining flow generated by the counterflow of fresh streams of mixture: and a single deflagration subject to radiation losses. The edge-flames constructed from the first configuration have positive or negative speeds, according to the value of the strain rate. But our numerical solutions strongly suggest that only positive speeds (corresponding to ignition fronts) can exist for the second configuration. We show that this phenomenon can also occur in diffusion flames when the Lewis numbers are small. And we discuss the asymptotics of the one-dimensional twin deflagration configuration. an overlooked problem from the 70s.

  16. Analysis of a strong mass-based flame stretch model for turbulent premixed combustion

    NASA Astrophysics Data System (ADS)

    Bastiaans, R. J. M.; van Oijen, J. A.; de Goey, L. P. H.

    2009-01-01

    In the present paper a theory describing effects of strong flame stretch on turbulent flame propagation [L. P. H. de Goey and J. H. M. ten Thije Boonkkamp, "A flamelet description of premixed laminar flames and the relation with flame stretch," Combust. Flame 119, 253 (1999)] is extended to volume averaged quantities and validated with direct numerical simulation (DNS). The extended theory describes the fuel consumption rate in terms of subgrid scale contributions connected to propagation effects including strong flame stretch. In case there is no preferential diffusion present, it is predicted that the total consumption rate is not affected by local stretch at all. Then the total consumption is described by the unstretched mass burning rate multiplied with the flame surface density. DNSs of turbulent flame kernels have been carried out in order to support the results from the theory. The chemistry is described by application of the flamelet generated manifold technique. The strong stretch theory is shown to be valid up to realizations in the thin reaction zone regime by three independent methods. The local effects of stretch are described, evaluated, and interpreted. Locally the mass burning rate changes by fuel leakage tangential to the flame, but this has no integral effect. The method can be used for subgrid scale modeling of turbulent flame propagation.

  17. Experimental and numerical study of premixed hydrogen/air flame propagating in a combustion chamber.

    PubMed

    Xiao, Huahua; Sun, Jinhua; Chen, Peng

    2014-03-15

    An experimental and numerical study of dynamics of premixed hydrogen/air flame in a closed explosion vessel is described. High-speed shlieren cinematography and pressure recording are used to elucidate the dynamics of the combustion process in the experiment. A dynamically thickened flame model associated with a detailed reaction mechanism is employed in the numerical simulation to examine the flame-flow interaction and effect of wall friction on the flame dynamics. The shlieren photographs show that the flame develops into a distorted tulip shape after a well-pronounced classical tulip front has been formed. The experimental results reveal that the distorted tulip flame disappears with the primary tulip cusp and the distortions merging into each other, and then a classical tulip is repeated. The combustion dynamics is reasonably reproduced in the numerical simulations, including the variations in flame shape and position, pressure build-up and periodically oscillating behavior. It is found that both the tulip and distorted tulip flames can be created in the simulation with free-slip boundary condition at the walls of the vessel and behave in a manner quite close to that in the experiments. This means that the wall friction could be unimportant for the tulip and distorted tulip formation although the boundary layer formed along the sidewalls has an influence to a certain extent on the flame behavior near the sidewalls. The distorted tulip flame is also observed to be produced in the absence of vortex flow in the numerical simulations. The TF model with a detailed chemical scheme is reliable for investigating the dynamics of distorted tulip flame propagation and its underlying mechanism. PMID:24486615

  18. Multi-zone modelling of partially premixed low-temperature combustion in pilot-ignited natural-gas engines

    SciTech Connect

    Krishnan, S. R.; inivasan, K. K.

    2010-09-14

    Detailed results from a multi-zone phenomenological simulation of partially premixed advanced-injection low-pilot-ignited natural-gas low-temperature combustion are presented with a focus on early injection timings (the beginning of (pilot) injection (BOI)) and very small diesel quantities (2-3 per cent of total fuel energy). Combining several aspects of diesel and spark ignition engine combustion models, the closed-cycle simulation accounted for diesel autoignition, diesel spray combustion, and natural-gas combustion by premixed turbulent flame propagation. The cylinder contents were divided into an unburned zone, several pilot fuel zones (or 'packets') that modelled diesel evaporation and ignition, a flame zone for natural-gas combustion, and a burned zone. The simulation predicted the onset of ignition, cylinder pressures, and heat release rate profiles satisfactorily over a wide range of BOIs (20-60° before top dead centre (before TDC)) but especially well at early BOIs. Strong coupling was observed between pilot spray combustion in the packets and premixed turbulent combustion in the flame zone and, therefore, the number of ignition centres (packets) profoundly affected flame combustion. The highest local peak temperatures (greater than 2000 K) were observed in the packets, while the flame zone was much cooler (about 1650 K), indicating that pilot diesel spray combustion is probably the dominant source of engine-out emissions of nitrogen oxide (NOx). Further, the 60° before TDC BOI yielded the lowest average peak packet temperatures (about 1720 K) compared with the 20° before TDC BOI (about 2480 K) and 40° before TDC BOI (about 2700 K). These trends support experimental NOx trends, which showed the lowest NOx emissions for the 60°, 20°, and 40° before TDC BOIs in that order. Parametric studies showed that increasing the intake charge temperature, pilot quantity, and natural-gas equivalence ratio all led to higher peak

  19. Importance of atomic oxygen in preheating zone in plasma-assisted combustion of a steady-state premixed burner flame

    NASA Astrophysics Data System (ADS)

    Zaima, K.; Akashi, H.; Sasaki, K.

    2015-09-01

    It is widely believed that electron impact processes play essential roles in plasma-assisted combustion. However, the concrete roles of high-energy electrons have not been fully understood yet. In this work, we examined the density of atomic oxygen in a premixed burner flame with the superposition of dielectric barrier discharge (DBD). The density of atomic oxygen in the reaction zone was not affected by the superposition of DBD, indicating that the amount of atomic oxygen produced by combustion reactions was much larger than that produced by electron impact processes. On the other hand, in the preheating zone, we observed high-frequency oscillation of the density of atomic oxygen at the timings of the pulsed current of DBD. The oscillation suggests the rapid consumption of additional atomic oxygen by combustion reactions. A numerical simulation using Chemkin indicates the shortened ignition delay time when adding additional atomic oxygen in the period of low-temperature oxidation. The present results reveals the importance of atomic oxygen, which is produced by the effect of high-energy electrons, in the preheating zone in plasma-assisted combustion of the steady-state premixed burner flame.

  20. Gas turbine premixing systems

    DOEpatents

    Kraemer, Gilbert Otto; Varatharajan, Balachandar; Evulet, Andrei Tristan; Yilmaz, Ertan; Lacy, Benjamin Paul

    2013-12-31

    Methods and systems are provided for premixing combustion fuel and air within gas turbines. In one embodiment, a combustor includes an upstream mixing panel configured to direct compressed air and combustion fuel through premixing zone to form a fuel-air mixture. The combustor includes a downstream mixing panel configured to mix additional combustion fuel with the fule-air mixture to form a combustion mixture.

  1. Microwave plasma jet assisted combustion of premixed methane-air: Roles of OH(A) and OH(X) radicals

    NASA Astrophysics Data System (ADS)

    Wang, Chuji; Wu, Wei

    2013-09-01

    Plasma assisted combustion (PAC) technology can enhance combustion performance by pre-heating combustion fuels, shortening ignition delay time, enhancing flame holding, or increasing flame volume and flame speed. PAC can also increase fuel efficiency by extending fuel lean flammability limit (LFL) and help reduce combustion pollutant emissions. Experiment results have shown that microwave plasma could modify flame structure, increase flame volume, flame speed, flame temperature, and flame stability, and could also extend the fuel lean flammability limit. We report on a novel microwave PAC system that allows us to study PAC using complicated yet well-controlled combinations of operating parameters, such as fuel equivalence ratio (φ) , fuel mixture flow rate, plasma gas flow rate, plasma gases, plasma jet configurations, symmetric or asymmetric fuel-oxidant injection patterns, etc. We have investigated the roles of the stated-resolved OH(A, X) radicals in plasma assisted ignition and combustion of premixed methane-air fuel mixtures. Results suggest that that both the electronically excited state OH(A) and the electronic ground state OH(X) enhance the methane-air ignition process, i.e. extending the fuel LFL, but the flame stabilization and flame holding is primarily determined by the electronic ground state OH(X) as compared to the role of the OH(A). E-mail: cw175@msstate.edu. Supported by National Science Foundation through the grant of ``A quantitative survey of combustion intermediates toward understanding of plasma-assisted combustion mechanism'' (CBET-1066486).

  2. Effects of gasoline reactivity and ethanol content on boosted premixed and partially stratified low-temperature gasoline combustion (LTGC)

    SciTech Connect

    Dec, John E.; Yang, Yi; Ji, Chunsheng; Dernotte, Jeremie

    2015-04-14

    Low-temperature gasoline combustion (LTGC), based on the compression ignition of a premixed or partially premixed dilute charge, can provide thermal efficiencies (TE) and maximum loads comparable to those of turbo-charged diesel engines, and ultra-low NOx and particulate emissions. Intake boosting is key to achieving high loads with dilute combustion, and it also enhances the fuel's autoignition reactivity, reducing the required intake heating or hot residuals. These effects have the advantages of increasing TE and charge density, allowing greater timing retard with good stability, and making the fuel Φ- sensitive so that partial fuel stratification (PFS) can be applied for higher loads and further TE improvements. However, at high boost the autoignition reactivity enhancement can become excessive, and substantial amounts of EGR are required to prevent overly advanced combustion. Accordingly, an experimental investigation has been conducted to determine how the tradeoff between the effects of intake boost varies with fuel-type and its impact on load range and TE. Five fuels are investigated: a conventional AKI=87 petroleum-based gasoline (E0), and blends of 10 and 20% ethanol with this gasoline to reduce its reactivity enhancement with boost (E10 and E20). Furthermore, a second zero-ethanol gasoline with AKI=93 (matching that of E20) was also investigated (CF-E0), and some neat ethanol data are also reported.

  3. Effects of gasoline reactivity and ethanol content on boosted premixed and partially stratified low-temperature gasoline combustion (LTGC)

    DOE PAGESBeta

    Dec, John E.; Yang, Yi; Ji, Chunsheng; Dernotte, Jeremie

    2015-04-14

    Low-temperature gasoline combustion (LTGC), based on the compression ignition of a premixed or partially premixed dilute charge, can provide thermal efficiencies (TE) and maximum loads comparable to those of turbo-charged diesel engines, and ultra-low NOx and particulate emissions. Intake boosting is key to achieving high loads with dilute combustion, and it also enhances the fuel's autoignition reactivity, reducing the required intake heating or hot residuals. These effects have the advantages of increasing TE and charge density, allowing greater timing retard with good stability, and making the fuel Φ- sensitive so that partial fuel stratification (PFS) can be applied for highermore » loads and further TE improvements. However, at high boost the autoignition reactivity enhancement can become excessive, and substantial amounts of EGR are required to prevent overly advanced combustion. Accordingly, an experimental investigation has been conducted to determine how the tradeoff between the effects of intake boost varies with fuel-type and its impact on load range and TE. Five fuels are investigated: a conventional AKI=87 petroleum-based gasoline (E0), and blends of 10 and 20% ethanol with this gasoline to reduce its reactivity enhancement with boost (E10 and E20). Furthermore, a second zero-ethanol gasoline with AKI=93 (matching that of E20) was also investigated (CF-E0), and some neat ethanol data are also reported.« less

  4. Premixed hydrocarbon stagnation flames : experiments and simulations to validate combustion chemical-kinetic models

    NASA Astrophysics Data System (ADS)

    Benezech, Laurent Jean-Michel

    A methodology based on the comparison of flame simulations relying on reacting flow models with experiment is applied to C1-C3 stagnation flames. The work reported targets the assessment and validation of the modeled reactions and reaction rates relevant to (C1-C3)-flame propagation in several detailed combustion kinetic models. A concensus does not, as yet, exist on the modeling of the reasonably well-understood oxidation of C1-C2 flames, and a better knowledge of C3 hydrocarbon combustion chemistry is required before attempting to bridge the gap between the oxidation of C1-C2 hydrocarbons and the more complex chemistry of heavier hydrocarbons in a single kinetic model. Simultaneous measurements of velocity and CH-radical profiles were performed in atmospheric propane(C3H8)- and propylene(C3H6)-air laminar premixed stagnation flames stabilized in a jet-wall configuration. These nearly-flat flames can be modeled by one-dimensional simulations, providing a means to validate kinetic models. Experimental data for these C3 flames and similar experimental data for atmospheric methane(CH4)-, ethane(C2H6)-, and ethylene(C2H4)-air flames are compared to numerical simulations performed with a one-dimensional hydrodynamic model, a multi-component transport formulation including thermal diffusion, and different detailed-chemistry models, in order to assess the adequacy of the models employed. A novel continuation technique between kinetic models was developed and applied successfully to obtain solutions with the less-robust models. The 2005/12 and 2005/10 releases of the San Diego mechanism are found to have the best overall performance in C3H8 and C3H6 flames, and in CH4, C2H6, and C2H4 flames, respectively. Flame position provides a good surrogate for flame speed in stagnation-flow stabilized flames. The logarithmic sensitivities of the simulated flame locations to variations in the kinetic rates are calculated via the "brute-force" method for fifteen representative flames

  5. Biogas Laminar Burning Velocity and Flammability Characteristics in Spark Ignited Premix Combustion

    NASA Astrophysics Data System (ADS)

    Anggono, Willyanto; Wardana, I. N. G.; Lawes, M.; Hughes, K. J.; Wahyudi, Slamet; Hamidi, Nurkholis; Hayakawa, Akihiro

    2013-04-01

    Spherically expanding flames propagating at constant pressure were employed to determine the laminar burning velocity and flammability characteristics of biogas-air mixtures in premixed combustion to uncover the fundamental flame propagation characteristics of a new alternative and renewable fuel. The results are compared with those from a methane-air flame. Biogas is a sustainable and renewable fuel that is produced in digestion facilities. The composition of biogas discussed in this paper consists of 66.4% methane, 30.6% carbon dioxide and 3% nitrogen. Burning velocity was measured at various equivalence ratios (phi) using a photographic technique in a high pressure fan-stirred bomb, the initial condition being at room temperature and atmospheric pressure. The flame for methane-air mixtures propagates from phi=0.6 till phi=1.3. The flame at phi >= 1.4 does not propagate because the combustion reaction is quenched by the larger mass of fuel. At phi<=0.5, it does not propagate as well since the heat of reaction is insufficient to burn the mixtures. The flame for biogas-air mixtures propagates in a narrower range, that is from phi=0.6 to phi=1.2. Different from the methane flame, the biogas flame does not propagate at phi>=1.3 because the heat absorbed by inhibitors strengthens the quenching effect by the larger mass of fuel. As in the methane flame, the biogas flame at phi<=0.5 does not propagate. This shows that the effect of inhibitors in extremely lean mixtures is small. Compared to a methane-air mixture, the flammability characteristic (flammable region) of biogas becomes narrower in the presence of inhibitors (carbon dioxide and nitrogen) and the presence of inhibitors causes a reduction in the laminar burning velocity. The inhibitor gases work more effectively at rich mixtures because the rich biogas-air mixtures have a higher fraction of carbon dioxide and nitrogen components compared to the lean biogas-air mixtures.

  6. A New Type of Steady and Stable, Laminar, Premixed Flame in Ultra-Lean, Hydrogen-Air Combustion

    SciTech Connect

    Grcar, Joseph F; Grcar, Joseph F

    2008-06-30

    Ultra-lean, hydrogen-air mixtures are found to support another kind of laminar flame that is steady and stable beside flat flames and flame balls. Direct numerical simulations are performed of flames that develop into steadily and stably propagating cells. These cells were the original meaning of the word"flamelet'' when they were observed in lean flammability studies conducted early in the development of combustion science. Several aspects of these two-dimensional flame cells are identified and are contrasted with the properties of one-dimensional flame balls and flat flames. Although lean hydrogen-air flames are subject to thermo-diffusive effects, in this case the result is to stabilize the flame rather than to render it unstable. The flame cells may be useful as basic components of engineering models for premixed combustion when the other types of idealized flames are inapplicable.

  7. Premixed turbulent flame propagation in microgravity

    NASA Technical Reports Server (NTRS)

    Menon, S.; Jagoda, J.; Sujith, R.

    1995-01-01

    To reduce pollutant formation there is, at present, an increased interest in employing premixed fuel/air mixture in combustion devices. It is well known that greater control over local temperature can be achieved with premixed flames and with lean premixed mixtures, significant reduction of pollutants such as NO(x) can be achieved. However, an issue that is still unresolved is the predictability of the flame propagation speed in turbulent premixed mixtures, especially in lean mixtures. Although substantial progress has been made in recent years, there is still no direct verification that flame speeds in turbulent premixed flows are highly predictable in complex flow fields found in realistic combustors. One of the problems associated with experimental verification is the difficulty in obtaining access to all scales of motion in typical high Reynolds number flows, since, such flows contain scales of motion that range from the size of the device to the smallest Kolmogorov scale. The overall objective of this study is to characterize the behavior of turbulent premixed flames at reasonable high Reynolds number, Re(sub L). Of particular interest here is the thin flame limit where the laminar flame thickness is much smaller than the Kolmogorov scale. Thin flames occur in many practical combustion devices and will be numerically studied using a recently developed new formulation that is briefly described.

  8. Laser Absorption Measurements of Equivalence Ratios Studied Along With Their Coupling to Pressure Fluctuations in Lean Premixed Prevaporized (LPP) Combustion

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet

    2001-01-01

    Concerns about damaging the Earth's ozone layer as a result of high levels of nitrogen oxides (known collectively as NOx) from high-altitude, high-speed aircraft have prompted the study of lean premixed prevaporized (LPP) combustion in aircraft engines. LPP combustion reduces NOx emissions principally by reducing the peak flame temperatures inside an engine. Recent advances in LPP technologies have realized exceptional reductions in pollutant emissions (single-digit ppm NOx for example). However, LPP combustion also presents major challenges: combustion instability and dynamic coupling effects between fluctuations in heat-release rate, dynamic pressure, and fuel pressure. These challenges are formidable and can literally shake an engine apart if uncontrolled. To better understand this phenomenon so that it can be controlled, we obtained real-time laser absorption measurements of the fuel vapor concentration (and equivalence ratio) simultaneously with the dynamic pressure, flame luminosity, and time-averaged gaseous emissions measurements in a research-type jet-A-fueled LPP combustor. The measurements were obtained in NASA Glenn Research Center's CE-5B optically accessible flame tube facility. The CE-5B facility provides inlet air temperatures and pressures similar to the actual operating conditions of real aircraft engines. The laser absorption measurements were performed using an infrared 3.39 micron HeNe laser in conjunction with a visible HeNe laser for liquid droplet scattering compensation.

  9. Effects of percentage of blockage and flameholder downstream counterbores on lean combustion limits of premixed, prevaporized propane-air mixture

    NASA Technical Reports Server (NTRS)

    Fernandez, M. A. B.

    1983-01-01

    Lean combustion limits were determined for a premixed prevaporized propane air mixture with flat plate flame stabilizers. Experiments were conducted in a constant area flame tube combustor utilizing flameholders of varying percentages of blockage and downstream counterbores. Combustor inlet air velocity at ambient conditions was varied from 4 to 9 meters per second. Flameholders with a center hole and four half holes surrounding it were tested with 63, 73, and 85 percent blockage and counterbore diameters of 112 and 125 percent of the thru hole diameter, in addition to the no counterbore configuration. Improved stability was obtained by using counterbore flameholders and higher percentages of blockage. Increases in mixture velocity caused the equivalence ratio at blowout to increase in all cases.

  10. Phase averaging of the precessing vortex core in a swirl burner under piloted and premixed combustion conditions

    SciTech Connect

    Froud, D.; O`Doherty, T.; Syred, N.

    1995-02-01

    The flow patterns produced in and past the exhaust of a 100-KW swirl burner have been investigated experimentally under piloted premixed combustion conditions. The well-known three-dimensional time-dependent instability called the precessing vortex core (PVC) dominates the flow and mixing patterns. The PVC and its associated cycle time were used to trigger a three-component laser anemometry system. Successive cycles were overlaid and phase averaged to give a three-dimensional picture of the rotating flow fields. Measurements were obtained over successive slices of the flow, extending to X/De = 2.5 past the burner exit. A description of the flow was thus obtained in terms of phase averaged tangential, axial and radial velocities in tangential/radial and axial/radial planes. The results confirm previous reported work on the same burner operated isothermally and show that the center of the vortex flow is displaced from the central axis of the burner, creating the PVC phenomena as the center of the vortex precesses around the central axis of symmetry. As a consequence of this displacement the reverse flow zone (RFZ) is also displaced, while also partially lagging behind the PVC by up to 180{degree}. The RFZ acts as a feedback mechanism for the PVC phenomena. As a consequence of the displaced vortex center, flow between the PVC center and the wall is squeezed. Thus, due to angular momentum flux consideration, it produces a considerable increase in tangential velocity and gives the characteristic PVC signal. The displaced RFZ is both rotating through a region of forward flow while also being of an intermittent nature, giving rise to the excellent flame stabilization and mixing characteristics of these types of burners. Similar results were obtained for isothermal and premixed combustion conditions providing the flame was stabilized close to the burner exit nozzle.

  11. Two-time correlation of heat release rate and spectrum of combustion noise from turbulent premixed flames

    NASA Astrophysics Data System (ADS)

    Liu, Yu

    2015-09-01

    The spectral characteristics of combustion noise are dictated by the temporal correlation of the overall change of heat release rate fluctuations which has not received sufficient attention in prior studies. In this work, the two-time correlation of the volumetric heat release rate fluctuations within the flame brush and its role in modeling combustion noise spectrum are investigated by analyzing direct numerical simulation (DNS) data of turbulent premixed V-flames. This two-time correlation can be well represented by Gaussian-type functions and it captures the slow global variation of the fluctuating heat release rate and hence the low-frequency noise sources of unsteady combustion. The resulting correlation model is applied to predict the far-field noise spectrum from test open flames, and different reference time scales are used to scale this correlation from the DNS data to the test flames. The comparison between predictions and measurements indicates that the correlation models of all reference time scales are capable of reproducing the essential spectral shape including the low- and high-frequency dependencies. Reasonable agreement in the peak frequency, peak sound pressure level, and the Strouhal number scaling of peak frequency is also achieved for two turbulent time scales. A promising convective time scale shows great potential for characterizing the spectral features, yet its predictive capabilities are to be further verified through a longer DNS signal of a bounded flame configuration.

  12. High-bandwidth Modulation of H2/Syngas Fuel to Control Combustion Dynamics in Micro-Mixing Lean Premix Systems

    SciTech Connect

    Jeff Melzak; Tim Lieuwen; Adel Mansour

    2012-01-31

    The goal of this program was to develop and demonstrate fuel injection technologies that will facilitate the development of cost-effective turbine engines for Integrated Gasification Combined Cycle (IGCC) power plants, while improving efficiency and reducing emissions. The program involved developing a next-generation multi-point injector with enhanced stability performance for lean premix turbine systems that burn hydrogen (H2) or synthesis gas (syngas) fuels. A previously developed injector that demonstrated superior emissions performance was improved to enhance static flame stability through zone staging and pilot sheltering. In addition, piezo valve technology was implemented to investigate the potential for enhanced dynamic stability through high-bandwidth modulation of the fuel supply. Prototype injector and valve hardware were tested in an atmospheric combustion facility. The program was successful in meeting its objectives. Specifically, the following was accomplished: Demonstrated improvement of lean operability of the Parker multi-point injector through staging of fuel flow and primary zone sheltering; Developed a piezo valve capable of proportional and high-bandwidth modulation of gaseous fuel flow at frequencies as high as 500 Hz; The valve was shown to be capable of effecting changes to flame dynamics, heat release, and acoustic signature of an atmospheric combustor. The latter achievement indicates the viability of the Parker piezo valve technology for use in future adaptively controlled systems for the mitigation of combustion instabilities, particularly for attenuating combustion dynamics under ultra-lean conditions.

  13. Computational study of inlet injection for a Pre-Mixed, Shock-Induced Combustion (PM/SIC) engine

    NASA Technical Reports Server (NTRS)

    Gonzalez, D. E.

    1995-01-01

    A computational simulation of reacting 2-D and 3-D flowfields in a model inlet section of a Pre-Mixed, Shock-Induced Combustion (PM/SIC) engine concept was performed. LARCK, a multi-dimensional Navier-Stokes code with finite-rate kinetics chemistry developed at NASA LaRC by J.A. White, was adapted for this simulation. The flow conditions in the simulation match those envisioned for the PM/SIC engine experiments currently planned at LaRC. The reacting flowfields were Mach 6.3 freestream air and Mach 2 hydrogen at various pressure and temperature conditions injected through a slot injector at the base of the inlet section. In the PM/SIC engine, fuel is injected at the inlet section upstream of the combustor, and reaction is initiated by the shock wave at the inlet which increases the gas temperature and pressure beyond the kinetic limits for reaction. Many challenges exist prior to establishing shock-controlled combustion as a practical engine concept. These challenges include fuel injection schemes that can provide proper fuel-air mixing without creating large losses in the inlet section, and control of the combustion process so that early ignition or combustion propagation through the inlet boundary layer does not occur. For this project, a parametrics study was carried out to model the fuel injection of hydrogen at different flow conditions. It was found that, as the fuel temperature and pressure were increased, the potential for pre-ignition was high at a short distance downstream of the slot injector. The next stage of this work will investigate injection techniques for enhancing mixing of fuel and air in a manner that prevents or reduces the potential for premature ignition observed numerically.

  14. Systematically reduced rate mechanisms and presumed PDF models for premixed turbulent combustion

    SciTech Connect

    Bray, Ken; Champion, Michel; Libby, Paul A.

    2010-03-15

    The use of reduced kinetic mechanisms in models for turbulent premixed flames, at large but finite Damkoehler numbers, is described. Taking as examples the two cases of hydrogen-air and methane-air systems for which there exist reduced kinetic schemes characterized by two independent scalar variables only, it is shown that the mean chemical production rate can be in a general way expressed as the product of a mixing factor, depending on the segregation of species due to turbulence, with a reaction rate factor. In this latter factor the probability density function (PDF) of the two scalars appears only as a constant integral quantity. The extension of this analysis to systems involving more than two independent scalars is envisaged. The general result is applied to the two specific cases of interior PDF's modelled by (i) a single Dirac delta function and (ii) a laminar flamelet. (author)

  15. Finite rate chemistry and presumed PDF models for premixed turbulent combustion

    SciTech Connect

    Bray, K.N.C.; Swaminathan, N.; Champion, M.; Libby, P.A.

    2006-09-15

    The sensitivity of the prediction of mean reaction rates in turbulent premixed flames to presumed PDF shape is studied. Three different presumed PDF shapes are considered: (i) a beta function PDF, (ii) a twin delta function PDF, and (iii) a PDF based on unstrained laminar flame properties. The unstrained laminar flame has the same thermochemistry as the turbulent flame. Emphasis is placed on capturing the finite rate chemistry effects and obtaining a simple expression for the mean reaction rate. It is shown that, as the PDFs approach their bimodal limit, the mean reaction rate expressions obtained using the above three PDFs reduce to a common form. These expressions differ only in the numerical value of a multiplying factor. Predictions are compared with DNS data. Under the conditions of this comparison, the beta function and twin delta function PDFs lead to significant errors, while the PDF based on properties of an unstrained laminar flame gives good agreement with the DNS. (author)

  16. Lean Combustion Limits of a Confined Premixed-Prevaporized Propane Jet

    NASA Technical Reports Server (NTRS)

    Huck, K. L.; Marek, C. J.

    1978-01-01

    Lean blowout limits were reported for a premixed prevaporized propane jet issuing into a cylindrical combustor. A single hole in a flat plate was used as a flameholder. Flameholders with various hole diameters were used. Jet velocities were varied from 3 to 290 meters per second. The combustor cross sectional area was changed by using different quartz liners of 12.7 and 22.2 millimeters diameters. As a result the combustor Reynolds number varied from 1000 to 9000. Stability was achieved at laminar as well as turbulent conditions. Three zones of flame stability were observed. The blowout equivalence ratio varied with step size and the combustor and jet Reynolds numbers. The combustor inlet mixture temperature was 395 K, and the combustor pressure was 1 atmosphere.

  17. Combustion Characteristics in a Non-Premixed Cool-Flame Regime of n-Heptane in Microgravity

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, Viswanath R.; Hicks, Michael C.

    2015-01-01

    A series of distinct phenomena have recently been observed in single-fuel-droplet combustion tests performed on the International Space Station (ISS). This study attempts to simulate the observed flame behavior numerically using a gaseous n-heptane fuel source in zero gravity and a time-dependent axisymmetric (2D) code, which includes a detailed reaction mechanism (127 species and 1130 reactions), diffusive transport, and a radiation model (for CH4, CO, CO2, H2O, and soot). The calculated combustion characteristics depend strongly on the air velocity around the fuel source. In a near-quiescent air environment (< or = 2 mm/s), with a sufficiently large fuel injection velocity (1 cm/s), a growing spherical diffusion flame extinguishes at ˜1200 K due to radiative heat losses. This is typically followed by a transition to the low-temperature (cool-flame) regime with a reaction zone (at ˜700 K) in close proximity to the fuel source. The 'cool flame' regime is formed due to the negative temperature coefficient in the low-temperature chemistry. After a relatively long period (˜18 s) of the cool flame regime, a flash re-ignition occurs, associated with flame-edge propagation and subsequent extinction of the re-ignited flame. In a low-speed (˜3 mm/s) airstream (which simulates the slight droplet movement), the diffusion flame is enhanced upstream and experiences a local extinction downstream at ˜1200 K, followed by steady flame pulsations (˜0.4 Hz). At higher air velocities (4-10 mm/s), the locally extinguished flame becomes steady state. The present axisymmetric computational approach helps in revealing the non-premixed 'cool flame' structure and 2D flame-flow interactions observed in recent microgravity droplet combustion experiments.

  18. Excitable dynamics in high-Lewis number premixed gas combustion at normal and microgravity

    NASA Technical Reports Server (NTRS)

    Pearlman, Howard

    1995-01-01

    Freely-propagating, premixed gas flames in high-Lewis (Le) number, quiescent mixtures are studied experimentally in tubes of various diameter at normal (lg) and microgravity (mu g). A premixture of lean butane and oxygen diluted with helium, argon, neon, nitrogen or a mixture of multiple diluents is examined such that the thermal diffusivity of the mixture (and to a lesser extent, the mass diffusivity of the rate-limiting component) is systematically varied. In effect, different diluents allow variation of the Le without changing the chemistry. The flames are recorded with high speed cinematography and their stability is visually assessed. Different modes of propagation were observed depending on the diameter of the tubes (different conductive heat loss), the composition of the mixture and the g-level. At 1g, four modes of propagation were observed in small and intermediate diameter tubes (large conductive heat loss): (1) steadily propagating flames, (2) radial and longitudinal pulsating flames, (3) 'wavering' flames, and (4) rotating spiral flames. As the diameter of the tube increases, the radial modes become more pronounced while the longitudinal modes systematically disappear. Also, multiple, simultaneous, spatially-separated 'pacemaker' sites are observed in intermediate and large diameter tubes. Each site starts as a small region of high luminosity and develops into a flamelet which assumes the form of one of the fore mentioned modes. These flamelets eventually interact, annihilate each other in their regions of intersection and merge at their newly created free-ends. For very large tubes, radially-propagating wave-trains (believed to be 'trigger waves') are observed. These are analogous to the radial pulsations observed in the smaller diameter tubes. At mu g, three modes of propagation have been observed: (1) steadily propagating flames, (2) radial and longitudinal pulsating flames, and (3) multi-armed, rotating flames. Since the pulsating mode exists at mu

  19. Lean premixed recirculating flow combustion for control of oxides of nitrogen

    NASA Technical Reports Server (NTRS)

    Schefer, R. W.; Sawyer, R. F.

    1977-01-01

    The objectives of the reported investigation included the demonstration of a system in which combustion can be maintained under very lean conditions. Aspects of pollutant formation and the stability characteristics of the system were studied. An opposed reacting jet model laboratory combustor was employed in the experiments. Results obtained with the aid of an analytical modeling technique based on the computational scheme reported by Gosman et al. (1969) are also presented. The investigation indicates that fuel lean combustion might provide an effective means of achieving low pollutant emission levels.

  20. A Study of Premixed, Shock-Induced Combustion With Application to Hypervelocity Flight

    NASA Technical Reports Server (NTRS)

    Axdahl, Erik L.

    2013-01-01

    One of the current goals of research in hypersonic, airbreathing propulsion is access to higher Mach numbers. A strong driver of this goal is the desire to integrate a scramjet engine into a transatmospheric vehicle airframe in order to improve performance to low Earth orbit (LEO) or the performance of a semiglobal transport. An engine concept designed to access hypervelocity speeds in excess of Mach 10 is the shock-induced combustion ramjet (i.e. shcramjet). This dissertation presents numerical studies simulating the physics of a shcramjet vehicle traveling at hypervelocity speeds with the goal of understanding the physics of fuel injection, wall autoignition mitigation, and combustion instability in this flow regime.

  1. Spatially distributed flame transfer functions for predicting combustion dynamics in lean premixed gas turbine combustors

    SciTech Connect

    Kim, K.T.; Lee, J.G.; Quay, B.D.; Santavicca, D.A.

    2010-09-15

    The present paper describes a methodology to improve the accuracy of prediction of the eigenfrequencies and growth rates of self-induced instabilities and demonstrates its application to a laboratory-scale, swirl-stabilized, lean-premixed, gas turbine combustor. The influence of the spatial heat release distribution is accounted for using local flame transfer function (FTF) measurements. The two-microphone technique and CH{sup *} chemiluminescence intensity measurements are used to determine the input (inlet velocity perturbation) and the output functions (heat release oscillation), respectively, for the local flame transfer functions. The experimentally determined local flame transfer functions are superposed using the flame transfer function superposition principle, and the result is incorporated into an analytic thermoacoustic model, in order to predict the linear stability characteristics of a given system. Results show that when the flame length is not acoustically compact the model prediction calculated using the local flame transfer functions is better than the prediction made using the global flame transfer function. In the case of a flame in the compact flame regime, accurate predictions of eigenfrequencies and growth rates can be obtained using the global flame transfer function. It was also found that the general response characteristics of the local FTF (gain and phase) are qualitatively the same as those of the global FTF. (author)

  2. Fuel-Air Mixing Effect on Nox Emissions for a Lean Premixed-Prevaporized Combustion System

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming; Chun, Kue S.; Locke, Randy J.

    1995-01-01

    The lean premixed-prevaporized (LPP) concept effectively meets low nitrogen oxides (NOx) emission requirements for combustors with the high inlet temperature and pressure typical of the High-Speed Civil Transport (HSCT). For the LPP system fuel-air mixture uniformity is probably the most important factor for low NOx emissions. Previous studies have suggested that the fuel-air mixture uniformity can be severely affected by changing the number and configuration of fuel injection points. Therefore, an experimental study was performed to determine how the number of fuel injection points and their arrangement affect NOx emissions from an LPP system. The NOx emissions were measured by a gas-sampling probe in a flame-tube rig at the following conditions: inlet temperature of 810 K (1000 F), rig pressure of 10 atm, reference velocity of 150 ft/s, and residence time near 0.005 s. Additionally, a focused Schlieren diagnostic technique coupled with a high speed camera was used to provide a qualitative description of the spatial flow field.

  3. A Sectored-One-Dimensional Model for Simulating Combustion Instabilities in Premix Combustors

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.

    1999-01-01

    A one-dimensional, CFD based combustor simulation has been developed that exhibits self-excited, thermoacoustic oscillations in premixed combustor geometries that typically have large, abrupt changes in cross sectional area. The combustor geometry is approximated by dividing it into a finite number of one-dimensional sectors. Within each sector, the equations of motion are integrated numerically, along with a species transport and a reaction equation. Across the sectors, mass and energy are conserved, and momentum loss is prescribed using appropriately compatible boundary conditions that account for the area change. The resulting simulation and associated boundary conditions essentially represent a one-dimensional, multi-block technique. Details of the simulation code are presented herein. Results are then shown comparing experimentally observed and simulated operation of a particular combustor rig that exhibited different instabilities at different operating points. It will be shown that the simulation closely matched the rig data in oscillation amplitudes, frequencies, and operating points at which the instabilities occurred. Finally, advantages and limitations of the simulation technique are discussed.

  4. Effects of Turbulence on the Combustion Properties of Partially Premixed Flames of Canola Methyl Ester and Diesel Blends

    DOE PAGESBeta

    Dhamale, N.; Parthasarathy, R. N.; Gollahalli, S. R.

    2011-01-01

    Canola methyl ester (CME) is a biofuel that is a renewable alternative energy resource and is produced by the transesterification of canola oil. The objective of this study was to document the effects of turbulence on the combustion characteristics of blends of CME and No 2 diesel fuel in a partially-premixed flame environment. The experiments were conducted with mixtures of pre-vaporized fuel and air at an initial equivalence ratio of 7 and three burner exit Reynolds numbers, 2700, 3600, and 4500. Three blends with 25, 50, and 75% volume concentration of CME were studied. The soot volume fraction was highestmore » for the pure diesel flames and did not change significantly with Reynolds number due to the mutually compensating effects of increased carbon input rate and increased air entrainment as the Reynolds number was increased. The global NOx emission index was highest and the CO emission index was the lowest for the pure CME flame, and varied non-monotonically with biofuel content in the blend The mean temperature and the NOx concentration at three-quarter flame height were generally correlated, indicating that the thermal mechanism of NOx formation was dominant in the turbulent biofuel flames also.« less

  5. Experimental and kinetic modeling study of the combustion of Jet-A and S-8 fuels in laminar premixed flames

    NASA Astrophysics Data System (ADS)

    Nishiie, Takayuki

    Laminar flame speeds and Markstein lengths of Jet-A/air, and S-8/air flames at an elevated initial temperature and various initial pressures were measured using spherically expanding premixed flames. The experimental facility has been developed to study the combustion behaviors of high-boiling-point and low-vapor-pressure liquid fuels. The experiment used a spherical combustion chamber housed inside a customized oven, which provides a uniform temperature distribution inside the chamber for fuel evaporation. Two different fuel injection systems -- the partial pressure method and the volume method, were used to measure the fuel to air ratio of the mixture, and the flame speeds from these methods were compared. There was large discrepancy in the flame speeds between the two methods for multi-component fuel, such as Jet-A. The measured flame speed data of Jet-A/air and S-8/air flames were compared to those by other researchers as well as numerical simulation results using several existing kinetic mechanisms and surrogate models. The results show that the flame speed data in present measurements were slightly lower than those by other researchers using the counterflow flame methods. Moreover, the results show the large discrepancies between present measured flame speed data and numerically calculated data. The Markstein lengths of heavy hydrocarbons including Jet-A and S-8 show that the value decreases as the equivalence ratio. The flame instabilities were observed for the flames with negative Markstein lengths. The pressure increase decreases the flame speeds throughout the stoichiometory. The pressure increase also decreases the Markstein lengths throughout the stoichiometory, and enhances the hydrodynamic instability on the flame.

  6. Computational modeling of thermodynamic irreversibilities in turbulent non-premixed combustion

    NASA Astrophysics Data System (ADS)

    Bouras, Fethi; Khaldi, Fouad

    2016-04-01

    This work is focused on the analysis of various computed terms of entropy generation rate in the gaseous combustion processes at different inlet temperatures of air and CH4. Therefore, the expression of the entropy generation rate includes the effect of the viscosity friction, the thermal diffusion, the species diffusion and the chemical reaction. The expressions have been used for each term of entropy generation in order to examine the influence of each one in the overall system.

  7. The influence of CO2 in biogas flammability limit and laminar burning velocity in spark ignited premix combustion at various pressures

    NASA Astrophysics Data System (ADS)

    Anggono, W.; Wardana, I. N. G.; Lawes, M.; Hughes, K. J.; Wahyudi, S.; Hamidi, N.; Hayakawa, A.

    2016-03-01

    Biogas is an alternative energy source that is sustainable and renewable containing more than 50% CH4 and its biggest impurity or inhibitor is CO2. Demands for replacing fossil fuels require an improved fundamental understanding of its combustion processes. Flammability limits and laminar burning velocities are important characteristics in these processes. Thus, this research focused on the effects of CO2 on biogas flammability limits and laminar burning velocities in spark ignited premixed combustion. Biogas was burned in a spark ignited spherical combustion bomb. Spherically expanding laminar premixed flames, freely propagating from spark ignition in initial, were continuously recorded by a high-speed digital camera. The combustion bomb was filled with biogas-air mixtures at various pressures, CO2 levels and equivalence ratios (ϕ) at ambient temperature. The results were also compared to those of the previous study into inhibitorless biogas (methane) at various pressures and equivalence ratios (ϕ). Either the flammable areas become narrower with increased percentages of carbon dioxide or the pressure become lower. In biogas with 50% CO2 content, there was no biogas flame propagation for any equivalence ratio at reduced pressure (0.5 atm). The results show that the laminar burning velocity at the same equivalence ratio declined in respect with the increased level of CO2. The laminar burning velocities were higher at the same equivalence ratio by reducing the initial pressure.

  8. An experimental study of the effect of a pilot flame on technically pre-mixed, self-excited combustion instabilities

    NASA Astrophysics Data System (ADS)

    O'Meara, Bridget C.

    Combustion instabilities are a problem facing the gas turbine industry in the operation of lean, pre-mixed combustors. Secondary flames known as "pilot flames" are a common passive control strategy for eliminating combustion instabilities in industrial gas turbines, but the underlying mechanisms responsible for the pilot flame's stabilizing effect are not well understood. This dissertation presents an experimental study of a pilot flame in a single-nozzle, swirl-stabilized, variable length atmospheric combustion test facility and the effect of the pilot on combustion instabilities. A variable length combustor tuned the acoustics of the system to excite instabilities over a range of operating conditions without a pilot flame. The inlet velocity was varied from 25 -- 50 m/s and the equivalence ratio was varied from 0.525 -- 0.65. This range of operating conditions was determined by the operating range of the combustion test facility. Stability at each operating condition and combustor length was characterized by measurements of pressure oscillations in the combustor. The effect of the pilot flame on the magnitude and frequency of combustor stability was then investigated. The mechanisms responsible for the pilot flame effect were studied using chemiluminescence flame images of both stable and unstable flames. Stable flame structure was investigated using stable flame images of CH* chemiluminescence emission. The effect of the pilot on stable flame metrics such as flame length, flame angle, and flame width was investigated. In addition, a new flame metric, flame base distance, was defined to characterize the effect of the pilot flame on stable flame anchoring of the flame base to the centerbody. The effect of the pilot flame on flame base anchoring was investigated because the improved stability with a pilot flame is usually attributed to improved flame anchoring through the recirculation of hot products from the pilot to the main flame base. Chemiluminescence images

  9. A flamelet model for supersonic non-premixed combustion with pressure variation

    NASA Astrophysics Data System (ADS)

    Zhao, Guo-Yan; Sun, Ming-Bo; Wu, Jin-Shui; Wang, Hong-Bo

    2015-08-01

    A modified flamelet model is proposed for studying supersonic combustion with pressure variation considering that pressure is far from homogenous in a supersonic combustor. In this model, the flamelet database are tabulated at a reference pressure, while quantities at other pressure are obtained using a sixth-order polynomial in pressure. Attributed to merit of the modified model which compute coefficients for the expansion only. And they brought less requirements for memory and table lookup time, expensive cost is avoided. The performance of modified model is much better than the approach of using a flamelet model-based method with tabulation at different pressure values. Two types of hydrogen fueled scramjet combustors were introduced to validate the modified flamelet model. It was observed that the temperature is sensitive to the choice of model in combustion area, which in return will significantly affect the pressure. It was found that the results of modified model were in good agreement with the experimental data compared with the isobaric flamelet model, especially for temperature, whose value is more accurately predicted. It is concluded that the modified flamelet model was more effective for cases with a wide range of pressure variation.

  10. Experimental and Numerical Investigation of Vortical Structures in Lean Premixed Swirl-Stabilized Combustion

    NASA Astrophysics Data System (ADS)

    Taamallah, Soufien; Chakroun, Nadim; Shanbhogue, Santosh; Kewlani, Gaurav; Ghoniem, Ahmed

    2015-11-01

    A combined experimental and LES investigation is performed to identify the origin of major flow dynamics and vortical structures in a model gas turbine's swirl-stabilized turbulent combustor. Swirling flows in combustion lead to the formation of complex flow dynamics and vortical structures that can interact with flames and influence its stabilization. Our experimental results for non-reacting flow show the existence of large scale precession motion. The precessing vortex core (PVC) dynamics disappears with combustion but only above a threshold of equivalence ratio. In addition, large scale vortices along the inner shear layer (ISL) are observed. These structures interact with the ISL stabilized flame and contribute to its wrinkling. Next, the LES setup is validated against the flow field's low-order statistics and point temperature measurement in relevant areas of the chamber. Finally, we show that LES is capable of predicting the precession motion as well as the ISL vortices in the reacting case: we find that ISL vortices originate from a vortex core that is formed right downstream of the swirler's centerbody. The vortex core has a conical spiral shape resembling a corkscrew that interacts - as it winds out - with the flame when it reaches the ISL.

  11. Progress in Advanced Spray Combustion Code Integration

    NASA Technical Reports Server (NTRS)

    Liang, Pak-Yan

    1993-01-01

    A multiyear project to assemble a robust, muitiphase spray combustion code is now underway and gradually building up to full speed. The overall effort involves several university and government research teams as well as Rocketdyne. The first part of this paper will give an overview of the respective roles of the different participants involved, the master strategy, the evolutionary milestones, and an assessment of the state-of-the-art of various key components. The second half of this paper will highlight the progress made to date in extending the baseline Navier-Stokes solver to handle multiphase, multispecies, chemically reactive sub- to supersonic flows. The major hurdles to overcome in order to achieve significant speed ups are delineated and the approaches to overcoming them will be discussed.

  12. Chemical structures of low-pressure premixed methylcyclohexane flames as benchmarks for the development of a predictive combustion chemistry model

    SciTech Connect

    Skeen, Scott A.; Yang, Bin; Jasper, Ahren W.; Pitz, William J.; Hansen, Nils

    2011-11-14

    The chemical compositions of three low-pressure premixed flames of methylcyclohexane (MCH) are investigated with the emphasis on the chemistry of MCH decomposition and the formation of aromatic species, including benzene and toluene. The flames are stabilized on a flat-flame (McKenna type) burner at equivalence ratios of φ = 1.0, 1.75, and 1.9 and at low pressures between 15 Torr (= 20 mbar) and 30 Torr (= 40 mbar). The complex chemistry of MCH consumption is illustrated in the experimental identification of several C7H12, C7H10, C6H12, and C6H10 isomers sampled from the flames as a function of distance from the burner. Three initiation steps for MCH consumption are discussed: ring-opening to heptenes and methyl-hexenes (isomerization), methyl radical loss yielding the cyclohexyl radical (dissociation), and H abstraction from MCH. Mole fraction profiles as a function of distance from the burner for the C7 species supplemented by theoretical calculations are presented, indicating that flame structures resulting in steeper temperature gradients and/or greater peak temperatures can lead to a relative increase in MCH consumption through the dissociation and isomerization channels. Trends observed among the stable C6 species as well as 1,3-pentadiene and isoprene also support this conclusion. Relatively large amounts of toluene and benzene are observed in the experiments, illustrating the importance of sequential H-abstraction steps from MCH to toluene and from cyclohexyl to benzene. Furthermore, modeled results using the detailed chemical model of Pitz et al. (Proc. Combust. Inst.2007, 31, 267–275) are also provided to illustrate the use of these data as a benchmark for the improvement or future development of a MCH mechanism.

  13. Chemical structures of low-pressure premixed methylcyclohexane flames as benchmarks for the development of a predictive combustion chemistry model

    DOE PAGESBeta

    Skeen, Scott A.; Yang, Bin; Jasper, Ahren W.; Pitz, William J.; Hansen, Nils

    2011-11-14

    The chemical compositions of three low-pressure premixed flames of methylcyclohexane (MCH) are investigated with the emphasis on the chemistry of MCH decomposition and the formation of aromatic species, including benzene and toluene. The flames are stabilized on a flat-flame (McKenna type) burner at equivalence ratios of φ = 1.0, 1.75, and 1.9 and at low pressures between 15 Torr (= 20 mbar) and 30 Torr (= 40 mbar). The complex chemistry of MCH consumption is illustrated in the experimental identification of several C7H12, C7H10, C6H12, and C6H10 isomers sampled from the flames as a function of distance from the burner.more » Three initiation steps for MCH consumption are discussed: ring-opening to heptenes and methyl-hexenes (isomerization), methyl radical loss yielding the cyclohexyl radical (dissociation), and H abstraction from MCH. Mole fraction profiles as a function of distance from the burner for the C7 species supplemented by theoretical calculations are presented, indicating that flame structures resulting in steeper temperature gradients and/or greater peak temperatures can lead to a relative increase in MCH consumption through the dissociation and isomerization channels. Trends observed among the stable C6 species as well as 1,3-pentadiene and isoprene also support this conclusion. Relatively large amounts of toluene and benzene are observed in the experiments, illustrating the importance of sequential H-abstraction steps from MCH to toluene and from cyclohexyl to benzene. Furthermore, modeled results using the detailed chemical model of Pitz et al. (Proc. Combust. Inst.2007, 31, 267–275) are also provided to illustrate the use of these data as a benchmark for the improvement or future development of a MCH mechanism.« less

  14. Modelling of Landau-Darrieus and thermo-diffusive instability effects for CFD simulations of laminar and turbulent premixed combustion

    NASA Astrophysics Data System (ADS)

    Keppeler, Roman; Pfitzner, Michael

    2015-01-01

    An algebraic model is derived that accounts for the effects of non-resolved Landau-Darrieus and thermo-diffusive instabilities on the propagation speed of fully premixed laminar and turbulent flame fronts in the Large Eddy Simulation (LES) context provided that the laminar flame speed appears as a model parameter in the LES combustion model. The model is derived assuming fractal characteristics of flames which exhibit cellular structures due to instabilities. The smallest and largest unstable wavelengths are computed employing a dispersion relation for nominally planar flames. Values for the fractal dimension characterising the flame structures are taken from the literature. A phenomenological model accounts for the stabilising effect of strain. Based on experimental data, a correlation for a critical strain rate, which indicates the onset of instabilities, is formulated. To validate the new model which accounts for instabilities on the effective speed of laminar flame propagation, laminar expanding spherical methane-air flames at p = 5 bar and p = 10 bar are simulated in the LES context. Values for the fractal dimension, as proposed in the literature, are varied. The predicted flame propagation speed is in very good agreement with experimental data when applying a fractal dimension of about D = 2.06. The critical strain turns out to be a suitable parameter to indicate the onset of instabilities and to quantify the influence of instabilities. Simulations applying a second model proposed by Bradley and valid for spherically expanding flames show similar results. LES of turbulent Bunsen flames at 1, 5 and 10 bar, which are characterised by u‧/s0L < 1, are performed to evaluate the derived instability model for turbulent flames. The simulated flames (from the Kobayashi database) have already been experimentally investigated in the context of Landau-Darrieus and thermo-diffusive instabilities. In agreement with conclusions from these investigations, for the

  15. Combustion Noise at Elevated Pressures in a Liquid-Fueled Premixed Combustor

    NASA Technical Reports Server (NTRS)

    Darling, Douglas; Radhakrishnan, Krishnan; Oyediran, Ayo

    1997-01-01

    Noise generated in gas turbine combustors can exist in several forms-broadband noise, sharp resonant peaks, and regular or intermittent nonlinear pulsing. In the present study, dynamic pressure measurements were made in several JP-5-fueled combustor configurations, at various mean pressures and temperatures. The fluctuating pressure was measured at mean pressures from 6 to 14 atm and inlet temperatures from 550 K to 850 K. The goal of the present work was to study the effect of changes in mean flow conditions on combustor noise: both broadband noise and sharp tones were considered. In general, the shape of the broadband noise spectrum was consistent from one configuration to another. The shape of the spectrum was influenced by the acoustic filtering of the combustion zone. This filtering ensured the basic consistency of the spectra. In general, the trends in broadband noise observed at low mean pressures were also seen at high mean pressures; that is, the total sound level decreased with both increasing equivalence ratio and increasing inlet temperature. The combustor configurations without a central pilot experienced higher broadband noise levels and were more susceptible to narrow peak resonances than configurations with a central pilot. The sharp peaks were more sensitive to the mean flow than was the broadband noise, and the effects were not always the same. In some situations, increasing the equivalence ratio made the sharp peaks grow, while at other conditions, increasing the equivalence ratio made the sharp peaks shrink. Thus, it was difficult to predict when resonances would occur; however, they were reproducible. Acoustic coupling between the upstream and downstream regions of the combustor may play a role in the sharp-peaked oscillations. Noise was also observed near lean blow out. As with other types of noise, lean blow out noise was affected by the combustion chamber acoustics, which apparently maintains the fluctuations at a uniform frequency. However

  16. Numerical simulation of the interaction between a flowfield and chemical reaction on premixed pulsed jet combustion

    NASA Astrophysics Data System (ADS)

    Hishida, Manabu; Hayashi, A. Koichi

    1992-12-01

    Pulsed Jet Combustion (PJC) is numerically simulated using time-dependent, axisymmetric, full Navier-Stokes equations with the mass, momentum, energy, and species conservation equations for a hydrogen-air mixture. A hydrogen-air reaction mechanism is modeled by nine species and nineteen elementary forward and backward reactions to evaluate the effect of the chemical reactions accurately. A point implicit method with the Harten and Yee's non-MUSCL (Monotone Upstream-centerd Schemes for Conservation Laws) modified-flux type TVD (Total Variation Diminishing) scheme is applied to deal with the stiff partial differential equations. Furthermore, a zonal method making use of the Fortified Solution Algorithm (FSA) is applied to simulate the phenomena in the complicated shape of the sub-chamber. The numerical result shows that flames propagating in the sub-chamber interact with pressure waves and are deformed to be wrinkled like a 'tulip' flame and a jet passed through the orifice changes its mass flux quasi-periodically.

  17. A Study of Pollutant Formation from the Lean Premixed Combustion of Gaseous Fuel Alternatives to Natural Gas

    NASA Astrophysics Data System (ADS)

    Fackler, Keith Boyd, Jr.

    The goal of this research is to identify how nitrogen oxide (NO x) emissions and flame stability (blowout) are impacted by the use of fuels that are alternatives to typical pipeline natural gas. The research focuses on lean, premixed combustors that are typically used in state-of-the-art natural gas fueled systems. An idealized laboratory lean premixed combustor, specifically the jet-stirred reactor, is used for experimental data. A series of models, including those featuring detailed fluid dynamics and those focusing on detailed chemistry, are used to interpret the data and understand the underlying chemical kinetic reasons for differences in emissions between the various fuel blends. An ultimate goal is to use these data and interpretive tools to develop a way to predict the emission and stability impacts of changing fuels within practical combustors. All experimental results are obtained from a high intensity, single-jet stirred reactor (JSR). Five fuel categories are studied: (1) pure H 2, (2) process and refinery gas, including combinations of H2, CH4, C2H6, and C3H8, (3) oxygen blown gasified coal/petcoke composed of H2, CO, and CO2, (4) landfill and digester gas composed of CH4, CO2, and N2, and (5) liquified natural gas (LNG)/shale/associated gases composed of CH4, C2H6, and C3 H8. NOx measurements are taken at a nominal combustion temperature of 1800 K, atmospheric pressure, and a reactor residence time of 3 ms. This is done to focus the results on differences caused by fuel chemistry by comparing all fuels at a common temperature, pressure, and residence time. This is one of the few studies in the literature that attempts to remove these effects when studying fuels varying in composition. Additionally, the effects of changing temperature and residence time are investigated for selected fuels. At the nominal temperature and residence time, the experimental and modeling results show the following trends for NOx emissions as a function of fuel type: 1.) NOx

  18. Investigation of non-premixed flame combustion characters in GO2/GH2 shear coaxial injectors using non-intrusive optical diagnostics

    NASA Astrophysics Data System (ADS)

    Dai, Jian; Yu, NanJia; Cai, GuoBiao

    2015-12-01

    Single-element combustor experiments are conducted for three shear coaxial geometry configuration injectors by using gaseous oxygen and gaseous hydrogen (GO2/GH2) as propellants. During the combustion process, several spatially and timeresolved non-intrusive optical techniques, such as OH planar laser induced fluorescence (PLIF), high speed imaging, and infrared imaging, are simultaneously employed to observe the OH radical concentration distribution, flame fluctuations, and temperature fields. The results demonstrate that the turbulent flow phenomenon of non-premixed flame exhibits a remarkable periodicity, and the mixing ratio becomes a crucial factor to influence the combustion flame length. The high speed and infrared images have a consistent temperature field trend. As for the OH-PLIF images, an intuitionistic local flame structure is revealed by single-shot instantaneous images. Furthermore, the means and standard deviations of OH radical intensity are acquired to provide statistical information regarding the flame, which may be helpful for validation of numerical simulations in future. Parameters of structure configurations, such as impinging angle and oxygen post thickness, play an important role in the reaction zone distribution. Based on a successful flame contour extraction method assembled with non-linear anisotropic diffusive filtering and variational level-set, it is possible to implement a fractal analysis to describe the fractal characteristics of the non-premixed flame contour. As a result, the flame front cannot be regarded as a fractal object. However, this turbulent process presents a self-similarity characteristic.

  19. A Study of Pollutant Formation from the Lean Premixed Combustion of Gaseous Fuel Alternatives to Natural Gas

    NASA Astrophysics Data System (ADS)

    Fackler, Keith Boyd, Jr.

    The goal of this research is to identify how nitrogen oxide (NO x) emissions and flame stability (blowout) are impacted by the use of fuels that are alternatives to typical pipeline natural gas. The research focuses on lean, premixed combustors that are typically used in state-of-the-art natural gas fueled systems. An idealized laboratory lean premixed combustor, specifically the jet-stirred reactor, is used for experimental data. A series of models, including those featuring detailed fluid dynamics and those focusing on detailed chemistry, are used to interpret the data and understand the underlying chemical kinetic reasons for differences in emissions between the various fuel blends. An ultimate goal is to use these data and interpretive tools to develop a way to predict the emission and stability impacts of changing fuels within practical combustors. All experimental results are obtained from a high intensity, single-jet stirred reactor (JSR). Five fuel categories are studied: (1) pure H 2, (2) process and refinery gas, including combinations of H2, CH4, C2H6, and C3H8, (3) oxygen blown gasified coal/petcoke composed of H2, CO, and CO2, (4) landfill and digester gas composed of CH4, CO2, and N2, and (5) liquified natural gas (LNG)/shale/associated gases composed of CH4, C2H6, and C3 H8. NOx measurements are taken at a nominal combustion temperature of 1800 K, atmospheric pressure, and a reactor residence time of 3 ms. This is done to focus the results on differences caused by fuel chemistry by comparing all fuels at a common temperature, pressure, and residence time. This is one of the few studies in the literature that attempts to remove these effects when studying fuels varying in composition. Additionally, the effects of changing temperature and residence time are investigated for selected fuels. At the nominal temperature and residence time, the experimental and modeling results show the following trends for NOx emissions as a function of fuel type: 1.) NOx

  20. A Simulation of the Effects of Varying Repetition Rate and Pulse Width of Nanosecond Discharges on Premixed Lean Methane-Air Combustion

    DOE PAGESBeta

    Bak, Moon Soo; Cappelli, Mark A.

    2012-01-01

    Two-dimensional kinetic simulation has been carried out to investigate the effects of repetition rate and pulse width of nanosecond repetitively pulsed discharges on stabilizing premixed lean methane-air combustion. The repetition rate and pulse width are varied from 10 kHz to 50 kHz and from 9 ns to 2 ns while the total power is kept constant. The lower repetition rates provide larger amounts of radicals such as O, H, and OH. However, the effect on stabilization is found to be the same for all of the tested repetition rates. The shorter pulse width is found to favor the production of species in higher electronicmore » states, but the varying effects on stabilization are also found to be small. Our results indicate that the total deposited power is the critical element that determines the extent of stabilization over this range of discharge properties studied.« less

  1. Identification of combustion intermediates in a low-pressure premixed laminar 2,5-dimethylfuran/oxygen/argon flame with tunable synchrotron photoionization

    SciTech Connect

    Wu, Xuesong; Huang, Zuohua; Wei, Lixia; Yuan, Tao; Zhang, Kuiwen

    2009-07-15

    Low-pressure (4.0 kPa) premixed laminar 2,5-dimethylfuran (DMF)/oxygen/argon flame with an equivalence ratio of 2.0 was studied with tunable vacuum ultraviolet (VUV) synchrotron radiation photoionization and molecular-beam mass spectrometry. Photoionization mass spectra of DMF/O{sub 2}/Ar flame were recorded and the photoionization efficiency curves of the combustion intermediates were measured. Flame species, including isomeric intermediates, are identified by comparing the measured ionization energies with those reported in literatures or those calculated with Gaussian-3 procedure. More than 70 species have been detected, including furan and its derivatives, aromatics, and free radicals. Possible reaction pathways of DMF, 2-methylfuran, and furan are proposed based on the intermediates identified. DMF can be consumed by H-abstraction and pyrolysis reactions. 2-Methylfuran and furan can be consumed by H-abstraction, H-addition and pyrolysis reactions. (author)

  2. Fundamental characterization of alternate fuel effects in continuous combustion systems. Summary technical progress report, August 15, 1978-January 31, 1980

    SciTech Connect

    Blazowski, W.S.; Edelman, R.B.; Wong, E.

    1980-02-27

    The overall objective of this contract is to assist in the development of fuel-flexible combustion systems for gas turbines as well as Rankine and Stirling cycle engines. The primary emphasis of the program is on liquid hydrocarbons produced from non-petroleum resources. Fuel-flexible combustion systems will provide for more rapid transition of these alternative fuels into important future energy utilization centers (especially utility power generation with the combined cycle gas turbine). The specific technical objectives of the program are: (a) develop an improved understanding of relationships between alternative fuel properties and continuous combustion system effects, and (b) provide analytical modeling/correlation capabilities to be used as design aids for development of fuel-tolerant combustion systems. This is the second major report of the program. Key experimental findings during this reporting period concern stirred combustor soot production during operation at controlled temperature conditions, soot production as a function of combustor residence time, an improved measurement technique for total hydrocarbons and initial stirred combustor results of fuel nitrogen conversion. While the results to be presented concern a stirred combustor which utilizes premixed fuel vapor/oxidant mixtures, a new combustor which combusts liquid fuel injected into the reactor as a spray has been developed and will be described. Analytical program progress includes the development of new quasiglobal models of soot formation and assessment of needs for other submodel development.

  3. Microgravity combustion science: Progress, plans, and opportunities

    NASA Technical Reports Server (NTRS)

    1992-01-01

    An earlier overview is updated which introduced the promise of microgravity combustion research and provided a brief survey of results and then current research participants, the available set of reduced gravity facilities, and plans for experimental capabilities in the space station era. Since that time, several research studies have been completed in drop towers and aircraft, and the first space based combustion experiments since Skylab have been conducted on the Shuttle. The microgravity environment enables a new range of experiments to be performed since buoyancy induced flows are nearly eliminated, normally obscured forces and flows may be isolated, gravitational settling or sedimentation is nearly eliminated, and larger time or length scales in experiments are feasible. In addition to new examinations of classical problems, (e.g., droplet burning), current areas of interest include soot formation and weak turbulence, as influenced by gravity.

  4. Studies of Premixed Laminar and Turbulent Flames at Microgravity

    NASA Technical Reports Server (NTRS)

    Abid, M.; Aung, K.; Ronney, P. D.; Sharif, J. A.; Wu, M.-S.

    1999-01-01

    Several topics relating to combustion limits in premixed flames at reduced gravity have been studied. These topics include: (1) flame balls; (2) numerical simulation of flame ball and planar flame structure and stability; (3) experimental simulation of buoyancy effects in premixed flames using aqueous autocatalytic reactions; and (4) premixed flame propagation in Hele-Shaw cells.

  5. Premixed Prevaporized Combustor Technology Forum

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Forum was held to present the results of recent and current work intended to provide basic information required for demonstration of lean, premixed prevaporized combustors for aircraft gas turbine engine application. Papers are presented which deal with the following major topics: (1) engine interfaces; (2) fuel-air preparation; (3) autoignition; (4) lean combustion; and (5) concept design studies.

  6. Dry low combustion system with means for eliminating combustion noise

    DOEpatents

    Verdouw, Albert J.; Smith, Duane; McCormick, Keith; Razdan, Mohan K.

    2004-02-17

    A combustion system including a plurality of axially staged tubular premixers to control emissions and minimize combustion noise. The combustion system includes a radial inflow premixer that delivers the combustion mixture across a contoured dome into the combustion chamber. The axially staged premixers having a twist mixing apparatus to rotate the fluid flow and cause improved mixing without causing flow recirculation that could lead to pre-ignition or flashback.

  7. Experimental study on premixed CH{sub 4}/air mixture combustion in micro Swiss-roll combustors

    SciTech Connect

    Zhong, Bei-Jing; Wang, Jian-Hua

    2010-12-15

    Excess enthalpy combustion is a promising approach to stabilize flame in micro-combustors. Using a Swiss-roll combustor configuration, excess enthalpy combustion can be conveniently achieved. In this work, three types of Swiss-roll combustors with double spiral-shaped channels were designed and fabricated. The combustors were tested using methane/air mixtures of various equivalence ratios. Both temperature distributions and extinction limits were determined for each combustor configuration at different methane mass flow rates. Results indicate that the Swiss-roll combustors developed in the current study greatly enhance combustion stability in center regions of the combustors. At the same time, excess enthalpy combustors of the Swiss-roll configuration significantly extend the extinction limits of methane/air mixtures. In addition, the effects of combustor configurations and thermal insulation arrangements on temperature distributions and extinction limits were evaluated. With heat losses to the environment being significant, the use of thermal insulations further enhances the flame stability in center regions of the Swiss-roll combustors and extends flammable ranges. (author)

  8. Reaction and diffusion in turbulent combustion. Progress report

    SciTech Connect

    Pope, S.B.

    1992-10-02

    Progress was made on the following: Development of two-variable ({xi} - y) thermochemistry suitable for DNS (direct numerical simulation) studies; determination of laminar flame properties based on this thermochemistry; determination of the parameter range that can be accessed by DNS with good resolution; implementation of the thermochemistry in the DNS code; performance of exploratory simulations, and the development of techniques of relating Eulerian DNS data to turbulent combustion theories; implementation of the DNS code on parallel and distributed computers, and the study of relative molecular motion in turbulence.

  9. Flashback resistant pre-mixer assembly

    DOEpatents

    Laster, Walter R.; Gambacorta, Domenico

    2012-02-14

    A pre-mixer assembly associated with a fuel supply system for mixing of air and fuel upstream from a main combustion zone in a gas turbine engine. The pre-mixer assembly includes a swirler assembly disposed about a fuel injector of the fuel supply system and a pre-mixer transition member. The swirler assembly includes a forward end defining an air inlet and an opposed aft end. The pre-mixer transition member has a forward end affixed to the aft end of the swirler assembly and an opposed aft end defining an outlet of the pre-mixer assembly. The aft end of the pre-mixer transition member is spaced from a base plate such that a gap is formed between the aft end of the pre-mixer transition member and the base plate for permitting a flow of purge air therethrough to increase a velocity of the air/fuel mixture exiting the pre-mixer assembly.

  10. Effects of Lewis number on conditional fluid velocity statistics in low Damköhler number turbulent premixed combustion: A direct numerical simulation analysis

    NASA Astrophysics Data System (ADS)

    Chakraborty, Nilanjan; Lipatnikov, Andrei N.

    2013-04-01

    The effects of global Lewis number Le on the statistics of fluid velocity components conditional in unburned reactants and fully burned products in the context of Reynolds Averaged Navier Stokes simulations have been analysed using a Direct Numerical Simulations (DNS) database of statistically planar turbulent premixed flames with a low Damköhler number and Lewis number ranging from 0.34 to 1.2. The conditional velocity statistics extracted from DNS data have been analysed with respect to the well-known Bray-Moss-Libby (BML) expressions which were derived based on bi-modal probability density function of reaction progress variable for high Damköhler number flames. It has been shown that the Lewis number substantially affects the mean velocity and the velocity fluctuation correlation conditional in products, with the effect being particularly pronounced for low Le. As far as the mean velocity and the velocity fluctuation correlation conditional in reactants are concerned, the BML expressions agree reasonably well with the DNS data reported in the present work. Based on a priori analysis of present and previously reported DNS data, the BML expressions have been empirically modified here in order to account for Lewis number effects, and the non-bimodal distribution of reaction progress variable. Moreover, it has been demonstrated for the first time that surface averaged velocity components and Reynolds stresses conditional in unburned reactants can be modelled without invoking expressions involving the Lewis number, as these surface averaged conditional quantities remain approximately equal to their conditionally averaged counterparts in the unburned mixture.

  11. Symposium (International) on Combustion, 18th, 1980

    SciTech Connect

    Anon

    1980-08-01

    This conference proceedings contains 196 papers. 181 papers are indexed separately. Topics covered include: combustion generated pollution; propellant combustion; fluidized bed combustion; combustion of droplets and spray; premixed flame studies; fire studies; flame stabilization; coal flammability; chemical kinetics; turbulent combustion; soot; coal combustion; modeling of combustion processes; combustion diagnostics; detonations and explosions; ignition; internal combustion engines; combustion studies; and furnaces.

  12. FY2013 Progress Report for Advanced Combustion Engine Research and Development

    SciTech Connect

    none,

    2013-12-01

    Annual progress report on the work of the the Advanced Combustion Engine Program. The Advanced Combustion Engine Program supports the Vehicle Technologies Office mission by addressing critical technical barriers to commercializing higher efficiency, very low emissions, advanced combustion engines for passenger and commercial vehicles that meet future federal emissions regulations.

  13. Coal Combustion Science quarterly progress report, April--June 1990

    SciTech Connect

    Hardesty, D.R.; Baxter, L.L.; Fletcher, T.H.; Mitchell, R.E.

    1990-11-01

    This document provides a quarterly status report of the Coal Combustion Science Program that is being conducted at the Combustion, Research Facility, Sandia National Laboratories, Livermore, California. Coal devolatilization, coal char combustion, and fate of mineral matter during coal combustion. 56 refs., 25 figs., 13 tabs.

  14. Premixed direct injection disk

    SciTech Connect

    York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin; Zuo, Baifang; Uhm, Jong Ho

    2013-04-23

    A fuel/air mixing disk for use in a fuel/air mixing combustor assembly is provided. The disk includes a first face, a second face, and at least one fuel plenum disposed therebetween. A plurality of fuel/air mixing tubes extend through the pre-mixing disk, each mixing tube including an outer tube wall extending axially along a tube axis and in fluid communication with the at least one fuel plenum. At least a portion of the plurality of fuel/air mixing tubes further includes at least one fuel injection hole have a fuel injection hole diameter extending through said outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  15. Multiple tube premixing device

    DOEpatents

    Uhm, Jong Ho; Naidu, Balachandar; Ziminksy, Willy Steve; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin; Stevenson, Christian; Felling, David

    2013-08-13

    The present application provides a premixer for a combustor. The premixer may include a fuel plenum with a number of fuel tubes and a burner tube with a number of air tubes. The fuel tubes extend about the air tubes.

  16. Multiple tube premixing device

    DOEpatents

    Uhm, Jong Ho; Varatharajan, Balachandar; Ziminsky, Willy Steve; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin; Stevenson, Christian; Felling, David

    2012-12-11

    The present application provides a premixer for a combustor. The premixer may include a fuel plenum with a number of fuel tubes and a burner tube with a number of air tubes. The fuel tubes extend about the air tubes.

  17. Coal combustion science. Quarterly progress report, July--September 1994

    SciTech Connect

    Hardesty, D.R.; Baxter, L.L.; Davis, K.A.; Hurt, R.H.; Yang, N.Y.C.

    1995-09-01

    This document is a quarterly status report of the Coal Combustion Science Project that is being conducted at the Combustion Research Facility, Sandia National Laboratories, Livermore, California. The information reported is for the period July-September 1994. The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project.

  18. Studies of Premixed Laminar and Turbulent Flames at Microgravity

    NASA Technical Reports Server (NTRS)

    Ronney, Paul D.

    1993-01-01

    The work of the Principal Investigator (PI) has encompassed four topics related to the experimental and theoretical study of combustion limits in premixed flames at microgravity, as discussed in the following sections. These topics include: (1) radiation effects on premixed gas flames; (2) flame structure and stability at low Lewis number; (3) flame propagation and extinction is cylindrical tubes; and (4) experimental simulation of combustion processes using autocatalytic chemical reactions.

  19. DNS of a premixed turbulent V flame and LES of a ducted flame using a FSD-PDF subgrid scale closure with FPI-tabulated chemistry

    SciTech Connect

    Domingo, Pascale; Vervisch, Luc; Payet, Sandra; Hauguel, Raphaeel

    2005-12-01

    Two complementary simulations of premixed turbulent flames are discussed. Low Reynolds number two-dimensional direct numerical simulation of a premixed turbulent V flame is first performed, to further analyze the behavior of various flame quantities and to study key ingredients of premixed turbulent combustion modeling. Flame surface density, subgrid-scale variance of progress variables, and unresolved turbulent fluxes are analyzed. These simulations include fully detailed chemistry from a flame-generated tabulation (FPI) and the analysis focuses on the dynamics of the thin flame front. Then, a novel subgrid scale closure for large eddy simulation of premixed turbulent combustion (FSD-PDF) is proposed. It combines the flame surface density (FSD) approach with a presumed probability density function (PDF) of the progress variable that is used in FPI chemistry tabulation. The FSD is useful for introducing in the presumed PDF the influence of the spatially filtered thin reaction zone evolving within the subgrid. This is achieved via the exact relation between the PDF and the FSD. This relation involves the conditional filtered average of the magnitude of the gradient of the progress variable. In the modeling, this conditional filtered mean is approximated from the filtered gradient of the progress variable of the FPI laminar flame. Balance equations providing mean and variance of the progress variable together with the measure of the filtered gradient are used to presume the PDF. A three-dimensional larger Reynolds number flow configuration (ORACLES experiment) is then computed with FSD-PDF and the results are compared with measurements.

  20. Coal combustion science. Quarterly progress report, April 1993--June 1993

    SciTech Connect

    Hardesty, D.R.

    1994-05-01

    This document is a quarterly status report of the Coal Combustion Science Project that is being conducted at the Combustion Research Facility, Sandia National Laboratories. The information reported is for Apr-Jun 1993. The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the PETC Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. The objective of the kinetics and mechanisms of pulverized coal char combustion task is to characterize the combustion behavior of selected US coals under conditions relevant to industrial pulverized coal-fired furnaces. Work is being done in four areas: kinetics of heterogeneous fuel particle populations; char combustion kinetics at high carbon conversion; the role of particle structure and the char formation process in combustion and; unification of the Sandia char combustion data base. This data base on the high temperature reactivities of chars from strategic US coals will permit identification of important fuel-specific trends and development of predictive capabilities for advanced coal combustion systems. The objective of the fate of inorganic material during coal combustion task is the establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of inorganic material during coal combustion as a function of coal type, particle size and temperature, the initial forms and distribution of inorganic species in the unreacted coal, and the local gas temperature and composition. In addition, optical diagnostic capabilities are being developed for in situ, real-time detection of inorganic vapor species and surface species during ash deposition. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  1. Gravitational Influences on Flame Propagation through Non-Uniform, Premixed Gas Systems

    NASA Technical Reports Server (NTRS)

    Miller, Fletcher J.; Easton, John; Ross, Howard D.; Marchese, Anthony; Perry, David; Kulis, Michael

    2001-01-01

    Flame propagation through non-uniformly premixed (or layered) gases has importance both in useful combustion systems and in unintentional fires. As summarized previously, non-uniform premixed gas combustion receives scant attention compared to the more usual limiting cases of diffusion or uniformly premixed flames, especially regarding the role gravity plays. This paper summarizes our progress on furthering the knowledge of layered combustion, in which a fuel concentration gradient exists normal to the direction of flame spread. We present experimental and numerical results for flame spread through propanol-air layers formed near the flash point temperature (25 C) or near the stoichiometric temperature (33 C). Both the model and experimental results show that the removal of gravity results in a faster spreading flame, by as much as 80% depending on conditions. This is exactly the opposite effect as that predicted by an earlier model reported. We also found that having a gallery lid results in faster flame spread, an effect more pronounced at normal gravity, demonstrating the importance of enclosure geometry. Also reported here is the beginning of our spectroscopic measurements of fuel vapor.

  2. Coal Combustion Science. Quarterly progress report, October--December 1994

    SciTech Connect

    Hardesty, D.R.; Baxter, L.L.; Davis, K.A.; Hurt, R.H.; Yang, N.Y.C.

    1996-02-01

    The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: Task 1--Kinetics and mechanisms of pulverized coal char combustion; and Task 2--deposit growth and property development in coal-fired furnaces. The objective of task 1 is to characterize the combustion behavior of selected US coals under conditions relevant to industrial pulverized coal-fired furnaces. Work is being done in four areas: (a) kinetics of heterogeneous fuel particle populations; (b) char combustion kinetics at high carbon conversion; (c) the role of particle structure and the char formation process in combustion and; (d) unification of the Sandia char combustion data base. The objectives of Task 2 are to provide a self-consistent database of simultaneously measured, time-resolved, ash deposit properties in well-controlled and well-defined environments and to provide analytical expressions that relate deposit composition and structure to deposit properties of immediate relevance to PETC`s Combustion 2000 program. The task include the development and use of diagnostics to monitor, in situ and in real time, deposit properties, including information on both the structure and composition of the deposits.

  3. FY2011 Annual Progress Report for Advanced Combustion Engine Research and Development

    SciTech Connect

    none,

    2011-12-01

    Annual Progress Report for the Advanced Combustion Engine Research and Development (R&D) subprogram supporting the mission of the Vehicle Technologies Program by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future federal emissions regulations.

  4. FY2014 Advanced Combustion Engine Annual Progress Report

    SciTech Connect

    2015-03-01

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  5. Progress on the Combustion Integrated Rack Component of the Fluids and Combustion Facility

    NASA Technical Reports Server (NTRS)

    Weiland, Karen J.; Urban, Dave (Technical Monitor)

    1999-01-01

    The Fluids and Combustion Facility (FCF) is a facility-class payload planned for the International Space Station. It is designed to accommodate a wide variety of investigations encompassing most of the range of microgravity fluid physics and combustion science. The Combustion Integrated Rack component of the FCF is currently scheduled to be launched in 2003 and will operate independently until additional racks of the FCF are launched. The FCF is intended to complete between five and fifteen combustion experiments per year over its planned ten-year lifetime. Combustion arm that may be studied include laminar flames, reaction kinetics, droplet and spray combustion, flame spread, fire and fire suppressants, condensed phase organic fuel combustion, turbulent combustion, soot and polycyclic aromatic hydrocarbons, and flame-synthesized materials. Three different chamber inserts, one each for investigations of droplet, solid fuel, and gaseous fuel combustion, that can accommodate multiple experiments will be used initially so as to maximize the reuse of hardware. The current flight and flight-definition investigations are briefly described.

  6. Turbulent flame propagation in partially premixed flames

    NASA Technical Reports Server (NTRS)

    Poinsot, T.; Veynante, D.; Trouve, A.; Ruetsch, G.

    1996-01-01

    Turbulent premixed flame propagation is essential in many practical devices. In the past, fundamental and modeling studies of propagating flames have generally focused on turbulent flame propagation in mixtures of homogeneous composition, i.e. a mixture where the fuel-oxidizer mass ratio, or equivalence ratio, is uniform. This situation corresponds to the ideal case of perfect premixing between fuel and oxidizer. In practical situations, however, deviations from this ideal case occur frequently. In stratified reciprocating engines, fuel injection and large-scale flow motions are fine-tuned to create a mean gradient of equivalence ratio in the combustion chamber which provides additional control on combustion performance. In aircraft engines, combustion occurs with fuel and secondary air injected at various locations resulting in a nonuniform equivalence ratio. In both examples, mean values of the equivalence ratio can exhibit strong spatial and temporal variations. These variations in mixture composition are particularly significant in engines that use direct fuel injection into the combustion chamber. In this case, the liquid fuel does not always completely vaporize and mix before combustion occurs, resulting in persistent rich and lean pockets into which the turbulent flame propagates. From a practical point of view, there are several basic and important issues regarding partially premixed combustion that need to be resolved. Two such issues are how reactant composition inhomogeneities affect the laminar and turbulent flame speeds, and how the burnt gas temperature varies as a function of these inhomogeneities. Knowledge of the flame speed is critical in optimizing combustion performance, and the minimization of pollutant emissions relies heavily on the temperature in the burnt gases. Another application of partially premixed combustion is found in the field of active control of turbulent combustion. One possible technique of active control consists of pulsating

  7. Lean, Premixed-Prevaporized (LPP) combustor conceptual design study

    NASA Technical Reports Server (NTRS)

    Dickman, R. A.; Dodds, W. J.; Ekstedt, E. E.

    1979-01-01

    Four combustion systems were designed and sized for the energy efficient engine. A fifth combustor was designed for the cycle and envelope of the twin-spool, high bypass ratio, high pressure ratio turbofan engine. Emission levels, combustion performance, life, and reliability assessments were made for these five combustion systems. Results of these design studies indicate that cruise NOx emission can be reduced by the use of lean, premixed-prevaporaized combustion and airflow modulation.

  8. Soot Formation in Laminar Premixed Flames

    NASA Technical Reports Server (NTRS)

    Xu, F.; Krishnan, S. S.; Faeth, G. M.

    1999-01-01

    Soot processes within hydrocarbon-fueled flames affect emissions of pollutant soot, thermal loads on combustors, hazards of unwanted fires and capabilities for computational combustion. In view of these observations, the present study is considering processes of soot formation in both burner-stabilized and freely-propagating laminar premixed flames. These flames are being studied in order to simplify the interpretation of measurements and to enhance computational tractability compared to the diffusion flame environments of greatest interest for soot processes. In addition, earlier studies of soot formation in laminar premixed flames used approximations of soot optical and structure properties that have not been effective during recent evaluations, as well as questionable estimates of flow residence times). The objective of present work was to exploit methods of avoiding these difficulties developed for laminar diffusion flames to study soot growth in laminar premixed flames. The following description of these studies is brief.

  9. Time resolved density measurements in premixed turbulent flames

    NASA Technical Reports Server (NTRS)

    Dandekar, K. V.; Gouldin, F. C.

    1982-01-01

    Premixed, turbulent flames are important in connection with investigations of fundamental, turbulent-reacting-flow processes and the study of practical combustion devices, such as spark ignition engines and premixed, prevaporized gas turbine combustors which burn premixed reactants. The considered investigation is concerned with the application of laser induced Rayleigh scattering to measure the gas density in premixed, methane-air flames. A description is provided of the results of density and velocity measurements in an open, lean, premixed methane-air flame stabilized in grid turbulence of low Reynolds number. It is found that where applicable, Rayleigh scattering can be used to good advantage to measure molecular number density. Mean and rms density results show that the mean flame thickens with axial distance but that the maximum in rms does not change appreciably.

  10. Counter-gradient transport in the combustion of a premixed CH{sub 4}/air annular jet by combined PIV/OH-LIF

    SciTech Connect

    Troiani, G.; Marrocco, M.; Giammartini, S.; Casciola, C.M.

    2009-03-15

    A combination of PIV/OH laser induced fluorescence technique is used to measure the conditional - burned and unburned - gas velocity in a turbulent premixed CH{sub 4}/air annular bluff-body stabilized burner. By changing the equivalence ratio from lean to almost stoichiometric, the energy budget of the recirculating region anchoring the flame is altered in such a way to increasingly lift the flame away from the jet exit. The overall turbulence intensity interacting with each flame is thus systematically varied in a significant range, allowing for a parametric study of its effect on turbulent scalar transport under well controlled conditions, always well within the flamelet regime. The component of the flux normal to the average front is found to reverse its direction, confirming the Bray number as a good indicator of gradient/counter-gradient behavior, once the actual incoming turbulence level felt locally by the flame is assumed as the proper control parameter. (author)

  11. FY2009 Annual Progress Report for Advanced Combustion Engine Research and Development

    SciTech Connect

    none,

    2009-12-01

    Fiscal Year 2009 Annual Progress Report for the Advanced Combustion Engine Research and Development (R&D) subprogram. The Advanced Combustion Engine R&D subprogram supports the mission of the VTP program by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future Federal emissions regulations. Dramatically improving the efficiency of ICEs and enabling their introduction in conventional as well as hybrid electric vehicles is the most promising and cost-effective approach to increasing vehicle fuel economy over the next 30 years.

  12. Combustion diagnostic for active engine feedback control

    DOEpatents

    Green, Jr., Johney Boyd; Daw, Charles Stuart; Wagner, Robert Milton

    2007-10-02

    This invention detects the crank angle location where combustion switches from premixed to diffusion, referred to as the transition index, and uses that location to define integration limits that measure the portions of heat released during the combustion process that occur during the premixed and diffusion phases. Those integrated premixed and diffusion values are used to develop a metric referred to as the combustion index. The combustion index is defined as the integrated diffusion contribution divided by the integrated premixed contribution. As the EGR rate is increased enough to enter the low temperature combustion regime, PM emissions decrease because more of the combustion process is occurring over the premixed portion of the heat release rate profile and the diffusion portion has been significantly reduced. This information is used to detect when the engine is or is not operating in a low temperature combustion mode and provides that feedback to an engine control algorithm.

  13. Progress in Fabrication of Rocket Combustion Chambers by VPS

    NASA Technical Reports Server (NTRS)

    Holmes, Richard R.; McKechnie, Timothy N.

    2004-01-01

    Several documents in a collection describe aspects of the development of advanced materials and fabrication processes intended to enable the manufacture of advanced rocket combustion chambers and nozzles at relatively low cost. One concept discussed in most of the documents is the fabrication of combustion-chamber liners by vacuum plasma spraying (VPS) of an alloy of 88Cu/8Cr/4Nb (numbers indicate atomic percentages) -- a concept that was reported in "Improved Alloy for Fabrication of Combustion Chambers by VPS" (MFS-26546). Another concept is the deposition of graded-composition wall and liner structures by VPS in order to make liners integral parts of wall structures and to make oxidation- and thermal-protection layers integral parts of liners: The VPS process is started at 100 percent of a first alloy, then the proportion of a second alloy is increased gradually from zero as deposition continues, ending at 100 percent of the second alloy. Yet another concept discussed in one of the documents is the VPS of oxidation-protection coats in the forms of nickel-and-chromium-containing refractory alloys on VPS-deposited 88Cu/8Cr/4Nb liners.

  14. Progress in the development of PDF turbulence models for combustion

    NASA Technical Reports Server (NTRS)

    Hsu, Andrew T.

    1991-01-01

    A combined Monte Carlo-computational fluid dynamic (CFD) algorithm was developed recently at Lewis Research Center (LeRC) for turbulent reacting flows. In this algorithm, conventional CFD schemes are employed to obtain the velocity field and other velocity related turbulent quantities, and a Monte Carlo scheme is used to solve the evolution equation for the probability density function (pdf) of species mass fraction and temperature. In combustion computations, the predictions of chemical reaction rates (the source terms in the species conservation equation) are poor if conventional turbulence modles are used. The main difficulty lies in the fact that the reaction rate is highly nonlinear, and the use of averaged temperature produces excessively large errors. Moment closure models for the source terms have attained only limited success. The probability density function (pdf) method seems to be the only alternative at the present time that uses local instantaneous values of the temperature, density, etc., in predicting chemical reaction rates, and thus may be the only viable approach for more accurate turbulent combustion calculations. Assumed pdf's are useful in simple problems; however, for more general combustion problems, the solution of an evolution equation for the pdf is necessary.

  15. Premixed flame propagation in vertical tubes

    NASA Astrophysics Data System (ADS)

    Kazakov, Kirill A.

    2016-04-01

    Analytical treatment of the premixed flame propagation in vertical tubes with smooth walls is given. Using the on-shell flame description, equations for a quasi-steady flame with a small but finite front thickness are obtained and solved numerically. It is found that near the limits of inflammability, solutions describing upward flame propagation come in pairs having close propagation speeds and that the effect of gravity is to reverse the burnt gas velocity profile generated by the flame. On the basis of these results, a theory of partial flame propagation driven by a strong gravitational field is developed. A complete explanation is given of the intricate observed behavior of limit flames, including dependence of the inflammability range on the size of the combustion domain, the large distances of partial flame propagation, and the progression of flame extinction. The role of the finite front-thickness effects is discussed in detail. Also, various mechanisms governing flame acceleration in smooth tubes are identified. Acceleration of methane-air flames in open tubes is shown to be a combined effect of the hydrostatic pressure difference produced by the ambient cold air and the difference of dynamic gas pressure at the tube ends. On the other hand, a strong spontaneous acceleration of the fast methane-oxygen flames at the initial stage of their evolution in open-closed tubes is conditioned by metastability of the quasi-steady propagation regimes. An extensive comparison of the obtained results with the experimental data is made.

  16. NO formation in counterflow partially premixed flames

    SciTech Connect

    Mungekar, Hemant; Atreya, Arvind

    2007-02-15

    An experimental and computational study of NO formation in low-strain-rate partially premixed methane counterflow flames is reported. For progressive fuel-side partial premixing the peak NO concentration increased and the NO distribution along the stagnation streamline broadened. New temperature-dependent emissivity data for a SiO{sub 2}-coated Pt thermocouple was used to estimate the radiation correction for the thermocouple, thus improving the accuracy of the reported flame temperature. Flame structure computations with GRIMech 3.00 showed good agreement between measured and computed concentration distributions of NO and OH radical. With progressive partial premixing the contribution of the thermal NO pathway to NO formation increases. The emission index of NO (EINO) first increased and then decreased, reaching its peak value for the level of partial premixing that corresponds to location of the nonpremixed reaction zone at the stagnation plane. The observation of a maximum in EINO at a level of partial premixing corresponding to the nonpremixed reaction zone at the stagnation plane seems to be a consistent feature of low (<20 s{sup -1})-strain-rate counterflow flames. (author)

  17. Progress in hypersonic combustion technology with computation and experiment

    NASA Technical Reports Server (NTRS)

    Anderson, Griffin Y.; Kumar, Ajay; Erdos, John I.

    1990-01-01

    Design of successful airbreathing engines for operation at near-orbital speeds presents significant challenges in all the disciplines involved, including propulsion. This paper presents a discussion of the important physics of hypersonic combustion and an assessment of the state of the art of ground simulations with pulse facilities and with computational techniques. Recent examples of experimental and computational simulations are presented and discussed. The need for continued application of these tools to establish the credibility and fidelity of engineering design methods for practical hypersonic combustors is emphasized along with the critical need for improved diagnostic methods for hypervelocity reacting flows.

  18. Studies of premixed laminar and turbulent flames at microgravity

    NASA Technical Reports Server (NTRS)

    Ronney, Paul D.

    1993-01-01

    A two and one-half year experimental and theoretical research program on the properties of laminar and turbulent premixed gas flames at microgravity was conducted. Progress during this program is identified and avenues for future studies are discussed.

  19. Fully Premixed Low Emission, High Pressure Multi-Fuel Burner

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet (Inventor)

    2012-01-01

    A low-emissions high-pressure multi-fuel burner includes a fuel inlet, for receiving a fuel, an oxidizer inlet, for receiving an oxidizer gas, an injector plate, having a plurality of nozzles that are aligned with premix face of the injector plate, the plurality of nozzles in communication with the fuel and oxidizer inlets and each nozzle providing flow for one of the fuel and the oxidizer gas and an impingement-cooled face, parallel to the premix face of the injector plate and forming a micro-premix chamber between the impingement-cooled face and the in injector face. The fuel and the oxidizer gas are mixed in the micro-premix chamber through impingement-enhanced mixing of flows of the fuel and the oxidizer gas. The burner can be used for low-emissions fuel-lean fully-premixed, or fuel-rich fully-premixed hydrogen-air combustion, or for combustion with other gases such as methane or other hydrocarbons, or even liquid fuels.

  20. Gravity Effects Observed In Partially Premixed Flames

    NASA Technical Reports Server (NTRS)

    Puri, Ishwar K.; Aggarwal, Suresh K.; Lock, Andrew J.; Gauguly, Ranjan; Hegde, Uday

    2003-01-01

    Partially premixed flames (PPFs) contain a rich premixed fuel air mixture in a pocket or stream, and, for complete combustion to occur, they require the transport of oxidizer from an appropriately oxidizer-rich (or fuel-lean) mixture that is present in another pocket or stream. Partial oxidation reactions occur in fuel-rich portions of the mixture and any remaining unburned fuel and/or intermediate species are consumed in the oxidizer-rich portions. Partial premixing, therefore, represents that condition when the equivalence ratio (phi) in one portion of the flowfield is greater than unity, and in another section its value is less than unity. In general, for combustion to occur efficiently, the global equivalence ratio is in the range fuel-lean to stoichiometric. These flames can be established by design by placing a fuel-rich mixture in contact with a fuel-lean mixture, but they also occur otherwise in many practical systems, which include nonpremixed lifted flames, turbulent nonpremixed combustion, spray flames, and unwanted fires. Other practical applications of PPFs are reported elsewhere. Although extensive experimental studies have been conducted on premixed and nonpremixed flames under microgravity, there is a absence of previous experimental work on burner stabilized PPFs in this regard. Previous numerical studies by our group employing a detailed numerical model showed gravity effects to be significant on the PPF structure. We report on the results of microgravity experiments conducted on two-dimensional (established on a Wolfhard-Parker slot burner) and axisymmetric flames (on a coannular burner) that were investigated in a self-contained multipurpose rig. Thermocouple and radiometer data were also used to characterize the thermal transport in the flame.

  1. Soot Formation in Freely-Propagating Laminar Premixed Flames

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Hassan, M. I.; Faeth, G. M.

    1997-01-01

    Soot formation within hydrocarbon-fueled flames is an important unresolved problem of combustion science. Thus, the present study is considering soot formation in freely-propagating laminar premixed flames, exploiting the microgravity environment to simplify measurements at the high-pressure conditions of interest for many practical applications. The findings of the investigation are relevant to reducing emissions of soot and continuum radiation from combustion processes, to improving terrestrial and spacecraft fire safety, and to developing methods of computational combustion, among others. Laminar premixed flames are attractive for studying soot formation because they are simple one-dimensional flows that are computationally tractable for detailed numerical simulations. Nevertheless, studying soot-containing burner-stabilized laminar premixed flames is problematical: spatial resolution and residence times are limited at the pressures of interest for practical applications, flame structure is sensitive to minor burner construction details so that experimental reproducibility is not very good, consistent burner behavior over the lengthy test programs needed to measure soot formation properties is hard to achieve, and burners have poor durability. Fortunately, many of these problems are mitigated for soot-containing, freely-propagating laminar premixed flames. The present investigation seeks to extend work in this laboratory for various soot processes in flames by observing soot formation in freely-propagating laminar premixed flames. Measurements are being made at both Normal Gravity (NG) and MicroGravity (MG), using a short-drop free-fall facility to provide MG conditions.

  2. Flame-acoustic coupling of combustion instability in a non-premixed backward-facing step combustor: the role of acoustic-Reynolds stress

    NASA Astrophysics Data System (ADS)

    Kannan, Ashwin; Chellappan, Balaji; Chakravarthy, Satyanarayanan

    2016-07-01

    Combustion instability in a laboratory scale backward-facing step combustor is numerically investigated by carrying out an acoustically coupled incompressible large eddy simulation of turbulent reacting flow for various Reynolds numbers with fuel injection at the step. The problem is mathematically formulated as a decomposition of the full compressible Navier-Stokes equations using multi-scale analysis by recognising the small length scale and large time scale of the flow field relative to a longitudinal mode acoustic field for low mean Mach numbers. The equations are decomposed into those for an incompressible flow with temperature-dependent density to zeroth order and linearised Euler equations for acoustics as a first order compressibility correction. Explicit coupling terms between the two equation sets are identified to be the flow dilatation as a source of acoustic energy and the acoustic Reynolds stress (ARS) as a source of flow momentum. The numerical simulations are able to capture the experimentally observed flow-acoustic lock-on that signifies the onset of combustion instability, marked by a shift in the dominant frequency from an acoustic to a hydrodynamic mode and accompanied by a nonlinear variation of pressure amplitude. Attention is devoted to flow conditions at two Reynolds numbers before and after lock-on to show that, after lock-on, the ARS causes large-scale vortical rollup resulting in the evolution of a compact flame. As compared to acoustically uncoupled simulations at these Reynolds numbers that show an elongated flame with no significant roll up and disturbance in the upstream flow field, the ARS is seen to alter the shear layer dynamics by affecting the flow field upstream of the step as well, when acoustically coupled.

  3. Counter-gradient in premixed turbulent flames

    NASA Astrophysics Data System (ADS)

    Libby, P. A.; Bray, K. N. C.

    1980-01-01

    A new theory for premixed turbulent flames normal to the oncoming reactants is developed on the basis of the Bray-Moss-Libby model of premixed combustion and second-order closure. Gradient transport assumptions are carefully avoided. The final formulation focuses on the intensity of the fluctuations of the velocity component normal to the flame and on the mean flux of product. At low rates of heat release corresponding to small intensities of the density fluctuations the new theory is in agreement with our earlier theory based on gradient transport. However, as the heat release increases toward values of practical interest, counter-gradient diffusion, i.e., mean flux in the direction of increasing mean concentration, arises and is attributable to the differential effect of mean pressure gradient on cold reactants and hot products. The implications of these results are discussed.

  4. Turbulent Methane-Air Combustion

    NASA Technical Reports Server (NTRS)

    Yaboah, Yaw D.; Njokwe, Anny; James, LaShanda

    1996-01-01

    This study is aimed at enhancing the understanding of turbulent premixed methane-air combustion. Such understanding is essential since: (1) many industries are now pursuing lighter hydrocarbon alternative fuels and the use of premixed flames to reduce pollutant emissions, and (2) the characteristic dimensions and flow rates of most industrial combustors are often large for flows to be turbulent. The specific objectives of the study are: (1) to establish the effects of process variables (e.g., flow rate, fuel/air ratio, chlorinated hydro-carbons, and pressure) on the emissions and flow structure (velocity distribution, streamlines, vorticity and flame shape), and (2) to develop a mechanistic model to explain the observed trends. This includes the acquisition of Dantec FlowMap Particle Image Velocimeter. The design and fabrication of the premixed burner has also been completed. The study is now at the stage of testing of equipment and analytical instruments. The presentation will give details on the tasks completed and on the current and future plans. The project is progressing well and all activities are on schedule. The outlook for the success of the project is bright.

  5. A Method to Measure Flame Index in Turbulent Partially-Premixed Flames

    NASA Astrophysics Data System (ADS)

    Rosenberg, David Ari

    This dissertation describes the development of a diagnostic technique and data processing routine to measure the flame index in partially-premixed flames, called the Flame Index Measurement Method. Many modern combustion applications involve conditions in which the fuel and oxidizer are only partially mixed prior to entering the flame. These partially-premixed flames contain some regions of premixed and some regions of non-premixed flamelets. New computational approaches use the flame index concept: premixed regions are identified and a premixed model is applied; non-premixed regions are also identified and a non-premixed model is applied. The flame index is defined as the normalized dot product of the gradients of the fuel and oxidizer mass fractions; it is +1 in premixed flamelets and is -1 in non-premixed flamelets. Previously there had been no experimentally measured values of flame index available to assess the modeling approaches. A new method has been developed to measure the flame index using planar laser-induced fluorescence tracers to indicate the sign and direction of the fuel and oxygen gradients. Through the modeling of premixed and non-premixed flamelets, acetone was selected as a fuel tracer and nitrogen dioxide was selected as an oxygen tracer. The fluorescence properties of both acetone and nitrogen dioxide were studied. With acetone seeded into the fuel, and nitrogen dioxide seeded into the air, the Flame Index Measurement Method was evaluated in laminar premixed and non-premixed methane/acetone/air flames, as well as in a well-defined turbulent partially-premixed burner, the Gas Turbine Model Combustor (GTMC). The flame index was measured in the GTMC with methane, propane, and syngas flames. Statistics (mean, variance, and probability mass functions) of the flame index are reported for the highly-turbulent partially-premixed GTMC flames. Two new statistical quantities were developed that describe the probability for the occurrence of premixed

  6. Combustor nozzle for a fuel-flexible combustion system

    DOEpatents

    Haynes, Joel Meier; Mosbacher, David Matthew; Janssen, Jonathan Sebastian; Iyer, Venkatraman Ananthakrishnan

    2011-03-22

    A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.

  7. Characteristics of non-premixed oxygen-enhanced combustion: II. Flame structure effects on soot precursor kinetics resulting in soot-free flames

    SciTech Connect

    Skeen, S.A.; Axelbaum, R.L.; Yablonsky, G.

    2010-09-15

    A detailed computational study was performed to understand the effects of the flame structure on the formation and destruction of soot precursors during ethylene combustion. Using the USC Mech Version II mechanism the contributions of different pathways to the formation of benzene and phenyl were determined in a wide domain of Z{sub st} values via a reverse-pathway analysis. It was shown that for conventional ethylene-air flames two sequential reversible reactions play primary roles in the propargyl (C{sub 3}H{sub 3}) chemistry, namely (1) C{sub 2}H{sub 2}+CH{sub 3}= pC{sub 3} H{sub 4}+H, (2) pC{sub 3} H{sub 4}= C{sub 3} H{sub 3}+ H with the corresponding overall endothermic reaction of propargyl formation (3) C{sub 2} H{sub 2}+CH{sub 3}= C{sub 3} H{sub 3}+2H. The contributions of these reactions to propyne (pC{sub 3}H{sub 4}) and propargyl formation and propargyl self-combination leading to benzene and phenyl were studied as a function of physical position, temperature, Z{sub st}, and H concentration. In particular, the role of H radicals on soot precursor destruction was studied in detail. At low Z{sub st}, Reactions 1 and 2 contribute significantly to propyne and propargyl formation on the fuel side of the radical pool at temperatures greater than approx. 1600 K. At higher local temperatures near the radical pool where the concentration of H is significant, the reverse reactions begin to dominate resulting in soot precursor destruction. As Z{sub st} is increased, these regions merge and only net propargyl consumption is observed. Based on the equilibrium constant of Reaction 3, a Z{sub st} value was estimated above which the rate of propargyl formation as a soot precursor is greatly reduced (Z{sub st} = 0.3). This condition compares well with the experimental results for permanently blue counterflow flames in the literature. (author)

  8. A generalized flame surface density modelling approach for the auto-ignition of a turbulent non-premixed system

    NASA Astrophysics Data System (ADS)

    Tap, F. A.; Hilbert, R.; Thévenin, D.; Veynante, D.

    2004-03-01

    Auto-ignition of turbulent non-premixed systems is encountered in practical devices such as diesel internal combustion engines. It remains a challenge for modellers, as it exhibits specific features such as unsteadiness, flame propagation and combustion far from stoichiometric conditions. In this paper, a two-dimensional DNS database of an igniting H2/O2/N2 mixing layer, including detailed chemistry and transport, is extensively post-processed in order to gain physical insight into the flame structure and dynamics during auto-ignition. The results are used as a framework for the development of a generalized flame surface density modelling approach by integrating the equations over all possible mixture fraction values. The mean reaction rate is split into two contributions: a generalized flame surface density and a mean reaction rate per unit generalized flame surface density. The unsteadiness of the ignition phenomenon is accounted for via a generalized progress variable. Closures for the generalized surface average of the reaction rate and for the generalized progress variable are proposed, and the modelling approach is tested a priori versus the DNS data. The use of a laminar database for the chemistry coupled to the mean turbulent field via the generalized progress variable shows very promising results, capturing the correct ignition delay and the premixed peak in the turbulent mean heat release rate evolution. This allows confidence in future inclusion and validation of this approach in a RANS-CFD code.

  9. Premixer Design for High Hydrogen Fuels

    SciTech Connect

    Benjamin P. Lacy; Keith R. McManus; Balachandar Varatharajan; Biswadip Shome

    2005-12-16

    This 21-month project translated DLN technology to the unique properties of high hydrogen content IGCC fuels, and yielded designs in preparation for a future testing and validation phase. Fundamental flame characterization, mixing, and flame property measurement experiments were conducted to tailor computational design tools and criteria to create a framework for predicting nozzle operability (e.g., flame stabilization, emissions, resistance to flashback/flame-holding and auto-ignition). This framework was then used to establish, rank, and evaluate potential solutions to the operability challenges of IGCC combustion. The leading contenders were studied and developed with the most promising concepts evaluated via computational fluid dynamics (CFD) modeling and using the design rules generated by the fundamental experiments, as well as using GE's combustion design tools and practices. Finally, the project scoped the necessary steps required to carry the design through mechanical and durability review, testing, and validation, towards full demonstration of this revolutionary technology. This project was carried out in three linked tasks with the following results. (1) Develop conceptual designs of premixer and down-select the promising options. This task defined the ''gap'' between existing design capabilities and the targeted range of IGCC fuel compositions and evaluated the current capability of DLN pre-mixer designs when operated at similar conditions. Two concepts (1) swirl based and (2) multiple point lean direct injection based premixers were selected via a QFD from 13 potential design concepts. (2) Carry out CFD on chosen options (1 or 2) to evaluate operability risks. This task developed the leading options down-selected in Task 1. Both a GE15 swozzle based premixer and a lean direct injection concept were examined by performing a detailed CFD study wherein the aerodynamics of the design, together with the chemical kinetics of the combustion process, were

  10. Lean stability augmentation for premixing, prevaporizing combustors

    NASA Technical Reports Server (NTRS)

    Mcvey, J. B.; Kennedy, J. B.

    1979-01-01

    An experimental program was conducted to investigate techniques for improving the lean combustion limits of premixing, prevaporizing combustors applicable to gas turbine engine main burners. Augmented flameholders employing recessed perforated plates, catalyzed tube bundles, and configurations in which pilot fuel was injected into the wakes of V-gutters or perforated plates were designed and tested. Stable operation of the piloted designs was achieved at equivalence ratios as low as 0.25; NOx emissions of less than 1.0 g/kg at simulated turbine engine cruise conditions were obtained. A piloted perforated plate employing four percent pilot fuel flow produced the best performance while meeting severe NOx constraints.

  11. Imaging of premixed flames in microgravity

    NASA Astrophysics Data System (ADS)

    Kostiuk, L. W.; Cheng, R. K.

    1994-12-01

    A laser schlieren system which uses video recording and digital images analysis has been developed and applied successfully to microgravity combustion experiments performed in a drop-tower. The optical system and the experiment are installed within a small package which is subjected to free-fall. The images are recorded on video tape and are digitized and analyzed by a computer-controlled image processor. The experimental results include laminar and turbulent premixed conical flames in microgravity, normal positive gravity (upward), and reverse gravity (downward). The procedures to extract frequency information from the digitized images are described. Many gross features of the effects of gravity on premixed conical flames are found. Flames that ignite easily in normal gravity fail to ignite in microgravity. Buoyancy driven instabilities associated with an interface formed between the hot products and the cold surrounding air is the mechanism through which gravity influences premixed laminar and turbulent flames. In normal gravity, this causes the flame to flicker. In reverse gravity, - g, and microgravity, μg, the interface is stable and flame flickering ceases. The flickering frequencies of + g flames vary with changing upstream boundary conditions. The absence of flame flickering in μg suggest that μg flames would be less sensitive to these changes.

  12. Field Effects of Buoyancy on Lean Premixed Turbulent Flames

    NASA Technical Reports Server (NTRS)

    Cheng, R. K.; Johnson, M. R.; Greenberg, P. S.; Wernet, M. P.

    2003-01-01

    The study of field effects of buoyancy on premixed turbulent flames is directed towards the advancement of turbulent combustion theory and the development of cleaner combustion technologies. Turbulent combustion is considered the most important unsolved problem in combustion science and laboratory studies of turbulence flame processes are vital to theoretical development. Although buoyancy is dominant in laboratory flames, most combustion models are not yet capable to consider buoyancy effects. This inconsistency has impeded the validation of theories and numerical simulations with experiments. Conversely, the understanding of buoyancy effects is far too limited to help develop buoyant flame models. Our research is also relevant to combustion technology because lean premixed combustion is a proven method to reduce the formation of oxides of nitrogen (NOx). In industrial lean premixed combustion systems, their operating conditions make them susceptible to buoyancy thus affecting heat distribution, emissions, stability, flashback and blowoff. But little knowledge is available to guide combustion engineers as to how to avoid or overcome these problems. Our hypothesis is that through its influence on the mean pressure field, buoyancy has direct and indirect effects on local flame/turbulence interactions. Although buoyancy acts on the hot products in the farfield the effect is also felt in the nearfield region upstream of the flame. These changes also influence the generation and dissipation of turbulent kinetic energy inside the flame brush and throughout the flowfield. Moreover, the plume of an open flame is unstable and the periodic fluctuations make additional contributions to flame front dynamics in the farfield. Therefore, processes such as flame wrinkling, flow acceleration due to heat release and flame- generated vorticity are all affected. Other global flame properties (e.g. flame stabilization limits and flame speed) may all be coupled to buoyancy. This

  13. Topics in physico-chemical hydrodynamics. Progress report No. 2, November 1, 1989--October 31, 1990

    SciTech Connect

    Sivashinsky, G.

    1990-12-31

    This report discusses: Theory of turbulent flame speed; flame extinction by periodic flow field; influence of swirl on the structure and extinction of premixed flames; propagation and extinction of nonsteady spherical flame fronts; geometrically invariant formulation of the intrinsic dynamics of premixed flames; nonlinear dynamics of oscillatory regime of premixed combustion; and pattern formation in premixed flames. (LSP)

  14. Premixed direct injection nozzle

    DOEpatents

    Zuo, Baifang; Johnson, Thomas Edward; Lacy, Benjamin Paul; Ziminsky, Willy Steve

    2011-02-15

    An injection nozzle having a main body portion with an outer peripheral wall is disclosed. The nozzle includes a plurality of fuel/air mixing tubes disposed within the main body portion and a fuel flow passage fluidly connected to the plurality of fuel/air mixing tubes. Fuel and air are partially premixed inside the plurality of the tubes. A second body portion, having an outer peripheral wall extending between a first end and an opposite second end, is connected to the main body portion. The partially premixed fuel and air mixture from the first body portion gets further mixed inside the second body portion. The second body portion converges from the first end toward said second end. The second body portion also includes cooling passages that extend along all the walls around the second body to provide thermal damage resistance for occasional flame flash back into the second body.

  15. Combustion

    NASA Technical Reports Server (NTRS)

    Bulzan, Dan

    2007-01-01

    An overview of the emissions related research being conducted as part of the Fundamental Aeronautics Subsonics Fixed Wing Project is presented. The overview includes project metrics, milestones, and descriptions of major research areas. The overview also includes information on some of the emissions research being conducted under NASA Research Announcements. Objective: Development of comprehensive detailed and reduced kinetic mechanisms of jet fuels for chemically-reacting flow modeling. Scientific Challenges: 1) Developing experimental facilities capable of handling higher hydrocarbons and providing benchmark combustion data. 2) Determining and understanding ignition and combustion characteristics, such as laminar flame speeds, extinction stretch rates, and autoignition delays, of jet fuels and hydrocarbons relevant to jet surrogates. 3) Developing comprehensive kinetic models for jet fuels.

  16. Preliminary assessment of combustion modes for internal combustion wave rotors

    NASA Technical Reports Server (NTRS)

    Nalim, M. Razi

    1995-01-01

    Combustion within the channels of a wave rotor is examined as a means of obtaining pressure gain during heat addition in a gas turbine engine. Several modes of combustion are considered and the factors that determine the applicability of three modes are evaluated in detail; premixed autoignition/detonation, premixed deflagration, and non-premixed compression ignition. The last two will require strong turbulence for completion of combustion in a reasonable time in the wave rotor. The compression/autoignition modes will require inlet temperatures in excess of 1500 R for reliable ignition with most hydrocarbon fuels; otherwise, a supplementary ignition method must be provided. Examples of combustion mode selection are presented for two core engine applications that had been previously designed with equivalent 4-port wave rotor topping cycles using external combustion.

  17. Dynamics and structure of turbulent premixed flames

    NASA Technical Reports Server (NTRS)

    Bilger, R. W.; Swaminathan, N.; Ruetsch, G. R.; Smith, N. S. A.

    1995-01-01

    In earlier work (Mantel & Bilger, 1994) the structure of the turbulent premixed flame was investigated using statistics based on conditional averaging with the reaction progress variable as the conditioning variable. The DNS data base of Trouve and Poinsot (1994) was used in this investigation. Attention was focused on the conditional dissipation and conditional axial velocity in the flame with a view to modeling these quantities for use in the conditional moment closure (CMC) approach to analysis of kinetics in premixed flames (Bilger, 1993). Two remarkable findings were made: there was almost no acceleration of the axial velocity in the flame front itself; and the conditional scalar dissipation remained as high, or higher, than that found in laminar premixed flames. The first finding was surprising since in laminar flames all the fluid acceleration occurs through the flame front, and this could be expected also for turbulent premixed flames at the flamelet limit. The finding gave hope of inventing a new approach to the dynamics of turbulent premixed flames through use of rapid distortion theory or an unsteady Bernoulli equation. This could lead to a new second order closure for turbulent premixed flames. The second finding was contrary to our measurements with laser diagnostics in lean hydrocarbon flames where it is found that conditional scalar dissipation drops dramatically below that for laminar flamelets when the turbulence intensity becomes high. Such behavior was not explainable with a one-step kinetic model, even at non-unity Lewis number. It could be due to depletion of H2 from the reaction zone by preferential diffusion. The capacity of the flame to generate radicals is critically dependent on the levels of H2 present (Bilger, et al., 1991). It seemed that a DNS computation with a multistep reduced mechanism would be worthwhile if a way could be found to make this feasible. Truly innovative approaches to complex problems often come only when there is the

  18. Vortex combustor for low NOX emissions when burning lean premixed high hydrogen content fuel

    DOEpatents

    Steele, Robert C; Edmonds, Ryan G; Williams, Joseph T; Baldwin, Stephen P

    2012-11-20

    A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

  19. Vortex combustor for low NOx emissions when burning lean premixed high hydrogen content fuel

    DOEpatents

    Steele, Robert C.; Edmonds, Ryan G.; Williams, Joseph T.; Baldwin, Stephen P.

    2009-10-20

    A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

  20. Fundamental combustion and diagnostics research at Sandia. Progress report, April-June 1980

    SciTech Connect

    Gusinow, M.A.

    1980-09-01

    The combustion research emphasizes basic research into fundamental problems associated with combustion. The overall program addresses detailed chemistry of combustion, fundamental processes associated with laminar and turbulent flames, development of research techniques specifically applicable to combustion environments, and operation of the user-oriented Combustion Research Facility. The first section of this report contains activities in Combustion Research, the second section contains activities in Molecular Physics and Spectroscopy, and the third section contains activities in Diagnostics Research.

  1. Coal combustion science: Task 1, Coal char combustion: Task 2, Fate of mineral matter. Quarterly progress report, July--September 1993

    SciTech Connect

    Hardesty, D.R.; Hurt, R.H.; Davis, K.A.; Baxter, L.L.

    1994-07-01

    Progress reports are presented for the following tasks: (1) kinetics and mechanisms of pulverized coal char combustion and (2) fate of inorganic material during coal combustion. The objective of Task 1 is to characterize the combustion behavior of selected US coals under conditions relevant to industrial pulverized coal-fired furnaces. In Sandia`s Coal Combustion Laboratory (CCL), optical techniques are used to obtain high-resolution images of individual burning coal char particles and to measure, in situ, their temperatures, sizes, and velocities. Detailed models of combustion transport processes are then used to determine kinetic parameters describing the combustion behavior as a function of coal type and combustion environment. Partially reacted char particles are also sampled and characterized with advanced materials diagnostics to understand the critical physical and chemical transformations that influence reaction rates and burnout times. The ultimate goal of the task is the establishment of a data base of the high temperature reactivities of chars from strategic US coals, from which important trends may be identified and predictive capabilities developed. The overall objectives for task 2 are: (1) to complete experimental and theoretical investigation of ash release mechanisms; (2) to complete experimental work on char fragmentation; (3) to establish the extent of coal (as opposed to char) fragmentation as a function of coal type and particle size; (4) to develop diagnostic capabilities for in situ, real-time, qualitative indications of surface species composition during ash deposition, with work continuing into FY94; (5) to develop diagnostic capabilities for in situ, real-time qualitative detection of inorganic vapor concentrations; and (6) to conduct a literature survey on the current state of understanding of ash deposition, with work continuing into FY94.

  2. Bed material agglomeration during fluidized bed combustion. Technical progress report, January 1, 1993--March 31, 1993

    SciTech Connect

    Brown, R.C.; Dawson, M.R.; Noble, S.D.

    1993-04-01

    The purpose of this project is to determine the physical and chemical reactions which lead to the undesired agglomeration of bed material during fluidized bed combustion and to relate these reactions to specific causes. A survey of agglomeration and deposit formation in industrial fluidized bed boilers is in progress. Preliminary results indicate that at least five boilers were experiencing some form of bed material agglomeration. In these instances it was observed that large particles were forming within the bed which were larger that the feed. Four operators could confirm that the larger bed particles had formed due to bed particles sticking together or agglomerating. Deposit formation was reported at nine sites with these deposits being found most commonly at coal feed locations and in cyclones. Other deposit locations included side walls and return loops. Examples of these agglomerates and deposits have been received from five of the surveyed facilities. Also during this quarter, a bulk sample of Illinois No. 6 coal was obtained from the Fossil Energy Program at Ames Laboratory here at Iowa State University and prepared for combustion tests. This sample was first ground to a top-size of 3/8`` using a jaw crusher then a size fraction of 3/8`` {times} 8 (US mesh) was then obtained by sieving using a Gilson Test-Master. This size fraction was selected for the preliminary laboratory-scale experiments designed to simulate the dense bed conditions that exist in the bottom of CFB combustors. To ensure uniformity of fuel composition among combustion runs, the sized coal was riffled using, a cone and long row method and stored in bags for each experiment. During this quarter additional modifications were made to achieve better control of fluidization regimes and to aid in monitoring the hydrodynamic and chemical conditions within the reactor.

  3. Adaptive resolution LES of a reacting non-premixed jet

    NASA Astrophysics Data System (ADS)

    Pantano, Carlos; Deiterding, Ralf; Hill, David; Pullin, Dale

    2004-11-01

    We present results of a turbulent reactive non-premixed jet using Large-Eddy Simulation (LES) performed within the blockstructured adaptive mesh refinement infrastructure AMROC. A fully compressible formulation of the transport equations and the stretched-vortex subgrid-stress model of Misra & Pullin (1997) are integrated with the assumed Beta subgrid pdf model for non-premixed combustion. Flamelet libraries are precomputed with the Cantera chemistry package. The modeling technique has been previously used and validated/verified in prior work, primarily for incompressible flows. One difficulty commonly encountered for these unstationary flows is the need to resolve certain regions of the flow field more finely than others. These can include thin shear layers and regions of steep density gradients produced by combustion. We show that adaptive resolution can be used successfully in the context of LES. This work is part of Caltech's ASC center supported by the Department of Energy (DOE).

  4. Effects of operating pressure on flame oscillation and emission characteristics in a partially premixed swirl combustor

    SciTech Connect

    Kim, Jong-Ryul; Choi, Gyung-Min; Kim, Duck-Jool

    2011-01-15

    The influence of varying combustor pressure on flame oscillation and emission characteristics in the partially premixed turbulent flame were investigated. In order to investigate combustion characteristics in the partially premixed turbulent flame, the combustor pressure was controlled in the range of -30 to 30 kPa for each equivalence ratio ({phi} = 0.8-1.2). The r.m.s. of the pressure fluctuations increased with decreasing combustor pressure for the lean condition. The combustor pressure had a sizeable influence on combustion oscillation, whose dominant frequency varied with the combustor pressure. Combustion instabilities could be controlled by increasing the turbulent intensity of the unburned mixture under the lean condition. An unstable flame was caused by incomplete combustion; hence, EICO greatly increased. Furthermore, EINO{sub x} simply reduced with decreasing combustor pressure at a rate of 0.035 g/10 kPa. The possibility of combustion control on the combusting mode and exhaust gas emission was demonstrated. (author)

  5. The structure of particle cloud premixed flames

    NASA Technical Reports Server (NTRS)

    Seshadri, K.; Berlad, A. L.

    1992-01-01

    The structure of premixed flames propagating in combustible systems containing uniformly distributed volatile fuel particles in an oxidizing gas mixture is analyzed. This analysis is motivated by experiments conducted at NASA Lewis Research Center on the structure of flames propagating in combustible mixtures of lycopodium particles and air. Several interesting modes of flame propagation were observed in these experiments depending on the number density and the initial size of the fuel particle. The experimental results show that steady flame propagation occurs even if the initial equivalence ratio of the combustible mixture based on the gaseous fuel available in the particles, phi sub u, is substantially larger than unity. A model is developed to explain these experimental observations. In the model, it is presumed that the fuel particles vaporize first to yield a gaseous fuel of known chemical composition which then reacts with oxygen in a one-step overall process. The activation energy of the chemical reaction is presumed to be large. The activation energy characterizing the kinetics of vaporization is also presumed to be large. The equations governing the structure of the flame were integrated numerically. It is shown that the interplay of vaporization kinetics and oxidation process can result in steady flame propagation in combustible mixtures where the value of phi sub u is substantially larger than unity. This prediction is in agreement with experimental observations.

  6. Flashback detection sensor for lean premix fuel nozzles

    DOEpatents

    Thornton, Jimmy Dean; Richards, George Alan; Straub, Douglas L.; Liese, Eric Arnold; Trader, Jr., John Lee; Fasching, George Edward

    2002-08-06

    A sensor for detecting the flame occurring during a flashback condition in the fuel nozzle of a lean premix combustion system is presented. The sensor comprises an electrically isolated flashback detection electrode and a guard electrode, both of which generate electrical fields extending to the walls of the combustion chamber and to the walls of the fuel nozzle. The sensor is positioned on the fuel nozzle center body at a location proximate the entrance to the combustion chamber of the gas turbine combustion system. The sensor provides 360.degree. detection of a flashback inside the fuel nozzle, by detecting the current conducted by the flame within a time frame that will prevent damage to the gas turbine combustion system caused by the flashback condition.

  7. Can we characterize turbulence in premixed flames?

    SciTech Connect

    Lipatnikov, A.N.

    2009-06-15

    Modeling of premixed turbulent combustion involves averaging reaction rates in turbulent flows. The focus of most approaches to resolving this problem has been placed on determining the dependence of the mean rate w of product creation on the laminar flame speed S{sub L}, the rms turbulence velocity u', etc. The goal of the present work is to draw attention to another issue: May the input quantity u{sup '} for a model of w= w(u'/S{sub L},..) be considered to be known? The point is that heat release substantially affects turbulence and, hence, turbulence characteristics in premixed flames should be modeled. However, standard moment methods for numerically simulating turbulent flows do not allow us to evaluate the true turbulence characteristics in a flame. For instance, the Reynolds stresses in premixed flames are affected not only by turbulence itself, but also by velocity jump across flamelets. A common way to resolving this problem consists of considering the Reynolds stresses conditioned on unburned (or burned) mixture to be the true turbulence characteristics. In the present paper, this widely accepted but never proved hypothesis is put into question, first, by considering simple model constant-density problems (flame motion in an oscillating one-dimensional laminar flow; flame stabilized in a periodic shear, one-dimensional, laminar flow; turbulent mixing). In all the cases, the magnitude of velocity fluctuations, calculated using the conditioned Reynolds stresses, is affected by the intermittency of reactants and products and, hence, is not the true rms velocity. Second, the above claim is further supported by comparing balance equations for the mean and conditioned Reynolds stresses. The conditioned Reynolds stresses do not characterize the true turbulence in flames, because conditional averaging cuts off flow regions characterized by either high or low velocities. (author)

  8. Multiphase combustion experimentation in microgravity

    NASA Technical Reports Server (NTRS)

    Berlad, A. L.

    1983-01-01

    This paper examines the need for and implementation of microgravity combustion studies of two phase media. Experimental and analytical aspects of several heterogeneous kinetic systems are discussed. These include: flame propagation and extinction for quiescent clouds of uniformly premixed fuel particulates in an oxidizing atmosphere; autoignition of clouds of uniformly premixed fuel particulates in a quiescent oxidizing atmosphere; and the roles of catalytically significant surfaces in gaseous autoignition processes.

  9. Methods and systems for combustion dynamics reduction

    DOEpatents

    Kraemer, Gilbert Otto; Varatharajan, Balachandar; Srinivasan, Shiva; Lynch, John Joseph; Yilmaz, Ertan; Kim, Kwanwoo; Lacy, Benjamin; Crothers, Sarah; Singh, Kapil Kumar

    2009-08-25

    Methods and systems for combustion dynamics reduction are provided. A combustion chamber may include a first premixer and a second premixer. Each premixer may include at least one fuel injector, at least one air inlet duct, and at least one vane pack for at least partially mixing the air from the air inlet duct or ducts and fuel from the fuel injector or injectors. Each vane pack may include a plurality of fuel orifices through which at least a portion of the fuel and at least a portion of the air may pass. The vane pack or packs of the first premixer may be positioned at a first axial position and the vane pack or packs of the second premixer may be positioned at a second axial position axially staggered with respect to the first axial position.

  10. Control of trace metal emissions during coal combustion. Technical progress report, October 1, 1995--December 31, 1995

    SciTech Connect

    Ho, Thomas C.

    1996-01-01

    Emissions of toxic trace metals in the form of metal fumes or submicron particulates from a coal-fired combustion source have received greater environmental and regulatory concern over the past years. Current practice of controlling these emissions is to collect them at the cold end of the process by air-pollution control devices such as electrostatic precipitators and baghouses. However, trace metal fumes may not always be effectively collected by these devices because the formed fumes are extremely small. The proposed research is to explore the opportunities for improved control of toxic trace metal emissions at the hot end of the coal combustion process, i.e., in the combustion chamber. The technology proposed is to prevent the metal fumes from forming during the process. Specifically, the technology is to employ suitable sorbents to reduce the amount of metal volatilization during combustion and capture volatized metal vapors. The objectives of this project are to demonstrate the technology and to characterize the metal capture process during coal combustion in a fluidized bed combustor. The following progress has been made during the performance period from Oct. 1, 1995 through Dec. 31, 1995: (1) Additional combustion experiments involving both coal and wood pellets were carried out in the constructed quartz fluidized bed combustor. (2) A new Buck Scientific Model 210VGP Atomic Absorption spectrophotometer equipped with a continuous flow hydride generator especially for arsenic and selenium was installed for the project. (3) A paper, entitled ``Capture of Toxic Metals by Various Sorbents during Fluidized Bed Coal Combustion,`` was presented at the 1995 AIChE Annual Meeting held in Miami, November 13--17, 1995. (4) A manuscript, entitled ``Trace Metal Capture by Various Sorbents during Fluidized Bed Coal Combustion,`` was submitted to the 26th International Symposium on Combustion for presentation and for publication in the symposium proceedings. 1 ref., 3 tabs.

  11. Confined superadiabatic premixed flame-flow interaction

    SciTech Connect

    Najm, H.N.

    1995-12-31

    Laminar premixed unity-Lewis number flames are studied numerically, to examine flow-flame interaction in a two-dimensional closed domain. Two opposed planar flame fronts are perturbed sinusoidally and allowed to develop by consuming premixed reactants. Combustion heat release leads to global pressure and temperature rise in the domain, due to confinement. A superadiabatic condition, with products temperature rising with distance behind the flame front, is observed due to stagnation pressure rise. Variations in tangential strain rate behind the perturbed flame fronts, due to flame curvature and heat release, result in a modified local superadiabatic temperature gradient in the products. These variations in temperature gradients are shown to determine the net local confinement-heating rate in the products, leading to corresponding deviations in products temperature, and the local reaction rate along the flame front. These observations, which are not consistent with one-dimensional superadiabatic stagnation flame behavior, are a direct result of the unrestrained unsteady nature of two-dimensional flame-flow interaction.

  12. Progress in analytical methods to predict and control azimuthal combustion instability modes in annular chambers

    NASA Astrophysics Data System (ADS)

    Bauerheim, M.; Nicoud, F.; Poinsot, T.

    2016-02-01

    Longitudinal low-frequency thermoacoustic unstable modes in combustion chambers have been intensively studied experimentally, numerically, and theoretically, leading to significant progress in both understanding and controlling these acoustic modes. However, modern annular gas turbines may also exhibit azimuthal modes, which are much less studied and feature specific mode structures and dynamic behaviors, leading to more complex situations. Moreover, dealing with 10-20 burners mounted in the same chamber limits the use of high fidelity simulations or annular experiments to investigate these modes because of their complexity and costs. Consequently, for such circumferential acoustic modes, theoretical tools have been developed to uncover underlying phenomena controlling their stability, nature, and dynamics. This review presents recent progress in this field. First, Galerkin and network models are described with their pros and cons in both the temporal and frequency framework. Then, key features of such acoustic modes are unveiled, focusing on their specificities such as symmetry breaking, non-linear modal coupling, forcing by turbulence. Finally, recent works on uncertainty quantifications, guided by theoretical studies and applied to annular combustors, are presented. The objective is to provide a global view of theoretical research on azimuthal modes to highlight their complexities and potential.

  13. Effect of the composition of the hot product stream in the quasi-steady extinction of strained premixed flames

    SciTech Connect

    Coriton, Bruno; Smooke, Mitchell D.; Gomez, Alessandro

    2010-11-15

    The extinction of premixed CH{sub 4}/O{sub 2}/N{sub 2} flames counterflowing against a jet of combustion products in chemical equilibrium was investigated numerically using detailed chemistry and transport mechanisms. Such a problem is of relevance to combustion systems with non-homogeneous air/fuel mixtures or recirculation of the burnt gases. Contrary to similar studies that were focused on heat loss/gain, depending on the degree of non-adiabaticity of the system, the emphasis here was on the yet unexplored role of the composition of counterflowing burnt gases in the extinction of lean-to-stoichiometric premixed flames. For a given temperature of the counterflowing products of combustion, it was found that the decrease of heat release with increase in strain rate could be either monotonic or non-monotonic, depending on the equivalence ratio {phi}{sub b} of the flame feeding the hot combustion product stream. Two distinct extinction modes were observed: an abrupt one, when the hot counterflowing stream consists of either inert gas or equilibrium products of a stoichiometric premixed flame, and a smooth extinction, when there is an excess of oxidizing species in the combustion product stream. In the latter case four burning regimes can be distinguished as the strain rate is progressively increased while the heat release decreases smoothly: an adiabatic propagating flame regime, a non-adiabatic propagating flame regime, the so-called partially-extinguished flame regime, in which the location of the peak of heat release crosses the stagnation plane, and a frozen flow regime. The flame structure was analyzed in detail in the different burning regimes. Abrupt extinction was attributed to the quenching of the oxidation layer with the entire H-OH-O radical pool being comparably reduced. Under conditions of smooth extinction, the behavior is different and the concentration of the H radical decreases the most with increasing strain rate, whereas OH and O remain

  14. The Behavior of Methane-Air Partially Premixed Flames Under Normal- and Zero-G Conditions

    NASA Technical Reports Server (NTRS)

    Puri, Ishwar K.; Aggarwal, Suresh K.; Choi, Chun Wai; Hegde, Uday

    2001-01-01

    Partially premixed flames (PPFs) represent a class of hybrid flames containing multiple reaction zones. These flames are established when less than stoichiometric quantity of oxidizer is molecularly mixed with the fuel stream before entering the reaction zone where additional oxidizer is available for complete combustion. This mode of combustion can be used to exploit the advantages of both nonpremixed and premixed flames regarding operational safety, lower pollutant emissions and flame stabilization. A double flame containing a fuel-rich premixed reaction zone, which is anchored by a nonpremixed reaction zone, is one example of a partially premixed flame. A triple flame is also a PPF that contains three reaction zones, namely, a fuel-rich premixed zone, a fuel-lean premixed zone, and a nonpremixed reaction zone. Herein we focus on two aspects of our investigation, one involving the development of optical diagnostics that can be used on a microgravity rig, which has been recently fabricated, and the other on the numerically predicted differences between normal- and zero-gravity PPFs. Both the measurements and simulations examine the detailed structure of methane-air PPFs stabilized on a Wolfhard-Parker slot burner.

  15. NOx Formation in a Premixed Syngas Flame

    SciTech Connect

    Yilmaz, S.L.; Givi, P.; Strakey, P.; Casleton, K.

    2006-11-01

    Reduction of NOx is a subject of significant current interest in stationary gas turbines. The objective of this study is to examine the effects of turbulence on non-thermal NOx formation in a syngas flame. This is archived by a detailed parametric study via PDF simulations of a partially stirred reactor and a dumped axisymmetric premixed flame. Several different detailed and reduced kinetics schemes are considered. The simulated results demonstrate the strong dependence of combustion process on turbulence. It is shown that the amount of NOx formation is significantly influenced by the inlet conditions. That is, the turbulence intensity can be tweaked to attain optimal ultra-low NOx emissions at a given temperature.

  16. FY2012 Annual Progress Report for Advanced Combustion Engine Research and Development

    SciTech Connect

    none,

    2013-02-01

    Annual report on the work of the the Advanced Combustion Engine R&D subprogram. The Advanced Combustion Engine R&D subprogram supports the Vehicle Technologies Office mission by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future federal emissions regulations.

  17. Premixed burner experiments: Geometry, mixing, and flame structure issues

    SciTech Connect

    Gupta, A.K.; Lewis, M.J.; Gupta, M.

    1995-10-01

    This research program is exploring techniques for improved fuel-air mixing, with the aim of achieving combustor operations up to stoichiometric conditions with minimal NO x and maximum efficiency. The experimental studies involve the use of a double-concentric natural gas burner that is operable in either premixed or non-premixed modes, and the system allows systematic variation of equivalence ratio, swirl strength shear length region and flow momentum in each annulus. Flame structures formed with various combinations of swirl strengths, flow throughput and equivalence ratios in premixed mode show the significant impact of swirl flow distribution on flame structure emanating from the mixedness. This impact on flame structure is expected to have a pronounced effect on the heat release rate and the emission of NO{sub x}. Thus, swirler design and configuration remains a key factor in the quest for completely optimized combustion. Parallel numerical studies of the flow and combustion phenomena were carried out, using the RSM and thek-{epsilon} turbulence models. These results have not only indicated the strengths and limitations of CFD in performance and pollutants emission predictions, but have provided guidelines on the size and strength of the recirculation produced and the spatio-temporal structure of the combustion flowfield. The first stage of parametric studies on geometry and operational parameters at Morgan State University have culminated in the completion of a one-dimensional flow code that is integrated with a solid, virtual model of the existing premixed burner. This coupling will provide the unique opportunity to study the impact of geometry on the flowfield and vice-versa, with particular emphasis on concurrent design optimization.

  18. LES and acoustic analysis of thermo-acoustic instabilities in a partially premixed model combustor

    NASA Astrophysics Data System (ADS)

    Hernández, Ignacio; Staffelbach, Gabriel; Poinsot, Thierry; Román Casado, Juan C.; Kok, Jim B. W.

    2013-01-01

    Numerical simulations were performed using Large Eddy Simulation (LES) and acoustic analysis tools to study thermo-acoustic instabilities in a methane/air academic burner installed at the University of Twente (The Netherlands). It operates under fuel-lean partially premixed conditions at atmospheric pressure, and was built to study thermo-acoustic instabilities in conditions representative of gas turbine Lean Premixed systems: gaseous fuel is injected upstream of the combustor and has a limited time to mix with air. Even though the objective is to burn in a premixed mode, the actual regime corresponds to a partially premixed flame where strong equivalence ratio variations are created especially during combustion instabilities. Capturing these modes with LES is a challenge: here, simulations for both stable and unstable regimes are performed. In the unstable case, the limit cycle oscillations (LCO) are characterized and compared to experimental results. Reasonable agreement is found between simulations and experiments.

  19. Active control of combustion for optimal performance

    SciTech Connect

    Jackson, M.D.; Agrawal, A.K.

    1999-07-01

    Combustion-zone stoichiometry and fuel-air premixing were actively controlled to optimize the combustor performance over a range of operating conditions. The objective was to maximize the combustion temperature, while maintaining NO{sub x} within a specified limit. The combustion system consisted of a premixer located coaxially near the inlet of a water-cooled shroud. The equivalence ratio was controlled by a variable-speed suction fan located downstream. The split between the premixing air and diffusion air was governed by the distance between the premixer and shroud. The combustor performance was characterized by a cost function evaluated from time-averaged measurements of NO{sub x} and oxygen concentrations in products. The cost function was minimized by downhill simplex algorithm employing closed-loop feedback. Experiments were conducted at different fuel flow rates to demonstrate that the controller optimized the performance without prior knowledge of the combustor behavior.

  20. Pulsed atmospheric fluidized bed combustion. Technical progress report, July 1991--September 1991

    SciTech Connect

    Not Available

    1991-10-01

    The major accomplishments during this reporting period include completion of Task 1 and progression into Phase II, Task 2 design activities. A brief laboratory-scale test was conducted during this reporting period to confirm heat transfer coefficients for various sections of the Pulsed Atmospheric Fluidized bed Combustion (PAFBC) system. The heat transfer coefficient was determined to be approximately 50 Btu/hr ft{sup 2} {degrees}F inside the eductor and tailpipe of the pulse combustor as thin the fluidized bed. well as for the surfaces immersed within the fluidized bed. Communications with potential host sites for the Phase III field demonstration activities continued during this reporting period. These discussions along with discussions with environmental regulatory personnel in the State of Maryland indicate that the throughput of the field demonstration facility should be increased to greater than 36 million Btu/hr. An 8 in. {times} 8 in. fluidized bed unit would be too small to satisfy this requirement; its projected firing rate is only 33 million Btu/hr. Major effort during this reporting period was devoted to assessing the reasonableness of increasing the size of the field test facility from a technical and cost standpoint.

  1. Investigation of mineral transformations and ash deposition during staged combustion. Quarterly technical progress report, July 1, 1995-- September 30, 1995

    SciTech Connect

    Harb, J.N.

    1995-12-31

    Progress during the eighth quarter of a three-year study was made in three task areas: (1) analysis of coals; (3) parametric testing of the target coals, and (4) analysis of samples from the combustion tests. Routines for automated analysis of coal and mineral associations were completed and are now functional on our new ISIS system. Work on data processing which led to the development of a new means of interpreting composition information from the SEM was also completed during the quarter. This work is expected to yield substantial benefits in understanding the ash transformations during combustion. Several additional ash and deposit samples were collected this quarter. Deposition results have been explained qualitatively and samples has been mounted for quantitative analysis. A detailed characterization of mixing and coalescence was performed during the quarter. Results indicate that combustion under stage conditions does not change the chemistry of the final ash produced. Specifically, both iron and potassium distributions in long residence time ashes did not change as a function of combustion conditions. Some differences were observed in the potassium distribution at shorter residence times. There was also a difference in the size distribution of particles formed during staged combustion. The nature and significance of these differences are still under investigation.

  2. The role of reactant unmixedness, strain rate, and length scale on premixed combustor performance

    SciTech Connect

    Samuelsen, S.; LaRue, J.; Vilayanur, S.

    1995-10-01

    Lean premixed combustion provides a means to reduce pollutant formation and increase combustion efficiency. However, fuel-air mixing is rarely uniform in space and time. This nonuniformity in concentration will lead to relative increases in pollutant formation and decreases in combustion efficiency. The nonuniformity of the concentration at the exit of the premixer has been defined by Lyons (1981) as the {open_quotes}unmixedness.{close_quotes} Although turbulence properties such as length scales and strain rate are known to effect unmixedness, the exact relationship is unknown. Evaluating this relationship and the effect of unmixedness in premixed combustion on pollutant formation and combustion efficiency are an important part of the overall goal of US Department of Energy`s Advanced Turbine Systems (ATS) program and are among the goals of the program described herein. The information obtained from ATS is intended to help to develop and commercialize gas turbines which have (1) a wide range of operation/stability, (2) a minimal amount of pollutant formation, and (3) high combustion efficiency. Specifically, with regard to pollutants, the goals are to reduce the NO{sub x} emissions by at least 10%, obtain less than 20 PPM of both CO and UHC, and increase the combustion efficiency by 5%.

  3. The role of reactant unmixedness, strain rate, and length scale on premixed combustor performance

    SciTech Connect

    Samuelsen, S.; LaRue, J.; Vilayanur, S.; Guillaume, D.

    1995-12-31

    Lean premixed combustion provides a means to reduce pollutant formation and increase combustion efficiency. However, fuel-air mixing is rarely uniform in space and time. This nonuniformity in concentration will lead to relative increases in pollutant formation and decreases in combustion efficiency. The nonuniformity of the concentration at the exit of the premixer has been defined by Lyons (1981) as the ``unmixedness.`` Although turbulence properties such as length scales and strain rate are known to effect unmixedness, the exact relationship is unknown. Evaluating this relationship and the effect of unmixedness in premixed combustion on pollutant formation and combustion efficiency are an important part of the overall goal of US Department of Energy`s Advanced Turbine System (ATS) program and are among the goals of the program described herein. The information obtained from ATS is intended to help to develop and commercialize gas turbines. The contributions to the program which the University of California (Irvine) Combustion Lab (UCICL) will provide are: (1) establish the relationship of inlet unmixedness, length scales, and mean strain rate to performance, (2) determine the optimal levels of inlet unmixedness, length scales, and mean strain rates to maximize combustor performance, and (3) identify efficient premixing methods for achieving the necessary inlet conditions. The program during this reporting period is focused on developing a means to measure and qualify different degrees of temporal and spatial unmixedness. Laser diagnostic methods for planer unmixedness measurements are being developed and preliminary results are presented herein. These results will be used to (1), aid in the design of experimental premixers, and (2), determine the unmixedness which will be correlated with the emissions of the combustor. This measure of unmixedness coupled with length scale, strain rate and intensity information is required to attain the UCI goals.

  4. Gas turbine combustion instability

    SciTech Connect

    Richards, G.A.; Lee, G.T.

    1996-09-01

    Combustion oscillations are a common problem in development of LPM (lean premix) combustors. Unlike earlier, diffusion style combustors, LPM combustors are especially susceptible to oscillations because acoustic losses are smaller and operation near lean blowoff produces a greater combustion response to disturbances in reactant supply, mixing, etc. In ongoing tests at METC, five instability mechanisms have been identified in subscale and commercial scale nozzle tests. Changes to fuel nozzle geometry showed that it is possible to stabilize combustion by altering the timing of the feedback between acoustic waves and the variation in heat release.

  5. Pulse combustion technology for heating applications. Quarterly progress report, October 1-December 31, 1979

    SciTech Connect

    Ahrens, F.W.; Clinch, J.M.

    1980-01-01

    The primary purpose of this research program is to develop and expand the technology base for fossil-fuel-fired pulse combustion heating systems. A major goal is to develop design data and design procedures for pulse combustion burners. This design capability will contribute to the accelerated industrial development of cost-effective, high-efficiency systems for a variety of heating applications.

  6. Statistics of premixed flame cells

    SciTech Connect

    Noever, D.A. )

    1991-07-15

    The statistics of random cellular patterns in premixed flames are analyzed. Agreement is found with a variety of topological relations previously found for other networks, namely, Lewis's law and Aboav's law. Despite the diverse underlying physics, flame cells are shown to share a broad class of geometric properties with other random networks---metal grains, soap foams, bioconvection, and Langmuir monolayers.

  7. Statistics of premixed flame cells

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    1991-01-01

    The statistics of random cellular patterns in premixed flames are analyzed. Agreement is found with a variety of topological relations previously found for other networks, namely, Lewis's law and Aboav's law. Despite the diverse underlying physics, flame cells are shown to share a broad class of geometric properties with other random networks-metal grains, soap foams, bioconvection, and Langmuir monolayers.

  8. Chemical Kinetic Study of Toluene Oxidation Under Premixed and Nonpremixed Conditions

    SciTech Connect

    Costa, I D; Bozzelli, J W; Seiser, R; Pitz, W J; Westbrook, C K; Chen, C -; Fournet, R; Seshadri, K; Battin-Leclerc, F; Billaud, F

    2003-12-10

    A study was performed to elucidate the chemical-kinetic mechanism of combustion of toluene. A detailed chemical-kinetic mechanism for toluene was improved by adding a more accurate description of the phenyl + O{sub 2} reaction channels, toluene decomposition reactions and the benzyl + O reaction. Results of the chemical kinetic mechanism are compared with experimental data obtained from premixed and non-premixed systems. Under premixed conditions, predicted ignition delay times are compared with new experimental data obtained in shock tube. Also, calculated species concentration histories are compared to experimental flow reactor data from the literature. Under non-premixed conditions, critical conditions of extinction and autoignition were measured in strained laminar flows in the counterflow configuration. Numerical calculations are performed using the chemical-kinetic mechanism at conditions corresponding to those in the experiments. Critical conditions of extinction and autoignition are predicted and compared with the experimental data. Comparisons between the model predictions and experimental results of ignition delay times in shock tube, and extinction and autoignition in non-premixed systems show that the chemical-kinetic mechanism predicts that toluene/air is overall less reactive than observed in the experiments. For both premixed and non-premixed systems, sensitivity analysis was used to identify the reaction rate constants that control the overall rate of oxidation in each of the systems considered. Under shock tube conditions, the reactions that influence ignition delay time are H + O{sub 2} chain branching, the toluene decomposition reaction to give an H atom, and the toluene + H abstraction reaction. The reactions that influence autoignition in non-premixed systems involve the benzyl + HO{sub 2} reaction and the phenyl + O{sub 2} reaction.

  9. FY2010 Annual Progress Report for Advanced Combustion Engine Research and Development

    SciTech Connect

    Singh, Gurpreet

    2010-12-01

    The Advanced Combustion Engine R&D subprogram supports the mission of the Vehicle Technologies Program by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future Federal emissions regulations. Dramatically improving the efficiency of ICEs and enabling their introduction in conventional as well as hybrid electric vehicles is the most promising and cost-effective approach to increasing vehicle fuel economy over the next 30 years.

  10. Advanced combustion system for industrial boilers. Quarterly technical progress report, August 1987--October 1987

    SciTech Connect

    Attig, R.C.; Foote, J.P.; Millard, W.P.; Schulz, R.J.; Wagoner, C.L.

    1987-12-31

    The purpose of this project is to develop an advanced coal-combustion system for industrial boilers. With the new combustion system, coal could be used to replace oil and possibly gas as fuel for many industrial boilers. The advanced combustion system is comprised of several parts: (1) A new burner-design concept for coal fuels, developed from the familiar gas turbine combustor-can designs that have proven efficient, reliable, durable, and safe for the combustion of liquid fuel oils. (2) A coal storage and dense-phase feed system for injecting clean, ultrafine pulverized coal into the burner at a low velocity. (3) An automatic control system based on feedback from low-cost automotive combustion-quality transducers. A cold flow model of an initial phase of the new burner design and the associated laser flow-visualization techniques were developed during this quarter. A series of modifications of the initial cold flow model will be tested to establish details of design for the new burner. Also a 200 hp firetube boiler has been installed and tested using number 2 oil as a fuel. This boiler will be used for future combustion testing with the new burner and ultrafine pulverized coal. Additionally an ultrafine-coal injector has been designed which will be evaluated separately as a replacement for the oil gun in the firetube boiler. Two tons of deep-cleaned, ultrafine coal were received for initial tests with the coal injector.

  11. Planar laser-induced fluorescence imaging of OH distribution in lean premixed swirling flames

    SciTech Connect

    Birouk, M.; Gupta, A.K.; Lewis, M.J.

    1998-07-01

    The spatial distribution of OH specie in lean premixed methane-air swirling flames at atmospheric pressure conditions has been investigated using a Planar Laser-Induced Fluorescence (PLIF) technique. Tests were conducted in a burner with a central nozzle surrounded by two concentric annuli, through which the methane-air mixture could be injected with variable equivalence ratio, swirl and momentum. The geometry was chosen to simulate a single burner in a typical gas turbine combustor. Experiments were carried out across a range of three independently-varied parameters: the swirl distribution in the outer annulus, the axial momentum in the inner annulus, and the premixed equivalence ratio ({phi} = 0.75, 0.68, and 0.61). Instantaneous and ensemble-averaged OH images were obtained at vertical cross-sections of the flame (referenced through the centerline) under different flame conditions. These images provide information on the flame reaction zone which is of interest for understanding the complex structure and dynamics of a swirling premixed combustion system. These images also assist in understanding why lean premixed gas turbine combustion systems may experience combustion instability, particularly under leaner conditions.

  12. Fundamental combustion studies of emulsified fuels. Annual progress report, October 1, 1979-September 30, 1980

    SciTech Connect

    Kennedy, I M

    1980-01-01

    A research program in the Fuels Research Laboratory at Princeton University has provided fundamental information on the combustion properties of emulsions and multi-component fuel mixtures. Particular attention has been given to understanding the phenomenon of micro-explosions and disruptive combustion. Earlier work which investigated the behavior of n-paraffin and water emulsions, binary mixtures of n-paraffins, and solutions of alcohol with n-paraffins has been completed and is now published in the open literature. This work has been extended during the current contract period to the study of the droplet combustion of a No. 2 fuel oil. Both emulsions with water and solutions of alcohols were investigated and very useful data were generated with regard to the optimization of the disruption phenomenon in terms of additive content. In addition, some preliminary work has been done with micro-emulsions. This indicated the importance of further work to elucidate the role of surfactant loading. Theoretical work on the growth of gaseous bubbles in fuel droplets has helped to define some of the controlling parameters in the disruption phenomenon. Finally the design of a new free droplet apparatus has been completed and a novel optical diagnostic technique for droplet sizing is near completion. This program has generated information which is of general interest in the field of droplet combustion and represents a considerable advance in our understanding of fuel related combustion phenomena.

  13. Modeling of microgravity combustion experiments

    NASA Technical Reports Server (NTRS)

    Buckmaster, John

    1995-01-01

    This program started in February 1991, and is designed to improve our understanding of basic combustion phenomena by the modeling of various configurations undergoing experimental study by others. Results through 1992 were reported in the second workshop. Work since that time has examined the following topics: Flame-balls; Intrinsic and acoustic instabilities in multiphase mixtures; Radiation effects in premixed combustion; Smouldering, both forward and reverse, as well as two dimensional smoulder.

  14. Emissions of oxides of nitrogen from an experimental premixed-hydrogen burner

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.

    1976-01-01

    Flame-tube experiments using premixed hydrogen and air were conducted to determine the emissions of oxides of nitrogen (NOx) resulting from ultralean combustion. Measurements of NOx emissions and combustion efficiency were made for inlet mixture temperatures of 600 and 700 K, pressures of 3.8 x 10 to the 5th power and 5.2 x 10 to the 5th power N/m squared, reference velocities of 15 to 18 m/sec, and equivalence ratios of 0.2 to 0.4. At the 700 K inlet mixture temperature, NOx emissions were 0.06 ppmv, and combustion efficiency was 98 percent at an equivalence ratio of 0.24. The use of a high-blockage (92-percent blockage) flameholder made it possible to conduct tests without upstream burning in the premixing duct for mixtures with equivalence ratios less than 0.4. For richer mixtures upstream burning did occur and prevented further testing.

  15. Exhaust emissions from a premixing, prevaporizing flame tube using liquid jet A fuel

    NASA Technical Reports Server (NTRS)

    Marek, C. J.; Papathakos, L. C.

    1976-01-01

    Emissions of nitrogen oxides, carbon monoxide, and unburned hydrocarbons were measured in a burner where liquid Jet A fuel was sprayed into the heated air stream and vaporized upstream of a perforated plate flameholder. The burner was tested at inlet air temperatures at 640, 800, and 833 K, an inlet pressure of 5.6 X 100,000 N/m squared, a reference velocity of 25 m/sec, and equivalence ratios from lean blowout to 0.7. Nitrogen oxide levels of below 1.0 g NO2/kg fuel were obtained at combustion efficiencies greater than 99 percent. The measured emission levels for the liquid fuel agreed well with previously reported premixed gaseous propane data and agreed with well stirred reactor predictions. Autoignition of the premixed fuel air mixture was a problem at inlet temperatures above 650 K with 104 msec premixing time.

  16. Effect of premixing quality on oxides of nitrogen in gas turbine combustors foi HC

    NASA Technical Reports Server (NTRS)

    Roffe, G.; Ferri, A.

    1976-01-01

    Experiments were conducted to determine the effectiveness of several premixing prevaporizing gas turbine combustor designs in reducing formation of oxides of nitrogen at the supersonic cruise condition. An atomized spray from a single injector mounted on the axis of the mixer tube produced a high initial concentration of fuel near the axis and only moderate premixed conditions entering the combustor. A fuel spray produced by 12 flush-mounted normal injection orifices in the mixer tube wall produced a good initial despersion of fuel and resulted in nearly complete premixing. Oxides of nitrogen emission levels of the order of 0.2 g NO2/kg fuel were obtained at 99 percent combustion efficiency at an equivalence ratio of 0.4. Overall total pressure drop was less than 3 percent through the 1-meter combustor module.

  17. Investigation of mineral transformations and ash deposition during staged combustion. Quarterly technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Harb, J.N.

    1995-05-04

    Progress during the sixth quarter of a three-year study was made in two task areas: (1) parametric testing of the target coals, and (2) analysis of samples from the combustion tests. A new microanalysis system was acquired (no cost to DOE) and is now functional, although development of analysis routines for the system is still in progress. This system has significantly increased our analytical throughput and has provided increased reliability. Parametric testing of the Pittsburgh No. 8 coal (weathered) was initiated this quarter. Initial analytical results from these tests show sulfur release and iron transformations as a function of test conditions and sampling location. A new supply of Pittsburgh No. 8 coal has been shipped and will be used to contrast behavior between the oxidized (weathered) and unoxidized Pittsburgh fuels. Finally, specific tasks for the next quarter have been identified and reported.

  18. Progress towards an Optimization Methodology for Combustion-Driven Portable Thermoelectric Power Generation Systems

    SciTech Connect

    Krishnan, Shankar; Karri, Naveen K.; Gogna, Pawan K.; Chase, Jordan R.; Fleurial, Jean-Pierre; Hendricks, Terry J.

    2012-03-13

    Enormous military and commercial interests exist in developing quiet, lightweight, and compact thermoelectric (TE) power generation systems. This paper investigates design integration and analysis of an advanced TE power generation system implementing JP-8 fueled combustion and thermal recuperation. Design and development of a portable TE power system using a JP-8 combustor as a high temperature heat source and optimal process flows depend on efficient heat generation, transfer, and recovery within the system are explored. Design optimization of the system required considering the combustion system efficiency and TE conversion efficiency simultaneously. The combustor performance and TE sub-system performance were coupled directly through exhaust temperatures, fuel and air mass flow rates, heat exchanger performance, subsequent hot-side temperatures, and cold-side cooling techniques and temperatures. Systematic investigation of this system relied on accurate thermodynamic modeling of complex, high-temperature combustion processes concomitantly with detailed thermoelectric converter thermal/mechanical modeling. To this end, this work reports on design integration of systemlevel process flow simulations using commercial software CHEMCADTM with in-house thermoelectric converter and module optimization, and heat exchanger analyses using COMSOLTM software. High-performance, high-temperature TE materials and segmented TE element designs are incorporated in coupled design analyses to achieve predicted TE subsystem level conversion efficiencies exceeding 10%. These TE advances are integrated with a high performance microtechnology combustion reactor based on recent advances at the Pacific Northwest National Laboratory (PNNL). Predictions from this coupled simulation established a basis for optimal selection of fuel and air flow rates, thermoelectric module design and operating conditions, and microtechnology heat-exchanger design criteria. This paper will discuss this

  19. Dynamics of premixed confined swirling flames

    NASA Astrophysics Data System (ADS)

    Palies, P.; Durox, D.; Schuller, T.; Morenton, P.; Candel, S.

    2009-06-01

    Considerable effort is currently being extended to examine the fundamental mechanisms of combustion instabilities and develop methods allowing predictions of these phenomena. One central aspect of this problem is the dynamical response of the flame to incoming perturbations. This question is examined in the present article, which specifically considers the response of premixed swirling flames to perturbations imposed on the upstream side of the flame in the feeding manifold. The flame response is characterized by measuring the unsteady heat release induced by imposed velocity perturbations. A flame describing function is defined by taking the ratio of the relative heat release rate fluctuation to the relative velocity fluctuation. This quantity is determined for a range of frequencies and for different levels of incoming velocity perturbations. The flame dynamics is also documented by calculating conditional phase averages of the light emission from the flame and taking the Abel transform of these average images to obtain the flame geometry at various instants during the cycle of oscillation. These data can be useful to the determination of possible regimes of instability. To cite this article: P. Palies et al., C. R. Mecanique 337 (2009).

  20. Periodic and Chaotic Modes in Premixed Laminar Flames

    NASA Astrophysics Data System (ADS)

    El-Hamdi, Mohamed Abbes

    1991-06-01

    In this thesis, we report the discoveries of many periodic and chaotic modes of laminar premixed flames on porous plug burners. This report is the first confirmation of predictions of a number of recent theoretical studies on the dynamics of premixed flames. The experimental innovations and techniques presented in section 3.6 are at the heart of the discoveries of these dynamical modes. In our experiments, a flame front is stabilized on a porous plug burner enclosed within a pyrex chamber. By varying the total flow rate, the stoichiometry of the combustible mixture, and the chamber pressure, we discovered many periodic and chaotic modes. We show that different fuels and/or oxidizers as well as the symmetries of the system can affect the dynamics of the flame front. Experimental evidence is presented that shows that laminar premixed flames exhibit low-dimensional, deterministic chaos. The largest Liapunov exponent and the pointwise dimension calculations are used to confirm that chaos exists in certain regions of parameter space. We also describe a power spectrum technique that can be used to identify deterministic dynamics in real time. With the help of a spectrum analyzer, an experimentalist can map the dynamics (simple and complex) of the system under investigation in a relatively short time. As far as we know, this is the first time that nonlinear dynamics techniques are used to analyze experimental data from combustion. All the nonperiodic modes that we have discovered exhibit low-dimensional deterministic chaos and we believe that this result is a general one for propagating fronts. The implication of our work is that such nonperiodic states can be described by a tractable set of ordinary differential equations.

  1. Numerical simulations and modeling of turbulent combustion

    NASA Astrophysics Data System (ADS)

    Cuenot, B.

    Turbulent combustion is the basic physical phenomenon responsible for efficient energy release by any internal combustion engine. However it is accompanied by other undesirable phenomena such as noise, pollutant species emission or damaging instabilities that may even lead to the system desctruction. It is then crucial to control this phenomenon, to understand all its mecanisms and to master it in industrial systems. For long time turbulent combustion has been explored only through theory and experiment. But the rapid increase of computers power during the last years has allowed an important development of numerical simulation, that has become today an essential tool for research and technical design. Direct numerical simulation has then allowed to rapidly progress in the knowledge of turbulent flame structures, leading to new modelisations for steady averaged simulations. Recently large eddy simulation has made a new step forward by refining the description of complex and unsteady flames. The main problem that arises when performing numerical simulation of turbulent combustion is linked to the description of the flame front. Being very thin, it can not however be reduced to a simple interface as it is the location of intense chemical transformation and of strong variations of thermodynamical quantities. Capturing the internal structure of a zone with a thickness of the order of 0.1 mm in a computation with a mesh step 10 times larger being impossible, it is necessary to model the turbulent flame. Models depend on the chemical structure of the flame, on the ambiant turbulence, on the combustion regime (flamelets, distributed combustion, etc.) and on the reactants injection mode (premixed or not). One finds then a large class of models, from the most simple algebraic model with a one-step chemical kinetics, to the most complex model involving probablity density functions, cross-correlations and multiple-step or fully complex chemical kinetics.

  2. Pre-mixing apparatus for a turbine engine

    DOEpatents

    Lacy, Benjamin Paul; Varatharajan, Balachandar; Ziminsky, Willy Steve; Kraemer, Gilbert Otto; Yilmaz, Ertan; Melton, Patrick Benedict; Zuo, Baifang; Stevenson, Christian Xavier; Felling, David Kenton; Uhm, Jong Ho

    2012-04-03

    A pre-mixing apparatus for a turbine engine includes a main body having an inlet portion, an outlet portion and an exterior wall that collectively establish at least one fluid delivery plenum, and a plurality of fluid delivery tubes extending through at least a portion of the at least one fluid delivery plenum. Each of the plurality of fluid delivery tubes includes at least one fluid delivery opening fluidly connected to the at least one fluid delivery plenum. With this arrangement, a first fluid is selectively delivered to the at least one fluid delivery plenum, passed through the at least one fluid delivery opening and mixed with a second fluid flowing through the plurality of fluid delivery tubes prior to being combusted in a combustion chamber of a turbine engine.

  3. Finite amplitude wave interaction with premixed laminar flames

    NASA Astrophysics Data System (ADS)

    Aslani, Mohamad; Regele, Jonathan D.

    2014-11-01

    The physics underlying combustion instability is an active area of research because of its detrimental impact in many combustion devices, such as turbines, jet engines, and liquid rocket engines. Pressure waves, ranging from acoustic waves to strong shocks, are potential sources of these disturbances. Literature on flame-disturbance interactions are primarily focused on either acoustics or strong shock wave interactions, with little information about the wide spectrum of behaviors that may exist between these two extremes. For example, the interaction between a flame and a finite amplitude compression wave is not well characterized. This phenomenon is difficult to study numerically due to the wide range of scales that need to be captured, requiring powerful and efficient numerical techniques. In this work, the interaction of a perturbed laminar premixed flame with a finite amplitude compression wave is investigated using the Parallel Adaptive Wavelet Collocation Method (PAWCM). This method optimally solves the fully compressible Navier-Stokes equations while capturing the essential scales. The results show that depending on the amplitude and duration of a finite amplitude disturbance, the interaction between these waves and premixed flames can produce a broad range of responses.

  4. Temperature response of turbulent premixed flames to inlet velocity oscillations

    NASA Astrophysics Data System (ADS)

    Ayoola, B.; Hartung, G.; Armitage, C. A.; Hult, J.; Cant, R. S.; Kaminski, C. F.

    2009-01-01

    Flame-turbulence interactions are at the heart of modern combustion research as they have a major influence on efficiency, stability of operation and pollutant emissions. The problem remains a formidable challenge, and predictive modelling and the implementation of active control measures both rely on further fundamental measurements. Model burners with simple geometry offer an opportunity for the isolation and detailed study of phenomena that take place in real-world combustors, in an environment conducive to the application of advanced laser diagnostic tools. Lean premixed combustion conditions are currently of greatest interest since these are able to provide low NO x and improved increased fuel economy, which in turn leads to lower CO2 emissions. This paper presents an experimental investigation of the response of a bluff-body-stabilised flame to periodic inlet fluctuations under lean premixed turbulent conditions. Inlet velocity fluctuations were imposed acoustically using loudspeakers. Spatially resolved heat release rate imaging measurements, using simultaneous planar laser-induced fluorescence (PLIF) of OH and CH2O, have been performed to explore the periodic heat release rate response to various acoustic forcing amplitudes and frequencies. For the first time we use this method to evaluate flame transfer functions and we compare these results with chemiluminescence measurements. Qualitative thermometry based on two-line OH PLIF was also used to compare the periodic temperature distribution around the flame with the periodic fluctuation of local heat release rate during acoustic forcing cycles.

  5. Computational Combustion

    SciTech Connect

    Westbrook, C K; Mizobuchi, Y; Poinsot, T J; Smith, P J; Warnatz, J

    2004-08-26

    Progress in the field of computational combustion over the past 50 years is reviewed. Particular attention is given to those classes of models that are common to most system modeling efforts, including fluid dynamics, chemical kinetics, liquid sprays, and turbulent flame models. The developments in combustion modeling are placed into the time-dependent context of the accompanying exponential growth in computer capabilities and Moore's Law. Superimposed on this steady growth, the occasional sudden advances in modeling capabilities are identified and their impacts are discussed. Integration of submodels into system models for spark ignition, diesel and homogeneous charge, compression ignition engines, surface and catalytic combustion, pulse combustion, and detonations are described. Finally, the current state of combustion modeling is illustrated by descriptions of a very large jet lifted 3D turbulent hydrogen flame with direct numerical simulation and 3D large eddy simulations of practical gas burner combustion devices.

  6. Bed material agglomeration during fluidized bed combustion. Technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Brown, R.C.; Dawson, M.R.; Smeenk, J.L.

    1995-04-01

    Experiments performed support the hypothesis that a reducing atmosphere during fluidized bed coal combustion contributes to the formation of agglomerates. Reducing conditions are imposed by controlling the amount of combustion air supplied to the combustor, 50% of theoretical in these experiments. These localized reducing conditions may arise from either poor lateral bed mixing or oxygen-starved conditions due to the coal feed locations. Deviations from steady-state operating conditions in bed pressure drop may be used to detect agglomerate formation. Interpretation of the bed pressure drop was made more straightforward by employing a moving average difference method. During steady-state operation, the difference between the moving point averages should be close to zero, within {plus_minus}0.03 inches of water. Instability within the combustor, experienced once agglomerates begin to form, can be recognized as larger deviations from zero, on the magnitude of {plus_minus}0.15 inches of water.

  7. Pulsed atmospheric fluidized bed combustion. Technical progress report, January 1992--March 1992

    SciTech Connect

    Not Available

    1992-05-01

    During this first quarter, a lab-scale water-cooled pulse combustor was designed, fabricated, and integrated with old pilot-scale PAFBC test systems. Characterization tests on this pulse combustor firing different kinds of fuel -- natural gas, pulverized coal and fine coal -- were conducted (without fluidized bed operation) for the purpose of finalizing PAFBC full-scale design. Steady-state tests were performed. Heat transfer performance and combustion efficiency of a coal-fired pulse combustor were evaluated.

  8. Progress for the treatment of the combustible portion of domestic waste for briquetting and apparatus therefor

    SciTech Connect

    Riemann, H.H.; Sonneschein, H.

    1984-05-01

    A method and apparatus for the treatment of the combustible portion of crushed domestic waste is disclosed. The waste is pre-dried and separated from dense-medium material such as metal and glass prior to processing. A dried waste moisture level of about 8-10% is maintained throughout the process. High heat value briquets are produced without the addition of a bonding agent by sifting out fine inert material and plastic material prior to briquetting.

  9. PROGRESS IN DETAILED KINETIC MODELING OF THE COMBUSTION OF OXYGENATED COMPONENTS OF BIOFUELS

    PubMed Central

    Sy Tran, Luc; Sirjean, Baptiste; Glaude, Pierre-Alexandre; Fournet, René; Battin-Leclerc, Frédérique

    2013-01-01

    Due to growing environmental concerns and diminishing petroleum reserves, a wide range of oxygenated species has been proposed as possible substitutes to fossil fuels: alcohols, methyl esters, acyclic and cyclic ethers. After a short review the major detailed kinetic models already proposed in the literature for the combustion of these molecules, the specific classes of reactions considered for modeling the oxidation of acyclic and cyclic oxygenated molecules respectively, are detailed. PMID:23700355

  10. Progress Towards an Optimization Methodology for Combustion-Driven Portable Thermoelectric Power Generation Systems

    NASA Astrophysics Data System (ADS)

    Krishnan, Shankar; Karri, Naveen K.; Gogna, Pawan K.; Chase, Jordan R.; Fleurial, Jean-Pierre; Hendricks, Terry J.

    2012-06-01

    There is enormous military and commercial interest in developing quiet, lightweight, and compact thermoelectric (TE) power generation systems. This paper investigates design integration and analysis of an advanced TE power generation system implementing JP-8 fueled combustion and thermal recuperation. In the design and development of this portable TE power system using a JP-8 combustor as a high-temperature heat source, optimal process flows depend on efficient heat generation, transfer, and recovery within the system. The combustor performance and TE subsystem performance were coupled directly through combustor exhaust temperatures, fuel and air mass flow rates, heat exchanger performance, subsequent hot-side temperatures, and cold-side cooling techniques and temperatures. Systematic investigation and design optimization of this TE power system relied on accurate thermodynamic modeling of complex, high-temperature combustion processes concomitantly with detailed TE converter thermal/mechanical modeling. To this end, this paper reports integration of system-level process flow simulations using CHEMCAD™ commercial software with in-house TE converter and module optimization, and heat exchanger analyses using COMSOL™ software. High-performance, high-temperature TE materials and segmented TE element designs are incorporated in coupled design analyses to achieve predicted TE subsystem-level conversion efficiencies exceeding 10%. These TE advances are integrated with a high-performance microtechnology combustion reactor based on recent advances at Pacific Northwest National Laboratory (PNNL). Predictions from this coupled simulation approach lead directly to system efficiency-power maps defining potentially available optimal system operating conditions and regimes. Further, it is shown that, for a given fuel flow rate, there exists a combination of recuperative effectiveness and hot-side heat exchanger effectiveness that provides a higher specific power output from