Science.gov

Sample records for premixed human insulin

  1. Interactions of short-acting, intermediate-acting and pre-mixed human insulins with free radicals--Comparative EPR examination.

    PubMed

    Olczyk, Paweł; Komosinska-Vassev, Katarzyna; Ramos, Paweł; Mencner, Łukasz; Olczyk, Krystyna; Pilawa, Barbara

    2015-07-25

    Electron paramagnetic resonance (EPR) spectroscopy was used to examine insulins interactions with free radicals. Human recombinant DNA insulins of three groups were studied: short-acting insulin (Insuman Rapid); intermediate-acting insulins (Humulin N, Insuman Basal), and pre-mixed insulins (Humulin M3, Gensulin M50, Gensulin M40, Gensulin M30). The aim of an X-band (9.3GHz) study was comparative analysis of antioxidative properties of the three groups of human insulins. DPPH was used as a stable free radical model. Amplitudes of EPR lines of DPPH as the paramagnetic free radical reference, and DPPH interacting with the individual tested insulins were compared. For all the examined insulins kinetics of their interactions with free radicals up to 60 min were obtained. The strongest interactions with free radicals were observed for the short-acting insulin - Insuman Rapid. The lowest interactions with free radicals were characteristic for intermediate-acting insulin - Insuman Basal. The pre-mixed insulins i.e. Humulin M3 and Gensulin M50 revealed the fastest interactions with free radicals. The short acting, intermediate acting and premixed insulins have been found to be effective agents in reducing free radical formation in vitro and should be further considered as potential useful tools in attenuation of oxidative stress in diabetic patients. PMID:25975232

  2. [Improvement in glycemic control, cardiovascular risk factors and anthropometric data in type 2 diabetic patients after the switch from biphasic human insulin to biphasic premix analog insulin aspart].

    PubMed

    Gero, László; Gyimesi, András; Hidvégi, Tibor; Jánosi, István

    2009-08-30

    Long-term studies involving large number of type 2 diabetic patients supplied evidence that constant adequate metabolic control may prevent the late (micro- and macrovascular) diabetic complications. In the present non-interventional, retrospective study, authors performed an analysis of type 2 diabetic patients who had been previously treated with biphasic human insulin (BHI) and their therapy was changed to biphasic analog insulin aspart 30/70 (BIAsp = NovoMix 30). The switch of the insulin therapy was carried out in years 2007 and 2008 with the cooperation of 50 accredited diabetes centers. Data were obtained at the time of therapeutical change and six months later. The number of suitable patients was 2898 with an age of 66.20 +/- 10.10 year, and the duration of diabetes was >10 years in 43% of the patients. After the six-month therapy with NovoMix 30, the mean HbA 1c level decreased statistically significantly from the initial value of 9.10 +/- 1.44% to 7.62 +/- 1.00% ( p < 0.001). The lipid profile also improved although target values were not always attained. A reduction was also observed in both systolic and diastolic blood pressure. Mean body weight decreased from 84.2 +/- 14.9 kg to 82.6 +/- 13.9 kg ( p < 0.01). All these changes occurred in spite of a significantly reduced daily insulin dose (48.4 +/- 17.6 IU) as compared with the initial value (49.0 +/- 17.4 IU, p < 0.001). A marked decrement was also observed in the frequency of hypoglycemic reactions. These results confirm that treatment with NovoMix 30 insulin leads to a significant amelioration of glycemic control as reflected by the decreased level of HbA 1c and the higher proportion of patients attaining the target value, as well as the lower frequency of hypoglycemic episodes. The significant improvements in cardiovascular risk factors are also important, but the explanation is still missing and would require the accomplishment of prospective, controlled studies. PMID:19692308

  3. Comparative Effectiveness and Safety of Premixed Insulin Analogues in Type 2 Diabetes

    PubMed Central

    Qayyum, Rehan; Bolen, Shari; Maruthur, Nisa; Feldman, Leonard; Wilson, Lisa M.; Marinopoulos, Spyridon S.; Ranasinghe, Padmini; Amer, Muhammed; Bass, Eric B.

    2009-01-01

    Background Evidence comparing premixed insulin analogues with other antidiabetic agents is urgently required to guide appropriate therapy. Purpose To summarize the English-language literature on the effectiveness and safety of premixed insulin analogues as compared with other antidiabetic agents in adults with type 2 diabetes. Data Sources We searched MEDLINE®, EMBASE®, CINAHL, and the Cochrane Central Register of Controlled Trials from inception to February 2008, and unpublished data from U.S. Food and Drug Administration, European Medicines Agency, and industry. Study Selection Studies with control arms that compared premixed insulin analogues to another antidiabetic medication in adults with type 2 diabetes Data Extraction Serial abstraction by 2 reviewers using standardized protocols Data Synthesis Evidence from clinical trials was inconclusive for clinical outcomes, such as mortality. Therefore, the review focused on intermediate outcomes. Premixed analogues were similar to premixed human insulin in lowering fasting glucose, hemoglobin A1c, and the incidence of hypoglycemia but were more effective in lowering postprandial glucose (mean difference = -1.1 mmol/L; 95% CI = -1.4 to -0.7 mmol/L [-19.2 mg/dL; 95% CI=-25.9 to -12.5 mg/dL]). As compared to long-acting insulin analogues, premixed analogues were superior in lowering postprandial glucose (mean difference= -1.5 mmol/L; 95%CI = -1.9 to -1.2 mmol/L [-27.9 mg/dL; 95% CI=-34.3 to -21.5 mg/dL]) and hemoglobin A1c (mean difference=-0.39%; 95% CI=-0.50% to -0.28%) but inferior in lowering fasting glucose (mean difference=0.7 mmol/L; 95%CI = 0.3 to 1.0 mmol/L [12.0 mg/dL; 95% CI=6.0 to 18.1 mg/dL]) and had higher incidence of hypoglycemia. When compared to noninsulin antidiabetic agents, premixed analogues were more effective in lowering fasting glucose (mean difference= -1.1mmol/L; 95%CI = -1.7 to 0.6 mmol/L [-20.5 mg/dL; 95% CI=-29.9 to -11.2 mg/dL]), postprandial glucose (mean difference= -2.1 mmol/L; 95%CI

  4. Management of Type 2 diabetes in Ramadan: Low-ratio premix insulin working group practical advice

    PubMed Central

    Hassanein, Mohamed; Belhadj, Mohamed; Abdallah, Khalifa; Bhattacharya, Arpan D.; Singh, Awadhesh K.; Tayeb, Khaled; Al-Arouj, Monira; Elghweiry, Awad; Iraqi, Hinde; Nazeer, Mohamed; Jamoussi, Henda; Mnif, Mouna; Al-Madani, Abdulrazzaq; Al-Ali, Hossam; Ligthelm, Robert

    2014-01-01

    The challenge of insulin use during Ramadan could be minimized, if people with diabetes are metabolically stable and are provided with structured education for at least 2–3 months pre-Ramadan. Although, American diabetes association (ADA) recommendations 2010 and South Asian Consensus Guideline 2012 deal with management of diabetes in Ramadan and changes in insulin dosage, no specific guidance on widely prescribed low-ratio premix insulin is currently available. Hence, the working group for insulin therapy in Ramadan, after collective analysis, evaluation, and opinion from clinical practice, have formulated a practical advice to empower physicians with pre-Ramadan preparation, dose adjustment, and treatment algorithm for self-titration of low-ratio premix insulin. PMID:25364673

  5. Management of Type 2 diabetes in Ramadan: Low-ratio premix insulin working group practical advice.

    PubMed

    Hassanein, Mohamed; Belhadj, Mohamed; Abdallah, Khalifa; Bhattacharya, Arpan D; Singh, Awadhesh K; Tayeb, Khaled; Al-Arouj, Monira; Elghweiry, Awad; Iraqi, Hinde; Nazeer, Mohamed; Jamoussi, Henda; Mnif, Mouna; Al-Madani, Abdulrazzaq; Al-Ali, Hossam; Ligthelm, Robert

    2014-11-01

    The challenge of insulin use during Ramadan could be minimized, if people with diabetes are metabolically stable and are provided with structured education for at least 2-3 months pre-Ramadan. Although, American diabetes association (ADA) recommendations 2010 and South Asian Consensus Guideline 2012 deal with management of diabetes in Ramadan and changes in insulin dosage, no specific guidance on widely prescribed low-ratio premix insulin is currently available. Hence, the working group for insulin therapy in Ramadan, after collective analysis, evaluation, and opinion from clinical practice, have formulated a practical advice to empower physicians with pre-Ramadan preparation, dose adjustment, and treatment algorithm for self-titration of low-ratio premix insulin. PMID:25364673

  6. What options are available when considering starting insulin: premix or basal?

    PubMed

    Lavernia, Frank

    2011-06-01

    Several large studies in diabetes have shown that early initiation of intensive therapy is better for the prevention of long-term complications and suggest that patients with more advanced disease may be at increased risk of adverse cardiovascular events. Despite these findings, insulin initiation is often delayed in patients with type 2 diabetes, typically until A1C exceeds 8.5%. Barriers to the use of insulin are many, arising from both a patient and a physician perspective, and the decision to initiate insulin treatment can be influenced by cost, risk of hypoglycemia, convenience, and the potential for weight gain. Choosing when to initiate insulin and which insulin/treatment regimen to adopt in patients with type 2 diabetes is key, and the importance of tailoring treatment to the patient is widely acknowledged. However, there is currently no universal consensus on the optimal course of action. Once-daily basal insulin and twice-daily premix insulin are commonly used for insulin initiation. Relatively few studies have directly compared these starter treatment regimens, although general findings suggest that, although glycemic control appears to be similar with once-daily basal insulin and twice-daily premix, the lower hypoglycemia rates, lower weight gain, simplicity, and convenience associated with basal insulin support its first-line use as a starter insulin regimen in patients failing on oral antidiabetes agents. Variables such as age, body mass index, and bedtime or post-breakfast plasma glucose levels may alter the efficacy of the chosen treatment regimen, further supporting the need to tailor treatment to meet individual patient's requirements. PMID:21668341

  7. Intensification of insulin therapy with basal-bolus or premixed insulin regimens in type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials.

    PubMed

    Giugliano, Dario; Chiodini, Paolo; Maiorino, Maria Ida; Bellastella, Giuseppe; Esposito, Katherine

    2016-03-01

    The purpose of this study was to conduct a systematic review and meta-analysis of randomized controlled trials (RCTs) comparing the effect of intensified insulin regimens (basal-bolus versus premixed) on glycemic control in patients with type 2 diabetes. We conducted an electronic search until March 2015 on many electronic databases including online registries of ongoing trials. All RCTs comparing basal-bolus with premixed insulin regimens, with a duration of >12 weeks and with >30 patients per arm, were included. Investigators extracted data on study characteristics, outcome measures, and methodological quality. We found thirteen RCTs lasting 16-60 weeks and involving 5255 patients assessed for the primary endpoint (reduction of HbA1c from baseline). Meta-analysis of change in HbA1c level between basal-bolus and premixed insulin regimens resulted in a small and non-significant difference of 0.09% (95% CI -0.03 to 0.21), with substantial heterogeneity between studies (I(2) = 74.4%). There was no statistically significant difference in the event rate for overall hypoglycemia (0.16 episode/patient/year, 95%CI -2.07 to 2.3), weight change (-0.21 kg, -0.164 to 0.185), and daily insulin dose (-0.54 U/day, -2.7 to 1.6). The likelihood for reaching the HbA1c <7% was 8% higher (3-13%, I(2) = 68.8%) with the basal-bolus as compared with the premixed regimen. There is no clinically relevant difference in the efficacy of basal-bolus versus premixed insulin regimens for HbA1c decrease in type 2 diabetic patients. These findings may be helpful to adapt treatment to individual patient needs. PMID:26281001

  8. Role of premixed insulin analogues in the treatment of patients with type 2 diabetes mellitus: A narrative review

    PubMed Central

    Elizarova, Svetlana; Galstyan, Gagik R; Wolffenbuttel, Bruce HR

    2014-01-01

    Because of the progressive nature of type 2 diabetes mellitus (T2DM), insulin therapy will eventually become necessary in most patients. Recent evidence suggests that maintaining optimal glycemic control by early insulin therapy can reduce the risk of microvascular and macrovascular complications in patients with T2DM. The present review focuses on relevant clinical evidence supporting the use of premixed insulin analogues in T2DM when intensifying therapy, and as starter insulins in insulin-naïve patients. Our aim is to provide relevant facts and clinical evidence useful in the decision-making process of treatment selection and individualized treatment goal setting to obtain sustained blood glucose control. PMID:24127999

  9. Role of premixed insulin analogues in the treatment of patients with type 2 diabetes mellitus: a narrative review.

    PubMed

    Elizarova, Svetlana; Galstyan, Gagik R; Wolffenbuttel, Bruce H R

    2014-03-01

    Because of the progressive nature of type 2 diabetes mellitus (T2DM), insulin therapy will eventually become necessary in most patients. Recent evidence suggests that maintaining optimal glycemic control by early insulin therapy can reduce the risk of microvascular and macrovascular complications in patients with T2DM. The present review focuses on relevant clinical evidence supporting the use of premixed insulin analogues in T2DM when intensifying therapy, and as starter insulins in insulin-naïve patients. Our aim is to provide relevant facts and clinical evidence useful in the decision-making process of treatment selection and individualized treatment goal setting to obtain sustained blood glucose control. PMID:24127999

  10. Insulin Human Inhalation

    MedlinePlus

    Insulin inhalation is used in combination with a long-acting insulin to treat type 1 diabetes (condition in which the body does not produce insulin and therefore cannot control the amount of sugar ...

  11. Human insulin genome sequence map, biochemical structure of insulin for recombinant DNA insulin.

    PubMed

    Chakraborty, Chiranjib; Mungantiwar, Ashish A

    2003-08-01

    Insulin is a essential molecule for type I diabetes that is marketed by very few companies. It is the first molecule, which was made by recombinant technology; but the commercialization process is very difficult. Knowledge about biochemical structure of insulin and human insulin genome sequence map is pivotal to large scale manufacturing of recombinant DNA Insulin. This paper reviews human insulin genome sequence map, the amino acid sequence of porcine insulin, crystal structure of porcine insulin, insulin monomer, aggregation surfaces of insulin, conformational variation in the insulin monomer, insulin X-ray structures for recombinant DNA technology in the synthesis of human insulin in Escherichia coli. PMID:12769691

  12. Protein Crystal Recombinant Human Insulin

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The comparison of protein crystal, Recombiant Human Insulin; space-grown (left) and earth-grown (right). On STS-60, Spacehab II indicated that space-grown crystals are larger and of greater optical clarity than their earth-grown counterparts. Recombiant Human Insulin facilitates the incorporation of glucose into cells. In diabetics, there is either a decrease in or complete lack of insulin, thereby leading to several harmful complications. Principal Investigator is Larry DeLucas.

  13. Insulin allergy treated with human insulin (recombinant DNA).

    PubMed

    De Leeuw, I; Delvigne, C; Bekaert, J

    1982-01-01

    Two insulin-dependent diabetic subjects treated with pork and beef insulin during a period of 6 mo developed severe local reactions. Both patients had an important allergic history (asthma, urticaria, drug reactions, rhinitis). Skin-testing revealed type I allergy to beef and pork insulin. Specific IgE-insulin binding was demonstrated with both insulins. After negative skin testing with NPH Lilly human insulin (recombinant DNA), treatment was started with this compound and remained successful during a period of 6-9 mo. In one patient a local reaction occurred when regular human insulin (recombinant DNA) was added to NPH in order to obtain better control. Skin testing with regular human insulin was positive, but not with NPH human insulin alone. The mechanism of this phenomenon remains unsolved. PMID:6765530

  14. Insulin Human Inhalation

    MedlinePlus

    ... inhalation comes as a powder to inhale by mouth using a special inhaler. It is usually used ... to your doctor.Before you use your insulin oral inhaler the first time, read the written instructions ...

  15. Cutaneous allergy to human (recombinant DNA) insulin.

    PubMed

    Grammer, L C; Metzger, B E; Patterson, R

    1984-03-16

    p6 report two cases of cutaneous allergy to human (recombinant DNA) insulin. Each patient had a history of systemic allergic reactions to porcine insulin and was at least as reactive to human as to porcine insulin by end-point cutaneous titration. Both patients' insulin allergy was managed with animal insulins and both have done well. Our experience with these two patients indicates that human insulin (rDNA) should not be expected to be efficacious in all patients with systemic allergy to insulin. PMID:6366262

  16. Human insulin: DNA technology's first drug.

    PubMed

    The, M J

    1989-11-01

    The history, biologic activity, and immunogenicity of human insulin are described. Recombinant human insulin first entered clinical trials in humans in 1980. At that time, the A and B chains of the insulin molecule were produced separately and then combined by chemical techniques. Since 1986, a different recombinant process has been used. The human genetic coding for proinsulin is inserted into Escherichia coli cells, which are then grown by fermentation to produce proinsulin. The connecting peptide is cleaved enzymatically from proinsulin to produce human insulin. Studies indicate that there are no important differences between pork insulin and human insulin in terms of therapeutic efficacy and disposition after intravenous administration. Recombinant human insulin has a faster onset of action and lower immunogenicity than pork or beef insulin. Diabetic patients may have an improvement in glucose concentrations when their therapy is switched from animal-source insulin to human insulin. Such a change usually requires a dosage adjustment, which must be determined by a physician. Pharmacists are responsible for educating patients concerning all insulin products and for preventing patients from interchanging insulin products. The availability of human insulin as the first pharmaceutical product manufactured through recombinant DNA technology, however, has had little effect on the pharmacist's role in the care of such patients. The production of human insulin through recombinant DNA technology represents an important advance in the treatment of patients with diabetes. PMID:2690608

  17. [Current concept of insulin therapy intensification, and the role of human regular insulin and rapid-acting insulin analogs in insulin treatment].

    PubMed

    Hamaguchi, Tomoya; Sadahiro, Katsuhiko; Satoh, Tomomi

    2015-03-01

    The evolution of insulin therapy from animal insulin to recombinant human regular insulin has improved diabetes treatment. Generating of rapid-acting insulin analogs, mimicking physiologic insulin action enables us to provide better control of post-prandial glucose level and lower incidence of hypoglycemia compared with human regular insulin. These rapid-acting insulin analogs show lower susceptibility of insulin precipitation and catheter occlusions, and are suitable for insulin pump therapy of continuous subcutaneous insulin infusion. Insulin lispro and insulin aspart are also applicable for diabetic patients with pregnancy, requiring excellent glycemic control. In some studies, stepwise addition of prandial insulin, as well as full basal-bolus regimen can improve glycemic control with less hypoglycemia. Treatment intensification with rapid-acting insulin analogs may offer a proper method to reach glycemic goals. PMID:25812371

  18. Reconstitution premixes for assays using purified recombinant human cytochrome P450, NADPH-cytochrome P450 reductase, and cytochrome b5.

    PubMed

    Shaw, P M; Hosea, N A; Thompson, D V; Lenius, J M; Guengerich, F P

    1997-12-01

    The development of enzyme and buffer premixes for in vitro biotransformation assays is described. The protein premixes contain a mixture of three recombinant human proteins, cytochrome P450 (P450) 3A4, NADPH-P450 reductase, cytochrome b5, and liposomes. The buffer premix contains reagents which, when diluted, provide for optimal metabolic activity with selected P450 3A4 substrates. P450 3A4 premixes were competent in the oxidation of known substrates including testosterone, midazolam, nifedipine, erythromycin, benzphetamine, and amitriptyline. Premixes stored at -80 degrees C for 2 months and those that underwent an additional five freeze/thaw cycles were able to hydroxylate testosterone at turnover rates similar to freshly prepared reconstitution mixes. In addition, premixes stored unfrozen at 4 degrees C for 2 weeks showed no significant loss in the rate of testosterone 6 beta-hydroxylation by P450 3A4. Premixes prepared with and without reduced glutathione, a component which had previously been found to be important for P450 3A4 reactions, were equally efficient at carrying out testosterone hydroxylation under these conditions. Kinetic parameters determined for the metabolism of testosterone, amitriptyline, nifedipine, and benzphetamine using P450 3A4 premixes were compared with human pooled microsomes and insect microsomes prepared from cells infected with a baculovirus containing two cDNA inserts coding for P450 3A4 and NADPH-P450 reductase. Each format gave different Vmax and K(m) values indicating different catalytic efficiencies. Analysis of P450 1A2 premixes which contained different lipid concentrations indicated that Vmax and K(m) could be altered. The availability of human P450 recombinant enzymes and the development of the P450 premixes that remain active after being stored frozen should allow for rapid identification of novel P450 substrates and inhibitors and the development of large-scale screening assays. PMID:9390180

  19. [Chronic insulin urticaria. Therapeutic efficacy and good tolerability of human insulins].

    PubMed

    Mirouze, J; Monnier, L; Rodier, M; Balducchi, J P; Orsetti, A; Clot, J

    1982-10-23

    A case of type III (Arthus') hypersensitivity to insulin which occurred several years after insulin treatment was instituted is described. Its persistence even with highly purified insulins of bovine or porcine origin was suggestive of a direct reaction against insulin itself. The patient had no history of allergy and, contrary to most similar cases published, had not received intermittent insulin therapy. Using stimulation of lymphocyte blastogenesis, the authors were able to demonstrate the presence of specific antigen-mediated hypersensitivity to all insulins tested, including human insulins. The circulating immune complexes did not appear to be pathogenic, since the patient only had minimal retinopathy after 22 years of insulin-dependent diabetes. Human insulin was tolerated and proved effective in controlling both blood glucose levels and skin rashes in response to conventional insulins. PMID:6757860

  20. Insulin resistance causes human gallbladder dysmotility.

    PubMed

    Nakeeb, Attila; Comuzzie, Anthony G; Al-Azzawi, Hayder; Sonnenberg, Gabriele E; Kissebah, Ahmed H; Pitt, Henry A

    2006-01-01

    Obesity, diabetes, and hyperlipidemia are known risk factors for the development of gallstones. A growing body of animal and human data has correlated insulin resistance with organ dysfunction. The relationship among obesity, diabetes, hyperlipidemia, and abnormal gallbladder motility remains unclear. Therefore, we designed a study to investigate the association among obesity, insulin resistance, hyperlipidemia, and gallbladder dysmotility. One hundred ninety-two healthy adult nondiabetic volunteers were studied. Gallbladder ultrasounds were performed before and after a standardized fatty meal. A gallbladder ejection fraction (EF) was calculated, and an EF of < 25% was considered abnormal. Serum was analyzed for cholesterol, triglycerides, cholecystokinin, leptin, glucose, and insulin. The homeostasis assessment model (HOMA) was used to determine insulin resistance. The volunteers had a mean age of 38 years (range, 18-77), and 55% were female. Thirty subjects (15%) had gallstones and were excluded from the study. Thirty subjects (19%) had abnormal gallbladder motility (EF < 25%). In lean subjects (n = 96) fasting glucose was significantly increased in the 16 subjects with gallbladder EF < 25% versus the 80 subjects with gallbladder EF > 25% (109 +/- 20 mg/dl versus 78 +/- 2 mg/dl, P < 0.05). Similarly, the HOMA index was significantly greater in subjects with gallbladder EF < 25% versus gallbladder EF >25% (3.3 +/- 1.2 versus 2.0 +/- 0.2, P < 0.05). In obese subjects (n = 66), fasting glucose, insulin, and insulin resistance were not associated with a gallbladder EF < 25%. These data suggest that in lean, nondiabetic volunteers without gallstones, gallbladder dysmotility is associated with an elevated fasting glucose as well as a high index of insulin resistance. We conclude that insulin resistance alone may be responsible for gallbladder dysmotility that may result in acalculous cholecystitis or gallstone formation. PMID:16843864

  1. Insulin is ubiquitous in extrapancreatic tissues of rats and humans.

    PubMed Central

    Rosenzweig, J L; Havrankova, J; Lesniak, M A; Brownstein, M; Roth, J

    1980-01-01

    Insulin has been detected, at levels higher than those in plasma, in a broad range of extrapancreatic tissues in both rats and humans. Rat liver insulin was shown to be indistinguishable from genuine insulin by radioimmunoassay, Sephadex chromatography, bioassay, and antibody neutralization. Liver insulin (like brain insulin) was unchanged in ob/ob mice, in rats treated with streptozotocin, or in fasted rats, despite marked alterations in pancreatic secretion of insulin and in liver content of insulin receptors. Insulin was found in cultured human IM-9 lymphocytes and cultured fibroblasts at concentrations greater than 100 times the levels in the media. IM-9 lymphocyte insulin also was shown to be indistinguishable from genuine insulin, by the same criteria used for liver insulin. The insulin concentration in cultured human cells was unaffected by depletion of insulin from the culture medium or by addition of beef insulin to the medium. The data suggest that a part, if not all, of the extrapancreatic tissue insulin is independent of plasma insulin and may be synthesized by the tissues themselves. PMID:6987656

  2. Electrochemically triggered release of human insulin from an insulin-impregnated reduced graphene oxide modified electrode.

    PubMed

    Teodorescu, Florina; Rolland, Laure; Ramarao, Viswanatha; Abderrahmani, Amar; Mandler, Daniel; Boukherroub, Rabah; Szunerits, Sabine

    2015-09-28

    An electrochemical insulin-delivery system based on reduced graphene oxide impregnated with insulin is described. Upon application of a potential pulse of -0.8 V for 30 min, up to 70 ± 4% of human insulin was released into a physiological medium while preserving its biological activity. PMID:26257079

  3. Insulin requirements in patients with diabetes and declining kidney function: differences between insulin analogues and human insulin?

    PubMed Central

    Kulozik, Felix

    2013-01-01

    Objectives: In diabetic nephropathy the decline of renal function causes modifications of the insulin and carbohydrate metabolism resulting in changed insulin requirements. The aim of the present study was to identify potential differences in the requirements of human insulin and various insulin analogues in patients with type 1 diabetes mellitus and renal dysfunction. Methods: The insulin requirements of 346 patients with type 1 diabetes mellitus under everyday life circumstances were assessed in an observational study. Simultaneously, laboratory parameters were measured and the estimated glomerular filtration rate (eGFR) was calculated using the formula by Cockcroft–Gault. Medical history and concomitant medication were recorded. The insulin requirements of long- and short-acting insulin were tested for a relationship with the eGFR and laboratory parameters. Results: The dosage of long-acting human insulin did not show any relation to eGFR. In contrast, a strong positive relation between dosage and renal function was found for insulin glargine and insulin detemir. After classification according to renal function, the insulin dosage at eGFR less than 60 ml/min was 29.7% lower in glargine-treated and 27.3% lower in detemir-treated patients compared with eGFR greater than 90 ml/min. Considering the whole range of eGFR, short-acting human insulin did not show a relation with renal function. Only after classification according to renal function was a dose reduction found for human insulin at eGFR less than 60 ml/min. In contrast, requirements of insulin lispro were significantly related to eGFR over the whole range of eGFR. At eGFR less than 60 ml/min the insulin dosage was 32.6% lower than at eGFR greater than 90 ml/min. The requirements of insulin aspart did not show any association with the eGFR. Conclusions: Patients with type 1 diabetes mellitus show different insulin requirements according to the renal function depending on the applied insulin. This finding is

  4. Transgenic silkworms expressing human insulin receptors for evaluation of therapeutically active insulin receptor agonists.

    PubMed

    Matsumoto, Yasuhiko; Ishii, Masaki; Ishii, Kenichi; Miyaguchi, Wataru; Horie, Ryo; Inagaki, Yoshinori; Hamamoto, Hiroshi; Tatematsu, Ken-ichiro; Uchino, Keiro; Tamura, Toshiki; Sezutsu, Hideki; Sekimizu, Kazuhisa

    2014-12-12

    We established a transgenic silkworm strain expressing the human insulin receptor (hIR) using the GAL4/UAS system. Administration of human insulin to transgenic silkworms expressing hIR decreased hemolymph sugar levels and facilitated Akt phosphorylation in the fat body. The decrease in hemolymph sugar levels induced by injection of human insulin in the transgenic silkworms expressing hIR was blocked by co-injection of wortmannin, a phosphoinositide 3-kinase inhibitor. Administration of bovine insulin, an hIR ligand, also effectively decreased sugar levels in the transgenic silkworms. These findings indicate that functional hIRs that respond to human insulin were successfully induced in the transgenic silkworms. We propose that the humanized silkworm expressing hIR is useful for in vivo evaluation of the therapeutic activities of insulin receptor agonists. PMID:25449269

  5. Metabolism of human insulin after subcutaneous administration: A possible means to uncover insulin misuse.

    PubMed

    Thomas, Andreas; Brinkkötter, Paul; Schänzer, Wilhelm; Thevis, Mario

    2015-10-15

    The misuse of insulin for performance enhancement in sport or as toxic agent has frequently been reported in the past. In contrast to synthetic insulin analogues, the administration of recombinant human insulin is hardly recognized by mass spectrometry. The present study was designed to uncover the misuse of recombinant human insulin for doping control purposes as well as for forensic applications. It is hypothesized that an altered metabolite profile of circulating insulin prevails after subcutaneous administration due to exposure of insulin to epidermal proteases. In vitro experiments with skin tissue lysates (S9 fraction and microsomes), different biological fluids (urine, serum, plasma) and recombinant human insulin were performed and the deriving metabolites were characterized by liquid chromatography coupled to high resolution mass spectrometry (HRMS). Afterwards, authentic blood samples of patients suffering from diabetes mellitus and a control group of healthy humans were analysed. Therefore, a method using protein precipitation, ultrafiltration and antibody-coated magnetic beads for purification with subsequent separation by nano-scale liquid chromatography coupled a Q Exactive mass spectrometer was applied. Several metabolites of insulin with C-terminally truncated sequences of the B-chain (and A-chain in minor extent) were identified within this study. Here, the DesB30 human insulin represents the major metabolite in all experiments. This metabolite is frequently found in urine samples due to degradation processes and, thus, disqualifies this matrix for the intended purposes. In contrast, blood samples do commonly not contain DesB30 insulin, which was corroborated by data obtained from the control group. In post-administration blood samples, minute but distinct amounts (approx. 50 pg mL(-1)) of DesB30 insulin were found and suggest the use of this analyte as potential marker for subcutaneous human insulin administration, supporting the attempts to

  6. Transdermal iontophoretic delivery of bovine insulin and monomeric human insulin analogue.

    PubMed

    Kanikkannan, N; Singh, J; Ramarao, P

    1999-05-01

    The present study was undertaken to explore the possibility of delivering bovine insulin in streptozocin (STZ)-induced diabetic rats by iontophoresis. Further, the effect of iontophoresis of monomeric human insulin analogue (r-DNA origin) on the plasma glucose level (PGL) of diabetic rats was studied. Iontophoresis of bovine insulin (10-200 IU/ml) was not effective in decreasing the PGL in untreated diabetic rats. Pretreatment of skin with oleic acid or menthol for 3 h followed by iontophoresis of bovine insulin also failed to produce a fall in PGL. Application of a depilatory cream for hair removal (24 h before the experiment), followed by iontophoresis of bovine insulin (10, 30 and 100 IU/ml) produced a concentration-dependent fall in PGL. Further, application of depilatory cream immediately before the experiment produced a substantial fall in PGL both by passive diffusion and iontophoresis. Depilatory cream might have drastically reduced the barrier function of skin such that conventional bovine insulin (dimer and hexamer) penetrates through the intact skin by iontophoresis and even by passive diffusion. Depilatory cream or the active components of depilatory cream may be useful as penetration enhancers for transdermal delivery of drugs especially macromolecules such as insulin. Iontophoresis of monomeric human insulin analogue (B9 Asp, B27 Glu) through intact skin (untreated) produced a significant fall in PGL in diabetic rats. Monomeric human insulin analogues which have low tendency to self aggregation may be promising candidates for the transdermal iontophoretic delivery of insulin. PMID:10210726

  7. Synthesis and Identification of FITC-Insulin Conjugates Produced Using Human Insulin and Insulin Analogues for Biomedical Applications.

    PubMed

    Jacob, Dolly; Joan Taylor, M; Tomlins, Paul; Sahota, Tarsem S

    2016-03-01

    Human insulin was fluorescently labelled with fluorescein isothiocyanate (FITC) and the conjugate species produced were identified using high performance liquid chromatography and electrospray mass spectroscopy. Mono-labelled FITC-insulin conjugate (A1 or B1) was successfully produced using human insulin at short reaction times (up to 5 h) however the product always contained some unlabelled native human insulin. As the reaction time was increased over 45 h, no unlabelled native human insulin was present and more di-labelled FITC-insulin conjugate (A1B1) was produced than mono-labelled conjugate with the appearance of tri-labelled conjugate (A1B1B29) after 20 h reaction time. The quantities switch from mono-labelled to di-labelled FITC-insulin conjugate between reaction times 9 and 20 h. In the presence of phenol or m-cresol, there appears to be a 10 % decrease in the amount of mono-labelled conjugate and an increase in di-labelled conjugate produced at lower reaction times. Clinically used insulin analogues present in commercially available preparations were successfully fluorescently labelled for future biomedical applications. PMID:26658795

  8. Human Insulin from Recombinant DNA Technology

    NASA Astrophysics Data System (ADS)

    Johnson, Irving S.

    1983-02-01

    Human insulin produced by recombinant DNA technology is the first commercial health care product derived from this technology. Work on this product was initiated before there were federal guidelines for large-scale recombinant DNA work or commercial development of recombinant DNA products. The steps taken to facilitate acceptance of large-scale work and proof of the identity and safety of such a product are described. While basic studies in recombinant DNA technology will continue to have a profound impact on research in the life sciences, commercial applications may well be controlled by economic conditions and the availability of investment capital.

  9. Insulin Analogs Versus Human Insulin in the Treatment of Patients With Diabetic Ketoacidosis

    PubMed Central

    Umpierrez, Guillermo E.; Jones, Sidney; Smiley, Dawn; Mulligan, Patrick; Keyler, Trevor; Temponi, Angel; Semakula, Crispin; Umpierrez, Denise; Peng, Limin; Cerón, Miguel; Robalino, Gonzalo

    2009-01-01

    OBJECTIVE To compare the safety and efficacy of insulin analogs and human insulins both during acute intravenous treatment and during the transition to subcutaneous insulin in patients with diabetic ketoacidosis (DKA). RESEARCH DESIGN AND METHODS In a controlled multicenter and open-label trial, we randomly assigned patients with DKA to receive intravenous treatment with regular or glulisine insulin until resolution of DKA. After resolution of ketoacidosis, patients treated with intravenous regular insulin were transitioned to subcutaneous NPH and regular insulin twice daily (n = 34). Patients treated with intravenous glulisine insulin were transitioned to subcutaneous glargine once daily and glulisine before meals (n = 34). RESULTS There were no differences in the mean duration of treatment or in the amount of insulin infusion until resolution of DKA between intravenous treatment with regular and glulisine insulin. After transition to subcutaneous insulin, there were no differences in mean daily blood glucose levels, but patients treated with NPH and regular insulin had a higher rate of hypoglycemia (blood glucose <70 mg/dl). Fourteen patients (41%) treated with NPH and regular insulin had 26 episodes of hypoglycemia and 5 patients (15%) in the glargine and glulisine group had 8 episodes of hypoglycemia (P = 0.03). CONCLUSIONS Regular and glulisine insulin are equally effective during the acute treatment of DKA. A transition to subcutaneous glargine and glulisine after resolution of DKA resulted in similar glycemic control but in a lower rate of hypoglycemia than with NPH and regular insulin. Thus, a basal bolus regimen with glargine and glulisine is safer and should be preferred over NPH and regular insulin after the resolution of DKA. PMID:19366972

  10. Monoclonal Antibodies to the Human Insulin Receptor that Activate Glucose Transport but not Insulin Receptor Kinase Activity

    NASA Astrophysics Data System (ADS)

    Forsayeth, John R.; Caro, Jose F.; Sinha, Madhur K.; Maddux, Betty A.; Goldfine, Ira D.

    1987-05-01

    Three mouse monoclonal antibodies were produced that reacted with the α subunit of the human insulin receptor. All three both immunoprecipitated 125I-labeled insulin receptors from IM-9 lymphocytes and competitively inhibited 125I-labeled insulin binding to its receptor. Unlike insulin, the antibodies failed to stimulate receptor autophosphorylation in both intact IM-9 lymphocytes and purified human placental insulin receptors. Moreover, unlike insulin, the antibodies failed to stimulate receptor-mediated phosphorylation of exogenous substrates. However, like insulin, two of the three antibodies stimulated glucose transport in isolated human adipocytes. One antibody, on a molar basis, was as potent as insulin. These studies indicate, therefore, that monoclonal antibodies to the insulin receptor can mimic a major function of insulin without activating receptor kinase activity. They also raise the possibility that certain actions of insulin such as stimulation of glucose transport may not require the activation of receptor kinase activity.

  11. Intracellular insulin-receptor dissociation and segregation in a rat fibroblast cell line transfected with a human insulin receptor gene

    SciTech Connect

    Levy, J.R.; Olefsky, J.M.

    1988-05-05

    The cellular processing of insulin and insulin receptors was studied using a rat fibroblast cell line that had been transfected with a normal human insulin receptor gene, expressing approximately 500 times the normal number of native fibroblasts insulin receptors. These cells bind and internalize insulin normally. Biochemically assays based on the selective precipitation by polyethylene glycol of intact insulin-receptor complexes but not of free intracellular insulin were developed to study the time course of intracellular insulin-receptor dissociation. Fibroblasts were incubated with radiolabeled insulin at 4/sup 0/C, and internalization of insulin-receptor complexes was initiated by warming the cells to 37/sup 0/C. Within 2 min, 90% of the internalized radioactivity was composed of intact insulin-receptor complexes. The dissociation of insulin from internalized insulin-receptor complexes was markedly inhibited by monensin and chloroquine. Furthermore, chloroquine markedly increased the number of cross-linkable intracellular insulin-receptor complexes, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. These findings suggest that acidification of intracellular vesicles is responsible for insulin-receptor dissociation. Physical segregation of dissociated intracellular insulin from its receptor was monitored. The results are consistent with the view that segregation of insulin and receptor occurs 5-10 min after initiation of dissociation. These studies demonstrate the intracellular itinerary of insulin-receptor complexes, including internalization, dissociation of insulin from the internalized receptor within an acidified compartment, segregation of insulin from the receptor, and subsequent ligand degradation.

  12. Insulin antibodies in patients with type 2 diabetic receiving recombinant human insulin injection: A report of 12 cases.

    PubMed

    Hu, Xiaolei; Ma, Xiaowen; Wang, Xin; Zhao, Xiuli; Xu, Xuling; Gong, Hui; Chen, Fengling; Sun, Junjie

    2015-12-01

    We report 12 cases of patients with type 2 diabetic receiving recombinant human insulin injection, who had uncontrolled hyperglycemia or frequent episodes of hypoglycemia, high levels of serum insulin and positive insulin antibodies. The clinical characteristics and insulin antibodies pharmacokinetics parameters were analyzed. After administration of glucocorticoids, changing insulin formulations or discontinuing the insulin and switching to oral antidiabetic agents, the level of insulin antibodies decreased and the plasma glucose restored. Thus, we recommend to identify the presence of high insulin antibodies in patients with type 2 diabetes who experience unexplained high plasma glucose or frequent reoccurrence of hypoglycemia. PMID:26607016

  13. Mechanisms of human insulin resistance and thiazolidinedione-mediated insulin sensitization

    PubMed Central

    Sears, D. D.; Hsiao, G.; Hsiao, A.; Yu, J. G.; Courtney, C. H.; Ofrecio, J. M.; Chapman, J.; Subramaniam, S.

    2009-01-01

    Cellular and tissue defects associated with insulin resistance are coincident with transcriptional abnormalities and are improved after insulin sensitization with thiazolidinedione (TZD) PPARγ ligands. We characterized 72 human subjects by relating their clinical phenotypes with functional pathway alterations. We transcriptionally profiled 364 biopsies harvested before and after hyperinsulinemic-euglycemic clamp studies, at baseline and after 3-month TZD treatment. We have identified molecular and functional characteristics of insulin resistant subjects and distinctions between TZD treatment responder and nonresponder subjects. Insulin resistant subjects exhibited alterations in skeletal muscle (e.g., glycolytic flux and intramuscular adipocytes) and adipose tissue (e.g., mitochondrial metabolism and inflammation) that improved relative to TZD-induced insulin sensitization. Pre-TZD treatment expression of MLXIP in muscle and HLA-DRB1 in adipose tissue from insulin resistant subjects was linearly predictive of post-TZD insulin sensitization. We have uniquely characterized coordinated cellular and tissue functional pathways that are characteristic of insulin resistance, TZD-induced insulin sensitization, and potential TZD responsiveness. PMID:19841271

  14. Molecular Basis of Catalytic Chamber-assisted Unfolding and Cleavage of Human Insulin by Human Insulin-degrading Enzyme

    SciTech Connect

    Manolopoulou, Marika; Guo, Qing; Malito, Enrico; Schilling, Alexander B.; Tang, Wei-Jen

    2009-06-02

    Insulin is a hormone vital for glucose homeostasis, and insulin-degrading enzyme (IDE) plays a key role in its clearance. IDE exhibits a remarkable specificity to degrade insulin without breaking the disulfide bonds that hold the insulin A and B chains together. Using Fourier transform ion cyclotron resonance (FTICR) mass spectrometry to obtain high mass accuracy, and electron capture dissociation (ECD) to selectively break the disulfide bonds in gas phase fragmentation, we determined the cleavage sites and composition of human insulin fragments generated by human IDE. Our time-dependent analysis of IDE-digested insulin fragments reveals that IDE is highly processive in its initial cleavage at the middle of both the insulin A and B chains. This ensures that IDE effectively splits insulin into inactive N- and C-terminal halves without breaking the disulfide bonds. To understand the molecular basis of the recognition and unfolding of insulin by IDE, we determined a 2.6-A resolution insulin-bound IDE structure. Our structure reveals that IDE forms an enclosed catalytic chamber that completely engulfs and intimately interacts with a partially unfolded insulin molecule. This structure also highlights how the unique size, shape, charge distribution, and exosite of the IDE catalytic chamber contribute to its high affinity ( approximately 100 nm) for insulin. In addition, this structure shows how IDE utilizes the interaction of its exosite with the N terminus of the insulin A chain as well as other properties of the catalytic chamber to guide the unfolding of insulin and allowing for the processive cleavages.

  15. Postprandial Vascular Effects of VIAject Compared With Insulin Lispro and Regular Human Insulin in Patients With Type 2 Diabetes

    PubMed Central

    Forst, Thomas; Pfützner, Andreas; Flacke, Frank; Krasner, Alan; Hohberg, Cloth; Tarakci, Eda; Pichotta, Philip; Forst, Senait; Steiner, Solomon

    2010-01-01

    OBJECTIVE Recent studies suggested an impact of prandial insulin delivery on postprandial regulation of tissue blood flow. This study compared the effect of VIAject with human regular insulin and insulin lispro on postprandial oxidative stress and endothelial function in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS Fourteen patients (seven men; aged 61.5 ± 1.8 years; duration of diabetes 6.6 ± 4.6 years; A1C 7.2 ± 0.5% [mean ± SEM]) received a prandial injection of VIAject, human regular insulin, and insulin lispro. At baseline and after a standardized liquid meal test (Ensure Plus), the postprandial increases in asymmetric dimethylarginine (ADMA) and nitrotyrosine levels were investigated. In addition, the postprandial effects on microvascular blood flow, skin oxygenation, and vascular elasticity were measured. RESULTS Treatment with VIAject resulted in a significant reduction in the peak postprandial generation of ADMA compared with human insulin and insulin lispro (VIAject −27.3 ± 22.6, human insulin 97.7 ± 24.4, and insulin lispro 66.9 ± 33.9 nmol/l; P < 0.05, respectively). The postprandial increases in nitrotyrosine levels were significantly less after VIAject than after human regular insulin (VIAject −0.22 ± 0.17 vs. human insulin 0.25 ± 0.15 μg/ml; P < 0.05), whereas nitrotyrosine after insulin lispro was in between (insulin lispro 0.09 ± 0.07 μg/ml; NS). In parallel, earlier and more pronounced increases in microvascular blood flow and skin oxygenation were obtained after VIAject compared with those after human insulin or insulin lispro (P < 0.05, respectively). All insulin formulations resulted in comparable improvements in central arterial elasticity. CONCLUSIONS Treatment with VIAject reduced postprandial oxidative stress and improved endothelial function compared with human regular insulin or insulin lispro. PMID:19808913

  16. Human gut microbes impact host serum metabolome and insulin sensitivity.

    PubMed

    Pedersen, Helle Krogh; Gudmundsdottir, Valborg; Nielsen, Henrik Bjørn; Hyotylainen, Tuulia; Nielsen, Trine; Jensen, Benjamin A H; Forslund, Kristoffer; Hildebrand, Falk; Prifti, Edi; Falony, Gwen; Le Chatelier, Emmanuelle; Levenez, Florence; Doré, Joel; Mattila, Ismo; Plichta, Damian R; Pöhö, Päivi; Hellgren, Lars I; Arumugam, Manimozhiyan; Sunagawa, Shinichi; Vieira-Silva, Sara; Jørgensen, Torben; Holm, Jacob Bak; Trošt, Kajetan; Kristiansen, Karsten; Brix, Susanne; Raes, Jeroen; Wang, Jun; Hansen, Torben; Bork, Peer; Brunak, Søren; Oresic, Matej; Ehrlich, S Dusko; Pedersen, Oluf

    2016-07-21

    Insulin resistance is a forerunner state of ischaemic cardiovascular disease and type 2 diabetes. Here we show how the human gut microbiome impacts the serum metabolome and associates with insulin resistance in 277 non-diabetic Danish individuals. The serum metabolome of insulin-resistant individuals is characterized by increased levels of branched-chain amino acids (BCAAs), which correlate with a gut microbiome that has an enriched biosynthetic potential for BCAAs and is deprived of genes encoding bacterial inward transporters for these amino acids. Prevotella copri and Bacteroides vulgatus are identified as the main species driving the association between biosynthesis of BCAAs and insulin resistance, and in mice we demonstrate that P. copri can induce insulin resistance, aggravate glucose intolerance and augment circulating levels of BCAAs. Our findings suggest that microbial targets may have the potential to diminish insulin resistance and reduce the incidence of common metabolic and cardiovascular disorders. PMID:27409811

  17. Human Recombinant Insulin 1g - ug

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Proteins are the building blocks of our bodies and the living world around us. Within our bodies proteins make it possible for red blood cells to carry oxygen throughout the body. Others help transmit nerve impulses so we can hear, smell and feel the world around us. While others play a crucial role in preventing or causing disease. If the structure of a protein is known, then companies can develop new or improved drugs to fight the disease of which the protein is a part. To determine protein structure, researchers must grow near-perfect crystals of the protein. On Earth convection currents, sedimentation and other gravity-induced phenomena hamper crystal growth efforts. In microgravity researchers can grow near-perfect crystals in an environment free of these effects. Because of the enormous potential for new pharmaceutical products the Center for Macromolecular Crystallography--the NASA Commercial Space Center responsible for commercial protein crystal growth efforts has more than fifty major industry and academic partners. Research on crystals of human insulin could lead to improved treatments for diabetes.

  18. Generation and characterization of human insulin-releasing cell lines

    PubMed Central

    Labriola, Leticia; Peters, Maria G; Krogh, Karin; Stigliano, Iván; Terra, Letícia F; Buchanan, Cecilia; Machado, Marcel CC; Joffé, Elisa Bal de Kier; Puricelli, Lydia; Sogayar, Mari C

    2009-01-01

    Background The in vitro culture of insulinomas provides an attractive tool to study cell proliferation and insulin synthesis and secretion. However, only a few human beta cell lines have been described, with long-term passage resulting in loss of insulin secretion. Therefore, we set out to establish and characterize human insulin-releasing cell lines. Results We generated ex-vivo primary cultures from two independent human insulinomas and from a human nesidioblastosis, all of which were cultured up to passage number 20. All cell lines secreted human insulin and C-peptide. These cell lines expressed neuroendocrine and islets markers, confirming the expression profile found in the biopsies. Although all beta cell lineages survived an anchorage independent culture, none of them were able to invade an extracellular matrix substrate. Conclusion We have established three human insulin-releasing cell lines which maintain antigenic characteristics and insulin secretion profiles of the original tumors. These cell lines represent valuable tools for the study of molecular events underlying beta cell function and dysfunction. PMID:19545371

  19. Effects of exercise on insulin binding to human muscle.

    PubMed

    Bonen, A; Tan, M H; Clune, P; Kirby, R L

    1985-04-01

    A procedure was developed to measure insulin binding to human skeletal muscle obtained via the percutaneous muscle biopsy technique. With this method the effects of exercise on insulin binding were investigated. Subjects (n = 9) exercised for 60 min on a bicycle ergometer at intensities ranging from 20-86% maximum O2 consumption (VO2max). Blood samples were obtained before, during, and after exercise and analyzed for glucose and insulin. Muscle samples (250 mg) for the vastus lateralis were obtained 30 min before exercise, at the end of exercise, and 60 min after exercise. Two subjects rested during the experimental period. There was no linear relationship between exercise intensities and the changes in insulin binding to human muscle. At rest (n = 2) and at exercise intensities below 60% VO2max (n = 5) no change in insulin binding occurred (P greater than 0.05). However, when exercise occurred at greater than or equal to 69% VO2max (n = 4), a pronounced decrement in insulin binding (30-50%) was observed (P less than 0.05). This persisted for 60 min after exercise. These results indicate that insulin binding in human muscle is not altered by 60 min of exercise at less than or equal to 60% VO2max but that a marked decrement occurs when exercise is greater than or equal to 69% VO2max. PMID:3885753

  20. Insulin Attenuates Beta-Amyloid-Associated Insulin/Akt/EAAT Signaling Perturbations in Human Astrocytes.

    PubMed

    Han, Xiaojuan; Yang, Liling; Du, Heng; Sun, Qinjian; Wang, Xiang; Cong, Lin; Liu, Xiaohui; Yin, Ling; Li, Shan; Du, Yifeng

    2016-08-01

    The excitatory amino acid transporters 1 and 2 (EAAT1 and EAAT2), mostly located on astrocytes, are the main mediators for glutamate clearance in humans. Malfunctions of these transporters may lead to excessive glutamate accumulation and subsequent excitotoxicity to neurons, which has been implicated in many kinds of neurodegenerative disorders including Alzheimer's disease (AD). Yet, the specific mechanism of the glutamate system dysregulation remains vague. To explore whether the insulin/protein kinase B (Akt)/EAAT signaling in human astrocytes could be disturbed by beta-amyloid protein (Aβ) and be protected by insulin, we incubated HA-1800 cells with varying concentrations of Aβ1-42 oligomers and insulin. Then the alterations of several key substrates in this signal transduction pathway were determined. Our results showed that expressions of insulin receptor, phospho-insulin receptor, phospho-protein kinase B, phospho-mammalian target of rapamycin, and EAAT1 and EAAT2 were decreased by the Aβ1-42 oligomers in a dose-dependent manner (p < 0.05) and this trend could be recovered by insulin treatment (p < 0.05). However, the expressions of total Akt and mTOR were invariant (p > 0.05), and the mRNA levels of EAAT1 and EAAT2 were also unchanged (p > 0.05). Taken together, this study indicates that Aβ1-42 oligomers could cause disturbances in insulin/Akt/EAAT signaling in astrocytes, which might be responsible for AD onset and progression. Additionally, insulin can exert protective functions to the brain by modulating protein modifications or expressions. PMID:26358886

  1. Dietary Sodium Restriction Decreases Insulin Secretion Without Affecting Insulin Sensitivity in Humans

    PubMed Central

    Byrne, Loretta M.; Yu, Chang; Wang, Thomas J.; Brown, Nancy J.

    2014-01-01

    Context: Interruption of the renin-angiotensin-aldosterone system prevents incident diabetes in high-risk individuals, although the mechanism remains unclear. Objective: To test the hypothesis that activation of the endogenous renin-angiotensin-aldosterone system or exogenous aldosterone impairs insulin secretion in humans. Design: We conducted a randomized, blinded crossover study of aldosterone vs vehicle and compared the effects of a low-sodium versus a high-sodium diet. Setting: Academic clinical research center. Participants: Healthy, nondiabetic, normotensive volunteers. Interventions: Infusion of exogenous aldosterone (0.7 μg/kg/h for 12.5 h) or vehicle during low or high sodium intake. Low sodium (20 mmol/d; n = 12) vs high sodium (160 mmol/d; n = 17) intake for 5–7 days. Main Outcome Measures: Change in acute insulin secretory response assessed during hyperglycemic clamps while in sodium balance during a low-sodium vs high-sodium diet during aldosterone vs vehicle. Results: A low-sodium diet increased endogenous aldosterone and plasma renin activity, and acute glucose-stimulated insulin (−16.0 ± 5.6%; P = .007) and C-peptide responses (−21.8 ± 8.4%; P = .014) were decreased, whereas the insulin sensitivity index was unchanged (−1.0 ± 10.7%; P = .98). Aldosterone infusion did not affect the acute insulin response (+1.8 ± 4.8%; P = .72) or insulin sensitivity index (+2.0 ± 8.8%; P = .78). Systolic blood pressure and serum potassium were similar during low and high sodium intake and during aldosterone infusion. Conclusions: Low dietary sodium intake reduces insulin secretion in humans, independent of insulin sensitivity. PMID:25029426

  2. AFREZZA® (insulin human) Inhalation Powder: A Review in Diabetes Mellitus.

    PubMed

    Kim, Esther S; Plosker, Greg L

    2015-09-01

    Afrezza® (insulin human) inhalation powder is a rapid-acting Technosphere® insulin (TI) administered via a breath-powered oral inhaler to patients with diabetes requiring prandial insulin. TI, a dry powdered formulation of recombinant human insulin adsorbed onto a proprietary carrier, is designed to deliver insulin to the deep lung, at the level of the alveoli, where it is absorbed into the systemic circulation. In a randomized, open-label, multinational, phase III trial (trial 171) in type 1 diabetes (T1DM) patients, prandial TI via the Gen2 inhaler provided noninferior glycated haemoglobin (HbA1c) lowering compared with prandial subcutaneous insulin aspart. Although TI was associated with less HbA1c lowering, it provided significantly lower fasting plasma glucose levels and significantly less hypoglycaemia and bodyweight gain compared with insulin aspart. In a randomized, double-blind, placebo-controlled, multinational, phase III trial (trial 175) in type 2 diabetes (T2DM) patients, prandial TI via the Gen2 inhaler provided superior HbA1c lowering compared with inhaled placebo. Cough was the most commonly occurring non-hypoglycaemia adverse event across both studies. In a pooled analysis of tolerability data from phase II and III studies, the most commonly occurring non-hypoglycaemia adverse events in T1DM and T2DM patients were cough and throat pain/irritation. However, cough was generally mild, dry and decreased over time. In addition, treatment with TI was associated with positive patient-reported outcomes. Insulin human inhalation powder is an effective and generally well-tolerated agent for the prandial treatment of hyperglycaemia in T1DM and T2DM patients and may provide a solution to insulin initiation barriers such as injection phobia, concerns of bodyweight gain and concerns of hypoglycaemia. PMID:26384673

  3. Bovine and human insulin adsorption at lipid monolayers: a comparison

    NASA Astrophysics Data System (ADS)

    Mauri, Sergio; Pandey, Ravindra; Rzeznicka, Izabela; Lu, Hao; Bonn, Mischa; Weidner, Tobias

    2015-07-01

    Insulin is a widely used peptide in protein research and it is utilised as a model peptide to understand the mechanics of fibril formation, which is believed to be the cause of diseases such as Alzheimer and Creutzfeld-Jakob syndrome. Insulin has been used as a model system due to its biomedical relevance, small size and relatively simple tertiary structure. The adsorption of insu lin on a variety of surfaces has become the focus of numerous studies lately. These works have helped in elucidating the consequence of surface/protein hydrophilic/hydrophobic interaction in terms of protein refolding and aggregation. Unfortunately, such model surfaces differ significantly from physiological surfaces. Here we spectroscopically investigate the adsorption of insulin at lipid monolayers, to further our understanding of the interaction of insulin with biological surfaces. In particular we study the effect of minor mutations of insulin’s primary amino acid sequence on its interaction with 1,2-Dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG) model lipid layers. We probe the structure of bovine and human insulin at the lipid/water interface using sum frequency generation spectroscopy (SFG). The SFG experiments are complemented with XPS analysis of Langmuir-Schaefer deposited lipid/insulin films. We find that bovine and human insulin, even though very similar in sequence, show a substantially different behavior when interacting with lipid films.

  4. Human Insulinomas Show Distinct Patterns of Insulin Secretion In Vitro.

    PubMed

    Henquin, Jean-Claude; Nenquin, Myriam; Guiot, Yves; Rahier, Jacques; Sempoux, Christine

    2015-10-01

    Insulinomas are β-cell tumors that cause hypoglycemia through inappropriate secretion of insulin. Characterization of the in vitro dynamics of insulin secretion by perifused fragments of 10 human insulinomas permitted their subdivision into three functional groups with similar insulin content. Group A (four patients with fasting and/or postprandial hypoglycemic episodes) showed qualitatively normal responses to glucose, leucine, diazoxide, tolbutamide, and extracellular CaCl2 omission or excess. The effect of glucose was concentration dependent, but, compared with normal islets, insulin secretion was excessive in both low- and high-glucose conditions. Group B (three patients with fasting hypoglycemic episodes) was mainly characterized by large insulin responses to 1 mmol/L glucose, resulting in very high basal secretion rates that were inhibited by diazoxide and restored by tolbutamide but were not further augmented by other agents except for high levels of CaCl2. Group C (three patients with fasting hypoglycemic episodes) displayed very low rates of insulin secretion and virtually no response to stimuli (including high CaCl2 concentration) and inhibitors (CaCl2 omission being paradoxically stimulatory). In group B, the presence of low-Km hexokinase-I in insulinoma β-cells (not in adjacent islets) was revealed by immunohistochemistry. Human insulinomas thus show distinct, though not completely heterogeneous, defects in insulin secretion that are attributed to the undue expression of hexokinase-I in 3 of 10 patients. PMID:26116696

  5. Exogenous Insulin Enhances Glucose-Stimulated Insulin Response in Healthy Humans Independent of Changes in Free Fatty Acids

    PubMed Central

    Lopez, Ximena; Cypess, Aaron; Manning, Raquel; O'Shea, Sheila; Kulkarni, Rohit N.

    2011-01-01

    Context: Islet β-cells express both insulin receptors and insulin signaling proteins. Recent studies suggest insulin signaling is physiologically important for glucose sensing. Objective: Preexposure to insulin enhances glucose-stimulated insulin secretion (GSIS) in healthy humans. We evaluated whether the effect of insulin to potentiate GSIS is modulated through regulation of free fatty acids (FFA). Design and Setting: Subjects were studied on three occasions in this single-site study at an academic institution clinical research center. Patients: Subjects included nine healthy volunteers. Interventions: Glucose-induced insulin response was assessed on three occasions after 4 h saline (low insulin/sham) or isoglycemic-hyperinsulinemic (high insulin) clamps with or without intralipid and heparin infusion, using B28 Asp-insulin that could be distinguished from endogenous insulin immunologically. During the last 80 min of all three clamps, additional glucose was administered to stimulate insulin secretion (GSIS) with glucose concentrations maintained at similar concentrations during all studies. Main Outcome Measure: β-Cell response to glucose stimulation was assessed. Results: Preexposure to exogenous insulin increased the endogenous insulin-secretory response to glucose by 32% compared with sham clamp (P = 0.001). This was accompanied by a drop in FFA during hyperinsulinemic clamp compared with the sham clamp (0.06 ± 0.02 vs. 0.60 ± 0.09 mEq/liter, respectively), which was prevented during the hyperinsulinemic clamp with intralipid/heparin infusion (1.27 ± 0.17 mEq/liter). After preexposure to insulin with intralipid/heparin infusion to maintain FFA concentration, GSIS was 21% higher compared with sham clamp (P < 0.04) and similar to preexposure to insulin without intralipid/heparin (P = 0.2). Conclusions: Insulin potentiates glucose-stimulated insulin response independent of FFA concentrations in healthy humans. PMID:21956413

  6. Molecular Characterisation of Long-Acting Insulin Analogues in Comparison with Human Insulin, IGF-1 and Insulin X10

    PubMed Central

    Hansen, Bo F.; Glendorf, Tine; Hegelund, Anne C.; Lundby, Anders; Lützen, Anne; Slaaby, Rita; Stidsen, Carsten Enggaard

    2012-01-01

    Aims/Hypothesis There is controversy with respect to molecular characteristics of insulin analogues. We report a series of experiments forming a comprehensive characterisation of the long acting insulin analogues, glargine and detemir, in comparison with human insulin, IGF-1, and the super-mitogenic insulin, X10. Methods We measured binding of ligands to membrane-bound and solubilised receptors, receptor activation and mitogenicity in a number of cell types. Results Detemir and glargine each displayed a balanced affinity for insulin receptor (IR) isoforms A and B. This was also true for X10, whereas IGF-1 had a higher affinity for IR-A than IR-B. X10 and glargine both exhibited a higher relative IGF-1R than IR binding affinity, whereas detemir displayed an IGF-1R:IR binding ratio of ≤1. Ligands with high relative IGF-1R affinity also had high affinity for IR/IGF-1R hybrid receptors. In general, the relative binding affinities of the analogues were reflected in their ability to phosphorylate the IR and IGF-1R. Detailed analysis revealed that X10, in contrast to the other ligands, seemed to evoke a preferential phosphorylation of juxtamembrane and kinase domain phosphorylation sites of the IR. Sustained phosphorylation was only observed from the IR after stimulation with X10, and after stimulation with IGF-1 from the IGF-1R. Both X10 and glargine showed an increased mitogenic potency compared to human insulin in cells expressing many IGF-1Rs, whereas only X10 showed increased mitogenicity in cells expressing many IRs. Conclusions Detailed analysis of receptor binding, activation and in vitro mitogenicity indicated no molecular safety concern with detemir. PMID:22590494

  7. Interacting with the Human Insulin Receptor.

    PubMed

    Kidmose, Rune T; Andersen, Gregers R

    2016-03-01

    Insulin is an essential regulator of glucose homeostasis. In this issue of Structure, Croll et al. (2016) reports a significantly improved model of the Fab-complexed IR ectodomain refined against a dataset extending to 3.3 Å. PMID:26933970

  8. Multiple tube premixing device

    DOEpatents

    Uhm, Jong Ho; Naidu, Balachandar; Ziminksy, Willy Steve; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin; Stevenson, Christian; Felling, David

    2013-08-13

    The present application provides a premixer for a combustor. The premixer may include a fuel plenum with a number of fuel tubes and a burner tube with a number of air tubes. The fuel tubes extend about the air tubes.

  9. Multiple tube premixing device

    DOEpatents

    Uhm, Jong Ho; Varatharajan, Balachandar; Ziminsky, Willy Steve; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin; Stevenson, Christian; Felling, David

    2012-12-11

    The present application provides a premixer for a combustor. The premixer may include a fuel plenum with a number of fuel tubes and a burner tube with a number of air tubes. The fuel tubes extend about the air tubes.

  10. Studies in premixed combustion

    SciTech Connect

    Sivashinsky, G.I.

    1992-01-01

    This report discusses the following topics on premixed combustion: theory of turbulent flame propagation; pattern formation in premixed flames and related problems; and pattern formation in extended systems. (LSP)

  11. Influence of PAMAM dendrimers on the human insulin

    NASA Astrophysics Data System (ADS)

    Nowacka, Olga; Miłowska, Katarzyna; Ionov, Maksim; Bryszewska, Maria

    2015-12-01

    Dendrimers are specific class of polymeric macromolecules with wide spectrum of properties. One of the promising activities of dendrimers involves inhibition of protein fibril formation. Aggregation and fibrillation of insulin occurs in insulin-dependent diabetic patients after repeated administration, due to these processes being very easily triggered by the conditions of drug administration. The aim of this work was to study the influence of various generations PAMAM dendrimers on human insulin zeta potential, secondary structure and dithiotreitol (DTT)-induced aggregation. We observed the dependence between the number of positive charges on the surface of the PAMAM dendrimer and the values of zeta potential. Addition of dendrimers to insulin caused insignificant changes in the secondary structure. There was a small decrease in ellipticity, but it did not result in alterations in the circular dichroism (CD) spectrum shape. Dendrimers neither induced protein aggregation nor inhibited the aggregation process induced by DTT, except for 0.01 µmol/l concentration.

  12. Oral Insulin: A Comparison With Subcutaneous Regular Human Insulin in Patients With Type 2 Diabetes

    PubMed Central

    Kapitza, Christoph; Zijlstra, Eric; Heinemann, Lutz; Castelli, M. Cristina; Riley, Gary; Heise, Tim

    2010-01-01

    OBJECTIVE To determine the pharmacokinetic and pharmacodynamic properties of an oral insulin (OI) formulation compared with subcutaneously injected regular human insulin (RHI). RESEARCH DESIGN AND METHODS Ten male patients with type 2 diabetes (means ± SD; A1C 7.0 ± 1.1%; BMI 28.3 ± 2.7 kg/m2) received either 300 units of insulin combined with 400 mg of delivery agent orally or 15 units RHI subcutaneously under isoglycemic clamp conditions. RESULTS Maximum insulin concentration was greater and onset of action was faster with OI (Cmax 93 ± 71 vs. 33 ± 11 μU/ml; AUCGIR(0−1h) 173 ± 86 vs. 27 ± 32 mg/kg; P < 0.05). Mean insulin concentration and glucose infusion rate returned to baseline within 3 h after OI administration. Relative bioavailability of OI was 7 ± 4% (1st 2 h). CONCLUSIONS This proof-of-concept study demonstrated that absorption of OI is feasible under fasting conditions. OI has a fast onset and a short duration of action but also shows a rather high between-subject variability in absorption. PMID:20185734

  13. Analysis of Local Dynamics of Human Insulin and a Rapid-acting Insulin Analog by Hydrogen Deuterium Exchange Mass Spectrometry

    PubMed Central

    Nakazawa, Shiori; Hashii, Noritaka; Hirose, Kenji; Kawasaki, Nana; Ahn, Joomi

    2013-01-01

    Human insulin, used by diabetics to regulate blood sugar, was first introduced as a recombinant therapeutic drug nearly 30 years ago. Human insulin and insulin lispro have identical primary structure, except for the transposition of two amino acids. Lispro is one of the rapid-acting insulin analogs, which has higher tendency to dissociate than human insulin. In this study, we present an analytical workflow to allow us to detect the difference in the oligomeric dynamics using Hydrogen Deuterium Exchange Mass Spectrometry (HDX MS). The HDX analysis on Insulin and Lispro peptides was conducted to identify the location where different deuterium uptakes were observed between human insulin and lispro. The detected areas were illustrated in various formats to help understand their flexibility associated with rapid dissociation of insulin oligomers. Drug products, human insulin (Humulin R) and lispro (Humalog), were reduced and digested online by pepsin. Deuterium labeling, quenching, and injection to on-line pepsin digestion were prepared using a robotic sample manager. Labeling experiments in 0, 0.5, 5, 10, 60, and 180 min interval were duplicated for both samples. The peptic digests were separated on a UPLC system at 0 °C. Q-TOF MS was used to measure the deuterium incorporation of identified peptides. The amount of deuterium was determined by automated HDX data processing software, DynamX 2.0. We obtained 98% of sequence coverage for both human insulin and lispro. From peptide HDX determination, two regions were revealed distinctive different values in deuterium uptakes between human insulin and lispro; the N terminus of chain A, and a region adjacent to the C terminus of chain B. We attributed this localized behavior to the relation of hexamerization and dimerization, respectively. Furthermore, characteristic profiles that showed different deuteration margins between two insulins were determined, which was also consistent with their involvement in hexamer and dimer

  14. Chemical Synthesis of Human Insulin-Like Peptide-6.

    PubMed

    Wu, Fangzhou; Mayer, John P; Zaykov, Alexander N; Zhang, Fa; Liu, Fa; DiMarchi, Richard D

    2016-07-01

    Human insulin-like peptide-6 (INSL-6) belongs to the insulin superfamily and shares the distinctive disulfide bond configuration of human insulin. In this report we present the first chemical synthesis of INSL-6 utilizing fluorenylmethyloxycarbonyl-based (Fmoc) solid-phase peptide chemistry and regioselective disulfide bond construction protocols. Due to the presence of an oxidation-sensitive tryptophan residue, two new orthogonal synthetic methodologies were developed. The first method involved the identification of an additive to suppress the oxidation of tryptophan during iodine-mediated S-acetamidomethyl (Acm) deprotection and the second utilized iodine-free, sulfoxide-directed disulfide bond formation. The methodologies presented here offer an efficient synthetic route to INSL-6 and will further improve synthetic access to other multiple-disulfide-containing peptides with oxidation-sensitive residues. PMID:27259101

  15. A synthetic route to human insulin using isoacyl peptides.

    PubMed

    Liu, Fa; Luo, Ethan Y; Flora, David B; Mezo, Adam R

    2014-04-01

    The chemical synthesis of insulin has been a longstanding challenge, mainly because of the notorious hydrophobicity of the A chain and the complicated topology of this 51-mer peptide hormone consisting of two chains and three disulfide bonds. Reported herein is a new synthetic route utilizing the isoacyl peptide approach to address the hydrophobicity problems. The incorporation of isoacyl dipeptide segments into both A and B chains greatly improved their preparation and purification, and the RP-HPLC recovery of the chain ligation intermediates. The new route affords human insulin with a yield of 68 % based on the starting purified A chain and an overall yield of 24 % based on the substitution of the resin used for the preparation of A chain. To the best of our knowledge, this represents the most efficient route of human insulin chemical synthesis reported to date. PMID:24615765

  16. Insulin

    MedlinePlus

    ... pump is connected to your body by a flexible tube that has a tip that sticks under your skin. A cartridge of insulin is put in the pump. The insulin flows through the tube into your body. The pump controls how much insulin goes into your body. The ...

  17. Human Insulin Does Not Increase Bladder Cancer Risk

    PubMed Central

    Tseng, Chin-Hsiao

    2014-01-01

    Background Whether human insulin can induce bladder cancer is rarely studied. Methods The reimbursement databases of all Taiwanese diabetic patients from 1996 to 2009 were retrieved from the National Health Insurance. An entry date was set at 1 January 2004 and a total of 785,234 patients with type 2 diabetes were followed up for bladder cancer incidence until the end of 2009. Users of pioglitazone were excluded and the period since the initiation of insulin glargine (marketed after the entry date in Taiwan) was not included in the calculation of follow-up. Incidences for ever-users, never-users and subgroups of human insulin exposure (using tertile cutoffs of time since starting insulin, duration of therapy and cumulative dose) were calculated and the hazard ratios were estimated by Cox regression. Results There were 87,940 ever-users and 697,294 never-users, with respective numbers of incident bladder cancer of 454 (0.52%) and 3,330 (0.48%), and respective incidence of 120.49 and 94.74 per 100,000 person-years. The overall hazard ratios (95% confidence intervals) indicated a significant association with insulin in the age-sex-adjusted models [1.238 (1.122–1.366)], but not in the model adjusted for all covariates [1.063 (0.951–1.187)]. There was also a significant trend for the hazard ratios for the different categories of the dose-response parameters in the age-sex-adjusted models, which became insignificant when all covariates were adjusted. Conclusions This study relieves the concern of a bladder cancer risk associated with human insulin. Appropriate adjustment for confounders is important in the evaluation of cancer risk associated with a medication. PMID:24466131

  18. Type 1 Ig-E mediated allergy to human insulin, insulin analogues and beta-lactam antibiotics*

    PubMed Central

    Andrade, Pedro; Barros, Luísa; Gonçalo, Margarida

    2012-01-01

    Insulin, a crucial therapeutic agent for diabetes mellitus, has been rarely associated with hypersensitivity events. We present a 69-year-old type-2 diabetic patient with urticariform lesions on the sites of subcutaneous injection of insulin. The patient denied any known allergies, except for an unspecific cutaneous reaction after intramuscular penicillin administration in childhood. Prick tests revealed positive reactions to all tested human insulins and insulin analogues. Serum IgE levels were above normal range and RAST tests were positive for human, bovine and porcine insulins, as well as beta-lactams. Type 1 IgE-mediated allergy to insulin analogues demands a prompt diagnosis and represents a significant therapeutic challenge in diabetic patients. PMID:23197216

  19. Immunologic analysis of anaphylaxis to protamine component in neutral protamine Hagedorn human insulin.

    PubMed

    Dykewicz, M S; Kim, H W; Orfan, N; Yoo, T J; Lieberman, P

    1994-01-01

    We report the clinical and immunologic analysis of two patients with diabetes who had anaphylaxis to neutral protamine Hagedorn (NPH) human insulin in the absence of allergy to regular insulin. A 36-year-old woman without a recent history of local insulin reactions or interruption of insulin therapy experienced anaphylaxis within 15 minutes of her usual morning dose of subcutaneously administered NPH human insulin. A 62-year-old man with a history of generalized reactions to NPH human insulin and of anaphylaxis to intravenously administered protamine had generalized urticaria after injection of NPH human insulin. Both patients subsequently tolerated Lente human insulin. Skin test results in both patients were negative to regular and Lente insulin preparations but positive to NPH insulin and to protamine at concentrations tested. In vitro assays demonstrated that both patients had markedly elevated serum levels of IgE and IgG to protamine, but not to regular human insulin, and that their IgE antibodies to protamine recognized protamine antigenic determinants in NPH human insulin. We conclude that the anaphylactic reactions to NPH insulin in our patients were mediated by IgE to protamine, which should be a pathogenetic consideration in the evaluation of immediate-type reactions to protamine-containing insulins. PMID:8308177

  20. Reduction of Postprandial Glycemic Excursions in Patients with Type 1 Diabetes: A Novel Human Insulin Formulation versus a Rapid-Acting Insulin Analog and Regular Human Insulin

    PubMed Central

    Heinemann, Lutz; Hompesch, Marcus; Flacke, Frank; Simms, Patrick; Pohl, Rody; Albus, Kerstin; Pfützner, Andreas; Steiner, Solomon

    2011-01-01

    Background: Evaluation of postprandial glycemic excursions in patients with type 1 diabetes with three prandial insulins: VIAject™ (Linjeta™), an ultra-fast insulin (UFI); insulin lispro (LIS); and regular human insulin (RHI). Methods: After stabilization of preprandial glycemia, 18 patients received a subcutaneous injection with an individualized insulin dose prior to a meal. Results: Injection of UFI resulted in a more rapid insulin absorption than with either LIS or RHI (time to half-maximal insulin levels: 13.1 ± 5.2 vs 25.4 ± 7.6 and 38.4 ± 19.5 min; p = .001 vs LIS and p < .001 vs RHI, LIS vs. RHI p < .001). Maximal postprandial glycemia was lower with UFI (0–180 min; 157 ± 30 mg/dl; p = .002 vs RHI) and LIS (170 ± 42 mg/dl; p = .668 vs RHI) than after RHI (191 ± 46 mg/dl; RHI vs LIS p = .008). The difference between maximum and minimum glycemia was smaller with UFI (70 ± 17 mg/dl) than with either RHI (91 ± 33 mg/dl; p = .007 vs UFI) or LIS (89 ± 18 mg/dl; p = .011 vs UFI). Also, the area under the blood glucose profile was lower with UFI than with RHI (0–180 min; 21.8 ± 5.8 vs 28.4 ± 7.6 g·min/dl; p < .001). Conclusions: The rapid absorption of UFI results in a reduction of postprandial glycemic excursions. PMID:21722583

  1. Differences in bioactivity between human insulin and insulin analogues approved for therapeutic use- compilation of reports from the past 20 years

    PubMed Central

    2011-01-01

    In order to provide comprehensive information on the differences in bioactivity between human insulin and insulin analogues, published in vitro comparisons of human insulin and the rapid acting analogues insulin lispro (Humalog®), insulin aspart ( NovoRapid®), insulin glulisine (Apidra®), and the slow acting analogues insulin glargine (Lantus®), and insulin detemir (Levemir®) were gathered from the past 20 years (except for receptor binding studies). A total of 50 reports were retrieved, with great heterogeneity among study methodology. However, various differences in bioactivity compared to human insulin were obvious (e.g. differences in effects on metabolism, mitogenesis, apoptosis, intracellular signalling, thrombocyte function, protein degradation). Whether or not these differences have clinical bearings (and among which patient populations) remains to be determined. PMID:21714872

  2. Molecular Basis of Catalytic Chamber-assisted Unfolding and Cleavage of Human Insulin by Human Insulin-degrading Enzyme*S⃞

    PubMed Central

    Manolopoulou, Marika; Guo, Qing; Malito, Enrico; Schilling, Alexander B.; Tang, Wei-Jen

    2009-01-01

    Insulin is a hormone vital for glucose homeostasis, and insulin-degrading enzyme (IDE) plays a key role in its clearance. IDE exhibits a remarkable specificity to degrade insulin without breaking the disulfide bonds that hold the insulin A and B chains together. Using Fourier transform ion cyclotron resonance (FTICR) mass spectrometry to obtain high mass accuracy, and electron capture dissociation (ECD) to selectively break the disulfide bonds in gas phase fragmentation, we determined the cleavage sites and composition of human insulin fragments generated by human IDE. Our time-dependent analysis of IDE-digested insulin fragments reveals that IDE is highly processive in its initial cleavage at the middle of both the insulin A and B chains. This ensures that IDE effectively splits insulin into inactive N- and C-terminal halves without breaking the disulfide bonds. To understand the molecular basis of the recognition and unfolding of insulin by IDE, we determined a 2.6-Å resolution insulin-bound IDE structure. Our structure reveals that IDE forms an enclosed catalytic chamber that completely engulfs and intimately interacts with a partially unfolded insulin molecule. This structure also highlights how the unique size, shape, charge distribution, and exosite of the IDE catalytic chamber contribute to its high affinity (∼100 nm) for insulin. In addition, this structure shows how IDE utilizes the interaction of its exosite with the N terminus of the insulin A chain as well as other properties of the catalytic chamber to guide the unfolding of insulin and allowing for the processive cleavages. PMID:19321446

  3. Insulin-like growth factor I stimulates lipid oxidation, reduces protein oxidation, and enhances insulin sensitivity in humans.

    PubMed Central

    Hussain, M A; Schmitz, O; Mengel, A; Keller, A; Christiansen, J S; Zapf, J; Froesch, E R

    1993-01-01

    To elucidate the effects of insulin-like growth factor I (IGF-I) on fuel oxidation and insulin sensitivity, eight healthy subjects were treated with saline and recombinant human (IGF-I (10 micrograms/kg.h) during 5 d in a crossover, randomized fashion, while receiving an isocaloric diet (30 kcal/kg.d) throughout the study period. On the third and fourth treatment days, respectively, an L-arginine stimulation test and an intravenous glucose tolerance test were performed. A euglycemic, hyperinsulinemic clamp combined with indirect calorimetry and a glucose tracer infusion were performed on the fifth treatment day. IGF-I treatment led to reduced fasting and stimulated (glucose and/or L-arginine) insulin and growth hormone secretion. Basal and stimulated glucagon secretion remained unchanged. Intravenous glucose tolerance was unaltered despite reduced insulin secretion. Resting energy expenditure and lipid oxidation were both elevated, while protein oxidation was reduced, and glucose turnover rates were unaltered on the fifth treatment day with IGF-I as compared to the control period. Enhanced lipolysis was reflected by elevated circulating free fatty acids. Moreover, insulin-stimulated oxidative and nonoxidative glucose disposal (i.e., insulin sensitivity) were enhanced during IGF-I treatment. Thus, IGF-I treatment leads to marked changes in lipid and protein oxidation, whereas, at the dose used, carbohydrate metabolism remains unaltered in the face of reduced insulin levels and enhanced insulin sensitivity. Images PMID:8227340

  4. Ingested human insulin inhibits the mosquito NF-¿B-dependent immune response to Plasmodium falciparum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We showed previously that ingested human insulin activates the insulin/IGF-1 signaling pathway in Anopheles stephensi and increases the susceptibility of these mosquitoes to Plasmodium falciparum. In other organisms insulin can alter immune responsiveness through regulation of NF-kB transcription fa...

  5. [Reflections of a clinician on the switch from human to analogue insulin treatment].

    PubMed

    Deák, László

    2012-10-01

    The development of insulin therapy has not been stopped since the manufacturing of human insulin, because better mimic of physiological insulin response made it necessary to modify the human insulin molecule in order to create rapidly absorbing insulin analogues and 24-hour acting basal insulin analogues. Clinical observations indicate that the complete switch from human basal-bolus therapy to insulin analogues means not only "unit-for-unit" switch but it represents a transfer to an insulin therapy with different basal/bolus ratio as a result of different pharmacokinetic and pharmacodynamic properties of insulin and the level of insulin resistance of the patient. With reference to a case-history, the author presents his experience on a switch from human insulin to insulin analogue. Furthermore, the author summarizes data obtained from a few cases reported in international literature which draw the attention to the fact that the basal/bolus ratio should be adjusted individually, which may be the key for the success in the therapy in these cases. PMID:23022882

  6. Insulin

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The manipulation of organic materials--cells, tissues, and even living organisms--offers many exciting possibilities for the future from organic computers to improved aquaculture. Commercial researchers are using the microgravity environment to produce large near perfect protein crystals Research on insulin has yielded crystals that far surpass the quality of insulin crystals grown on the ground. Using these crystals industry partners are working to develop new and improved treatments for diabetes. Other researchers are exploring the possibility of producing antibiotics using plant cell cultures which could lead to both orbital production and the improvement of ground-based antibiotic production.

  7. Human versus animal insulin in people with diabetes mellitus. A systematic review.

    PubMed

    Richter, Bernd; Neises, Gudrun; Bergerhoff, Karla

    2002-09-01

    This review is in accordance with the findings of the systematic review of Airey et al [18] with respect to the absence of a differential effect on hypoglycemia between human and animal insulin. For the first time, however, the review compares the relative efficacies of human and animal insulin, which indicates that human insulin was introduced without proof of being superior to animal insulin. Studies have not assessed patient-centered outcomes [41,42], such as patient satisfaction, health-related quality of life, and diabetes-related morbidity. Randomized trials did not report on qualitative assessments of patients' experiences when using different insulin species. Because history tends to repeat itself, we probably will be faced with other "innovations" (e.g., insulin analogs) evaluated in clinical trials tht focus on surrogate outcomes followed by marketing of insulins "proved" to be effective in short-term, underpowered, and badly executed studies. PMID:12227129

  8. Ingested Human Insulin Inhibits the Mosquito NF-κB-Dependent Immune Response to Plasmodium falciparum

    PubMed Central

    Corby-Harris, Vanessa; Green, Gabriel P.; Smithers, Hannah M.; Cheung, Kong W.; Riehle, Michael A.; Luckhart, Shirley

    2012-01-01

    We showed previously that ingested human insulin activates the insulin/IGF-1 signaling pathway in Anopheles stephensi and increases the susceptibility of these mosquitoes to Plasmodium falciparum. In other organisms, insulin can alter immune responsiveness through regulation of NF-κB transcription factors, critical elements for innate immunity that are also central to mosquito immunity. We show here that insulin signaling decreased expression of NF-κB-regulated immune genes in mosquito cells stimulated with either bacterial or malarial soluble products. Further, human insulin suppressed mosquito immunity through sustained phosphatidylinositol 3-kinase activation, since inhibition of this pathway led to decreased parasite development in the mosquito. Together, these data demonstrate that activation of the insulin/IGF-1 signaling pathway by ingested human insulin can alter NF-κB-dependent immunity, and ultimately the susceptibility, of mosquitoes to P. falciparum. PMID:22473605

  9. Effects of Insulin Detemir and NPH Insulin on Body Weight and Appetite-Regulating Brain Regions in Human Type 1 Diabetes: A Randomized Controlled Trial

    PubMed Central

    van Golen, Larissa W.; Veltman, Dick J.; IJzerman, Richard G.; Deijen, Jan Berend; Heijboer, Annemieke C.; Barkhof, Frederik; Drent, Madeleine L.; Diamant, Michaela

    2014-01-01

    Studies in rodents have demonstrated that insulin in the central nervous system induces satiety. In humans, these effects are less well established. Insulin detemir is a basal insulin analog that causes less weight gain than other basal insulin formulations, including the current standard intermediate-long acting Neutral Protamine Hagedorn (NPH) insulin. Due to its structural modifications, which render the molecule more lipophilic, it was proposed that insulin detemir enters the brain more readily than other insulins. The aim of this study was to investigate whether insulin detemir treatment differentially modifies brain activation in response to food stimuli as compared to NPH insulin. In addition, cerebral spinal fluid (CSF) insulin levels were measured after both treatments. Brain responses to viewing food and non-food pictures were measured using functional Magnetic Resonance Imaging in 32 type 1 diabetic patients, after each of two 12-week treatment periods with insulin detemir and NPH insulin, respectively, both combined with prandial insulin aspart. CSF insulin levels were determined in a subgroup. Insulin detemir decreased body weight by 0.8 kg and NPH insulin increased weight by 0.5 kg (p = 0.02 for difference), while both treatments resulted in similar glycemic control. After treatment with insulin detemir, as compared to NPH insulin, brain activation was significantly lower in bilateral insula in response to visual food stimuli, compared to NPH (p = 0.02 for right and p = 0.05 for left insula). Also, CSF insulin levels were higher compared to those with NPH insulin treatment (p = 0.003). Our findings support the hypothesis that in type 1 diabetic patients, the weight sparing effect of insulin detemir may be mediated by its enhanced action on the central nervous system, resulting in blunted activation in bilateral insula, an appetite-regulating brain region, in response to food stimuli. Trial Registration ClinicalTrials.gov NCT00626080

  10. Stress-impaired transcription factor expression and insulin secretion in transplanted human islets

    PubMed Central

    Dai, Chunhua; Kayton, Nora S.; Shostak, Alena; Poffenberger, Greg; Cyphert, Holly A.; Aramandla, Radhika; Thompson, Courtney; Papagiannis, Ioannis G.; Shiota, Masakazu; Stafford, John M.; Greiner, Dale L.; Herrera, Pedro L.; Shultz, Leonard D.; Stein, Roland; Powers, Alvin C.

    2016-01-01

    Type 2 diabetes is characterized by insulin resistance, hyperglycemia, and progressive β cell dysfunction. Excess glucose and lipid impair β cell function in islet cell lines, cultured rodent and human islets, and in vivo rodent models. Here, we examined the mechanistic consequences of glucotoxic and lipotoxic conditions on human islets in vivo and developed and/or used 3 complementary models that allowed comparison of the effects of hyperglycemic and/or insulin-resistant metabolic stress conditions on human and mouse islets, which responded quite differently to these challenges. Hyperglycemia and/or insulin resistance impaired insulin secretion only from human islets in vivo. In human grafts, chronic insulin resistance decreased antioxidant enzyme expression and increased superoxide and amyloid formation. In human islet grafts, expression of transcription factors NKX6.1 and MAFB was decreased by chronic insulin resistance, but only MAFB decreased under chronic hyperglycemia. Knockdown of NKX6.1 or MAFB expression in a human β cell line recapitulated the insulin secretion defect seen in vivo. Contrary to rodent islet studies, neither insulin resistance nor hyperglycemia led to human β cell proliferation or apoptosis. These results demonstrate profound differences in how excess glucose or lipid influence mouse and human insulin secretion and β cell activity and show that reduced expression of key islet-enriched transcription factors is an important mediator of glucotoxicity and lipotoxicity. PMID:27064285

  11. Gas turbine premixing systems

    DOEpatents

    Kraemer, Gilbert Otto; Varatharajan, Balachandar; Evulet, Andrei Tristan; Yilmaz, Ertan; Lacy, Benjamin Paul

    2013-12-31

    Methods and systems are provided for premixing combustion fuel and air within gas turbines. In one embodiment, a combustor includes an upstream mixing panel configured to direct compressed air and combustion fuel through premixing zone to form a fuel-air mixture. The combustor includes a downstream mixing panel configured to mix additional combustion fuel with the fule-air mixture to form a combustion mixture.

  12. Effects of intranasal insulin on hepatic fat accumulation and energy metabolism in humans.

    PubMed

    Gancheva, Sofiya; Koliaki, Chrysi; Bierwagen, Alessandra; Nowotny, Peter; Heni, Martin; Fritsche, Andreas; Häring, Hans-Ulrich; Szendroedi, Julia; Roden, Michael

    2015-06-01

    Studies in rodents suggest that insulin controls hepatic glucose metabolism through brain-liver crosstalk, but human studies using intranasal insulin to mimic central insulin delivery have provided conflicting results. In this randomized controlled crossover trial, we investigated the effects of intranasal insulin on hepatic insulin sensitivity (HIS) and energy metabolism in 10 patients with type 2 diabetes and 10 lean healthy participants (CON). Endogenous glucose production was monitored with [6,6-(2)H2]glucose, hepatocellular lipids (HCLs), ATP, and inorganic phosphate concentrations with (1)H/(31)P magnetic resonance spectroscopy. Intranasal insulin transiently increased serum insulin levels followed by a gradual lowering of blood glucose in CON only. Fasting HIS index was not affected by intranasal insulin in CON and patients. HCLs decreased by 35% in CON only, whereas absolute hepatic ATP concentration increased by 18% after 3 h. A subgroup of CON received intravenous insulin to mimic the changes in serum insulin and blood glucose levels observed after intranasal insulin. This resulted in a 34% increase in HCLs without altering hepatic ATP concentrations. In conclusion, intranasal insulin does not affect HIS but rapidly improves hepatic energy metabolism in healthy humans, which is independent of peripheral insulinemia. These effects are blunted in patients with type 2 diabetes. PMID:25576060

  13. Mecasermin (recombinant human insulin-like growth factor I).

    PubMed

    Rosenbloom, Arlan L

    2009-01-01

    Growth hormone (GH) exercises its growth effects by stimulating insulin-like growth factor I (IGF-I) synthesis in the liver (endocrine IGF-I) and by inducing chondrocyte differentiation/replication and local production of IGF-I (paracrine/autocrine IGF-I). Injectable recombinant human (rh)IGF-I (mecasermin) has been available for nearly 20 years for treatment of the rare instances of GH insensitivity caused by GH receptor defects or GH-inhibiting antibodies. Full restoration of normal growth, as occurs with rhGH replacement of GH deficiency, is not seen, presumably because only the endocrine deficiency is addressed. RhIGF-I has also been effective as an insulin-sensitizing agent in severe insulin-resistant conditions. Although the insulin-sensitizing effect may benefit both type 1 and type 2 diabetes, there are no ongoing clinical trials because of concern about risk of retinopathy and other complications. Promotion of rhIGF-I for treatment of idiopathic short stature has been intensive, with neither data nor rationale suggesting that there might be a better response than has been documented with rhGH. Other applications that have either been considered or are undergoing clinical trial are based on the ubiquitous tissue-building properties of IGF-I and include chronic liver disease, cystic fibrosis, wound healing, AIDS muscle wasting, burns, osteoporosis, Crohn's disease, anorexia nervosa, Werner syndrome, X-linked severe combined immunodeficiency, Alzheimer's disease, muscular dystrophy, amyotrophic lateral sclerosis, hearing loss prevention, spinal cord injury, cardiovascular protection, and prevention of retinopathy of prematurity. The most frequent side effect is hypoglycemia, which is readily controlled by administration with meals. Other common adverse effects involve hyperplasia of lymphoid tissue, which may require tonsillectomy/adenoidectomy, accumulation of body fat, and coarsening of facies. The anti-apoptotic properties of IGF-I are implicated in cancer

  14. Human testicular insulin-like factor 3 and endocrine disrupters.

    PubMed

    Bay, Katrine; Anand-Ivell, Ravinder

    2014-01-01

    The hormone insulin-like factor 3 (INSL3) is produced by testicular Leydig cells. Production of INSL3 is dependent on the state of Leydig cell differentiation and is stimulated by the long-term trophic effects of luteinizing hormone. INSL3 is, along with the other major Leydig cell hormone testosterone, essential for testicular descent, which in humans should be completed before birth. The incidence of cryptorchidism (incomplete descent of the testis) may have increased in some developed countries during recent decades. Experimental studies have shown that maternal exposure to endocrine-disrupting chemicals (EDCs), such as phthalates, can result in cryptorchidism among male offspring and that INSL3 production, like steroidogenesis, is susceptible to phthalate exposure. Inhibition of these hormones may occur via a general phthalate-induced impairment of Leydig cell development and maturation. Recent studies have also addressed the sensitivity of human Leydig cells to EDCs, though with varied conclusions. PMID:24388196

  15. Brain Insulin Resistance at the Crossroads of Metabolic and Cognitive Disorders in Humans.

    PubMed

    Kullmann, Stephanie; Heni, Martin; Hallschmid, Manfred; Fritsche, Andreas; Preissl, Hubert; Häring, Hans-Ulrich

    2016-10-01

    Ever since the brain was identified as an insulin-sensitive organ, evidence has rapidly accumulated that insulin action in the brain produces multiple behavioral and metabolic effects, influencing eating behavior, peripheral metabolism, and cognition. Disturbances in brain insulin action can be observed in obesity and type 2 diabetes (T2D), as well as in aging and dementia. Decreases in insulin sensitivity of central nervous pathways, i.e., brain insulin resistance, may therefore constitute a joint pathological feature of metabolic and cognitive dysfunctions. Modern neuroimaging methods have provided new means of probing brain insulin action, revealing the influence of insulin on both global and regional brain function. In this review, we highlight recent findings on brain insulin action in humans and its impact on metabolism and cognition. Furthermore, we elaborate on the most prominent factors associated with brain insulin resistance, i.e., obesity, T2D, genes, maternal metabolism, normal aging, inflammation, and dementia, and on their roles regarding causes and consequences of brain insulin resistance. We also describe the beneficial effects of enhanced brain insulin signaling on human eating behavior and cognition and discuss potential applications in the treatment of metabolic and cognitive disorders. PMID:27489306

  16. Analysis of alternatives for insulinizing patients to achieve glycemic control and avoid accompanying risks of hypoglycemia

    PubMed Central

    GAO, JIALIN; XIONG, QIANYIN; MIAO, JUN; ZHANG, YAO; XIA, LIBING; LU, MEIQIN; ZHANG, BINHUA; CHEN, YUEPING; ZHANG, ANSU; YU, CUI; WANG, LI-ZHUO

    2015-01-01

    The aims of the present study were to explore the efficacy of glycemic control and the risks of hypoglycemia with different methods of insulin therapy, and to provide reference data for the clinical treatment of diabetes. In this retrospective study, hospitalized patients diagnosed with type 2 diabetes between March and December 2014, in the Department of Endocrinology in the First Affiliated Hospital of Wannan Medical College, were divided into three groups, including an intensive insulin analogue therapy group, a premixed insulin analogue treatment group and a premixed human insulin therapy group. The efficacy of glycemic control and the incidence of hypoglycemia were determined in each of the insulin treatment groups. Compared with the other treatment groups, the intensive insulin analogue therapy group was associated with superior blood glucose control, shorter time to reach standard insulin regimen, shorter hospitalization time, fewer fluctuations in blood glucose levels and lower insulin dosage on discharge from hospital. However, this treatment was also associated with a high risk of hypoglycemia. In conclusion, when combined with the effective prevention of hypoglycemia and appropriate nursing care (especially in hospital care), intensive insulin analogue therapy may provide the greatest benefit to patients. PMID:26137223

  17. New method to differentiate human peripheral blood monocytes into insulin producing cells: Human hematosphere culture.

    PubMed

    Hur, Jin; Yang, Ji Min; Choi, Jae-Il; Yun, Ji-Yeon; Jang, Jae Hee; Kim, Joonoh; Kim, Ju-Young; Oh, Il-Young; Yoon, Chang-Hwan; Cho, Hyun-Jai; Park, Young-Bae; Kim, Hyo-Soo

    2012-02-24

    Strategy to differentiate stem cells into insulin producing cells (IPCs) in vitro has been a promising one to get cell source of β-cell replacement therapy for diabetes. It has been suggested that islets and neurons share features and nestin-positive cells could differentiate into IPCs. We have recently developed a three-dimensional culture system using human peripheral blood cells named as blood-born hematosphere (BBHS). Here we showed that most of BBHS were composed of nestin-positive cells. Under the four-stage differentiation protocol for IPCs, we plated nestin-positive BBHS onto fibronectin-coated dish. These cells form islet-like clusters and most of them expressed insulin. Pancreatic specific genes were turned on, such as transcription factors (Pdx-1, Ngn3 and Nkx6.1), genes related to endocrine function (Glut-2 and PC2) or β cell function (Kir6.2, SUR1). Furthermore islet differentiation was confirmed by dithizone (DTZ) staining to detect zinc ion which binds insulin protein within the cells. Finally, IPCs derived from BBHS showed capability to secrete insulin in response to glucose stimulation. Taken together, our novel protocol successfully induced islet-like human insulin producing cells out of BBHS. This strategy of ex vivo expansion of IPCs using BBHS provides an autologous therapeutic cell source for the treatment of diabetes. PMID:22310720

  18. Myotubes derived from human-induced pluripotent stem cells mirror in vivo insulin resistance

    PubMed Central

    Iovino, Salvatore; Burkart, Alison M.; Warren, Laura; Patti, Mary Elizabeth; Kahn, C. Ronald

    2016-01-01

    Induced pluripotent stem cells (iPS cells) represent a unique tool for the study of the pathophysiology of human disease, because these cells can be differentiated into multiple cell types in vitro and used to generate patient- and tissue-specific disease models. Given the critical role for skeletal muscle insulin resistance in whole-body glucose metabolism and type 2 diabetes, we have created a novel cellular model of human muscle insulin resistance by differentiating iPS cells from individuals with mutations in the insulin receptor (IR-Mut) into functional myotubes and characterizing their response to insulin in comparison with controls. Morphologically, IR-Mut cells differentiated normally, but had delayed expression of some muscle differentiation-related genes. Most importantly, whereas control iPS-derived myotubes exhibited in vitro responses similar to primary differentiated human myoblasts, IR-Mut myotubes demonstrated severe impairment in insulin signaling and insulin-stimulated 2-deoxyglucose uptake and glycogen synthesis. Transcriptional regulation was also perturbed in IR-Mut myotubes with reduced insulin-stimulated expression of metabolic and early growth response genes. Thus, iPS-derived myotubes from individuals with genetically determined insulin resistance demonstrate many of the defects observed in vivo in insulin-resistant skeletal muscle and provide a new model to analyze the molecular impact of muscle insulin resistance. PMID:26831110

  19. Ultra-Rapid Absorption of Recombinant Human Insulin Induced by Zinc Chelation and Surface Charge Masking

    PubMed Central

    Pohl, Roderike; Hauser, Robert; Li, Ming; De Souza, Errol; Feldstein, Robert; Seibert, Richard; Ozhan, Koray; Kashyap, Nandini; Steiner, Solomon

    2012-01-01

    Background In order to enhance the absorption of insulin following subcutaneous injection, excipients were selected to hasten the dissociation rate of insulin hexamers and reduce their tendency to reassociate postinjection. A novel formulation of recombinant human insulin containing citrate and disodium ethylenediaminetetraacetic acid (EDTA) has been tested in clinic and has a very rapid onset of action in patients with diabetes. In order to understand the basis for the rapid insulin absorption, in vitro experiments using analytical ultracentrifugation, protein charge assessment, and light scattering have been performed with this novel human insulin formulation and compared with a commercially available insulin formulation [regular human insulin (RHI)]. Method Analytical ultracentrifugation and dynamic light scattering were used to infer the relative distributions of insulin monomers, dimers, and hexamers in the formulations. Electrical resistance of the insulin solutions characterized the overall net surface charge on the insulin complexes in solution. Results The results of these experiments demonstrate that the zinc chelating (disodium EDTA) and charge-masking (citrate) excipients used in the formulation changed the properties of RHI in solution, making it dissociate more rapidly into smaller, charge-masked monomer/dimer units, which are twice as rapidly absorbed following subcutaneous injection than RHI (Tmax 60 ± 43 versus 120 ± 70 min). Conclusions The combination of rapid dissociation of insulin hexamers upon dilution due to the zinc chelating effects of disodium EDTA followed by the inhibition of insulin monomer/dimer reassociation due to the charge-masking effects of citrate provides the basis for the ultra-rapid absorption of this novel insulin formulation. PMID:22920799

  20. Generation-dependent effect of PAMAM dendrimers on human insulin fibrillation and thermal stability.

    PubMed

    Nowacka, Olga; Milowska, Katarzyna; Belica-Pacha, Sylwia; Palecz, Bartlomiej; Šipošová, Katarina; Gazova, Zuzana; Bryszewska, Maria

    2016-01-01

    We have studied the effect of polyamidoamine (PAMAM) dendrimers of various generations on the thermal stability and fibrillation of human insulin. Thermostability of human insulin used differential scanning calorimetry (DSC), which showed two phase-transitions for insulin at 60 and 82°C. After adding dendrimers at 0.6 μmol/l, the first peaks disappeared and the second peaks were higher. We posited that, in the presence of dendrimers, the dimers in the solution were transformed into hexamers. The effect of dendrimers on insulin fibrillation was monitored by measuring ThT fluorescence, and visualization of insulin fibrils by transmission electron microscopy (TEM) and atomic force microscopy (AFM). The effect of PAMAM dendrimers on insulin fibrillation was strongly dependent on the dendrimers generation and dendrimer:protein ratio. PMID:26598047

  1. Protein crystal growth in microgravity review of large scale temperature induction method: bovine insulin, human insulin and human alpha interferon

    NASA Astrophysics Data System (ADS)

    Long, Marianna M.; Bishop, John Bradford; Nagabhushan, Tattanahalli L.; Reichert, Paul; Smith, G. David; DeLucas, Lawrence J.

    1996-10-01

    The protein crystal growth facility (PCF) is space-flight hardware that accommodates large scale protein crystal growth experiments using temperature change as the inductive step. Recent modifications include specialized instrumentation for monitoring crystal nucleation with laser light scattering. This paper reviews results from the PCF's first seven flights on the Space Shuttle, the last with laser light scattering instrumentation. The PCF's objective is twofold: (1) production of high quality protein crystals for X-ray analysis and subsequent structure based drug design and (2) preparation of a large quantity of relatively contaminant free crystals for use as time-release protein pharmaceuticals. The first three Shuttle flights with bovine insulin constituted the PCF's proof of concept, demonstrating that the space-grown crystals were larger and diffracted to higher resolution than their earth-grown counterparts. The later four PCF missions were used to grow recombinant human insulin crystals for X-ray analysis and to continue productions trials aimed at the development of a processing facility for crystalline recombinant alpha interferon.

  2. Development of a transgenic mouse model to study the immunogenicity of recombinant human insulin.

    PubMed

    Torosantucci, Riccardo; Brinks, Vera; Kijanka, Grzegorz; Halim, Liem Andhyk; Sauerborn, Melody; Schellekens, Huub; Jiskoot, Wim

    2014-05-01

    Mouse models are commonly used to assess the immunogenicity of therapeutic proteins and to investigate the immunological processes leading to antidrug antibodies. The aim of this work was to develop a transgenic (TG) Balb/c mouse model for evaluating the immunogenicity of recombinant human insulin (insulin) formulations. Validation of the model was performed by measuring the antibody response against plain and particulate insulin in TG and nontransgenic (NTG) mice. Intraperitoneal administration of insulin (20 μg/dose, 12 doses over a period of 4 weeks) did not break the immune tolerance of the TG mice, whereas it did elicit antibodies in NTG mice. The immune tolerance of TG mice could be circumvented, albeit at low titers, by administering insulin covalently bound to 50-nm polystyrene nanoparticles. The TG mouse model was employed to compare the immunogenicity of oxidized aggregated insulin, oxidized nonaggregated insulin, and three commercially available formulations of insulin variants (i.e., Levemir®, Insulatard®, and Actrapid®). Oxidized insulin, aggregated or nonaggregated, was moderately immunogenic in TG mice (50% and 33% responders, respectively), whereas the immunogenicity of the commercial formulations was low. This model can be used to compare the immunogenicity of insulin formulations and to study immune mechanisms of antibody formation against insulin. PMID:24619587

  3. Defining human insulin-like growth factor I gene regulation.

    PubMed

    Mukherjee, Aditi; Alzhanov, Damir; Rotwein, Peter

    2016-08-01

    Growth hormone (GH) plays an essential role in controlling somatic growth and in regulating multiple physiological processes in humans and other species. Insulin-like growth factor I (IGF-I), a conserved, secreted 70-amino acid peptide, is a critical mediator of many of the biological effects of GH. Previous studies have demonstrated that GH rapidly and potently promotes IGF-I gene expression in rodents and in some other mammals through the transcription factor STAT5b, leading to accumulation of IGF-I mRNAs and production of IGF-I. Despite this progress, very little is known about how GH or other trophic factors control human IGF1 gene expression, in large part because of the absence of any cellular model systems that robustly express IGF-I. Here, we have addressed mechanisms of regulation of human IGF-I by GH after generating cells in which the IGF1 chromosomal locus has been incorporated into a mouse cell line. Using this model, we found that physiological levels of GH rapidly stimulate human IGF1 gene transcription and identify several potential transcriptional enhancers in chromatin that bind STAT5b in a GH-regulated way. Each of the putative enhancers also activates a human IGF1 gene promoter in reconstitution experiments in the presence of the GH receptor, STAT5b, and GH. Thus we have developed a novel experimental platform that now may be used to determine how human IGF1 gene expression is controlled under different physiological and pathological conditions. PMID:27406741

  4. Insulin Resistance Alters Islet Morphology in Nondiabetic Humans

    PubMed Central

    Mezza, Teresa; Muscogiuri, Giovanna; Sorice, Gian Pio; Clemente, Gennaro; Hu, Jiang; Pontecorvi, Alfredo; Holst, Jens J.; Giaccari, Andrea; Kulkarni, Rohit N.

    2014-01-01

    Type 2 diabetes is characterized by poor glucose uptake in metabolic tissues and manifests when insulin secretion fails to cope with worsening insulin resistance. In addition to its effects on skeletal muscle, liver, and adipose tissue metabolism, it is evident that insulin resistance also affects pancreatic β-cells. To directly examine the alterations that occur in islet morphology as part of an adaptive mechanism to insulin resistance, we evaluated pancreas samples obtained during pancreatoduodenectomy from nondiabetic subjects who were insulin-resistant or insulin-sensitive. We also compared insulin sensitivity, insulin secretion, and incretin levels between the two groups. We report an increased islet size and an elevated number of β- and α-cells that resulted in an altered β-cell–to–α-cell area in the insulin- resistant group. Our data in this series of studies suggest that neogenesis from duct cells and transdifferentiation of α-cells are potential contributors to the β-cell compensatory response to insulin resistance in the absence of overt diabetes. PMID:24215793

  5. Development of a Quantitative PCR Assay for Detection of Human Insulin-Like Growth Factor Receptor and Insulin Receptor Isoforms.

    PubMed

    Flannery, Clare A; Rowzee, Anne M; Choe, Gina H; Saleh, Farrah L; Radford, Caitlin C; Taylor, Hugh S; Wood, Teresa L

    2016-04-01

    The biological activity of insulin and the insulin-like growth factor (IGF) ligands, IGF-I and IGF-II, is based in part on the relative abundance and distribution of their target receptors: the insulin receptor (IR) splice variants A (IR-A) and B (IR-B) and IGF 1 receptor (IGF-1R). However, the relative quantity of all three receptors in human tissues has never been measured together on the same scale. Due to the high homology between insulin receptor (IR)-A and IR-B proteins and lack of antibodies that discern the two IR splice variants, their mRNA sequence is the most reliable means of distinguishing between the receptors. Hence, highly specific primers for IR-A, IR-B, and IGF-1R mRNA were designed to accurately detect all three receptors by quantitative RT-PCR and enable direct quantification of relative receptor expression levels. A standard concentration curve of cDNA from each receptor was performed. Assay specificity was tested using competition assays and postamplification analysis by gel electrophoresis and cloning. Forward and reverse primer concentrations were optimized to ensure equal efficiencies across primer pairs. This assay enables a specific molecular signature of IGF/insulin signaling receptors to be assayed in different tissues, cell types, or cancers. PMID:26862994

  6. Euglycemic Infusion of Insulin Detemir Compared With Human Insulin Appears to Increase Direct Current Brain Potential Response and Reduces Food Intake While Inducing Similar Systemic Effects

    PubMed Central

    Hallschmid, Manfred; Jauch-Chara, Kamila; Korn, Oliver; Mölle, Matthias; Rasch, Björn; Born, Jan; Schultes, Bernd; Kern, Werner

    2010-01-01

    OBJECTIVE In the treatment of diabetic patients, the long-acting insulin analog insulin detemir is less prone to induce weight gain than other insulin formulations. Assuming that because of its pharmacologic properties, detemir displays stronger central nervous anorexigenic efficacy than human insulin, we compared acute effects of human insulin and detemir on electroencephalography (EEG) measures and food intake. RESEARCH DESIGN AND METHODS Frontocortical EEG direct current (DC) potentials were recorded in 15 healthy men during two hyperinsulinemic-euglycemic clamps that included an insulin bolus injection (human insulin, 17.75 mU/kg body wt; detemir, 90 mU/kg body wt) followed by a steady 90-min infusion (1.0 vs. 2.0 mU · kg−1 · min−1). A higher dosage was chosen for detemir to compensate for its delay in impact relative to human insulin and to elicit similar systemic effects. At 20 min after infusion, subjects were allowed to eat ad libitum from a test buffet. RESULTS Mean glucose infusions to maintain euglycemia (P > 0.93) and blood glucose concentrations (P > 0.34) did not differ between conditions. Detemir infusion induced a negative DC-potential shift, averaging −372.2 μV from 21 to 90 min that was not observed during human insulin infusion (146.5 μV, P = 0.02). Detemir, in comparison with human insulin, reduced subsequent food intake by 303 kcal (1,257 vs. 1,560, P < 0.04). CONCLUSIONS While inducing comparable peripheral effects, detemir exerts stronger acute effects on brain functions than human insulin and triggers a relative decrease in food consumption, suggesting an enhanced anorexigenic impact of detemir compared with human insulin on central nervous networks that control nutrient uptake. PMID:20068139

  7. Structure, Aggregation, and Activity of a Covalent Insulin Dimer Formed During Storage of Neutral Formulation of Human Insulin.

    PubMed

    Hjorth, Christian Fogt; Norrman, Mathias; Wahlund, Per-Olof; Benie, Andrew J; Petersen, Bent O; Jessen, Christian M; Pedersen, Thomas Å; Vestergaard, Kirsten; Steensgaard, Dorte B; Pedersen, Jan Skov; Naver, Helle; Hubálek, František; Poulsen, Christian; Otzen, Daniel

    2016-04-01

    A specific covalently linked dimeric species of insulin high molecular weight products (HMWPs), formed during prolonged incubation of a neutral pharmaceutical formulation of human insulin, were characterized in terms of tertiary structure, self-association, biological activity, and fibrillation properties. The dimer was formed by a covalent link between A21Asn and B29Lys. It was analyzed using static and dynamic light scattering and small-angle X-ray scattering to evaluate its self-association behavior. The tertiary structure was obtained using nuclear magnetic resonance and X-ray crystallography. The biological activity of HMWP was determined using 2 in vitro assays, and its influence on fibrillation was investigated using Thioflavin T assays. The dimer's tertiary structure was nearly identical to that of the noncovalent insulin dimer, and it was able to form hexamers in the presence of zinc. The dimer exhibited reduced propensity for self-association in the absence of zinc but significantly postponed the onset of fibrillation in insulin formulations. Consistent with its dimeric state, the tested species of HMWP showed little to no biological activity in the used assays. This study is the first detailed characterization of a specific type of human insulin HMWP formed during storage of a marketed pharmaceutical formulation. These results indicate that this specific type of HMWP is unlikely to antagonize the physical stability of the formulation, as HMWP retained a tertiary structure similar to the noncovalent dimer and participated in hexamer assembly in the presence of zinc. In addition, increasing amounts of HMWP reduce the rate of insulin fibrillation. PMID:26921119

  8. Preparative isolation by high performance liquid chromatography of human insulin B chain produced in escherichia coli

    SciTech Connect

    Cruz, N.; Antonio, S.; De Anda, R.; Gosset, G.; Bolivar, F. )

    1990-01-01

    This paper reports on a simple method developed for the analytical and preparative purification of human insulin B chain from recombinant origin. Three solvent systems: acetonitrile, isopropanol and methanol, were studied to determine their capacity to resolve the insulin B chain from a mixture of cyanogen bromide generated bacterial peptides. Using a {mu}Bondapak C18 column, it was possible to resolve the insulin B chain in all three systems. On a preparative scale, using a PrePak 500 C18 column with the isopropanol system, it was possible to purify insulin B chain and to obtain a 95% protein recovery.

  9. Key Role for Ceramides in Mediating Insulin Resistance in Human Muscle Cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elevated non-esterified fatty acids, triglyceride, diacylglycerol and ceramide have all been associated with insulin resistance in muscle. We set out to investigate the role of intramyocellular lipid metabolites in the induction of insulin resistance in human primary myoblast cultures. Muscle cell...

  10. Pid1 induces insulin resistance in both human and mouse skeletal muscle during obesity.

    PubMed

    Bonala, Sabeera; McFarlane, Craig; Ang, Jackie; Lim, Radiance; Lee, Marcus; Chua, Hillary; Lokireddy, Sudarsanareddy; Sreekanth, Patnam; Leow, Melvin Khee Shing; Meng, Khoo Chin; Shyong, Tai E; Lee, Yung Seng; Gluckman, Peter D; Sharma, Mridula; Kambadur, Ravi

    2013-09-01

    Obesity is associated with insulin resistance and abnormal peripheral tissue glucose uptake. However, the mechanisms that interfere with insulin signaling and glucose uptake in human skeletal muscle during obesity are not fully characterized. Using microarray, we have identified that the expression of Pid1 gene, which encodes for a protein that contains a phosphotyrosine-interacting domain, is increased in myoblasts established from overweight insulin-resistant individuals. Molecular analysis further validated that both Pid1 mRNA and protein levels are increased in cell culture models of insulin resistance. Consistent with these results, overexpression of phosphotyrosine interaction domain-containing protein 1 (PID1) in human myoblasts resulted in reduced insulin signaling and glucose uptake, whereas knockdown of PID1 enhanced glucose uptake and insulin signaling in human myoblasts and improved the insulin sensitivity following palmitate-, TNF-α-, or myostatin-induced insulin resistance in human myoblasts. Furthermore, the number of mitochondria in myoblasts that ectopically express PID1 was significantly reduced. In addition to overweight humans, we find that Pid1 levels are also increased in all 3 peripheral tissues (liver, skeletal muscle, and adipose tissue) in mouse models of diet-induced obesity and insulin resistance. An in silico search for regulators of Pid1 expression revealed the presence of nuclear factor-κB (NF-κB) binding sites in the Pid1 promoter. Luciferase reporter assays and chromatin immunoprecipitation studies confirmed that NF-κB is sufficient to transcriptionally up-regulate the Pid1 promoter. Furthermore, we find that myostatin up-regulates Pid1 expression via an NF-κB signaling mechanism. Collectively these results indicate that Pid1 is a potent intracellular inhibitor of insulin signaling pathway during obesity in humans and mice. PMID:23927930

  11. Cloning of a new member of the insulin gene superfamily (INSL4) expressed in human placenta

    SciTech Connect

    Chassin, D.; Laurent, A.; Janneau, J.L.

    1995-09-20

    A new member of the insulin gene superfamily was identified by screening a subtracted cDNA library of first-trimester human placenta and, hence, was tentatively named early placenta insulin-like peptide (EPIL). In this paper, we report the cloning and sequencing of the EPIL cDNA and the EPIL gene (INSL4). Comparison of the deduced amino acid sequence of the early placenta insulin-like peptide revealed significant overall and structural homologies with members of the insulin-like hormone superfamily. Moreover, the organization of the early placenta insulin-like gene, which is composed of two exons and one intron, is similiar to that of insulin and relaxin. By in situ hybridization, the INSL4 gene was assigned to band p24 of the short arm of chromosome 9. RT-PCR analysis of EPIL tissue distribution revealed that its transcripts are expressed in the placenta and uterus. 22 refs., 3 figs.

  12. Elevated insulin receptor content in human breast cancer.

    PubMed Central

    Papa, V; Pezzino, V; Costantino, A; Belfiore, A; Giuffrida, D; Frittitta, L; Vannelli, G B; Brand, R; Goldfine, I D; Vigneri, R

    1990-01-01

    The growth of breast cancer cells is under the regulation of hormones, growth factors, and their receptors. In the present study, we have employed a new, sensitive, and specific radioimmunoassay for the direct measurement of insulin receptors in surgical specimens of breast cancers. In 159 specimens the insulin receptor content was 6.15 +/- 3.69 ng/0.1 mg protein. This value was more than sixfold higher than the mean value found in both 27 normal breast tissues obtained at total mastectomy (0.95 + 0.68, P less than 0.001) and in six normal specimens obtained from reduction mammoplasty (0.84 +/- 0.78, P less than 0.001). The insulin receptor content in breast cancer tissues was also higher than in any normal tissue investigated including liver (Pezzino, V., V. Papa, V. Trischitta, A. Brunetti, P.A. Goodman, M.K. Treutelaar, J.A. Williams, B.A. Maddux, R. Vigneri, and I.D. Goldfine, 1989. Am. J. Physiol. 257:E451-457). The insulin receptor in breast cancer retained its ability to both bind insulin and undergo insulin-induced tyrosine kinase activation. Immunostaining of the specimens revealed that the insulin receptor was present in malignant epithelial cells, but was not detected in stromal and inflammatory cells. Univariant analysis revealed that the insulin receptor content of the tumors correlated positively with tumor size (P = 0.014), histological grading (P = 0.030), and the estrogen receptor content (P = 0.035). There were no significant correlations between insulin receptor content and the age, body weight, menopausal status, and nodal involvement of the patients. These studies indicate, therefore, that the insulin receptor content is increased in breast cancers and raise the possibility that the insulin receptor may have a role in the biology of these tumors. Images PMID:2243127

  13. Human islet preparations distributed for research exhibit a variety of insulin-secretory profiles

    PubMed Central

    Kayton, Nora S.; Poffenberger, Gregory; Henske, Joseph; Dai, Chunhua; Thompson, Courtney; Aramandla, Radhika; Shostak, Alena; Nicholson, Wendell; Brissova, Marcela; Bush, William S.

    2015-01-01

    Human islet research is providing new insights into human islet biology and diabetes, using islets isolated at multiple US centers from donors with varying characteristics. This creates challenges for understanding, interpreting, and integrating research findings from the many laboratories that use these islets. In what is, to our knowledge, the first standardized assessment of human islet preparations from multiple isolation centers, we measured insulin secretion from 202 preparations isolated at 15 centers over 11 years and noted five distinct patterns of insulin secretion. Approximately three quarters were appropriately responsive to stimuli, but one quarter were dysfunctional, with unstable basal insulin secretion and/or an impairment in stimulated insulin secretion. Importantly, the patterns of insulin secretion by responsive human islet preparations (stable Baseline and Fold stimulation of insulin secretion) isolated at different centers were similar and improved slightly over the years studied. When all preparations studied were considered, basal and stimulated insulin secretion did not correlate with isolation center, biological differences of the islet donor, or differences in isolation, such as Cold Ischemia Time. Dysfunctional islet preparations could not be predicted from the information provided by the isolation center and had altered expression of genes encoding components of the glucose-sensing pathway, but not of insulin production or cell death. These results indicate that insulin secretion by most preparations from multiple centers is similar but that in vitro responsiveness of human islets cannot be predicted, necessitating preexperimental human islet assessment. These results should be considered when one is designing, interpreting, and integrating experiments using human islets. PMID:25648831

  14. Human islet preparations distributed for research exhibit a variety of insulin-secretory profiles.

    PubMed

    Kayton, Nora S; Poffenberger, Gregory; Henske, Joseph; Dai, Chunhua; Thompson, Courtney; Aramandla, Radhika; Shostak, Alena; Nicholson, Wendell; Brissova, Marcela; Bush, William S; Powers, Alvin C

    2015-04-01

    Human islet research is providing new insights into human islet biology and diabetes, using islets isolated at multiple US centers from donors with varying characteristics. This creates challenges for understanding, interpreting, and integrating research findings from the many laboratories that use these islets. In what is, to our knowledge, the first standardized assessment of human islet preparations from multiple isolation centers, we measured insulin secretion from 202 preparations isolated at 15 centers over 11 years and noted five distinct patterns of insulin secretion. Approximately three quarters were appropriately responsive to stimuli, but one quarter were dysfunctional, with unstable basal insulin secretion and/or an impairment in stimulated insulin secretion. Importantly, the patterns of insulin secretion by responsive human islet preparations (stable Baseline and Fold stimulation of insulin secretion) isolated at different centers were similar and improved slightly over the years studied. When all preparations studied were considered, basal and stimulated insulin secretion did not correlate with isolation center, biological differences of the islet donor, or differences in isolation, such as Cold Ischemia Time. Dysfunctional islet preparations could not be predicted from the information provided by the isolation center and had altered expression of genes encoding components of the glucose-sensing pathway, but not of insulin production or cell death. These results indicate that insulin secretion by most preparations from multiple centers is similar but that in vitro responsiveness of human islets cannot be predicted, necessitating preexperimental human islet assessment. These results should be considered when one is designing, interpreting, and integrating experiments using human islets. PMID:25648831

  15. High-mix insulins

    PubMed Central

    Kalra, Sanjay; Farooqi, Mohammad Hamed; El-Houni, Ali E.

    2015-01-01

    Premix insulins are commonly used insulin preparations, which are available in varying ratios of different molecules. These drugs contain one short- or rapid-acting, and one intermediate- or long-acting insulin. High-mix insulins are mixtures of insulins that contain 50% or more than 50% of short-acting insulin. This review describes the clinical pharmacology of high-mix insulins, including data from randomized controlled trials. It suggests various ways, in which high-mix insulin can be used, including once daily, twice daily, thrice daily, hetero-mix, and reverse regimes. The authors provide a rational framework to help diabetes care professionals, identify indications for pragmatic high-mix use. PMID:26425485

  16. Dopamine-mediated autocrine inhibitory circuit regulating human insulin secretion in vitro.

    PubMed

    Simpson, Norman; Maffei, Antonella; Freeby, Matthew; Burroughs, Steven; Freyberg, Zachary; Javitch, Jonathan; Leibel, Rudolph L; Harris, Paul E

    2012-10-01

    We describe a negative feedback autocrine regulatory circuit for glucose-stimulated insulin secretion in purified human islets in vitro. Using chronoamperometry and in vitro glucose-stimulated insulin secretion measurements, evidence is provided that dopamine (DA), which is loaded into insulin-containing secretory granules by vesicular monoamine transporter type 2 in human β-cells, is released in response to glucose stimulation. DA then acts as a negative regulator of insulin secretion via its action on D2R, which are also expressed on β-cells. We found that antagonism of receptors participating in islet DA signaling generally drive increased glucose-stimulated insulin secretion. These in vitro observations may represent correlates of the in vivo metabolic changes associated with the use of atypical antipsychotics, such as increased adiposity. PMID:22915827

  17. Recombination within and between the human insulin and beta-globin gene loci.

    PubMed Central

    Lebo, R V; Chakravarti, A; Buetow, K H; Cheung, M C; Cann, H; Cordell, B; Goodman, H

    1983-01-01

    We detected a large number of polymorphic insulin restriction fragments in black Americans. These different size fragments were probably generated by unequal recombination on both sides of the human insulin gene. Population genetic analysis indicates that recombination occurred 33 times more frequently than expected to generate this large number of polymorphic fragments. Specific properties of the unique repeated 14- to 16-base-pair sequences 5' to the insulin gene suggest that this sequence would promote increased unequal recombination. Additional pedigree analysis showed that the recombination rate between the structural insulin and beta-globin gene loci was 14% with strong evidence for linkage. Since both insulin and beta-globin have been mapped to the short arm of human chromosome 11, this study establishes that the genetic map distance between these genes is 14.2 centimorgans. PMID:6348773

  18. Dopamine-Mediated Autocrine Inhibitory Circuit Regulating Human Insulin Secretion in Vitro

    PubMed Central

    Simpson, Norman; Maffei, Antonella; Freeby, Matthew; Burroughs, Steven; Freyberg, Zachary; Javitch, Jonathan; Leibel, Rudolph L.

    2012-01-01

    We describe a negative feedback autocrine regulatory circuit for glucose-stimulated insulin secretion in purified human islets in vitro. Using chronoamperometry and in vitro glucose-stimulated insulin secretion measurements, evidence is provided that dopamine (DA), which is loaded into insulin-containing secretory granules by vesicular monoamine transporter type 2 in human β-cells, is released in response to glucose stimulation. DA then acts as a negative regulator of insulin secretion via its action on D2R, which are also expressed on β-cells. We found that antagonism of receptors participating in islet DA signaling generally drive increased glucose-stimulated insulin secretion. These in vitro observations may represent correlates of the in vivo metabolic changes associated with the use of atypical antipsychotics, such as increased adiposity. PMID:22915827

  19. Large-Scale Refolding and Enzyme Reaction of Human Preproinsulin for Production of Human Insulin.

    PubMed

    Kim, Chang-Kyu; Lee, Seung-Bae; Son, Young-Jin

    2015-10-28

    Human insulin is composed of 21 amino acids of an A-chain and 30 amino acids of a B-chain. This is the protein hormone that has the role of blood sugar control. When the recombinant human proinsulin is expressed in Escherichia coli, a serious problem is the formation of an inclusion body. Therefore, the inclusion body must be denatured and refolded under chaotropic agents and suitable reductants. In this study, H27R-proinsulin was refolded from the denatured form with β-mercaptoethanol and urea. The refolding reaction was completed after 15 h at 15°C, whereas the reaction at 25°C was faster than that at 15°C. The refolding yield at 15°C was 17% higher than that at 25°C. The refolding reaction could be carried out at a high protein concentration (2 g/l) using direct refolding without sulfonation. The most economical and optimal refolding condition for human preproinsulin was 1.5 g/l protein, 10 mM glycine buffer containing 0.6 M urea, pH 10.6, and 0.3 mM β-mercaptoethanol at 15°C for 16 h. The maximum refolding yield was 74.8% at 15°C with 1.5 g/l protein. Moreover, the refolded preproinsulin could be converted into normal mature insulin with two enzymes. The average amount of human insulin was 138.2 g from 200 L of fermentation broth after enzyme reaction with H27R-proinsulin. The direct refolding process for H27R-proinsulin was successfully set up without sulfonation. The step yields for refolding and enzyme reaction were comparatively high. Therefore, our refolding process for production of recombinant insulin may be beneficial to the large-scale production of other biologically active proteins. PMID:26139616

  20. Characterization of the growth of murine fibroblasts that express human insulin receptors. I. The effect of insulin in the absence of other growth factors

    SciTech Connect

    Randazzo, P.A.; Morey, V.A.; Polishook, A.K.; Jarett, L. )

    1990-09-01

    The effect of insulin on the growth of murine fibroblasts transfected with an expression vector containing human insulin receptor cDNA (NIH 3T3/HIR) and the parental cells (NIH/3T3) was characterized. Insulin in the absence of other mitogens increased the rate of incorporation of thymidine into NIH 3T3/HIR cells with a half-maximal response occurring at an insulin concentration of 35 ng/ml and a maximal response that was equivalent to that elicited by 10% fetal calf serum. The thymidine incorporation rate was increased by 12 h, was maximal at approximately 16 h, and returned to basal rates at 24 h after the addition of insulin. Insulin induced a maximum of 65% of cells to incorporate thymidine. The increased DNA synthesis was accompanied by net growth. Addition of insulin to the NIH 3T3/HIR cells resulted in increased DNA content with a half-maximal response occurring at approximately 30 ng/ml insulin and a maximal response equivalent to that elicited by serum. An increase in cell number detected after the addition of insulin to the NIH 3T3/HIR suggests that the cells had progressed through mitosis. Insulin did not increase the rate of thymidine incorporation, DNA content, or number of the parental NIH 3T3 cells. These data show that insulin, in the absence of a second mitogen, is able to induce NIH 3T3/HIR fibroblasts to traverse the cell cycle.

  1. Adipose Cell Size and Regional Fat Deposition as Predictors of Metabolic Response to Overfeeding in Insulin-Resistant and Insulin-Sensitive Humans.

    PubMed

    McLaughlin, Tracey; Craig, Colleen; Liu, Li-Fen; Perelman, Dalia; Allister, Candice; Spielman, Daniel; Cushman, Samuel W

    2016-05-01

    Obesity is associated with insulin resistance, but significant variability exists between similarly obese individuals, pointing to qualitative characteristics of body fat as potential mediators. To test the hypothesis that obese, insulin-sensitive (IS) individuals possess adaptive adipose cell/tissue responses, we measured subcutaneous adipose cell size, insulin suppression of lipolysis, and regional fat responses to short-term overfeeding in BMI-matched overweight/obese individuals classified as IS or insulin resistant (IR). At baseline, IR subjects exhibited significantly greater visceral adipose tissue (VAT), intrahepatic lipid (IHL), plasma free fatty acids, adipose cell diameter, and percentage of small adipose cells. With weight gain (3.1 ± 1.4 kg), IR subjects demonstrated no significant change in adipose cell size, VAT, or insulin suppression of lipolysis and only 8% worsening of insulin-mediated glucose uptake (IMGU). Alternatively, IS subjects demonstrated significant adipose cell enlargement; decrease in the percentage of small adipose cells; increase in VAT, IHL, and lipolysis; 45% worsening of IMGU; and decreased expression of lipid metabolism genes. Smaller baseline adipose cell size and greater enlargement with weight gain predicted decline in IMGU, as did increase in IHL and VAT and decrease in insulin suppression of lipolysis. Weight gain in IS humans causes maladaptive changes in adipose cells, regional fat distribution, and insulin resistance. The correlation between development of insulin resistance and changes in adipose cell size, VAT, IHL, and insulin suppression of lipolysis highlight these factors as potential mediators between obesity and insulin resistance. PMID:26884438

  2. Human insulin dynamics in women: a physiologically based model.

    PubMed

    Weiss, Michael; Tura, Andrea; Kautzky-Willer, Alexandra; Pacini, Giovanni; D'Argenio, David Z

    2016-02-01

    Currently available models of insulin dynamics are mostly based on the classical compartmental structure and, thus, their physiological utility is limited. In this work, we describe the development of a physiologically based model and its application to data from 154 patients who underwent an insulin-modified intravenous glucose tolerance test (IM-IVGTT). To determine the time profile of endogenous insulin delivery without using C-peptide data and to evaluate the transcapillary transport of insulin, the hepatosplanchnic, renal, and peripheral beds were incorporated into the circulatory model as separate subsystems. Physiologically reasonable population mean estimates were obtained for all estimated model parameters, including plasma volume, interstitial volume of the peripheral circulation (mainly skeletal muscle), uptake clearance into the interstitial space, hepatic and renal clearance, as well as total insulin delivery into plasma. The results indicate that, at a population level, the proposed physiologically based model provides a useful description of insulin disposition, which allows for the assessment of muscle insulin uptake. PMID:26608654

  3. Diabetes and Insulin

    MedlinePlus

    ... years, but may eventually need insulin to maintain glucose control. What are the different types of insulin? Different ... glulisine • Short-acting: regular human insulin Basal insulin. Controls blood glucose levels between meals and throughout the night. This ...

  4. Differential effects of insulin deficiency on albumin and fibrinogen synthesis in humans.

    PubMed Central

    De Feo, P; Gaisano, M G; Haymond, M W

    1991-01-01

    Insulin deficiency decreases tissue protein synthesis, albumin mRNA concentration, and albumin synthesis in rats. In contrast, insulin deficiency does not change, or, paradoxically, increases estimates of whole body protein synthesis in humans. To determine if such estimates of whole body protein synthesis could obscure potential differential effects of insulin on the synthetic rates of individual proteins, we determined whole body protein synthesis and albumin and fibrinogen fractional synthetic rates using 5-h simultaneous infusions of [14C]leucine and [13C]bicarbonate, in six type 1 diabetics during a continuous i.v. insulin infusion (to maintain euglycemia) and after short-term insulin withdrawal (12 +/- 2 h). Insulin withdrawal increased (P less than 0.03) whole body proteolysis by approximately 35% and leucine oxidation by approximately 100%, but did not change 13CO2 recovery from NaH13CO3 or estimates of whole body protein synthesis (P = 0.21). Insulin deficiency was associated with a 29% decrease (P less than 0.03) in the albumin fractional synthetic rate but a 50% increase (P less than 0.03) in that of fibrinogen. These data provide strong evidence that albumin synthesis in humans is an insulin-sensitive process, a conclusion consistent with observations in rats. The increase in fibrinogen synthesis during insulin deficiency most likely reflects an acute phase protein response due to metabolic stress. These data suggest that the absence of changes in whole body protein synthesis after insulin withdrawal is the result of the summation of differential effects of insulin deficiency on the synthesis of specific body proteins. PMID:1909352

  5. Premixed Turbulent Flame Propagation in Microgravity

    NASA Technical Reports Server (NTRS)

    Menon, S.; Disseau, M.; Chakravarthy, V. K.; Jagoda, J.

    1997-01-01

    Papers included address the following topics: (1) Turbulent premixed flame propagation in microgravity; (2) The effect of gravity on turbulent premixed flame propagation - a preliminary cold flow study; and (3) Characteristics of a subgrid model for turbulent premixed combustion.

  6. Premixed direct injection nozzle

    DOEpatents

    Zuo, Baifang; Johnson, Thomas Edward; Lacy, Benjamin Paul; Ziminsky, Willy Steve

    2011-02-15

    An injection nozzle having a main body portion with an outer peripheral wall is disclosed. The nozzle includes a plurality of fuel/air mixing tubes disposed within the main body portion and a fuel flow passage fluidly connected to the plurality of fuel/air mixing tubes. Fuel and air are partially premixed inside the plurality of the tubes. A second body portion, having an outer peripheral wall extending between a first end and an opposite second end, is connected to the main body portion. The partially premixed fuel and air mixture from the first body portion gets further mixed inside the second body portion. The second body portion converges from the first end toward said second end. The second body portion also includes cooling passages that extend along all the walls around the second body to provide thermal damage resistance for occasional flame flash back into the second body.

  7. Basal insulin treatment in type 2 diabetes.

    PubMed

    Hedrington, Maka S; Pulliam, Lindsay; Davis, Stephen N

    2011-06-01

    Insulin glargine is the first 24-h recombinant DNA insulin analog introduced to the market. Substitution of glycine for asparagine and addition of two arginine residues raise the isoelectric point of insulin glargine and result in microprecipitates, delaying absorption from subcutaneous tissue. This delayed absorption result in fairly flat 24-h insulin concentration profiles with no discernible peak. Large, multicenter, randomized, controlled trials in patients with type 2 diabetes show that although NPH insulin and insulin glargine are equally effective in lowering glycosylated hemoglobin (A1c) and fasting blood glucose, there is a clear advantage of insulin glargine over NPH insulin in reducing nocturnal and overall hypoglycemia. Lower risk of hypoglycemia with glargine was also consistently demonstrated by trials comparing insulin glargine and premixed analog insulins. These studies also showed greater reduction in A1c with twice-daily premixed insulins compared with glargine, when insulin glargine was administered without mealtime insulin coverage. Insulin glargine was also compared with another insulin analog, insulin detemir. Trials showed that both insulin analogs are equally effective in lowering A1c and have comparable risk of hypoglycemia. Trials comparing insulin glargine with glucagon-like peptide-1 agonists showed comparable significant reductions in A1c with both regimens. Insulin glargine is well tolerated, has low immunogenicity, reduced risks for acute myocardial infarction, and a lower risk of hypoglycemia compared with NPH insulin in individuals with type 2 diabetes. PMID:21668335

  8. Basal Insulin Treatment in Type 2 Diabetes

    PubMed Central

    Hedrington, Maka S.; Pulliam, Lindsay

    2011-01-01

    Abstract Insulin glargine is the first 24-h recombinant DNA insulin analog introduced to the market. Substitution of glycine for asparagine and addition of two arginine residues raise the isoelectric point of insulin glargine and result in microprecipitates, delaying absorption from subcutaneous tissue. This delayed absorption result in fairly flat 24-h insulin concentration profiles with no discernible peak. Large, multicenter, randomized, controlled trials in patients with type 2 diabetes show that although NPH insulin and insulin glargine are equally effective in lowering glycosylated hemoglobin (A1c) and fasting blood glucose, there is a clear advantage of insulin glargine over NPH insulin in reducing nocturnal and overall hypoglycemia. Lower risk of hypoglycemia with glargine was also consistently demonstrated by trials comparing insulin glargine and premixed analog insulins. These studies also showed greater reduction in A1c with twice-daily premixed insulins compared with glargine, when insulin glargine was administered without mealtime insulin coverage. Insulin glargine was also compared with another insulin analog, insulin detemir. Trials showed that both insulin analogs are equally effective in lowering A1c and have comparable risk of hypoglycemia. Trials comparing insulin glargine with glucagon-like peptide-1 agonists showed comparable significant reductions in A1c with both regimens. Insulin glargine is well tolerated, has low immunogenicity, reduced risks for acute myocardial infarction, and a lower risk of hypoglycemia compared with NPH insulin in individuals with type 2 diabetes. PMID:21668335

  9. The human insulin gene is part of a large open chromatin domain specific for human islets

    PubMed Central

    Mutskov, Vesco; Felsenfeld, Gary

    2009-01-01

    Knowledge of how insulin (INS) gene expression is regulated will lead to better understanding of normal and abnormal pancreatic β cell function. We have mapped histone modifications over the INS region, coupled with an expression profile, in freshly isolated islets from multiple human donors. Unlike many other human genes, in which active modifications tend to be concentrated within 1 kb around the transcription start site, these marks are distributed over the entire coding region of INS as well. Moreover, a region of ≈80 kb around the INS gene, which contains the {tyrosine hydroxylase (TH)–(INS)–insulin-like growth factor 2 antisense (IGF2AS)–insulin-like growth factor 2 (IGF2)} gene cluster, unusually is marked by almost uniformly elevated levels of histone acetylation and H3K4 dimethylation, extending both downstream into IGF2 and upstream beyond the TH gene. This is accompanied by islet specific coordinate expression with INS of the neighboring TH and IGF2 genes. The presence of islet specific intergenic transcripts suggests their possible function in the maintenance of this unusual large open chromatin domain. PMID:19805079

  10. Crystallization of Enantiomerically Pure Proteins from Quasi-Racemic Mixtures: Structure Determination by X-Ray Diffraction of Isotope-Labeled Ester Insulin and Human Insulin.

    PubMed

    Mandal, Kalyaneswar; Dhayalan, Balamurugan; Avital-Shmilovici, Michal; Tokmakoff, Andrei; Kent, Stephen B H

    2016-03-01

    As a part of a program aimed towards the study of the dynamics of human insulin-protein dimer formation using two-dimensional infrared spectroscopy, we used total chemical synthesis to prepare stable isotope labeled [(1-(13) C=(18) O)Phe(B24) )] human insulin, via [(1-(13) C=(18) O)Phe(B24) )] ester insulin as a key intermediate product that facilitates folding of the synthetic protein molecule (see preceding article). Here, we describe the crystal structure of the synthetic isotope-labeled ester insulin intermediate and the product synthetic human insulin. Additionally, we present our observations on hexamer formation with these two proteins in the absence of phenol derivatives and/or Zn metal ions. We also describe and discuss the fractional crystallization of quasi-racemic protein mixtures containing each of these two synthetic proteins. PMID:26707939

  11. Glucose responsive insulin production from human embryonic germ (EG) cell derivatives

    SciTech Connect

    Clark, Gregory O.; Yochem, Robert L.; Axelman, Joyce; Sheets, Timothy P.; Kaczorowski, David J.; Shamblott, Michael J. . E-mail: mshambl1@jhmi.edu

    2007-05-11

    Type 1 diabetes mellitus subjects millions to a daily burden of disease management, life threatening hypoglycemia and long-term complications such as retinopathy, nephropathy, heart disease, and stroke. Cell transplantation therapies providing a glucose-regulated supply of insulin have been implemented clinically, but are limited by safety, efficacy and supply considerations. Stem cells promise a plentiful and flexible source of cells for transplantation therapies. Here, we show that cells derived from human embryonic germ (EG) cells express markers of definitive endoderm, pancreatic and {beta}-cell development, glucose sensing, and production of mature insulin. These cells integrate functions necessary for glucose responsive regulation of preproinsulin mRNA and expression of insulin C-peptide in vitro. Following transplantation into mice, cells become insulin and C-peptide immunoreactive and produce plasma C-peptide in response to glucose. These findings suggest that EG cell derivatives may eventually serve as a source of insulin producing cells for the treatment of diabetes.

  12. Insulin stimulates synthesis and release of human chorionic gonadotropin by choriocarcinoma cell lines

    SciTech Connect

    Ren, S.G.; Braunstein, G.D. )

    1991-03-01

    Recent studies have shown that insulin regulates placental lactogen, progesterone, and estrogen production from human trophoblast cells. This study was performed to examine whether insulin also regulates the production of hCG by this type of cell. After 24-36 h of preincubation, JEG-3 and JAR cells (2-3 x 10(5) cells/ml.well) or human term trophoblast cells (1 x 10(6) cells/ml.well) were exposed to the test hormone in serum-free Dulbecco's Modified Eagle's Medium for 24-96 h. Secretion of hCG from JEG-3 cells was stimulated by human insulin, human proinsulin, or porcine insulin in a dose-dependent manner, with lowest effective doses of 6.7, 96, and 53 mg/L, respectively. Time-course studies showed that hCG secretion peaked at 72-96 h with insulin exposure; in contrast, no decernable peak was seen without insulin in serum-free media. Exposure of JEG-3 cells for 24 h to 209 mg/liter insulin stimulated hCG synthesis, with 40 +/- 3% more immunoreactive intracellular hCG (P less than 0.05). Cells grown in the presence of insulin and (35S)methionine had 47 +/- 21% more labeled intracellular hCG and 56 +/- 13% more immunoprecipitable (35S)methionine-hCG secreted into the medium than the control cultures (P less than 0.05). During this time period, human placental lactogen release and total trichloroacetice acid-precipitable (35S)methionine protein were not increased. The insulin-induced stimulation of hCG synthesis was inhibited by cycloheximide. Additionally, insulin did not significantly affect total intracellular protein during 24-96 h of incubation. Insulin also increased hCG release from JAR cells, but not from human term trophoblast cells. A mouse monoclonal antibody to the IGF-I receptor inhibited the stimulation of insulin in JEG-3 cells.

  13. Root and shoot parts of strawberry: factories for production of functional human pro-insulin.

    PubMed

    Tavizi, Ashkan; Javaran, Mokhtar Jalali; Moieni, Ahmad; Mohammadi-Dehcheshmeh, Manijeh; Mohebodini, Mehdi; Ebrahimie, Esmaeil

    2015-05-01

    Diabetes, a disease caused by excessive blood sugar, is caused by the lack of insulin. For commercial production, insulin is made in bacteria or yeast by protein recombinant technology. The focus of this research is evaluating another resource and producing of recombinant insulin protein in as strawberry as this plant has high potential in production of pharmaceutical proteins. Strawberry is a suitable bioreactor for production of recombinant proteins especially edible vaccines. In this research, human pro-insulin gene was cloned in pCAMBIA1304 vector under CaMV35S promoter and NOS terminator. Agrobacterium tumefaciens LBA4404, AGL1, EHA105, EHA101, C58, C58 (pGV2260) and C58 (pGV3101) strains were used for transformation of pro-insulin gene into strawberry cv. Camarosa, Selva, Sarian Hybrid, Pajaro, Paros, Gaviota, Alpine. Additionally, Agrobacterium rhizogenes K599, R1000, A4 and MSU440 strains were utilized for gene transformation into hairy roots. PCR analysis indicated the presence of transformed human pro-insulin gene in the strawberry and hairy roots. Also, its transcription was confirmed using RT-PCR. Furthermore, the analysis of plants, fruits and hairy roots at the level of proteins using dot blot, ELISA, SDS-PAGE and ECL tests re-confirmed the expression of this protein in the transgenic plants as well as hairy roots. Protein purification of human pro-insulin from transgenic tissues was performed using affinity chromatography. Finally, the bioassay of recombinant pro-insulin was performed. The analysis of second generations of transgenic plants (T1) at DNA and protein levels was also performed as a complementary experiment. This study opens a new avenue in molecular farming of human pro-insulin through its mass production in roots and shoots of strawberry. PMID:25403333

  14. Interleukin-1β mediates macrophage-induced impairment of insulin signaling in human primary adipocytes

    PubMed Central

    Gao, Dan; Madi, Mohamed; Ding, Cherlyn; Fok, Matthew; Steele, Thomas; Ford, Christopher; Hunter, Leif

    2014-01-01

    Adipose tissue expansion during obesity is associated with increased macrophage infiltration. Macrophage-derived factors significantly alter adipocyte function, inducing inflammatory responses and decreasing insulin sensitivity. Identification of the major factors that mediate detrimental effects of macrophages on adipocytes may offer potential therapeutic targets. IL-1β, a proinflammatory cytokine, is suggested to be involved in the development of insulin resistance. This study investigated the role of IL-1β in macrophage-adipocyte cross-talk, which affects insulin signaling in human adipocytes. Using macrophage-conditioned (MC) medium and human primary adipocytes, we examined the effect of IL-1β antagonism on the insulin signaling pathway. Gene expression profile and protein abundance of insulin signaling molecules were determined, as was the production of proinflammatory cytokine/chemokines. We also examined whether IL-1β mediates MC medium-induced alteration in adipocyte lipid storage. MC medium and IL-1β significantly reduced gene expression and protein abundance of insulin signaling molecules, including insulin receptor substrate-1, phosphoinositide 3-kinase p85α, and glucose transporter 4 and phosphorylation of Akt. In contrast, the expression and release of the proinflammatory markers, including IL-6, IL-8, monocyte chemotactic protein-1, and chemokine (C-C motif) ligand 5 by adipocytes were markedly increased. These changes were significantly reduced by blocking IL-1β activity, its receptor binding, or its production by macrophages. MC medium-inhibited expression of the adipogenic factors and -stimulated lipolysis was also blunted with IL-1β neutralization. We conclude that IL-1β mediates, at least in part, the effect of macrophages on insulin signaling and proinflammatory response in human adipocytes. Blocking IL-1β could be beneficial for preventing obesity-associated insulin resistance and inflammation in human adipose tissue. PMID:24918199

  15. An update on the treatment of type 1 and type 2 diabetes mellitus: focus on insulin detemir, a long-acting human insulin analog

    PubMed Central

    Raslova, Katarina

    2010-01-01

    Basal insulin analogs are used to minimize unpredictable processes of NPH insulin. Modification of the human insulin molecule results in a slower distribution to peripheral target tissues, a longer duration of action with stable concentrations and thus a lower rate of hypoglycemia. Insulin detemir is a basal insulin analog that provides effective therapeutic options for patients with type 1 and type 2 diabetes. For glycemic control, no significant differences were found in HbA1c levels compared with NPH and insulin glargine. It is comparable with insulin glargine in significantly reducing rates of all types of hypoglycemia. Clinical studies have demonstrated that detemir is responsible for significantly lower within-subject variability and no or less weight gain than NPH insulin and glargine. Recent pharmacodynamic studies have shown that detemir can be used once daily in many patients with diabetes. Together with patient-friendly injection devices and dose adjustments, it provides a treatment option with the potential to lower the key barriers of adherence to insulin therapy in type 2 diabetes. Recent guidelines for treatment of type 2 diabetes suggest starting intensive therapy of hyperglycemia at an early stage of diabetes and recommend therapeutic options that provide the possibility of reaching HbA1c goals individually, with a low risk of hypoglycemia or other adverse effects of treatment. The properties of insulin detemir match these requirements. PMID:20539842

  16. Altered Skeletal Muscle Lipase Expression and Activity Contribute to Insulin Resistance in Humans

    PubMed Central

    Badin, Pierre-Marie; Louche, Katie; Mairal, Aline; Liebisch, Gerhard; Schmitz, Gerd; Rustan, Arild C.; Smith, Steven R.; Langin, Dominique; Moro, Cedric

    2011-01-01

    OBJECTIVE Insulin resistance is associated with elevated content of skeletal muscle lipids, including triacylglycerols (TAGs) and diacylglycerols (DAGs). DAGs are by-products of lipolysis consecutive to TAG hydrolysis by adipose triglyceride lipase (ATGL) and are subsequently hydrolyzed by hormone-sensitive lipase (HSL). We hypothesized that an imbalance of ATGL relative to HSL (expression or activity) may contribute to DAG accumulation and insulin resistance. RESEARCH DESIGN AND METHODS We first measured lipase expression in vastus lateralis biopsies of young lean (n = 9), young obese (n = 9), and obese-matched type 2 diabetic (n = 8) subjects. We next investigated in vitro in human primary myotubes the impact of altered lipase expression/activity on lipid content and insulin signaling. RESULTS Muscle ATGL protein was negatively associated with whole-body insulin sensitivity in our population (r = −0.55, P = 0.005), whereas muscle HSL protein was reduced in obese subjects. We next showed that adenovirus-mediated ATGL overexpression in human primary myotubes induced DAG and ceramide accumulation. ATGL overexpression reduced insulin-stimulated glycogen synthesis (−30%, P < 0.05) and disrupted insulin signaling at Ser1101 of the insulin receptor substrate-1 and downstream Akt activation at Ser473. These defects were fully rescued by nonselective protein kinase C inhibition or concomitant HSL overexpression to restore a proper lipolytic balance. We show that selective HSL inhibition induces DAG accumulation and insulin resistance. CONCLUSIONS Altogether, the data indicate that altered ATGL and HSL expression in skeletal muscle could promote DAG accumulation and disrupt insulin signaling and action. Targeting skeletal muscle lipases may constitute an interesting strategy to improve insulin sensitivity in obesity and type 2 diabetes. PMID:21498783

  17. Long-term effect of insulin on glucose transport and insulin binding in cultured adipocytes from normal and obese humans with and without non-insulin-dependent diabetes.

    PubMed Central

    Sinha, M K; Taylor, L G; Pories, W J; Flickinger, E G; Meelheim, D; Atkinson, S; Sehgal, N S; Caro, J F

    1987-01-01

    We have tested the hypothesis that in vitro exposure of insulin-resistant adipocytes with insulin results in improved insulin action. A primary culture system of adipocytes from obese subjects with or without non-insulin-dependent diabetes mellitus (NIDDM) and nonobese control subjects has been developed. The adipocytes when cultured in serum-free medium do not lose their original characteristics in regard to insulin binding and glucose transport. The adipocytes from three groups were incubated with insulin (0, 10(-10) M, and 10(-7) M) for 24 h at 37 degrees C, receptor-bound insulin was dissociated, and basal and insulin (1 X 10(-11)-10(-7) M)-stimulated glucose transport and 125I-insulin binding were determined. The 24-h insulin exposure of adipocytes from control subjects decreased basal and insulin-stimulated glucose transport. The effects of 1 X 10(-7) M insulin were more pronounced than 1 X 10(-10) M insulin. Similarly, insulin exposure decreased insulin sensitivity and responsiveness of cultured adipocytes from obese and NIDDM patients. The insulin-induced reduction in insulin sensitivity and responsiveness for glucose transport in three groups were due to alterations at insulin binding and postbinding levels. In conclusion, insulin induces insulin resistance in control adipocytes and further worsens the insulin resistance of adipocytes from obese and NIDDM subjects. For insulin to improve the insulin resistance of adipocytes from NIDDM patients, either more prolonged in vitro insulin exposure and/or other hormonal factors might be required. PMID:3308958

  18. The Effects of Anti-insulin Antibodies and Cross-reactivity with Human Recombinant Insulin Analogues in the E170 Insulin Immunometric Assay

    PubMed Central

    Kim, Serim; Hur, Mina; Moon, Hee Won; Kim, Jin Q

    2011-01-01

    Background Insulin assays are affected by varying degrees of interference from anti-insulin antibodies (IAs) and by cross-reactivity with recombinant insulin analogues. We evaluated the usefulness of the E170 insulin assay by assessing IA effects and cross-reactivity with 2 analogues. Methods Sera were obtained from 59 type 2 diabetes patients receiving continuous subcutaneous insulin infusion and 18 healthy controls. Insulin levels were determined using an E170 analyzer. To investigate the effects of IAs, we performed IA radioimmunoassays, and analyzed the differences between directly measured insulin (direct insulin) and polyethylene glycol (PEG)-treated insulins (free, IA-unbound; total, IA-bound and unbound insulin). We performed in-vitro cross-reactivity tests with insulin aspart and insulin glulisine. Results In IA-positive patients, E170 free insulin levels measured using the E170 analyzer were significantly lower than the direct insulin levels. The mean value of the direct/free insulin ratio and IA-bound insulin, which were calculated as the difference between total and free insulin, increased significantly as endogenous IA levels increased. The E170 insulin assay showed low cross-reactivities with both analogues (< 0.7%). Conclusions IAs interfered with E170 insulin assay, and the extent of interference correlated with the IA levels, which may be attributable to the increase in IA-bound insulin, and not to an error in the assay. The E170 insulin assay may measure only endogenous insulin since cross-reactivity is low. Our results suggest that the measurement of free insulin after PEG pre-treatment could be useful for β cell function assessment in diabetic patients undergoing insulin therapy. PMID:21239867

  19. Effect of recombinant human erythropoietin on insulin resistance in hemodialysis patients.

    PubMed

    Khedr, Essam; El-Sharkawy, Magdy; Abdulwahab, Saed; Eldin, Essam Nor; Ali, Medhat; Youssif, Abla; Ahmed, Bassam

    2009-07-01

    Insulin resistance is a characteristic feature of uremia. Insulin resistance and concomitant hyperinsulinemia are present irrespective of the type of renal disease. Treatment with recombinant human erythropoietin (rHuEPO) was said to be associated with improvement in insulin sensitivity in uremic patients. The aim of this study was to compare insulin resistance in adult uremic hemodialysis (HD) patients including diabetic patients treated with or without rHuEPO. A total of 59 HD patients were studied, patients were divided into 2 groups of subjects: 30 HD patients on regular rHuEPO treatment (group A), and 29 HD patients not receiving rHuEPO (group B) diabetic patients were not excluded. Full medical history and clinical examination, hematological parameters, lipid profile, serum albumin, parathyroid horomone, Kt/V, fasting glucose, and insulin levels were measured in all subjects. Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) was used to compare insulin resistance. The results of this study showed that the mean insulin level of HD patients treated with rHuEPO (group A) (17.5 +/- 10.6 microU/mL) was significantly lower than patients without rHuEPO (group B) (28.8 +/- 7.7 microU/mL), (P<0.001). Homeostasis Model Assessment of Insulin Resistance levels in group A were significantly lower than in group B (3.8 +/- 2.97, 7.98 +/- 4.9, respectively, P<0.001). Insulin resistance reflected by HOMA-IR levels among diabetic patients in group A was significantly lower than among diabetic patients in group B (3.9 +/- 3.2, 9.4 +/- 7.2, respectively, P<0.001). Also, HOMA-IR levels among nondiabetic patients in group A were significantly lower than among nondiabetic patients in group B (3.7 +/- 2.85, 6.9 +/- 1.43, respectively, P<0.01). We found a statistically significant negative correlation between duration of erythropoietin treatment, fasting blood glucose, insulin levels, and insulin resistance (r=-0.62, -0.71, and -0.57, P<0.001). Patients treated with r

  20. Reduced DPP4 activity improves insulin signaling in primary human adipocytes.

    PubMed

    Röhrborn, Diana; Brückner, Julia; Sell, Henrike; Eckel, Jürgen

    2016-03-11

    DPP4 is a ubiquitously expressed cell surface protease which is also released to the circulation as soluble DPP4 (sDPP4). Recently, we identified DPP4 as a novel adipokine oversecreted in obesity and thus potentially linking obesity to the metabolic syndrome. Furthermore, sDPP4 impairs insulin signaling in an autocrine and paracrine fashion in different cell types. However, it is still unknown which functional role DPP4 might play in adipocytes. Therefore, primary human adipocytes were treated with a specific DPP4 siRNA. Adipocyte differentiation was not affected by DPP4 silencing. Interestingly, DPP4 reduction improved insulin responsiveness of adipocytes at the level of insulin receptor, proteinkinase B (Akt) and Akt substrate of 160 kDa. To investigate whether the observed effects could be attributed to the enzymatic activity of DPP4, human adipocytes were treated with the DPP4 inhibitors sitagliptin and saxagliptin. Our data show that insulin-stimulated activation of Akt is augmented by DPP4 inhibitor treatment. Based on our previous observation that sDPP4 induces insulin resistance in adipocytes, and that adipose DPP4 levels are higher in obese insulin-resistant patients, we now suggest that the abundance of DPP4 might be a regulator of adipocyte insulin signaling. PMID:26872429

  1. Insulin Resistance, Ceramide Accumulation, and Endoplasmic Reticulum Stress in Human Chronic Alcohol-Related Liver Disease

    PubMed Central

    Longato, Lisa; Ripp, Kelsey; Setshedi, Mashiko; Dostalek, Miroslav; Akhlaghi, Fatemeh; Branda, Mark; Wands, Jack R.; de la Monte, Suzanne M.

    2012-01-01

    Background. Chronic alcohol-related liver disease (ALD) is mediated by insulin resistance, mitochondrial dysfunction, inflammation, oxidative stress, and DNA damage. Recent studies suggest that dysregulated lipid metabolism with accumulation of ceramides, together with ER stress potentiate hepatic insulin resistance and may cause steatohepatitis to progress. Objective. We examined the degree to which hepatic insulin resistance in advanced human ALD is correlated with ER stress, dysregulated lipid metabolism, and ceramide accumulation. Methods. We assessed the integrity of insulin signaling through the Akt pathway and measured proceramide and ER stress gene expression, ER stress signaling proteins, and ceramide profiles in liver tissue. Results. Chronic ALD was associated with increased expression of insulin, IGF-1, and IGF-2 receptors, impaired signaling through IGF-1R and IRS1, increased expression of multiple proceramide and ER stress genes and proteins, and higher levels of the C14, C16, C18, and C20 ceramide species relative to control. Conclusions. In human chronic ALD, persistent hepatic insulin resistance is associated with dysregulated lipid metabolism, ceramide accumulation, and striking upregulation of multiple ER stress signaling molecules. Given the role of ceramides as mediators of ER stress and insulin resistance, treatment with ceramide enzyme inhibitors may help reverse or halt progression of chronic ALD. PMID:22577490

  2. Fibroblast Growth Factor 21 Improves Insulin Sensitivity and Synergizes with Insulin in Human Adipose Stem Cell-Derived (hASC) Adipocytes

    PubMed Central

    Lee, Darwin V.; Li, Dongmei; Yan, Qingyun; Zhu, Yimin; Goodwin, Bryan; Calle, Roberto; Brenner, Martin B.; Talukdar, Saswata

    2014-01-01

    Fibroblast growth factor 21 (FGF21) has evolved as a major metabolic regulator, the pharmacological administration of which causes weight loss, insulin sensitivity and glucose control in rodents and humans. To understand the molecular mechanisms by which FGF21 exerts its metabolic effects, we developed a human in vitro model of adipocytes to examine crosstalk between FGF21 and insulin signaling. Human adipose stem cell-derived (hASC) adipocytes were acutely treated with FGF21 alone, insulin alone, or in combination. Insulin signaling under these conditions was assessed by measuring tyrosine phosphorylation of insulin receptor (InsR), insulin receptor substrate-1 (IRS-1), and serine 473 phosphorylation of Akt, followed by a functional assay using 14C-2-deoxyglucose [14C]-2DG to measure glucose uptake in these cells. FGF21 alone caused a modest increase of glucose uptake, but treatment with FGF21 in combination with insulin had a synergistic effect on glucose uptake in these cells. The presence of FGF21 also effectively lowered the insulin concentration required to achieve the same level of glucose uptake compared to the absence of FGF21 by 10-fold. This acute effect of FGF21 on insulin signaling was not due to IR, IGF-1R, or IRS-1 activation. Moreover, we observed a substantial increase in basal S473-Akt phosphorylation by FGF21 alone, in contrast to the minimal shift in basal glucose uptake. Taken together, our data demonstrate that acute co-treatment of hASC-adipocytes with FGF21 and insulin can result in a synergistic improvement in glucose uptake. These effects were shown to occur at or downstream of Akt, or separate from the canonical insulin signaling pathway. PMID:25365322

  3. Separation of human, bovine, and porcine insulins, three very closely related proteins, by micellar electrokinetic chromatography.

    PubMed

    Lamalle, Caroline; Roland, Diane; Crommen, Jacques; Servais, Anne-Catherine; Fillet, Marianne

    2015-10-01

    Human, bovine, and porcine insulins are small proteins with very closely related amino acid sequences, which makes their separation challenging. In this study, we took advantage of the high-resolution power of CE, and more particularly of micellar electrokinetic chromatography, to separate those biomolecules. Among several surfactants, perfluorooctanoic acid ammonium salt was selected. Then, using a design of experiments approach, the optimal BGE composition was found to consist of 50 mM ammonium acetate pH 9.0, 65 mM perfluorooctanoic acid ammonium salt, and 4% MeOH. The three insulins could be separated within 12 min with a satisfactory resolution. This method could be useful to detect possible counterfeit pharmaceutical formulations. Indeed, it would be easy to determine if human insulin was replaced by bovine or porcine insulin. PMID:26095856

  4. Insulin Degludec (rDNA Origin) Injection

    MedlinePlus

    ... man-made version of human insulin. Insulin degludec works by replacing the insulin that is normally produced ... insulin label to make sure you received the right type of insulin from the pharmacy.Insulin degludec ...

  5. Prolonged Fasting Identifies Skeletal Muscle Mitochondrial Dysfunction as Consequence Rather Than Cause of Human Insulin Resistance

    PubMed Central

    Hoeks, Joris; van Herpen, Noud A.; Mensink, Marco; Moonen-Kornips, Esther; van Beurden, Denis; Hesselink, Matthijs K.C.; Schrauwen, Patrick

    2010-01-01

    OBJECTIVE Type 2 diabetes and insulin resistance have been associated with mitochondrial dysfunction, but it is debated whether this is a primary factor in the pathogenesis of the disease. To test the concept that mitochondrial dysfunction is secondary to the development of insulin resistance, we employed the unique model of prolonged fasting in humans. Prolonged fasting is a physiologic condition in which muscular insulin resistance develops in the presence of increased free fatty acid (FFA) levels, increased fat oxidation and low glucose and insulin levels. It is therefore anticipated that skeletal muscle mitochondrial function is maintained to accommodate increased fat oxidation unless factors secondary to insulin resistance exert negative effects on mitochondrial function. RESEARCH DESIGN AND METHODS While in a respiration chamber, twelve healthy males were subjected to a 60 h fast and a 60 h normal fed condition in a randomized crossover design. Afterward, insulin sensitivity was assessed using a hyperinsulinemic-euglycemic clamp, and mitochondrial function was quantified ex vivo in permeabilized muscle fibers using high-resolution respirometry. RESULTS Indeed, FFA levels were increased approximately ninefold after 60 h of fasting in healthy male subjects, leading to elevated intramuscular lipid levels and decreased muscular insulin sensitivity. Despite an increase in whole-body fat oxidation, we observed an overall reduction in both coupled state 3 respiration and maximally uncoupled respiration in permeabilized skeletal muscle fibers, which could not be explained by changes in mitochondrial density. CONCLUSIONS These findings confirm that the insulin-resistant state has secondary negative effects on mitochondrial function. Given the low insulin and glucose levels after prolonged fasting, hyperglycemia and insulin action per se can be excluded as underlying mechanisms, pointing toward elevated plasma FFA and/or intramuscular fat accumulation as possible

  6. Quantitative secretome and glycome of primary human adipocytes during insulin resistance

    PubMed Central

    2014-01-01

    Adipose tissue is both an energy storage depot and an endocrine organ. The impaired regulation of the secreted proteins of adipose tissue, known as adipocytokines, observed during obesity contributes to the onset of whole-body insulin resistance and the pathobiology of type 2 diabetes mellitus (T2DM). In addition, the global elevation of the intracellular glycosylation of proteins by O-linked β-N-acetylglucosamine (O-GlcNAc) via either genetic or pharmacological methods is sufficient to induce insulin resistance in both cultured cells and animal models. The elevation of global O-GlcNAc levels is associated with the altered expression of many adipocytokines. We have previously characterized the rodent adipocyte secretome during insulin sensitive and insulin resistant conditions. Here, we characterize and quantify the secretome and glycome of primary human adipocytes during insulin responsive and insulin resistant conditions generated by the classical method of hyperglycemia and hyperinsulinemia or by the pharmacological manipulation of O-GlcNAc levels. Using a proteomic approach, we identify 190 secreted proteins and report a total of 20 up-regulated and 6 down-regulated proteins that are detected in both insulin resistant conditions. Moreover, we apply glycomic techniques to examine (1) the sites of N-glycosylation on secreted proteins, (2) the structures of complex N- and O-glycans, and (3) the relative abundance of complex N- and O-glycans structures in insulin responsive and insulin resistant conditions. We identify 91 N-glycosylation sites derived from 51 secreted proteins, as well as 155 and 29 released N- and O-glycans respectively. We go on to quantify many of the N- and O-glycan structures between insulin responsive and insulin resistance conditions demonstrating no significant changes in complex glycosylation in the time frame for the induction of insulin resistance. Thus, our data support that the O-GlcNAc modification is involved in the regulation of

  7. Celastrol Protects against Antimycin A-Induced Insulin Resistance in Human Skeletal Muscle Cells.

    PubMed

    Abu Bakar, Mohamad Hafizi; Cheng, Kian-Kai; Sarmidi, Mohamad Roji; Yaakob, Harisun; Huri, Hasniza Zaman

    2015-01-01

    Mitochondrial dysfunction and inflammation are widely accepted as key hallmarks of obesity-induced skeletal muscle insulin resistance. The aim of the present study was to evaluate the functional roles of an anti-inflammatory compound, celastrol, in mitochondrial dysfunction and insulin resistance induced by antimycin A (AMA) in human skeletal muscle cells. We found that celastrol treatment improved insulin-stimulated glucose uptake activity of AMA-treated cells, apparently via PI3K/Akt pathways, with significant enhancement of mitochondrial activities. Furthermore, celastrol prevented increased levels of cellular oxidative damage where the production of several pro-inflammatory cytokines in cultures cells was greatly reduced. Celastrol significantly increased protein phosphorylation of insulin signaling cascades with amplified expression of AMPK protein and attenuated NF-κB and PKC θ activation in human skeletal muscle treated with AMA. The improvement of insulin signaling pathways by celastrol was also accompanied by augmented GLUT4 protein expression. Taken together, these results suggest that celastrol may be advocated for use as a potential therapeutic molecule to protect against mitochondrial dysfunction-induced insulin resistance in human skeletal muscle cells. PMID:25961164

  8. Serum Autotaxin/ENPP2 Correlates with Insulin Resistance in Older Humans with Obesity

    PubMed Central

    Reeves, Valerie L.; Trybula, Joy S.; Wills, Rachel C.; Goodpaster, Bret H.; Dubé, John J.; Kienesberger, Petra C.; Kershaw, Erin E.

    2015-01-01

    Objective Autotaxin (ATX) is an adipocyte-derived lysophospholipase D that generates the lipid signaling molecule lysophosphatidic acid (LPA). The ATX/LPA pathway in adipose tissue has recently been implicated in obesity and insulin resistance in animal models, but the role of circulating ATX in humans remains unclear. The aim of the present study was to determine the relationship between serum ATX and insulin resistance. Methods In this retrospective study, older (60–75 years), non-diabetic human participants with overweight or obesity (BMI 25–37 kg/m2), were characterized for metabolic phenotype including measures of energy, glucose, and lipid homeostasis. The relationship between serum ATX and metabolic parameters was then determined using correlative and predictive statistics. Results Serum ATX was higher in females than in males. After controlling for sex, serum ATX correlated with multiple measures of adiposity and glucose homeostasis/insulin action. Serum ATX and BMI also independently predicted glucose infusion rate during a hyperinsulinemic euglycemic clamp and homeostatic model assessment of insulin resistance after controlling for sex and medication use. Conclusion Serum ATX correlates with and predicts measures of glucose homeostasis and insulin sensitivity in older humans, suggesting that it may be a potential pathogenic factor and/or diagnostic/therapeutic target for insulin resistance in this population. PMID:26727116

  9. Insulin Lispro Injection

    MedlinePlus

    ... is a short-acting, man-made version of human insulin. Insulin lispro works by replacing the insulin ... niacin (Niacor, Niaspan, in Advicor); certain medications for human immunodeficiency virus (HIV) or acquired immunodeficiency syndrome (AIDS) ...

  10. Ion channels and regulation of insulin secretion in human β-cells

    PubMed Central

    Fridlyand, Leonid E.; Jacobson, David A.; Philipson, L.H.

    2013-01-01

    In mammals an increase in glucose leads to block of ATP dependent potassium channels in pancreatic β cells leading to membrane depolarization. This leads to the repetitive firing of action potentials that increases calcium influx and triggers insulin granule exocytosis. Several important differences between species in this process suggest that a dedicated human-oriented approach is advantageous as extrapolating from rodent data may be misleading in several respects. We examined depolarization-induced spike activity in pancreatic human islet-attached β-cells employing whole-cell patch-clamp methods. We also reviewed the literature concerning regulation of insulin secretion by channel activity and constructed a data-based computer model of human β cell function. The model couples the Hodgkin-Huxley-type ionic equations to the equations describing intracellular Ca2+ homeostasis and insulin release. On the basis of this model we employed computational simulations to better understand the behavior of action potentials, calcium handling and insulin secretion in human β cells under a wide range of experimental conditions. This computational system approach provides a framework to analyze the mechanisms of human β cell insulin secretion. PMID:23624892

  11. Effect of insulin on low-density-lipoprotein metabolism in human lymphocytes in vitro.

    PubMed Central

    Suresh, S; Warty, V; Virji, M; Sanghvi, A

    1986-01-01

    The metabolism of low-density lipoproteins (LDL) in vitro in the presence of insulin was studied in freshly isolated human peripheral-blood lymphocytes. Insulin appeared to decrease the binding affinity of 125I-LDL to its cell-surface receptor, without any change in apparent Vmax or in the number of LDL receptors. As a consequence, the absolute amounts of 125I-LDL internalized and degraded were lower in the presence of insulin than in its abscence, although the fraction of internalized 125I-LDL degraded in either instance was quite similar. 3-Hydroxy-3-methylglutaryl-CoA reductase activity, and hence cholesterol synthesis, were stimulated by insulin. This effect of insulin was independent of the inhibitory effect of LDL on cholesterol synthesis. At the same time, acid cholesterol esterase and acyl-CoA: cholesterol O-acetyltransferase activities were lower in cells incubated with insulin than in controls. The net effect of these metabolic alterations seems to be that cells accumulate greater quantities of free and esterified cholesterol when treated with insulin. PMID:3513764

  12. Intranasal Insulin Suppresses Food Intake via Enhancement of Brain Energy Levels in Humans

    PubMed Central

    Jauch-Chara, Kamila; Friedrich, Alexia; Rezmer, Magdalena; Melchert, Uwe H.; G. Scholand-Engler, Harald; Hallschmid, Manfred; Oltmanns, Kerstin M.

    2012-01-01

    Cerebral insulin exerts anorexic effects in humans and animals. The underlying mechanisms, however, are not clear. Because insulin physiologically facilitates glucose uptake by most tissues of the body and thereby fosters intracellular energy supply, we hypothesized that intranasal insulin reduces food consumption via enhancement of the neuroenergetic level. In a double-blind, placebo–controlled, within-subject comparison, 15 healthy men (BMI 22.2 ± 0.37 kg/m2) aged 22–28 years were intranasally administered insulin (40 IU) or placebo after an overnight fast. Cerebral energy metabolism was assessed by 31P magnetic resonance spectroscopy. At 100 min after spray administration, participants consumed ad libitum from a test buffet. Our data show that intranasal insulin increases brain energy (i.e., adenosine triphosphate and phosphocreatine levels). Cerebral energy content correlates inversely with subsequent calorie intake in the control condition. Moreover, the neuroenergetic rise upon insulin administration correlates with the consecutive reduction in free-choice calorie consumption. Brain energy levels may therefore constitute a predictive value for food intake. Given that the brain synchronizes food intake behavior in dependence of its current energetic status, a future challenge in obesity treatment may be to therapeutically influence cerebral energy homeostasis. Intranasal insulin, after optimizing its application schema, seems a promising option in this regard. PMID:22586589

  13. Tissue-Specific Methylation of Human Insulin Gene and PCR Assay for Monitoring Beta Cell Death

    PubMed Central

    Husseiny, Mohamed I.; Kaye, Alexander; Zebadua, Emily; Kandeel, Fouad; Ferreri, Kevin

    2014-01-01

    The onset of metabolic dysregulation in type 1 diabetes (T1D) occurs after autoimmune destruction of the majority of pancreatic insulin-producing beta cells. We previously demonstrated that the DNA encoding the insulin gene is uniquely unmethylated in these cells and then developed a methylation-specific PCR (MSP) assay to identify circulating beta cell DNA in streptozotocin-treated mice prior to the rise in blood glucose. The current study extends to autoimmune non-obese diabetic (NOD) mice and humans, showing in NOD mice that beta cell death occurs six weeks before the rise in blood sugar and coincides with the onset of islet infiltration by immune cells, demonstrating the utility of MSP for monitoring T1D. We previously reported unique patterns of methylation of the human insulin gene, and now extend this to other human tissues. The methylation patterns of the human insulin promoter, intron 1, exon 2, and intron 2 were determined in several normal human tissues. Similar to our previous report, the human insulin promoter was unmethylated in beta cells, but methylated in all other tissues tested. In contrast, intron 1, exon 2 and intron 2 did not exhibit any tissue-specific DNA methylation pattern. Subsequently, a human MSP assay was developed based on the methylation pattern of the insulin promoter and human islet DNA was successfully detected in circulation of T1D patients after islet transplantation therapy. Signal levels of normal controls and pre-transplant samples were shown to be similar, but increased dramatically after islet transplantation. In plasma the signal declines with time but in whole blood remains elevated for at least two weeks, indicating that association of beta cell DNA with blood cells prolongs the signal. This assay provides an effective method to monitor beta cell destruction in early T1D and in islet transplantation therapy. PMID:24722187

  14. A single-islet microplate assay to measure mouse and human islet insulin secretion.

    PubMed

    Truchan, Nathan A; Brar, Harpreet K; Gallagher, Shannon J; Neuman, Joshua C; Kimple, Michelle E

    2015-01-01

    One complication to comparing β-cell function among islet preparations, whether from genetically identical or diverse animals or human organ donors, is the number of islets required per assay. Islet numbers can be limiting, meaning that fewer conditions can be tested; other islet measurements must be excluded; or islets must be pooled from multiple animals/donors for each experiment. Furthermore, pooling islets negates the possibility of performing single-islet comparisons. Our aim was to validate a 96-well plate-based single islet insulin secretion assay that would be as robust as previously published methods to quantify glucose-stimulated insulin secretion from mouse and human islets. First, we tested our new assay using mouse islets, showing robust stimulation of insulin secretion 24 or 48 h after islet isolation. Next, we utilized the assay to quantify mouse islet function on an individual islet basis, measurements that would not be possible with the standard pooled islet assay methods. Next, we validated our new assay using human islets obtained from the Integrated Islet Distribution Program (IIDP). Human islets are known to have widely varying insulin secretion capacity, and using our new assay we reveal biologically relevant factors that are significantly correlated with human islet function, whether displayed as maximal insulin secretion response or fold-stimulation of insulin secretion. Overall, our results suggest this new microplate assay will be a useful tool for many laboratories, expert or not in islet techniques, to be able to precisely quantify islet insulin secretion from their models of interest. PMID:26452321

  15. Regulation of recombinant human insulin-induced maturational events in Clarias batrachus (L.) oocytes in vitro.

    PubMed

    Hajra, Sudip; Das, Debabrata; Ghosh, Pritha; Pal, Soumojit; Nath, Poulomi; Maitra, Sudipta

    2016-04-01

    Regulation of insulin-mediated resumption of meiotic maturation in catfish oocytes was investigated. Insulin stimulation of post-vitellogenic oocytes promotes the synthesis of cyclin B, histone H1 kinase activation and a germinal vesicle breakdown (GVBD) response in a dose-dependent and duration-dependent manner. The PI3K inhibitor wortmannin abrogates recombinant human (rh)-insulin action on histone H1 kinase activation and meiotic G2-M1 transition in denuded and follicle-enclosed oocytes in vitro. While the translational inhibitor cycloheximide attenuates rh-insulin action, priming with transcriptional blocker actinomycin D prevents insulin-stimulated maturational response appreciably, albeit in low amounts. Compared with rh-insulin, human chorionic gonadotrophin (hCG) stimulation of follicle-enclosed oocytes in vitro triggers a sharp increase in 17α,20β-dihydroxy-4-pregnen-3-one (17α,20β-DHP) secreted in the incubation medium at 12 h. Interestingly, the insulin, but not the hCG-induced, maturational response shows less susceptibility to steroidogenesis inhibitors, trilostane or dl-aminoglutethimide. In addition, priming with phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (IBMX) or cell-permeable dbcAMP or adenylyl cyclase activator forskolin reverses the action of insulin on meiotic G2-M1 transition. Conversely, the adenylyl cyclase inhibitor, SQ 22536, or PKA inhibitor H89 promotes the resumption of meiosis alone and further potentiates the GVBD response in the presence of rh-insulin. Furthermore, insulin-mediated meiotic maturation involves the down-regulation of endogenous protein kinase A (PKA) activity in a manner sensitive to PI3K activation, suggesting potential involvement of a cross-talk between cAMP/PKA and insulin-mediated signalling cascade in catfish oocytes in vitro. Taken together, these results suggest that rh-insulin regulation of the maturational response in C. batrachus oocytes involves down-regulation of PKA, synthesis of cyclin

  16. [Outcome of non-pharmacologic treatment in a gestational diabetic woman with high insulin resistance HOMA-IR index and allergy to human insulin. Case report].

    PubMed

    Sokup, Alina; Swiatkowski, Maciej; Tyloch, Malgorzata; Szymanski, Wiesław

    2005-05-01

    Gestational diabetes is a syndrome of significant pathophysiological and clinical heterogeneity. This type of diabetes mellitus can be treated with diet, exercise and insulin in cases of unsatisfactory results of nonpharmacologic treatment. It has been reported the case of a 28-year -old female with gestational diabetes treated with high doses of insulin (128 U/per day) on four injections regimens. During the therapy allergic type III reactions to human insulin preparations (Ultratard HM, Actrapid HM Humulin U, Humulin R, Humalog) has been occurred at the injection site. The insulin was omitted. We applied diet modification and 15-30 minutes walking before meals till the afternoon with god metabolic control. High insulin resistance index HOMA-IR, type 2 diabetes history in both parents god metabolic control of nonpharmacologic treatment, and impaired glucose tolerance after post-partum may suggest, the early stage of diabetes type 2 in presented case. PMID:16145861

  17. GLUT 4 and insulin receptor binding and kinase activity in trained human muscle.

    PubMed Central

    Dela, F; Handberg, A; Mikines, K J; Vinten, J; Galbo, H

    1993-01-01

    1. Physical training enhances sensitivity and responsiveness of insulin-mediated glucose uptake in human muscle. This study examines if this effect of physical training is due to increased insulin receptor function or increased total concentration of insulin-recruitable glucose transporter protein (GLUT 4). 2. Seven healthy young subjects carried out single leg bicycle training for 10 weeks at 70% of one leg maximal oxygen uptake (VO2,max). Subsequently biopsies were taken from the vastus lateralis muscle of both legs. 3. Single leg VO2,max increased for the trained leg (46 +/- 3 to 52 +/- 2 ml min-1 kg-1 (means +/- S.E.M., P < 0.05), and cytochrome c oxidase activity was higher in this compared to the untrained leg (2.0 +/- 0.1 vs. 1.4 +/- 0.1 nmol s-1 (mg muscle)-1, P < 0.05). Insulin binding as well as basal- and insulin-stimulated receptor kinase activity did not differ between trained and untrained muscle. The concentration of GLUT 4 protein was higher in the former (14.9 +/- 1.9 vs. 11.6 +/- 1.0 arbitrary units (micrograms protein)-1 in crude membranes, P < 0.05). The training-induced increase in GLUT 4 (26 +/- 11%) matched a previously reported increase in maximum insulin-stimulated leg glucose uptake (25 +/- 7%) in the same subjects, and individual values of the two variables correlated (correlation coefficient (r) = 0.84, P < 0.05). 4. In conclusion, in human muscle training induces a local contraction-dependent increase in GLUT 4 protein, which enhances the effect of insulin on glucose uptake. On the other hand, insulin receptor function in muscle is unlikely to be affected by training. PMID:8271219

  18. Insulin Restores Gestational Diabetes Mellitus–Reduced Adenosine Transport Involving Differential Expression of Insulin Receptor Isoforms in Human Umbilical Vein Endothelium

    PubMed Central

    Westermeier, Francisco; Salomón, Carlos; González, Marcelo; Puebla, Carlos; Guzmán-Gutiérrez, Enrique; Cifuentes, Fredi; Leiva, Andrea; Casanello, Paola; Sobrevia, Luis

    2011-01-01

    OBJECTIVE To determine whether insulin reverses gestational diabetes mellitus (GDM)–reduced expression and activity of human equilibrative nucleoside transporters 1 (hENT1) in human umbilical vein endothelium cells (HUVECs). RESEARCH DESIGN AND METHODS Primary cultured HUVECs from full-term normal (n = 44) and diet-treated GDM (n = 44) pregnancies were used. Insulin effect was assayed on hENT1 expression (protein, mRNA, SLC29A1 promoter activity) and activity (initial rates of adenosine transport) as well as endothelial nitric oxide (NO) synthase activity (serine1177 phosphorylation, l-citrulline formation). Adenosine concentration in culture medium and umbilical vein blood (high-performance liquid chromatography) as well as insulin receptor A and B expression (quantitative PCR) were determined. Reactivity of umbilical vein rings to adenosine and insulin was assayed by wire myography. Experiments were in the absence or presence of l-NG-nitro-l-arginine methyl ester (l-NAME; NO synthase inhibitor) or ZM-241385 (an A2A-adenosine receptor antagonist). RESULTS Umbilical vein blood adenosine concentration was higher, and the adenosine- and insulin-induced NO/endothelium-dependent umbilical vein relaxation was lower in GDM. Cells from GDM exhibited increased insulin receptor A isoform expression in addition to the reported NO–dependent inhibition of hENT1-adenosine transport and SLC29A1 reporter repression, and increased extracellular concentration of adenosine and NO synthase activity. Insulin reversed all these parameters to values in normal pregnancies, an effect blocked by ZM-241385 and l-NAME. CONCLUSIONS GDM and normal pregnancy HUVEC phenotypes are differentially responsive to insulin, a phenomenon where insulin acts as protecting factor for endothelial dysfunction characteristic of this syndrome. Abnormal adenosine plasma levels, and potentially A2A-adenosine receptors and insulin receptor A, will play crucial roles in this phenomenon in GDM. PMID:21515851

  19. Persistent circulating human insulin in sheep transplanted in utero with human mesenchymal stem cells

    PubMed Central

    Ersek, Adel; Pixley, John S.; Goodrich, A. Daisy; Porada, Christopher D.; Almeida-Porada, Graca; Thain, David S.; Zanjani, Esmail D.

    2010-01-01

    Objective To determine if mesenchymal stem cells (MSC) derived from human fetal pancreatic tissue (pMSC) would engraft and differentiate in sheep pancreas following transplantation in utero. Methods A three-step culture system was established for generating human fetal pMSC. Sheep fetuses were transplanted during the fetal transplant receptivity period with human pMSC and evaluated for in situ and functional engraftment in their pancreas, liver and bone marrow. Results Isolation and expansion of adherent cells from the human fetal pancreas yielded a cell population with morphologic and phenotypic characteristics similar to MSC derived from bone marrow. This putative stem cell population could undergo multilineage differentiation in vitro. Three to 27 months after fetal transplantation, the pancreatic engraftment frequency (chimeric index) was 79% while functional engraftment was noted in 50% of transplanted sheep. Hepatic and marrow engraftment and expression was noted as well. Conclusion We have established a procedure for isolation of human fetal pMSC that display characteristics similar to bone marrow derived MSC. In vivo results suggest the pMSC engraft, differentiate and secrete human insulin from the sheep pancreas. PMID:20170708

  20. Efficacy, safety and lack of immunogenicity of insulin aspart compared with regular human insulin for women with gestational diabetes mellitus

    PubMed Central

    Pettitt, D. J.; Ospina, P.; Howard, C.; Zisser, H.; Jovanovic, L.

    2007-01-01

    Aim The efficacy and safety of insulin aspart (IAsp), a rapid-acting human insulin analogue, were compared with regular human insulin (HI) as the bolus component of basal-bolus therapy for subjects with gestational diabetes mellitus (GDM). Methods In a randomized, parallel-group, open-labelled trial, 27 women with GDM (age 30.7 ± 6.3 years, HbA1c < 7%) were randomized to receive IAsp (5 min before meal) or HI (30 min before meal). The trial period extended from diagnosis of GDM (18–28 weeks) to 6 weeks postpartum. Results Both treatment groups maintained good overall glycaemic control during the study (beginning and end of study HbA1c≤ 6%). During the meal test, mean glucose at week 6 (IAsp 4.2 ± 0.57 mmol/l, HI 4.8 ± 0.86 mmol/l) was slightly lower than at week 0 (IAsp 4.9 ± 0.59 mmol/l, HI 5.1 ± 0.36 mmol/l). However, change from baseline values for average glucose (IAsp –1.09 ± 0.54 mmol/l, HI –0.54 ± 0.74 mmol/l; P = 0.003) and C-peptide (IAsp –0.50 ± 0.67 nmol/l, HI –0.30 ± 0.70 nmol/l; P = 0.027) were significantly lower after IAsp treatment than HI treatment. No major hypoglycaemic events were reported during the study. Cross-reacting insulin antibody binding increased slightly from baseline in both treatments groups (end of study: IAsp 2.1 ± 5.4%, HI 6.4 ± 13.9%), whereas antibodies specific to IAsp or HI remained relatively low (< 1% binding). Conclusion IAsp was more effective than HI in decreasing postprandial glucose concentrations. Duration of IAsp injection 5 min before a meal rather than 30 min prior to meals offers a more convenient therapy for subjects with GDM. Overall safety and effectiveness of IAsp were comparable to HI in pregnant women with GDM. Diabet. Med. 24, 1129–1135 (2007) PMID:17888133

  1. Effects of human insulin and insulin aspart preparations on levels of IGF-I, IGFBPs and IGF bioactivity in patients with type 1 diabetes

    PubMed Central

    2014-01-01

    Background Insulin aspart (IAsp) and its biphasic preparations BIAsp50 and BIAsp70 (containing 50% and 70% IAsp, respectively) have distinct glucose-lowering properties as compared to human insulin (HI). We investigated whether this affected the circulating IGF-system which depends on the hepatic insulin exposure. Methods In a randomized, four-period crossover study, 19 patients with type 1 diabetes received identical doses (0.2 U/kg sc) of IAsp, BIAsp70, BIAsp50 and HI together with a standardized meal. Serum total IGF-I and IGFBP-1 to -3 were measured by immunoassays for nine hours post-prandially. Bioactive IGF was determined by an in-house, cell-based IGF-I receptor kinase activation (KIRA) assay. Results Despite marked differences in peripheral insulin concentrations and plasma glucose, the four insulin preparations resulted in parallel decreases in IGFBP-1 levels during the first 3 hours, and parallel increases during the last part of the study (3–9 hours). Thus, only minor significances were seen. Insulin aspart and human insulin resulted in a lower area under the curve (AUC) during the first 3 hours as compared to BIAsp70 (p = 0.009), and overall, human insulin resulted in a lower IGFBP-1 AUC than BIAsp70 (p = 0.025). Nevertheless, responses and AUCs of bioactive IGF were similar for all four insulin preparations. Changes in levels of bioactive IGF were inversely correlated to those of IGFBP-1, increasing during the first 3 hours, whereafter levels declined (-0.83 ≤ r ≤ -0.30; all p-values <0.05). Total IGF-I and IGFBP-3 remained stable during the 9 hours, whereas IGFBP-2 changed opposite of IGFBP-1, increasing after 3–4 hours whereafter levels gradually declined. The four insulin preparations resulted in similar profiles and AUCs of total IGF-I, IGFBP-2 and IGFBP-3. Conclusions Despite distinct glucose-lowering properties, the tested insulin preparations had similar effects on IGF-I concentration and IGF bioactivity, IGFBP-2

  2. Synchronization in G0/G1 enhances the mitogenic response of cells overexpressing the human insulin receptor A isoform to insulin

    PubMed Central

    Nelander, Gitte-Mai; Hansen, Bo Falck; Jensen, Pia; Krabbe, Jonas S.; Jensen, Marianne B.; Hegelund, Anne Charlotte; Svendsen, Jette E.; Oleksiewicz, Martin B.

    2009-01-01

    Evaluating mitogenic signaling specifically through the human insulin receptor (IR) is relevant for the preclinical safety assessment of developmental insulin analogs. It is known that overexpression of IR sensitizes cells to the mitogenic effects of insulin, but it is essentially unknown how mitogenic responses can be optimized to allow practical use of such recombinant cell lines for preclinical safety testing. We constitutively overexpressed the short isoform of the human insulin receptor (hIR-A, exon 11-negative) in L6 rat skeletal myoblasts. Because the mitogenic effect of growth factors such as insulin is expected to act in G0/G1, promoting S-phase entry, we developed a combined topoinhibition + serum deprivation strategy to explore the effect of G0/G1 synchronization as an independent parameter in the context of serum deprivation, the latter being routinely used to reduce background in mitogenicity assays. G0/G1 synchronization significantly improved the mitogenic responses of L6-hIR cells to insulin, measured by 3H-thymidine incorporation. Comparison with the parental L6 cells using phospho-mitogen-activated protein kinase, phospho-AKT, as well as 3H-thymidine incorporation end points supported that the majority of the mitogenic effect of insulin in L6-hIR cells was mediated by the overexpressed hIR-A. Using the optimized L6-hIR assay, we found that the X-10 insulin analog was more mitogenic than native human insulin, supporting that X-10 exhibits increased mitogenic signaling through the hIR-A. In summary, this study provides the first demonstration that serum deprivation may not be sufficient, and G0/G1 synchronization may be required to obtain optimal responsiveness of hIR-overexpressing cell lines for preclinical safety testing. PMID:19898946

  3. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells.

    PubMed

    Rezania, Alireza; Bruin, Jennifer E; Arora, Payal; Rubin, Allison; Batushansky, Irina; Asadi, Ali; O'Dwyer, Shannon; Quiskamp, Nina; Mojibian, Majid; Albrecht, Tobias; Yang, Yu Hsuan Carol; Johnson, James D; Kieffer, Timothy J

    2014-11-01

    Transplantation of pancreatic progenitors or insulin-secreting cells derived from human embryonic stem cells (hESCs) has been proposed as a therapy for diabetes. We describe a seven-stage protocol that efficiently converts hESCs into insulin-producing cells. Stage (S) 7 cells expressed key markers of mature pancreatic beta cells, including MAFA, and displayed glucose-stimulated insulin secretion similar to that of human islets during static incubations in vitro. Additional characterization using single-cell imaging and dynamic glucose stimulation assays revealed similarities but also notable differences between S7 insulin-secreting cells and primary human beta cells. Nevertheless, S7 cells rapidly reversed diabetes in mice within 40 days, roughly four times faster than pancreatic progenitors. Therefore, although S7 cells are not fully equivalent to mature beta cells, their capacity for glucose-responsive insulin secretion and rapid reversal of diabetes in vivo makes them a promising alternative to pancreatic progenitor cells or cadaveric islets for the treatment of diabetes. PMID:25211370

  4. A Role for SPARC in the Moderation of Human Insulin Secretion

    PubMed Central

    Harries, Lorna W.; McCulloch, Laura J.; Holley, Janet E.; Rawling, Thomas J.; Welters, Hannah J.; Kos, Katarina

    2013-01-01

    Aims/Hypothesis We have previously shown the implication of the multifunctional protein SPARC (Secreted protein acidic and rich in cysteine)/osteonectin in insulin resistance but potential effects on beta-cell function have not been assessed. We therefore aimed to characterise the effect of SPARC on beta-cell function and features of diabetes. Methods We measured SPARC expression by qRT-PCR in human primary pancreatic islets, adipose tissue, liver and muscle. We then examined the relation of SPARC with glucose stimulated insulin secretion (GSIS) in primary human islets and the effect of SPARC overexpression on GSIS in beta cell lines. Results SPARC was expressed at measurable levels in human islets, adipose tissue, liver and skeletal muscle, and demonstrated reduced expression in primary islets from subjects with diabetes compared with controls (p< = 0.05). SPARC levels were positively correlated with GSIS in islets from control donors (p< = 0.01). Overexpression of SPARC in cultured beta-cells resulted in a 2.4-fold increase in insulin secretion in high glucose conditions (p< = 0.01). Conclusions Our data suggest that levels of SPARC are reduced in islets from donors with diabetes and that it has a role in insulin secretion, an effect which appears independent of SPARC’s modulation of obesity-induced insulin resistance in adipose tissue. PMID:23840838

  5. Premixed direct injection disk

    SciTech Connect

    York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin; Zuo, Baifang; Uhm, Jong Ho

    2013-04-23

    A fuel/air mixing disk for use in a fuel/air mixing combustor assembly is provided. The disk includes a first face, a second face, and at least one fuel plenum disposed therebetween. A plurality of fuel/air mixing tubes extend through the pre-mixing disk, each mixing tube including an outer tube wall extending axially along a tube axis and in fluid communication with the at least one fuel plenum. At least a portion of the plurality of fuel/air mixing tubes further includes at least one fuel injection hole have a fuel injection hole diameter extending through said outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  6. Synthesis of the human insulin gene: protein expression, scaling up and bioactivity.

    PubMed

    Redwan, El-Rashdy M; Matar, Saleh M; El-Aziz, Gamal Abd; Serour, Ehab A

    2008-01-01

    Optimized Synthetic human insulin gene was preferred to easy of cloning, plasmid stability, and protein expression away from the native sequence and its rare codons. Two steps to obtain the insulin, so we assembled the gene of 293 bp using a battery of overlapped synthetic oligos, then cloned into pET101directional TOPO expression vector downstream to the T7 promoter. The proinsulin products were produced as inclusion bodies in E. coli at a level of 10%. The batch cultivation of the strain yielded 6 g/L, while the high cell density of fed-batch cultivation yielded 46 g/L. The proinsulin purification yielded 110 mg/gram cell weight, and 1.3 mg/gram of a bioactive insulin. The native insulin was generated by enzymatic conversion of chemically processed proinsulin. The produced insulin was matched with that of a commercial aqueous version at a level of enzyme immunoassys, SDS-PAGE, RP-HPLC, and bioactivity. The present results showed that the produced insulin has a comparable biochemical and potency similar to that of commercial one. PMID:18080908

  7. Human Insulin Resistance Is Associated With Increased Plasma Levels of 12α-Hydroxylated Bile Acids

    PubMed Central

    Haeusler, Rebecca A.; Astiarraga, Brenno; Camastra, Stefania; Accili, Domenico; Ferrannini, Ele

    2013-01-01

    Bile acids (BAs) exert pleiotropic metabolic effects, and physicochemical properties of different BAs affect their function. In rodents, insulin regulates BA composition, in part by regulating the BA 12α-hydroxylase CYP8B1. However, it is unclear whether a similar effect occurs in humans. To address this question, we examined the relationship between clamp-measured insulin sensitivity and plasma BA composition in a cohort of 200 healthy subjects and 35 type 2 diabetic (T2D) patients. In healthy subjects, insulin resistance (IR) was associated with increased 12α-hydroxylated BAs (cholic acid, deoxycholic acid, and their conjugated forms). Furthermore, ratios of 12α-hydroxylated/non–12α-hydroxylated BAs were associated with key features of IR, including higher insulin, proinsulin, glucose, glucagon, and triglyceride (TG) levels and lower HDL cholesterol. In T2D patients, BAs were nearly twofold elevated, and more hydrophobic, compared with healthy subjects, although we did not observe disproportionate increases in 12α-hydroxylated BAs. In multivariate analysis of the whole dataset, controlling for sex, age, BMI, and glucose tolerance status, higher 12α-hydroxy/non–12α-hydroxy BA ratios were associated with lower insulin sensitivity and higher plasma TGs. These findings suggest a role for 12α-hydroxylated BAs in metabolic abnormalities in the natural history of T2D and raise the possibility of developing insulin-sensitizing therapeutics based on manipulations of BA composition. PMID:23884887

  8. Intensification of insulin therapy in patients with type 2 diabetes: a retrospective, non- interventional cohort study of patients treated with insulin glargine or biphasic human insulin in daily clinical practice

    PubMed Central

    2013-01-01

    Background The aim of this study is to compare the efficacy of intensification of insulin treatment with insulin glargine and biphasic human insulin in patients with type 2 diabetes on concomitant therapy with oral antidiabetic drugs (OAD) in daily clinical practice. Methods A retrospective multicentre parallel two-arm study included 301 patients with type 2 diabetes already on treatment with biphasic human insulin twice daily (bd) in combination with OAD. Data were collected retrospectively from 142 patients who had been switched from biphasic human insulin to insulin glargine in a period of 6–12 months prior to their inclusion (active group) and compared to data collected retrospectively from 159 patients who continued treatment with biphasic human insulin bd for the same time period (control group). Our primary objective was to examine the efficacy of the two treatments, assessed as change in HbA1c. Secondary objectives were to examine for changes in fasting blood glucose (FBG), body weight, treatment with OAD or fast-acting insulin and safety, by assessing the frequency and severity of hypoglycaemic episodes. Results At the end of the study there was a significant reduction in HbA1c in both arms. The least squares (LS) mean [(95% confidence intervals (CI)] reduction in HbA1c was -1.13 (-0.96 to -1.30)% in the active and -0.59 (-0.41to -0.77)% in the control group [LS mean treatment difference 0.53 (0.31-0.76)%, p < 0.001]. Similarly, fasting blood glucose declined significantly in both arms. The LS mean decline in FBG was -47.02 (-37.89 to -56.14) mg/dl in the active and -19.73 (-11.57 to -27.89) mg/dl in the control group [LS mean treatment difference 27.85 (15.74-39.95) mg/dl, p < 0.001]. No significant difference in hypoglycaemic episodes and in body weight was found. In the active group, more patients received rapid-acting pre-meal insulin and used insulin secretagogues drugs. Conclusions Glargine alone or in combination with fast acting insulin

  9. Cavitation-enhanced delivery of insulin in agar and porcine models of human skin

    NASA Astrophysics Data System (ADS)

    Feiszthuber, Helga; Bhatnagar, Sunali; Gyöngy, Miklós; Coussios, Constantin-C.

    2015-03-01

    Ultrasound-assisted transdermal insulin delivery offers a less painful and less invasive alternative to subcutaneous insulin injections. However, ultrasound-based drug delivery, otherwise known as sonophoresis, is a highly variable phenomenon, in part dependent on cavitation. The aim of the current work is to investigate the role of cavitation in transdermal insulin delivery. Fluorescently stained, soluble Actrapid insulin was placed on the surface of human skin-mimicking materials subjected to 265 kHz, 10% duty cycle focused ultrasound. A confocally and coaxially aligned 5 MHz broadband ultrasound transducer was used to detect cavitation. Two different skin models were used. The first model, 3% agar hydrogel, was insonated with a range of pressures (0.25-1.40 MPa peak rarefactional focal pressure—PRFP), with and without cavitation nuclei embedded within the agar at a concentration of 0.05% w/v. The second, porcine skin was insonated at 1.00 and 1.40 MPa PRFP. In both models, fluorescence measurements were used to determine penetration depth and concentration of delivered insulin. Results show that in agar gel, both insulin penetration depth and concentration only increased significantly in the presence of inertial cavitation, with up to a 40% enhancement. In porcine skin the amount of fluorescent insulin was higher in the epidermis of those samples that were exposed to ultrasound compared to the control samples, but there was no significant increase in penetration distance. The results underline the importance of instigating and monitoring inertial cavitation during transdermal insulin delivery.

  10. Computational model of cellular metabolic dynamics: effect of insulin on glucose disposal in human skeletal muscle

    PubMed Central

    Li, Yanjun; Solomon, Thomas P. J.; Haus, Jacob M.; Saidel, Gerald M.; Cabrera, Marco E.

    2010-01-01

    Identifying the mechanisms by which insulin regulates glucose metabolism in skeletal muscle is critical to understanding the etiology of insulin resistance and type 2 diabetes. Our knowledge of these mechanisms is limited by the difficulty of obtaining in vivo intracellular data. To quantitatively distinguish significant transport and metabolic mechanisms from limited experimental data, we developed a physiologically based, multiscale mathematical model of cellular metabolic dynamics in skeletal muscle. The model describes mass transport and metabolic processes including distinctive processes of the cytosol and mitochondria. The model simulated skeletal muscle metabolic responses to insulin corresponding to human hyperinsulinemic-euglycemic clamp studies. Insulin-mediated rate of glucose disposal was the primary model input. For model validation, simulations were compared with experimental data: intracellular metabolite concentrations and patterns of glucose disposal. Model variations were simulated to investigate three alternative mechanisms to explain insulin enhancements: Model 1 (M.1), simple mass action; M.2, insulin-mediated activation of key metabolic enzymes (i.e., hexokinase, glycogen synthase, pyruvate dehydrogenase); or M.3, parallel activation by a phenomenological insulin-mediated intracellular signal that modifies reaction rate coefficients. These simulations indicated that models M.1 and M.2 were not sufficient to explain the experimentally measured metabolic responses. However, by application of mechanism M.3, the model predicts metabolite concentration changes and glucose partitioning patterns consistent with experimental data. The reaction rate fluxes quantified by this detailed model of insulin/glucose metabolism provide information that can be used to evaluate the development of type 2 diabetes. PMID:20332360

  11. Effects of Insulin and High Glucose on Human Meibomian Gland Epithelial Cells

    PubMed Central

    Ding, Juan; Liu, Yang; Sullivan, David A.

    2015-01-01

    Purpose Type 2 diabetes is a risk factor for meibomian gland dysfunction (MGD). We hypothesize that this diabetic impact is due, at least in part, to the effects of insulin resistance/deficiency and hyperglycemia on human meibomian gland epithelial cells (HMGECs). To begin to test this hypothesis, we examined whether insulin and high glucose influence immortalized (I) HMGECs. Methods Immortalized HMGECs were cultured in serum-containing or -free media and treated with insulin, insulin-like growth factor–1 (IGF-1), IGF-1 receptor (R) blocking antibody, and glucose or mannitol for varying time periods. Specific proteins were detected by Western blots, cell proliferation was evaluated by manual cell counting and lipids were assessed with LipidTOX and high performance thin layer chromatography. Results We found that insulin induces a dose-dependent increase in phosphatidylinositide 3-kinase/Akt (AKT) signaling in IHMGECs. This effect involves the IGF-1R, but not the insulin receptor (IR), and is associated with a stimulation of cell proliferation and neutral lipid accumulation. In contrast, high glucose exposure alters cell morphology, causes a progressive cell loss, and significantly reduces the levels of IGF-1R, phospho (p)-AKT, Foxhead box protein O1 (FOXO1), and sterol-regulatory element binding protein (SREBP-1) in IHMGECs. Conclusions Our data show that insulin stimulates, and that high glucose is toxic for, IHMGECs. These results support our hypothesis that insulin resistance/deficiency and hyperglycemia are deleterious for HMGECs and may help explain why type II diabetes is a risk factor for MGD. PMID:26658502

  12. Cavitation-enhanced delivery of insulin in agar and porcine models of human skin.

    PubMed

    Feiszthuber, Helga; Bhatnagar, Sunali; Gyöngy, Miklós; Coussios, Constantin-C

    2015-03-21

    Ultrasound-assisted transdermal insulin delivery offers a less painful and less invasive alternative to subcutaneous insulin injections. However, ultrasound-based drug delivery, otherwise known as sonophoresis, is a highly variable phenomenon, in part dependent on cavitation. The aim of the current work is to investigate the role of cavitation in transdermal insulin delivery. Fluorescently stained, soluble Actrapid insulin was placed on the surface of human skin-mimicking materials subjected to 265 kHz, 10% duty cycle focused ultrasound. A confocally and coaxially aligned 5 MHz broadband ultrasound transducer was used to detect cavitation. Two different skin models were used. The first model, 3% agar hydrogel, was insonated with a range of pressures (0.25-1.40 MPa peak rarefactional focal pressure-PRFP), with and without cavitation nuclei embedded within the agar at a concentration of 0.05% w/v. The second, porcine skin was insonated at 1.00 and 1.40 MPa PRFP. In both models, fluorescence measurements were used to determine penetration depth and concentration of delivered insulin. Results show that in agar gel, both insulin penetration depth and concentration only increased significantly in the presence of inertial cavitation, with up to a 40% enhancement. In porcine skin the amount of fluorescent insulin was higher in the epidermis of those samples that were exposed to ultrasound compared to the control samples, but there was no significant increase in penetration distance. The results underline the importance of instigating and monitoring inertial cavitation during transdermal insulin delivery. PMID:25716689

  13. The Investigation of ADAMTS16 in Insulin-Induced Human Chondrosarcoma Cells

    PubMed Central

    Comertoglu, Ismail; Firat, Ridvan; Erdemli, Haci Kemal; Kursunlu, S. Fatih; Akyol, Sumeyya; Ugurcu, Veli; Altuntas, Aynur; Adam, Bahattin; Demircan, Kadir

    2015-01-01

    Abstract Objectives: A disintegrin-like metalloproteinase with thrombospondin motifs (ADAMTS) is a group of proteins that have enzymatic activity secreted by cells to the outside extracellular matrix. Insulin induces proteoglycan biosynthesis in chondrosarcoma chondrocytes. The purpose of the present in vitro study is to assess the time course effects of insulin on ADAMTS16 expression in OUMS-27 (human chondrosarcoma) cell line to examine whether insulin regulates ADAMTS16 expression as well as proteoglycan biosynthesis with multifaceted properties or not. Methods: Chondrosarcoma cells were cultured in Dulbecco's modified Eagle's medium having either 10 μg/mL insulin or not. While the experiment was going on, the medium containing insulin had been changed every other day. Cells were harvested at 1st, 3rd, 7th, and 11th days; subsequently, RNA and proteins were isolated in every experimental group according to their time interval. RNA expression of ADAMTS was estimated by quantitative real-time polymerase chain reaction (qRT-PCR) by using primers. Immunoreactive protein levels were encountered by the western blot protein detection technique by using proper anti-ADAMTS16 antibodies. Results: ADAMTS16 mRNA expression level of chondrosarcoma cells was found to be insignificantly decreased in chondrosarcoma cells induced by insulin detected by the qRT-PCR instrument. On the other hand, there was a gradual decrease in immune-reactant ADAMTS16 protein amount by the time course in insulin-treated cell groups when compared with control cells. Conclusion: It has been suggested that insulin might possibly regulate ADAMTS16 levels/activities in OUMS-27 chondrosarcoma cells taking a role in extracellular matrix turnover. PMID:26181853

  14. Lean premixed/prevaporized combustion

    NASA Technical Reports Server (NTRS)

    Lefebvre, A. H. (Editor)

    1977-01-01

    Recommendations were formulated on the status and application of lean premixed/prevaporized combustion to the aircraft gas turbine for the reduction of pollutant emissions. The approach taken by the NASA Stratospheric Cruise Emission Reduction Program (SCERP) in pursuing the lean premixed/prevaporized combustion technique was also discussed. The proceedings contains an overview of the SCERP program, the discussions and recommendations of the participants, and an overall summary.

  15. The human insulin receptor substrate-1 gene (IRS1) is localized on 2q36

    SciTech Connect

    Nishiyama, Masaki; Matsufuji, Senya; Hayashi, Shin-ichi; Furusaka, Akihiro; Tanaka, Teruji ); Inazawa, J.; Nakamura, Yusuke ); Ariyama, Takeshi ); Wands, J.R. )

    1994-03-01

    The chromosomal localization of some of the genes participating in the insulin signaling pathway is known. The insulin and insulin receptor genes have been mapped to chromosomes 11 and 19, respectively. To identify the chromosomal localization of the human IRS1 gene, the fluorescence in situ hybridization technique was employed with Genomic Clone B-10. A total of 50 metaphase cells exhibiting either single or double spots of hybridization signals were examined. Among them, 32 showed the specific signals on 2q36. Therefore, the authors assigned the human IRS1 gene to 2q36. The genes for homeobox sequence (HOX4), fibronectin 1, alkaline phosphatase (intestinal), transition protein 1, villin 1, collagen (type IV), Waardenburg syndrome (type 1), alanine-glyoxylate aminotransferase, and glucagon have been localized in the vicinity of the IRS1 gene.

  16. Is Dynamic Autocrine Insulin Signaling Possible? A Mathematical Model Predicts Picomolar Concentrations of Extracellular Monomeric Insulin within Human Pancreatic Islets

    PubMed Central

    Wang, Minghu; Li, Jiaxu; Lim, Gareth E.; Johnson, James D.

    2013-01-01

    Insulin signaling is essential for -cell survival and proliferation in vivo. Insulin also has potent mitogenic and anti-apoptotic actions on cultured -cells, with maximum effect in the high picomolar range and diminishing effect at high nanomolar doses. In order to understand whether these effects of insulin are constitutive or can be subjected to physiological modulation, it is essential to estimate the extracellular concentration of monomeric insulin within an intact islet. Unfortunately, the in vivo concentration of insulin monomers within the islet cannot be measured directly with current technology. Here, we present the first mathematical model designed to estimate the levels of monomeric insulin within the islet extracellular space. Insulin is released as insoluble crystals that exhibit a delayed dissociation into hexamers, dimers, and eventually monomers, which only then can act as signaling ligands. The rates at which different forms of insulin dissolve in vivo have been estimated from studies of peripheral insulin injection sites. We used this and other information to formulate a mathematical model to estimate the local insulin concentration within a single islet as a function of glucose. Model parameters were estimated from existing literature. Components of the model were validated using experimental data, if available. Model analysis predicted that the majority of monomeric insulin in the islet is that which has been returned from the periphery, and the concentration of intra-islet monomeric insulin varies from 50–300 pM when glucose is in the physiological range. Thus, our results suggest that the local concentration of monomeric insulin within the islet is in the picomolar ‘sweet spot’ range of insulin doses that activate the insulin receptor and have the most potent effects on -cells in vitro. Together with experimental data, these estimations support the concept that autocrine/paracrine insulin signalling within the islet is dynamic, rather

  17. Biphasic Insulin Aspart 30/70: Pharmacokinetics and Pharmacodynamics Compared With Once-Daily Biphasic Human Insulin and Basal-Bolus Therapy

    PubMed Central

    Heise, Tim; Heinemann, Lutz; Hövelmann, Ulrike; Brauns, Bianca; Nosek, Leszek; Haahr, Hanne L.; Olsen, Klaus J.

    2009-01-01

    OBJECTIVE Pharmacological profiles of biphasic insulin aspart 30/70 (BIAsp 30) once daily (OD), twice daily (b.i.d.), and three times daily (t.i.d.) were compared with other insulin regimens in two crossover glucose clamp studies of insulin-treated type 2 diabetic patients. RESEARCH DESIGNS AND METHODS Study 1 consisted of BIAsp 30 OD, b.i.d., and t.i.d. versus biphasic human insulin 30/70 (BHI 30), OD (n = 24). Study 2 examined BIAsp 30 t.i.d. versus basal-bolus therapy (insulin glargine OD plus insulin glulisine t.i.d.) (n = 24). Pharmacokinetics/pharmacodynamics (PK/PD) were investigated over 24 h. RESULTS Study 1: PK and PD were markedly different between BIAsp 30 OD and BHI 30 OD: the maximum insulin concentration and glucose infusion rate (GIR) were higher for BIAsp 30; time to maximum metabolism was 1.7 h sooner for BIAsp 30. Study 2: both regimens showed three distinct prandial-related GIR peaks. GIR 24-h area under the curve for BIAsp t.i.d. was higher than for basal-bolus therapy: 2,585.2 vs. 2,289.2 mg/kg. CONCLUSIONS BIAsp had pharmacological advantages over BHI. BIAsp t.i.d. had a similar PD profile to basal-bolus therapy. PMID:19487640

  18. Alternate Phosphorylation/O-GlcNAc Modification on Human Insulin IRSs: A Road towards Impaired Insulin Signaling in Alzheimer and Diabetes

    PubMed Central

    Jahangir, Zainab; Ahmad, Waqar; Shabbiri, Khadija

    2014-01-01

    Impaired insulin signaling has been thought of as important step in both Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM). Posttranslational modifications (PTMs) regulate functions and interaction of insulin with insulin receptors substrates (IRSs) and activate insulin signaling downstream pathways via autophosphorylation on several tyrosine (TYR) residues on IRSs. Two important insulin receptor substrates 1 and 2 are widely expressed in human, and alternative phosphorylation on their serine (Ser) and threonine (Thr) residues has been known to block the Tyr phosphorylation of IRSs, thus inhibiting insulin signaling and promoting insulin resistance. Like phosphorylation, O-glycosylation modification is important PTM and inhibits phosphorylation on same or neighboring Ser/Thr residues, often called Yin Yang sites. Both IRS-1 and IRS-2 have been shown to be O-glycosylated; however exact sites are not determined yet. In this study, by using neuronal network based prediction methods, we found more than 50 Ser/Thr residues that have potential to be O-glycosylated and may act as possible sites as well. Moreover, alternative phosphorylation and O-glycosylation on IRS-1 Ser-312, 984, 1037, and 1101 may act as possible therapeutic targets to minimize the risk of AD and T2DM. PMID:25580119

  19. Review of the Mechanism of Action and Clinical Efficacy of Recombinant Human Hyaluronidase Coadministration with Current Prandial Insulin Formulations

    PubMed Central

    Muchmore, Douglas B.; Vaughn, Daniel E.

    2010-01-01

    For patients with type 1 or type 2 diabetes, achieving good glycemic control is critical for successful treatment outcomes. As many patients remain unable to reach glycemic goals with currently available rapid-acting analog insulins, ultrafast insulin products are being developed that provide an even faster pharmacokinetic profile compared with current rapid prandial insulin products. The overall strategy of these ultrafast insulin products is to better mimic the normal physiologic response to insulin that occurs in healthy individuals to further improve glycemic control. Recombinant human hyaluronidase (rHuPH20) is a genetically engineered soluble hyaluronidase approved by the U.S. Food and Drug Administration as an adjuvant to increase the absorption and dispersion of other injected drugs; mammalian hyaluronidases as a class have over 6 decades of clinical use supporting the safety and/or efficacy of hyaluronidase coadministration. Clinical findings have demonstrated that coadministration of rHuPH20 with insulin or an insulin analog achieved faster systemic absorption, reduced inter- and intrapatient variability of insulin absorption, and achieved faster metabolic effects compared with injection of either insulin formulation alone. The magnitude of this acceleration is similar to the incrementally faster absorption of prandial insulin analogs as compared with regular insulin. In addition, coadministration of rHuPH20 with regular insulin or insulin analog also improved the achievement of prandial glycemic targets. Thus, rHuPH20 coadministration shows promise as a method of establishing a more rapid insulin profile to prandial insulin in patients with diabetes and has the potential to yield substantial improvements in postprandial glycemic excursion. PMID:20307403

  20. Human pituitary and placental hormones control human insulin-like growth factor II secretion in human granulosa cells

    SciTech Connect

    Ramasharma, K.; Li, C.H.

    1987-05-01

    Human granulosa cells cultured with calf serum actively proliferated for 18-20 generations and secreted progesterone into the medium; progesterone levels appeared to decline with increase in generation number. Cells cultured under serum-free conditions secreted significant amounts of progesterone and insulin-like growth factor II (IGF-II). The progesterone secretion was enhanced by the addition of human follitropin, lutropin, and chorionic gonadotropin but not by growth hormone. These cells, when challenged to varying concentrations of human growth hormone, human chorionic somatomammotropin, human prolactin, chorionic gonadotropin, follitropin, and lutropin, secreted IGF-II into the medium as measured by specific IGF-II RIA. Among these human hormones, chorionic gonadotropin, follitropin, and lutropin were most effective in inducing IGF-II secretion from these cells. When synthetic lutropin-releasing hormone and ..cap alpha..-inhibin-92 were tested, only lutropin-releasing hormone was effective in releasing IGF-II. The results described suggest that cultured human granulosa cells can proliferate and actively secrete progesterone and IGF-II into the medium. IGF-II production in human granulosa cells was influenced by a multi-hormonal complex including human growth hormone, human chorionic somatomammotropin, and prolactin.

  1. Oral insulin (human, murine, or porcine) does not prevent diabetes in the non-obese diabetic mouse.

    PubMed

    Pham, Minh N; Gibson, Claire; Rydén, Anna K E; Perdue, Nikole; Boursalian, Tamar E; Pagni, Philippe P; Coppieters, Ken; Skonberg, Christian; Porsgaard, Trine; von Herrath, Matthias; Vela, Jose Luis

    2016-03-01

    Studies have shown oral insulin prevents type 1 diabetes (T1D) in mouse models, however human trials were inconclusive. We tested the ability of different insulins to prevent T1D in non-obese diabetic mice. Mice received oral insulin or PBS twice weekly and disease was monitored. Contrary to previous studies, no insulin tested showed significant ability to prevent T1D, nor did testing of linked suppression in a delayed type hypersensitivity model have reproducible effect. To investigate delivery of antigen within the GI tract, blue dye was fed to mice. Dye traveled 5-8 cm from stomach to small intestine within 10s, suggesting orally administered antigen may not get digested in the stomach in mice. Insulin incubated with jejunum extracts was instantly digested. Thus, in humans large doses of insulin may be required to achieve tolerance as antigen may be more vulnerable to digestion in the stomach even before reaching the small intestine. PMID:26821303

  2. Gene therapy for type 1 diabetes mellitus in rats by gastrointestinal administration of chitosan nanoparticles containing human insulin gene

    PubMed Central

    Niu, Li; Xu, Yan-Cheng; Dai, Zhe; Tang, Hui-Qin

    2008-01-01

    AIM: To study the expression of human insulin gene in gastrointestinal tracts of diabetic rats. METHODS: pCMV.Ins, an expression plasmid of the human insulin gene, wrapped with chitosan nanoparticles, was transfected to the diabetic rats through lavage and coloclysis, respectively. Fasting blood glucose and plasma insulin levels were measured for 7 d. Reverse transcription polymerase chain reaction (RT-PCR) analysis and Western blot analysis were performed to confirm the expression of human insulin gene. RESULTS: Compared with the control group, the fasting blood glucose levels in the lavage and coloclysis groups were decreased significantly in 4 d (5.63 ± 0.48 mmol/L and 5.07 ± 0.37 mmol/L vs 22.12 ± 1.31 mmol/L, respectively, P < 0.01), while the plasma insulin levels were much higher (32.26 ± 1.81 μIU/mL and 32.79 ± 1.84 μIU/mL vs 14.23 ± 1.38 μIU/mL, respectively, P < 0.01). The human insulin gene mRNA and human insulin were only detected in the lavage and coloclysis groups. CONCLUSION: Human insulin gene wrapped with chitosan nanoparticles can be successfully transfected to rats through gastrointestinal tract, indicating that chitosan is a promising non-viral vector. PMID:18636668

  3. Insulin stimulates endothelin-1 secretion from human endothelial cells and modulates its circulating levels in vivo.

    PubMed

    Ferri, C; Pittoni, V; Piccoli, A; Laurenti, O; Cassone, M R; Bellini, C; Properzi, G; Valesini, G; De Mattia, G; Santucci, A

    1995-03-01

    Endothelin-1 (ET-1) is a potent vasoactive and mitogenic peptide produced by the vascular endothelium. In this study, we evaluated whether insulin stimulates ET-1 secretion by human endothelial cells derived from umbilical cord veins and by human permanent endothelial hybrid cells Ea.hy 926. Moreover, to provide evidence that insulin may stimulate ET-1 secretion in vivo, plasma ET-1 levels were evaluated in 7 type II diabetic normotensive males (mean age, 54.3 +/- 4.0 yr) during 2-h hyperinsulinemic euglycemic clamps (287 pmol insulin/m2.min-1) as well as in 12 obese hypertensive males (mean age, 44.2 +/- 4.6 yr) before and after a 12-week period of caloric restriction. Our results showed that insulin stimulated ET-1 release from cultured endothelial cells in a dose-dependent fashion. ET-1 release persisted for 24 h and was also observed at physiological insulin concentrations (10(-9) mol/L). The insulin-induced ET-1 secretion was inhibited by genistein, a tyrosine kinase inhibitor, and by cycloheximide, a protein synthesis inhibitor, suggesting that it requires de novo protein synthesis rather than ET-1 release from intracellular stores. In the in vivo experiments, plasma ET-1 levels rapidly increased during euglycemic hyperinsulinemic clamps (from 0.76 +/- 0.18 pg/mL at time zero to 1.65 +/- 0.21 pg/mL at 60 min; P < 0.05) and persisted elevated until the end of insulin infusion (1.37 +/- 0.37 pg/mL at 120 min; P < 0.05 vs. time zero). In obese hypertensives, plasma ET-1 levels significantly decreased after 12 weeks of caloric restriction (from 0.85 +/- 0.51 to 0.48 +/- 0.28 pg/mL; P < 0.04). The decrease in body weight induced by caloric restriction was accompanied by a significant reduction in fasting insulin levels (from 167.2 +/- 94.0 to 98.9 +/- 44.9 pmol/L; P < 0.05) which correlated with the reduction in plasma ET-1 levels (r = 0.78; P < 0.003). In conclusion, our data show that insulin stimulates both in vitro and in vivo ET-1 secretion. Such interaction

  4. An insulin based model to explain changes and interactions in human breath-holding.

    PubMed

    Dangmann, Rosita

    2015-06-01

    Until now oxygen was thought to be the leading factor of hypoxic conditions. Whereas now it appears that insulin is the key regulator of hypoxic conditions. Insulin seems to regulate the redox state of the organism and to determine the breakpoint of human breath-holding. This new hypoxia-insulin hypotheses might have major clinical relevance. Besides the clinical relevance, this hypothesis could explain, for the first time, why the training of the diaphragm, among other factors, results in an increase in breath-holding performance. Elite freedivers/apnea divers are able to reach static breath-holding times to over 6 min. Untrained persons exhibit an unpleasant feeling after more or less a minute. Breath-holding is stopped at the breakpoint. The partial oxygen pressure as well as the carbon dioxide pressure failed to directly influence the breakpoint in earlier studies. The factors that contribute to the breakpoint are still under debate. Under hypoxic conditions the organism needs more glucose, because it changes from the oxygen consuming pentose phosphate (36 ATP/glucose molecule) to the anaerobic glycolytic pathway (2ATP/glucose molecule). Hence insulin, as it promotes the absorption of glucose, is set in the center of interest regarding hypoxic conditions. This paper provides an insulin based model that could explain the changes and interactions in human breath-holding. The correlation between hypoxia and reactive oxygen species (ROS) and their influence on the sympathetic nerve system and hypoxia-inducible factor 1 alpha (HIF-1α) is dealt with. It reviews as well the direct interrelation of HIF-1α and insulin. The depression of insulin secretion through the vagus nerve activation via inspiration is discussed. Furthermore the paper describes the action of insulin on the carotid bodies and the diaphragm and therefore a possible role in respiration pattern. Freedivers that go over the breakpoint of breath-holding could exhibit seizures and thus the effect of

  5. Human insulin/IGF-1 and familial longevity at middle age

    PubMed Central

    Rozing, Maarten P.; Westendorp, Rudi G.J.; Frölich, Marijke; de Craen, Anton J.M.; Beekman, Marian; Heijmans, Bastiaan T.; Mooijaart, Simon P.; Blauw, Gerard-Jan; Slagboom, P. Eline; van Heemst, Diana; Group, on behalf of the Leiden Longevity Study (LLS)

    2009-01-01

    Recently, we have shown that compared to controls, long-lived familial nonagenarians (mean age: 93.4 years) from the Leiden Longevity Study displayed a lower mortality rate, and their middle-aged offspring displayed a lower prevalence of cardio-metabolic diseases, including diabetes mellitus. The evolutionarily conserved insulin/IGF-1 signaling (IIS) pathway has been implicated in longevity in model organisms, but its relevance for human longevity has generated much controversy. Here, we show that compared to their partners, the offspring of familial nonagenarians displayed similar non-fasted serum levels of IGF-1, IGFBP3 and insulin but lower non-fasted serum levels of glucose, indicating that familial longevity is associated with differences in insulin sensitivity. PMID:20157552

  6. Human insulin polymorphism upon ligand binding and pH variation: the case of 4-ethylresorcinol

    PubMed Central

    Fili, S.; Valmas, A.; Norrman, M.; Schluckebier, G.; Beckers, D.; Degen, T.; Wright, J.; Fitch, A.; Gozzo, F.; Giannopoulou, A. E.; Karavassili, F.; Margiolaki, I.

    2015-01-01

    This study focuses on the effects of the organic ligand 4-ethylresorcinol on the crystal structure of human insulin using powder X-ray crystallography. For this purpose, systematic crystallization experiments have been conducted in the presence of the organic ligand and zinc ions within the pH range 4.50–8.20, while observing crystallization behaviour around the isoelectric point of insulin. High-throughput crystal screening was performed using a laboratory X-ray diffraction system. The most representative samples were selected for synchrotron X-ray diffraction measurements, which took place at the European Synchrotron Radiation Facility (ESRF) and the Swiss Light Source (SLS). Four different crystalline polymorphs have been identified. Among these, two new phases with monoclinic symmetry have been found, which are targets for the future development of microcrystalline insulin drugs. PMID:26306195

  7. Human insulin polymorphism upon ligand binding and pH variation: the case of 4-ethylresorcinol.

    PubMed

    Fili, S; Valmas, A; Norrman, M; Schluckebier, G; Beckers, D; Degen, T; Wright, J; Fitch, A; Gozzo, F; Giannopoulou, A E; Karavassili, F; Margiolaki, I

    2015-09-01

    This study focuses on the effects of the organic ligand 4-ethylresorcinol on the crystal structure of human insulin using powder X-ray crystallography. For this purpose, systematic crystallization experiments have been conducted in the presence of the organic ligand and zinc ions within the pH range 4.50-8.20, while observing crystallization behaviour around the isoelectric point of insulin. High-throughput crystal screening was performed using a laboratory X-ray diffraction system. The most representative samples were selected for synchrotron X-ray diffraction measurements, which took place at the European Synchrotron Radiation Facility (ESRF) and the Swiss Light Source (SLS). Four different crystalline polymorphs have been identified. Among these, two new phases with monoclinic symmetry have been found, which are targets for the future development of microcrystalline insulin drugs. PMID:26306195

  8. A novel Gymnema sylvestre extract stimulates insulin secretion from human islets in vivo and in vitro.

    PubMed

    Al-Romaiyan, A; Liu, B; Asare-Anane, H; Maity, C R; Chatterjee, S K; Koley, N; Biswas, T; Chatterji, A K; Huang, G-C; Amiel, S A; Persaud, S J; Jones, P M

    2010-09-01

    Many plant-based products have been suggested as potential antidiabetic agents, but few have been shown to be effective in treating the symptoms of Type 2 diabetes mellitus (T2DM) in human studies, and little is known of their mechanisms of action. Extracts of Gymnema sylvestre (GS) have been used for the treatment of T2DM in India for centuries. The effects of a novel high molecular weight GS extract, Om Santal Adivasi, (OSA(R)) on plasma insulin, C-peptide and glucose in a small cohort of patients with T2DM are reported here. Oral administration of OSA(R) (1 g/day, 60 days) induced significant increases in circulating insulin and C-peptide, which were associated with significant reductions in fasting and post-prandial blood glucose. In vitro measurements using isolated human islets of Langerhans demonstrated direct stimulatory effects of OSA(R) on insulin secretion from human ß-cells, consistent with an in vivo mode of action through enhancing insulin secretion. These in vivo and in vitro observations suggest that OSA(R) may provide a potential alternative therapy for the hyperglycemia associated with T2DM. PMID:20812281

  9. Alterations of Mitochondrial Function and Insulin Sensitivity in Human Obesity and Diabetes Mellitus.

    PubMed

    Koliaki, Chrysi; Roden, Michael

    2016-07-17

    Mitochondrial function refers to a broad spectrum of features such as resting mitochondrial activity, (sub)maximal oxidative phosphorylation capacity (OXPHOS), and mitochondrial dynamics, turnover, and plasticity. The interaction between mitochondria and insulin sensitivity is bidirectional and varies depending on tissue, experimental model, methodological approach, and features of mitochondrial function tested. In human skeletal muscle, mitochondrial abnormalities may be inherited (e.g., lower mitochondrial content) or acquired (e.g., impaired OXPHOS capacity and plasticity). Abnormalities ultimately lead to lower mitochondrial functionality due to or resulting in insulin resistance and type 2 diabetes mellitus. Similar mechanisms can also operate in adipose tissue and heart muscle. In contrast, mitochondrial oxidative capacity is transiently upregulated in the liver of obese insulin-resistant humans with or without fatty liver, giving rise to oxidative stress and declines in advanced fatty liver disease. These data suggest a highly tissue-specific interaction between insulin sensitivity and oxidative metabolism during the course of metabolic diseases in humans. PMID:27146012

  10. RFX6 regulates insulin secretion by modulating Ca2+ homeostasis in human β cells.

    PubMed

    Chandra, Vikash; Albagli-Curiel, Olivier; Hastoy, Benoit; Piccand, Julie; Randriamampita, Clotilde; Vaillant, Emmanuel; Cavé, Hélène; Busiah, Kanetee; Froguel, Philippe; Vaxillaire, Martine; Rorsman, Patrik; Polak, Michel; Scharfmann, Raphael

    2014-12-24

    Development and function of pancreatic β cells involve the regulated activity of specific transcription factors. RFX6 is a transcription factor essential for mouse β cell differentiation that is mutated in monogenic forms of neonatal diabetes. However, the expression and functional roles of RFX6 in human β cells, especially in pathophysiological conditions, are poorly explored. We demonstrate the presence of RFX6 in adult human pancreatic endocrine cells. Using the recently developed human β cell line EndoC-βH2, we show that RFX6 regulates insulin gene transcription, insulin content, and secretion. Knockdown of RFX6 causes downregulation of Ca(2+)-channel genes resulting in the reduction in L-type Ca(2+)-channel activity that leads to suppression of depolarization-evoked insulin exocytosis. We also describe a previously unreported homozygous missense RFX6 mutation (p.V506G) that is associated with neonatal diabetes, which lacks the capacity to activate the insulin promoter and to increase Ca(2+)-channel expression. Our data therefore provide insights for understanding certain forms of neonatal diabetes. PMID:25497100

  11. Insulin Inhibits Low Oxygen-Induced ATP Release from Human Erythrocytes: Implication for Vascular Control

    PubMed Central

    Hanson, Madelyn S.; Ellsworth, Mary L.; Achilleus, David; Stephenson, Alan H.; Bowles, Elizabeth A.; Sridharan, Meera; Adderley, Shaquria; Sprague, Randy S.

    2010-01-01

    Objective ATP released from human erythrocytes in response to reduced oxygen tension (pO2) participates in the matching of oxygen (O2) supply with need in skeletal muscle by stimulating increases in blood flow to areas with increased O2 demand. Here we investigated the hypothesis that hyperinsulinemia inhibits ATP release from erythrocytes and impairs their ability to stimulate dilation of isolated arterioles exposed to decreased extra-luminal pO2. Methods Erythrocyte ATP release was stimulated pharmacologically (mastoparan 7) and physiologically (reduced pO2) in the absence or presence of insulin. We also examined the ability of isolated skeletal muscle arterioles perfused with buffer containing erythrocytes treated with insulin or its vehicle (saline) to dilate in response to decreased extra-luminal pO2. Results Insulin significantly attenuated mastoparan 7– and reduced pO2–induced ATP release. In vessels perfused with untreated erythrocytes, low extra-luminal pO2 resulted in an increase in vessel diameter. In contrast, when erythrocytes were treated with insulin, no vasodilation occurred. Conclusions These studies demonstrate that insulin inhibits ATP release from erythrocytes in response to reduced pO2 and impairs their ability to stimulate dilation of skeletal muscle arterioles. These results suggest that hyperinsulinemia could hinder the matching of O2 supply with need in skeletal muscle. PMID:19412833

  12. Detailed Physiologic Characterization Reveals Diverse Mechanisms for Novel Genetic Loci Regulating Glucose and Insulin Metabolism in Humans

    PubMed Central

    Ingelsson, Erik; Langenberg, Claudia; Hivert, Marie-France; Prokopenko, Inga; Lyssenko, Valeriya; Dupuis, Josée; Mägi, Reedik; Sharp, Stephen; Jackson, Anne U.; Assimes, Themistocles L.; Shrader, Peter; Knowles, Joshua W.; Zethelius, Björn; Abbasi, Fahim A.; Bergman, Richard N.; Bergmann, Antje; Berne, Christian; Boehnke, Michael; Bonnycastle, Lori L.; Bornstein, Stefan R.; Buchanan, Thomas A.; Bumpstead, Suzannah J.; Böttcher, Yvonne; Chines, Peter; Collins, Francis S.; Cooper, Cyrus C.; Dennison, Elaine M.; Erdos, Michael R.; Ferrannini, Ele; Fox, Caroline S.; Graessler, Jürgen; Hao, Ke; Isomaa, Bo; Jameson, Karen A.; Kovacs, Peter; Kuusisto, Johanna; Laakso, Markku; Ladenvall, Claes; Mohlke, Karen L.; Morken, Mario A.; Narisu, Narisu; Nathan, David M.; Pascoe, Laura; Payne, Felicity; Petrie, John R.; Sayer, Avan A.; Schwarz, Peter E. H.; Scott, Laura J.; Stringham, Heather M.; Stumvoll, Michael; Swift, Amy J.; Syvänen, Ann-Christine; Tuomi, Tiinamaija; Tuomilehto, Jaakko; Tönjes, Anke; Valle, Timo T.; Williams, Gordon H.; Lind, Lars; Barroso, Inês; Quertermous, Thomas; Walker, Mark; Wareham, Nicholas J.; Meigs, James B.; McCarthy, Mark I.; Groop, Leif; Watanabe, Richard M.; Florez, Jose C.

    2010-01-01

    OBJECTIVE Recent genome-wide association studies have revealed loci associated with glucose and insulin-related traits. We aimed to characterize 19 such loci using detailed measures of insulin processing, secretion, and sensitivity to help elucidate their role in regulation of glucose control, insulin secretion and/or action. RESEARCH DESIGN AND METHODS We investigated associations of loci identified by the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) with circulating proinsulin, measures of insulin secretion and sensitivity from oral glucose tolerance tests (OGTTs), euglycemic clamps, insulin suppression tests, or frequently sampled intravenous glucose tolerance tests in nondiabetic humans (n = 29,084). RESULTS The glucose-raising allele in MADD was associated with abnormal insulin processing (a dramatic effect on higher proinsulin levels, but no association with insulinogenic index) at extremely persuasive levels of statistical significance (P = 2.1 × 10−71). Defects in insulin processing and insulin secretion were seen in glucose-raising allele carriers at TCF7L2, SCL30A8, GIPR, and C2CD4B. Abnormalities in early insulin secretion were suggested in glucose-raising allele carriers at MTNR1B, GCK, FADS1, DGKB, and PROX1 (lower insulinogenic index; no association with proinsulin or insulin sensitivity). Two loci previously associated with fasting insulin (GCKR and IGF1) were associated with OGTT-derived insulin sensitivity indices in a consistent direction. CONCLUSIONS Genetic loci identified through their effect on hyperglycemia and/or hyperinsulinemia demonstrate considerable heterogeneity in associations with measures of insulin processing, secretion, and sensitivity. Our findings emphasize the importance of detailed physiological characterization of such loci for improved understanding of pathways associated with alterations in glucose homeostasis and eventually type 2 diabetes. PMID:20185807

  13. A genetically engineered human pancreatic β cell line exhibiting glucose-inducible insulin secretion

    PubMed Central

    Ravassard, Philippe; Hazhouz, Yasmine; Pechberty, Séverine; Bricout-Neveu, Emilie; Armanet, Mathieu; Czernichow, Paul; Scharfmann, Raphael

    2011-01-01

    Despite intense efforts over the past 30 years, human pancreatic β cell lines have not been available. Here, we describe a robust technology for producing a functional human β cell line using targeted oncogenesis in human fetal tissue. Human fetal pancreatic buds were transduced with a lentiviral vector that expressed SV40LT under the control of the insulin promoter. The transduced buds were then grafted into SCID mice so that they could develop into mature pancreatic tissue. Upon differentiation, the newly formed SV40LT-expressing β cells proliferated and formed insulinomas. The resulting β cells were then transduced with human telomerase reverse transcriptase (hTERT), grafted into other SCID mice, and finally expanded in vitro to generate cell lines. One of these cell lines, EndoC-βH1, expressed many β cell–specific markers without any substantial expression of markers of other pancreatic cell types. The cells secreted insulin when stimulated by glucose or other insulin secretagogues, and cell transplantation reversed chemically induced diabetes in mice. These cells represent a unique tool for large-scale drug discovery and provide a preclinical model for cell replacement therapy in diabetes. This technology could be generalized to generate other human cell lines when the cell type–specific promoter is available. PMID:21865645

  14. The Effects of Insulin Resistance on Individual Tissues: An Application of a Mathematical Model of Metabolism in Humans.

    PubMed

    Pearson, Taliesin; Wattis, Jonathan A D; King, John R; MacDonald, Ian A; Mazzatti, Dawn J

    2016-06-01

    Whilst the human body expends energy constantly, the human diet consists of a mix of carbohydrates and fats delivered in a discontinuous manner. To deal with this sporadic supply of energy, there are transport, storage and utilisation mechanisms, for both carbohydrates and fats, around all tissues of the body. Insulin-resistant states such as type 2 diabetes and obesity are characterised by reduced efficiency of these mechanisms. Exactly how these insulin-resistant states develop, for example whether there is an order in which tissues become insulin resistant, is an active area of research with the hope of gaining a better overall understanding of insulin resistance. In this paper, we use a previously derived system of 12 first-order coupled differential equations that describe the transport between, and storage in, different tissues of the human body. We briefly revisit the derivation of the model before parametrising the model to account for insulin resistance. We then solve the model numerically, separately simulating each individual tissue as insulin resistant, and discuss and compare these results, drawing three main conclusions. The implications of these results are in accordance with biological intuition. First, insulin resistance in a tissue creates a knock-on effect on the other tissues in the body, whereby they attempt to compensate for the reduced efficiency of the insulin-resistant tissue. Second, insulin resistance causes a fatty liver, and the insulin resistance of tissues other than the liver can cause fat to accumulate in the liver. Finally, although insulin resistance in individual tissues can cause slightly reduced skeletal muscle metabolic flexibility, it is when the whole body is insulin resistant that the biggest effect on skeletal muscle flexibility is seen. PMID:27306890

  15. Human obesity and insulin resistance: lessons from experiments of nature.

    PubMed

    O'Rahilly, Stephen

    2007-01-01

    The past decade or so has seen the adipocyte catapulted from a position of relative obscurity onto the centre stage of biomedical science. Having long been viewed largely as a passive storage depot for energy in times of plenty and a fuel reservoir called upon in times of need, the discovery that the adipocyte is an active participant in the control mechanisms for both energy balance and intermediary metabolism represents one of the most stunning paradigm shifts in modern mammalian biology. The normal control of energy homeostasis is now known to be highly dependent on the adipocyte-secreted hormone, leptin. Defects in the leptin signalling pathway, both inherited and acquired, are now known to contribute to the important clinical problem of obesity. Dysfunction of adipocytes, in both obesity and lipodystrophies, is now considered to be critically involved in the pathogenesis of insulin resistance, the metabolic syndrome and type 2 diabetes. The range of metabolites, steroids and bioactive peptides now known to be actively produced by adipocytes and influencing organs as diverse as brain, muscle, liver and pancreatic islet has increased dramatically. Our understanding of how these are co-ordinated to regulate normal metabolism and are dysregulated in metabolic disease is still in its infancy. However what is clear is that the adipocyte, until recently the 'Cinderella Cell' of metabolism, has rapidly become the 'Belle of the Ball'. PMID:18269171

  16. Insulin acutely improves mitochondrial function of rat and human skeletal muscle by increasing coupling efficiency of oxidative phosphorylation.

    PubMed

    Nisr, Raid B; Affourtit, Charles

    2014-02-01

    Insulin is essential for the regulation of fuel metabolism and triggers the uptake of glucose by skeletal muscle. The imported glucose is either stored or broken down, as insulin stimulates glycogenesis and ATP synthesis. The mechanism by which ATP production is increased is incompletely understood at present and, generally, relatively little functional information is available on the effect of insulin on mitochondrial function. In this paper we have exploited extracellular flux technology to investigate insulin effects on the bioenergetics of rat (L6) and human skeletal muscle myoblasts and myotubes. We demonstrate that a 20-min insulin exposure significantly increases (i) the cell respiratory control ratio, (ii) the coupling efficiency of oxidative phosphorylation, and (iii) the glucose sensitivity of anaerobic glycolysis. The improvement of mitochondrial function is explained by an insulin-induced immediate decrease of mitochondrial proton leak. Palmitate exposure annuls the beneficial mitochondrial effects of insulin. Our data improve the mechanistic understanding of insulin-stimulated ATP synthesis, and reveal a hitherto undisclosed insulin sensitivity of cellular bioenergetics that suggests a novel way of detecting insulin responsiveness of cells. PMID:24212054

  17. Analysis of the regions flanking the human insulin gene and sequence of an Alu family member.

    PubMed Central

    Bell, G I; Pictet, R; Rutter, W J

    1980-01-01

    The regions around the human insulin gene have been studied by heteroduplex, hybridization and sequence analysis. These studies indicated that there is a region of heterogeneous length located approximately 700 bp before the 5' end of the gene; and that the 19 kb of cloned DNA which includes the 1430 bp insulin gene as well as 5650 bp before and 11,500 bp after the gene is single copy sequence except for 500 bp located 6000 bp from the 3' end of the gene. This 500 bp segment contains a member of the Alu family of dispersed middle repetitive sequences as well as another less highly repeated homopolymeric segment. The sequence of this region was determined. This Alu repeat is bordered by 19 bp direct repeats and also contains an 83 bp sequence which is present twice. The regions flanking the human and rat I insulin genes were compared by heteroduplex analysis to localize homologous sequences in the flanking regions which could be involved in the regulation of insulin biosynthesis. The homology between the two genes is restricted to the region encoding preproinsulin and a short region of approximately 60 bp flanking the 5' side of the genes. Images PMID:6253909

  18. GLUCOSE METABOLISM IN PIGS EXPRESSING HUMAN GENES UNDER AN INSULIN PROMOTER

    PubMed Central

    Wijkstrom, M.; Bottino, R.; Iwase, H.; Hara, H.; Ekser, B.; van der Windt, D.J.; Long, C.; Toledo, F.; Phelps, C.; Trucco, M.; Cooper, D.K.C.; Ayares, D.

    2014-01-01

    Background Xenotransplantation of porcine islets can reverse diabetes in nonhuman primates. The remaining hurdles for clinical application include safe and effective T-cell directed immunosuppression, but protection against the innate immune system and coagulation dysfunction may be more difficult to achieve. Islet-targeted genetic manipulation of islet-source pigs represents a powerful tool to protect against graft loss. However, whether these genetic alterations would impair islet function is unknown. Methods On a background of α1,3-galactosyltransferase gene-knockout (GTKO)/human (h) CD46, additional genes (hCD39, human tissue factor pathway inhibitor, porcine CTLA4-Ig) were inserted in different combinations under an insulin promoter to promote expression in islets (confirmed by immunofluorescence). Seven pigs were tested for baseline and glucose/arginine-challenged levels of glucose, insulin, C-peptide, and glucagon. Results This preliminary study did not show definite evidence of β-cell deficiencies, even when 3 transgenes were expressed under the insulin promoter. Of 7 animals, all were normoglycemic at fasting, and 5 of 7 had normal glucose disposal rates after challenge. All animals exhibited insulin, C-peptide, and glucagon responses to both glucose and arginine challenge; however, significant interindividual variation was observed. Conclusions Multiple islet-targeted transgenic expression was not associated with an overtly detrimental effect on islet function, suggesting that complex genetic constructs designed for islet protection warrants further testing in islet xenotransplantation models. PMID:25382150

  19. Preserved endothelial function in human obesity in the absence of insulin resistance

    PubMed Central

    2013-01-01

    Background Insulin resistance (IR) is frequently associated with endothelial dysfunction and has been proposed to play a major role in cardiovascular disease (CVD). On the other hand, obesity has long been related to IR and increased CVD. However it is not known if IR is a necessary condition for endothelial dysfunction in human obesity, allowing for preserved endothelial function in obese people when absent. Therefore, the purpose of the study was to assess the relationship between IR and endothelial dysfunction in human obesity and the mechanisms involved. Methods Twenty non-insulin resistant morbid obese (NIR-MO), 32 insulin resistant morbid obese (IR-MO), and 12 healthy subjects were included. Serum concentrations of glucose, insulin, interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), resistin and adiponectin were determined. IR was evaluated by HOMA-index. Endothelium-dependent relaxation to bradykinin (BK) in mesenteric microvessels was assessed in wire myograph. Results Serum IL-6, and TNF-α levels were elevated only in IR-MO patients while resistin was elevated and adiponectin reduced in all MO individuals. Mesenteric arteries from IR-MO, but not from NIR-MO subjects displayed blunted relaxation to BK. Vasodilatation was improved in IR-MO arteries by the superoxide scavenger, superoxide dismutase (SOD) or the mitochondrial-targeted SOD mimetic, mito-TEMPO. NADPH oxidase inhibitors (apocynin and VAS2870) and the nitric oxide synthase (NOS) cofactor, tetrahydrobiopterin failed to modify BK-induced vasodilatations. Superoxide generation was higher in vessels from IR-MO subjects and reduced by mito-TEMPO. Blockade of TNF-α with infliximab, but not inhibition of inducible NOS or cyclooxygenase, improved endothelial relaxation and decreased superoxide formation. Conclusions Endothelial dysfunction is observed in human morbid obesity only when insulin resistance is present. Mechanisms involved include augmented mitochondrial superoxide generation, and

  20. Acute and chronic effects of glyceryl trinitrate therapy on insulin and glucose regulation in humans.

    PubMed

    Jedrzkiewicz, Sean; Parker, John D

    2013-05-01

    This study examined the effect of acute and sustained transdermal glyceryl trinitrate (GTN) therapy on insulin and glucose regulation. Totally, 12 males (18-30 years) underwent a glucose tolerance test at baseline (visit 1), 90 minutes after acute transdermal GTN 0.6 mg/h (visit 2), following 7 days of continuous GTN (visit 3), and 2 to 3 days after stopping GTN (visit 4). At each visit, plasma glucose and insulin concentrations were measured before and 30, 60, 90, and 120 minutes after a 75-g oral glucose load. Indices of glucose metabolism that were examined included the insulin sensitivity index, the homeostasis model assessment of insulin resistance (HOMA-IR), and the insulinogenic index. The acute administration of GTN had no effect on glucose and insulin responses (visit 2). However, after 7 days of GTN exposure (visit 3) there was an increase in the mean glucose concentration measured after the oral glucose load. On visit 1, the mean glucose concentration (± standard deviation) following the 75 g oral glucose challenge was 5.7 ± 0.5 µmol/L. On visit 3, after 7 days of transdermal GTN therapy, the mean glucose concentration after the oral glucose was significantly higher; 6.2 ± 0.5 µmol/L (P < .015; 95% confidence intervals 0.25-0.77). There was also an increase in the HOMA-IR index; on visit 1, the median HOMA-IR (interquartile range) was 5.2 (3.9) versus 6.9 (6.8) on visit 3 (P < .015). Other indices of glucose metabolism did not change. These observations document that GTN therapy modifies glucose metabolism causing evidence of increased insulin resistance during sustained therapy in normal humans. PMID:23230283

  1. Suspension Culture Alters Insulin Secretion in Induced Human Umbilical Cord Matrix-Derived Mesenchymal Cells

    PubMed Central

    Seyedi, Fatemeh; Farsinejad, Alireza; Nematollahi-Mahani, Seyed Amirmahdi; Eslaminejad, Touba; Nematollahi-Mahani, Seyed Noureddin

    2016-01-01

    Objective Worldwide, diabetes mellitus (DM) is an ever-increasing metabolic disorder. A promising approach to the treatment of DM is the implantation of insulin producing cells (IPC) that have been derived from various stem cells. Culture conditions play a pivotal role in the quality and quantity of the differentiated cells. In this experimental study, we have applied various culture conditions to differentiate human umbilical cord matrix-derived mesenchymal cells (hUCMs) into IPCs and measured insulin production. Materials and Methods In this experimental study, we exposed hUCMs cells to pancreatic medium and differentiated them into IPCs in monolayer and suspension cultures. Pancreatic medium consisted of serum-free Dulbecco’s modified eagle’s medium Nutrient mixture F12 (DMEM/F12) medium with 17.5 mM glucose supplemented by 10 mM nicotinamide, 10 nM exendin-4, 10 nM pentagastrin, 100 pM hepatocyte growth factor, and B-27 serum-free supplement. After differentiation, insulin content was analyzed by gene expression, immunocytochemistry (IHC) and the chemiluminesence immunoassay (CLIA). Results Reverse transcription-polymerase chain reaction (RT-PCR) showed efficient expressions of NKX2.2, PDX1 and INSULIN genes in both groups. IHC analysis showed higher expression of insulin protein in the hanging drop group, and CLIA revealed a significant higher insulin production in hanging drops compared with the monolayer group following the glucose challenge test. Conclusion We showed by this novel, simple technique that the suspension culture played an important role in differentiation of hUCMs into IPC. This culture was more efficient than the conventional culture method commonly used in IPC differentiation and cultivation. PMID:27054119

  2. Evidence-based clinical use of insulin premixtures.

    PubMed

    Tambascia, Marcos Antônio; Nery, Márcia; Gross, Jorge Luiz; Ermetice, Mariana Narbot; de Oliveira, Carolina Piras

    2013-01-01

    Brazil is expected to have 19.6 million patients with diabetes by the year 2030. A key concept in the treatment of type 2 diabetes mellitus (T2DM) is establishing individualized glycemic goals based on each patient's clinical characteristics, which impact the choice of antihyperglycemic therapy. Targets for glycemic control, including fasting blood glucose, postprandial blood glucose, and glycated hemoglobin (A1C), are often not reached solely with antihyperglycemic therapy, and insulin therapy is often required. Basal insulin is considered an initial strategy; however, premixed insulins are convenient and are equally or more effective, especially for patients who require both basal and prandial control but desire a more simplified strategy involving fewer daily injections than a basal-bolus regimen. Most physicians are reluctant to transition patients to insulin treatment due to inappropriate assumptions and insufficient information. We conducted a nonsystematic review in PubMed and identified the most relevant and recently published articles that compared the use of premixed insulin versus basal insulin analogues used alone or in combination with rapid-acting insulin analogues before meals in patients with T2DM. These studies suggest that premixed insulin analogues are equally or more effective in reducing A1C compared to basal insulin analogues alone in spite of the small increase in the risk of nonsevere hypoglycemic events and nonclinically significant weight gain. Premixed insulin analogues can be used in insulin-naïve patients, in patients already on basal insulin therapy, and those using basal-bolus therapy who are noncompliant with blood glucose self-monitoring and titration of multiple insulin doses. We additionally provide practical aspects related to titration for the specific premixed insulin analogue formulations commercially available in Brazil. PMID:24011173

  3. Development of genetically engineered human intestinal cells for regulated insulin secretion using rAAV-mediated gene transfer.

    PubMed

    Tang, Shiue-Cheng; Sambanis, Athanassios

    2003-04-01

    Cell-based therapies for treating insulin-dependent diabetes (IDD) can provide a more physiologic regulation of blood glucose levels in a less invasive fashion than daily insulin injections. Promising cells include intestinal enteroendocrine cells genetically engineered to secrete insulin in response to physiologic stimuli; responsiveness occurs at the exocytosis level to regulate the acute release of recombinant insulin. In this work, we established a human cellular model to demonstrate that meat hydrolysate can simultaneously stimulate glucagon-like peptide-1 (GLP-1, an enteroendocrine cell-derived incretin hormone) and recombinant insulin secretion from the engineered human NCI-H716 intestinal cell line. Cells were genetically modified using the recombinant adeno-associated virus (rAAV)-mediated insulin gene transfer. Recombinant cells were then differentiated to display endocrine features, in particular the formation of granule-like compartments. A fusion protein of insulin and enhanced green fluorescence protein (EGFP) was designed to reveal the compartments of localization of the fusion protein and assess its co-localization with endogenous GLP-1. Our work provides a unique human cellular model for regulated insulin release through genetic engineering of GLP-1-secreting intestinal cells, which is expected to be useful for cell-based therapies of IDD. PMID:12659868

  4. Ex vivo generation of glucose sensitive insulin secreting mesenchymal stem cells derived from human adipose tissue

    PubMed Central

    Dave, Shruti D.; Vanikar, Aruna V.; Trivedi, Hargovind L

    2012-01-01

    Background: Diabetics are incapable of producing insulin/have autoimmune mechanisms making it ineffective to control glucose secretion. We present a prospective study of glucose-sensitive insulin-secreting mesenchymal stem cells (IS-MSC) generated from human adipose tissue (h-AD) sans xenogenic material. Materials and Methods: Ten grams h-AD from donor anterior abdominal wall was collected in proliferation medium composed of α-Minimum Essential Media (α-MEM), albumin, fibroblast-growth factor and antibiotics, minced, incubated in collagenase-I at 37°C with shaker and centrifuged. Supernatant and pellets were separately cultured in proliferation medium on cell+ plates at 37°C with 5% CO2 for 10 days. Cells were harvested by trypsinization, checked for viability, sterility, counts, flow-cytometry (CD45-/90+/73+), and differentiated into insulin-expressing cells using medium composed of DMEM, gene expressing up-regulators and antibiotics for 3 days. They were studied for transcriptional factors Pax-6, Isl-1, pdx-1 (immunofluorescence). C-peptide and insulin were measured by chemiluminescence. In vitro glucose sensitivity assay was carried out by measuring levels of insulin and C-peptide secretion in absence of glucose followed by 2 hours incubation after glucose addition. Results: Mean IS-AD-MSC quantum was 3.21 ml, cell count, 1.5 ×103 cells/μl), CD45-/90+/73+ cells were 44.37% /25.52%. All of them showed presence of pax-6, pdx-1, and Isl-1. Mean C-Peptide and insulin levels were 0.36 ng/ml and 234 μU/ml, respectively, pre-glucose and 0.87 ng/ml and 618.3 μU/ml post-glucose additions. The mean rise in secretion levels was 2.42 and 2.65 fold, respectively. Conclusion: Insulin-secreting h-AD-MSC can be generated safely and effectively showing in vitro glucose responsive alteration in insulin and C-peptide secretion levels. PMID:22701849

  5. Proteasome Dysfunction Associated to Oxidative Stress and Proteotoxicity in Adipocytes Compromises Insulin Sensitivity in Human Obesity

    PubMed Central

    Díaz-Ruiz, Alberto; Guzmán-Ruiz, Rocío; Moreno, Natalia R.; García-Rios, Antonio; Delgado-Casado, Nieves; Membrives, Antonio; Túnez, Isaac; El Bekay, Rajaa; Fernández-Real, José M.; Tovar, Sulay; Diéguez, Carlos; Tinahones, Francisco J.; Vázquez-Martínez, Rafael; López-Miranda, José

    2015-01-01

    Abstract Aims: Obesity is characterized by a low-grade systemic inflammatory state and adipose tissue (AT) dysfunction, which predispose individuals to the development of insulin resistance (IR) and metabolic disease. However, a subset of obese individuals, referred to as metabolically healthy obese (MHO) individuals, are protected from obesity-associated metabolic abnormalities. Here, we aim at identifying molecular factors and pathways in adipocytes that are responsible for the progression from the insulin-sensitive to the insulin-resistant, metabolically unhealthy obese (MUHO) phenotype. Results: Proteomic analysis of paired samples of adipocytes from subcutaneous (SC) and omental (OM) human AT revealed that both types of cells are altered in the MUHO state. Specifically, the glutathione redox cycle and other antioxidant defense systems as well as the protein-folding machinery were dysregulated and endoplasmic reticulum stress was increased in adipocytes from IR subjects. Moreover, proteasome activity was also compromised in adipocytes of MUHO individuals, which was associated with enhanced accumulation of oxidized and ubiquitinated proteins in these cells. Proteasome activity was also impaired in adipocytes of diet-induced obese mice and in 3T3-L1 adipocytes exposed to palmitate. In line with these data, proteasome inhibition significantly impaired insulin signaling in 3T3-L1 adipocytes. Innovation: This study provides the first evidence of the occurrence of protein homeostasis deregulation in adipocytes in human obesity, which, together with oxidative damage, interferes with insulin signaling in these cells. Conclusion: Our results suggest that proteasomal dysfunction and impaired proteostasis in adipocytes, resulting from protein oxidation and/or misfolding, constitute major pathogenic mechanisms in the development of IR in obesity. Antioxid. Redox Signal. 23, 597–612. PMID:25714483

  6. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells

    SciTech Connect

    Timper, Katharina; Seboek, Dalma; Eberhardt, Michael; Linscheid, Philippe; Christ-Crain, Mirjam; Keller, Ulrich; Mueller, Beat; Zulewski, Henryk . E-mail: henryk.zulewski@unibas.ch

    2006-03-24

    Mesenchymal stem cells (MSC) from mouse bone marrow were shown to adopt a pancreatic endocrine phenotype in vitro and to reverse diabetes in an animal model. MSC from human bone marrow and adipose tissue represent very similar cell populations with comparable phenotypes. Adipose tissue is abundant and easily accessible and could thus also harbor cells with the potential to differentiate in insulin producing cells. We isolated human adipose tissue-derived MSC from four healthy donors. During the proliferation period, the cells expressed the stem cell markers nestin, ABCG2, SCF, Thy-1 as well as the pancreatic endocrine transcription factor Isl-1. The cells were induced to differentiate into a pancreatic endocrine phenotype by defined culture conditions within 3 days. Using quantitative PCR a down-regulation of ABCG2 and up-regulation of pancreatic developmental transcription factors Isl-1, Ipf-1, and Ngn3 were observed together with induction of the islet hormones insulin, glucagon, and somatostatin.

  7. Linking Functional Domains of the Human Insulin Receptor with the Bacterial Aspartate Receptor

    NASA Astrophysics Data System (ADS)

    Ellis, Leland; Morgan, David O.; Koshland, Daniel E.; Clauser, Eric; Moe, Gregory R.; Bollag, Gideon; Roth, Richard A.; Rutter, William J.

    1986-11-01

    A hybrid receptor has been constructed that is composed of the extracellular domain of the human insulin receptor fused to the transmembrane and cytoplasmic domains of the bacterial aspartate chemoreceptor. This hybrid protein can be expressed in rodent (CHO) cells and displays several functional features comparable to wild-type insulin receptor. It is localized to the cell surface, binds insulin with high affinity, forms oligomers, and is recognized by conformation-specific monoclonal antibodies. Although most of the expressed protein accumulates as a 180-kDa proreceptor, some processed 135-kDa receptor can be detected on the cell surface by covalent cross-linking. Expression of the hybrid receptor inhibits the insulin-activated uptake of 2-deoxyglucose by CHO cells. Thus, this hybrid is partially functional and can be processed; however, it is incapable of native transmembrane signaling. The results indicate that the intact domains of different types of receptors can retain some of the native features in a hybrid molecule but specific requirements will need to be satisfied for transmembrane signaling.

  8. Sulfate anion delays the self-assembly of human insulin by modifying the aggregation pathway.

    PubMed

    Owczarz, Marta; Arosio, Paolo

    2014-07-01

    The understanding of the molecular mechanisms underlying protein self-assembly and of their dependence on solvent composition has implications in a large number of biological and biotechnological systems. In this work, we characterize the aggregation process of human insulin at acidic pH in the presence of sulfate ions using a combination of Thioflavin T fluorescence, dynamic light scattering, size exclusion chromatography, Fourier transform infrared spectroscopy, and transmission electron microscopy. It is found that the increase of sulfate concentration inhibits the conversion of insulin molecules into aggregates by modifying the aggregation pathway. At low sulfate concentrations (0-5 mM) insulin forms amyloid fibrils following the nucleated polymerization mechanism commonly observed under acidic conditions in the presence of monovalent anions. When the sulfate concentration is increased above 5 mM, the sulfate anion induces the salting-out of ∼18-20% of insulin molecules into reversible amorphous aggregates, which retain a large content of α-helix structures. During time these aggregates undergo structure rearrangements into β-sheet structures, which are able to recruit monomers and bind to the Thioflavin T dye. The alternative aggregation mechanism observed at large sulfate concentrations is characterized by a larger activation energy and leads to more polymorphic structures with respect to the self-assembly in the presence of chloride ions. The system shown in this work represents a case where amorphous aggregates on pathway to the formation of structures with amyloid features could be detected and analyzed. PMID:24988354

  9. Sulfate Anion Delays the Self-Assembly of Human Insulin by Modifying the Aggregation Pathway

    PubMed Central

    Owczarz, Marta; Arosio, Paolo

    2014-01-01

    The understanding of the molecular mechanisms underlying protein self-assembly and of their dependence on solvent composition has implications in a large number of biological and biotechnological systems. In this work, we characterize the aggregation process of human insulin at acidic pH in the presence of sulfate ions using a combination of Thioflavin T fluorescence, dynamic light scattering, size exclusion chromatography, Fourier transform infrared spectroscopy, and transmission electron microscopy. It is found that the increase of sulfate concentration inhibits the conversion of insulin molecules into aggregates by modifying the aggregation pathway. At low sulfate concentrations (0–5 mM) insulin forms amyloid fibrils following the nucleated polymerization mechanism commonly observed under acidic conditions in the presence of monovalent anions. When the sulfate concentration is increased above 5 mM, the sulfate anion induces the salting-out of ∼18–20% of insulin molecules into reversible amorphous aggregates, which retain a large content of α-helix structures. During time these aggregates undergo structure rearrangements into β-sheet structures, which are able to recruit monomers and bind to the Thioflavin T dye. The alternative aggregation mechanism observed at large sulfate concentrations is characterized by a larger activation energy and leads to more polymorphic structures with respect to the self-assembly in the presence of chloride ions. The system shown in this work represents a case where amorphous aggregates on pathway to the formation of structures with amyloid features could be detected and analyzed. PMID:24988354

  10. Structure Based Discovery of Small Molecules to Regulate the Activity of Human Insulin Degrading Enzyme

    PubMed Central

    Çakir, Bilal; Dağliyan, Onur; Dağyildiz, Ezgi; Bariş, İbrahim; Kavakli, Ibrahim Halil; Kizilel, Seda; Türkay, Metin

    2012-01-01

    Background Insulin-degrading enzyme (IDE) is an allosteric Zn+2 metalloprotease involved in the degradation of many peptides including amyloid-β, and insulin that play key roles in Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM), respectively. Therefore, the use of therapeutic agents that regulate the activity of IDE would be a viable approach towards generating pharmaceutical treatments for these diseases. Crystal structure of IDE revealed that N-terminal has an exosite which is ∼30 Å away from the catalytic region and serves as a regulation site by orientation of the substrates of IDE to the catalytic site. It is possible to find small molecules that bind to the exosite of IDE and enhance its proteolytic activity towards different substrates. Methodology/Principal Findings In this study, we applied structure based drug design method combined with experimental methods to discover four novel molecules that enhance the activity of human IDE. The novel compounds, designated as D3, D4, D6, and D10 enhanced IDE mediated proteolysis of substrate V, insulin and amyloid-β, while enhanced degradation profiles were obtained towards substrate V and insulin in the presence of D10 only. Conclusion/Significance This paper describes the first examples of a computer-aided discovery of IDE regulators, showing that in vitro and in vivo activation of this important enzyme with small molecules is possible. PMID:22355395

  11. The road to the first, fully active and more stable human insulin variant with an additional disulfide bond.

    PubMed

    Vinther, Tine N; Kjeldsen, Thomas B; Jensen, Knud J; Hubálek, František

    2015-11-01

    Insulin, a small peptide hormone, is crucial in maintaining blood glucose homeostasis. The stability and activity of the protein is directed by an intricate system involving disulfide bonds to stabilize the active monomeric species and by their non-covalent oligomerization. All known insulin variants in vertebrates consist of two peptide chains and have six cysteine residues, which form three disulfide bonds, two of them link the two chains and a third is an intra-chain bond in the A-chain. This classical insulin fold appears to have been conserved over half a billion years of evolution. We addressed the question whether a human insulin variant with four disulfide bonds could exist and be fully functional. In this review, we give an overview of the road to engineering four-disulfide bonded insulin analogs. During our journey, we discovered several active four disulfide bonded insulin analogs with markedly improved stability and gained insights into the instability of analogs with seven cysteine residues, importance of dimerization for stability, insulin fibril formation process, and the conformation of insulin binding to its receptor. Our results also open the way for new strategies in the development of insulin biopharmaceuticals. PMID:26382042

  12. Meta-analysis of insulin aspart versus regular human insulin used in a basal–bolus regimen for the treatment of diabetes mellitus

    PubMed Central

    Heller, Simon; Bode, Bruce; Kozlovski, Plamen; Svendsen, Anne Louise

    2013-01-01

    Background: The objective of the current study was to compare the efficacy of two different insulin formulations, insulin aspart (IAsp) and regular human insulin (RHI), for prandial insulin coverage with neutral protamine Hagedorn (NPH) insulin as basal insulin using a meta-analysis approach. The primary endpoint was change in A1c over time. Secondary endpoints included incidence of hypoglycemia and postprandial glycemic control. Methods Clinical trials (Type 1 and Type 2 diabetes) complying with Good Clinical Practice, and with individual patient data, were included in the meta-analysis. Trials were randomized, consisting of (at least) two treatment arms and had a minimum duration of 12 weeks. Estimates were calculated using fixed-effects and random-effects models. Heterogeneity was assessed for each analysis. The effect of baseline parameters on A1c was analyzed in extended simultaneous models. Results The mean difference in A1c was 0.1% (95% confidence interval [CI] [−0.15; −0.04], P < 0.001) in favor of IAsp. Higher accumulated dose of IAsp, higher age and increased rates of hypoglycemia were associated with improved A1c outcome. Fasting plasma glucose was not significantly different between regimens. Postprandial glucose was significantly lower after treatment with IAsp compared with RHI, but the analysis did present a significant level of heterogeneity (P < 0.001). The overall rate of hypoglycemia was the same with both regimens, but nocturnal hypoglycemia was significantly lower with IAsp. Conclusions A basal–bolus regimen with IAsp as bolus insulin provided minimal, but statistically significant, improvement in overall glycemic control with a lower rate of nocturnal hypoglycemic episodes, compared with a corresponding regimen with bolus RHI. PMID:23586846

  13. Premixed Prevaporized Combustor Technology Forum

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Forum was held to present the results of recent and current work intended to provide basic information required for demonstration of lean, premixed prevaporized combustors for aircraft gas turbine engine application. Papers are presented which deal with the following major topics: (1) engine interfaces; (2) fuel-air preparation; (3) autoignition; (4) lean combustion; and (5) concept design studies.

  14. Statistics of premixed flame cells

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    1991-01-01

    The statistics of random cellular patterns in premixed flames are analyzed. Agreement is found with a variety of topological relations previously found for other networks, namely, Lewis's law and Aboav's law. Despite the diverse underlying physics, flame cells are shown to share a broad class of geometric properties with other random networks-metal grains, soap foams, bioconvection, and Langmuir monolayers.

  15. Statistics of premixed flame cells

    SciTech Connect

    Noever, D.A. )

    1991-07-15

    The statistics of random cellular patterns in premixed flames are analyzed. Agreement is found with a variety of topological relations previously found for other networks, namely, Lewis's law and Aboav's law. Despite the diverse underlying physics, flame cells are shown to share a broad class of geometric properties with other random networks---metal grains, soap foams, bioconvection, and Langmuir monolayers.

  16. Insulin requires normal expression and signaling of insulin receptor A to reverse gestational diabetes-reduced adenosine transport in human umbilical vein endothelium.

    PubMed

    Westermeier, Francisco; Salomón, Carlos; Farías, Marcelo; Arroyo, Pablo; Fuenzalida, Bárbara; Sáez, Tamara; Salsoso, Rocío; Sanhueza, Carlos; Guzmán-Gutiérrez, Enrique; Pardo, Fabián; Leiva, Andrea; Sobrevia, Luis

    2015-01-01

    Reduced adenosine uptake via human equilibrative nucleoside transporter 1 (hENT1) in human umbilical vein endothelial cells (HUVECs) from gestational diabetes mellitus (GDM) is reversed by insulin by restoring hENT1 expression. Insulin receptors A (IR-A) and B (IR-B) are expressed in HUVECs, and GDM results in higher IR-A mRNA expression vs. cells from normal pregnancies. We studied whether the reversal of GDM effects on transport by insulin depends on restoration of IR-A expression. We specifically measured hENT1 expression [mRNA, protein abundance, SLC29A1 (for hENT1) promoter activity] and activity (adenosine transport kinetics) and the role of IR-A/IR-B expression and signaling [total and phosphorylated 42 and 44 kDa mitogen-activated protein kinases (p44/42(mapk)) and Akt] in IR-A, IR-B, and IR-A/B knockdown HUVECs from normal (n = 33) or GDM (n = 33) pregnancies. GDM increases IR-A/IR-B mRNA expression (1.8-fold) and p44/42(mapk):Akt activity (2.7-fold) ratios. Insulin reversed GDM-reduced hENT1 expression and maximal transport capacity (V(max)/K(m)), and GDM-increased IR-A/IR-B mRNA expression and p44/42(mapk):Akt activity ratios to values in normal pregnancies. Insulin's effect was abolished in IR-A or IR-A/B knockdown cells. Thus, insulin requires normal IR-A expression and p44/42(mapk)/Akt signaling to restore GDM-reduced hENT1 expression and activity in HUVECs. This could be a protective mechanism for the placental macrovascular endothelial dysfunction seen in GDM. PMID:25351985

  17. Cancer Incidence and Mortality in Patients with Type 2 Diabetes Treated with Human Insulin: A Cohort Study in Shanghai

    PubMed Central

    Zheng, Ying; Hou, Xuhong; Mo, Yifei; Yu, Weihui; Zhang, Lei; Hu, Cheng; Nan, Hairong; Chen, Lei; Li, Jie; Liu, Yuxiang; Huang, Zhezhou; Han, Ming; Bao, Yuqian; Zhong, Weijian; Jia, Weiping

    2013-01-01

    Aim The aim was to investigate the association between human insulin and cancer incidence and mortality in Chinese patients with type 2 diabetes. Methods We recruited 8,774 insulin-naïve diabetes patients from the Shanghai Diabetes Registry (SDR). The follow-up rate was 85.4%. All subjects were divided into the insulin use cohort (n = 3,639) and the non-insulin use cohort (n = 5,135). The primary outcome was the first diagnosis of any cancer. The secondary outcome was all-cause mortality. Cox proportional hazards model was used to estimate the relative risk (RR) of cancer and mortality. Results We observed 98 cancer events in the insulin use cohort and 170 in the non-insulin use cohort. Cancer incidence rates were 78.6 and 74.3 per 10,000 patients per year in the insulin users and the non-insulin users, respectively. No significant difference in cancer risk was observed between the two cohorts (adjusted RR = 1.20, 95% CI 0.89–1.62, P = 0.228). Regarding site-specific cancers, only the risk of liver cancer was significantly higher in the insulin users compared to that in the non-insulin users (adjusted RR = 2.84, 95% CI 1.12–7.17, P = 0.028). The risks of overall mortality (adjusted RR = 1.89, 95% CI 1.47–2.43, P<0.0001) and death from cancer (adjusted RR = 2.16, 95% CI 1.39–3.35, P = 0.001) were all significantly higher in the insulin users than in the non-insulin users. Conclusion There was no excess risk of overall cancer in patients with type 2 diabetes who were treated with human insulin. However, a significantly higher risk of liver cancer was found in these patients. Moreover, insulin users showed higher risks of overall and cancer mortality. Considering that individuals treated with insulin were more likely to be advanced diabetic patients, caution should be used in interpreting these results. PMID:23308218

  18. Probiotic supplementation prevents high-fat, overfeeding-induced insulin resistance in human subjects.

    PubMed

    Hulston, Carl J; Churnside, Amelia A; Venables, Michelle C

    2015-02-28

    The purpose of the present study was to determine whether probiotic supplementation (Lactobacillus casei Shirota (LcS)) prevents diet-induced insulin resistance in human subjects. A total of seventeen healthy subjects were randomised to either a probiotic (n 8) or a control (n 9) group. The probiotic group consumed a LcS-fermented milk drink twice daily for 4 weeks, whereas the control group received no supplementation. Subjects maintained their normal diet for the first 3 weeks of the study, after which they consumed a high-fat (65 % of energy), high-energy (50 % increase in energy intake) diet for 7 d. Whole-body insulin sensitivity was assessed by an oral glucose tolerance test conducted before and after overfeeding. Body mass increased by 0·6 (SE 0·2) kg in the control group (P< 0·05) and by 0·3 (SE 0·2) kg in the probiotic group (P>0·05). Fasting plasma glucose concentrations increased following 7 d of overeating (control group: 5·3 (SE 0·1) v. 5·6 (SE 0·2) mmol/l before and after overfeeding, respectively, P< 0·05), whereas fasting serum insulin concentrations were maintained in both groups. Glucose AUC values increased by 10 % (from 817 (SE 45) to 899 (SE 39) mmol/l per 120 min, P< 0·05) and whole-body insulin sensitivity decreased by 27 % (from 5·3 (SE 1·4) to 3·9 (SE 0·9), P< 0·05) in the control group, whereas normal insulin sensitivity was maintained in the probiotic group (4·4 (SE 0·8) and 4·5 (SE 0·9) before and after overeating, respectively (P>0·05). These results suggest that probiotic supplementation may be useful in the prevention of diet-induced metabolic diseases such as type 2 diabetes. PMID:25630516

  19. Probiotic supplementation prevents high-fat, overfeeding-induced, insulin resistance in humans

    PubMed Central

    Hulston, Carl J.; Churnside, Amelia A.; Venables, Michelle C.

    2015-01-01

    The purpose of this study was to determine whether probiotic supplementation (Lactobacillus casei Shirota [LcS]) prevents diet-induced insulin resistance in humans. Seventeen healthy individuals were randomised to probiotic (n = 8) or control (n = 9) groups. The probiotic group consumed an LcS-fermented milk drink twice daily for 4 weeks whereas the control group received no supplementation. Subjects maintained their normal diet for the first 3 weeks of the study, after which they consumed a high-fat (65% energy) high-energy (+50% kcal) diet for 7 days. Whole body insulin sensitivity was assessed via an oral glucose tolerance test conducted before and after overfeeding. Body mass increased by 0.6 ± 0.2 kg in the control group (p < 0.05) and 0.3 ± 0.2 kg in the probiotic group (p > 0.05). Fasting plasma glucose concentrations increased following 7 days of overeating (control group only; 5.3 ± 0.1 vs. 5.6 ± 0.2 mmol/L, p < 0.05) whereas fasting serum insulin concentrations were maintained in both groups. Glucose AUC increased by 10% (from 817 ± 45 to 899 ± 39 mmol/L/120 min, p < 0.05) and whole body insulin sensitivity decreased by 27% (from 5.3 ± 1.4 to 3.9 ± 0.9, p < 0.05) in the control group, whereas normal insulin sensitivity was maintained in the probiotic group (4.4 ± 0.8 and 4.5 ± 0.9 before and after overeating, respectively, p > 0.05). These results suggest that probiotic supplementation may be useful in the prevention of diet-induced metabolic diseases such as type II diabetes. PMID:25630516

  20. Label-free detection of insulin and glucagon within human islets of Langerhans using Raman spectroscopy.

    PubMed

    Hilderink, Janneke; Otto, Cees; Slump, Cees; Lenferink, Aufried; Engelse, Marten; van Blitterswijk, Clemens; de Koning, Eelco; Karperien, Marcel; van Apeldoorn, Aart

    2013-01-01

    Intrahepatic transplantation of donor islets of Langerhans is a promising therapy for patients with type 1 diabetes. It is of critical importance to accurately monitor islet quality before transplantation, which is currently done by standard histological methods that are performed off-line and require extensive sample preparation. As an alternative, we propose Raman spectroscopy which is a non-destructive and label-free technique that allows continuous real-time monitoring of the tissue to study biological changes as they occur. By performing Raman spectroscopic measurements on purified insulin and glucagon, we showed that the 520 cm(-1) band assigned to disulfide bridges in insulin, and the 1552 cm(-1) band assigned to tryptophan in glucagon are mutually exclusive and could therefore be used as indirect markers for the label-free distinction between both hormones. High-resolution hyperspectral Raman imaging for these bands showed the distribution of disulfide bridges and tryptophan at sub-micrometer scale, which correlated with the location of insulin and glucagon as revealed by conventional immunohistochemistry. As a measure for this correlation, quantitative analysis was performed comparing the Raman images with the fluorescence images, resulting in Dice coefficients (ranging between 0 and 1) of 0.36 for insulin and 0.19 for glucagon. Although the use of separate microscope systems with different spatial resolution and the use of indirect Raman markers cause some image mismatch, our findings indicate that Raman bands for disulfide bridges and tryptophan can be used as distinctive markers for the label-free detection of insulin and glucagon in human islets of Langerhans. PMID:24167603

  1. Protein crystal growth in microgravity review of large scale temperature induction method: Bovine insulin, human insulin and human α-interferon

    NASA Astrophysics Data System (ADS)

    Long, Marianna M.; Bishop, John Bradford; Delucas, Lawrence J.; Nagabhushan, Tattanhalli L.; Reichert, Paul; Smith, G. David

    1997-01-01

    The Protein Crystal Growth Facility (PCF) is space-flight hardware that accommodates large scale protein crystal growth experiments using temperature change as the inductive step. Recent modifications include specialized instrumentation for monitoring crystal nucleation with laser light scattering. This paper reviews results from its first seven flights on the Space Shuttle, the last with laser light scattering instrumentation in place. The PCF's objective is twofold: (1) the production of high quality protein crystals for x-ray analysis and subsequent structure-based drug design and (2) preparation of a large quantity of relatively contaminant free crystals for use as time-release protein pharmaceuticals. The first three Shuttle flights with bovine insulin constituted the PCF's proof of concept, demonstrating that the space-grown crystals were larger and diffracted to higher resolution than their earth-grown counterparts. The later four PCF missions were used to grow recombinant human insulin crystals for x-ray analysis and continue productions trials aimed at the development of a processing facility for crystalline recombinant a-interferon.

  2. X-ray investigation of gene-engineered human insulin crystallized from a solution containing polysialic acid

    PubMed Central

    Timofeev, V. I.; Chuprov-Netochin, R. N.; Samigina, V. R.; Bezuglov, V. V.; Miroshnikov, K. A.; Kuranova, I. P.

    2010-01-01

    Attempts to crystallize the noncovalent complex of recombinant human insulin with polysialic acid were carried out under normal and microgravity conditions. Both crystal types belonged to the same space group, I213, with unit-cell parameters a = b = c = 77.365 Å, α = β = γ = 90.00°. The reported space group and unit-cell parameters are almost identical to those of cubic insulin reported in the PDB. The results of X-ray studies confirmed that the crystals obtained were cubic insulin crystals and that they contained no polysialic acid or its fragments. Electron-density maps were calculated using X-ray diffraction sets from earth-grown and microgravity-grown crystals and the three-dimensional structure of the insulin molecule was determined and refined. The conformation and secondary-structural elements of the insulin molecule in different crystal forms were compared. PMID:20208155

  3. Reversal of diabetes following transplantation of an insulin-secreting human liver cell line: Melligen cells

    PubMed Central

    Lawandi, Janet; Tao, Chang; Ren, Binhai; Williams, Paul; Ling, Dora; Swan, M Anne; Nassif, Najah T; Torpy, Fraser R; O’Brien, Bronwyn A; Simpson, Ann M

    2015-01-01

    As an alternative to the transplantation of islets, a human liver cell line has been genetically engineered to reverse type 1 diabetes (TID). The initial liver cell line (Huh7ins) commenced secretion of insulin in response to a glucose concentration of 2.5 mmol/l. After transfection of the Huh7ins cells with human islet glucokinase, the resultant Melligen cells secreted insulin in response to glucose within the physiological range; commencing at 4.25 mmol/l. Melligen cells exhibited increased glucokinase enzymatic activity in response to physiological glucose concentrations, as compared with Huh7ins cells. When transplanted into diabetic immunoincompetent mice, Melligen cells restored normoglycemia. Quantitative real-time polymerase chain reaction (qRT-PCR) revealed that both cell lines expressed a range of β-cell transcription factors and pancreatic hormones. Exposure of Melligen and Huh7ins cells to proinflammatory cytokines (TNF-α, IL-1β, and IFN-γ) affected neither their viability nor their ability to secrete insulin to glucose. Gene expression (microarray and qRT-PCR) analyses indicated the survival of Melligen cells in the presence of known β-cell cytotoxins was associated with the expression of NF-κB and antiapoptotic genes (such as BIRC3). This study describes the successful generation of an artificial β-cell line, which, if encapsulated to avoid allograft rejection, may offer a clinically applicable cure for T1D. PMID:26029722

  4. Reversal of diabetes following transplantation of an insulin-secreting human liver cell line: Melligen cells.

    PubMed

    Lawandi, Janet; Tao, Chang; Ren, Binhai; Williams, Paul; Ling, Dora; Swan, M Anne; Nassif, Najah T; Torpy, Fraser R; O'Brien, Bronwyn A; Simpson, Ann M

    2015-01-01

    As an alternative to the transplantation of islets, a human liver cell line has been genetically engineered to reverse type 1 diabetes (TID). The initial liver cell line (Huh7ins) commenced secretion of insulin in response to a glucose concentration of 2.5 mmol/l. After transfection of the Huh7ins cells with human islet glucokinase, the resultant Melligen cells secreted insulin in response to glucose within the physiological range; commencing at 4.25 mmol/l. Melligen cells exhibited increased glucokinase enzymatic activity in response to physiological glucose concentrations, as compared with Huh7ins cells. When transplanted into diabetic immunoincompetent mice, Melligen cells restored normoglycemia. Quantitative real-time polymerase chain reaction (qRT-PCR) revealed that both cell lines expressed a range of β-cell transcription factors and pancreatic hormones. Exposure of Melligen and Huh7ins cells to proinflammatory cytokines (TNF-α, IL-1β, and IFN-γ) affected neither their viability nor their ability to secrete insulin to glucose. Gene expression (microarray and qRT-PCR) analyses indicated the survival of Melligen cells in the presence of known β-cell cytotoxins was associated with the expression of NF-κB and antiapoptotic genes (such as BIRC3). This study describes the successful generation of an artificial β-cell line, which, if encapsulated to avoid allograft rejection, may offer a clinically applicable cure for T1D. PMID:26029722

  5. Determination of human insulin and its analogues in human blood using liquid chromatography coupled to ion mobility mass spectrometry (LC-IM-MS).

    PubMed

    Thomas, Andreas; Schänzer, Wilhelm; Thevis, Mario

    2014-01-01

    The qualitative and quantitative determination of insulin from human blood samples is an emerging topic in doping controls as well as in other related disciplines (e.g. forensics). Beside the therapeutic use, insulin represents a prohibited, performance enhancing substance in sports drug testing. In both cases accurate, sensitive, specific, and unambiguous determination of the target peptide is of the utmost importance. The challenges concerning identifying insulins in blood by liquid chromatography coupled to ion mobility mass spectrometry (LC-IM-MS) are detecting the basal concentrations of approximately 0.2 ng/mL and covering the hyperinsulinaemic clamps at > 3 ng/mL simultaneously using up to 200 μL of plasma or serum. This is achieved by immunoaffinity purification of the insulins with magnetic beads and subsequent separation by micro-scale liquid chromatography coupled to ion mobility / high resolution mass spectrometry. The method includes human insulin as well as the synthetic or animal analogues insulin aspart, glulisine, glargine, detemir, lispro, bovine, and porcine insulin. The method validation shows reliable results considering specificity, limit of detection (0.2 ng/mL except for detemir: 0.8 ng/mL), limit of quantification (0.5 ng/mL for human insulin), precision (CV < 20%), linearity (r > 0.99), recovery, accuracy (>90%), robustness (plasma/serum), and ion suppression. For quantification of human insulin a labelled internal standard ([[(2) H10 ]-Leu(B6,B11,B15,B17) ] - human Insulin) is introduced. By means of the additional ion mobility separation of the different analogues, the chromatographic run time is shortened to 8 min without losing specificity. As proof-of-concept, the procedure was successfully applied to different blood specimens from diabetic patients receiving recombinant synthetic analogues. PMID:25219675

  6. Sex-specific action of insulin to acutely increase the metabolic clearance rate of dehydroepiandrosterone in humans.

    PubMed Central

    Nestler, J E; Kahwash, Z

    1994-01-01

    To test the hypothesis that insulin acutely enhances the metabolic clearance rate (MCR) of dehydroepiandrosterone in humans, the effect of a short-term insulin infusion on the MCR of dehydroepiandrosterone was assessed in 10 men and 7 women. After an overnight fast, dehydroepiandrosterone was infused at 3.47 mumol/h for 6.5 h. At 240 min, a hyperinsulinemic-euglycemic clamp was begun by infusing insulin at 21.5 pmol/kg per min for 2.5 h. MCR of dehydroepiandrosterone was calculated at baseline (210-240 min) and during the insulin infusion (360-390 min). A control study was conducted at least 1 wk later, in which 0.45% saline was substituted for the hyperinsulinemic-euglycemic clamp. During the insulin clamp study, serum insulin rose from 34 +/- 2 to 1084 +/- 136 pmol/liter (P = 0.0001) in men and from 40 +/- 5 to 1357 +/- 175 pmol/liter (P = 0.0003) in women, while serum glucose remained constant in both groups. MCR of dehydroepiandrosterone rose in men during the insulin infusion from 2443 +/- 409 to 3599 +/- 500 liters/24 h (P = 0.003), but did not change during the control saline infusion. In contrast, MCR of dehydroepiandrosterone in women did not change in the insulin clamp study during insulin infusion (2526 +/- 495 liters/24 h at baseline vs. 2442 +/- 491 liters/24 h during insulin infusion; P = 0.78). These findings suggest that insulin acutely increases the MCR of dehydroepiandrosterone in men but not in women. PMID:7929824

  7. Glucose-dependent insulinotropic polypeptide: effects on insulin and glucagon secretion in humans.

    PubMed

    Christensen, Mikkel Bring

    2016-04-01

    hypoglycaemia. The results from the three studies indicate that GIP has effects on insulin and glucagon responses highly dependent upon the blood glucose levels. At fasting glycaemia and lower levels of glycaemia, GIP acts to increase glucagon with little effect on insulin release. At hyperglycaemia the insulin releasing effect of GIP prevail, which lead to an increase in glucose disposal by approximately 75% in healthy subjects (Study 1) and 25% in patients with Type 2 diabetes (Study 2) relative to placebo. After insulin-induced hypoglycaemia in patients with type 1 diabetes (Study 3), GIP increase glucagon release, which probably augments endogenous glucose production. This was associated with a reduced need for exogenously added glucose to prevent hypoglycaemia. In conclusion, the studies position GIP as a bifunctional blood glucose stabilising hormone that glucose-dependently regulates insulin and glucagon responses in humans. PMID:27034187

  8. Sensitive detection of human insulin using a designed combined pore approach.

    PubMed

    Lei, Chang; Noonan, Owen; Jambhrunkar, Siddharth; Qian, Kun; Xu, Chun; Zhang, Jun; Nouwens, Amanda; Yu, Chengzhong

    2014-06-25

    A unique combined pore approach to the sensitive detection of human insulin is developed. Through a systematic study to understand the impact of pore size and surface chemistry of nanoporous materials on their enrichment and purification performance, the advantages of selected porous materials are integrated to enhance detection sensitivity in a unified two-step process. In the first purification step, a rationally designed large pore material (ca. 100 nm in diameter) is chosen to repel the interferences from nontarget molecules. In the second enrichment step, a hydrophobically modified mesoporous material with a pore size of 5 nm is selected to enrich insulin molecules. A low detection limit of 0.05 ng mL(-1) in artificial urine is achieved by this advanced approach, similar to most antibody-based analysis protocols. This designer approach is efficient and low cost, and thus has great potential in the sensitive detection of biomolecules in complex biological systems. PMID:24599559

  9. Pancreatic Transdifferentiation and Glucose-Regulated Production of Human Insulin in the H4IIE Rat Liver Cell Line

    PubMed Central

    Ren, Binhai; Tao, Chang; Swan, Margaret Anne; Joachim, Nichole; Martiniello-Wilks, Rosetta; Nassif, Najah T.; O’Brien, Bronwyn A.; Simpson, Ann M.

    2016-01-01

    Due to the limitations of current treatment regimes, gene therapy is a promising strategy being explored to correct blood glucose concentrations in diabetic patients. In the current study, we used a retroviral vector to deliver either the human insulin gene alone, the rat NeuroD1 gene alone, or the human insulin gene and rat NeuroD1 genes together, to the rat liver cell line, H4IIE, to determine if storage of insulin and pancreatic transdifferentiation occurred. Stable clones were selected and expanded into cell lines: H4IIEins (insulin gene alone), H4IIE/ND (NeuroD1 gene alone), and H4IIEins/ND (insulin and NeuroD1 genes). The H4IIEins cells did not store insulin; however, H4IIE/ND and H4IIEins/ND cells stored 65.5 ± 5.6 and 1475.4 ± 171.8 pmol/insulin/5 × 106 cells, respectively. Additionally, several β cell transcription factors and pancreatic hormones were expressed in both H4IIE/ND and H4IIEins/ND cells. Electron microscopy revealed insulin storage vesicles in the H4IIE/ND and H4IIEins/ND cell lines. Regulated secretion of insulin to glucose (0–20 mmol/L) was seen in the H4IIEins/ND cell line. The H4IIEins/ND cells were transplanted into diabetic immunoincompetent mice, resulting in normalization of blood glucose. This data shows that the expression of NeuroD1 and insulin in liver cells may be a useful strategy for inducing islet neogenesis and reversing diabetes. PMID:27070593

  10. Pancreatic Transdifferentiation and Glucose-Regulated Production of Human Insulin in the H4IIE Rat Liver Cell Line.

    PubMed

    Ren, Binhai; Tao, Chang; Swan, Margaret Anne; Joachim, Nichole; Martiniello-Wilks, Rosetta; Nassif, Najah T; O'Brien, Bronwyn A; Simpson, Ann M

    2016-01-01

    Due to the limitations of current treatment regimes, gene therapy is a promising strategy being explored to correct blood glucose concentrations in diabetic patients. In the current study, we used a retroviral vector to deliver either the human insulin gene alone, the rat NeuroD1 gene alone, or the human insulin gene and rat NeuroD1 genes together, to the rat liver cell line, H4IIE, to determine if storage of insulin and pancreatic transdifferentiation occurred. Stable clones were selected and expanded into cell lines: H4IIEins (insulin gene alone), H4IIE/ND (NeuroD1 gene alone), and H4IIEins/ND (insulin and NeuroD1 genes). The H4IIEins cells did not store insulin; however, H4IIE/ND and H4IIEins/ND cells stored 65.5 ± 5.6 and 1475.4 ± 171.8 pmol/insulin/5 × 10⁶ cells, respectively. Additionally, several β cell transcription factors and pancreatic hormones were expressed in both H4IIE/ND and H4IIEins/ND cells. Electron microscopy revealed insulin storage vesicles in the H4IIE/ND and H4IIEins/ND cell lines. Regulated secretion of insulin to glucose (0-20 mmol/L) was seen in the H4IIEins/ND cell line. The H4IIEins/ND cells were transplanted into diabetic immunoincompetent mice, resulting in normalization of blood glucose. This data shows that the expression of NeuroD1 and insulin in liver cells may be a useful strategy for inducing islet neogenesis and reversing diabetes. PMID:27070593

  11. Human biliverdin reductase: a member of the insulin receptor substrate family with serine/threonine/tyrosine kinase activity.

    PubMed

    Lerner-Marmarosh, Nicole; Shen, Jenny; Torno, Michael D; Kravets, Anatoliy; Hu, Zhenbo; Maines, Mahin D

    2005-05-17

    We describe here the tyrosine kinase activity of human biliverdin reductase (BVR) and its potential role in the insulin-signaling pathway. BVR is both a substrate for insulin receptor (IR) tyrosine kinase (IRK) activity and a kinase for serine phosphorylation of IR substrate 1 (IRS-1). Our previous studies have revealed serine/threonine kinase activity of BVR. Y198, in the YMKM motif found in the C-terminal domain of BVR, is shown to be a substrate for insulin-activated IRK. This motif in IRS proteins provides a docking site for proteins that contain a Src homology 2 domain. Additionally, Y228 in the YLSF sequence and Y291 are IRK substrates; the former sequence provides optimum recognition motif in the tyrosine phosphatase, SHP-1, and for SHC (Src homology 2 domain containing transfroming protein 1). BVR autophosphorylates N-terminal tyrosines Y72 and Y83. Serine residues in IRS-1 are targets for BVR phosphorylation, and point mutation of serine residues in the kinase domain of the reductase inhibits phosphotransferase activity. Because tyrosine phosphorylation of IRS-1 activates the insulin signaling pathway and serine phosphorylation of IRS-1 blocks insulin action, our findings that insulin increases BVR tyrosine phosphorylation and that there is an increase in glucose uptake in response to insulin when expression of BVR is "knocked down" by small interfering RNA suggest a potential role for BVR in the insulin signaling pathway. PMID:15870194

  12. Arg287Gln VARIANT OF EPHX2 AND EPOXYEICOSATRIENOIC ACIDS ARE ASSOCIATED WITH INSULIN SENSITIVITY IN HUMANS

    PubMed Central

    Ramirez, Claudia E.; Shuey, Megan M.; Milne, Ginger L.; Gilbert, Kimberly; Hui, Nian; Yu, Chang; Luther, James M.; Brown, Nancy J.

    2014-01-01

    Epoxyeicosatrienoic acids (EETs) protect against the development of insulin resistance in rodents. EETs are hydrolyzed to less biologically active diols by soluble epoxide hydrolase (encoded for by EPHX2). Functional variants of EPHX2 encode for enzymes with increased (Lys55Arg) or decreased (Arg287Gln) hydrolase activity. This study tested the hypothesis that variants of EPHX2 are associated with insulin sensitivity or secretion in humans. Subjects participating in metabolic phenotyping studies were genotyped. Eighty-five subjects underwent hyperglycemic clamps. There was no relationship between the Lys55Arg genotype and insulin sensitivity or secretion. In contrast, the EPHX2 287Gln variant was associated with higher insulin sensitivity index (p=0.019 controlling for body mass index and metabolic syndrome). Also, there was an interactive effect of EPHX2 Arg287Gln genotype and body mass index on insulin sensitivity index (p=0.029). There was no relationship between EPHX2 Arg287Gln genotype and acute or late-phase glucose-stimulated insulin secretion, but disposition index was higher in 287Gln carriers compared with Arg/Arg (p=0.022). Plasma EETs correlated with insulin sensitivity index (r=0.64, p=0.015 for total EETs) and were decreased in the metabolic syndrome. A genetic variant that results in decreased soluble epoxide hydrolase activity is associated with increased insulin sensitivity, as are higher EETs. PMID:25173047

  13. Understanding the structural differences between spherical and rod-shaped human insulin nanoparticles produced by supercritical fluids precipitation.

    PubMed

    Park, Yeonju; Seo, Yongil; Chae, Boknam; Pyo, Dongjin; Chung, Hoeil; Hwang, Hyonseok; Jung, Young Mee

    2015-02-01

    In this study, the thermal denaturation mechanism and secondary structures of two types of human insulin nanoparticles produced by a process of solution-enhanced dispersion by supercritical fluids using dimethyl sulfoxide (DMSO) and ethanol (EtOH) solutions of insulin are investigated using spectroscopic approaches and molecular dynamics calculations. First, the temperature-dependent IR spectra of spherical and rod-shaped insulin nanoparticles prepared from DMSO and EtOH solution, respectively, are analyzed using principal component analysis (PCA) and 2D correlation spectroscopy to obtain a deeper understanding of the molecular structures and thermal behavior of the two insulin particle shapes. All-atom molecular dynamics (AAMD) calculations are performed to investigate the influence of the solvent molecules on the production of the insulin nanoparticles and to elucidate the geometric differences between the two types of nanoparticles. The results of the PCA, the 2D correlation spectroscopic analysis, and the AAMD calculations clearly reveal that the thermal denaturation mechanisms and the degrees of hydrogen bonding in the spherical and rod-shaped insulin nanoparticles are different. The polarity of the solvent might not alter the structure or function of the insulin produced, but the solvent polarity does influence the synthesis of different shapes of insulin nanoparticles. PMID:25358869

  14. [Differentiation of human amniotic mesenchymal stem cells into insulin-secreting cells induced by regenerating pancreatic extract].

    PubMed

    Zhang, Yanmei; Wang, Dianliang; Zeng, Hongyan; Wang, Lieming; Sun, Jinwei; Zhang, Zhen; Dong, Shasha

    2012-02-01

    In this study, the natural biological inducer, rat regenerating pancreatic extract (RPE), was used to induce human amniotic mesenchymal stem cells (hAMSCs) into insulin-secreting cells. We excised 60% of rat pancreas in order to stimulate pancreatic regeneration. RPE was extracted and used to induce hAMSCs at a final concentration of 20 microg/mL. The experiment methods used were as follows: morphological-identification, dithizone staining, immumofluorescence analysis, reverse transcription-PCR (RT-PCR) and insulin secretion stimulated by high glucose. The results show that the cell morphology of passge3 hAMSCs changed significantly after the induction of RPE, resulting in cluster shape after induction for 15 days. Dithizone staining showed that there were scarlet cell masses in RPE-treated culture. Immumofluorescence analysis indicated that induced cells were insulin-positive expression. RT-PCR showed the positive expression of human islet-related genes Pdx1 and insulin in the induced cells. The result of insulin secretion stimulated by high glucose indicated that insulin increasingly secreted and then kept stable with prolongation of high glucose stimulation. In conclusion, hAMSCs had the potential to differentiate into insulin-secreting cells induced by RPE in vitro. PMID:22667123

  15. SIRT3 Deficiency Induces Endothelial Insulin Resistance and Blunts Endothelial-Dependent Vasorelaxation in Mice and Human with Obesity.

    PubMed

    Yang, Lu; Zhang, Julei; Xing, Wenjuan; Zhang, Xing; Xu, Jie; Zhang, Haifeng; Chen, Li; Ning, Xiaona; Ji, Gang; Li, Jia; Zhao, Qingchuan; Gao, Feng

    2016-01-01

    Recent evidence implicates the critical role of Sirtuin 3 (SIRT3) in the development of many metabolic diseases, but the contribution of SIRT3 to vascular homeostasis remains largely unknown. The aim of this study was to investigate the role of SIRT3 in endothelial insulin resistance and vascular dysfunction in obesity. We found an impaired insulin-induced mesenteric vasorelaxation and concomitant reduced vascular SIRT3 expression in morbid obese human subjects compared with the non-obese subjects. Downregulation of SIRT3 in cultured human endothelial cells increased mitochondrial reactive oxygen species (mtROS) and impaired insulin signaling as evidenced by decreased phosphorylation of Akt and endothelial nitric oxide synthase and subsequent reduced nitric oxide (NO) release. In addition, obese mice induced by 24-week high-fat diet (HFD) displayed an impaired endothelium-dependent vasorelaxation to both insulin and acetylcholine, which was further exacerbated by the gene deletion of Sirt3. Scavenging of mtROS not only restored insulin-stimulated NO production in SIRT3 knockdown cells, but also improved insulin-induced vasorelaxation in SIRT3 knockout mice fed with HFD. Taken together, our findings suggest that SIRT3 positively regulates endothelial insulin sensitivity and show that SIRT3 deficiency and resultant increased mtROS contribute to vascular dysfunction in obesity. PMID:27000941

  16. Acute and chronic regulation of leptin synthesis, storage, and secretion by insulin and dexamethasone in human adipose tissue.

    PubMed

    Lee, Mi-Jeong; Wang, Yanxin; Ricci, Matthew R; Sullivan, Sean; Russell, Colleen D; Fried, Susan K

    2007-03-01

    Serum leptin levels are upregulated in proportion to body fat and also increase over the short term in response to meals or insulin. To understand the mechanisms involved, we assessed leptin synthesis and secretion in samples of adipose tissue from subjects with a wide range of BMI. Tissue leptin content and relative rates of leptin biosynthesis, as determined by metabolic labeling, were highly correlated with each other and with BMI and fat cell size. To understand mechanisms regulating leptin synthesis in obesity, we used biosynthetic labeling to directly assess the effects of insulin and glucocorticoids (dexamethasone) on leptin synthesis and secretion in human adipose tissue. Chronic treatment (1-2 days in organ culture) with insulin increased relative rates of leptin biosynthesis without affecting leptin mRNA levels. In contrast, dexamethasone increased leptin mRNA and biosynthesis in parallel. Acute treatment with insulin or dexamethasone (added during 1-h preincubation and 45-min pulse labeling) did not affect relative rates of leptin biosynthesis, but pulse-chase studies showed that addition of insulin nearly doubled the release of [35S]leptin after a 1-h chase. We conclude that the higher leptin stores in adipose tissue of obese humans are maintained by chronic effects of insulin and glucocorticoids acting at pre- and posttranslational levels and that the ability of insulin to increase the release of preformed leptin may contribute to short-term variations in circulating leptin levels. PMID:17122089

  17. SIRT3 Deficiency Induces Endothelial Insulin Resistance and Blunts Endothelial-Dependent Vasorelaxation in Mice and Human with Obesity

    PubMed Central

    Yang, Lu; Zhang, Julei; Xing, Wenjuan; Zhang, Xing; Xu, Jie; Zhang, Haifeng; Chen, Li; Ning, Xiaona; Ji, Gang; Li, Jia; Zhao, Qingchuan; Gao, Feng

    2016-01-01

    Recent evidence implicates the critical role of Sirtuin 3 (SIRT3) in the development of many metabolic diseases, but the contribution of SIRT3 to vascular homeostasis remains largely unknown. The aim of this study was to investigate the role of SIRT3 in endothelial insulin resistance and vascular dysfunction in obesity. We found an impaired insulin-induced mesenteric vasorelaxation and concomitant reduced vascular SIRT3 expression in morbid obese human subjects compared with the non-obese subjects. Downregulation of SIRT3 in cultured human endothelial cells increased mitochondrial reactive oxygen species (mtROS) and impaired insulin signaling as evidenced by decreased phosphorylation of Akt and endothelial nitric oxide synthase and subsequent reduced nitric oxide (NO) release. In addition, obese mice induced by 24-week high-fat diet (HFD) displayed an impaired endothelium-dependent vasorelaxation to both insulin and acetylcholine, which was further exacerbated by the gene deletion of Sirt3. Scavenging of mtROS not only restored insulin-stimulated NO production in SIRT3 knockdown cells, but also improved insulin-induced vasorelaxation in SIRT3 knockout mice fed with HFD. Taken together, our findings suggest that SIRT3 positively regulates endothelial insulin sensitivity and show that SIRT3 deficiency and resultant increased mtROS contribute to vascular dysfunction in obesity. PMID:27000941

  18. Phenothiazine Neuroleptics Signal to the Human Insulin Promoter as Revealed by a Novel High-Throughput Screen

    PubMed Central

    KISELYUK, ALICE; FARBER-KATZ, SUZETTE; COHEN, TOM; LEE, SEUNG-HEE; GERON, IFAT; AZIMI, BEHRAD; HEYNEN-GENEL, SUSANNE; SINGER, ODED; PRICE, JEFFREY; MERCOLA, MARK; ITKIN-ANSARI, PAMELA; LEVINE, FRED

    2012-01-01

    A number of diabetogenic stimuli interact to influence insulin promoter activity, making it an attractive target for both mechanistic studies and therapeutic interventions. High-throughput screening (HTS) for insulin promoter modulators has the potential to reveal novel inputs into the control of that central element of the pancreatic β-cell. A cell line from human islets in which the expression of insulin and other β-cell-restricted genes are modulated by an inducible form of the bHLH transcription factor E47 was developed. This cell line, T6PNE, was adapted for HTS by transduction with a vector expressing green fluorescent protein under the control of the human insulin promoter. The resulting cell line was screened against a library of known drugs for those that increase insulin promoter activity. Members of the phenothiazine class of neuroleptics increased insulin gene expression upon short-term exposure. Chronic treatment, however, resulted in suppression of insulin promoter activity, consistent with the effect of phenothiazines observed clinically to induce diabetes in chronically treated patients. In addition to providing insights into previously unrecognized targets and mechanisms of action of phenothiazines, the novel cell line described here provides a broadly applicable platform for mining new molecular drug targets and central regulators of β-cell differentiated function. PMID:20547533

  19. Interferon γ Attenuates Insulin Signaling, Lipid Storage, and Differentiation in Human Adipocytes via Activation of the JAK/STAT Pathway*

    PubMed Central

    McGillicuddy, Fiona C.; Chiquoine, Elise H.; Hinkle, Christine C.; Kim, Roy J.; Shah, Rachana; Roche, Helen M.; Smyth, Emer M.; Reilly, Muredach P.

    2009-01-01

    Recent reports demonstrate T-cell infiltration of adipose tissue in early obesity. We hypothesized that interferon (IFN) γ, a major T-cell inflammatory cytokine, would attenuate human adipocyte functions and sought to establish signaling mechanisms. Differentiated human adipocytes were treated with IFNγ ± pharmacological inhibitors prior to insulin stimulation. [3H]Glucose uptake and AKT phosphorylation were assessed as markers of insulin sensitivity. IFNγ induced sustained loss of insulin-stimulated glucose uptake in human adipocytes, coincident with reduced Akt phosphorylation and down-regulation of the insulin receptor, insulin receptor substrate-1, and GLUT4. Loss of adipocyte triglyceride storage was observed with IFNγ co-incident with reduced expression of peroxisome proliferator-activated receptor γ, adiponectin, perilipin, fatty acid synthase, and lipoprotein lipase. Treatment with IFNγ also blocked differentiation of pre-adipocytes to the mature phenotype. IFNγ-induced robust STAT1 phosphorylation and SOCS1 mRNA expression, with modest, transient STAT3 phosphorylation and SOCS3 induction. Preincubation with a non-selective JAK inhibitor restored glucose uptake and Akt phosphorylation while completely reversing IFNγ suppression of adipogenic mRNAs and adipocyte differentiation. Specific inhibition of JAK2 or JAK3 failed to block IFNγ effects suggesting a predominant role for JAK1-STAT1. We demonstrate that IFNγ attenuates insulin sensitivity and suppresses differentiation in human adipocytes, an effect most likely mediated via sustained JAK-STAT1 pathway activation. PMID:19776010

  20. A prospective randomised cross-over study of the effect of insulin analogues and human insulin on the frequency of severe hypoglycaemia in patients with type 1 diabetes and recurrent hypoglycaemia (the HypoAna trial): study rationale and design

    PubMed Central

    2012-01-01

    Background Severe hypoglycaemia still represents a significant problem in insulin-treated diabetes. Most patients do not experience severe hypoglycaemia often. However, 20% of patients with type 1 diabetes experience recurrent severe hypoglycaemia corresponding to at least two episodes per year. The effect of insulin analogues on glycaemic control has been documented in large trials, while their effect on the frequency of severe hypoglycaemia is less clear, especially in patients with recurrent severe hypoglycaemia. The HypoAna Trial is designed to investigate whether short-acting and long-acting insulin analogues in comparison with human insulin are superior in reducing the occurrence of severe hypoglycaemic episodes in patients with recurrent hypoglycaemia. This paper reports the study design of the HypoAna Trial. Methods/design The study is a Danish two-year investigator-initiated, prospective, randomised, open, blinded endpoint (PROBE), multicentre, cross-over trial investigating the effect of insulin analogues versus human insulin on the frequency of severe hypoglycaemia in subjects with type 1 diabetes. Patients are randomised to treatment with basal-bolus therapy with insulin detemir / insulin aspart or human NPH insulin / human regular insulin in random order. The major inclusion criterion is history of two or more episodes of severe hypoglycaemia in the preceding year. Discussion In contrast to almost all other studies in this field the HypoAna Trial includes only patients with major problems with hypoglycaemia. The HypoAna Trial will elucidate whether basal-bolus regimen with short-acting and long-acting insulin analogues in comparison with human insulin are superior in reducing occurrence of severe hypoglycaemic episodes in hypoglycaemia prone patients with type 1 diabetes. http://www.clinicaltrials.gov: NCT00346996. PMID:22727048

  1. Four RFLPs of the human insulin receptor gene: PstI, KpnI, RsaI (2 RFLPs)

    SciTech Connect

    Cox, N.J.; Spielman, R.S.; Taub, R. ); Kahn, C.R.; Muller-Wieland, D.; Kriauciunas, K.M. )

    1989-01-25

    Fragments were isolated from subclones containing the human insulin receptor cDNA. Probe 1 was a 677 bp XhoI/EcoRI fragment from the {alpha}-subunit region of the insulin receptor cDNA corresponding to nucleotides 334 to 1,011, the putative ligand binding domain. Probe 2 was a 1,599 bp PstI fragment from the {beta}-subunit region of the insulin receptor cDNA corresponding to nucleotides 2,746 to 4,345, encoding the tyrosine kinase domain.

  2. Insulin receptor substrate 1 translocation to the nucleus by the human JC virus T-antigen.

    PubMed

    Lassak, Adam; Del Valle, Luis; Peruzzi, Francesca; Wang, Jin Ying; Enam, Sahnila; Croul, Sidney; Khalili, Kamel; Reiss, Krzysztof

    2002-05-10

    Insulin receptor substrate 1 (IRS-1) is the major signaling molecule for the insulin and insulin-like growth factor I receptors, which transduces both metabolic and growth-promoting signals, and has transforming properties when overexpressed in the cells. Here we show that IRS-1 is translocated to the nucleus in the presence of the early viral protein-T-antigen of the human polyomavirus JC. Nuclear IRS-1 was detected in T-antigen-positive cell lines and in T-antigen-positive biopsies from patients diagnosed with medulloblastoma. The IRS-1 domain responsible for a direct JC virus T-antigen binding was localized within the N-terminal portion of IRS-1 molecule, and the binding was independent from IRS-1 tyrosine phosphorylation and was strongly inhibited by IRS-1 serine phosphorylation. In addition, competition for the IRS-1-T-antigen binding by a dominant negative mutant of IRS-1 inhibited growth and survival of JC virus T-antigen-transformed cells in anchorage-independent culture conditions. Based on these findings, we propose a novel role for the IRS-1-T-antigen complex in controlling cellular equilibrium during viral infection. It may involve uncoupling of IRS-1 from its surface receptor and translocation of its function to the nucleus. PMID:11877394

  3. Evidence for increased recombination near the human insulin gene: implication for disease association studies

    SciTech Connect

    Chakravarti, A.; Elbein, S.C.; Permutt, M.A.

    1986-02-01

    Haplotypes for four new restriction site polymorphisms (detected by Rsa I, Taq I, HincII, and Sac I) and a previously identified DNA length polymorphism (5'FP), all at the insulin locus, have been studied in US Blacks, African Blacks, Caucasians, and Pima Indians. Black populations are polymorphic for all five markers, whereas the other groups are polymorphic for Rsa I, Taq I, and 5'FP only. The data suggest that approx. = 1 in 550 base pairs is variant in this region. The polymorphisms, even though located within 20 kilobases, display low levels of nonrandom association. Population genetic analysis suggests that recombination within this 20-kilobase segment occurs 24 times more frequently than expected if crossing-over occurred uniformly throughout the human genome. These findings suggest that population association between DNA polymorphisms and disease susceptibility genes near the insulin gene or structural mutations in the insulin gene will be weak. Thus, population studies would probably require large sample sizes to detect association. However, the low levels of nonrandom association increase the information content of the locus for linkage studies, which is the best alternative for discovering disease susceptibility genes.

  4. Insulin Stimulates Translocation of Human GLUT4 to the Membrane in Fat Bodies of Transgenic Drosophila melanogaster

    PubMed Central

    Crivat, Georgeta; Lizunov, Vladimir A.; Li, Caroline R.; Stenkula, Karin G.; Zimmerberg, Joshua; Cushman, Samuel W.; Pick, Leslie

    2013-01-01

    The fruit fly Drosophila melanogaster is an excellent model system for studies of genes controlling development and disease. However, its applicability to physiological systems is less clear because of metabolic differences between insects and mammals. Insulin signaling has been studied in mammals because of relevance to diabetes and other diseases but there are many parallels between mammalian and insect pathways. For example, deletion of Drosophila Insulin-Like Peptides resulted in ‘diabetic’ flies with elevated circulating sugar levels. Whether this situation reflects failure of sugar uptake into peripheral tissues as seen in mammals is unclear and depends upon whether flies harbor the machinery to mount mammalian-like insulin-dependent sugar uptake responses. Here we asked whether Drosophila fat cells are competent to respond to insulin with mammalian-like regulated trafficking of sugar transporters. Transgenic Drosophila expressing human glucose transporter-4 (GLUT4), the sugar transporter expressed primarily in insulin-responsive tissues, were generated. After expression in fat bodies, GLUT4 intracellular trafficking and localization were monitored by confocal and total internal reflection fluorescence microscopy (TIRFM). We found that fat body cells responded to insulin with increased GLUT4 trafficking and translocation to the plasma membrane. While the amplitude of these responses was relatively weak in animals reared on a standard diet, it was greatly enhanced in animals reared on sugar-restricted diets, suggesting that flies fed standard diets are insulin resistant. Our findings demonstrate that flies are competent to mobilize translocation of sugar transporters to the cell surface in response to insulin. They suggest that Drosophila fat cells are primed for a response to insulin and that these pathways are down-regulated when animals are exposed to constant, high levels of sugar. Finally, these studies are the first to use TIRFM to monitor insulin

  5. Differential effects of prednisone and growth hormone on fuel metabolism and insulin antagonism in humans

    SciTech Connect

    Horber, F.F.; Marsh, H.M.; Haymond, M.W. )

    1991-01-01

    Human growth hormone (hGH) and prednisone cause insulin resistance and glucose intolerance. However, it is unknown whether hGH and prednisone antagonize insulin action on protein, fat, and carbohydrate metabolism by a common or independent mechanism. Therefore, protein, fat, and carbohydrate metabolism was assessed simultaneously in four groups of eight subjects each after 7 days of placebo, recombinant DNA hGH (rhGH; 0.1 mg.kg-1.day-1), prednisone (0.8 mg.kg-1.day-1), or rhGH and prednisone administration after an 18-h fast and during gut infusion of glucose and amino acids (fed state). Fasting plasma glucose concentrations were similar during placebo and rhGH but elevated (P less than 0.001) during combined treatment, whereas plasma insulin concentrations were higher (237 +/- 57 pmol/ml, P less than 0.001) during combined than during placebo, rhGH, or prednisone treatment (34, 52, and 91 pM, respectively). In the fed state, plasma glucose concentrations were elevated only during combined treatment (11.3 +/- 2.1 mM, P less than 0.001). Plasma insulin concentrations were elevated during therapy with prednisone alone and rhGH alone (667 +/- 72 and 564 +/- 65 pmol/ml, respectively, P less than 0.001) compared with placebo (226 +/- 44 pmol/ml) but lower than with the combined rhGH and prednisone treatment (1249 +/- 54 pmol/ml, P less than 0.01). Protein oxidation {sup 14}C leucine increased (P less than 0.001) with prednisone therapy, decreased (P less than 0.001) with rhGH treatment, and was normal during the combined treatment.

  6. Inhibition of human insulin gene transcription by peroxisome proliferator-activated receptor γ and thiazolidinedione oral antidiabetic drugs

    PubMed Central

    Schinner, S; Krätzner, R; Baun, D; Dickel, C; Blume, R; Oetjen, E

    2009-01-01

    Background and purpose: The transcription factor peroxisome proliferator-activated receptor γ (PPARγ) is essential for glucose homeostasis. PPARγ ligands reducing insulin levels in vivo are used as drugs to treat type 2 diabetes mellitus. Genes regulated by PPARγ have been found in several tissues including insulin-producing pancreatic islet β-cells. However, the role of PPARγ at the insulin gene was unknown. Therefore, the effect of PPARγ and PPARγ ligands like rosiglitazone on insulin gene transcription was investigated. Experimental approach: Reporter gene assays were used in the β-cell line HIT and in primary mature pancreatic islets of transgenic mice. Mapping studies and internal mutations were carried out to locate PPARγ-responsive promoter regions. Key results: Rosiglitazone caused a PPARγ-dependent inhibition of insulin gene transcription in a β-cell line. This inhibition was concentration-dependent and had an EC50 similar to that for the activation of a reporter gene under the control of multimerized PPAR binding sites. Also in normal primary pancreatic islets of transgenic mice, known to express high levels of PPARγ, rosiglitazone inhibited glucose-stimulated insulin gene transcription. Transactivation and mapping experiments suggest that, in contrast to the rat glucagon gene, the inhibition of the human insulin gene promoter by PPARγ/rosiglitazone does not depend on promoter-bound Pax6 and is attributable to the proximal insulin gene promoter region around the transcription start site from −56 to +18. Conclusions and implications: The human insulin gene represents a novel PPARγ target that may contribute to the action of thiazolidinediones in type 2 diabetes mellitus. PMID:19338578

  7. Insulin inhibits human erythrocyte cAMP accumulation and ATP release: role of PDE3 and PI3K

    PubMed Central

    Hanson, Madelyn S.; Stephenson, Alan H.; Bowles, Elizabeth A.; Sprague, Randy S.

    2010-01-01

    In non – erythroid cells, insulin stimulates a signal transduction pathway that results in the activation of phosphoinositide 3 – kinase (PI3K) and phosphorylation of phosphodiesterase 3 (PDE3). Erythrocytes possess insulin receptors, PI3K, and PDE3B. These cells release ATP via a signaling pathway that requires activation of the G protein, Gi, as well as increases in cAMP. Although insulin inhibits ATP release from human erythrocytes in response to Gi activation with mastoparan 7 (Mas 7), no effect on cAMP was described. Here, we investigated the hypothesis that insulin activates PDE3 in human erythrocytes via a PI3K – mediated mechanism resulting in cAMP hydrolysis and inhibition of ATP release. We show that insulin attenuates Mas 7 – induced increases in cAMP and that selective inhibitors of PDE3 (cilostazol) or PI3K (LY294002) rescue this effect of insulin. In addition, we demonstrated that both cilostazol and LY294002 prevent insulin – induced attenuation of Mas 7 – induced ATP release. These results provide support for the hypothesis that insulin activates PDE3 in erythrocytes via a PI3K – dependent mechanism. Once activated, PDE3 limits Mas 7 – induced increases in intracellular cAMP. This effect of insulin leads, ultimately, to decreased ATP release in response to Mas 7. Since the activation of Gi is required for reduced O2 tension – induced ATP release from erythrocytes, and insulin has been shown to inhibit that release, these results suggest a novel mechanism by which supraphysiological levels of plasma insulin, such as those reported in humans with prediabetes, could inhibit ATP release from erythrocytes. Erythrocyte – derived ATP has been shown to participate in the matching of O2 supply with demand in skeletal muscle. Thus, pathological increases in circulating insulin could, via activation of PDE3, inhibit ATP release from erythrocytes depriving the peripheral circulation of a mechanism that regulates delivery of O2 to meet tissue

  8. Characterization of the Human Insulin-induced Gene 2 (INSIG2) Promoter

    PubMed Central

    Fernández-Alvarez, Ana; Soledad Alvarez, María; Cucarella, Carme; Casado, Marta

    2010-01-01

    Insulin-induced gene 2 (INSIG2) and its homolog INSIG1 encode closely related endoplasmic reticulum proteins that regulate the proteolytic activation of sterol regulatory element-binding proteins, transcription factors that activate the synthesis of cholesterol and fatty acids in animal cells. Several studies have been carried out to identify INSIG2 genetic variants associated with metabolic diseases. However, few data have been published regarding the regulation of INSIG2 gene expression. Two Insig2 transcripts have been described in rodents through the use of different promoters that produce different noncoding first exons that splice into a common second exon. Herein we report the cloning and characterization of the human INSIG2 promoter and the detection of an INSIG2-specific transcript homologous to the Insig2b mouse variant in human liver. Deletion analyses on 3 kb of 5′-flanking DNA of the human INSIG2 gene revealed the functional importance of a 350-bp region upstream of the transcription start site. Mutated analyses, chromatin immunoprecipitation assays, and RNA interference analyses unveiled the significance of an Ets-consensus motif in the proximal region and the interaction of the Ets family member SAP1a (serum response factor (SRF) accessory protein-1a) with this region of the human INSIG2 promoter. Moreover, our findings suggest that insulin activated the human INSIG2 promoter in a process mediated by phosphorylated SAP1a. Overall, these results map the functional elements in the human INSIG2 promoter sequence and suggest an unexpected regulation of INSIG2 gene expression in human liver. PMID:20145255

  9. Synaptotagmin-7 Functions to Replenish Insulin Granules for Exocytosis in Human Islet β-Cells.

    PubMed

    Dolai, Subhankar; Xie, Li; Zhu, Dan; Liang, Tao; Qin, Tairan; Xie, Huanli; Kang, Youhou; Chapman, Edwin R; Gaisano, Herbert Y

    2016-07-01

    Synaptotagmin (Syt)-7, a major component of the exocytotic machinery in neurons, is also the major Syt in rodent pancreatic β-cells shown to mediate glucose-stimulated insulin secretion (GSIS). However, Syt-7's precise exocytotic actions in β-cells remain unknown. We show that Syt-7 is abundant in human β-cells. Adenovirus-short hairpin RNA knockdown (KD) of Syt-7 in human islets reduced first- and second-phase GSIS attributed to the reduction of exocytosis of predocked and newcomer insulin secretory granules (SGs). Glucose stimulation expectedly induced Syt-7 association in a Ca(2+)-dependent manner with syntaxin-3 and syntaxin-1A soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes known to mediate exocytosis of newcomer and predocked SGs, respectively. However, Syt-7-KD did not disrupt SNARE complex assembly. Instead, electron microscopy analysis showed that Syt-7-KD reduced the recruitment of SGs to the plasma membrane after glucose-stimulated depletion, which could not be rescued by glucagon-like peptide 1 pretreatment. To assess the possibility that this new action of Syt-7 on SG recruitment may involve calmodulin (CaM), pretreatment of islets with CaM blocker calmidazolium showed effects very similar to those of Syt-7-KD. Syt-7 therefore plays a novel more dominant function in the replenishment of releasable SG pools in human β-cells than its previously purported role in exocytotic fusion per se. PMID:27207520

  10. Dual regulation of glycogen metabolism by insulin and insulin-like growth factors in human hepatoma cells (HEP-G2). Analysis with an anti-receptor monoclonal antibody.

    PubMed Central

    Verspohl, E J; Roth, R A; Vigneri, R; Goldfine, I D

    1984-01-01

    Insulin and the insulinlike growth factors (IGF-I and IGF-II) are members of a family of hormones that regulate the metabolism and growth of many tissues. Cultured HEP-G2 cells (a minimal deviation human hepatoma) have insulin receptors and respond to insulin by increasing their glycogen metabolism. In the present study with HEP-G2 cells, we used 125I-labeled insulin, IGF-I, and IGF-II to identify distinct receptors for each hormone by competition-inhibition studies. Unlabeled insulin was able to inhibit 125I-IGF-I binding but not 125I-IGF-II binding. A mouse monoclonal antibody to the human insulin receptor that inhibits insulin binding and blocks insulin action inhibited 75% of 125I-insulin binding, but inhibited neither 125I-IGF-I nor 125I-IGF-II binding. When glycogen metabolism was studied, insulin stimulated [3H]glucose incorporation into glycogen in a biphasic manner; one phase that was 20-30% of the maximal response occurred over 1-100 pM, and the other phase occurred over 100 pM-100 nM. The anti-receptor monoclonal antibody inhibited the first phase of insulin stimulation but not the second. Both IGF-I and IGF-II stimulated [3H]glucose incorporation over the range of 10 pM-10 nM; IGF-I was three to fivefold more potent. The monoclonal antibody, however, was without effect on IGF regulation of glycogen metabolism. Therefore, these studies indicate that insulin as well as the IGFs at physiological concentrations regulate glycogen metabolism in HEP-G2 cells. Moreover, this regulation of glycogen metabolism is mediated by both the insulin receptor and the IGF receptors. PMID:6090502

  11. Inhibition of human insulin gene transcription and MafA transcriptional activity by the dual leucine zipper kinase

    PubMed Central

    Stahnke, Marie-Jeannette; Dickel, Corinna; Schröder, Sabine; Kaiser, Diana; Blume, Roland; Stein, Roland; Pouponnot, Celio; Oetjen, Elke

    2016-01-01

    Insulin biosynthesis is an essential β-cell function and inappropriate insulin secretion and biosynthesis contribute to the pathogenesis of diabetes mellitus type 2. Previous studies showed that the dual leucine zipper kinase (DLK) induces β-cell apoptosis. Since β-cell dysfunction precedes β-cell loss, in the present study the effect of DLK on insulin gene transcription was investigated in the HIT-T15 β-cell line. Downregulation of endogenous DLK increased whereas overexpression of DLK decreased human insulin gene transcription. 5′- and 3′-deletion human insulin promoter analyses resulted in the identification of a DLK responsive element that mapped to the DNA binding-site for the β-cell specific transcription factor MafA. Overexpression of DLK wild-type but not its kinase-dead mutant inhibited MafA transcriptional activity conferred by its transactivation domain. Furthermore, in the non-β-cell line JEG DLK inhibited MafA overexpression-induced human insulin promoter activity. Overexpression of MafA and DLK or its kinase-dead mutant into JEG cells revealed that DLK but not its mutant reduced MafA protein content. Inhibition of the down-stream DLK kinase c-Jun N-terminal kinase (JNK) by SP600125 attenuated DLK-induced MafA loss. Furthermore, mutation of the serine 65 to alanine, shown to confer MafA protein stability, increased MafA-dependent insulin gene transcription and prevented DLK-induced MafA loss in JEG cells. These data suggest that DLK by activating JNK triggers the phosphorylation and degradation of MafA thereby attenuating insulin gene transcription. Given the importance of MafA for β-cell function, the inhibition of DLK might preserve β-cell function and ultimately retard the development of diabetes mellitus type 2. PMID:24726898

  12. Inhibition of human insulin gene transcription and MafA transcriptional activity by the dual leucine zipper kinase.

    PubMed

    Stahnke, Marie-Jeannette; Dickel, Corinna; Schröder, Sabine; Kaiser, Diana; Blume, Roland; Stein, Roland; Pouponnot, Celio; Oetjen, Elke

    2014-09-01

    Insulin biosynthesis is an essential β-cell function and inappropriate insulin secretion and biosynthesis contribute to the pathogenesis of diabetes mellitus type 2. Previous studies showed that the dual leucine zipper kinase (DLK) induces β-cell apoptosis. Since β-cell dysfunction precedes β-cell loss, in the present study the effect of DLK on insulin gene transcription was investigated in the HIT-T15 β-cell line. Downregulation of endogenous DLK increased whereas overexpression of DLK decreased human insulin gene transcription. 5'- and 3'-deletion human insulin promoter analyses resulted in the identification of a DLK responsive element that mapped to the DNA binding-site for the β-cell specific transcription factor MafA. Overexpression of DLK wild-type but not its kinase-dead mutant inhibited MafA transcriptional activity conferred by its transactivation domain. Furthermore, in the non-β-cell line JEG DLK inhibited MafA overexpression-induced human insulin promoter activity. Overexpression of MafA and DLK or its kinase-dead mutant into JEG cells revealed that DLK but not its mutant reduced MafA protein content. Inhibition of the down-stream DLK kinase c-Jun N-terminal kinase (JNK) by SP600125 attenuated DLK-induced MafA loss. Furthermore, mutation of the serine 65 to alanine, shown to confer MafA protein stability, increased MafA-dependent insulin gene transcription and prevented DLK-induced MafA loss in JEG cells. These data suggest that DLK by activating JNK triggers the phosphorylation and degradation of MafA thereby attenuating insulin gene transcription. Given the importance of MafA for β-cell function, the inhibition of DLK might preserve β-cell function and ultimately retard the development of diabetes mellitus type 2. PMID:24726898

  13. Lipocalin 2 produces insulin resistance and can be upregulated by glucocorticoids in human adipose tissue.

    PubMed

    Kamble, Prasad G; Pereira, Maria J; Sidibeh, Cherno O; Amini, Sam; Sundbom, Magnus; Börjesson, Joey Lau; Eriksson, Jan W

    2016-05-15

    The adipokine lipocalin 2 is linked to obesity and metabolic disorders. However, its role in human adipose tissue glucose and lipid metabolism is not explored. Here we show that the synthetic glucocorticoid dexamethasone dose-dependently increased lipocalin 2 gene expression in subcutaneous and omental adipose tissue from pre-menopausal females, while it had no effect in post-menopausal females or in males. Subcutaneous adipose tissue from both genders treated with recombinant human lipocalin 2 showed a reduction in protein levels of GLUT1 and GLUT4 and in glucose uptake in isolated adipocytes. In subcutaneous adipose tissue, lipocalin 2 increased IL-6 gene expression whereas expression of PPARγ and adiponectin was reduced. Our findings suggest that lipocalin 2 can contribute to insulin resistance in human adipose tissue. In pre-menopausal females, it may partly mediate adverse metabolic effects exerted by glucocorticoid excess. PMID:26973291

  14. Pseudoislet formation enhances gene expression, insulin secretion and cytoprotective mechanisms of clonal human insulin-secreting 1.1B4 cells.

    PubMed

    Green, Alastair D; Vasu, Srividya; McClenaghan, Neville H; Flatt, Peter R

    2015-10-01

    We have studied the effects of cell communication on human beta cell function and resistance to cytotoxicity using the novel human insulin-secreting cell line 1.1B4 configured as monolayers and pseudoislets. Incubation with the incretin gut hormones GLP-1 and GIP caused dose-dependent stimulation of insulin secretion from 1.1B4 cell monolayers and pseudoislets. The secretory responses were 1.5-2.7-fold greater than monolayers. Cell viability (MTT), DNA damage (comet assay) and apoptosis (acridine orange/ethidium bromide staining) were investigated following 2-h exposure of 1.1B4 monolayers and pseudoislets to ninhydrin, H2O2, streptozotocin, glucose, palmitate or cocktails of proinflammatory cytokines. All agents tested decreased viability and increased DNA damage and apoptosis in both 1.1B4 monolayers and pseudoislets. However, pseudoislets exhibited significantly greater resistance to cytotoxicity (1.5-2.7-fold increases in LD50) and lower levels of DNA damage (1.3-3.4-fold differences in percentage tail DNA and olive tail moment) and apoptosis (1.3-1.5-fold difference) compared to monolayers. Measurement of gene expression by reverse-transcription, real-time PCR showed that genes involved with insulin secretion (INS, PDX1, PCSK1, PCSK2, GLP1R and GIPR), cell-cell communication (GJD2, GJA1 and CDH1) and antioxidant defence (SOD1, SOD2, GPX1 and CAT) were significantly upregulated in pseudoislets compared to monolayers, whilst the expression of proapoptotic genes (NOS2, MAPK8, MAPK10 and NFKB1) showed no significant differences. In summary, these data indicate cell-communication associated with three-dimensional islet architecture is important both for effective insulin secretion and for protection of human beta cells against cytotoxicity. PMID:25559846

  15. Insulin Detemir (rDNA Origin) Injection

    MedlinePlus

    ... man-made version of human insulin. Insulin detemir works by replacing the insulin that is normally produced ... using an insulin pen, always remove the needle right after you inject your dose. Dispose of needles ...

  16. Effect of insulin on human skeletal muscle mitochondrial ATP production, protein synthesis, and mRNA transcripts

    NASA Astrophysics Data System (ADS)

    Stump, Craig S.; Short, Kevin R.; Bigelow, Maureen L.; Schimke, Jill M.; Sreekumaran Nair, K.

    2003-06-01

    Mitochondria are the primary site of skeletal muscle fuel metabolism and ATP production. Although insulin is a major regulator of fuel metabolism, its effect on mitochondrial ATP production is not known. Here we report increases in vastus lateralis muscle mitochondrial ATP production capacity (32-42%) in healthy humans (P < 0.01) i.v. infused with insulin (1.5 milliunits/kg of fat-free mass per min) while clamping glucose, amino acids, glucagon, and growth hormone. Increased ATP production occurred in association with increased mRNA levels from both mitochondrial (NADH dehydrogenase subunit IV) and nuclear [cytochrome c oxidase (COX) subunit IV] genes (164-180%) encoding mitochondrial proteins (P < 0.05). In addition, muscle mitochondrial protein synthesis, and COX and citrate synthase enzyme activities were increased by insulin (P < 0.05). Further studies demonstrated no effect of low to high insulin levels on muscle mitochondrial ATP production for people with type 2 diabetes mellitus, whereas matched nondiabetic controls increased 16-26% (P < 0.02) when four different substrate combinations were used. In conclusion, insulin stimulates mitochondrial oxidative phosphorylation in skeletal muscle along with synthesis of gene transcripts and mitochondrial protein in human subjects. Skeletal muscle of type 2 diabetic patients has a reduced capacity to increase ATP production with high insulin levels. cytochrome c oxidase | NADH dehydrogenase subunit IV | amino acids | citrate synthase

  17. Reversal of hyperglycemia in mice by using human expandable insulin-producing cells differentiated from fetal liver progenitor cells.

    PubMed

    Zalzman, Michal; Gupta, Sanjeev; Giri, Ranjit K; Berkovich, Irina; Sappal, Baljit S; Karnieli, Ohad; Zern, Mark A; Fleischer, Norman; Efrat, Shimon

    2003-06-10

    Beta-cell replacement is considered to be the most promising approach for treatment of type 1 diabetes. Its application on a large scale is hindered by a shortage of cells for transplantation. Activation of insulin expression, storage, and regulated secretion in stem/progenitor cells offers novel ways to overcome this shortage. We explored whether fetal human progenitor liver cells (FH) could be induced to differentiate into insulin-producing cells after expression of the pancreatic duodenal homeobox 1 (Pdx1) gene, which is a key regulator of pancreatic development and insulin expression in beta cells. FH cells possess a considerable replication capacity, and this was further extended by introduction of the gene for the catalytic subunit of human telomerase. Immortalized FH cells expressing Pdx1 activated multiple beta-cell genes, produced and stored considerable amounts of insulin, and released insulin in a regulated manner in response to glucose. When transplanted into hyperglycemic immunodeficient mice, the cells restored and maintained euglycemia for prolonged periods. Quantitation of human C-peptide in the mouse serum confirmed that the glycemia was normalized by the transplanted human cells. This approach offers the potential of a novel source of cells for transplantation into patients with type 1 diabetes. PMID:12756298

  18. Reversal of hyperglycemia in mice by using human expandable insulin-producing cells differentiated from fetal liver progenitor cells

    NASA Astrophysics Data System (ADS)

    Zalzman, Michal; Gupta, Sanjeev; Giri, Ranjit K.; Berkovich, Irina; Sappal, Baljit S.; Karnieli, Ohad; Zern, Mark A.; Fleischer, Norman; Efrat, Shimon

    2003-06-01

    Beta-cell replacement is considered to be the most promising approach for treatment of type 1 diabetes. Its application on a large scale is hindered by a shortage of cells for transplantation. Activation of insulin expression, storage, and regulated secretion in stem/progenitor cells offers novel ways to overcome this shortage. We explored whether fetal human progenitor liver cells (FH) could be induced to differentiate into insulin-producing cells after expression of the pancreatic duodenal homeobox 1 (Pdx1) gene, which is a key regulator of pancreatic development and insulin expression in beta cells. FH cells possess a considerable replication capacity, and this was further extended by introduction of the gene for the catalytic subunit of human telomerase. Immortalized FH cells expressing Pdx1 activated multiple beta-cell genes, produced and stored considerable amounts of insulin, and released insulin in a regulated manner in response to glucose. When transplanted into hyperglycemic immunodeficient mice, the cells restored and maintained euglycemia for prolonged periods. Quantitation of human C-peptide in the mouse serum confirmed that the glycemia was normalized by the transplanted human cells. This approach offers the potential of a novel source of cells for transplantation into patients with type 1 diabetes.

  19. Gas turbine premixer with internal cooling

    DOEpatents

    York, William David; Johnson, Thomas Edward; Lacy, Benjamin Paul; Stevenson, Christian Xavier

    2012-12-18

    A system that includes a turbine fuel nozzle comprising an air-fuel premixer. The air-fuel premixed includes a swirl vane configured to swirl fuel and air in a downstream direction, wherein the swirl vane comprises an internal coolant path from a downstream end portion in an upstream direction through a substantial length of the swirl vane.

  20. Oscillating combustion from a premix fuel nozzle

    SciTech Connect

    Richards, G.A.; Yip, M.J.

    1995-08-01

    Stringent emissions requirements for stationary gas turbines have produced new challenges in combustor design. In the past, very low NOx pollutant emissions have been achieved through various combustion modifications, such as steam or water injection, or post-combustion cleanup methods such as selective catalytic reduction (SCR). An emerging approach to NOx abatement is lean premix combustion. Lean premix combustion avoids the cost and operational problems associated with other NOx control methods. By premixing fuel and air at very low equivalence ratios, the high temperatures which produce NOx are avoided. The challenges of premix combustion include avoiding flashback, and ensuring adequate fuel/air premixing. In addition, the combustion must be stable. The combustor should not operate so close to extinction that a momentary upset will extinguish the flame (static stability), and the flame should not oscillate (dynamic stability). Oscillations are undesirable because the associated pressure fluctuations can shorten component lifetime. Unfortunately, experience has shown that premix fuel nozzles burning natural gas are susceptible to oscillations. Eliminating these oscillations can be a costly and time consuming part of new engine development. As part of the U.S. Department of Energy`s Advanced Turbine Systems Program, the Morgantown Energy Technology Center (METC) is investigating the issue of combustion oscillations produced by lean premix fuel nozzles. METC is evaluating various techniques to stabilize oscillating combustion in gas turbines. Tests results from a premix fuel nozzle using swirl stabilization and a pilot flame are reported here.

  1. Flashback resistant pre-mixer assembly

    DOEpatents

    Laster, Walter R.; Gambacorta, Domenico

    2012-02-14

    A pre-mixer assembly associated with a fuel supply system for mixing of air and fuel upstream from a main combustion zone in a gas turbine engine. The pre-mixer assembly includes a swirler assembly disposed about a fuel injector of the fuel supply system and a pre-mixer transition member. The swirler assembly includes a forward end defining an air inlet and an opposed aft end. The pre-mixer transition member has a forward end affixed to the aft end of the swirler assembly and an opposed aft end defining an outlet of the pre-mixer assembly. The aft end of the pre-mixer transition member is spaced from a base plate such that a gap is formed between the aft end of the pre-mixer transition member and the base plate for permitting a flow of purge air therethrough to increase a velocity of the air/fuel mixture exiting the pre-mixer assembly.

  2. Temperature-Acclimated Brown Adipose Tissue Modulates Insulin Sensitivity in Humans

    PubMed Central

    Lee, Paul; Smith, Sheila; Linderman, Joyce; Courville, Amber B.; Brychta, Robert J.; Dieckmann, William; Werner, Charlotte D.; Chen, Kong Y.

    2014-01-01

    In rodents, brown adipose tissue (BAT) regulates cold- and diet-induced thermogenesis (CIT; DIT). Whether BAT recruitment is reversible and how it impacts on energy metabolism have not been investigated in humans. We examined the effects of temperature acclimation on BAT, energy balance, and substrate metabolism in a prospective crossover study of 4-month duration, consisting of four consecutive blocks of 1-month overnight temperature acclimation (24°C [month 1] → 19°C [month 2] → 24°C [month 3] → 27°C [month 4]) of five healthy men in a temperature-controlled research facility. Sequential monthly acclimation modulated BAT reversibly, boosting and suppressing its abundance and activity in mild cold and warm conditions (P < 0.05), respectively, independent of seasonal fluctuations (P < 0.01). BAT acclimation did not alter CIT but was accompanied by DIT (P < 0.05) and postprandial insulin sensitivity enhancement (P < 0.05), evident only after cold acclimation. Circulating and adipose tissue, but not skeletal muscle, expression levels of leptin and adiponectin displayed reciprocal changes concordant with cold-acclimated insulin sensitization. These results suggest regulatory links between BAT thermal plasticity and glucose metabolism in humans, opening avenues to harnessing BAT for metabolic benefits. PMID:24954193

  3. Characterization of lipid metabolism in insulin-sensitive adipocytes differentiated from immortalized human mesenchymal stem cells

    SciTech Connect

    Prawitt, Janne; Niemeier, Andreas; Kassem, Moustapha; Beisiegel, Ulrike; Heeren, Joerg

    2008-02-15

    There is a great demand for cell models to study human adipocyte function. Here we describe the adipogenic differentiation of a telomerase-immortalized human mesenchymal stem cell line (hMSC-Tert) that maintains numerous features of terminally differentiated adipocytes even after prolonged withdrawal of the peroxisome proliferator activated receptor {gamma} (PPAR{gamma}) agonist rosiglitazone. Differentiated hMSC-Tert developed the characteristic monolocular phenotype of mature adipocytes. The expression of adipocyte specific markers was highly increased during differentiation. Most importantly, the presence of the PPAR{gamma} agonist rosiglitazone was not required for the stable expression of lipoprotein lipase, adipocyte fatty acid binding protein and perilipin on mRNA and protein levels. Adiponectin expression was post-transcriptionally down-regulated in the absence of rosiglitazone. Insulin sensitivity as measured by insulin-induced phosphorylation of Akt and S6 ribosomal protein was also independent of rosiglitazone. In addition to commonly used adipogenic markers, we investigated further PPAR{gamma}-stimulated proteins with a role in lipid metabolism. We observed an increase of lipoprotein receptor (VLDLR, LRP1) and apolipoprotein E expression during differentiation. Despite this increased expression, the receptor-mediated endocytosis of lipoproteins was decreased in differentiated adipocytes, suggesting that these proteins may have an additional function in adipose tissue beyond lipoprotein uptake.

  4. Insulin/glucose induces natriuretic peptide clearance receptor in human adipocytes: a metabolic link with the cardiac natriuretic pathway.

    PubMed

    Bordicchia, M; Ceresiani, M; Pavani, M; Minardi, D; Polito, M; Wabitsch, M; Cannone, V; Burnett, J C; Dessì-Fulgheri, P; Sarzani, R

    2016-07-01

    Cardiac natriuretic peptides (NP) are involved in cardiorenal regulation and in lipolysis. The NP activity is largely dependent on the ratio between the signaling receptor NPRA and the clearance receptor NPRC. Lipolysis increases when NPRC is reduced by starving or very-low-calorie diet. On the contrary, insulin is an antilipolytic hormone that increases sodium retention, suggesting a possible functional link with NP. We examined the insulin-mediated regulation of NP receptors in differentiated human adipocytes and tested the association of NP receptor expression in visceral adipose tissue (VAT) with metabolic profiles of patients undergoing renal surgery. Differentiated human adipocytes from VAT and Simpson-Golabi-Behmel Syndrome (SGBS) adipocyte cell line were treated with insulin in the presence of high-glucose or low-glucose media to study NP receptors and insulin/glucose-regulated pathways. Fasting blood samples and VAT samples were taken from patients on the day of renal surgery. We observed a potent insulin-mediated and glucose-dependent upregulation of NPRC, through the phosphatidylinositol 3-kinase pathway, associated with lower lipolysis in differentiated adipocytes. No effect was observed on NPRA. Low-glucose medium, used to simulate in vivo starving conditions, hampered the insulin effect on NPRC through modulation of insulin/glucose-regulated pathways, allowing atrial natriuretic peptide to induce lipolysis and thermogenic genes. An expression ratio in favor of NPRC in adipose tissue was associated with higher fasting insulinemia, HOMA-IR, and atherogenic lipid levels. Insulin/glucose-dependent NPRC induction in adipocytes might be a key factor linking hyperinsulinemia, metabolic syndrome, and higher blood pressure by reducing NP effects on adipocytes. PMID:27101299

  5. Lifelong Physical Activity Prevents Aging-Associated Insulin Resistance in Human Skeletal Muscle Myotubes via Increased Glucose Transporter Expression

    PubMed Central

    Bunprajun, Tipwadee; Henriksen, Tora Ida; Scheele, Camilla; Pedersen, Bente Klarlund; Green, Charlotte Jane

    2013-01-01

    Both aging and physical inactivity are associated with increased development of insulin resistance whereas physical activity has been shown to promote increased insulin sensitivity. Here we investigated the effects of physical activity level on aging-associated insulin resistance in myotubes derived from human skeletal muscle satellite cells. Satellite cells were obtained from young (22 yrs) normally active or middle-aged (56.6 yrs) individuals who were either lifelong sedentary or lifelong active. Both middle-aged sedentary and middle-aged active myotubes had increased p21 and myosin heavy chain protein expression. Interestingly MHCIIa was increased only in myotubes from middle-aged active individuals. Middle-aged sedentary cells had intact insulin-stimulated Akt phosphorylation however, the same cell showed ablated insulin-stimulated glucose uptake and GLUT4 translocation to the plasma membrane. On the other hand, middle-aged active cells retained both insulin-stimulated increases in glucose uptake and GLUT4 translocation to the plasma membrane. Middle-aged active cells also had significantly higher mRNA expression of GLUT1 and GLUT4 compared to middle-aged sedentary cells, and significantly higher GLUT4 protein. It is likely that physical activity induces a number of stable adaptations, including increased GLUT4 expression that are retained in cells ex vivo and protect, or delay the onset of middle-aged-associated insulin resistance. Additionally, a sedentary lifestyle has an impact on the metabolism of human myotubes during aging and may contribute to aging-associated insulin resistance through impaired GLUT4 localization. PMID:23805253

  6. From the Cover: Cell-replacement therapy for diabetes: Generating functional insulin-producing tissue from adult human liver cells

    NASA Astrophysics Data System (ADS)

    Sapir, Tamar; Shternhall, Keren; Meivar-Levy, Irit; Blumenfeld, Tamar; Cohen, Hamutal; Skutelsky, Ehud; Eventov-Friedman, Smadar; Barshack, Iris; Goldberg, Iris; Pri-Chen, Sarah; Ben-Dor, Lya; Polak-Charcon, Sylvie; Karasik, Avraham; Shimon, Ilan; Mor, Eytan; Ferber, Sarah

    2005-05-01

    Shortage in tissue availability from cadaver donors and the need for life-long immunosuppression severely restrict the large-scale application of cell-replacement therapy for diabetic patients. This study suggests the potential use of adult human liver as alternate tissue for autologous beta-cell-replacement therapy. By using pancreatic and duodenal homeobox gene 1 (PDX-1) and soluble factors, we induced a comprehensive developmental shift of adult human liver cells into functional insulin-producing cells. PDX-1-treated human liver cells express insulin, store it in defined granules, and secrete the hormone in a glucose-regulated manner. When transplanted under the renal capsule of diabetic, immunodeficient mice, the cells ameliorated hyperglycemia for prolonged periods of time. Inducing developmental redirection of adult liver offers the potential of a cell-replacement therapy for diabetics by allowing the patient to be the donor of his own insulin-producing tissue. pancreas | transdifferentiation

  7. Whole and fractionated yellow pea flours reduce fasting insulin and insulin resistance in hypercholesterolaemic and overweight human subjects.

    PubMed

    Marinangeli, Christopher P F; Jones, Peter J H

    2011-01-01

    The objective of the present study was to compare whole pea flour (WPF) to fractionated pea flour (FPF; hulls only) for their ability to reduce risk factors associated with CVD and diabetes in overweight hypercholesterolaemic individuals. Using a cross-over design, twenty-three hypercholesterolaemic overweight men and women received two-treatment muffins/d containing WPF, FPF or white wheat flour (WF) for 28 d, followed by 28 d washout periods. Daily doses of WPF and FPF complied with the United States Department of Agriculture's recommended level of intake of half a cup of pulses/d (approximately 50 g/d). Dietary energy requirements were calculated for each study subject, and volunteers were only permitted to eat food supplied by the study personnel. Fasting insulin, body composition, urinary enterolactone levels, postprandial glucose response, as well as fasting lipid and glucose concentrations, were assessed at the beginning and at the end of each treatment. Insulin concentrations for WPF (37·8 (SEM 3·4) pmol/ml, P = 0·021) and FPF (40·5 (SEM 3·4) pmol/ml, P = 0·037) were lower compared with WF (50·7 (SEM 3·4) pmol/ml). Insulin homeostasis modelling assessment showed that consumption of WPF and FPF decreased (P < 0·05) estimates of insulin resistance (IR) compared with WF. Android:gynoid fat ratios in women participants were lower (P = 0·027) in the WPF (1·01 (sem 0·01) group compared with the WF group (1·06 (SEM 0·01). Urinary enterolactone levels tended to be higher (P = 0·087) in WPF compared with WF. Neither treatment altered circulating fasting lipids or glucose concentrations. In conclusion, under a controlled diet paradigm, a daily consumption of whole and fractionated yellow pea flours at doses equivalent to half a cup of yellow peas/d reduced IR, while WPF reduced android adiposity in women. PMID:20807459

  8. Activated α2-Macroglobulin Binding to Human Prostate Cancer Cells Triggers Insulin-like Responses

    PubMed Central

    Misra, Uma Kant; Pizzo, Salvatore Vincent

    2015-01-01

    Ligation of cell surface GRP78 by activated α2-macroglobulin (α2M*) promotes cell proliferation and suppresses apoptosis. α2M*-treated human prostate cancer cells exhibit a 2–3-fold increase in glucose uptake and lactate secretion, an effect similar to insulin treatment. In both α2M* and insulin-treated cells, the mRNA levels of SREBP1-c, SREBP2, fatty-acid synthase, acetyl-CoA carboxylase, ATP citrate lyase, and Glut-1 were significantly increased together with their protein levels, except for SREBP2. Pretreatment of cells with α2M* antagonist antibody directed against the carboxyl-terminal domain of GRP78 blocks these α2M*-mediated effects, and silencing GRP78 expression by RNAi inhibits up-regulation of ATP citrate lyase and fatty-acid synthase. α2M* induces a 2–3-fold increase in lipogenesis as determined by 6-[14C]glucose or 1-[14C]acetate incorporation into free cholesterol, cholesterol esters, triglycerides, free fatty acids, and phosphatidylcholine, which is blocked by inhibitors of fatty-acid synthase, PI 3-kinase, mTORC, or an antibody against the carboxyl-terminal domain of GRP78. We also assessed the incorporation of [14CH3]choline into phosphatidylcholine and observed similar effects. Lipogenesis is significantly affected by pretreatment of prostate cancer cells with fatostatin A, which blocks sterol regulatory element-binding protein proteolytic cleavage and activation. This study demonstrates that α2M* functions as a growth factor, leading to proliferation of prostate cancer cells by promoting insulin-like responses. An antibody against the carboxyl-terminal domain of GRP78 may have important applications in prostate cancer therapy. PMID:25720493

  9. Activated α2-macroglobulin binding to human prostate cancer cells triggers insulin-like responses.

    PubMed

    Misra, Uma Kant; Pizzo, Salvatore Vincent

    2015-04-10

    Ligation of cell surface GRP78 by activated α2-macroglobulin (α2M*) promotes cell proliferation and suppresses apoptosis. α2M*-treated human prostate cancer cells exhibit a 2-3-fold increase in glucose uptake and lactate secretion, an effect similar to insulin treatment. In both α2M* and insulin-treated cells, the mRNA levels of SREBP1-c, SREBP2, fatty-acid synthase, acetyl-CoA carboxylase, ATP citrate lyase, and Glut-1 were significantly increased together with their protein levels, except for SREBP2. Pretreatment of cells with α2M* antagonist antibody directed against the carboxyl-terminal domain of GRP78 blocks these α2M*-mediated effects, and silencing GRP78 expression by RNAi inhibits up-regulation of ATP citrate lyase and fatty-acid synthase. α2M* induces a 2-3-fold increase in lipogenesis as determined by 6-[(14)C]glucose or 1-[(14)C]acetate incorporation into free cholesterol, cholesterol esters, triglycerides, free fatty acids, and phosphatidylcholine, which is blocked by inhibitors of fatty-acid synthase, PI 3-kinase, mTORC, or an antibody against the carboxyl-terminal domain of GRP78. We also assessed the incorporation of [(14)CH3]choline into phosphatidylcholine and observed similar effects. Lipogenesis is significantly affected by pretreatment of prostate cancer cells with fatostatin A, which blocks sterol regulatory element-binding protein proteolytic cleavage and activation. This study demonstrates that α2M* functions as a growth factor, leading to proliferation of prostate cancer cells by promoting insulin-like responses. An antibody against the carboxyl-terminal domain of GRP78 may have important applications in prostate cancer therapy. PMID:25720493

  10. Glucose transport in human skeletal muscle cells in culture. Stimulation by insulin and metformin.

    PubMed Central

    Sarabia, V; Lam, L; Burdett, E; Leiter, L A; Klip, A

    1992-01-01

    Primary human muscle cell cultures were established and the regulation of glucose transport was investigated. Primary cultures were allowed to proceed to the stage of myotubes through fusion of myoblasts or were used for clonal selection based on fusion potential. In clonally selected cultures, hexose (2-deoxy-glucose) uptake into myotubes was linear within the time of study and inhibitable by cytochalasin B (IC50 = 400 nM). Cytochalasin B photolabeled a protein(s) of 45,000-50,000 D in a D-glucose-protectable manner, suggesting identity with the glucose transporters. In the myotube stage, the cells expressed both the GLUT1 and GLUT4 glucose transporter protein isoforms at an average molar ratio of 7:1. Preincubation in media of increasing glucose concentrations (range 5-25 mM) progressively decreased the rate of 2-deoxyglucose uptake. Insulin elevated 2-deoxyglucose uptake in a dose-dependent manner, with half maximal stimulation achieved at 3.5 nM. Insulin also stimulated the transport of the nonmetabolizable hexose 3-O-methylglucose, as well as the activity of glycogen synthase, responsible for nonoxidative glucose metabolism. The oral antihyperglycemic drug metformin stimulated the cytochalasin B-sensitive component of both 2-deoxyglucose and 3-O-methylglucose uptake. Maximal stimulation was observed at 8 h of exposure to 50 microM metformin, and this effect was not prevented by incubation with the protein-synthesis inhibitor cycloheximide. The relative effect of metformin was higher in cells incubated in 25 mM glucose than in 5 mM glucose, consistent with its selective action in hyperglycemic conditions in vivo. Metformin (50 microM for 24 h) was more effective than insulin (1 microM for 1 h) in stimulating hexose uptake and the hormone was effective on top of the stimulation caused by the biguanide, suggesting independent mechanisms of action. Images PMID:1401073

  11. Preclinical and first-in-human phase I studies of KW-2450, an oral tyrosine kinase inhibitor with insulin-like growth factor receptor-1/insulin receptor selectivity.

    PubMed

    Schwartz, Gary K; Dickson, Mark A; LoRusso, Patricia M; Sausville, Edward A; Maekawa, Yoshimi; Watanabe, Yasuo; Kashima, Naomi; Nakashima, Daisuke; Akinaga, Shiro

    2016-04-01

    Numerous solid tumors overexpress or have excessively activated insulin-like growth factor receptor-1 (IGF-1R). We summarize preclinical studies and the first-in-human study of KW-2450, an oral tyrosine kinase inhibitor with IGF-1R and insulin receptor (IR) inhibitory activity. Preclinical activity of KW-2450 was evaluated in various in vitro and in vivo models. It was then evaluated in a phase I clinical trial in 13 patients with advanced solid tumors (NCT00921336). In vitro, KW-2450 inhibited human IGF-1R and IR kinases (IC50 7.39 and 5.64 nmol/L, respectively) and the growth of various human malignant cell lines. KW-2450 40 mg/kg showed modest growth inhibitory activity and inhibited IGF-1-induced signal transduction in the murine HT-29/GFP colon carcinoma xenograft model. The maximum tolerated dose of KW-2450 was 37.5 mg once daily continuously; dose-limiting toxicity occurred in two of six patients at 50 mg/day (both grade 3 hyperglycemia) and in one of seven patients at 37.5 mg/day (grade 3 rash). Four of 10 evaluable patients showed stable disease. Single-agent KW-2450 was associated with modest antitumor activity in heavily pretreated patients with solid tumors and is being further investigated in combination therapy with lapatinib/letrozole in patients with human epidermal growth factor receptor 2-postive metastatic breast cancer. PMID:26850678

  12. Reevaluation of Fatty Acid Receptor 1 as a Drug Target for the Stimulation of Insulin Secretion in Humans

    PubMed Central

    Wagner, Robert; Kaiser, Gabriele; Gerst, Felicia; Christiansen, Elisabeth; Due-Hansen, Maria E.; Grundmann, Manuel; Machicao, Fausto; Peter, Andreas; Kostenis, Evi; Ulven, Trond; Fritsche, Andreas; Häring, Hans-Ulrich; Ullrich, Susanne

    2013-01-01

    The role of free fatty acid receptor 1 (FFAR1/GPR40) in glucose homeostasis is still incompletely understood. Small receptor agonists stimulating insulin secretion are undergoing investigation for the treatment of type 2 diabetes. Surprisingly, genome-wide association studies did not discover diabetes risk variants in FFAR1. We reevaluated the role of FFAR1 in insulin secretion using a specific agonist, FFAR1-knockout mice and human islets. Nondiabetic individuals were metabolically phenotyped and genotyped. In vitro experiments indicated that palmitate and a specific FFAR1 agonist, TUG-469, stimulate glucose-induced insulin secretion through FFAR1. The proapoptotic effect of chronic exposure of β-cells to palmitate was independent of FFAR1. TUG-469 was protective, whereas inhibition of FFAR1 promoted apoptosis. In accordance with the proapoptotic effect of palmitate, in vivo cross-sectional observations demonstrated a negative association between fasting free fatty acids (NEFAs) and insulin secretion. Because NEFAs stimulate secretion through FFAR1, we examined the interaction of genetic variation in FFAR1 with NEFA and insulin secretion. The inverse association of NEFA and secretion was modulated by rs1573611 and became steeper for carriers of the minor allele. In conclusion, FFAR1 agonists support β-cell function, but variation in FFAR1 influences NEFA effects on insulin secretion and therefore could affect therapeutic efficacy of FFAR1 agonists. PMID:23378609

  13. Reevaluation of fatty acid receptor 1 as a drug target for the stimulation of insulin secretion in humans.

    PubMed

    Wagner, Robert; Kaiser, Gabriele; Gerst, Felicia; Christiansen, Elisabeth; Due-Hansen, Maria E; Grundmann, Manuel; Machicao, Fausto; Peter, Andreas; Kostenis, Evi; Ulven, Trond; Fritsche, Andreas; Häring, Hans-Ulrich; Ullrich, Susanne

    2013-06-01

    The role of free fatty acid receptor 1 (FFAR1/GPR40) in glucose homeostasis is still incompletely understood. Small receptor agonists stimulating insulin secretion are undergoing investigation for the treatment of type 2 diabetes. Surprisingly, genome-wide association studies did not discover diabetes risk variants in FFAR1. We reevaluated the role of FFAR1 in insulin secretion using a specific agonist, FFAR1-knockout mice and human islets. Nondiabetic individuals were metabolically phenotyped and genotyped. In vitro experiments indicated that palmitate and a specific FFAR1 agonist, TUG-469, stimulate glucose-induced insulin secretion through FFAR1. The proapoptotic effect of chronic exposure of β-cells to palmitate was independent of FFAR1. TUG-469 was protective, whereas inhibition of FFAR1 promoted apoptosis. In accordance with the proapoptotic effect of palmitate, in vivo cross-sectional observations demonstrated a negative association between fasting free fatty acids (NEFAs) and insulin secretion. Because NEFAs stimulate secretion through FFAR1, we examined the interaction of genetic variation in FFAR1 with NEFA and insulin secretion. The inverse association of NEFA and secretion was modulated by rs1573611 and became steeper for carriers of the minor allele. In conclusion, FFAR1 agonists support β-cell function, but variation in FFAR1 influences NEFA effects on insulin secretion and therefore could affect therapeutic efficacy of FFAR1 agonists. PMID:23378609

  14. [Relationship between PTEN mutations and protein kinase B phosphorylation caused by insulin or recombinant human epidermal growth factor stimulation].

    PubMed

    Zhong, Hailan; Hu, Xianfu; Lin, Jianhua

    2016-08-01

    Objective To study the effect of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) mutations on protein kinase B (Akt) phosphorylation of CNE-1 nasopharyngeal carcinoma cell line. Methods CNE-1 cells were cultured in RPMI1640 medium containing 100 mL/L fetal calf serum, and then transfected with wild-type PTEN (wtPTEN), mutant PTEN C124S and mutant PTEN G129E plasmid separately. After overnight serum starvation, the cells were stimulated with 0.15 IU/mL insulin or 0.3 μg/mL recombinant human epidermal growth factor (rhEGF). At last, Akt phosphorylation was evaluated by Western blotting. Results Insulin or rhEGF stimulation led to Akt activation in CNE-1 cells. The wtPTEN inhibited insulin- or rhEGF-stimulated phosphorylation of Akt. PTEN C124S mutant activated insulin-stimulated phosphorylation of Akt, but not rhEGF-stimulated phosphorylation of Akt. PTEN G129E mutant inhibited insulin-stimulated phosphorylation of Akt. Conclusion The wtPTEN inhibited insulin- or rhEGF-stimulated phosphorylation of Akt, while PTEN C124S and G129E mutants failed to activate the phosphorylation of Akt consistently. This suggested PTEN mutations might not be correlated with activated Akt. PMID:27412938

  15. Enhanced bioavailability of subcutaneously injected insulin coadministered with collagen in rats and humans

    SciTech Connect

    Hori, R.; Komada, F.; Iwakawa, S.; Seino, Y.; Okumura, K. )

    1989-09-01

    The present study was undertaken to develop an agent that stabilizes insulin injected subcutaneously. {sup 125}I-Porcine insulin with 0.2 U/kg unlabeled porcine insulin was subcutaneously injected with or without collagen in the rat under the depilated skin of the back. At various times, the radioactivity in subcutaneous tissue was assayed for insulin and its metabolites by gel filtration. The degradation and absorption rate constants of insulin at the subcutaneous injection site were estimated according to a one-compartment model. The degradation rate constant of insulin in the presence of collagen at the injection site was less than half of the control rate. The inhibition was confirmed by increases in the immunoreactive insulin plasma levels and the hypoglycemic effect in rats and healthy volunteers. We postulate that collagen prevents insulin from being degraded by inhibiting proteolytic enzymes, mainly collagenase-like peptidase, in subcutaneous tissue.

  16. Fuel premixing module for gas turbine engine combustor

    NASA Technical Reports Server (NTRS)

    Chin, Jushan (Inventor); Rizk, Nader K. (Inventor); Razdan, Mohan K. (Inventor); Marshall, Andre W. (Inventor)

    2005-01-01

    A fuel-air premixing module is designed to reduce emissions from a gas turbine engine. In one form, the premixing module includes a central pilot premixer module with a main premixer module positioned thereround. Each of the portions of the fuel-air premixing module include an axial inflow swirler with a plurality of fixed swirler vanes. Fuel is injected into the main premixer module between the swirler vanes of the axial inflow swirler and at an acute angle relative to the centerline of the premixing module.

  17. Clinical utility of insulin and insulin analogs

    PubMed Central

    Sanlioglu, Ahter D.; Altunbas, Hasan Ali; Balci, Mustafa Kemal; Griffith, Thomas S.; Sanlioglu, Salih

    2013-01-01

    Diabetes is a pandemic disease characterized by autoimmune, genetic and metabolic abnormalities. While insulin deficiency manifested as hyperglycemia is a common sequel of both Type-1 and Type-2 diabetes (T1DM and T2DM), it does not result from a single genetic defect—rather insulin deficiency results from the functional loss of pancreatic β cells due to multifactorial mechanisms. Since pancreatic β cells of patients with T1DM are destroyed by autoimmune reaction, these patients require daily insulin injections. Insulin resistance followed by β cell dysfunction and β cell loss is the characteristics of T2DM. Therefore, most patients with T2DM will require insulin treatment due to eventual loss of insulin secretion. Despite the evidence of early insulin treatment lowering macrovascular (coronary artery disease, peripheral arterial disease and stroke) and microvascular (diabetic nephropathy, neuropathy and retinopathy) complications of T2DM, controversy exists among physicians on how to initiate and intensify insulin therapy. The slow acting nature of regular human insulin makes its use ineffective in counteracting postprandial hyperglycemia. Instead, recombinant insulin analogs have been generated with a variable degree of specificity and action. Due to the metabolic variability among individuals, optimum blood glucose management is a formidable task to accomplish despite the presence of novel insulin analogs. In this article, we present a recent update on insulin analog structure and function with an overview of the evidence on the various insulin regimens clinically used to treat diabetes. PMID:23584214

  18. MicroRNA-223 Expression is Upregulated in Insulin Resistant Human Adipose Tissue.

    PubMed

    Chuang, Tung-Yueh; Wu, Hsiao-Li; Chen, Chen-Chun; Gamboa, Gloria Mabel; Layman, Lawrence C; Diamond, Michael P; Azziz, Ricardo; Chen, Yen-Hao

    2015-01-01

    MicroRNAs (miRNAs) are short noncoding RNAs involved in posttranscriptional regulation of gene expression and influence many cellular functions including glucose and lipid metabolism. We previously reported that adipose tissue (AT) from women with polycystic ovary syndrome (PCOS) or controls with insulin resistance (IR) revealed a differentially expressed microRNA (miRNA) profile, including upregulated miR-93 in PCOS patients and in non-PCOS women with IR. Overexpressed miR-93 directly inhibited glucose transporter isoform 4 (GLUT4) expression, thereby influencing glucose metabolism. We have now studied the role of miR-223, which is also abnormally expressed in the AT of IR subjects. Our data indicates that miR-223 is significantly overexpressed in the AT of IR women, regardless of whether they had PCOS or not. miR-223 expression in AT was positively correlated with HOMA-IR. Unlike what is reported in cardiomyocytes, overexpression of miR-223 in human differentiated adipocytes was associated with a reduction in GLUT4 protein content and insulin-stimulated glucose uptake. In addition, our data suggests miR-223 regulates GLUT4 expression by direct binding to its 3' untranslated region (3'UTR). In conclusion, in AT miR-223 is an IR-related miRNA that may serve as a potential therapeutic target for the treatment of IR-related disorders. PMID:26273679

  19. Investigation of molecular interaction between cefpodoxime acid and human mixtard insulin by ultrasonic and spectral methods.

    PubMed

    Ganesh, T; Kannappan, V; Mohamed Kamil, M G; Kumar, R

    2016-09-10

    This paper deals with the extensive investigation of molecular interaction between third generation cephalosporin antibiotic, Cefpodoxime Acid (CA) and Human Mixtard Insulin (HMI) in an aqueous medium through ultrasonic, dilute solution viscometric (DSV) and spectral [UV-vis, Attenuated total reflection (ATR)-FT IR] methods at various blend compositions of the drug and insulin at three different (303K, 310K and 313K) temperatures. This is an attempt to unravel the possibility of drug induced hypoglycemic effect. The existence of solute-solute interaction in aqueous solutions of CA and HMI is established from the variation of ultrasonic velocity and other acoustical parameters with blend composition. DSV method is used to confirm the range of blend composition at which the molecular interaction is significant. The conclusions drawn from ultrasonic and DSV methods are further established by the UV-vis and ATR- FT IR spectral studies of ternary mixtures at different blend compositions. Further, the existing interactions suggest the possibility of cefpodoxime acid induced hypoglycemia which is discussed based on the structural aspects of the two components. PMID:27442885

  20. Sex-linked behavioural differences in mice expressing a human insulin transgene in the medial habenula.

    PubMed

    Douhet, P; Bertaina, V; Durkin, T; Calas, A; Destrade, C

    1997-12-01

    We previously reported that a human insulin transgene was specifically expressed in the medial habenula of the adult mouse brain, and that this expression was ascribed to the delta-168 transgene. The present study analyses the possible behavioural consequences of this insulin transgene expression using measures of food intake, spontaneous activity, emotional reactivity, learning and extinction performance of an operant task. The delta-168 transgenic mice did not differ from the C57BL/6 control mice as concerns food intake, behaviour in the open field, or emotional response in an elevated plus maze. On the other hand, measures of locomotor activity in a circular corridor revealed a significantly faster decline of spontaneous locomotor activity in male as compared to female delta-168 transgenic mice. Moreover, as compared to female transgenic mice, male transgenic mice exhibited a deficit in the rate of acquisition and an acceleration of the rate of extinction of a bar press response in a Skinner box. In contrast, the behaviour of female transgenic mice did not differ from either male or female C57BL/6 control mice. The results of the present study demonstrate that the behavioural modifications observed in delta-168 transgenic mice are sex-linked and suggest that these behavioural differences result from changes in the interaction (interface) between motivational and motor mechanisms mediated via the striato-habenulo-mesencephalic system. PMID:9475633

  1. The human insulin receptor mRNA contains a functional internal ribosome entry segment

    PubMed Central

    Spriggs, Keith A.; Cobbold, Laura C.; Ridley, Simon H.; Coldwell, Mark; Bottley, Andrew; Bushell, Martin; Willis, Anne E.; Siddle, Kenneth

    2009-01-01

    Regulation of mRNA translation is an important mechanism determining the level of expression of proteins in eukaryotic cells. Translation is most commonly initiated by cap-dependent scanning, but many eukaryotic mRNAs contain internal ribosome entry segments (IRESs), providing an alternative means of initiation capable of independent regulation. Here, we show by using dicistronic luciferase reporter vectors that the 5′-UTR of the mRNA encoding human insulin receptor (hIR) contains a functional IRES. RNAi-mediated knockdown showed that the protein PTB was required for maximum IRES activity. Electrophoretic mobility shift assays confirmed that PTB1, PTB2 and nPTB, but not unr or PTB4, bound to hIR mRNA, and deletion mapping implicated a CCU motif 448 nt upstream of the initiator AUG in PTB binding. The IR-IRES was functional in a number of cell lines, and most active in cells of neuronal origin, as assessed by luciferase reporter assays. The IRES was more active in confluent than sub-confluent cells, but activity did not change during differentiation of 3T3-L1 fibroblasts to adipocytes. IRES activity was stimulated by insulin in sub-confluent cells. The IRES may function to maintain expression of IR protein in tissues such as the brain where mRNA translation by cap-dependent scanning is less effective. PMID:19654240

  2. Application of simple fed-batch technique to high-level secretory production of insulin precursor using Pichia pastoris with subsequent purification and conversion to human insulin

    PubMed Central

    2010-01-01

    Background The prevalence of diabetes is predicted to rise significantly in the coming decades. A recent analysis projects that by the year 2030 there will be ~366 million diabetics around the world, leading to an increased demand for inexpensive insulin to make this life-saving drug also affordable for resource poor countries. Results A synthetic insulin precursor (IP)-encoding gene, codon-optimized for expression in P. pastoris, was cloned in frame with the Saccharomyces cerevisiae α-factor secretory signal and integrated into the genome of P. pastoris strain X-33. The strain was grown to high-cell density in a batch procedure using a defined medium with low salt and high glycerol concentrations. Following batch growth, production of IP was carried out at methanol concentrations of 2 g L-1, which were kept constant throughout the remaining production phase. This robust feeding strategy led to the secretion of ~3 gram IP per liter of culture broth (corresponding to almost 4 gram IP per liter of cell-free culture supernatant). Using immobilized metal ion affinity chromatography (IMAC) as a novel approach for IP purification, 95% of the secreted product was recovered with a purity of 96% from the clarified culture supernatant. Finally, the purified IP was trypsin digested, transpeptidated, deprotected and further purified leading to ~1.5 g of 99% pure recombinant human insulin per liter of culture broth. Conclusions A simple two-phase cultivation process composed of a glycerol batch and a constant methanol fed-batch phase recently developed for the intracellular production of the Hepatitis B surface antigen was adapted to secretory IP production. Compared to the highest previously reported value, this approach resulted in an ~2 fold enhancement of IP production using Pichia based expression systems, thus significantly increasing the efficiency of insulin manufacture. PMID:20462406

  3. Acute alterations in growth hormone-insulin-like growth factor axis in humans injected with endotoxin.

    PubMed

    Lang, C H; Pollard, V; Fan, J; Traber, L D; Traber, D L; Frost, R A; Gelato, M C; Prough, D S

    1997-07-01

    The purpose of the present study was to characterize the acute changes in the insulin-like growth factor (IGF) system in humans after administration of endotoxin (lipopolysaccharide; LPS). Escherichia coli LPS (4 ng/kg) was injected intravenously into healthy adults, and serial blood samples were collected for the next 5 h; subjects injected with saline served as time-matched controls. LPS administration resulted in a gradual decrease in the total extractable IGF-I concentration, which was reduced by approximately 20% over the final 2 h of the experiment; levels of free IGF-I were not significantly altered. LPS also produced a marked but transient elevation in growth hormone (GH) concentration. IGF-binding protein (BP)-1 levels were elevated more than fivefold 2 h after LPS injection, and thereafter levels gradually returned toward baseline. IGFBP-2 concentration also increased after LPS injection, but the maximal increase (approximately 50% above basal) was observed during the final 2 h of the protocol. In contrast, IGFBP-3 levels did not vary over the period examined in response to LPS, and there was no apparent increase in number of BP-3 proteolytic fragments. Cortisol levels were increased early and remained two- to threefold above baseline throughout the protocol. No significant alterations in serum concentration of glucose or insulin were noted. LPS also produced an early elevation in tumor necrosis factor and a later increase in interleukin-6. These data indicate that the acute changes in the GH-IGF axis in humans in response to LPS are comparable with those observed in humans in other traumatic conditions and in animal models of endotoxemia and infection. PMID:9249574

  4. Growth-stimulatory monoclonal antibodies against human insulin-like growth factor I receptor.

    PubMed

    Xiong, L; Kasuya, J; Li, S L; Kato, J; Fujita-Yamaguchi, Y

    1992-06-15

    Monoclonal antibodies (mAbs) against purified human placental insulin-like growth factor I (IGF-I) receptors were prepared and characterized. Three IgG mAbs were specific for the human IGF-I receptor and displayed negligible crossreactivity with the human insulin receptor. They stimulated 125I-labeled IGF-I (125I-IGF-I) or 125I-IGF-II binding to purified human placental IGF-I receptors and to IGF-I receptors expressed in NIH 3T3 cells in contrast to the well-studied mAb alpha IR-3, which inhibits 125I-IGF-I or 125I-IGF-II binding to both forms of IGF-I receptors. The mAbs introduced in this study stimulated DNA synthesis in NIH 3T3 cells expressing human IGF-I receptors approximately 1.5-fold above the basal level and the IGF-I- or IGF-II-stimulated level. In contrast, alpha IR-3 inhibited both basal and IGF-I or IGF-II-stimulated DNA synthesis by approximately 30%. Inhibition of IGF-II-stimulated DNA synthesis by alpha IR-3 was as potent as its inhibition of IGF-I-stimulated DNA synthesis, although IGF-II binding to the IGF-I receptors was not inhibited by IGF-II as potently as was IGF-I. With the purified IGF-I receptors, both inhibitory and stimulatory mAbs were shown to activate autophosphorylation of the IGF-I receptor beta subunit and to induce microaggregation of the receptors. These results suggest that conformational changes resulting from receptor dimerization in the presence of either type of mAb may affect the signal-transducing function of the IGF-I receptor differently. These additional mAbs and alpha IR-3 immunoprecipitated nearly 90% of IGF-I binding activity from Triton X-100-solubilized human placental membranes, indicating that IGF-I receptor reactive with these mAbs is the major form of the IGF-I receptor in human placenta. PMID:1319060

  5. Human ketone body production and utilization studied using tracer techniques: Regulation by free fatty acids, insulin, catecholamines, and thyroid hormones

    SciTech Connect

    Keller, U.; Lustenberger, M.; Mueller-Brand, J.G.; Gerber, P.P.; Stauffacher, W.

    1989-05-01

    Ketone body concentrations fluctuate markedly during physiological and pathological conditions. Tracer techniques have been developed in recent years to study production, utilization, and the metabolic clearance rate of ketone bodies. This review describes data on the roles of insulin, catecholamines, and thyroid hormones in the regulation of ketone body kinetics. The data indicate that insulin lowers ketone body concentrations by three independent mechanisms: first, it inhibits lipolysis, and thus lowers free fatty acid availability for ketogenesis; second, it restrains ketone body production within the liver; third, it enhances peripheral ketone body utilization. To assess these effects in humans in vivo, experimental models were developed to study insulin effects with controlled concentrations of free fatty acids, insulin, glucagon, and ketone bodies. Presently available data also support an important role of catecholamines in increasing ketone body concentrations. Evidence was presented that norepinephrine increases ketogenesis not only by stimulating lipolysis, and thus releasing free fatty acids, but also by increasing intrahepatic ketogenesis. Thyroid hormone availability was associated with lipolysis and ketogenesis. Ketone body concentrations after an overnight fast were only modestly elevated in hyperthyroidism resulting from increased peripheral ketone body clearance. There was a significant correlation between serum triiodothyronine levels and the ketone body metabolic clearance rate. Thus, ketone body homeostasis in human subjects resulted from the interaction of hormones such as insulin, catecholamines, and thyroid hormones regulating lipolysis, intrahepatic ketogenesis, and peripheral ketone body utilization. 58 references.

  6. A premixed hydrogen/oxygen catalytic igniter

    NASA Technical Reports Server (NTRS)

    Green, James M.

    1989-01-01

    The catalytic ignition of hydrogen and oxygen propellants was studied using a premixing hydrogen/oxygen injector. The premixed injector was designed to eliminate problems associated with catalytic ignition caused by poor propellant mixing in the catalyst bed. Mixture ratio, mass flow rate, and propellant inlet temperature were varied parametrically in testing, and a pulse mode life test of the igniter was conducted. The results of the tests showed that the premixed injector eliminated flame flashback in the reactor and increased the life of the igniter significantly. The results of the experimental program and a comparison with data collected in a previous program are given.

  7. Crystal structure of human insulin-regulated aminopeptidase with specificity for cyclic peptides

    PubMed Central

    Hermans, Stefan J; Ascher, David B; Hancock, Nancy C; Holien, Jessica K; Michell, Belinda J; Yeen Chai, Siew; Morton, Craig J; Parker, Michael W

    2015-01-01

    Insulin-regulated aminopeptidase (IRAP or oxytocinase) is a membrane-bound zinc-metallopeptidase that cleaves neuroactive peptides in the brain and produces memory enhancing effects when inhibited. We have determined the crystal structure of human IRAP revealing a closed, four domain arrangement with a large, mostly buried cavity abutting the active site. The structure reveals that the GAMEN exopeptidase loop adopts a very different conformation from other aminopeptidases, thus explaining IRAP's unique specificity for cyclic peptides such as oxytocin and vasopressin. Computational docking of a series of IRAP-specific cognitive enhancers into the crystal structure provides a molecular basis for their structure–activity relationships and demonstrates that the structure will be a powerful tool in the development of new classes of cognitive enhancers for treating a variety of memory disorders such as Alzheimer's disease. PMID:25408552

  8. Crystal structure of human insulin-regulated aminopeptidase with specificity for cyclic peptides.

    PubMed

    Hermans, Stefan J; Ascher, David B; Hancock, Nancy C; Holien, Jessica K; Michell, Belinda J; Chai, Siew Yeen; Morton, Craig J; Parker, Michael W

    2015-02-01

    Insulin-regulated aminopeptidase (IRAP or oxytocinase) is a membrane-bound zinc-metallopeptidase that cleaves neuroactive peptides in the brain and produces memory enhancing effects when inhibited. We have determined the crystal structure of human IRAP revealing a closed, four domain arrangement with a large, mostly buried cavity abutting the active site. The structure reveals that the GAMEN exopeptidase loop adopts a very different conformation from other aminopeptidases, thus explaining IRAP's unique specificity for cyclic peptides such as oxytocin and vasopressin. Computational docking of a series of IRAP-specific cognitive enhancers into the crystal structure provides a molecular basis for their structure-activity relationships and demonstrates that the structure will be a powerful tool in the development of new classes of cognitive enhancers for treating a variety of memory disorders such as Alzheimer's disease. PMID:25408552

  9. epi-Fluorescence imaging at the air-water interface of fibrillization of bovine serum albumin and human insulin.

    PubMed

    Sessions, Kristen; Sacks, Stuart; Li, Shanghao; Leblanc, Roger M

    2014-08-18

    Protein fibrillization is associated with many devastating neurodegenerative diseases. This process has been studied using spectroscopic and microscopic methods. In this study, epi-fluorescence at the air-water interface was developed as an innovative technique for observing fibrillization of bovine serum albumin and human insulin. PMID:24976597

  10. Systems-wide Experimental and Modeling Analysis of Insulin Signaling through Forkhead Box Protein O1 (FOXO1) in Human Adipocytes, Normally and in Type 2 Diabetes.

    PubMed

    Rajan, Meenu Rohini; Nyman, Elin; Kjølhede, Preben; Cedersund, Gunnar; Strålfors, Peter

    2016-07-22

    Insulin resistance is a major aspect of type 2 diabetes (T2D), which results from impaired insulin signaling in target cells. Signaling to regulate forkhead box protein O1 (FOXO1) may be the most important mechanism for insulin to control transcription. Despite this, little is known about how insulin regulates FOXO1 and how FOXO1 may contribute to insulin resistance in adipocytes, which are the most critical cell type in the development of insulin resistance. We report a detailed mechanistic analysis of insulin control of FOXO1 in human adipocytes obtained from non-diabetic subjects and from patients with T2D. We show that FOXO1 is mainly phosphorylated through mTORC2-mediated phosphorylation of protein kinase B at Ser(473) and that this mechanism is unperturbed in T2D. We also demonstrate a cross-talk from the MAPK branch of insulin signaling to stimulate phosphorylation of FOXO1. The cellular abundance and consequently activity of FOXO1 are halved in T2D. Interestingly, inhibition of mTORC1 with rapamycin reduces the abundance of FOXO1 to the levels in T2D. This suggests that the reduction of the concentration of FOXO1 is a consequence of attenuation of mTORC1, which defines much of the diabetic state in human adipocytes. We integrate insulin control of FOXO1 in a network-wide mathematical model of insulin signaling dynamics based on compatible data from human adipocytes. The diabetic state is network-wide explained by attenuation of an mTORC1-to-insulin receptor substrate-1 (IRS1) feedback and reduced abundances of insulin receptor, GLUT4, AS160, ribosomal protein S6, and FOXO1. The model demonstrates that attenuation of the mTORC1-to-IRS1 feedback is a major mechanism of insulin resistance in the diabetic state. PMID:27226562

  11. CONJUGATED LINOLEIC ACID PROMOTES HUMAN ADIPOCYTE INSULIN RESISTANCE THROUGH NFκB-DEPENDENT CYTOKINE PRODUCTION

    PubMed Central

    Chung1, Soonkyu; Brown2, J. Mark; Provo1, J. Nathan; Hopkins1, Robin; McIntosh1, Michael K.

    2005-01-01

    We previously demonstrated that trans-10, cis-12 conjugated linoleic acid (CLA) reduced the triglyceride (TG) content of human adipocytes by activating mitogen-activated protein kinase kinase/extracellular signal-related kinase (MEK/ERK) signaling via interleukins-6 (IL-6) and 8 (IL-8). However, the upstream mechanism is unknown. Here we show that CLA increased (≥ 6 h) the secretion of IL-6 and IL-8 in cultures containing both differentiated adipocytes and stromal vascular (SV) cells, non-differentiated SV cells, and adipose tissue explants. CLA’s isomer-specific induction of IL-6 and tumor necrosis factor-α (TNF-α) was associated with the activation of nuclear factor κB (NFκB) as evidenced by: 1) phosphorylation of IκBα, IκBα kinase (IKK), and NFκB p65; 2) IκBα degradation; and 3) nuclear translocation of NFκB. Pretreatment with selective NFκB inhibitors and the MEK/ERK inhibitor U0126 blocked CLA-mediated IL-6 gene expression. Trans-10, cis-12 CLA’s suppression of insulin-stimulated glucose uptake at 24 h was associated with decreased total and plasma membrane glucose transporter 4 (Glut4) proteins. Inhibition of NFκB activation or depletion of NFκB by RNA interference using siNFκB p65 attenuated CLA’s suppression of Glut4 and peroxisome proliferator activated receptor gamma (PPARγ) proteins and glucose uptake. Collectively, these data demonstrate for the first time that trans-10, cis-12 CLA promotes NFκB activation and subsequent induction of IL-6 which are, at least in part, responsible for trans-10, cis-12 CLA-mediated suppression of PPARγ target gene expression and insulin sensitivity in mature human adipocytes. PMID:16155293

  12. Human Skeletal Muscle Disuse Atrophy: Effects on Muscle Protein Synthesis, Breakdown, and Insulin Resistance-A Qualitative Review.

    PubMed

    Rudrappa, Supreeth S; Wilkinson, Daniel J; Greenhaff, Paul L; Smith, Kenneth; Idris, Iskandar; Atherton, Philip J

    2016-01-01

    The ever increasing burden of an aging population and pandemic of metabolic syndrome worldwide demands further understanding of the modifiable risk factors in reducing disability and morbidity associated with these conditions. Disuse skeletal muscle atrophy (sometimes referred to as "simple" atrophy) and insulin resistance are "non-pathological" events resulting from sedentary behavior and periods of enforced immobilization e.g., due to fractures or elective orthopedic surgery. Yet, the processes and drivers regulating disuse atrophy and insulin resistance and the associated molecular events remain unclear-especially in humans. The aim of this review is to present current knowledge of relationships between muscle protein turnover, insulin resistance and muscle atrophy during disuse, principally in humans. Immobilization lowers fasted state muscle protein synthesis (MPS) and induces fed-state "anabolic resistance." While a lack of dynamic measurements of muscle protein breakdown (MPB) precludes defining a definitive role for MPB in disuse atrophy, some proteolytic "marker" studies (e.g., MPB genes) suggest a potential early elevation. Immobilization also induces muscle insulin resistance (IR). Moreover, the trajectory of muscle atrophy appears to be accelerated in persistent IR states (e.g., Type II diabetes), suggesting IR may contribute to muscle disuse atrophy under these conditions. Nonetheless, the role of differences in insulin sensitivity across distinct muscle groups and its effects on rates of atrophy remains unclear. Multifaceted time-course studies into the collective role of insulin resistance and muscle protein turnover in the setting of disuse muscle atrophy, in humans, are needed to facilitate the development of appropriate countermeasures and efficacious rehabilitation protocols. PMID:27610086

  13. Human Skeletal Muscle Disuse Atrophy: Effects on Muscle Protein Synthesis, Breakdown, and Insulin Resistance—A Qualitative Review

    PubMed Central

    Rudrappa, Supreeth S.; Wilkinson, Daniel J.; Greenhaff, Paul L.; Smith, Kenneth; Idris, Iskandar; Atherton, Philip J.

    2016-01-01

    The ever increasing burden of an aging population and pandemic of metabolic syndrome worldwide demands further understanding of the modifiable risk factors in reducing disability and morbidity associated with these conditions. Disuse skeletal muscle atrophy (sometimes referred to as “simple” atrophy) and insulin resistance are “non-pathological” events resulting from sedentary behavior and periods of enforced immobilization e.g., due to fractures or elective orthopedic surgery. Yet, the processes and drivers regulating disuse atrophy and insulin resistance and the associated molecular events remain unclear—especially in humans. The aim of this review is to present current knowledge of relationships between muscle protein turnover, insulin resistance and muscle atrophy during disuse, principally in humans. Immobilization lowers fasted state muscle protein synthesis (MPS) and induces fed-state “anabolic resistance.” While a lack of dynamic measurements of muscle protein breakdown (MPB) precludes defining a definitive role for MPB in disuse atrophy, some proteolytic “marker” studies (e.g., MPB genes) suggest a potential early elevation. Immobilization also induces muscle insulin resistance (IR). Moreover, the trajectory of muscle atrophy appears to be accelerated in persistent IR states (e.g., Type II diabetes), suggesting IR may contribute to muscle disuse atrophy under these conditions. Nonetheless, the role of differences in insulin sensitivity across distinct muscle groups and its effects on rates of atrophy remains unclear. Multifaceted time-course studies into the collective role of insulin resistance and muscle protein turnover in the setting of disuse muscle atrophy, in humans, are needed to facilitate the development of appropriate countermeasures and efficacious rehabilitation protocols. PMID:27610086

  14. Glucose Homeostatic Law: Insulin Clearance Predicts the Progression of Glucose Intolerance in Humans

    PubMed Central

    Uda, Shinsuke; Kubota, Hiroyuki; Iwaki, Toshinao; Fukuzawa, Hiroki; Komori, Yasunori; Fujii, Masashi; Toyoshima, Yu; Sakaguchi, Kazuhiko; Ogawa, Wataru; Kuroda, Shinya

    2015-01-01

    Homeostatic control of blood glucose is regulated by a complex feedback loop between glucose and insulin, of which failure leads to diabetes mellitus. However, physiological and pathological nature of the feedback loop is not fully understood. We made a mathematical model of the feedback loop between glucose and insulin using time course of blood glucose and insulin during consecutive hyperglycemic and hyperinsulinemic-euglycemic clamps in 113 subjects with variety of glucose tolerance including normal glucose tolerance (NGT), impaired glucose tolerance (IGT) and type 2 diabetes mellitus (T2DM). We analyzed the correlation of the parameters in the model with the progression of glucose intolerance and the conserved relationship between parameters. The model parameters of insulin sensitivity and insulin secretion significantly declined from NGT to IGT, and from IGT to T2DM, respectively, consistent with previous clinical observations. Importantly, insulin clearance, an insulin degradation rate, significantly declined from NGT, IGT to T2DM along the progression of glucose intolerance in the mathematical model. Insulin clearance was positively correlated with a product of insulin sensitivity and secretion assessed by the clamp analysis or determined with the mathematical model. Insulin clearance was correlated negatively with postprandial glucose at 2h after oral glucose tolerance test. We also inferred a square-law between the rate constant of insulin clearance and a product of rate constants of insulin sensitivity and secretion in the model, which is also conserved among NGT, IGT and T2DM subjects. Insulin clearance shows a conserved relationship with the capacity of glucose disposal among the NGT, IGT and T2DM subjects. The decrease of insulin clearance predicts the progression of glucose intolerance. PMID:26623647

  15. Insulin receptor isoform A and insulin-like growth factor II as additional treatment targets in human osteosarcoma.

    PubMed

    Avnet, Sofia; Sciacca, Laura; Salerno, Manuela; Gancitano, Giovanni; Cassarino, Maria Francesca; Longhi, Alessandra; Zakikhani, Mahvash; Carboni, Joan M; Gottardis, Marco; Giunti, Armando; Pollak, Michael; Vigneri, Riccardo; Baldini, Nicola

    2009-03-15

    Despite the frequent presence of an insulin-like growth factor I receptor (IGFIR)-mediated autocrine loop in osteosarcoma (OS), interfering with this target was only moderately effective in preclinical studies. Here, we considered other members of the IGF system that might be involved in the molecular pathology of OS. We found that, among 45 patients with OS, IGF-I and IGFBP-3 serum levels were significantly lower, and IGF-II serum levels significantly higher, than healthy controls. Increased IGF-II values were associated with a decreased disease-free survival. After tumor removal, both IGF-I and IGF-II levels returned to normal values. In 23 of 45 patients, we obtained tissue specimens and found that all expressed high mRNA level of IGF-II and >IGF-I. Also, isoform A of the insulin receptor (IR-A) was expressed at high level in addition to IGFIR and IR-A/IGFIR hybrids receptors (HR(A)). These receptors were also expressed in OS cell lines, and simultaneous impairment of IGFIR, IR, and Hybrid-Rs by monoclonal antibodies, siRNA, or the tyrosine kinase inhibitor BMS-536924, which blocks both IGFIR and IR, was more effective than selective anti-IGFIR strategies. Also, anti-IGF-II-siRNA treatment in low-serum conditions significantly inhibited MG-63 OS cells that have an autocrine circuit for IGF-II. In summary, IGF-II rather than IGF-I is the predominant growth factor produced by OS cells, and three different receptors (IR-A, HR(A), and IGFIR) act complementarily for an IGF-II-mediated constitutive autocrine loop, in addition to the previously shown IGFIR/IGF-I circuit. Cotargeting IGFIR and IR-A is more effective than targeting IGF-IR alone in inhibiting OS growth. PMID:19258511

  16. Palmitate-induced inflammatory pathways in human adipose microvascular endothelial cells promote monocyte adhesion and impair insulin transcytosis.

    PubMed

    Pillon, Nicolas J; Azizi, Paymon M; Li, Yujin E; Liu, Jun; Wang, Changsen; Chan, Kenny L; Hopperton, Kathryn E; Bazinet, Richard P; Heit, Bryan; Bilan, Philip J; Lee, Warren L; Klip, Amira

    2015-07-01

    Obesity is associated with inflammation and immune cell recruitment to adipose tissue, muscle and intima of atherosclerotic blood vessels. Obesity and hyperlipidemia are also associated with tissue insulin resistance and can compromise insulin delivery to muscle. The muscle/fat microvascular endothelium mediates insulin delivery and facilitates monocyte transmigration, yet its contribution to the consequences of hyperlipidemia is poorly understood. Using primary endothelial cells from human adipose tissue microvasculature (HAMEC), we investigated the effects of physiological levels of fatty acids on endothelial inflammation and function. Expression of cytokines and adhesion molecules was measured by RT-qPCR. Signaling pathways were evaluated by pharmacological manipulation and immunoblotting. Surface expression of adhesion molecules was determined by immunohistochemistry. THP1 monocyte interaction with HAMEC was measured by cell adhesion and migration across transwells. Insulin transcytosis was measured by total internal reflection fluorescence microscopy. Palmitate, but not palmitoleate, elevated the expression of IL-6, IL-8, TLR2 (Toll-like receptor 2), and intercellular adhesion molecule 1 (ICAM-1). HAMEC had markedly low fatty acid uptake and oxidation, and CD36 inhibition did not reverse the palmitate-induced expression of adhesion molecules, suggesting that inflammation did not arise from palmitate uptake/metabolism. Instead, inhibition of TLR4 to NF-κB signaling blunted palmitate-induced ICAM-1 expression. Importantly, palmitate-induced surface expression of ICAM-1 promoted monocyte binding and transmigration. Conversely, palmitate reduced insulin transcytosis, an effect reversed by TLR4 inhibition. In summary, palmitate activates inflammatory pathways in primary microvascular endothelial cells, impairing insulin transport and increasing monocyte transmigration. This behavior may contribute in vivo to reduced tissue insulin action and enhanced tissue

  17. Protein kinase C is differentially regulated by thrombin, insulin, and epidermal growth factor in human mammary tumor cells

    SciTech Connect

    Gomez, M.L.; Tellez-Inon, M.T. ); Medrano, E.E.; Cafferatta, E.G.A. )

    1988-03-01

    The exposure of serum-deprived mammary tumor cells MCF-7 and T-47D to insulin, thrombin, and epidermal growth factor (EGF) resulted in dramatic modifications in the activity and in the translocation capacity of protein kinase C from cytosol to membrane fractions. Insulin induces a 600% activation of the enzyme after 5 h of exposure to the hormone in MCF-7 cells; thrombin either activates (200% in MCF-7) or down-regulates (in T-47D), and EGF exerts only a moderate effect. Thus, the growth factors studied modulate differentially the protein kinase C activity in human mammary tumor cells. The physiological significance of the results obtained are discussed in terms of the growth response elicited by insulin, thrombin, and EGF.

  18. Engineering of a Novel Simplified Human Insulin-Like Peptide 5 Agonist.

    PubMed

    Patil, Nitin A; Hughes, Richard A; Rosengren, K Johan; Kocan, Martina; Ang, Sheng Yu; Tailhades, Julien; Separovic, Frances; Summers, Roger J; Grosse, Johannes; Wade, John D; Bathgate, Ross A D; Hossain, Mohammed Akhter

    2016-03-10

    Insulin-like peptide 5 (INSL5) has recently been discovered as only the second orexigenic gut hormone after ghrelin. As we have previously reported, INSL5 is extremely difficult to assemble and oxidize into its two-chain three-disulfide structure. The focus of this study was to generate structure-activity relationships (SARs) of INSL5 and use it to develop a potent and simpler INSL5 mimetic with RXFP4 agonist activity. A series of human and mouse INSL5 (hINSL5/mINSL5) analogues were designed and chemically synthesized, resulting in a chimeric INSL5 analogue exhibiting more than 10-fold higher potency (0.35 nM) at human RXFP4 compared with native hINSL5 (4.57 nM). The SAR study also identified a key residue (K(A15)) in the A-chain of mINSL5 that contributes to improved RXFP4 affinity and potency of mINSL5 compared with hINSL5. This knowledge ultimately led us to engineer a minimized hINSL5 mimetic agonist that retains native hINSL5-like RXFP4 affinity and potency at human RXFP4. This minimized analogue was synthesized in 17.5-fold higher yield and in less time compared with hINSL5. PMID:26824523

  19. Human iPS Cell-Derived Insulin Producing Cells Form Vascularized Organoids under the Kidney Capsules of Diabetic Mice

    PubMed Central

    Raikwar, Sudhanshu P.; Kim, Eun-Mi; Sivitz, William I.; Allamargot, Chantal; Thedens, Daniel R.; Zavazava, Nicholas

    2015-01-01

    Type 1 diabetes (T1D) is caused by autoimmune disease that leads to the destruction of pancreatic β-cells. Transplantation of cadaveric pancreatic organs or pancreatic islets can restore normal physiology. However, there is a chronic shortage of cadaveric organs, limiting the treatment of the majority of patients on the pancreas transplantation waiting list. Here, we hypothesized that human iPS cells can be directly differentiated into insulin producing cells (IPCs) capable of secreting insulin. Using a series of pancreatic growth factors, we successfully generated iPS cells derived IPCs. Furthermore, to investigate the capability of these cells to secrete insulin in vivo, the differentiated cells were transplanted under the kidney capsules of diabetic immunodeficient mice. Serum glucose levels gradually declined to either normal or near normal levels over 150 days, suggesting that the IPCs were secreting insulin. In addition, using MRI, a 3D organoid appeared as a white patch on the transplanted kidneys but not on the control kidneys. These organoids showed neo-vascularization and stained positive for insulin and glucagon. All together, these data show that a pancreatic organ can be created in vivo providing evidence that iPS cells might be a novel option for the treatment of T1D. PMID:25629318

  20. Differentiation of Human Mesenchymal Stem Cells into Insulin Producing Cells by Using A Lentiviral Vector Carrying PDX1

    PubMed Central

    Allahverdi, Amir; Abroun, Saied; Jafarian, Arefeh; Soleimani, Masoud; Taghikhani, Mohammad; Eskandari, Fatemeh

    2015-01-01

    Objective Type I diabetes is an immunologically-mediated devastation of insulin producing cells (IPCs) in the pancreatic islet. Stem cells that produce β-cells are a new promising tool. Adult stem cells such as mesenchymal stem cells (MSCs) are self renewing multi potent cells showing capabilities to differentiate into ectodermal, mesodermal and endodermal tissues. Pancreatic and duodenal homeobox factor 1 (PDX1) is a master regulator gene required for embryonic development of the pancreas and is crucial for normal pancreatic islets activities in adults. Materials and Methods We induced the over-expression of the PDX1 gene in human bone marrow MSCs (BM-MSCs) by Lenti-PDX1 in order to generate IPCs. Next, we examine the ability of the cells by measuring insulin/c-peptide production and INSULIN and PDX1 gene expressions. Results After transduction, MSCs changed their morphology at day 5 and gradually differentiated into IPCs. INSULIN and PDX1 expressions were confirmed by real time polymerase chain reaction (RT-PCR) and immunostaining. IPC secreted insulin and C-peptide in the media that contained different glucose concentrations. Conclusion MSCs differentiated into IPCs by genetic manipulation. Our result showed that lentiviral vectors could deliver PDX1 gene to MSCs and induce pancreatic differentiation. PMID:26199902

  1. Personalized intensification of insulin therapy in type 2 diabetes - does a basal-bolus regimen suit all patients?

    PubMed

    Giugliano, D; Sieradzki, J; Stefanski, A; Gentilella, R

    2016-08-01

    Many patients with type 2 diabetes mellitus (T2DM) require insulin therapy. If basal insulin fails to achieve glycemic control, insulin intensification is one possible treatment intensification strategy. We summarized clinical data from randomized clinical trials designed to compare the efficacy and safety of basal-bolus and premixed insulin intensification regimens. We defined a between-group difference of ≥0.3% in end-of-study glycated hemoglobin (HbA1c) as clinically meaningful. A PubMed database search supplemented by author-identified papers yielded 15 trials which met selection criteria: randomized design, patients with T2DM receiving basal-bolus (bolus injection ≤3 times/day) vs. premixed (≤3 injections/day) insulin regimens, primary/major endpoint(s) HbA1c- and/or hypoglycemia-related, and trial duration ≥12 weeks. Glycemic control improved with both basal-bolus and premixed insulin regimens with - in most cases - acceptable levels of weight gain and hypoglycemia. A clinically meaningful difference between regimens in glycemic control was recorded in only four comparisons, all of which favored basal-bolus therapy. The incidence of hypoglycemia was significantly different between regimens in only three comparisons, one of which favored premixed insulin and two basal-bolus therapy. Of the four trials that reported a significant difference between regimens in bodyweight change, two favored basal-bolus therapy and two favored premixed insulin. Thus, on a population level, neither basal-bolus therapy nor premixed insulin showed a consistent advantage in terms of glycemic control, hypoglycemic risk, or bodyweight gain. It is therefore recommended that clinicians should adopt an individualized approach to insulin intensification - taking into account the benefits and risks of each treatment approach and the attitude and preferences of each patient - in the knowledge that both basal-bolus and premixed regimens may be successful. PMID:27126277

  2. Skeletal muscle phosphatidylcholine and phosphatidylethanolamine are related to insulin sensitivity and respond to acute exercise in humans.

    PubMed

    Newsom, Sean A; Brozinick, Joseph T; Kiseljak-Vassiliades, Katja; Strauss, Allison N; Bacon, Samantha D; Kerege, Anna A; Bui, Hai Hoang; Sanders, Phil; Siddall, Parker; Wei, Tao; Thomas, Melissa; Kuo, Ming Shang; Nemkov, Travis; D'Alessandro, Angelo; Hansen, Kirk C; Perreault, Leigh; Bergman, Bryan C

    2016-06-01

    Several recent reports indicate that the balance of skeletal muscle phosphatidylcholine (PC) and phosphatidylethanolamine (PE) is a key determinant of muscle contractile function and metabolism. The purpose of this study was to determine relationships between skeletal muscle PC, PE and insulin sensitivity, and whether PC and PE are dynamically regulated in response to acute exercise in humans. Insulin sensitivity was measured via intravenous glucose tolerance in sedentary obese adults (OB; n = 14), individuals with type 2 diabetes (T2D; n = 15), and endurance-trained athletes (ATH; n = 15). Vastus lateralis muscle biopsies were obtained at rest, immediately after 90 min of cycle ergometry at 50% maximal oxygen consumption (V̇o2 max), and 2-h postexercise (recovery). Skeletal muscle PC and PE were measured via infusion-based mass spectrometry/mass spectrometry analysis. ATH had greater levels of muscle PC and PE compared with OB and T2D (P < 0.05), with total PC and PE positively relating to insulin sensitivity (both P < 0.05). Skeletal muscle PC:PE ratio was elevated in T2D compared with OB and ATH (P < 0.05), tended to be elevated in OB vs. ATH (P = 0.07), and was inversely related to insulin sensitivity among the entire cohort (r = -0.43, P = 0.01). Muscle PC and PE were altered by exercise, particularly after 2 h of recovery, in a highly group-specific manner. However, muscle PC:PE ratio remained unchanged in all groups. In summary, total muscle PC and PE are positively related to insulin sensitivity while PC:PE ratio is inversely related to insulin sensitivity in humans. A single session of exercise significantly alters skeletal muscle PC and PE levels, but not PC:PE ratio. PMID:27032901

  3. Direct in vivo characterization of delta 5 desaturase activity in humans by deuterium labeling: Effect of insulin

    SciTech Connect

    el Boustani, S.; Causse, J.E.; Descomps, B.; Monnier, L.; Mendy, F.; Crastes de Paulet, A.

    1989-04-01

    The conversion of dihomogamma linolenic acid (DHLA) into arachidonic acid (AA) was compared in normal subjects and diabetic patients before and after treatment with insulin. The kinetics of the incorporation of deuterium-labeled DHLA and its conversion product, deuterium-labeled AA, was determined in plasma triglycerides, plasma phospholipids, and platelet lipids of subjects after ingestion of 2 g of the labeled precursor. Analysis was performed by gas liquid chromatography-mass spectrometry using multiple ion detection. In normal subjects, the deuterium-labeled DHLA concentration rose to 24 to 69 mg/L in plasma triglycerides four to nine hours after ingestion and to 20 to 34 mg/L in plasma phospholipids about four hours later. Deuterium-labeled AA appeared at 12 hours, rose to 2.4 to 3.8 mg/L between 48 and 72 hours in plasma phospholipids, but remained at the limit of detection in plasma triglycerides and was undetectable in platelet lipids. In diabetic patients both before and after insulin treatment, the deuterium-labeled DHLA concentration in plasma triglycerides and in plasma phospholipids followed the same pattern as in normal subjects. However, the deuterium-labeled arachidonic acid concentration was below 1 mg/L in plasma phospholipids before insulin. After insulin treatment the patients recovered normal DHLA metabolism because deuterium-labeled AA rose in phospholipids to a mean value of 3.5 mg/L, which is in the same range as that observed in normal subjects (3.2 mg/L). The present data provide direct evidence for the conversion of DHLA into AA in humans. The effect of insulin and the data from the literature of animal studies suggest insulin dependence of delta 5 desaturase in humans.

  4. LEM-CF Premixed Tool Kit

    Energy Science and Technology Software Center (ESTSC)

    2015-01-19

    The purpose of LEM-CF Premixed Tool Kit is to process premixed flame simulation data from the LEM-CF solver (https://fileshare.craft-tech.com/clusters/view/lem-cf) into a large-eddy simulation (LES) subgrid model database. These databases may be used with a user-defined-function (UDF) that is included in the Tool Kit. The subgrid model UDF may be used with the ANSYS FLUENT flow solver or other commercial flow solvers.

  5. Premixed turbulent flame propagation in microgravity

    NASA Technical Reports Server (NTRS)

    Menon, S.; Jagoda, J.; Sujith, R.

    1995-01-01

    To reduce pollutant formation there is, at present, an increased interest in employing premixed fuel/air mixture in combustion devices. It is well known that greater control over local temperature can be achieved with premixed flames and with lean premixed mixtures, significant reduction of pollutants such as NO(x) can be achieved. However, an issue that is still unresolved is the predictability of the flame propagation speed in turbulent premixed mixtures, especially in lean mixtures. Although substantial progress has been made in recent years, there is still no direct verification that flame speeds in turbulent premixed flows are highly predictable in complex flow fields found in realistic combustors. One of the problems associated with experimental verification is the difficulty in obtaining access to all scales of motion in typical high Reynolds number flows, since, such flows contain scales of motion that range from the size of the device to the smallest Kolmogorov scale. The overall objective of this study is to characterize the behavior of turbulent premixed flames at reasonable high Reynolds number, Re(sub L). Of particular interest here is the thin flame limit where the laminar flame thickness is much smaller than the Kolmogorov scale. Thin flames occur in many practical combustion devices and will be numerically studied using a recently developed new formulation that is briefly described.

  6. Premixed macroporous calcium phosphate cement scaffold

    PubMed Central

    Carey, Lisa E.; Simon, Carl G.

    2009-01-01

    Calcium phosphate cement (CPC) sets in situ to form resorbable hydroxyapatite and is promising for orthopaedic applications. However, it requires on-site powder-liquid mixing during surgery, which prolongs surgical time and raises concerns of inhomogeneous mixing. The objective of this study was to develop a premixed CPC scaffold with macropores suitable for tissue ingrowth. To avoid the on-site powder-liquid mixing, the CPC paste was mixed in advance and did not set in storage; it set only after placement in a physiological solution. Using 30% and 40% mass fractions of mannitol porogen, the premixed CPC scaffold with fibers had flexural strength (mean ± sd; n = 5) of (3.9 ± 1.4) MPa and (1.8 ± 0.8) MPa, respectively. The scaffold porosity reached (68.6 ± 0.7)% and (74.7 ± 1.2)%, respectively. Osteoblast cells colonized in the surface macropores of the scaffold and attached to the hydroxyapatite crystals. Cell viability values for the premixed CPC scaffold was not significantly different from that of a conventional non-premixed CPC known to be biocompatible (P > 0.1). In conclusion, using fast-dissolving porogen and slow-dissolving fibers, a premixed macroporous CPC scaffold was developed with strength approaching the reported strengths of sintered porous hydroxyapatite implants and cancellous bone, and non-cytotoxicity similar to a biocompatible non-premixed CPC. PMID:17277972

  7. Insulin resistance and the metabolism of branched-chain amino acids in humans.

    PubMed

    Adeva, María M; Calviño, Jesús; Souto, Gema; Donapetry, Cristóbal

    2012-07-01

    Peripheral resistance to insulin action is the major mechanism causing the metabolic syndrome and eventually type 2 diabetes mellitus. The metabolic derangement associated with insulin resistance is extensive and not restricted to carbohydrates. The branched-chain amino acids (BCAAs) are particularly responsive to the inhibitory insulin action on amino acid release by skeletal muscle and their metabolism is profoundly altered in conditions featuring insulin resistance, insulin deficiency, or both. Obesity, the metabolic syndrome and diabetes mellitus display a gradual increase in the plasma concentration of BCAAs, from the obesity-related low-grade insulin-resistant state to the severe deficiency of insulin action in diabetes ketoacidosis. Obesity-associated hyperinsulinemia succeeds in maintaining near-normal or slightly elevated plasma concentration of BCAAs, despite the insulin-resistant state. The low circulating levels of insulin and/or the deeper insulin resistance occurring in diabetes mellitus are associated with more marked elevation in the plasma concentration of BCAAs. In diabetes ketoacidosis, the increase in plasma BCAAs is striking, returning to normal when adequate metabolic control is achieved. The metabolism of BCAAs is also disturbed in other situations typically featuring insulin resistance, including kidney and liver dysfunction. However, notwithstanding the insulin-resistant state, the plasma level of BCAAs in these conditions is lower than in healthy subjects, suggesting that these organs are involved in maintaining BCAAs blood concentration. The pathogenesis of the decreased BCAAs plasma level in kidney and liver dysfunction is unclear, but a decreased afflux of these amino acids into the blood stream has been observed. PMID:21984377

  8. Structural Integrity of the B24 Site in Human Insulin Is Important for Hormone Functionality*

    PubMed Central

    Žáková, Lenka; Kletvíková, Emília; Veverka, Václav; Lepšík, Martin; Watson, Christopher J.; Turkenburg, Johan P.; Jiráček, Jiří; Brzozowski, Andrzej M.

    2013-01-01

    Despite the recent first structural insight into the insulin-insulin receptor complex, the role of the C terminus of the B-chain of insulin in this assembly remains unresolved. Previous studies have suggested that this part of insulin must rearrange to reveal amino acids crucial for interaction with the receptor. The role of the invariant PheB24, one of the key residues of the hormone, in this process remains unclear. For example, the B24 site functionally tolerates substitutions to d-amino acids but not to l-amino acids. Here, we prepared and characterized a series of B24-modified insulin analogues, also determining the structures of [d-HisB24]-insulin and [HisB24]-insulin. The inactive [HisB24]-insulin molecule is remarkably rigid due to a tight accommodation of the l-His side chain in the B24 binding pocket that results in the stronger tethering of B25-B28 residues to the protein core. In contrast, the highly active [d-HisB24]-insulin is more flexible, and the reverse chirality of the B24Cα atom swayed the d-HisB24 side chain into the solvent. Furthermore, the pocket vacated by PheB24 is filled by PheB25, which mimics the PheB24 side and main chains. The B25→B24 downshift results in a subsequent downshift of TyrB26 into the B25 site and the departure of B26-B30 residues away from the insulin core. Our data indicate the importance of the aromatic l-amino acid at the B24 site and the structural invariance/integrity of this position for an effective binding of insulin to its receptor. Moreover, they also suggest limited, B25-B30 only, unfolding of the C terminus of the B-chain upon insulin activation. PMID:23447530

  9. Efficacy and safety of biphasic insulin aspart and biphasic insulin lispro mix in patients with type 2 diabetes: A review of the literature

    PubMed Central

    Kumar, Ajay

    2016-01-01

    Type 2 diabetes (T2D) represents an escalating burden worldwide, particularly in China and India. Compared with Caucasians, Asian people with diabetes have lower body mass index, increased visceral adiposity, and postprandial glucose (PPG)/insulin resistance. Since postprandial hyperglycemia contributes significantly to total glycemic burden and is associated with heightened cardiovascular risk, targeting PPG early in T2D is paramount. Premixed insulin regimens are widely used in Asia due to their convenience and effectiveness. Data from randomized controlled trials and observational studies comparing efficacy and safety of biphasic insulin aspart 30 (BIAsp 30) with biphasic insulin lispro mix (LM 25/50) and versus other insulin therapies or oral antidiabetic drugs (OADs) in T2D demonstrated that BIAsp 30 and LM 25/50 were associated with similar or greater improvements in glycemic control versus comparator regimens, such as basal–bolus insulin, in insulin-naÏve, and prior insulin users. Studies directly comparing BIAsp 30 and LM 25 provided conflicting glycemic control results. Safety data generally showed increased hypoglycemia and weight gain with premixed insulins versus basal–bolus insulin or OADs. However, large observational trials documented improvements in glycated hemoglobin, PPG, and hypoglycemia with BIAsp 30 in multi-ethnic patient populations. In summary, this literature review demonstrates that premixed insulin regimens are an appropriate and effective treatment choice in T2D. PMID:27186543

  10. Efficacy and safety of biphasic insulin aspart and biphasic insulin lispro mix in patients with type 2 diabetes: A review of the literature.

    PubMed

    Kumar, Ajay

    2016-01-01

    Type 2 diabetes (T2D) represents an escalating burden worldwide, particularly in China and India. Compared with Caucasians, Asian people with diabetes have lower body mass index, increased visceral adiposity, and postprandial glucose (PPG)/insulin resistance. Since postprandial hyperglycemia contributes significantly to total glycemic burden and is associated with heightened cardiovascular risk, targeting PPG early in T2D is paramount. Premixed insulin regimens are widely used in Asia due to their convenience and effectiveness. Data from randomized controlled trials and observational studies comparing efficacy and safety of biphasic insulin aspart 30 (BIAsp 30) with biphasic insulin lispro mix (LM 25/50) and versus other insulin therapies or oral antidiabetic drugs (OADs) in T2D demonstrated that BIAsp 30 and LM 25/50 were associated with similar or greater improvements in glycemic control versus comparator regimens, such as basal-bolus insulin, in insulin-naÏve, and prior insulin users. Studies directly comparing BIAsp 30 and LM 25 provided conflicting glycemic control results. Safety data generally showed increased hypoglycemia and weight gain with premixed insulins versus basal-bolus insulin or OADs. However, large observational trials documented improvements in glycated hemoglobin, PPG, and hypoglycemia with BIAsp 30 in multi-ethnic patient populations. In summary, this literature review demonstrates that premixed insulin regimens are an appropriate and effective treatment choice in T2D. PMID:27186543

  11. Efficient Total Chemical Synthesis of (13) C=(18) O Isotopomers of Human Insulin for Isotope-Edited FTIR.

    PubMed

    Dhayalan, Balamurugan; Fitzpatrick, Ann; Mandal, Kalyaneswar; Whittaker, Jonathan; Weiss, Michael A; Tokmakoff, Andrei; Kent, Stephen B H

    2016-03-01

    Isotope-edited two-dimensional Fourier transform infrared spectroscopy (2 D FTIR) can potentially provide a unique probe of protein structure and dynamics. However, general methods for the site-specific incorporation of stable (13) C=(18) O labels into the polypeptide backbone of the protein molecule have not yet been established. Here we describe, as a prototype for the incorporation of specific arrays of isotope labels, the total chemical synthesis-via a key ester insulin intermediate-of 97 % enriched [(1-(13) C=(18) O)Phe(B24) ] human insulin: stable-isotope labeled at a single backbone amide carbonyl. The amino acid sequence as well as the positions of the disulfide bonds and the correctly folded structure were unambiguously confirmed by the X-ray crystal structure of the synthetic protein molecule. In vitro assays of the isotope labeled [(1-(13) C=(18) O)Phe(B24) ] human insulin showed that it had full insulin receptor binding activity. Linear and 2 D IR spectra revealed a distinct red-shifted amide I carbonyl band peak at 1595 cm(-1) resulting from the (1-(13) C=(18) O)Phe(B24) backbone label. This work illustrates the utility of chemical synthesis to enable the application of advanced physical methods for the elucidation of the molecular basis of protein function. PMID:26715336

  12. Construction of a recombinant human insulin expression vector for mammary gland-specific expression in buffalo (Bubalus bubalis) mammary epithelial cell line.

    PubMed

    Kaushik, Ramakant; Singh, Karn Pratap; Kumari, Archana; Rameshbabu, K; Singh, Manoj Kumar; Manik, Radhey Shyam; Palta, Prabhat; Singla, Suresh Kumar; Chauhan, Manmohan Singh

    2014-09-01

    The aim of the present study was construction of mammary gland specific expression vector for high level of human insulin (hINS) expression in transgenic buffalo for therapeutic use. We have constructed mammary gland specific vector containing human insulin gene and there expression efficiency was checked into in vitro cultured buffalo mammary epithelial cells (BuMECs). Human pro-insulin coding region was isolated from human genomic DNA by intron skipping PCR primer and furin cleavage site was inserted between B-C and C-A chain of human insulin by overlap extension PCR. A mammary gland-specific buffalo beta-lactoglobulin promoter was isolated from buffalo DNA and used for human insulin expression in BuMEC cells. The construct was transfected into BuMECs by lipofection method and positive transgene cell clones were obtained by G418 selection after 3 weeks. Expression of hINS in transfected cells were confirmed by RT-PCR, Immunocytochemistry, Western Blotting and ELISA. The pAcISUBC insulin-expressing clones secreted insulin at varying levels between 0.18 - 1.43 ng/ml/24 h/2.0 × 10(6) cells. PMID:24969480

  13. Protamine coated proliposomes of recombinant human insulin encased in Eudragit S100 coated capsule offered improved peptide delivery and permeation across Caco-2 cells.

    PubMed

    Sharma, Shiva; Jyoti, Kiran; Sinha, Richa; Katyal, Anju; Jain, Upendra Kumar; Madan, Jitender

    2016-10-01

    In present investigation, recombinant human insulin loaded proliposomes and protamine sulphate coated proliposomes (rh insulin-proliposomes and Pt-rh insulin proliposomes) were encased in Eudragit S100 coated capsule to offer peptide release in simulated intestinal conditions. The particle size and zeta potential of Pt-rh insulin proliposomes were measured to be 583.2±10.2nm/+28.3±3.7mV significantly (P<0.05) higher than 569.7±14.9nm/-37.9±4.3mV and 534.6±24.6nm/-42.7±2.8mV of rh insulin proliposomes and proliposomes, respectively. Next, shape and surface morphology analysis pointed out the successful transformation of proliposomes in to spherical shaped liposomes. Furthermore, in vitro release study specified that free rh insulin solution encapsulated in uncoated gelatine capsule released 97.8% of peptide within 1h in SGF (pH~1.2). On other hand, rh insulin-proliposomes and Pt-rh insulin proliposomes encased in Eudragit S100 coated capsule released 93.2% and 81.6% of peptide, up to 24 h in SIF (pH~7.2). SDS-PAGE and circular dichroism (CD) ascertained the stability and intactness of isolated rh insulin from tailored dosage forms. In last, cellular uptake in Caco-2 cells indicating the superiority of Pt-rh insulin proliposomes in comparison to rh-insulin proliposomes and free rh insulin solution, respectively. In conclusion, Pt-rh insulin proliposomes displayed promising results and may be considered for further investigations. PMID:27287134

  14. Lipodystrophy in human immunodeficiency virus patients impairs insulin action and induces defects in beta-cell function.

    PubMed

    Andersen, Ove; Haugaard, Steen B; Andersen, Ulrik B; Friis-Møller, Nina; Storgaard, Heidi; Vølund, Aage; Nielsen, Jens Ole; Iversen, Johan; Madsbad, Sten

    2003-10-01

    The pathophysiology of insulin resistance in human immunodeficiency virus (HIV)-associated lipodystrophy syndrome (HALS) is not fully clarified. We investigated 18 men with HALS and 18 HIV-positive males without lipodystrophy (control subjects). Duration and modality of antiretroviral therapy were similar between study groups. A hyperinsulinemic euglycemic clamp showed an impaired glucose disposal rate (GDR) in HALS patients (5.6 v 8.3 mg glucose/min. kg(FFM), P =.0006). As demonstrated by indirect calorimetry, HALS patients showed an impaired nonoxidative glucose metabolism (NOGM, 2.2 v 4.2, P =.006), whereas levels of basal and insulin-stimulated oxidative glucose metabolism (OGM) (2.4 v 2.3, P =.55, and 3.3 v 4.0, P =.064, respectively) were not significantly different between groups. Despite comparable total fat masses, dual energy x-ray absorptiometry (DEXA) scans showed that the percentage of limb fat (ie, peripheral-fat-mass/[peripheral-fat-mass + trunk-fat-mass]. 100%) was reduced in HALS patients (36% v 46%, P =.0002). Multiple linear regression analysis indicated that percentage of limb fat explained 53% of the variability of GDR and 45% of the variability of NOGM in HALS patients. In HALS patients, leg fat mass correlated positively with NOGM (r =.51, P <.05), whereas abdominal fat mass and NOGM did not correlate (P =.91). Analyzing the relationship between first phase insulin secretion and insulin sensitivity, 6 HALS patients compared with none of the control subjects exhibited impaired insulin secretion (P <.05). Our data suggest that fat redistribution independently of antiretroviral therapy is highly related to insulin resistance in HALS patients. Furthermore, in HALS patients, impaired glucose metabolism most likely relates to decreased NOGM and to defects in beta-cell function. PMID:14564688

  15. Looking at the carcinogenicity of human insulin analogues via the intrinsic disorder prism

    PubMed Central

    Redwan, Elrashdy M.; Linjawi, Moustafa H.; Uversky, Vladimir N.

    2016-01-01

    Therapeutic insulin, in its native and biosynthetic forms as well as several currently available insulin analogues, continues to be the protein of most interest to researchers. From the time of its discovery to the development of modern insulin analogues, this important therapeutic protein has passed through several stages and product generations. Beside the well-known link between diabetes and cancer risk, the currently used therapeutic insulin analogues raised serious concerns due to their potential roles in cancer initiation and/or progression. It is possible that structural variations in some of the insulin analogues are responsible for the appearance of new oncogenic species with high binding affinity to the insulin-like growth factor 1 (IGF1) receptor. The question we are trying to answer in this work is: are there any specific features of the distribution of intrinsic disorder propensity within the amino acid sequences of insulin analogues that may provide an explanation for the carcinogenicity of the altered insulin protein? PMID:26983499

  16. Looking at the carcinogenicity of human insulin analogues via the intrinsic disorder prism.

    PubMed

    Redwan, Elrashdy M; Linjawi, Moustafa H; Uversky, Vladimir N

    2016-01-01

    Therapeutic insulin, in its native and biosynthetic forms as well as several currently available insulin analogues, continues to be the protein of most interest to researchers. From the time of its discovery to the development of modern insulin analogues, this important therapeutic protein has passed through several stages and product generations. Beside the well-known link between diabetes and cancer risk, the currently used therapeutic insulin analogues raised serious concerns due to their potential roles in cancer initiation and/or progression. It is possible that structural variations in some of the insulin analogues are responsible for the appearance of new oncogenic species with high binding affinity to the insulin-like growth factor 1 (IGF1) receptor. The question we are trying to answer in this work is: are there any specific features of the distribution of intrinsic disorder propensity within the amino acid sequences of insulin analogues that may provide an explanation for the carcinogenicity of the altered insulin protein? PMID:26983499

  17. In vitro differentiation of human umbilical cord Wharton’s jelly mesenchymal stromal cells to insulin producing clusters

    PubMed Central

    Nekoei, Seideh Masoomeh; Azarpira, Negar; Sadeghi, Ladan; Kamalifar, Sulmaz

    2015-01-01

    AIM: To investigate the differentiation of human Wharton’s jelly derived mesenchymal stromal cells (WJ-MSCs) to insulin producing clusters (IPC) this study was conducted. METHODS: The umbilical cords samples were collected from full term caesarian section mothers and the WJ-MSCS were cultured from tissue explants in High glucose-Dulbecco’s Modified Eagle Medium (H-DMEM); H-DMEM supplemented with 10% fetal bovine serum (FBS) and antibiotics. The expression of CD90, CD44, CD105, CD34 and CD133 as well as osteogenic and adipogenic differentiation of cells in appropriate medium were also evaluated. The cells were differentiated toward IPC with changing the culture medium and adding the small molecules such as nicotinic acid, epidermal growth factor, and exendin-4 during 3 wk period. The gene expression of PDX1, NGN3, Glut2, insulin was monitored by reveres transcription polymerase chain reaction method. The differentiated clusters were stained with Dithizone (DTZ) which confirms the presence of insulin granules. The insulin challenge test (low and high glucose concentration in Krebs-Ringer HEPES buffer) was also used to evaluate the functional properties of differentiated clusters. RESULTS: WJ-MSCS were positive for mesenchymal surface markers (CD90, CD44, CD105), and negative for CD34 and CD133. The accumulation of lipid vacuoles and deposition of calcium mineral in cells were considered as adipogenic and osteogenic potential of WJ-MSCS. The cells also expressed the transcriptional factors such as Nanog and OCT4. During this three step differentiation, the WJ-MSCS morphology was gradually changed from spindle shaped cells in to epithelioid cells and eventually to three dimensional clusters. The clusters expressed PDX1, NGN3, Glut2, and insulin. The cells became bright red color when stained with DTZ and the insulin secretion was also confirmed. In glucose challenge test a significant increase in insulin secretion from 0.91 ± 0.04 μIu/mL (2.8 mmol/L glucose) to

  18. Insulin-Producing Cells Differentiated from Human Bone Marrow Mesenchymal Stem Cells In Vitro Ameliorate Streptozotocin-Induced Diabetic Hyperglycemia

    PubMed Central

    Xin, Ying; Jiang, Xin; Wang, Yishu; Su, Xuejin; Sun, Meiyu; Zhang, Lihong; Tan, Yi; Wintergerst, Kupper A.; Li, Yan; Li, Yulin

    2016-01-01

    Background The two major obstacles in the successful transplantation of islets for diabetes treatment are inadequate supply of insulin-producing tissue and immune rejection. Induction of the differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs) into insulin-producing cells (IPCs) for autologous transplantation may alleviate those limitations. Methods hMSCs were isolated and induced to differentiate into IPCs through a three-stage differentiation protocol in a defined media with high glucose, nicotinamide, and exendin-4. The physiological characteristics and functions of IPCs were then evaluated. Next, about 3 × 106 differentiated cells were transplanted into the renal sub-capsular space of streptozotocin (STZ)-induced diabetic nude mice. Graft survival and function were assessed by immunohistochemistry, TUNEL staining and measurements of blood glucose levels in the mice. Results The differentiated IPCs were characterized by Dithizone (DTZ) positive staining, expression of pancreatic β-cell markers, and human insulin secretion in response to glucose stimulation. Moreover, 43% of the IPCs showed L-type Ca2+ channel activity and similar changes in intracellular Ca2+ in response to glucose stimulation as that seen in pancreatic β-cells in the process of glucose-stimulated insulin secretion. Transplantation of functional IPCs into the renal subcapsular space of STZ-induced diabetic nude mice ameliorated the hyperglycemia. Immunofluorescence staining revealed that transplanted IPCs sustainably expressed insulin, c-peptide, and PDX-1 without apparent apoptosis in vivo. Conclusions IPCs derived from hMSCs in vitro can ameliorate STZ-induced diabetic hyperglycemia, which indicates that these hMSCs may be a promising approach to overcome the limitations of islet transplantation. PMID:26756576

  19. Turbulent Premixed Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Menon, Suresh

    1996-01-01

    The experimental cold-flow facility is now full operational and is currently being used to obtain baseline turbulence data in a Couette flow. The baseline turbulence data is necessary to confirm the capability of the chosen device to generate and maintain the required turbulence intensity. Subsequent reacting flow studies will assume that a similar turbulent flow field exists ahead of the premixed flame. Some modifications and refinements had to be made to enable accurate measurements. It consists of two rollers, one (driven by a motor) which drives a continuous belt and four smaller rollers used to set the belt spacing and tension to minimize belt flutter. The entire assemble is enclosed in a structure that has the dimensions to enable future drop tower experiments of the hot facility. All critical dimensions are the same as the original plans except for the pulley ratio which has been changed to enable a wider operating regime in terms of the Reynolds number. With the current setup, Reynolds numbers as low as 100 and as high as 14,000 can be achieved. This is because the in-between belt spacing can be varied from 1 cm to 7.6 cm, and the belt speed can be accurately varied from .15 m/sec to 3.1 m/sec.

  20. Surface-expressed insulin receptors as well as IGF-I receptors both contribute to the mitogenic effects of human insulin and its analogues.

    PubMed

    Lundby, Anders; Bolvig, Pernille; Hegelund, Anne Charlotte; Hansen, Bo F; Worm, Jesper; Lützen, Anne; Billestrup, Nils; Bonnesen, Christine; Oleksiewicz, Martin B

    2015-07-01

    There is a medical need for new insulin analogues. Yet, molecular alterations to the insulin molecule can theoretically result in analogues with carcinogenic effects. Preclinical carcinogenicity risk assessment for insulin analogues rests to a large extent on mitogenicity assays in cell lines. We therefore optimized mitogenicity assay conditions for a panel of five cell lines. All cell lines expressed insulin receptors (IR), IGF-I receptors (IGF-IR) and hybrid receptors, and in all cell lines, insulin as well as the comparator compounds X10 and IGF-I caused phosphorylation of the IR as well as IGF-IR. Insulin exhibited mitogenicity EC(50) values in the single-digit nanomolar to picomolar range. We observed correlations across cell types between (i) mitogenic potency of insulin and IGF-IR/IR ratio, (ii) Akt phosphorylation and mitogenic potency and (iii) Akt phosphorylation and IR phosphorylation. Using siRNA-mediated knockdown of IR and IGF-IR, we observed that in HCT 116 cells the IR appeared dominant in driving the mitogenic response to insulin, whereas in MCF7 cells the IGF-IR appeared dominant in driving the mitogenic response to insulin. Together, our results show that the IR as well as IGF-IR may contribute to the mitogenic potency of insulin. While insulin was a more potent mitogen than IGF-I in cells expressing more IR than IGF-IR, the hyper-mitogenic insulin analogue X10 was a more potent mitogen than insulin across all cell types, supporting that the hyper-mitogenic effect of X10 involves the IR as well as the IGF-IR. These results are relevant for preclinical safety assessment of developmental insulin analogues. PMID:25413577

  1. Effect of low temperature cultivation on insulin secretory of human pancreatic islets.

    PubMed

    Nikolic, D M; Djordjevic, P B; Lackovic, V B; Stojiljkovic, V; Stanojevic, B

    2013-01-01

    The experiment compared the physiological function (insulin secretory capacity) and membrane integrity of human adult pancreatic islets incubated in culture at 37°C and 24°C. Pancreatic tissue was digested with Collagenase XI, using a non-automated method. Cultures were incubated at 37°C and 24°C. Secretory capacity of the islets is determined by measuring of the stimulation index (SI) on the 1st, 3rd and 7th day of cultivation. Membrane integrity of the islets was determined by dithizone staining. Both groups of examined cultures show a slight increase in SI during the incubation. However islets incubated at 24°C show higher SI values than those incubated at 37°C on the 1st, 3rd and 7th day of incubation. And on the first day of incubation, this difference was statistically significant (p <0.05). Islets incubated at 37°C showed preservation of membrane integrity, the islets are regular spherical shape, while those incubated at 24°C lose such an organization. During the seven-day cultivation, islets incubated at a standard temperature of 37°C show less preserve physiological functions in relation to cultures incubated at 24°C, but islets incubated at 37°C show more regular morphological forms. PMID:23489685

  2. Conditioned insulin and blood sugar responses in humans in relation to binge eating.

    PubMed

    Overduin, J; Jansen, A

    1997-04-01

    This study proposed to demonstrate a classically conditioned blood sugar decrease in humans and to clarify its relevance for binge eating. Six conditioning trials were run in healthy females. The conditioned stimulus (CS) was a compound peppermint flavor/fragrance, whereas the unconditioned stimulus (UCS) consisted of 50 g of oral glucose. Control subjects received an aspartame drink as the UCS. Ad lib glucose intake, blood parameters, and subjective craving were monitored before and after conditioning. Results showed that the experimental group failed to show conditioned blood sugar and glucagon decreases or C-Peptide increases. Although an increased insulin response was found in the experimental group, the effect size did not exceed that of spontaneous fluctuations. No increases in craving for sweet substances were found. An impressive increase (mean: 78%) in glucose intake after conditioning was found in both conditions, as well as in a subsequently run third condition with plain water as the UCS. The increased glucose intake probably resulted from an initial neophobia to the laboratory setting that subsided as subjects had experienced more lab sessions. Importantly, because no conditioned hypoglycemia occurred in the present study, its relationship with subjectively experienced craving for sweet substance could not be determined. PMID:9108577

  3. Nordihydroguaiaretic Acid Inhibits Insulin-Like Growth Factor Signaling, Growth, and Survival in Human Neuroblastoma Cells

    PubMed Central

    Meyer, Gary E.; Chesler, Louis; Liu, Dandan; Gable, Karissa; Maddux, Betty A.; Goldenberg, David D.; Youngren, Jack F.; Goldfine, Ira D.; Weiss, William A.; Matthay, Katherine K.; Rosenthal, Stephen M.

    2010-01-01

    Neuroblastoma is a common pediatric malignancy that metastasizes to the liver, bone, and other organs. Children with metastatic disease have a less than 50% chance of survival with current treatments. Insulin-like growth factors (IGFs) stimulate neuroblastoma growth, survival, and motility, and are expressed by neuroblastoma cells and the tissues they invade. Thus, therapies that disrupt the effects of IGFs on neuroblastoma tumorigenesis may slow disease progression. We show that NVP-AEW541, a specific inhibitor of the IGF-I receptor (IGF-IR), potently inhibits neuroblastoma growth in vitro. Nordihydroguaiaretic acid (NDGA), a phenolic compound isolated from the creosote bush (Larrea divaricata), has anti-tumor properties against a number of malignancies, has been shown to inhibit the phosphorylation and activation of the IGF-IR in breast cancer cells, and is currently in Phase I trials for prostate cancer. In the present study in neuroblastoma, NDGA inhibits IGF-I-mediated activation of the IGF-IR and disrupts activation of ERK and Akt signaling pathways induced by IGF-I. NDGA inhibits growth of neuroblastoma cells and induces apoptosis at higher doses, causing IGF-I-resistant activation of caspase-3 and a large increase in the fraction of sub-G0 cells. In addition, NDGA inhibits the growth of xenografted human neuroblastoma tumors in nude mice. These results indicate that NDGA may be useful in the treatment of neuroblastoma and may function in part via disruption of IGF-IR signaling. PMID:17486636

  4. Molecular Simulation-Based Structural Prediction of Protein Complexes in Mass Spectrometry: The Human Insulin Dimer

    PubMed Central

    Li, Jinyu; Rossetti, Giulia; Dreyer, Jens; Raugei, Simone; Ippoliti, Emiliano; Lüscher, Bernhard; Carloni, Paolo

    2014-01-01

    Protein electrospray ionization (ESI) mass spectrometry (MS)-based techniques are widely used to provide insight into structural proteomics under the assumption that non-covalent protein complexes being transferred into the gas phase preserve basically the same intermolecular interactions as in solution. Here we investigate the applicability of this assumption by extending our previous structural prediction protocol for single proteins in ESI-MS to protein complexes. We apply our protocol to the human insulin dimer (hIns2) as a test case. Our calculations reproduce the main charge and the collision cross section (CCS) measured in ESI-MS experiments. Molecular dynamics simulations for 0.075 ms show that the complex maximizes intermolecular non-bonded interactions relative to the structure in water, without affecting the cross section. The overall gas-phase structure of hIns2 does exhibit differences with the one in aqueous solution, not inferable from a comparison with calculated CCS. Hence, care should be exerted when interpreting ESI-MS proteomics data based solely on NMR and/or X-ray structural information. PMID:25210764

  5. Molecular simulation-based structural prediction of protein complexes in mass spectrometry: the human insulin dimer.

    PubMed

    Li, Jinyu; Rossetti, Giulia; Dreyer, Jens; Raugei, Simone; Ippoliti, Emiliano; Lüscher, Bernhard; Carloni, Paolo

    2014-09-01

    Protein electrospray ionization (ESI) mass spectrometry (MS)-based techniques are widely used to provide insight into structural proteomics under the assumption that non-covalent protein complexes being transferred into the gas phase preserve basically the same intermolecular interactions as in solution. Here we investigate the applicability of this assumption by extending our previous structural prediction protocol for single proteins in ESI-MS to protein complexes. We apply our protocol to the human insulin dimer (hIns2) as a test case. Our calculations reproduce the main charge and the collision cross section (CCS) measured in ESI-MS experiments. Molecular dynamics simulations for 0.075 ms show that the complex maximizes intermolecular non-bonded interactions relative to the structure in water, without affecting the cross section. The overall gas-phase structure of hIns2 does exhibit differences with the one in aqueous solution, not inferable from a comparison with calculated CCS. Hence, care should be exerted when interpreting ESI-MS proteomics data based solely on NMR and/or X-ray structural information. PMID:25210764

  6. Long-term exposure to abnormal glucose levels alters drug metabolism pathways and insulin sensitivity in primary human hepatocytes

    PubMed Central

    Davidson, Matthew D.; Ballinger, Kimberly R.; Khetani, Salman R.

    2016-01-01

    Hyperglycemia in type 2 diabetes mellitus has been linked to non-alcoholic fatty liver disease, which can progress to inflammation, fibrosis/cirrhosis, and hepatocellular carcinoma. Understanding how chronic hyperglycemia affects primary human hepatocytes (PHHs) can facilitate the development of therapeutics for these diseases. Conversely, elucidating the effects of hypoglycemia on PHHs may provide insights into how the liver adapts to fasting, adverse diabetes drug reactions, and cancer. In contrast to declining PHH monocultures, micropatterned co-cultures (MPCCs) of PHHs and 3T3-J2 murine embryonic fibroblasts maintain insulin-sensitive glucose metabolism for several weeks. Here, we exposed MPCCs to hypo-, normo- and hyperglycemic culture media for ~3 weeks. While albumin and urea secretion were not affected by glucose level, hypoglycemic MPCCs upregulated CYP3A4 enzyme activity as compared to other glycemic states. In contrast, hyperglycemic MPCCs displayed significant hepatic lipid accumulation in the presence of insulin, while also showing decreased sensitivity to insulin-mediated inhibition of glucose output relative to a normoglycemic control. In conclusion, we show for the first time that PHHs exposed to hypo- and hyperglycemia can remain highly functional, but display increased CYP3A4 activity and selective insulin resistance, respectively. In the future, MPCCs under glycemic states can aid in novel drug discovery and mechanistic investigations. PMID:27312339

  7. Consumption of Cross-Linked Resistant Starch (RS4XL) on Glucose and Insulin Responses in Humans

    PubMed Central

    Al-Tamimi, Enas K.; Seib, Paul A.; Snyder, Brian S.; Haub, Mark D.

    2010-01-01

    Objective. The objective was to compare the postprandial glycemic and insulinemic responses to nutrition bars containing either cross-linked RS type 4 (RS4XL) or standard wheat starch in normoglycemic adults (n = 13; age = 27 ± 5 years; BMI = 25 ± 3 kg/m2). Methods. Volunteers completed three trials during which they consumed a glucose beverage (GLU), a puffed wheat control bar (PWB), and a bar containing cross-linked RS4 (RS4XL) matched for available carbohydrate content. Serial blood samples were collected over two hours and glucose and insulin concentrations were determined and the incremental area under the curve (iAUC) was calculated. Results. The RS4XL peak glucose and insulin concentrations were lower than the GLU and PWB (P < .05). The iAUC for glucose and insulin were lower following ingestion of RS4 compared with the GLU and PWB trials. Conclusions. These data illustrate, for the first time, that directly substituting standard starch with RS4XL, while matched for available carbohydrates, attenuated postprandial glucose and insulin levels in humans. It remains to be determined whether this response was due to the dietary fiber and/or resistant starch aspects of the RS4XL bar. PMID:20798767

  8. Long-term exposure to abnormal glucose levels alters drug metabolism pathways and insulin sensitivity in primary human hepatocytes.

    PubMed

    Davidson, Matthew D; Ballinger, Kimberly R; Khetani, Salman R

    2016-01-01

    Hyperglycemia in type 2 diabetes mellitus has been linked to non-alcoholic fatty liver disease, which can progress to inflammation, fibrosis/cirrhosis, and hepatocellular carcinoma. Understanding how chronic hyperglycemia affects primary human hepatocytes (PHHs) can facilitate the development of therapeutics for these diseases. Conversely, elucidating the effects of hypoglycemia on PHHs may provide insights into how the liver adapts to fasting, adverse diabetes drug reactions, and cancer. In contrast to declining PHH monocultures, micropatterned co-cultures (MPCCs) of PHHs and 3T3-J2 murine embryonic fibroblasts maintain insulin-sensitive glucose metabolism for several weeks. Here, we exposed MPCCs to hypo-, normo- and hyperglycemic culture media for ~3 weeks. While albumin and urea secretion were not affected by glucose level, hypoglycemic MPCCs upregulated CYP3A4 enzyme activity as compared to other glycemic states. In contrast, hyperglycemic MPCCs displayed significant hepatic lipid accumulation in the presence of insulin, while also showing decreased sensitivity to insulin-mediated inhibition of glucose output relative to a normoglycemic control. In conclusion, we show for the first time that PHHs exposed to hypo- and hyperglycemia can remain highly functional, but display increased CYP3A4 activity and selective insulin resistance, respectively. In the future, MPCCs under glycemic states can aid in novel drug discovery and mechanistic investigations. PMID:27312339

  9. Practice tips and tools for the successful use of U-500 regular human insulin: the diabetes educator is key.

    PubMed

    Cochran, Elaine K; Valentine, Virginia; Samaan, Karen H; Corey, Ilene B; Jackson, Jeffrey A

    2014-01-01

    This review provides information to equip diabetes educators to instruct and guide patients in using U-500 human regular insulin (U-500R). The article includes an overview of U-500R pharmacology and clinical data, strategies for outpatient and inpatient use, and tools for patient education. U-500R is useful for treating patients with any type of diabetes who require high doses of insulin. U-500R alleviates the volume-related problems associated with high doses of U-100 insulin, making treatment with high doses of insulin more feasible (because of the need for fewer injections for patients) as well as more cost-efficient and potentially more effective. These tools can help diabetes educators feel more comfortable and confident as they advise and educate patients who receive high-dose U-500R as part of their overall diabetes care plan. The diabetes educator plays a vital role in helping patients use U-500R safely and successfully. PMID:24159006

  10. The expression of ob gene is not acutely regulated by insulin and fasting in human abdominal subcutaneous adipose tissue.

    PubMed

    Vidal, H; Auboeuf, D; De Vos, P; Staels, B; Riou, J P; Auwerx, J; Laville, M

    1996-07-15

    The regulation of ob gene expression in abdominal subcutaneous adipose tissue was investigated using a reverse transcription-competitive PCR method to quantify the mRNA level of leptin. Leptin mRNA level was highly correlated with the body mass index of 26 subjects (12 lean, 7 non-insulin-dependent diabetic, and 7 obese patients). The effect of fasting on ob gene expression was investigated in 10 subjects maintained on a hypocaloric diet (1045 KJ/d) for 5 d. While their metabolic parameters significantly changed (decrease in insulinemia, glycemia, and resting metabolic rate and increase in plasma ketone bodies), the caloric restriction did not modify the leptin mRNA level in the adipose tissue. To verify whether insulin regulates ob gene expression, six lean subjects underwent a 3-h euglycemic hyperinsulinemic (846 +/- 138 pmol/liter) clamp. Leptin and Glut 4 mRNA levels were quantified in adipose tissue biopsies taken before and at the end of the clamp. Insulin infusion produced a significant threefold increase in Glut 4 mRNA while leptin mRNA was not affected. It is concluded that ob gene expression is not acutely regulated by insulin or by metabolic factors related to fasting in human abdominal subcutaneous adipose tissue. PMID:8755631

  11. Differentiation of PDX1 gene-modified human umbilical cord mesenchymal stem cells into insulin-producing cells in vitro.

    PubMed

    He, Dongmei; Wang, Juan; Gao, Yangjun; Zhang, Yuan

    2011-12-01

    Mesenchymal stem cells (MSCs) have significant advantages over other stem cell types, and greater potential for immediate clinical application. MSCs would be an interesting cellular source for treatment of type 1 diabetes. In this study, MSCs from human umbilical cord were differentiated into functional insulin-producing cells in vitro by introduction of the pancreatic and duodenal homeobox factor 1 (PDX1) and in the presence of induction factors. The expressions of cell surface antigens were detected by flow cytometry. After induction in an adipogenic medium or an osteogenic medium, the cells were observed by Oil Red O staining and alkaline phosphatase staining. Recombinant adenovirus carrying the PDX1 gene was constructed and MSCs were infected by the recombinant adenovirus, then treated with several inducing factors for differentiation into islet β-like cells. The expression of the genes and protein related to islet β-cells was detected by immunocytochemistry, RT-PCR and Western blot analysis. Insulin and C-peptide secretion were assayed. Our results show that the morphology and immunophenotype of MSCs from human umbilical cord were similar to those present in human bone marrow. The MSCs could be induced to differentiate into osteocytes and adipocytes. After induction by recombined adenovirus vector with induction factors, MSCs were aggregated and presented islet-like bodies. Dithizone staining of these cells was positive. The genes' expression related to islet β-cells was found. After induction, insulin and C-peptide secretion in the supernatant were significantly increased. In conclusion, our results demonstrated that PDX1 gene-modified human umbilical cord mesenchymal stem cells could be differentiated into insulin-producing cells in vitro. PMID:21837359

  12. Design factors for stable lean premix combustion

    SciTech Connect

    Richards, G.A.; Yip, M.J.; Gemmen, R.S.

    1995-10-01

    The Advanced Turbine Systems (ATS) program includes the development of low-emission combustors. Low emissions have already been achieved by premixing fuel and air to avoid the hot gas pockets produced by nozzles without premixing. While the advantages of premixed combustion have been widely recognized, turbine developers using premixed nozzles have experienced repeated problems with combustion oscillations. Left uncontrolled, these oscillations can lead to pressure fluctuations capable of damaging engine hardware. Elimination of such oscillations is often difficult and time consuming - particularly when oscillations are discovered in the last stages of engine development. To address this issue, METC is studying oscillating combustion from lean premixing fuel nozzles. These tests are providing generic information on the mechanisms that contribute to oscillating behavior in gas turbines. METC is also investigating the use of so-called {open_quotes}active{close_quotes} control of combustion oscillations. This technique periodically injects fuel pulses into the combustor to disrupt the oscillating behavior. Recent results on active combustion control are presented in Gemmen et al. (1995) and Richards et al. (1995). This paper describes the status of METC efforts to avoid oscillations through simple design changes.

  13. NO formation in counterflow partially premixed flames

    SciTech Connect

    Mungekar, Hemant; Atreya, Arvind

    2007-02-15

    An experimental and computational study of NO formation in low-strain-rate partially premixed methane counterflow flames is reported. For progressive fuel-side partial premixing the peak NO concentration increased and the NO distribution along the stagnation streamline broadened. New temperature-dependent emissivity data for a SiO{sub 2}-coated Pt thermocouple was used to estimate the radiation correction for the thermocouple, thus improving the accuracy of the reported flame temperature. Flame structure computations with GRIMech 3.00 showed good agreement between measured and computed concentration distributions of NO and OH radical. With progressive partial premixing the contribution of the thermal NO pathway to NO formation increases. The emission index of NO (EINO) first increased and then decreased, reaching its peak value for the level of partial premixing that corresponds to location of the nonpremixed reaction zone at the stagnation plane. The observation of a maximum in EINO at a level of partial premixing corresponding to the nonpremixed reaction zone at the stagnation plane seems to be a consistent feature of low (<20 s{sup -1})-strain-rate counterflow flames. (author)

  14. Insulin Resistance in Human iPS Cells Reduces Mitochondrial Size and Function

    PubMed Central

    Burkart, Alison M.; Tan, Kelly; Warren, Laura; Iovino, Salvatore; Hughes, Katelyn J.; Kahn, C. Ronald; Patti, Mary-Elizabeth

    2016-01-01

    Insulin resistance, a critical component of type 2 diabetes (T2D), precedes and predicts T2D onset. T2D is also associated with mitochondrial dysfunction. To define the cause-effect relationship between insulin resistance and mitochondrial dysfunction, we compared mitochondrial metabolism in induced pluripotent stem cells (iPSC) from 5 healthy individuals and 4 patients with genetic insulin resistance due to insulin receptor mutations. Insulin-resistant iPSC had increased mitochondrial number and decreased mitochondrial size. Mitochondrial oxidative function was impaired, with decreased citrate synthase activity and spare respiratory capacity. Simultaneously, expression of multiple glycolytic enzymes was decreased, while lactate production increased 80%. These perturbations were accompanied by an increase in ADP/ATP ratio and 3-fold increase in AMPK activity, indicating energetic stress. Insulin-resistant iPSC also showed reduced catalase activity and increased susceptibility to oxidative stress. Thus, insulin resistance can lead to mitochondrial dysfunction with reduced mitochondrial size, oxidative activity, and energy production. PMID:26948272

  15. Age-dependent association of serum prolactin with glycaemia and insulin sensitivity in humans.

    PubMed

    Wagner, R; Heni, M; Linder, K; Ketterer, C; Peter, A; Böhm, A; Hatziagelaki, E; Stefan, N; Staiger, H; Häring, H-U; Fritsche, A

    2014-02-01

    The dopamine agonist bromocriptine has been approved for the treatment of type 2 diabetes in the United States. Bromocriptine inhibits prolactin secretion, and patients with hyperprolactinaemia display impaired insulin sensitivity. We therefore hypothesized that low prolactin levels are associated with lower glycaemia and higher insulin sensitivity in healthy subjects. Prolactin levels were determined from fasting serum in participants without diabetes from the cross-sectional Tübingen family study for type 2 diabetes (m/f = 562/1,121, age = 40 ± 13 years, BMI = 30 ± 9 kg/m(2)). A 75 g oral glucose tolerance test was performed, and the area under the glucose curve (AUC(0-120)Glucose) and insulin sensitivity index were calculated. A subgroup (n = 494) underwent hyperinsulinaemic-euglycaemic clamp tests. Prolactin associated positively with insulin sensitivity (p = 0.001, adjusted for gender, age, and BMI). Age strongly interacted (p < 0.0001) with the effect of prolactin on insulin sensitivity, inverting the positive relationship to a negative one in younger participants. Glycated haemoglobin (HbA1c) and AUC(0-120)Glucose correlated negatively with prolactin, and an interaction with age was found as well. Higher prolactin levels are associated with improved insulin sensitivity and lower glucose in individuals without diabetes. This relationship turns to its opposite in younger persons. As prolactin is a proxy for the dopaminergic tone in the central nervous system, these associations may indicate an age-dependent influence of the brain on peripheral insulin sensitivity. PMID:23836327

  16. Effect of a sustained reduction in plasma free fatty acid concentration on insulin signalling and inflammation in skeletal muscle from human subjects

    PubMed Central

    Liang, Hanyu; Tantiwong, Puntip; Sriwijitkamol, Apiradee; Shanmugasundaram, Karthigayan; Mohan, Sumathy; Espinoza, Sara; DeFronzo, Ralph A; Dubé, John J; Musi, Nicolas

    2013-01-01

    Free fatty acids (FFAs) have been implicated in the pathogenesis of insulin resistance. Reducing plasma FFA concentration in obese and type 2 diabetic (T2DM) subjects improves insulin sensitivity. However, the molecular mechanism by which FFA reduction improves insulin sensitivity in human subjects is not fully understood. In the present study, we tested the hypothesis that pharmacological FFA reduction enhances insulin action by reducing local (muscle) inflammation, leading to improved insulin signalling. Insulin-stimulated total glucose disposal (TGD), plasma FFA species, muscle insulin signalling, IκBα protein, c-Jun phosphorylation, inflammatory gene (toll-like receptor 4 and monocyte chemotactic protein 1) expression, and ceramide and diacylglycerol (DAG) content were measured in muscle from a group of obese and T2DM subjects before and after administration of the antilipolytic drug acipimox for 7 days, and the results were compared to lean individuals. We found that obese and T2DM subjects had elevated saturated and unsaturated FFAs in plasma, and acipimox reduced all FFA species. Acipimox-induced reductions in plasma FFAs improved TGD and insulin signalling in obese and T2DM subjects. Acipimox increased IκBα protein (an indication of decreased IκB kinase–nuclear factor κB signalling) in both obese and T2DM subjects, but did not affect c-Jun phosphorylation in any group. Acipimox also decreased inflammatory gene expression, although this reduction only occurred in T2DM subjects. Ceramide and DAG content did not change. To summarize, pharmacological FFA reduction improves insulin signalling in muscle from insulin-resistant subjects. This beneficial effect on insulin action could be related to a decrease in local inflammation. Notably, the improvements in insulin action were more pronounced in T2DM, indicating that these subjects are more susceptible to the toxic effect of FFAs. PMID:23529132

  17. Pragmatic use of insulin degludec/insulin aspart co-formulation: A multinational consensus statement.

    PubMed

    Kalra, Sanjay; Latif, Zafar A; Comlekci, Abdurrahman; Galvez, Guillermo Gonzalez; Malik, Rached; Pathan, Md Faruque; Kumar, Ajay

    2016-01-01

    Insulin degludec/insulin aspart (IDegAsp) is a modern coformulation of ultra-long-acting basal insulin degludec, with rapid-acting insulin aspart. IDegAsp provides effective, safe, well-tolerated glycemic control, with a low risk of hypoglycemia while allowing flexibility in meal patterns and timing of administration. This consensus statement describes a pragmatic framework to identify patients who may benefit from IDegAsp therapy. It highlights the utility of IDegAsp in type 2 diabetic patients who are insulin-naive, suboptimally controlled on basal or premixed insulin, or dissatisfied with basal-bolus regimens. It also describes potential IDegAsp usage in type 1 diabetic patients. PMID:27366723

  18. Pragmatic use of insulin degludec/insulin aspart co-formulation: A multinational consensus statement

    PubMed Central

    Kalra, Sanjay; Latif, Zafar A.; Comlekci, Abdurrahman; Galvez, Guillermo Gonzalez; Malik, Rached; Pathan, Md Faruque; Kumar, Ajay

    2016-01-01

    Insulin degludec/insulin aspart (IDegAsp) is a modern coformulation of ultra-long-acting basal insulin degludec, with rapid-acting insulin aspart. IDegAsp provides effective, safe, well-tolerated glycemic control, with a low risk of hypoglycemia while allowing flexibility in meal patterns and timing of administration. This consensus statement describes a pragmatic framework to identify patients who may benefit from IDegAsp therapy. It highlights the utility of IDegAsp in type 2 diabetic patients who are insulin-naive, suboptimally controlled on basal or premixed insulin, or dissatisfied with basal–bolus regimens. It also describes potential IDegAsp usage in type 1 diabetic patients. PMID:27366723

  19. Cephalic phase secretion of insulin and other enteropancreatic hormones in humans.

    PubMed

    Veedfald, Simon; Plamboeck, Astrid; Deacon, Carolyn F; Hartmann, Bolette; Knop, Filip K; Vilsbøll, Tina; Holst, Jens J

    2016-01-01

    Enteropancreatic hormone secretion is thought to include a cephalic phase, but the evidence in humans is ambiguous. We studied vagally induced gut hormone responses with and without muscarinic blockade in 10 glucose-clamped healthy men (age: 24.5 ± 0.6 yr, means ± SE; body mass index: 24.0 ± 0.5 kg/m(2); HbA1c: 5.1 ± 0.1%/31.4 ± 0.5 mmol/mol). Cephalic activation was elicited by modified sham feeding (MSF, aka "chew and spit") with or without atropine (1 mg bolus 45 min before MSF + 80 ng·kg(-1)·min(-1) for 2 h). To mimic incipient prandial glucose excursions, glucose levels were clamped at 6 mmol/l on all days. The meal stimulus for the MSF consisted of an appetizing breakfast. Participants (9/10) also had a 6 mmol/l glucose clamp without MSF. Pancreatic polypeptide (PP) levels rose from 6.3 ± 1.1 to 19.9 ± 6.8 pmol/l (means ± SE) in response to MSF and atropine lowered basal PP levels and abolished the MSF response. Neither insulin, C-peptide, glucose-dependent insulinotropic polypeptide (GIP), nor glucagon-like peptide-1 (GLP-1) levels changed in response to MSF or atropine. Glucagon and ghrelin levels were markedly attenuated by atropine prior to and during the clamp: at t = 105 min on the atropine (ATR) + clamp (CLA) + MSF compared with the saline (SAL) + CLA and SAL + CLA + MSF days; baseline-subtracted glucagon levels were -10.7 ± 1.1 vs. -4.0 ± 1.1 and -4.7 ± 1.9 pmol/l (means ± SE), P < 0.0001, respectively; corresponding baseline-subtracted ghrelin levels were 303 ± 36 vs. 39 ± 38 and 3.7 ± 21 pg/ml (means ± SE), P < 0.0001. Glucagon and ghrelin levels were unaffected by MSF. Despite adequate PP responses, a cephalic phase response was absent for insulin, glucagon, GLP-1, GIP, and ghrelin. PMID:26492921

  20. Blood-based biomarkers of age-associated epigenetic changes in human islets associate with insulin secretion and diabetes.

    PubMed

    Bacos, Karl; Gillberg, Linn; Volkov, Petr; Olsson, Anders H; Hansen, Torben; Pedersen, Oluf; Gjesing, Anette Prior; Eiberg, Hans; Tuomi, Tiinamaija; Almgren, Peter; Groop, Leif; Eliasson, Lena; Vaag, Allan; Dayeh, Tasnim; Ling, Charlotte

    2016-01-01

    Aging associates with impaired pancreatic islet function and increased type 2 diabetes (T2D) risk. Here we examine whether age-related epigenetic changes affect human islet function and if blood-based epigenetic biomarkers reflect these changes and associate with future T2D. We analyse DNA methylation genome-wide in islets from 87 non-diabetic donors, aged 26-74 years. Aging associates with increased DNA methylation of 241 sites. These sites cover loci previously associated with T2D, for example, KLF14. Blood-based epigenetic biomarkers reflect age-related methylation changes in 83 genes identified in human islets (for example, KLF14, FHL2, ZNF518B and FAM123C) and some associate with insulin secretion and T2D. DNA methylation correlates with islet expression of multiple genes, including FHL2, ZNF518B, GNPNAT1 and HLTF. Silencing these genes in β-cells alter insulin secretion. Together, we demonstrate that blood-based epigenetic biomarkers reflect age-related DNA methylation changes in human islets, and associate with insulin secretion in vivo and T2D. PMID:27029739

  1. Blood-based biomarkers of age-associated epigenetic changes in human islets associate with insulin secretion and diabetes

    PubMed Central

    Bacos, Karl; Gillberg, Linn; Volkov, Petr; Olsson, Anders H; Hansen, Torben; Pedersen, Oluf; Gjesing, Anette Prior; Eiberg, Hans; Tuomi, Tiinamaija; Almgren, Peter; Groop, Leif; Eliasson, Lena; Vaag, Allan; Dayeh, Tasnim; Ling, Charlotte

    2016-01-01

    Aging associates with impaired pancreatic islet function and increased type 2 diabetes (T2D) risk. Here we examine whether age-related epigenetic changes affect human islet function and if blood-based epigenetic biomarkers reflect these changes and associate with future T2D. We analyse DNA methylation genome-wide in islets from 87 non-diabetic donors, aged 26–74 years. Aging associates with increased DNA methylation of 241 sites. These sites cover loci previously associated with T2D, for example, KLF14. Blood-based epigenetic biomarkers reflect age-related methylation changes in 83 genes identified in human islets (for example, KLF14, FHL2, ZNF518B and FAM123C) and some associate with insulin secretion and T2D. DNA methylation correlates with islet expression of multiple genes, including FHL2, ZNF518B, GNPNAT1 and HLTF. Silencing these genes in β-cells alter insulin secretion. Together, we demonstrate that blood-based epigenetic biomarkers reflect age-related DNA methylation changes in human islets, and associate with insulin secretion in vivo and T2D. PMID:27029739

  2. Studies of Premixed Laminar and Turbulent Flames at Microgravity

    NASA Technical Reports Server (NTRS)

    Abid, M.; Aung, K.; Ronney, P. D.; Sharif, J. A.; Wu, M.-S.

    1999-01-01

    Several topics relating to combustion limits in premixed flames at reduced gravity have been studied. These topics include: (1) flame balls; (2) numerical simulation of flame ball and planar flame structure and stability; (3) experimental simulation of buoyancy effects in premixed flames using aqueous autocatalytic reactions; and (4) premixed flame propagation in Hele-Shaw cells.

  3. Immunohistochemical localization of components of the insulin-like growth factor system in human permanent teeth.

    PubMed

    Götz, Werner; Heinen, Michael; Lossdörfer, Stefan; Jäger, Andreas

    2006-05-01

    There is growing evidence that the insulin-like growth factor (IGF) system plays an important role in the biology of oro-dento-facial tissues and organs, including the development, homeostasis and regeneration of the periodontium. To obtain basic data on the occurrence and distribution of IGF components in human permanent teeth we immunohistochemically investigated 25 extracted, decalcified and paraffin-embedded teeth using mono and polyclonal antibodies against the ligands IGF-I and -II, the IGF1 receptor (IGF1R) and all six IGF binding proteins (IGFBP-1 to -6). In the extracellular matrix (ECM) of the adhering periodontal ligament (PDL), immunoreactivity for IGF-I, -II and IGFBP-1 and -6 was observed. PDL fibroblasts showed immunostaining for the IGF1R. For the cementum, in the acellular cementum only IGF-II could be detected, while outer cementum layers with inserting Sharpey's fibers reacted with all antibodies applied except for IGFBP-4 and -6. In the pulp, mainly fibrotic areas and areas around denticles were immunoreactive for IGF-I, IGFBP-1, -3, -5 and -6. Predentin and odontoblastic processes were stained for IGF-I and IGFBP-3. The spatially oriented occurrence of components of the IGF system in human permanent teeth indicates that specific functions of the IGFs may be localized in particular tissue compartments. In the cementum, several IGF components were found indicating roles in tissue homeostasis or attachment. The PDL may function as a reservoir for IGFs probably bound to ECM components. PDL fibroblasts could then respond in a paracrine manner. In the pulp, the IGF system may be involved in odontoblast biology, fibrosis and denticle formation. PMID:16321360

  4. Insulin Glulisine (rDNA origin) Injection

    MedlinePlus

    ... oral medication(s) for diabetes. Insulin glulisine is a short-acting, man-made version of human insulin. Insulin ... contraceptives (birth control pills, patches, rings, injections, or implants); octreotide (Sandostatin); oral medications for diabetes; oral steroids ...

  5. Flame propagation in partially premixed conditions

    NASA Astrophysics Data System (ADS)

    Ruetsch, G.; Poinsot, T.; Veynante, D.; Trouvé, A.

    1996-11-01

    Turbulent flame propagation is studied under inhomogenously premixed conditions via data from direct numerical simulations. Departures from the premixed case are studied using four different configurations, ranging from one dimensional unsteady flames to turbulent three-dimensional simulations. Simulations are performed in these cases with various values of the mean equivalence ratio, fluctuations about the mean equivlalence ratio, correlation length scales, and probability denisty functions of the mixture composition. Propagation characteristics are described in terms of the flamelet approach, where the the main contribution of partial premixing on flame propagation is due to flame wrinkling relative to modification of the mean flamelet structure. This behavior is consistent over a broad range of conditions, with the exception being extreme departures from stoichiometric conditions where flamability limits are exceeded and flame quenching is observed.

  6. Soot Formation in Laminar Premixed Flames

    NASA Technical Reports Server (NTRS)

    Xu, F.; Krishnan, S. S.; Faeth, G. M.

    1999-01-01

    Soot processes within hydrocarbon-fueled flames affect emissions of pollutant soot, thermal loads on combustors, hazards of unwanted fires and capabilities for computational combustion. In view of these observations, the present study is considering processes of soot formation in both burner-stabilized and freely-propagating laminar premixed flames. These flames are being studied in order to simplify the interpretation of measurements and to enhance computational tractability compared to the diffusion flame environments of greatest interest for soot processes. In addition, earlier studies of soot formation in laminar premixed flames used approximations of soot optical and structure properties that have not been effective during recent evaluations, as well as questionable estimates of flow residence times). The objective of present work was to exploit methods of avoiding these difficulties developed for laminar diffusion flames to study soot growth in laminar premixed flames. The following description of these studies is brief.

  7. Human mutation within Per-Arnt-Sim (PAS) domain-containing protein kinase (PASK) causes basal insulin hypersecretion.

    PubMed

    Semplici, Francesca; Vaxillaire, Martine; Fogarty, Sarah; Semache, Meriem; Bonnefond, Amélie; Fontés, Ghislaine; Philippe, Julien; Meur, Gargi; Diraison, Frederique; Sessions, Richard B; Rutter, Jared; Poitout, Vincent; Froguel, Philippe; Rutter, Guy A

    2011-12-23

    PAS kinase (PASK) is a glucose-regulated protein kinase involved in the control of pancreatic islet hormone release and insulin sensitivity. We aimed here to identify mutations in the PASK gene that may be associated with young-onset diabetes in humans. We screened 18 diabetic probands with unelucidated maturity-onset diabetes of the young (MODY). We identified two rare nonsynonymous mutations in the PASK gene (p.L1051V and p.G1117E), each of which was found in a single MODY family. Wild type or mutant PASKs were expressed in HEK 293 cells. Kinase activity of the affinity-purified proteins was assayed as autophosphorylation at amino acid Thr307 or against an Ugp1p-derived peptide. Whereas the PASK p.G1117E mutant displayed a ∼25% increase with respect to wild type PASK in the extent of autophosphorylation, and a ∼2-fold increase in kinase activity toward exogenous substrates, the activity of the p.L1051V mutant was unchanged. Amino acid Gly1117 is located in an α helical region opposing the active site of PASK and may elicit either: (a) a conformational change that increases catalytic efficiency or (b) a diminished inhibitory interaction with the PAS domain. Mouse islets were therefore infected with adenoviruses expressing wild type or mutant PASK and the regulation of insulin secretion was examined. PASK p.G1117E-infected islets displayed a 4-fold decrease in glucose-stimulated (16.7 versus 3 mM) insulin secretion, chiefly reflecting a 4.5-fold increase in insulin release at low glucose. In summary, we have characterized a rare mutation (p.G1117E) in the PASK gene from a young-onset diabetes family, which modulates glucose-stimulated insulin secretion. PMID:22065581

  8. Influence of static magnetic fields combined with human insulin-like growth factor 1 on human satellite cell cultures.

    PubMed

    Birk, Richard; Sommer, J Ulrich; Haas, Dominik; Faber, Anne; Aderhold, Christoph; Schultz, Johannes D; Hoermann, Karl; Stern-Straeter, Jens

    2014-01-01

    Tissue engineering represents a promising research field, targeting the creation of new functional muscle tissue in vitro. The aim of the present study was to show the influence of static magnetic fields (SMF) and insulin-like growth factor-1 (IGF1), as enhancing stimuli on human satellite cell cultures, which are preferred sources of stem cells in engineering skeletal muscle tissue. To detect effects on myogenic maturation and proliferation, AlamarBlue® proliferation, assay and semi-quantitative reverse transcription-polymerase chain reaction of following markers was performed: desmin (DES), myogenic factor-5 (MYF5), myogenic differentiation antigen-1 (MYOD1), myogenin (MYOG), myosin heavy chain (MYH) and α1 actin (ACTA1). As a distinct marker of differentiation, immunohistochemical staining and fusion index determination was performed on satellite cell cultures stimulated with IGF1 and IGF1-plus-SMF with an intensity of 80 mT. Proliferation was increased by additional SMF application to IGF1-stimulated cell cultures on the first day of myogenesis. Relative gene expression of measured markers was increased by IGF1 application in the first days of myogenesis except for ACTA1. Additional SMF application enhanced this effect. Nevertheless we were unable to demonstrate the formation of contractile muscle tissue. Immunhistochemical staining verified muscle origin and all markers were displayed. PMID:25189891

  9. Insulin inhibits delta-aminolevulinate synthase gene expression in rat hepatocytes and human hepatoma cells.

    PubMed

    Scassa, M E; Varone, C L; Montero, L; Cánepa, E T

    1998-11-01

    Insulin has been known to regulate intracellular metabolism by modifying the activity or location of many enzymes but it is only in the past few years that the regulation of gene expression is recognized to be a major action of this hormone. The present work provides evidences that insulin inhibits delta-aminolevulinate synthase (ALA-S) gene expression, the enzyme which governs the rate-limiting step in heme biosynthesis. The addition of 5 nM insulin to hepatocytes culture led to a significant decrease of both basal and phenobarbital-induced ALA-S mRNA in a dose-dependent manner, as measured by Northern and slot-blot analysis. Several clues as to how insulin regulates ALA-S transcription were determined. The inhibitory effect is achieved at physiological concentrations but much higher proinsulin doses are needed. Insulin's effect is rapid, quite specific, and protein synthesis is not required. Moreover, ALA-S mRNA half-life is not modified by the presence of the peptidic hormone. Our results demonstrate that the insulin effect is dominant; it overrides 8-CPT-cAMP plus phenobarbital-mediated induction. Also, insulin requires the activation of protein kinase C to exert its full effect. On the other hand, a 870-bp fragment of the ALA-S promoter region is able to sustain the inhibition of CAT expression in plasmid-transfected HepG2 cells. Thus, these results indicate that insulin plays an important role in regulating ALA-S expression by inhibiting its transcription. PMID:9806796

  10. Opposite effects of bombesin on insulin and gastrin response to food in humans.

    PubMed Central

    Scarpignato, C; Micali, B

    1986-01-01

    The effect of bombesin on insulin and gastrin response to a standard labelled meal was studied in eight healthy male volunteers. The gastric emptying of solids was simultaneously evaluated. During intravenous infusion of the peptide (5 ng/kg/min) the insulin release after eating was greatly reduced whereas food stimulated gastrin release was significantly enhanced. Both effects of bombesin are likely to be connected with the marked inhibition of gastric emptying induced by the peptide. PMID:3516803

  11. Colorimetric determination of selenium in mineral premixes .

    PubMed

    Hurlbut, J A; Burkepile, R G; Geisler, C A; Kijak, P J; Rummel, N G

    1997-01-01

    A method is described for determination of sodium selenite or sodium selenate in mineral-based premixes. It is based on the formation of intense-yellow piazselenol by Se(IV) and 3,3'-diaminobenzidine. Mineral premixes typically contain calcium carbonate as a base material and magnesium carbonate, silicon dioxide, and iron(III) oxide as minor components or additives. In this method, the premix is digested briefly in nitric acid, diluted with water, and filtered to remove any Iron(III) oxide. Ethylenediaminetetraacetic acid and HCl are added to the filtrate, which is heated to near boiling for 1 h to convert any selenate to selenite. After heating, the solution is buffered between pH 2 and 3 with NaOH and formic acid and treated with NH2OH and EDTA; any Se present forms a complex with 3,3'-diaminobenzidine at 60 degrees C. The solution is made basic with NH4OH, and the piazselenol is extracted into toluene. The absorbance of the complex in dried toluene is measured at 420 nm. The method was validated independently by 2 laboratories. Samples analyzed included calcium carbonate fortified with 100, 200, and 300 micrograms Se in the form of sodium selenite or sodium selenate, a calcium carbonate premix containing sodium selenite, a calcium carbonate premix containing sodium selenate, and a commercial premix; 5 replicates of each sample type were analyzed by each laboratory. Average recoveries ranged from 89 to 109% with coefficients of variation from 1.2 to 13.6%. PMID:9241835

  12. Insulin-Producing Endocrine Cells Differentiated In Vitro From Human Embryonic Stem Cells Function in Macroencapsulation Devices In Vivo

    PubMed Central

    Ambruzs, Dana M.; Moorman, Mark A.; Bhoumik, Anindita; Cesario, Rosemary M.; Payne, Janice K.; Kelly, Jonathan R.; Haakmeester, Carl; Srijemac, Robert; Wilson, Alistair Z.; Kerr, Justin; Frazier, Mauro A.; Kroon, Evert J.; D’Amour, Kevin A.

    2015-01-01

    The PEC-01 cell population, differentiated from human embryonic stem cells (hESCs), contains pancreatic progenitors (PPs) that, when loaded into macroencapsulation devices (to produce the VC-01 candidate product) and transplanted into mice, can mature into glucose-responsive insulin-secreting cells and other pancreatic endocrine cells involved in glucose metabolism. We modified the protocol for making PEC-01 cells such that 73%–80% of the cell population consisted of PDX1-positive (PDX1+) and NKX6.1+ PPs. The PPs were further differentiated to islet-like cells (ICs) that reproducibly contained 73%–89% endocrine cells, of which approximately 40%–50% expressed insulin. A large fraction of these insulin-positive cells were single hormone-positive and expressed the transcription factors PDX1 and NKX6.1. To preclude a significant contribution of progenitors to the in vivo function of ICs, we used a simple enrichment process to remove remaining PPs, yielding aggregates that contained 93%–98% endocrine cells and 1%–3% progenitors. Enriched ICs, when encapsulated and implanted into mice, functioned similarly to the VC-01 candidate product, demonstrating conclusively that in vitro-produced hESC-derived insulin-producing cells can mature and function in vivo in devices. A scaled version of our suspension culture was used, and the endocrine aggregates could be cryopreserved and retain functionality. Although ICs expressed multiple important β cell genes, the cells contained relatively low levels of several maturity-associated markers. Correlating with this, the time to function of ICs was similar to PEC-01 cells, indicating that ICs required cell-autonomous maturation after delivery in vivo, which would occur concurrently with graft integration into the host. Significance Type 1 diabetes (T1D) affects approximately 1.25 million people in the U.S. alone and is deadly if not managed with insulin injections. This paper describes the production of insulin

  13. Production of functional human insulin-like growth factor binding proteins (IGFBPs) using recombinant expression in HEK293 cells.

    PubMed

    Wanscher, Anne Sofie Molsted; Williamson, Michael; Ebersole, Tasja Wainani; Streicher, Werner; Wikström, Mats; Cazzamali, Giuseppe

    2015-04-01

    Insulin-like growth factor binding proteins (IGFBPs) display many functions in humans including regulation of the insulin-like growth factor (IGF) signaling pathway. The various roles of human IGFBPs make them attractive protein candidates in drug discovery. Structural and functional knowledge on human proteins with therapeutic relevance is needed to design and process the next generation of protein therapeutics. In order to conduct structural and functional investigations large quantities of recombinant proteins are needed. However, finding a suitable recombinant production system for proteins such as full-length human IGFBPs, still remains a challenge. Here we present a mammalian HEK293 expression method suitable for over-expression of secretory full-length human IGFBP-1 to -7. Protein purification of full-length human IGFBP-1, -2, -3 and -5 was conducted using a two-step chromatography procedure and the final protein yields were between 1 and 12mg protein per liter culture media. The recombinant IGFBPs contained PTMs and exhibited high-affinity interactions with their natural ligands IGF-1 and IGF-2. PMID:25448590

  14. Effects of Lactobacillus acidophilus NCFM on insulin sensitivity and the systemic inflammatory response in human subjects.

    PubMed

    Andreasen, Anne Sofie; Larsen, Nadja; Pedersen-Skovsgaard, Theis; Berg, Ronan M G; Møller, Kirsten; Svendsen, Kira Dynnes; Jakobsen, Mogens; Pedersen, Bente Klarlund

    2010-12-01

    According to animal studies, intake of probiotic bacteria may improve glucose homeostasis. We hypothesised that probiotic bacteria improve insulin sensitivity by attenuating systemic inflammation. Therefore, the effects of oral supplementation with the probiotic bacterium Lactobacillus acidophilus NCFM on insulin sensitivity and the inflammatory response were investigated in subjects with normal or impaired insulin sensitivity. In a double-blinded, randomised fashion, forty-five males with type 2 diabetes, impaired or normal glucose tolerance were enrolled and allocated to a 4-week treatment course with either L. acidophilus NCFM or placebo. L. acidophilus was detected in stool samples by denaturating gradient gel electrophoresis and real-time PCR. Separated by the 4-week intervention period, two hyperinsulinaemic-euglycaemic clamps were performed to estimate insulin sensitivity. Furthermore, the systemic inflammatory response was evaluated by subjecting the participants to Escherichia coli lipopolysaccharide injection (0·3 ng/kg) before and after the treatment course. L. acidophilus NCFM was detected in 75 % of the faecal samples after treatment with the probiotic bacterium. Insulin sensitivity was preserved among volunteers in the L. acidophilus NCFM group, whereas it decreased in the placebo group. Both baseline inflammatory markers and the systemic inflammatory response were, however, unaffected by the intervention. In conclusion, intake of L. acidophilus NCFM for 4 weeks preserved insulin sensitivity compared with placebo, but did not affect the systemic inflammatory response. PMID:20815975

  15. Chaos in an imperfectly premixed model combustor.

    PubMed

    Kabiraj, Lipika; Saurabh, Aditya; Karimi, Nader; Sailor, Anna; Mastorakos, Epaminondas; Dowling, Ann P; Paschereit, Christian O

    2015-02-01

    This article reports nonlinear bifurcations observed in a laboratory scale, turbulent combustor operating under imperfectly premixed mode with global equivalence ratio as the control parameter. The results indicate that the dynamics of thermoacoustic instability correspond to quasi-periodic bifurcation to low-dimensional, deterministic chaos, a route that is common to a variety of dissipative nonlinear systems. The results support the recent identification of bifurcation scenarios in a laminar premixed flame combustor (Kabiraj et al., Chaos: Interdiscip. J. Nonlinear Sci. 22, 023129 (2012)) and extend the observation to a practically relevant combustor configuration. PMID:25725637

  16. Chaos in an imperfectly premixed model combustor

    SciTech Connect

    Kabiraj, Lipika Saurabh, Aditya; Paschereit, Christian O.; Karimi, Nader; Sailor, Anna; Mastorakos, Epaminondas; Dowling, Ann P.

    2015-02-15

    This article reports nonlinear bifurcations observed in a laboratory scale, turbulent combustor operating under imperfectly premixed mode with global equivalence ratio as the control parameter. The results indicate that the dynamics of thermoacoustic instability correspond to quasi-periodic bifurcation to low-dimensional, deterministic chaos, a route that is common to a variety of dissipative nonlinear systems. The results support the recent identification of bifurcation scenarios in a laminar premixed flame combustor (Kabiraj et al., Chaos: Interdiscip. J. Nonlinear Sci. 22, 023129 (2012)) and extend the observation to a practically relevant combustor configuration.

  17. Enterovirus infection of human islets of Langerhans affects β-cell function resulting in disintegrated islets, decreased glucose stimulated insulin secretion and loss of Golgi structure

    PubMed Central

    Hodik, M; Skog, O; Lukinius, A; Isaza-Correa, J M; Kuipers, J; Giepmans, B N G; Frisk, G

    2016-01-01

    Aims/hypothesis In type 1 diabetes (T1D), most insulin-producing β cells are destroyed, but the trigger is unknown. One of the possible triggers is a virus infection and the aim of this study was to test if enterovirus infection affects glucose stimulated insulin secretion and the effect of virus replication on cellular macromolecules and organelles involved in insulin secretion. Methods Isolated human islets were infected with different strains of coxsackievirus B (CVB) virus and the glucose-stimulated insulin release (GSIS) was measured in a dynamic perifusion system. Classical morphological electron microscopy, large-scale electron microscopy, so-called nanotomy, and immunohistochemistry were used to study to what extent virus-infected β cells contained insulin, and real-time PCR was used to analyze virus induced changes of islet specific genes. Results In islets infected with CVB, GSIS was reduced in correlation with the degree of virus-induced islet disintegration. The expression of the gene encoding insulin was decreased in infected islets, whereas the expression of glucagon was not affected. Also, in islets that were somewhat disintegrated, there were uninfected β cells. Ultrastructural analysis revealed that virus particles and virus replication complexes were only present in β cells. There was a significant number of insulin granules remaining in the virus-infected β cells, despite decreased expression of insulin mRNA. In addition, no typical Golgi apparatus was detected in these cells. Exposure of islets to synthetic dsRNA potentiated glucose-stimulated insulin secretion. Conclusions/interpretation Glucose-stimulated insulin secretion; organelles involved in insulin secretion and gene expression were all affected by CVB replication in β cells. PMID:27547409

  18. Characterization and regulation of insulin-like growth factor binding proteins in human hepatic stellate cells.

    PubMed

    Gentilini, A; Feliers, D; Pinzani, M; Woodruff, K; Abboud, S

    1998-02-01

    Cultured hepatic stellate cells (HSCs), the cell type primarily involved in the progression of liver fibrosis, secrete insulin-like growth factor-I (IGF-I) and IGF binding protein (IGFBP) activity. IGF-I exerts a mitogenic effect on HSCs, thus potentially contributing to the fibrogenic process in an autocrine fashion. However, IGF-I action is modulated by the presence of specific IGFBPs that may inhibit and/or enhance its biologic effects. Therefore, we examined IGFBP-1 through IGFBP-6 mRNA and protein expression in HSCs isolated from human liver and activated in culture. Regulation of IGFBPs in response to IGF-I and other polypeptide growth factors involved in the hepatic fibrogenic process was also assessed. RNase protection assays and ligand blot analysis demonstrated that HSCs express IGFBP-2 through IGFBP-6 mRNAs and release detectable levels of IGFBP-2 through IGFBP-5. Because IGF-I, platelet-derived growth factor-BB (PDGF-BB), and transforming growth factor-beta (TGF-beta) stimulate HSC proliferation and/or matrix production, we tested their effect on IGFBPs released by HSCs. IGF-I induced IGFBP-3 and IGFBP-5 proteins in a time-dependent manner without an increase in the corresponding mRNAs. IGFBP-4 protein levels decreased in response to IGF-I. TGF-beta stimulated IGFBP-3 mRNA and protein but decreased IGFBP-5 mRNA and protein. In contrast, PDGF-BB failed to regulate IGFBPs compared with controls. Recombinant human IGFBP-3 (rhIGFBP-3) was then tested for its effect on IGF-I-induced mitogenesis in HSCs. rhIGFBP-3 inhibited IGF-I-stimulated DNA synthesis in a dose-dependent manner, with a peak effect observed at 25 nM IGFBP-3. Because TGF-beta is highly expressed in cirrhotic liver tissue, we determined whether IGFBP-3 mRNA expression is increased in liver biopsies obtained from patients with an active fibroproliferative response due to viral-induced chronic active hepatitis. In the majority of these samples, IGFBP-3 mRNA was increased compared with normal

  19. Aspartame and its constituent amino acids: effects on prolactin, cortisol, growth hormone, insulin, and glucose in normal humans.

    PubMed

    Carlson, H E; Shah, J H

    1989-03-01

    Because large doses of phenylalanine stimulate prolactin secretion in man, we studied the acute effects of oral doses of aspartame (0.534 g, equivalent to the amount of aspartame in approximately 1 L beverage), aspartic acid (0.242 g), and phenylalanine (0.3 and 1.0 g) on serum prolactin and other hormones in normal humans. Prolactin was not stimulated by any of the aspartame meals, aspartic acid, or 0.3 g phenylalanine; a small rise in serum prolactin, similar to that produced by a high-protein mixed meal, followed ingestion of 1.0 g phenylalanine. Serum growth hormone showed no statistically significant changes in response to any of the experimental meals whereas cortisol and insulin fell slightly and glucose rose slightly during each of the meals. We conclude that these doses of aspartame do not alter secretion of prolactin, cortisol, growth hormone, or insulin in normal individuals. PMID:2923074

  20. The structure of T6 human insulin at 1.0 A resolution.

    PubMed

    Smith, G David; Pangborn, Walter A; Blessing, Robert H

    2003-03-01

    The structure of T(6) human insulin has been determined at 120 K at a resolution of 1.0 A and refined to a residual of 0.183. As a result of cryofreezing, the first four residues of the B chain in one of the two crystallographically independent AB monomers in the hexameric [Zn(1/3)(AB)(2)Zn(1/3)](3) complex undergo a conformational shift that displaces the C(alpha) atom of PheB1 by 7.86 A relative to the room-temperature structure. A least-squares superposition of all backbone atoms of the room-temperature and low-temperature structures yielded a mean displacement of 0.422 A. Omitting the first four residues of the B chain reduced the mean displacement to 0.272 A. At 120 K, nine residues were found to exhibit two discrete side-chain conformations, but only two of these residues are in common with the seven residues found to have disordered side chains in the room-temperature structure. As a result of freezing, the disorder observed at room temperature in both ArgB22 side chains is eliminated. The close contact between pairs of O( epsilon 2) atoms in GluB13 observed at room temperature is maintained at cryotemperature and suggests that a carboxylate-carboxylic acid centered hydrogen bond exists [-C(=O)-O.H.O-C(=O)-] such that the H atom is equally shared between the two partially charged O atoms. PMID:12595704

  1. Insulin Resistance is Associated with MCP1-Mediated Macrophage Accumulation in Skeletal Muscle in Mice and Humans

    PubMed Central

    Patsouris, David; Cao, Jingwei-Ji; Vial, Guillaume; Bravard, Amelie; Lefai, Etienne; Durand, Annie; Durand, Christine; Chauvin, Marie-Agnés; Laugerette, Fabienne; Debard, Cyrille; Michalski, Marie-Caroline; Laville, Martine; Vidal, Hubert; Rieusset, Jennifer

    2014-01-01

    Inflammation is now recognized as a major factor contributing to type 2 diabetes (T2D). However, while the mechanisms and consequences associated with white adipose tissue inflammation are well described, very little is known concerning the situation in skeletal muscle. The aim of this study was to investigate, in vitro and in vivo, how skeletal muscle inflammation develops and how in turn it modulates local and systemic insulin sensitivity in different mice models of T2D and in humans, focusing on the role of the chemokine MCP1. Here, we found that skeletal muscle inflammation and macrophage markers are increased and associated with insulin resistance in mice models and humans. In addition, we demonstrated that intra-muscular TNFα expression is exclusively restricted to the population of intramuscular leukocytes and that the chemokine MCP1 was associated with skeletal muscle inflammatory markers in these models. Furthermore, we demonstrated that exposure of C2C12 myotubes to palmitate elevated the production of the chemokine MCP1 and that the muscle-specific overexpression of MCP1 in transgenic mice induced the local recruitment of macrophages and altered local insulin sensitivity. Overall our study demonstrates that skeletal muscle inflammation is clearly increased in the context of T2D in each one of the models we investigated, which is likely consecutive to the lipotoxic environment generated by peripheral insulin resistance, further increasing MCP1 expression in muscle. Consequently, our results suggest that MCP1-mediated skeletal muscle macrophages recruitment plays a role in the etiology of T2D. PMID:25337938

  2. Peribiliary Glands as a Niche of Extrapancreatic Precursors Yielding Insulin-Producing Cells in Experimental and Human Diabetes.

    PubMed

    Carpino, Guido; Puca, Rosa; Cardinale, Vincenzo; Renzi, Anastasia; Scafetta, Gaia; Nevi, Lorenzo; Rossi, Massimo; Berloco, Pasquale B; Ginanni Corradini, Stefano; Reid, Lola M; Maroder, Marella; Gaudio, Eugenio; Alvaro, Domenico

    2016-05-01

    Peribiliary glands (PBGs) are niches in the biliary tree and containing heterogeneous endodermal stem/progenitors cells that can differentiate, in vitro and in vivo, toward pancreatic islets. The aim of this study was to evaluate, in experimental and human diabetes, proliferation of cells in PBGs and differentiation of the biliary tree stem/progenitor cells (BTSCs) toward insulin-producing cells. Diabetes was generated in mice by intraperitoneal injection of a single dose of 200 mg/kg (N = 12) or 120 mg/kg (N = 12) of streptozotocin. Liver, pancreas, and extrahepatic biliary trees were en bloc dissected and examined. Cells in PBGs proliferated in experimental diabetes, and their proliferation was greatest in the PBGs of the hepatopancreatic ampulla, and inversely correlated with the pancreatic islet area. In rodents, the cell proliferation in PBGs was characterized by the expansion of Sox9-positive stem/progenitor cells that gave rise to insulin-producing cells. Insulin-producing cells were located mostly in PBGs in the portion of the biliary tree closest to the duodenum, and their appearance was associated with upregulation of MafA and Gli1 gene expression. In patients with type 2 diabetes, PBGs at the level of the hepatopancreatic ampulla contained cells showing signs of proliferation and pancreatic fate commitment. In vitro, high glucose concentrations induced the differentiation of human BTSCs cultures toward pancreatic beta cell fates. The cells in PBGs respond to diabetes with proliferation and differentiation towards insulin-producing cells indicating that PBG niches may rescue pancreatic islet impairment in diabetes. These findings offer important implications for the pathophysiology and complications of this disease. Stem Cells 2016;34:1332-1342. PMID:26850087

  3. Dephosphorylation of human insulin-like growth factor I (IGF-I) receptors by membrane-associated tyrosine phosphatases.

    PubMed Central

    Peraldi, P; Hauguel-de Mouzon, S; Alengrin, F; Van Obberghen, E

    1992-01-01

    The insulin-like growth factor-I (IGF-I) receptor exhibits structural and functional similarities to the insulin receptor. Although the regulation of the insulin-receptor tyrosine kinase has been extensively investigated, the mechanisms involved in phosphorylation/dephosphorylation of the IGF-I receptor have received only little attention. To obtain a better understanding of the mode of IGF-I action, we have investigated the effects of protein phosphotyrosine phosphatases (PTPases) on the phosphorylation status of the IGF-I receptor. The dephosphorylation of the human IGF-I receptor by membrane-associated tyrosine phosphatases was studied by an immuno-enzymic assay based on the recognition of phosphotyrosine residues by anti-phosphotyrosine antibodies. Using intact IGF-I receptors as substrates, we show that they could be completely dephosphorylated by different cellular PTPases. Three pieces of evidence indicate that receptor dephosphorylation takes place on phosphotyrosine, i.e. the inhibition profile of phosphatase activity by zinc and vanadate, its absolute requirement for thiol compounds and the diminution of [32P]phosphotyrosine labelling of the beta subunit assessed by SDS/PAGE and phosphoamino acid analysis. Tyrosine kinase activity and autophosphorylation of the IGF-I receptor were decreased in a dose-dependent manner by PTPases, indicating that partial dephosphorylation of the receptor was associated with a decrease in its intrinsic activity. The sensitivity of the activated human IGF-I receptor to dephosphorylation on tyrosine leads to the speculation that IGF-I receptor activity might be regulated by mechanisms such as those described for the insulin receptor. Further investigation of the pathways of IGF-I receptor dephosphorylation will contribute to define the role(s) of PTPases in the overall mechanism of IGF-I signalling. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:1322128

  4. Consumption of the slow-digesting waxy maize starch leads to blunted plasma glucose and insulin response but does not influence energy expenditure or appetite in humans

    PubMed Central

    Sands, Amanda L.; Leidy, Heather J.; Hamaker, Bruce R.; Maguire, Paul; Campbell, Wayne W.

    2015-01-01

    Limited research in humans suggests that slowly digestible starch may blunt the postprandial increase and subsequent decline of plasma glucose and insulin concentrations, leading to prolonged energy availability and satiety, compared to more rapidly digestible starch. This study examined the postprandial metabolic and appetitive responses of waxy maize starch (WM), a slow-digestible starch. It was hypothesized that the waxy maize treatment would result in a blunted and more sustained glucose and insulin response, as well as energy expenditure and appetitive responses. Twelve subjects (6 men and 6 women) (age, 23 ± 1 years; body mass index, 22.2 ± 0.7 kg/m2; insulin sensitivity [homeostatic model assessment], 16% ± 2%; physical activity, 556 ± 120 min/wk) consumed, on separate days, 50 g of available carbohydrate as WM, a maltodextrin-sucrose mixture (MS), or white bread (control). Postprandial plasma glucose and insulin, energy expenditure, and appetite (hunger, fullness, desire to eat) were measured over 4 hours. Compared to control, the 4-hour glucose response was not different for MS and WM, and the 4-hour insulin response was higher for MS (P < .005) and lower for WM (P < .05). Compared to MS, WM led to lower 4-hour glucose and insulin responses (P < .001). These differences were driven by blunted glucose and insulin responses during the first hour for WM. Postprandial energy expenditure and appetite were not different among treatments. These results support that WM provides sustained glucose availability in young, insulin-sensitive adults. PMID:19628104

  5. Consumption of the slow-digesting waxy maize starch leads to blunted plasma glucose and insulin response but does not influence energy expenditure or appetite in humans.

    PubMed

    Sands, Amanda L; Leidy, Heather J; Hamaker, Bruce R; Maguire, Paul; Campbell, Wayne W

    2009-06-01

    Limited research in humans suggests that slowly digestible starch may blunt the postprandial increase and subsequent decline of plasma glucose and insulin concentrations, leading to prolonged energy availability and satiety, compared to more rapidly digestible starch. This study examined the postprandial metabolic and appetitive responses of waxy maize starch (WM), a slow-digestible starch. It was hypothesized that the waxy maize treatment would result in a blunted and more sustained glucose and insulin response, as well as energy expenditure and appetitive responses. Twelve subjects (6 men and 6 women) (age, 23 +/- 1 years; body mass index, 22.2 +/- 0.7 kg/m(2); insulin sensitivity [homeostatic model assessment], 16% +/- 2%; physical activity, 556 +/- 120 min/wk) consumed, on separate days, 50 g of available carbohydrate as WM, a maltodextrin-sucrose mixture (MS), or white bread (control). Postprandial plasma glucose and insulin, energy expenditure, and appetite (hunger, fullness, desire to eat) were measured over 4 hours. Compared to control, the 4-hour glucose response was not different for MS and WM, and the 4-hour insulin response was higher for MS (P < .005) and lower for WM (P < .05). Compared to MS, WM led to lower 4-hour glucose and insulin responses (P < .001). These differences were driven by blunted glucose and insulin responses during the first hour for WM. Postprandial energy expenditure and appetite were not different among treatments. These results support that WM provides sustained glucose availability in young, insulin-sensitive adults. PMID:19628104

  6. Acute regulation by insulin of phosphatidylinositol-3-kinase, Rad, Glut 4, and lipoprotein lipase mRNA levels in human muscle.

    PubMed

    Laville, M; Auboeuf, D; Khalfallah, Y; Vega, N; Riou, J P; Vidal, H

    1996-07-01

    We have investigated the acute regulation by insulin of the mRNA levels of nine genes involved in insulin action, in muscle biopsies obtained before and at the end of a 3-h euglycemic hyperinsulinemic clamp. Using reverse transcription-competitive PCR, we have measured the mRNAs encoding the two insulin receptor variants, the insulin receptor substrate-1, the p85alpha subunit of phosphatidylinositol-3-kinase, Ras associated to diabetes (Rad), the glucose transporter Glut 4, glycogen synthase, 6-phosphofructo-l-kinase, lipoprotein lipase, and the hormone-sensitive lipase. Insulin infusion induced a significant increase in the mRNA level of Glut 4 (+56 +/- 13%), Rad (+96 +/- 25%), the p85alpha subunit of phosphatidylinositol-3-kinase (+92 +/- 18%) and a decrease in the lipoprotein lipase mRNA level (-49 +/- 5%), while the abundance of the other mRNAs was unaffected. The relative expression of the two insulin receptor variants was not modified. These results demonstrate an acute coordinated regulation by insulin of the expression of genes coding key proteins involved in its action in human skeletal muscle and suggest that Rad and the p85alpha regulatory subunit of phosphatidylinositol-3-kinase can be added to the list of the genes controlled by insulin. PMID:8690802

  7. Enhanced insulin signaling in human skeletal muscle and adipose tissue following gastric bypass surgery.

    PubMed

    Albers, Peter H; Bojsen-Møller, Kirstine N; Dirksen, Carsten; Serup, Annette K; Kristensen, Dorte E; Frystyk, Jan; Clausen, Trine R; Kiens, Bente; Richter, Erik A; Madsbad, Sten; Wojtaszewski, Jørgen F P

    2015-09-01

    Roux-en-Y gastric bypass (RYGB) leads to increased peripheral insulin sensitivity. The aim of this study was to investigate the effect of RYGB on expression and regulation of proteins involved in regulation of peripheral glucose metabolism. Skeletal muscle and adipose tissue biopsies from glucose-tolerant and type 2 diabetic subjects at fasting and during a hyperinsulinemic-euglycemic clamp before as well as 1 wk and 3 and 12 mo after RYGB were analyzed for relevant insulin effector proteins/signaling components. Improvement in peripheral insulin sensitivity mainly occurred at 12 mo postsurgery when major weight loss was evident and occurred concomitantly with alterations in plasma adiponectin and in protein expression/signaling in peripheral tissues. In skeletal muscle, protein expression of GLUT4, phosphorylated levels of TBC1D4, as well as insulin-induced changes in phosphorylation of Akt and glycogen synthase activity were enhanced 12 mo postsurgery. In adipose tissue, protein expression of GLUT4, Akt2, TBC1D4, and acetyl-CoA carboxylase (ACC), phosphorylated levels of AMP-activated protein kinase and ACC, as well as insulin-induced changes in phosphorylation of Akt and TBC1D4, were enhanced 12 mo postsurgery. Adipose tissue from glucose-tolerant subjects was the most responsive to RYGB compared with type 2 diabetic patients, whereas changes in skeletal muscle were largely similar in these two groups. In conclusion, an improved molecular insulin-sensitive phenotype of skeletal muscle and adipose tissue appears to contribute to the improved whole body insulin action following a substantial weight loss after RYGB. PMID:26062634

  8. The human insulin mRNA is partly translated via a cap- and eIF4A-independent mechanism

    SciTech Connect

    Fred, Rikard G.; Sandberg, Monica; Pelletier, Jerry; Welsh, Nils

    2011-09-09

    Highlights: {yields} The polypyrimidine tract binding protein binds to the 5'-UTR of the insulin mRNA. {yields} Insulin mRNA can be translated via a cap-independent mechanism. {yields} The fraction cap-independent insulin synthesis increases during conditions of stress. {yields} The {beta}-cell is able to uphold basal insulin biosynthesis under conditions of stress. -- Abstract: The aim of this study was to investigate whether cap-independent insulin mRNA translation occurs in human pancreatic islets at basal conditions, during stimulation at a high glucose concentration and at conditions of nitrosative stress. We also aimed at correlating cap-independent insulin mRNA translation with binding of the IRES trans-acting factor polypyrimidine tract binding protein (PTB) to the 5'-UTR of insulin mRNA. For this purpose, human islets were incubated for 2 h in the presence of low (1.67 mM) or high glucose (16.7 mM). Nitrosative stress was induced by addition of 1 mM DETA/NO and cap-dependent mRNA translation was inhibited with hippuristanol. Insulin biosynthesis rates were determined by radioactive labeling and immunoprecipitation. PTB affinity to insulin mRNA 5'-UTR was assessed by a magnetic micro bead pull-down procedure. We observed that in the presence of 1.67 mM glucose, approximately 70% of the insulin mRNA translation was inhibited by hippuristanol. Corresponding value from islets incubated at 16.7 mM glucose was 93%. DETA/NO treatment significantly decreased the translation of insulin by 85% in high glucose incubated islets, and by 50% at a low glucose concentration. The lowered insulin biosynthesis rates of DETA/NO-exposed islets were further suppressed by hippuristanol with 55% at 16.7 mM glucose but not at 1.67 mM glucose. Thus, hippuristanol-induced inhibition of insulin biosynthesis was less pronounced in DETA/NO-treated islets as compared to control islets. We observed also that PTB bound specifically to the insulin mRNA 5'-UTR in vitro, and that this

  9. The role of mitogen-activated protein kinase in insulin and insulin-like growth factor I (IGF-I) signaling cascades for progesterone and IGF-binding protein-1 production in human granulosa cells.

    PubMed

    Seto-Young, Donna; Zajac, Jacek; Liu, Hung-Ching; Rosenwaks, Zev; Poretsky, Leonid

    2003-07-01

    Insulin and IGF-I participate in the regulation of ovulation, steroidogenesis, and IGF-binding protein (IGFBP) production in the ovary. Insulin and IGF-I actions in the ovary are closely related. For example, insulin may amplify IGF-I action in the ovary by up-regulating type I IGF receptors and inhibiting IGFBP-1 production, thus increasing the bioavailability of IGF-I. It is hypothesized that ovarian effects of insulin in insulin-resistant states are mediated via an insulin action pathway(s) distinct from those involved in glucose transport. We previously reported that insulin-induced stimulation of progesterone and inhibition of IGFBP-1 production in the human ovary are mediated by signaling pathways that are independent of phosphatidylinositol 3-kinase, the enzyme whose activation is crucial for glucose transport. We now examined whether activation of MAPK is necessary to mediate insulin-induced or IGF-I-induced stimulation of progesterone or inhibition of IGFBP-1 production in human granulosa cells. Human granulosa cells were obtained during in vitro fertilization. Cells (0.5-1 x 10(5)) were incubated for 24 h in the presence of 0, 10, 10(2), or 10(3) ng/ml insulin or 0, 0.5, 1, 2.5, or 5 ng/ml IGF-I and in the presence or absence of 1 micro M PD98059, a specific inhibitor of ERK1/2 MAPK. The progesterone concentration in the tissue culture medium was measured by RIA (Pantex, Santa Monica, CA), and the IGFBP-1 concentration was measured by immunoradiometric assay (DSL-7800, Diagnostic Systems Laboratories, Inc., Webster, TX). MAPK activity was assessed using the MAPK IP-Kinase assay kit (Upstate Biotechnology, Inc., Lake Placid, NY). ANOVA was used to compare mean values of progesterone or IGFBP-1 concentrations. MAPK was stimulated by insulin up to 350% of the baseline value. Progesterone production in human granulosa cells was stimulated by insulin in a dose-related manner to 123% of the control value (P < 0.001), and IGFBP-1 production was inhibited to 25

  10. Albert Renold Memorial Lecture: Molecular Background of Nutritionally Induced Insulin Resistance Leading to Type 2 Diabetes – From Animal Models to Humans

    PubMed Central

    Shafrir, Eleazar

    2001-01-01

    Albert Renold strived to gain insight into the abnormalities of human diabetes by defining the pathophysiology of the disease peculiar to a given animal. He investigated the Israeli desert-derived spiny mice (Acomys cahirinus), which became obese on fat-rich seed diet. After a few months hyperplasia and hypertrophy of β-cells occurred leading to a sudden rupture, insulin loss and ketosis. Spiny mice were low insulin responders, which is probably a characteristic of certain desert animals, protecting against insulin oversecretion when placed on an abundant diet. We have compared the response to overstimulation of several mutant diabetic species and nutritionally induced nonmutant animals when placed on affluent diet. Some endowed with resilient β-cells sustain long-lasting oversecretion, compensating for the insulin resistance, without lapsing into overt diabetes. Some with labile beta cells exhibit apoptosis and lose their capacity of coping with insulin resistance after a relatively short period. The wide spectrum of response to insulin resistance among different diabetes prone species seems to represent the varying response of human beta cells among the populations. In search for the molecular background of insulin resistance resulting from overnutrition we have studied the Israeli desert gerbil Psammomys obesus (sand rat), which progresses through hyperinsulinemia, followed by hyperglycemia and irreversible beta cell loss. Insulin resistance was found to be the outcome of reduced activation of muscle insulin receptor tyrosine kinase by insulin, in association with diminished GLUT4 protein and DNA content and overexpression of PKC isoenzymes, notably of PKCε. This overexpression and translocation to the membrane was discernible even prior to hyperinsulinemia and may reflect the propensity to diabetes in nondiabetic species and represent a marker for preventive action. By promoting the phosphorylation of serine/threonine residues on certain proteins of the

  11. Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans

    PubMed Central

    Rhee, Eugene P.; Cheng, Susan; Larson, Martin G.; Walford, Geoffrey A.; Lewis, Gregory D.; McCabe, Elizabeth; Yang, Elaine; Farrell, Laurie; Fox, Caroline S.; O’Donnell, Christopher J.; Carr, Steven A.; Vasan, Ramachandran S.; Florez, Jose C.; Clish, Clary B.; Wang, Thomas J.; Gerszten, Robert E.

    2011-01-01

    Dyslipidemia is an independent risk factor for type 2 diabetes, although exactly which of the many plasma lipids contribute to this remains unclear. We therefore investigated whether lipid profiling can inform diabetes prediction by performing liquid chromatography/mass spectrometry–based lipid profiling in 189 individuals who developed type 2 diabetes and 189 matched disease-free individuals, with over 12 years of follow up in the Framingham Heart Study. We found that lipids of lower carbon number and double bond content were associated with an increased risk of diabetes, whereas lipids of higher carbon number and double bond content were associated with decreased risk. This pattern was strongest for triacylglycerols (TAGs) and persisted after multivariable adjustment for age, sex, BMI, fasting glucose, fasting insulin, total triglycerides, and HDL cholesterol. A combination of 2 TAGs further improved diabetes prediction. To explore potential mechanisms that modulate the distribution of plasma lipids, we performed lipid profiling during oral glucose tolerance testing, pharmacologic interventions, and acute exercise testing. Levels of TAGs associated with increased risk for diabetes decreased in response to insulin action and were elevated in the setting of insulin resistance. Conversely, levels of TAGs associated with decreased diabetes risk rose in response to insulin and were poorly correlated with insulin resistance. These studies identify a relationship between lipid acyl chain content and diabetes risk and demonstrate how lipid profiling could aid in clinical risk assessment. PMID:21403394

  12. Effects of calorie restriction and weight loss on glucose and insulin levels in obese humans.

    PubMed

    Atkinson, R L; Kaiser, D L

    1985-01-01

    The relative contributions of weight loss vs calorie restriction in the improvement of glucose tolerance in obese subjects has not been well studied. We measured fasting and stimulated glucose and insulin levels in seven obese subjects at 4 time periods: on a regular diet before weight loss, on a very low calorie ketogenic diet (VLCKD) after 4 days and after 6 weeks, and after 4 days back on a regular diet. Fasting glucose and insulin levels fell significantly after only 4 days of calorie restriction and did not change after 6 weeks. With return to a regular diet, these levels rose toward baseline even through body weight remained well below baseline. Stimulated glucose and insulin levels during an insulin tolerance test, intravenous glucose tolerance test, and standard meal demonstrated a similar pattern, although the changes due to either diet or weight loss were minimal. We conclude that calorie restriction has a greater effect on glucose and insulin levels than does weight loss in obese subjects who are losing weight. PMID:3900179

  13. Hyperinsulinemic hypoglycemia syndrome associated with mutations in the human insulin receptor gene: report of two cases.

    PubMed

    Kuroda, Yohei; Iwahashi, Hiromi; Mineo, Ikuo; Fukui, Kenji; Fukuhara, Atsunori; Iwamoto, Ryuya; Imagawa, Akihisa; Shimomura, Iichiro

    2015-01-01

    Insulinoma and insulin or insulin receptor (IR) autoantibodies are the main causes of hyperinsulinemic hypoglycemia in adults, but the exact cause in other cases remains obscure. This study is to determine the genetic basis of hyperinsulinemic hypoglycemia in two cases without the above abnormalities. Sequence analysis of IR gene in two patients with adult-onset hyperinsulinemic hypoglycemia and their relatives were performed, and the mutant gene observed in one case was analyzed. Both cases had normal levels of fasting plasma glucose (FPG), fasting hyperinsulinemia, low insulin sensitivity, and hypoglycemia with excessive insulin secretion during oral glucose tolerance test (OGTT). Both reported adult-onset postprandial hypoglycemic symptoms. In one patient, a missense mutation (Arg256Cys) was detected in both alleles of the IR gene, and his parents had the same mutation in only one allele but no hypoglycemia. The other had a novel nonsense mutation (Trp1273X) followed by a mutation (Gln1274Lys) in one allele, and his 9-year old son had the same mutation in one allele, together with hyperinsulinemic hypoglycemia during OGTT. Overexpression experiments of the mutant gene found in Case 1 in mammalian cells showed abnormal processing of the IR protein and demonstrated reduced function of Akt/Erk phosphorylation by insulin in the cells. In two cases of hyperinsulinemic hypoglycemia in adults, we found novel mutations in IR gene considered to be linked to hypoglycemia. We propose a disease entity of adult-onset hyperinsulinemic hypoglycemia syndrome associated with mutations in IR gene. PMID:25753915

  14. NON-PREMIXED TURBULENT JET FLAMES

    EPA Science Inventory

    The paper, part of a general investigation of mixing and chemical reaction in turbulent jets, concerns the length of non-premixed turbulent jet flames in a stationary environment. Experimental results for the turbulent flame length of chemically reacting jets in water show both i...

  15. [Medication of the month. Insulin glargine (Lantus)].

    PubMed

    Scheen, A J

    2004-02-01

    Insulin glargine (Lantus) is a human insulin analogue produced by recombinant DNA technology and recently launched by Aventis. Modification of the human insulin molecule at position A21 and at the C-terminus of the B-chain results in the formation of a stable compound that is soluble at pH 4.0, but forms amorphous microprecipitates in subcutaneous tissue (pH > 7,4) from which small amounts of insulin glargine are gradually released. The plasma concentration versus time profile of insulin glargine is therefore relatively constant over 24 hours as compared to conventional human insulins, especially NPH. This allows once-daily injection as basal insulin therapy, at any moment of the clock time (but if possible at the same time from day to day). Reproducibility of plasma insulin levels is also improved with insulin glargine as compared to human NPH insulin. Insulin glargine administration should be combined to rapid insulin injections, before each meal in order to control postprandial hyperglycaemia, or with oral antidiabetic agents in type 2 diabetes. The pharmacokinetic properties of insulin glargine allow an easier titration of basal insulin dose, which should facilitate adequate blood glucose control while decreasing the risk of hypoglycaemia, especially during night time. Insulin glargine use is safe with no increased antigenicity, immunogenicity or mitogenicity reactions as compared to human insulin. Optimal use of this new insulin analogue should be integrated in a global management of the diabetic patient as well as in a new culture of insulin therapy. PMID:15112902

  16. Generating local amyloidosis in mice by the subcutaneous injection of human insulin amyloid fibrils.

    PubMed

    Chinisaz, Maryam; Ebrahim-Habibi, Azadeh; Yaghmaei, Parichehreh; Parivar, Kazem; Dehpour, Ahmad-Reza

    2014-08-01

    Localized deposits of amyloid structures are observed in various pathological conditions. One example of when local amyloidosis occurs is following repeated insulin injections in diabetic patients. The present study aimed to simulate the same condition in mice. To obtain the amyloid structures, regular insulin was incubated at 57°C for 24 h. The subsequently formed amyloid fibrils were analyzed using the Congo red absorbance test, as well as transmission electron microscopy images, and then injected into mice once per day for 21 consecutive days. Firm waxy masses were developed following this period, which were excised, prepared as thin sections and stained with hematoxylin and eosin, Congo red and Sudan black. Histological examination revealed that these masses contained adipose cells and connective tissue, in which amyloid deposition was visible. Thus, localized amyloidosis was obtained by the subcutaneous injection of insulin fibrils. The present results may be of further use in the development of models of amyloid tumors. PMID:25009591

  17. Generating local amyloidosis in mice by the subcutaneous injection of human insulin amyloid fibrils

    PubMed Central

    CHINISAZ, MARYAM; EBRAHIM-HABIBI, AZADEH; YAGHMAEI, PARICHEHREH; PARIVAR, KAZEM; DEHPOUR, AHMAD-REZA

    2014-01-01

    Localized deposits of amyloid structures are observed in various pathological conditions. One example of when local amyloidosis occurs is following repeated insulin injections in diabetic patients. The present study aimed to simulate the same condition in mice. To obtain the amyloid structures, regular insulin was incubated at 57°C for 24 h. The subsequently formed amyloid fibrils were analyzed using the Congo red absorbance test, as well as transmission electron microscopy images, and then injected into mice once per day for 21 consecutive days. Firm waxy masses were developed following this period, which were excised, prepared as thin sections and stained with hematoxylin and eosin, Congo red and Sudan black. Histological examination revealed that these masses contained adipose cells and connective tissue, in which amyloid deposition was visible. Thus, localized amyloidosis was obtained by the subcutaneous injection of insulin fibrils. The present results may be of further use in the development of models of amyloid tumors. PMID:25009591

  18. Insulin Suppresses Endotoxin-Induced Oxidative, Nitrosative, and Inflammatory Stress in Humans

    PubMed Central

    Dandona, Paresh; Ghanim, Husam; Bandyopadhyay, Arindam; Korzeniewski, Kelly; Ling Sia, Chang; Dhindsa, Sandeep; Chaudhuri, Ajay

    2010-01-01

    OBJECTIVE To investigate whether insulin reduces the magnitude of oxidative, nitrosative, and inflammatory stress and tissue damage responses induced by endotoxin (lipopolysaccharide [LPS]). RESEARCH DESIGN AND METHODS Nine normal subjects were injected intravenously with 2 ng/kg LPS prepared from Escherichia coli. Ten others were infused with insulin (2 units/h) for 6 h in addition to the LPS injection along with 100 ml/h of 5% dextrose to maintain normoglycemia. RESULTS LPS injection induced a rapid increase in plasma concentrations of nitric oxide metabolites, nitrite and nitrate (NOM), and thiobarbituric acid–reacting substances (TBARS), an increase in reactive oxygen species (ROS) generation by polymorphonuclear leukocytes (PMNLs), and marked increases in plasma free fatty acids, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), macrophage migration inhibition factor (MIF), C-reactive protein, resistin, visfatin, lipopolysaccharide binding protein (LBP), high mobility group-B1 (HMG-B1), and myoglobin concentrations. The coinfusion of insulin led to a total elimination of the increase in NOM, free fatty acids, and TBARS and a significant reduction in ROS generation by PMNLs and plasma MIF, visfatin, and myoglobin concentrations. Insulin did not affect TNF-α, MCP-1, IL-6, LBP, resistin, and HMG-B1 increases induced by the LPS. CONCLUSIONS Insulin reduces significantly several key mediators of oxidative, nitrosative, and inflammatory stress and tissue damage induced by LPS. These effects of insulin require further investigation for its potential use as anti-inflammatory therapy for endotoxemia. PMID:20699433

  19. Insulin glulisine: insulin receptor signaling characteristics in vivo.

    PubMed

    Hennige, Anita M; Lehmann, Rainer; Weigert, Cora; Moeschel, Klaus; Schäuble, Myriam; Metzinger, Elisabeth; Lammers, Reiner; Häring, Hans-Ulrich

    2005-02-01

    In recent years, recombinant DNA technology has been used to design insulin molecules that overcome the limitations of regular insulin in mealtime supplementation. However, safety issues have been raised with these alternatives, as the alteration of the three-dimensional structure may alter the interaction with the insulin and/or IGF-I receptors and therefore lead to the activation of alternate metabolic as well as mitogenic signaling pathways. It is therefore essential to carefully study acute and long-term effects in a preclinical state, as insulin therapy is meant to be a lifelong treatment. In this study, we determined in vivo the insulin receptor signaling characteristics activated by insulin glulisine (Lys(B3), Glu(B29)) at the level of insulin receptor phosphorylation, insulin receptor substrate phosphorylation, and downstream signaling elements such as phosphatidylinositol (PI) 3-kinase, AKT, and mitogen-activated protein kinase. C57BL/6 mice were injected with insulin glulisine or regular insulin and Western blot analysis was performed for liver and muscle tissue. The extent and time course of insulin receptor phosphorylation and activation of downstream signaling elements after insulin glulisine treatment was similar to that of human regular insulin in vivo. Moreover, insulin signaling in hypothalamic tissue determined by PI 3-kinase activity was comparable. Therefore, insulin glulisine may be a useful tool for diabetes treatment. PMID:15677493

  20. Reduced Insulin Sensitivity Is Related to Less Endogenous Dopamine at D2/3 Receptors in the Ventral Striatum of Healthy Nonobese Humans

    PubMed Central

    Caravaggio, Fernando; Borlido, Carol; Hahn, Margaret; Feng, Zhe; Fervaha, Gagan; Gerretsen, Philip; Nakajima, Shinichiro; Plitman, Eric; Chung, Jun Ku; Iwata, Yusuke; Wilson, Alan; Remington, Gary

    2015-01-01

    Background: Food addiction is a debated topic in neuroscience. Evidence suggests diabetes is related to reduced basal dopamine levels in the nucleus accumbens, similar to persons with drug addiction. It is unknown whether insulin sensitivity is related to endogenous dopamine levels in the ventral striatum of humans. We examined this using the agonist dopamine D2/3 receptor radiotracer [11C]-(+)-PHNO and an acute dopamine depletion challenge. In a separate sample of healthy persons, we examined whether dopamine depletion could alter insulin sensitivity. Methods: Insulin sensitivity was estimated for each subject from fasting plasma glucose and insulin using the Homeostasis Model Assessment II. Eleven healthy nonobese and nondiabetic persons (3 female) provided a baseline [11C]-(+)-PHNO scan, 9 of which provided a scan under dopamine depletion, allowing estimates of endogenous dopamine at dopamine D2/3 receptor. Dopamine depletion was achieved via alpha-methyl-para-tyrosine (64mg/kg, P.O.). In 25 healthy persons (9 female), fasting plasma and glucose was acquired before and after dopamine depletion. Results: Endogenous dopamine at ventral striatum dopamine D2/3 receptor was positively correlated with insulin sensitivity (r(7)=.84, P=.005) and negatively correlated with insulin levels (r(7)=-.85, P=.004). Glucose levels were not correlated with endogenous dopamine at ventral striatum dopamine D2/3 receptor (r(7)=-.49, P=.18). Consistently, acute dopamine depletion in healthy persons significantly decreased insulin sensitivity (t(24)=2.82, P=.01), increased insulin levels (t(24)=-2.62, P=.01), and did not change glucose levels (t(24)=-0.93, P=.36). Conclusion: In healthy individuals, diminished insulin sensitivity is related to less endogenous dopamine at dopamine D2/3 receptor in the ventral striatum. Moreover, acute dopamine depletion reduces insulin sensitivity. These findings may have important implications for neuropsychiatric populations with metabolic

  1. Insulin resistance after a 72-h fast is associated with impaired AS160 phosphorylation and accumulation of lipid and glycogen in human skeletal muscle

    PubMed Central

    Vendelbo, M. H.; Clasen, B. F. F.; Treebak, J. T.; Møller, L.; Krusenstjerna-Hafstrøm, T.; Madsen, M.; Nielsen, T. S.; Stødkilde-Jørgensen, H.; Pedersen, S. B.; Jørgensen, J. O. L.; Goodyear, L. J.; Wojtaszewski, J. F. P.; Møller, N.

    2012-01-01

    During fasting, human skeletal muscle depends on lipid oxidation for its energy substrate metabolism. This is associated with the development of insulin resistance and a subsequent reduction of insulin-stimulated glucose uptake. The underlying mechanisms controlling insulin action on skeletal muscle under these conditions are unresolved. In a randomized design, we investigated eight healthy subjects after a 72-h fast compared with a 10-h overnight fast. Insulin action on skeletal muscle was assessed by a hyperinsulinemic euglycemic clamp and by determining insulin signaling to glucose transport. In addition, substrate oxidation, skeletal muscle lipid content, regulation of glycogen synthesis, and AMPK signaling were assessed. Skeletal muscle insulin sensitivity was reduced profoundly in response to a 72-h fast and substrate oxidation shifted to predominantly lipid oxidation. This was associated with accumulation of both lipid and glycogen in skeletal muscle. Intracellular insulin signaling to glucose transport was impaired by regulation of phosphorylation at specific sites on AS160 but not TBC1D1, both key regulators of glucose uptake. In contrast, fasting did not impact phosphorylation of AMPK or insulin regulation of Akt, both of which are established upstream kinases of AS160. These findings show that insulin resistance in muscles from healthy individuals is associated with suppression of site-specific phosphorylation of AS160, without Akt or AMPK being affected. This impairment of AS160 phosphorylation, in combination with glycogen accumulation and increased intramuscular lipid content, may provide the underlying mechanisms for resistance to insulin in skeletal muscle after a prolonged fast. PMID:22028408

  2. Inhibition of insulin- and insulin-like growth factor-I-stimulated growth of human breast cancer cells by 1,25-dihydroxyvitamin D3 and the vitamin D3 analogue EB1089.

    PubMed

    Vink-van Wijngaarden, T; Pols, H A; Buurman, C J; Birkenhäger, J C; van Leeuwen, J P

    1996-05-01

    1,25 Dihydroxyvitamin D3 (1,25-(OH)2D3) and a number of synthetic vitamin D3 analogues with low calcaemic activity, have been shown to inhibit breast cancer cell growth in vitro as well as in vivo. The purpose of the present study was to investigate a possible interaction of 1,25-(OH)2D3 and the vitamin D3 analogue EB1089 with the insulin-IGF-I regulatory system. The oestrogen receptor-positive MCF-7 human breast cancer cells used in this study are able to grow autonomously and their growth is stimulated by insulin. In order to avoid interference of IGF-binding proteins (IGF-BPs), we used an analogue of IGF-I, long R3 IGF-I, which stimulated MCF-7 cell growth similar to insulin. The growth stimulation by insulin and by long R3 IGF-I was completely inhibited by 1,25-(OH)2D3 and EB1089. Autonomous growth was also inhibited by 1,25-(OH)2D3 and EB1089. The analogue EB1089 was active at 50 times lower concentrations than 1,25-(OH)2D3. It was shown that growth inhibition was not achieved through downregulation of insulin and IGF-I binding after 48 h. Paradoxically, after prolonged treatment (8 days), an upregulation of insulin and IGF-I binding was observed. Two possible intracellular mediators of the insulin-IGF mitogenic signal are C-FOS and mitogen-activated protein (MAP) kinase. Insulin-induced C-FOS mRNA was inhibited by 1,25-(OH)2D3, suggesting that it could be involved in the growth inhibition by 1,25-(OH)2D3. MAP kinase activation appeared not to be involved in growth stimulation by both insulin and IGF-I. Together, the present study demonstrates that vitamin D3 compounds can block the mitogenic activity of insulin and IGF-I, which may contribute to their tumour suppressive activity observed in vivo. PMID:9081364

  3. Clinical experience of switching from biphasic human insulin to biphasic insulin aspart 30 in Indian patients with type 2 diabetes in the A1chieve study

    PubMed Central

    Das, A. K.; Kalra, Sanjay; Akhtar, Shahid; Shetty, Raman; Kumar, Ajay

    2015-01-01

    Aim: The aim of the following study is to evaluate the safety and effectiveness of switching from biphasic human insulin (BHI) to biphasic insulin aspart 30 (BIAsp 30) in Indian patients with type 2 diabetes as a sub-analysis of the 24-week, non-interventional A1chieve study. Materials and Methods: Indian patients switching from BHI to BIAsp 30 based on the physicians’ decisions were included. The primary outcome was the incidence of serious adverse drug reactions (SADRs), including major hypoglycemic events; secondary outcomes included changes in hypoglycemia in the 4 weeks preceding baseline and week 24 and changes from baseline to week 24 in glycated hemoglobin A1c (HbA1c), fasting plasma glucose (FPG), postprandial plasma glucose (PPPG), body weight and quality of life (QoL). Results: Overall, 1976 patients (mean ± standard deviation age, 55.1 ± 10.6 years and diabetes duration, 10.1 ± 5.3 years) on a mean pre-study BHI dose of 0.44 ± 0.18 U/kg were included. The mean BIAsp 30 dose was 0.43 ± 0.17 U/kg at baseline and 0.44 ± 0.17 U/kg at week 24. No SADRs were reported. The proportion of patients reporting overall hypoglycemic events reduced significantly from baseline to week 24 (15.0% vs. 2.9%, P < 0.0001). The mean HbA1c level improved significantly from 9.1 ± 1.4% at baseline to 7.5 ± 1.0% at week 24, along with improvements in FPG, post-breakfast PPPG and QoL (P < 0.001). The mean body weight decreased from 69.3 ± 10.8 kg at baseline to 69.1 ± 10.4 kg at week 24 (P = 0.003). Conclusion: Switching from BHI to BIAsp 30 therapy was well-tolerated and was associated with improved glycemic control. PMID:25593837

  4. Insulin, catecholamines, glucose and antioxidant enzymes in oxidative damage during different loads in healthy humans.

    PubMed

    Koska, J; Blazícek, P; Marko, M; Grna, J D; Kvetnanský, R; Vigas, M

    2000-01-01

    Exercise, insulin-induced hypoglycemia and oral glucose loads (50 g and 100 g) were used to compare the production of malondialdehyde and the activity of antioxidant enzymes in healthy subjects. Twenty male volunteers participated in the study. Exercise consisted of three consecutive work loads on a bicycle ergometer of graded intensity (1.5, 2.0, and 2.5 W/kg, 6 min each). Hypoglycemia was induced by insulin (Actrapid MC Novo, 0.1 IU/kg, i.v.). Oral administration of 50 g and 100 g of glucose was given to elevate plasma glucose. The activity of superoxide dismutase (SOD) was determined in red blood cells, whereas glutathione peroxidase (GSH-Px) activity was measured in whole blood. The concentration of malondialdehyde (MDA) was determined by HPLC, catecholamines were assessed radioenzymatically and glucose was measured by the glucose-oxidase method. Exercise increased MDA concentrations, GSH-Px and SOD activities as well as plasma noradrenaline and adrenaline levels. Insulin hypoglycemia increased plasma adrenaline levels, but the concentrations of MDA and the activities of GSH-Px and SOD were decreased. Hyperglycemia increased plasma MDA concentrations, but the activities of GSH-Px and SOD were significantly higher after a larger dose of glucose only. Plasma catecholamines were unchanged. These results indicate that the transient increase of plasma catecholamine and insulin concentrations did not induce oxidative damage, while glucose already in the low dose was an important triggering factor for oxidative stress. PMID:10984077

  5. Dynamics and structure of turbulent premixed flames

    NASA Technical Reports Server (NTRS)

    Bilger, R. W.; Swaminathan, N.; Ruetsch, G. R.; Smith, N. S. A.

    1995-01-01

    In earlier work (Mantel & Bilger, 1994) the structure of the turbulent premixed flame was investigated using statistics based on conditional averaging with the reaction progress variable as the conditioning variable. The DNS data base of Trouve and Poinsot (1994) was used in this investigation. Attention was focused on the conditional dissipation and conditional axial velocity in the flame with a view to modeling these quantities for use in the conditional moment closure (CMC) approach to analysis of kinetics in premixed flames (Bilger, 1993). Two remarkable findings were made: there was almost no acceleration of the axial velocity in the flame front itself; and the conditional scalar dissipation remained as high, or higher, than that found in laminar premixed flames. The first finding was surprising since in laminar flames all the fluid acceleration occurs through the flame front, and this could be expected also for turbulent premixed flames at the flamelet limit. The finding gave hope of inventing a new approach to the dynamics of turbulent premixed flames through use of rapid distortion theory or an unsteady Bernoulli equation. This could lead to a new second order closure for turbulent premixed flames. The second finding was contrary to our measurements with laser diagnostics in lean hydrocarbon flames where it is found that conditional scalar dissipation drops dramatically below that for laminar flamelets when the turbulence intensity becomes high. Such behavior was not explainable with a one-step kinetic model, even at non-unity Lewis number. It could be due to depletion of H2 from the reaction zone by preferential diffusion. The capacity of the flame to generate radicals is critically dependent on the levels of H2 present (Bilger, et al., 1991). It seemed that a DNS computation with a multistep reduced mechanism would be worthwhile if a way could be found to make this feasible. Truly innovative approaches to complex problems often come only when there is the

  6. Serum sphingolipids: relationships to insulin sensitivity and changes with exercise in humans.

    PubMed

    Bergman, Bryan C; Brozinick, Joseph T; Strauss, Allison; Bacon, Samantha; Kerege, Anna; Bui, Hai Hoang; Sanders, Phil; Siddall, Parker; Kuo, Ming Shang; Perreault, Leigh

    2015-08-15

    Ceramides and sphingolipids are a family of lipid molecules that circulate in serum and accumulate in skeletal muscle, promoting insulin resistance. Plasma ceramide and dihydroceramide are related to insulin resistance, yet less is known regarding other ceramide and sphingolipid species. Despite its association with insulin sensitivity, chronic endurance exercise training does not change plasma ceramide and sphingolipid content, with little known regarding a single bout of exercise. We measured basal relationships and the effect of acute exercise (1.5 h at 50% V̇o2 max) and recovery on serum ceramide and sphingolipid content in sedentary obese individuals, endurance-trained athletes, and individuals with type 2 diabetes (T2D). Basal serum C18:0, C20:0, and C24:1 ceramide and C18:0 and total dihydroceramide were significantly higher in T2D and, along with C16:0 ceramide and C18:0 sphingomyelin, correlated positively with insulin resistance. Acute exercise significantly increased serum ceramide, glucosylceramide, and GM3 gangliosides, which largely decreased to basal values in recovery. Sphingosine 1-phosphate and sphingomyelin did not change during exercise but decreased below basal values in recovery. Serum C16:0 and C18:0 ceramide and C18:0 sphingomyelin, but not the total concentrations of either of them, were positively correlated with markers of muscle NF-κB activation, suggesting that specific species activate intracellular inflammation. Interestingly, a subset of sphingomyelin species, notably C14:0, C22:3, and C24:4 species, was positively associated with insulin secretion and glucose tolerance. Together, these data show that unique ceramide and sphingolipid species associate with either protective or deleterious features for diabetes and could provide novel therapeutic targets for the future. PMID:26126684

  7. The MAPK pathway and HIF-1 are involved in the induction of the human PAI-1 gene expression by insulin in the human hepatoma cell line HepG2.

    PubMed

    Dimova, Elitsa Y; Kietzmann, Thomas

    2006-12-01

    Enhanced levels of plasminogen activator inhibitor-1 (PAI-1) are considered to be a risk factor for pathological conditions associated with hypoxia or hyperinsulinemia. The expression of the PAI-1 gene is increased by insulin in different cells, although, the molecular mechanisms behind insulin-induced PAI-1 expression are not fully known yet. Here, we show that insulin upregulates human PAI-1 gene expression and promoter activity in HepG2 cells and that mutation of the hypoxia-responsive element (HRE)-binding hypoxia-inducible factor-1 (HIF-1) abolished the insulin effects. Mutation of E-boxes E4 and E5 abolished the insulin-dependent activation of the PAI-1 promoter only under normoxia, but did not affect it under hypoxia. Furthermore, the insulin effect was associated with activation of HIF-1alpha via mitogen-activated protein kinases (MAPKs) but not PDK1 and PKB in HepG2 cells. Furthermore, mutation of a putative FoxO1 binding site which was supposed to be involved in insulin-dependent PAI-1 gene expression influenced the insulin-dependent activation only under normoxia. Thus, insulin-dependent PAI-1 gene expression might be regulated by the action of both HIF-1 and FoxO1 transcription factors. PMID:17384280

  8. Zinc-α2-Glycoprotein Modulates AKT-Dependent Insulin Signaling in Human Adipocytes by Activation of the PP2A Phosphatase

    PubMed Central

    Duran, Xavier; Pachón, Gisela; Vázquez-Carballo, Ana; Roche, Kelly; Núñez-Roa, Catalina; Garrido-Sánchez, Lourdes; Tinahones, Francisco J.; Vendrell, Joan; Fernández-Veledo, Sonia

    2015-01-01

    Objective Evidence from mouse models suggests that zinc-α2-glycoprotein (ZAG) is a novel anti-obesity adipokine. In humans, however, data are controversial and its physiological role in adipose tissue (AT) remains unknown. Here we explored the molecular mechanisms by which ZAG regulates carbohydrate metabolism in human adipocytes. Methods ZAG action on glucose uptake and insulin action was analyzed. β1 and β2-adrenoreceptor (AR) antagonists and siRNA targeting PP2A phosphatase were used to examine the mechanisms by which ZAG modulates insulin sensitivity. Plasma levels of ZAG were measured in a lean patient cohort stratified for HOMA-IR. Results ZAG treatment increased basal glucose uptake, correlating with an increase in GLUT expression, but induced insulin resistance in adipocytes. Pretreatment of adipocytes with propranolol and a specific β1-AR antagonist demonstrated that ZAG effects on basal glucose uptake and GLUT4 expression are mediated via β1-AR, whereas inhibition of insulin action is dependent on β2-AR activation. ZAG treatment correlated with an increase in PP2A activity. Silencing of the PP2A catalytic subunit abrogated the negative effect of ZAG on insulin-stimulated AKT phosphorylation and glucose uptake but not on GLUT4 expression and basal glucose uptake. ZAG circulating levels were unchanged in a lean patient cohort stratified for HOMA-IR. Neither glucose nor insulin was associated with plasma ZAG. Conclusions ZAG inhibits insulin-induced glucose uptake in human adipocytes by impairing insulin signaling at the level of AKT in a β2-AR- and PP2A-dependent manner. PMID:26068931

  9. Insulin pump therapy in pregnancy.

    PubMed

    Kesavadev, Jothydev

    2016-09-01

    Control of blood glucose during pregnancy is difficult because of wide variations, ongoing hormonal changes and mood swings. The need for multiple injections, pain at the injection site, regular monitoring and skillful handling of the syringes/pen further makes insulin therapy inconvenient. Insulin pump is gaining popularity in pregnancy because it mimics the insulin delivery of a healthy human pancreas. Multiple guidelines have also recommended the use of insulin pump in pregnancy to maintain the glycaemic control. The pump can release small doses of insulin continuously (basal), or a bolus dose close to mealtime to control the spike in blood glucose after a meal and the newer devices can shut down insulin delivery before the occurrence of hypoglycaemia. Pump insulin of choice is rapid acting analogue insulin. This review underscores the role of insulin pump in pregnancy, their usage, advantages and disadvantages in the light of existing literature and clinic experience. PMID:27582150

  10. Genetic insulin resistance is a potent regulator of gene expression and proliferation in human iPS cells.

    PubMed

    Iovino, Salvatore; Burkart, Alison M; Kriauciunas, Kristina; Warren, Laura; Hughes, Katelyn J; Molla, Michael; Lee, Youn-Kyoung; Patti, Mary-Elizabeth; Kahn, C Ronald

    2014-12-01

    Insulin resistance is central to diabetes and metabolic syndrome. To define the consequences of genetic insulin resistance distinct from those secondary to cellular differentiation or in vivo regulation, we generated induced pluripotent stem cells (iPSCs) from individuals with insulin receptor mutations and age-appropriate control subjects and studied insulin signaling and gene expression compared with the fibroblasts from which they were derived. iPSCs from patients with genetic insulin resistance exhibited altered insulin signaling, paralleling that seen in the original fibroblasts. Insulin-stimulated expression of immediate early genes and proliferation were also potently reduced in insulin resistant iPSCs. Global gene expression analysis revealed marked differences in both insulin-resistant iPSCs and corresponding fibroblasts compared with control iPSCs and fibroblasts. Patterns of gene expression in patients with genetic insulin resistance were particularly distinct in the two cell types, indicating dependence on not only receptor activity but also the cellular context of the mutant insulin receptor. Thus, iPSCs provide a novel approach to define effects of genetically determined insulin resistance. This study demonstrates that effects of insulin resistance on gene expression are modified by cellular context and differentiation state. Moreover, altered insulin receptor signaling and insulin resistance can modify proliferation and function of pluripotent stem cell populations. PMID:25059784

  11. Genetic Insulin Resistance Is a Potent Regulator of Gene Expression and Proliferation in Human iPS Cells

    PubMed Central

    Iovino, Salvatore; Burkart, Alison M.; Kriauciunas, Kristina; Warren, Laura; Hughes, Katelyn J.; Molla, Michael; Lee, Youn-Kyoung

    2014-01-01

    Insulin resistance is central to diabetes and metabolic syndrome. To define the consequences of genetic insulin resistance distinct from those secondary to cellular differentiation or in vivo regulation, we generated induced pluripotent stem cells (iPSCs) from individuals with insulin receptor mutations and age-appropriate control subjects and studied insulin signaling and gene expression compared with the fibroblasts from which they were derived. iPSCs from patients with genetic insulin resistance exhibited altered insulin signaling, paralleling that seen in the original fibroblasts. Insulin-stimulated expression of immediate early genes and proliferation were also potently reduced in insulin resistant iPSCs. Global gene expression analysis revealed marked differences in both insulin-resistant iPSCs and corresponding fibroblasts compared with control iPSCs and fibroblasts. Patterns of gene expression in patients with genetic insulin resistance were particularly distinct in the two cell types, indicating dependence on not only receptor activity but also the cellular context of the mutant insulin receptor. Thus, iPSCs provide a novel approach to define effects of genetically determined insulin resistance. This study demonstrates that effects of insulin resistance on gene expression are modified by cellular context and differentiation state. Moreover, altered insulin receptor signaling and insulin resistance can modify proliferation and function of pluripotent stem cell populations. PMID:25059784

  12. Granulocyte colony-stimulating factor (G-CSF): A saturated fatty acid-induced myokine with insulin-desensitizing properties in humans

    PubMed Central

    Ordelheide, Anna-Maria; Gommer, Nadja; Böhm, Anja; Hermann, Carina; Thielker, Inga; Machicao, Fausto; Fritsche, Andreas; Stefan, Norbert; Häring, Hans-Ulrich; Staiger, Harald

    2016-01-01

    Objective Circulating long-chain free fatty acids (FFAs) are important metabolic signals that acutely enhance fatty acid oxidation, thermogenesis, energy expenditure, and insulin secretion. However, if chronically elevated, they provoke inflammation, insulin resistance, and β-cell failure. Moreover, FFAs act via multiple signaling pathways as very potent regulators of gene expression. In human skeletal muscle cells differentiated in vitro (myotubes), we have shown in previous studies that the expression of CSF3, the gene encoding granulocyte colony-stimulating factor (G-CSF), is markedly induced upon FFA treatment and exercise. Methods and results We now report that CSF3 is induced in human myotubes by saturated, but not unsaturated, FFAs via Toll-like receptor 4-dependent and -independent pathways including activation of Rel-A, AP-1, C/EBPα, Src, and stress kinases. Furthermore, we show that human adipocytes and myotubes treated with G-CSF become insulin-resistant. In line with this, a functional polymorphism in the CSF3 gene affects adipose tissue- and whole-body insulin sensitivity and glucose tolerance in human subjects with elevated plasma FFA concentrations. Conclusion G-CSF emerges as a new player in FFA-induced insulin resistance and thus may be of interest as a target for prevention and treatment of type 2 diabetes. PMID:27069870

  13. Human fetal and adult chondrocytes. Effect of insulinlike growth factors I and II, insulin, and growth hormone on clonal growth.

    PubMed Central

    Vetter, U; Zapf, J; Heit, W; Helbing, G; Heinze, E; Froesch, E R; Teller, W M

    1986-01-01

    Clonal proliferation of freshly isolated human fetal chondrocytes and adult chondrocytes in response to human insulinlike growth factors I and II (IGF I, IGF II), human biosynthetic insulin, and human growth hormone (GH) was assessed. IGF I (25 ng/ml) stimulated clonal growth of fetal chondrocytes (54 +/- 12 colonies/1,000 inserted cells, mean +/- 1 SD), but IGF II (25 ng/ml) was significantly more effective (106 +/- 12 colonies/1,000 inserted cells, P less than 0.05, unstimulated control: 14 +/- 4 colonies/1,000 inserted cells). In contrast, IGF I (25 ng/ml) was more effective in adult chondrocytes (42 +/- 6 colonies/1,000 inserted cells) than IGF II (25 ng/ml) (21 +/- 6 colonies/1,000 inserted cells; P less than 0.05, unstimulated control: 6 +/- 3 colonies/1,000 inserted cells). GH and human biosynthetic insulin did not affect clonal growth of fetal or adult chondrocytes. The clonal growth pattern of IGF-stimulated fetal and adult chondrocytes was not significantly changed when chondrocytes were first grown in monolayer culture, harvested, and then inserted in the clonal culture system. However, the adult chondrocytes showed a time-dependent decrease of stimulation of clonal growth by IGF I and II. This was not true for fetal chondrocytes. The results are compatible with the concept that IGF II is a more potent stimulant of clonal growth of chondrocytes during fetal life, whereas IGF I is more effective in stimulating clonal growth of chondrocytes during postnatal life. Images PMID:3519682

  14. Novel crystalline phase and first-order phase transitions of human insulin complexed with two distinct phenol derivatives.

    PubMed

    Valmas, A; Magiouf, K; Fili, S; Norrman, M; Schluckebier, G; Beckers, D; Degen, T; Wright, J; Fitch, A; Gozzo, F; Giannopoulou, A E; Karavassili, F; Margiolaki, I

    2015-04-01

    The primary focus of the present work is the study of the effects that two ligands and the crystallization pH have on the crystalline forms of human insulin. For this purpose, human insulin (HI) was co-crystallized with two distinct phenolic derivatives: the organic ligands meta-cresol (m-cresol) and 4-nitrophenol. The formation of polycrystalline precipitates was then followed by means of structural characterization of the individual specimens in terms of unit-cell symmetry and parameters. In both cases, two different polymorphs were identified via X-ray powder diffraction measurements, the first of hexagonal symmetry (R3 space group) at higher pH values and the second of monoclinic symmetry (space group P21) with unit-cell parameters a = 87.4282 (5), b = 70.5020 (3), c = 48.3180 (4) Å, β = 106.8958 (4)°, the latter of which to our knowledge has never been observed before. PMID:25849393

  15. Counter-gradient in premixed turbulent flames

    NASA Astrophysics Data System (ADS)

    Libby, P. A.; Bray, K. N. C.

    1980-01-01

    A new theory for premixed turbulent flames normal to the oncoming reactants is developed on the basis of the Bray-Moss-Libby model of premixed combustion and second-order closure. Gradient transport assumptions are carefully avoided. The final formulation focuses on the intensity of the fluctuations of the velocity component normal to the flame and on the mean flux of product. At low rates of heat release corresponding to small intensities of the density fluctuations the new theory is in agreement with our earlier theory based on gradient transport. However, as the heat release increases toward values of practical interest, counter-gradient diffusion, i.e., mean flux in the direction of increasing mean concentration, arises and is attributable to the differential effect of mean pressure gradient on cold reactants and hot products. The implications of these results are discussed.

  16. Turbulent flame propagation in partially premixed flames

    NASA Technical Reports Server (NTRS)

    Poinsot, T.; Veynante, D.; Trouve, A.; Ruetsch, G.

    1996-01-01

    Turbulent premixed flame propagation is essential in many practical devices. In the past, fundamental and modeling studies of propagating flames have generally focused on turbulent flame propagation in mixtures of homogeneous composition, i.e. a mixture where the fuel-oxidizer mass ratio, or equivalence ratio, is uniform. This situation corresponds to the ideal case of perfect premixing between fuel and oxidizer. In practical situations, however, deviations from this ideal case occur frequently. In stratified reciprocating engines, fuel injection and large-scale flow motions are fine-tuned to create a mean gradient of equivalence ratio in the combustion chamber which provides additional control on combustion performance. In aircraft engines, combustion occurs with fuel and secondary air injected at various locations resulting in a nonuniform equivalence ratio. In both examples, mean values of the equivalence ratio can exhibit strong spatial and temporal variations. These variations in mixture composition are particularly significant in engines that use direct fuel injection into the combustion chamber. In this case, the liquid fuel does not always completely vaporize and mix before combustion occurs, resulting in persistent rich and lean pockets into which the turbulent flame propagates. From a practical point of view, there are several basic and important issues regarding partially premixed combustion that need to be resolved. Two such issues are how reactant composition inhomogeneities affect the laminar and turbulent flame speeds, and how the burnt gas temperature varies as a function of these inhomogeneities. Knowledge of the flame speed is critical in optimizing combustion performance, and the minimization of pollutant emissions relies heavily on the temperature in the burnt gases. Another application of partially premixed combustion is found in the field of active control of turbulent combustion. One possible technique of active control consists of pulsating

  17. Flame front configuration of turbulent premixed flames

    SciTech Connect

    Furukawa, Junichi; Maruta, Kaoru; Hirano, Toshisuke

    1998-02-01

    The present study is performed to explore dependence of the wrinkle scale of propane-air turbulent premixed flames on the characteristics of turbulence in the nonreacting flow, burner size, and mixture ratio. The wrinkle scales are examined and expressed in the frequency distribution of the radii of flame front curvatures. The average wrinkle scale depends not only on the characteristics of turbulence in the nonreacting flow but also on burner diameter and mixture ratio. The average wrinkle scale of a lean propane-air flame is larger than those of the near stoichiometric and rich flames. The smallest wrinkle scale of turbulent premixed flame is in the range of 0.75--1.0 mm, which is much larger than the Kolmogorov scale of turbulence in the nonreacting flow.

  18. Studies of Premixed Laminar and Turbulent Flames at Microgravity

    NASA Technical Reports Server (NTRS)

    Kwon, O. C.; Abid, M.; Porres, J.; Liu, J. B.; Ronney, P. D.; Struk, P. M.; Weiland, K. J.

    2003-01-01

    Several topics relating to premixed flame behavior at reduced gravity have been studied. These topics include: (1) flame balls; (2) flame structure and stability at low Lewis number; (3) experimental simulation of buoyancy effects in premixed flames using aqueous autocatalytic reactions; and (4) premixed flame propagation in Hele-Shaw cells. Because of space limitations, only topic (1) is discussed here, emphasizing results from experiments on the recent STS-107 Space Shuttle mission, along with numerical modeling efforts.

  19. Human Adipose Cells In Vitro Are Either Refractory or Responsive to Insulin, Reflecting Host Metabolic State

    PubMed Central

    Troy, Aaron; Lee, Jo-Ping; Skarulis, Monica C.; Cushman, Samuel W.; Zimmerberg, Joshua

    2015-01-01

    While intercellular communication processes are frequently characterized by switch-like transitions, the endocrine system, including the adipose tissue response to insulin, has been characterized by graded responses. Yet here individual cells from adipose tissue biopsies are best described by a switch-like transition between the basal and insulin-stimulated states for the trafficking of the glucose transporter GLUT4. Two statistically-defined populations best describe the observed cellular heterogeneity, representing the fractions of refractive and responsive adipose cells. Furthermore, subjects exhibiting high systemic insulin sensitivity indices (SI) have high fractions of responsive adipose cells in vitro, while subjects exhibiting decreasing SI have increasing fractions of refractory cells in vitro. Thus, a two-component model best describes the relationship between cellular refractory fraction and subject SI. Since isolated cells exhibit these different response characteristics in the presence of constant culture conditions and milieu, we suggest that a physiological switching mechanism at the adipose cellular level ultimately drives systemic SI. PMID:25768970

  20. Gravity Effects Observed In Partially Premixed Flames

    NASA Technical Reports Server (NTRS)

    Puri, Ishwar K.; Aggarwal, Suresh K.; Lock, Andrew J.; Gauguly, Ranjan; Hegde, Uday

    2003-01-01

    Partially premixed flames (PPFs) contain a rich premixed fuel air mixture in a pocket or stream, and, for complete combustion to occur, they require the transport of oxidizer from an appropriately oxidizer-rich (or fuel-lean) mixture that is present in another pocket or stream. Partial oxidation reactions occur in fuel-rich portions of the mixture and any remaining unburned fuel and/or intermediate species are consumed in the oxidizer-rich portions. Partial premixing, therefore, represents that condition when the equivalence ratio (phi) in one portion of the flowfield is greater than unity, and in another section its value is less than unity. In general, for combustion to occur efficiently, the global equivalence ratio is in the range fuel-lean to stoichiometric. These flames can be established by design by placing a fuel-rich mixture in contact with a fuel-lean mixture, but they also occur otherwise in many practical systems, which include nonpremixed lifted flames, turbulent nonpremixed combustion, spray flames, and unwanted fires. Other practical applications of PPFs are reported elsewhere. Although extensive experimental studies have been conducted on premixed and nonpremixed flames under microgravity, there is a absence of previous experimental work on burner stabilized PPFs in this regard. Previous numerical studies by our group employing a detailed numerical model showed gravity effects to be significant on the PPF structure. We report on the results of microgravity experiments conducted on two-dimensional (established on a Wolfhard-Parker slot burner) and axisymmetric flames (on a coannular burner) that were investigated in a self-contained multipurpose rig. Thermocouple and radiometer data were also used to characterize the thermal transport in the flame.

  1. Lifted Partially Premixed Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Lock, Andrew J.; Ganguly, Ranjan; Puri, Ishwar K.; Aggarwal, Suesh K.; Hegde, Uday

    2004-01-01

    Lifted Double and Triple flames are established in the UIC-NASA Partially Premixed microgravity rig. The flames examined in this paper are established above a coannular burner because its axisymmetric geometry allows for future implementation of other non-intrusive optical diagnostic techniques easily. Both burner-attached stable flames and lifted flames are established at normal and microgravity conditions in the drop tower facility.

  2. Displacement speeds in turbulent premixed flame simulations

    SciTech Connect

    Day, Marcus S.; Shepherd, Ian G.; Bell, J.; Grcar, Joseph F.; Lijewski, Michael J.

    2007-07-01

    The theory of turbulent premixed flames is based on acharacterization of the flame as a discontinuous surface propagatingthrough the fluid. The displacement speed, defined as the local speed ofthe flame front normal to itself, relative to the unburned fluid,provides one characterization of the burning velocity. In this paper, weintroduce a geometric approach to computing displacement speed anddiscuss the efficacy of the displacement speed for characterizing aturbulent flame.

  3. Diabetes-associated mutations in human insulin: crystal structure and photo-cross-linking studies of a-chain variant insulin Wakayama.

    PubMed

    Wan, Zhu-li; Huang, Kun; Xu, Bin; Hu, Shi-Quan; Wang, Shuhua; Chu, Ying-Chi; Katsoyannis, Panayotis G; Weiss, Michael A

    2005-04-01

    Naturally occurring mutations in insulin associated with diabetes mellitus identify critical determinants of its biological activity. Here, we describe the crystal structure of insulin Wakayama, a clinical variant in which a conserved valine in the A chain (residue A3) is substituted by leucine. The substitution occurs within a crevice adjoining the classical receptor-binding surface and impairs receptor binding by 500-fold, an unusually severe decrement among mutant insulins. To resolve whether such decreased activity is directly or indirectly mediated by the variant side chain, we have determined the crystal structure of Leu(A3)-insulin and investigated the photo-cross-linking properties of an A3 analogue containing p-azidophenylalanine. The structure, characterized in a novel crystal form as an R(6) zinc hexamer at 2.3 A resolution, is essentially identical to that of the wild-type R(6) hexamer. The variant side chain remains buried in a nativelike crevice with small adjustments in surrounding side chains. The corresponding photoactivatable analogue, although of low affinity, exhibits efficient cross-linking to the insulin receptor. The site of photo-cross-linking lies within a 14 kDa C-terminal domain of the alpha-subunit. This domain, unrelated in sequence to the major insulin-binding region in the N-terminal L1 beta-helix, is also contacted by photoactivatable probes at positions A8 and B25. Packing of Val(A3) at this interface may require a conformational change in the B chain to expose the A3-related crevice. The structure of insulin Wakayama thus evokes the reasoning of Sherlock Holmes in "the curious incident of the dog in the night": the apparent absence of structural perturbations (like the dog that did not bark) provides a critical clue to the function of a hidden receptor-binding surface. PMID:15794638

  4. Cell motility in models of wounded human skin is improved by Gap27 despite raised glucose, insulin and IGFBP-5

    SciTech Connect

    Wright, Catherine S.; Berends, Rebecca F.; Flint, David J.; Martin, Patricia E.M.

    2013-02-15

    Reducing Cx43 expression stimulates skin wound healing. This is mimicked in models when Cx43 function is blocked by the connexin mimetic peptide Gap27. IGF-I also stimulates wound healing with IGFBP-5 attenuating its actions. Further, the IGF-I to IGFBP-5 ratio is altered in diabetic skin, where wound closure is impaired. We investigated whether Gap27 remains effective in augmenting scrape-wound closure in human skin wound models simulating diabetes-induced changes, using culture conditions with raised glucose, insulin and IGFBP-5. Gap27 increased scrape-wound closure in normal glucose and insulin (NGI) and to a lesser extent in high glucose and insulin (HGI). IGF-I enhanced scrape-wound closure in keratinocytes whereas IGFBP-5 inhibited this response. Gap27 overcame the inhibitory effects of IGFBP-5 on IGF-I activity. Connexin-mediated communication (CMC) was reduced in HGI, despite raised Cx43, and Gap27 significantly decreased CMC in NGI and HGI. IGF-I and IGFBP-5 did not affect CMC. IGF-I increased keratinocyte proliferation in NGI, and Gap27 increased proliferation in NGI to a greater extent than in HGI. We conclude that IGF-I and Gap27 stimulate scrape-wound closure by independent mechanisms with Gap27 inhibiting Cx43 function. Gap27 can enhance wound closure in diabetic conditions, irrespective of the IGF-I:IGFBP-5 balance. - Highlights: ► Human organotypic and keratinocyte ‘diabetic’ skin models were used to demonstrate the ability of Gap27 to improve scrape-wound closure. ► Gap27 enhanced scrape-wound closure by reducing Cx43-mediated communication, whereas IGFBP-5 retarded cell migration. ► IGF-I and IGFBP-5 did not affect connexin-mediated pathways. ► Gap27 can override altered glucose, insulin, IGF-I, and IGFBP-5 in ‘diabetic’ skin models and thus has therapeutic potential.

  5. Premixed Turbulent Flame Propagation in Microgravity

    NASA Technical Reports Server (NTRS)

    Menon, Suresh

    1999-01-01

    A combined numerical-experimental study has been carried out to investigate the structure and propagation characteristics of turbulent premixed flames with and without the influence of buoyancy. Experimentally, the premixed flame characteristics are studied in the wrinkled regime using a Couette flow facility and an isotropic flow facility in order to resolve the scale of flame wrinkling. Both facilities were chosen for their ability to achieve sustained turbulence at low Reynolds number. This implies that conventional diagnostics can be employed to resolve the smallest scales of wrinkling. The Couette facility was also built keeping in mind the constraints imposed by the drop tower requirements. Results showed that the flow in this Couette flow facility achieves full-developed turbulence at low Re and all turbulence statistics are in good agreement with past measurements on large-scale facilities. Premixed flame propagation studies were then carried out both using the isotropic box and the Couette facility. Flame imaging showed that fine scales of wrinkling occurs during flame propagation. Both cases in Ig showed significant buoyancy effect. To demonstrate that micro-g can remove this buoyancy effect, a small drop tower was built and drop experiments were conducted using the isotropic box. Results using the Couette facility confirmed the ability to carry out these unique reacting flow experiments at least in 1g. Drop experiments at NASA GRC were planned but were not completed due to termination of this project.

  6. Simulation of lean premixed turbulent combustion

    SciTech Connect

    Bell, John B.; Day, Marcus S.; Almgren, Ann S.; Lijewski, MichaelJ.; Rendleman, Charles A.; Cheng, Robert K.; Shepherd, Ian G.

    2006-06-25

    There is considerable technological interest in developingnew fuel-flexible combustion systems that can burn fuels such ashydrogenor syngas. Lean premixed systems have the potential to burn thesetypes of fuels with high efficiency and low NOx emissions due to reducedburnt gas temperatures. Although traditional scientific approaches basedon theory and laboratory experiment have played essential roles indeveloping our current understanding of premixed combustion, they areunable to meet the challenges of designing fuel-flexible lean premixedcombustion devices. Computation, with itsability to deal with complexityand its unlimited access to data, hasthe potential for addressing thesechallenges. Realizing this potential requires the ability to perform highfidelity simulations of turbulent lean premixed flames under realisticconditions. In this paper, we examine the specialized mathematicalstructure of these combustion problems and discuss simulation approachesthat exploit this structure. Using these ideas we can dramatically reducecomputational cost, making it possible to perform high-fidelitysimulations of realistic flames. We illustrate this methodology byconsidering ultra-lean hydrogen flames and discuss how this type ofsimulation is changing the way researchers study combustion.

  7. Imaging of premixed flames in microgravity

    NASA Astrophysics Data System (ADS)

    Kostiuk, L. W.; Cheng, R. K.

    1994-12-01

    A laser schlieren system which uses video recording and digital images analysis has been developed and applied successfully to microgravity combustion experiments performed in a drop-tower. The optical system and the experiment are installed within a small package which is subjected to free-fall. The images are recorded on video tape and are digitized and analyzed by a computer-controlled image processor. The experimental results include laminar and turbulent premixed conical flames in microgravity, normal positive gravity (upward), and reverse gravity (downward). The procedures to extract frequency information from the digitized images are described. Many gross features of the effects of gravity on premixed conical flames are found. Flames that ignite easily in normal gravity fail to ignite in microgravity. Buoyancy driven instabilities associated with an interface formed between the hot products and the cold surrounding air is the mechanism through which gravity influences premixed laminar and turbulent flames. In normal gravity, this causes the flame to flicker. In reverse gravity, - g, and microgravity, μg, the interface is stable and flame flickering ceases. The flickering frequencies of + g flames vary with changing upstream boundary conditions. The absence of flame flickering in μg suggest that μg flames would be less sensitive to these changes.

  8. Heterogeneity of binding subunits of the human 150K insulin-like growth factor binding protein.

    PubMed

    Gelato, M C; Gaynes, L A; Greenstein, L A; Nissley, S P

    1990-04-01

    Models for the structure of the GH-dependent 150K insulin-like growth factor-binding protein (IGF-BP) complex include 1) a binding subunit of 40-60K mol wt associated with a larger nonbinding component, and 2) an oligomeric structure simply made up of six 25-28K monomeric IGF-BP complexes. To evaluate these alternative models we examined the IGF-binding characteristics and behavior on an SP-Sephadex ion exchange column of BP species identified by chemically cross-linking [125I]IGF-I and [125I]IGF-II. In addition, human serum was gel filtered on Sephadex G-200 in 0.05 M NH4HCO3, pH 8.0, and the 150K BP identified by binding of [125I]IGF-II to column fractions. When [125I]IGF-I or [125I]IGF-II was cross-linked to the 150K BP with disuccinimidyl suberate and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (10-15%) and autoradiography, four specifically labeled complexes of 20K, 24K, 33K, and 47K mol wt were identified. We examined the IGF-binding characteristics of these species by cross-linking [125I]IGF-I and [125I]IGF-II after incubation in the presence of increasing concentrations of unlabeled IGF-I or IGF-II. Formation of the 24K complex was inhibited more potently by IGF-II than IGF-I, whereas the relative potency of IGF-I vs. IGF-II for inhibition of the formation of the other complexes depended upon whether [125I]IGF-II or [125I]IGF-I was used. When the 150K BP complex generated from gel filtration on Sephadex G-200 was acid stripped, the only species seen with chemical cross-linking of either [125I]IGF-I or [125I]IGF-II was the 47K complex. By both conventional competitive binding studies and cross-linking [125I]IGF-I and [125I]IGF-II after incubation with increasing concentrations of unlabeled IGF-I or IGF-II, the formation of the 47K complex was usually more potently inhibited by IGF-I than IGF-II. When Cohn fraction IV extract was chromatographed on a SP-Sephadex column (pH 3) and cross-linking performed on the flow-through, the 47K

  9. A New Method for Generating Insulin-Secreting Cells from Human Pancreatic Epithelial Cells After Islet Isolation Transformed by NeuroD1

    PubMed Central

    Shimoda, Masayuki; Chen, Shuyuan; Noguchi, Hirofumi; Takita, Morihito; Sugimoto, Koji; Itoh, Takeshi; Chujo, Daisuke; Iwahashi, Shuichi; Naziruddin, Bashoo; Levy, Marlon F.

    2014-01-01

    Abstract The generation of insulin-secreting cells from nonendocrine pancreatic epithelial cells (NEPEC) has been demonstrated for potential clinical use in the treatment of diabetes. However, previous methods either had limited efficacy or required viral vectors, which hinder clinical application. In this study, we aimed to establish an efficient method of insulin-secreting cell generation from NEPEC without viral vectors. We used nonislet fractions from both research-grade human pancreata from brain-dead donors and clinical pancreata after total pancreatectomy with autologous islet transplantation to treat chronic pancreatitis. It is of note that a few islets could be mingled in the nonislet fractions, but their influence could be limited. The NeuroD1 gene was induced into NEPEC using an effective triple lipofection method without viral vectors to generate insulin-secreting cells. The differentiation was promoted by adding a growth factor cocktail into the culture medium. Using the research-grade human pancreata, the effective method showed high efficacy in the differentiation of NEPEC into insulin-positive cells that secreted insulin in response to a glucose challenge and improved diabetes after being transplanted into diabetic athymic mice. Using the clinical pancreata, similar efficacy was obtained, even though those pancreata suffered chronic pancreatitis. In conclusion, our effective differentiation protocol with triple lipofection method enabled us to achieve very efficient insulin-secreting cell generation from human NEPEC without viral vectors. This method offers the potential for supplemental insulin-secreting cell transplantation for both allogeneic and autologous islet transplantation. PMID:24845703

  10. Adipose triglyceride lipase expression in human adipose tissue and muscle. Role in insulin resistance and response to training and pioglitazone

    PubMed Central

    Yao-Borengasser, Aiwei; Varma, Vijayalakshmi; Coker, Robert H.; Ranganathan, Gouri; Phanavanh, Bounleut; Rasouli, Neda; Kern, Philip A.

    2010-01-01

    Objective Adipose triglyceride lipase (ATGL) catalyzes the first step in adipocyte and muscle triglyceride hydrolysis, and Comparative Gene Identification-58 (CGI-58) is an essential cofactor. We studied the expression of ATGL and CGI-58 in human adipose and muscle, and examined correlations with markers of muscle fatty acid oxidation. Materials/Methods Non diabetic volunteers were studied. Subjects with impaired glucose tolerance were treated with pioglitazone or metformin for 10 weeks. Normal glucose tolerant subjects underwent a 12 week training program. We examined changes in ATGL and CGI-58 with obesity and insulin resistance, and effects of exercise and pioglitazone. Results ATGL mRNA expression showed no correlation with either body mass index (BMI) or insulin sensitivity (SI) in either adipose or muscle. However, adipose ATGL protein levels were inversely correlated with BMI (r=−0.64, p<0.02), and positively correlated with SI (r=0.67, p<0.02). In muscle, ATGL mRNA demonstrated a strong positive relationship with carnitine palmitoyltransferase I mRNA (r=0.82, p<0.0001), and the adiponectin receptors AdipoR1 mRNA (r=0.71, p<0.0001), and AdipoR2 mRNA (r=0.74, p<0.0001). Muscle CGI-58 mRNA was inversely correlated with intramyocellular triglyceride in both type 1 (r=−0.35, p<0.05) and type 2 (r=−0.40, p<0.05) fibers. Exercise training resulted in increased muscle ATGL and pioglitazone increased adipose ATGL by 31% (p<0.05). Pioglitazone also increased ATGL in adipocytes. Conclusions Adipose ATGL protein is decreased with insulin resistance and obesity, and muscle ATGL mRNA is associated with markers of fatty acid oxidation in muscle, as is CGI-58. The regulation of ATGL and CGI-58 have important implications for the control of lipotoxicity. PMID:21129760

  11. Quantitative measurement of full-length and C-terminal proteolyzed RBP4 in serum of normal and insulin-resistant humans using a novel mass spectrometry immunoassay.

    PubMed

    Yang, Qin; Eskurza, Iratxe; Kiernan, Urban A; Phillips, David A; Blüher, Matthias; Graham, Timothy E; Kahn, Barbara B

    2012-03-01

    Serum retinol-binding protein 4 (RBP4) levels are increased in insulin-resistant humans and correlate with severity of insulin resistance in metabolic syndrome. Quantitative Western blotting (qWestern) has been the most accurate method for serum RBP4 measurements, but qWestern is technically complex and labor intensive. The lack of a reliable, high-throughput method for RBP4 measurements has resulted in variability in findings in insulin-resistant humans. Many commonly used ELISAs have limited dynamic range. Neither the current ELISAs nor qWestern distinguish among full-length and carboxyl terminus proteolyzed forms of circulating RBP4 that are altered in different medical conditions. Here, we report the development of a novel quantitative mass spectrometry immunoaffinity assay (qMSIA) to measure full-length and proteolyzed forms of RBP4. qMSIA and qWestern of RBP4 were performed in identical serum aliquots from insulin-sensitive/normoglycemic or insulin-resistant humans with impaired glucose tolerance or type 2 diabetes. Total RBP4 qMSIA measurements were highly similar to qWestern and correlated equally well with clinical severity of insulin resistance (assessed by clamp glucose disposal rate, r = -0.74), hemoglobin A1c (r = 0.63), triglyceride/high-density lipoprotein (r = 0.55), waist/hip (r = 0.61), and systolic blood pressure (r = 0.53, all P < 0.001). Proteolyzed forms of RBP4 accounted for up to 50% of total RBP4 in insulin-resistant subjects, and des(Leu)-RBP4 (cleavage of last leucine) correlated highly with insulin resistance (assessed by glucose disposal rate, r = -0.69). In multiple regression analysis, insulin resistance but not glomerular filtration rate was the strongest, independent predictor of serum RBP4 levels. Thus, qMSIA provides a novel tool for accurately measuring serum RBP4 levels as a biomarker for severity of insulin resistance and risk for type 2 diabetes and metabolic syndrome. PMID:22253430

  12. Zinc-α2-Glycoprotein Is Associated With Insulin Resistance in Humans and Is Regulated by Hyperglycemia, Hyperinsulinemia, or Liraglutide Administration

    PubMed Central

    Yang, Mengliu; Liu, Rui; Li, Shu; Luo, Yu; Zhang, Yali; Zhang, Lili; Liu, Dongfang; Wang, Yaxu; Xiong, Zhengai; Boden, Guenther; Chen, Shirong; Li, Ling; Yang, Gangyi

    2013-01-01

    OBJECTIVE Zinc-α2-glycoprotein (ZAG) has been proposed to play a role in the pathogenesis of insulin resistance. Previous studies in humans and in rodents have produced conflicting results regarding the link between ZAG and insulin resistance. The objective of this study was to examine the relationships between ZAG and insulin resistance in cross-sectional and interventional studies. RESEARCH DESIGN AND METHODS Serum ZAG (determined with ELISA) was compared with various parameters related to insulin resistance in subjects with normal glucose tolerance, impaired glucose tolerance (IGT), and newly diagnosed type 2 diabetes mellitus (T2DM), and in women with or without polycystic ovary syndrome (PCOS). Euglycemic-hyperinsulinemic clamps were performed in healthy and PCOS women. Real-time RT-PCR and Western blotting were used to assess mRNA and protein expression of ZAG. The effect of a glucagon-like peptide-1 agonist on ZAG was studied in a 12-week liraglutide treatment trial. RESULTS Circulating ZAG was lower in patients with IGT and newly diagnosed T2DM than in controls. Circulating ZAG correlated positively with HDL cholesterol and adiponectin, and correlated inversely with BMI, waist-to-hip ratio, body fat percentage, triglycerides, fasting blood glucose, fasting insulin, HbA1c, and homeostasis model assessment of insulin resistance (HOMA-IR). On multivariate analysis, ZAG was independently associated with BMI, HOMA-IR, and adiponectin. ZAG mRNA and protein were decreased in adipose tissue of T2DM patients. Moreover, circulating ZAG levels were lower in women with PCOS than in women with high insulin sensitivity. Liraglutide treatment for 12 weeks significantly increased circulating ZAG levels. CONCLUSIONS We conclude that ZAG may be an adipokine associated with insulin resistance. PMID:23275352

  13. Altered subcutaneous abdominal adipose tissue lipid synthesis in obese, insulin-resistant humans

    PubMed Central

    Tuvdendorj, Demidmaa; Chandalia, Manisha; Batbayar, Tumurbaatar; Saraf, Manish; Beysen, Carine; Murphy, Elizabeth J.

    2013-01-01

    The purpose of this study was to evaluate the variability of subcutaneous abdominal adipose tissue (AT) dynamics in obese subjects with a wide range of insulin sensitivity (IS) and the correlation between these two metabolic measures. Ten obese (BMI 30–40 kg/m2) nondiabetic subjects with (n = 6) and without (n = 4) the metabolic syndrome were studied following a 12-wk 2H2O labeling period. Subcutaneous abdominal AT biopsies were collected. Deuterium incorporation into triglyceride (TG)-glycerol and TG-palmitate were measured by gas chromatography-mass spectrometry for the calculation of fractional TG synthesis (fTG) and fractional de novo lipogenesis (fDNL). Muscle IS and insulin-mediated nonesterified fatty acid (NEFA) suppression (a measure for adipose IS) indexes were derived from the oral glucose tolerance test (OGTT). The ability of subcutaneous abdominal AT to synthesize lipids varied significantly in obese subjects (fTG range 7–28%, fDNL range 1.1–4.6%) with significantly lower values (>35% reduction) for both parameters in obese with the metabolic syndrome. fTG correlated positively with muscle IS (r = 0.64, P = 0.04) and inversely with NEFA suppression during the OGTT (r = −0.69, P = 0.03). These results demonstrate a large variability in subcutaneous abdominal AT lipid turnover in obesity. Moreover, a reduced capacity for subcutaneous abdominal AT fat storage is associated with muscle and adipose tissue insulin resistance as well as with the metabolic syndrome, thus identifying a form of obesity at heightened risk for type 2 diabetes and cardiovascular disease. PMID:23982159

  14. Expression and subcellular targeting of human insulin-like growth factor binding protein-3 in transgenic tobacco plants.

    PubMed

    Cheung, Stanley C K; Sun, Samuel S M; Chan, Juliana C N; Tong, Peter C Y

    2009-12-01

    Human insulin-like growth factor binding protein-3 (hIGFBP-3) is a multifunctional protein which has high affinity for insulin-like growth factor-I (IGF-I). It combines with IGF-I to form a tertiary complex in circulation, thus regulating the activity of IGF-I. Furthermore, recombinant hIGFBP-3 (rhIGFBP-3) has been found to negatively regulate cell proliferation and induce apoptosis. In this study, we have established an efficient plant bioreactor platform for mass production of rhIGFBP-3. Different expression constructs, driven by the seed-specific phaseolin promoter, were designed and transformed into tobacco plant via Agrobacterium. To enhance protein expression level, the signal peptide (SP) and the C-terminal tetrapeptide AFVY of phaseolin were used to direct rhIGFBP-3 to protein storage vacuole (PSV) in tobacco seed for stable accumulation. Western blot analysis showed that rhIGFBP-3 was successfully synthesized in transgenic tobacco seeds, with the highest protein expression of 800 mug/g dry weight. The localization of rhIGFBP-3 in PSV was also evident by confocal immunofluorescence microscopy. Our results indicated that protein sorting sequences could benefit the expression level of rhIGFBP-3 and it is feasible to use plant as "bio-factory" to produce therapeutic recombinant proteins in large quantity. PMID:19504171

  15. Molecular bases for the recognition of short peptide substrates and cysteine-directed modifications of human insulin-degrading enzyme

    PubMed Central

    Malito, Enrico; Ralat, Luis A.; Manolopoulou, Marika; Tsay, Julie L.; Wadlington, Natasha L.; Tang, Wei-Jen

    2009-01-01

    Insulin degrading enzyme (IDE) utilizes a large catalytic chamber to selectively bind and degrade peptide substrates such as insulin and amyloid β (Aβ). Tight interactions with substrates occur at an exosite located ~30Å away from the catalytic center that anchors the N-terminus of substrates to facilitate binding and subsequent cleavages at the catalytic site. However, IDE also degrades peptide substrates that are too short to occupy both the catalytic site and the exosite simultaneously. Here, we use kinins as a model system to address the kinetics and regulation of human IDE with short peptides. IDE specifically degrades bradykinin and kallidin at the Pro/Phe site. A 1.9Å crystal structure of bradykinin-bound IDE reveals the binding of bradykinin to the exosite, and not to the catalytic site. In agreement with observed high Km values, this suggests low affinity of bradykinin for IDE. This structure also provides the molecular basis on how the binding of short peptides at the exosite could regulate substrate recognition. We also found that human IDE is potently inhibited by physiologically relevant concentrations of S-nitrosylation and oxidation agents. Cysteine-directed modifications play a key role, since an IDE mutant devoid of all thirteen cysteines is insensitive to the inhibition by S-nitroso-glutathione, hydrogen peroxide, or N-ethylmaleimide. Specifically, cysteine 819 of human IDE is located inside the catalytic chamber pointing towards an extended hydrophobic pocket and is critical for the inactivation. Thiol-directed modification of this residue likely causes local structural perturbation to reduce substrate binding and catalysis. PMID:18986166

  16. Human insulin-like growth factor II leader 2 mediates internal initiation of translation.

    PubMed Central

    Pedersen, Susanne K; Christiansen, Jan; Hansen, Thomas v O; Larsen, Martin R; Nielsen, Finn C

    2002-01-01

    Insulin-like growth factor II (IGF-II) is a fetal growth factor, which belongs to the family of insulin-like peptides. During fetal life, the IGF-II gene generates three mRNAs with different 5' untranslated regions (UTRs), but identical coding regions and 3' UTRs. We have shown previously that IGF-II leader 3 mRNA translation is regulated by a rapamycin-sensitive pathway, whereas leader 4 mRNA is constitutively translated, but so far the significance of leader 2 mRNA has been unclear. Here, we show that leader 2 mRNA is translated efficiently in an eIF4E-independent manner. In a bicistronic vector system, the 411 nt leader 2 was capable of internal initiation via a phylogenetically conserved internal ribosome entry site (IRES), located in the 3' half of the leader. The IRES is composed of an approx. 120 nt ribosome recruitment element, followed by an 80 nt spacer region, which is scanned by the ribosomal pre-initiation complex. Since cap-dependent translation is down-regulated during cell division, leader 2 might facilitate a continuous IGF-II production in rapidly dividing cells during development. PMID:11903044

  17. Concentrations of Insulin Glargine and Its Metabolites During Long-Term Insulin Therapy in Type 2 Diabetic Patients and Comparison of Effects of Insulin Glargine, Its Metabolites, IGF-I, and Human Insulin on Insulin and IGF-I Receptor Signaling

    PubMed Central

    Varewijck, Aimee J.; Yki-Järvinen, Hannele; Schmidt, Ronald; Tennagels, Norbert; Janssen, Joseph A.M.J.L.

    2013-01-01

    We investigated 1) the ability of purified glargine (GLA), metabolites 1 (M1) and 2 (M2), IGF-I, and NPH insulin to activate the insulin receptor (IR)-A and IR-B and IGF-I receptor (IGF-IR) in vitro; 2) plasma concentrations of GLA, M1, and M2 during long-term insulin therapy in type 2 diabetic patients; and 3) IR-A and IR-B activation in vitro induced by serum from patients treated with GLA or NPH insulin. A total of 104 patients (age 56.3 ± 0.8 years, BMI 31.4 ± 0.5 kg/m2, and A1C 9.1 ± 0.1% [mean ± SE]) were randomized to GLA or NPH insulin therapy for 36 weeks. Plasma concentrations of GLA, M1, and M2 were determined by liquid chromatography–tandem mass spectrometry assay. IR-A, IR-B, and IGF-IR autophosphorylation was induced by purified hormones or serum by kinase receptor activation assays. In vitro, M1 induced comparable IR-A, IR-B, and IGF-IR autophosphorylation (activation) as NPH insulin. After 36 weeks, M1 increased from undetectable (<0.2 ng/mL) to 1.5 ng/mL (0.9–2.1), while GLA and M2 remained undetectable. GLA dose correlated with M1 (r = 0.84; P < 0.001). Serum from patients treated with GLA or NPH insulin induced similar IR-A and IR-B activation. These data suggest that M1 rather than GLA mediates GLA effects and that compared with NPH insulin, GLA does not increase IGF-IR signaling during long-term insulin therapy in type 2 diabetes. PMID:23569175

  18. Is it dietary insulin?

    PubMed

    Vaarala, Outi

    2006-10-01

    In humans the primary trigger of insulin-specific immunity is a modified self-antigen, that is, dietary bovine insulin, which breaks neonatal tolerance to self-insulin. The immune response induced by bovine insulin spreads to react with human insulin. This primary immune response induced in the gut immune system is regulated by the mechanisms of oral tolerance. Genetic factors and environmental factors, such as the gut microflora, breast milk-derived factors, and enteral infections, control the development of oral tolerance. The age of host modifies the immune response to oral antigens because the permeability of the gut decreases with age and mucosal immune response, such as IgA response, develops with age. The factors that control the function of the gut immune system may either be protective from autoimmunity by supporting tolerance, or they may induce autoimmunity by abating tolerance to dietary insulin. There is accumulating evidence that the intestinal immune system is aberrant in children with type 1 diabetes (T1D). Intestinal immune activation and increased gut permeability are associated with T1D. These aberrancies may be responsible for the impaired control of tolerance to dietary insulin. Later in life, factors that activate insulin-specific immune cells derived from the gut may switch the response toward cytotoxic immunity. Viruses, which infect beta cells, may release autoantigens and potentiate their presentation by an infection-associated "danger signal." This kind of secondary immunization may cause functional changes in the dietary insulin primed immune cells, and lead to the infiltration of insulin-reactive T cells to the pancreatic islets. PMID:17130578

  19. Quantitative variation in obesity-related traits and insulin precursors linked to the OB gene region on human chromosome 7

    SciTech Connect

    Duggirala, R.; Stern, M.P.; Reinhart, L.J.

    1996-09-01

    Despite the evidence that human obesity has strong genetic determinants, efforts at identifying specific genes that influence human obesity have largely been unsuccessful. Using the sibship data obtained from 32 low-income Mexican American pedigrees ascertained on a type II diabetic proband and a multipoint variance-components method, we tested for linkage between various obesity-related traits plus associated metabolic traits and 15 markers on human chromosome 7. We found evidence for linkage between markers in the OB gene region and various traits, as follows: D7S514 and extremity skinfolds (LOD = 3.1), human carboxypeptidase A1 (HCPA1) and 32,33-split proinsulin level (LOD = 4.2), and HCPA1 and proinsulin level (LOD = 3.2). A putative susceptibility locus linked to the marker D7S514 explained 56% of the total phenotypic variation in extremity skinfolds. Variation at the HCPA1 locus explained 64% of phenotypic variation in proinsulin level and {approximately}73% of phenotypic variation in split proinsulin concentration, respectively. Weaker evidence for linkage to several other obesity-related traits (e.g., waist circumference, body-mass index, fat mass by bioimpedance, etc.) was observed for a genetic location, which is {approximately}15 cM telomeric to OB. In conclusion, our study reveals that the OB region plays a significant role in determining the phenotypic variation of both insulin precursors and obesity-related traits, at least in Mexican Americans. 66 refs., 3 figs., 4 tabs.

  20. Human insulin analogues modified at the B26 site reveal a hormone conformation that is undetected in the receptor complex

    SciTech Connect

    Žáková, Lenka; Kletvíková, Emília; Lepšík, Martin; Collinsová, Michaela; Watson, Christopher J.; Turkenburg, Johan P.; Jiráček, Jiří; Brzozowski, Andrzej M.

    2014-10-01

    [AsnB26]- and [GlyB26]-insulin mutants attain a B26-turn like fold without assistance of chemical modifications. Their structures match the insulin receptor interface and expand the spectrum of insulin conformations. The structural characterization of the insulin–insulin receptor (IR) interaction still lacks the conformation of the crucial B21–B30 insulin region, which must be different from that in its storage forms to ensure effective receptor binding. Here, it is shown that insulin analogues modified by natural amino acids at the TyrB26 site can represent an active form of this hormone. In particular, [AsnB26]-insulin and [GlyB26]-insulin attain a B26-turn-like conformation that differs from that in all known structures of the native hormone. It also matches the receptor interface, avoiding substantial steric clashes. This indicates that insulin may attain a B26-turn-like conformation upon IR binding. Moreover, there is an unexpected, but significant, binding specificity of the AsnB26 mutant for predominantly the metabolic B isoform of the receptor. As it is correlated with the B26 bend of the B-chain of the hormone, the structures of AsnB26 analogues may provide the first structural insight into the structural origins of differential insulin signalling through insulin receptor A and B isoforms.

  1. Time resolved density measurements in premixed turbulent flames

    NASA Technical Reports Server (NTRS)

    Dandekar, K. V.; Gouldin, F. C.

    1982-01-01

    Premixed, turbulent flames are important in connection with investigations of fundamental, turbulent-reacting-flow processes and the study of practical combustion devices, such as spark ignition engines and premixed, prevaporized gas turbine combustors which burn premixed reactants. The considered investigation is concerned with the application of laser induced Rayleigh scattering to measure the gas density in premixed, methane-air flames. A description is provided of the results of density and velocity measurements in an open, lean, premixed methane-air flame stabilized in grid turbulence of low Reynolds number. It is found that where applicable, Rayleigh scattering can be used to good advantage to measure molecular number density. Mean and rms density results show that the mean flame thickens with axial distance but that the maximum in rms does not change appreciably.

  2. Devices for insulin administration.

    PubMed

    Selam, J L; Charles, M A

    1990-09-01

    There is a significant need for revised, safe, and more effective insulin-delivery methods than subcutaneous injections in the treatment of both type I (insulin-dependent) and type II (non-insulin-dependent) diabetes. The aim of this review is to describe the rationale and methods for better use of injection and infusion devices for intensive insulin therapy and to describe results of animal and human research that will lead to an implantable artificial pancreas. Injection devices, e.g., jet injectors, insulin pens, and access ports, cannot be considered as a major breakthrough in the quest for improved control, although they may improve the patient's comfort. External pumps have benefits over multiple injections and conventional insulin therapy only in specific subgroups of patients, e.g., those with recurrent severe hypoglycemia, but only when used by experienced personnel. The external artificial pancreas (Biostator) is also to be used by experienced personnel for limited clinical and research applications, e.g., surgery of the diabetic patient. The development of an implantable version of the artificial pancreas is linked to progress in the field of reliable long-duration glucose sensors. Finally, programmable implantable insulin pumps, used as an open-loop delivery system, are the most promising alternative to intensive subcutaneous insulin strategies in the short term, although clear evidence of improved safety and efficacy remains to be documented. PMID:2226111

  3. Insulin degludec and insulin degludec/insulin aspart in Ramadan: A single center experience

    PubMed Central

    Kalra, Sanjay

    2016-01-01

    This study aimed to document the utility and safety of insulin degludec (IDeg) and insulin degludec aspart (IDegAsp) in persons with type 2 diabetes, observing the Ramadan fast. An observational study was conducted at a single center, in the real world setting, on six persons who either switched to IDeg or IDegAsp a month before Ramadan or changed time of administration of IDegAsp at the onset of Ramadan, to keep the fast in a safe manner. Subjects were kept under regular monitoring and surveillance before, during, and after Ramadan, and counseled in an opposite manner. Four persons, who shifted from premixed insulin to IDegAsp, experienced a 12–18% dose reduction after 14 days. At the onset of Ramadan, the Suhur dose was reduced by 30%, and this remained unchanged during the fasting month. The Iftar dose had to be increased by 4 units. One person who shifted from neutral protamine hagedorn to IDeg demonstrated a 25% dose reduction at 20 days, without any further change in insulin requirement during Ramadan. One person who changed time of injection of IDegAsp from morning to night reported no change in dosage. No episode of major hypoglycemia was reported. IDeg and IDegAsp are effective, safe, and well-tolerated means of achieving glycemic control in persons with type 2 diabetes who wish to fast. PMID:27366727

  4. Insulin degludec and insulin degludec/insulin aspart in Ramadan: A single center experience.

    PubMed

    Kalra, Sanjay

    2016-01-01

    This study aimed to document the utility and safety of insulin degludec (IDeg) and insulin degludec aspart (IDegAsp) in persons with type 2 diabetes, observing the Ramadan fast. An observational study was conducted at a single center, in the real world setting, on six persons who either switched to IDeg or IDegAsp a month before Ramadan or changed time of administration of IDegAsp at the onset of Ramadan, to keep the fast in a safe manner. Subjects were kept under regular monitoring and surveillance before, during, and after Ramadan, and counseled in an opposite manner. Four persons, who shifted from premixed insulin to IDegAsp, experienced a 12-18% dose reduction after 14 days. At the onset of Ramadan, the Suhur dose was reduced by 30%, and this remained unchanged during the fasting month. The Iftar dose had to be increased by 4 units. One person who shifted from neutral protamine hagedorn to IDeg demonstrated a 25% dose reduction at 20 days, without any further change in insulin requirement during Ramadan. One person who changed time of injection of IDegAsp from morning to night reported no change in dosage. No episode of major hypoglycemia was reported. IDeg and IDegAsp are effective, safe, and well-tolerated means of achieving glycemic control in persons with type 2 diabetes who wish to fast. PMID:27366727

  5. Functional properties of an isolated. cap alpha beta. heterodimeric human placenta insulin-like growth factor 1 receptor complex

    SciTech Connect

    Feltz, S.M.; Swanson, M.L.; Wemmie, J.A.; Pessin, J.E.

    1988-05-03

    Treatment of human placenta membranes at pH 8.5 in the presence of 2.0 mM dithiothreitol (DTT) for 5 min, followed by the simultaneous removal of the DTT and pH adjustment of pH 7.6, resulted in the formation of a functional ..cap alpha beta.. heterodimeric insulin-like growth factor 1 (IGF-1) receptor complex from the native ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric disulfide-linked state. The membrane-bound ..cap alpha beta.. heterodimeric complex displayed similar curvilinear /sup 125/I-IGF-1 equilibrium binding compared to the ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric complex. /sup 125/I-IGF-1 binding to both the isolated ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric and ..cap alpha beta.. heterodimeric complexes demonstrated a marked straightening of the Scatchard plots, compared to the placenta membrane-bound IGF-1 receptors, with a 2-fold increase in the high-affinity binding component. IGF-1 stimulation of IGF-1 receptor autophosphorylation indicated that the ligand-dependent activation of ..cap alpha beta.. heterodimeric protein kinase activity occurred concomitant with the reassociation into a covalent ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric state. These data demonstrate that (i) a combination of alkaline pH and DTT treatment of human placenta membranes results in the formation of an ..cap alpha beta.. heterodimeric IGF-1 receptor complex, (ii) unlike the insulin receptor, high-affinity homogeneous IGF-1 binding occurs in both the ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric and ..cap alpha beta.. heterodimeric complexes, and (iii) IGF-1-dependent autophosphorylation of the ..cap alpha beta.. heterodimeric IGF-1 receptor complex correlates wit an IGF-1 dependent covalent reassociation into an ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric disulfide-linked state.

  6. Can we characterize turbulence in premixed flames?

    SciTech Connect

    Lipatnikov, A.N.

    2009-06-15

    Modeling of premixed turbulent combustion involves averaging reaction rates in turbulent flows. The focus of most approaches to resolving this problem has been placed on determining the dependence of the mean rate w of product creation on the laminar flame speed S{sub L}, the rms turbulence velocity u', etc. The goal of the present work is to draw attention to another issue: May the input quantity u{sup '} for a model of w= w(u'/S{sub L},..) be considered to be known? The point is that heat release substantially affects turbulence and, hence, turbulence characteristics in premixed flames should be modeled. However, standard moment methods for numerically simulating turbulent flows do not allow us to evaluate the true turbulence characteristics in a flame. For instance, the Reynolds stresses in premixed flames are affected not only by turbulence itself, but also by velocity jump across flamelets. A common way to resolving this problem consists of considering the Reynolds stresses conditioned on unburned (or burned) mixture to be the true turbulence characteristics. In the present paper, this widely accepted but never proved hypothesis is put into question, first, by considering simple model constant-density problems (flame motion in an oscillating one-dimensional laminar flow; flame stabilized in a periodic shear, one-dimensional, laminar flow; turbulent mixing). In all the cases, the magnitude of velocity fluctuations, calculated using the conditioned Reynolds stresses, is affected by the intermittency of reactants and products and, hence, is not the true rms velocity. Second, the above claim is further supported by comparing balance equations for the mean and conditioned Reynolds stresses. The conditioned Reynolds stresses do not characterize the true turbulence in flames, because conditional averaging cuts off flow regions characterized by either high or low velocities. (author)

  7. Lean stability augmentation for premixing, prevaporizing combustors

    NASA Technical Reports Server (NTRS)

    Mcvey, J. B.; Kennedy, J. B.

    1979-01-01

    An experimental program was conducted to investigate techniques for improving the lean combustion limits of premixing, prevaporizing combustors applicable to gas turbine engine main burners. Augmented flameholders employing recessed perforated plates, catalyzed tube bundles, and configurations in which pilot fuel was injected into the wakes of V-gutters or perforated plates were designed and tested. Stable operation of the piloted designs was achieved at equivalence ratios as low as 0.25; NOx emissions of less than 1.0 g/kg at simulated turbine engine cruise conditions were obtained. A piloted perforated plate employing four percent pilot fuel flow produced the best performance while meeting severe NOx constraints.

  8. PDF Modeling of Turbulent Lean Premixed Combustion

    SciTech Connect

    Yilmaz, S.L.; •Givi, P.; Strakey, P.A.

    2007-10-01

    The joint velocity-scalar-frequency probability density function (PDF) methodology is employed for prediction of a bluff-body stabilized lean premixed methane-air flame. A reduced mechanism with CO and NO chemistry is used to describe fuel oxidation. The predicted mean and rms values of the velocity, temperature and concentrations of major and minor species are compared with laboratory measurements. This technical effort was performed in support of the National Energy Technology Laboratory’s on-going research in “Assessment of Turbo-Chemistry Models for Gas Turbine Combustion Emissions” under the RDS contract DE-AC26-04NT41817.

  9. Premixed rapid-setting calcium phosphate composites for bone repair.

    PubMed

    Carey, Lisa E; Xu, Hockin H K; Simon, Carl G; Takagi, Shozo; Chow, Laurence C

    2005-08-01

    Although calcium phosphate cement (CPC) is promising for bone repair, its clinical use requires on site powder-liquid mixing. To shorten surgical time and improve graft properties, it is desirable to develop premixed CPC in which the paste remains stable during storage and hardens only after placement into the defect. The objective of this study was to develop premixed CPC with rapid setting when immersed in a physiological solution. Premixed CPCs were formulated using the following approach: Premixed CPC = CPC powder + nonaqueous liquid + gelling agent + hardening accelerator. Three premixed CPCs were developed: CPC-monocalcium phosphate monohydrate (MCPM), CPC-chitosan, and CPC-tartaric. Setting time for these new premixed CPCs ranged from 5.3 to 7.9 min, significantly faster than 61.7 min for a premixed control CPC reported previously (p < 0.05). SEM revealed the formation of nano-sized needle-like hydroxyapatite crystals after 1 d immersion and crystal growth after 7 d. Diametral tensile strength for premixed CPCs at 7 d ranged from 2.8 to 6.4 MPa, comparable to reported strengths for cancellous bone and sintered porous hydroxyapatite implants. Osteoblast cells attained a normal polygonal morphology on CPC-MCPM and CPC-chitosan with cytoplasmic extensions adhering to the nano-hydroxyapatite crystals. In summary, fast-setting premixed CPCs were developed to avoid the powder-liquid mixing in surgery. The pastes hardened rapidly once immersed in physiological solution and formed hydroxyapatite. The cements had strengths matching those of cancellous bone and sintered porous hydroxyapatite and non-cytotoxicity similar to conventional non-premixed CPC. PMID:15769536

  10. Premixed rapid-setting calcium phosphate composites for bone repair✩

    PubMed Central

    Carey, Lisa E.; Xu, Hockin H.K.; Simon, Carl G.; Takagi, Shozo; Chow, Laurence C.

    2009-01-01

    Although calcium phosphate cement (CPC) is promising for bone repair, its clinical use requires on site powder–liquid mixing. To shorten surgical time and improve graft properties, it is desirable to develop premixed CPC in which the paste remains stable during storage and hardens only after placement into the defect. The objective of this study was to develop premixed CPC with rapid setting when immersed in a physiological solution. Premixed CPCs were formulated using the following approach: Premixed CPC = CPC powder+nonaqueous liquid+gelling agent+hardening accelerator. Three premixed CPCs were developed: CPC–monocalcium phosphate monohydrate (MCPM), CPC–chitosan, and CPC–tartaric. Setting time for these new premixed CPCs ranged from 5.3 to 7.9 min, significantly faster than 61.7 min for a premixed control CPC reported previously (p<05). SEM revealed the formation of nano-sized needle-like hydroxyapatite crystals after 1 d immersion and crystal growth after 7 d. Diametral tensile strength for premixed CPCs at 7 d ranged from 2.8 to 6.4 MPa, comparable to reported strengths for cancellous bone and sintered porous hydroxyapatite implants. Osteoblast cells attained a normal polygonal morphology on CPC–MCPM and CPC–chitosan with cytoplasmic extensions adhering to the nano-hydroxyapatite crystals. In summary, fast-setting premixed CPCs were developed to avoid the powder–liquid mixing in surgery. The pastes hardened rapidly once immersed in physiological solution and formed hydroxyapatite. The cements had strengths matching those of cancellous bone and sintered porous hydroxyapatite and non-cytotoxicity similar to conventional non-premixed CPC. PMID:15769536

  11. Insulin-like factor 3: a novel circulating hormone of testicular origin in humans.

    PubMed

    Ferlin, Alberto; Foresta, Carlo

    2005-05-01

    Insulin-like factor 3 (INSL3) affects testicular descent. Mutations in the INSL3 gene or its receptor, LGR8/GREAT, can cause cryptorchidism. Expression of LGR8/GREAT in different tissues and production of INSL3 by adult-type Leydig cells suggest additional roles for this hormonal system in adults. We used a novel radioimmunoassay kit to measure INSL3 concentrations in the serum of normal men and those with different testicular pathologies. We demonstrate that INSL3 circulates in adult men and is almost exclusively of testicular origin. Subjects with severe testicular damage (infertility) produce small amounts of INSL3, and concentrations of this hormone seem to reflect the functional status of the Leydig cells. Analysis of men treated with different combinations of hormones of the hypothalamus-pituitary-testis axis suggests that the production of INSL3 is related to the luteinizing hormone. PMID:15956751

  12. Conformational states and recognition of amyloidogenic peptides of human insulin-degrading enzyme

    PubMed Central

    McCord, Lauren A.; Liang, Wenguang G.; Dowdell, Evan; Kalas, Vasilios; Hoey, Robert J.; Koide, Akiko; Koide, Shohei; Tang, Wei-Jen

    2013-01-01

    Insulin-degrading enzyme (IDE) selectively degrades the monomer of amyloidogenic peptides and contributes to clearance of amyloid β (Aβ). Thus, IDE retards the progression of Alzheimer’s disease. IDE possesses an enclosed catalytic chamber that engulfs and degrades its peptide substrates; however, the molecular mechanism of IDE function, including substrate access to the chamber and recognition, remains elusive. Here, we captured a unique IDE conformation by using a synthetic antibody fragment as a crystallization chaperone. An unexpected displacement of a door subdomain creates an ∼18-Å opening to the chamber. This swinging-door mechanism permits the entry of short peptides into the catalytic chamber and disrupts the catalytic site within IDE door subdomain. Given the propensity of amyloidogenic peptides to convert into β-strands for their polymerization into amyloid fibrils, they also use such β-strands to stabilize the disrupted catalytic site resided at IDE door subdomain for their degradation by IDE. Thus, action of the swinging door allows IDE to recognize amyloidogenicity by substrate-induced stabilization of the IDE catalytic cleft. Small angle X-ray scattering (SAXS) analysis revealed that IDE exists as a mixture of closed and open states. These open states, which are distinct from the swinging door state, permit entry of larger substrates (e.g., Aβ, insulin) to the chamber and are preferred in solution. Mutational studies confirmed the critical roles of the door subdomain and hinge loop joining the N- and C-terminal halves of IDE for catalysis. Together, our data provide insights into the conformational changes of IDE that govern the selective destruction of amyloidogenic peptides. PMID:23922390

  13. Ubiquitin is a Novel Substrate for Human Insulin-Degrading Enzyme

    PubMed Central

    Ralat, Luis A.; Kalas, Vasilios; Zheng, Zhongzhou; Goldman, Robert D.; Sosnick, Tobin R.; Tang, Wei-Jen

    2011-01-01

    Insulin-degrading enzyme (IDE) can degrade insulin and amyloid-β (Aβ), peptides involved in diabetes and Alzheimer's disease, respectively. IDE selects its substrates based on size, charge, and flexibility. From these criteria, we predict that IDE can cleave and inactivate ubiquitin (Ub). Here, we show that IDE cleaves Ub in a biphasic manner, first, by rapidly removing the two C-terminal glycines (kcat = 2 sec-1) followed by a slow cleavage between residues 72-73 (kcat = 0.07 sec-1), thereby producing the inactive Ub1-74 and Ub1-72. IDE is a ubiquitously expressed cytosolic protein, where monomeric Ub is also present. Thus, Ub degradation by IDE should be regulated. IDE is known to bind the cytoplasmic intermediate filament protein nestin with high affinity. We found that nestin potently inhibits the cleavage of Ub by IDE. In addition, Ub1-72 has a markedly increased affinity for IDE (∼90 fold). Thus, the association of IDE with cellular regulators and product inhibition by Ub1-72 can prevent inadvertent proteolysis of cellular Ub by IDE. Ub is a highly stable protein. However, IDE instead prefers to degrade peptides with high intrinsic flexibility. Indeed, we demonstrate that IDE is exquisitely sensitive to Ub stability. Mutations that only mildly destabilize Ub (ΔΔG ‹ 0.6 kcal/mol) render IDE hypersensitive to Ub with rate enhancements greater than 12-fold. The Ub-bound IDE structure and IDE mutants reveal that interaction of the exosite with the N-terminus of Ub guides the unfolding of Ub, allowing its sequential cleavages. Together, our studies link the control of Ub clearance with IDE. PMID:21185309

  14. A retrospective database analysis of insulin use patterns in insulin-naïve patients with type 2 diabetes initiating basal insulin or mixtures

    PubMed Central

    Bonafede, Machaon MK; Kalsekar, Anupama; Pawaskar, Manjiri; Ruiz, Kimberly M; Torres, Amelito M; Kelly, Karen R; Curkendall, Suellen M

    2010-01-01

    Objective: To describe insulin persistence among patients with type 2 diabetes initiating insulin therapy with basal insulin or insulin mixtures and determine factors associated with nonpersistence. Research design and methods: The Thomson Reuters MarketScan® databases were used to retrospectively analyze insulin-naïve patients with type 2 diabetes by initiating insulin therapy. Insulin use was described using a variety of measures. The persistence to insulin was described using both a gap-based measure and the number of claims measure. Results: Patients in the basal insulin cohort (N = 15,255) primarily used insulin analogs (88.1%) and vial and syringe (97%). Patients in the mixture cohort (N = 2,732) were more likely to initiate on human insulin mixtures (62.5%) and vial and syringe (68.1%). Average time between insulin refills was 80 and 71 days for basal and mixture initiators, respectively. Nearly, 75% of basal insulin initiators and 65% of insulin mixture initiators had a 90-day gap in insulin prescriptions. More than half of all the patients had at least one insulin prescription per quarter. Patients initiating with insulin analogs were more likely to be persistent compared with those initiating with human insulin across both cohorts and measures of persistence (P < 0.001). Conclusion: Persistence to insulin therapy is poorer than one would anticipate, but appears to be higher in users of insulin analogs and insulin mixtures. PMID:20622915

  15. Studies on the autophosphorylation of the insulin receptor from human placenta. Analysis of the sites phosphorylated by two-dimensional peptide mapping.

    PubMed Central

    Tavaré, J M; Denton, R M

    1988-01-01

    1. A partially purified preparation of human placental insulin receptors was incubated with [gamma-32P]ATP in the presence or absence of insulin. The 32P-labelled insulin-receptor beta-subunits were then isolated, cleaved with trypsin followed by protease V8 and the [32P]phosphopeptides generated were analysed by thin layer electrophoresis and chromatography. This approach revealed that insulin stimulates autophosphorylation of the insulin-receptor beta-subunit in vitro on at least seven tyrosine residues distributed among three distinct domains. 2. One domain (domain 2), containing tyrosine residues 1146, 1150 and 1151 was the most rapidly phosphorylated and could be recovered as mono-, di- and triphosphorylated peptides cleaved by trypsin at Arg-1143 and either Lys-1153 or Lys-1156. Multiple phosphorylation of this domain appears to partially inhibit the cleavage at Lys-1153 by trypsin. 3. In a second domain (domain 3) containing two phosphorylated tyrosine residues at positions 1316 and 1322 the tyrosines were phosphorylated more slowly than those in domain 2. This domain is close to the C-terminus of the beta-subunit polypeptide chain. 4. At least two further tyrosine residues appeared to be phosphorylated after those in domains 2 and 3. These residues probably residue within a domain lying in close proximity to the inner face of the plasma membrane containing tyrosines 953, 960 and 972, but conclusive evidence is still required. 5. The two-dimensional thin-layer analysis employed in this study to investigate insulin-receptor phosphorylation has several advantages over previous methods based on reverse-phase chromatography. It allows greater resolution of 32P-labelled tryptic peptides and, when coupled to radioautography, is considerably more sensitive. The approach can be readily adapted to study phosphorylation of the insulin receptor within intact cells. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:3166375

  16. Insight into the structural and biological relevance of the T/R transition of the N-terminus of the B-chain in human insulin.

    PubMed

    Kosinová, Lucie; Veverka, Václav; Novotná, Pavlína; Collinsová, Michaela; Urbanová, Marie; Moody, Nicholas R; Turkenburg, Johan P; Jiráček, Jiří; Brzozowski, Andrzej M; Žáková, Lenka

    2014-06-01

    The N-terminus of the B-chain of insulin may adopt two alternative conformations designated as the T- and R-states. Despite the recent structural insight into insulin-insulin receptor (IR) complexes, the physiological relevance of the T/R transition is still unclear. Hence, this study focused on the rational design, synthesis, and characterization of human insulin analogues structurally locked in expected R- or T-states. Sites B3, B5, and B8, capable of affecting the conformation of the N-terminus of the B-chain, were subjects of rational substitutions with amino acids with specific allowed and disallowed dihedral φ and ψ main-chain angles. α-Aminoisobutyric acid was systematically incorporated into positions B3, B5, and B8 for stabilization of the R-state, and N-methylalanine and d-proline amino acids were introduced at position B8 for stabilization of the T-state. IR affinities of the analogues were compared and correlated with their T/R transition ability and analyzed against their crystal and nuclear magnetic resonance structures. Our data revealed that (i) the T-like state is indeed important for the folding efficiency of (pro)insulin, (ii) the R-state is most probably incompatible with an active form of insulin, (iii) the R-state cannot be induced or stabilized by a single substitution at a specific site, and (iv) the B1-B8 segment is capable of folding into a variety of low-affinity T-like states. Therefore, we conclude that the active conformation of the N-terminus of the B-chain must be different from the "classical" T-state and that a substantial flexibility of the B1-B8 segment, where GlyB8 plays a key role, is a crucial prerequisite for an efficient insulin-IR interaction. PMID:24819248

  17. Insulin Resistance in Alzheimer's Disease

    PubMed Central

    Dineley, Kelly T; Jahrling, Jordan B; Denner, Larry

    2014-01-01

    Insulin is a key hormone regulating metabolism. Insulin binding to cell surface insulin receptors engages many signaling intermediates operating in parallel and in series to control glucose, energy, and lipids while also regulating mitogenesis and development. Perturbations in the function of any of these intermediates, which occur in a variety of diseases, cause reduced sensitivity to insulin and insulin resistance with consequent metabolic dysfunction. Chronic inflammation ensues which exacerbates compromised metabolic homeostasis. Since insulin has a key role in learning and memory as well as directly regulating ERK, a kinase required for the type of learning and memory compromised in early Alzheimer's disease (AD), insulin resistance has been identified as a major risk factor for the onset of AD. Animal models of AD or insulin resistance or both demonstrate that AD pathology and impaired insulin signaling form a reciprocal relationship. Of note are human and animal model studies geared toward improving insulin resistance that have led to the identification of the nuclear receptor and transcription factor, peroxisome proliferator-activated receptor gamma (PPARγ) as an intervention tool for early AD. Strategic targeting of alternate nodes within the insulin signaling network has revealed disease-stage therapeutic windows in animal models that coalesce with previous and ongoing clinical trial approaches. Thus, exploiting the connection between insulin resistance and AD provides powerful opportunities to delineate therapeutic interventions that slow or block the pathogenesis of AD. PMID:25237037

  18. Oral Insulin

    PubMed Central

    2010-01-01

    Oral insulin is an exciting area of research and development in the field of diabetology. This brief review covers the various approaches used in the development of oral insulin, and highlights some of the recent data related to novel oral insulin preparation. PMID:21059246

  19. Insulin formulations--a review.

    PubMed

    Gualandi-Signorini, A M; Giorgi, G

    2001-01-01

    Although the improvement on insulin therapy since it was first conceived, it is still far from mimicking physiological secretion of pancreatic b-cells and research to find new insulin formulations and new routes of administration continues. Human biosynthetic insulin (rapid-acting, intermediate-acting and long-acting), produced by recombinant DNA technique, is currently available. The pharmacokinetic profile of rapid-acting insulin (regular) does not adequately reproduce the physiological post-prandial insulin response. This has led to the development of molecular analogues with slight modifications that prevent the spontaneous polymerisation underlying delayed absorption. Fast-acting analogues such as Lyspro and Aspart can be injected immediately before the meal, inducing a very fast and substantial peak of insulin, similar to that produced by b-cells, but have the disadvantage of short duration of action. For this reason, and because of the difficulty of obtaining sufficient basal insulin concentrations to control preprandial blood glucose levels with current long-acting insulins, analogues known as Glargine and Detemir have been synthesized. They have virtually no plasma peak and acts for about 24 h. These characteristics make it ideal to cover basal insulin requirement. With insulin analogues, it also seems possible to overcome the problem of intra- and inter-individual variability in absorption after subcutaneous injection. This variability is directly proportional to the duration of insulin action. Research into new routes of administration has led to production of inhaled insulin powder, soon to become commercially available. Insulin is absorbed through the lung alveoli. Trials to evaluate efficacy and toleration have shown that inhaled insulin has a similar kinetic profile to the fast-acting injected analogue and can therefore be used for mealtime requirement, combined with a single daily injection of long-acting insulin. Oral insulin is currently being

  20. A low dose euglycemic infusion of recombinant human insulin-like growth factor I rapidly suppresses fasting-enhanced pulsatile growth hormone secretion in humans.

    PubMed Central

    Hartman, M L; Clayton, P E; Johnson, M L; Celniker, A; Perlman, A J; Alberti, K G; Thorner, M O

    1993-01-01

    To determine if insulin-like growth factor I (IGF-I) inhibits pulsatile growth hormone (GH) secretion in man, recombinant human IGF-I (rhIGF-I) was infused for 6 h at 10 micrograms.kg-1.h-1 during a euglycemic clamp in 10 normal men who were fasted for 32 h to enhance GH secretion. Saline alone was infused during an otherwise identical second admission as a control. As a result of rhIGF-I infusion, total and free IGF-I concentrations increased three- and fourfold, respectively. Mean GH concentrations fell from 6.3 +/- 1.6 to 0.59 +/- 0.07 micrograms/liter after 120 min. GH secretion rates, calculated by a deconvolution algorithm, decreased with a t 1/2 of 16.6 min and remained suppressed thereafter. Suppression of GH secretion rates occurred within 60 min when total and free IGF-I concentrations were 1.6-fold and 2-fold above baseline levels, respectively, and while glucose infusion rates were < 1 mumol.kg-1.min-1. During saline infusion, GH secretion rates remained elevated. Infusion of rhIGF-I decreased the mass of GH secreted per pulse by 84% (P < 0.01) and the number of detectable GH secretory pulses by 32% (P < 0.05). Plasma insulin and glucagon decreased to nearly undetectable levels after 60 min of rhIGF-I. Serum free fatty acids, beta-hydroxybutyrate, and acetoacetate were unaffected during the first 3 h of rhIGF-I but decreased thereafter to 52, 32, and 50% of levels observed during saline. We conclude that fasting-enhanced GH secretion is rapidly suppressed by a low-dose euglycemic infusion of rhIGF-I. This effect of rhIGF-I is likely mediated through IGF-I receptors independently of its insulin-like metabolic actions. PMID:8514857

  1. Effects of Type 1 Insulin-Like Growth Factor Receptor Silencing in a Human Adrenocortical Cell Line.

    PubMed

    Ribeiro, T C; Jorge, A A; Montenegro, L R; Almeida, M Q; Ferraz-de-Souza, B; Nishi, M Y; Mendonca, B B; Latronico, A C

    2016-07-01

    Type 1 insulin-like growth factor receptor (IGF-1R) is overexpressed in a variety of human cancers, including adrenocortical tumors. The aim of the work was to investigate the effects of IGF-1R downregulation in a human adrenocortical cell line by small interfering RNA (siRNA). The human adrenocortical tumor cell line NCI H295R was transfected with 2 specific IGF1R siRNAs (# 1 and # 2) and compared with untreated cells and a negative control siRNA. IGF1R expression was determined by quantitative reverse-transcription PCR (qRTPCR) and Western blot. The effects of IGF-1R downregulation on cell proliferation and apoptosis were assessed. IGF-1R levels were significantly decreased in cells treated with IGF-1R siRNA # 1 or # 2. Relative expression of IGF1R mRNA decreased approximately 50% and Western blot analysis revealed a 30% of reduction in IGF-1R protein. Downregulation of this gene resulted in 40% reduction in cell growth in vitro and 45% increase in apoptosis using siRNA # 2. These findings demonstrate that decreasing IGF-1R mRNA and protein expression in NCI H295R cells can partially inhibit adrenal tumor cell growth in vitro. Targeting IGF1R is a promising therapy for pediatric malignant adrenocortical tumor and can still be an option for adult adrenocortical cancer based on personalized genomic tumor profiling. PMID:27246621

  2. Orthologs of Human Disease Associated Genes and RNAi Analysis of Silencing Insulin Receptor Gene in Bombyx mori

    PubMed Central

    Zhang, Zan; Teng, Xiaolu; Chen, Maohua; Li, Fei

    2014-01-01

    The silkworm, Bombyx mori L., is an important economic insect that has been domesticated for thousands of years to produce silk. It is our great interest to investigate the possibility of developing the B. mori as human disease model. We searched the orthologs of human disease associated genes in the B. mori by bi-directional best hits of BLAST and confirmed by searching the OrthoDB. In total, 5006 genes corresponding to 1612 kinds of human diseases had orthologs in the B. mori, among which, there are 25 genes associated with diabetes mellitus. Of these, we selected the insulin receptor gene of the B. mori (Bm-INSR) to study its expression in different tissues and at different developmental stages and tissues. Quantitative PCR showed that Bm-INSR was highly expressed in the Malpighian tubules but expressed at low levels in the testis. It was highly expressed in the 3rd and 4th instar larvae, and adult. We knocked down Bm-INSR expression using RNA interference. The abundance of Bm-INSR transcripts were dramatically reduced to ~4% of the control level at 6 days after dsRNA injection and the RNAi-treated B. mori individuals showed apparent growth inhibition and malformation such as abnormal body color in black, which is the typical symptom of diabetic patients. Our results demonstrate that B. mori has potential use as an animal model for diabetic mellitus research. PMID:25302617

  3. Molecularly imprinted polymer cartridges coupled on-line with high performance liquid chromatography for simple and rapid analysis of human insulin in plasma and pharmaceutical formulations.

    PubMed

    Moein, Mohammad Mahdi; Javanbakht, Mehran; Akbari-adergani, Behrouz

    2014-04-01

    In this paper, a novel method is described for automated determination of human insulin in biological fluids using principle of sequential injection on a molecularly imprinted solid-phase extraction (MISPE) cartridge as a sample clean-up technique combined with high performance liquid chromatography (HPLC). The water-compatible molecularly imprinted polymers (MIPs) were prepared using methacrylic acid as a functional monomer, ethylene glycol dimethacrylate as a cross-linker, chloroform as a porogen and insulin as a template molecule. The imprinted polymers were then employed as the solid-phase extraction sorbent for on-line extraction of insulin from human plasma samples. To achieve the best condition, influential parameters on the extraction efficiency were thoroughly investigated. Rapid and simple analysis of the hormone was successfully accomplished through the good selectivity of the prepared sorbent coupled with HPLC. Limits of detection (LOD) and quantification (LOQ) of 0.2 ng mL(-1), 0.7 ng mL(-1), and 0.03 ng mL(-1), 0.1 ng mL(-1) were obtained in plasma and urine respectively. The obtained data exhibited the great recoveries for extraction of insulin from human plasma and pharmaceutical samples, higher than 87%. PMID:24607106

  4. Randomized Crossover Study to Examine the Necessity of an Injection-to-Meal Interval in Patients With Type 2 Diabetes and Human Insulin

    PubMed Central

    Müller, Nicolle; Frank, Thomas; Kloos, Christof; Lehmann, Thomas; Wolf, Gunter; Müller, Ulrich Alfons

    2013-01-01

    OBJECTIVE Patients with diabetes and insulin therapy with human insulin were usually instructed to use an interval of 20–30 min between the injection and meal. We examined the necessity of the injection-to-meal interval (IMI) in patients with type 2 diabetes mellitus (T2DM) and flexible insulin therapy with human insulin. RESEARCH DESIGN AND METHODS In this randomized, open crossover trial, 100 patients with T2DM (47% men, mean age = 66.7 years) were randomized to the IMI first group (phase 1, IMI 20 min; phase 2, no IMI) or IMI last group (phase 1, no IMI; phase 2, IMI 20 min). The main outcome measures were HbA1c, blood glucose profile, incidence of hypoglycemia, quality of life, treatment satisfaction, and patient preference. RESULTS Forty-nine patients were randomized to the IMI first group and 51 patients to the IMI last group. Omitting the IMI only slightly increases HbA1c (average intraindividual difference = 0.08% [95% CI 0.01–0.15]). Since the difference is not clinically relevant, a therapy without IMI is noninferior to its application (P < 0.001). In the secondary outcomes, the incidence of mild hypoglycemia also did not differ between no IMI and IMI significantly (mean of differences = −0.10, P = 0.493). No difference in the blood glucose profile of both groups was found. Treatment satisfaction increased markedly, by 8.08, if IMI was omitted (P < 0.001). The total score of the quality of life measure did not show differences between applying an IMI or not. Insulin therapy without IMI was preferred by 86.5% of patients (P < 0.001). CONCLUSIONS An IMI for patients with T2DM and preprandial insulin therapy is not necessary. PMID:23340895

  5. The Impact of Initiating Biphasic Human Insulin 30 Therapy in Type 2 Diabetes Patients After Failure of Oral Antidiabetes Drugs

    PubMed Central

    Gu, Yunjuan; Hou, Xuhong; Zhang, Lei; Pan, Jiemin; Cai, Qingxia; Bao, Yuqian

    2012-01-01

    Abstract Background The present study evaluated the efficacy of biphasic human insulin 30 (BHI 30) in type 2 diabetes patients who had failed in therapy with two or more oral antidiabetes drugs (OADs). Methods This open-label, nonrandomized, 4-month, multicenter, clinical observational study was conducted in Shanghai, China. A total of 660 insulin-naive type 2 diabetes patients with poor glycemic control (glycosylated hemoglobin [HbA1c] ≥7.5%), despite treatment with two or more OADs for more than 6 months, were recruited and received BHI 30 monotherapy or BHI 30 plus OAD(s) (metformin only, α-glucosidase inhibitor only, or both). Results Among the 660 subjects, 644 completed the 4-month study. At the end of the study, the median level of HbA1c decreased by 2.0% (from 9.1% to 7.0%) in the BHI 30 monotherapy group and also 2.0% (from 9.5% to 7.3%) in the BHI 30 plus OAD group. More patients achieved the HbA1c <7.0% target in the BHI 30 monotherapy group than in the BHI 30 plus OAD(s) group (47.9% vs. 35.3%, P=0.002). Compared with the expenses of the prior treatment strategy, the median daily cost decreased by 39.8% (4.5 yuan, Chinese RMB) at the end point in the BHI 30 monotherapy group but increased by 20.0% (2.2 yuan) in the BHI 30 plus OAD(s) group (P<0.0001). Moreover, patients in the BHI 30 plus OAD(s) group had fewer minor hypoglycemic episodes than in the BHI 30 monotherapy group (mean of 1.06 vs. 2.77 per patient per year, P<0.0001). Conclusions Short-term BHI 30 therapy can improve glycemic control in insulin-naive type 2 diabetes patients after failure of two or more OADs. With higher baseline glucose level, the BHI 30 plus OAD(s) group had lower pharmacoeconomic efficacy than the BHI 30 monotherapy group despite having fewer hypoglycemia events. PMID:22047050

  6. A model for premixed combustion oscillations

    SciTech Connect

    Janus, M.C.; Richards, G.A.

    1996-03-01

    Combustion oscillations are receiving renewed research interest due to increasing application of lean premix (LPM) combustion to gas turbines. A simple, nonlinear model for premixed combustion is described; it was developed to explain experimental results and to provide guidance for developing active control schemes based on nonlinear concepts. The model can be used to quickly examine instability trends associated with changes in equivalence ratio, mass flow rate, geometry, ambient conditions, etc. The model represents the relevant processes occurring in a fuel nozzle and combustor analogous to current LPM turbine combustors. Conservation equations for the nozzle and combustor are developed from simple control volume analysis, providing ordinary differential equations that can be solved on a PC. Combustion is modeled as a stirred reactor, with bimolecular reaction between fuel and air. Although focus is on the model, it and experimental results are compared to understand effects of inlet air temperature and open loop control schemes. The model shows that both are related to changes in transport time.

  7. Active control for turbulent premixed flame simulations

    SciTech Connect

    Bell, John B.; Day, Marcus S.; Grcar, Joseph F.; Lijewski, Michael J.

    2004-03-26

    Many turbulent premixed flames of practical interest are statistically stationary. They occur in combustors that have anchoring mechanisms to prevent blow-off and flashback. The stabilization devices often introduce a level of geometric complexity that is prohibitive for detailed computational studies of turbulent flame dynamics. As a result, typical detailed simulations are performed in simplified model configurations such as decaying isotropic turbulence or inflowing turbulence. In these configurations, the turbulence seen by the flame either decays or, in the latter case, increases as the flame accelerates toward the turbulent inflow. This limits the duration of the eddy evolutions experienced by the flame at a given level of turbulent intensity, so that statistically valid observations cannot be made. In this paper, we apply a feedback control to computationally stabilize an otherwise unstable turbulent premixed flame in two dimensions. For the simulations, we specify turbulent in flow conditions and dynamically adjust the integrated fueling rate to control the mean location of the flame in the domain. We outline the numerical procedure, and illustrate the behavior of the control algorithm. We use the simulations to study the propagation and the local chemical variability of turbulent flame chemistry.

  8. Particle clustering in turbulent premixed flames

    NASA Astrophysics Data System (ADS)

    F, Battista; F, Picano; G, Troiani; M, Casciola C.

    2011-12-01

    Transport of inertial particles in turbulent reacting flows is frequent in a number of engineering and natural systems. Aim of this work is to illustrate the effect of the fluctuating instantaneous flame front on the particle spatial distribution. To this purpose a Direct Numerical Simulation of a Bunsen premixed flame seeded with small inertial particles is performed. The flamelet Stokes number Stfl, defined as the ratio between the particle relaxation time and the flame front time scale, is found to be the proper parameter to characterize the particle dynamics in a premixed flame. Clustering of inertial particles is apparent, especially beyond the flame front. The amount of particle segregation is here quantified by the clustering index and two distinct contributions are found to interplay. The first is independent of the particle inertia and affects also tracers. Actually it is associated to the abrupt variation of the particle concentration induced by the fluid expansion across the flame front. The second effect is mainly due to the time lag associated to the particle inertia that, in proximity of the front, affects both the mean and the fluctuation of the particle number in a fixed volume. The global effect results in an intense clustering of the inertial particles in the flame brush region with a maximum for particles with flamelet Stokes number: Stfl = Script O(1).

  9. Confined superadiabatic premixed flame-flow interaction

    SciTech Connect

    Najm, H.N.

    1995-12-31

    Laminar premixed unity-Lewis number flames are studied numerically, to examine flow-flame interaction in a two-dimensional closed domain. Two opposed planar flame fronts are perturbed sinusoidally and allowed to develop by consuming premixed reactants. Combustion heat release leads to global pressure and temperature rise in the domain, due to confinement. A superadiabatic condition, with products temperature rising with distance behind the flame front, is observed due to stagnation pressure rise. Variations in tangential strain rate behind the perturbed flame fronts, due to flame curvature and heat release, result in a modified local superadiabatic temperature gradient in the products. These variations in temperature gradients are shown to determine the net local confinement-heating rate in the products, leading to corresponding deviations in products temperature, and the local reaction rate along the flame front. These observations, which are not consistent with one-dimensional superadiabatic stagnation flame behavior, are a direct result of the unrestrained unsteady nature of two-dimensional flame-flow interaction.

  10. Preparation of feed premix for veterinary purposes.

    PubMed

    Franc, Aleš; Lehocký, Róbert; Muselík, Jan; Vetchý, David; Dobšíková, Radka; Modrá, Helena

    2014-10-01

    This experimental study describes the preparation of a veterinary medicated premix containing tetracycline hydrochloride for oral administration to aquatic animals. For the manufacture of the premix, commercially produced animal feed is used, which is intended for consumption in the form of pellets that were coated with a mixture of chlortetracycline hydrochloride and other excipients. Feed pellets were combined with a mixture of an active substance and excipients with a large specific surface (colloidal silica - Aerosil® 200) allowing an easy adhesion to the surface of the pellets, and a solid polymer with a low glass transition point (Eudragit® E) which ensures the formation of a hard coat. A mixture of these substances has been applied to the surface of the pellets either A) in the solid state simply by dry adhesion; B) by coating the pellets with the mixture and additional impregnation with ethanol; or C) the polymer was subsequently applied in solution. In the final stage, the pellets were heated in order to achieve the glass transition point of the polymer to create a solid and mechanically resistant coating. Coated pellets prepared by three methods described above are almost identical in their physical properties. With this technology it is possible to produce a feed mixture with a very low content of the active substance in situ without the need for a complex technological equipment. PMID:25354741

  11. Stepwise intensification of insulin therapy in Type 2 diabetes management—exploring the concept of the basal-plus approach in clinical practice

    PubMed Central

    Owens, D R

    2013-01-01

    Basal insulin provides an effective method for initiating insulin therapy in people with Type 2 diabetes, resulting in significant improvements in glycaemic control, lower rates of hypoglycaemia and less weight gain than either prandial or premixed insulin regimens. However, the progressive nature of Type 2 diabetes and the inability of basal insulin to correct excessive postprandial glucose excursions mean that insulin therapy will eventually need to be intensified, typically by adding prandial insulin as part of a basal–bolus or premixed insulin regimen. The aim of this review is to summarize recent clinical evidence for a staged ‘basal-plus’ strategy for insulin intensification where one, two or three prandial insulin injections are added to basal insulin according to individual need. In the early stages of insulin therapy, most individuals seem to achieve favourable glycaemic control with basal insulin alone, or in combination with a single prandial insulin injection. The addition of a single prandial insulin injection at the largest meal is well tolerated and associated with significant improvements in glycated haemoglobin (HbA1c), low rates of hypoglycaemia and limited weight gain. More people achieve recommended HbA1c targets with a basal-plus strategy, compared with twice-daily premixed insulin therapy, with lower rates of hypoglycaemia. The data indicate that a step-by-step approach with the basal-plus strategy is a promising alternative method of insulin intensification that allows for individualization of treatment and may delay progression to a full basal–bolus insulin replacement therapy for many individuals. PMID:22998363

  12. Premixer Design for High Hydrogen Fuels

    SciTech Connect

    Benjamin P. Lacy; Keith R. McManus; Balachandar Varatharajan; Biswadip Shome

    2005-12-16

    This 21-month project translated DLN technology to the unique properties of high hydrogen content IGCC fuels, and yielded designs in preparation for a future testing and validation phase. Fundamental flame characterization, mixing, and flame property measurement experiments were conducted to tailor computational design tools and criteria to create a framework for predicting nozzle operability (e.g., flame stabilization, emissions, resistance to flashback/flame-holding and auto-ignition). This framework was then used to establish, rank, and evaluate potential solutions to the operability challenges of IGCC combustion. The leading contenders were studied and developed with the most promising concepts evaluated via computational fluid dynamics (CFD) modeling and using the design rules generated by the fundamental experiments, as well as using GE's combustion design tools and practices. Finally, the project scoped the necessary steps required to carry the design through mechanical and durability review, testing, and validation, towards full demonstration of this revolutionary technology. This project was carried out in three linked tasks with the following results. (1) Develop conceptual designs of premixer and down-select the promising options. This task defined the ''gap'' between existing design capabilities and the targeted range of IGCC fuel compositions and evaluated the current capability of DLN pre-mixer designs when operated at similar conditions. Two concepts (1) swirl based and (2) multiple point lean direct injection based premixers were selected via a QFD from 13 potential design concepts. (2) Carry out CFD on chosen options (1 or 2) to evaluate operability risks. This task developed the leading options down-selected in Task 1. Both a GE15 swozzle based premixer and a lean direct injection concept were examined by performing a detailed CFD study wherein the aerodynamics of the design, together with the chemical kinetics of the combustion process, were

  13. Structural and functional characterization of pathogenic non- synonymous genetic mutations of human insulin-degrading enzyme by in silico methods.

    PubMed

    Shaik, Noor A; Kaleemuddin, Mohammed; Banaganapalli, Babajan; Khan, Fazal; Shaik, Nazia S; Ajabnoor, Ghada; Al-Harthi, Sameer E; Bondagji, Nabeel; Al-Aama, Jumana Y; Elango, Ramu

    2014-04-01

    Insulin-degrading enzyme (IDE) is a key protease involved in degrading insulin and amyloid peptides in human body. Several non-synonymous genetic mutations of IDE gene have been recently associated with susceptibility to both diabetes and Alzheimer's diseases. However, the consequence of these mutations on the structure of IDE protein and its substrate binding characteristics is not well elucidated. The computational investigation of genetic mutation consequences on structural level of protein is recently found to be an effective alternate to traditional in vivo and in vitro approaches. Hence, by using a combination of empirical rule and support vector machine based in silico algorithms, this study was able to identify that the pathogenic nonsynonymous genetic mutations corresponding to p.I54F, p.P122T, p.T533R, p.P581A and p.Y609A have more potential role in structural and functional deviations of IDE activity. Moreover, molecular modeling and secondary structure analysis have also confirmed their impact on the stability and secondary properties of IDE protein. The molecular docking analysis of IDE with combinational substrates has revealed that peptide inhibitors compared to small non-peptide inhibitor molecules possess good inhibitory activity towards mutant IDE. This finding may pave a way to design novel potential small peptide inhibitors for mutant IDE. Additionally by un-translated region (UTR) scanning analysis, two regulatory pathogenic genetic mutations i.e., rs5786997 (3' UTR) and rs4646954 (5' UTR), which can influence the translation pattern of IDE gene through sequence alteration of upstream-Open Reading Frame and Internal Ribosome Entry Site elements were identified. Our findings are expected to help in narrowing down the number of IDE genetic variants to be screened for disease association studies and also to select better competitive inhibitors for IDE related diseases. PMID:24059301

  14. Protective Role of Cys-178 against the Inactivation and Oligomerization of Human Insulin-degrading Enzyme by Oxidation and Nitrosylation*

    PubMed Central

    Ralat, Luis A.; Ren, Min; Schilling, Alexander B.; Tang, Wei-Jen

    2009-01-01

    Insulin-degrading enzyme (IDE), a 110-kDa metalloendopeptidase, hydrolyzes several physiologically relevant peptides, including insulin and amyloid-β (Aβ). Human IDE has 13 cysteines and is inhibited by hydrogen peroxide and S-nitrosoglutathione (GSNO), donors of reactive oxygen and nitrogen species, respectively. Here, we report that the oxidative burst of BV-2 microglial cells leads to oxidation or nitrosylation of secreted IDE, leading to the reduced activity. Hydrogen peroxide and GSNO treatment of IDE reduces the Vmax for Aβ degradation, increases IDE oligomerization, and decreases IDE thermostability. Additionally, this inhibitory response of IDE is substrate-dependent, biphasic for Aβ degradation but monophasic for a shorter bradykinin-mimetic substrate. Our mutational analysis of IDE and peptide mass fingerprinting of GSNO-treated IDE using Fourier transform-ion cyclotron resonance mass spectrometer reveal a surprising interplay of Cys-178 with Cys-110 and Cys-819 for catalytic activity and with Cys-789 and Cys-966 for oligomerization. Cys-110 is near the zinc-binding catalytic center and is normally buried. The oxidation and nitrosylation of Cys-819 allow Cys-110 to be oxidized or nitrosylated, leading to complete inactivation of IDE. Cys-789 is spatially adjacent to Cys-966, and their nitrosylation and oxidation together trigger the oligomerization and inhibition of IDE. Interestingly, the Cys-178 modification buffers the inhibition caused by Cys-819 modification and prevents the oxidation or nitrosylation of Cys-110. The Cys-178 modification can also prevent the oligomerization-mediated inhibition. Thus, IDE can be intricately regulated by reactive oxygen or nitrogen species. The structure of IDE reveals the molecular basis for the long distance interactions of these cysteines and how they regulate IDE function. PMID:19808678

  15. Human Monoclonal Islet Cell Antibodies From a Patient with Insulin- Dependent Diabetes Mellitus Reveal Glutamate Decarboxylase as the Target Antigen

    NASA Astrophysics Data System (ADS)

    Richter, Wiltrud; Endl, Josef; Eiermann, Thomas H.; Brandt, Michael; Kientsch-Engel, Rosemarie; Thivolet, Charles; Jungfer, Herbert; Scherbaum, Werner A.

    1992-09-01

    The autoimmune phenomena associated with destruction of the β cell in pancreatic islets and development of type 1 (insulin-dependent) diabetes mellitus (IDDM) include circulating islet cell antibodies. We have immortalized peripheral blood lymphocytes from prediabetic individuals and patients with newly diagnosed IDDM by Epstein-Barr virus transformation. IgG-positive cells were selected by anti-human IgG-coupled magnetic beads and expanded in cell culture. Supernatants were screened for cytoplasmic islet cell antibodies using the conventional indirect immunofluorescence test on cryostat sections of human pancreas. Six islet cell-specific B-cell lines, originating from a patient with newly diagnosed IDDM, could be stabilized on a monoclonal level. All six monoclonal islet cell antibodies (MICA 1-6) were of the IgG class. None of the MICA reacted with human thyroid, adrenal gland, anterior pituitary, liver, lung, stomach, and intestine tissues but all six reacted with pancreatic islets of different mammalian species and, in addition, with neurons of rat cerebellar cortex. MICA 1-6 were shown to recognize four distinct antigenic epitopes in islets. Islet cell antibody-positive diabetic sera but not normal human sera blocked the binding of the monoclonal antibodies to their target epitopes. Immunoprecipitation of 35S-labeled human islet cell extracts revealed that a protein of identical size to the enzyme glutamate decarboxylase (EC 4.1.1.15) was a target of all MICA. Furthermore, antigen immunotrapped by the MICA from brain homogenates showed glutamate decarboxylase enzyme activity. MICA 1-6 therefore reveal glutamate decarboxylase as the predominant target antigen of cytoplasmic islet cell autoantibodies in a patient with newly diagnosed IDDM.

  16. Hypomorphism in human NSMCE2 linked to primordial dwarfism and insulin resistance

    PubMed Central

    Payne, Felicity; Colnaghi, Rita; Rocha, Nuno; Seth, Asha; Harris, Julie; Carpenter, Gillian; Bottomley, William E.; Wheeler, Eleanor; Wong, Stephen; Saudek, Vladimir; Savage, David; O’Rahilly, Stephen; Carel, Jean-Claude; Barroso, Inês; O’Driscoll, Mark; Semple, Robert

    2014-01-01

    Structural maintenance of chromosomes (SMC) complexes are essential for maintaining chromatin structure and regulating gene expression. Two the three known SMC complexes, cohesin and condensin, are important for sister chromatid cohesion and condensation, respectively; however, the function of the third complex, SMC5–6, which includes the E3 SUMO-ligase NSMCE2 (also widely known as MMS21) is less clear. Here, we characterized 2 patients with primordial dwarfism, extreme insulin resistance, and gonadal failure and identified compound heterozygous frameshift mutations in NSMCE2. Both mutations reduced NSMCE2 expression in patient cells. Primary cells from one patient showed increased micronucleus and nucleoplasmic bridge formation, delayed recovery of DNA synthesis, and reduced formation of foci containing Bloom syndrome helicase (BLM) after hydroxyurea-induced replication fork stalling. These nuclear abnormalities in patient dermal fibroblast were restored by expression of WT NSMCE2, but not a mutant form lacking SUMO-ligase activity. Furthermore, in zebrafish, knockdown of the NSMCE2 ortholog produced dwarfism, which was ameliorated by reexpression of WT, but not SUMO-ligase–deficient NSMCE. Collectively, these findings support a role for NSMCE2 in recovery from DNA damage and raise the possibility that loss of its function produces dwarfism through reduced tolerance of replicative stress. PMID:25105364

  17. Human conditions of insulin-like growth factor-I (IGF-I) deficiency

    PubMed Central

    2012-01-01

    Insulin-like growth factor I (IGF-I) is a polypeptide hormone produced mainly by the liver in response to the endocrine GH stimulus, but it is also secreted by multiple tissues for autocrine/paracrine purposes. IGF-I is partly responsible for systemic GH activities although it possesses a wide number of own properties (anabolic, antioxidant, anti-inflammatory and cytoprotective actions). IGF-I is a closely regulated hormone. Consequently, its logical therapeutical applications seems to be limited to restore physiological circulating levels in order to recover the clinical consequences of IGF-I deficiency, conditions where, despite continuous discrepancies, IGF-I treatment has never been related to oncogenesis. Currently the best characterized conditions of IGF-I deficiency are Laron Syndrome, in children; liver cirrhosis, in adults; aging including age-related-cardiovascular and neurological diseases; and more recently, intrauterine growth restriction. The aim of this review is to summarize the increasing list of roles of IGF-I, both in physiological and pathological conditions, underlying that its potential therapeutical options seem to be limited to those proven states of local or systemic IGF-I deficiency as a replacement treatment, rather than increasing its level upper the normal range. PMID:23148873

  18. Site-specific covalent modifications of human insulin by catechol estrogens: Reactivity and induced structural and functional changes

    NASA Astrophysics Data System (ADS)

    Ku, Ming-Chun; Fang, Chieh-Ming; Cheng, Juei-Tang; Liang, Huei-Chen; Wang, Tzu-Fan; Wu, Chih-Hsing; Chen, Chiao-Chen; Tai, Jung-Hsiang; Chen, Shu-Hui

    2016-06-01

    Proteins, covalently modified by catechol estrogens (CEs), were identified recently from the blood serum of diabetic patients and referred to as estrogenized proteins. Estrogenization of circulating insulin may occur and affect its molecular functioning. Here, the chemical reactivity of CEs towards specific amino acid residues of proteins and the structural and functional changes induced by the estrogenization of insulin were studied using cyclic voltammetry, liquid chromatography-mass spectrometry, circular dichroism spectroscopy, molecular modeling, and bioassays. Our results indicate that CEs, namely, 2- and 4-hydroxyl estrogens, were thermodynamically and kinetically more reactive than the catechol moiety. Upon co-incubation, intact insulin formed a substantial number of adducts with one or multiple CEs via covalent conjugation at its Cys 7 in the A or B chain, as well as at His10 or Lys29 in the B chain. Such conjugation was coupled with the cleavage of inter-chain disulfide linkages. Estrogenization on these sites may block the receptor-binding pockets of insulin. Insulin signaling and glucose uptake levels were lower in MCF-7 cells treated with modified insulin than in cells treated with native insulin. Taken together, our findings demonstrate that insulin molecules are susceptible to active estrogenization, and that such modification may alter the action of insulin.

  19. Site-specific covalent modifications of human insulin by catechol estrogens: Reactivity and induced structural and functional changes

    PubMed Central

    Ku, Ming-Chun; Fang, Chieh-Ming; Cheng, Juei-Tang; Liang, Huei-Chen; Wang, Tzu-Fan; Wu, Chih-Hsing; Chen, Chiao-Chen; Tai, Jung-Hsiang; Chen, Shu-Hui

    2016-01-01

    Proteins, covalently modified by catechol estrogens (CEs), were identified recently from the blood serum of diabetic patients and referred to as estrogenized proteins. Estrogenization of circulating insulin may occur and affect its molecular functioning. Here, the chemical reactivity of CEs towards specific amino acid residues of proteins and the structural and functional changes induced by the estrogenization of insulin were studied using cyclic voltammetry, liquid chromatography-mass spectrometry, circular dichroism spectroscopy, molecular modeling, and bioassays. Our results indicate that CEs, namely, 2- and 4-hydroxyl estrogens, were thermodynamically and kinetically more reactive than the catechol moiety. Upon co-incubation, intact insulin formed a substantial number of adducts with one or multiple CEs via covalent conjugation at its Cys 7 in the A or B chain, as well as at His10 or Lys29 in the B chain. Such conjugation was coupled with the cleavage of inter-chain disulfide linkages. Estrogenization on these sites may block the receptor-binding pockets of insulin. Insulin signaling and glucose uptake levels were lower in MCF-7 cells treated with modified insulin than in cells treated with native insulin. Taken together, our findings demonstrate that insulin molecules are susceptible to active estrogenization, and that such modification may alter the action of insulin. PMID:27353345

  20. Site-specific covalent modifications of human insulin by catechol estrogens: Reactivity and induced structural and functional changes.

    PubMed

    Ku, Ming-Chun; Fang, Chieh-Ming; Cheng, Juei-Tang; Liang, Huei-Chen; Wang, Tzu-Fan; Wu, Chih-Hsing; Chen, Chiao-Chen; Tai, Jung-Hsiang; Chen, Shu-Hui

    2016-01-01

    Proteins, covalently modified by catechol estrogens (CEs), were identified recently from the blood serum of diabetic patients and referred to as estrogenized proteins. Estrogenization of circulating insulin may occur and affect its molecular functioning. Here, the chemical reactivity of CEs towards specific amino acid residues of proteins and the structural and functional changes induced by the estrogenization of insulin were studied using cyclic voltammetry, liquid chromatography-mass spectrometry, circular dichroism spectroscopy, molecular modeling, and bioassays. Our results indicate that CEs, namely, 2- and 4-hydroxyl estrogens, were thermodynamically and kinetically more reactive than the catechol moiety. Upon co-incubation, intact insulin formed a substantial number of adducts with one or multiple CEs via covalent conjugation at its Cys 7 in the A or B chain, as well as at His10 or Lys29 in the B chain. Such conjugation was coupled with the cleavage of inter-chain disulfide linkages. Estrogenization on these sites may block the receptor-binding pockets of insulin. Insulin signaling and glucose uptake levels were lower in MCF-7 cells treated with modified insulin than in cells treated with native insulin. Taken together, our findings demonstrate that insulin molecules are susceptible to active estrogenization, and that such modification may alter the action of insulin. PMID:27353345

  1. Human insulin analogues modified at the B26 site reveal a hormone conformation that is undetected in the receptor complex.

    PubMed

    Záková, Lenka; Kletvíková, Emília; Lepšík, Martin; Collinsová, Michaela; Watson, Christopher J; Turkenburg, Johan P; Jiráček, Jiří; Brzozowski, Andrzej M

    2014-10-01

    The structural characterization of the insulin-insulin receptor (IR) interaction still lacks the conformation of the crucial B21-B30 insulin region, which must be different from that in its storage forms to ensure effective receptor binding. Here, it is shown that insulin analogues modified by natural amino acids at the TyrB26 site can represent an active form of this hormone. In particular, [AsnB26]-insulin and [GlyB26]-insulin attain a B26-turn-like conformation that differs from that in all known structures of the native hormone. It also matches the receptor interface, avoiding substantial steric clashes. This indicates that insulin may attain a B26-turn-like conformation upon IR binding. Moreover, there is an unexpected, but significant, binding specificity of the AsnB26 mutant for predominantly the metabolic B isoform of the receptor. As it is correlated with the B26 bend of the B-chain of the hormone, the structures of AsnB26 analogues may provide the first structural insight into the structural origins of differential insulin signalling through insulin receptor A and B isoforms. PMID:25286859

  2. Intensifying Insulin Therapy in Type 2 Diabetes: Choices & Challenges.

    PubMed

    Kumar, Ajay; Kesavadev, Jothydev; Sethi, Bipin; Jain, Sunil M; Guruprasad, C S; Shah, Siddharth N

    2015-05-01

    Insulin therapy remains the cornerstone of effective diabetes management. Timely intensification of insulin therapy reduces the progression of diabetes and the development of diabetes-related complications. Given that overall hyperglycaemia is a relative contribution of both fasting and postprandial hyperglycaemia, use of basal insulin alone may not achieve optimal glucose control due to its inability to cover postprandial glucose excursions. Intensifying therapy with addition of bolus insulin or switching to premixed insulin is a viable option in patients failing on basal alone therapy. Although the benefits of early insulin treatment are well established, a considerable delay in intensifying insulin therapy in patients with sub-optimal glycaemic control is still observed. Most of the patients and physicians are reluctant to intensify therapy due to the fear of hypoglycaemia, regimen complexity, and increased burden of multiple daily injections. In this context, there is a need for a flexible, alternative intensification option taking into account individual patient considerations to achieve or maintain individual glycaemic targets. An ideal insulin regimen should mimic physiological insulin release while providing optimal glycaemic control with low risk of hypoglycaemia, weight gain and fewer daily injections. The current paper reviews the challenges of insulin intensification in patients with type 2 diabetes mellitus poorly controlled on current treatment regimens. PMID:26548029

  3. Differential half-maximal effects of human insulin and its analogs for in situ glucose transport and protein synthesis in rat soleus muscle

    NASA Technical Reports Server (NTRS)

    Weinstein, Randi B.; Eleid, Noura; LeCesne, Catherine; Durando, Bianca; Crawford, Julie T.; Heffner, Michelle; Layton, Christle; O'Keefe, Matthew; Robinson, Jennifer; Rudinsky, Suzy; Henriksen, Erik J.; Tischler, Marc E.

    2002-01-01

    Analogs of human insulin have been used to discriminate between responses of metabolic and mitogenic (growth-related) pathways. This study compared the stimulatory effects of human insulin (HI) and 2 analogs (X2, B-Asp(9), B-Glu(27) and H2, A-His(8),B-His(4),B-Glu(10), B-His(27)) on glucose uptake and protein synthesis in rat soleus muscle in situ. Glucose uptake, estimated by intramuscular (IM) injection of 2-deoxy[1,2-3H]glucose with or without insulin, was maximally increased at 10(-6) mol/L for HI and X2 and 10(-7) mol/L for H2. HI had a larger effect (318%) than either X2 (156%) or H2 (124%). The half-maximal effect (ED(50)) values for HI, X2, and H2 were 3.3 x10(-8) mol/L, 1.7 x 10(-7) mol/L, and 1.6 x 10(-9) mol/L, respectively. Protein synthesis, estimated by protein incorporation of [(3)H]phenylalanine injected into muscles with or without insulin, was maximally increased at 10(-5) mol/L for HI and 10(-6) for X2 and H2. HI had a larger effect in stimulating protein synthesis (34%) than either X2 (25%) or H2 (19.8%). The ED(50) values for HI, X2, and H2 were 3.0 x 10(-7) mol/L, 3.2 x 10(-7) mol/L, and 1.0 x 10(-9) mol/L, respectively. The biological potency of each analog (ED(50)insulin/ED(50)analog) showed X2 to be less potent than HI for both glucose uptake (0.2) and protein synthesis (0.9), whereas H2 is more potent than HI with ratios of 20 and 300, respectively. These data suggest that this approach for studying insulin responsiveness in a single muscle in situ may be a useful tool for investigating insulin signaling in muscle in vivo. Copyright 2002, Elsevier Science (USA). All rights reserved.

  4. Molecular genetics of human growth hormone, insulin-like growth factors and their pathways in common disease.

    PubMed

    Rodriguez, Santiago; Gaunt, Tom R; Day,