Science.gov

Sample records for preparados por sol-gel

  1. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Petruska, Melissa A.; Klimov, Victor L.

    2012-06-12

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites

  2. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Petruska, Melissa A.; Klimov, Victor L.

    2007-06-05

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites.

  3. Sol-gel derived sorbents

    DOEpatents

    Sigman, Michael E.; Dindal, Amy B.

    2003-11-11

    Described is a method for producing copolymerized sol-gel derived sorbent particles for the production of copolymerized sol-gel derived sorbent material. The method for producing copolymerized sol-gel derived sorbent particles comprises adding a basic solution to an aqueous metal alkoxide mixture for a pH.ltoreq.8 to hydrolyze the metal alkoxides. Then, allowing the mixture to react at room temperature for a precalculated period of time for the mixture to undergo an increased in viscosity to obtain a desired pore size and surface area. The copolymerized mixture is then added to an immiscible, nonpolar solvent that has been heated to a sufficient temperature wherein the copolymerized mixture forms a solid upon the addition. The solid is recovered from the mixture, and is ready for use in an active sampling trap or activated for use in a passive sampling trap.

  4. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Klimov, Victor L.; Petruska, Melissa A.

    2010-05-25

    The present invention is directed to a process for preparing a solid composite having colloidal nanocrystals dispersed within a sol-gel matrix, the process including admixing colloidal nanocrystals with an amphiphilic polymer including hydrophilic groups selected from the group consisting of --COOH, --OH, --SO.sub.3H, --NH.sub.2, and --PO.sub.3H.sub.2 within a solvent to form an alcohol-soluble colloidal nanocrystal-polymer complex, admixing the alcohol-soluble colloidal nanocrystal-polymer complex and a sol-gel precursor material, and, forming the solid composite from the admixture. The present invention is also directed to the resultant solid composites and to the alcohol-soluble colloidal nanocrystal-polymer complexes.

  5. Metal-silica sol-gel materials

    NASA Technical Reports Server (NTRS)

    Stiegman, Albert E. (Inventor)

    2002-01-01

    The present invention relates to a single phase metal-silica sol-gel glass formed by the co-condensation of a transition metal with silicon atoms where the metal atoms are uniformly distributed within the sol-gel glass as individual metal centers. Any transition metal may be used in the sol-gel glasses. The present invention also relates to sensor materials where the sensor material is formed using the single phase metal-silica sol-gel glasses. The sensor materials may be in the form of a thin film or may be attached to an optical fiber. The present invention also relates to a method of sensing chemicals using the chemical sensors by monitoring the chromatic change of the metal-silica sol-gel glass when the chemical binds to the sensor. The present invention also relates to oxidation catalysts where a metal-silica sol-gel glass catalyzes the reaction. The present invention also relates to a method of performing oxidation reactions using the metal-silica sol-gel glasses. The present invention also relates to organopolymer metal-silica sol-gel composites where the pores of the metal-silica sol-gel glasses are filled with an organic polymer polymerized by the sol-gel glass.

  6. Sol-gel kinetics by NMR

    SciTech Connect

    Assink, R.A.; Kay, B.D.

    1991-01-01

    The chemical synthesis of advanced ceramic and glass materials by the sol-gel process has become an area of increasing activity in the field of material science. The sol-gel process provides a means to prepare homogeneous, high purity materials with tailored chemical and physical properties. This paper surveyed the nuclear magnetic resonance (NMR) studies of silicon-based sol-gel kinetics. A review of the various models which have been used to analyze the chemical kinetics of various sol-gel systems was presented. The utility of NMR spectroscopy was demonstrated in investigating the influence that various reaction conditions have on the reaction pathways by which sol-gel derived materials are synthesized. By observing in a direct fashion the chemical pathway of the sol-gel, it is often possible to relate the final properties of the material to the formulation and reaction conditions of the sol-gel. The study of reaction kinetics by NMR is expected to play an increasingly important role in understanding sol-gel processing and material properties. 15 refs. (DP)

  7. Sol-gel antireflective coating on plastics

    DOEpatents

    Ashley, C.S.; Reed, S.T.

    1988-01-26

    An antireflection film made from reliquified sol-gel hydrolyzation, condensation polymeric reaction product of a silicon, alkoxides and/or metal alkoxides, or mixtures thereof. The film is particularly useful for coating plastics.

  8. Sol-gel antireflective coating on plastics

    DOEpatents

    Ashley, Carol S.; Reed, Scott T.

    1990-01-01

    An antireflection film made from a reliquified sol-gel hydrolyzation, condensation polymeric reaction product of a silicon, alkoxides and/or metal alkoxides, or mixtures thereof. The film is particularly useful for coating plastics.

  9. Sol-gel deposited electrochromic coatings

    SciTech Connect

    Ozer, N.; Lampert, C.M.

    1995-06-01

    Electrochromic devices have increasing application in display devices, switchable mirrors and smart windows. A variety of vacuum deposition technologies have been used to make electrochromic devices. The sol- gel process offers an alternative approach to the synthesis of optical quality and low cost electrochromic device layers. This study summarizes the developments in sol-gel deposited electrochromic films. The sol-gel process involves the formation of oxide networks upon hydrolysis-condensation of alkoxide precursors. In this study we cover the sol-gel deposited oxides of WO[sub 3], V[sub 2]O[sub 5], TiO[sub 2], Nb[sub 2]O[sub 5], and NiO[sub x].

  10. Sol-Gels for Optical Sensors

    NASA Astrophysics Data System (ADS)

    Podbielska, Halina; Ulatowska-Jarża, Agnieszka; Müller, Gerhard; Eichler, Hans J.

    Sol-gel process allows for formation of glassy and ceramics materials in temperatures much lower than offered by conventional melting techniques. The first paper on sol-gels was published over 150 years ago by Ebelmen, however, the rapid development of this technology and applications occurred in the last few years. There is a broad range of possible applications of solgel derived materials, what marked this technology as one of the most promising fields of contemporary material sciences

  11. Toward sol-gel-based sensors

    SciTech Connect

    Jordan, J.D.; Ingersoll, C.M.; Dunbar, R.A.

    1995-12-31

    Advances in biotechnology have produced a variety of antibodies and other biomolecules that possess selective recognition capabilities. Current techniques for the immobilization of these biomolecules typically involve multistep derivatization of a primary substrate, which is labor intensive and often requires large volumes of costly reagents. Further, these immobilization chemistries often adversely affect the characteristic properties of the protein (e.g., the binding affinity). As a result, the need for fast, accurate, inexpensive, and simple to operate diagnostic assays escalates. Because of their room temperature processing, transparency, inertness, and tunable pore structure, sol-gel-derived composites represent promising chemical and biosensing platforms. To date, many researchers have entrapped proteins and enzymes in sol-gel monoliths, and found that they retain some of their native properties. Our group first reported on the affinity of a sol-gel entrapped antibody. However, although these biogel monoliths were promising, analyte diffusion through the monolith matrix is slow, resulting in long response times. Thus, it is clear that the next level of sol-gel-derived biosensor must depend on thin film technology. In the current work, the affinity of fluorescein entrapped within a sol-gel derived thin film for the anti fluorescent hapten, 5- (and 6-)-carboxy 4{prime}, 5{prime}-dimethylfluorescein, is investigated. A novel film preparation technique will be introduced, and the response and response times of these films as a function of processing and storage conditions will be discussed.

  12. Neutron detector using sol-gel absorber

    SciTech Connect

    Hiller, J.M.; Wallace, S.A.; Dai, S.

    1999-10-26

    An neutron detector composed of fissionable material having ions of lithium, uranium, thorium, plutonium, or neptunium, contained within a glass film fabricated using a sol-gel method combined with a particle detector is disclosed. When the glass film is bombarded with neutrons, the fissionable material emits fission particles and electrons. Prompt emitting activated elements yielding a high energy electron contained within a sol-gel glass film in combination with a particle detector is also disclosed. The emissions resulting from neutron bombardment can then be detected using standard UV and particle detection methods well known in the art, such as microchannel plates, channeltrons, and silicon avalanche photodiodes.

  13. Neutron detector using sol-gel absorber

    DOEpatents

    Hiller, John M.; Wallace, Steven A.; Dai, Sheng

    1999-01-01

    An neutron detector composed of fissionable material having ions of lithium, uranium, thorium, plutonium, or neptunium, contained within a glass film fabricated using a sol-gel method combined with a particle detector is disclosed. When the glass film is bombarded with neutrons, the fissionable material emits fission particles and electrons. Prompt emitting activated elements yielding a high energy electron contained within a sol-gel glass film in combination with a particle detector is also disclosed. The emissions resulting from neutron bombardment can then be detected using standard UV and particle detection methods well known in the art, such as microchannel plates, channeltrons, and silicon avalanche photodiodes.

  14. Hybrid sol-gel optical materials

    DOEpatents

    Zeigler, J.M.

    1993-04-20

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  15. Hybrid sol-gel optical materials

    DOEpatents

    Zeigler, John M.

    1993-01-01

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  16. Hybrid sol-gel optical materials

    DOEpatents

    Zeigler, John M.

    1992-01-01

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  17. Sol-Gel Derived Hafnia Coatings

    NASA Technical Reports Server (NTRS)

    Feldman, Jay D.; Stackpoole, Mairead; Blum, Yigal; Sacks, Michael; Ellerby, Don; Johnson, Sylvia M.; Venkatapathy, Ethiras (Technical Monitor)

    2002-01-01

    Sol-gel derived hafnia coatings are being developed to provide an oxidation protection layer on ultra-high temperature ceramics for potential use in turbine engines (ultra-efficient engine technology being developed by NASA). Coatings using hafnia sol hafnia filler particles will be discussed along with sol synthesis and characterization.

  18. Sol-Gel Synthesis Of Aluminoborosilicate Powders

    NASA Technical Reports Server (NTRS)

    Bull, Jeffrey; Leiser, Daniel; Selvaduray, Guna

    1992-01-01

    Application of sol-gel process to synthesis of aluminoborosilicate powders shows potential for control of microstructures of materials. Development of materials having enhanced processing characteristics prove advantageous in extending high-temperature endurance of fibrous refractory composite insulation made from ceramic fibers.

  19. Sol-gel processing of metal sulfides

    NASA Astrophysics Data System (ADS)

    Stanic, Vesha

    Metal sulfides were synthesised via a sol-gel process using various metal alkoxides and hydrogen sulfide in toluene. Colloidal gels were prepared from germanium ethoxide, germanium isopropoxide, zinc tert-butoxide and tungsten (VI) ethoxide, whereas colloidal powder was produced from tungsten (V) dichloride ethoxide. Special precautions were necessary to protect the reaction mixture from water contamination which produced metal oxides. Results indicated that the main source of water is the hydrogen sulfide gas. In addition, synthesis of metal sulfides from a mixture of metal oxide and sulfide was demonstrated by the example of monoclinic germanium disulfide. It was produced by reaction of the sol-gel product with sulfur. Heat treatment of the sol-gel product and sulfur yielded single phase GeSsb2. The sol-gel prepared materials and their heat treated products were characterized by various methods. A chemical kinetics study of the functional groups -OR, -SH and Ssp{2-} was carried out for the sol-gel processing of GeSsb2 from of hydrogen sulfide and two different alkoxides, germanium ethoxide and germanium isopropoxide. The study was performed for different concentrations of precursors at different molar ratios and temperatures. The results indicate that the proposed reaction mechanism was simplified under appropriate reaction conditions. Experimentally determined rate constants of thiolysis and condensations demonstrate that thiolysis is slow and that condensations are fast steps, regardless of the studied reaction conditions. A study of the temperature effect on the reaction rate constant shows that it increases with temperature in accord with both Arrhenius law and transition-state theory. Activation energies, Esba, and activation parameters DeltaSsp{ddagger}, DeltaHsp{ddagger} and DeltaGsp{ddagger}, were determined for thiolysis and condensation reactions. The potentiometric tiration method was used for quantitative determination of germanium sulfide and

  20. Droplet Spreading with Sol-Gel Transition

    NASA Astrophysics Data System (ADS)

    Jalaal, Maziyar; Stoeber, Boris; Balmforth, Neil J.

    2014-11-01

    The impact and spreading of liquid droplets on a smooth solid substrate is a classical subject with several industrial applications such as ink-jet printing, spray cooling, coating, and many others. For many of these deposition processes, controlling the final shape of the drop is critical. In the current research, a new technique for controlling the spreading of droplets impacting a substrate is presented. This technique exploits the rheology of a thermo-responsive polymer solution that undergoes a reversible sol/gel transition above a critical temperature. Experiments are conducted using a combination of shadowgraphy and micro-PIV to observe spreading drops. It is shown that the final diameter of a droplet can be controlled through the temperature of the substrate and the tunable sol/gel transition temperature of the fluid.A mathematical model is provided to further elucidate the flow dynamics.

  1. Novel carboxy functionalized sol-gel precursors

    SciTech Connect

    Wolter, H.; Storch, W.; Gellermann, C.

    1996-12-31

    A novel family of inorganic-organic copolymers (ORMOCER`s) derived from urethane- and thioether(meth)acrylate alkoxysilanes has been successfully exploited for a variety of diverse applications. In order to widen the range of applications an additional functionality (carboxy group) has been incorporated int his silane type. Conventional sol-gel processing facilitates the formation of an inorganic Si-O-Si-network via hydrolysis and polycondensation reactions of alkoxysilyl moieties and in addition, the (meth)acrylate groups are available for radically induced polymerization to obtain a complementary organic polymer structure. The presence of a carboxy group would appear to have great potential for a range of diverse areas of application, such as an internal catalyst for the sol-gel process, complexation of elements such as Zr and Ti, increasing the adhesion to various substrates and modification of solubility. A number of novel silanes and their syntheses will be described in this paper.

  2. Innovative materials based on sol gel technology

    NASA Astrophysics Data System (ADS)

    Reisfeld, Renata; Saraidarov, Tsiala

    2006-01-01

    We review the sol-gel based new materials which were prepared in our laboratory including: tunable lasers, active waveguides, luminescent solar concentrators, electrochromic, photochromic and gasochromic plates for smart windows, chemical and biological sensors, semiconductor quantum dots and complexes of rare earth ions. In this paper we present the firstly obtained results of the Eu sulfide nanocrystalline (NCs) powder material and doped in the sol-gel based zirconia films. The powder and films were studied by high resolution transmittance electron microscopy (HRTEM), energy dispersive X-ray spectroscopy analysis (EDS) and luminescence spectroscopy. Eu sulfide nanocrystals (NCs) ranging between 8 and 10 nm were obtained as powder and 3-4 nm incorporated in zirconia film.

  3. Ring-Resonator/Sol-Gel Interferometric Immunosensor

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory; Cohen, David

    2007-01-01

    A proposed biosensing system would be based on a combination of (1) a sensing volume containing antibodies immobilized in a sol-gel matrix and (2) an optical interferometer having a ring resonator configuration. The antibodies would be specific to an antigen species that one seeks to detect. In the ring resonator of the proposed system, light would make multiple passes through the sensing volume, affording greater interaction length and, hence, greater antibody- detection sensitivity.

  4. Sol-Gel Manufactured Energetic Materials

    DOEpatents

    Simpson, Randall L.; Lee, Ronald S.; Tillotson, Thomas M.; Hrubesh, Lawrence W.; Swansiger, Rosalind W.; Fox, Glenn A.

    2005-05-17

    Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.

  5. Sol-gel manufactured energetic materials

    DOEpatents

    Simpson, Randall L.; Lee, Ronald S.; Tillotson, Thomas M.; Hrubesh, Lawrence W.; Swansiger, Rosalind W.; Fox, Glenn A.

    2003-12-23

    Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.

  6. Novel sol-gel bioactive fibers.

    PubMed

    Oréfice, R L; Hench, L L; Clark, A E; Brennan, A B

    2001-06-15

    Bioactive fibers were produced using a sol-gel method. The rheological properties of two different sol compositions prepared from a mixture of TEOS, phosphorous alkoxide and calcium nitrate, or calcium chloride in a water-ethanol solution, are reported. The sols were extruded through a spinneret to produce continuous 10 microm-diameter fibers. Discontinuous fibers and fibrous mats were prepared by air-spraying the multicomponent sols. The sol-gel fibers were converted to the bioactive fibers by three different thermal treatments at either 600 degrees, 700 degrees, or 900 degrees C for 3 h. SEM, BET, EDX, and FTIR were used to characterize the morphology and structure of the fibers. The BET measured surface area of the fibers sintered at 900 degrees C was 0 m(2)/gm compared to a value of 200 m(2)/gm for a typical sol-gel-derived particle of similar composition. Both the continuous and discontinuous fibers exhibited in vitro bioactivity in a simulated body fluid. PMID:11288073

  7. Ionogel Electrolytes through Sol-Gel Processing

    NASA Astrophysics Data System (ADS)

    Horowitz, Ariel I.

    Electrical energy needs have intensified due to the ubiquity of personal electronics, the decarbonization of energy services through electrification, and the use of intermittent renewable energy sources. Despite developments in mechanical and thermal methods, electrochemical technologies are the most convenient and effective means of storing electrical energy. These technologies include both electrochemical cells, commonly called batteries, and electrochemical double-layer capacitors, or "supercapacitors", which store energy electrostatically. Both device types require an ion-conducting electrolyte. Current devices use solutions of complex salts in organic solvents, leading to both toxicity and flammability concerns. These drawbacks can be avoided by replacing conventional electrolytes with room-temperature molten salts, known as ionic liquids (ILs). ILs are non-volatile, non-flammable, and offer high conductivity and good electrochemical stability. Device mass can be reduced by combining ILs with a solid scaffold material to form an "ionogel," further improving performance metrics. In this work, sol-gel chemistry is explored as a means of forming ionogel electrolytes. Sol-gel chemistry is a solution-based, industrially-relevant, well-studied technique by which solids such as silica can be formed in situ. Previous works used a simple acid-catalyzed sol-gel reaction to create brittle, glassy ionogels. Here, both the range of products that can be accomplished through sol-gel processing and the understanding of interactions between ILs and the sol-gel reaction network are greatly expanded. This work introduces novel ionogel materials, including soft and compliant silica-supported ionogels and PDMS-supported ionogels. The impacts of the reactive formulation, IL identity, and casting time are detailed. It is demonstrated that variations in formulation can lead to rapid gelation and open pore structures in the silica scaffold or slow gelation and more dense silica

  8. Sol-gel processing to form doped sol-gel monoliths inside hollow core optical fiber and sol-gel core fiber devices made thereby

    NASA Technical Reports Server (NTRS)

    Shaw, Harry C. (Inventor); Ott, Melanie N. (Inventor); Manuel, Michele V. (Inventor)

    2002-01-01

    A process of fabricating a fiber device includes providing a hollow core fiber, and forming a sol-gel material inside the hollow core fiber. The hollow core fiber is preferably an optical fiber, and the sol-gel material is doped with a dopant. Devices made in this manner includes a wide variety of sensors.

  9. Fluoride glasses from sol gels. Final report

    SciTech Connect

    Uhlmann, D.R.

    1986-09-15

    The use of sol-gel coatings to strengthen oxide glasses was demonstrated for the case of fused silica. Increases in strength to as much as 2.2 times the strength of uncoated glass were obtained. The strengthening does not involve the annealing of surface microcracks, but rather the filling-in of such flaws. The strengthening does not depend on coating thickness over the range 2000-10000 Angstroms, but does depend significantly upon the state of hydrolysis of the substrate surface.

  10. Sol gels. (Latest citations from Materials Business file). Published Search

    SciTech Connect

    1996-01-01

    The bibliography contains citations concerning sol gel derived materials. The citations examine research conducted by universities, corporations and government agencies for the development of novel sol gel processes, and commercial applications of these techniques. Uses of sol gels in the production of glass, ceramics, composites, protective coatings, and hybrid organic/inorganic materials are described. Other topics include new products, expanding markets for sol gel derived materials, and profit potential. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  11. Sol-gel method for encapsulating molecules

    DOEpatents

    Brinker, C. Jeffrey; Ashley, Carol S.; Bhatia, Rimple; Singh, Anup K.

    2002-01-01

    A method for encapsulating organic molecules, and in particular, biomolecules using sol-gel chemistry. A silica sol is prepared from an aqueous alkali metal silicate solution, such as a mixture of silicon dioxide and sodium or potassium oxide in water. The pH is adjusted to a suitably low value to stabilize the sol by minimizing the rate of siloxane condensation, thereby allowing storage stability of the sol prior to gelation. The organic molecules, generally in solution, is then added with the organic molecules being encapsulated in the sol matrix. After aging, either a thin film can be prepared or a gel can be formed with the encapsulated molecules. Depending upon the acid used, pH, and other processing conditions, the gelation time can be from one minute up to several days. In the method of the present invention, no alcohols are generated as by-products during the sol-gel and encapsulation steps. The organic molecules can be added at any desired pH value, where the pH value is generally chosen to achieve the desired reactivity of the organic molecules. The method of the present invention thereby presents a sufficiently mild encapsulation method to retain a significant portion of the activity of the biomolecules, compared with the activity of the biomolecules in free solution.

  12. Biocatalysis with Sol-Gel Encapsulated Acid Phosphatase

    ERIC Educational Resources Information Center

    Kulkarni, Suhasini; Tran, Vu; Ho, Maggie K.-M.; Phan, Chieu; Chin, Elizabeth; Wemmer, Zeke; Sommerhalter, Monika

    2010-01-01

    This experiment was performed in an upper-level undergraduate biochemistry laboratory course. Students learned how to immobilize an enzyme in a sol-gel matrix and how to perform and evaluate enzyme-activity measurements. The enzyme acid phosphatase (APase) from wheat germ was encapsulated in sol-gel beads that were prepared from the precursor…

  13. Molecular host sol-gel films for chemical sensing applications

    SciTech Connect

    Shi, J.; Johnson, S.; Yang, X.; Swanson, B.

    1997-12-31

    Sol-gel cyclodextrin coatings on surface acoustic wave (SAW) device as VOC sensors have been studied. The sol-gel approach to thin films efficiently yields uniform coatings on SAW devices. The films were characterized by ATR-FT-IR, ellipsometry and SEM. The incorporation of molecular host reagents (cyclodextins and their derivatives) into thin films greatly enhance the sensitivity and selectivity of SAW sensors. It is believed that molecular recognition (selective sorption) occurs at the gas-solid interface. From the SAW data, it is possible to calculate the binding constants of sol-gel films towards a variety VOCs. The identification of VOCs based on SAW sensor arrays is discussed.

  14. Electrophoretic Porosimetry of Sol-Gels

    NASA Technical Reports Server (NTRS)

    Snow, L. A.; Smith, D. D.; Sibille, L.; Hunt, A. J.; Ng, J.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    It has been hypothesized that gravity has an effect on the formation and resulting microstructure of sol-gels. In order to more clearly resolve the effect of gravity, pores may be non-destructively analyzed in the wet gel, circumventing the shrinkage and coarsening associated with the drying procedure. We discuss the development of an electrophoretic technique, analogous to affinity chromatography, for the determination of pore size distribution and its application to silica gels. Specifically a monodisperse charged dye is monitored by an optical densitometer as it moves through the wet gel under the influence of an electric field. The transmittance data (output) represents the convolution of the dye concentration profile at the beginning of the run (input) with the pore size distribution (transfer function), i.e. linear systems theory applies. Because of the practical difficulty in producing a delta function input dye profile we prefer instead to use a step function. Average pore size is then related to the velocity of this dye front, while the pore size distribution is related to the spreading of the front. Preliminary results of this electrophoretic porosimetry and its application to ground and space-grown samples will be discussed.

  15. Production of continuous mullite fiber via sol-gel processing

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Sparks, J. Scott; Esker, David C.

    1990-01-01

    The development of a continuous ceramic fiber which could be used in rocket engine and rocket boosters applications was investigated at the Marshall Space Flight Center. Methods of ceramic fiber production such as melt spinning, chemical vapor deposition, and precursor polymeric fiber decomposition are discussed and compared with sol-gel processing. The production of ceramics via the sol-gel method consists of two steps, hydrolysis and polycondensation, to form the preceramic, followed by consolidation into the glass or ceramic structure. The advantages of the sol-gel method include better homogeneity and purity, lower preparation temperature, and the ability to form unique compositions. The disadvantages are the high cost of raw materials, large shrinkage during drying and firing which can lead to cracks, and long processing times. Preparation procedures for aluminosilicate sol-gel and for continuous mullite fibers are described.

  16. Organofunctional Sol-Gel Materials for Toxic Metal Separation

    SciTech Connect

    Im, Hee-Jung; Yost, Terry L.; Yang, Yihui; Bramlett, J. Morris; Yu, Xiang-Hua; Fagan, Bryan C.; Allain, Leonardo R.; Chen, Tianniu; Xue, Ziling; Barnes, Craig E.; Dai, Sheng; Rocker, Lee E.; Sepaniak, Michael J.

    2003-09-10

    Inorganic-organic silica sol-gels grafted or encapsulated with organic ligands were prepared and found to selectively and reversibly remove target metal ions such as Cu2+, Cd2+, and Sr2+. These organofunctional sol-gel materials, which were easily prepared from off-the-shelf chemicals, were hydrophilic and showed fast kinetics of metal uptake. The sol-gels were easily regenerated and used in multi-cycle metal removal. In our search for new ligands for metal removal, we found that the reactions of thioacetal ligands with Hg2+ gave Hg(SCH2COOH)2. Our studies of organofunctional sol-gel materials for metal separation will be discussed.

  17. Sol gel processes. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    Not Available

    1993-09-01

    The bibliography contains citations concerning the development and utilization of sol-gel processes and techniques. Topics include antireflective coatings, studies of sol-gel transitions, sol-gel synthesis and polymerization, sol-gel derived thin films and glasses, and sol-gel production of microspheres. Applications in nuclear waste management, nuclear fuel manufacturing, glass optical waveguide development, and solar energy collection are presented. (Contains 250 citations and includes a subject term index and title list.)

  18. Slow Release of Plant Volatiles Using Sol-Gel Dispensers.

    PubMed

    Bian, L; Sun, X L; Cai, X M; Chen, Z M

    2014-12-01

    The black citrus aphid, also known as the tea aphid, (Toxoptera aurantii Boyer) attacks economically important crops, including tea (Camellia sinensis (L.) O. Kuntze). In the current study, silica sol-gel formulations were screened to find one that could carry and release C. sinensis plant volatiles to lure black citrus aphids in a greenhouse. The common plant volatile trans-2-hexen-1-al was used as a model molecule to screen for suitable sol-gel formulations. A zNose (Electronic Sensor Technology, Newbury Park, CA) transportable gas chromatograph was used to continuously monitor the volatile emissions. A sol-gel formulation containing tetramethyl orthosilicate and methyltrimethoxysilane in an 8:2 (vol:vol) ratio was selected to develop a slow-release dispenser. The half-life of trans-2-hexen-1-al in the sol-gel dispenser increased slightly with the volume of this compound in the dispenser. Ten different volatiles were tested in the sol-gel dispenser. Alcohols of 6-10 carbons had the longest half-lives (3.01-3.77 d), while esters of 6-12 carbons had the shortest (1.53-2.28 d). Release of these volatiles from the dispensers could not be detected by the zNose after 16 d (cis-3-hexenyl acetate) to 26 d (3,7-dimethylocta-1,6-dien-3-ol). In greenhouse experiments, trans-2-hexen-1-al and cis-3-hexen-1-ol released from the sol-gel dispensers attracted aphids for ≍17 d, and release of these volatiles could not be detected by the zNose after ≍24 d. The sol-gel dispensers performed adequately for the slow release of plant volatiles to trap aphids in the greenhouse. PMID:26470065

  19. Sol-gel encapsulation for controlled drug release and biosensing

    NASA Astrophysics Data System (ADS)

    Fang, Jonathan

    The main focus of this dissertation is to investigate the use of sol-gel encapsulation of biomolecules for controlled drug release and biosensing. Controlled drug release has advantages over conventional therapies in that it maintains a constant, therapeutic drug level in the body for prolonged periods of time. The anti-hypertensive drug Captopril was encapsulated in sol-gel materials of various forms, such as silica xerogels and nanoparticles. The primary objective was to show that sol-gel silica materials are promising drug carriers for controlled release by releasing Captopril at a release rate that is within a therapeutic range. We were able to demonstrate desired release for over a week from Captopril-doped silica xerogels and overall release from Captopril-doped silica nanoparticles. As an aside, the antibiotic Vancomycin was also encapsulated in these porous silica nanoparticles and desired release was obtained for several days in-vitro. The second part of the dissertation focuses on immobilizing antibodies and proteins in sol-gel to detect various analytes, such as hormones and amino acids. Sol-gel competitive immunoassays on antibody-doped silica xerogels were used for hormone detection. Calibration for insulin and C-peptide in standard solutions was obtained in the nM range. In addition, NASA-Ames is also interested in developing a reagentless biosensor using bacterial periplasmic binding proteins (bPBPs) to detect specific biomarkers, such as amino acids and phosphate. These bPBPs were doubly labeled with two different fluorophores and encapsulated in silica xerogels. Ligand-binding experiments were performed on the bPBPs in solution and in sol-gel. Ligand-binding was monitored by fluorescence resonance energy transfer (FRET) between the two fluorophores on the bPBP. Titration data show that one bPBP has retained its ligand-binding properties in sol-gel.

  20. Structural evolution and stability of sol gel biocatalysts

    NASA Astrophysics Data System (ADS)

    Rodgers, L. E.; Knott, R. B.; Holden, P. J.; Pike, K. J.; Hanna, J. V.; Foster, L. J. R.; Bartlett, J. R.

    2006-11-01

    Immobilisation strategies for catalytic enzymes are important as they allow recovery and reuse of the biocatalysts. In this work, sol-gel matrices have been used to immobilise Candida antarctica lipase B (CALB), a commonly used industrial enzyme. The sol-gel bioencapsulate is produced through fluoride-catalysed hydrolysis of mixtures of tetramethylorthosilicate (TMOS) and methyltrimethoxysilane (MTMS) in the presence of CALB, yielding materials with controlled pore sizes and surface chemistries. Sol-gel matrices prolong the catalytic life and enhance the activity of CALB, although the molecular basis for this effect has yet to be elucidated due to the limitations of analytical techniques applied to date. Small angle neutron scattering (SANS) allows such multi-component systems to be characterised through contrast matching. In the sol-gel bioencapsulate system at the contrast match point for silica, residual scattering intensity is due to the CALB and density fluctuations in the matrix. A SANS contrast variation series found the match point for the silica matrix, both with and without enzyme present, to be around 35%. The model presented here proposes a mechanism for the interaction between CALB and the surrounding sol-gel matrix, and the observed improvement in enzyme activity and matrix strength. Essentially, the inclusion of CALB modulates silicate speciation during evolution of the inorganic network, leading to associated variations in SANS contrast. The SANS protocol developed here may be applied more generally to other encapsulated enzyme systems.

  1. Kinetics and structure of silicate sol-gels

    SciTech Connect

    Assink, R.A.; Brinker, C.J.; Kay, B.D.

    1990-01-01

    The structure of a silicate sol-gel derived material depends on the nature of its reaction kinetics. The chemical state of the silicate sol-gel is characterized by both the functional group concentrations and the distribution of the functional groups about a single silicon atom. {sup 29}Si nuclear magnetic resonance (NMR) spectroscopy provides a way to quantitatively determine these concentrations and distributions as a function of time during the reaction. During the early stages of the sol-gel reaction, the distribution of hydrolyzed species enables one to calculate the relative rates of hydrolysis. During the intermediate stages of the reaction, the rate of formation of various condensed species enables one to determine the reaction rate constants for both water-producing and alcohol-producing condensation. The chemical bonding of sol-gel derived solid materials can be determined by direct polarization NMR combined with magic angle spinning techniques. These capabilities provide a valuable tool for studying the relationships between the reaction conditions, the chemical kinetics and the resulting structure of the sol-gel derived material. 8 refs., 4 figs.

  2. Optical spectroscopy of trivalent chromium in sol-gel lithium niobate

    SciTech Connect

    Krebs, J.K.; Happek, U.

    2005-12-19

    We report on the characterization of sol-gel derived lithium niobate via trivalent chromium probe ions, a study that is motivated by recent reports on the synthesis of high quality sol-gel lithium niobate (LiNbO{sub 3}). In order to assess the quality of sol-gel derived LiNbO{sub 3}, we incorporate Cr{sup 3+} during the hydrolysis stage of the sol-gel process. A comparison of the Cr{sup 3+} emission and photoexcitation data on both sol-gel and melt-grown LiNbO{sub 3} shows that the sol-gel derived material is highly stoichiometric.

  3. Luminescence properties of Cr-doped silica sol gel glasses

    NASA Astrophysics Data System (ADS)

    Strek, Wieslaw; Lukowiak, Edward; Deren, Przemyslaw J.; Maruszewski, K.; Trabjerg, Ib; Koepke, Czeslaw; Malashkevich, G. E.; Gaishun, Vladimir E.

    1997-11-01

    The emission of Cr-doped silica glass obtained by the sol- gel method is characterized by an orange broad band with a maximum at 610 nm. Its nature is examined by the absorption, excited state absorption, emission, excitation and lifetime measurements over a wide range of temperature and for different concentration of Cr ions. Our measurement show that in spite of fact that the absorption properties of Cr- doped silica sol-gel glass are predominantly associated with Cr4+ centers, the observed in visible range emission can be assigned neither to Cr3+ nor to Cr4+ ions. The discussion of the nature of observed emission was carried out for all possible valencies of the Cr ions. In conclusion is suggested that it may be ascribed to the transitions on the monovalent Cr1+ ion. The reducing agents occurring during the sol-gel process and leading to lowering the Cr valency are discussed.

  4. Modification of sol-gel coatings by ion implantation

    NASA Astrophysics Data System (ADS)

    Hirashima, Hiroshi; Adachi, Kenji; Imai, Hiroaki

    1994-10-01

    In order to densify and to improve the physical properties, TiO2 sol-gel films, about 100 nm in thickness, on silica glass or silicon wafer were implanted with Ar+ or B+ ions. The refractive index of the as-dried films increased and the IR absorption band of OH disappeared after Ar+ implantation. Dehydration and densification of sol-gel films were enhanced by Ar+ implantation. On the other hand, the refractive index and the thickness of the films hardly changed by B+ implantation. However, IR absorption bands attributed to B-O bond were observed after B+ implantation. This suggests that sol-gel films could be chemically modified by ion implantation with reactive ion species.

  5. Optical Sensors for Biomolecules Using Nanoporous Sol-Gel Materials

    NASA Technical Reports Server (NTRS)

    Fang, Jonathan; Zhou, Jing C.; Lan, Esther H.; Dunn, Bruce; Gillman, Patricia L.; Smith, Scott M.

    2004-01-01

    An important consideration for space missions to Mars is the ability to detect biosignatures. Solid-state sensing elements for optical detection of biological entities are possible using sol-gel based biologically active materials. We have used these materials as optical sensing elements in a variety of bioassays, including immunoassays and enzyme assays. By immobilizing an appropriate biomolecule in the sol-gel sensing element, we have successfully detected analytes such as amino acids and hormones. In the case of the amino acid glutamate, the enzyme glutamate dehydrogenase was the immobilized molecule, whereas in the case of the hormone cortisol, an anti-cortisol antibody was immobilized in the sensing element. In this previous work with immobilized enzymes and antibodies, excellent sensitivity and specificity were demonstrated in a variety of formats including bulk materials, thin films and fibers. We believe that the sol-gel approach is an attractive platform for bioastronautics sensing applications because of the ability to detect a wide range of entities such as amino acids, fatty acids, hopanes, porphyrins, etc. The sol-gel approach produces an optically transparent 3D silica matrix that forms around the biomolecule of interest, thus stabilizing its structure and functionality while allowing for optical detection. This encapsulation process protects the biomolecule and leads to a more "rugged" sensor. The nanoporous structure of the sol-gel matrix allows diffusion of small target molecules but keeps larger, biomolecules immobilized in the pores. We are currently developing these biologically active sol-gel materials into small portable devices for on-orbit cortisol detection

  6. Silica scintillating materials prepared by sol-gel methods

    SciTech Connect

    Werst, D.W.; Sauer, M.C. Jr.; Cromack, K.R.; Lin, Y.; Tartakovsky, E.A.; Trifunac, A.D.

    1993-12-31

    Silica was investigated as a rad-hard alternative to organic polymer hosts for organic scintillators. Silica sol-gels were prepared by hydrolysis of tetramethoxysilane in alcohol solutions. organic dyes were incorporated into the gels by dissolving in methanol at the sol stage of gel formation. The silica sol-gel matrix is very rad-hard. The radiation stability of silica scintillators prepared by this method is dye-limited. Transient radioluminescence was measured following excitation with 30 ps pulses of 20 MeV electrons.

  7. Sol-gel processing with inorganic metal salt precursors

    DOEpatents

    Hu, Zhong-Cheng

    2004-10-19

    Methods for sol-gel processing that generally involve mixing together an inorganic metal salt, water, and a water miscible alcohol or other organic solvent, at room temperature with a macromolecular dispersant material, such as hydroxypropyl cellulose (HPC) added. The resulting homogenous solution is incubated at a desired temperature and time to result in a desired product. The methods enable production of high quality sols and gels at lower temperatures than standard methods. The methods enable production of nanosize sols from inorganic metal salts. The methods offer sol-gel processing from inorganic metal salts.

  8. Sol-gel derived PZT films doped with vanadium pentoxide

    SciTech Connect

    Shen Hongfang; Guo Qing; Zhao Zhiman; Cao Guozhong

    2009-11-15

    The present research investigated the sol-gel preparation, dielectric and ferroelectric properties of PZT films doped with 5 mol% vanadium oxide. Stable PZTV sols can be readily formed, and homogeneous, micrometer thick and pinhole-free PZTV films were obtained by using spin coating followed with rapid annealing. The X-ray diffraction patterns revealed that no parasitic or secondary phases were formed in the sol-gel PZT films with the addition of vanadium oxide. The material doped with vanadium pentoxide showed enhanced dielectric constant and remanent polarization with reduced loss tangent and coercive field.

  9. Stoichiometric hydroxyapatite obtained by precipitation and sol gel processes

    NASA Astrophysics Data System (ADS)

    Vazquez, C. G.; Barba, C. P.; Munguia, N.

    2005-06-01

    Three methods for obtaining hydroxiapatite (HA) are described. HA is a very interesting ceramic because of its many medical applications. The first two precipitation methods start from calcium and phosphorous compounds, whereas the third method is a sol-gel process that uses alcoxides. The products were characterized and compared. The observed differences are important for practical applications.

  10. Sol-Gel Matrices For Direct Colorimetric Detection Of Analytes

    DOEpatents

    Charych, Deborah H.; Sasaki, Darryl; Yamanaka, Stacey

    2002-11-26

    The present invention relates to methods and compositions for the direct detection of analytes using color changes that occur in immobilized biopolymeric material in response to selective binding of analytes to their surface. In particular, the present invention provides methods and compositions related to the encapsulation of biopolymeric material into metal oxide glass using the sol-gel method.

  11. Sol-gel derived ? thin films on GaAs

    NASA Astrophysics Data System (ADS)

    Arscott, S.; Smith, N.; Kurchania, R.; Milne, S. J.; Miles, R. E.

    1998-02-01

    Sol-gel derived thin films of lead zirconate titanate (PZT) have been fabricated on a platinized GaAs substrate using a propane-1,3-diol based sol-gel route. PZT can be used as the piezoelectric component in bulk acoustic wave devices for monolithic microwave integrated circuit applications. A 100 nm silicon nitride buffer layer was deposited onto the GaAs by plasma-enhanced chemical vapour deposition in order to prevent gallium and arsenic outdiffusion during film fabrication. Rapid thermal processing (RTP) techniques were employed to decompose thermally the sol-gel layer to PZT in a further effort to minimize problems of gallium and arsenic outdiffusion. Adhesion between the bottom electrode and substrate was found to improve when an intermediate titanium layer deposited between the platinum and silicon nitride was oxidized prior to deposition of the platinum electrode. A crystalline PZT film was produced on the 0268-1242/13/2/016/img9 substrate configuration by firing the sol-gel coating at 0268-1242/13/2/016/img10C for 10 s using RTP. A single deposition of sol resulted in a film having a thickness of 0268-1242/13/2/016/img11. Ferroelectric hysteresis measurements yielded average values of remanant polarization and coercive field of 0268-1242/13/2/016/img12 and 0268-1242/13/2/016/img13 respectively.

  12. Process of forming a sol-gel/metal hydride composite

    DOEpatents

    Congdon, James W.

    2009-03-17

    An external gelation process is described which produces granules of metal hydride particles contained within a sol-gel matrix. The resulting granules are dimensionally stable and are useful for applications such as hydrogen separation and hydrogen purification. An additional coating technique for strengthening the granules is also provided.

  13. ARSENIC REMOVAL USING SOL-GEL SYNTHESIZED TITANIUM DIOXIDE NANOPARTICLES

    EPA Science Inventory

    In this study, the effectiveness of TiO2 nanoparticles in arsenic adsorption was examined. TiO2 particles (LS) were synthesized via sol-gel techniques and characterized for their crystallinity, surface area and pore volume. Batch adsorption studies were perf...

  14. Safe and Environmentally Acceptable Sol-gel Derived Pyrophoric Pyrotechnics

    SciTech Connect

    Simspon, R L; Satcher, J H; Gash, A

    2004-06-10

    It was demonstrated that highly porous sol-gel derived iron (III) oxide materials could be reduced to sub-micron-sized metallic iron by heating the materials to intermediate temperatures in a hydrogen atmosphere. Through a large number of experiments complete reduction of the sol-gel based materials was realized with a variety of hydrogen-based atmospheres (25-100% H{sub 2} in Ar, N{sub 2}, CO{sub 2}, or CO) at intermediate temperatures (350 C to 700 C). All of the resulting sol-gel-derived metallic iron powders were ignitable by thermal methods, however none were pyrophoric. For comparison several types of commercial micron sized iron oxides Fe2O3, and NANOCAT were also reduced under identical conditions. All resulting materials were characterized by thermal gravimetric analysis (TGA), differential thermal analysis (DTA), powder X-ray diffraction (PXRD), as well as scanning and transmission electron microscopies (SEM and TEM). In addition, the reduction of the iron oxide materials was monitored by TGA. In general the sol-gel materials were more rapidly reduced to metallic iron and the resulting iron powders had smaller particle sizes and were more easily oxidized than the metallic powders derived from the micron sized materials. The lack of pyrophoricity of the smaller fine metallic powders was unexpected and may in part be due to impurities in the materials that create a passivation layer on the iron. Several recommendations for future study directions on this project are detailed.

  15. Sol-gel matrices for direct colorimetric detection of analytes

    DOEpatents

    Charych, Deborah H.; Sasaki, Darryl; Yamanaka, Stacey

    2000-01-01

    The present invention relates to methods and compositions for the direct detection of analytes using color changes that occur in immobilized biopolymeric material in response to selective binding of analytes to their surface. In particular, the present invention provides methods and compositions related to the encapsulation of biopolymeric material into metal oxide glass using the sol-gel method.

  16. New insights into uranium (VI) sol-gel processing

    SciTech Connect

    King, C.M.; Thompson, M.C.; Buchanan, B.R. ); King, R.B. . Dept. of Chemistry); Garber, A.R. . Dept. of Chemistry)

    1990-01-01

    Nuclear Magnetic Resonance (NMR) investigations on the Oak Ridge National Laboratory process for sol-gel synthesis of microspherical nuclear fuel (UO{sub 2}), has been extremely useful in sorting out the chemical mechanism in the sol-gel steps. {sup 13}C, {sup 15}N, and {sup 1}H NMR studies on the HMTA gelation agent (Hexamethylene tetramine, C{sub 6}H{sub 12}N{sub 4}) has revealed near quantitative stability of this adamantane-like compound in the sol-gel process, contrary to its historical role as an ammonia source for gelation from the worldwide technical literature. {sup 17}O NMR of uranyl (UO{sub 2}{sup ++}) hydrolysis fragments produced in colloidal sols has revealed the selective formation of a uranyl trimer, ((UO{sub 2}){sub 3}({mu}{sub 3}-O)({mu}{sub 2}-OH){sub 3}){sup +}, induced by basic hydrolysis with the HMTA gelation agent. Spectroscopic results will be presented to illustrate that trimer condensation occurs during sol-gel processing leading to layered polyanionic hydrous uranium oxides in which HMTAH{sup +} is occluded as an intercalation'' cation. Subsequent sol-gel processing of microspheres by ammonia washing results in in-situ exchange and formation of a layered hydrous ammonium uranate with a proposed structural formula of (NH{sub 4}){sub 2} ((UO{sub 2}){sub 8} O{sub 4} (OH){sub 10}) {center dot} 8H{sub 2}O. This compound is the precursor to sintered UO{sub 2} ceramic fuel. 23 refs., 10 figs.

  17. : comparison between magnetron sputtering and sol-gel synthesis

    NASA Astrophysics Data System (ADS)

    Cosentino, S.; Knebel, S.; Mirabella, S.; Gibilisco, S.; Simone, F.; Bracht, H.; Wilde, G.; Terrasi, A.

    2014-07-01

    SiGeO films have been produced by a sol-gel derived approach and by magnetron sputtering deposition. Post-thermal annealing of SiGeO films in forming gas or nitrogen atmosphere between 600 and 900 °C ensured the phase separation of the SiGeO films and synthesis and growth of Ge nanoclusters (NCs) embedded in SiO2. Rutherford backscattering spectrometry analysis evidenced a similar Ge concentration (~12 %), but a different Ge out-diffusion after annealing between the two types of techniques with the formation of a pure SiO2 surface layer (~30 nm thick) in sol-gel samples. The thermal evolution of Ge NCs has been followed by transmission electron microscopy and Raman analysis. In both samples, Ge NCs form with similar size increase (from ~3 up to ~7 nm) and with a concomitant amorphous to crystalline transition in the 600-800 °C temperature range. Despite a similar Ge concentration, a significant lower NCs density is observed in sol-gel samples attributed to an incomplete precipitation of Ge, which probably remains still dispersed in the matrix. The optical absorption of Ge NCs has been measured by spectrophotometry analyses. Ge NCs produced by the sol-gel method evidence an optical band gap of around 2 eV, larger than that of NCs produced by sputtering (~1.5 eV). These data are presented and discussed also considering the promising implications of a low-cost sol-gel based technique towards the fabrication of light harvesting devices based on Ge nanostructures.

  18. Tunable Optical Properties of Metal Nanoparticle Sol-Gel Composites

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Snow, Lanee A.; Sibille, Laurent; Ignont, Erica

    2001-01-01

    We demonstrate that the linear and non-linear optical properties of sol-gels containing metal nanoparticles are highly tunable with porosity. Moreover, we extend the technique of immersion spectroscopy to inhomogeneous hosts, such as aerogels, and determine rigorous bounds for the average fractional composition of each component, i.e., the porosity of the aerogel, or equivalently, for these materials, the catalytic dispersion. Sol-gels containing noble metal nanoparticles were fabricated and a significant blue-shift in the surface plasmon resonance (SPR) was observed upon formation of an aerogel, as a result of the decrease in the dielectric constant of the matrix upon supercritical extraction of the solvent. However, as a result of chemical interface damping and aggregation this blue-shift does not strictly obey standard effective medium theories. Mitigation of these complications is achieved by avoiding the use of alcohol and by annealing the samples in a reducing atmosphere.

  19. Sol-gel synthesis of monolithic materials with hierarchical porosity.

    PubMed

    Feinle, A; Elsaesser, M S; Hüsing, N

    2016-06-13

    The development of synthetic routes to hierarchically organized porous materials containing multiple, discrete sets of pores having disparate length scales is of high interest for a wide range of applications. One possible route towards the formation of multilevel porous architectures relies on the processing of condensable, network forming precursors (sol-gel processes) in the presence of molecular porogens, lyotropic mesophases, supramolecular architectures, emulsions, organic polymers, or ice. In this review the focus is on sol-gel processing of inorganic and organic precursors with concurrently occurring microscopic and/or macroscopic phase separation for the formation of self-supporting monoliths. The potential and the limitations of the solution-based approaches is presented with special emphasis to recent examples of hierarchically organized silica, metal oxides and phosphates as well as carbon monoliths. PMID:26563577

  20. AOTF-based remote sensor with sol-gel probe

    SciTech Connect

    Volkan, M.; Lee, Y.; Vo-Dinh, T.

    1999-11-01

    The authors report the development and application of a sensor using acousto-optic tunable filter (AOTF) and sol-gel probe technology. A pH-sensitive probe is used as a model sensing system with dextran derivatives of pH sensitive dyes doped into sol-gel thin films. They used a unique combination of pH-sensitive and pH-insensitive dual-label dye system. For optimization studies, the performance of these films as a pH sensing probe was evaluated using synchronous fluorescence detection. The performance of the prototype AOTF-based monitor using a low-power argon laser as an ion excitation source was evaluated.

  1. Optical detection of parasitic protozoa in sol-gel matrices

    NASA Astrophysics Data System (ADS)

    Livage, Jacques; Barreau, J. Y.; Da Costa, J. M.; Desportes, I.

    1994-10-01

    Whole cell parasitic protozoa have been entrapped within sol-gel porous silica matrices. Stationary phase promastigote cells of Leishmania donovani infantum are mixed with a silica sol before gelation occurs. They remain trapped within the growing oxide network and their cellular organization appears to be well preserved. Moreover protozoa retain their antigenic properties in the porous gel. They are still able to detect parasite specific antibodies in serum samples from infected patients via an enzyme linked immunosorbent assay (ELISA). Antigen- antibody associations occurring in the gel are optically detected via the reactions of a peroxidase conjugate with ortho-phenylenediamine leading to the formation of a yellow coloration. A clear-cut difference in optical density is measured between positive and negative sera. Such an entrapment of antigenic species into porous sol-gel matrices avoids the main problems due to non specific binding and could be advantageously used in diagnostic kits.

  2. Nanostructured energetic materials using sol-gel methodologies

    SciTech Connect

    Tillotson, T M; Simpson, R L; Hrubesh, L W; Gash, A E; Thomas, I M; Poco, J F

    2000-09-27

    The fundamental differences between energetic composites and energetic materials made from a monomolecular approach are the energy density attainable and the energy release rates. For the past 4 years, we have been exploiting sol-gel chemistry as a route to process energetic materials on a microstructural scale. At the last ISA conference, we described four specific sol-gel approaches to fabricating energetic materials and presented our early work and results on two methods - solution crystallization and powder addition. Here, we detail our work on a third approach, energetic nanocomposites. Synthesis of thermitic types of energetic nanocomposites are presented using transition and main group metal-oxide skeletons. Results on characterization of structure and performance will also be given.

  3. Nanostructured Energetci Matreials with sol-gel Chemistry

    SciTech Connect

    Gash, A; Satcher, J; Simpson, R; Clapsaddle, B

    2003-11-18

    The utilization of nanomaterials in the synthesis and processing of energetic materials (i.e., pyrotechnics, explosives, and propellants) is a relatively new area of science and technology. Previous energetic nanomaterials have displayed new and potentially beneficial properties, relative to their conventional analogs. Unfortunately some of the energetic nanomaterials are difficult and or expensive to produce. At LLNL we are studying the application of sol-gel chemical methodology to the synthesis of energetic nanomaterials components and their formulation into energetic nanocomposites. Here sol-gel synthesis and formulation techniques are used to prepare Fe{sub 2}O{sub 3}/Al pyrotechnic nanocomposites. The preliminary characterization of their thermal properties and the degree of mixing between fuel and oxidizer phases is contrasted with that of a conventional pyrotechnic mixture.

  4. Sol-Gel Thin Films for Plasmonic Gas Sensors

    PubMed Central

    Della Gaspera, Enrico; Martucci, Alessandro

    2015-01-01

    Plasmonic gas sensors are optical sensors that use localized surface plasmons or extended surface plasmons as transducing platform. Surface plasmons are very sensitive to dielectric variations of the environment or to electron exchange, and these effects have been exploited for the realization of sensitive gas sensors. In this paper, we review our research work of the last few years on the synthesis and the gas sensing properties of sol-gel based nanomaterials for plasmonic sensors. PMID:26184216

  5. Inhomogeneous distribution of organic molecules adsorbed in sol gel glasses

    NASA Astrophysics Data System (ADS)

    Meneses-Nava, M. A.; Chávez-Cerda, S.; Sánchez-Villicaña, V.; Sánchez-Mondragón, J. J.; King, T. A.

    1999-09-01

    The effects of the porous matrix upon the radiative characteristics of quinine sulphate doped sol-gel glasses are investigated. The broadenings of the absorption and fluorescence spectra are explained by the attachment of the molecules on distorted sites or in a non-planar fashion, creating an inhomogeneous distribution of adsorbed molecules. For this reason, each emitting center relaxes with its own characteristics. This inhomogeneous distribution is also supported by the non-exponential and the wavelength dependence of the fluorescence decay.

  6. New developments for sol-gel film and fiber processing

    SciTech Connect

    Hurd, A.J.

    1995-03-01

    New insights into the development of microstructure in sol-gel films have recently been revealed by several diagnostic techniques, including imaging ellipsometry, {open_quotes}chemical imaging{close_quotes} by fluorescent tracers, light scattering from capillary waves, and finite-element modeling. The evolution of porosity during the continuous transition from dilute sol to porous solid in restricted geometries such as films and fibers is becoming clearer through fundamental understanding of evaporation dynamics and capillarity.

  7. Synthesis of zirconium oxide nanoparticle by sol-gel technique

    SciTech Connect

    Lim, H. S.; Ahmad, A.; Hamzah, H.

    2013-11-27

    Zirconium oxide nanoparticle is synthesized using sol-gel technique. Various mole ratio of ammonia solution and nitric acid relative to zirconium propoxide is added in the reaction to study the effect on the crystallinity and particle size on zirconium oxide particle. Zirconium oxide synthesized with nitric acid have the smallest particle size under FESEM image and show the increasing formation of crystalline tetragonal phase under XRD diffractogram.

  8. Piezoelectric Sol-Gel Composite Film Fabrication by Stencil Printing.

    PubMed

    Kaneko, Tsukasa; Iwata, Kazuki; Kobayashi, Makiko

    2015-09-01

    Piezoelectric films using sol-gel composites could be useful as ultrasonic transducers in various industrial fields. For sol-gel composite film fabrication, the spray coating technique has been used often because of its adaptability for various substrates. However, the spray technique requires multiple spray coating processes and heating processes and this is an issue of concern, especially for on-site fabrication in controlled areas. Stencil printing has been developed to solve this issue because this method can be used to fabricate thick sol-gel composite films with one coating process. In this study, PbTiO3 (PT)/Pb(Zr,Ti)O3 (PZT) films, PZT/PZT films, and Bi4Ti3O12 (BiT)/PZT films were fabricated by stencil printing, and PT/ PZT films were also fabricated using the spray technique. After fabrication, a thermal cycle test was performed for the samples to compare their ultrasonic performance. The sensitivity and signal-to-noise-ratio (SNR) of the ultrasonic response of PT/PZT fabricated by stencil printing were equivalent to those of PT/PZT fabricated by the spray technique, and better than those of other samples between room temperature and 300°C. Therefore, PT/PZT films fabricated by stencil printing could be a good candidate for nondestructive testing (NDT) ultrasonic transducers from room temperature to 300°C. PMID:26688872

  9. Sol-gel Technology and Advanced Electrochemical Energy Storage Materials

    NASA Technical Reports Server (NTRS)

    Chu, Chung-tse; Zheng, Haixing

    1996-01-01

    Advanced materials play an important role in the development of electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. The sol-gel process is a versatile solution for use in the fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. This processing technique is particularly useful in producing porous materials with high surface area and low density, two of the most desirable characteristics for electrode materials. In addition,the porous surface of gels can be modified chemically to create tailored surface properties, and inorganic/organic micro-composites can be prepared for improved material performance device fabrication. Applications of several sol-gel derived electrode materials in different energy storage devices are illustrated in this paper. V2O5 gels are shown to be a promising cathode material for solid state lithium batteries. Carbon aerogels, amorphous RuO2 gels and sol-gel derived hafnium compounds have been studied as electrode materials for high energy density and high power density electrochemical capacitors.

  10. Sol-gel-derived thick-film amperometric immunosensors.

    PubMed

    Wang, J; Pamidi, P V; Rogers, K R

    1998-03-15

    Sol-gel processing is used for the first time for the preparation of electrochemical immunosensors. One-step sensor fabrication, based on the coupling of sol-gel and screen-printing technologies, is employed. A low-temperature cured ink is prepared by dispersion of rabbit immunoglobulin G (RIgG), graphite powder, and a binder in the sol-gel solution. The enzyme-labeled antibody can readily diffuse toward the encapsulated antigen, which retains its binding properties, and the association reaction is easily detected at the dispersed graphite surface. Use of anti-RIgG labeled with alkaline phosphatase, naphthyl phosphate as the substrate, and amperometric detection at +400 mV (vs Ag/AgCl) results in a low detection limit of 5 ng/mL (32 pM) for the solution antigen. Tailoring the porosity of the ceramic-carbon matrix can be used for tuning the assay performance. The high sensitivity, low cost, durability, and simplicity of the new single-use immunosensors make them well suited for various on-site applications. PMID:9530007

  11. Sol-gel thin films for photonic application

    NASA Astrophysics Data System (ADS)

    Jasieniak, Jacek J.; Martucci, Alessandro

    2012-06-01

    For the fabrication of photonic devices the sol-gel technique is a potentially lucrative alternative to methods such as physical vapor or chemical vapor deposition because of its solution-processability, low cost and relative ease of production. In this work we harness this potential by developing based photonic devices which incorporate highly luminescent CdSe@ZnS core-shell semiconductor quantum dots (QDs) doped within inorganic (TiO2, ZrO2) or hybrid organic-inorganic sol-gel films. As a pre-requisite to the formation of such devices, luminescent waveguides emitting between green and red have been obtained and their optical properties have been characterized. The photochemical stability of these waveguides was found to highly dependent on the exact sol-gel material used. QDs:Titania based composites were found to be inherently photo-unstable due to photoelectron injection into the bulk matrix and subsequent nanocrystal oxidation. In comparison, zirconia composites were significantly more robust with high photoluminescence retained up to annealing temperatures of 300 °C. Despite this difference in photo-chemical stability, both titania and zirconia composite waveguides exhibited amplified stimulated emission (ASE) with one-photon and two-photon optical pumping, however only zirconia based waveguides exhibited long term photostability. This Zirconia based films have been used for the realization of distributed feedback lasers and Bragg micro-cavities.

  12. The Influence of Microgravity on Silica Sol-Gel Formation

    NASA Technical Reports Server (NTRS)

    Sibille, L.; Smith, D. D.; Cronise, R.; Hunt, A. J.; Wolfe, D. B.; Snow, L. A.; Oldenberg, S.; Halas, N.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We discuss space-flight experiments involving the growth of silica particles and gels. The effect of microgravity on the growth of silica particles via the sol-gel route is profound. In four different recipes spanning a large range of the parameter space that typically produces silica nanoparticles in unit-gravity, low-density gel structures were instead formed in microgravity. The particles that did form were generally smaller and more polydisperse than those grown on the ground. These observations suggest that microgravity reduces the particle growth rate, allowing unincorporated species to form aggregates and ultimately gel. Hence microgravity favors the formation of more rarefied structures, providing a bias towards diffusion-limited cluster-cluster aggregation. These results further suggest that in unit gravity, fluid flows and sedimentation can significantly perturb sol-gel substructures prior to gelation and these deleterious perturbations may be "frozen" into the resulting microstructure. Hence, sol-gel pores may be expected to be smaller, more uniform, and less rough when formed in microgravity.

  13. Sol-gel processes. January 1970-September 1989 (Citations from the NTIS data base). Report for January 1970-September 1989

    SciTech Connect

    Not Available

    1989-09-01

    This bibliography contains citations concerning the development and utilization of sol-gel processes and techniques. Topics include antireflective coatings, studies of sol-gel transitions, sol-gel synthesis and polymerization, sol-gel derived thin films and glasses, and sol-gel production of microspheres. Applications in nuclear waste management, nuclear-fuel manufacturing, glass optical waveguide development, and solar-energy collection are presented. (This updated bibliography contains 179 citations, 39 of which are new entries to the previous edition.)

  14. Sol-gel processes. January 1970-September 1988 (Citations from the NTIS database). Report for January 1970-September 1988

    SciTech Connect

    Not Available

    1988-09-01

    This bibliography contains citations concerning the development and utilization of sol-gel processes and techniques. Topics include antireflective coatings, studies of sol-gel transitions, sol-gel synthesis and polymerization, sol-gel derived thin films and glasses, and sol-gel production of microspheres. Applications in nuclear waste management, nuclear fuel manufacturing, glass optical waveguide development, and solar energy collection are presented. (This updated bibliography contains 140 citations, 28 of which are new entries to the previous edition.)

  15. Synthesis of phthalocyanine doped sol-gel materials

    NASA Technical Reports Server (NTRS)

    Dunn, Bruce

    1993-01-01

    The synthesis of sol-gel silica materials doped with three different types of metallophthalocyanines has been studied. Homogeneous materials of good optical quality were prepared and the first optical limiting measurements of dyes in sol-gel hosts were carried out. The properties of these solid state limiters are similar to limiters based on phthalocyanine (Pc) in solution. Sol-gel silica materials containing copper, tin and germanium phthalocyanines were investigated. The initial step in all cases was to prepare silica sols by the sonogel method using tetramethoxy silane (TMOS), HCl and distilled water. Thereafter, the synthesis depended upon the specific Pc and its solubility characteristics. Copper phthalocyanine tetrasulfonic acid tetra sodium salt (CuPc4S) is soluble in water and various doping levels (1 x 10 (exp -4) M to 1 x 10 (exp -5) M) were added to the sol. The group IV Pc's, SnPc(OSi(n-hexyl)3)2 and GePc(OSi(n-hexyl)3)2, are insoluble in water and the process was changed accordingly. In these cases, the compounds were dissolved in THF and then added to the sol. The Pc concentration in the sol was 2 x 10(exp -5)M. The samples were then aged and dried in the standard method of making xerogel monoliths. Comparative nanosecond optical limiting experiments were performed on silica xerogels that were doped with the different metallophthalocyanines. The ratio of the net excited state absorption cross section (sigma(sub e)) to the ground state cross section (sigma(sub g)) is an important figure of merit that is used to characterize these materials. By this standard the SnPc sample exhibits the best limiting for the Pc doped sol-gel materials. Its cross section ratio of 19 compares favorably with the value of 22 that was measured in toluene. The GePc materials appear to not be as useful as those containing SnPc. The GePc doped solids exhibit a higher onset energy (2.5 mj and lower cross section ratio, 7. The CuPc4S sol-gel material has a still lower cross

  16. Sol-gel kinetics: /sup 29/SI NMR and a statistical reaction model

    SciTech Connect

    Assink, R.A.; Kay, B.D.

    1988-01-01

    Sol-gel processes allow one to prepare novel materials at low processing temperatures. A detailed understanding of the chemical kinetics of such systems is important to fully exploit the unique features of sol-gel processing. This paper describes a systematic approach to the study of sol-gel kinetics which employs /sup 29/Si NMR spectroscopy and kinetic modelling techniques. 2 figs., 1 tab.

  17. Modified sol-gel coatings for biotechnological applications

    NASA Astrophysics Data System (ADS)

    Beganskiene, A.; Raudonis, R.; Zemljic Jokhadar, S.; Batista, U.; Kareiva, A.

    2007-12-01

    The modified sol-gel derived silica coatings were prepared and characterized. The amino and methyl groups were introduced onto the colloidal silica. The silica coatings with different wettability properties: coloidal silica (water contact angle 17°), polysiloxane (61°), methyl-modified (158° and 46°) coatings samples were tested for CaCo-2 cells proliferation. Methyl-modified coating (46°) proved to be the best substrate for cell proliferation. CaCo-2 cell proliferation two days post seeding was significantly faster on almost laminine, fibronectin and collagen-1 coated samples compared to corresponding controls.

  18. Sol Gel-Derived SBA-16 Mesoporous Material

    PubMed Central

    Rivera-Muñoz, Eric M.; Huirache-Acuña, Rafael

    2010-01-01

    The aim of this article is to review current knowledge related to the synthesis and characterization of sol gel-derived SBA-16 mesoporous silicas, as well as a review of the state of the art in this issue, to take stock of knowledge about current and future applications. The ease of the method of preparation, the orderly structure, size and shape of their pores and control, all these achievable through simple changes in the method of synthesis, makes SBA-16 a very versatile material, potentially applicable in many areas of science and molecular engineering of materials. PMID:20957080

  19. Uncooled microbolometer IR FPA based on sol-gel VOx

    NASA Astrophysics Data System (ADS)

    Ovsyuk, V. N.; Shashkin, V. V.; Dem'yanenko, M. A.; Fomin, B. I.; Vasil'ieva, L. L.; Soloviev, A. P.

    2005-06-01

    The technology of high-quality uncooled focal plane arrays (FPA) fabrication has been developed. Simple and cheap sol-gel technology of thermosensitive vanadium oxide layers preparation is underlain in its basis. Uncooled 160x120 and 320x240 FPA for 8-14 microns spectral range have been fabricated. The noise equivalent temperature difference less than 8OmK has been achieved at frame rate 60 Hz for 160x120 FPA and at use of optics with 1/1 relative aperture.

  20. Guided wave measurements for characterization of sol-gel layers

    NASA Astrophysics Data System (ADS)

    Piombini, Hervé; Dieudonne, Xavier; Wood, Thomas; Flory, François

    2013-09-01

    Sol-gel applications require very thick layers with a good understanding of the interfaces. To address this problem, we have installed at CEA Le Ripault a characterization bench using guided waves with assistance from the IM2NP lab in Marseille. This bench allows us to measure the thickness and the refractive index and determine the extinction coefficient of a thin layer. We can distinguish losses at interfaces from those in the bulk according to the chosen propagation mode. This allows us to know if we can stack elementary layers to make thick layers without incurring problems.

  1. Durable hydrophobic sol-gel finishing for textiles

    NASA Astrophysics Data System (ADS)

    Vihodceva, S.; Kukle, S.; Bitenieks, J.

    2015-03-01

    The surface of cotton textile was modified to create a water-repellent finishing by depositing a modifying coatings using the sol-gel technique. Treated textiles evaluated using scanning electron microscopy, X-Ray powder diffraction (XRD). The wettability of treated fabrics was characterized by water contact angle and drop test. The results showed that the cotton textile treated with 7.5 wt.% zinc acetate dihydrate sol showed excellent hydrophobic properties, water contact angle could reach 145°C without decreasing after 50 hydrothermal treatment cycles.

  2. Sol-gel hydroxyapatite coatings on stainless steel substrates.

    PubMed

    Liu, Dean-Mo; Yang, Quanzu; Troczynski, Tom

    2002-02-01

    Thin film hydroxyapatite deposits onto sandblasted 316L stainless steel substrates were prepared using water-based sol-gel technique recently developed in our lab. The coatings were annealed in air at 375 degrees C, 400 degrees C, and 500 degrees C. Phase formation, surface morphology, interfacial microstructure, and interfacial bonding strength of the coatings were investigated. Apatitic structure developed within the coatings while annealing at temperatures > or = 400 degrees C, while those heat-treated at 375 degrees C showed poor crystallinity. The coatings were dense and firmly attached to the underlying substrates, reaching an average bonding strength (as determined through the pull-out test) of 44 MPa. Nano-porous structure was found for the coatings annealed at 500 degrees C, believed to result from grain growth, and causing a slight decrease in the bonding strength. Surface microcracking, although not extensive, occurred after annealing at temperatures > or = 400 degrees C, and was linked to non-uniform thickness of the coating due to roughness of the substrate. A contraction of the coatings as a result of sintering, and phase transition from amorphous (or poor crystalline) to reasonably good crystalline apatite, may be responsible for the loss of structural integrity of the thicker sections of the coatings. It seems quite promising that a dense and adhesive apatite coating can be achieved through water-based sol gel technology after short-term annealing at around 400 degrees C in air. PMID:11771689

  3. Study of silica sol-gel materials for sensor development

    NASA Astrophysics Data System (ADS)

    Lei, Qiong

    Silica sol-gel is a transparent, highly porous silicon oxide glass made at room temperature by sol-gel process. The name of silica sol-gel comes from the observable physical phase transition from liquid sol to solid gel during its preparation. Silica sol-gel is chemically inert, thermally stable, and photostable, it can be fabricated into different desired shapes during or after gelation, and its porous structure allows encapsulation of guest molecules either before or after gelation while still retaining their functions and sensitivities to surrounding environments. All those distinctive features make silica sol-gel ideal for sensor development. Study of guest-host interactions in silica sol-gel is important for silica-based sensor development, because it helps to tailor local environments inside sol-gel matrix so that higher guest loading, longer shelf-life, higher sensitivity and faster response of silica gel based sensors could be achieved. We focused on pore surface modification of two different types of silica sol-gel by post-grafting method, and construction of stable silica hydrogel-like thin films for sensor development. By monitoring the mobility and photostability of rhodamine 6G (R6G) molecules in silica alcogel thin films through single molecule spectroscopy (SMS), the guest-host interactions altered by post-synthesis grafting were examined. While physical confinement remains the major factor that controls mobility in modified alcogels, both R6G mobility and photostability register discernable changes after surface charges are respectively reversed and neutralized by aminopropyltriethoxysilane (APTS) and methyltriethoxysilane (MTES) grafting. The change in R6G photostability was found to be more sensitive to surface grafting than that of mobility. In addition, silica film modification by 0.4% APTS is as efficient as that by pure MTES in lowering R6G photostability, which suggests that surface charge reversal is more effective than charge neutralization

  4. Novel thermochromism in silica sol-gel materials

    NASA Astrophysics Data System (ADS)

    Gardener, Martin; Perry, Carole C.

    2000-05-01

    In this contribution we provide evidence for thermochromic color changes unique to silica based materials formed at low temperatures by the sol-gel process. The materials formed have potential application as temperature sensitive light filters, visual temperature indicators, self-diagnostic labels for electronic devices and IR recording media. The dopants, diamine complexes of copper(II)/nickel(II) chloride, change from purple to green following heating to 100 degrees C and revert to purple on cooling in the atmosphere. This color change has been explained by the substitution of water molecules by chloride ions in the first coordination sphere of the metal ions. When the same compounds are incorporated into a silica sol-gel matrix under acidic conditions the gel-glasses may be pale green, dark green, yellow, olive-yellow, blue or brown depending on the metal ion chosen and the extent of thermal treatment. Studies on the complexes themselves and on granular silicas doped with some of the complexes are assisting us in understanding the molecular mechanisms that give rise to these color changes.

  5. Titanium (IV) sol-gel chemistry in varied gravity environments

    NASA Astrophysics Data System (ADS)

    Hales, Matthew; Martens, Wayde; Steinberg, Theodore

    Sol-gel synthesis in reduced gravity is a relatively new topic in the literature and further inves-tigation is essential to realise its potential and application to other sol-gel systems. The sol-gel technique has been successfully applied to the synthesis of silica systems of varying porosity for many diverse applications [1-5]. It is proposed that current methods for the synthesis of silica sol-gels in reduced gravity may be applied to titanium sol-gel processing in order to enhance desirable physical and chemical characteristics of the final materials. The physical and chemical formation mechanisms for titanium alkoxide based sol-gels, to date, is not fully understood. However, various authors [6-9] have described potential methods to control the hydrolysis and condensation reactions of titanium alkoxides through the use of chemical inhibitors. A preliminary study of the reaction kinetics of titanium alkoxide sol-gel reaction in normal gravity was undertaken in order to determine reactant mixtures suitable for further testing under varied gravity conditions of limited duration. Through the use of 1H Nuclear Magnetic Resonance spectroscopy (NMR) for structural analysis of precursor materials, Ultra-Violet-Visible spectroscopy (UV-VIS) and viscosity measurements, it was demonstrated that not only could the rate of the chemical reaction could be controlled, but directed linear chain growth within the resulting gel structure was achievable through the use of increased inhibitor concentrations. Two unique test systems have been fabricated to study the effects of varied gravity (reduced, normal, high) on the formation of titanium sol-gels. Whilst the first system is to be used in conjunction with the recently commissioned drop tower facility at Queensland University of Technology in Brisbane, Australia to produce reduced gravity conditions. The second system is a centrifuge capable of providing high gravity environments of up to 70 G's for extended periods of time

  6. Sol - Gel synthesis and characterization of magnesium peroxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Jaison, J.; Ashok raja, C.; Balakumar, S.; Chan, Y. S.

    2015-04-01

    Magnesium peroxide is an excellent source of oxygen in agriculture applications, for instance it is used in waste management as a material for soil bioremediation to remove contaminants from polluted underground water, biological wastes treatment to break down hydrocarbon, etc. In the present study, sol-gel synthesis of magnesium peroxide (MgO2) nanoparticles is reported. Magnesium peroxide is odourless; fine peroxide which releases oxygen when reacts with water. During the sol-gel synthesis, the magnesium malonate intermediate is formed which was then calcinated to obtain MgO2 nanoparticles. The synthesized nanoparticles were characterized using Thermo gravimetric -Differential Thermal Analysis (TG- DTA), X-Ray Diffraction studies (XRD) and High Resolution Transmission Electron Microscope (HRTEM). Our study provides a clear insight that the formation of magnesium malonate during the synthesis was due to the reaction between magnesium acetate, oxalic acid and ethanol. In our study, we can conclude that the calcination temperature has a strong influence on particle size, morphology, monodispersity and the chemistry of the particles.

  7. Sol-gel-fluorination synthesis of amorphous magnesium fluoride

    SciTech Connect

    Krishna Murthy, J.; Gross, Udo; Ruediger, Stephan; Kemnitz, Erhard . E-mail: erhard.kemnitz@chemie.hu-berlin.de; Winfield, John M.

    2006-03-15

    The sol-gel fluorination process is discussed for the reaction of magnesium alkoxides with HF in non-aqueous solvents to give X-ray amorphous nano-sized magnesium fluoride with high surface areas in the range of 150-350 m{sup 2}/g (HS-MgF{sub 2}). The H2 type hysteresis of nitrogen adsorption-desorption BET-isotherms is indicative for mesoporous solids. A highly distorted structure causes quite high Lewis acidity, shown by NH{sub 3} temperature-programmed desorption (NH{sub 3}-TPD) and catalytic test reactions. XPS data of amorphous and conventionally crystalline MgF{sub 2} are compared, both show octahedral coordination at the metal site. Thermal analysis, F-MAS NMR- and IR-spectroscopy give information on composition and structure of the precursor intermediate as well as of the final metal fluoride. The preparation of complex fluorides, M{sup +}MgF{sub 3} {sup -}, by the sol-gel route is reported. From the magnesium fluoride gel of the above process thin films for optical application are obtained by, e.g., spin coating.

  8. Granulation of sol-gel-derived nanostructured alumina

    SciTech Connect

    Deng, S.G.; Lin, Y.S.

    1997-02-01

    A sol-gel granulation process was developed to prepare porous nanostructured {gamma}-alumina granules as supports for catalysts and adsorbents. The process, which starts with an aqueous sol of gelatinous boehmite, involves droplet formation, gelation in paraffin oil, conditioning in ammonia solution, and drying and calcination in air under controlled conditions. The {gamma}-Al{sub 2}O{sub 3} granules prepared are 1--3 mm-dia. spherical particles with large surface area (380 m{sup 2}/g) and pore volume (0.5 cm{sup 3}/g), uniform pore-size distribution (20--60 {angstrom}), and controllable average pore size (35 {angstrom}). These sol-gel-derived granules have excellent mechanical properties with crush strength (>100 N per granule) and attrition resistance (<0.01 wt.%/h), much better than the commercial alumina and zeolite granules. Supported CuO sorbents were prepared on these granules for SO{sub 2} removal applications. The alumina-supported CuO sorbents contain higher loading of well-dispersed CuO and better sulfation properties than similar sorbents reported in the literature.

  9. Nanostructured energetic materials derived from sol-gel chemistry

    SciTech Connect

    Simpson, R L; Tillotson, T M; Hrubesh, L W; Gash, A E

    2000-03-15

    Initiation and detonation properties are dramatically affected by an energetic material's microstructural properties. Sol-gel chemistry allows intimacy of mixing to be controlled and dramatically improved over existing methodologies. One material goal is to create very high power energetic materials which also have high energy densities. Using sol-gel chemistry we have made a nanostructured composite energetic material. Here a solid skeleton of fuel, based on resorcinol-formaldehyde, has nanocrystalline ammonium perchlorate, the oxidizer, trapped within its pores. At optimum stoichiometry it has approximately the energy density of HMX. Transmission electron microscopy indicated no ammonium perchlorate crystallites larger than 20 nm while near-edge soft x-ray absorption microscopy showed that nitrogen was uniformly distributed, at least on the scale of less than 80 nm. Small-angle neutron scattering studies were conducted on the material. Those results were consistent with historical ones for this class of nanostructured materials. The average skeletal primary particle size was on the order of 2.7 nm, while the nanocomposite showed the growth of small 1 nm size crystals of ammonium perchlorate with some clustering to form particles greater than 10 nm.

  10. Ultrafast Sol-Gel Synthesis of Graphene Aerogel Materials

    SciTech Connect

    Lim, Mathew; Hu, Matthew; Manandhar, Sandeep; Sakshaug, Avery; Strong, Adam; Riley, Leah; Pauzauskie, Peter J.

    2015-12-01

    Graphene aerogels derived from graphene-oxide (GO) starting materials recently have been shown to exhibit a combination of high electrical conductivity, chemical stability, and low cost that has enabled a range of electrochemical applications. Standard synthesis protocols for manufacturing graphene aerogels require the use of sol-gel chemical reactions that are maintained at high temperatures for long periods of time ranging from 12 hours to several days. Here we report an ultrafast, acid-catalyzed sol-gel formation process in acetonitrile in which wet GO-loaded gels are realized within 2 hours at temperatures below 45°C. Spectroscopic and electrochemical analysis following supercritical drying and pyrolysis confirms the reduction of the GO in the aerogels to sp2 carbon crystallites with no residual carbon–nitrogen bonds from the acetonitrile or its derivatives. This rapid synthesis enhances the prospects for large-scale manufacturing of graphene aerogels for use in numerous applications including sorbents for environmental toxins, support materials for electrocatalysis, and high-performance electrodes for electrochemical capacitors and solar cells.

  11. Nanospherical silica as luminescent markers obtained by sol-gel.

    PubMed

    Azevedo, Caroline B; Batista, TúlioM; de Faria, Emerson H; Rocha, Lucas A; Ciuffi, Katia J; Nassar, Eduardo J

    2015-03-01

    Hybrid nanosilicas constitute a broad study field. They find application as catalysts, pigments, drug delivery systems, and biomaterials, among others, and it is possible to obtain them via the sol-gel methodology. Lanthanide ions present special properties like light emission. Their incorporation into a silica matrix can enhance their luminescent properties, which enables their application as luminescent markers. This work reports on (i) the preparation of luminescent spherical hybrid silica nanoparticles by the hydrolytic sol-gel methodology, (ii) doping of the resulting matrix with the europium(III) ion or its complex with 1,10-phenanthroline, and (iii) characterization of the final powders by scanning electron microscopy, infrared spectroscopy, X-ray diffraction, and europium(III) ion photoluminescence. The synthesized materials consisted of hybrid, amorphous, polydispersed nonspherical silicas with average size of 180 nm. Photoluminescence confirmed incorporation of the europium(III) ion and its complex into the silica matrix-the ligand-metal charge transfer band emerged in the excitation spectra. The emission spectra presented the bands corresponding to the transition of the excited state (5)D0 level to (7)FJ (J = 0, 1, 2, 3 and 4). The main emission occurred in the red region; the lifetime was long. These characteristics indicated that the prepared nanospherical hybrid silicas could act as luminescent markers. PMID:25686772

  12. Nanostructured Energetic Materials with Sol-Gel Methods

    SciTech Connect

    Gash, A; Satcher, J; Simpson, R; Clapsaddle, B

    2003-11-25

    The utilization of sol-gel chemical methodology to prepare nanostructured energetic materials as well as the concepts of nanoenergetics is described. The preparation and characterization of two totally different compositions is detailed. In one example, nanostructured aerogel and xerogel composites of sol-gel iron (III) oxide and ultra fine grained aluminum (UFG Al) are prepared, characterized, and compared to a conventional micron-sized Fe{sub 2}O{sub 3}/Al thermite. The exquisite degree of mixing and intimate nanostructuring of this material is illustrated using transmission and scanning electron microscopies (TEM and SEM). The nanocomposite material has markedly different energy release (burn rate) and thermal properties compared to the conventional composite, results of which will be discussed. Small-scale safety characterization was performed aerogels and xerogels of the nanostructured thermite. The second nanostructured energetic material consists of a nanostructured hydrocarbon resin fuel network with fine ammonium perchlorate (NH{sub 4}ClO{sub 4}) oxidizer present.

  13. Sol-gel derived ceramic electrolyte films on porous substrates

    SciTech Connect

    Kueper, T.W.

    1992-05-01

    A process for the deposition of sol-gel derived thin films on porous substrates has been developed; such films should be useful for solid oxide fuel cells and related applications. Yttria-stabilized zirconia films have been formed from metal alkoxide starting solutions. Dense films have been deposited on metal substrates and ceramic substrates, both dense and porous, through dip-coating and spin-coating techniques, followed by a heat treatment in air. X-ray diffraction has been used to determine the crystalline phases formed and the extent of reactions with various substrates which may be encountered in gas/gas devices. Surface coatings have been successfully applied to porous substrates through the control of substrate pore size and deposition parameters. Wetting of the substrate pores by the coating solution is discussed, and conditions are defined for which films can be deposited over the pores without filling the interiors of the pores. Shrinkage cracking was encountered in films thicker than a critical value, which depended on the sol-gel process parameters and on the substrate characteristics. Local discontinuities were also observed in films which were thinner than a critical value which depended on the substrate pore size. A theoretical discussion of cracking mechanisms is presented for both types of cracking, and the conditions necessary for successful thin formation are defined. The applicability of these film gas/gas devices is discussed.

  14. Radiation hardening in sol-gel derived Er{sup 3+}-doped silica glasses

    SciTech Connect

    Hari Babu, B. E-mail: matthieu.lancry@u-psud.fr; León Pichel, Mónica; Ollier, Nadège; El Hamzaoui, Hicham; Bigot, Laurent; Savelii, Inna; Bouazaoui, Mohamed; Poumellec, Bertrand; Lancry, Matthieu E-mail: matthieu.lancry@u-psud.fr; Ibarra, Angel

    2015-09-28

    The aim of the present paper is to report the effect of radiation on the Er{sup 3+}-doped sol-gel silica glasses. A possible application of these sol-gel glasses could be their use in harsh radiation environments. The sol-gel glasses are fabricated by densification of erbium salt-soaked nanoporous silica xerogels through polymeric sol-gel technique. The radiation-induced attenuation of Er{sup 3+}-doped sol-gel silica is found to increase with erbium content. Electron paramagnetic resonance studies reveal the presence of E′{sub δ} point defects. This happens in the sol-gel aluminum-silica glass after an exposure to γ-rays (kGy) and in sol-gel silica glass after an exposure to electrons (MGy). The concentration levels of these point defects are much lower in γ-ray irradiated sol-gel silica glasses. When the samples are co-doped with Al, the exposure to γ-ray radiation causes a possible reduction of the erbium valence from Er{sup 3+} to Er{sup 2+} ions. This process occurs in association with the formation of aluminum oxygen hole centers and different intrinsic point defects.

  15. Development of sol-gel formulations for slow release of phermones

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new type of dispenser for slow-release of semiochemicals and sex pheromones was developed based on sol-gel polymers that can be useful in monitoring, mass trapping, and mating disruption in integrated pest management (IPM). Sol-gel matrices exhibit glass characteristics and allow control of the de...

  16. Sol-gel based oxidation catalyst and coating system using same

    NASA Technical Reports Server (NTRS)

    Watkins, Anthony N. (Inventor); Leighty, Bradley D. (Inventor); Oglesby, Donald M. (Inventor); Patry, JoAnne L. (Inventor); Schryer, Jacqueline L. (Inventor)

    2010-01-01

    An oxidation catalyst system is formed by particles of an oxidation catalyst dispersed in a porous sol-gel binder. The oxidation catalyst system can be applied by brush or spray painting while the sol-gel binder is in its sol state.

  17. Fabrication of advanced electrochemical energy materials using sol-gel processing techniques

    NASA Technical Reports Server (NTRS)

    Chu, C. T.; Chu, Jay; Zheng, Haixing

    1995-01-01

    Advanced materials play an important role in electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. They are being used as both electrodes and electrolytes. Sol-gel processing is a versatile solution technique used in fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. The application of sol-gel processing in the fabrication of advanced electrochemical energy materials will be presented. The potentials of sol-gel derived materials for electrochemical energy applications will be discussed along with some examples of successful applications. Sol-gel derived metal oxide electrode materials such as V2O5 cathodes have been demonstrated in solid-slate thin film batteries; solid electrolytes materials such as beta-alumina for advanced secondary batteries had been prepared by the sol-gel technique long time ago; and high surface area transition metal compounds for capacitive energy storage applications can also be synthesized with this method.

  18. Optical fiber sensor having a sol-gel fiber core and a method of making

    DOEpatents

    Tao, Shiquan; Jindal, Rajeev; Winstead, Christopher; Singh, Jagdish P.

    2006-06-06

    A simple, economic wet chemical procedure is described for making sol-gel fibers. The sol-gel fibers made from this process are transparent to ultraviolet, visible and near infrared light. Light can be guided in these fibers by using an organic polymer as a fiber cladding. Alternatively, air can be used as a low refractive index medium. The sol-gel fibers have a micro pore structure which allows molecules to diffuse into the fiber core from the surrounding environment. Chemical and biochemical reagents can be doped into the fiber core. The sol-gel fiber can be used as a transducer for constructing an optical fiber sensor. The optical fiber sensor having an active sol-gel fiber core is more sensitive than conventional evanescent wave absorption based optical fiber sensors.

  19. Nanoparticle metrology in sol-gels using multiphoton excited fluorescence

    NASA Astrophysics Data System (ADS)

    Karolin, J.; Geddes, C. D.; Wynne, K.; Birch, D. J. S.

    2002-01-01

    We have developed a method of measuring the growth of nanoparticles during sol-gel glass formation based on labelling the particle with a fluorescent dye and determining the multiphoton excited decay of fluorescence anisotropy due to Brownian rotation. Multiphoton excitation is shown to give a higher dynamic range of measurement than one-photon excitation. We illustrate the sub-nanometre resolution and stability of our approach by detecting a 0.8-1.1 nm silica particle hydrodynamic mean radius increase in a tetramethylorthosilicate sol at pH 2.3 labelled with rhodamine 6G and observed over ≈4 weeks and also with a stable silica colloid of radius 6 nm, pH 8.9, labelled with a 6-methoxyquinoline-type dye.

  20. Substituent effects on the sol-gel chemistry of organotrialkoxysilanes

    SciTech Connect

    LOY, DOUGLAS A.; BAUGHER, BRIGITTA M.; BAUGHER, COLLEEN R.; SCHNEIDER, DUANE A.; RAHIMIAN, KAMYAR

    2000-05-09

    Silsesquioxanes have been the subject of intensive study in the past and are becoming important again as a vehicle for introducing organic functionalities into hybrid organic-inorganic materials through sol-gel processing. Depending on the application, the target hybrid material may be required to be a highly cross-linked, insoluble gel or a soluble polymer that can be cast as a thin film or coating. The former has applications such as catalyst supports and separations media; the latter is an economically important method for surface modification or compatiblization for applying adhesives or introducing fillers. Polysilsesquioxanes are readily prepared through the hydrolysis and condensation of organotrialkoxysilanes, though organotriaminosilane and organotrihalosilane monomers can also be used. This paper explores the kinetics of the preparation route.

  1. Sol-gel multilayers applied by a meniscus coating process

    SciTech Connect

    Britten, J.A.; Thomas, I.M.

    1992-03-19

    We describe a meniscus coating method to produce high-laser damage threshold, silica/alumina sol-gel multilayer reflectors on 30 {plus} cm substrates for laser-fusion applications. This process involves forcing a small suspension flow through a porous applicator tube, forming a falling film on the tube. A substrate contacts this film to form a meniscus. Motion of the substrate relative to the applicator entrains a thin film on the substrate, which leaves behind a porous, optical quality film upon solvent evaporation. We develop a solution for the entrained film thickness as a function of geometry, flow and fluid properties by an analysis similar to that of the classical dip-coating problem. This solution is compared with experimental measurements. Also, preliminary results of multilayer coating experiments with a prototype coater are presented, which focus on coating uniformity and laser damage threshold (LDT).

  2. Sol-gel synthesis and characterization of mesoporous manganese oxide

    SciTech Connect

    Hong Xinlin; Zhang Gaoyong; Zhu Yinyan; Yang Hengquan

    2003-10-30

    Mesoporous manganese oxide (MPMO) from reduction of KMnO{sub 4} with maleic acid, was obtained and characterized in detail. The characterization of the material was confirmed by high-resolution transmission electron microscopy (HRTEM), X-ray powder diffractometry (XRD) and N{sub 2} sorptometry. The results showed that MPMO is a pseudo-crystalline material with complex network pore structure, of which BET specific surface area is 297 m{sup 2}/g and pore size distribution is approximately in the range of 0.7-6.0 nm. The MPMO material turns to cryptomelane when the calcinating temperature rises to 400 deg. C. The optimum sol-gel reaction conditions are KMnO{sub 4}/C{sub 4}H{sub 4}O{sub 4} molar ratio=3, pH=7 and gelation time>6 h.

  3. Operation of electrochromic devices prepared by sol-gel methods

    NASA Astrophysics Data System (ADS)

    Tulloch, Gavin; Skryabin, Igor L.; Evans, Graeme; Bell, John M.

    1997-10-01

    The manufacturing and operation of window size (30 cm by 90 cm) electrochromic devices is described. Both the electrochromic electrode (WO3) and the counter electrode (V2O5) were deposited by sol-gel method. Electrochromic measurements were performed on both electrodes and the complete device to correlate device performance to fabrication conditions. The paper describes the affects of temperature on the switching characteristics of electrochromic window. The devices were tested in the temperature range between 10 degrees Celsius and 50 degrees Celsius. The switching algorithm described in this paper ensures identical optical performance of electrochromic device in the wide range of temperatures. The algorithm is based on the charge control and does not require monitoring of device transmittance.

  4. Polymer sol-gel composite inverse opal structures.

    PubMed

    Zhang, Xiaoran; Blanchard, G J

    2015-03-25

    We report on the formation of composite inverse opal structures where the matrix used to form the inverse opal contains both silica, formed using sol-gel chemistry, and poly(ethylene glycol), PEG. We find that the morphology of the inverse opal structure depends on both the amount of PEG incorporated into the matrix and its molecular weight. The extent of organization in the inverse opal structure, which is characterized by scanning electron microscopy and optical reflectance data, is mediated by the chemical bonding interactions between the silica and PEG constituents in the hybrid matrix. Both polymer chain terminus Si-O-C bonding and hydrogen bonding between the polymer backbone oxygens and silanol functionalities can contribute, with the polymer mediating the extent to which Si-O-Si bonds can form within the silica regions of the matrix due to hydrogen-bonding interactions. PMID:25734614

  5. Photosensitivity in a silica-based sol-gel glass

    SciTech Connect

    Korwin, D.M.; Pye, L.D.

    1996-12-31

    Photosensitivity in glasses containing Au and Ce was first reported by Dalton in 1943 and later reaffirmed by Stookey. The photothermal reduction of Au ions to form metallic colloids was determined to be responsible for the {open_quotes}ruby{close_quotes} color produced in these glasses. In this work, the photosensitive effect has been confirmed for the first time in a silica sol-gel glass containing Au and Ce. Two methods of producing Au colloids in this glass were investigated, one involved a short ultraviolet (UV) exposure followed by a thermal treatment, the other a simultaneous UV irradiation and thermal treatment. Colloid formation was studied using optical absorption spectroscopy, whereas the role of Ce in the photosensitive process was elucidated using optical absorption and fluorescence spectroscopic techniques.

  6. Manufacture of Regularly Shaped Sol-Gel Pellets

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas; Johnston, James C.; Kinder, James D.

    2006-01-01

    An extrusion batch process for manufacturing regularly shaped sol-gel pellets has been devised as an improved alternative to a spray process that yields irregularly shaped pellets. The aspect ratio of regularly shaped pellets can be controlled more easily, while regularly shaped pellets pack more efficiently. In the extrusion process, a wet gel is pushed out of a mold and chopped repetitively into short, cylindrical pieces as it emerges from the mold. The pieces are collected and can be either (1) dried at ambient pressure to xerogel, (2) solvent exchanged and dried under ambient pressure to ambigels, or (3) supercritically dried to aerogel. Advantageously, the extruded pellets can be dropped directly in a cross-linking bath, where they develop a conformal polymer coating around the skeletal framework of the wet gel via reaction with the cross linker. These pellets can be dried to mechanically robust X-Aerogel.

  7. Mayenite Synthesized Using the Citrate Sol-Gel Method

    SciTech Connect

    Ude, Sabina N; Rawn, Claudia J; Meisner, Roberta A; Kirkham, Melanie J; Jones, Gregory L.; Payzant, E Andrew

    2014-01-01

    A citrate sol-gel method has been used to synthesize mayenite (Ca12Al14O33). X-ray powder diffraction data show that the samples synthesized using the citrate sol-gel method contained CaAl2O4 and CaCO3 along with mayenite when fired ex-situ in air at 800 C but were single phase when fired at 900 C and above. Using high temperature x-ray diffraction, data collected in-situ in air at temperatures of 600 C and below showed only amorphous content; however, data collected at higher temperatures indicated the first phase to crystallize is CaCO3. High temperature x-ray diffraction data collected in 4% H2/96% N2 does not show the presence of CaCO3, and Ca12Al14O33 starts to form around 850 C. In comparison, x-ray powder diffraction data collected ex-situ on samples synthesized using traditional solid-state synthesis shows that single phase was not reached until samples were fired at 1350 C. DTA/TGA data collected either in a nitrogen environment or air on samples synthesized using the citrate gel method suggest the complete decomposition of metastable phases and the formation of mayenite at 900 C, although the phase evolution is very different depending on the environment. Brunauer-Emmett-Teller (BET) measurements showed a slightly higher surface area of 7.4 0.1 m2/g in the citrate gel synthesized samples compared to solid-state synthesized sample with a surface area of 1.61 0.02 m2/g. SEM images show a larger particle size for samples synthesized using the solid-state method compared to those synthesized using the citrate gel method.

  8. Sol-Gel processing of silica nanoparticles and their applications.

    PubMed

    Singh, Lok P; Bhattacharyya, Sriman K; Kumar, Rahul; Mishra, Geetika; Sharma, Usha; Singh, Garima; Ahalawat, Saurabh

    2014-11-01

    Recently, silica nanoparticles (SNPs) have drawn widespread attention due to their applications in many emerging areas because of their tailorable morphology. During the last decade, remarkable efforts have been made on the investigations for novel processing methodologies to prepare SNPs, resulting in better control of the size, shape, porosity and significant improvements in the physio-chemical properties. A number of techniques available for preparing SNPs namely, flame spray pyrolysis, chemical vapour deposition, micro-emulsion, ball milling, sol-gel etc. have resulted, a number of publications. Among these, preparation by sol-gel has been the focus of research as the synthesis is straightforward, scalable and controllable. Therefore, this review focuses on the recent progress in the field of synthesis of SNPs exhibiting ordered mesoporous structure, their distribution pattern, morphological attributes and applications. The mesoporous silica nanoparticles (MSNPs) with good dispersion, varying morphology, narrow size distribution and homogeneous porous structure have been successfully prepared using organic and inorganic templates. The soft template assisted synthesis using surfactants for obtaining desirable shapes, pores, morphology and mechanisms proposed has been reviewed. Apart from single template, double and mixed surfactants, electrolytes, polymers etc. as templates have also been intensively discussed. The influence of reaction conditions such as temperature, pH, concentration of reagents, drying techniques, solvents, precursor, aging time etc. have also been deliberated. These MSNPs are suitable for a variety of applications viz., in the drug delivery systems, high performance liquid chromatography (HPLC), biosensors, cosmetics as well as construction materials. The applications of these SNPs have also been briefly summarized. PMID:25466691

  9. Composite sol-gel process for photocatalytic titanium dioxide

    NASA Astrophysics Data System (ADS)

    Keshmiri, Mehrdad

    Photocatalytic TiO2 decomposes organic and inorganic pollutants upon irradiation with UV light. TiO2 thin films and powder suspensions are used for purification treatments, but small surface area of TiO2 films, and difficult filtration of powders are the two major drawbacks in application of photocatalytic TiO2. The major objective of this work was to develop a novel process to combine the thin film coatings and the fine (sub-micron) powder anatase TiO2 to provide high photocatalytic efficiency thick films and self-supported membranes. The microstructural properties and photocatalytic efficiency of the developed materials were characterized and compared with that of the conventional TiO2 coatings and powders. Photocatalytic activity of CSG TiO 2 was measured through the ability to decompose organic compounds (trichloroethane, dioxane, toluene), as well as to destroy bacteria. The major achievement of this work is the development of a process wherein structurally sound, thick films and membranes of CSG anatase photocatalytic TiO2 can be produced in reproducible way. A novel method for the synthesis of monodispersed anatase TiO2 microspheres through colloidal precipitation has also been established. The microspheres were used as filler TiO2 in the composite microstructure, bonded with sot-gel derived TiO2, to produce the composite sol-gel (CSG) TiO2. A sol-gel-assisted sintering model for the CSG thick films and self-supported membranes was established and validated by experimental data. The model has the ability to predict the sintering behavior of the CSG-TiO2, in terms of the reduction of specific surface area versus the time of heating, particularly at the initial and intermediate stages of the sintering.

  10. Sol-Gel Glass Holographic Light-Shaping Diffusers

    NASA Technical Reports Server (NTRS)

    Yu, Kevin; Lee, Kang; Savant, Gajendra; Yin, Khin Swe (Lillian)

    2005-01-01

    Holographic glass light-shaping diffusers (GLSDs) are optical components for use in special-purpose illumination systems (see figure). When properly positioned with respect to lamps and areas to be illuminated, holographic GLSDs efficiently channel light from the lamps onto specified areas with specified distributions of illumination for example, uniform or nearly uniform irradiance can be concentrated with intensity confined to a peak a few degrees wide about normal incidence, over a circular or elliptical area. Holographic light diffusers were developed during the 1990s. The development of the present holographic GLSDs extends the prior development to incorporate sol-gel optical glass. To fabricate a holographic GLSD, one records a hologram on a sol-gel silica film formulated specially for this purpose. The hologram is a quasi-random, micro-sculpted pattern of smoothly varying changes in the index of refraction of the glass. The structures in this pattern act as an array of numerous miniature lenses that refract light passing through the GLSD, such that the transmitted light beam exhibits a precisely tailored energy distribution. In comparison with other light diffusers, holographic GLSDs function with remarkably high efficiency: they typically transmit 90 percent or more of the incident lamp light onto the designated areas. In addition, they can withstand temperatures in excess of 1,000 C. These characteristics make holographic GLSDs attractive for use in diverse lighting applications that involve high temperatures and/or requirements for high transmission efficiency for ultraviolet, visible, and near-infrared light. Examples include projectors, automobile headlights, aircraft landing lights, high-power laser illuminators, and industrial and scientific illuminators.

  11. Synthesis and characterization of nitric oxide-releasing sol-gel microarrays.

    PubMed

    Robbins, Mary E; Hopper, Erin D; Schoenfisch, Mark H

    2004-11-01

    Diazeniumdiolate-modified sol-gel microarrays capable of releasing low levels of nitric oxide are reported as a viable means for improving the blood compatibility of a surface without fully modifying the underlying substrate. Several parameters are characterized including: (1) NO surface flux as a function of sol-gel composition and microarray geometry; (2) microstructure dimensions and spacing for optimal blood compatibility; and (3) the effect of sol-gel surface modification on analyte accessibility to platinum electrodes. The sol-gel microarrays release biologically relevant levels of NO under physiological conditions for >24 h. In vitro platelet adhesion assays indicate that a NO surface flux of 2.2 pmol cm(-2) s(-1) effectively reduces platelet adhesion to glass substrates modified with sol-gel microstructures separated by 50 microm. The blood compatibility observed for these micropatterned surfaces is comparable to NO-releasing sol-gel films. When the separation between NO-releasing microstructures is reduced to 10 microm, the NO surface flux required to reduce platelet adhesion is lowered to 0.4 pmol cm(-2) s(-1). Finally, the oxygen response of platinum electrodes modified with NO-releasing sol-gel microarrays indicates that selective modification via micropatterning enhances analyte accessibility to the sensor surface. PMID:15518528

  12. A silica sol-gel design strategy for nanostructured metallic materials

    NASA Astrophysics Data System (ADS)

    Warren, Scott C.; Perkins, Matthew R.; Adams, Ashley M.; Kamperman, Marleen; Burns, Andrew A.; Arora, Hitesh; Herz, Erik; Suteewong, Teeraporn; Sai, Hiroaki; Li, Zihui; Werner, Jörg; Song, Juho; Werner-Zwanziger, Ulrike; Zwanziger, Josef W.; Grätzel, Michael; Disalvo, Francis J.; Wiesner, Ulrich

    2012-05-01

    Batteries, fuel cells and solar cells, among many other high-current-density devices, could benefit from the precise meso- to macroscopic structure control afforded by the silica sol-gel process. The porous materials made by silica sol-gel chemistry are typically insulators, however, which has restricted their application. Here we present a simple, yet highly versatile silica sol-gel process built around a multifunctional sol-gel precursor that is derived from the following: amino acids, hydroxy acids or peptides; a silicon alkoxide; and a metal acetate. This approach allows a wide range of biological functionalities and metals—including noble metals—to be combined into a library of sol-gel materials with a high degree of control over composition and structure. We demonstrate that the sol-gel process based on these precursors is compatible with block-copolymer self-assembly, colloidal crystal templating and the Stöber process. As a result of the exceptionally high metal content, these materials can be thermally processed to make porous nanocomposites with metallic percolation networks that have an electrical conductivity of over 1,000 S cm-1. This improves the electrical conductivity of porous silica sol-gel nanocomposites by three orders of magnitude over existing approaches, opening applications to high-current-density devices.

  13. Sol-gel processes and materials. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search

    SciTech Connect

    1995-12-01

    The bibliography contains citations of selected patents concerning sol-gel processes and sol-gel derived materials and products. Selected patents include sol-gel compositions, ceramic and refractory materials, fabrication of silica glass, sol-gel thin films and coatings, transparent inorganic oxide glass, luminescent quartz glass, catalysts and catalyst supports, nuclear fuels preparation, abrasives for grinding wheels, sol-gel production of microspheres, alumina composites, photographic materials, and dental materials. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  14. Mediated patterning of sol-gel thin layers: Shrinkage, decohesion, and lift-off

    NASA Astrophysics Data System (ADS)

    Mikalsen, Erik Arthur

    This thesis explores the unique de-cohesion and lift-off processes that occur during mediated patterning of integrated sol-gel thin films of functional materials. Mediated deposition, an additive patterning approach, was introduced by Jeon et al. (J. Mater. Res., 10[12]: 2996--9 (1995)), where microcontact printing (mu-CP) facilitated the selective transfer of a molecular 'ink' (e.g., octadecyltrichlorosilane, ODTS) to the substrate, and de-cohesion of sol-gel films occurred exclusively above the printed ink regions after heat treatment (<150°C). Patterned sol-gel films of uniform thickness were revealed after facile lift-off of cracked fragments, without the use of etchants. In this thesis, the origin and mechanics of de-cohesion and lift-off were determined through direct observations and measurements. The disparate mechanical behaviors of sol-gel films on functionalized and unmodified surfaces were determined, with emphasis on interfacial strength, in-plane biaxial stress, thin film mechanics, and crack propagation for sol-gel layers on silicon, glass and fused silica substrates. In addition, direct patterning of sol-gel layers was demonstrated for the first time on curved glassy surfaces using mu-CP and mediated patterning methods. The shrinkage and densification of sol-gel layers were determined by in-situ and ex-situ measurements, where a ˜30% decrease in thickness (t) was typical during drying of sol-gel layers (T < 300°C). Constrained shrinkage, resulting from adhesion to the supporting silicon substrate, led to a coherent (crack-free) film with biaxial stresses of ˜200 MPa (t ˜ 50 nm). For ODTS-mediated sol-gel films, however, precise in-situ wafer curvature measurements determined that film stresses never exceeded 75 MPa. Additionally, interfacial adhesive strength between the substrate and the sol-gel film were evaluated for the first time using a unique pulsed-laser stress-wave technique. An adhesive strength threshold of 15 MPa was determined for

  15. Examination of light distribution from sol-gel based applicators for interstitial laser therapy

    NASA Astrophysics Data System (ADS)

    Hołowacz, I.; Ulatowska-Jarża, A.; Podbielska, H.; Garbaczewska, I.

    2006-02-01

    We describe here the construction of sol-gel based applicators for interstitial thermotheraphy. The silica sol-gel coatings were prepared from silicate precursor TEOS (tetraethylorthosilicate) mixed with ethyl alcohol in acid catalyzed hydrolysis. The matrices were produced with various ratios R=5, 10, 20, 32, 50, whereas R denotes the number of solvent molds (here ethanol) to the number of TEOS moles. The spatial light intensity distribution was examined in order to find out the influence of R factor on the light distribution shape. It was shows that the most homogeneous patterns are observed for sol-gel coatings with R factors equal 10 and 20.

  16. Sol gel growth of titania from electrospun polyacrylonitrile nanofibres

    NASA Astrophysics Data System (ADS)

    Hong, Youliang; Li, Domgmei; Zheng, Jian; Zou, Guangtian

    2006-04-01

    In this paper we report on the development of TiO2 surface-residing electrospun nanofibres with controllable density of TiO2 on the support fibre surface by means of an electrospinning technique and a sol-gel process. The TiO2 precursor/PAN composite nanofibres were synthesized by electrospinning a polyacrylonitrile (PAN) solution containing TiO2 precursors. Subsequently, an immersion of the electrospun composite nanofibres in deionized water led to the hydrolysis of the TiO2 precursors. SEM, TEM and XRD pattern analyses demonstrated that TiO2 was formed and resided on the nanofibre surface. On further calcining the hydrolysed nanofibres in air at 300 °C, TiO2 could be conveniently converted into anatase without essentially changing the morphology of the hydrolysed nanofibres. Furthermore, surface photovoltage spectroscopy (SPS) confirmed that the TiO2 surface-residing nanofibre nonwovens had a strong SPS response. It can be attributed that the surface residence of TiO2 permits the transfer of the photogenerated electron originating from TiO2 to ITO electrodes. Potential applications of the TiO2 surface-residing nanofibres include filters, catalysis films and environmental pollution remediation films.

  17. /dopamine films prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Valverde-Aguilar, G.; Prado-Prone, G.; Vergara-Aragón, P.; Garcia-Macedo, J.; Santiago, Patricia; Rendón, Luis

    2014-09-01

    Dopamine was encapsulated into nanoporous amorphous TiO2 matrix by sol-gel method under atmospheric conditions. A second sample was obtained by the addition of the crown-ether 15C5 in this previous sample. Thin films were spin-coated on glass wafers. No heat treatment was employed in both films. All films were characterized using infrared spectroscopy, high resolution transmission electronic microscopy, X-ray diffraction, optical absorption and scanning electronic microscopy. Despite the films prepared with 15C5 were no calcined, a partial crystallization was identified. Anatase and rutile nanoparticles with sizes of 4-5 nm were obtained. Photoconductivity technique was used to determine the charge transport mechanism on these films. Experimental data were fitted with straight lines at darkness and under illumination wavelengths at 320, 400, and 515 nm. It indicates an ohmic behavior. Photovoltaic and photoconductivity parameters were determined from the current density vs. the applied-electrical-field results. Amorphous film has bigger photovoltaic and photoconductive parameters than the partially crystalline film. Results observed in the present investigation prove that the nanoporous TiO2 matrix can protect the dopamine inhibiting its chemical instability. This fact modifies the optical, physical and electrical properties of the film, and is intensified when 15C5 is added.

  18. Sol-gel template synthesis of semiconductor nanostructures

    SciTech Connect

    Lakshmi, B.B.; Dorhout, P.K.; Martin, C.R.

    1997-03-01

    The template method for preparing nanostructures entails synthesis of the desired material within the pores of a nanoporous membrane or other solid. A nonofibril or tubule of the desired material is obtained within each pore. Methods used previously to deposit materials within the pores of such membranes include electrochemical and electroless deposition and in situ polymerization. This paper describes the first use of sol-gel chemistry to prepare semiconductor nanofibrils and tubules within the pores of an alumina template membrane. TiO{sub 2}, WO{sub 3}, and ZnO nanostructures have been prepared. TiO{sub 2} nanofibrils with diameters of 22 nm were found to be single crystals of anatase with the c-axis oriented along the fibril axis. Bundles of these fibrils were also found to be single crystalline, suggesting that the individual fibrils are arranged in a highly organized fashion within the bundle. Finally, 200 nm diameter TiO{sub 2} fibrils were used as photocatalysts for the decomposition of salicylic acid. 30 refs., 8 figs.

  19. Sol-gel-derived waterproof coating for laser glass

    NASA Astrophysics Data System (ADS)

    Jiang, Zhonghong; Hu, Lili; Song, Xiuyu

    1997-12-01

    A two layer coating was deposited by sol-gel dip-coating method on phosphate laser glass. First silica film was coated from SiO2 colloidal suspension derived from ammonia catalyzed hydrolysis of tetraethoxysilane in ethanol. Then a methyl containing silicate film was covered. It was fabricated from a solution prepared by the hydrolysis of methyltriethoxysilane in the presence of hydrogen chloride catalyst. A 130 degree(s)C, 16h heat-treatment was done after coating process. It is confirmed by optical microscope that the two layer coating improves obviously the chemical durability of phosphate laser glass. The laser damage threshold of this coating is measured to be 31 J/cm2 at 1060 nm wavelength of 10 ns pulse duration. It is found that silica film contributes to the improvement on both film adhesion to phosphate glass substrate and laser damage threshold of film. The methyl containing silicate single film has only 18 J/cm2 laser damage threshold and can be easily dissolved in ethanol solution when it was coated on the phosphate laser glass substrate.

  20. Characterization of titanium and zirconium valerate sol-gel films

    SciTech Connect

    Severin, K.G.; Ledford, J.S.; Torgerson, B.A.; Berglund, K.A. )

    1994-07-01

    FTIR and XPS have been used to characterize titanium and zirconium valerate thin films prepared using sol-gel techniques. Films were prepared by hydrolysis of titanium(IV) isopropoxide or zirconium(IV) n-propoxide in excess valeric acid at room temperature. Film solution chemistry, from precursors to cast films, was followed with FTIR. The structure and chemical composition of films spin cast from fresh and day-old solutions were determined. Results of these studies suggest that all films consist of a metal-oxygen polymer backbone coordinated with bidentate valerate ligands. No evidence for the presence of alkoxide ligands has been found. A small amount of water is present in all cast films. While solution aging experiments indicate that the zirconium film structure does not change with solution reaction time, carboxylate ligand concentrations are higher in titanium films made from aged solutions. Titanium films made from aged solutions contain slightly less than 1.5 valerate ligands/titanium atom. Zirconium films are more highly carboxylated with almost two valerate groups per metal center. 57 refs., 6 figs., 1 tab.

  1. Synthesis of Carbon Nanotubes Using Sol Gel Route

    NASA Astrophysics Data System (ADS)

    Abdel-Fattah, Tarek

    2002-12-01

    Since 1990, carbon nanotubes were discovered and they have been the object of intense scientific study ever since. A carbon nanotube is a honeycomb lattice rolled into a cylinder. The diameter of a carbon nanotube is of nanometer size and the length is in the range of micrometer. Many of the extraordinary properties attributed to nanotubes, such as tensile strength and thermal stability, have inspired predictions of microscopic robots, dent-resistant car bodies and earthquake-resistant buildings. The first products to use nanotubes were electrical. Some General Motors cars already include plastic parts to which nanotubes were added; such plastic can be electrified during painting so that the paint will stick more readily. Two nanotube-based lighting and display products are well on their way to market. In the long term, perhaps the most valuable applications will take further advantage of nanotubes' unique electronic properties. Carbon nanotubes can in principle play the same role as silicon does in electronic circuits, but at a molecular scale where silicon and other standard semiconductors cease to work. There are several routes to synthesize carbon nanotubes; laser vaporization, carbon arc and vapor growth. We have applied a different route using sol gel chemistry to obtain carbon nanotubes. This work is patent-pending.

  2. Preparation of oxide glasses from metal alkoxides by sol-gel method

    NASA Technical Reports Server (NTRS)

    Kamiya, K.; Yoko, T.; Sakka, S.

    1987-01-01

    An investigation is carried out on the types of siloxane polymers produced in the course of the hydrolysis of silicon tetraethoxide, as well as the preparation of oxide glasses from metal alkoxides by the sol-gel method.

  3. Molecular receptors in metal oxide sol-gel materials prepared via molecular imprinting

    DOEpatents

    Sasaki, Darryl Y.; Brinker, C. Jeffrey; Ashley, Carol S.; Daitch, Charles E.; Shea, Kenneth J.; Rush, Daniel J.

    2000-01-01

    A method is provided for molecularly imprinting the surface of a sol-gel material, by forming a solution comprised of a sol-gel material, a solvent, an imprinting molecule, and a functionalizing siloxane monomer of the form Si(OR).sub.3-n X.sub.n, wherein n is an integer between zero and three and X is a functional group capable of reacting with the imprinting molecule, evaporating the solvent, and removing the imprinting molecule to form the molecularly imprinted metal oxide sol-gel material. The use of metal oxide sol-gels allows the material porosity, pore size, density, surface area, hardness, electrostatic charge, polarity, optical density, and surface hydrophobicity to be tailored and be employed as sensors and in catalytic and separations operations.

  4. Porous alumina scaffold produced by sol-gel combined polymeric sponge method

    NASA Astrophysics Data System (ADS)

    Hasmaliza, M.; Fazliah, M. N.; Shafinaz, R. J.

    2012-09-01

    Sol gel is a novel method used to produce high purity alumina with nanometric scale. In this study, three-dimensional porous alumina scaffold was produced using sol-gel polymeric sponge method. Briefly, sol gel alumina was prepared by evaporation and polymeric sponge cut to designated sizes were immersed in the sol gel followed by sintering at 1250 and 1550°C. In order to study the cell interaction, the porous alumina scaffold was sterilized using autoclave prior to Human Mesenchymal Stem Cells (HMSCs) seeding on the scaffold and the cell proliferation was assessed by alamarBlue® assay. SEM results showed that during the 21 day period, HMSCs were able to attach on the scaffold surface and the interconnecting pores while maintaining its proliferation. These findings suggested the potential use of the porous alumina produced as a scaffold for implantation procedure.

  5. Fabrication of ceramic microspheres by diffusion-induced sol-gel reaction in double emulsions.

    PubMed

    Zhang, Lei; Hao, Shaochang; Liu, Bing; Shum, Ho Cheung; Li, Jiang; Chen, Haosheng

    2013-11-27

    We demonstrate an approach to prepare zirconium dioxide (ZrO2) microspheres by carrying out a diffusion-induced sol-gel reaction inside double emulsion droplets. A glass capillary microfluidic device is introduced to generate monodisperse water-in-oil-in-water (W/O/W) double emulsions with a zirconium precursor as the inner phase. By adding ammonia to the continuous aqueous phase, the zirconium precursor solution is triggered to gel inside the emulsions. The double emulsion structure enhances the uniformity in the rate of the sol-gel reaction, resulting in sol-gel microspheres with improved size uniformity and sphericity. ZrO2 ceramic microspheres are formed following subsequent drying and sintering steps. Our approach, which combines double-emulsion-templating and sol-gel synthesis, has great potential for fabricating versatile ceramic microspheres for applications under high temperature and pressure. PMID:23865771

  6. Enhanced piezoelectric performance of composite sol-gel thick films evaluated using piezoresponse force microscopy.

    PubMed

    Liu, Yuanming; Lam, Kwok Ho; Kirk Shung, K; Li, Jiangyu; Zhou, Qifa

    2013-05-14

    Conventional composite sol-gel method has been modified to enhance the piezoelectric performance of ceramic thick films. Lead zirconate titanate (PZT) and lead magnesium niobate-lead titanate (PMN-PT) thick films were fabricated using the modified sol-gel method for ultrasonic transducer applications. In this work, piezoresponse force microscopy was employed to evaluate the piezoelectric characteristics of PZT and PMN-PT composite sol-gel thick films. The images of the piezoelectric response and the strain-electric field hysteresis loop behavior were measured. The effective piezoelectric coefficient (d33,eff) of the films was determined from the measured loop data. It was found that the effective local piezoelectric coefficient of both PZT and PMN-PT composite films is comparable to that of their bulk ceramics. The promising results suggest that the modified composite sol-gel method is a promising way to prepare the high-quality, crack-free ceramic thick films. PMID:23798771

  7. All optical controlled photonic integrated circuits using azo dye functionized sol-gel material

    NASA Astrophysics Data System (ADS)

    Ke, Xianjun

    The main focus of this dissertation is development and characterization of all-optical controllable azo dye functionized sol gel material, demonstrating a PIC fabrication technique on glass substrate using such material, and exploration and feasibility demonstration of three PIC functional devices namely optical variable attenuator, optical switches, and optical tunable filters using the material. The realization of all the devices in this dissertation are based on one material: dye functionalized sol-gel material. A photochromic sol-gel material functionalized with azo dye was synthesized and characterized. It possesses a photochromic characteristic under the control of green laser beam illumination. The material characteristics suggest the possibility of a new promising material platform candidate for the fabrication of alloptical controlled photonic integrated circuits. As the first potential application of the dye functionalized sol-gel material, an alloptical variable attenuator was designed and demonstrated. The optical variable attenuation is achieved in Mach-Zehnder interferometric configuration through all-optical modulation of sol-gel waveguide phase shifters. A 2 x 2 optical switch based on multimode interference (MMI) waveguide structure is proposed in the dissertation. The schematic configuration of the optical switch consists of a cascade of two identical MMIs with two all-optical controlled phase shifters realized by using the photochromic sol-gel material. The cross or bar switch state of the optical switch is determined by the phase difference between the two sol-gel waveguide phase shifters. An all-optical tunable filter is designed and its feasibility demonstrated by using the sol-gel photochromic material. Except for the phase change demonstrated on sol-gel waveguide phase shifters, dynamic gratings were observed on sol-gel film when exposed to two interference beams. This reveals the possibility of realizing Bragg grating-based tunable filters

  8. Strength of interactions between immobilized dye molecules and sol-gel matrices.

    PubMed

    Ismail, Fanya; Schoenleber, Monika; Mansour, Rolan; Bastani, Behnam; Fielden, Peter; Goddard, Nicholas J

    2011-02-21

    In this paper we present a new theory to re-examine the immobilization technique of dye doped sol-gel films, define the strength and types of possible bonds between the immobilized molecule and sol-gel glass, and show that the immobilized molecule is not free inside the pores as was previously thought. Immobilizing three different pH sensitive dyes with different size and functional groups inside the same sol-gel films revealed important information about the nature of the interaction between the doped molecule and the sol-gel matrix. The samples were characterized by means of ultraviolet-visible spectrophotometer (UV-VIS), thermal gravimetric analysis (TGA), mercury porosimetry (MP), nuclear magnetic resonance spectroscopy ((29)Si NMR) and field-emission environmental scanning electron microscopy (ESEM-FEG). It was found that the doped molecule itself has a great effect on the strength and types of the bonds. A number of factors were identified, such as number and types of the functional groups, overall charge, size, pK(a) and number of the silanol groups which surround the immobilized molecule. These results were confirmed by the successful immobilization of bromocresol green (BCG) after a completely polymerized sol-gel was made. The sol-gel consisted of 50% tetraethoxysilane (TEOS) and 50% methyltriethoxysilane (MTEOS) (w/w). Moreover, the effect of the immobilized molecule on the structure of the sol-gel was studied by means of a leaky waveguide (LW) mode for doped films made before and after polymerization of the sol-gel. PMID:21120245

  9. Solid-state tunable lasers based on dye-doped sol-gel materials

    SciTech Connect

    Dunn, B.; Mackenzie, J.D.; Zink, J.I.; Stafsudd, O.M.

    1992-03-01

    The sol-gel process is a solution synthesis technique which provides a low temperature chemical route for the preparation of rigid transparent matrix materials. The luminescent organic dye molecules, rhodamine 6G and coumarin 540A have been incorporated, via the sol-gel method, into aluminosilicate and organically modified silicate host matrices. Synthesis, laser oscillation and photostability for these systems are reported. The improved photostability of these materials with respect to comparable polymeric host materials is discussed.

  10. Making MgO/SiO2 Glasses By The Sol-Gel Process

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1989-01-01

    Silicon dioxide glasses containing 15 mole percent magnesium oxide prepared by sol-gel process. Not made by conventional melting because ingredients immiscible liquids. Synthesis of MgO/SiO2 glass starts with mixing of magnesium nitrate hexahydrate with silicon tetraethoxide, both in alcohol. Water added, and transparent gel forms. Subsequent processing converts gel into glass. Besides producing glasses of new composition at lower processing temperatures, sol-gel method leads to improved homogeneity and higher purity.

  11. Preparation and characterization of conductive and transparent ruthenium dioxide sol-gel films.

    PubMed

    Allhusen, John S; Conboy, John C

    2013-11-27

    RuO2 conductive thin films were synthesized using the sol-gel method and deposited onto transparent insulating substrates. The optical transmission, film thickness, surface morphology and composition, resistivity, and spectroelectrochemical performance have been characterized. The optical transmission values of these films ranged from 70 to 89% in the visible region and from 56 to 88% in the infrared region. Resistivity values of the RuO2 sol-gel films varied from 1.02 × 10(-3) to 1.13 Ω cm and are highly dependent on the initial solution concentration of RuO2 in the sol-gel. The RuO2 sol-gel films were used as electrodes for the electrochemical oxidation and reduction of ferrocenemethanol. The electrochemical behavior of our novel RuO2 sol-gel films was compared to that of a standard platinum disk electrode and showed no appreciable differences in the half-wave potential (E1/2). The mechanical and chemical stability of the coatings was tested by physical abrasion and exposure to highly acidic, oxidizing Piranha solution. Repeated exposure to these extreme conditions did not result in any appreciable decline in electrochemical performance. Finally, the use of the novel RuO2 sol-gel conductive and transparent films was demonstrated in a spectroelectrochemistry experiment in which the oxidation and reduction of ferrocenemethanol was monitored via UV-vis spectroscopy as the applied potential was cycled. PMID:24221640

  12. One-step sol-gel imprint lithography for guided-mode resonance structures

    NASA Astrophysics Data System (ADS)

    Huang, Yin; Liu, Longju; Johnson, Michael; Hillier, Andrew C.; Lu, Meng

    2016-03-01

    Guided-mode resonance (GMR) structures consisting of sub-wavelength periodic gratings are capable of producing narrow-linewidth optical resonances. This paper describes a sol-gel-based imprint lithography method for the fabrication of submicron 1D and 2D GMR structures. This method utilizes a patterned polydimethylsiloxane (PDMS) mold to fabricate the grating coupler and waveguide for a GMR device using a sol-gel thin film in a single step. An organic-inorganic hybrid sol-gel film was selected as the imprint material because of its relatively high refractive index. The optical responses of several sol-gel GMR devices were characterized, and the experimental results were in good agreement with the results of electromagnetic simulations. The influence of processing parameters was investigated in order to determine how finely the spectral response and resonant wavelength of the GMR devices could be tuned. As an example potential application, refractometric sensing experiments were performed using a 1D sol-gel device. The results demonstrated a refractive index sensitivity of 50 nm/refractive index unit. This one-step fabrication process offers a simple, rapid, and low-cost means of fabricating GMR structures. We anticipate that this method can be valuable in the development of various GMR-based devices as it can readily enable the fabrication of complex shapes and allow the doping of optically active materials into sol-gel thin film.

  13. Sol-gel processes and materials. January 1970-August 1988 (Citations from the US Patent data base). Report for January 1970-August 1988

    SciTech Connect

    Not Available

    1988-08-01

    This bibliography contains citations of selected patents concerning Sol-Gel processes and Sol-Gel derived materials and products. Selected patents include Sol-Gel compositions, ceramic and refractory materials, fabrication of silica glass, cataylsts and catalyst supports, nuclear fuels preparation, abrasives for grinding wheels, Sol-Gel production of microspheres, Sol-Gel thin films and coatings, photographic materials, and dental materials. (Contains 71 citations fully indexed and including a title list.)

  14. Development of electrochromic smart windows by sol-gel techniques

    NASA Astrophysics Data System (ADS)

    Munro, Brian; Kraemer, S.; Zapp, P.; Krug, Herbert; Schmidt, Helmut K.

    1997-10-01

    A novel nanocomposite lithium ion-conducting electrolyte has been developed, based on organically modified silanes, which is suitable for application in a sol-gel electrochromic system. The system developed consists of FTO-coated (fluorine doped tin oxide) glass coated with tungsten oxide, WO3, at one side of the device as the electrochromic layer, with a cerium oxide-titanium oxide layer, CeO2-TiO2, acting as ion-storage layer or counter electrode. The adhesive properties of the electrolyte enabled the manufacture of electrochromic devices in a laminated structure: glassFTOWO3nanocomp.elect.CeO2-TiO2FTOglass. The conductivity of the nanocomposite electrolyte system varies between 10-4 and 10-5 Scm-1 at 25 degrees Celsius depending on the exact composition. The temperature dependence of the conductivity exhibits typical Vogel-Tamman-Fulcher (VTF) behavior. The thickness of the electrolyte between the two halves of the device could be adjusted by the use of a spacer technique in the range 10 - 150 micrometer. Optoelectrochemical measurements were conducted on electrochromic devices to study the kinetics of coloration and bleaching as a function of the number of switching cycles. At present, cells are constructed in two formats: 10 multiplied by 15 cm2 and 35 multiplied by 35 cm2. Switching times under one minute were achieved for the smaller format with a corresponding optical modulation between 75% to 20% (at lambda equals 0.633 micrometer). In the case of the larger format the switching time increases to several minutes due to the increase in geometric area.

  15. Characterization of Hafnia Powder Prepared from an Oxychloride Sol Gel

    SciTech Connect

    McGilvery, Catriona M.; De Gendt, S; Payzant, E Andrew; MacKenzie, M; Craven, A J; McComb, D W

    2011-01-01

    Hafnium containing compounds are of great importance to the semiconductor industry as a replacement for Si(O,N) with a high- gate dielectric. Whilst Hf is already being incorporated into working devices1, much is still to be understood about it. Here we investigate the crystallisation processes and chemistry of bulk HfO2 powders which will aid in interpretation of reactions and crystallisation events occurring in thin films used as gate dielectrics. Amorphous HfO2 powder was prepared via a sol-gel route using hafnium oxychloride (HfOCl2 xH2O) as a precursor. The powders were subjected to various heat treatments and analysed using x-ray diffraction (XRD) and thermal analysis techniques. It was found that a large change in the crystallisation pathway occurred when the sample was heated in an inert environment compared with in air. Instead of the expected monoclinic phase (m-HfO2), tetragonal HfO2 (t-HfO2) also formed under these conditions and was observed up to temperatures of ~760 C. The t-HfO2 particles, which are less than 30nm in size, eventually transform into m-HfO2 on further heating. Possible mechanisms for the crystallisation of t-HfO2 are discussed. It is proposed that within this temperature range t-HfO2 is stabilised due to the presence of oxygen vacancies in the inert environment, forming by the reduction of HfIV to HfIII. As the crystal grows in size as the temperature increases there are too few oxygen vacancies left in the structure to continue stabilising the t-HfO2 phase and so transformation to m-HfO2 occurs.

  16. Entrapment of subtilisin in ceramic sol-gel coating for antifouling applications.

    PubMed

    Regina, Viduthalai Rasheedkhan; Søhoel, Helmer; Lokanathan, Arcot Raghupathi; Bischoff, Claus; Kingshott, Peter; Revsbech, Niels Peter; Meyer, Rikke Louise

    2012-11-01

    Enzymes with antifouling properties are of great interest in developing nontoxic antifouling coatings. A bottleneck in developing enzyme-based antifouling coatings is to immobilize the enzyme in a suitable coating matrix without compromising its activity and stability. Entrapment of enzymes in ceramics using the sol-gel method is known to have several advantages over other immobilization methods. The sol-gel method can be used to make robust coatings, and the aim of this study was to explore if sol-gel technology can be used to develop robust coatings harboring active enzymes for antifouling applications. We successfully entrapped a protease, subtilisin (Savinase, Novozymes), in a ceramic coating using a sol-gel method. The sol-gel formulation, when coated on a stainless steel surface, adhered strongly and cured at room temperature in less than 8 h. The resultant coating was smoother and less hydrophobic than stainless steel. Changes in the coating's surface structure, thickness and chemistry indicate that the coating undergoes gradual erosion in aqueous medium, which results in release of subtilisin. Subtilisin activity in the coating increased initially, and then gradually decreased. After 9 months, 13% of the initial enzyme activity remained. Compared to stainless steel, the sol-gel-coated surfaces with active subtilisin were able to reduce bacterial attachment of both Gram positive and Gram negative bacteria by 2 orders of magnitude. Together, our results demonstrate that the sol-gel method is a promising coating technology for entrapping active enzymes, presenting an interesting avenue for enzyme-based antifouling solutions. PMID:23020255

  17. Non-hydrolytic Sol-gel Synthesis of Tin Sulfides

    NASA Astrophysics Data System (ADS)

    Kaur, Rajvinder

    The non-hydrolytic sol-gel (NHSG) process is an effective low temperature route well known for preparing homogeneous metal oxides. Thermodynamically as well as kinetically favored products, which cannot be prepared with the traditional solid-state routes, can be produced using NHSG. This project is focused on the exploration of NHSG synthesis of binary tin sulfides. In the past few years, metal sulfides have been the subject of significant interest. Much effort has been devoted to understand these materials because of their potential applications in electronic, optical, and superconductor devices.4 Among these materials, tin sulfides are materials of technological importance, which are being explored as semiconductors, anode materials for Li ion batteries, photoconductors, photocatalysts and absorber layer materials in photovoltaic solar cell devices. All of these applications depend upon features like homogeneity, oxidation state, high surface area and purity of the materials. These properties can be difficult to achieve by employing traditional synthetic routes, which require high temperatures due to slow diffusion, limiting the products to thermodynamically stable phases and prohibiting control over properties like particle size and surface area. A variety of low temperature methods are being explored due to the increased demand for such advanced materials. This project is focused on exploring the NHSG approach to synthesize binary tin sulfides, with the main goal of establishing conditions for the targeted synthesis of different tin sulfide polymorphs with controlled particle size. Being non-oxide materials, tin sulfides can be air sensitive, which requires special attention in handling. All reactions were carried out in absence of oxygen. This project explores the reaction of tin halides with thioethers in a dry solvent medium, leading to the formation of tin sulfides. There are a number of synthetic parameters that can be varied for the NHSG approach. A

  18. Sol-gel-based molecularly imprinted xerogel for capillary microextraction.

    PubMed

    Bagheri, Habib; Piri-Moghadam, Hamed

    2012-09-01

    A novel molecularly imprinted xerogel (MIX) based on organically modified silica (ORMOSIL) was successfully prepared for on-line capillary microextraction (CME) coupled with high-performance liquid chromatography (HPLC). The sol-gel-based xerogel was prepared using only one precursor and exhibited extensive selectivity towards triazines along with significant thermal and chemical stability. Atrazine was selected as a model template molecule and 3-(trimethoxysilyl)propylmethacrylate (TMSPMA) as a precursor in which the propylmethacrylate moiety was responsible for van der Waals, dipole-dipole, and hydrogen-bond interactions with the template. This moiety plays a key role in creation of selective sites while methoxysilyl groups in TMSPMA acted as crosslinkers between the template and the propylmethacrylate moiety. Moreover, a non-imprinted xerogel (NIX) was also prepared in the absence of the template for evaluating the extraction efficiency of the prepared MIX. Then, the prepared imprinted and non-imprinted xerogels were used for extraction of three selected analytes of triazines class including atrazine, ametryn, and terbutryn, which have rather similar structures. The extraction efficiency of the prepared xerogel for atrazine, the template molecule, was found to be ten times greater than the efficiency achieved by the non-imprinted one. In the meantime, the extraction efficiency ratio of MIX to NIX for ametryn and terbutryn was also rather significant (eight times). Moreover, other compounds from different classes including dicamba, mecoprop, and estriol were also analyzed to evaluate the selectivity of the prepared MIX towards triazines. The ratio of enrichment factors (EF) of MIX to NIX for atrazine, ametryn, terbutryn, dicamba, mecoprop, and estriol were about 10, 8, 8, 2, 2, and 3, respectively. The linearity for the analytes was in the range of 5-700 μg L(-1). Limit of detection was in the range of 1-5 μg L(-1) and the RSD% values (n = 5) were all below 6

  19. Screen-printable sol-gel enzyme-containing carbon inks.

    PubMed

    Wang, J; Pamidi, P V; Park, D S

    1996-08-01

    Enzymes usually cannot withstand the high-temperature curing associated with the thick-film fabrication process and require a separate immobilization step in connection with the production of single-use biosensors. We report on the development of sol-gel-derived enzyme-containing carbon inks that display compatibility with the screen-printing process. Such coupling of sol-gel and thick-film technologies offers a one-step fabrication of disposable enzyme electrodes, as it obviates the need for thermal curing. The enzyme-containing sol-gel carbon ink, prepared by dispersing the biocatalyst, along with the graphite powder and a binder, within the sol-gel precursors, is cured very rapidly (10 min) at low temperature (4 °C). The influence of the ink preparation conditions is explored, and the sensor performance is evaluated in connection with the incorporation of glucose oxidase or horseradish peroxidase. The resulting strips are stable for at least 3 months. Such sol-gel-derived carbon inks should serve as hosts for other heat-sensitive biomaterials in connection with the microfabrication of various thick-film biosensors. PMID:21619216

  20. Roughness evolution of sol-gel optical coatings by ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Gailly, P.; Dubreuil, O.; Fleury-Frenette, K.

    2015-12-01

    The surface roughness evolution of two silica-based sol-gel materials under 650 eV argon ion beam sputtering has been investigated. The liquid sol-gel solutions were applied on silicon substrates using the dip coating technique and thermally cured to obtain thin solid films and their thicknesses were then controlled over the samples surface using spectroscopic ellipsometry. The surface roughness of the sol-gel films was measured using both interferometric profilometry and atomic force microscopy depending on the obtained sputtering depths. We observed a significant increase of the roughness according to the sputtering depth, faster in the case of sol-gel layers than with bulk fused silica. Interestingly, the sputtering rates of the sol-gel layers were found much higher than the rate obtained on bulk fused silica. The development of micron scale holes with relatively stable interstices is supposed to rule the surface roughness evolution. AFM measurements revealed a regular submicron scale lateral structure which nanometric amplitude is amplified within sputtering.

  1. Sol-gel prepared glass for micro-optical elements and arrays

    NASA Astrophysics Data System (ADS)

    Haruvy, Yair; Gilath, Irith; Maniewictz, M.; Eisenberg, Naftali P.

    1997-09-01

    Sol-gel processes of metal alkoxides involve hydrolysis of the alkoxy groups and condensation to a 3-D oxide glass network. Volume reduction of the drying gel typically results in cracking, unless sufficient relaxation is allowed to take place. Further, the common shrinkage by a factor of 2.5 and higher imposes great difficulty to obtain dimensional accuracy in thus prepared micro-optical elements. The new fast sol-gel method enables facile preparation of siloxane-based glassy materials in which polymerization is completed within minutes and curing within a few hours. The optical quality of thin films obtained by the fast sol-gel method and the ease of preparation makes this method technologically and economically attractive for micro-lenses and micro-optical arrays by replication. Micro-optical arrays are highly patterned, including sharp curvatures of small radii. This necessitates to study primarily two aspects of the sol-gel replication process: (1) the chemical constitution of the sol-gel and the reaction pathway that ensures prompt adhesion to the template during the process. (2) the surface chemical adaptation of the template that allows timing of adhesion and release of the produced elements. The adaptation of this process to the desired replication is described. Thence, the results of preliminary fabrication of micro-optical elements and arrays by this method are shown and their features discussed.

  2. From inulin to fructose syrups using sol-gel immobilized inulinase.

    PubMed

    Santa, Gonçalo L M; Bernardino, Susana M S A; Magalhães, Salomé; Mendes, Vanessa; Marques, Marco P C; Fonseca, Luís P; Fernandes, Pedro

    2011-09-01

    The present work aims to provide the basic characterization of sol-gel immobilized inulinase, a biocatalyst configuration yet unexploited, using as model system the hydrolysis of inulin to fructose. Porous xerogel particles with dimensions in slight excess of 10 μm were obtained, yielding an immobilization efficiency of roughly 80%. The temperature- and pH-activity profiles displayed a broader bell-shaped pattern as a result of immobilization. In the latter case, a shift of the optimal pH of 0.5 pH units was observed towards a less acidic environment. The kinetic parameters estimated from the typical Michaelis-Menten kinetics suggest that immobilization in sol-gel did not tamper with the native enzyme conformation, but on the other hand, entrapment brought along mass transfer limitations. The sol-gel biocatalyst displayed a promising operational stability, since it was used in more than 20 consecutive 24-hour batch runs without noticeable decay in product yield. The performance of sol-gel biocatalyst particles doped with magnetite roughly matched the performance of simple sol-gel particles in a single batch run. However, the operational stability of the former proved poorer, since activity decay was evident after four consecutive 24-hour batch runs. PMID:21445597

  3. Mechanical compatibility of sol-gel annealing with titanium for orthopaedic prostheses.

    PubMed

    Greer, Andrew I M; Lim, Teoh S; Brydone, Alistair S; Gadegaard, Nikolaj

    2016-01-01

    Sol-gel processing is an attractive method for large-scale surface coating due to its facile and inexpensive preparation, even with the inclusion of precision nanotopographies. These are desirable traits for metal orthopaedic prostheses where ceramic coatings are known to be osteoinductive and the effects may be amplified through nanotexturing. However there are a few concerns associated with the application of sol-gel technology to orthopaedics. Primarily, the annealing stage required to transform the sol-gel into a ceramic may compromise the physical integrity of the underlying metal. Secondly, loose particles on medical implants can be carcinogenic and cause inflammation so the coating needs to be strongly bonded to the implant. These concerns are addressed in this paper. Titanium, the dominant material for orthopaedics at present, is examined before and after sol-gel processing for changes in hardness and flexural modulus. Wear resistance, bending and pull tests are also performed to evaluate the ceramic coating. The findings suggest that sol-gel coatings will be compatible with titanium implants for an optimum temperature of 500 °C. PMID:26691162

  4. Spectroscopic and electrochemical characterization of cytochrome c encapsulated in a bio sol-gel matrix.

    PubMed

    Deriu, Daniela; Pagnotta, Sara Emanuela; Santucci, Roberto; Rosato, Nicola

    2008-08-01

    Sol-gel technique represents a remarkably versatile method for protein encapsulation. To enhance sol-gel biocompatibility, systems envisaging the presence of calcium and phosphates in the sol-gel composition were recently prepared and investigated. Unfortunately, the low pH at which solutions were prepared (pH < 2.5) dramatically limited their application to proteins, because the acidic environment induces protein denaturation. In this paper we apply a new protocol based on the introduction of calcium nitrate to the inorganic phase, with formation of a binary bioactive system. In this case protein encapsulation results versatile and secure, being achieved at a pH close to neutrality (pH 6.0); also, the presence of calcium is expected to enhance system biocompatibility. To determine the properties of the salt-doped sol-gel and the influence exerted on entrapped biosystems, the structural and functional properties of embedded cytochrome c have been investigated. Data obtained indicate that the salt-doped sol-gel induces no significant change in the structure and the redox properties of the embedded protein; also, the matrix increases protein stability. Interestingly, the presence of calcium nitrate appears determinant for refolding of the acid-denatured protein. This is of interest in the perspective of future applications in biosensoristic area. PMID:18163198

  5. Hydroxyapatite coating on Ti6Al4V alloy by a sol-gel method.

    PubMed

    Wang, Diangang; Chen, Chuanzhong; He, Ting; Lei, Tingquan

    2008-06-01

    Using trimethyl phosphate and calcium nitrate tetrahydrate as the calcium and phosphorus precursors, respectively, HA films were prepared layer by layer by a sol-gel method. The phase constitution, microstructure and calcium/phosphorus (Ca/P) molar ratio of the sol-gel films were studied by X-ray diffraction (XRD) and electronic probe microanalysis (EPMA). The results show that the sol-gel films have high crystallinity and are composed of HA and CaO phases, and the Ca/P ratio is slightly higher than the theoretical value in HA because of the loss of phosphorous element. Two typical cauliflower-like and lamellar structures were observed in the films. Cauliflower-like structure, which increases the biological reactivity of the implant surface towards natural bone, formed mainly at low drying temperature and high calcining temperature, while the lamellar structure formed when the drying temperature is high (500 degrees C or above). PMID:18071873

  6. Tantalum-Tungsten Oxide Thermite Composite Prepared by Sol-Gel Synthesis and Spark Plasma Sintering

    SciTech Connect

    Cervantes, O; Kuntz, J; Gash, A; Munir, Z

    2009-02-13

    Energetic composite powders consisting of sol-gel derived nanostructured tungsten oxide were produced with various amounts of micrometer-scale tantalum fuel metal. Such energetic composite powders were ignition tested and results show that the powders are not sensitive to friction, spark and/or impact ignition. Initial consolidation experiments, using the High Pressure Spark Plasma Sintering (HPSPS) technique, on the sol-gel derived nanostructured tungsten oxide produced samples with higher relative density than can be achieved with commercially available tungsten oxide. The sol-gel derived nanostructured tungsten oxide with immobilized tantalum fuel metal (Ta - WO{sub 3}) energetic composite was consolidated to a density of 9.17 g.cm{sup -3} or 93% relative density. In addition those parts were consolidated without significant pre-reaction of the constituents, thus the sample retained its stored chemical energy.

  7. Optical activation of Si nanowires using Er-doped, sol-gel derived silica

    SciTech Connect

    Suh, Kiseok; Shin, Jung H.; Park, Oun-Ho; Bae, Byeong-Soo; Lee, Jung-Chul; Choi, Heon-Jin

    2005-01-31

    Optical activation of Si nanowires (Si-NWs) using sol-gel derived Er-doped silica is investigated. Si-NWs of about 100 nm diameter were grown on Si substrates by the vapor-liquid-solid method using Au catalysts and H{sub 2} diluted SiCl{sub 4}. Afterwards, Er-doped silica sol-gel solution was spin-coated, and annealed at 950 deg. C in flowing N{sub 2}/O{sub 2} environment. Such Er-doped silica/Si-NWs nanocomposite is found to combine the advantages of crystalline Si and silica to simultaneously achieve both high carrier-mediated excitation efficiency and high Er{sup 3+} luminescence efficiency while at the same time providing high areal density of Er{sup 3+} and easy current injection, indicating the possibility of developing sol-gel activated Si-NWs as a material platform for Si-based photonics.

  8. High-energy-density sol-gel thin film based on neat 2-cyanoethyltrimethoxysilane.

    PubMed

    Kim, Yunsang; Kathaperumal, Mohanalingam; Smith, O'Neil L; Pan, Ming-Jen; Cai, Ye; Sandhage, Kenneth H; Perry, Joseph W

    2013-03-13

    Hybrid organic-inorganic sol-gel dielectric thin films from a neat 2-cyanoethyltrimethoxysilane (CNETMS) precursor have been fabricated and their permittivity, dielectric strength, and energy density characterized. CNETMS sol-gel films possess compact, polar cyanoethyl groups and exhibit a relative permittivity of 20 at 1 kHz and breakdown strengths ranging from 650 V/μm to 250 V/μm for film thicknesses of 1.3 to 3.5 μm. Capacitors based on CNETMS films exhibit extractable energy densities of 7 J/cm(3) at 300 V/μm, as determined by charge-discharge and polarization-electric field measurements, as well as an energy extraction efficiency of ~91%. The large extractable energy resulting from the linear dielectric polarization behavior suggests that CNETMS films are promising sol-gel materials for pulsed power applications. PMID:23427818

  9. Thin film porous membranes based on sol-gel chemistry for catalytic sensors

    SciTech Connect

    Hughes, R.C.; Patel, S.V.; Jenkins, M.W.; Boyle, T.J.; Gardner, T.J.; Brinker, C.J.

    1998-05-01

    Nanoporous sol-gel based films are finding a wide variety of uses including gas separations and supports for heterogeneous catalysts. The films can be formed by spin or dip coating, followed by relatively low temperature annealing. The authors used several types of these films as coatings on the Pd alloy thin film sensors they had previously fabricated and studied. The sol-gel films have little effect on the sensing response to H{sub 2} alone. However, in the presence of other gases, the nanoporous film modifies the sensor behavior in several beneficial ways. (1) They have shown that the sol-gel coated sensors were only slightly poisoned by high concentrations of H{sub 2}S while uncoated sensors showed moderate to severe poisoning effects. (2) For a given partial pressure of H{sub 2}, the signal from the sensor is modified by the presence of O{sub 2} and other oxidizing gases.

  10. Photochromic organic-inorganic composite materials prepared by sol-gel processing: Properties and potentials

    SciTech Connect

    Hou, L. |; Mennig, M.; Schmidt, H.

    1994-12-31

    The sol-gel method which features a low-temperature wet-chemical process opens vast possibilities to incorporating organic dyes into solid matrices for various optical applications. In this paper the authors present their experimental results on the sol-gel derived photochromic organic-inorganic composite (Ormocer) materials following an introductory description of the sol-gel process and a brief review on the state of the art of the photochromic solids prepared using this method. Their photochromic spirooxazine-Ormocer gels and coatings possess better photochromic response and color-change speed than the corresponding photochromic polymer coatings and similar photochemical stability to the latter. Further developments are proposed as to tackle the temperature dependence problem and further tap the potentialities of the photochromic dye-Ormocer material for practical applications.

  11. Ultrapure glass optical waveguide development in microgravity by the sol-gel process

    NASA Technical Reports Server (NTRS)

    Mukherjee, S. P.; Holman, R. A.

    1981-01-01

    Multicomponent, homogeneous, noncrystalline oxide gels can be prepared by the sol-gel process and these gels are promising starting materials for melting glasses in the space environment. The sol-gel process referred to here is based on the polymerization reaction of alkoxysilane with other metal alkoxy compounds or suitable metal salts. Many of the alkoxysilanes or other metal alkoxides are liquids and thus can be purified by distillation. The use of gels offers several advantages such as high purity and lower melting times and temperatures. The sol-gel process is studied for utilization in the preparation of multicomponent ultrapure glass batches for subsequent containerless melting of the batches in space to prepare glass blanks for optical waveguides.

  12. Laser-assisted sol-gel growth and characteristics of ZnO thin films

    SciTech Connect

    Kim, Min Su; Kim, Soaram; Leem, Jae-Young

    2012-06-18

    ZnO thin films were grown on Si(100) substrates by a sol-gel method assisted by laser beam irradiation with a 325 nm He-Cd laser. In contrast to conventional sol-gel ZnO thin films, the surface morphology of the laser-assisted sol-gel thin films was much smoother, and the residual stress in the films was relaxed by laser irradiation. The luminescent properties of the films were also enhanced by laser irradiation, especially, by irradiation during the deposition and post-heat treatment stages. The incident laser beam is thought to play several roles, such as annihilating defects by accelerating crystallization during heat treatment, enhancing the surface migration of atoms and molecules, and relaxing the ZnO matrix structure during crystallization.

  13. Preliminary fabrication of small Li{sub 2}O spheres by sol-gel method

    SciTech Connect

    Tsuchiya, K.; Kawamura, H.; Oyamada, R.; Nishimura, K.; Yoshimuta, H.; Watarumi, K.

    1995-12-31

    Lithium oxide (Li{sub 2}O) is one of the best tritium breeding materials. And as the shape of Li{sub 2}O, a small sphere is proposed in Japanese design of fusion blanket. Recently, reprocessing technology development on irradiated ceramic tritium breeders is conducted from the view point of effective use of resources and decrease of radioactive waste. The sol-gel method is most advantageous for fabricating small Li{sub 2}O spheres from the reprocessing solution with lithium. And the fabrication cost will be decreased by this method. In the present work, preliminary fabrication tests of small Li{sub 2}O spheres is carried out by the sol-gel method, and there are bright prospects for fabrication of small Li{sub 2}O spheres by sol-gel method.

  14. Influence of pyrogenic particles on the micromechanical behavior of thin sol-gel layers.

    PubMed

    Schönstedt, B; Garnweitner, G; Barth, N; Mühlmeister, A; Kwade, A

    2011-07-01

    Coatings based on sol-gel technology with different types of nanoparticles embedded into the sol-gel matrix were fabricated, and the resulting properties were investigated. Pyrogenic silica nanoparticles were added to the sol before coating. The silica particles varied in primary particle size and agglomerate size, and in their surface modification. The particles were wetted in ethanol and dispersed to certain finenesses. The difference in agglomerate size was partly caused by varying particle types, but also by the dispersing processes that were applied to the particles. The resulting coatings were examined by visual appearance and SEM microscopy. Furthermore, their micromechanical properties were determined by nanoindentation. The results show an important influence from the added nanoparticles and their properties on the visual appearance as well as the micromechanical behavior of the sol-gel coatings. It is shown that, in fact, the particle size distribution can have a major impact on the coating properties as well as the surface modification. PMID:21630652

  15. Development and characterization of molecularly imprinted sol-gel materials for the selective detection of DDT.

    PubMed

    Graham, Amy L; Carlson, Catherine A; Edmiston, Paul L

    2002-01-15

    Molecularly imprinting sol-gel materials for DDT using both a noncovalent and a covalent approach was examined. A nonpolar porous sol-gel network was created through the use of the bridged polysilsesquioxane, bis-(trimethoxysilylethyl)benzene (BTEB), as the principal sol-gel component. Noncovalent molecular imprinting was deemed unsuccessful, presumably because of the lack of strong intermolecular interactions that can be established between the DDT and the sol-gel precursor. A covalent imprinting strategy was employed by generating a sacrificial spacer through the reaction of two 3-isocyanatopropyltriethoxysilanes with one of two different template molecules: 4,4'-ethylenedianiline (EDA) or 4,4'-ethylidenebisphenol (EBP). After formation of the sol-gel, the bonds linking the spacer template to the matrix were cleaved in a manner that generated a pocket of the appropriate size bordered by amine groups that could aid in the binding of DDT through weak hydrogen bonding interactions. Experiments indicated that DDT could be bound selectively by such an approch. To generate a sensor, an environmentally sensitive fluorescent probe, 7-nitrobenz-2-oxa-1,3-diazole, (NBD) located adjacent to the DDT binding site was used to transduce the binding of analyte. EDA-imprinted sol-gels, deposited as films on glass microscope slides, were shown to quantitatively detect DDT in water to a limit-of-detection of 50 ppt with a response time of <60 s. Repeat measurements could be made with the same sensing films after rinsing with acetone between each measurement. The EDA sensing material was selective for DDT and other structurally similar molecules. However, the sensing film design was limited by the relatively minor changes in fluorescence intensity upon binding DDT. This situation may be remedied by an alternative methodology that can facilitate attachment of the NBD fluorophore in an optimal position proximal to the binding pocket. PMID:11811423

  16. Effect of calcium source on structure and properties of sol-gel derived bioactive glasses.

    PubMed

    Yu, Bobo; Turdean-Ionescu, Claudia A; Martin, Richard A; Newport, Robert J; Hanna, John V; Smith, Mark E; Jones, Julian R

    2012-12-18

    The aim was to determine the most effective calcium precursor for synthesis of sol-gel hybrids and for improving homogeneity of sol-gel bioactive glasses. Sol-gel derived bioactive calcium silicate glasses are one of the most promising materials for bone regeneration. Inorganic/organic hybrid materials, which are synthesized by incorporating a polymer into the sol-gel process, have also recently been produced to improve toughness. Calcium nitrate is conventionally used as the calcium source, but it has several disadvantages. Calcium nitrate causes inhomogeneity by forming calcium-rich regions, and it requires high temperature treatment (>400 °C) for calcium to be incorporated into the silicate network. Nitrates are also toxic and need to be burnt off. Calcium nitrate therefore cannot be used in the synthesis of hybrids as the highest temperature used in the process is typically 40-60 °C. Therefore, a different precursor is needed that can incorporate calcium into the silica network and enhance the homogeneity of the glasses at low (room) temperature. In this work, calcium methoxyethoxide (CME) was used to synthesize sol-gel bioactive glasses with a range of final processing temperatures from 60 to 800 °C. Comparison is made between the use of CME and calcium chloride and calcium nitrate. Using advanced probe techniques, the temperature at which Ca is incorporated into the network was identified for 70S30C (70 mol % SiO(2), 30 mol % CaO) for each of the calcium precursors. When CaCl(2) was used, the Ca did not seem to enter the network at any of the temperatures used. In contrast, Ca from CME entered the silica network at room temperature, as confirmed by X-ray diffraction, (29)Si magic angle spinning nuclear magnetic resonance spectroscopy, and dissolution studies. CME should be used in preference to calcium salts for hybrid synthesis and may improve homogeneity of sol-gel glasses. PMID:23171477

  17. Sol-gel deposited electrochromic films for electrochromic smart window glass

    SciTech Connect

    Oezer, N.; Lampert, C.M.; Rubin, M.

    1996-08-01

    Electrochromic windows offer the ability to dynamically change the transmittance of a glazing. With the appropriate sensor and controls, this smart window can be used for energy regulation and glare control for a variety of glazing applications. The most promising are building and automotive applications. This work covers the use of sol-gel deposition processes to make active films for these windows. The sol-gel process offers a low-capital investment for the deposition of these active films. Sol-gel serves as an alternative to more expensive vacuum deposition processes. The sol-gel process utilizes solution coating followed by a hydrolysis and condensation. In this investigation the authors report on tungsten oxide and nickel oxide films made by the sol-gel process for electrochromic windows. The properties of the sol-gel films compare favorably to those of films made by other techniques. A typical laminated electrochromic window consists of two glass sheets coated with transparent conductors, which are coated with the active films. The two sheets are laminated together with an ionically conductive polymer. The range of visible transmission modulation of the tungsten oxide was 60% and for the nickel oxide was 20%. The authors used the device configuration of glass/SnO{sub 2}:F/W0{sub 3}/polymer/Li{sub Z}NiO{sub x}H{sub y}/SnO{sub 2}:F glass to test the films. The nickel oxide layer had a low level of lithiation and possibly contained a small amount of water. Lithiated oxymethylene-linked poly(ethylene oxide) was used as the laminating polymer. Commercially available SnO{sub 2}:F/glass (LOF-Tec glass) was used as the transparent conducting glass. The authors found reasonable device switching characteristics which could be used for devices.

  18. Development of novel Sol-Gel Indicators (SGI's) for in-situ environmental measurements: Part 1, Program and a new pH Sol-Gel Indicator

    SciTech Connect

    Livingston, R.R.; Baylor, L.; Wicks, G.G.

    1992-11-03

    The feasibility of incorporating analytical indicators into a sol-gel glassy matrix and then coating substrates with this composite material has bee demonstrated. Substrates coated include paper, wood, glass, and the lens of an analytical probe. The first SRTC sol-gel indicator, comprising bromophenol blue dispersed in a silica matrix, was fabricated and successfully used to measure solution pH in the range of pH 3.0 to 7.5. material exhibited a quick response time, as measured by color changes both qualitatively and quantitatively, and the measuring device was reversible or reusable. Additional indicators with responses over other ranges as well as indicators sensitive to the presence of elements of interest, are also under development. The new SGI composites possess promising properties and an excellent potential for performing a variety important in-situ environmental measurements and area discussed in this report.

  19. Sol-gel silica films embedding NIR- emitting Yb-quinolinolate complexes

    SciTech Connect

    Figus, Cristiana Quochi, Francesco Piana, Giacomo; Saba, Michele; Mura, Andrea; Bongiovanni, Giovanni; Artizzu, Flavia; Mercuri, Maria Laura; Serpe, Angela; Deplano, Paola

    2014-10-21

    Sol-gel silica thin films embedding an ytterbium quinolinolato complex (YbClQ{sub 4}) have been obtained using different alkoxides. Homogeneous, crack- and defect-free thin films of optical quality have been successfully deposited on glass substrate by dip-coating. The silica thin films have been characterized by time-resolved photoluminescence. The luminescence properties of the YbClQ{sub 4} are preserved in silica films prepared through an optimized sol-gel approach. The excited state lifetime of the lanthanide is comparable to those observed in bulk and longer than the corresponding ones in solution.

  20. Fabrication of CO sensing film by sol-gel method for application to microsensor

    SciTech Connect

    Wan-Young Chung; Duk-Dong Lee; Tamaki, Jun; Miura, Norio; Yamazoe, Noboru

    1996-12-31

    The most commonly used methods for the preparation of sensing film of micro-gas sensors are physical methods such as r.f. sputtering, thermal evaporation, spary pyrolysis and CVD. Though it is somewhat difficult to be compatible with microelectronic processes, the chemical preparation method such as sol-gel method has many advantages over the physical ones like additive incorporation and surface control. In this experiment, the authors have prepared tin oxide thin film by sol-gel method combined with spin-coating. The compatibility of the film process to the microelectronic process and CO gas sensing characteristics of the fabricated film have been investigated.

  1. Porous Silica Sol-Gel Glasses Containing Reactive V2O5 Groups

    NASA Technical Reports Server (NTRS)

    Stiegman, Albert E.

    1995-01-01

    Porous silica sol-gel glasses into which reactive vanadium oxide functional groups incorporated exhibit number of unique characteristics. Because they bind molecules of some species both reversibly and selectively, useful as chemical sensors or indicators or as scrubbers to remove toxic or hazardous contaminants. Materials also oxidize methane gas photochemically: suggests they're useful as catalysts for conversion of methane to alcohol and for oxidation of hydrocarbons in general. By incorporating various amounts of other metals into silica sol-gel glasses, possible to synthesize new materials with broad range of new characteristics.

  2. Transparent poly(vinyl acetate)-silica gels by a sol-gel process

    NASA Astrophysics Data System (ADS)

    Wojcik, Anna B.; Klein, Lisa C.

    1993-12-01

    Rod shaped silica-poly(vinyl acetate) (PVAc) gels have been prepared by a sol gel process. In situ polymerization of tetraethoxysilane (TEOS) was accomplished in the presence of low molecular weight PVAc by dissolving various amounts of PVAc in a mixture of TEOS, ethanol, water and hydrochloric acid (HCl). Gelation of this mixture was carried out between room temperature and slightly above. Silica-PVAc rods recovered from cylindrical molds were homogeneous and transparent. Gels with weight percents of PVAc ranging from 2% to 50% were prepared. Silica-PVAc gels have higher flexure strengths, less brittle character and improved water durability in comparison with pure sol- gel silica.

  3. Electrochemical and In Vitro Behavior of Nanostructure Sol-Gel Coated 316L Stainless Steel Incorporated with Rosemary Extract

    NASA Astrophysics Data System (ADS)

    Motalebi, Abolfazl; Nasr-Esfahani, Mojtaba

    2013-06-01

    The corrosion resistance of AISI 316L stainless steel for biomedical applications, was significantly enhanced by means of hybrid organic-inorganic sol-gel thin films deposited by spin-coating. Thin films of less than 100 nm with different hybrid characters were obtained by incorporating rosemary extract as green corrosion inhibitor. The morphology, composition, and adhesion of hybrid sol-gel coatings have been examined by SEM, EDX, and pull-off test, respectively. Addition of high additive concentrations (0.1%) did not disorganize the sol-gel network. Direct pull-off test recorded a mean coating-substrate bonding strength larger than 21.2 MPa for the hybrid sol-gel coating. The effect of rosemary extract, with various added concentrations from 0.012 to 0.1%, on the anticorrosion properties of sol-gel films have been characterized by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests in simulated body fluid (SBF) solution and has been compared to the bare metal. Rosemary extract additions (0.05%) have significantly increased the corrosion protection of the sol-gel thin film to higher than 90%. The in vitro bioactivity of prepared films indicates that hydroxyapatite nuclei can form and grow on the surface of the doped sol-gel thin films. The present study shows that due to their excellent anticorrosion properties, bioactivity and bonding strength to substrate, doped sol-gel thin films are practical hybrid films in biomedical applications.

  4. THERMALLY STABLE NANOCRYSTALLINE TIO2 PHOTOCATALYSTS SYNTHESIZED VIA SOL-GEL METHODS MODIFIED WITH IONIC LIQUID AND SURFACTANT MOLECULES

    EPA Science Inventory

    Recently, sol-gel methods employing ionic liquids (ILs) have shown significant implications for the synthesis of well-defined nanostructured inorganic materials. Herein, we synthesized nanocrystalline TiO2 particles via an alkoxide sol-gel method employing a water-immi...

  5. Environmentally benign sol-gel antifouling and foul-releasing coatings.

    PubMed

    Detty, Michael R; Ciriminna, Rosaria; Bright, Frank V; Pagliaro, Mario

    2014-02-18

    Biofouling on ships and boats, characterized by aquatic bacteria and small organisms attaching to the hull, is an important global issue, since over 80000 tons of antifouling paint is used annually. This biofilm, which can form in as little as 48 hours depending on water temperature, increases drag on watercraft, which greatly reduces their fuel efficiency. In addition, biofouling can lead to microbially induced corrosion (MIC) due to H2S formed by the bacteria, especially sulfate-reducing bacteria. When the International Maritime Organization (IMO) international convention banned the use of effective but environmentally damaging coatings containing tributyl tin in 2008, the development of clean and effective antifouling systems became more important than ever. New nonbiocidal coatings are now in high demand. Scientists have developed new polymers, materials, and biocides, including new elastomeric coatings that they have obtained by improving the original silicone (polydimethylsiloxane) formulation patented in 1975. However, the high cost of silicones, especially of fluoropolymer-modified silicones, has generally prevented their large-scale diffusion. In 2009, traditional antifouling coatings using cuprous oxide formulated in copolymer paints still represented 95% of the global market volume of anti-fouling paints. The sol-gel nanochemistry approach to functional materials has emerged as an attractive candidate for creating low fouling surfaces due to the unique structure and properties of silica-based coatings and of hybrid inorganic-organic silicas in particular. Sol-gel formulations easily bind to all types of surfaces, such as steel, fiberglass, aluminum, and wood. In addition, they can cure at room temperature and form thin glassy coatings that are markedly different from thick silicone elastomeric foul-releasing coatings. Good to excellent performance against biofouling, low cure temperatures, enhanced and prolonged chemical and physical stability, ease of

  6. Effectiveness of silica based Sol-gel microencapsulation Method for odorants and flavours leading to sustainable Environment

    NASA Astrophysics Data System (ADS)

    Ashraf, Muhammad Aqeel; Khan, Ayesha Masood; Sarfraz, Maliha; Ahmad, Mushtaq

    2015-08-01

    Microencapsulation has become a hot topic in chemical research. Technology mainly used for control release and protection purposes. The sol-gel micro encapsulation approach for fragrance and aroma in porous silica-based materials leads to sustainable odorant and flavored materials with novel and unique beneficial properties. Sol-gel encapsulation of silica based micro particles considered economically cheap as capital investment in manufacturing is very low and environmentally friendly. Amorphous sol-gel SiO2 is non-toxic and safe, whereas the sol-gel entrapment of delicate chemicals in its inner pores results in pronounced chemical and physical stabilization of the entrapped actives, thereby broadening the practical utilization of chemically unstable essential oils. Reviewing progress in the fabrication of diverse odorant and flavoured sol-gels, shows us how different synthetic strategies are appropriate for practical application with important health and environmental benefits.

  7. Effectiveness of silica based sol-gel microencapsulation method for odorants and flavors leading to sustainable environment.

    PubMed

    Ashraf, Muhammad Aqeel; Khan, Aysha Masood; Ahmad, Mushtaq; Sarfraz, Maliha

    2015-01-01

    Microencapsulation has become a hot topic in chemical research. Technology mainly used for control release and protection purposes. The sol-gel micro encapsulation approach for fragrance and aroma in porous silica-based materials leads to sustainable odorant and flavored materials with novel and unique beneficial properties. Sol-gel encapsulation of silica based micro particles considered economically cheap as capital investment in manufacturing is very low and environmentally friendly. Amorphous sol-gel SiO2 is non-toxic and safe, whereas the sol-gel entrapment of delicate chemicals in its inner pores results in pronounced chemical and physical stabilization of the entrapped active agents, thereby broadening the practical utilization of chemically unstable essential oils (EOs). Reviewing progress in the fabrication of diverse odorant and flavored sol-gels, shows us how different synthetic strategies are appropriate for practical application with important health and environmental benefits. PMID:26322304

  8. Effectiveness of silica based sol-gel microencapsulation method for odorants and flavors leading to sustainable environment

    PubMed Central

    Ashraf, Muhammad Aqeel; Khan, Aysha Masood; Ahmad, Mushtaq; Sarfraz, Maliha

    2015-01-01

    Microencapsulation has become a hot topic in chemical research. Technology mainly used for control release and protection purposes. The sol-gel micro encapsulation approach for fragrance and aroma in porous silica-based materials leads to sustainable odorant and flavored materials with novel and unique beneficial properties. Sol-gel encapsulation of silica based micro particles considered economically cheap as capital investment in manufacturing is very low and environmentally friendly. Amorphous sol-gel SiO2 is non-toxic and safe, whereas the sol-gel entrapment of delicate chemicals in its inner pores results in pronounced chemical and physical stabilization of the entrapped active agents, thereby broadening the practical utilization of chemically unstable essential oils (EOs). Reviewing progress in the fabrication of diverse odorant and flavored sol-gels, shows us how different synthetic strategies are appropriate for practical application with important health and environmental benefits. PMID:26322304

  9. Selectivity differences between sol-gel coated and immobilized liquid film open-tubular columns for gas chromatography.

    PubMed

    Kiridena, Waruna; Poole, Colin F; Koziol, Wiadyslaw W

    2002-12-01

    The solvation parameter model is used to determine the system constants for two sol-gel coated open-tubular columns at five equally spaced temperatures in the range 60-140 degrees C. Differences in the system constants as a function of temperature are used to determine the affect of sol-gel structure on the selectivity of SolGel-l and SolGel-Wax columns compared with conventionally coated and immobilized poly(dimethylsiloxane) and poly(ethylene glycol) stationary phases. The sol-gel columns should be suitable for similar separations to those presently performed on conventional immobilized liquid film columns of the same type but selectivity differences for polar compounds, which depend on temperature, should be anticipated. PMID:12537368

  10. Ternary Phase-Separation Investigation of Sol-Gel Derived Silica from Ethyl Silicate 40

    PubMed Central

    Wang, Shengnan; Wang, David K.; Smart, Simon; Diniz da Costa, João C.

    2015-01-01

    A ternary phase-separation investigation of the ethyl silicate 40 (ES40) sol-gel process was conducted using ethanol and water as the solvent and hydrolysing agent, respectively. This oligomeric silica precursor underwent various degrees of phase separation behaviour in solution during the sol-gel reactions as a function of temperature and H2O/Si ratios. The solution composition within the immiscible region of the ES40 phase-separated system shows that the hydrolysis and condensation reactions decreased with decreasing reaction temperature. A mesoporous structure was obtained at low temperature due to weak drying forces from slow solvent evaporation on one hand and formation of unreacted ES40 cages in the other, which reduced network shrinkage and produced larger pores. This was attributed to the concentration of the reactive sites around the phase-separated interface, which enhanced the condensation and crosslinking. Contrary to dense silica structures obtained from sol-gel reactions in the miscible region, higher microporosity was produced via a phase-separated sol-gel system by using high H2O/Si ratios. This tailoring process facilitated further condensation reactions and crosslinking of silica chains, which coupled with stiffening of the network, made it more resistant to compression and densification. PMID:26411484

  11. Foldable and Cytocompatible Sol-gel TiO2 Photonics

    NASA Astrophysics Data System (ADS)

    Li, Lan; Zhang, Ping; Wang, Wei-Ming; Lin, Hongtao; Zerdoum, Aidan B.; Geiger, Sarah J.; Liu, Yangchen; Xiao, Nicholas; Zou, Yi; Ogbuu, Okechukwu; Du, Qingyang; Jia, Xinqiao; Li, Jingjing; Hu, Juejun

    2015-09-01

    Integrated photonics provides a miniaturized and potentially implantable platform to manipulate and enhance the interactions between light and biological molecules or tissues in in-vitro and in-vivo settings, and is thus being increasingly adopted in a wide cross-section of biomedical applications ranging from disease diagnosis to optogenetic neuromodulation. However, the mechanical rigidity of substrates traditionally used for photonic integration is fundamentally incompatible with soft biological tissues. Cytotoxicity of materials and chemicals used in photonic device processing imposes another constraint towards these biophotonic applications. Here we present thin film TiO2 as a viable material for biocompatible and flexible integrated photonics. Amorphous TiO2 films were deposited using a low temperature (<250 °C) sol-gel process fully compatible with monolithic integration on plastic substrates. High-index-contrast flexible optical waveguides and resonators were fabricated using the sol-gel TiO2 material, and resonator quality factors up to 20,000 were measured. Following a multi-neutral-axis mechanical design, these devices exhibit remarkable mechanical flexibility, and can sustain repeated folding without compromising their optical performance. Finally, we validated the low cytotoxicity of the sol-gel TiO2 devices through in-vitro cell culture tests. These results demonstrate the potential of sol-gel TiO2 as a promising material platform for novel biophotonic devices.

  12. Foldable and Cytocompatible Sol-gel TiO2 Photonics

    PubMed Central

    Li, Lan; Zhang, Ping; Wang, Wei-Ming; Lin, Hongtao; Zerdoum, Aidan B.; Geiger, Sarah J.; Liu, Yangchen; Xiao, Nicholas; Zou, Yi; Ogbuu, Okechukwu; Du, Qingyang; Jia, Xinqiao; Li, Jingjing; Hu, Juejun

    2015-01-01

    Integrated photonics provides a miniaturized and potentially implantable platform to manipulate and enhance the interactions between light and biological molecules or tissues in in-vitro and in-vivo settings, and is thus being increasingly adopted in a wide cross-section of biomedical applications ranging from disease diagnosis to optogenetic neuromodulation. However, the mechanical rigidity of substrates traditionally used for photonic integration is fundamentally incompatible with soft biological tissues. Cytotoxicity of materials and chemicals used in photonic device processing imposes another constraint towards these biophotonic applications. Here we present thin film TiO2 as a viable material for biocompatible and flexible integrated photonics. Amorphous TiO2 films were deposited using a low temperature (<250 °C) sol-gel process fully compatible with monolithic integration on plastic substrates. High-index-contrast flexible optical waveguides and resonators were fabricated using the sol-gel TiO2 material, and resonator quality factors up to 20,000 were measured. Following a multi-neutral-axis mechanical design, these devices exhibit remarkable mechanical flexibility, and can sustain repeated folding without compromising their optical performance. Finally, we validated the low cytotoxicity of the sol-gel TiO2 devices through in-vitro cell culture tests. These results demonstrate the potential of sol-gel TiO2 as a promising material platform for novel biophotonic devices. PMID:26344823

  13. The influence of surfactants on the roughness of titania sol-gel films

    SciTech Connect

    Medina-Valtierra, Jorge . E-mail: jormeval@yahoo.com; Frausto-Reyes, Claudio . E-mail: cfraus@cio.mx; Calixto, Sergio . E-mail: scalixto@cio.mx; Bosch, Pedro . E-mail: lacv@xanum.uam.mx

    2007-03-15

    Substrate dipping in a composite sol-gel solution was used to prepare both smooth and rough thin films of titanium dioxide (TiO{sub 2}) on commercial fiberglass. The deposition of a composite film was done in a beaker using a solution of titanium (IV) isopropoxide as the sol-gel precursor and cetyltrimethyl ammonium bromide as the surfactant. In order to establish a correlation between experimental conditions and the titanium oxide produced, as well as the film quality, the calcined samples were characterized using Raman spectroscopy, UV-vis spectrophotometry, scanning electron microscopy and atomic force microscopy. One of the most important results is that a 61-nm TiO{sub 2} film was obtained with a short immersion of fiberglass into the sol-gel without surfactant. In other cases, the deposited film consisted of a titanium precursor gel encapsulating micelles of surfactant. The gel films were converted to only the anatase phase by calcining them at 500 deg. C. The resulting films were crystalline and exhibited a uniform surface topography. In the present paper, it was found that the TiO{sub 2} films prepared from the sol-gel with a surfactant showed a granular microstructure, and are composed of irregular particles between 1.5 and 3 {mu}m. Smooth TiO{sub 2} films could have useful optical and corrosion-protective properties and, on other hand, roughness on the TiO{sub 2} films can enhance the inherent photocatalytic activity.

  14. Two substrate-confined sol-gel coassembled ordered macroporous silica structures with an open surface.

    PubMed

    Guo, Wenhua; Wang, Ming; Xia, Wei; Dai, Lihua

    2013-05-21

    A sol-gel cooperative assembly method was demonstrated for the fabrication of inverse opal films with an open surface. In this method, a sol-gel silicate precursor was cooperatively assembled into the interstitial spaces of microspheres at the same time when polystyrene templates formed in between two desired substrates. Silica inverse opals with a three-dimensional ordered macroporous (3DOM) structure were obtained after selective removing the colloidal templates by calcination. The open surfaces with a high degree of interconnected porosity and extremely uniform pore size were characterized by scanning electron microscope (SEM). Optical transmission spectra reveals the existence of considerable deep band gaps of up to 70% and steep band edges of up to 6%/nm in the [111] directions of the 3DOM silica samples. A little shrinkage confirmed by transmission spectra is not larger than 3%, in consistent with the results measured by SEM, which revealing the sufficient and compact infiltration into the interstitial spaces by our confined sol-gel coassembly method. With different incidence angles, the positions of pseudogaps can be easily tuned in the wide range from 720 nm to 887 nm, agreed well with the calculated values by the Bragg law. All the results prove that the sol-gel coassembly method with two substrates confinement is a simple, low cost, convenient and versatile method for the fabrication of silica inverse opals without overlayers in large domains. PMID:23614663

  15. Low-density nanoporous iron foams synthesized by sol-gel autocombustion

    PubMed Central

    2012-01-01

    Nanoporous iron metal foams were synthesized by an improved sol-gel autocombustion method in this report. It has been confirmed to be pure phase iron by X-ray diffraction measurements. The nanoporous characteristics were illustrated through scanning electron microscope and transmission electron microscope images. Very low density and quite large saturation magnetization has been performed in the synthesized samples. PMID:22333555

  16. Ternary Phase-Separation Investigation of Sol-Gel Derived Silica from Ethyl Silicate 40.

    PubMed

    Wang, Shengnan; Wang, David K; Smart, Simon; da Costa, João C Diniz

    2015-01-01

    A ternary phase-separation investigation of the ethyl silicate 40 (ES40) sol-gel process was conducted using ethanol and water as the solvent and hydrolysing agent, respectively. This oligomeric silica precursor underwent various degrees of phase separation behaviour in solution during the sol-gel reactions as a function of temperature and H2O/Si ratios. The solution composition within the immiscible region of the ES40 phase-separated system shows that the hydrolysis and condensation reactions decreased with decreasing reaction temperature. A mesoporous structure was obtained at low temperature due to weak drying forces from slow solvent evaporation on one hand and formation of unreacted ES40 cages in the other, which reduced network shrinkage and produced larger pores. This was attributed to the concentration of the reactive sites around the phase-separated interface, which enhanced the condensation and crosslinking. Contrary to dense silica structures obtained from sol-gel reactions in the miscible region, higher microporosity was produced via a phase-separated sol-gel system by using high H2O/Si ratios. This tailoring process facilitated further condensation reactions and crosslinking of silica chains, which coupled with stiffening of the network, made it more resistant to compression and densification. PMID:26411484

  17. Copper loaded on sol-gel-derived alumina adsorbents for phosphine removal.

    PubMed

    Hsu, Jung-Nan; Bai, Hsunling; Li, Shou-Nan; Tsai, Chuen-Jinn

    2010-05-01

    The hydride gas of phosphine (PH3) is commonly used for semiconductor and optoelectronic industries. The local scrubbers must immediately abate it because of its high toxicity. In this study, copper (Cu) loaded on the sol-gel-derived gamma-alumina (Al2O3) adsorbents are prepared and tested to investigate the possibility of PH3 removal and sorbent regeneration. Test results showed that during the breakthrough time of over 99% PH3 removal efficiency, the maximum adsorption capacity of Cu loaded on the sol-gel-derived gamma-Al2O3 adsorbent is 18 mg-PH3/g-adsorbent. This is much higher than that of Cu loaded on the commercial gamma-Al2O3 adsorbent--8.6 mg-PH3/g-adsorbent. The high specific surface area, narrow pore size distribution, and well dispersion of Cu loaded on the sol-gel-derived gamma-Al2O3 could be the reasons for its high PH3 adsorption capacity. The regeneration test shows that Cu loaded on the sol-gel-derived gamma-Al2O3 adsorbent can be regenerated after a simple air purging procedure. The cumulative adsorption capacity for five regeneration cycles is 65 mg-PH3/g-adsorbent, which is approximately double that of the Cu/zeolite adsorbent demonstrated in the literature. PMID:20480862

  18. Improving the temperature performance of low-density ceramic heatshields through sol-gel processing

    NASA Technical Reports Server (NTRS)

    Bull, Jeffrey; Leiser, Daniel; Sommers, Jeneen; Esfahani, Lili

    1991-01-01

    The performance of rigid insulations for use as thermal protection materials on reentry vehicles can be characterized by their resistance to dimensional and morphological change when exposed to an isothermal environment equivalent to that generated in entry. Improvements in these material characteristics for alumina-enhanced thermal barrier insulation by compositional modification through sol-gel processing are reported.

  19. Nanopore yttria doped zirconia membranes prepared by sol-gel method

    SciTech Connect

    Gopalan, R.; Chang, C.H.; Lin, Y.S.

    1994-12-31

    Yttria doped zirconia membranes were prepared by the sol-gel method. A solution-sol mixing method was employed to dope yttria on the grain surface of zirconia particles in the sol. These nano-structured yttria doped zirconia membranes have potential application as a support for dense oxide ceramic membranes, fuel cells and oxygen sensors.

  20. Preparation and complex characterization of silica holmium sol-gel monoliths.

    PubMed

    Cacaina, D; Areva, S; Laaksonen, H; Simon, S; Ylänen, H

    2011-01-01

    Amorphous, sol-gel derived SiO(2) are known to biocompatible and bioresorbable materials. Biodegradable and inert materials containing radioactive isotopes have potential application as delivery vehicles of the beta radiation to the cancer tumors inside the body. Incorporation of holmium in the sol-gel derived SiO(2) could lead to the formation of a biodegradable material which could be used as carrier biomaterial for the radiation of radioactive holmium to the various cancer sites. The homogeneity of the prepared sol-gel silica holmium monoliths was investigated by Back Scattered Electron Imaging of Scanning Electron Microscope equipped with Energy Dispersive X-ray Analysis, X-ray Induced Photoelectron Spectroscopy and Nuclear Magnetic Resonance Spectroscopy. The biodegradation of the monoliths was investigated in Simulated Body Fluid and TRIS (Trizma pre-set Crystals) solution. The results show that by suitable tailoring of the sol-gel processing parameters holmium can be homogeneously incorporated in the silica matrix with a controlled biodegradation rate. PMID:21132520

  1. A micron-size sol-gel-derived fiber-optic based chemical sensor

    SciTech Connect

    Ingersoll, C.M.; Narang, U.; Bright, F.V.

    1995-12-31

    The development of new chemical and biosensing schemes has been a topic of great interest. In our laboratory, a portion of our work has centered on the use of sol-gels doped with fluorescent dyes as materials for forming small optical fibers used for sensing. We are currently working with pyrene-doped fibers for oxygen sensing and fluorescein-doped fibers to detect changes in pH. These schemes have shown great promise, however, several factors (e.g., cost, size, rigidity, response time, sensitivity) are associated with building practical sensors. It is also critical to understand the actual sol-gel composite gelation process in order to quantitatively determine the appropriate conditions for forming microsensor tips from these sol-gel materials. This presentation will focus on the construction of an inexpensive, micron-size fiber-optic sensor as well as a small flow-cell apparatus for the detection of various analytes. Also, the actual preparation of these sol-gel derived optical fibers will be discussed.

  2. A Sol-Gel-Modified Poly(methyl methacrylate) Electrophoresis Microchip with a Hydrophilic Channel Wall

    SciTech Connect

    Chen, Gang; Xu, Xuejiao; Lin, Yuehe; Wang, Joseph

    2007-07-27

    A sol-gel method was employed to fabricate a poly(methyl methacrylate) (PMMA) electrophoresis microchip that contains a hydrophilic channel wall. To fabricate such a device, tetraethoxysilane (TEOS) was injected into the PMMA channel and was allowed to diffuse into the surface layer for 24 h. After removing the excess TEOS, the channel was filled with an acidic solution for 3 h. Subsequently, the channel was flushed with water and was pretreated in an oven to obtain a sol-gel-modified PMMA microchip. The water contact angle for the sol-gel-modified PMMA was 27.4° compared with 66.3° for the pure PMMA. In addition, the electro-osmotic flow increased from 2.13×10-4 cm2 V-1 s-1 for the native-PMMA channel to 4.86×10-4 cm2 V-1 s-1 for the modified one. The analytical performance of the sol-gel-modified PMMA microchip was demonstrated for the electrophoretic separation of several purines, coupled with amperometric detection. The separation efficiency of uric acid increased to 74 882.3 m-1 compared with 14 730.5 m-1 for native-PMMA microchips. The result of this simple modification is a significant improvement in the performance of PMMA for microchip electrophoresis and microfluidic applications.

  3. [Sol-gel preparation of ultrathin nano-hydroxyapatite coating and its characterization].

    PubMed

    Yang, Jianhua; Guo, Linghong; Li, Hui

    2006-10-01

    Present study used dip-coating techniques to fabricate ultrathin nano-HA coating on titanium in organic sol-gel of Ca (NO3)2. 4H2O and PO(CH3)3 and inorganic sol-gel of Ca (NO3)2. 4H2O and (NH4)2HPO4. Scanning electron microscope (SEM) and grazing-incidence X-ray diffraction (XRD) were used to observe the morphology and distribution of crystallite size (D) and lattice strain (epsilon) of ultrathin nano-HA coating. After heated at 400 degrees C, the apatite structure of coatings on titanium began to appear. At heating temperature of 400 degrees C-600 degrees C, the effect of heating temperature on D and epsilon of both coatings was obvious. Precursor types significantly affected the particle diameters of nano-HA coatings, which were 25-40 nm for organic sol-gel and about 100 nm for inorganic sol. The thickness of ultrathin nano-HA coatings was 2.5 microm for organic sol-gel and 5 microm for inorganic sol and morphology of interfaces between coating and titanium was intact and homogenous. PMID:17121358

  4. Optical properties of metallophthalocyanines in solution and in a sol-gel matrix

    NASA Astrophysics Data System (ADS)

    Acosta, Agnes; Sarkisov, Sergey S.; Wilkosz, Aaron; Leyderman, Alexander; Venkateswarlu, Putcha

    1997-10-01

    The sol-gel method is convenient for preparing amorphous transparent oxides with a wide range of optical properties including laser action, optical gain, phosphorescence, SHG and other non-linear effects. The sol-gel method was used to produce sol-gel samples using metallophthalocyanines. From metallophthalocyanines we used Cu (II) phthalocyanine (beta) - form, Ni (II) phthalocyaninetetrasulfonic acid, tetrasodium salt, Cu (II) 3,10,17,24-tetra-tert-butyl-1,8,15,22-tetrakis (dimethylamino)-29H, 31H-phthalocyanine, Zn 1,4,8,11,15,18,22,25-octabutoxy- 29H,31H-phthalocyanine Ni (II) 5,9,14,18,23,27,32,36-octabutoxy- 2,3-napthalocyanine and Cu (II) 5,9,14,18,23,27,32,36-octabutoxy-2,3-napthalocyanine. In our paper we report and discuss the results obtained from the measurements of the index of refraction using the prism coupling technique, absorption spectra and non-linear transmission measurements using picosecond laser pulses. The absorption spectras of Cu, Zn and Ni phthalocyanines in solution and sol-gel matrix showed decomposition. We found optical limiting after 0.2 J/cm2 in Ni (II) phthalocyaninetetrasulfonic acid, tetrasodium salt solution; glass samples showed no optical limiting. The mean of the index of refraction measured for all the (beta) -Cu phthalocyanine samples was 1.42. No birefringency was found.

  5. Beta zeolite supported sol-gel TiO2 materials for gas phase photocatalytic applications.

    PubMed

    Lafjah, Mama; Djafri, Fatiha; Bengueddach, Abdelkader; Keller, Nicolas; Keller, Valérie

    2011-02-28

    Beta zeolite supported sol-gel TiO(2) photocatalytic materials were prepared according to a sol-gel route in which high specific surface area Beta zeolite powder was incorporated into the titanium isopropoxide sol during the course of the sol-gel process. This led to an intimate contact between the zeolite surface and the TiO(2) precursors, and resulted in the anchorage of large amounts of dispersed TiO(2) nanoparticles and in the stabilization of TiO(2) in its anatase form, even for high TiO(2) wt. contents and high calcination temperatures. Taking the UV-A photocatalytic oxidation of methanol as gas phase target reaction, high methanol conversions were obtained on the Beta zeolite supported TiO(2) photocatalysts when compared to bulk sol-gel TiO(2), despite lower amounts of TiO(2) within the photoactive materials. The methanol conversion was optimum for about 40 wt.% TiO(2) loading and calcination temperatures of 500-600°C. PMID:21177024

  6. Thin-film silica sol-gel coatings for neural microelectrodes.

    PubMed

    Pierce, Andrew L; Sommakia, Salah; Rickus, Jenna L; Otto, Kevin J

    2009-05-30

    The reactive tissue response of the brain to chronically implanted materials remains a formidable obstacle to stable recording from implanted microelectrodes. One approach to mitigate this response is to apply a bioactive coating in the form of an ultra-porous silica sol-gel, which can be engineered to improve biocompatibility and to enable local drug delivery. The first step in establishing the feasibility of such a coating is to investigate the effects of the coating on electrode properties. In this paper, we describe a method to apply a thin-film silica sol-gel coating to silicon-based microelectrodes, and discuss the resultant changes in the electrode properties. Fluorescently labeled coatings were used to confirm coating adherence to the electrode. Cyclic voltammetry and impedance spectroscopy were used to evaluate electrical property changes. The silica sol-gel was found to successfully adhere to the electrodes as a thin coating. The voltammograms revealed a slight increase in charge carrying capacity of the electrodes following coating. Impedance spectrograms showed a mild increase in impedance at high frequencies but a more pronounced decrease in impedance at mid to low frequencies. These results demonstrate the feasibility of applying silica sol-gel coatings to silicon-based microelectrodes and are encouraging for the continued investigation of their use in mitigating the reactive tissue response. PMID:19427536

  7. Ternary Phase-Separation Investigation of Sol-Gel Derived Silica from Ethyl Silicate 40

    NASA Astrophysics Data System (ADS)

    Wang, Shengnan; Wang, David K.; Smart, Simon; Diniz da Costa, João C.

    2015-09-01

    A ternary phase-separation investigation of the ethyl silicate 40 (ES40) sol-gel process was conducted using ethanol and water as the solvent and hydrolysing agent, respectively. This oligomeric silica precursor underwent various degrees of phase separation behaviour in solution during the sol-gel reactions as a function of temperature and H2O/Si ratios. The solution composition within the immiscible region of the ES40 phase-separated system shows that the hydrolysis and condensation reactions decreased with decreasing reaction temperature. A mesoporous structure was obtained at low temperature due to weak drying forces from slow solvent evaporation on one hand and formation of unreacted ES40 cages in the other, which reduced network shrinkage and produced larger pores. This was attributed to the concentration of the reactive sites around the phase-separated interface, which enhanced the condensation and crosslinking. Contrary to dense silica structures obtained from sol-gel reactions in the miscible region, higher microporosity was produced via a phase-separated sol-gel system by using high H2O/Si ratios. This tailoring process facilitated further condensation reactions and crosslinking of silica chains, which coupled with stiffening of the network, made it more resistant to compression and densification.

  8. Investigation of optical properties of anthocyanin doped into sol-gel based matrix

    NASA Astrophysics Data System (ADS)

    Hashim, Hasrina; Abdul Aziz, Nik Mohd Azmi Nik; Isnin, Aishah

    2012-06-01

    Anthocyanin dye was extracted from petal of Hibiscus rosasinensis (Bunga Raya) and doped into sol-gel based matrix to investigate an effect of pH change on its optical properties. Sol-gel matrix based on Vinyl triethoxysilene (VTES) as a precursor was prepared through Sol-gel process at pH 7. The sol was doped with 0.1% of Anthocyanin and the same amount of dye was also dissolved in ethanol as a comparative sample. Hydrochloric Acid, HCl and Tetramethylammonium Hydroxide, TMAH were used to change the pH value by adding them at various concentrations into each sample. The emission spectra and chemical structures of the samples were measured by Spectrofluorometer and Fourier Transform Infrared (FTIR) respectively. When excited at 410 nm, two emission peaks at about 492 and 574 nm were observed for Anthocyanin in acidic environment both in ethanol and VTES sol. In base environment however, only Anthocyanin dissolved in ethanol produced emission peak with a single peak at about 539 nm. The sensitivity of Anthocyanin dye toward pH changes in VTES open a possibility to use it as sensing element in which sol-gel based matrix are known to have higher mechanical strength and thermal stability.

  9. Optical characterization of anti reflective sol-gel coatings fabricated using dip coating method

    NASA Astrophysics Data System (ADS)

    Melninkaitis, A.; Juškevičius, K.; Maciulevičius, M.; Sirutkaitis, V.; Beganskienė, A.; Kazadojev, I.; Kareiva, A.; Perednis, D.

    2007-01-01

    In recent years, there has been a growing interest in further development of sol-gel method which can produce ceramics and glasses using chemical precursors at relative low-temperatures. The applications for sol-gel derived products are numerous. Department of General and Inorganic Chemistry with Laser Research Center of Vilnius University and Institute of Physics continues an ongoing research effort on the synthesis, deposition and characterization of porous solgel. Our target is highly optically resistant anti-reflective (AR) coatings for general optics and nonlinear optical crystals. In order to produce AR coatings a silica (SiO II) sol-gel has been dip coated on the set of fused silica substrates. The optical properties and structure of AR-coatings deposited from hydrolysed tetraethylorthosilicate (TEOS) sol were characterized in detail in this study. The influence of different parameters on the formation of colloidal silica antireflective coatings by dip-coating technique has been investigated. All samples were characterized performing, transmission electron microscopy, UV-visible spectroscopy, atomic force microscopy, ellipsometric, total scattering and laser-induced damage threshold measurements. Herewith we present our recent results on synthesis of sol-gel solvents, coating fabrication and characterization of their optical properties.

  10. Sol-gel deposition of buffer layers on biaxially textured metal substances

    DOEpatents

    Shoup, Shara S.; Paranthamam, Mariappan; Beach, David B.; Kroeger, Donald M.; Goyal, Amit

    2000-01-01

    A method is disclosed for forming a biaxially textured buffer layer on a biaxially oriented metal substrate by using a sol-gel coating technique followed by pyrolyzing/annealing in a reducing atmosphere. This method is advantageous for providing substrates for depositing electronically active materials thereon.

  11. Sol-gel-derived silicate nano-hybrids for biomedical applications.

    PubMed

    Tsuru, Kanji; Shirosaki, Yuki; Hayakawa, Satoshi; Osaka, Akiyoshi

    2013-01-01

    Organic-inorganic hybrids of poly(dimethyl siloxane), gelatin, and chitosan with such silanes as tetraethoxysilane and 3-glycidoxytriethoxysilane are derived via the sol-gel routes. Their biomedical applications are discussed from biomimetic deposition of bone-like apatite, cell culture, and in vivo behavior. PMID:24189412

  12. OPTIMIZATION OF ALKYL ESTER PRODUCTION FROM GREASE USING A PHYLLOSILICATE SOL-GEL IMMOBILIZED LIPASE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Simple alkyl ester derivatives of restaurant grease were prepared using a lipase from Pseudomonas cepacia immobilized within a phyllosilicate sol-gel matrix as biocatalyst. Alcoholysis reactions of grease were carried out in solvent-free media using a one step addition of alcohol to reaction mixtur...

  13. Investigations of the small-scale thermal behavior of sol-gel thermites.

    SciTech Connect

    Warren, Mial E.; Farrow, Matthew; Tappan, Alexander Smith

    2009-02-01

    Sol-gel thermites, formulated from nanoporous oxides and dispersed fuel particles, may provide materials useful for small-scale, intense thermal sources, but understanding the factors affecting performance is critical prior to use. Work was conducted on understanding the synthesis conditions, thermal treatments, and additives that lead to different performance characteristics in iron oxide sol-gel thermites. Additionally, the safety properties of sol-gel thermites were investigated, especially those related to air sensitivity. Sol-gel thermites were synthesized using a variety of different techniques and there appear to be many viable routes to relatively equivalent thermites. These thermites were subjected to several different thermal treatments under argon in a differential scanning calorimeter, and it was shown that a 65 C hold for up to 200 minutes was effective for the removal of residual solvent, thus preventing boiling during the final thermal activation step. Vacuum-drying prior to this heating was shown to be even more effective at removing residual solvent. The addition of aluminum and molybdenum trioxide (MoO{sub 3}) reduced the total heat release per unit mass upon exposure to air, probably due to a decrease in the amount of reduced iron oxide species in the thermite. For the thermal activation step of heat treatment, three different temperatures were investigated. Thermal activation at 200 C resulted in increased ignition sensitivity over thermal activation at 232 C, and thermal activation at 300 C resulted in non-ignitable material. Non-sol-gel iron oxide did not exhibit any of the air-sensitivity observed in sol-gel iron oxide. In the DSC experiments, no bulk ignition of sol-gel thermites was observed upon exposure to air after thermal activation in argon; however ignition did occur when the material was heated in air after thermal treatment. In larger-scale experiments, up to a few hundred milligrams, no ignition was observed upon exposure to air

  14. Magnetic resonance as a structural probe of a uranium (VI) sol-gel process

    SciTech Connect

    King, C.M.; Thompson, M.C.; Buchanan, B.R.; King, R.B.; Garber, A.R.

    1989-12-31

    NMR investigations on the ORNL process for sol-gel synthesis of microspherical nuclear fuel (UO{sub 2}), has been useful in sorting out the chemical mechanism in the sol-gel steps. {sup 13}C, {sup 15}N, and {sup 1}H NMR studies on the HMTA gelation agent (Hexamethylene tetramine, C{sub 6}H{sub l2}N{sub 4}) has revealed near quantitative stability of this adamantane-like compound in the sol-Gel process, contrary to its historical role as an ammonia source for gelation from the worldwide technical literature. {sub 17}0 NMR of uranyl (UO{sub 2}{sup ++}) hydrolysis fragments produced in colloidal sols has revealed the selective formation of a uranyl trimer, [(UO{sub 2}){sub 3}({mu}{sub 3}-O)({mu}{sub 2}-OH){sub 3}]{sup +}, induced by basic hydrolysis with the HMTA gelation agent. Spectroscopic results show that trimer condensation occurs during sol-gel processing leading to layered polyanionic hydrous uranium oxides in which HMTAH{sup +} is occluded as an ``intercalation`` cation. Subsequent sol-gel processing of microspheres by ammonia washing results in in-situ ion exchange and formation of a layered hydrous ammonium uranate with a proposed structural formula of (NH{sub 4}){sub 2}[(UO{sub 2}){sub 8}O{sub 4}(OH){sub 10}] {center_dot} 8H{sub 2}0. This compound is the precursor to sintered U0{sub 2} ceramic fuel.

  15. Magnetic resonance as a structural probe of a uranium (VI) sol-gel process

    SciTech Connect

    King, C.M.; Thompson, M.C.; Buchanan, B.R. ); King, R.B. . Dept. of Chemistry); Garber, A.R. . Dept. of Chemistry)

    1989-01-01

    NMR investigations on the ORNL process for sol-gel synthesis of microspherical nuclear fuel (UO{sub 2}), has been useful in sorting out the chemical mechanism in the sol-gel steps. {sup 13}C, {sup 15}N, and {sup 1}H NMR studies on the HMTA gelation agent (Hexamethylene tetramine, C{sub 6}H{sub l2}N{sub 4}) has revealed near quantitative stability of this adamantane-like compound in the sol-Gel process, contrary to its historical role as an ammonia source for gelation from the worldwide technical literature. {sub 17}0 NMR of uranyl (UO{sub 2}{sup ++}) hydrolysis fragments produced in colloidal sols has revealed the selective formation of a uranyl trimer, ((UO{sub 2}){sub 3}({mu}{sub 3}-O)({mu}{sub 2}-OH){sub 3}){sup +}, induced by basic hydrolysis with the HMTA gelation agent. Spectroscopic results show that trimer condensation occurs during sol-gel processing leading to layered polyanionic hydrous uranium oxides in which HMTAH{sup +} is occluded as an intercalation'' cation. Subsequent sol-gel processing of microspheres by ammonia washing results in in-situ ion exchange and formation of a layered hydrous ammonium uranate with a proposed structural formula of (NH{sub 4}){sub 2}((UO{sub 2}){sub 8}O{sub 4}(OH){sub 10}) {center dot} 8H{sub 2}0. This compound is the precursor to sintered U0{sub 2} ceramic fuel.

  16. Er3+-activated photonic structures fabricated by sol-gel and rf-sputtering techniques

    NASA Astrophysics Data System (ADS)

    Ferrari, M.; Alombert-Goget, G.; Armellini, C.; Berneschi, S.; Bhaktha, S. N. B.; Boulard, B.; Brenci, M.; Chiappini, A.; Chiasera, A.; Duverger-Arfuso, C.; Féron, P.; Gonçalves, R. R.; Jestin, Y.; Minati, L.; Moser, E.; Nunzi Conti, G.; Pelli, S.; Rao, D. N.; Retoux, R.; Righini, G. C.; Speranza, G.

    2009-05-01

    The realization of photonic structures operating at visible and near infrared frequencies is a highly attractive scientific and technological challenge. Since optical fiber innovation, a huge of activity has been performed leading to interesting results, such as optical waveguides and planar lightwave circuits, microphotonic devices, optical microcavities, nanowires, plasmonic structures, and photonic crystals. These systems have opened new possibilities in the field of both basic and applied physics, in a large area covering Information Communication Technologies, Health and Biology, Structural Engineering, and Environment Monitoring Systems. Several materials and techniques are employed to successfully fabricate photonic structures. Concerning materials, Er3+-activated silica-based glasses still play an important role, although recently interesting results have been published about fluoride glass-ceramic waveguides. As far as regards the fabrication methods sol-gel route and rf sputtering have proved to be versatile and reliable techniques. In this article we will present a review of some Er3+-activated photonic structures fabricated by sol gel route and rf sputtering deposition. In the discussion on the sol-gel approach we focus our attention on the silica-hafnia binary system presenting an overview concerning fabrication protocols and structural, optical and spectroscopic assessment of SiO2-HfO2 waveguides activated by Er3+ ions. In order to put in evidence the reliability and versatility of the sol-gel route for photonics applications four different confined structures are briefly presented: amorphous waveguides, coated microspheres, monolithic waveguide laser, and core-shell nanospheres. As examples of rf sputtering technique, we will discuss Er3+-activated silica-hafnia and silica-germania waveguides, the latter system allowing fabrication of integrated optics structures by UV photo-imprinting. Finally, two examples of photonic crystal structures, one

  17. Sol-gel processes and materials. November 1971-October 1989 (Citations from the US Patent data base). Report for November 1971-October 1989

    SciTech Connect

    Not Available

    1990-01-01

    This bibliography contains citations of selected patents concerning sol-gel processes and sol-gel derived materials and products. Selected patents include sol-gel compositions, ceramic and refractory materials, fabrication of silica glass, sol-gel thin films and coatings, transparent inorganic oxide glass, luminescent quartz glass, cataylsts and catalyst supports, nuclear fuels preparation, abrasives for grinding wheels, sol-gel production of microspheres, alumina composites, photographic materials, and dental materials. (This updated bibliography contains 120 citations, 12 of which are new entries to the previous edition.)

  18. Sol-gel processes and materials. January 1970-August 1989 (Citations from the US Patent data base). Report for January 1970-August 1989

    SciTech Connect

    Not Available

    1989-09-01

    This bibliography contains citations of selected patents concerning Sol-Gel processes and Sol-Gel derived materials and products. Selected patents include Sol-Gel compositions, ceramic and refractory materials, fabrication of silica glass, Sol-Gel thin films and coatings, transparent inorganic oxide glass, luminescent quartz glass, cataylsts and catalyst supports, nuclear fuels preparation, abrasives for grinding wheels, Sol-Gel production of microspheres, alumina composites, photographic materials, and dental materials. (This updated bibliography contains 108 citations, 37 of which are new entries to the previous edition.)

  19. Effect of PMMA impregnation on the fluorescence quantum yield of sol-gel glasses doped with quinine sulfate

    NASA Astrophysics Data System (ADS)

    Meneses-Nava, M. A.; Barbosa-García, O.; Díaz-Torres, L. A.; Chávez-Cerda, S.; Torres-Cisneros, M.; King, T. A.

    2001-08-01

    The fluorescence quantum yield of quinine sulfate in sol-gel and PMMA impregnated glasses is measured. The observed quantum yield improvement in the sol-gel matrix, compared to ethanol, is interpreted as a reduction of non-radiative relaxation channels by isolation of the molecules by the cage of the glass. PMMA impregnated sol-gel glasses show an extra improvement of the fluorescence yield, which is interpreted as a reduction of the free space and the rigid fixation of the molecules to the matrix.

  20. Fiber-optic chemical sensors using sol-gel membranes and photocatalysts

    NASA Astrophysics Data System (ADS)

    Nivens, Delana Amber Gajdosik

    Fiber-optic sensors have been developed that incorporate multi-layer organo-silica sol-gel membranes. Multilayer sol-gel sensors have been designed to offer improved stability over other sol-gel membranes and to measure COsb2 and the unreactive analytes trichloroethylene and perchloroethylene. Single layer pH sensors were fabricated using a base-catalyzed organo-silica sol-gel containing organosilane coupling agents. A base catalyst was found to be better suited for complete incorporation of the aminopropyltriethoxysilane used to attach dye molecules. This allows the production of optically transparent gels that respond to pH in less than 15 seconds. Dual layer COsb2 sensors use the pH sol-gel layer overcoated with a hydrophobic ORganically MOdified SIlica sol-gel membrane (ORMOSIL). The ORMOSIL reduces much of the pH cross sensitivity found in gas sensors and allows fast, reversible diffusion of COsb2. The sensors respond to COsb2 gas within 10 seconds and dissolved COsb2 in 2 minutes. COsb2 sensors have been found to be stable and reproducible for 12 months when stored dry and at least 6 months when stored in buffer. Many volatile organochloride compounds (VOC's) have been difficult to measure using current fiber-optic sensor transduction schemes. The three-layer optical sensor described here incorporates a TiOsb2/SiOsb2 membrane to degrade VOC's into smaller, detectable products, Hsp+, Clsp- and COsb2. Upon exposure to UV light, TiOsb2, a semiconductor with a bandgap of 3.2 eV, produces highly reactive electron-hole pairs that photodegrade organic compounds. The products produced on the TiOsb2 surface diffuse into the nearby indicator membrane where they are detected. Carbon dioxide and protons produced are detected by the pH sensitive indicator layer described above. Preliminary data for the measurement of VOC's indicates that the detection limit for PCE is less than 1.65 ppm in the headspace (10 ppm in solution). Photocatalysis is also used to measure uranyl

  1. Synthesis and characterization of sol-gel-derived nanomaterials and nanocrystalline electroless metal coatings

    NASA Astrophysics Data System (ADS)

    Shukla, Satyajit Vishnu

    CuS (minimum size of 2.5 nm), Ag2S (minimum and average size of 2.5 nm and 26 nm respectively), and Au (with minimum size of <10 nm) nanoparticles dispersed within the sol-gel derived hydroxypropyl cellulose (HPC)-silica films are synthesized using the gas diffusion technique. The effectiveness of HPC polymer, as a 'compatibilizer', to synthesize semiconductor and metal nanoparticles distributed uniformly within the silica film is demonstrated. The sol-gel derived HPC-silica films containing dispersed nanoparticles are characterized using x-ray photoelectron spectroscopy (XPS) to understand the mechanism of formation of nanoparticles within the film. The XPS core-level binding energies (B.E.) for the nanoparticles are observed to be sensitive to the variation in the chemical composition at the surface and their size. The 'cluster size effect' is shown to be useful in predicting the average nanoparticle size. Nanocrystalline ZrO2 particles are successfully synthesized using sol-gel technique utilizing HPC polymer as a 'steric barrier'. The use of HPC polymer is demonstrated to synthesize submicron-sized, non-agglomerated, and spherical as well as nanocrystalline ZrO2 particles by adjusting the sol-gel synthesis parameters. The effect of sol-gel synthesis parameters on ZrO2 nanocrystallite size, its distribution, and the phase evolution behavior of ZrO2 is studied. The optimum sol-gel synthesis parameters for synthesizing nanocrystalline ZrO2 with 100% tetragonal phase are identified. Cu/CuO-ZrO2 composite powder is synthesized using the electroless metal deposition technique. The mechanism of electroless deposition of Cu over ZrO2 particle surface is investigated using XPS. On the basis of 'cluster size effect', it is suggested that, the electroless metal deposition process activates the non-catalytic ceramic substrate surface by depositing metallic Pd0 clusters and not by the accepted Pd-Sn alloy catalyst. Fly ash cenosphere particle surface is also activated by

  2. Sol-gel coatings for high power laser optics-past, present and future

    SciTech Connect

    Thomas, I.M.

    1993-12-21

    An investigation into the preparation of sol-gel coatings for high power lasers was started at LLNL in 1983 and AR coatings were successfully developed for use in the Nova laser in 1984. Several other large lasers now use these coatings. Subsequent work on HR coatings resulted in AlOOH/SiO{sub 2} and later ZrO{sub 2} or HfO{sub 2}/SiO{sub 2} systems of good optical performance. The use of organic polymer binders gave increased damage threshold and enhanced optical performance. We are in the process of scaling up HR fabrication for substrates approximately 38 cm square. Concurrently we are developing sol-gel random phase plates for laser beam smoothing. These have a patterned surface design of silica which induces phase shifts in the beam by variation in the optical path length. Plates of this type on 80 cm diameter substrates have been used successfully on the Nova.

  3. Moisture sensor based on evanescent wave light scattering by porous sol-gel silica coating

    DOEpatents

    Tao, Shiquan; Singh, Jagdish P.; Winstead, Christopher B.

    2006-05-02

    An optical fiber moisture sensor that can be used to sense moisture present in gas phase in a wide range of concentrations is provided, as well techniques for making the same. The present invention includes a method that utilizes the light scattering phenomenon which occurs in a porous sol-gel silica by coating an optical fiber core with such silica. Thus, a porous sol-gel silica polymer coated on an optical fiber core forms the transducer of an optical fiber moisture sensor according to an embodiment. The resulting optical fiber sensor of the present invention can be used in various applications, including to sense moisture content in indoor/outdoor air, soil, concrete, and low/high temperature gas streams.

  4. Regioselective hydroaminomethylation of vinylarenes by a sol-gel immobilized rhodium catalyst.

    PubMed

    Nairoukh, Zackaria; Blum, Jochanan

    2014-03-21

    In the course of our studies toward the development of new heterogeneous conditions for better controlling regioselectivity in organic reactions, we investigated the application of sol-gel immobilized organometallic catalyst for regioselective hydroaminomethylation of vinylarenes with aniline or nitroarene derivatives in an aqueous microemulsion. By immobilization of 6 mol % [Rh(cod)Cl]2 within a hydrophobic silica sol-gel matrix we were able to perform efficient hydroaminomethylation under mild conditions and isolate 2-arylpropylamines with high regioselectivity. The regioselectivity of the reaction was found to be mainly dependent on the hydrophobicity of the catalyst support. It is also significantly affected by the electronic nature of the substrates, by the reaction temperature, and by syngas pressure. The heterogenized catalyst can be reused for several times. PMID:24528141

  5. Multi-level diffractive optical elements produced by excimer laser ablation of sol-gel.

    PubMed

    Neiss, Estelle; Flury, Manuel; Mager, Loïc; Rehspringer, Jean-Luc; Fort, Alain; Montgomery, Paul; Gérard, Philippe; Fontaine, Joël; Robert, Stéphane

    2008-09-01

    Material ablation by excimer laser micromachining is a promising approach for structuring sol-gel materials as we demonstrate in the present study. Using the well-known direct etching technique, the behaviour of different hybrid organic/inorganic self-made sol-gel materials is examined with a KrF* laser. Ablated depths ranging from 0.1 to 1.5 microm are obtained with a few laser pulses at low fluence (< 1 J/cm(2)). The aim is to rapidly transfer surface relief multi-level diffractive patterns in such a substrate, without intermediate steps. The combination with the 3D profilometry technique of coherence probe microscopy permits to analyse the etching process with the aim of producing multi-level Diffractive Optical Elements (DOE). Examples of four-level DOEs with 10 microm square elementary cells are presented, as well as their laser reconstructions in the infrared. PMID:18773015

  6. The Physics of Evaporation-Induced Assembly of Sol-Gel Materials

    SciTech Connect

    HURD,ALAN J.; STEINBERG,LEV

    2000-07-24

    Remarkable materials ordered at the nanoscale emerge when a sol-gel solution becomes co-organized with a surfactant. At sufficiently high concentration, the surfactant forms crystalline or liquid-crystalline arrays of micelles in the presence of the sol-gel, and as gelation proceeds the arrays become locked into the gel. Recent experiments demonstrate that the degree of order in the resulting mesoporous ceramic phase can be enhanced and controlled by continuous dip coating in which the solution, initially dilute, evolves through the critical micelle concentration by steady-state evaporation. The long-range order and microstructural orientation in these films suggest that the propagation of a critical-micelle-concentration transition front, with large physico-chemical gradients, promotes oriented self assembly of surfactant aggregates. This steep-gradient view is supported by results from unsteady evaporation of aerosols of similar solutions, in which internally well-ordered but complex particles are formed.

  7. Sol-gel co-assembly of hollow cylindrical inverse opals and inverse opal columns.

    PubMed

    Haibin, Ni; Ming, Wang; Wei, Chen

    2011-12-19

    A facile approach of fabricating hollow cylindrical inverse opals and inverse opal columns by sol-gel co-assembly method was proposed. Polystyrene (PS) colloidal suspension added with hydrolyzed silicate precursor solution was used to self-assemble composite colloidal crystals which consist of PS colloidal crystal template and infiltrated silica gel in the interstitial of microspheres. Continuous hollow cylindrical composite colloidal crystal films have been produced on capillaries' outside and internal surface. Composite colloidal crystal columns which filling up the interior of a capillary were fabricated by pressure assisted sol-gel co-assembly method. Hollow cylindrical inverse opals and inverse opal columns were obtained after removing PS colloidal crystal from the composite colloidal crystal. Optical properties of the silica hollow cylindrical inverse opals were characterized by transmission spectrum and a stop band was observed. Structure and optical properties of the inverse opal columns were investigated. PMID:22274178

  8. A Review of Photocatalysts Prepared by Sol-Gel Method for VOCs Removal

    PubMed Central

    Tseng, Ting Ke; Lin, Yi Shing; Chen, Yi Ju; Chu, Hsin

    2010-01-01

    The sol-gel process is a wet-chemical technique (chemical solution deposition), which has been widely used in the fields of materials science, ceramic engineering, and especially in the preparation of photocatalysts. Volatile organic compounds (VOCs) are prevalent components of indoor air pollution. Among the approaches to remove VOCs from indoor air, photocatalytic oxidation (PCO) is regarded as a promising method. This paper is a review of the status of research on the sol-gel method for photocatalyst preparation and for the PCO purification of VOCs. The review and discussion will focus on the preparation and coating of various photocatalysts, operational parameters, and will provide an overview of general PCO models described in the literature. PMID:20640156

  9. Glucose microbiosensor based on alumina sol-gel matrix/electropolymerized composite membrane.

    PubMed

    Chen, Xiaohong; Hu, Yibai; Wilson, George S

    2002-12-01

    A procedure is described that provides co-immobilization of enzyme and bovine serum albumin (BSA) within an alumina sol-gel matrix and a polyphenol layer permselective for endogenous electroactive species. BSA has first been employed for the immobilization of glucose oxidase (GOx) on a Pt electrode in a sol-gel to produce a uniform, thin and compact film with enhanced enzyme activity. Electropolymerization of phenol was then employed to form an anti-interference and protective polyphenol film within the enzyme layer. In addition, a stability-reinforcing membrane derived from (3-aminopropyl)-trimethoxysilane was constructed by electrochemically-assisted crosslinking. This hybrid film outside the enzyme layer contributed both to the improved stability and to permselectivity. The resulting glucose sensor was characterized by a short response time (<10 s), high sensitivity (10.4 nA/mM mm(2)), low interference from endogenous electroactive species, and a working lifetime of at least 60 days. PMID:12392950

  10. Sol gel based fiber optic sensor for blook pH measurement

    SciTech Connect

    Grant, S. A.; Glass, R. S.

    1996-12-19

    This paper describes a fiber-optic pH sensor based upon sol-gel encapsulation of a self-referencing dye, seminaphthorhodamine-1 carboxylate (SNARF-1C). The simple sol-gel fabrication procedure and low coating leachability are ideal for encapsulation and immobilization of dye molecules onto the end of an optical fiber. A miniature bench-top fluorimeter system was developed for use with the optical fiber to obtain pH measurements. Linear and reproducible responses were obtained in human blood in the pH range 6.8 to 8.0, which encompasses the clinically-relevant range. Therefore, this sensor can be considered for in vivo use.

  11. Surface aspects of sol-gel derived hematite films for the photoelectrochemical oxidation of water.

    PubMed

    Herrmann-Geppert, Iris; Bogdanoff, Peter; Radnik, Jörg; Fengler, Steffen; Dittrich, Thomas; Fiechter, Sebastian

    2013-02-01

    α-Fe(2)O(3) (hematite) photoanodes for the oxygen evolution reaction (OER) were prepared by a cost-efficient sol-gel procedure. Due to low active photoelectrochemical properties observed, it is assumed that the sol-gel procedure leads to hematite films with defects and surface states on which generated charge carriers are recombined or immobilized in trap processes. Electrochemical activation was proven to diminish unfavourable surface groups to some extent. More efficiently, a plasma treatment improves significantly the photoelectrochemical properties of the OER. X-ray photoelectron spectroscopy (XPS) analysis reveals an oxygen enriched surface layer with new oxygen species which may be responsible for the improved electrochemical activity. Due to surface photovoltage an increased fraction of transferred charge carriers from these newly produced surface defects are identified. PMID:23247669

  12. Solid-state NMR study of geopolymer prepared by sol-gel chemistry

    SciTech Connect

    Tsai, Yi-Ling; Hanna, John V.; Lee, Yuan-Ling; Smith, Mark E.; Chan, Jerry C.C.

    2010-12-15

    Geopolymers are a new class of materials formed by the condensation of aluminosilicates and silicates obtained from natural minerals or industrial wastes. In this work, the sol-gel method is used to synthesize precursor materials for the preparation of geopolymers. The geopolymer samples prepared by our synthetic route have been characterized by a series of physical techniques, including Fourier-transform infrared, X-ray diffraction, and multinuclear solid-state NMR. The results are very similar to those obtained for the geopolymers prepared from natural kaolinite. We believe that our synthetic approach can offer a good opportunity for the medical applications of geopolymer. -- Graphical abstract: Geopolymer prepared by the sol-gel route has the same spectroscopic properties as the sample prepared from the natural kaolinite. Display Omitted

  13. The porosity of sol-gel silica thin films for optrode applications

    SciTech Connect

    Harris, T.M.; Knobbe, E.T.

    1995-12-01

    Porous silica thin films produced by sol-gel processing are being considered for use in optical sensor (optrode) applications. In this study, thin films were produced by dip-coating onto glass slides. The porosity was then measured indirectly, by determining the amount of methylene blue adsorption on each slide. Using this technique, it has been determined that the {open_quotes}two-step{close_quotes} sol-gel process provides a greater surface area than the acid-catalyzed process. With the two-step process, increasing the amount of solvent (ethanol) and decreasing the rate of slide withdrawal from the sol provided increased surface area when normalized to the mass of the deposit.

  14. Effect of sol-gel modifications on formation and morphology of nanocrystalline lanthanum aluminate

    SciTech Connect

    Koc, S. Naci . E-mail: nacik@istanbul.edu.tr; Oksuzomer, Faruk; Yasar, Erdem; Akturk, Selcuk; Gurkaynak, M. Ali

    2006-12-14

    LaAlO{sub 3} powders are prepared by sol-gel method. The effect of preparation conditions on morphological properties and crystal formations are investigated. iso-Propanol/tert-butanol and ethyl acetoacetate/ethylene glycol monomethylether are used solvents and complexing agents, respectively. Samples are dried with conventional and freeze-drying methods and calcined between 600 and 1000 deg. C. TGA, DTA, XRD, SEM and TEM methods are used for characterization. It is observed that freeze-dried sample prepared with tert-butanol has the lowest LaAlO{sub 3} formation temperature and uniform rhombohedral crystals. But conventionally dried sample, prepared with iso-propanol has smallest agglomerates at 1000 deg. C and does not show clear crystallization temperature in DTA analysis. The XRD peaks of LaAlO{sub 3} crystal are observed at 600 deg. C for all samples prepared by various sol-gel conditions.

  15. Preparation and electrochemical characterization of lithium cobalt oxide nanoparticles by modified sol-gel method

    SciTech Connect

    Khomane, Ramdas B.; Agrawal, Amit C.; Kulkarni, B.D. Gopukumar, S. Sivashanmugam, A.

    2008-08-04

    Uniformly distributed nanoparticles of LiCoO{sub 2} have been synthesized through the simple sol-gel method in presence of neutral surfactant (Tween-80). The powders were characterized by X-ray diffractometry, transmission electron microscopy and electrochemical method including charge-discharge cycling performance. The powder calcined at a temperature of 900 deg. C for 5 h shows pure phase layered LiCoO{sub 2}. The results show that the particle size is reduced in presence of surfactant as compared to normal sol-gel method. Also, the sample prepared in presence of surfactant and calcined at 900 deg. C for 5 h shows the highest initial discharge capacity (106 mAh g{sup -1}) with good cycling stability as compared to the sample prepared without surfactant which shows the specific discharge capacity of 50 mAh g{sup -1}.

  16. Ultrapure glass optical waveguide development in microgravity by the sol-gel process

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Containerless melting of glasses in space for the preparation of ultrapure homogeneous glass for optical waveguides is discussed. The homogenization of the glass using conventional raw materials is normally achieved on Earth either by the gravity induced convection currents or by the mechanical stirring of the melt. Because of the absence of gravity induced convection currents, the homogenization of glass using convectional raw materials is difficult in the space environment. Multicomponent, homogeneous, noncrystalline oxide gels can be prepared by the sol-gel process and these gels are promising starting materials for melting glasses in the space environment. The sol-gel process is based on the polymerization reaction of alkoxysilane with other metal alkoxy compounds or suitable metal salts. Many of the alkoxysilanes or other metal alkoxides are liquids and thus can be purified by distillation.

  17. Enhanced optical band-gap of ZnO thin films by sol-gel technique

    NASA Astrophysics Data System (ADS)

    Raghu, P.; Naveen, C. S.; Shailaja, J.; Mahesh, H. M.

    2016-05-01

    Transparent ZnO thin films were prepared using different molar concentration (0.1 M, 0.2 M & 0.8 M) of zinc acetate on soda lime glass substrates by the sol-gel spin coating technique. The optical properties revealed that the transmittance found to decrease with increase in molar concentration. Absorption edge showed that the higher concentration film has increasingly red shifted. An increased band gap energy of the thin films was found to be direct allowed transition of ˜3.9 eV exhibiting their relevance for photovoltaic applications. The extinction coefficient analysis revealed maximum transmittance with negligible absorption coefficient in the respective wavelengths. The results of ZnO thin film prepared by sol-gel technique reveal its suitability for optoelectronics and as a window layer in solar cell applications.

  18. Wet powder processing of sol-gel derived mesoporous silica-hydroxyapatite hybrid powders.

    PubMed

    Andersson, Jenny; Johannessen, Espen; Areva, Sami; Järn, Mikael; Lindén, Mika

    2006-08-01

    This paper describes a method by which a porous silica coating layer can be obtained on different apatite particles through a simple sol-gel synthesis route. Sol-gel derived powders of hydroxyapatite (HAP) and beta tricalciumphosphate (beta-TCP) were coated with a mesoporous silica using C16TAB (hexadecyltrimethylammonium bromide) as a template in order to induce mesophase formation. Further calcination of the material removes the template from the mesophase and leaves a highly ordered hexagonal arranged mesoporous silica structure with a core of HAP/beta-TCP. The phase purity of the SiO2/apatite composites has been thoroughly investigated by the means of FT-IR, XRD, and solid state 31P MAS NMR. The phase purity of these materials is shown to be dependent on the solubility properties of the used apatites. The hybrid materials are suitable as a multifunctional biomaterial where osteoconductive properties can be combined with drug delivery. PMID:17037853

  19. Transparent ultralow-density silica aerogels prepared by a two-step sol-gel process

    SciTech Connect

    Tillotson, T.M.; Hrubesh, L.W.

    1991-09-01

    Conventional silica sol-gel chemistry is limited for the production of transparent ultralow-density aerogels because (1) gelation is either slow or unachievable, and (2) even when gelation is achieved, the large pore sizes result in loss of transparency for aerogels <.020 g/cc. We have developed a two-step sol-gel process that circumvents the limitations of the conventional process and allows the formation of ultralow-density gels in a matter of hours. we have found that the gel time is dependent on the catalyst concentration. After supercritical extraction, the aerogels are transparent, uncracked tiles with densities as low as .003 g/cc. 6 figs., 11 refs.

  20. 3D Printed PEG-Based Hybrid Nanocomposites Obtained by Sol-Gel Technique.

    PubMed

    Chiappone, Annalisa; Fantino, Erika; Roppolo, Ignazio; Lorusso, Massimo; Manfredi, Diego; Fino, Paolo; Pirri, Candido Fabrizio; Calignano, Flaviana

    2016-03-01

    In this work, three-dimensional (3D) structured hybrid materials were fabricated combining 3D printing technology with in situ generation of inorganic nanoparticles by sol-gel technique. Those materials, consisting of silica nanodomains covalently interconnected with organic polymers, were 3D printed in complex multilayered architectures, incorporating liquid silica precursors into a photocurable oligomer in the presence of suitable photoinitiators and exposing them to a digital light system. A post sol-gel treatment in acidic vapors allowed the in situ generation of the inorganic phase in a dedicated step. This method allows to build hybrid structures operating with a full liquid formulation without meeting the drawbacks of incorporating inorganic powders into 3D printable formulations. The influence of the generated silica nanoparticle on the printed objects was deeply investigated at macro- and nanoscale; the resulting light hybrid structures show improved mechanical properties and, thus, have a huge potential for applications in a variety of advanced technologies. PMID:26871993

  1. Optical and electrochromic properties of sol-gel-deposited tungsten oxide films

    NASA Astrophysics Data System (ADS)

    Ozkan, Esra; Lee, Se-Hee; Liu, Ping; Tracy, C. Ed; Tepehan, Fatma Z.; Pitts, J. Roland; Deb, Satyen K.

    2001-11-01

    The electrochromic properties of sol-gel and mesoporous tungsten oxide thin films were investigated. Tungsten oxide films were prepared by a spin coating technique from an ethanolic solution of tungsten hexachloride. A block copolymer (BASF Pluronic p123, (p1) was employed as a template to generate the mesoporous structure. The electrochromic and optical properties of such films are described and compared to standard sol-gel tungsten oxide films. A novel ultraviolet (UV) illumination method was developed to remove the polymer templates and was found to improve the coloration efficiency of tungsten oxide in general. All types of films were analyzed by transmission electron microscopy (TEM), atomic force microscopy (AFM), x- ray diffractometry and cyclic voltammetry.

  2. Low birefringent magneto-optical waveguides fabricated via organic-inorganic sol-gel process

    NASA Astrophysics Data System (ADS)

    Choueikani, F.; Royer, F.; Douadi, S.; Skora, A.; Jamon, D.; Blanc, D.; Siblini, A.

    2009-09-01

    This paper is devoted to the study and the characterization of novel magneto-optical waveguides prepared via organic-inorganic sol-gel process. Thin silica/zirconia films doped with magnetic nanoparticles were coated on glass substrate using dip-coating technique. After annealing, samples were UV-treated. Two different techniques were used to measure their properties: m-lines spectroscopy and free space ellipsometry. Results evidence low refractive index waveguides that combine a low modal birefringence (2×10-4) with a Faraday rotation around 15 °/cm (φ = 0.1%). The low birefringence is obtained with a soft UV treatment and a graded intrinsic anisotropy is evidenced for films thicker than 5 μm. Therefore, we prove that the organic-inorganic sol-gel approach is very promising to realize magneto-optical waveguides with a non-reciprocal functionality such as TE-TM mode conversion.

  3. Fabrication and Characterization of Lead Zirconate Titanate (PZT) Thin Films by Sol-Gel Technique

    NASA Astrophysics Data System (ADS)

    Rahman, M. F.; Miglioli, L.

    2016-02-01

    In this work, thin lead zirconate titanate, Pb[Zr0.52Ti0.48]O3 (PZT) films have been developed from a novel sol-gel route. The sol-gel films were deposited by spin coating method. Isopropanol-based solution was used for its less toxic property. Gold (Au), platinum (Pt) and indium tin oxide (ITO) were used as substrates. Homogeneous polycrystalline films with (110) preferred orientation were obtained from all the films. The films behaved as ferroelectric material where dielectric constant at 0V for the films obtained from Au, Pt and ITO substrates were 484, 770 and 655, respectively. The coercive field values were around 10-15KV/cm which revealed that the films were soft ferroelectric.

  4. Synthesis and enhanced thermal stability of albumins@alumina: towards injectable sol-gel materials.

    PubMed

    Rutenberg, Avi; Vinogradov, Vladimir V; Avnir, David

    2013-06-25

    A major obstacle to the introduction of bioactively-doped sol-gel based materials for medical applications has been the fact that silica - the most widely studied sol-gel material - despite being a GRAS material, which is widely used as an additive in foods and drug formulations, is still not approved by regulatory agencies for intramuscular injections. Here we point to a potential solution to this problem by shifting the weight to alumina, which is approved for injections as the most common immunization adjuvant. Towards the achievement of this goal we describe the development of protein entrapment methods tailored to alumina, and show high thermal stability of protein-dopants, using a newly developed DSC methodology for this purpose. PMID:23682354

  5. The role of temperature in forming sol-gel biocomposites containing polydopamine.

    PubMed

    Dyke, Jason Christopher; Hu, Huamin; Lee, Dong Joon; Ko, Ching-Chang; You, Wei

    2014-11-28

    To further improve the physical strength and biomedical applicability of bioceramicsbuilt on hydroxyapatite-gelatin (HAp-Gel) and siloxane sol-gel reactions, we incorporated mussel adhesive inspired polydopamine (PD) into our original composite based on HAp-Gel cross-linked with siloxane. Surprisingly, with the addition of PD, we observed that the processing conditions and temperatures play an important role in the structure and performance of these materials. A systematic study to investigate this temperature dependence behavior discloses that the rate of crosslinking of silane during the sol-gel process is significantly influenced by the temperature, whereas the polymerization of the dopamine only shows minor temperature dependence. With this discovery, we report an innovative thermal process for the design and application of these biocomposites. PMID:25485111

  6. The role of temperature in forming sol-gel biocomposites containing polydopamine

    PubMed Central

    Dyke, Jason Christopher; Hu, Huamin; Lee, Dong Joon; Ko, Ching-Chang; You, Wei

    2014-01-01

    To further improve the physical strength and biomedical applicability of bioceramicsbuilt on hydroxyapatite-gelatin (HAp-Gel) and siloxane sol-gel reactions, we incorporated mussel adhesive inspired polydopamine (PD) into our original composite based on HAp-Gel cross-linked with siloxane. Surprisingly, with the addition of PD, we observed that the processing conditions and temperatures play an important role in the structure and performance of these materials. A systematic study to investigate this temperature dependence behavior discloses that the rate of crosslinking of silane during the sol-gel process is significantly influenced by the temperature, whereas the polymerization of the dopamine only shows minor temperature dependence. With this discovery, we report an innovative thermal process for the design and application of these biocomposites. PMID:25485111

  7. A sol-gel based surface treatment for preparation of water repellent antistatic textiles

    NASA Astrophysics Data System (ADS)

    Textor, Torsten; Mahltig, Boris

    2010-01-01

    In this paper a surface treatment is described for preparation of hydrophobic sol-gel coatings that simultaneously offer antistatic properties for an appropriate finishing of textiles and refinement of polymer foils. Sol-gel based formulations are modified with both hydrophilic and hydrophobic components simultaneously. Hydrophobic components are, e.g., alkoxysilanes modified with alkyl chains while the hydrophilic ones are amino-functionalized alkoxysilanes. The basic idea is that due to an enrichment of hydrophobic groups at the solid/air interface the surface of the as prepared coatings will be hydrophobic while the deeper region will be more hydrophilic. Textiles finished with these coatings exhibit sufficient water repellence and simultaneously absorb sufficient amounts of humidity in the deeper areas of the coating guaranteeing antistatic properties. This concept offers interesting approaches for the preparation of multifunctional surface coatings not only focussing on combining water repellence with antistatic properties for textile materials.

  8. Treatments of paper surfaces with sol-gel coatings for laminated plywood

    NASA Astrophysics Data System (ADS)

    Wang, Shaoxia; Jämsä, Saila; Mahlberg, Riitta; Ihalainen, Petri; Nikkola, Juha; Mannila, Juha; Ritschkoff, Anne-Christine; Peltonen, Jouko

    2014-01-01

    Two silane-based hybrid coatings were developed for surface modification of paper samples with an attempt to improve the hydrophobic properties of the paper surfaces. A phenolic resin was used along with the sol-gel coatings to impregnate the paper samples before they were pressed on to plywood surfaces. The surface characteristics of the sol-gel-coated paper were investigated by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), confocal laser scanning microscopy (CLSM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The surface chemical properties and water absorption of the laminated plywood was also evaluated. It was observed that the hybrid coatings had clearly different effect on the surface properties of the base paper compared to the industrially impregnated paper. The water absorption of the laminated plywood was decreased the most effectively by mixing the phenolic resin with the coating having an octyl group attached to the silane backbone.

  9. Sol-gel kinetics for the preparation of inorganic/organic siloxane copolymers

    SciTech Connect

    Rankin, S.E.; Macosko, C.W.; McCormick, A.V.

    1996-12-31

    A model is described which incorporates hydrolysis pseudo-equilibrium to quantify the evolution of silicon site distributions in sol-gel polymerization up to higher conversions than previously possible. {sup 29}Si nuclear magnetic resonance spectroscopy data are used (1) to provide a means of recognizing hydrolysis pseudo-equilibrium and (2) to provide examples where different substitution effects on condensation rate coefficients caused by branching are observed. Extension of the model to copolymerization is discussed.

  10. Design of hybrid sol gel films for direct x-ray and electron beam nanopatterning

    NASA Astrophysics Data System (ADS)

    Brusatin, Giovanna; Della Giustina, Gioia; Romanato, Filippo; Guglielmi, Massimo

    2008-04-01

    New epoxy based sol-gel organic inorganic materials, showing lithographic resist-like properties without the addition of any photocatalysts, are presented. To obtain a material sensitive to radiation, specific sol-gel syntheses based on an organically modified alkoxide containing an epoxy ring, 3-glycidoxypropyltrimethoxysilane (GPTMS), have been developed. The synthesis and the patternability of hybrid materials have been obtained controlling the inorganic crosslinking degree and with an almost total absence of organic polymerization. Two examples of directly patternable hybrid films, called GB and GGe, have been synthesized using acidic (GGe) and basic (GB) conditions and obtaining different compositions. After electron beam lithography (EBL) or x-ray synchrotron radiation lithography (XRL) the polymerization of the organic component of the sol-gel film occurs, generating a hardening of the structure after post-exposure baking. The exposed polymerized material becomes insoluble, determining a negative resist-like behaviour of the film: the lithographic process of nanopatterning results from the dissolution of the unexposed areas in proper solvents (developers). Spatial resolution of the order of 200 nm is reported and a contrast of 2.2 is achieved. The novelty of this work is that epoxy based materials, which have enhanced thermomechanical stability with respect to the more usual acrylic based resins, are directly nanopatterned for the first time by electron beam (EB) and/or x-ray beam radiation exposure without the aid of catalysts for polymerization. In contrast to common resists that are sacrificial layers of the fabrication process, direct patternable sol-gel hybrids constitute the final material of the devices. In fact, an example of doping with a light emitting dye is reported together with the achievement of directly patterned structures by EBL and XRL.

  11. Volume Changes of a Thixotropic, Sodium Bentonite Suspension during Sol-Gel-Sol Transition.

    PubMed

    Anderson, D M; Leaming, G F; Sposito, G

    1963-09-13

    Dilatometric measurements during the sol-gel-sol transition of an air-free, thixotropic, sodium bentonite suspension revealed a reversible change in volume of about 2.4 X 10(-4) percent. The volume of the suspension increased during gelation and decreased when the gel was subsequently liquified. This is taken as evidence of a progressive building up, during gelation, of a water structure less dense than normal. PMID:17739493

  12. Production and characterization of spodumene dosimetric pellets prepared by a sol-gel route

    NASA Astrophysics Data System (ADS)

    Lima, H. R. B. R.; Nascimento, D. S.; Bispo, G. F. C.; Teixeira, V. C.; Valério, M. E. G.; Souza, S. O.

    2014-11-01

    Spodumene is an aluminosilicate that has shown good results for high-dose TL dosimetry for beta or gamma rays. Due to its chemical composition (LiAlSi2O6) it has potential to be used as a neutron dosimeter. The synthetic spodumene is usually produced by solid state reaction and conventional sol-gel, whose shortcomings arise from the need to employ high temperatures and high cost reagents, respectively. Proteic sol-gel method is promising, because it can reduce production costs and the possibility of environmental contamination. This work reports the production of the spodumene by the proteic sol-gel method using edible unflavored gelatin as a precursor. The product is characterized physically and morphologically, and investigated its applicability as a TL dosimeter. Two sets of samples were prepared using different sources of silicon, one with TEOS (Si(OC3H5)4) and one with SILICA (SiO2). The materials produced were characterized by X-ray diffraction, differential thermal analysis and thermogravimetry in order to evaluate the structural properties, as well as possible changes in physical or chemical properties depending on the temperature. The production of spodumene was successful, with generation of the crystals in the β-phase with tetragonal structure. Sintered pellets produced from these crystals were irradiated with a 90Sr-90Y source and their TL glow curves were evaluated. Although the samples prepared by the proteic sol-gel method with TEOS presented a lower forming temperature, the samples produced with SILICA showed higher sensitivity to radiation.

  13. Electrostatic influence on rotational mobilities of sol-gel-encapsulated solutes by NMR and EPR spectroscopies.

    PubMed

    Wheeler, Korin E; Lees, Nicholas S; Gurbiel, Ryszard J; Hatch, Shelby L; Nocek, Judith M; Hoffman, Brian M

    2004-10-20

    The rotational mobilities of small solute molecules encapsulated in tetramethyl orthosilicate (TMOS) sol-gels have been investigated by EPR spectroscopy of encapsulated nitroxide probes and by high-resolution NMR spectroscopic measurements of transferred NOE's (trNOE's), of T(1)'s, and of T(1)'s in the rotating frame (T(1)rho). The two spectroscopic methods are sensitive to motions on different time scales and hence, are nicely complementary. Suites of neutral, positively, and negatively charged nitroxide probes (EPR) and of simple diamagnetic small molecules (NMR) were selected to disclose influences of electrostatic interactions with the sol-gel walls and to probe the presence of multiple populations of molecules in distinct regions of the sol-gel pores. For neutral and negatively charged solute probes, both techniques disclose a single population with a significantly increased average rotational correlation time, which we interpret at least in part as resulting from exchange between free-volume and transiently immobilized surface populations. The electrostatic attraction between cationic probes and the negatively charged sol-gel walls causes the positively charged probes to be more effectively immobilized and/or causes a greater percentage of probes to undergo this transient immobilization. The EPR spectra directly disclose a population of cationic probes which are immobilized on the X-band EPR time scale: tau(c) greater than or approximately equal 10(-7) s. However, NMR measurements of trNOE's and of T(1)rho demonstrate that this population does exchange with the free-volume probes on the slower time scale of NMR. This approach is equally applicable to the study of solutes within other types of confined spaces, as well. PMID:15479102

  14. Chemical sensing of copper phthalocyanine sol-gel glass through organic vapors

    SciTech Connect

    Ridhi, R.; Gawri, Isha; Abbas, Saeed J.; Saini, G. S. S.; Tripathi, S. K.

    2015-05-15

    The sensitivities of metallophthalocyanine to vapor phase electron donors has gained significance in many areas and disciplines due to their sensing properties and ease of operation. In the present study the interaction mechanism of organic vapors in Copper Phthalocyanine (CuPc) sol-gel glass has been studied. The interaction mechanism is affected by many factors like morphology, electrical or optical properties of film. CuPc sol-gel glass has been synthesized using chemical route sol-gel method. Its structural characterization was conducted using XRD and the amorphous nature of the silicate glass was observed with characteristic α polymorph phase of CuPc at around 6.64° with 13.30Å interplanar spacing. The size of the particle as determined using Debbye Scherre’s formula comes out around 15.5 nm. The presence of α phase of CuPc was confirmed using FTIR with the appearance of crystal parameter marker band at 787 cm-1. Apart from this A2u and Eu symmetry bands of CuPc have also been observed. The UV absorption spectrum of CuPc exhibits absorption peaks owing to π→ π* and n→ π* transitions. A blue shift in the prepared CuPc glass has been observed as compared to the dopant CuPc salt indicating increase of band gap. A split in B (Soret) band and Q band appears as observed with the help of Lorentzian fitting. CuPc sol gel glass has been exposed with chemical vapors of Methanol, Benzene and Bromine individually and the electrical measurements have been carried out. These measurements show the variation in conductivity and the interaction mechanism has been analyzed.

  15. Chemical sensing of copper phthalocyanine sol-gel glass through organic vapors

    NASA Astrophysics Data System (ADS)

    Ridhi, R.; Gawri, Isha; Abbas, Saeed J.; Saini, G. S. S.; Tripathi, S. K.

    2015-05-01

    The sensitivities of metallophthalocyanine to vapor phase electron donors has gained significance in many areas and disciplines due to their sensing properties and ease of operation. In the present study the interaction mechanism of organic vapors in Copper Phthalocyanine (CuPc) sol-gel glass has been studied. The interaction mechanism is affected by many factors like morphology, electrical or optical properties of film. CuPc sol-gel glass has been synthesized using chemical route sol-gel method. Its structural characterization was conducted using XRD and the amorphous nature of the silicate glass was observed with characteristic α polymorph phase of CuPc at around 6.64˚ with 13.30Å interplanar spacing. The size of the particle as determined using Debbye Scherre's formula comes out around 15.5 nm. The presence of α phase of CuPc was confirmed using FTIR with the appearance of crystal parameter marker band at 787 cm-1. Apart from this A2u and Eu symmetry bands of CuPc have also been observed. The UV absorption spectrum of CuPc exhibits absorption peaks owing to π→ π* and n→ π* transitions. A blue shift in the prepared CuPc glass has been observed as compared to the dopant CuPc salt indicating increase of band gap. A split in B (Soret) band and Q band appears as observed with the help of Lorentzian fitting. CuPc sol gel glass has been exposed with chemical vapors of Methanol, Benzene and Bromine individually and the electrical measurements have been carried out. These measurements show the variation in conductivity and the interaction mechanism has been analyzed.

  16. Optical chemical sensors based on hybrid organic-inorganic sol-gel nanoreactors.

    PubMed

    Tran-Thi, Thu-Hoa; Dagnelie, Romain; Crunaire, Sabine; Nicole, Lionel

    2011-02-01

    Sol-gel porous materials with tailored or nanostructured cavities have been increasingly used as nanoreactors for the enhancement of reactions between entrapped chemical reactants. The domains of applications issued from these designs and engineering are extremely wide. This tutorial review will focus on one of these domains, in particular on optical chemical sensors, which are the subject of extensive research and development in environment, industry and health. PMID:21180764

  17. Ultrapure glass optical waveguide: Development in microgravity by the sol gel process

    NASA Technical Reports Server (NTRS)

    Mukherjee, S. P.; Debsikdar, J. C.; Beam, T.

    1983-01-01

    The sol-gel process for the preparation of homogeneous gels in three binary oxide systems was investigated. The glass forming ability of certain compositions in the selected oxide systems (SiO-GeO2, GeO2-PbO, and SiO2-TiO2) were studied based on their potential importance in the design of optical waveguide at longer wavelengths.

  18. Characterization of Sol-gel Encapsulated Proteins using Small-angle Neutron Scattering

    SciTech Connect

    Luo, Guangming; Zhang, Qiu; Del Castillo, Alexis Rae; Urban, Volker S; O'Neill, Hugh Michael

    2009-01-01

    Entrapment of biomolecules in silica-derived sol-gels has grown into a vibrant area of research since it was originally demonstrated. However, accessing the consequences of entrapment on biomolecules and the gel structure remains a major challenge in characterizing these biohybrid materials. We present the first demonstration that it is possible with small-angle neutron scattering (SANS) to study the conformation of dilute proteins that are entrapped in transparent and dense sol-gels. Using deuterium-labeled green fluorescent protein (GFP) and SANS with contrast variation, we demonstrate that the scattering signatures of the sol-gel and the protein can be separated. Analysis of the scattering curves of the sol-gels using a mass-fractal model shows that the size of the colloidal silica particles and the fractal dimensions of the gels were similar in the absence and presence of protein, demonstrating that GFP did not influence the reaction pathway for the formation of the gel. The major structural difference in the gels was that the pore size was increased 2-fold in the presence of the protein. At the contrast match point for silica, the scattering signal from GFP inside the gel became distinguishable over a wide q range. Simulated scattering curves representing a monomer, end-to-end dimer, and parallel dimer of the protein were calculated and compared to the experimental data. Our results show that the most likely structure of GFP is that of an end-to-end dimer. This approach can be readily applied and holds great potential for the structural characterization of complex biohybrid and other materials.

  19. The detection of hexavalent chromium by organically doped sol-gels

    SciTech Connect

    Wong, P.W.; Mackenzie, J.D.

    1994-12-31

    The sol-gel process can be used to produce porous inorganic matrices that are doped with organic molecules. These doped gels can be used as a quantitative method for the spectrophotometric determination of trace concentrations of metallic ions. For the detection of hexavalent chromium, malachite green was used as the dopant. Preliminary results indicate concentrations on the order of 5 ppb are detectable using this method.

  20. Development of novel sol-gel indicators (SGI`s) for in-situ environmental measurements

    SciTech Connect

    Livingston, R.R.; Wicks, G.G.; Baylor, L.C.; Whitaker, M.J.

    1993-10-01

    Organic indicator molecules have been incorporated in a porous sol- gel matrix coated on the end of a fiber-optic lens assembly to create sensors for in situ environmental measurements. Probes have been made that are sensitive to pH and uranyl concentration. The use of fiber optics allows the probe to be lowered into a well or bore hole, while support equipment such as a spectrophotometer and computer may be situated hundreds of meters away.

  1. Synthetic implant surfaces. 1. The formation and characterization of sol-gel titania films.

    PubMed

    Haddow, D B; Kothari, S; James, P F; Short, R D; Hatton, P V; van Noort, R

    1996-03-01

    Sol-gel has been used to prepare thin titania films. We have investigated the effects of dip rate, sintering temperature and time on the chemical composition of the films, their physical structure and thickness, and adherence to a silica substrate. Our aim has been to produce films that mimic as closely as possible the natural oxide layer that is found on titanium. These films are to be used as substrates in an in vitro model of osseointegration. PMID:8991481

  2. Li+ ions diffusion into sol-gel V2O5 thin films: electrochromic properties

    NASA Astrophysics Data System (ADS)

    Benmoussa, M.; Outzourhit, A.; Bennouna, A.; Ihlal, A.

    2009-10-01

    V{2}O{5} thin films were prepared by the sol-gel spin coating process. The Li+ ions insertion effect on optical and electrochromic properties of those films was studied. The diffusion coefficient was calculated using both cyclic voltammograms and chronoamperometric curves. The amount x of Li+ ions in LixV{2}O{5} was also calculated. Finally, the electrochromic performance evolution characteristics such as the reversibility, coloration efficiency, coloration memory stability and response time were studied.

  3. Photoresist-Free Fully Self-Patterned Transparent Amorphous Oxide Thin-Film Transistors Obtained by Sol-Gel Process

    PubMed Central

    Lim, Hyun Soo; Rim, You Seung; Kim, Hyun Jae

    2014-01-01

    We demonstrated self-patterned solution-processed amorphous oxide semiconductor thin-film transistors (TFTs) using photosensitive sol-gels. The photosensitive sol-gels were synthesized by adding β-diketone compounds, i.e., benzoylacetone and acetylacetone, to sol-gels. The chemically modified photosensitive sol-gels showed a high optical absorption at specific wavelengths due to the formation of metal chelate bonds. Photoreactions of the modified solutions enabled a photoresist-free process. Moreover, Zn–Sn–O with a high Sn ratio, which is hard to wet-etch using conventional photolithography due to its chemical durability, was easily patterned via the self-patterning process. Finally, we fabricated a solution-processed oxide TFT that included fully self-patterned electrodes and an active layer. PMID:24686314

  4. Increasing the activity and enantioselectivity of lipases by sol-gel immobilization: further advancements of practical interest

    NASA Astrophysics Data System (ADS)

    Tielmann, Patrick; Kierkels, Hans; Zonta, Albin; Ilie, Adriana; Reetz, Manfred T.

    2014-05-01

    The entrapment of lipases in hydrophobic silicate matrices formed by sol-gel mediated hydrolysis of RSi(OCH3)3/Si(OCH3)4 as originally reported in 1996 has been improved over the years by a number of modifications. In the production of second-generation sol-gel lipase immobilizates, a variety of additives during the sol-gel process leads to increased activity and enhanced stereoselectivity in esterifying kinetic resolution. Recent advances in this type of lipase immobilization are reviewed here, in addition to new results regarding the sol-gel entrapment of the lipase from Burkholderia cepacia. It constitutes an excellent heterogeneous biocatalyst in the acylating kinetic resolution of two synthetically and industrially important chiral alcohols, rac-sulcatol and rac-trans-2-methoxycyclohexanol. The observation that the catalyst can be used 10 times in recycling experiments without losing its significant activity or enantioselectivity demonstrates the practical viability of the sol-gel approach.The entrapment of lipases in hydrophobic silicate matrices formed by sol-gel mediated hydrolysis of RSi(OCH3)3/Si(OCH3)4 as originally reported in 1996 has been improved over the years by a number of modifications. In the production of second-generation sol-gel lipase immobilizates, a variety of additives during the sol-gel process leads to increased activity and enhanced stereoselectivity in esterifying kinetic resolution. Recent advances in this type of lipase immobilization are reviewed here, in addition to new results regarding the sol-gel entrapment of the lipase from Burkholderia cepacia. It constitutes an excellent heterogeneous biocatalyst in the acylating kinetic resolution of two synthetically and industrially important chiral alcohols, rac-sulcatol and rac-trans-2-methoxycyclohexanol. The observation that the catalyst can be used 10 times in recycling experiments without losing its significant activity or enantioselectivity demonstrates the practical viability of

  5. Low-temperature sol-gel-derived nanosilver-embedded silane coating as biofilm inhibitor

    NASA Astrophysics Data System (ADS)

    Babapour, A.; Yang, B.; Bahang, S.; Cao, W.

    2011-04-01

    Silver nanocomposite coatings are prepared by the sol-gel method for the prevention of biofilm formation on the surface of medical implanted devices. High-temperature processing of such coatings can lead to diffusion of nanosilver and reduce the amount of available silver particles for long-term effects. Using a low-temperature sol-gel method, we have successfully prepared silane-based matrices, phenyltriethoxysilane (PhTEOS), containing different amounts of Ag nanoparticles. The incorporation of a silver salt into the sol-gel matrix resulted in a desired silver release rate, i.e. high initial release rate followed by a lower sustained release for more than 15 days, as determined by inductively coupled plasma mass spectrometry (ICP-MS). Scanning electron microscopy (SEM) has been employed to investigate the morphology of the film surfaces before and after immersion in a nutrient-rich bacterial suspension of approximately 108 CFU ml - 1, which was incubated for up to 30 days at 37 °C. It was found that thin films containing 35 nm particles could prevent the formation of biofilm for over 30 days. The presence of surface silver before and after 3, 9 and 15 days immersion was confirmed by x-ray photoelectron spectroscopy (XPS).

  6. Effects of sol-gel processing parameters on the phases and microstructures of HA films.

    PubMed

    Wang, Diangang; Chen, Chuanzhong; Liu, Xiuna; Lei, Tingquan

    2007-06-15

    Bioactive hydroxyapatite (HA) films were fabricated by a sol-gel method and triethylphosphate and calcium nitrate were used as the phosphorus and calcium precursors, respectively. The effects of the heat treatment temperature, pH level and substrate materials on the phases and microstructures of HA films were studied by X-ray diffraction (XRD), scanning electronic microscopy (SEM) and electronic probe microanalysis (EPMA) and so on. The results show that all the sol-gel films are composed of the phases of HA, CaO, TiO(2) and CaTiO(3). With increasing the calcining temperature, the crystallinity of the films increases, the structure becomes more compact and changes from granular and lamellar to cellular structure, and the Ca/P ratio increases slightly because of the loss of P in the films. The addition of ammonia (adjusting the pH level to be about 7.5) can increase the HA content in the films, and the difference of substrate materials only has a little influence on the microstructure of the sol-gel films. PMID:17353116

  7. A study on the effect factors of sol-gel synthesis of yttrium aluminum garnet nanopowders

    NASA Astrophysics Data System (ADS)

    Yang, Lin; Lu, Tiecheng; Xu, Hui; Zhang, Wei; Ma, Benyuan

    2010-03-01

    Yttrium aluminum garnet (YAG) nanopowders were synthesized by sol-gel method using aluminum nitrate, yttrium nitrate, and citric acid as starting materials, de-ionized water, ethanol, and ethylene glycol as solvents, respectively. The phase formation process, state of particle size distribution (PSD), compositions, morphological characteristics, and thermal behavior of the powders were investigated by means of x-ray diffractometry, PSD, Fourier transform infrared, transmission electronic microscope, and thermogravimetry-differential scanning calorimetry. Results indicate that the formation and characteristics of precursor gel and YAG powder, such as the rate of gelation, average particle size, and powder agglomerate state, strongly depend on the stoichiometric amount of citric acid, the solvent composition, and the precalcination process. Highly crystalline, well-dispersed YAG nanopowder was obtained by calcining at 800 °C for 2 h in the presence of citric acid to nitrate ratio of 3, ethanol solvent, and precalcination process. According to the analysis of experimental results, sol-gel chemistry, DLVO theory, and steric effect, the effects of stoichiometric amount of citric acid, solvent composition, and precalcination process on the formation and characteristics of precursor gel and YAG powder have been discussed. Meanwhile, the overall synthesis mechanism in sol-gel method has been suggested.

  8. Synthesis of polymeric fluorinated sol-gel precursor for fabrication of superhydrophobic coating

    NASA Astrophysics Data System (ADS)

    Li, Qianqian; Yan, Yuheng; Yu, Miao; Song, Botao; Shi, Suqing; Gong, Yongkuan

    2016-03-01

    A fluorinated polymeric sol-gel precursor (PFT) is synthesized by copolymerization of 2,3,4,5,5,5-hexafluoro-2,4-bis(trifluorinated methyl)pentyl methacrylate (FMA) and 3-methacryloxypropyltrimethoxysilane (TSMA) to replace the expensive long chain fluorinated alkylsilanes. The fluorinated silica sol is prepared by introducing PFT as co-precursor of tetraethyl orthosilicate (TEOS) in the sol-gel process with ammonium hydroxide as catalyst, which is then used to fabricate superhydrophobic coating on glass substrate through a simple dip-coating method. The effects of PFT concentrations on the chemical structure of the formed fluorinated silica, the surface chemical composition, surface morphology, wetting and self-cleaning properties of the resultant fluorinated silica coatings were studied by using X-ray powder diffraction (XRD), Fourier transform infrared spectrometer (FTIR), X-ray photoelectron spectrophotometer (XPS), scanning electron microscopy (SEM) and water contact angle measurements (WCA). The results show that the fluorinated silica sols are successfully obtained. The size and size distribution of the fluorinated silica particles are found greatly dependent on the concentration of PFT, which play a crucial role in the surface morphology of the corresponding fluorinated silica coatings. The suitable PFT concentration added in the sol-gel stage, i.e. for F-sol-1 and F-sol-2, is helpful to achieve both the low surface energy and multi-scaled microstructures, leading to the formation of the superhydrophobic coatings with bio-mimicking self-cleaning property similar to lotus leaves.

  9. Synthesis of garnet structure compounds using aqueous sol-gel processing

    NASA Astrophysics Data System (ADS)

    Leleckaite, A.; Kareiva, A.

    2004-07-01

    The sol-gel method based on metal chelates in aqueous solvents has been developed to prepare different oxides having garnet crystal structure. This synthetic approach has been used to prepare rare-earth doped yttrium aluminum garnet Y 3Al 5O 12:Ce, Y 3Al 5O 12:Nd, Y 3Al 5O 12:Ho, and Y 3Al 5O 12:Er samples (YAG:Ln). The polycrystalline powders sintered at 1000 °C are formed as single-phase garnet materials. The formation of pure and neodymium-doped lanthanum aluminum garnets (La 3Al 5O 12 (LAG), and La 3Al 5O 12:Nd (LAG:Nd)) at the same synthesis conditions, however, does not proceed. A systematic study of sol-gel technique synthesized Y 3Ga 5O 12 (YGG) is presented using six different complexing agents. These complexing agents were found to influence the characteristics of the end products, in particular the homogeneity. Finally, some specific features of sol-gel derived mixed-metal Y 3Sc xAl 5- x- yGa yO 12 (0⩽ x, y⩽5) (YSAGG) garnets are discussed in the present paper. The phase purity, composition and microstructural features in the polycrystalline samples were studied by XRD analysis, IR spectroscopy and scanning electron microscopy.

  10. Synthesis of Sol-Gel Matrices for Encapsulation of Enzymes Using an Aqueous Route

    SciTech Connect

    Ashley, C.S.; Bhatia, R.B.; Brinker, C.J.; Harris, T.M.

    1998-11-23

    Sol-gel matrices are promising host materials for potential chemical and biosensor applications. Previous studies have focused on modified sol-gel routes using alkoxides for encapsulation of enzymes. However the formation of alcohol as a byproduct during hydrolysis and condensation reactions poses limitations. We report the immobilization of glucose oxidase and peroxidase in silica prepared by an aqueous route which may provide a more favorable environment for the biomolecules. A two step aqueous sol-gel procedure using sodium silicate as the precursor was developed to encapsulate the enzymes and the dye precursor, o-dianisidine. Glucose oxidase catalyzes the oxidation of glucose to give gluconic acid and hydrogen peroxide. Peroxidase then catalyzes the reaction of the dye precursor with hydrogen peroxide to produce a colored product. The kinetics of the coupled enzymatic reactions were monitored by optical spectroscopy and compared to those occurring in tetramethyl orthosilicate (TMOS) derived silica matrices developed by Yamanaka. Enhanced kinetics in the aqueous silicate matrices were related to differences in the host microstructure as elucidated by microstructural comparisons of the corresponding aerogels.

  11. Enzyme renaturation to higher activity driven by the sol-gel transition: Carbonic anhydrase

    PubMed Central

    Vinogradov, Vladimir V.; Avnir, David

    2015-01-01

    We describe a so-far unknown route for renaturing denatured enzymes, namely subjecting the denatured enzyme to an oxide sol-gel transition. The phenomenon was revealed in a detailed study of denatured carbonic anhydrase which was subjected to an alumina sol-gel transition, up to the thermally stabilizing entrapment in the final xerogel. Remarkably, not only that the killed enzyme regained its activity during the sol-gel process, but its activity increased to 180% of the native enzyme. To the best of our knowledge, this is the first report of enhanced activity following by renaturing (a “Phoenix effect”). Kinetic study which revealed a five-orders of magnitude (!) increase in the Arrhenius prefactor upon entrapment compared to solution. Circular dichroism analysis, differential scanning calorimetry, zeta potential analyses as well as synchronous fluorescence measurements, all of which were used to characterize the phenomenon, are consistent with a proposed mechanism which is based on the specific orienting interactions of the active site of the enzyme with respect to the alumina interface and its pores network. PMID:26394694

  12. Sol-Gel Material-Enabled Electro-Optic Polymer Modulators.

    PubMed

    Himmelhuber, Roland; Norwood, Robert A; Enami, Yasufumi; Peyghambarian, Nasser

    2015-01-01

    Sol-gels are an important material class, as they provide easy modification of material properties, good processability and are easy to synthesize. In general, an electro-optic (EO) modulator transforms an electrical signal into an optical signal. The incoming electrical signal is most commonly information encoded in a voltage change. This voltage change is then transformed into either a phase change or an intensity change in the light signal. The less voltage needed to drive the modulator and the lower the optical loss, the higher the link gain and, therefore, the better the performance of the modulator. In this review, we will show how sol-gels can be used to enhance the performance of electro-optic modulators by allowing for designs with low optical loss, increased poling efficiency and manipulation of the electric field used for driving the modulator. The optical loss is influenced by the propagation loss in the device, as well as the losses occurring during fiber coupling in and out of the device. In both cases, the use of sol-gel materials can be beneficial due to the wide range of available refractive indices and low optical attenuation. The influence of material properties and synthesis conditions on the device performance will be discussed. PMID:26225971

  13. Direct test of the critical exponents at the sol-gel transition

    NASA Astrophysics Data System (ADS)

    Kaya, Demet; Pekcan, Önder; Yılmaz, Yaşar

    2004-01-01

    The steady state fluorescence technique was used to study the sol-gel transition for the solution-free radical cross-linking polymerization of acrylamide (AAm), with N,N'-methylenebis (acrylamide) as cross linker in the presence of ammonium persulfate as an initiator. Pyranine (8-hydroxypyrene-1, 3,6-trisulfonic acid, trisodium salt) is used as a fluoroprobe for monitoring the polymerization. Pyranine molecules start to bind to acrylamide polymer chains upon the initiation of the polymerization, thus the spectra of the bonded pyranines shift to the shorter wavelengths. Fluorescence spectra from the bonded pyranines allows one to monitor the sol-gel transition, without disturbing the system mechanically, and to test the universality of the sol-gel transition as a function of some kinetic parameters such as polymer concentration, cross-linker concentration, and temperature. Observations around the critical point show that there are three regimes for AAm concentration in which the exponents differ drastically. The gel fraction exponent β and the weight average degree of polymerization exponent γ agree best with the static percolation results for higher acrylamide concentrations above 1M, but they cross over from percolation to mean-field (Flory-Stockmayer) values when the AAm concentration is lower than 2M. For very low polymer concentrations, below which the system can not form the gel, the exponents differ considerably from both the percolation and the mean-field values.

  14. Optical characterization of sol-gel ZnO:Al thin films

    NASA Astrophysics Data System (ADS)

    Ivanova, T.; Harizanova, A.; Koutzarova, T.; Vertruyen, B.

    2015-09-01

    This work presents a sol-gel approach for ZnO:Al films deposition. The effect of Al component and annealing treatments (from 500 to 800 °C) on the film structural and optical properties has been studied. Sol-gel ZnO and Al2O3 films are used for comparative analyses. Structural evolution as a function of annealing temperatures is investigated by using X-ray diffraction (XRD). XRD analysis of ZnO:Al films revealed that the predominant crystal phase is a wurtzite ZnO. It can be seen that the addition of Al leads to decaying of the film crystallinity. Fourier Transform Infrared (FTIR) and UV-VIS spectrophotometry are applied for characterization of the vibrational and optical properties. The Al component influences the shapes of the absorption bands. The optical properties of the sol-gel ZnO, ZnO:Al and Al2O3 films reveal very interesting features. Increasing Al component results in significantly higher film transparency.

  15. Enzyme renaturation to higher activity driven by the sol-gel transition: Carbonic anhydrase

    NASA Astrophysics Data System (ADS)

    Vinogradov, Vladimir V.; Avnir, David

    2015-09-01

    We describe a so-far unknown route for renaturing denatured enzymes, namely subjecting the denatured enzyme to an oxide sol-gel transition. The phenomenon was revealed in a detailed study of denatured carbonic anhydrase which was subjected to an alumina sol-gel transition, up to the thermally stabilizing entrapment in the final xerogel. Remarkably, not only that the killed enzyme regained its activity during the sol-gel process, but its activity increased to 180% of the native enzyme. To the best of our knowledge, this is the first report of enhanced activity following by renaturing (a “Phoenix effect”). Kinetic study which revealed a five-orders of magnitude (!) increase in the Arrhenius prefactor upon entrapment compared to solution. Circular dichroism analysis, differential scanning calorimetry, zeta potential analyses as well as synchronous fluorescence measurements, all of which were used to characterize the phenomenon, are consistent with a proposed mechanism which is based on the specific orienting interactions of the active site of the enzyme with respect to the alumina interface and its pores network.

  16. Sealing of pores in sol-gel-derived tritium permeation barrier coating by electrochemical technique

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Hatano, Yuji

    2011-10-01

    An electrolytic deposition technique was applied to seal open pores in sol-gel derived ZrO 2 coating and to improve barrier effects against permeation of hydrogen isotopes. Disk-type specimens of type 430 ferritic stainless steel were first covered by thin ZrO 2 films (50 nm) with a conventional sol-gel technique. Then, pores in the ZrO 2 film was sealed with ZrO 2 or Al 2O 3 by cathodic processes in ethanol solution of Zr or Al nitrate and subsequent heat treatments in air. The permeation rate of hydrogen was measured at 300-600 °C. The sol-gel derived ZrO 2 coatings showed only limited barrier effects; the permeation reduction factor (PRF) was about 6-800. Nevertheless, the treatments by electrolytic deposition technique resulted in considerable improvement in the barrier effects, especially at high temperature region (>500 °C), and the PRF increased to 100-1000.

  17. MOS solar cells with oxides deposited by sol-gel spin-coating techniques

    SciTech Connect

    Huang, Chia-Hong; Chang, Chung-Cheng; Tsai, Jung-Hui

    2013-06-15

    The metal-oxide-semiconductor (MOS) solar cells with sol-gel derived silicon dioxides (SiO{sub 2}) deposited by spin coating are proposed in this study. The sol-gel derived SiO{sub 2} layer is prepared at low temperature of 450 Degree-Sign C. Such processes are simple and low-cost. These techniques are, therefore, useful for largescale and large-amount manufacturing in MOS solar cells. It is observed that the short-circuit current (I{sub sc}) of 2.48 mA, the open-circuit voltage (V{sub os}) of 0.44 V, the fill factor (FF) of 0.46 and the conversion efficiency ({eta}%) of 2.01% were obtained by means of the current-voltage (I-V) measurements under AM 1.5 (100 mW/cm{sup 2}) irradiance at 25 Degree-Sign C in the MOS solar cell with sol-gel derived SiO{sub 2}.

  18. Optical sensors based on sol-gel derived, laminate planar waveguide structures

    SciTech Connect

    Yang, Lin; Armstrong, N.R.; Dunphy, D.R.; Saavedra, S.S.

    1995-12-31

    A new optical sensing platform based on a combination of planar and sol-gel processing technologies is described. The sensing element is a planar integrated optical waveguide (IOW) composed of two, submicron thick glass layers coated on glass substrate; both layers are fabricated via the sol-gel method. The lower layer is a densified titania-silica composite. The upper layer is an undensified silica doped with an optical indicator that is physically entrapped yet sterically accessible to dissolved analytes that can diffuse into the pore network. Formation of an analyte-indicator complex is detected via attenuated total reflection (ATR) of light guided in the IOW. The sensor response is both sensitive and rapid, features that are difficult to achieve simultaneously in monolithic sol-gel glass sensors. In the IOW-ATR geometry, these features are realized simultaneously because the primary axes of light propagation and analyte diffusion are orthogonal. The overall approach is technically simple, inexpensive, and applicable to a wide variety of indicator chemistries.

  19. Chemical sensing using sol-gel derived planar waveguides and indicator phases

    SciTech Connect

    Yang, L.; Saavedra, S.S.

    1995-04-15

    A new optical sensing platform based on a combination of planar waveguiding and sol-gel processing technologies is described. The sensing element consists of two, submicrometer thick glass layers supported on an optically thick glass substrate; both layers were fabricated using a sol-gel coating method. The lower layer is a densified glass that functions as a planar integrated optical waveguide (IOW). The upper layer is an undensified glass of lower index doped with an optical indicator that is immobilized, yet remains sterically accessible to analytes that diffuse into the pore network. Formation of a complex between the analyte and indicator is detected via attenuated total reflection (ATR) of light guided in the IOW. Feasibility was evaluated by constructing IOW-ATR sensors for Pb{sup 2+} and pH, based on immobilized xylenol orange and bromocresol purple, respectively. The response of both sensors was sensitive and rapid, features that are difficult to achieve simultaneously in monolithic sol-gel glass sensors. In the IOW-ATR geometry, these features are realized simultaneously because the primary axes of light propagation and analyte diffusion are orthogonal. The overall approach is technically simple, inexpensive, and applicable to a wide variety of indicator chemistries. 48 refs., 8 figs.

  20. Preparation and characterisation of a sol-gel process α-Al₂O₃ polycrystalline detector.

    PubMed

    Ferreira, H R; Santos, A

    2015-02-01

    This article presents the dosimetric characteristics of α-Al2O3 detectors prepared through the sol-gel process, disc pressing and sintering in a highly reducing atmosphere. Comparative tests between the sol-gel process α-Al2O3 polycrystalline and anion-defective α-Al2O3:C single-crystal detectors indicate that the ones prepared through this approach present good dosimetric characteristics similar to those found in single-crystal detectors, such as a simple glow curve with the main peak at ∼198 °C (2 °C s(-1)), high sensitivity, a detection threshold of 1.7 µGy, linearity of response, low fading, relatively low photon energy dependence, reusability without annealing and good reproducibility. However, the undesirable feature of heating rate dependence of the thermoluminescence (TL) output in α-Al2O3:C single crystal is practically non-existent in the sol-gel process α-Al2O3 polycrystalline detector. This characteristic renders it useful for the routine processing of large numbers of personal and environmental dosemeters at higher heating rates and also when it comes to the proposal for new approaches to thermal quenching investigation. PMID:24795396

  1. Biological influence of Ca/P ratio on calcium phosphate coatings by sol-gel processing.

    PubMed

    Catauro, M; Papale, F; Sapio, L; Naviglio, S

    2016-08-01

    The objective of this work has been to develop low temperature sol-gel glass coatings to modify the substrate surface and to evaluate their bioactivity and biocompatibility. Glasses, based on SiO2·CaO·P2O5, were synthesized by the sol-gel technique using tetraethyl orthosilicate, calcium nitrate tetrahydrate and triethyl phosphate as precursors of SiO2, CaO and P2O5, respectively. Those materials, still in the sol phase, have been used to coat substrates by means of the dip-coating technique. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) has been used for characterize coatings and a microstructural analysis has been obtained using scanning electron microscopy (SEM). The potential applications of the coatings in the biomedical field were evaluated by bioactivity and biocompatibility tests. The coated substrate was immersed in simulated body fluid (SBF) for 21days and the hydroxyapatite deposition on its surface was subsequently evaluated via SEM-EDXS analysis, as an index of bone-bonding capability. In order to study the cell behavior and response to our silica based materials, prepared via the sol-gel method, with various Ca/P ratio and coating substrate, we have used the human osteoblast-like U2OS cell line. PMID:27157742

  2. Qualification of Target Chamber Vacuum Systems Cleanliness using Sol-Gel Coatings

    SciTech Connect

    Miller, P; Stowers, I F; Ertel, J R

    2006-01-03

    This document defines the procedure necessary to qualify the airborne molecular cleanliness (AMC) of vacuum systems (enclosures or large components) that are placed within the National Ignition Facility (NIF) target chamber or are attached to it and communicate with it during vacuum operation. This test is specific to the NIF target chamber because the allowable time dependent rate of rise in the pore filling of a sol-gel coated SAW sensor is based on some nominal change-out time for the disposable debris shields. These debris shields will be sol-gel coated and thus they represent a means of ''pumping'' AMCs from the target chamber. The debris shield pumping rate sets the allowable change in pore filling with time specified in the test procedure. This document describes a two-part procedure that provides both a static measurement of sol-gel pore filling at the end of a 48-hour test period and a dynamic record of pore-filling measured throughout the test period. Successful qualification of a vacuum system requires that both the static and dynamic measurements meet the criteria set forth in Section 7 of this document.

  3. Formation and prevention of fractures in sol-gel-derived thin films.

    PubMed

    Kappert, Emiel J; Pavlenko, Denys; Malzbender, Jürgen; Nijmeijer, Arian; Benes, Nieck E; Tsai, Peichun Amy

    2015-02-01

    Sol-gel-derived thin films play an important role as the functional coatings for various applications that require crack-free films to fully function. However, the fast drying process of a standard sol-gel coating often induces mechanical stresses, which may fracture the thin films. An experimental study on the crack formation in sol-gel-derived silica and organosilica ultrathin (submicron) films is presented. The relationships among the crack density, inter-crack spacing, and film thickness were investigated by combining direct micrograph analysis with spectroscopic ellipsometry. It is found that silica thin films are more prone to fracturing than organosilica films and have a critical film thickness of 300 nm, above which the film fractures. In contrast, the organosilica films can be formed without cracks in the experimentally explored regime of film thickness up to at least 1250 nm. These results confirm that ultrathin organosilica coatings are a robust silica substitute for a wide range of applications. PMID:25466584

  4. Use of sol-gel-derived titania coating for direct soft tissue attachment.

    PubMed

    Areva, Sami; Paldan, Hannu; Peltola, Timo; Närhi, Timo; Jokinen, Mika; Lindén, Mika

    2004-08-01

    A firm bond between an implant and the surrounding soft tissue is important for the performance of many medical devices (e.g., stents, canyls, and dental implants). In this study, the performance of nonresorbable and reactive sol-gel-derived nano-porous titania (TiO(2)) coatings in a soft tissue environment was investigated. A direct attachment between the soft tissue and the sol-gel-derived titania coatings was found in vivo after 2 days of implantation, whereas the titanium control implants showed no evidence of soft tissue attachment. The coated implants were in immediate contact with the connective tissue, whereas the titanium controls formed a gap and a fibrous capsule on the implant-tissue interface. The good soft tissue attachment of titania coatings may result from their ability to initiate calcium phosphate nucleation and growth on their surfaces (although the formation of poorly crystalline bonelike apatite does not occur). Thus, the formation of a bonelike CaP layer is not crucial for their integration in soft tissue. The formation of bonelike apatite was hindered by the adsorption of proteins onto the initially formed amorphous calcium phosphate growth centers, thus preventing the dissolution/reprecipitation processes required for the formation of poorly crystalline bonelike apatite. These findings might open novel application areas for sol-gel-derived titania-based coatings. PMID:15227661

  5. Sol-Gel Material-Enabled Electro-Optic Polymer Modulators

    PubMed Central

    Himmelhuber, Roland; Norwood, Robert A.; Enami, Yasufumi; Peyghambarian, Nasser

    2015-01-01

    Sol-gels are an important material class, as they provide easy modification of material properties, good processability and are easy to synthesize. In general, an electro-optic (EO) modulator transforms an electrical signal into an optical signal. The incoming electrical signal is most commonly information encoded in a voltage change. This voltage change is then transformed into either a phase change or an intensity change in the light signal. The less voltage needed to drive the modulator and the lower the optical loss, the higher the link gain and, therefore, the better the performance of the modulator. In this review, we will show how sol-gels can be used to enhance the performance of electro-optic modulators by allowing for designs with low optical loss, increased poling efficiency and manipulation of the electric field used for driving the modulator. The optical loss is influenced by the propagation loss in the device, as well as the losses occurring during fiber coupling in and out of the device. In both cases, the use of sol-gel materials can be beneficial due to the wide range of available refractive indices and low optical attenuation. The influence of material properties and synthesis conditions on the device performance will be discussed. PMID:26225971

  6. Art and practice to emboss gratings into sol-gel waveguides

    NASA Astrophysics Data System (ADS)

    Szendro, Istvan

    2001-05-01

    Recent interest in optical sensors, especially optical biosensors, has led to the introduction of commercially available instrumentation and sensor schemes for label free, real time monitoring of intermolecular interactions. One of the promising optical structure is the grating coupler planar waveguide sensor, where high precision surface relief grating is used and a low cost manufacturing is needed. A practical method to mass-produce gratings with limited lateral dimension is to emboss master grating into a sol-gel waveguide film. With proper optimization of the sol-gel process, a wide time window is available to perform embossing and highly reproducible, cost effective grating structures can be replicated. In our practice SiO2, TiO2, SiO2/TiO2, Ta2O5 and a mixture of these sol-gel thin films are proved to be good candidates for low optical loss waveguide materials in which grating with 2400 line/mm periodicity could be directly embossed. The relatively wide time window for optimal embossing opens the possibility to develop grating structures with more than one grating. Producing multiple gratings separated laterally and/or vertically from each other is demonstrated.

  7. Fabrication and characterization of sol-gel based nanoparticles for drug delivery

    NASA Astrophysics Data System (ADS)

    Yadav, Reeta

    Nanogels are cross linked polymeric sol-gel based nanoparticles that offer an interior network for incorporation and protection of biomolecules, exhibiting unique advantages for polymer based delivery systems. We have successfully synthesized stable sol-gel nanoparticles by means of [a] silicification reactions using cationic peptides like polylysine as gelating agents, and [b] lyophilization of sol-gels. Macromolecules such as Hemoglobin and Glucose Oxidase and small molecules such as Sodium Nitroprusside (SNP) and antibiotics were encapsulated within the nanogels. We have used transmission electron microscopy, dynamic light scattering, zeta potential analysis, and spectroscopy to perform a physicochemical characterization of the nanogels resulting from the two approaches. Our studies have indicated that the nanogel encapsulated proteins and small molecules remain intact, stable and functional. A Hydrogen Peroxide (H2O2) and Nitric Oxide (NO) generating drug carrier was synthesized using these nanogels and the effect of generation of H2O2 from Glucose Oxidase encapsulated nanogels and NO from SNP encapsulated nanogels was tested on E.coli. The results show that the nanoparticles exert antimicrobial activity against E.Coli, in addition NO generating nanogels potentiated H2O2 generating nanogels induced killing. These data suggest that these NO and H2O2 releasing nanogels have the potential to serve as a novel class of antimicrobials for the treatment of multidrug resistant bacteria. The unique properties of these protein/drug incorporated nanogels raise the prospect of fine tailoring to specific applications such as drug delivery and bio imaging.

  8. Thin-film silica sol-gels doped with ion responsive fluorescent lipid bilayers

    SciTech Connect

    Sasaki, D.Y.; Shea, L.E.; Sinclair, M.B.

    1999-01-12

    A metal ion sensitive, fluorescent lipid-b i layer material (5oA PSIDA/DSPC) was successfully immobilized in a silica matrix using a tetramethoxysilane (TMOS) sol-gel procedure. The sol-gel immobilization method was quantitative in the entrapment of seif-assembled Iipid-bilayers and yielded thin films for facile configuration to optical fiber piatforms. The silica matrix was compatible with the solvent sensitive lipid bilayers and provided physical stabilization as well as biological protection. Immobilization in the silica sol-gel produced an added benefit of improving the bilayer's metal ion sensitivity by up to two orders of magnitude. This enhanced performance was attributed to a preconcentrator effect from the anionic surface of the silica matrix. Thin gels (193 micron thickness) were coupled to a bifurcated fiber optic bundle to produce a metal ion sensor probe. Response times of 10 - 15 minutes to 0.1 M CUCIZ were realized with complete regeneration of the sensor using an ethylenediarninetetraacetic acid (EDTA) solution.

  9. Sol-gel nanocasting synthesis of patterned hierarchical LaFeO3 fibers with enhanced catalytic CO oxidation activity.

    PubMed

    Li, Pengna; Hu, Xianluo; Zhang, Lei; Dai, Hongxing; Zhang, Lizhi

    2011-03-01

    Hierarchical LaFeO3 fibers were prepared by a sol-gel nanocasting method using a cotton cloth as the template. The resulting LaFeO3 fibers inherited the initial network morphology of the template very well and showed enhanced catalytic CO oxidation activity and satisfactory stability compared to the counterpart particles prepared by the conventional sol-gel method. PMID:21234504

  10. Matrix molecularly imprinted mesoporous sol-gel sorbent for efficient solid-phase extraction of chloramphenicol from milk.

    PubMed

    Samanidou, Victoria; Kehagia, Maria; Kabir, Abuzar; Furton, Kenneth G

    2016-03-31

    Highly selective and efficient chloramphenicol imprinted sol-gel silica based inorganic polymeric sorbent (sol-gel MIP) was synthesized via matrix imprinting approach for the extraction of chloramphenicol in milk. Chloramphenicol was used as the template molecule, 3-aminopropyltriethoxysilane (3-APTES) and triethoxyphenylsilane (TEPS) as the functional precursors, tetramethyl orthosilicate (TMOS) as the cross-linker, isopropanol as the solvent/porogen, and HCl as the sol-gel catalyst. Non-imprinted sol-gel polymer (sol-gel NIP) was synthesized under identical conditions in absence of template molecules for comparison purpose. Both synthesized materials were characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR) and nitrogen adsorption porosimetry, which unambiguously confirmed their significant structural and morphological differences. The synthesized MIP and NIP materials were evaluated as sorbents for molecularly imprinted solid phase extraction (MISPE) of chloramphenicol in milk. The effect of critical extraction parameters (flow rate, elution solvent, sample and eluent volume, selectivity coefficient, retention capacity) was studied in terms of retention and desorption of chloramphenicol. Competition and cross reactivity tests have proved that sol-gel MIP sorbent possesses significantly higher specific retention and enrichment capacity for chloramphenicol compared to its non-imprinted analogue. The maximum imprinting factor (IF) was found as 9.7, whereas the highest adsorption capacity of chloramphenicol by sol-gel MIP was 23 mg/g. The sol-gel MIP was found to be adequately selective towards chloramphenicol to provide the necessary minimum required performance limit (MRPL) of 0.3 μg/kg set forth by European Commission after analysis by LC-MS even without requiring time consuming solvent evaporation and sample reconstitution step, often considered as an integral part in solid phase extraction work-flow. Intra and

  11. A sol-gel-integrated protein array system for affinity analysis of aptamer-target protein interaction.

    PubMed

    Ahn, Ji-Young; Kim, Eunkyung; Kang, Jeehye; Kim, Soyoun

    2011-06-01

    A sol-gel microarray system was developed for a protein interaction assay with high activity. Comparing to 2-dimensional microarray surfaces, sol-gel can offer a more dynamic and broad range for proteins. In the present study, this sol-gel-integrated protein array was used in binding affinity analysis for aptamers. Six RNA aptamers and their target protein, yeast TBP (TATA-binding protein), were used to evaluate this method. A TBP-containing sol-gel mixture was spotted using a dispensing workstation under high-humidity conditions and each Cy-3-labeled aptamer was incubated. The dissociation constants (K(d)) were calculated by plotting the fluorescent intensity of the bound aptamers as a function of the TBP concentrations. The K(d) value of the control aptamer was found to be 8 nM, which agrees well with the values obtained using the conventional method, electric mobility shift assay. The sol-gel-based binding affinity measurements fit well with conventional binding affinity measurements, suggesting their possible use as an alternative to the conventional method. In addition, aptamer affinity measurements by the sol-gel-integrated protein chip make it possible to develop a simple high-throughput affinity method for screening high-affinity aptamers. PMID:21749295

  12. Fiber-optic pH sensor based on sol-gel film immobilized with neutral red

    NASA Astrophysics Data System (ADS)

    Jeon, Dayeong; Yoo, Wook Jae; Seo, Jeong Ki; Shin, Sang Hun; Han, Ki-Tek; Kim, Seon Geun; Park, Jang-Yeon; Lee, Bongsoo

    2013-03-01

    In this study, we developed a fiber-optic pH sensor based on a sol-gel film immobilized with neutral red (NR). A solgel film was prepared by mixing tetramethylorthosilicate (TMOS), trimethoxymethylsilane (MTMS), ethanol (EtOH), distilled water (H2O), and NR powder. Accordingly, the thin pH sol-gel film was fabricated through a sol-gel process with a dip-coating method. The thickness and diameter of the fabricated pH sol-gel film are 0.11 and 0.6 mm, respectively. We measured the optical absorbance and the light intensity with the spectra of reflected light, which change with the color variation of the pH sol-gel film in the fiber-optic sensing probe. From the experimental results, we demonstrated that the proposed fiber-optic pH sensor has good reversibility, reproducibility, and a fast response time, in which the optical properties of the NR-based pH sol-gel film change with the pH value.

  13. Phenyl Functionalized Sol-gel Silica Sorbent for Capillary Microextraction and Chromia-Based Sol-gel Ucon Stationary Phase for Capillary Gas Chromatography

    NASA Astrophysics Data System (ADS)

    McLean, Michael M.

    The first chapter of this thesis presents an introduction to sol-gel methodology whose usefulness as a synthetic route will be demonstrated with two applications in chromatography. The first application involves the fabrication of a capillary micro-extraction (CME) device by coating a phenyl functionalized extracting phase on the inner surface of a fused silica capillary for analyte pre-concentration. The device was coupled on-line to a RP-HPLC system and practicality was demonstrated using allergens as target analytes. The allergens chosen as model analytes are typically found in fragrance products and food. Most of the 26 fragrance allergens that are monitored by various government authorities have a phenyl organic moiety (a strong chromophore), thus making them appropriate probes for exploring the extraction efficiency of the coating using a UV detector. The CME device showed ppt level limit of detection which makes it suitable for trace analyses of allergens and similar compounds in a variety of matrices. The second application explores the feasibility of using sol-gel derived chromia-based stationary phase in gas chromatographic columns. The organic moiety of the stationary phase was derived from Ucon 75-H-90,000 while the inorganic backbone was prepared using chromium(III) dichloride hydroxide - methacrylic acid - aqua complex, 40% in isopropanol/acetone . Usefulness of prepared chromia-based GC stationary phase was examined for petrochemical application. Promising results were obtained using aliphatic-aromatics, polyaromatic hydrocarbons, BTEX test mixture, cycloalkanes, branched alkanes and akylbenzenes. The column was able to perform without degradation despite being rinsed multiples times sequentially with the following solvents: dichloromethane, methanol, water and finally methanol again. Maximum theoretical plate number calculated is around 2,400 plates/m. The plate number clearly needs improvement but is a promising result for the newly explored

  14. Sol-gel derived C-SiC composites and protective coatings for sustained durability in the space environment

    NASA Astrophysics Data System (ADS)

    Haruvy, Yair; Liedtke, Volker

    2003-09-01

    Composites and coatings were produced via the fast sol-gel process of a mixture of alkoxysilane precursors. The composites were comprised of carbon fibers, fabrics, or their precursors as reinforcement, and sol-gel-derived silicon carbide as matrix, aiming at high-temperature stable ceramics that can be utilized for re-entry structures. The protective coatings were comprised of fluorine-rich sol-gel derived resins, which exhibit high flexibility and coherence to provide sustained ATOX protection necessary for LEO space-exposed elements. For producing the composites, the sol-gel-derived resin is cast onto the reinforcement fibers/fabrics mat (carbon or its precursors) to produce a 'green' composite that is being cured. The 'green' composite is converted into a C-SiC composite via a gradual heat-pressure process under inert atmosphere, during which the organic substituents on the silicon atoms undergo internal oxidative pyrolysis via the schematic reaction: (SiRO3/2)n -> SiC + CO2 + H2O. The composition of the resultant silicon-oxi-carbide is tailorable via modifying the composition of the sol-gel reactants. The reinforcement, when made of carbon precursors, is converted into carbon during the heat-and-pressure processing as well. The C-SiC composites thus derived exhibit superior thermal stability and comparable thermal conductivity, combined with good mechanical strength features and failure resistance, which render them greatly applicable for re-entry shielding, heat-exchange pipes, and the like. Fluorine rich sol-gel derived coatings were developed as well, via the use of HF rich sol-gel process. These coatings provide oxidation-protection via the silica formation process, together with flexibility that allows 18,000 repetitive folding of the coating without cracking.

  15. A new sol-gel synthesis of 45S5 bioactive glass using an organic acid as catalyst.

    PubMed

    Faure, J; Drevet, R; Lemelle, A; Ben Jaber, N; Tara, A; El Btaouri, H; Benhayoune, H

    2015-02-01

    In this paper a new sol-gel approach was explored for the synthesis of the 45S5 bioactive glass. We demonstrate that citric acid can be used instead of the usual nitric acid to catalyze the sol-gel reactions. The substitution of nitric acid by citric acid allows to reduce strongly the concentration of the acid solution necessary to catalyze the hydrolysis of silicon and phosphorus alkoxides. Two sol-gel powders with chemical compositions very close to that of the 45S5 were obtained by using either a 2M nitric acid solution or either a 5mM citric acid solution. These powders were characterized and compared to the commercial Bioglass®. The surface properties of the two bioglass powders were assessed by scanning electron microscopy (SEM) and by Brunauer-Emmett-Teller method (BET). The Fourier transformed infrared spectroscopy (FTIR) and the X-ray diffraction (XRD) revealed a partial crystallization associated to the formation of crystalline phases on the two sol-gel powders. The in vitro bioactivity was then studied at the key times during the first hours of immersion into acellular Simulated Body Fluid (SBF). After 4h immersion into SBF we clearly demonstrate that the bioactivity level of the two sol-gel powders is similar and much higher than that of the commercial Bioglass®. This bioactivity improvement is associated to the increase of the porosity and the specific surface area of the powders synthesized by the sol-gel process. Moreover, the nitric acid is efficiently substituted by the citric acid to catalyze the sol-gel reactions without alteration of the bioactivity of the 45S5 bioactive glass. PMID:25492213

  16. Electrophoretically active sol-gel processes to backfill, seal, and/or densify porous, flawed, and/or cracked coatings on electrically conductive material

    DOEpatents

    Panitz, Janda K.; Reed, Scott T.; Ashley, Carol S.; Neiser, Richard A.; Moffatt, William C.

    1999-01-01

    Electrophoretically active sol-gel processes to fill, seal, and/or density porous, flawed, and/or cracked coatings on electrically conductive substrates. Such coatings may be dielectrics, ceramics, or semiconductors and, by the present invention, may have deposited onto and into them sol-gel ceramic precursor compounds which are subsequently converted to sol-gel ceramics to yield composite materials with various tailored properties.

  17. Electrophoretically active sol-gel processes to backfill, seal, and/or densify porous, flawed, and/or cracked coatings on electrically conductive material

    DOEpatents

    Panitz, J.K.; Reed, S.T.; Ashley, C.S.; Neiser, R.A.; Moffatt, W.C.

    1999-07-20

    Electrophoretically active sol-gel processes to fill, seal, and/or density porous, flawed, and/or cracked coatings on electrically conductive substrates. Such coatings may be dielectrics, ceramics, or semiconductors and, by the present invention, may have deposited onto and into them sol-gel ceramic precursor compounds which are subsequently converted to sol-gel ceramics to yield composite materials with various tailored properties. 6 figs.

  18. Synthesis of Sol-Gel Precursors for Ceramics from Lunar and Martian Soil Simulars

    NASA Technical Reports Server (NTRS)

    Sibille, L.; Gavira-Gallardo, J. A.; Hourlier-Bahloul, D.

    2004-01-01

    Recent NASA mission plans for the human exploration of our Solar System has set new priorities for research and development of technologies necessary to enable a long-term human presence on the Moon and Mars. The recovery and processing of metals and oxides from mineral sources on other planets is under study to enable use of ceramics, glasses and metals by explorer outposts. We report initial results on the production of sol-gel precursors for ceramic products using mineral resources available in martian or lunar soil. The presence of SO2, TiO2, and Al2O3 in both martian (44 wt.% SiO2, 1 wt.% TiO2, 7 wt.% Al2O3) and lunar (48 wt.% SiO2, 1.5 wt.% TiO2, 16 wt.% Al2O3) soils and the recent developments in chemical processes to solubilize silicates using organic reagents and relatively little energy indicate that such an endeavor is possible. In order to eliminate the risks involved in the use of hydrofluoric acid to dissolve silicates, two distinct chemical routes are investigated to obtain soluble silicon oxide precursors from lunar and martian soil simulars. Clear solutions of sol-gel precursors have been obtained by dissolution of silica from lunar soil similar JSC-1 in basic ethylene glycol (C2H4(OH)2) solutions to form silicon glycolates. Similarly, sol-gel solutions produced from martian soil simulars reveal higher contents of iron oxides. Characterization of the precursor molecules and efforts to further concentrate and hydrolyze the products to obtain gel materials will be presented for evaluation as ceramic precursors.

  19. Synthesis of Sol-Gel Precursors for Ceramics from Lunar and Martian Soil Simulars

    NASA Technical Reports Server (NTRS)

    Sibille, L.; Gavira-Gallardo, J. A.; Hourlier-Bahloul, D.

    2003-01-01

    Recent NASA mission plans for the human exploration of our Solar System has set new priorities for research and development of technologies necessary to enable a long-term human presence on the Moon and Mars. The recovery and processing of metals and oxides from mineral sources on other planets is under study to enable use of ceramics, glasses and metals by explorer outposts. We report initial results on the production of sol-gel precursors for ceramic products using mineral resources available in martian or lunar soil. The presence of SiO2, TiO2, and Al2O3 in both martian (44 wt.% SiO2, 1 wt.% TiO2,7 wt.% Al2O3) and lunar (48 wt.% SiO2, 1.5 wt.% TiO2, 16 wt.% Al2O3) soils and the recent developments in chemical processes to solubilize silicates using organic reagents and relatively little energy indicate that such an endeavor is possible. In order to eliminate the risks involved in the use of hydrofluoric acid to dissolve silicates, two distinct chemical routes are investigated to obtain soluble silicon oxide precursors from lunar and martian soil simulars. Clear solutions of sol-gel precursors have been obtained by dissolution of silica from lunar soil simular in basic ethylene glycol (C2H4(OH)2) solutions to form silicon glycolates. Similarly, sol-gel solutions produced from martian soil simulars reveal higher contents of iron oxides. The elemental composition and structure of the precursor molecules were characterized. Further concentration and hydrolysis of the products was performed to obtain gel materials for evaluation as ceramic precursors.

  20. Structural Characterization and Corrosion Behavior of Stainless Steel Coated With Sol-Gel Titania

    NASA Astrophysics Data System (ADS)

    Vasconcelos, Daniela C. L.; Nunes, Eduardo H. M.; Sabioni, Antônio Claret S.; da Costa, João C. Diniz; Vasconcelos, Wander L.

    2012-03-01

    Sol-gel titania films were prepared from hydrolysis and condensation of titanium (IV) isopropoxide. Diethanolamine was used as chelant agent in titania synthesis. 316L stainless steel substrates were dip-coated at three different withdrawal speeds (6, 30, and 60 mm/min) and heated up to 400 °C. Thermogravimetry and differential thermal analyses of the titania gel solution evinced a continuous mass loss for temperatures up to 800 °C. The transition of anatase to the rutile phase begins at 610-650 °C, being the rutile transformation completed at 900 °C. The thicknesses of the films were determined as a function of the heat treatment and withdrawal speed. It was observed that their thicknesses varied from 130 to 770 nm. Scanning electron microscopy images of the composites revealed the glass-like microstructure of the films. The obtained sol-gel films were also characterized by energy dispersive spectroscopy. The chemical evolution of the films as a function of the heating temperature was evaluated by Fourier transform infrared spectroscopy (specular reflectance method). After performing the adhesion tests, the adherence of the titania films to the stainless steel substrate was excellent, rated 5B according to ASTM 3359. The hardness of the ceramic films obtained was measured by the Knoop microindentation hardness test with a 10 g load. We observed that the titania film became harder than the steel substrate when it was heated above 400 °C. The corrosion rates of the titania/steel composites, determined from potentiodynamic curves, were two orders of magnitude lower than that of the bare stainless steel. The presence of the sol-gel titania film contributed to the increase of the corrosion potential in ca. 650 mV and the passivation potential in ca. 720 mV.

  1. Structural and optoelectronic characterization of TiO2 films prepared using the sol gel technique

    NASA Astrophysics Data System (ADS)

    Jiménez González, A. E.; Gelover Santiago, S.

    2007-07-01

    TiO2 is a versatile material that makes for fascinating study in any of its several physical forms: monocrystal, polycrystal, powder or thin film. Its enhanced photosensitivity to UV radiation and excellent chemical stability in acidic and aqueous media point to its excellent potential for use in a variety of applications, such as solar cells, electronic devices, chemical sensors and photocatalysts. Of late, thin films of TiO2 have permitted the study of physical and chemical properties that are almost impossible to examine in powders. Using the sol-gel technique, it was possible to prepare TiO2 films, and to specifically modify their characteristic properties by means of annealing treatments. Optical measurements carried out on sol-gel derived films produced results similar to those found in films prepared using the sputtering technique. The use of TiO2 films facilitates the study of the behaviour of crystalline structure, grain size, photoresponse, electrical conductivity in both darkness and light and energy band gap (Eg) as a function of treatment temperature. For the first time, it has been demonstrated that the photoconductivity of TiO2 becomes apparent at a treatment temperature of 350 °C, which means that below this temperature the material is not photosensitive. The photosensitivity (S) of TiO2 films prepared by the sol-gel technique reaches values between 100 and 104, surpassing by more than two orders of magnitude the photosensitivity of TiO2 in powder form. In addition, it was possible to study the surface crystalline structure, where TEM studies clearly revealed both the polycrystalline order and the atomic arrangements of the TiO2 films. Our findings will afford us an opportunity to better study the nature of TiO2 and to enhance its performance with respect to the above-mentioned applications.

  2. Preparation and mechanical properties of silicon oxycarbide fibers from electrospinning/sol-gel process

    SciTech Connect

    Wang, Xiaofei; Gong, Cairong; Fan, Guoliang

    2011-12-15

    Graphical abstract: Ceramic fibers, silicon oxycarbide (SiOC) fibers were demonstrated and showed higher mechanical properties from electrospinning/sol-gel process at 1000 Degree-Sign C. Highlights: Black-Right-Pointing-Pointer SiOC fibers with low cost are promising to substitute the non-oxide fibers. Black-Right-Pointing-Pointer Successful preparation of SiOC fibers by electrospinning/sol-gel process. Black-Right-Pointing-Pointer Confirmation of the designed product using material characterization methods. Black-Right-Pointing-Pointer The SiOC fibers prepared at 1000 Degree-Sign C possess higher strength (967 MPa). -- Abstract: Silicon oxycarbide (SiOC) fibers were produced through the electrospinning of the solution containing vinyltrimethoxysilane and tetraethoxysilane in the course of sol-gel reaction with pyrolysis to ceramic. The effect of the amount of spinning agent Polyvinylpyrrolidone (PVP) on the dope spinnability was investigated. At a mass ratio of PVP/alkoxides = 0.05, the spinning sol exhibited an optimal spinnable time of 50 min and generated a large quantity of fibers. Electrospun fibers were characterized by Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis-differential scanning calorimetry (TGA-DSC), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The SEM results revealed that the SiOC fibers had a smooth surface and dense cross-section, free of residue pores and cracks. The XPS results gave high content of SiC (13.99%) in SiOC fibers. The SiOC fibers prepared at 1000 Degree-Sign C had a high tensile strength of 967 MPa and Young's modulus of 58 GPa.

  3. Evaluation of hybrid sol-gel incorporated with nanoparticles as nano paint

    NASA Astrophysics Data System (ADS)

    Jameel, Zainab N.; Haider, Adawiya J.; Taha, Samar Y.; Gangopadhyay, Shubhra; Bok, Sangho

    2016-07-01

    A coating with self-cleaning characteristics has been developed using a TiO2/SiO2 hybrid sol-gel, TiO2 nanoparticles and organosilicate nanoparticles (OSNP). A patented technology of the hybrid sol-gel and OSNP was combined with TiO2 nanoparticles to create the surface chemistry for self-cleaning. Two synthesis methods have been developed to prepare TiO2 nanoparticles (NPs), resulting in the enhancement of local paint by the addition of anatase and rutile TiO2 phases. The NPs size as determined by Dynamic Light Scattering (DLS) ranges within of (3-4) and (20-42) nm, which was also confirmed by Scanning Electron Microscopy (SEM). The nanoparticles showed surface charge (zeta-potential, ζ) of +35 and +25.62 mV for the methods, respectively, and ζ values of +41.31 and 34.02 mV for anatase and rutile phases, respectively. The NPs were mixed with the coating solution (i.e., hybrid sol-gel and OSNP) in different concentrations and thin films were prepared by spin coating. Self-cleaning tests were performed using Rhodamine B (RhB) as a pollution indicator. The effect of UV-irradiation on the films was also studied. Anatase and rutile incorporated as a mixture with different ratios in local paint and washability as well as a contrast ratio tests were performed. It was found that the addition of TiO2 NPs in combination with irradiation show a great enhancement of RhB degradation (1%) wt. with a decrease in contact angle and improved washability.

  4. Switching of lasing wavelength in a sol-gel laser with dynamic distributed feedback

    SciTech Connect

    Balenko, V G; Trufanov, A N; Umanskii, B A; Dolotov, S M; Petukhov, V A

    2011-09-30

    A scheme of switching the lasing wavelength of active centres in a sol-gel matrix excited by external laser radiation is proposed. A distributed feedback is formed during pumping by using a right-angle prism due to the interference of the direct and reflected pump beams. The lasing wavelength is determined by the period of the interference pattern, which depends on the convergence angle of interfering beams. Control is performed by a liquid-crystal cell, which changes the pump radiation polarisation, and a birefringent prism. As a result, the convergence angle of interfering beams changes, leading to a change in the interference pattern period and the excited radiation wavelength.

  5. The effect of lithiation on the electrochromism of sol-gel derived niobium oxide films

    SciTech Connect

    Macek, M.; Orel, B.; Krasovec, U.O.

    1997-09-01

    Niobium oxide films are promising cathodic electrochromic materials that in certain aspects can compete with the more frequently studied WO{sub 3} films. The films reported here were prepared using the sol-gel route from a NbCl{sub 5} precursor. The electrochromic properties were pronounced for crystalline films heat-treated at 500 C exhibiting transmittance changes between the colored and bleached states of 60% in the ultraviolet (UV) and 80% in the visible and near-infrared spectral regions. The reversibility of electrochromic changes of thick niobium oxide films (d > 250 nm) was enhanced by lithiation.

  6. Luminescence of Eu3+ incorporated into PZT tetragonal ceramics prepared by sol gel

    NASA Astrophysics Data System (ADS)

    González, Federico; Schabes-Retchkiman, Pablo; García-Macedo, Jorge

    2004-09-01

    Luminescence of Eu3+ in Pb(ZrxTi1-x)O3 (PZT) polycrystalline tetragonal samples synthesized by sol-gel processing is reported. Studies by x-ray diffraction, energy dispersive spectroscopy and high resolution transmission electron microscopy demonstrate the incorporation of the dopant in the host. A broad charge transfer band centred around 266 nm was observed in the Eu3+ excitation spectra. Eu3+ is in a low symmetry site. Luminescence was lost between 673 and 1173 K. It was recovered after 1 h of heat treatment at 1273 K, when nanocrystallites were formed.

  7. Green fluorescent protein-doped sol-gel silica planar waveguide to detect organophosphorus compound

    NASA Astrophysics Data System (ADS)

    Enami, Y.; Suye, S.

    2012-02-01

    We report novel living protein-doped planar waveguide, and real-time detection of an organophosphorus compound using a sol-gel silica planar waveguide doped with a green fluorescent protein and an organophosphorus hydrolase on a yeast-cell surface. The waveguide was pumped at 488 nm, and emitted green fluorescence at the far field. The green fluorescent light at 550 nm changed by 50% from the original power 1 min after application of the organophosphorus compound. The results enable the real-time detection of biochemical weapon and insecticide harmful for human body by using an in-line fiber sensor network.

  8. Electroanalytical applications of screen-printable surfactant-induced sol-gel graphite composites

    DOEpatents

    Guadalupe, Ana R.; Guo, Yizhu

    2001-05-15

    A process for preparing sol-gel graphite composite electrodes is presented. This process preferably uses the surfactant bis(2-ethylhexyl) sulfosuccinate (AOT) and eliminates the need for a cosolvent, an acidic catalyst, a cellulose binder and a thermal curing step from prior art processes. Fabrication of screen-printed electrodes by this process provides a simple approach for electroanalytical applications in aqueous and nonaqueous solvents. Examples of applications for such composite electrodes produced from this process include biochemical sensors such as disposable, single-use glucose sensors and ligand modified composite sensors for metal ion sensitive sensors.

  9. Synthesis and luminescence properties of encapsulated sol-gel glass samarium complexes

    NASA Astrophysics Data System (ADS)

    Zaitoun, M. A.; Momani, K.; Jaradat, Q.; Qurashi, I. M.

    2013-11-01

    Luminescence efficiency of lanthanide complexes generally largely depend on the choice of the organic ligand and the host matrix in which these complexes are doped. Two Sm(III) complexes, namely: Sm(III) dithicarbamate - Sm(L1)3B [L1 = (R)2NCS2B, R = C2H5 and B = 1,10-phenanthroline] and Sm(III) complex with the polytonic ligand L2 = N‧, N‧2-bis[(1E)-1-(2-pyridyl)ethylidene]ethanedihydrazide {Sm2-L2-(CH3COO)2; L2 = C16H16N6O2} are synthesized, these complexes are then trapped in sol-gel glass. Room temperature luminescence of Sm(L1)3B and {Sm2-L2-(CH3COO)2} complexes encapsulated in sol-gel glass are studied using a spectrofluorometer. Up on excitation by a UV light, ligand L1B absorbs this light and transfers it into the Sm(III) ions and emission bands were observed in the visible region and were attributed to f-f transitions of Sm(III). The observed emission indicated an efficient L1B ligand as a sensitizer, while ligand L2 shows no ability to work as a sensitizer. The branching ratio I4G5/2→6H9/2/I4G5/2→6H7/2) of electric dipole transition to magnetic dipole transition was used as an effective spectroscopic probe to predict symmetry of the site in which Sm(III) is located. The encapsulation of the Samaium complexes was performed for three reasons: (i) before rare earth (RE)-doped sol-gel glasses can be used in applications such as laser materials, several fluorescence quenching mechanisms must be overcome, we show in this work that lanthanide fluorescence is greatly enhanced by chelation and selecting a suitable host matrix (sol-gel) to accommodate the lanthanide complex, (ii) to improve the stability of the phosphor with efficient and high color-purity characteristics under ultraviolet excitation and (iii) this work provides a framework for preparing transparent composite glasses that are robust hosts to study the fundamental interactions between nano-materials and light.

  10. Development of an efficient large-aperture high damage-threshold sol-gel diffraction grating.

    SciTech Connect

    Ashley, Carol S.; Rambo, Patrick K.; Schwarz, Jens; Dunphy, Darren Robert; Branson, Eric D.; Smith, Ian Craig; Johnson, William Arthur; Reed, Scott T.; Cook, Adam W.

    2005-03-01

    In order to develop the next generation of high peak intensity lasers, new grating technology providing higher damage thresholds and large apertures is required. The current assumption is that this technical innovation will be multilayer dielectric gratings, wherein the uppermost layer of a thin film mirror is etched to create the desired binary phase grating. A variant of this is explored with the upper grating layer being a lower density gelatin-based volume phase grating in either sol-gel or dichromated gelatin. One key benefit is the elimination of the etching step.

  11. Free volume effects on the fluorescence characteristics of sol-gel glasses doped with quinine sulphate

    NASA Astrophysics Data System (ADS)

    Meneses-Nava, M. A.; Barbosa-García, O.; Díaz-Torres, L. A.; Chávez-Cerda, S.; King, T. A.

    1999-12-01

    The broadening of the absorption and fluorescence spectra and the red shift of the fluorescence maximum of quinine sulfate doped sol-gel glasses, before and after PMMA polymer impregnation, are investigated at different concentrations. The fluorescence decay of the quinine sulfate doped samples does not fit to a single exponential, as it does in ethanol solutions. We found that a double exponential gives a good fit to the obtained results. Introduction of solvent to fill the pores of the matrix does not only have the same effect as the polymer, but also reveals the strong attachment of the molecules to the pore walls and the influence of the interaction with the cage.

  12. Uncooled 160×120 microbolometer IR FPA based on sol-gel VOx

    NASA Astrophysics Data System (ADS)

    Dem'yanenko, Michael A.; Fomin, Boris I.; Ovsyuk, Victor N.; Marchishin, Igor V.; Parm, Igor O.; Vasil'ieva, Lyudmila L.; Shashkin, Valeri V.

    2005-09-01

    The technology of high-quality microbolometer focal plane arrays (FPA) fabrication has been developed. Simple and cheap sol-gel technology of thermosensitive vanadium oxide layers preparation is underlain in its basis. Uncooled 160×120 microbolometer sensor assemblies for 8-14 microns spectral range have been fabricated. The paper brief outlines simple techniques to measure crosstalk, precision of FPA temperature stabilization and sensor assembly response time to infrared signal change. The noise equivalent temperature difference better than 100 mK has been achieved at frame rate 60 Hz and F/1 optics.

  13. YAG:Ce3+ Nanophosphor Synthesized with the Salted Sol-Gel Method

    SciTech Connect

    D. Jia; C. V. Shaffer; J. E. Weyant; A. Goonewardene; X. Guo; Y. Wang; X. Z. Guo; K. K. Li; Y. K. Zou; W. Jia

    2006-05-01

    Nano-phosphors of Y3Al5O12:Ce3+ (YAG:Ce) were synthesized with a novel salted sol-gel method, in which aqueous solution of inorganic salts (yttrium/cerium nitrates) were used along with the metal alkoxide precursor, aluminum sec-butoxide, Al(OC4H9)3. YAG single phase was formed at temperature as low as 800 C. Luminescence of YAG:Ce reached the maximum intensity when calcined above 1350C. The SEM image reveals that the grain sizes of the nano-phosphors calcined at 1100 C are in a range of 50-150 nm.

  14. Integrated optical components using hybrid organic-inorganic materials prepared by sol-gel technology

    NASA Astrophysics Data System (ADS)

    Mishechkin, Oleg Viktorovich

    2003-10-01

    A technological platform based on low-temperature hybrid sol-gel method for fabrication of optical waveguides and integrated optical components has been developed. The developed chemistry for doping incorporation in the host network provides a range of refractive indexes (1.444--1.51) critical for device optimization. A passivation method for improving long-term stability of organic-inorganic sol-gel material is reported. The degradation of waveguide loss over time due to moisture adsorption from the atmosphere is drastically suppressed by coating the material with a protective thin SiO2 film. The results indicate a long-term optical loss below 0.3 dB/cm for protected waveguides. The theory of multimode interference couplers employing self-imaging effect is described. A novel approach for design of high-performance MMI devices in low-contrast material is proposed. The design method is based on optimization of refractive index contrast and width of a multimode waveguide (the body of MMI couplers) to achieve a maximum number of constructively interfering modes resulting to the best self-imaging. This optimization is carried out using 3D BPM simulations. This method was applied to design 1 x 4, 1 x 12, and 4 x 4 MMI couplers and led to a superior performance in excess loss, power imbalance in output ports, and polarization sensitivity. Taking advantage of the inherent input-output phase relations in a 4 x 4 MMI coupler, an optical 90° hybrid is realized by incorporation a Y-junction to coherently excite two ports of the coupler. A series of MMI couplers were fabricated and characterized. The experimental results are in good agreement with the design. Measured performance of the sol-gel derived MMI components was compared to analogues fabricated by other technologies. The comparison demonstrates the superior performance of the sol-gel devices. The polarization sensitivity of all fabricated couplers is below 0.05 dB.

  15. Fluorescence depolarization studies of sol-gel-derived glasses using a rigidochromic probe

    NASA Astrophysics Data System (ADS)

    McKiernan, John; Zink, Jeffrey I.; Dunn, Bruce S.

    1992-12-01

    The rigidochromic molecule rhenium(I)chlorotricarbonyl-2,2'-bipyridine was used in fluorescence depolarization experiments to probe the gelation, aging, and drying of silica and aluminosilicate sol-gel derived materials. These studies indicate that the local environment of the probe is fluid until well after gelation has occurred. Aluminosilicate gels show an increase in local viscosity after gelation while silica gels show no increase until the drying stage is begun. These results are compared to previous studies in which the shift of the emission band was used to indicate the rigidity in the local environment of the probe.

  16. Surface and catalytic properties of acid metal carbons prepared by the sol gel method

    NASA Astrophysics Data System (ADS)

    Aguado-Serrano, J.; Rojas-Cervantes, M. L.; Martín-Aranda, R. M.; López-Peinado, A. J.; Gómez-Serrano, V.

    2006-06-01

    The sol-gel method has been applied for the synthesis of a series of acid metal-carbon xerogels (with M = V, Cr, Mo and Ni) by polymerisation of resorcinol with formaldehyde in the presence of metallic precursors. A blank sample was also prepared without any metal addition. The xerogels were heated in nitrogen at 1000 °C to obtain the pyrolysed products. The samples were characterised by different techniques such as thermal-mass spectrometry analysis, gas physisorption, and mercury porosimetry. In addition, the acid character of the pyrolysed products was tested by the Claisen-Schmidt condensation between benzaldehyde and acetophenone for the formation of chalcones.

  17. Synthesis and sintering of nanocrystalline hydroxyapatite powders by citric acid sol-gel combustion method

    SciTech Connect

    Han Yingchao; Li Shipu; Wang Xinyu; Chen Xiaoming

    2004-01-03

    The citric acid sol-gel combustion method has been used for the synthesis of nanocrystalline hydroxyapatite (HAP) powder from calcium nitrate, diammonium hydrogen phosphate and citric acid. The phase composition of HAP powder was characterized by X-ray powder diffraction analysis (XRD). The morphology of HAP powder was observed by transmission electron microscope (TEM). The HAP powder has been sintered into microporous ceramic in air at 1200 deg. C with 3 h soaking time. The microstructure and phase composition of the resulting HAP ceramic were characterized by scanning electron microscope (SEM) and XRD, respectively. The physical characterization of open porosity and flexural strength have also been carried out.

  18. Dielectric function of sol-gel prepared nano-granular zinc oxide by spectroscopic ellipsometry

    SciTech Connect

    Gilliot, Mickaël Hadjadj, Aomar; Eypert, Céline

    2013-11-14

    ZnO thin films have been prepared by sol gel and deposited by spin coating. The dielectric function has been determined by spectroscopic ellipsometry. Ellipsometric spectra are inverted by a direct numerical method without using the standard fitting procedures. The obtained dielectric function presents a broad excitonic effect. The dielectric function is studied using Elliot excitonic theory including exciton plus band-to-band Coulomb interactions with standard Lorentzian broadening. A modification of this model dielectric function with independent bound and unbound exciton contributions is empirically proposed to improve modelling of the band gap excitonic peak.

  19. Ion-irradiation enhanced epitaxial growth of sol-gel TiO2 films

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Kun; Jung, Hyun Suk; Wang, Yongqiang; Theodore, N. David; Alford, Terry L.; Nastasi, Michael

    2011-04-01

    We report the epitaxial growth of sol-gel TiO2 films by using ion-irradiation enhanced synthesis. Our present study shows that the ion-beam process can provide highly crystalline TiO2 even at 350°C. Nuclear energy deposition at amorphous/crystalline interface plays a dominant role in the epitaxial growth of the films at the reduced temperature via a defect-migration mechanism. In addition, the ion irradiation allows for increasing the film density by balancing the crystallization rate and the escape rate of organic components.

  20. Photovoltaic responses of ZnO/Si heterojunctions synthesized by sol-gel method

    NASA Astrophysics Data System (ADS)

    Liu, H.; Zhao, S.; Zhao, K.; Liu, W.

    2011-07-01

    ZnO/Si heterojunctions were prepared by the sol-gel method and hexagonal polycrystalline wurtzite structures with pores were observed by a field emission scanning electron microscope. The steady photovoltage properties of ZnO/Si heterojunctions were obtained under the illumination of a 532 nm continuum solid state laser with a 50 Hz chopper. In addition ns photoresponse signals were found when the samples were excited by a ps pulsed laser at room temperature. A possible mechanism was proposed to describe the photovoltaic process in the ZnO/Si heterojunction.

  1. Barium hydroxyapatite nanoparticles synthesized by citric acid sol-gel combustion method

    SciTech Connect

    Xiu Zhiliang; Lue Mengkai . E-mail: mklu@icm.sdu.edu.cn; Liu Suwen; Zhou Guangjun; Su Benyu; Zhang Haiping

    2005-09-01

    Barium hydroxyapatite (BaHAP) nanoparticles have been synthesized by citric acid sol-gel combustion method using citric acid as a reductant/fuel and nitrate as an oxidant at a relatively low temperature of 600 deg. C. The thermal decomposition of nitrate-citrate xerogel was investigated by thermogravimetric/differential thermal analysis (TG/DTA) technique. The yielding powders calcined at 600 deg. C have been characterized by Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and transmission electron microscope (TEM). The possible combustion process was presented.

  2. Tunable Bragg stacks from sol-gel derived Ta2O5 and MEL zeolite films

    NASA Astrophysics Data System (ADS)

    Gospodinov, B.; Dikova, J.; Mintova, S.; Babeva, T.

    2012-12-01

    In this paper we investigated sol-gel derived Ta2O5 and nanosized MEL zeolite films obtained by spin coating of Tantalum sol and colloidal zeolite solution, respectively. Refractive index and thickness of the films were determined using non-linear curve fitting of measured reflectance spectra. The influence of the post deposition annealing on the optical properties and thickness of the films was studied. Besides tunable Bragg stacks were designed and prepared by layer-by-layer deposition of Ta2O5 and MEL suspensions with quarter-wave thicknesses. The influence of water, acetone and methanol on the optical behavior of Bragg stacks was discussed.

  3. Distributed feedback sol-gel zirconia waveguide lasers based on surface relief gratings

    NASA Astrophysics Data System (ADS)

    Ye, Chao; Wong, K. Y.; He, Yaning; Wang, Xiaogang

    2007-02-01

    Distributed feedback waveguide lasers based on dye-doped sol-gel zirconia films with permanent grating structures were demonstrated. The permanent grating was realized by employing a novel epoxy-based azo-polymer that generates a surface relief grating by a photo-isomerization process induced by two interfering writing beams. When employing the rhodamine 6G dye, tuning of the output wavelength of the distributed feedback waveguide laser from around 575 nm to 610 nm can be achieved by adjusting the tilting angle between the orientation of the grating and the pump beam.

  4. Thin film of sol-gel deposited in photonic crystal fiber for cholesterol detection

    NASA Astrophysics Data System (ADS)

    Razo-Medina, D. A.; Alvarado-Méndez, E.; Trejo-Durán, M.

    2015-04-01

    In this work, the fabrication of thin films mixed with cholesterol enzyme as recognition component is shown, using solgel technique. The film was deposited at one end of photonic crystal fiber (optrode), which was used as carrier medium of sol-gel matrix. The concentration of cholesterol in the test sample was determined by the use of transmittance. Measuring device consists of a power source (laser diode), optrode and a light detector. The laser beam is transmitted through the optrode; the variations of intensity depending on cholesterol concentration are emitted to be detected by a photoresistor.

  5. Optical characterization of Sol-Gel ZnO:Al thin films

    NASA Astrophysics Data System (ADS)

    Ivanova, T.; Harizanova, A.; Koutzarova, T.; Vertruyen, B.

    2016-03-01

    This paper presents a sol-gel technological process for preparing thin films of ZnO and ZnO:Al. The effect of annealing treatments (500, 600, 700 and 800 °C) on their properties was studied. The structural evolution with the temperature was investigated by using X-Ray diffraction (XRD). Fourier Transform Infrared (FTIR) and UV-VIS spectrophotometry were applied to characterizing the films' vibrational and optical properties. The ZnO and ZnO:Al films possessed a polycrystalline structure. The films studied are highly transparent in the visible spectral range. The optical band gap values and the haze parameter were also determined.

  6. Solid-state NMR study of geopolymer prepared by sol-gel chemistry

    NASA Astrophysics Data System (ADS)

    Tsai, Yi-Ling; Hanna, John V.; Lee, Yuan-Ling; Smith, Mark E.; Chan, Jerry C. C.

    2010-12-01

    Geopolymers are a new class of materials formed by the condensation of aluminosilicates and silicates obtained from natural minerals or industrial wastes. In this work, the sol-gel method is used to synthesize precursor materials for the preparation of geopolymers. The geopolymer samples prepared by our synthetic route have been characterized by a series of physical techniques, including Fourier-transform infrared, X-ray diffraction, and multinuclear solid-state NMR. The results are very similar to those obtained for the geopolymers prepared from natural kaolinite. We believe that our synthetic approach can offer a good opportunity for the medical applications of geopolymer.

  7. Investigation of sol-gel yttrium doped ZnO thin films: structural and optical properties

    NASA Astrophysics Data System (ADS)

    Ivanova, T.; Harizanova, A.; Koutzarova, T.; Vertruyen, B.

    2016-02-01

    Nanostructured metal oxide films are extensively studied due to their numerous applications such as optoelectronic devices, sensors. In this work, we report the Y-Zn-O nanostructured films prepared by sol-gel technology from sols with different concentration of yttrium precursor, followed by post-annealing treatment. The Y doped ZnO thin films have been deposited on Si and quartz substrates by spin coating method, then treated at temperatures ranging from 300-800oC. XRD analysis reveals modification of the film structure and phases in the doped ZnO films.

  8. Controlling the porosity of microporous silica by sol-gel processing using an organic template approach

    SciTech Connect

    Lu, Y.; Cao, G.Z.; Kale, R.P.; Delattre, L.; Lopez, G.P.; Brinker, C.J. |

    1996-12-31

    The authors use an organic template approach to prepare microporous silica with controlled pore size and narrow pore size distributions. This was accomplished by fabricating relatively dense hybrid silica matrices incorporating organic template ligands by sol-gel synthesis and then removing the organic ligands to create a microporous silica network. Comparison of computer simulation results and experimental data indicated that using this fugitive template approach, pore volume can be controlled by the amount of organic template added to the system, and pore size can be controlled by the size of the organic ligands.

  9. The electrochromic characteristics of sol gel-prepared NiO thin film

    NASA Astrophysics Data System (ADS)

    Jiao, Zheng; Wu, Minghong; Qin, Zheng; Xu, Hong

    2003-04-01

    In this work, NiO thin film was prepared by the sol-gel technique and analysed by thermogravimetry, x-ray diffractometry and x-ray photoelectron spectroscopy. The electrochromic characteristics were studied by ultraviolet spectroscopy. NiO thin film shows electrochromic characteristics. Its colour changes from transparent to brown when a voltage is applied. The transmittance of the film can shift from 90 to 40%. Deterioration of the film caused by colouring and discolouring was not observed for up to 100 cycles.

  10. Synthesis and Conductometric Property of Sol-Gel-Derived ZnO/PVP Nano Hybrid Films

    NASA Astrophysics Data System (ADS)

    Ilegbusi, Olusegun J.; Trakhtenberg, Leonid

    2013-03-01

    ZnO nanoparticles immobilized in polyvinylpyrrolidone (PVP) were prepared using sol-gel dip-coating technique with varying Zn2+/PVP ratios. The films were characterized using atomic force microscopy, x-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy for chemical analysis. The size and concentration of ZnO particles decreased as the Zn/PVP ratio decreased. Under low Zn2+/PVP molar ratios, ZnO particles were clearly well separated and capped in the PVP polymer matrix. Electrical resistivity of 108 Ω cm was achieved under these deposition conditions.

  11. Preparation of the SnO2 gate pH-ISFET by sol gel technology

    NASA Astrophysics Data System (ADS)

    Chou, Jung Chuan; Wang, Yii Fang

    2001-10-01

    In this paper, the sol-gel prepared SnO2 thin film is first applied for the pH sensing. We use the SnCl2(DOT)2H2O as the precursor. It is cheaper than other methods. The resulting solution is dropped on the gate of the SiO2 gate pH-ISFET (ion sensitive field effect transistor). After baking, the thin film will convert to SnO2. We also use the thermal evaporation system to prepare the SnO2 gate MOSFET. Then, we use the Keithley 236 instrument to measure the IDS-VG curves of the SnO2 gate MOSFET and pH-ISFET for the different pH buffer solutions. Since the MOSFET and pH-ISFET are fabricated on the same silicon wafer, the properties of these devices are identical. Therefore, we can use the experimental results and theoretical model of the pH-ISFET to find the pH sensitivity and pHPZC (pH at the point of zero charge) of the sol-gel prepared SnO2 gate pH-ISFET, which are about 57.36 mV/pH and 11.3, respectively.

  12. Characterizations of maghemite thin films prepared by a sol-gel method

    NASA Astrophysics Data System (ADS)

    Lau, L. N.; Ibrahim, N. B.

    2015-09-01

    Iron is one of the abundant elements of Mother Nature and its compound, iron oxide is an interesting material to study since its discovery in the form of magnetite. It can exist in many phases such as hematite and maghemite, this unique nature has put it as a potential candidate in various applications. The aim of this work is to study the influence of different precursor concentrations on the microstructural and magnetic properties of iron oxide thin film. All samples were prepared via the sol-gel method followed by a spin coating technique on quartz substrates. Iron oxide films were confirmed as maghemite phase from X-ray diffraction patterns. The film morphology was examined by a field emission scanning electron microscope and it showed non-systematic value of average grain size and film thickness throughout the study. Hysteresis loop further confirmed that maghemite is a magnetic material when it was characterized by a vibrating sample magnetometer. The coercivity did not show any correlation with molarity. Nevertheless, it increased as the precursor concentration of the film increased due to the domain behaviour. In conclusion, maghemite thin films were successfully synthesized by the sol-gel method with different precursor concentrations in this work.

  13. Microalgae fiber optic biosensors for herbicide monitoring using sol-gel technology.

    PubMed

    Peña-Vázquez, Elena; Maneiro, Emilia; Pérez-Conde, Concepción; Moreno-Bondi, Maria Cruz; Costas, Eduardo

    2009-08-15

    Three microalgal species (Dictyosphaerium chlorelloides (D.c.), Scenedesmus intermedius (S.i.) and Scenedesmus sp. (S.s.)) were encapsulated in silicate sol-gel matrices and the increase in the amount of chlorophyll fluorescence signal was used to quantify simazine. Influence of several parameters on the preparation of the sensing layers has been evaluated: effect of pH on sol-gel gelation time; effect of algae density on sensor response; influence of glycerol (%) on the membrane stability. Long term stability was also tested and the fluorescence signal from biosensors remained stable for at least 3 weeks. D.c. biosensor presented the lowest detection limits for simazine (3.6 microg L(-1)) and the broadest dynamic calibration range (19-860 microg L(-1)) with IC(50) 125+/-14 microg L(-1). Biosensor was validated by HPLC with UV/DAD detection. The biosensor showed response to those herbicides that inhibit the photosynthesis at photosystem II (triazines: simazine, atrazine, propazine, terbuthylazine; urea based herbicides: linuron). However, no significant increases of fluorescence response was obtained for similar concentrations of 2,4-D (hormonal herbicide) or Cu(II). The combined use of two biosensors that use two different genotypes, sensitive and resistant to simazine, jointly allowed improving microalgae biosensor specificity. PMID:19497732

  14. Antimicrobial activity of thin solid films of silver doped hydroxyapatite prepared by sol-gel method.

    PubMed

    Iconaru, Simona Liliana; Chapon, Patrick; Le Coustumer, Philippe; Predoi, Daniela

    2014-01-01

    In this work, the preparation and characterization of silver doped hydroxyapatite thin films were reported and their antimicrobial activity was characterized. Silver doped hydroxyapatite (Ag:HAp) thin films coatings substrate was prepared on commercially pure Si disks by sol-gel method. The silver doped hydroxyapatite thin films were characterized by various techniques such as Scanning electron microscopy (SEM) with energy Dispersive X-ray attachment (X-EDS), Fourier transform infrared spectroscopy (FT-IR), and glow discharge optical emission spectroscopy (GDOES). These techniques have permitted the structural and chemical characterisation of the silver doped hydroxyapatite thin films. The antimicrobial effect of the Ag:HAp thin films on Escherichia coli and Staphylococcus aureus bacteria was then investigated. This is the first study on the antimicrobial effect of Ag:HAp thin films obtained by sol-gel method. The results of this study have shown that the Ag:HAp thin films with x(Ag) = 0.5 are effective against E. coli and S. aureus after 24 h. PMID:24523630

  15. Development of novel biocompatible hybrid nanocomposites based on polyurethane-silica prepared by sol gel process.

    PubMed

    Rashti, Ali; Yahyaei, Hossein; Firoozi, Saman; Ramezani, Sara; Rahiminejad, Ali; Karimi, Roya; Farzaneh, Khadijeh; Mohseni, Mohsen; Ghanbari, Hossein

    2016-12-01

    Due to high biocompatibility, polyurethane has found many applications, particularly in development of biomedical devices. A new nanocomposite based on thermoset polyurethane and silica nanoparticles was synthesized using sol-gel method. Sol-gel process was fulfilled in two acidic and basic conditions by using tetraethylorthosilicate (TEOS) and trimethoxyisocyanatesilane as precursors. The hybrid films characterized for mechanical and surface properties using tensile strength, contact angle, ATR-FTIR and scanning electron microscopy. Biocompatibility and cytotoxicity of the hybrids were assessed using standard MTT, LDH and TUNEL assays. The results revealed that incorporation of silica nanoparticles was significantly improved tensile strength and mechanical properties of the hybrids. Based on the contact angle results, silica nanoparticles increased hydrophilicity of the hybrids. Biocompatibility by using human lung epithelial cell line (MRC-5) demonstrated that the hybrids were significantly less cytotoxic compared to pristine polymer as tested by MTT and LDH assays. TUNEL assay revealed no signs of apoptosis in all tested samples. The results of this study demonstrated that incorporation of silica nanoparticles into polyurethane lead to the enhancement of biocompatibility, indicating that these hybrids could potentially be used in biomedical field in particular as a new coating for medical implants. PMID:27612823

  16. Responsive hydrogels produced via organic sol-gel chemistry for cell culture applications.

    PubMed

    Patil, Smruti; Chaudhury, Pulkit; Clarizia, Lisa; McDonald, Melisenda; Reynaud, Emmanuelle; Gaines, Peter; Schmidt, Daniel F

    2012-08-01

    In this study, we report the synthesis of novel environmentally responsive polyurea hydrogel networks prepared via organic sol-gel chemistry and demonstrate that the networks can stabilize pH while releasing glucose both in simple aqueous media and in mammalian cell culture settings. Hydrogel formulations have been developed based on the combination of an aliphatic triisocyanate with pH-insensitive amine functional polyether and pH-sensitive poly(ethyleneimine) segments in a minimally toxic solvent suitable for the sol-gel reaction. The polyether component of the polyurea network is sufficiently hydrophilic to give rise to some level of swelling independent of environmental pH, while the poly(ethyleneimine) component contains tertiary amine groups providing pH sensitivity to the network in the form of enhanced swelling and release under acidic conditions. The reaction of these materials to form a network is rapid and requires no catalyst. The resultant material exhibits the desired pH-responsive swelling behavior and demonstrates its ability to simultaneously neutralize lactic acid and release glucose in both cell-free culture media and mammalian cell culture, with no detectable evidence of cytotoxicity or changes in cell behavior, in the case of either SA-13 human hybridomas or mouse embryonic stem cells. Furthermore, pH is observed to have a clear effect on the rate at which glucose is released from the hydrogel network. Such characteristics promise to maintain a favorable cell culture environment in the absence of human intervention. PMID:22561670

  17. Finite element modeling of evaporation and condensation during sol-gel film and fiber formation

    SciTech Connect

    Schunk, P.R.; Hurd, A.J.; Brinker, C.J.; Rao, R.R.

    1993-07-01

    Free surfaces, multicomponent phase change, volume expansion and compression, and surface tension gradients make for challenging application of the finite element method to sol-gel (ceramic) film and fiber formation. The microstructure of the final product is largely controlled by the competition between the drying, curing, and underlying fluid mechanics of formation. Sol-gel materials are peculiar because they often contain more than one solvent, each solvent differing in volatility and surface tension. Hence, nonuniform evaporation can produce surface tension gradients that dramatically change the meniscus shape. These processes are complicated further by a volume change that accompanies evaporation and condensation, making for shock-like discontinuities in concentration and velocity at the free surface. Computer-aided predictions of film formation by dip coating and of fiber spinning (see Figure 1) are made for alcohol-water mixtures with one non-volatile species. The Navier-Stokes system is augmented with two convective-diffusion equations to track the concentration of alcohol and water, and an energy equation to monitor temperature changes. The equations are solved in both phases by discretizing them first with the Galerkin/finite element method. The resulting non-linear algebraic equation set is solved with Newton`s method. The subdomaining technique is based on elliptic grid generation and is designed to parameterize the moving meniscus. Special treatment of the functional representations of velocity and concentration within the elements lining the free surface are made to accommodate the volume change that accompanies mass exchange between phases.

  18. Sol gel derived hydroxyapatite coatings on titanium and its alloy Ti6Al4V

    NASA Astrophysics Data System (ADS)

    Stoch, A.; Jastrzebski, W.; Długoń, E.; Lejda, W.; Trybalska, B.; Stoch, G. J.; Adamczyk, A.

    2005-06-01

    Titanium has been used for many medical and dental applications; however, its joining to a living bone is not satisfactorily good or the implant integration with bone tissue takes several months.The aim of this work is to produce hydroxyapatite (HAP) coatings on titanium and its alloy for facilitating and shortening the processes towards osseointegration. HAP coatings were obtained by sol-gel method with sol solutions prepared from calcium nitrate tetrahydrate and triammonium phosphate trihydrate as the calcium and phosphorous sources. Two types of gelatine were added to the sol: agar-agar or animals gelatine. Both were found to enhance the formation and stability of amorphous HAP using soluble salts as the sources of calcium and phosphate. HAP coatings were deposited from HAP-GEL sol using dip-withdrawal technique, then the plates were dried and annealed at temperatures 460-750 °C. FTIR spectroscopy and XRD analysis were used to study the phase composition of phosphate coatings. Morphology and chemical analysis of HAP layers was performed using a scanning electron microscope equipped with an energy dispersive X-ray analyser (SEM+EDX). The biological activity of sol-gel phosphate coatings was observed during thermostatic held in simulated body fluid (SBF). It was found that chemical composition and structure of HAP coatings depends on pH and final thermal treatment of the layer.

  19. Synthesis and characterization of NiO nanopowder by sol-gel process

    SciTech Connect

    Ningsih, Sherly Kasuma Warda

    2015-09-30

    Preparation of nickel oxide (NiO) nanopowder by sol-gel process has been studied. NiO nanopowders were obtained by sol-gel method by using nickel nitrate hexahydrate and sodium hydroxide and aquadest were used as precursor, agent precipitator and solvent, respectively. The powders were formed by drying at 110°C and followed by heating in the furnace at 400°C for 1.5 hours. The product was obtained black powder. The product was characterized by Energy Dispesive X-ray Fluorescence (ED-XRF), X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The ED-XRF pattern shows the composition of NiO produced was 97.1%. The XRD pattern showed NiO forms were produced generally in monoclinic stucture. The crystalline size of NiO was obtained in the range 40-85 nm. SEM micrograph clearly showed that powder had a spherical with uniform distribution size is 0.1-1.0 µm approximately.

  20. Laser Surface Treatment of Silica Sol-gel Coating to Produce Nanocrystalline Structure

    NASA Astrophysics Data System (ADS)

    Razavi, R. Shoja; Gordani, Gh.; Hojjati, A.

    2011-12-01

    In this study two methods of laser and furnace sintering are used to prepare nanocrystalline structure of silica sol-gel coating on glass substrate. In laser sintering method, an Nd:YAG pulsed laser with a laser pulse energy of 1 J used to sinter the silica sol-gel coating. To evaluate the surface morphology and microstructural analysis, XRD and SEM were used. The optical properties of coatings were examined by UV/VIS spectroscopy. The results indicated that the laser sintered coating was denser than the furnace sintered coating. No porosity and cracks were detected on the surface of laser sintered coating. Using Scherer mathematical equation, it was shown that the grain size of laser sintered coating is well within nano size range. The uniformity of nanocrystalline structure clearly improved the reflection of incident beam from the laser sintered coating. This was mainly due to increase in grain boundary regions which in turn can cause some the wavelength of the incident beam to be transmitted from silica coatings.

  1. Phospholipid fatty acids as physiological indicators of Paracoccus denitrificans encapsulated in silica sol-gel hydrogels.

    PubMed

    Trögl, Josef; Jirková, Ivana; Kuráň, Pavel; Akhmetshina, Elmira; Brovdyová, Taťjána; Sirotkin, Alexander; Kirilina, Tatiana

    2015-01-01

    The phospholipid fatty acid (PLFA) content was determined in samples of Paracoccus denitrificans encapsulated in silica hydrogel films prepared from prepolymerized tetramethoxysilane (TMOS). Immediately after encapsulation the total PLFA concentration was linearly proportional to the optical density (600 nm) of the input microbial suspension (R2 = 0.99). After 7 days this relationship remained linear, but with significantly decreased slope, indicating a higher extinction of bacteria in suspensions of input concentration 108 cells/mL and higher. trans-Fatty acids, indicators of cytoplasmatic membrane disturbances, were below the detection limit. The cy/pre ratio (i.e., ratio of cyclopropylated fatty acids (cy17:0 + cy19:0) to their metabolic precursors (16:1ω7 + 18:1ω7)), an indicator of the transition of the culture to a stationary growth-phase, decreased depending on co-immobilization of nutrients in the order phosphate buffer > mineral medium > Luria Broth rich medium. The ratio, too, was logarithmically proportional to cell concentration. These results confirm the applicability of total PLFA as an indicator for the determination of living biomass and cy/pre ratio for determination of nutrient limitation of microorganisms encapsulated in sol-gel matrices. This may be of interest for monitoring of sol-gel encapsulated bacteria proposed as optical recognition elements in biosensor construction, as well as other biotechnological applications. PMID:25690547

  2. TiO2/PCL hybrid materials synthesized via sol-gel technique for biomedical applications.

    PubMed

    Catauro, M; Bollino, F; Papale, F; Marciano, S; Pacifico, S

    2015-02-01

    The aim of the present work has been the synthesis of organic/inorganic hybrid materials based on titanium dioxide and poly(ε-caprolactone) (PCL) to be used in the biomedical field. Several materials have been synthesized using sol-gel methods by adding different amounts of polymer to the inorganic sol. The obtained gels have been characterized using Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The FT-IR data allowed us to hypothesize that the structure formed was that of an interpenetrating network, realized by hydrogen bonds between TiOH groups in the sol-gel intermediate species and carbonyl groups in the polymer repeating units. SEM and AFM analyses highlighted that the obtained materials were nanostructurated hybrids. To evaluate the biological properties of the hybrids, their bioactivity and cytotoxicity were investigated as a function of the PCL amount. The bioactivity of the synthesized systems was proven by the formation of a hydroxyapatite layer on the surface of samples soaked in a fluid simulating human blood plasma (SBF). MTT cytotoxicity tests and Trypan Blue dye exclusion tests were carried out exposing NIH-3T3 mouse embryonic fibroblasts for 24 and 48h to extracts from the investigated hybrid materials. The results showed that all the hybrids had a non-cytotoxic effect on target cells. PMID:25492181

  3. NiO-silica based nanostructured materials obtained by microemulsion assisted sol-gel procedure

    SciTech Connect

    Mihaly, M.; Comanescu, A.F.; Rogozea, A.E.; Vasile, E.; Meghea, A.

    2011-10-15

    Graphical abstract: TEM micrograph of NiO/SiO{sub 2} nanoparticles. Highlights: {yields} Microemulsion assisted sol-gel procedure for NiO silica nanomaterials synthesis. {yields} Controlling the size and shape of nanoparticles and avoiding their aggregation. {yields} Narrow band-gap semiconductors (energies <3 eV) absorbing VIS or near-UV light biologically and chemically inert semiconductors entrapping/coating in silica network. {yields} Low cost as the microemulsion is firstly used in water metallic cation extraction. -- Abstract: NiO-silica based materials have been synthesized by microemulsion assisted sol-gel procedure. The versatility of these soft nanotechnology techniques has been exploited in order to obtain different types of nanostructures, such as NiO nanoparticles, NiO silica coated nanoparticles and NiO embedded in silica matrix. These materials have been characterized by adequate structural and morphology techniques: DLS, HR-TEM/SAED, BET, AFM. Optical and semiconducting properties (band-gap values) of the synthesized materials have been quantified by means of VIS-NIR diffuse reflectance spectra, thus demonstrating their applicative potential in various electron transfer phenomena such as photocatalysis, electrochromic thin films, solid oxide fuel cells.

  4. Sol-gel replicated optics made from single point diamond turned masters exhibit fractal surface roughness

    SciTech Connect

    Bernacki, B.E.; Miller, A.C. Jr.; Evans, B.M. III; Moreshead, W.V.; Nogues, J.L.R.

    1996-05-01

    Deterministic optics manufacturing, notably single point diamond turning (SPDT) has matured such that the current generation of machines is capable of producing refractive and reflective optics for the visible wavelength region that are quite acceptable for many applications. However, spiral tool marks are still produced that result in unwanted diffractive scattering from grating-like features having a spatial frequency determined by the machine feed, tool radius, and other influences such as vibration and material removal effects. Such regular artifacts are the characteristic of deterministic manufacturing methods such as SPDT. The authors present some initial findings suggesting that fractal, or non-deterministic surfaces can be produced by SPDT through sol-gel replication. The key is the large isotropic shrinkage that occurs through monolithic sol-gel replication (a factor of 2.5) that results in all features, including tooling marks, being reduced by that amount. The large shrinkage itself would be a laudable-enough feature of the replication process. However, by an as-yet-not understood manner, the replication process itself seems to alter the roughness character of the replicated surface such that it appears to be fractal when analyzed using contact profilometry and the power spectrum approach.

  5. Fabrication and optical properties of sol-gel-derived interference coating for high power laser applications

    NASA Astrophysics Data System (ADS)

    Zhang, Qinyuan; Pita, Kantisara; Xu, Chang-Qing; Que, Wenxiu; Hinooda, S.; Thilakan, Periyasamy

    2001-10-01

    A single layer sol-gel derived TiO2 thin films and 6 periods SiO2/TiO2 multilayer coating were designed and prepared on GaAs substrates as anti-reflection coating or near-IR-reflective coating for high power semiconductor laser applications. Crack free TiO2 thin films having thickness of 80-150 nm, and refractive indices of 1.8-2.1 have been obtained by simply sol-gel method upon heating at different temperatures. The obtained TiO2 thin films on GaAs substrates have shown reflectance of

  6. Synthesis and characterization of NiO nanopowder by sol-gel process

    NASA Astrophysics Data System (ADS)

    Ningsih, Sherly Kasuma Warda

    2015-09-01

    Preparation of nickel oxide (NiO) nanopowder by sol-gel process has been studied. NiO nanopowders were obtained by sol-gel method by using nickel nitrate hexahydrate and sodium hydroxide and aquadest were used as precursor, agent precipitator and solvent, respectively. The powders were formed by drying at 110°C and followed by heating in the furnace at 400°C for 1.5 hours. The product was obtained black powder. The product was characterized by Energy Dispesive X-ray Fluorescence (ED-XRF), X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The ED-XRF pattern shows the composition of NiO produced was 97.1%. The XRD pattern showed NiO forms were produced generally in monoclinic stucture. The crystalline size of NiO was obtained in the range 40-85 nm. SEM micrograph clearly showed that powder had a spherical with uniform distribution size is 0.1-1.0 µm approximately.

  7. Band gap and FTIR studies for copper-zinc sol-gel glasses

    NASA Astrophysics Data System (ADS)

    Kaur, G.; Kaur, Navneet; Rawat, Mohit; Singh, K.; Kumar, Vishal

    2016-05-01

    Sol-gel technique was used for synthesis of Calcium phosphorous Borosilicate (CaO-SiO2-B2O3-P2O5-CuO-ZnO) glasses by varying composition of Copper oxide and Zinc oxide. Sol-gel route uses organic precursors which provide better homogeneity and uniform particle size compared to melt quenched glass. Four different glass stoichiometries were characterised using UV-visible spectroscopy and Fourier transforms infra-red spectroscopy (FTIR). Infra-red spectrum of transmittance of powdered glass samples is obtained by FTIR which measure the transmittance of wavelength in them and it also determines the presence of different functional group. Band gap has been obtained using UV-visible spectroscopy for all the glasses so as to study the effect of increasing ZnO content in glass composition. The change in band gap with ZnO content is indication of the change in number of non-bridging oxygen's (NBO).

  8. A Guided Materials Screening Approach for Developing Quantitative Sol-gel Derived Protein Microarrays

    PubMed Central

    Helka, Blake-Joseph; Brennan, John D.

    2013-01-01

    Microarrays have found use in the development of high-throughput assays for new materials and discovery of small-molecule drug leads. Herein we describe a guided material screening approach to identify sol-gel based materials that are suitable for producing three-dimensional protein microarrays. The approach first identifies materials that can be printed as microarrays, narrows down the number of materials by identifying those that are compatible with a given enzyme assay, and then hones in on optimal materials based on retention of maximum enzyme activity. This approach is applied to develop microarrays suitable for two different enzyme assays, one using acetylcholinesterase and the other using a set of four key kinases involved in cancer. In each case, it was possible to produce microarrays that could be used for quantitative small-molecule screening assays and production of dose-dependent inhibitor response curves. Importantly, the ability to screen many materials produced information on the types of materials that best suited both microarray production and retention of enzyme activity. The materials data provide insight into basic material requirements necessary for tailoring optimal, high-density sol-gel derived microarrays. PMID:24022739

  9. Application of fluorinated compounds to cotton fabrics via sol-gel

    NASA Astrophysics Data System (ADS)

    Ferrero, Franco; Periolatto, Monica

    2013-06-01

    The aim of this work was the study of the surface modification of cotton fibers to confer hydro and oil repellency to the fabrics. A surface treatment not involving the bulk of the fibers was chosen, so fabrics can maintain comfort properties. Moreover the study focused on an economical and environmental friendly process, in order to obtain an effective treatment with good fastness to washing. A modified silica based film was applied on fibers surface by sol-gel, comparing laboratory grade reagents with a commercial product as precursors and optimizing process parameters. From obtained results sol-gel can be indicated as a promising process to confer an effective and durable finishing to cotton fibers with low add-ons. Long impregnation times can significantly improve the treatment fastness, while ironing the washed samples can restore, at least partially, hydro and oil repellency lost after the washing. Obtained results were supported by a deep surface characterization of untreated, treated and washed samples. The best results were obtained using the commercial product as the only precursor. This is interesting for an industrial application, due to the low cost of this product if compared with the laboratory grade reagents investigated. Some applications of finished textiles can be for household use, technical garments, umbrellas or outdoor textiles.

  10. Spectroscopic studies of chemical reactions and dynamics in sol-gel matrices

    SciTech Connect

    Akbarian, F.; Dunn, B.; Fuqua, P.D.; McKiernan, J.; Simoni, E.; Zink, J.I.

    1994-12-31

    The synthesis of sol-gel glasses containing organic and organometallic molecular dopants has been well established as an approach for creating new optical materials. Some of these properties are dependent upon chemical reactions which occur in porous xerogel matrices during the sol-gel process or when encapsulated molecules are exposed to other molecules in solution. In this paper, the study of two different types of chemical reactions in the pores of xerogel matrices is reported. In one case copper phthalocyanine is used to characterize dimerization within the pores. The results show that dimer formation is most likely to occur towards the end of the drying stage as the dye concentration in the pores increases from solvent evaporation. A second example involves the use of a pump-probe technique to determine the rate of proton recombination inside the pores of silica monoliths. The behavior of sols and gels is similar to aqueous solution while recombination of protons in the xerogel seems to be affected by the walls of the pores.

  11. Encapsulated metal nanocluster materials prepared by a novel inverse micelle/sol-gel technique

    SciTech Connect

    Yamanaka, S.A.; Martino, A.; Kawola, J.S.

    1995-12-31

    A wide variety of manometer sized metal and semiconductor particles (Au, Ag, Pd, Pt, Rh, Fe, Ni, CdS, MoS{sub 2} and FeS{sub 2}) can be prepared using an inverse micelle technique. Such materials are of great interest for their potential use in catalytic, photochemical, electrochemical and optical applications but their practicality is often hindered by the agglomeration of the particles. Agglomeration may be prevented by using a porous support matrix where the nanoclusters are sterically trapped within the pores. The sol-gel process results in the formation of such a porous support material. We have thus combined the technique of forming metal nanoclusters in inverse micelle solutions with the technique of forming sol-gel materials. Using our novel method, we have succeeded in preparing manometer sized metal colloids encapsulated in both xerogel and aerogel materials. Characterization of these materials has been carried out by TEM, SEM, UV/Vis, NMR and nitrogen sorption porosimetry.

  12. Fabrication of optical chemical ammonia sensors using anodized alumina supports and sol-gel method.

    PubMed

    Markovics, Akos; Kovács, Barna

    2013-05-15

    In this comparative study, the fabrication and the sensing properties of various reflectometric optical ammonia gas sensors are described. In the first set of experiments the role of the support material was investigated on four different sensor membranes. Two of them were prepared by the adsorption of bromocresol green indicator on anodized aluminum plates. The applied anodizing voltages were 12 V and 24 V, which resulted in different dynamic ranges and response times for gaseous ammonia. The sol-gel method was used for the preparation of the other batch of sensors. These layers were coated on anodized aluminum plates (24 V) and on standard microscope cover glasses. In spite of the identical sensing chemistry, slightly different response times were measured merely because of the aluminum surface porosity. Gas molecules can remain entrapped in the pores, which results in delayed recovery time. On the other hand, the porous oxide film provides excellent adhesion, making the anodized aluminum an attractive support for the sol-gel layer. PMID:23618145

  13. Surface acoustic wave characterization of optical sol-gel thin layers.

    PubMed

    Fall, Dame; Compoint, François; Duquennoy, Marc; Piombini, Hervé; Ouaftouh, Mohammadi; Jenot, Frédéric; Piwakowski, Bogdan; Belleville, Philippe; Ambard, Chrystel

    2016-05-01

    Controlling the thin film deposition and mechanical properties of materials is a major challenge in several fields of application. We are more particularly interested in the characterization of optical thin layers produced using sol-gel processes to reduce laser-induced damage. The mechanical properties of these coatings must be known to control and maintain optimal performance under various solicitations during their lifetime. It is therefore necessary to have means of characterization adapted to the scale and nature of the deposited materials. In this context, the dispersion of ultrasonic surface waves induced by a micrometric layer was studied on an amorphous substrate (fused silica) coated with a layer of ormosil using a sol-gel process. Our ormosil material is a silica-PDMS mixture with a variable polydimethylsiloxane (PDMS) content. The design and implementation of Surface Acoustic Wave InterDigital Transducers (SAW-IDT) have enabled quasi-monochromatic Rayleigh-type SAW to be generated and the dispersion phenomenon to be studied over a wide frequency range. Young's modulus and Poisson's ratio of coatings were estimated using an inverse method. PMID:26930248

  14. Nonvolatile memory devices prepared from sol-gel derived niobium pentoxide films.

    PubMed

    Baek, Hyunhee; Lee, Chanwoo; Choi, Jungkyu; Cho, Jinhan

    2013-01-01

    We report on the resistive switching nonvolatile memory (RSNM) properties of niobium pentoxide (Nb(2)O(5)) films prepared using sol-gel chemistry. A sol-gel derived solution of niobium ethoxide, a precursor to Nb(2)O(5), was spin-coated on to a platinum (Pt)-coated silicon substrate, and was then annealed at approximately 620 and 450 °C to form a Nb(2)O(5) film of polycrystalline and amorphous structure, respectively. A top electrode consisting of Ag, W, Au, or Pt was then coated onto the Nb(2)O(5) films to complete the fabrication. After a forming process of limited current compliance up to 10 mA, known as "electroforming", a resistive switching phenomenon, independent of voltage polarity (unipolar switching), was observed at low operating voltages (0.59 ± 0.05 V(RESET) and 1.03 ± 0.06 V(SET)) with a high ON/OFF current ratio above 10(8). The reported approach offers opportunities for preparing Nb(2)O(5)-based resistive switching memory devices from solution process. PMID:23210494

  15. Preparation and optical properties of sol-gel-deposited electrochromic iron oxide films

    NASA Astrophysics Data System (ADS)

    Ozer, Nilgun; Tepehan, Fatma; Tepehan, Galip

    1997-10-01

    The preparation and optical properties of sol-gel deposited iron oxide films are investigated in this study. The films are deposited on glass by spin-coating from polymeric sol-gel solutions. The coating solutions were prepared from Fe(OCH3H7)3 and isopropanol. Fe2O3 films were obtained at a firing temperature 180 degrees Celsius. The films were characterized by x-ray diffractometry (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV) and UV-Vis spectroscopy. The electrochemical properties of the films were studied in 0.5 M LiClO4/propylene carbonate (PC) solution. The CV results showed reversibility of the Li+/e- insertion/extraction process in the Fe2O3 films up to 200 cycles. Reduction and oxidation of the amorphous films in 0.5 M LiClO4-PC solution caused noticeable changes in optical absorption. XRD of the films showed that they had an amorphous structure. Fourier transform infrared spectroscopy (FTIR) measurements showed that the composition of the film is Fe2O3. In-situ spectrophotometric measurements indicated that these films show weak electrochromism in the spectral range of 350 - 800 nm. The optical band gap is estimated to be 1.92 eV for the amorphous film. The spectroelectrochemical properties clearly indicated that cyclic stability of the iron oxide films deteriorated above 200 cycles.

  16. NMR of molecules trapped in sol-gel glasses: Progressive closure of the nanoporosity during drying

    NASA Astrophysics Data System (ADS)

    Cros, F.; Malier, L.; Korb, J.-P.; Chaput, F.

    1998-02-01

    We characterize the closed porosity of porous hybrid organic-inorganic sol-gel matrices. 2H-nuclear relaxation of d16-adamantane confined in these pores evidences a molecular translational motion inside the porous network. The pores are shown to be interconnected at the submicrometric scale. By modelling the effect of interpore molecular jumps on the lineshape, we characterize the progressive closure of the nanoporosity during drying. Nous avons caractérisé la porosité de matrices hybrides organique-inorganiques poreuse, à porosité fermée, préparées par voie sol-gel. La relaxation nucléaire du deuterium de l'adamantane d16 confinée dans les pores de ces matériaux a mis en évidence un mouvement de translation de cette molécule à l'intérieur du système de pores, qui est en fait connexe à l'échelle sub-micrométrique. L'influence des sauts, d'un pore à un autre, sur la forme de raie nous a permis de caractériser la fermeture de ces pores au cours du séchage.

  17. Control of the nanocrystalline zirconia structure through a colloidal sol-gel process

    NASA Astrophysics Data System (ADS)

    Gossard, A.; Grasland, F.; Le Goff, X.; Grandjean, A.; Toquer, G.

    2016-05-01

    A simple method to synthesize tetragonal zirconia stabilized at ambient temperature is developed and allows the monitoring of the tetragonal-monoclinic transition via a colloidal sol-gel process. By increasing the pH of an aqueous solution consisted of a zirconium precursor and a complexing agent (acetylacetone), a colloidal sol and then a gel can be formed under slightly acidic condition. After a drying step, tetragonal zirconia is easily obtained with an adequate thermal treatment at low temperature. The tetragonal-monoclinic transition occurs when the calcination temperature is increased. The relationship between the crystallite size, the crystallographic structure and the thermal treatment has been investigated by X-Ray Diffraction and the behaviour of the system from the gel state to the final powder has been studied by using Small Angle X-Ray Scattering and thermal analysis techniques. We demonstrate that compared to a chemical precipitation route, this colloidal sol-gel process allows the nanostructure of the material to be controlled due to the formation of primary nanoparticles. The presence of these nanoparticles makes possible the specific determination of the zirconia crystallographic phase through an accurate control of the nanostructure during the thermal treatment.

  18. Sol-Gel Derived Hydroxyapatite Coating on Mg-3Zn Alloy for Orthopedic Application

    NASA Astrophysics Data System (ADS)

    Singh, Sanjay; Manoj Kumar, R.; Kuntal, Kishor Kumar; Gupta, Pallavi; Das, Snehashish; Jayaganthan, R.; Roy, Partha; Lahiri, Debrupa

    2015-04-01

    In recent years, magnesium and its alloys have gained a lot of interest as orthopedic implant constituents because their biodegradability and mechanical properties are closer to that of human bone. However, one major concern with Mg in orthopedics is its high corrosion rate that results in the reduction of mechanical integrity before healing the bone tissue. The current study evaluates the sol-gel-derived hydroxyapatite (HA) coating on a selected Mg alloy (Mg-3Zn) for decreasing the corrosion rate and increasing the bioactivity of the Mg surface. The mechanical integrity of the coating is established as a function of the surface roughness of the substrate and the sintering temperature of the coating. Coating on a substrate roughness of 15-20 nm and sintering at 400°C shows the mechanical properties in similar range of bone, thus making it suitable to avoid the stress-shielding effect. The hydroxyapatite coating on the Mg alloy surface also increases corrosion resistance very significantly by 40 times. Bone cells are also found proliferating better in the HA-coated surface. All these benefits together establish the candidature of sol-gel HA-coated Mg-3Zn alloy in orthopedic application.

  19. Phospholipid Fatty Acids as Physiological Indicators of Paracoccus denitrificans Encapsulated in Silica Sol-Gel Hydrogels

    PubMed Central

    Trögl, Josef; Jirková, Ivana; Kuráň, Pavel; Akhmetshina, Elmira; Brovdyová, Tat′jána; Sirotkin, Alexander; Kirilina, Tatiana

    2015-01-01

    The phospholipid fatty acid (PLFA) content was determined in samples of Paracoccus denitrificans encapsulated in silica hydrogel films prepared from prepolymerized tetramethoxysilane (TMOS). Immediately after encapsulation the total PLFA concentration was linearly proportional to the optical density (600 nm) of the input microbial suspension (R2 = 0.99). After 7 days this relationship remained linear, but with significantly decreased slope, indicating a higher extinction of bacteria in suspensions of input concentration 108 cells/mL and higher. trans-Fatty acids, indicators of cytoplasmatic membrane disturbances, were below the detection limit. The cy/pre ratio (i.e., ratio of cyclopropylated fatty acids (cy17:0 + cy19:0) to their metabolic precursors (16:1ω7 + 18:1ω7)), an indicator of the transition of the culture to a stationary growth-phase, decreased depending on co-immobilization of nutrients in the order phosphate buffer > mineral medium > Luria Broth rich medium. The ratio, too, was logarithmically proportional to cell concentration. These results confirm the applicability of total PLFA as an indicator for the determination of living biomass and cy/pre ratio for determination of nutrient limitation of microorganisms encapsulated in sol-gel matrices. This may be of interest for monitoring of sol-gel encapsulated bacteria proposed as optical recognition elements in biosensor construction, as well as other biotechnological applications. PMID:25690547

  20. Dialkylenecarbonate-Bridged Polysilsesquioxanes. Hybrid Organic Sol-Gels with a Thermally Labile Bridging Group

    SciTech Connect

    Loy, D.A.; Beach, J.V.; Baugher, B.M.; Assink, R.A.; Shea, K.J.; Tran, J.; Small, J.H.

    1999-04-21

    In this paper, we introduce a new approach for altering the properties of bridged polysilsesquioxane xerogels using post-processing modification of the polymeric network. The bridging organic group contains latent functionalities that can be liberated thermally, photochemically, or by chemical means after the gel has been processed to a xerogel. These modifications can produce changes in density, volubility, porosity, and or chemical properties of the material. Since every monomer possesses two latent functional groups, the technique allows for the introduction of high levels of functionality in hybrid organic-inorganic materials. Dialkylenecarbonate-bridged polysilsesquioxane gels were prepared by the sol-gel polymerization of bis(triethoxysilylpropyl)carbonate (1) and bis(triethoxysilylisobutyl)-carbonate (2). Thermal treatment of the resulting non-porous xerogels and aerogels at 300-350 C resulted in quantitative decarboxylation of the dialkylenecarbonate bridging groups to give new hydroxyalkyl and olefinic substituted polysilsesquioxane monolithic xerogels and aerogels that can not be directly prepared through direct sol-gel polymerization of organotrialkoxysilanes.

  1. Use of sol-gel systems for solid/liquid separation.

    SciTech Connect

    Chaiko, D. J.; Kopasz, J. P.; Elison, A. J. G.; Chemical Engineering

    1998-01-01

    A unique approach using sol-gel technology is presented for separating and recovering particulates and colloids from caustic waste slurries. The approach involves the addition of an alkali silicate and an organic gelling agent directly to the waste stream to immobilize particulates that range from macro sizes to submicron colloids. The particulates and colloids become trapped within a silica network that remains porous during the early stages of the sol-gel process. The freshly gelled monolith undergoes a process of syneresis, whereby the water and soluble salts are ejected from the monolith as it contracts. The approach has been illustrated by removal of ultrafine particulates from a Hanford Tank Waste simulant. Initial laboratory tests have shown that it is possible to produce silica monoliths in the presence of 4 M hydroxide. Analysis of the mother liquor produced during syneresis indicated quantitative recovery of the particulates within the monolith. The partitioning of ions between the silica gel and the mother liquor during syneresis correlates directly with the lyotropic series. Salt recoveries from the mother liquor in excess of 90% can be achieved. With a capability of recovering >99.999% of all particulates, including colloids, the process is more efficient than membrane filtration. This approach produces a rock-hard silica monolith that can be used directly as a feedstock to a glass melter or can be consolidated to near theoretical density by sintering.

  2. Sol-gel derived ZnO thin films: Effect of amino-additives

    NASA Astrophysics Data System (ADS)

    Hosseini Vajargah, P.; Abdizadeh, H.; Ebrahimifard, R.; Golobostanfard, M. R.

    2013-11-01

    Zinc oxide thin films were dip-coated from an alcoholic sol of zinc acetate with different amino-additives including monoethanolamine, diethanolamine, triethanolamine, triethylamine, and ethylenediamine. Sol-gel behavior, crystal structure, optoelectronic and morphological properties of thin films were investigated with focus on the effects of different amines and drying conditions. Investigations explicate the role of chemical and physical properties of amines such as organic chains, polarity, and boiling point as the main factors that cause distinct sol-gel behavior and film properties. It is shown that different amines in different molar ratios together with drying temperature cause dramatic impacts on sol transparency, stability, and consequently on structural, optoelectronic, and morphological properties of films. Notably, monoethanolamine and triethylamine films demonstrate a preferred orientation stimulated by increased molar ratio of amines. Further investigations indicated the positive effect of elevated drying temperature particularly on those films prepared from sols with high-boiling-point stabilizers. The variation of film optoelectronics seems to depend mainly on heat treatment, whereas sol chemistry influences the optical properties indirectly through the structural alteration. Peculiar morphologies in the ethylenediamine films disappeared with adjusting the drying conditions. The size of ZnO grains were approximately independent of amine types and primarily affected by the heat treatment

  3. Sol-gel network silica/modified montmorillonite clay hybrid nanocomposites for hydrophobic surface coatings.

    PubMed

    Meera, Kamal Mohamed Seeni; Sankar, Rajavelu Murali; Murali, Adhigan; Jaisankar, Sellamuthu N; Mandal, Asit Baran

    2012-02-01

    Sol-gel silica/nanoclay composites were prepared through sol-gel polymerization technique using tetraethylorthosilicate precursor and montmorillonite (MMT) clay in aqueous media. In this study, both montmorillonite-K(+) and organically modified MMT (OMMT) clays were used. The prepared composites were coated on glass substrate by making 1 wt% solution in ethyltrichlorosilane. The incorporation of nanoclay does not alter the intensity of characteristic Si-O-Si peak of silica network. Thermogravimetric studies show that increasing clay content increased the degradation temperature of the composites. Differential scanning calorimetry (DSC) results of organically modified MMT nanoclay incorporated composite show a shift in the melting behavior up to 38°C. From DSC thermograms, we observed that the ΔH value decreased with increasing clay loading. X-ray diffraction patterns prove the presence of nanoclay in the composite and increase in the concentration of organically modified nanoclay from 3 to 5 wt% increases the intensity of the peak at 2θ=8° corresponds to OMMT. Morphology of the control silica gel composite was greatly influenced by the incorporation of OMMT. The presence of nanoclay changed the surface of control silica gel composite into cleaved surface with brittle in nature. Contact angle measurements were done for the coatings to study their surface behavior. These hybrid coatings on glass substrate may have applications for hydrophobic coatings on leather substrate. PMID:22056084

  4. "Beating speckles" via electrically-induced vibrations of Au nanorods embedded in sol-gel.

    PubMed

    Ritenberg, Margarita; Beilis, Edith; Ilovitsh, Asaf; Barkai, Zehava; Shahmoon, Asaf; Richter, Shachar; Zalevsky, Zeev; Jelinek, Raz

    2014-01-01

    Generation of macroscopic phenomena through manipulating nano-scale properties of materials is among the most fundamental goals of nanotechnology research. We demonstrate cooperative "speckle beats" induced through electric-field modulation of gold (Au) nanorods embedded in a transparent sol-gel host. Specifically, we show that placing the Au nanorod/sol-gel matrix in an alternating current (AC) field gives rise to dramatic modulation of incident light scattered from the material. The speckle light patterns take form of "beats", for which the amplitude and frequency are directly correlated with the voltage and frequency, respectively, of the applied AC field. The data indicate that the speckle beats arise from localized vibrations of the gel-embedded Au nanorods, induced through the interactions between the AC field and the electrostatically-charged nanorods. This phenomenon opens the way for new means of investigating nanoparticles in constrained environments. Applications in electro-optical devices, such as optical modulators, movable lenses, and others are also envisaged. PMID:24413086

  5. Biocompatibility of sol-gel-derived titania-silica coated intramedullary NiTi nails.

    PubMed

    Muhonen, V; Kujala, S; Vuotikka, A; Aäritalo, V; Peltola, T; Areva, S; Närhi, T; Tuukkanen, J

    2009-02-01

    We investigated bone response to sol-gel-derived titania-silica coated functional intramedullary NiTi nails that applied a continuous bending force. Nails 26 mm in length, either straight or with a radius of curvature of 28 or 15 mm, were implanted in the cooled martensite form from a proximal to distal direction into the medullary cavity of the right femur in 40 Sprague-Dawley rats. Body temperature restored the austenite form, causing the curved implants to generate a bending force on the bone. The femurs were examined after 24 weeks. Bone length measurements did not reveal any bowing or shortening of the bone in the experimental groups. The results from histomorphometry demonstrated that the stronger bending force, together with sol-gel surface treatment, resulted in more bone deposition around the implant and the formation of significantly less fibrous tissue. Straight intramedullary nails, even those with a titania-silica coating, were poorly attached when compared to the implants with a curved austenite structure. PMID:18838349

  6. Encapsulation of ruthenium nitrosylnitrate and DNA purines in nanostructured sol-gel silica matrices.

    PubMed

    Lopes, Luís M F; Garcia, Ana R; Fidalgo, Alexandra; Ilharco, Laura M

    2009-09-01

    The interactions between DNA purines (guanine and adenine) and the ruthenium complex Ru(NO)(NO(3))(3) were studied within nanostructured silica matrices prepared by a two-step sol-gel process. By infrared analysis in diffuse reflectance mode, it was proved that encapsulation induces a profound modification on the complex, whereas guanine and adenine preserve their structural integrity. The complex undergoes nitrate ligand exchange and co-condenses with the silica oligomers, but the nitrosyl groups remain stable, which is an unusual behavior in Ru nitrosyl complexes. In turn, the doping molecules affect the sol-gel reactions and eventually the silica structure as it forms: the complex yields a microporous structure, and the purine bases are responsible for the creation of macropores due to hydrogen bonding with the silanol groups of the matrix. In a confined environment, the interactions are much stronger for the coencapsulated pair guanine complex. While adenine only establishes hydrogen bonds or van der Waals interactions with the complex, guanine bonds covalently to Ru by one N atom of the imidazole ring, which becomes strongly perturbed, resulting in a deformation of the complex geometry. PMID:19499946

  7. Combining inkjet printing and sol-gel chemistry for making pH-sensitive surfaces.

    PubMed

    Orsi, Gianni; De Maria, Carmelo; Montemurro, Francesca; Chauhan, Veeren M; Aylott, Jonathan W; Vozzi, Giovanni

    2015-01-01

    Today biomedical sciences are experiencing the importance of imaging biological parameters with luminescence methods. Studying 2D pH distribution with those methods allows building knowledge about complex cellular processes. Immobilizing pH sensitive nanoparticles inside hydrogel matrixes, in order to guarantee a proper SNR, could easily make stable and biocompatible 2D sensors. Inkjet printing is also well known as tool for printing images onto porous surfaces. Recently it has been used as a free-form fabrication method for building three-dimensional parts, and now is being explored as a way of printing electrical and optical devices. Inkjet printing was used either as a rapid prototyping method for custom biosensors. Sol-gel method is naturally bound with inkjet, because the picoliter-sized ink droplets evaporate quickly, thus allowing quick sol-gel transitions on the printed surface. In this work will be shown how to merge those technologies, in order to make a nanoparticles doped printable hydrogel, which could be used for making 2D/3D smart scaffolds able to monitor cell activities. An automated image analysis system was developed in order to quickly have the pH measurements from pH nanosensors fluorescence images. PMID:25547966

  8. Characterizations of maghemite thin films prepared by a sol-gel method

    SciTech Connect

    Lau, L. N. Ibrahim, N. B.

    2015-09-25

    Iron is one of the abundant elements of Mother Nature and its compound, iron oxide is an interesting material to study since its discovery in the form of magnetite. It can exist in many phases such as hematite and maghemite, this unique nature has put it as a potential candidate in various applications. The aim of this work is to study the influence of different precursor concentrations on the microstructural and magnetic properties of iron oxide thin film. All samples were prepared via the sol-gel method followed by a spin coating technique on quartz substrates. Iron oxide films were confirmed as maghemite phase from X-ray diffraction patterns. The film morphology was examined by a field emission scanning electron microscope and it showed non-systematic value of average grain size and film thickness throughout the study. Hysteresis loop further confirmed that maghemite is a magnetic material when it was characterized by a vibrating sample magnetometer. The coercivity did not show any correlation with molarity. Nevertheless, it increased as the precursor concentration of the film increased due to the domain behaviour. In conclusion, maghemite thin films were successfully synthesized by the sol-gel method with different precursor concentrations in this work.

  9. Conventional E-glass fibre light guides: self-sensing composite based on sol gel cladding

    NASA Astrophysics Data System (ADS)

    Wang, L.; Kister, G.; Ralph, B.; Talbot, J. D. R.; Fernando, G. F.

    2004-02-01

    The aim of this study was to modify conventional reinforcing E-glass fibres to enable them to act as optical waveguides and subsequently as sensor devices. This required the glass fibres to be coated with a relatively homogeneous coating with a corresponding refractive index that was lower than the E-glass fibre (1.56). Although a range of coating materials are available, this study focused on using materials that are generally used as sizing agents for glass fibres to improve the adhesion to the matrix. Two different methods based on conventional sol gel processing were used to obtain crack-free coatings. In the first method, tetraethoxysilane (TEOS) and polyvinyl alcohol were used as precursors. In the second method, acid-catalysed solutions of TEOS mixed with 3-glycidoxypropyltrimethoxysilane were used as precursors. UV visible transmission results showed that the films had low absorption and high transparency in the visible range. The refractive indices of the films were found to be a function of the molar fractions of the major chemical components. A simple impregnation procedure was used to apply the coating to the E-glass fibre bundles. The light transmission characteristics of the coated fibres along with their mechanical properties were evaluated. The sol gel coatings were shown to be effective in converting the conventional E-glass fibres into light guides.

  10. Solution chemistry optimization of sol-gel processed PZT thin films

    SciTech Connect

    Lockwood, S.J. Schwartz, R.W.; Tuttle, B.A.; Thomas, E.V.

    1992-12-31

    We have optimized the ferroelectric properties and microstructural characteristics of sol-gel PZT thin films used in a CMOS-integrated, 256 bit ferroelectric non-volatile memory. The sol-gel process utilized in our work involved the reaction of Zr n-butoxide, Ti isopropoxide, and Pb (IV) acetate in a methanol/acetic acid solvent system. A 10-factor screening experiment identified solution concentration, acetic acid addition, and water volume as the solution chemistry factors having the most significant effects on the remanent polarization, coercive field, ferroelectric loop quality, and microstructural quality. The optimal values for these factors were determined by running a 3-factor uniform shell design, modeling the responses, and testing the models at the predicted optimal conditions. The optimized solution chemistry generated 3-layer, 300--400 nm thick films on RuO{sub 2} coated silicon substrates with coercive fields of less than 25 kv/cm (a 40--50% improvement over the original solution chemistry), a remanent polarization of 25--30 {mu}C/cm, and a reduction in the pyrochlore phase content below observable levels.

  11. Energetic Nanocomposites with Sol-gel Chemistry: Synthesis, Safety and Characterization

    SciTech Connect

    Gash, A E; Simpson, R L; Satcher, J H

    2002-05-15

    The preparation and characterization of energetic composite materials containing nanometer-sized constituents is currently a very active and exciting area of research at laboratories around the world. Some of these efforts have produced materials that have shown very unique and important properties relative to traditional energetic materials. We have previously reported on the use of sol-gel chemical methods to prepare energetic nanocomposites. Primarily we reported on the sol-gel method to synthesize nanometer-sized ferric oxide that was combined with aluminum fuel to make pyrotechnic nanocomposites. Since then we have developed a synthetic approach that allows for the preparation of hybrid inorganic/organic energetic nanocomposites. This material has been characterized by thermal methods, energy-filtered transmission electron microscopy (EFTEM), N, adsorption/desorption methods, and Fourier-Transform (FT-IR) spectroscopy, results of which will be discussed. According to these characterization methods the organic polymer phase fills the nanopores of the composite material, providing superb mixing of the component phases in the energetic nanocomposite. The EFTEM results provide a convenient and effective way to evaluate the intimacy of mixing between these component phases. The safe handling and preparation of energetic nanocomposites is of paramount importance to this research and we will report on studies performed to ensure such.

  12. Energetic Nanocomposites with Sol-gel Chemistry: Synthesis, Safety, and Characterization

    SciTech Connect

    Gash, A E; Simpson, R L; Satcher, J H

    2002-06-05

    The preparation and characterization of energetic composite materials containing nanometer-sized constituents is currently a very active and exciting area of research at laboratories around the world. Some of these efforts have produced materials that have shown very unique and important properties relative to traditional energetic materials. We have previously reported on the use of sol-gel chemical methods to prepare energetic nanocomposites. Primarily we reported on the sol-gel method to synthesize nanometer-sized ferric oxide that was combined with aluminum fuel to make pyrotechnic nanocomposites. Since then we have developed a synthetic approach that allows for the preparation of hybrid inorganic/organic energetic nanocomposites. This material has been characterized by thermal methods, energy-filtered transmission electron microscopy (EFTEM), N{sub 2} adsorption/description methods, and Fourier-Transform (FT-IR) spectroscopy, results of which will be discussed. According to these characterization methods the organic polymer phase fills the nanopores of the composite material, providing superb mixing of the component phases in the energetic nanocomposite. The EFTEM results provide a convenient and effective way to evaluate the intimacy of mixing between these component phases. The safe handling and preparation of energetic nanocomposites is of paramount importance to this research and we will report on studies performed to ensure such.

  13. Sol-gel auto-combustion synthesis of zinc ferrite for moderate temperature desulfurization

    SciTech Connect

    Rongjun Zhang; Jiejie Huang; Jiantao Zhao; Zhiqiang Sun; Yang Wang

    2007-09-15

    Zinc ferrite as a desulfurization sorbent with an average crystallite size of about 36 nm was synthesized by a sol-gel auto-combustion method. The precursor for the sorbent was a gel obtained from metal nitrates and citric acid by a sol process. The nitrate-citrate gel exhibits a self-propagating combustion behavior, and after combustion, it can transform into a nanosized spinel structured zinc ferrite directly. The prepared sorbent has a larger specific surface area and higher reactivity when compared with the sorbent achieved by a solid mixing method, and it could efficiently reduce the H{sub 2}S concentration from 6000 ppm to less than 2 ppm at a moderate temperature range. The sulfur capacity at 400{sup o}C reaches about 38.5 g of sulfur/100 g of sorbent, which corresponds to 96.4% of the theoretical value. The temperature programmed oxidation test for the sulfided sorbent shows that the most sulfur is desorbed before 500{sup o}C. XRD results confirm that the sulfided sample after exposure to a 5% O{sub 2}/N{sub 2} gas mixture at 500{sup o}C can be regenerated completely, which indicates that the regeneration temperature of the sorbent prepared by the sol-gel auto-combustion method could be greatly reduced. 40 refs., 10 figs., 2 tabs.

  14. Absorption spectra of rhodamine B dimers in dip-coated thin films prepared by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Fujii, Tsuneo; Nishikiori, Hiromasa; Tamura, Takuma

    1995-02-01

    Thin films including rhodamine B (RB) which were dip-coated using the sol-gel reaction of tetraethyl orthosilicate (TEOS) have been prepared as a function of time and their absorption spectra observed 72 h after preparation of the thin films. One monomer and two dimers (H- and J-types) are clearly and simultaneously resolved both for RB in the thin films and the water-ethanol mixed solvent. Just after mixing the reaction system, the proportion of the dimers for RB was significant, and the H and J dimer amounts were nearly equal. As the sol-gel reaction proceeded, the relative contribution from the monomer species increased. The relative contribution of the monomer to that of the dimers reached a constant value long before the gelation time. This behavior indicates that the dye molecules are encapsulated in a certain structural region (pores) long before the gelation point of the sol-gel reaction of TEOS.

  15. Luminescence of Eu(3+) doped SiO2 Thin Films and Glass Prepared by Sol-gel Technology

    NASA Technical Reports Server (NTRS)

    Castro, Lymari; Jia, Weiyi; Wang, Yanyun; Santiago, Miguel; Liu, Huimin

    1998-01-01

    Trivalent europium ions are an important luminophore for lighting and display. The emission of (5)D0 to (7)F2 transition exhibits a red color at about 610 nm, which is very attractive and fulfills the requirement for most red-emitting phosphors including lamp and cathode ray phosphorescence materials. Various EU(3+) doped phosphors have been developed, and luminescence properties have been extensively studied. On the other hand, sol-gel technology has been well developed by chemists. In recent years, applications of this technology to optical materials have drawn a great attention. Sol-gel technology provides a unique way to obtain homogeneous composition distribution and uniform doping, and the processing temperature can be very low. In this work, EU(3+) doped SiO2 thin films and glasses were prepared by sol-gel technology and their spectroscopic properties were investigated.

  16. Effect of chelating agent acetylacetone on corrosion protection properties of silane-zirconium sol-gel coatings

    NASA Astrophysics Data System (ADS)

    Yu, Mei; Liang, Min; Liu, Jianhua; Li, Songmei; Xue, Bing; Zhao, Hao

    2016-02-01

    The hybrid sol-gel coatings on AA2024-T3 were prepared with a silane coupling agent 3-glycidoxypropyltrimethoxysilane (GPTMS) and a metal alkoxide tetra-n-propoxyzirconium (TPOZ) as precursors. The effect of acetylacetone (AcAc) as a chelating agent on the corrosion protection properties of sol-gel coatings were evaluated and the optimal AcAc/TPOZ molar ratio was obtained. The sol-gel coatings were characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The corrosion protection properties of the coatings were evaluated by means of potentiodynamic polarization study (PDS) and electrochemical impedance spectroscopy (EIS). It is demonstrated that AcAc avoids fast hydrolysis of TPOZ and benefits to form stable sols. The coating with AcAc/TPOZ molar ratio of 3 shows the best corrosion protection performance in 0.05 M NaCl solution.

  17. Patterning titania with the conventional and modified micromolding in capillaries technique from sol-gel and dispersion solutions

    NASA Astrophysics Data System (ADS)

    Ullah Khan, Sajid; ten Elshof, Johan E.

    2012-04-01

    We report TiO2 patterns obtained by a soft-lithographic technique called 'micromolding in capillaries' using sol-gel and dispersion solutions. A comparison between patterning with a sol-gel and dispersion solutions has been performed. The patterns obtained from sol-gel solutions showed good adhesion to the substrate and uniform shapes, but large shrinkage, whereas those obtained from dispersion solution had high solid content, but exhibited poor adhesion and non-uniform shapes. A fabrication method of a layer-by-layer structured pattern is also demonstrated. This type of pattern may find application in sensors, waveguides and other photonics elements. The occurrence of an undesirable residue layer, which hinders the fabrication of isolated patterns, is highlighted and a method of prevention is suggested.

  18. Combined removal of SO2 and NO using sol-gel-derived copper oxide coated alumina sorbents/catalysts.

    PubMed

    Buelna, G; Lin, Y S

    2003-09-01

    The present paper reports experimental results on the removal of sulfur dioxide and nitrogen oxide from simulated flue gas using a copper oxide coated on alumina sorbent/catalyst prepared by the sol-gel method. Selective catalytic reduction of nitric oxide by ammonia over sol-gel derived CuO/gamma-Al2O3 sorbents/catalysts with different degrees of sulfation was studied in a fixed-bed packed reactor. The optimum temperature for NO reduction was found at 350 degrees C for both fresh and sulfated catalysts. The properties for simultaneous removal of SO2 and NO by the sol-gel-derived CuO/gamma-Al2O3 sorbents were studied using simulated dry flue gas. The optimum operating temperature for the combined deSO2/deNO operations was identified at 350 degrees C. At the space velocity of 5200 h(-1) and 350 degrees C, a fixed-bed reactor packed with the 7.9 wt% CuO/gamma-Al2O3 sorbent prepared by the sol-gel method offers SO2 sorption capacity of 2.3 mmol g(-1) and NO conversion of 92% with a dry simulated flue gas as the feed. Under these experimental conditions, the sol-gel derived sorbents/catalysts have comparable efficiency for removal of SO2 and NOx as their commercial counterparts. The significantly higher crush strength of the sol-gel derived sorbents/catalysts make them very promising for their use in the copper oxide process for combined removal of SO2 and NOx from flue gas in a single unit operation. PMID:14599142

  19. Development and characterization of a family of shape memory, biocompatible, degradable, porous (co)-polyurethanes via sol-gel chemistry

    NASA Astrophysics Data System (ADS)

    Lippincott, Hugh Walker

    In support of the goal of a tissue engineering scaffold that is moldable, biodegradable and has shape-memory, this work explored the space of polyurethane sol-gel formulations and solvents to create a biocompatible, porous xerogel with potential to be such a porous scaffold. The work has resulted in both a process and a sol-gel formulation to effectively create a family of degradable, biocompatible, shape memory, porous, block copolyurethane xerogels from polycaprolactone and castor oil. Formulations of the sol-gel family of potential scaffolds were characterized for their biocompatibility, hydrolytic degradability, porosity, and shape memory. Of the scaffolds tested in this fashion, the most successful supported the attachment and growth of 3T3 fibroblast cells at 72% of the rate of attachment and growth in the standard tissue culture plastic Petri dishes. A method was developed and explained that selects the solvent for creation of a porous xerogel by controlling the phase separation of the polymerizing polyurethane from the reaction solution. This method uses standard polymer solvent swelling and extraction test data. Solvent solutions plotted in the 3-D space of Hansen solubility parameters were used to select solvents that produced porous xerogels from two different polyurethane sol-gel formulations. The process effectively combines a set of methods that search the sol-gel formulation spaces for both shape-memory and porosity. Easily produced dense xerogels from trial sol-gel formulations are sufficient for DSC and initial DMA shape-memory test data, as well as standard solvent swelling and extraction test data to support the search for shape memory and the computation of rankings to select solvent(s) that is most likely to produce a porous xerogel. Accelerated degradation tests on the dense xerogels also produced results useful to guide further testing of the sol-gel formulations. Standard shape-memory research testing only characterizes the free return to

  20. Crystal structure and luminescent properties of nanocrystalline YAG and YAG:Nd synthesized by sol-gel method

    NASA Astrophysics Data System (ADS)

    Zhydachevskii, Ya.; Syvorotka, I. I.; Vasylechko, L.; Sugak, D.; Borshchyshyn, I. D.; Luchechko, A. P.; Vakhula, Ya. I.; Ubizskii, S. B.; Vakiv, M. M.; Suchocki, A.

    2012-10-01

    The work describes results of synthesis of undoped and Nd-doped YAG nanopowders by sol-gel method using different complexing agents (ethylene glycol and citric acid) and characterization of the material by X-ray powder diffraction, scanning electron microscopy, photoluminescence and thermoluminescence techniques. Utilization of citrate sol-gel procedure using yttrium and aluminum nitrate nonahydrates as starting substances allowed to obtain highly stoichiometric and non-defected YAG and YAG:Nd nanocrystalline samples with good luminescence performance and low radiation storage efficiency.

  1. Application de la technologie des materiaux sol-gel et polymere a l'optique integree

    NASA Astrophysics Data System (ADS)

    Saddiki, Zakaria

    2002-01-01

    With the advancement of optical telecommunication systems, "integrated optics" and "optical interconnect" technology are becoming more and more important. The major components of these two technologies are photonic integrated circuits (PICs), optoelectronic integrated circuits (OEICs), and optoelectronic multichip modules ( OE-MCMs). Optical signals are transmitted through optical waveguides that interconnect such components. The principle of optical transmission in waveguides is the same as that in optical fibres. To implement these technologies, both passive and active optical devices are needed. A wide variety of optical materials has been studied, e.g., glasses, lithium niobate, III-V semiconductors, sol-gel and polymers. In particular, passive optical components have been fabricated using glass optical waveguides by ion-exchange, or by flame hydrolysis deposition and reactive ion etching (FHD and RIE ). When using FHD and RIE, a very high temperatures (up to 1300°C) are needed to consolidate silica. This work reports on the fabrication and characterization of a new photo-patternable hybrid organic-inorganic glass sol-gel and polymer materials for the realisation of integrated optic and opto-electronic devices. They exhibit low losses in the NIR range, especially at the most important wavelengths windows for optical communications (1320 nm and 1550 nm). The sol-gel and polymer process is based on photo polymerization and thermo polymerization effects to create the wave-guide. The single-layer film is at low temperature and deep UV-light is employed to make the wave-guide by means of the well-known photolithography process. Like any photo-imaging process, the UV energy should exceed the threshold energy of chemical bonds in the photoactive component of hybrid glass material to form the expected integrated optic pattern with excellent line width control and vertical sidewalls. To achieve optical wave-guide, a refractive index difference Delta n occurred between

  2. Reactive Molecular Dynamics Investigations of Alkoxysilane Sol-Gel and Surface Coating Processes

    NASA Astrophysics Data System (ADS)

    Deetz, Joshua David

    The ability to generate nanostructured materials with tailored morphology or chemistry is of great technological interest. One proven method of generating metal-oxide materials, and chemically modifying metal-oxide surfaces is through the reactions of molecular building blocks known as alkoxysilanes. Alkoxysilanes are a class of chemicals which contain one or more organic alkoxy groups bonded to silicon atoms. Alkoxysilane (Si-O-R) chemical groups can undergo reactions to form bridges (Si-O-M) with metal oxides. Due to their ability to "attach" to metal-oxides through condensation reactions, alkoxysilanes have a number of interesting applications, such as: the generation of synthetic siloxane materials through the sol-gel process, and the formation of functionalized surface coatings on metal-oxide surfaces. Despite widespread study of sol-gel and surface coatings processes, it is difficult to predict the morphology of the final products due to the large number of process variables involved, such as precursor molecule structure, solvent effects, solution composition, temperature, and pH. To determine the influence of these variables on the products of sol-gel and coatings processes reactive molecular dynamics simulations are used. A reactive force field was used (ReaxFF) to allow the chemical bonds in simulation to dynamically form and break. The force field parameters were optimized using a parallel optimization scheme with a combination of experimental information, and density functional theory calculations. Polycondensation of alkoxysilanes in mixtures of alcohol and water were studied. Steric effects were observed to influence the rates of hydrolysis and condensation in solutions containing different precursor monomers. By restricting the access of nucleophiles to the central silicon atom, the nucleation rate of siloxanes can be controlled. The influence of solution precursor, water, and methanol composition on reaction rates was explored. It was determined that

  3. Encapsulation of fluorescence vegetable extracts within a templated sol-gel matrix

    NASA Astrophysics Data System (ADS)

    Lacatusu, Ioana; Badea, Nicoleta; Nita, Rodica; Murariu, Alina; Miculescu, Florin; Iosub, Ion; Meghea, Aurelia

    2010-04-01

    The sol-gel encapsulation of labile substances with specific properties and recognition functions within robust polymer matrices remains a challenging task, despite the considerable research that has been focused on this field. Numerous studies have been reported in the field of sol-gel processes regarding different physical and chemical packing of sensitive biomolecules encapsulated in silica matrix. In this paper the classical sol-gel synthesis has been used under mild conditions in order to minimize denaturizing effects on encapsulated active vegetable extracts from flavones class. The silica templated matrix was obtained by using two types of surfactants with different alkyl chain (didodecyldimethyl-ammonium bromide and trioctadecylmetilammonium bromide) as structure-directing agents for the silicon oxide framework. An organic precursor of silicic acid (triethoxymethylsilane) has been used and it was processed by competitive hydrolysis and polycondensation reactions under controlled directions assured by the presence of oriented template. Silica materials thus obtained are used for encapsulation of two flavonoid samples containing as active principles two sources: rutin and a vegetable extract from Begonia plant. The synthesis of encapsulated nanocompounds has been achieved taking into consideration the specific interaction between the colloidal gel precursors and molecular structures of selected biomolecules. The main objective was to improve the encapsulation conditions for specific biomolecules, searching for the highest stability and functionality without loosing the quality of the flavonoid properties, particularly optical properties like fluorescence. The structural properties of the encapsulated samples have been studied by FT-IR and UV-VIS spectroscopy, thermal analysis and SEM/EDX analysis. The fluorescence experiments showed that, in the case of all four encapsulated samples, the fluorescence spectra manifest a significant increase in intensity

  4. Structure and Properties of Laser-Fired Sol-Gel Derived Tungsten Oxide Films

    NASA Astrophysics Data System (ADS)

    Taylor, Douglas John

    1995-01-01

    This investigation focuses on the use of laser radiation to fire sol-gel derived oxide films. The main emphasis of this work was to make high quality tungsten oxide films with good electrochromic properties. Laser firing was done with a carbon dioxide laser operated in continuous mode. The laser-fired tungsten oxide films were measured for density, composition, crystallinity and electrochromic behavior. Analytical tools included multi -angle ellipsometry, FTIR, TEM, XRD, spectrophotometry and electrochemistry. The effect of process variables (laser power, spot size and translation speed) on the extent of film densification and microstructural evolution was investigated. Thermal modeling of laser-heated sol-gel films was studied to further understand the laser firing process and to estimate firing temperatures. Temperature calculations were based on laser parameters, sample geometry and target materials. Properties characteristic of firing temperature were used to verify the thermal modeling. For laser-fired films, the properties at the calculated temperatures agreed well with the properties of similar furnace-fired films. The modeling also provided the thermal profiles seen by the laser heated materials. Laser firing was shown to be a feasible technique to make good quality electrochromic films. By precisely controlling the irradiation, the microstructure of tungsten oxide films was tailored to produce the desired electrochromic properties. Transmission electron microscopy showed film microstructures that varied from completely amorphous to fully crystalline. Corresponding optoelectrochemical measurements indicated a decrease in electrochromism with increasing crystallinity. The effects of density/porosity and coating composition are also discussed. It is proposed that laser firing of sol-gel derived films can be used for optics, sensors, graded index materials, and electrochromic windows. The ability to heat localized regions afforded by laser firing is

  5. Fast and efficient proteolysis by reusable pepsin-encapsulated magnetic sol-gel material for mass spectrometry-based proteomics applications.

    PubMed

    Kayili, H Mehmet; Salih, Bekir

    2016-08-01

    Hydrophobic silicon-based material having magnetic properties was fairly synthesized by a classical sol-gel approach. Pepsin enzyme was encapsulated in the sol-gel material and the enzyme activity was evaluated in consequence of the digestion of some common proteins such as α- and β-casein, cytochrome c, myoglobin, and bovine serum albumin (BSA) both in a single protein batch and in the protein mixture. The optimum digestion time of the studied proteins using pepsin-encapsulated magnetic sol-gel material was found to be 20min. To produce the magnetic sol-gel material for convenient and easy proteomics applications, Fe3O4 was doped inside sol-gel material during the gelation step. It was observed that the activity of encapsulated pepsin was not affected by the amount of Fe3O4. Poly(ethylene glycol) was also inserted in sol-gel bulk to obtain suitable roughness and increase the hydrophilicity of the material surface to let protein molecules reach to the sol-gel material easily. The digestion of the protein mixture and non-fat bovine milk was performed with the pepsin-encapsulated magnetic sol-gel material and the digested solutions were analyzed using SDS-PAGE, MALDI-TOF-MS and LC-MS/MS for the protein identification. Reusability of the pepsin-encapsulated sol-gel material was examined and it was determined that they could be used at least 20 times. Finally, IgG digestions with a fast incubation time period were carried out using pepsin-encapsulated sol-gel material for generation of (Fab)2 product to evaluate the kinetic performance of the material. PMID:27216659

  6. Synthesis and characterization of nanoporous silica film via non-surfactant template sol-gel technique

    NASA Astrophysics Data System (ADS)

    Al-Harbi, T.; Al-Hazmi, F.; Mahmoud, Waleed E.

    2012-10-01

    Nanoporous silicon dioxide has received growing interests owing to their peculiar application potentials in conservation and storage energy. Therefore, the development of novel and simple techniques is required for raising these nanoporous materials to industrial level. In this research, we report novel strategy for the synthesis of nanoporous SiO2 via non-surfactant template sol-gel technique for the first time. The morphology and structure of the as prepared and annealed nanoporous silica films were studied using X-ray diffraction, scanning electron microscope, Fourier transform infrared spectroscopy and nitrogen absorption/desorption technique. The results showed that highly order nanoporous silica film has been obtained at annealing temperature 600 °C with average diameter 5.1 nm and average pore volume 3.6 cm3 g-1.

  7. Encapsulation of nanoclusters in dried gel materials via an inverse micelle/sol gel synthesis

    DOEpatents

    Martino, Anthony; Yamanaka, Stacey A.; Kawola, Jeffrey S.; Showalter, Steven K.; Loy, Douglas A.

    1998-01-01

    A dried gel material sterically entrapping nanoclusters of a catalytically active material and a process to make the material via an inverse micelle/sol-gel synthesis. A surfactant is mixed with an apolar solvent to form an inverse micelle solution. A salt of a catalytically active material, such as gold chloride, is added along with a silica gel precursor to the solution to form a mixture. To the mixture are then added a reducing agent for the purpose of reducing the gold in the gold chloride to atomic gold to form the nanoclusters and a condensing agent to form the gel which sterically entraps the nanoclusters. The nanoclusters are normally in the average size range of from 5-10 nm in diameter with a monodisperse size distribution.

  8. Encapsulation of nanoclusters in dried gel materials via an inverse micelle/sol gel synthesis

    DOEpatents

    Martino, A.; Yamanaka, S.A.; Kawola, J.S.; Showalter, S.K.; Loy, D.A.

    1998-09-29

    A dried gel material sterically entrapping nanoclusters of a catalytically active material and a process to make the material via an inverse micelle/sol-gel synthesis are disclosed. A surfactant is mixed with an apolar solvent to form an inverse micelle solution. A salt of a catalytically active material, such as gold chloride, is added along with a silica gel precursor to the solution to form a mixture. To the mixture are then added a reducing agent for the purpose of reducing the gold in the gold chloride to atomic gold to form the nanoclusters and a condensing agent to form the gel which sterically entraps the nanoclusters. The nanoclusters are normally in the average size range of from 5--10 nm in diameter with a monodisperse size distribution. 1 fig.

  9. Sol-gel synthesis and densification of aluminoborosilicate powders. Part 1: Synthesis

    NASA Technical Reports Server (NTRS)

    Bull, Jeffrey; Selvaduray, Guna; Leiser, Daniel

    1992-01-01

    Aluminoborosilicate powders high in alumina content were synthesized by the sol-gel process utilizing various methods of preparation. Properties and microstructural effects related to these syntheses were examined. After heating to 600 C for 2 h in flowing air, the powders were amorphous with the metal oxides comprising 87 percent of the weight and uncombusted organics the remainder. DTA of dried powders revealed a T(sub g) at approximately 835 C and an exotherm near 900 C due to crystallization. Powders derived from aluminum secbutoxide consisted of particles with a mean diameter 5 microns less than those from aluminum isopropoxide. Powders synthesized with aluminum isopropoxide produced agglomerates comprised of rod shaped particulates while powders made with the secbutoxide precursor produced irregular glassy shards. Compacts formed from these powders required different loadings for equivalent densities according to the method of synthesis.

  10. Synthesis and characterization of strontium-doped hydroxyapatite powder via sol-gel method.

    PubMed

    Mardziah, C M; Sopyan, I; Hamdi, M; Ramesh, S

    2008-07-01

    Improvement of the mechanical properties of hydroxyapatite (HA) can be achieved by the incorporation of metal. In addition, incorporation of strontium ion into HA crystal structures has been proved effective to enhance biochemical properties of bone implant. In this research, strontium-doped HA powder was developed via a sol-gel method to produce extraordinarily fine strontium-doped HA (Sr-doped HA) powder. XRD measurement had shown that the powder contained hydroxyapatite phase only for all doping concentration except for 2%, showing that Sr atoms have suppressed the appearance of beta-TCP as the secondary phase. Morphological evaluation by FESEM measurement shows that the particles of the Sr-doped HA agglomerates are globular in shape with an average size of 1-2 microm in diameter while the primary particles have a diameter of 30-150 nm in average. PMID:19024993

  11. Weak localization in CdO thin films prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Wang, W. J.; Xie, X. J.; Liu, J. Y.; Gao, K. H.

    2016-07-01

    This paper reports the study of the magnetotransport properties of polycrystalline CdO thin films prepared by the sol-gel method. Both the sheet resistance and electron density as a function of temperature indicate that our samples are degenerate semiconductors. The weak localization (WL) effect is observed in the low temperature range. Applying the two-dimensional WL theory, we have extracted the dephasing length and a relatively large value (the maximum gets to 151 nm at 2 K) is obtained. The temperature dependence of the extracted dephasing length can be well described by the electron-electron scattering process, indicating that the electron-electron scattering is main dephasing mechanism for electrons.

  12. Optical and morphological properties of sol gel derived titanium dioxide films

    SciTech Connect

    Sharma, A. B.; Sharma, S. K.; M, Vishwas; Rao, K. Narasimha

    2015-08-28

    Titanium oxide (Titania) thin films were synthesized on different substrates via the sol-gel dip-coating method using alkoxide solution. Some selected samples were also prepared with different percentage of Lead (Pb). The influence of Pb addition in precursor sol on the optical properties of titanium dioxide thin films was studied. The optical transmittance in the visible region has increased with increase in weight percentage of lead. The refractive index was slightly decreased with Pb addition. Crystallization of these coatings was achieved through thermal annealing at temperatures above 400 °C. The structural properties and surface morphology of the crystallized coatings were studied by Scanning Electron Microscopy. Increase in average grain size from 250 nm to 350 nm with increase in Pb concentration is observed. Films were appeared to more coarse with increase in Pb addition. An increase in Pb addition resulted increase in average roughness from 12 nm to 25 nm.

  13. DEVELOPMENT OF A FABRICATION PROCESS FOR SOL-GEL/METAL HYDRIDE COMPOSITE GRANULES

    SciTech Connect

    Hansen, E; Eric Frickey, E; Leung Heung, L

    2004-02-23

    An external gelation process was developed to produce spherical granules that contain metal hydride particles in a sol-gel matrix. Dimensionally stable granules containing metal hydrides are needed for applications such as hydrogen separation and hydrogen purification that require columns containing metal hydrides. Gases must readily flow through the metal hydride beds in the columns. Metal hydrides reversibly absorb and desorb hydrogen and hydrogen isotopes. This is accompanied by significant volume changes that cause the metal hydride to break apart or decrepitate. Repeated cycling results in very fine metal hydride particles that are difficult to handle and contain. Fine particles tend to settle and pack making it more difficult to flow gases through a metal hydride bed. Furthermore, the metal hydrides can exert a significant force on the containment vessel as they expand. These problems associated with metal hydrides can be eliminated with the granulation process described in this report. Small agglomerates of metal hydride particles and abietic acid (a pore former) were produced and dispersed in a colloidal silica/water suspension to form the feed slurry. Fumed silica was added to increase the viscosity of the feed slurry which helped to keep the agglomerates in suspension. Drops of the feed slurry were injected into a 27-foot tall column of hot ({approx}70 C), medium viscosity ({approx}3000 centistokes) silicone oil. Water was slowly evaporated from the drops as they settled. The drops gelled and eventually solidified to form spherical granules. This process is referred to as external gelation. Testing was completed to optimize the design of the column, the feed system, the feed slurry composition, and the operating parameters of the column. The critical process parameters can be controlled resulting in a reproducible fabrication technique. The residual silicone oil on the surface of the granules was removed by washing in mineral spirits. The granules were

  14. Photoluminescence from terbium doped silica-titania prepared by a sol-gel method

    SciTech Connect

    Ismail, Adel Ali; Abboudi, Mostafa . E-mail: abboudi14@hotmail.com; Holloway, Paul; El-Shall, Hassan

    2007-01-18

    Terbium doped (0.5 at.%) TiO{sub 2}-SiO{sub 2} (30%/70%) was prepared by a sol-gel method. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to characterize the powder calcined at two different temperatures. At a low temperature of 550 deg. C an amorphous phase was obtained, but at a higher temperature of 1000 deg. C, the anatase TiO{sub 2} phase was crystallized in the amorphous SiO{sub 2} phase. Green photoluminescence from ultraviolet excitation was detected after heating to either temperature, but the amorphous sample heated to 550 deg. C exhibited a higher intensity. X-ray diffraction and photoluminescence excitation data are discussed to explain these observations.

  15. Synthesis of ZnSnO3 nanostructure by sol gel method

    NASA Astrophysics Data System (ADS)

    Para, Touseef Ahmad; Reshi, Hilal Ahmad; Shelke, Vilas

    2016-05-01

    Zinc Stannate (ZST) with composition ZnSnO3 is known for high electron mobility, optical, piezoelectric and charge storage properties. ZST crystalizes in different lattice structures, which allows a wide range of tunablity. We demonstrate successful synthesis of ZnSnO3 nanomaterial by sol-gel method. ZnSnO3 nanomaterials were calcined and sintered at different temperatures. Powder X-ray diffraction confirmed the single phase of the nanomaterial with rhombohedral R-3 space group. The Rietveld refinement of diffraction pattern yielded lattice parameter values a=5.26Å, c=14.09Å. Raman spectroscopy revealed higher activity towards higher wavenumbers. Raman shift around 530cm-1 was found to be highly structure dependent, most probably due to anharmonic atomic vibrations in ZnO6/SnO6 octahedra around center of mass. Sharp Peak around 650cm-1 is characteristic of ZnSnO3 molecule.

  16. Boron doping effects in electrochromic properties of NiO films prepared by sol-gel

    SciTech Connect

    Lou, Xianchun; Zhao, Xiujian; He, Xin

    2009-12-15

    In this paper, NiO films doped with B{sub 2}O{sub 3} were first prepared by sol-gel. The effects of boron content on the structure and electrochromic properties of NiO films were studied with X-ray diffraction (XRD), transmission electron microscopy (TEM), cyclic voltammetric (CV) and UV-vis spectrophotometer, respectively. In addition, the roughness and phase of the bleached/colored were studied by atom force microscopy (AFM). B-doped prevent the crystallization of the films. The colored state transmittance could be significantly lowered when the boron added. The NiO film doped with boron exhibited a noticeable electrochromism with a variation of transmittance up to {proportional_to}60% at the wavelength range of 300-500 nm. (author)

  17. Dynamical transition of heat transport in a physical gel near the sol-gel transition

    PubMed Central

    Kobayashi, Kazuya U.; Oikawa, Noriko; Kurita, Rei

    2015-01-01

    We experimentally study heat transport in a gelatin solution near a reversible sol-gel transition point where viscosity strongly depends on temperature. We visualize the temperature field and velocity field using thermochromic liquid crystals and polystyrene latex particles, respectively. During the initial stages of heating, we find that heat transport undergoes a dynamical transition from conductive to convective. Subsequently, during later stages, we observe that the transport dynamics are much more complex than conventional thermal convections. At the sample’s surface we observe the formation of stagnant domains, which lack fluid flow. Their formation is not due to the effects of local cooling. We determine that it is the dynamics of these stagnant domains that induce convective-conductive-convective transitions. PMID:26690696

  18. Dynamical transition of heat transport in a physical gel near the sol-gel transition.

    PubMed

    Kobayashi, Kazuya U; Oikawa, Noriko; Kurita, Rei

    2015-01-01

    We experimentally study heat transport in a gelatin solution near a reversible sol-gel transition point where viscosity strongly depends on temperature. We visualize the temperature field and velocity field using thermochromic liquid crystals and polystyrene latex particles, respectively. During the initial stages of heating, we find that heat transport undergoes a dynamical transition from conductive to convective. Subsequently, during later stages, we observe that the transport dynamics are much more complex than conventional thermal convections. At the sample's surface we observe the formation of stagnant domains, which lack fluid flow. Their formation is not due to the effects of local cooling. We determine that it is the dynamics of these stagnant domains that induce convective-conductive-convective transitions. PMID:26690696

  19. A new type of a sol-gel-derived inorganic-organic nanocomposite

    SciTech Connect

    Kasemann, R.; Schmidt, H.K.; Wintrich, E.

    1994-12-31

    A new type of sol-gel-based transparent inorganic-organic nano composites has been developed by increasing the inorganic phase dimension to values just below the point, where scattering can be neglected. For this purpose, nanosized boehmite particles {le} < 50 nm are homogeneously incorporated in a sol based on tetraethoxysilane and an epoxysilane. The nanoscale boehmite particles act as catalysts for the polymerization of the epoxy silane to polyethylene oxide, as proved by {sup 13}C NMR, and are linked to the matrix by Si-O-Al bridges, as proven by {sup 27}Al-NMR spectroscopy. The synthesized sols can be applied by standard coating techniques on transparent polymers and are cured thermally. The mechanical properties (scratch resistance, hardness) have been substantially improved compared to systems with molecular dimensions of the inorganic phase. The effect is attributed to the special structure of flexibly suspended nano-scale boehmite particles in an inorganic-organic network by a tailored interface.

  20. Green synthesis of magnetic chitosan nanocomposites by a new sol-gel auto-combustion method

    NASA Astrophysics Data System (ADS)

    Ansari, Fatemeh; Sobhani, Azam; Salavati-Niasari, Masoud

    2016-07-01

    The Fe2O3/CuFe2O4/chitosan nanocomposites have been successfully synthesized via a new sol-gel auto-combustion route. To prepare the nanocomposites, copper ferrite (CuFe2O4) and iron (II) oxide (Fe2O3) nanostructures were first prepared utilizing onion as a green reductant for the first time, and characterized by SEM, TEM, XRD, IR and VSM. Then chitosan was added into the nanostructures dispersed in water. Chitosan was used to functionalize and modify the nanostructures and also to improve surface properties. The nanocomposites were also characterized by several techniques including SEM, TEM, XRD, IR and VSM. The effects of amount of onion and chitosan on the morphology and particle size of nanocomposites were evaluated.

  1. In situ sol-gel preparation of porous alumina monoliths for chromatographic separations of adenosine phosphates.

    PubMed

    Zajickova, Zuzana; Rubi, Emir; Svec, Frantisek

    2011-06-01

    A method enabling the in situ preparation of porous alumina monoliths within 100 μm i.d. fused silica capillaries has been developed. These monoliths were prepared using the sol-gel process from a mixture consisting of an inorganic aluminum salt, a porogen, an epoxide, and a solvent. We investigated the effects of varying the preparation conditions on the physical characteristics of the monoliths with respect to their potential application in chromatographic separations. The best columns were obtained from a mixture of aluminum chloride hexahydrate, N,N-dimethylformamide, water, ethanol and propylene oxide. Adenosine phosphates were then separated in the optimized column with retention increasing according to number of phosphate functionalities. PMID:21497822

  2. Preparation of silver nanoparticles by a non-aqueous sol-gel process.

    PubMed

    Petit, Christophe T G; Alsulaiman, Muath S A; Lan, Rong; Mann, Gregory; Tao, Shanwen

    2013-08-01

    Using a non-aqueous sol-gel process with a direct calcination step in air after prior drying, silver nanoparticles with average size distribution ranging from 20 to 100 nm were synthesised. Studies in reduced atmosphere were also performed with mixed results, both in phase and particle size, as the samples were found to be mixed with an amorphous phase. In oxidising atmosphere, the temperature and dwelling time were found to be critical factors with the former playing a larger role than the latter. Optimally nanoparticles of silver are best prepared by direct calcination in air of the precursor gel at 250 degrees C for 1 hour. Compared to silver particles prepared by microemulsions, the particle size is larger due to the thermal treatment, which causes a growth of the silver particles. PMID:23882777

  3. TiO2 nanosized powders controlling by ultrasound sol-gel reaction.

    PubMed

    Latt, Kyaing Kyaing; Kobayashi, Takaomi

    2008-04-01

    We studied that anatase-TiO2 powders prepared from sol-gel process of titanium tetra-isopropoxide (TTIP) were developed under ultrasonic irradiation with different frequency of 28, 45 and 100 kHz. The irradiated ultrasound (US) was controlled by using semi-cylindrical reflection plate that was placed onto the vicinity of reaction vessel. The focused US influenced the reduction of particles size and increased the surface area of resultant nanosized TiO2 powders. We also examined photodegradation of rhodamine 640 dye (Rh-640) solution by the resultant TiO2 under UV light exposure. It was observed that low frequency for TiO2 photocatalyst preparation and low calcination temperature were more affected onto the photodegradation of the dye. PMID:17904404

  4. Sol-gel processing of highly transparent conducting Cd2SnO4 thin films

    NASA Astrophysics Data System (ADS)

    Bel-Hadj-Tahar, Radhouane; Bel-Hadj-Tahar, Noureddine; Belhadj Mohamed, Abdellatif

    2015-03-01

    Polycrystalline thin films of cadmium stannate (Cd2SnO4) (CTO) were coated on corning glass substrates by sol-gel method. The films were fired at different temperatures and annealed in inert ambient (N2) at 680°C. The structural, optical, and electrical properties of dip-coated cadmium-tin-oxide (CTO) thin films are discussed. CTO layers with a Hall mobility of 30 cm2/Vs and a carrier density of 1.4 × 1021 cm-3 resulting in a resistivity of 5 × 10-4 Ω cm have been deposited. Dip-coating conditions must be carefully monitored to produce consistent films. The high electronic conductivity is due to two effective mechanisms of n-type doping: (i) stoichiometric deviation and (ii) self-doping.

  5. Synthesis, Consolidation and Characterization of Sol-gel Derived Tantalum-Tungsten Oxide Thermite Composites

    SciTech Connect

    Cervantes, O

    2010-06-01

    Energetic composite powders consisting of sol-gel (SG) derived nanostructured tungsten oxide were produced with various amounts of micrometer-scale tantalum fuel metal. Such energetic composite powders were ignition-tested and results show that the powders are not sensitive to friction, spark and/or impact ignition. Initial consolidation experiments, using the High Pressure Spark Plasma Sintering (HPSPS) technique, on the SG derived nanostructured tungsten oxide produced samples with higher relative density than can be achieved with commercially available tungsten oxide. The SG derived nanostructured tungsten oxide with immobilized tantalum fuel metal (Ta - WO3) energetic composite was consolidated to a density of 9.17 g·cm-3 or 93% relative density. In addition, those samples were consolidated without significant pre-reaction of the constituents, thus retaining their stored chemical energy.

  6. Improving endothelialization on 316L stainless steel through wettability controllable coating by sol-gel technology

    NASA Astrophysics Data System (ADS)

    Wang, Mingqi; Wang, Yao; Chen, Yijie; Gu, Hongchen

    2013-03-01

    Rapid endothelialization by surface coverage is considered as a way to increase blood compatibility of the vascular stent and reduce smooth muscle cell (SMC) mediated restenosis. Coatings on 316L stainless steels with different wettabilities and similar topographies were obtained through sol-gel process by regulating the proportions of tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES). Adhesion and proliferation of vascular endothelial cells (EC) and SMC on these substrates have been evaluated by cell numbers, cell morphology, and expression of cytoskeletal protein. Results showed that EC and SMC responded differently to the coated surfaces. Enhanced endothelialization of bare 316L was found at the moderately hydrophilic coating (contact angle 45.3°) which exhibited effective inhibition of SMC and negligible influence on EC. These results are expected to lay foundation for the solution of the vascular restenosis which was mainly derived from the hyperplasia of SMC.

  7. Tailoring the oxidation state of cobalt through halide functionality in sol-gel silica

    PubMed Central

    Olguin, Gianni; Yacou, Christelle; Smart, Simon; Diniz da Costa, João C.

    2013-01-01

    The functionality or oxidation state of cobalt within a silica matrix can be tailored through the use of cationic surfactants and their halide counter ions during the sol-gel synthesis. Simply by adding surfactant we could significantly increase the amount of cobalt existing as Co3O4 within the silica from 44% to 77%, without varying the cobalt precursor concentration. However, once the surfactant to cobalt ratio exceeded 1, further addition resulted in an inhibitory mechanism whereby the altered pyrolysis of the surfactant decreased Co3O4 production. These findings have significant implications for the production of cobalt/silica composites where maximizing the functional Co3O4 phase remains the goal for a broad range of catalytic, sensing and materials applications. PMID:24022785

  8. Electrical and Optical Properties of Copper Oxide Thin Films by Sol-Gel Technique

    NASA Astrophysics Data System (ADS)

    Hashim, H.; Shariffudin, S. S.; Saad, P. S. M.; Ridah, H. A. M.

    2015-11-01

    Copper oxide were prepared by sol-gel technique and deposited onto quartz substrates as thin films using spin coating method. The aim of this research was to study the effects of different spin coating speeds of copper oxide thin films on the electrical and optical properties of the thin films. Five samples of copper oxide thin films with different spin coating speeds of 1000, 1500, 2000, 2500 and 3000 rpm were annealed at 600°C for 30 minutes. UV-Vis spectrophotometer and two-point probe technique were used to characterize the optical and electrical properties of the deposited films. Based on the results obtained, it revealed that the electrical conductivity of the copper oxide thin films reduce as the spin coating speeds increase. The calculated optical band gap and the resistivity of the copper oxide thin films also decrease when the spin coating speeds are increased.

  9. Structural and Optical Characterization of Synthesized TiO2 Nanopowder Using Sol-Gel Technique

    NASA Astrophysics Data System (ADS)

    Lourduraj, S.; Williams, R. Victor

    2016-02-01

    The nanocrystalline TiO2 powder was synthesized by sol-gel method. The XRD analysis reveals that TiO2 powder was highly crystalline (anatase phase) and nanostructured with tetragonal system. The average crystallite size after calcined at 673K is found to be 7.7nm. The surface morphological studies using scanning electron microscopy (SEM) exhibit that the formation of nanosized TiO2 particles with less densification nature. Atomic force microscopy (AFM) topography exhibits the uniform distribution of spherical-shaped particles. The energy dispersive X-ray spectroscopy (EDX) confirms the presence of Titanium and Oxygen in synthesized TiO2 nanopowder. The value of optical bandgap of TiO2 nanopowder calculated from UV-Visible spectrum is 3.45eV. The presence of TiO2 particles is confirmed from the dominant fourier transform infrared (FTIR) peaks at 621cm-1 and 412cm-1.

  10. Sol-gel method of p-type zinc oxide films preparation

    NASA Astrophysics Data System (ADS)

    Poghosyan, Armen R.; Li, XiaoNan; Manukyan, Alexandr L.; Grigoryan, Stepan G.; Vardanyan, Eduard S.

    2007-09-01

    Both n-type and p-type ZnO will be required for development of homojunction light-emitting diodes and laser diodes. It is easy to obtain strong n-type ZnO, but very difficult to create consistent, reliable, high-conductivity p-type material. Here we present our investigations of p-type ZnO thin film preparation by sol-gel method using single Li doping and Ga(Al)+N codoping technique. ZnO thin films with c-axis orientation have been prepared on glass substrates. Zn acetate dihydrate, gallium nitrate and acetamide were used as zinc, gallium and nitrogen precursors respectively. SEM, X-ray diffraction, electric conductivity and Hall effect measurements were carried out. The results show that p-type conducting ZnO films with hole concentrations as high as 5x10 17 cm -3 were obtained by this method.

  11. Structural properties and gas sensing behavior of sol-gel grown nanostructured zinc oxide

    NASA Astrophysics Data System (ADS)

    Rajyaguru, Bhargav; Gadani, Keval; Rathod, K. N.; Solanki, Sapana; Kansara, S. B.; Pandya, D. D.; Shah, N. A.; Solanki, P. S.

    2016-05-01

    In this communication, we report the results of the studies on structural properties and gas sensing behavior of nanostructured ZnO grown using acetone precursor based modified sol-gel technique. Final product of ZnO was sintered at different temperatures to vary the crystallite size while their structural properties have been studied using X-ray diffraction (XRD) measurement performed at room temperature. XRD results suggest the single phasic nature of all the samples and crystallite size increases from 11.53 to 20.96nm with increase in sintering temperature. Gas sensing behavior has been studied for acetone gas which indicates that lower sintered samples are more capable to sense the acetone gas and related mechanism has been discussed in the light of crystallite size, crystal boundary density, defect mechanism and possible chemical reaction between gas traces and various oxygen species.

  12. Sol-gel synthesis of nanostructured indium tin oxide with controlled morphology and porosity

    NASA Astrophysics Data System (ADS)

    Kőrösi, László; Scarpellini, Alice; Petrik, Péter; Papp, Szilvia; Dékány, Imre

    2014-11-01

    Nanostructured indium tin oxide (ITO) powders and thin films differing in morphology and porosity were prepared by a sol-gel method. In3+ and Sn4+ were hydrolyzed in aqueous medium through the use of ethanolamine (EA) or sodium acetate (AC). X-ray diffraction measurements demonstrated that both EA and AC furnished indium tin hydroxide, which became nanocrystalline after aging for one day. The indium tin hydroxide samples calcined at 550 °C afforded ITO with a cubic crystal structure, but the morphology differed significantly, depending on the agent used for hydrolysis. Electron microscopy revealed the formation of round monodisperse nanoparticles when AC was used, whereas the application of EA led to rod-like ITO nanoparticles. Both types of nanoparticles were suitable for the preparation of transparent and conductive ITO thin films. The influence of the morphology and porosity on the optical properties is discussed.

  13. Chemical tailoring of hybrid sol-gel thick coatings as hosting matrix for functional patterned microstructures.

    PubMed

    Falcaro, Paolo; Costacurta, Stefano; Malfatti, Luca; Buso, Dario; Patelli, Alessandro; Schiavuta, Piero; Piccinini, Massimo; Grenci, Gianluca; Marmiroli, Benedetta; Amenitsch, Heinz; Innocenzi, Plinio

    2011-02-01

    A phenyl-based hybrid organic - inorganic coating has been synthesized and processed by hard X-ray lithography. The overall lithography process is performed in a two-step process only (X-rays exposure and chemical etching). The patterns present high aspect ratio, sharp edges, and high homogeneity. The coating has been doped with a variety of polycyclic aromatic hydrocarbon functional molecules, such as anthracene, pentacene, and fullerene. For the first time, hard X-rays have been combined with thick hybrid functional coatings, using the sol-gel thick film directly as resist. A new technique based on a new material combined with hard X-rays is now available to fabricate optical devices. The effect due to the high-energy photon exposure has been investigated using FT-IR and Raman spectroscopy, laser scanner, optical profilometer, and confocal and electron microscope. High-quality thick hybrid fullerene-doped microstructures have been fabricated. PMID:21218788

  14. Characterization of Spin-on Dopant by Sol-gel Method

    NASA Astrophysics Data System (ADS)

    Kamil, S. Ahmad; Ibrahim, K.; Aziz, A. Abdul

    2008-05-01

    P-N junction is a basic building block for many important electron devices from as simple as a solar cell to very complicated integrated circuit. In this work, spin-on dopant (SOD) was used as the diffusion source in order to create p-n junction. SOD was prepared by using sol gel method. The spin-on dopant solution ingredients contain tetraethylorthosilicate (TEOS), isopropanol (IPA), distilled water (H2O), acetone and phosphoric acid (H3PO4). The coated silicon wafers were put inside the conventional furnace for predepostion and drive in oxidation. Effect caused by varying the molarity of the acid were observed and studied using Hall Effect measurement by comparing their differences in sheet resistance, mobility, resistivity as well as sheet and bulk concentaration.

  15. Sol-gel hybrid films based on organosilane and montmorillonite for corrosion inhibition of AA2024.

    PubMed

    Dalmoro, V; dos Santos, J H Z; Armelin, E; Alemán, C; Azambuja, D S

    2014-07-15

    The present work reports the production of films on AA2024-T3 composed of vinyltrimethoxysilane (VTMS)/tetraethylorthosilicate (TEOS) with incorporation of montmorillonite (sodium montmorillonite and montmorillonite modified with quaternary ammonium salt, abbreviated Na and 30B, respectively), generated by the sol-gel process. According to FT-IR analyses the incorporation of montmorillonite does not affect silica network. Electrochemical characterization was performed by electrochemical impedance spectroscopy measurement in 0.05 mol L(-1) NaCl solution. Results indicate that montmorillonite incorporation improves the corrosion protection compared to the non-modified system. Scanning electron microscopy micrographs reveal that high concentrations of montmorillonite provide agglomerations on the metallic surface, which is in detriment of the anticorrosive performance. The VTMS/TEOS/30B films with the lowest concentration (22 mg L(-1)) of embedded clay provide the highest corrosion protection. PMID:24863798

  16. Superparamagnetic calcium ferrite nanoparticles synthesized using a simple sol-gel method for targeted drug delivery.

    PubMed

    Sulaiman, N H; Ghazali, M J; Majlis, B Y; Yunas, J; Razali, M

    2015-01-01

    The calcium ferrite nano-particles (CaFe2O4 NPs) were synthesized using a sol-gel method for targeted drug delivery application. The proposed nano-particles were initially prepared by mixing calcium and iron nitrates that were added with citric acid in order to prevent agglomeration and subsequently calcined at a temperature of 550°C to obtain small particle size. The prepared nanoparticles were characterized by using an XRD (X-ray diffraction), which revealed the configuration of orthorhombic structures of the CaFe2O4 nano-particles. A crystallite size of ~13.59 nm was obtained using a Scherer's formula. Magnetic analysis using a VSM (Vibrating Sample Magnetometer analysis), revealed that the synthesized particles exhibited super-paramagnetic behavior having magnetization saturation of approximately 88.3emu/g. Detailed observation via the scanning electron microscopy (SEM) showed the calcium ferrite nano-particles were spherical in shape. PMID:26405858

  17. Stabilization of ZnMnO3 Phase from Sol-gel Synthesized Nitrate Precursors

    SciTech Connect

    Saraf, Laxmikant V.; Nachimuthu, Ponnusamy; Engelhard, Mark H.; Baer, Donald R.

    2010-02-01

    The stabilization and analysis of pure ZnMnO3 spinel phase may help to understand the solubility limits of Mn in ZnO in wurtzite and spinel cubic structures. In this report, synthesis and characterization of stable ZnMnO3 phase is discussed which is extracted from sol-gel synthesis of zinc and manganese nitrate precursors. The reflections at higher diffraction angles for this known cubic system with space group Fd3m were calculated with the help of JADE 8.0 program. High resolution X-ray photoelectron spectroscopy measurements of Mn3p position of ZnMnO3 compared with ZnMn2O4 showed a higher binding energy shift ~0.85 eV indicating Mn4+ valence state in ZnMnO3.

  18. Dynamical transition of heat transport in a physical gel near the sol-gel transition

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kazuya U.; Oikawa, Noriko; Kurita, Rei

    2015-12-01

    We experimentally study heat transport in a gelatin solution near a reversible sol-gel transition point where viscosity strongly depends on temperature. We visualize the temperature field and velocity field using thermochromic liquid crystals and polystyrene latex particles, respectively. During the initial stages of heating, we find that heat transport undergoes a dynamical transition from conductive to convective. Subsequently, during later stages, we observe that the transport dynamics are much more complex than conventional thermal convections. At the sample’s surface we observe the formation of stagnant domains, which lack fluid flow. Their formation is not due to the effects of local cooling. We determine that it is the dynamics of these stagnant domains that induce convective-conductive-convective transitions.

  19. nanoflakes prepared via a two-step sol-gel-exfoliation method

    NASA Astrophysics Data System (ADS)

    Zhuiykov, Serge; Kats, Eugene

    2014-08-01

    The morphology and electrical properties of orthorhombic β-WO3 nanoflakes with thickness of ~7 to 9 nm were investigated at the nanoscale with a combination of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), current sensing force spectroscopy atomic force microscopy (CSFS-AFM, or PeakForce TUNA™), Fourier transform infra-red absorption spectroscopy (FTIR), linear sweep voltammetry (LSV) and Raman spectroscopy techniques. CSFS-AFM analysis established good correlation between the topography of the developed nanostructures and various features of WO3 nanoflakes synthesized via a two-step sol-gel-exfoliation method. It was determined that β-WO3 nanoflakes annealed at 550°C possess distinguished and exceptional thickness-dependent properties in comparison with the bulk, micro and nanostructured WO3 synthesized at alternative temperatures.

  20. Albumin-containing sol-gel glasses: chemical and biological study.

    PubMed

    Iucci, G; Infante, G; Rossi, L; Polzonetti, G; Rosato, N; Avigliano, L; Savini, I; Catani, M V; Palacios, A C

    2004-05-01

    Glasses incorporating increasing amounts of bovine serum albumin were prepared by sol-gel techniques from a tetra methoxy silane precursor. The surface of the glass samples was studied by X-ray photoelectron spectroscopy, revealing that the protein is present also in the superficial layer of the silica network. Moreover, the protein is distributed in a dose-dependent way, since the N/Si atomic ratio increases linearly with the albumin concentration in the reaction mixture. Angle-dependent measurements show that the protein distribution occurs homogeneously and is the same at different sampling depths. Protein incorporation in the bulk SiO2 network, with a uniform protein distribution between bulk and surface, is confirmed by infrared spectroscopy measurements, performed both in reflectance and transmittance mode. The reaction with a specific antibody and the adhesivity assay of osteoblastic cells show that embedded albumin present on the glass surface is able to interact with other proteins. PMID:15386968

  1. Second-harmonic generation in metal oxide/ormosils nanocomposites derived from sol-gel processing

    NASA Astrophysics Data System (ADS)

    Cheng, Chih-Hsing; Xu, Yuhuan; Mackenzie, John D.; Chee, Joseph K.; Liu, Jia-ming

    1992-12-01

    Nanocomposites of Ormosis containing metal oxides, such as niobates, titanates and zirconates, were prepared by sol-gel processing. The materials were hydrolyzed partially and were dried in air atmosphere for appropriate periods. Afterwards, the materials were heat- treated between 200 degree(s) and 450 degree(s)C for 2 days in pure oxygen. The final bulk samples are transparent in infrared and visible ranges. X-ray diffraction patterns showed that these samples did not have any crystalline phases after heating up to 200 degree(s)C. Using a Nd:YAG laser of 1.064 micrometers wavelength, second harmonic generation, of green light (0.532 micrometers ), was observed in these metal oxides/Ormosils nanocomposites. The refractive index and other optical properties of the metal oxides/Ormosils were also measured. The microstructures of these samples were examined by transmission electron microscopy.

  2. Metal mediated sol-gel chemistry of 1,2-Bis(triethoxysilyl)-ethene

    SciTech Connect

    Carpenter, J.P.; Yamanaka, S.A.; McClain, M.D.

    1996-10-01

    Ethenyl-bridged polysilsesquioxane xerogels and aerogels were formed from the sol-gel polymerization of 1,2-bis(triethoxysilyl)ethene. Gels were synthesized from the cis- and trans-isomers by both acid and base catalysis. While the trans-monomer exhibited relatively fast gelation times, the cis-monomer depending on the conditions either formed no gel of had very long gelation times. The addition of a coordinating metal such as Pd to the cis-monomer sol results in dramatically decreased gelation times. The addition of salts with noncoordinating metals did not significantly shorten the gelation times indicating that a template effect may be directing the polymerization of the cis-monomer. The ethenyl-bridged polysilsesquioxanes were characterized by solid state {sup 29}Si and {sup 13}C NMR, nitrogen sorption porosimetry, and transmission electron microscopy.

  3. Formation of bimodal porous silica-titania monoliths by sol-gel route

    NASA Astrophysics Data System (ADS)

    Ruzimuradov, O. N.

    2011-10-01

    Silica-titania monoliths with micrometer-scale macroporous and nanometer-scale mesoporous structure and high titania contents are prepared by sol-gel process and phase separation. Titanium alkoxide precursor was not effective in the preparation of high titania content composites because of strong decrease in phase separation tendency. Bimodal porous gels with high titania content were obtained by using inorganic salt precursors such as titanium sulfate and titanium chloride. Various characterization techniques, including SEM, XRD, Hg porosimetry and N2 adsorption have been carried out to investigate the formation process and physical-chemical properties of silica-titania monoliths. The characterization results show that the silica-titania monoliths possess a bimodal porous structure with well-dispersed titania inside silica network. The addition of titania in silica improves the thermal stability of both macroporous and mesoporous structures.

  4. Synthesis and characterization of vinyl-bridged polysilsesquioxane sol-gel materials

    SciTech Connect

    Yamanaka, S.A.; Carpenter, J.P.; McClain, M.D.; Loy, D.A.

    1995-08-01

    Vinyl-bridged polysilsesquioxane gels were formed through the use of sol-gel polymerization methods. Acid- and base-catalyzed samples were prepared from both the pure cis-(l) and pure trans-(2) isomers of 1, 2-bis(triethoxysilyl)ethylene. Gelation times of the two isomers were compared. The trans monomer 2 formed gels within a week while the cis monomer I failed to gel-even after several months. Gelation of 1 could be promoted by the addition of a coordinating metal such as palladium. The resulting cis- and trans- vinyl-bridged polysilsesquioxane gels were then processed either by vacuum drying to afford xerogels or by extracting with supercritical carbon dioxide to afford aerogels. These vinylbridged polysilsesquioxanes were characterized by SEM, nitrogen sorption porosimetry, solid State {sub 29}Si and {sub 13}C NMR and x-ray powder diffraction.

  5. Durable superhydrophobic and antireflective surfaces by trimethylsilanized silica nanoparticles-based sol-gel processing.

    PubMed

    Manca, Michele; Cannavale, Alessandro; De Marco, Luisa; Aricò, Antonino S; Cingolani, Roberto; Gigli, Giuseppe

    2009-06-01

    We present a robust and cost-effective coating method to fabricate long-term durable superhydrophobic andsimultaneouslyantireflective surfaces by a double-layer coating comprising trimethylsiloxane (TMS) surface-functionalized silica nanoparticles partially embedded into an organosilica binder matrix produced through a sol-gel process. A dense and homogeneous organosilica gel layer was first coated onto a glass substrate, and then, a trimethylsilanized nanospheres-based superhydrophobic layer was deposited onto it. After thermal curing, the two layers turned into a monolithic film, and the hydrophobic nanoparticles were permanently fixed to the glass substrate. Such treated surfaces showed a tremendous water repellency (contact angle = 168 degrees ) and stable self-cleaning effect during 2000 h of outdoor exposure. Besides this, nanotextured topology generated by the self-assembled nanoparticles-based top layer produced a fair antireflection effect consisting of more than a 3% increase in optical transmittance. PMID:19466786

  6. Optical properties of ZnO powder prepared by using a proteic sol-gel process

    NASA Astrophysics Data System (ADS)

    Kwon, Bong-Joon; Woo, Hyun-Joo; Park, Ji-Yeon; Jang, Kiwan; Lim, Seung-Hyuk; Cho, Yong-Hoon

    2013-03-01

    We have studied the optical properties of ZnO powder synthesized by using a proteic sol-gel process with coconut water as the precursor. The energy dispersive X-ray spectrometer and X-ray diffraction results show high purity of the synthesized ZnO powder. From the low-temperature (12 K) and power-dependent PL spectra, the donor-bound exciton, the acceptor-bound exciton, the donor-to-acceptor pair (DAP), and the phonon-replica of the DAP transition have been observed at 3.38, 3.34, 3.26, and 3.19 eV, respectively. The free exciton emission (˜3.3 eV) is also observed at 300 K in the temperature-dependent PL spectra.

  7. SrFe 12O 19 prepared by the proteic sol-gel process

    NASA Astrophysics Data System (ADS)

    Brito, P. C. A.; Gomes, R. F.; Duque, J. G. S.; Macêdo, M. A.

    2006-10-01

    Powders of strontium hexaferrite (SrFe 12O 19) were prepared by the proteic sol-gel process using coconut water as a precursor. X-ray diffraction (XRD) measurement showed the formation of SrFe 12O 19 with a small amount of the hematite for the sample calcined at 1000 °C with Fe/Sr=12. Rietveld refinement disclosed that this sample had 87.56% of the SrFe 12O 19 and 12.44% of Fe 2O 3 and the values for Rp, Rwp and χ2 were 4.28%, 5.93% and 1.71, respectively. The magnetic properties were Ms=64 emu/g, Mr/ Ms=0.55 and Hc=1.4 kOe for a crystallite size of 57 nm.

  8. Development of Metal Casting Molds By Sol-Gel Technology Using Planetary Resources

    NASA Technical Reports Server (NTRS)

    Sibille, L.; Sen, S.; Curreri, P.; Stefanescu, D.

    2000-01-01

    Metals extracted from planetary soils will eventually need to be casted and shaped in-situ to produce useful products. In response to this challenge, we propose to develop and demonstrate the manufacturing of a specific product using Lunar and Martian soil simulants, i.e. a mold for the casting of metal and alloy parts, which will be an indispensable tool for the survival of outposts on the Moon and Mars. Drawing from our combined knowledge of sol-gel and metal casting technologies, we set out to demonstrate the extraordinary potential of mesoporous materials such as aerogels to serve as efficient casting molds as well as fulfilling numerous other needs of an autonomous planetary outpost.

  9. Synthesis of hybrid sol-gel materials and their biological evaluation with human mesenchymal stem cells.

    PubMed

    Hernández-Escolano, M; Juan-Díaz, M J; Martínez-Ibáñez, M; Suay, J; Goñi, I; Gurruchaga, M

    2013-06-01

    Surface engineering of biomaterials could promote the osseointegration of implants. In this work, two types of hybrid sol-gel materials were developed to stimulate cell attachment, proliferation and differentiation of osteogenic cells. One type was synthesised from vinyl triethoxysilane (VTES) and tetraethyl-orthosilicate (TEOS) at different molar ratios, while the other from VTES and hydroxyapatite particles (HAp). Hybrid materials were systematically investigated using nuclear magnetic resonance, Fourier transform infrared spectroscopy and contact angle metrology. The biocompatibility and osseoinduction of the coatings were evaluated by measuring mesenchymal stem cell proliferation using MTT assays and analysing the mineralised extracellular matrix production by quantifying calcium-rich deposits. The results highlighted the versatility of these coatings in obtaining different properties by changing the molar ratio of the VTES:TEOS precursors. Thus, mineralisation was stimulated by increasing TEOS content, while the addition of HAp improved cell proliferation but worsened mineralisation. PMID:23475116

  10. Preparation of multicomponent oxides via non-hydrolytic sol-gel routes from novel bimetallic alkoxides

    SciTech Connect

    Athar, Taimur; Oh Kwon, Jeong; Seok, Sang Il . E-mail: seoksi@pado.krict.re.kr

    2005-05-15

    New series of double alkoxides of erbium and its oxides have been prepared by non-hydrolytic sol-gel reactions for the first time. These compounds were characterized with the help of FT-IR, NMR, Mass, DTA-TGA and SEM. The mass spectra show similar types of fragmentation pattern in all compounds. The XRD diffraction pattern shows an enhanced homogeneity at high temperature. TGA/DTA measurements show that thermal decomposition occurs in steps and entirely depends on the chemical compositions and the synthesis routes. The SEM observation reveals a high dense and smooth microstructural uniformity of polycrystalline nature. The physico-chemical properties show that crystallization behaviors can be controlled with the help of fine-tuning the chemical properties of chelating agents in order to increase the solubility of metal alkoxides.

  11. A luminescence endotoxin biosensor prepared by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Hreniak, A.; Maruszewski, K.; Rybka, J.; Gamian, A.; Czyżewski, J.

    2004-07-01

    Silicate thin films with terminal amino groups were prepared via the sol-gel technique and selected biological molecules labeled with luminophores were covalently attached to their surfaces. The obtained thin films with covalently bound Concanavalin-A (Con-A) labeled with fluorescein (FITC) were immersed in a buffer and polarized emission spectra were measured. In the next step, the samples were incubated with a lipopolysaccharide (LPS) isolated from Hafnia alvei PCM 1186 bacterial strain and the emission spectra were collected again. The influence of LPS binding to Con-A on the luminescence depolarization has been proven. The system based on the this effect can be employed as an optical sensor for detection of certain types of bacteria.

  12. H2-induced copper and silver nanoparticle precipitation inside sol-gel silica optical fiber preforms

    PubMed Central

    2012-01-01

    Ionic copper- or silver-doped dense silica rods have been prepared by sintering sol-gel porous silica xerogels doped with ionic precursors. The precipitation of Cu or Ag nanoparticles was achieved by heat treatment under hydrogen followed by annealing under air atmosphere. The surface plasmon resonance bands of copper and silver nanoparticles have been clearly observed in the absorption spectra. The spectral positions of these bands were found to depend slightly on the particle size, which could be tuned by varying the annealing conditions. Hence, transmission electron microscopy showed the formation of spherical copper nanoparticles with diameters in the range of 3.3 to 5.6 nm. On the other hand, in the case of silver, both spherical nanoparticles with diameters in the range of 3 to 6 nm and nano-rods were obtained. PMID:22937818

  13. The Effect of Time, Temperature and Composition on Boron Carbide Synthesis by Sol-gel Method

    NASA Astrophysics Data System (ADS)

    Hadian, A. M.; Bigdeloo, J. A.

    2008-02-01

    To minimize free carbon residue in the boron carbide (B4C) powder, a modified sol-gel process is performed where the starting materials as boric acid and citric acid compositions are adjusted. Because of boron loss in the form of B2O2(g) during the reduction reaction of the stoichiometric starting composition, the final B4C powders contain carbon residues. Thus, an excess H3BO3 is used in the reaction to compensate the loss and to obtain stoichiometric powders. Parameters of production have been determined using x-ray diffraction analysis and particle size analyses. The synthesized B4C powder using an excess boric acid composition shows no trace of carbon.

  14. Physical Properties of Potassium Phosphate Glass Prepared by Sol Gel Method

    SciTech Connect

    Mat, Noorhidayah Che; Sahar, Md Rahim; Pauzi, Safwan Ahmad

    2010-07-07

    Series of glasses based on Al{sub 2}O{sub 3}-K{sub 2}O-P{sub 2}O{sub 5} have successfully been made by sol gel method. The amorphous state has been confirmed by X-ray diffraction (XRD) while the actual composition has been determined using Energy Dispersive X-ray (EDX) analysis. The glass density is determined using Archimedes method while the Vickers Micro hardness Test has been used to measure the hardness. It is found that all the samples are amorphous in nature with their actual composition contained phosphate in the range of 40-53% mol. It is also observed that the glass density is about 2.4 gcm{sup -3} while the hardness is in the range of 40-100 Hv, depending on composition.

  15. Organic aerogels from the sol-gel polymerization of phenolic-furfural mixtures

    DOEpatents

    Pekala, R.W.

    1996-09-17

    The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes {<=}1,000{angstrom}, and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1,050 C to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors. 8 figs.

  16. Organic aerogels from the sol-gel polymerization of phenolic-furfural mixtures

    DOEpatents

    Pekala, R.W.

    1995-12-19

    The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes{<=}1000{angstrom}, and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1050 C to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors. 8 figs.

  17. Organic carbon aerogels from the sol-gel polymerization of phenolic-furfural mixtures

    DOEpatents

    Pekala, R.W.

    1998-04-28

    The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes {<=}1000 {angstrom}, and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1050 C to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors. 8 figs.

  18. Titania-based molecularly imprinted polymer for sulfonic acid dyes prepared by sol-gel method.

    PubMed

    Li, Man; Li, Rong; Tan, Jin; Jiang, Zi-Tao

    2013-03-30

    A novel titania-based molecularly imprinted polymer (MIP) was synthesized through sol-gel process with sunset yellow (Sun) as template, without use of functional monomer. MIP was used as a solid-phase extraction material for the isolation and enrichment of sulfonic acid dyes in beverages. The results showed that MIP exhibited better selectivity, higher recovery and adsorption capacity for the sulfonic acid dyes compared to the non-imprinted polymer (NIP). MIP presented highest extraction selectivity to Sun when pH less than or equal to 3. The adsorption capacity was 485.9 mg g(-1), which was larger than that of NIP (384.7 mg g(-1)). The better clean-up ability demonstrated the capability of MIP for the isolation and enrichment of sulfonic acid dyes in complicated food samples. The mean recoveries for the sulfonic acid dyes on MIP were from 81.9% to 97.2% in spiked soft drink. PMID:23598213

  19. Intrinsically tunable bulk acoustic wave resonators based on sol-gel grown PMN-PT films

    NASA Astrophysics Data System (ADS)

    Vorobiev, A.; Spreitzer, M.; Veber, A.; Suvorov, D.; Gevorgian, S.

    2014-08-01

    Intrinsically tunable bulk acoustic wave resonators, based on sol-gel 0.70Pb(Mg1/3Nb2/3)O3-0.30PbTiO3 (PMN-PT) thin films, with high effective electromechanical coupling coefficient of 13% and tunability of the series resonance frequency up to 4.0% are fabricated and characterized. The enhanced electroacoustic properties of the PMN-PT resonators are attributed to the mechanism of polarization rotation occurring in the region of the morphotropic phase boundary. Electroacoustic performance of the PMN-PT resonators is analyzed using the theory of dc field-induced piezoelectric effect in ferroelectrics. Extrinsic acoustic loss in the PMN-PT resonators is analyzed using the model of the wave scattering at reflections from rough interfaces. Mechanical Q-factor of the resonators is up to 70 at 4.1 GHz and limited mainly by losses in the PMN-PT film.

  20. Synthesis and adsorption properties of chitosan-silica nanocomposite prepared by sol-gel method.

    PubMed

    Budnyak, Tetyana M; Pylypchuk, Ievgen V; Tertykh, Valentin A; Yanovska, Elina S; Kolodynska, Dorota

    2015-01-01

    A hybrid nanocomposite material has been obtained by in situ formation of an inorganic network in the presence of a preformed organic polymer. Chitosan biopolymer and tetraethoxysilane (TEOS), which is the most common silica precursor, were used for the sol-gel reaction. The obtained composite chitosan-silica material has been characterized by physicochemical methods such as differential thermal analyses (DTA); carbon, hydrogen, and nitrogen (CHN) elemental analysis; nitrogen adsorption/desorption isotherms, scanning electron microscopy (SEM); and Fourier transform infrared (FTIR) spectroscopy to determine possible interactions between silica and chitosan macromolecules. Adsorption of microquantities of V(V), Mo(VI), and Cr(VI) oxoanions from the aqueous solutions by the obtained composite has been studied in comparison with the chitosan beads, previously crosslinked with glutaraldehyde. The adsorption capacity and kinetic sorption characteristics of the composite material were estimated. PMID:25852383

  1. Synthesis and adsorption properties of chitosan-silica nanocomposite prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Budnyak, Tetyana M.; Pylypchuk, Ievgen V.; Tertykh, Valentin A.; Yanovska, Elina S.; Kolodynska, Dorota

    2015-02-01

    A hybrid nanocomposite material has been obtained by in situ formation of an inorganic network in the presence of a preformed organic polymer. Chitosan biopolymer and tetraethoxysilane (TEOS), which is the most common silica precursor, were used for the sol-gel reaction. The obtained composite chitosan-silica material has been characterized by physicochemical methods such as differential thermal analyses (DTA); carbon, hydrogen, and nitrogen (CHN) elemental analysis; nitrogen adsorption/desorption isotherms, scanning electron microscopy (SEM); and Fourier transform infrared (FTIR) spectroscopy to determine possible interactions between silica and chitosan macromolecules. Adsorption of microquantities of V(V), Mo(VI), and Cr(VI) oxoanions from the aqueous solutions by the obtained composite has been studied in comparison with the chitosan beads, previously crosslinked with glutaraldehyde. The adsorption capacity and kinetic sorption characteristics of the composite material were estimated.

  2. Sol-gel derived porous bioactive nanocomposites: Synthesis and in vitro bioactivity

    NASA Astrophysics Data System (ADS)

    Shankhwar, Nisha; Kothiyal, G. P.; Srinivasan, A.

    2013-06-01

    Porous bioactive composites consisting of SiO2-CaO-Na2O-P2O5 bioactive glass-ceramic and synthetic water soluble polymer Polyvinylpyrrolidone [PVP (C6H9NO)n, MW˜40000 g/mol] have been synthesized by sol-gel route. As-prepared polymeric composites were characterized by X-ray diffraction (XRD) technique. Two major bone mineral phases, viz., hydroxyapatite [Ca10(PO4)6(OH)2] and wollastonite [calcium silicate (CaSiO3)] have been identified in the XRD patterns of the composites. Presence of these bone minerals indicates the bioactive nature of the composites. In vitro bioactivity tests confirm bioactivity in the porous composites. The flexibility offered by these bioactive polymer composites is advantageous for its application as implant material.

  3. TiO2 thin films prepared by sol - gel method

    NASA Astrophysics Data System (ADS)

    Suciu, R. C.; Indrea, E.; Silipas, T. D.; Dreve, S.; Rosu, M. C.; Popescu, V.; Popescu, G.; Nascu, H. I.

    2009-08-01

    There is a growing awareness that titania (TiO2) and TiO2-based oxide systems are the most promising candidates for the development of photoelectrodes for photoelectrochemical cell (PEC) for solar-hydrogen production [1]. The PEC is equipped with a single photoelectrode (photoanode) and cathode, both of which are immersed in an aqueous electrolyte. In this work we present a sol-gel method to prepare TiO2 thin films on ITO using tetraisopropoxides of titanium, acetylacetone, 1-butanol and Tween 80 as surfactant. The films were deposited on ITO coated glass slides by spray pyrolysis. UV-VIS spectra and fluorescence measurements were made for the solutions and films. X-ray diffraction was used for structural investigations and the morphology of the film was studied by Scanning Electron Microscopy.

  4. Sol-gel/rhodamine 6G composite films with tailored microstructures

    SciTech Connect

    Logan, D.L.; Ashley, C.S.; Assink, R.A.; Brinker, C.J. |

    1992-12-31

    A multi-step hydrolysis procedure was developed to prepare composite organic dye/sol-gel thin films with variable porosity for such as switches or sensors. Variation of acid and base catalyzed hydrolysis sequences of three sols prepared from tetraethoxysilane with identical H{sub 2}O/Si ratios, dilution factors, and pH resulted in considerably different silicate speciation. Under conditions where monomer was avoided, the refractive indices of as-deposited films could be varied by an again step prior to film deposition. This general strategy, which relies on the aggregation of fractal polymeric clusters, is compatible with the low temperature and near neutral pH requirements of both organic dyes and biologically active species such as enzymes.

  5. Structural and electrical properties of sol-gel spin coated indium doped cadmium oxide thin films

    SciTech Connect

    Rajammal, R.; Savarimuthu, E. Arumugam, S.

    2014-04-24

    The indium doped CdO thin films have been prepared by the sol-gel spin coating technique and the influence of indium doping concentration on the structural and electrical properties of the deposited films has been investigated. The indium doping concentration in the solution has been varied from 0-10 wt% insteps of 2wt%. A indium doping concentration of 6wt% has been found to be optimum for preparing the films and at this stage a minimum resistivity of 5.92×10{sup −4}Ω cm and a maximum carrier concentration of 1.20×10{sup 20}cm{sup −3} have been realized.

  6. Dielectric anomaly in Li-doped zinc oxide thin films grown by sol gel route

    NASA Astrophysics Data System (ADS)

    Dhananjay; Singh, Satyendra; Nagaraju, J.; Krupanidhi, S. B.

    2007-08-01

    Sol gel route was employed to grow polycrystalline thin films of Li-doped ZnO thin films (Zn1-xLixO, x=0.15). Polycrystalline films were obtained at a growth temperature of 400 500 °C. Ferroelectricity in Zn0.85Li0.15O was verified by examining the temperature variation of the real and imaginary parts of dielectric constant, and from the C V measurements. The phase transition temperature was found to be 330 K. The room-temperature dielectric constant and dissipation factor were 15.5 and 0.09 respectively, at a frequency of 100 kHz. The films exhibited well-defined hysteresis loop, and the values of spontaneous polarization (Ps) and coercive field were 0.15 μC/cm2 and 20 kV/cm, respectively, confirming the presence of ferroelectricity.

  7. Evolution of the phase content of zirconia powders prepared by sol-gel acid hydrolysis

    SciTech Connect

    Rivas, P.C.; Martinez, J.A.; Caracoche, M.C.; Rodriguez, A.M.; Lopez Garcia, A.R.; Pavlik, R.S. Jr.; Klein, L.C.

    1998-01-01

    The evolution of the phase content in zirconia powders that have been prepared by sol-gel acid hydrolysis has been investigated using the perturbed-angular-correlation (PAC) technique and X-ray diffractometry. As a consequence of performing annealing treatments at increasing temperatures between room temperature and 1,000 C, the amorphous starting material transforms to the tetragonal form and then to the monoclinic form. The metastable tetragonal phase exhibits two hyperfine components, one of which describes very defective zirconium surroundings. The evolution of PAC relative fractions is in agreement with the diffraction results. The durability of the samples in sodium hydroxide seems to increase as the relative amount of the most-defective zirconium surroundings of the tetragonal form increases.

  8. Microbicidal activity of TiO2 nanoparticles synthesised by sol-gel method.

    PubMed

    Priyanka, Karathan Parakkandi; Sukirtha, Thiruvangium Henry; Balakrishna, Kagalagodu Manjunthiah; Varghese, Thomas

    2016-04-01

    In this study, the authors investigated antimicrobial activity of TiO2 nanoparticles (NPs) synthesised by sol-gel method. As synthesised TiO2 NPs were characterised by X-ray diffraction, scanning electron microscopy and ultraviolet-visible absorption spectroscopy. The antimicrobial activity of calcined TiO2 nanoparticle samples was examined in day light on Gram positive bacteria (Staphylococcus aureus, Streptococcus pneumonia and Bacillus subtilis), Gram negative bacteria (Proteus vulgaris, Pseudomonas aeruginosa and Escherichia coli) and fungal test pathogen Candida albicans. The synthesised TiO2 NPs were found to be effective in visible light against Streptococcus pneumonia, Staphylococcus aureus, Proteus vulgaris, Pseudomonas aeruginosa and Candida albicans. PMID:27074858

  9. Sol-gel synthesis of a multifunctional, hierarchically porous silica/apatite composite.

    PubMed

    Andersson, Jenny; Areva, Sami; Spliethoff, Bernd; Lindén, Mika

    2005-12-01

    In this study, a degradable, hierarchically porous silica/apatite composite material is developed from a simple low-temperature synthesis. Mesoporosity is induced in the silica portion by the use of supramolecular templating. The template is further removed by calcination. Firstly, hydroxyapatite is synthesized through a sol-gel method at near room temperature conditions. After the mineralization process, the crystal surface is coated with a mesoporous silica matrix using the templates already present in the bulk solution. The material is characterized by XRD, N(2)-sorption, FT-IR, SEM/EDS, and TEM. The coating layer is distributed fairly homogeneously over the apatite surface and the coating thickness is easily adjustable and dependent on the amount of added silica precursor. The hybrid material is shown to efficiently induce calcium phosphate formation under in vitro conditions and simultaneously work as a carrier system for drugs. PMID:15993485

  10. Synthesis of nano-titanium dioxide by sol-gel route

    NASA Astrophysics Data System (ADS)

    Kaler, Vandana; Duchaniya, R. K.; Pandel, U.

    2016-04-01

    Nanosized titanium dioxide powder was synthesised via sol-gel route by hydrolysis of titanium tetraisopropoxide with ethanol and water mixture in high acidic medium. The synthesized nanopowder was further characterized by X-ray Diffraction, Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, and Ultraviolet Visible Spectroscopy in order to determine size, morphology and crystalline structure of the material. The synthesis of nano-TiO2 powder in anatase phase was realized by XRD. The optical studies of nano-TiO2 powder was carried out by UV-Vis spectroscopy and band gap was calculated as 3.5eV, The SEM results with EDAX confirmed that prepared nano-TiO2 particles were in nanometer range with irregular morphology. The FTIR analysis showed that only desired functional groups were present in sample. These nano-TiO2 particles have applications in solar cells, chemical sensors and paints, which are thrust areas these days.

  11. Structural and electrical properties of sol-gel-deposited WO3 films

    NASA Astrophysics Data System (ADS)

    Agnihotry, S. A.; Sharma, Nidhi; Deepa, M.; Kishore, Ram; Sood, K. N.; Sharma, Sudhir K.

    1999-10-01

    Amongst various sol-gel routes to deposit large area WO3 films for electrochromic applications, the one using peroxotungstic acid based precursor solution gives superior electrochromic films. Further improvements in the properties are possible by chemical modification of the precursor material and by controlling the post deposition thermal treatment. Both these parameters affect physical, structural, electrical and as a result electrochromic properties of the films significantly. A detailed study of these properties of the films deposited with precursor solution modified with various organic additives and different thermal parameters was undertaken. X-ray diffraction, electron microscopy and resistance measurements were used to characterize and compare the films. These properties of the films correlated to their electrochromic behavior are reported in this paper.

  12. Structural and optical properties of WO3 electrochromic layers prepared by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Novinrooz, Abdoljavad; Sharbatdaran, Masoomeh; Noorkojouri, Hassan

    2005-09-01

    Thin layers of tungsten trioxide have been prepared from an aqueous solution of peroxotungstic acid (PTA) using the sol-gel method. Compositional, structural and optical characteristics of WO3 coated on indium tin oxide (ITO) conductive glass substrates were studied using X-ray diffractometery (XRD), cyclic voltammetery (CV), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). Monoclinic and triclinic crystalline structures for thin film and powdered WO3 were confirmed by XRD analysis. SEM micrograph of annealed samples revealed micro cracks due to a decrease in density and a contraction of layers. EDX analysis showed that 1∶2 ratio of oxygen and tungsten atoms in the prepared films is obtained at heat treatment temperatures higher than 200 °C. Furthermore, the annealed samples showed very good electrochromic behavior in cyclic voltammetery studies. Refractive index "n" and extinction coefficient "k" values were found to be reduced by increasing the wavelength and decreasing the temperature.

  13. Titania sol-gel coatings with silver on non-porous titanium and titanium alloys

    NASA Astrophysics Data System (ADS)

    Horkavcova, D.; Cerny, M.; Sanda, L.; Novak, P.; Jablonska, E.; Zlamalova-Cflova, Z.; Helebrant, A.

    2016-04-01

    The objective of the work was to prepare and characterize titania sol-gel coatings on non-porous titanium and newly developed titanium alloys. Basic titania sol contained two forms of silver. Titania sol without silver was used as a reference sample. Coatings were prepared by dip-coating technique during stirring and fired. Coatings after firing were characterized by scanning electron microscopy. All titania coatings were measured to determine their adhesive and bactericidal properties. Adhesion of the coatings to the substrate was measured by tape test. Gram-negative bacteria E. coli was used for the bactericidal test. Coated substrates were immersed into suspension of E. coli in physiological solution for 24 hours. The in vitro cytotoxicity test was performed after one day. The bactericidal effect without toxicity was confirmed for selected coatings.

  14. Organic aerogels from the sol-gel polymerization of phenolic-furfural mixtures

    DOEpatents

    Pekala, Richard W.

    1995-01-01

    The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes.ltoreq.1000.ANG., and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1050.degree. C. to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors.

  15. Organic carbon aerogels from the sol-gel polymerization of phenolic-furfural mixtures

    DOEpatents

    Pekala, Richard W.

    1998-04-28

    The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes .ltoreq.1000 .ANG., and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1050.degree. C. to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors.

  16. Organic aerogels from the sol-gel polymerization of phenolic-furfural mixtures

    DOEpatents

    Pekala, Richard W.

    1996-01-01

    The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes .ltoreq.1000.ANG., and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1050.degree. C. to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors.

  17. Investigation of the Peroxovanadate Sol-Gel Process and Characterization of the Gels

    SciTech Connect

    Craig Joseph Fontenot

    2001-12-31

    In general, the peroxovanadate solution sol-gel process can be thought of as consisting of two parts: (1) the decomposition of the peroxo species and (2) cation hydrolysis leading to gelation. By controlling the synthesis conditions, both layered and amorphous compounds can be created. However, the type of water coordination observed in these gels was found to be identical no matter what the long-range order. The current work clarified many of the discrepancies found in the literature and offered much new valuable information. Highlights include the types of vanadium environments present at various stages of hydration, the role of adsorbed water, oxygen exchange from adsorbed water into the gel sites, and the ability to create metastable VMoO solid solution phases. These results could have a variety of impacts on future catalysis research.

  18. Nanorods of Various Oxides and Hierarchically Structured Mesoporous Silica by Sol-Gel Electrophoresis

    SciTech Connect

    Limmer, Steven J.; Hubler, Timothy L.; Cao, Guozhong

    2003-01-02

    In this paper, we report the template-based growth of nanorods of oxides and hierarchically structured mesoporous silica, formed by means of a combination of sol-gel processing and elecrophoretic deposition. Both single metal oxides (TiO2) and complex oxides (Pb(Zr0.52Ti0.48)O3) have been grown by this method. This method has also been applied to the growth of nanorods of mesoporous silica having an ordered pore structure, where the pores are aligned parallel to the long axis of the nanorod. Uniformly sized nanorods of about 125-200 nm in diameter and 10 um in length were grown over large areas with near unidirectional alignment. Appropriate sol preparation yielded the desired stoichiometric chemical composition and crystal structure of the oxide nanorods, with a heat treatment (500-700 C for 15-30 min) for crystallization, densification and any necessary pyrolysis.

  19. Impact of temperature on zinc oxide particle size by using sol-gel process

    SciTech Connect

    Lee, Keanchuan Ching, Dennis Ling Chuan; Saipolbahri, Zulhilmi Akmal bin; Guan, Beh Hoe E-mail: hassan.soleimani@petronas.com.my; Soleimani, Hassan E-mail: hassan.soleimani@petronas.com.my

    2014-10-24

    Zinc oxide (ZnO) nanoparticles were prepared and synthesized via sol-gel method, by using citric acid as a precursor. The impact of annealing on the particle size was investigated. Based on the results from the Thermogravimetric Analysis (TGA), three different annealing temperature which is 500, 600 and 700 °C were chosen followed by the characterization of the ZnO nanoparticle by using Powder X-Ray Diffraction (PXRD), Transmission Electron Microscopy (TEM) and Field Emission Scanning Electron Microscopy (FESEM). Results showed that the crystallite size estimated from PXRD increased with the annealing temperature which was hexagonal structure for ZnO. TEM further revealed the same tendency which the Zn NPs size also increased with the annealing temperature.

  20. Nanocrystalline spin coated sol-gel hydroxyapatite thin films on Ti substrate: Towards potential applications for implants

    NASA Astrophysics Data System (ADS)

    Carradò, Adele; Viart, Nathalie

    2010-07-01

    Sol-gel spin coating is a promising process to obtain hydroxyapatite (HA) thin films. It is an alternative route to the hydroxyapatite deposition techniques usually employed to cover orthopaedic or dental titanium implant surfaces. The sol-gel (SG) parameters leading to a pure and crystalline HA coatings on Ti substrate were determined. They allow to reach a stoichiometric hydroxyapatite composition (ideal Ca/P atomic ratio 1.67) and a control of the growth of the crystalline phases. The samples, when observed by Scanning Electron Microscopy (SEM), exhibit grains of ca. 200 nm, well adapted for cell proliferation. The crystallisation of the HA films was thoroughly studied by X-Ray diffraction (XRD). The aim of this paper is to validate the sol-gel method as a processing method allowing the control of the mechanical state of the films and, in particular, of the residual stresses (RS) at metal-ceramic interfaces. These stresses were determined on titanium substrates. While the uncoated Ti substrates were in a compressive residual state, the coated ones were in a low tensile state. These results suggest that the sol-gel process is indeed a processing route to obtain HA coated Ti implants.

  1. Preparation and structural and magnetic characterization of yttrium-iron garnets by sol-gel techniques and microemulsions

    NASA Astrophysics Data System (ADS)

    Rodriguez, Paz Vaqueiro

    Yttrium iron garnet (YIG) has been synthesized by five different techniques. First, the garnet was prepared by solid-state reaction; furthermore the material was prepared by two sol-gel techniques: the citrate gel method and the malonate gel method, and by two techniques in microemulsion: sol-gel in microemulsion and coprecipitation in microemulsion. The properties of the material as obtained by solid-state reaction are those typical of the bulk material. By the two sol-gel techniques one obtain a fine divided material, composed of small particles. Depending on the annealing time and temperature, the mean particle size of the particles range from 30 to 500 nm. The lattice parameter of the material synthesized by sol-gel techniques is larger than that of the bulk material, and a lattice expansion occurs when the mean crystallite size decreases. The magnetic properties of the nanoparticles depend also on the mean particle size. The coercive field depends on the particle size, and at room temperature a maximum value occurs for a particle size around 150 nm. The saturation magnetization of the material decreases with the mean particle size, due to the existence of a noncollinear spin arrangement at the surface of the particles. Using microemulsion as a reaction medium, we hoped to improve the control on the particle size and on the particle size distribution. However, we did not obtain a material with a good quality (pure material and with a short particle size distribution).

  2. Synthesis of the Nanocrystalline Nickel Ferrite by a Novel Mechano Sol-Gel Auto-Combustion Method

    NASA Astrophysics Data System (ADS)

    Shahmirzaei, M.; Seyyed Ebrahimi, S. A.; Dehghan, R.

    In this work, a novel method of mechano sol-gel auto-combustion has been developed for production of single phase nickel ferrite nanocrystalline powder, consisting of a sol-gel auto-combustion synthesis followed by a high energy milling process before calcination. Sol-gel auto-combustion was carried out using a gel including citric acid as a reductant and metal nitrates as oxidants. This gel exhibited a self-propagating behavior after ignition in air. The effects of the intermediate high energy milling on the physical properties of the final product after calcination were investigated. The results showed that with a high energy milling of the sol-gel auto-combusted powders with a ball-to-powder mass ratio of 20 for 20 h, the temperature of calcination for synthesis of the single phase ferrite reduced from 1000°C to 700°C and the size of the ferrite crystallites decreased from 72 nm to 15 nm.

  3. A convenient sol-gel approach to the preparation of nano-porous silica coatings with very low refractive indices.

    PubMed

    Zhang, Yulu; Zhao, Chaoxia; Wang, Pingmei; Ye, Longqiang; Luo, Jianhui; Jiang, Bo

    2014-11-18

    Silica coatings with refractive indices as low as 1.10 were prepared via a one-step base-catalysed sol-gel process using methyltriethoxysilane and tetraethoxysilane as co-precursors. No expensive equipment was required and the method did not require etching or high-temperature calcination. PMID:25253239

  4. Epitaxial growth of ZnO on quartz substrate by sol-gel spin-coating method

    NASA Astrophysics Data System (ADS)

    Chebil, W.; Boukadhaba, M. A.; Fouzri, A.

    2016-07-01

    ZnO thin films grown on Quartz substrates using sol-gel method were synthesized and annealing at different temperature (700 °C, 900 °C and 1000 °C). The structural, optical and morphological comparison of ZnO layers elaborated with that obtained by the sophisticated and expensive technique MOCVD demonstrates the success of the ZnO epitaxial growth on quartz substrate by sol-gel process. Sol-gel ZnO film deposited on quartz substrate annealed at 1000 °C exhibit only (00l) XRD peak which is similar to the diffraction patterns of epitaxial ZnO grown on sapphire by MOCVD. The Surface morphology was examined by SEM which revealed that the grain size becomes larger and faceted as increasing annealing temperature. Pl emission peak of sol-gel ZnO annealed at 1000 °C revealed a close similarity with that obtained by MOCVD ZnO but with a weaker intensity.

  5. Surface texture and specific adsorption sites of sol-gel synthesized anatase TiO{sub 2} nanoparticles

    SciTech Connect

    Zaki, Mohamed I.; Mekhemer, Gamal A.H.; Fouad, Nasr E.; Jagadale, Tushar C.; Ogale, Satishchandra B.

    2010-10-15

    The surface properties of sol-gel synthesized anatase titania (TiO{sub 2}) nanoparticles are probed by sorptiometry, infrared absorption spectroscopy, UV-vis diffuse reflectance spectroscopy and high resolution transmission electron microscopy. The results reveal strong correlations of the surface area, porosity, pyridine adsorption capacity and strength, and catalytic methylbutynol decomposition activity.

  6. ITO/poly(aniline)/sol-gel glass: An optically transparent, pH-responsive substrate for supported lipid bilayers

    PubMed Central

    Al-Obeidi, Ahmed; Ge, Chenhao; Orosz, Kristina S.; Saavedra, S. Scott

    2014-01-01

    Described here is fabrication of a pH-sensitive, optically transparent transducer composed of a planar indium-tin oxide (ITO) electrode overcoated with a a poly(aniline) (PANI) thin film and a porous sol-gel layer. Adsorption of the PANI film renders the ITO electrode sensitive to pH, whereas the sol-gel spin-coated layer makes the upper surface compatible with fusion of phospholipid vesicles to form a planar supported lipid bilayer (PSLB). The response to changes in the pH of the buffer contacting the sol-gel/PANI/ITO electrode is pseudo-Nernstian with a slope of 52 mV/pH over a pH range of 4–9. Vesicle fusion forms a laterally continuous PSLB on the upper sol-gel surface that is fluid with a lateral lipid diffusion coefficient of 2.2 μm2/s measured by fluorescence recovery after photobleaching. Due to its lateral continuity and lack of defects, the PSLB blocks the pH response of the underlying electrode to changes in the pH of the overlying buffer. This architecture is simpler to fabricate than previously reported ITO electrodes derivatized for PSLB formation, and should be useful for optical monitoring of proton transport across supported membranes derivatized with ionophores and ion channels. PMID:25328882

  7. Dielectric Bilayer Films Comprising Polar Cyanolated Silica Sol-Gel and Nanoscale Blocking Layer for Energy Storage Applications

    NASA Astrophysics Data System (ADS)

    Kathaperumal, Mohanalingam; Kim, Yunsang; Smith, O'neil; Dindar, Amir; Fuentes-Hernandez, Canek; Hwang, Do-Kyung; Pan, Ming-Jen; Kippelen, Bernard; Perry, Joseph

    2013-03-01

    Organic-inorganic hybrid sol-gel containing polar groups, which can undergo orientational polarization under the influence of an electric field, provide a potential route to processable and rational design of materials for energy storage applications. However, the porous nature of sol-gel films, which significantly lowers breakdown strength, limits the potential of this material for energy storage particularly in high-field applications. In this work, we fabricate and characterize dielectric bilayer films comprising cyanolated silica sol-gel film prepared from 2-cyanoethyltrimethoxysilane (CNETMS) precursor and nanoscale blocking layers, which include amorphous fluoropolymer, SiO2, Al2O3 and ZrO2 deposited by spin casting, electron beam evaporation or atomic layer deposition (ALD). CNETMS films with 50 nm ZrO2 blocking layer exhibit an extractable energy density of 13 J/cm3, which is about a twofold enhancement compared to CNETMS films without blocking layer. The effect of the blocking layer will be discussed in terms of surface morphology, dielectric contrast, i.e. the ratio of relative permittivity between oxide layer and sol-gel film, electric field distribution, breakdown strength and statistics, bias polarity, and loss of the bilayer films.

  8. ELISA AND SOL-GEL BASED IMMUNOAFFINITY PURIFICATION OF THE PYRETHROID BIOALLETHRIN IN FOOD AND ENVIRONMENTAL SAMPLES

    EPA Science Inventory

    The peer-reviewed article describes the development of a new sol-gel based immunoaffinity purification procedure and an immunoassay for the pyrethroid bioallethrin. The immunoaffinity chromatography procedure was applied to food samples providing an efficient cleanup prior to im...

  9. Photochemical release of nitric oxide from a regenerable, sol-gel encapsulated Ru-salen-nitrosyl complex.

    PubMed

    Bordini, Jeane; Ford, Peter C; Tfouni, Elia

    2005-09-01

    Light activation leads to release of NO from a silicate sol-gel material SG-RuNO prepared from the ruthenium complex, [Ru(salen)(OH2)(NO)]+ (salen = N,N'-bis-(salicylidene)ethyl-enediaminato); after photochemical NO photolabilization, SG-RuNO can be regenerated from the spent material via the subsequent reaction with aqueous nitrite. PMID:16100592

  10. Sol-Gel Application for Consolidating Stone: An Example of Project-Based Learning in a Physical Chemistry Lab

    ERIC Educational Resources Information Center

    de los Santos, Desiree´ M.; Montes, Antonio; Sa´nchez-Coronilla, Antonio; Navas, Javier

    2014-01-01

    A Project Based Learning (PBL) methodology was used in the practical laboratories of the Advanced Physical Chemistry department. The project type proposed simulates "real research" focusing on sol-gel synthesis and the application of the obtained sol as a stone consolidant. Students were divided into small groups (2 to 3 students) to…

  11. Sol-Gel and Thermally Evaporated Nanostructured Thin ZnO Films for Photocatalytic Degradation of Trichlorophenol

    NASA Astrophysics Data System (ADS)

    Abdel Aal, A.; Mahmoud, Sawsan A.; Aboul-Gheit, Ahmed K.

    2009-07-01

    In the present work, thermal evaporation and sol-gel coating techniques were applied to fabricate nanostructured thin ZnO films. The phase structure and surface morphology of the obtained films were investigated by X-ray diffractometer (XRD) and scanning electron microscope (SEM), respectively. The topography and 2D profile of the thin ZnO films prepared by both techniques were studied by optical profiler. The results revealed that the thermally evaporated thin film has a comparatively smoother surface of hexagonal wurtzite structure with grain size 12 nm and 51 m2/g. On the other hand, sol-gel films exhibited rough surface with a strong preferred orientation of 25 nm grain size and 27 m2/g surface area. Following deposition process, the obtained films were applied for the photodegradation of 2,4,6-trichlorophenol (TCP) in water in presence of UV irradiation. The concentrations of TCP and its intermediates produced in the solution during the photodegradation were determined by high performance liquid chromatography (HPLC) at defined irradiation times. Complete decay of TCP and its intermediates was observed after 60 min when the thermal evaporated photocatalyst was applied. However, by operating sol-gel catalyst, the concentration of intermediates initially increased and then remained constant with irradiation time. Although the degradation of TCP followed first-order kinetic for both catalysts, higher photocatalytic activity was exhibited by the thermally evaporated ZnO thin film in comparison with sol-gel one.

  12. Hybrid optics for the visible produced by bulk casting of sol-gel glass using diamond-turned molds

    SciTech Connect

    Bernacki, B.E.; Miller, A.C.; Maxey, L.C.; Cunningham, J.P.; Moreshead, W.V.; Nogues, J.L.R.

    1995-07-01

    Recent combinations of diffractive and refractive functions in the same optical component allow designers additional opportunities to make systems more compact and enhance performance. This paper describes a research program for fabricating hybrid refractive/diffractive components from diamond-turned molds using the bulk casting of sol-gel silica glass. The authors use the complementary dispersive nature of refractive and diffractive optics to render two-color correction in a single hybrid optical element. Since diamond turning has matured as a deterministic manufacturing technology, techniques previously suitable only in the infrared are now being applied to components used at visible wavelengths. Thus, the marriage of diamond turning and sol-gel processes offers a cost-effective method for producing highly customized and specialized optical components in high quality silica glass. With the sol-gel casting method of replication, diamond-turned mold costs can be shared over many pieces. Diamond turning takes advantage of all of the available degrees of freedom in a single hybrid optical element: aspheric surface to eliminate spherical aberration, kinoform surface for control of primary chromatic aberration, and the flexibility to place the kinoform on non-planar surfaces for maximum design flexibility. The authors discuss the critical issues involved in designing the hybrid element, single point diamond-turning the mold, and fabrication in glass using the sol-gel process.

  13. Synthesis and Characterization of Pure and Doped Ceria Films by Sol-Gel and Sputtering

    SciTech Connect

    Koch, K.T.; Saraf, L.

    2004-01-01

    Pure and doped Ceria are known for their ability to gain or lose Oxygen, which is of interest to the Solid Oxide Fuel Cell (SOFC) and catalyst community. Current efforts are focused in SOFCs to reduce the operating temperature of the cell while maintaining ionic conduction. Ceria is known for its high ionic conductivity in the intermediate temperature region. (600-800° C) We have prepared pure and doped Ceria films by Sol-gel and magnetron sputtering methods. Enhanced grain-boundary contribution in the conductivity can be studied in the Sol-gel process due to excellent control over the synthesis conditions, which enabled us to control the average grain size. Sputtered films were grown and investigated as a prelude to possible multi-layered CeO2 structures in the near future. These films were characterized by X-ray diffraction (XRD), nuclear reaction analysis (NRA), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and Oxygen conduction measurements. We have observed greater volume diffusion in nanocrystalline Ceria compared to bulk polycrystalline films as a result of low density. Near surface diffusion properties with increasing temperature indicate a decrease in the volume diffusion as a result of grain growth. However, a linear increase in O2 content at ~600nm depth was observed and can be correlated to the redistribution of O2 in the samples. Surface roughness of <111> and <200> oriented Ceria films on Al2O3 and YSZ was observed to be 0.13nm and 0.397nm, respectively. In the case of Ceria grown on YSZ, structural properties from XRD results showed a highly oriented structure with cube on cube growth. XRD results from Ceria grown on Al2O3 showed an oriented structure whose degree of orientation appeared to be partially dependent on substrate temperature. Preliminary XPS results indicate reduction in Ceria from the Ce4+ to Ce3+ state near the surface.

  14. Sol-Gel Precursors for Ceramics from Minerals Simulating Soils from the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Sibille, Laurent; Gavira-Gallardo, Jose-Antonio; Hourlier-Bahloul, Djamila

    2003-01-01

    Recent NASA mission plans for the human exploration of our Solar System has set new priorities for research and development of technologies necessary to enable a long-term human presence on the Moon and Mars. The recovery and processing of metals and oxides from mineral sources on other planets is under study to enable use of ceramics, glasses and metals by explorer outposts. We report some preliminary results on the production of sol-gel precursors for ceramic products using mineral resources available in Martian or Lunar soil. The presence of SiO2, TiO2, and A12O3 in both Martian (44 wt.% SiO2, 1 wt.% TiO2, 7 wt.% Al2O3) and Lunar (48 wt.% SiO2, 1.5 wt.% TiO2, 16 wt.% Al2O3) soils and the recent developments in chemical processes to solubilize silicates using organic reagents and relatively little energy indicate that such an endeavor is possible. In order to eliminate the risks involved in the use of hydrofluoric acid to dissolve silicates, two distinct chemical routes are investigated to obtain soluble silicon oxide precursors from Lunar and Martian simulant soils. Clear sol-gel precursors have been obtained by dissolution of silica from Lunar simulant soil in basic ethylene glycol (C2H4(OH)2) solutions to form silicon glycolates. Thermogravimetric Analysis and X-ray Photoelectron Spectroscopy were used to characterize the elemental composition and structure of the precursor molecules. Further concentration and hydrolysis of the products was performed to obtain gel materials for evaluation as ceramic precursors. In the second set of experiments, we used the same starting materials to synthesize silicate esters in acidified alcohol mixtures. Preliminary results indicate the presence of silicon alkoxides in the product of distillation.

  15. Fluorescence of Pentavalent Chromium in SiO2 Sol-Gel Glasses

    NASA Technical Reports Server (NTRS)

    Jia, Weiyi; Castro, Lymari; Wang, Yanyun; Liu, Huimin

    1998-01-01

    Chromium ions are very attractive to optical spectroscopy and laser physics. It is well known that the first laser in the history is a ruby laser activated with Cr(3+). It was found in early nineties that Cr(4+) was also an interesting lasing ion in the near infrared, and various Cr(4+) lasers have been developed. Very recently, it was reported that Cr(2+) doped in CdSe crystals showed lasing action in the infrared. The above achievement have stimulated an interest in searching for Cr(5+) and investigating its optical properties. Cr(5+) is isoelectronic with Ti(3+) and V(4+), having electron configuration 3d1. Ti(3+) is the active center of commercial cw and femtosecond sapphire lasers, tunable in the range 680-1100 nm. V(4+) doped in YAlO3 and Al2O3 showed broad band emission near 635 nm. Although EPR results of Cr(5+) were reported, the optical properties were less studied. Herren et al. reported an observation of luminescence from Cr doped in SiO2 sol-gel glass. The luminescence spectrum was assigned to pentavalent ions in their first paper, and later it was identified to be the emission from the charge transfer transition of Cr(6+). The first observation of photoluminescence from octahedrally coordinated Cr(5+) in BaCaMg aluminate glasses was reported very recently. In this work, we report luminescence results of Cr doped SiO2 sol-gel glasses. The fluorescence spectra are very different from Herrens' results, and we believe it originates from pentavalent Cr.

  16. Pr(III) luminescence enhancement by chelation in solution and in sol-gel glass.

    PubMed

    Zaitoun, M A; El-Qisairi, A K; Momani, K A; Qaseer, H A; Jaradat, Q M

    2014-10-28

    Due to the weak emission of lanthanide ions in solution, it is common practice to form complexes of the lanthanide ions with organic ligands that strongly absorbs light and transfers the energy to the lanthanide ion center via the antenna effect. The organic ligands 2-6-pyridinedicarboxylate (L1) and the polytonic diazine (N-N) ligand L2 (C22H16N12O2) were used to synthesize two Pr(III) complexes, namely: Pr-L1 (Na3[Pr(C7H3NO4)3]) and Pr-L2. The prepared complexes were further encapsulated in an optically transparent sol-gel glass. The synthesized ligands and complexes were characterized by FTIR and (1)H NMR. Room temperature luminescence of Pr-L1 and Pr-L2 complexes in solution and in sol-gel glass were investigated using a spectrofluorometer. Excitation at the maximum absorption wavelength of the ligands (280nm) resulted in the typical visible luminescence (centered at around 600nm) resulting from the (1)D2→(3)H4 transition of the Pr(III) ion, which contributes to the efficient energy transfer from the absorbing ligand L1 to the chelated Pr(III) ion (an antenna effect) while the Pr(III) luminescence is not efficiently sensitized by ligand L2. The obtained emission spectra indicated that the excitation energy level for the central Pr(III) is in a slightly lower location than ligand L1 excitation triplet (T1) level and can accept the energy transfer from T1 efficiently. PMID:25467665

  17. Pr(III) luminescence enhancement by chelation in solution and in sol-gel glass

    NASA Astrophysics Data System (ADS)

    Zaitoun, M. A.; El-Qisairi, A. K.; Momani, K. A.; Qaseer, H. A.; Jaradat, Q. M.

    2015-02-01

    Due to the weak emission of lanthanide ions in solution, it is common practice to form complexes of the lanthanide ions with organic ligands that strongly absorbs light and transfers the energy to the lanthanide ion center via the antenna effect. The organic ligands 2-6-pyridinedicarboxylate (L1) and the polytonic diazine (N-N) ligand L2 (C22H16N12O2) were used to synthesize two Pr(III) complexes, namely: Pr-L1 (Na3[Pr(C7H3NO4)3]) and Pr-L2. The prepared complexes were further encapsulated in an optically transparent sol-gel glass. The synthesized ligands and complexes were characterized by FTIR and 1H NMR. Room temperature luminescence of Pr-L1 and Pr-L2 complexes in solution and in sol-gel glass were investigated using a spectrofluorometer. Excitation at the maximum absorption wavelength of the ligands (280 nm) resulted in the typical visible luminescence (centered at around 600 nm) resulting from the 1D2 → 3H4 transition of the Pr(III) ion, which contributes to the efficient energy transfer from the absorbing ligand L1 to the chelated Pr(III) ion (an antenna effect) while the Pr(III) luminescence is not efficiently sensitized by ligand L2. The obtained emission spectra indicated that the excitation energy level for the central Pr(III) is in a slightly lower location than ligand L1 excitation triplet (T1) level and can accept the energy transfer from T1 efficiently.

  18. Thermo-optic switches using sol-gel processed hybrid materials

    NASA Astrophysics Data System (ADS)

    Kribich, Kada R.; Barry, Henry; Copperwhite, Robert; Kolodziejczyk, Boleslaw; O'Dwyer, Kieran; Sabattie, Jean-Marc; MacCraith, Brian D.

    2004-08-01

    There is a clear need for low cost, high performance and large-scale production of photonic chips. Network development requires more interconnecting components. A flexible and low-cost process using good quality material is necessary. The sol-gel process is a chemical method to fabricate glasses at ambient pressure and moderate temperature. The resulting material properties can be tuned depending on the precursors used. Hybrid materials, mixing organic and inorganic parts, offer the advantages of polymer-like materials and glasses. We have developed sol-gel-processed integrated optical circuits using hybrid materials. We report on the development of active devices based on the thermo-optic effect. Thermo-optic coefficients as high as -2.10-4/°K have been measured in our materials. This enables the design of compact devices with low power consumption. Our goal is to utilise the thermo-optic effect in the development of integrated optical switches. The kHz response time of such switches makes them unsuitable for modulation applications, but they can be used for network protection, reconfiguration purposes in routing and multiplexing applications such as Code Division Multiplexing. New designs, based on multimode interference couplers (MMIC), have also been created. In this work we first describe the synthesis of the hybrid materials as well as the fabrication processes. Using the measured properties of the materials developed, we can simulate the optical and thermal properties of the target devices. The simulation results have been exploited to model and optimise a range of switch designs, including MMI-based 1xN switches. Finally, we report on the full characterisation of the different structures and devices created in terms of fabrication quality and optical and thermal response.

  19. Synthesis and Characterization of Pure and Doped Ceria Films by Sol-gel and Sputtering

    SciTech Connect

    Koch, Kurt T.; Saraf, Laxmikant V.

    2004-12-01

    Synthesis and Characterization of Pure and Doped Ceria Films by Sol-gel and Sputtering. KURT T. KOCH (University of Missouri, Rolla, MO, 65409) LAXMIKANT SARAF (Environmental and Molecular Science Laboratory (Part of Pacific Northwest National Laboratory), Richland, Washington 99352). Pure and doped Ceria are known for their ability to gain or lose Oxygen, which is of interest to the Solid Oxide Fuel Cell (SOFC) and catalyst community. Current efforts are focused in SOFCs to reduce the operating temperature of the cell while maintaining ionic conduction. Ceria is known for its high ionic conductivity in the intermediate temperature region. (600-800 C) We have prepared pure and doped Ceria films by Sol-gel and magnetron sputtering methods. These films were characterized by X-ray diffraction (XRD), nuclear reaction analysis (NRA), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and Oxygen conduction measurements. We have observed greater volume diffusion in nanocrystalline Ceria compared to bulk polycrystalline films as a result of low density. Near surface diffusion properties with increasing temperature indicate a decrease in the volume diffusion as a result of grain growth. However, a linear increase in O2 content at {approx}600nm depth was observed and can be correlated to the redistribution of O2 in the samples. Surface roughness of <111> and <200> oriented Ceria films on Al2O3 and YSZ was observed to be 0.13nm and 0.397nm, respectively. In the case of Ceria grown on YSZ, structural properties from XRD results showed a highly oriented structure with cube on cube growth. XRD results from Ceria grown on Al2O3 showed an oriented state near the surface. structure whose degree of orientation appeared to be partially dependent on substrate temperature. Preliminary XPS results indicate reduction in Ceria from the Ce4+ to Ce3+ state near the surface.

  20. Sol-Gel Deposition of Iridium Oxide for Biomedical Micro-Devices

    PubMed Central

    Nguyen, Cuong M.; Rao, Smitha; Yang, Xuesong; Dubey, Souvik; Mays, Jeffrey; Cao, Hung; Chiao, Jung-Chih

    2015-01-01

    Flexible iridium oxide (IrOx)-based micro-electrodes were fabricated on flexible polyimide substrates using a sol-gel deposition process for utilization as integrated pseudo-reference electrodes for bio-electrochemical sensing applications. The fabrication method yields reliable miniature on-probe IrOx electrodes with long lifetime, high stability and repeatability. Such sensors can be used for long-term measurements. Various dimensions of sol-gel iridium oxide electrodes including 1 mm × 1 mm, 500 μm × 500 μm, and 100 μm × 100 μm were fabricated. Sensor longevity and pH dependence were investigated by immersing the electrodes in hydrochloric acid, fetal bovine serum (FBS), and sodium hydroxide solutions for 30 days. Less pH dependent responses, compared to IrOx electrodes fabricated by electrochemical deposition processes, were measured at 58.8 ± 0.4 mV/pH, 53.8 ± 1.3 mV/pH and 48 ± 0.6 mV/pH, respectively. The on-probe IrOx pseudo-reference electrodes were utilized for dopamine sensing. The baseline responses of the sensors were higher than the one using an external Ag/AgCl reference electrode. Using IrOx reference electrodes integrated on the same probe with working electrodes eliminated the use of cytotoxic Ag/AgCl reference electrode without loss in sensitivity. This enables employing such sensors in long-term recording of concentrations of neurotransmitters in central nervous systems of animals and humans. PMID:25686309

  1. Nano rods for coloured glasses obtained by hybrid sol-gel coating.

    PubMed

    Veron, Olivier; Blondeau, Jean-Philippe; Moineau, Johanne; Aubert, Pierre-Henri; Vignolle, Caroline Andreazza; Banet, Philippe; Allam, Lévi

    2011-09-01

    Many new materials are now allowing new properties thanks to nanotechnology because this domain of physics gives possibilities to optimize targeted properties even if these materials react in very various influential parameters. Architectural, automotive, bone pathologies, environment, display applications are some concerned domains. The sol-gel process is a method allowing the realisation of coats at ambiant temperature, thus it is possible to realize Liquid Crystal Display (LCD), water-repellent coatings on privacy glass, antireflective coatings, hydrophobic or hydrophilic surfaces, bone tissue regeneration. In this study, the purpose is to show the thermal influence on a covered glass with a complex hybrid sol-gel solution. This coated glass is going to change color from red to orange under the heat influence. This color change effect comes from the evolution of various compounds organizations then/or from their loss during the degassing sequence. We show in spite of the complexity of the process that the responsible is mainly the organic dye. Thus the structure of the heated glass at 250 degrees C looks radically different than the heated one at 350 degrees C. SEM measurement allows to identify the surface compositions and to determine the elementary composition along the sample's cross section. TGA is used to justify a mass loss when samples are annealed. UV/Visible measurement is realized by two methods: in-line transmission to evaluate luminous flux and thus give colorimetric dot in the normalized CIE diagram and diffuse transmission to observe the size influence of the pigments. Infrared Reflectivity allows to evaluate the influence of species on the structure and to better target the nature of the lost compounds during annealing. TEM measurement proves that the obtained iron particles are nano rods for both samples. PMID:22097469

  2. Formulation and Performance of Novel Energetic Nanocomposites and Gas Generators Prepared by Sol-Gel Methods

    SciTech Connect

    Clapsaddle, B J; Zhao, L; Prentice, D; Pantoya, M L; Gash, A E; Satcher Jr., J H; Shea, K J; Simpson, R L

    2005-03-24

    In the field of composite energetic materials, properties such as ingredient distribution, particle size, and morphology affect both sensitivity and performance. Since the reaction kinetics of composite energetic materials are typically controlled by the mass transport rates between reactants, one would anticipate new and potentially exceptional performance from energetic nanocomposites. We have developed a new method of making nanostructured energetic materials, specifically explosives, propellants, and pyrotechnics, using sol-gel chemistry. A novel sol-gel approach has proven successful in preparing nanostructured metal oxide materials. By introducing a fuel metal, such as aluminum, into the nanostructured metal oxide matrix, energetic materials based on thermite reactions can be fabricated. Two of the metal oxides are tungsten trioxide and iron(III) oxide, both of which are of interest in the field of energetic materials. Due to the versatility of the preparation method, binary oxidizing phases can also be prepared, thus enabling a potential means of controlling the energetic properties of the subsequent nanocomposites. Furthermore, organic additives can also be easily introduced into the nanocomposites for the production of nanostructured gas generators. The resulting nanoscale distribution of all the ingredients displays energetic properties not seen in its micro-scale counterparts due to the expected increase of mass transport rates between the reactants. The unique synthesis methodology, formulations, and performance of these materials will be presented. The degree of control over the burning rate of these nanocomposites afforded by the compositional variation of a binary oxidizing phase will also be discussed. These energetic nanocomposites have the potential for releasing controlled amounts of energy at a controlled rate. Due to the versatility of the synthesis method, a large number of compositions and physical properties can be achieved, resulting in

  3. Sol-gel synthesis and characterisation of nano-scale hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Bilton, M.; Brown, A. P.; Milne, S. J.

    2010-07-01

    Hydroxyapatite (HAp) forms the main mineral component of bone and teeth. This naturally occurring HAp is in the form of nano-metre sized crystallites of Ca10(PO4)6(OH)2 that contain a number of cation and anion impurities, for example CO32-, F-, Na+, Mg2+ and Sr2+. Synthetic nano-sized HAp particles exhibit favourable biocompatibility and bioactivity and in order to better match the composition to natural HAp there is great interest in producing a range of chemically modified powders. In this study, two HAp powders have been synthesised via a water-based low-temperature sol-gel method and a third, commercial powder from Sigma-Aldrich have been analysed. Subsequent powder calcination has been carried out within the temperature range of 500-700 °C and the products characterised by bulk chemical analysis, X-ray diffraction and electron microscopy. Energy dispersive X-ray spectroscopy (EDX) in the TEM has been used to assess the composition of individual HAp particles. In order to do this accurately it is first necessary to account for the sensitivity of the HAp structure and composition to irradiation by the high energy electron beam of the TEM. This was done by monitoring the estimated Ca/P ratio derived from TEM-EDX of stoichiometric HAp under increasing levels of electron fluence. A fluence threshold (at a given beam energy) was established below which the measured Ca/P ratio can be considered to be stable. Subsequent elemental analysis at or below this threshold has enabled the variation in composition between particles both within and between synthesis batches to be accurately assessed. Compositional variability between particles is also evident, even in the commercial powder, but is far greater in the powders prepared by the sol-gel method.

  4. Sol-gel derived titania coating with immobilized bisphosphonate enhances screw fixation in rat tibia.

    PubMed

    Linderbäck, Paula; Areva, Sami; Aspenberg, Per; Tengvall, Pentti

    2010-08-01

    A variety of surface modifications have been tested for the enhancement of screw fixation in bone, and locally delivered anti-osteoporosis drugs such as bisphosphonates (BP) are then of interest. In this in vivo study, the impact of surface immobilized BP was compared with systemic BP delivery and screws with no BP. After due in vitro characterization, differently treated stainless steel (SS) screws were divided into four groups with 10 rats each. Three of the groups received screws coated with sol-gel derived TiO(2) and calcium phosphate (SS+TiO(2)+CaP). One of these had no further treatment, one had alendronate (BP) adsorbed to calcium phosphate mineral, and one received systemic BP treatment. The fourth group received uncoated SS screws and no BP (control). The screw pullout force was measured after 4 weeks of implantation in rat tibiae. The immobilized amount and release rate of alendronate could be controlled by different immersion times. The SS+TiO(2)+CaP coating did not increase the pullout force compared to SS alone. Surface delivered alendronate enhanced the pullout force by 93% [p = 0.000; 95% Confidence Interval (CI): 67-118%] compared to SS, and by 39% (p = 0.044; 95% CI: 7-71%) compared to systemic alendronate delivery. Both surface immobilized and systemically delivered alendronate improved implant fixation. Also, locally delivered, that is, surface immobilized alendronate showed a better fixation than systemically delivered. Using sol-gel derived TiO(2) as a platform, it is possible to administer controllable amounts of a variety of BPs. PMID:20186735

  5. Rare Earth based Sol-Gel Materials: An Intra- and Inter- Collegiate Collaborative Research Project

    NASA Astrophysics Data System (ADS)

    Silversmith, Ann

    2004-03-01

    Sol-gel glasses containing rare earth (RE) impurities form an exciting class of new optical materials with potential uses as phosphors and solid state laser media. The low temperature glass synthesis based on the liquid organic precursor tetramethoxysilane allows incorporation of higher RE concentrations than in traditional melt glasses without compromising the amorphous character of the material. The synthesis and spectroscopic characterization of these materials have together formed the basis for a fruitful interdisciplinary and multi-institutional research collaboration. All materials used in this project are made by Hamilton College chemistry students; spectroscopy experiments are performed by students and faculty in the physics departments at Hamilton, Franklin and Marshall, and Davidson Colleges. In this talk results from two ongoing spectroscopic investigations will be presented, both connected to the long-term goal of improving the low fluorescence efficiency of these materials. The first is the chelation of the RE metal to create an enhanced fluorescence excitation path and to physically separate the RE from the sol-gel matrix. Chelating molecules absorb strongly in the uv, and subsequent energy transfer can produce intense visible emission from the RE. Results are presented for the chelating agent 2,6-pyridine-dicarboxylic acid (PDC) bound to europium ions and incorporated into gels. Red emission from europium follows excitation into the PDC absorption band below 300nm. The second investigation focuses on fluorescence quenching of blue emission from trivalent terbium. Two separate mechanisms -energy transfer from terbium to residual hydroxide ions and among terbium ions - lead to reduced intensity of the blue emission lines relative to other longer wavelength signals.

  6. Sol-gel based optical sensor for determination of Fe (II): A novel probe for iron speciation

    NASA Astrophysics Data System (ADS)

    Samadi-Maybodi, Abdolraouf; Rezaei, Vida; Rastegarzadeh, Saadat

    2015-02-01

    A highly selective optical sensor for Fe (II) ions was developed based on entrapment of a sensitive reagent, 2,4,6-tri(2-pyridyl)-s-triazine (TPTZ), in a silica sol-gel thin film coated on a glass substrate. The thin films fabricated based on tetraethoxysilane (TEOS) as precursor, sol-gel pH ∼ 3, water:alkoxyde ratio of 4:1 and TPTZ concentration of 0.112 mol L-1. The influence of sol-gel parameters on sensing behavior of the fabricated sensor was also investigated. The fabricated sensor can be used for determination of Fe (II) ion with an outstanding high selectivity over a dynamic range of 5-115 ng mL-1 and a detection limit of 1.68 ng mL-1. It also showed reproducible results with relative standard deviation of 3.5% and 1.27% for 10 and 90 ng mL-1 of Fe (II), respectively, along with a fast response time of ∼120 s. Total iron also was determined after reduction of Fe (III) to Fe (II) using ascorbic acid as reducing agent. Then, the concentration of Fe (III) was calculated by subtracting the concentration of Fe (II) from the total iron concentration. Interference studies showed a good selectivity for Fe (II) with trapping TPTZ into sol-gel matrix and appropriately adjusting the structure of doped sol-gel. The sensor was compared with other sensors and was applied to determine iron in different water samples with good results.

  7. Sol-gel synthesis and characterization of tetra-alkoxysilane and bridged-polysilsesquioxane materials in non-polar solvents

    SciTech Connect

    Yamanaka, S.A.; Martino, A.; Kawola, J.S.; Loy, D.A.

    1996-10-01

    Although the sol-gel method has widely been used for the encapsulation of molecules in porous glass materials, the variety of dopants has been limited by the solvents used in processing. Polar solvents, such as ethanol, methanol or tetrahydrofuran, are typically added as cosolvents to prevent phase separation between the organic metal alkoxide and water. Non-polar solvents are generally not suitable for sol-gel processing since they are immicible with the aqueous phase. Our study increases the availability of solvents that may be used in sol-gel processing and therefore expands the range of molecules suitable for encapsulation. Here, we report a novel method for preparing both silica sol-gel materials and bridged-polysilsesquioxane materials in a non-polar, hydrocarbon solvent. The method involves the formation of an inverse micelle upon addition of the surfactant, didodecyldimethylammonium bromide, to toluene. The dynamic nature of the micelle allows sol-gel reactions to occur between water (soluble in the polar core of the micelle) and the metal alkoxide precursor (soluble in the solvent phase). Materials prepared by this technique have been characterized by nitrogen sorption porosimetry, SEM, solid state {sup 29}Si NMR, TGA and XRD. Photochemical conversion of technetium fluorides and oxyfluorides is largely uninvestigated. Because technetium was introduced into U.S. uranium enrichment plants, decommissioning and decontamination of these plants will involve technetium fluorides and oxyfluorides. Photochemical conversion of such compounds may facilitate waste minimization and cost avoidance goals during plant clean-up. Photochemical fluorination using ultraviolet photolysis of a mixture of fluorine and oxygen gases is an effective means of converting solid, nonvolatile fluorides of fight actinides, such as U, Np, and Pu, into volatile hexafluorides thereby removing surface radioactive contamination.

  8. Evaluation of sol-gel based magnetic 45S5 bioglass and bioglass-ceramics containing iron oxide.

    PubMed

    Shankhwar, Nisha; Srinivasan, A

    2016-05-01

    Multicomponent oxide powders with nominal compositions of (45-x)·SiO2·24.5CaO·24.5Na2O·6P2O5xFe2O3 (in wt.%) were prepared by a modified sol-gel procedure. X-ray diffraction (XRD) patterns and high resolution transmission electron microscope images of the sol-gel products show fully amorphous structure for Fe2O3 substitutions up to 2 wt.%. Sol-gel derived 43SiO2·24.5CaO·24.5Na2O·6P2O5·2Fe2O3 glass (or bioglass 45S5 with SiO2 substituted with 2 wt.% Fe2O3), exhibited magnetic behavior with a coercive field of 21 Oe, hysteresis loop area of 33.25 erg/g and saturation magnetization of 0.66 emu/g at an applied field of 15 kOe at room temperature. XRD pattern of this glass annealed at 850 °C for 1h revealed the formation of a glass-ceramic containing sodium calcium silicate and magnetite phases in nanocrystalline form. Temperature dependent magnetization and room temperature electron spin resonance data have been used to obtain information on the magnetic phase and distribution of iron ions in the sol-gel glass and glass-ceramic samples. Sol-gel derived glass and glass-ceramic exhibit in-vitro bioactivity by forming a hydroxyapatite surface layer under simulated physiological conditions and their bio-response is superior to their melt quenched bulk counterparts. This new form of magnetic bioglass and bioglass ceramics opens up new and more effective biomedical applications. PMID:26952414

  9. AFM nanometer surface morphological study of in situ electropolymerized neutral red redox mediator oxysilane sol-gel encapsulated glucose oxidase electrochemical biosensors.

    PubMed

    Chiorcea-Paquim, Ana-Maria; Pauliukaite, Rasa; Brett, Christopher M A; Oliveira-Brett, Ana Maria

    2008-10-15

    Four different silica sol-gel films: methyltrimethoxysilane (MTMOS), tetraethoxysilane (TEOS), 3-aminopropyltriethoxysilane (APTOS) and 3-glycidoxypropyl-trimethoxysilane (GOPMOS) assembled onto highly oriented pyrolytic graphite (HOPG) were characterized using atomic force microscopy (AFM), due to their use in the development of glucose biosensors. The chemical structure of the oxysilane precursor and the composition of the sol-gel mixture both influenced the roughness, the size and the distribution of pores in the sol-gel films, which is relevant for enzyme encapsulation. The GOPMOS sol-gel film fulfils all the morphological characteristics required for good encapsulation of the enzyme, due to a smooth topography with very dense and uniform distribution of only small, 50 nm diameter, pores at the surface. APTOS and MTMOS sol-gel films developed small pores together with large ones of 300-400 nm that allow the leakage of enzymes, while the TEOS film formed a rough and incomplete network on the electrode, less suitable for enzyme immobilisation. GOPMOS sol-gel film with encapsulated glucose oxidase and poly(neutral red) redox mediator, prepared by in situ electropolymerization, were also morphologically characterized by AFM. The AFM results explain the variation of the stability in time, sensitivity and limit of detection obtained with different oxysilane sol-gel encapsulated glucose oxidase biosensors with redox mediator. PMID:18485690

  10. Molybdenum chloride incorporated sol-gel materials for oxygen sensing above room temperature

    NASA Astrophysics Data System (ADS)

    Osborn, D. J., III

    Maximizing the efficiency of the combustion process requires the ability to sense oxygen levels over a broad range of concentrations with fast response times under rapidly varying conditions of pressure and temperature to maintain the correct fuel/oxygen ratio in real-time. Quenching of the luminescence from organometallic compounds by oxygen has been used to develop a number of fiber-based sensors. A major drawback of these organometallic indicators for combustion applications is that the chromophores degrade with time, have a limited operational temperature range, typically room temperature +/-25°C, and lack long-term reliability. This work investigates luminescent molybdenum clusters based on Mo6Cl12 were as replacements for organometallic indicators. A study of the high temperature stability of Mo6Cl 12 in air revealed irreversible changes in the optical absorption spectrum at T >250°C and a loss of the red luminescence characteristic of the pristine clusters. Thermal aging experiments run in air and under nitrogen point to oxidation of the clusters as the cause of the change in optical properties. X-ray powder diffraction measurements on samples annealed at 300°C under controlled conditions are consistent with oxidation of Mo6Cl 12 to form MoO3. Optical and thermal aging experiments show that K2Mo6Cl14•1H2O, the alkali metal salt of Mo6Cl12, has higher thermal stability and remains luminescent after long-term aging in air at 280°C. Methods were developed for depositing K2Mo6Cl14•1H 2O-incorporated sol--gel films on planar and optical fiber substrates by dip coating and spray coating. The mechanical properties of the films depended on the film thickness; thin films were stable, but cracks often formed in the thicker films needed for sensors. This problem was addressed using two strategies: altering the components of the sol--gel solutions used to embed the clusters and by devising a composite approach to sensing layers where a slurry of fully cured sol--gel

  11. Exploring the synthesis and characterization of nanoenergetic materials from sol-gel chemistry

    NASA Astrophysics Data System (ADS)

    Walker, Jeremy D.

    Nanoenergetic composite materials have been synthesized by a sol-gel chemical process where the addition of a weak base molecule induces the gelation of a hydrated metal salt solution. A proposed 'proton scavenging' mechanism, where a weak base molecule extracts a proton from the coordination sphere of the hydrated iron (III) complex in the gelation process to form iron (III) oxide/hydroxide, FeIIIxOyHz, has been confirmed for the weak base propylene oxide (PO), a 1,2 epoxide, as well as for the weak bases tetrahydrofuran (THF), a 1,4 epoxide, and pyridine, a heterocyclic nitrogen-containing compound. Gelation mechanisms for the formation of FeIIIxOyHz from THF and pyridine have been presented and confirmed through pH, XPS, and IR studies. THF follows a similar mechanism as PO, where the epoxide extracts a proton from the coordination sphere of the hydrated iron complex forming a protonated epoxide, which then undergoes irreversible ring-opening after reaction with a nucleophile in solution. Pyridine also extracts a proton from the hydrated metal complex, however, the stable six-membered molecule has low associated ring strain and does not endure ring-opening. Energetic properties for the Fe2O3/Al and RuO 2/Al sol-gel synthesized systems are also presented. Sol-gel chemistry synthesizes x-ray amorphous oxide matrices which contain substantial quantities of residual water and organic species. The iron (III) matrix, formed from the addition of a weak base epoxide molecule to a hydrated iron (III) nitrate solution, consists of stoichiometric Fe2O3, FeO(OH), and Fe(OH)3 and can only definitely be described as of Fe IIIxOyHz. XPS characterization of the metal oxide matrix synthesized from the addition of the weak base propylene oxide to a hydrated ruthenium (III) chloride solution corresponds to that of hydrous ruthenium (IV) oxide. Fe2O3/Al energetic systems were synthesized from the epoxides PO, trimethylene oxide (TMO) and 3,3 dimethyl oxetane (DMO). Energetic

  12. Sol-Gel Process for Making Pt-Ru Fuel-Cell Catalysts

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram; Valdez, Thomas; Kumta, Prashant; Kim, Y.

    2005-01-01

    A sol-gel process has been developed as a superior alternative to a prior process for making platinum-ruthenium alloy catalysts for electro-oxidation of methanol in fuel cells. The starting materials in the prior process are chloride salts of platinum and ruthenium. The process involves multiple steps, is time-consuming, and yields a Pt-Ru product that has relatively low specific surface area and contains some chloride residue. Low specific surface area translates to incomplete utilization of the catalytic activity that might otherwise be available, while chloride residue further reduces catalytic activity ("poisons" the catalyst). In contrast, the sol-gel process involves fewer steps and less time, does not leave chloride residue, and yields a product of greater specific area and, hence, greater catalytic activity. In this sol-gel process (see figure), the starting materials are platinum(II) acetylacetonate [Pt(C5H7O2)2, also denoted Pt-acac] and ruthenium(III) acetylacetonate [Ru(C5H7O2)3, also denoted Ru-acac]. First, Pt-acac and Ru-acac are dissolved in acetone at the desired concentrations (typically, 0.00338 moles of each salt per 100 mL of acetone) at a temperature of 50 C. A solution of 25 percent tetramethylammonium hydroxide [(CH3)4NOH, also denoted TMAH] in methanol is added to the Pt-acac/Ruacac/ acetone solution to act as a high-molecular-weight hydrolyzing agent. The addition of the TMAH counteracts the undesired tendency of Pt-acac and Ru-acac to precipitate as separate phases during the subsequent evaporation of the solvent, thereby helping to yield a desired homogeneous amorphous gel. The solution is stirred for 10 minutes, then the solvent is evaporated until the solution becomes viscous, eventually transforming into a gel. The viscous gel is dried in air at a temperature of 170 C for about 10 hours. The dried gel is crushed to make a powder that is the immediate precursor of the final catalytic product. The precursor powder is converted to the

  13. Development of novel Sol-Gel Indicators (SGI`s) for in-situ environmental measurements: Part 1, Program and a new pH Sol-Gel Indicator

    SciTech Connect

    Livingston, R.R.; Baylor, L.; Wicks, G.G.

    1992-11-03

    The feasibility of incorporating analytical indicators into a sol-gel glassy matrix and then coating substrates with this composite material has bee demonstrated. Substrates coated include paper, wood, glass, and the lens of an analytical probe. The first SRTC sol-gel indicator, comprising bromophenol blue dispersed in a silica matrix, was fabricated and successfully used to measure solution pH in the range of pH 3.0 to 7.5. material exhibited a quick response time, as measured by color changes both qualitatively and quantitatively, and the measuring device was reversible or reusable. Additional indicators with responses over other ranges as well as indicators sensitive to the presence of elements of interest, are also under development. The new SGI composites possess promising properties and an excellent potential for performing a variety important in-situ environmental measurements and area discussed in this report.

  14. Thermosensitive and Mucoadhesive Sol-Gel Composites of Paclitaxel/Dimethyl-β-Cyclodextrin for Buccal Delivery

    PubMed Central

    Kang, Bong-Seok; Ng, Choon Lian; Davaa, Enkhzaya; Park, Jeong-Sook

    2014-01-01

    The purpose of this study was to develop a buccal paclitaxel delivery system using the thermosensitive polymer Pluronic F127 (PF127) and the mucoadhesive polymer polyethylene oxide (PEO). The anticancer agent paclitaxel is usually used to treat ovarian, breast, and non-small-cell lung cancer. To improve its aqueous solubility, paclitaxel was incorporated into an inclusion complex with (2,6-di-O-methyl)-β-cyclodextrin (DMβCD). The formation of the paclitaxel inclusion complex was evaluated using various techniques, including x-ray diffractometry (XRD), Fourier-transform infrared (FT-IR) spectrophotometry, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Hydrogels were prepared using a cold method. Concentrations of 18, 20, and 23% (w/v) PF127 were dissolved in distilled water including paclitaxel and stored overnight in a refrigerator at 4°C. PEO was added at concentrations of 0.1, 0.2, 0.4, 0.8, and 1% (w/v). Each formulation included paclitaxel (0.5 mg/mL). The sol-gel transition temperature of the hydrogels was measured using the tube-inverting method. Drug release from the hydrogels was measured using a Franz diffusion cell containing pH 7.4 phosphate-buffered solution (PBS) buffer at 37°C. The cytotoxicity of each formulation was measured using the MTT assay with a human oral cancer cell (KB cell). The sol-gel transition temperature of the hydrogel decreased when PF127 was present and varied according to the presence of mucoadhesive polymers. The in vitro release was sustained and the release rate was slowed by the addition of the mucoadhesive polymer. The cytotoxicity of the blank formulation was low, although the drug-loaded hydrogel showed acceptable cytotoxicity. The results of our study suggest that the combination of a PF 127-based mucoadhesive hydrogel formulation and inclusion complexes improves the in vitro release and cytotoxic effect of paclitaxel. PMID:25275485

  15. Morphology evolution of ZrB{sub 2} nanoparticles synthesized by sol-gel method

    SciTech Connect

    Zhang Yun; Li Ruixing; Jiang Yanshan; Zhao Bin; Duan Huiping; Li Junping; Feng Zhihai

    2011-08-15

    Zirconium diboride (ZrB{sub 2}) nanoparticles were synthesized by sol-gel method using zirconium n-propoxide (Zr(OPr){sub 4}), boric acid (H{sub 3}BO{sub 3}), sucrose (C{sub 12}H{sub 22}O{sub 11}), and acetic acid (AcOH). Clearly, it was a non-aqueous solution system at the very beginning of the reactions. Here, AcOH was used as both chemical modifier and solvent to control Zr(OPr){sub 4} hydrolysis. Actually, AcOH could dominate the hydrolysis by self-produced water of the chemical propulsion, rather than the help of outer water. C{sub 12}H{sub 22}O{sub 11} was selected, since it can be completely decomposed to carbon. Thus, carbon might be accounted precisely for the carbothermal reduction reaction. Furthermore, we investigated the influence of the gelation temperature on the morphology of ZrB{sub 2} particles. Increasing the gelation temperature, the particle shapes changed from sphere-like particles at 65 deg. C to a particle chain at 75 deg. C, and then form rod-like particles at 85 deg. C. An in-depth HRTEM observation revealed that the nanoparticles of ZrB{sub 2} were gradually fused together to evolve into a particle chain, finally into a rod-like shape. These crystalline nature of ZrB{sub 2} related to the gelation temperature obeyed the 'oriented attachment mechanism' of crystallography. - Graphical Abstract: Increasing the gelation temperature, the particle shapes changed from sphere-like particles at 65 deg. C to a particle chain at 75 deg. C, and then form rod-like particles at 85 deg. C. Highlights: > ZrB{sub 2} nanoparticles were synthesized by sol-gel method in an non-aqueous solution system. > AcOH was used as both chemical modifier and solvent to control Zr(OPr){sub 4} hydrolysis. > C{sub 12}H{sub 22}O{sub 11} was selected since it can be completely decomposed to carbon. > Increasing the gelation temperature, the particles changed from sphere-like to rod-like ones. > Crystalline nature of ZrB{sub 2} obeyed the 'oriented attachment mechanism' of

  16. Cobalt-silicon mixed oxide nanocomposites by modified sol-gel method

    SciTech Connect

    Esposito, Serena; Turco, Maria; Ramis, Gianguido; Bagnasco, Giovanni; Pernice, Pasquale; Pagliuca, Concetta; Bevilacqua, Maria; Aronne, Antonio

    2007-12-15

    Cobalt-silicon mixed oxide materials (Co/Si=0.111, 0.250 and 0.428) were synthesised starting from Co(NO{sub 3}){sub 2}.6H{sub 2}O and Si(OC{sub 2}H{sub 5}){sub 4} using a modified sol-gel method. Structural, textural and surface chemical properties were investigated by thermogravimetric/differential thermal analyses (TG/DTA), XRD, UV-vis, FT-IR spectroscopy and N{sub 2} adsorption at -196 deg. C. The nature of cobalt species and their interactions with the siloxane matrix were strongly depending on both the cobalt loading and the heat treatment. All dried gels were amorphous and contained Co{sup 2+} ions forming both tetrahedral and octahedral complexes with the siloxane matrix. After treatment at 400 deg. C, the sample with lowest Co content appeared amorphous and contained only Co{sup 2+} tetrahedral complexes, while at higher cobalt loading Co{sub 3}O{sub 4} was present as the only crystalline phase, besides Co{sup 2+} ions strongly interacting with siloxane matrix. At 850 deg. C, in all samples crystalline Co{sub 2}SiO{sub 4} was formed and was the only crystallising phase for the nanocomposite with the lowest cobalt content. All materials retained high surface areas also after treatments at 600 deg. C and exhibited surface Lewis acidity, due to cationic sites. The presence of cobalt affected the textural properties of the siloxane matrix decreasing microporosity and increasing mesoporosity. - Graphical abstract: Highly dispersed cobalt-silicon mixed oxide nanocomposites (Co/Si=0.111, 0.250 and 0.428) were obtained by a modified sol-gel method using almost solely aqueous solutions. The nature of cobalt species and their interactions with the siloxane matrix are strongly depending on both the cobalt loading and the heat treatment. All materials retained high surface areas also after treatments at 600 deg. C and exhibited surface Lewis acidity.

  17. Structural properties and antibacterial effects of hydrophobic and oleophobic sol-gel coatings for cotton fabrics.

    PubMed

    Vilcnik, Aljaz; Jerman, Ivan; Surca Vuk, Angela; Kozelj, Matjaz; Orel, Boris; Tomsic, Brigita; Simoncic, Barbara; Kovac, Janez

    2009-05-19

    In a continuation of previous studies, the wetting properties of the hydrophobic diureapropyltriethoxysilane [bis(aminopropyl)-terminated polydimethylsiloxane (1000)] (PDMSU) sol-gel hybrid, which forms washing-resistant water-repellent finishes on cotton fabrics, were further investigated. The addition of 1H,1H,2H,2H-perfluorooctyltriethoxysilane (PFOTES) to PDMSU resulted in a highly apolar low-energy surface on aluminum with gammaStotal equal to 14.5 mJ/m2 and a DetlaGiwi value of -82 mJ/m2. Mixed PFOTES-PDMSU finishes applied on cotton fabrics increased the water contact angles (thetaw) from approximately 130 degrees (PDMSU) to 147 degrees, also imparting oleophobicity (thetadiiodomethane=130 degrees, thetan-hexadecane=120 degrees) to the finished cotton fabrics. Washing caused breakage of the coating's integrity as established from SEM, which was attributed to the partial removal of PFOTES from the composite films, also shown by subtractive IR attenuated total reflectance (ATR) and XPS spectral measurements made on washed and unwashed fabrics. The antibacterial properties of the PFOTES-PDMSU-finished fabrics were assessed with the transfer method (EN ISO 20743:2007), revealing that the reduction of Escherichia coli bacteria on unwashed cotton fabrics was nearly 100%. Moreover, for washed (10 times) cotton fabrics a much higher bacterial reduction was noted for the PFOTES-PDMSU finishes (60.6+/-10.8%), surpassing PDMSU (30.4+/-6.1%) and commercial fluoroalkoxysilane (FAS) (21.9+/-5.7%) finishes. The structure of PFOTES-PDMSU gels, xerogels, and the corresponding coatings was investigated by analyzing the 29Si NMR and IR ATR spectra and comparing them with the spectra of PFOTES and octameric (T8) PFOTES based polyhedra. The results revealed the tendency of PFOTES to condense in octameric silsesquioxane polyhedra (T8), coexisting in the PDMSU sol-gel network with cyclic tetramers (T4(OH)4) and open cube-like species (T7(OH)3). The presence of -OH

  18. The Physics of Sol-Gel Derived Ferroelectric Thin Film PZT

    NASA Astrophysics Data System (ADS)

    Melnick, Bradley Michael

    Initial examination of a simple Auger depth profile reveals that thin film, pure lead zirconate titanate (PZT) is intrinsically a layered structure. Oxygen vacancies at the electrode interfaces create an n-type region in a normally p-type material by contributing electrons into the conduction band. Therefore, such measurable effects as the polarization versus applied field (hysteresis), and the dielectric constant versus applied field are all thickness dependent via a space charge effect on the surface of the material. M. E. Lines has suggested that the decay in switching polarization (fatigue) of barium titanate is linked to a build up of a space charge layer near the surface region. Although no specifics as to the source of the space charge layer (electronic or ionic) are given, it is implied that the space charge layer does inhibit switching due to an interaction with the domain nuclei. Therefore, it is plausible that degradation of the remnant polarization in PZT may also be connected with a surface layer. The implication from the above discussion is that thin film ferroelectric materials, such as sol-gel derived PZT, are intrinsically layered structures. This thesis involves the study of ferroelectric PZT synthesized via a solution-gelation technique (sol -gel). Using a reproducible and stable liquid solution, thin films are made by spinning droplets of the metalorganic liquid onto a substrate. The thin layers are then dried and annealed in order to form perovskite phase ferroelectric PZT capacitors for testing. A testing methodology is presented in order to test the capacitors unambiguous of artifacts due to the integration process. Capacitance versus voltage (CV), true DC leakage current, switching curve and hysteresis curve data is analyzed in order to examine the unique properties of the thin film ferroelectric. CV analysis indicates that a depletion region exists near the surface of the ferroelectric capacitor. The depletion region is found to dominate

  19. Structural Modification of Sol-Gel Materials through Retro Diels-Alder Reaction

    SciTech Connect

    SHALTOUT,RAAFAT M.; LOY,DOUGLAS A.; MCCLAIN,MARK D.; PRABAKAR,SHESHASAYANA; GREAVES,JOHN; SHEA,KENNETH J.

    1999-12-08

    Hydrolysis and condensation of organically bridged bis-triethoxysilanes, (EtO){sub 3}Si-R-Si(OEt){sub 3}, results in the formation of three dimensional organic/inorganic hybrid networks (Equation 1). Properties of these materials, including porosity, are dependent on the nature of the bridging group, R. Flexible groups (akylene-spacers longer than five carbons in length) polymerize under acidic conditions to give non-porous materials. Rigid groups (such as arylene-, alkynylene-, or alkenylene) form non-porous, microporous, and macroporous gels. In many cases the pore size distributions are quite narrow. One of the motivations for preparing hybrid organic-inorganic materials is to extend the range of properties available with sol-gel systems by incorporating organic groups into the inorganic network. For example, organically modified silica gels arc either prepared by co-polymerizing an organoalkoxysilane with a silica precursor or surface silylating the inorganic gel. This can serve to increase hydrophobicity or to introduce some reactive organic functionality. However, the type and orientation of these organic functionalities is difficult to control. Furthermore, many organoalkoxysilanes can act to inhibitor even prevent gelation, limiting the final density of organic functionalities. We have devised a new route for preparing highly functionalized pores in hybrid materials using bridging groups that are thermally converted into the desired functionalities after the gel has been obtained. In this paper, we present the preparation and characterization of bridged polysilsesquioxanes with Diels-Alder adducts as the bridging groups from the sol-gel polymerization of monomers 2 and 4. The bridging groups are constructed such that the retro Diela-Alder reaction releases the dienes and leaves the dienophiles as integral parts of the network polymers. In the rigid architecture of a xerogel, this loss of organic functionality should liberate sufficient space to modify the

  20. Effect of growth time on ZnO nanorod arrays by a facile sonicated sol-gel immersion technique

    NASA Astrophysics Data System (ADS)

    Malek, M. F.; Mamat, M. H.; Musa, M. Z.; Ishak, A.; Saurdi, I.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2016-07-01

    A facile sonicated sol-gel immersion technique has been presented for synthesizing ZnO nanorod arrays with controllable diameter and lengths on glass substrates. A sol-gel dip-coating deposition was first used to grow a thin layer of ZAO nanocrystals on substrate serving as seeds for the subsequent growth of the nanorod arrays. The effect of growth time of the ZnO nanorod arrays on the ZAO seed layer were investigated. The optical transmission properties of the ZnO nanorods has been investigated. The thickness of the nanorods can be controlled by the growth time. These highly oriented ZnO nanorod arrays are potential for the creation of functional materials, such as the electrode of the solar cells, optoelectronic devices and etc.

  1. STUDY ON SYNTHESIS AND EVOLUTION OF NANOCRYSTALLINE Mg4Ta2O9 BY AQUEOUS SOL-GEL PROCESS

    NASA Astrophysics Data System (ADS)

    Wu, H. T.; Yang, C. H.; Wu, W. B.; Yue, Y. L.

    2012-06-01

    Nanosized and highly reactive Mg4Ta2O9 were successfully synthesized by aqueous sol-gel method compared with conventional solid-state method. Ta-Mg-citric acid solution was first formed and then evaporated resulting in a dry gel for calcination in the temperature ranging from 600°C to 800°C for crystallization in oxygen atmosphere. The crystallization process from the gel to crystalline Mg4Ta2O9 was identified by thermal analysis and phase evolution of powders was studied using X-ray diffraction (XRD) technique during calcinations. Particle size and morphology were examined by transmission electron microscopy (TEM) and high resolution scanning electron microscopy (HR-SEM). The results revealed that sol-gel process showed great advantages over conventional solid-state method and Mg4Ta2O9 nanopowders with the size of 20-30 nm were obtained at 800°C.

  2. Sintering and microstructure of silicon carbide ceramic with Y3Al5O12 added by sol-gel method.

    PubMed

    Guo, Xing-Zhong; Yang, Hui

    2005-03-01

    Silicon carbide (SiC) ceramic with YAG (Y3Al5O12) additive added by sol-gel method was liquid-phase sintered at different sintering temperatures, and the sintering mechanism and microstructural characteristics of resulting silicon carbide ceramics were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and elemental distribution of surface (EDS). YAG (yttrium aluminum garnet) phase formed before the sintering and its uniform distribution in the SiC/YAG composite powder decreased the sintering temperature and improved the densification of SiC ceramic. The suitable sintering temperature was 1860 degrees C with the specimen sintered at this temperature having superior sintering and mechanical properties, smaller crystal size and fewer microstructure defects. Three characteristics of improved toughness of SiC ceramic with YAG added by sol-gel method were microstructural densification, main-crack deflection and crystal 'bridging'. PMID:15682507

  3. Sintering and microstructure of silicon carbide ceramic with Y3Al5O12 added by sol-gel method*

    PubMed Central

    Guo, Xing-zhong; Yang, Hui

    2005-01-01

    Silicon carbide (SiC) ceramic with YAG (Y3Al5O12) additive added by sol-gel method was liquid-phase sintered at different sintering temperatures, and the sintering mechanism and microstructural characteristics of resulting silicon carbide ceramics were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and elemental distribution of surface (EDS). YAG (yttrium aluminum garnet) phase formed before the sintering and its uniform distribution in the SiC/YAG composite powder decreased the sintering temperature and improved the densification of SiC ceramic. The suitable sintering temperature was 1860 °C with the specimen sintered at this temperature having superior sintering and mechanical properties, smaller crystal size and fewer microstructure defects. Three characteristics of improved toughness of SiC ceramic with YAG added by sol-gel method were microstructural densification, main-crack deflection and crystal ‘bridging’. PMID:15682507

  4. Corrosion resistance of multilayer hybrid sol-gel coatings deposited on the AISI 316L austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Caballero, Y. T.; Rondón, E. A.; Rueda, L.; Hernández Barrios, C. A.; Coy, A.; Viejo, F.

    2016-02-01

    In the present work multilayer hybrid sol-gel coatings were synthesized on the AISI 316L austenitic stainless steel employed in the fabrication of orthopaedic implants. Hybrid sols were obtained from a mixture of inorganic precursor, TEOS, and organic, GPTMS, using ethanol as solvent, and acetic acid as catalyst. The characterization of the sols was performed using pH measurements, rheological tests and infrared spectroscopy (FTIR) for different ageing times. On the other hand, the coatings were characterized by scanning electron microscopy (SEM), while the corrosion resistance was evaluated using anodic potentiodynamic polarization in SBF solution at 37±2°C. The results confirmed that sol-gel synthesis employing TEOS-GPTMS systems produces uniform and homogeneous coatings, which enhanced the corrosion resistance with regard to the parent alloy. Moreover, corrosion performance was retained after applying more than one layer (multilayer coatings).

  5. Sol-gel synthesis, structure and bioactivity of polycaprolactone/CaO . SiO2 hybrid material.

    PubMed

    Catauro, M; Raucci, M G; De Gaetano, F; Buri, A; Marotta, A; Ambrosio, L

    2004-09-01

    A method has been developed to cast novel organic/inorganic polymer hybrids from multicomponent solutions containing tetramethyl orthosilicate, calcium nitrate tetrahydrate, polycaprolactone, water, and methylethyketone via sol-gel process. The existence of the hydrogen bonds between organic and inorganic components of the hybrid and hydroxyapatite formation on the surface was proved by Fourier transform infrared analysis. The morphology of the hybrid material was studied by scanning electron microscopy. The structure of a molecular level dispersion was disclosed by atomic force microscopy, pore size distribution, and surface measurements. The infrared spectra of the hybrid relative to sample soaked in a fluid simulating the composition of human blood plasma suggests that polycaprolactone/CaO * SiO(2) hybrid material synthesised via sol-gel process is bioactive as well as the CaO * SiO(2) gel glass. PMID:15448406

  6. Investigation of correlation between the microstructure and electrical properties of sol-gel derived ZnO based thin films

    NASA Astrophysics Data System (ADS)

    Zhu, M. W.; Gong, J.; Sun, C.; Xia, J. H.; Jiang, X.

    2008-10-01

    Pure ZnO and aluminum doped ZnO films (ZAO) were prepared by sol-gel method and the effect of Al doping on the microstructure and electrical properties of the films was investigated. The results showed that the transformation from granular to columnar structure could be observed in pure ZnO films with the increase in heating time while in aluminum doped films little structural changes occurred even after a prolonged heating time. Additionally, measurements of electrical properties showed that both microstructural evolution and doping could significantly improve the conductivity of the films, which could be assigned to an increase both in Hall mobility and carrier concentration. The relationship between microstructure and the electrical properties of the films was discussed, and various scattering mechanisms were proposed for sol-gel derived ZnO and ZAO films as a function of the carrier concentration.

  7. Laser Induced Reverse Transfer with metal and hybrid material prepared with sol-gel process used on glass substrate

    NASA Astrophysics Data System (ADS)

    Flury, Manuel; Pédri, Claude

    2013-08-01

    This article presents a possible use of Laser Induced Reverse Transfer (LIRT) for metal deposition combined with hybrid material prepared using the sol-gel process. The goal was to obtain two dimensional metal gratings with inorganic-organic hybrid material protection on low cost glass substrates. The hybrid material using the sol-gel material is employed here to give better adhesion of metal deposited by LIRT on glass substrates, and also to possibly cover the metal structure. The hybrid material was an organically modified silicate glass based on methacryloxypropyltri-methoxysilane (MATPMS) and zirconium propoxide. The proposed process permits to prototype rapidly small diffractive structure in amplitude mode or to mark two dimensional complicated patterns without complex technologies employing a focalized and computer controlled Nd-YAG laser at 1064 nm. The different steps of the technology are also discussed.

  8. On the sol-gel synthesis of strontium-titanate thin films and the prospects of their use in electronics

    SciTech Connect

    Sohrabi Anaraki, H.; Gaponenko, N. V. Rudenko, M. V.; Guk, A. F.; Zavadskij, S. M.; Golosov, D. A.; Kolosnitsyn, B. S.; Kolos, V. V.; Pyatlitskij, A. N.; Turtsevich, A. S.

    2014-12-15

    Strontium-titanate films obtained by the sol-gel technique are deposited onto silicon and silicon/oxide titanium/platinum substrates. The strontium-titanate phase is detected by the method of X-ray diffraction analysis after heat treatment at temperatures of 750 and 800°C. The thickness of the films obtained by the spin-on method increases from 50 to 250 nm as the number of deposited layers is increased and is accompanied with an increase in the grain size in the films. Prospects of the development of the sol-gel technique for the formation of film components of electronic devices based on SrTiO{sub 3} xerogels are discussed.

  9. Adhesion and Long-Term Barrier Restoration of Intrinsic Self-Healing Hybrid Sol-Gel Coatings.

    PubMed

    Abdolah Zadeh, Mina; van der Zwaag, Sybrand; Garcia, Santiago J

    2016-02-17

    Self-healing polymeric coatings aiming at smart and on-demand protection of metallic substrates have lately attracted considerable attention. In the present paper, the potential application of a dual network hybrid sol-gel polymer containing reversible tetrasulfide groups as a protective coating for the AA2024-T3 substrate is presented. Depending on the constituent ratio, the developed polymer exhibited a hydrophobic surface, high adhesion strength, and an effective long-term corrosion protection in 0.5 M NaCl solution. Upon thermal treatment, the healable hybrid sol-gel coating demonstrated full restoration of the barrier properties as well as recovery of the coating adhesion and surface properties (e.g., hydrophobicity and surface topology) necessary for lifetime extension of corrosion protective coatings. Excellent long-term barrier restoration of the coating was only obtained if the scratch width was less than the coating thickness. PMID:26780101

  10. Graphene oxide-enhanced sol-gel transition sensitivity and drug release performance of an amphiphilic copolymer-based nanocomposite.

    PubMed

    Hu, Huawen; Wang, Xiaowen; Lee, Ka I; Ma, Kaikai; Hu, Hong; Xin, John H

    2016-01-01

    We report the fabrication of a highly sensitive amphiphilic copolymer-based nanocomposite incorporating with graphene oxide (GO), which exhibited a low-intensity UV light-triggered sol-gel transition. Non-cytotoxicity was observed for the composite gels after the GO incorporation. Of particular interest were the microchannels that were formed spontaneously within the GO-incorporated UV-gel, which expedited sustained drug release. Therefore, the present highly UV-sensitive, non-cytotoxic amphiphilic copolymer-based composites is expected to provide enhanced photothermal therapy and chemotherapy by means of GO's unique photothermal properties, as well as through efficient passive targeting resulting from the sol-gel transition characteristic of the copolymer-based system with improved sensitivity, which thus promises the enhanced treatment of patients with cancer and other diseases. PMID:27539298

  11. Graphene oxide-enhanced sol-gel transition sensitivity and drug release performance of an amphiphilic copolymer-based nanocomposite

    PubMed Central

    Hu, Huawen; Wang, Xiaowen; Lee, Ka I; Ma, Kaikai; Hu, Hong; Xin, John H.

    2016-01-01

    We report the fabrication of a highly sensitive amphiphilic copolymer-based nanocomposite incorporating with graphene oxide (GO), which exhibited a low-intensity UV light-triggered sol-gel transition. Non-cytotoxicity was observed for the composite gels after the GO incorporation. Of particular interest were the microchannels that were formed spontaneously within the GO-incorporated UV-gel, which expedited sustained drug release. Therefore, the present highly UV-sensitive, non-cytotoxic amphiphilic copolymer-based composites is expected to provide enhanced photothermal therapy and chemotherapy by means of GO’s unique photothermal properties, as well as through efficient passive targeting resulting from the sol-gel transition characteristic of the copolymer-based system with improved sensitivity, which thus promises the enhanced treatment of patients with cancer and other diseases. PMID:27539298

  12. Pre dye treated titanium dioxide nanoparticles synthesized by modified sol-gel method for efficient dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Ananth, S.; Vivek, P.; Arumanayagam, T.; Murugakoothan, P.

    2015-06-01

    Pure and pre dye treated titanium dioxide nanoparticles were prepared by sol-gel and modified sol-gel methods, respectively. The pre dye treatment has improved the properties of TiO2, such as uniform dye adsorption, reduced agglomeration, improved morphology and less dye aggregation. The brazilein pigment-rich Caesalpinia sappan heartwood extract was used as natural dye sensitizer for pure and pre dye treated TiO2 nanoparticles. Low cost and environment friendly dye-sensitized solar cells (DSSC) fabricated using pure and pre dye treated TiO2 nanoparticles sensitized by natural dye showed solar light to electron conversion efficiencies of 1.09 and 1.65 %, respectively. The pre dye treated TiO2-based DSSC showed 51 % improvement in efficiency when compared to that of conventionally prepared DSSC.

  13. Preparation of hydroxyapatite nanoparticles by sol-gel method with optimum processing parameters

    SciTech Connect

    Yusoff, Yusriha Mohd; Salimi, Midhat Nabil Ahmad; Anuar, Adilah

    2015-05-15

    Many studies have been carried out in order to prepare hydroxyapatite (HAp) by various methods. In this study, we focused on the preparation of HAp nanoparticles by using sol-gel technique in which few parameters are optimized which were stirring rate, aging time and sintering temperature. HAp nanoparticles were prepared by using precursors of calcium nitrate tetrahydrate, Ca(NO{sub 3}){sub 2}.4H{sub 2}O and phosphorous pentoxide, P{sub 2}O{sub 5}. Both precursors are mixed in ethanol respectively before they were mixed together in which it formed a stable sol. Fourier transform infrared (FTIR), X-ray diffraction (XRD) and Scanning electron microscopy (SEM) were used for its characterization in terms of functional group, phase composition, crystallite size and morphology of the nanoparticles produced. FTIR spectra showed that the functional groups that present in all five samples were corresponding to the formation of HAp. Besides, XRD shows that only one phase was formed which was hydroxyapatite. Meanwhile, SEM shows that the small particles combine together to form agglomeration.

  14. Microfabrication and integration of a sol-gel PZT folded spring energy harvester.

    PubMed

    Lueke, Jonathan; Badr, Ahmed; Lou, Edmond; Moussa, Walied A

    2015-01-01

    This paper presents the methodology and challenges experienced in the microfabrication, packaging, and integration of a fixed-fixed folded spring piezoelectric energy harvester. A variety of challenges were overcome in the fabrication of the energy harvesters, such as the diagnosis and rectification of sol-gel PZT film quality and adhesion issues. A packaging and integration methodology was developed to allow for the characterizing the harvesters under a base vibration. The conditioning circuitry developed allowed for a complete energy harvesting system, consisting a harvester, a voltage doubler, a voltage regulator and a NiMH battery. A feasibility study was undertaken with the designed conditioning circuitry to determine the effect of the input parameters on the overall performance of the circuit. It was found that the maximum efficiency does not correlate to the maximum charging current supplied to the battery. The efficiency and charging current must be balanced to achieve a high output and a reasonable output current. The development of the complete energy harvesting system allows for the direct integration of the energy harvesting technology into existing power management schemes for wireless sensing. PMID:26016911

  15. Sol-gel-derived silica films with tailored microstructures for applications requiring organic dyes

    SciTech Connect

    Logan, M.N.; Prabakar, S.; Brinker, C.J. |

    1994-09-01

    A three-step sol-gel process was developed to prepare organic dye-doped thin films with tailored porosity for applications in chemical sensing and optoelectronics. Varying the acid- and base-catalyzed hydrolysis steps of sols prepared from tetraethoxysilane with identical final H{sub 2}O/Si ratios, dilution factors and pH resulted in considerably different distributions of the silicate polymers in the sol (determined by {sup 29}Si NMR) and considerably different structures for the polymer clusters (determined by SAXS). During film formation these kinetic effects cause differences in the packing and collapse of the silicate network, leading to thin films with different refractive indices and volume fraction porosities. Under conditions where small pore-plugging species were avoided, the porosities of as-deposited films could be varied by aging the sol prior to film deposition. This strategy, which relies on the growth and aggregation of fractal polymeric clusters, is compatible with the low temperature and near neutral pH requirements of organic dyes.

  16. Sol-gel synthesis and densification of aluminoborosilicate powders. Part 2: Densification

    NASA Technical Reports Server (NTRS)

    Bull, Jeffrey; Selvaduray, Guna; Leiser, Daniel

    1992-01-01

    Aluminoborosilicate (ABS) powders, high in alumina content, were synthesized by the sol-gel process utilizing four different methods of synthesis. The effect of these methods on the densification behavior of ABS powder compacts was studied. Five regions of shrinkage in the temperature range 25-1184 C were identified. In these regions, the greatest shrinkage occurred between the gel-to-glass transition temperature (T sub g approximately equal to 835 C) and the crystallization transformation temperature (T sub t approximately equal 900 C). The dominant mechanism of densification in this range was found to be viscous sintering. ABS powders were amorphous to x-rays up to T sub t at which a multiphasic structure crystallized. No 2Al2O3.B2O3 was found in these powders as predicted in the phase diagram. Above T sub t, densification was the result of competing mechanisms including grain growth and boria fluxed viscous sintering. Apparent activation energies for densification in each region varied according to the method of synthesis.

  17. Electrochromism of niobium oxide thin films prepared by the sol-gel process

    SciTech Connect

    Ohtani, Bunsho; Iwai, Kunihiro; Nishimoto, Seiichi; Inui, Tomoyuki . Division of Energy and Hydrocarbon Chemistry)

    1994-09-01

    Thin layers of niobium oxide (NbO[sub x]) were accumulated by the sol-gel process, with the sol of NbO[sub x] in ethanol prepared by partial hydrolysis of commercial niobium (V) ethoxide, on glass plates coated with transparent conducting tin oxide. Characterization by X-ray diffraction, differential thermal analysis, and thermogravimetry revealed that the as-prepared film, consisting of fully hydrated amorphous niobium(V) oxide, undergoes dehydration into the partially hydrated form and, finally, crystalline niobium(V) oxide (Nb[sub 2]O[sub 5]) by calcination at the temperature up to 873 K. The films exhibited electrochromic (EC) properties; the reversible color change was observed between colorless and brown-black by alternating anodic and cathodic polarizations, respectively. Among the films used in this study the crystalline Nb[sub 2]O[sub 5] film showed the best EC properties and its spectral change, durability for repeated coloration-decoloration cycles, and retentivity of colored states, i.e., memory characteristics under open-circuit conditions were investigated in detail.

  18. Synthesis of Yttria-Stabilized Zirconia Aerogels by a Non-Alkoxide Sol-Gel Route

    SciTech Connect

    Chervin, C N; Clapsaddle, B J; Chiu, H W; Gash, A E; Satcher, Jr., J H; Kauzlarich, S M

    2005-02-11

    Homogeneous, nanocrystalline powders of yttria-stabilized zirconia were prepared using a nonalkoxide sol-gel method. Monolithic gels, free of precipitation, were prepared by addition of propylene oxide to aqueous solutions of Zr{sup 4+} and Y{sup 3+} chlorides at room temperature. The gels were dried with supercritical CO{sub 2}(l), resulting in amorphous aerogels that crystallized into cubic stabilized ZrO{sub 2} following calcination at 500 C. The aerogels and resulting crystalline products were characterized using in-situ temperature profile X-ray diffraction, thermal analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and nitrogen adsorption/desorption analysis. TEM and N{sub 2} adsorption/desorption analysis of an aerogel indicated a porous network structure with a high surface area (409 m{sup 2}/g). The crystallized yttria-stabilized zirconia maintained high surface area (159 m{sup 2}/g) upon formation of homogeneous, nanoparticles ({approx}10 nm). Ionic conductivity at 1000 C of sintered YSZ (1500 C, 3 hours) prepared by this method, was 0.13 {+-} 0.02 {Omega}{sup -1} cm{sup -1}. Activation energies for the conduction processes from 1000-550 C and 550-400 C, were 0.95 {+-} 0.09 and 1.12 {+-} 0.05 eV, respectively. This is the first reported synthesis and characterization of yttria-stabilized zirconia via an aerogel precursor.

  19. Preparation of hydroxyapatite nanoparticles by sol-gel method with optimum processing parameters

    NASA Astrophysics Data System (ADS)

    Yusoff, Yusriha Mohd; Salimi, Midhat Nabil Ahmad; Anuar, Adilah

    2015-05-01

    Many studies have been carried out in order to prepare hydroxyapatite (HAp) by various methods. In this study, we focused on the preparation of HAp nanoparticles by using sol-gel technique in which few parameters are optimized which were stirring rate, aging time and sintering temperature. HAp nanoparticles were prepared by using precursors of calcium nitrate tetrahydrate, Ca(NO3)2.4H2O and phosphorous pentoxide, P2O5. Both precursors are mixed in ethanol respectively before they were mixed together in which it formed a stable sol. Fourier transform infrared (FTIR), X-ray diffraction (XRD) and Scanning electron microscopy (SEM) were used for its characterization in terms of functional group, phase composition, crystallite size and morphology of the nanoparticles produced. FTIR spectra showed that the functional groups that present in all five samples were corresponding to the formation of HAp. Besides, XRD shows that only one phase was formed which was hydroxyapatite. Meanwhile, SEM shows that the small particles combine together to form agglomeration.

  20. Porous MnO2 prepared by sol-gel method for electrochemical supercapacitor

    NASA Astrophysics Data System (ADS)

    Bazzi, K.; Kumar, A.; Jayakumar, O. D.; Nazri, G. A.; Naik, V. M.; Naik, R.

    2015-03-01

    MnO2 has attracted great attention as material for electrochemical pseudocapacitor due to its high theoretical specific faradic capacitance (~ 1370 F .g-1) , environmental friendliness and wide potential window in both aqueous and nonaqueous electrolytes. However, the MnO2 has a low surface area which depresses its electrochemical performance. The amorphous α-MnO2 composite was synthesized by sol gel method in the presence of the tri-block copolymer P123. Our aim is to investigate the role of P123 on the electrochemical performance of MnO2. The samples with and without P123 were prepared and characterized by x-ray diffraction (XRD), SEM, TEM and Brunauer-Emmett-Teller (BET) method. The electrochemical performances of the amorphous MnO2 composites as the electrode materials for supercapacitors were evaluated by cyclic voltammetry and AC impedance measurements in a 1M Na2SO4 solution. The results show that the sample prepared without P123 exhibited a relatively low specific capacitance of 28F .g-1, whereas the porous MnO2 prepared with P123 exhibited 117 F .g-1at 5 mV/s. The results of crystalline MnO2 composites will also be presented. The authors acknowledge the support from the Richard J. Barber Foundation for Interdisciplinary Research.