Science.gov

Sample records for presidio water treatment

  1. 11. Office of the Post Engineer, Presidio of San Francisco. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Office of the Post Engineer, Presidio of San Francisco. Location of Water Lines, Presidio of San Francisco. Sheet 31. November 1943. SHOWING EASTERN PORTION OF AREA A; BUILDINGS 274, 275, AND 277; AND POST ENGINEER'S SHOP AND YARDS INCLUDING BUILDINGS 280, 282-285, AND 288. - Presidio of San Francisco, Storehouse & Administration, Crissy Field North cantonment, Allen Street, San Francisco, San Francisco County, CA

  2. Ground-water data for the Salt Basin, Eagle Flat, Red Light Draw, Green River Valley and Presidio Bolson in westernmost Texas

    USGS Publications Warehouse

    White, Donald E.; Gates, Joseph S.; Smith, James T.; Fry, Bonnie J.

    1980-01-01

    From October 1971 through October 1974. the U.S. Geological Survey collected ground-water data in the basins in Texas west of the Pecos River drainage area and northwest of the Big Bend country. The basins included are, from east to west: The Presidio Bolson; the Salt Basin; Green River Valley, Eagle Flat, and Red Light Draw. These data, which were collected in cooperation with the Texas Department of Water Resources (formerly Texas Water Development Board), will provide information for a continuing assessment of water availability within the State.

  3. Level 1 Water-Quality Inventory of Baseline Levels of Pesticides in Urban Creeks - Golden Gate National Recreation Area and the Presidio of San Francisco, California

    USGS Publications Warehouse

    Hladik, Michelle L.; Orlando, James L.

    2008-01-01

    To characterize baseline water-quality levels of pesticides in Golden Gate National Recreation Area and the Presidio of San Francisco, the U.S. Geological Survey collected and analyzed surface-water and bed-sediment samples at 10 creeks during February, April, and July 2006. Pesticide data were obtained using previously developed methods. Samples from sites in the Presidio were analyzed only for pyrethroid insecticides, whereas the remaining samples were analyzed for pyrethroids and additional current and historical-use pesticides. Pesticide concentrations were low in both the water (below 30 ng/L) and sediment (below 3 ng/g). The pyrethroid bifenthrin was detected in water samples from two sites at concentrations below 2 ng/L. Other compounds detected in water included the herbicides dacthal (DCPA) and prometryn, the insecticide fipronil, the insecticide degradates p,p'-DDE and fipronil sulfone, and the fungicides cyproconazole, myclobutanil and tetraconazole. The only pesticides detected in the sediment samples were p,p'-DDT and its degradates (p,p'-DDD and p,p'-DDE). Pesticide information from the samples collected can provide a reference point for future sampling and can help National Park Service managers assess the water quality of the urban creeks.

  4. Ground-water data for the Salt Basin, Eagle Flat, Red Light Draw, Green River Valley, and Presidio Bolson in westernmost Texas

    USGS Publications Warehouse

    White, Donald Edward; Gates, J.S.; Smith, Joe T.; Fry, B.J.

    1978-01-01

    From October 1971 through October 1974, the U.S. Geological Survey collected groundwater data in the basins in Texas west of the Pecos River drainage area and northwest of the Big Bend country. The basins included are, from east to west: The Presidio Bolson; the Salt Basin; Green River Valley, Eagle Flat, and Red Light Draw. The data collection program consisted of an inventory of all major irrigation, municipal-supply, and industrial wells; selected stock and domestic wells; and selected springs. Water samples were collected from representative wells and springs for chemical analyses. (Woodard-USGS)

  5. Streamflow gains and losses and selected water-quality observations in five subreaches of the Rio Grande/Rio Bravo del Norte from near Presidio to Langtry, Texas, Big Bend area, United States and Mexico, 2006

    USGS Publications Warehouse

    Raines, Timothy H.; Turco, Michael J.; Connor, Patrick J.; Bennett, Jeffery B.

    2012-01-01

    Few historical streamflow and water-quality data are available to characterize the segment of the Rio Grande/Rio Bravo del Norte (hereinafter Rio Grande) extending from near Presidio to near Langtry, Texas. The U.S. Geological Survey, in cooperation with the National Park Service and the Texas Commission on Environmental Quality, collected water-quality and streamflow data from the Rio Grande from near Presidio to near Langtry, Texas, to characterize the streamflow gain and loss and selected constituent concentrations in a 336.3-mile reach of the Rio Grande from near Presidio to near Langtry, Texas. Streamflow was measured at 38 sites and water-quality samples were collected at 20 sites along the Rio Grande in February, March, and June 2006. Streamflow gains and losses over the course of the stream were measured indirectly by computing the differences in measured streamflow between sites along the stream. Water-quality data were collected and analyzed for salinity, dissolved solids, major ions, nutrients, trace elements, and stable isotopes. Selected properties and constituents were compared to available Texas Commission on Environmental Quality general use protection criteria or screening levels. Summary statistics of selected water-quality data were computed for each of the five designated subreaches. Streamflow gain and loss and water-quality constituent concentration were compared for each subreach, rather than the entire segment because of the temporal variation in sample collection caused by controlled releases upstream. Subreach A was determined to be a losing reach, and subreaches B, C, D, and E were determined to be gaining reaches. Compared to concentrations measured in upstream subreaches, downstream subreaches exhibited evidence of dilution of selected constituent concentrations. Subreaches A and B had measured total dissolved solids, chloride, and sulfate exceeding the Texas Commission on Environmental Quality general use protection criteria. Subreaches C, D, and E did not exceed the general use protection criteria for any constituent concentration criteria, but dissolved oxygen concentrations did not meet the general use criteria in these subreaches.

  6. 2. POST ENGINEER'S SHOPS AND YARD BUILDINGS FROM PRESIDIO ENTRANCE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. POST ENGINEER'S SHOPS AND YARD BUILDINGS FROM PRESIDIO ENTRANCE GATE AT MASON STREET, LOOKING 270 DEGREES WEST - Presidio of San Francisco, Post Engineer's Headquarters Office, Crissy Field North cantonment, San Francisco, San Francisco County, CA

  7. WATER TREATMENT

    DOEpatents

    Pitman, R.W.; Conley, W.R. Jr.

    1962-12-01

    An automated system for adding clarifying chemicals to water in a water treatment plant is described. To a sample of the floc suspension polyacrylamide or similar filter aid chemicals are added, and the sample is then put through a fast filter. The resulting filtrate has the requisite properties for monitoring in an optical turbidimeter to control the automated system. (AEC)

  8. 36 CFR 1012.2 - What is the Presidio Trust's policy on granting requests for employee testimony or Presidio Trust...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Forests, and Public Property PRESIDIO TRUST LEGAL PROCESS: TESTIMONY BY EMPLOYEES AND PRODUCTION OF... writing, the Presidio Trust will consider whether to allow testimony or production of records under...

  9. 36 CFR 1012.2 - What is the Presidio Trust's policy on granting requests for employee testimony or Presidio Trust...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Forests, and Public Property PRESIDIO TRUST LEGAL PROCESS: TESTIMONY BY EMPLOYEES AND PRODUCTION OF... writing, the Presidio Trust will consider whether to allow testimony or production of records under...

  10. 34. Fort Winfield Scott and Presidio of San Francisco. August ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. Fort Winfield Scott and Presidio of San Francisco. August 1918. SHOWING THE LETTERMAN HOSPITAL COMPLEX, FOLLOWING CONSTRUCTION OF BUILDING 1006 AND 1049, IN CONTEXT WITH ENTIRE PRESIDIO IN 1918. - Presidio of San Francisco, Letterman General Hospital, Building No. 27, Letterman Hospital Complex, Edie Road, San Francisco, San Francisco County, CA

  11. Tennessee Hollow Watershed in the Presidio: Science Education Partnership

    NASA Astrophysics Data System (ADS)

    Berry, W. B.; Kern, D.

    2007-12-01

    Planning for restoration of the Tennessee Hollow watershed in the Presidio of San Francisco, an urban national park, has been used in teaching and research in environmental science courses at University of California Berkeley for several years. Scientists and staff with the Urban Watershed Project, The National Park Service, and the Presidio Trust have collaborated with UC Berkeley faculty and students in discussing the watershed restoration and the first steps in implementation of it. Scientists come to the Berkeley campus to talk to classes about the geology, hydrology, and features of the vegetation of the watershed as well as the many aspects of "daylighting" a creek buried in a culvert many tens of feet under soil and other forms of landfill. The many social and political issues involved in implementing restoration are also presented and discussed. Students are conducted through the watershed by Urban Watershed staff not only to view the several features of the watershed but also to obtain data for individual studies. Students have made water quality analyses of the creek waters. Students have worked collaboratively with Urban Watershed staff in developing studies of the watershed that will be of use in future education programs and also in developing features that may interest visitors to the national park.

  12. 1. OVERVIEW OF MAIN HOSPITAL, NORTHEAST CORNER. Presidio of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. OVERVIEW OF MAIN HOSPITAL, NORTHEAST CORNER. - Presidio of San Francisco, Letterman General Hospital, Building No. 27, Letterman Hospital Complex, Edie Road, San Francisco, San Francisco County, CA

  13. 33. BUILDING 1006, TYPICAL CEILING VENT REGISTER. Presidio of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. BUILDING 1006, TYPICAL CEILING VENT REGISTER. - Presidio of San Francisco, Letterman General Hospital, Building No. 27, Letterman Hospital Complex, Edie Road, San Francisco, San Francisco County, CA

  14. Interior view of garage facing back wall (east) Presidio ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view of garage facing back wall (east) - Presidio of San Francisco, Officers' Vehicles Garage, 1055 General Kennedy Avenue, Letterman Hospital Complex, San Francisco, San Francisco County, CA

  15. 36. Post Engineer Office, Presidio of San Francisco. Plot Plan, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. Post Engineer Office, Presidio of San Francisco. Plot Plan, Letterman Army Hospital, San Francisco, Calif. 1958. SHOWING LOCATION OF BUILDINGS 1006 AND 1049 IN LETTERMAN HOSPITAL COMPLEX IN 1958. - Presidio of San Francisco, Letterman General Hospital, Building No. 27, Letterman Hospital Complex, Edie Road, San Francisco, San Francisco County, CA

  16. 42. Post Engineer Office, Presidio of San Francisco, Letterman Army ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. Post Engineer Office, Presidio of San Francisco, Letterman Army Hospital, X-Ray Department and Second Floor Plan, X-Ray Department Plan, Building 1006. no date. BUILDING 1006. - Presidio of San Francisco, Letterman General Hospital, Building No. 27, Letterman Hospital Complex, Edie Road, San Francisco, San Francisco County, CA

  17. 41. Post Engineer Office, Presidio of San Francisco, Letterman Army ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. Post Engineer Office, Presidio of San Francisco, Letterman Army Hospital, First Floor Plan, Main Laboratory Section and Plan, Building 1006. no date BUILDING 1006. - Presidio of San Francisco, Letterman General Hospital, Building No. 27, Letterman Hospital Complex, Edie Road, San Francisco, San Francisco County, CA

  18. 78 FR 41839 - Establishment of Class E Airspace; Presidio, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-12

    ..., 40113, 40120; E. O. 10854, 24 FR 9565, 3 CFR, 1959-1963 Comp., p. 389. ] Sec. 71.1 0 2. The... the Presidio, TX, area, creating controlled airspace at Presidio Lely International Airport (78 FR... ``significant rule'' under DOT Regulatory Policies and Procedures (44 FR 11034; February 26, 1979); and (3)...

  19. 22. Post Engineer Office, Presidio of San Francisco, Building # ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Post Engineer Office, Presidio of San Francisco, Building # 1049 Letterman General Hospital. Alterations to EKG Cardiology Clinic. November 1963. BUILDING 1049. - Presidio of San Francisco, Letterman General Hospital, Building No. 12, Letterman Hospital Complex, Edie Road, San Francisco, San Francisco County, CA

  20. 21. Post Engineer Office, Presidio of San Francisco, Letterman Army ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Post Engineer Office, Presidio of San Francisco, Letterman Army Hospital. EKG Cardiology Clinic, Building 1049. December 1955. BUILDING 1049. - Presidio of San Francisco, Letterman General Hospital, Building No. 12, Letterman Hospital Complex, Edie Road, San Francisco, San Francisco County, CA

  1. 17. BUILDING 1049, TOILET ROOM ON SECOND FLOOR. Presidio ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. BUILDING 1049, TOILET ROOM ON SECOND FLOOR. - Presidio of San Francisco, Letterman General Hospital, Building No. 12, Letterman Hospital Complex, Edie Road, San Francisco, San Francisco County, CA

  2. 14. 'TROOP A, OREGON CAVALRY IN CAMP AT PRESIDIO OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. 'TROOP A, OREGON CAVALRY IN CAMP AT PRESIDIO OF MONTEREY, CALIFORNIA, 1915.' Anton C. Heidrick, photographer. This panoramic view looks west from the lower end of Soldier Field, before construction of walls and roads. Original warm toned silver gelatin print measures 94.9 cm by 19.7 cm, flush mounted on mat board. - Presidio of Monterey, Soldier Field, Monterey, Monterey County, CA

  3. 36 CFR 1004.10 - Travel on Presidio Trust roads and designated routes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Travel on Presidio Trust roads and designated routes. 1004.10 Section 1004.10 Parks, Forests, and Public Property PRESIDIO TRUST VEHICLES AND TRAFFIC SAFETY § 1004.10 Travel on Presidio Trust roads and designated routes. (a) Operating a motor vehicle is prohibited except...

  4. 36 CFR 1012.8 - How will the Presidio Trust process my Touhy Request?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false How will the Presidio Trust process my Touhy Request? 1012.8 Section 1012.8 Parks, Forests, and Public Property PRESIDIO TRUST LEGAL PROCESS: TESTIMONY BY EMPLOYEES AND PRODUCTION OF RECORDS Responsibilities of the Presidio Trust ...

  5. 36 CFR 1012.8 - How will the Presidio Trust process my Touhy Request?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false How will the Presidio Trust process my Touhy Request? 1012.8 Section 1012.8 Parks, Forests, and Public Property PRESIDIO TRUST LEGAL PROCESS: TESTIMONY BY EMPLOYEES AND PRODUCTION OF RECORDS Responsibilities of the Presidio Trust ...

  6. Alternative disinfectant water treatments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alternative disinfestant water treatments are disinfestants not as commonly used by the horticultural industry. Chlorine products that produce hypochlorous acid are the main disinfestants used for treating irrigation water. Chlorine dioxide will be the primary disinfestant discussed as an alternativ...

  7. Electrotechnologies for water treatment

    SciTech Connect

    Douglas, J.

    1993-03-01

    Water and wastewater utilities face major changes in their treatment systems as a result of recent environmental regulations. Not only do these new rules specify reduction requirements for contaminants not previously regulated, they also target the by-products of chlorination, which has been the basic disinfection technique in this country since the early days of municipal water treatment. As a result, EPRI has been working with the American Water Works Association Research Foundation and the Water Environment Research Foundation to support the development of advanced treatment alternatives and improve energy efficiency at treatment facilities. The work has identified a number of innovative, electrically based treatment technologies that provide the additional capabilities required, promote higher efficiency in treatment processes, and serve electric utilities' demand-side management objectives. 5 refs.

  8. Water Treatment Technology - Wells.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on wells provides instructional materials for five competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: dug, driven, and chilled wells, aquifer types, deep well…

  9. Water Treatment Technology - Pumps.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on pumps provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pumps in plant and distribution systems, pump…

  10. Water Treatment Technology - Flouridation.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on flouridation provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: purpose and process of flouridation, correct…

  11. Water Treatment Technology - Springs.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on springs provides instructional materials for two competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on spring basin construction and spring protection. For each competency, student…

  12. Water Treatment Technology - Flouridation.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on flouridation provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: purpose and process of flouridation, correct

  13. Water Treatment Technology - Hydraulics.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on hydraulics provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: head loss in pipes in series, function loss in

  14. Water Treatment Technology - Filtration.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on filtration provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: purposes of sedimentation basins and flocculation…

  15. Water Treatment Technology - Pumps.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on pumps provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pumps in plant and distribution systems, pump

  16. Water Treatment Technology - Filtration.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on filtration provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: purposes of sedimentation basins and flocculation

  17. Water Treatment Technology - Hydraulics.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on hydraulics provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: head loss in pipes in series, function loss in…

  18. Water Treatment Technology - Chlorination.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on chlorination provides instructional materials for nine competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: purpose and process of chlorination, chlorine

  19. Municipal waste water treatment

    SciTech Connect

    Negulescu, M.

    1986-01-01

    Population growth and industrial development makes the efficient treatment of municipal waste water of vital concern. This book describes the design of treatment processes which have proved to be most effective, including skimming tanks with corrugated plates or circular tubes, and package treatment units (grit removal - skimming tanks, activated sludge - secondary settling tanks). For each of the processes described, the author gives relevant information concerning the design and operation of the equipment. Examples of design calculations are provided.

  20. Basic Water Treatment Operation.

    ERIC Educational Resources Information Center

    Ontario Ministry of the Environment, Toronto.

    This manual was developed for use at workshops designed to introduce the fundamentals of water treatment plant operations. The course consists of lecture-discussions and hands-on activities. Each of the fourteen lessons in this document has clearly stated behavioral objectives to tell the trainee what he should know or do after completing that…

  1. Basic Water Treatment Operation.

    ERIC Educational Resources Information Center

    Ontario Ministry of the Environment, Toronto.

    This manual was developed for use at workshops designed to introduce the fundamentals of water treatment plant operations. The course consists of lecture-discussions and hands-on activities. Each of the fourteen lessons in this document has clearly stated behavioral objectives to tell the trainee what he should know or do after completing that

  2. DRINKING WATER TREATMENT

    EPA Science Inventory

    The purpose of water treatment is threefold: 1. To improve the aethetic quality ofwater, 2. to remove toxic or health-hazardous chemicals, 3. to remove and/or inactivate any disease causing microorganisms. These objectives should be accomplished using a reasonable safety factor...

  3. Electrocoagulation in Water Treatment

    NASA Astrophysics Data System (ADS)

    Liu, Huijuan; Zhao, Xu; Qu, Jiuhui

    Electrocoagulation (EC) is an electrochemical method of treating polluted water where sacrificial anodes corrode to release active coagulant precursors (usually aluminum or iron cations) into solution. At the cathode, gas evolves (usually as hydrogen bubbles) accompanying electrolytic reactions. EC needs simple equipments and is designable for virtually any size. It is cost effective and easily operable. Specially, the recent technical improvements combined with a growing need for small-scale water treatment facilities have led to a revaluation of EC. In this chapter, the basic principle of EC was introduced first. Following that, reactions at the electrodes and electrode assignment were reviewed; electrode passivation process and activation method were presented; comparison between electrocoagulation and chemical coagulation was performed; typical design of the EC reactors was also described; and factors affecting electrocoagulation including current density, effect of conductivity, temperature, and pH were introduced in details. Finally, application of EC in water treatment was given in details.

  4. 36 CFR 1012.7 - Can I get an authenticated copy of a Presidio Trust record?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Can I get an authenticated copy of a Presidio Trust record? 1012.7 Section 1012.7 Parks, Forests, and Public Property PRESIDIO TRUST LEGAL PROCESS: TESTIMONY BY EMPLOYEES AND PRODUCTION OF RECORDS Responsibilities of...

  5. 36 CFR 1012.3 - How can I obtain employee testimony or Presidio Trust records?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false How can I obtain employee testimony or Presidio Trust records? 1012.3 Section 1012.3 Parks, Forests, and Public Property PRESIDIO TRUST LEGAL PROCESS: TESTIMONY BY EMPLOYEES AND PRODUCTION OF RECORDS Responsibilities of...

  6. 36 CFR 1012.7 - Can I get an authenticated copy of a Presidio Trust record?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Can I get an authenticated copy of a Presidio Trust record? 1012.7 Section 1012.7 Parks, Forests, and Public Property PRESIDIO TRUST LEGAL PROCESS: TESTIMONY BY EMPLOYEES AND PRODUCTION OF RECORDS Responsibilities of...

  7. 36 CFR 1011.12 - How will the Presidio Trust offset a Federal employee's salary to collect a debt?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... offset a Federal employee's salary to collect a debt? 1011.12 Section 1011.12 Parks, Forests, and Public Property PRESIDIO TRUST DEBT COLLECTION Procedures To Collect Presidio Trust Debts § 1011.12 How will the Presidio Trust offset a Federal employee's salary to collect a debt? (a) Federal salary offset. (1)...

  8. Water treatment plant

    SciTech Connect

    Mixon, J.A.

    1982-09-28

    A water treatment plant comprises a generally horizontal cylindrical tank and an upstanding cylindrical tank usually having a diameter less than the horizontal tank and being integrally attached to and intersecting an end wall portion thereof. The horizontal tank includes a transverse partition and a longitudinal partition which extends from an intermediate portion of the transverse partition to the upstanding tank and divides the first tank into an aeration chamber, a sludge holding chamber and a purifying or chlorine contact chamber. The second tank comprises a clarifying chamber including an upper portion having influent and effluent pipe means and skimming means and a bottom portion having a circular bottom surface, an outlet and scraper means for moving sediment into the outlet for recirculation either to the aeration chamber or to the sludge holding chamber.

  9. Water treatment method

    DOEpatents

    Martin, Frank S. (Farmersville, OH); Silver, Gary L. (Centerville, OH)

    1991-04-30

    A method for reducing the concentration of any undesirable metals dissolved in contaminated water, such as waste water. The method involves uniformly reacting the contaminated water with an excess amount of solid particulate calcium sulfite to insolubilize the undesirable metal ions, followed by removal thereof and of the unreacted calcium sulfite.

  10. Water treatment method

    DOEpatents

    Martin, F.S.; Silver, G.L.

    1991-04-30

    A method is described for reducing the concentration of any undesirable metals dissolved in contaminated water, such as waste water. The method involves uniformly reacting the contaminated water with an excess amount of solid particulate calcium sulfite to insolubilize the undesirable metal ions, followed by removal thereof and of the unreacted calcium sulfite.

  11. Water treatment method

    SciTech Connect

    Martin, F.S.; Silver, G.L.

    1990-02-02

    A method for reducing the concentration of many undesirable metals dissolved in contaminated water, such as waste water. The method involves uniformly reacting the contaminated water with an excess amount of solid particulate calcium sulfite to insolubilize the undesirable metal ions, followed by removal thereof and of the unreacted calcium sulfite. 1 tab.

  12. Water treatment technology for produced water.

    PubMed

    Szp, Angla; Kohlheb, Robert

    2010-01-01

    Large amounts of produced water are generated during oil and gas production. Produced water, as it is known in the oil industry, is briny fluid trapped in the rock of oil reservoirs. The objective of this study was to test produced waters from a Montana USA oilfield using a mobile station to design a plant to cost efficiently treat the produced water for agricultural irrigation. We used combined physical and chemical treatment of produced water in order to comply with reuse and discharge limits. This mobile station consists of three stages: pretreatments, membrane filtration and post treatment. Two spiral-wound membrane units were employed and the rejections of various constituents were examined. The performance of two membranes, 20 kDa weight cut-off (MWCO) ultrafiltration and a polyamide-composite reverse osmosis membrane was investigated. The mobile station effectively decreased conductivity by 98%, COD by 100% and the SAR by 2.15 mgeqv(0.5) in the produced water tested in this study. Cost analysis showed that the treatment cost of produced water is less expensive than to dispose of it by injection and this treated water may be of great value in water-poor regions. We can conclude that the mobile station provided a viable and cost-effective result to beneficial use of produced water. PMID:21076224

  13. Technology for Water Treatment

    NASA Technical Reports Server (NTRS)

    1992-01-01

    There are approximately 500,000 water cooling towers in the United States, all of which must be kept clear of "scale" and corrosion and free of pollutants and bacteria. Electron Pure, Ltd. manufactures a hydro cooling tower conditioner as well as an automatic pool sanitizer. The pool sanitizer consists of two copper/silver electrodes placed in a chamber mounted in the pool's recirculation system. The tower conditioner combines the ionization system with a water conditioner, pump, centrifugal solids separator and timer. The system saves water, eliminates algae and operates maintenance and chemical free. The company has over 100 distributors in the U.S. as well as others in 20 foreign countries. The buildup of scale and corrosion is the most costly maintenance problem in cooling tower operation. Jet Propulsion Laboratory successfully developed a non-chemical system that not only curbed scale and corrosion, but also offered advantages in water conservation, cost savings and the elimination of toxic chemical discharge. In the system, ozone is produced by an on-site generator and introduced to the cooling tower water. Organic impurities are oxidized, and the dissolved ozone removes bacteria and scale. National Water Management, a NASA licensee, has installed its ozone advantage systems at some 200 cooling towers. Customers have saved money and eliminated chemical storage and discharge.

  14. Tenant guidelines for energy-efficient renovation of buildings at the Presidio of San Francisco

    SciTech Connect

    Warner, J.L.; Sartor, D.; Diamond, R.

    1997-06-01

    These Guidelines are intended to help current and future tenants of the Presidio work with designers and contractors to incorporate energy efficiency and sustainable practices into the renovations of the buildings. This guide is designed to complement the detailed Guidelines for Rehabilitating Buildings at the Presidio of San Francisco, available from the National Park Service. Energy efficiency yields benefits far beyond energy savings. Daylighting and efficient electric lighting, natural ventilation and cooling, and other conservation strategies improve tenant health, comfort, and productivity, while preserving the historical heritage of Presidio buildings. This guide examines the use of energy and resources and opportunities for efficiency in Presidio buildings on the basis of individual components and systems. The authors begin with recommended and discouraged practices for roofs, walls, and foundations, then move to windows and other opening. Next they address efficiency issues in building interiors--lighting, office equipment, and spacing planning. The authors follow with recommendations for mechanical and plumbing systems and conclude with insights on miscellaneous outdoor energy and resource concerns. A concise listing of sources of more detailed information is provided at the end of the document. The authors expect this guide to help tenants begin the process of using energy-efficient and sustainable practices throughout the Presidio of San Francisco.

  15. Contaminated water treatment

    NASA Technical Reports Server (NTRS)

    Gormly, Sherwin J. (Inventor); Flynn, Michael T. (Inventor)

    2010-01-01

    Method and system for processing of a liquid ("contaminant liquid") containing water and containing urine and/or other contaminants in a two step process. Urine, or a contaminated liquid similar to and/or containing urine and thus having a relatively high salt and urea content is passed through an activated carbon filter to provide a resulting liquid, to remove most of the organic molecules. The resulting liquid is passed through a semipermeable membrane from a membrane first side to a membrane second side, where a fortified drink having a lower water concentration (higher osmotic potential) than the resulting liquid is positioned. Osmotic pressure differential causes the water, but not most of the remaining inorganic (salts) contaminant(s) to pass through the membrane to the fortified drink. Optionally, the resulting liquid is allowed to precipitate additional organic molecules before passage through the membrane.

  16. Water disinfection by electrochemical treatment.

    PubMed

    Feng, Chuanping; Suzuki, Keitaro; Zhao, Shuyun; Sugiura, Norio; Shimada, Satoru; Maekawa, Takaaki

    2004-08-01

    The electrochemical disinfection of germinated brown rice (GBR) circulating water and cooling tower water containing Legionella bacteria was investigated. Results showed the total aerobic plate counts (APC) in the treated GBR circulating water decreased significantly and the turbidity was largely improved at a pulse voltage of 1.0 kV; Legionella bacteria were also disinfected effectively at 1.0 kV. The disinfection was attributed to the synergistic effects of the oxide anode, the electric field, and the radicals formed during the electrochemical treatment. This suggests that electrochemical treatment could be applicable to the disinfection of water from other sources. PMID:15081482

  17. 36 CFR 1011.5 - What interest, penalty charges and administrative costs will the Presidio Trust add to a debt?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false What interest, penalty charges and administrative costs will the Presidio Trust add to a debt? 1011.5 Section 1011.5 Parks... § 1011.5 What interest, penalty charges and administrative costs will the Presidio Trust add to a...

  18. 36 CFR 1011.5 - What interest, penalty charges and administrative costs will the Presidio Trust add to a debt?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false What interest, penalty charges and administrative costs will the Presidio Trust add to a debt? 1011.5 Section 1011.5 Parks... § 1011.5 What interest, penalty charges and administrative costs will the Presidio Trust add to a...

  19. 36 CFR 1011.5 - What interest, penalty charges and administrative costs will the Presidio Trust add to a debt?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false What interest, penalty charges and administrative costs will the Presidio Trust add to a debt? 1011.5 Section 1011.5 Parks... § 1011.5 What interest, penalty charges and administrative costs will the Presidio Trust add to a...

  20. 36 CFR 1011.5 - What interest, penalty charges and administrative costs will the Presidio Trust add to a debt?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false What interest, penalty charges and administrative costs will the Presidio Trust add to a debt? 1011.5 Section 1011.5 Parks... § 1011.5 What interest, penalty charges and administrative costs will the Presidio Trust add to a...

  1. Surface Water Treatment Workshop Manual.

    ERIC Educational Resources Information Center

    Ontario Ministry of the Environment, Toronto.

    This manual was developed for use at workshops designed to increase the knowledge of experienced water treatment plant operators. Each of the fourteen lessons in this document has clearly stated behavioral objectives to tell the trainee what he should know or do after completing that topic. Areas covered in this manual include: basic water

  2. Water Treatment Technology - Distribution Systems.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on distribution systems provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pipe for distribution systems, types…

  3. Water Treatment Technology - Distribution Systems.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on distribution systems provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pipe for distribution systems, types

  4. Arsenic in water treatment.

    SciTech Connect

    Siegel, Malcolm Dean

    2004-12-01

    Sandia National Laboratories (SNL) is collaborating with the Awwa Research Foundation (AwwaRF) and WERC (A Consortium for Environmental Education and Technology Development) in a program for the development and testing of innovative technologies that have the potential to substantially reduce the costs associated with arsenic removal from drinking water. Sandia National Laboratories will administer contracts placed with AwwaRF and WERC to carry out bench scale studies and economic analyses/outreach activities, respectively. The elements of the AwwaRF program include (1) identification of new technologies, (2) proof-of-concept laboratory studies and, (3) a research program that will meet the other needs of small utilities by providing solutions to small utilities so that they may successfully meet the new arsenic MCL. WERC's activities will include development of an economic analysis tool for Pilot Scale Demonstrations and development of educational training and technical assistance tools. The objective of the Sandia Program is the field demonstration testing of innovative technologies. The primary deliverables of the Sandia program will be engineering analyses of candidate technologies; these will be contained in preliminary reports and final analysis reports. Projected scale-up costs will be generated using a cost model provided by WERC or another suitable model.

  5. Structure of the Presidio Bolson area, Texas, interpreted from gravity data

    SciTech Connect

    Mraz, J.R.; Keller, G.R.

    1980-01-01

    To obtain a better understanding of the structure and tectonism of the region, an integrated geophysical-geological study of the Presidio area, Texas, was undertaken using gravity measurements and deep drilling data. New gravity data were combined with existing data to construct simple Bouguer anomaly maps of the Presidio area, and two-dimensional computer modeling of gravity profiles was used to derive earth models. These data outline the major geologic features of the area that are dominated by the effects of Tertiary block faulting and volcanism. The main feature of interest was the Presidio Graben, which is approximately 1.5 km deep near Ruidosa, Texas. One motivation for this study was the collection of a part of the basic scientific data needed to assess the geothermal potential of the area, and the results obtained support the hypothesis that hot springs associated with the Presidio Graben derive their heat from deep circulation along its boundary faults. However, some gravity anomalies observed could be interpreted as indicating the presence of late Tertiary intrusions that could provide heat for the hot springs.

  6. 36 CFR 1012.3 - How can I obtain employee testimony or Presidio Trust records?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 1012.3 How can I obtain employee testimony or Presidio Trust records? (a) To obtain employee testimony, you must submit: (1) A written request (hereafter a Touhy Request; see 1012.5 and United States ex... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false How can I obtain...

  7. Treatment of industrial effluent water

    SciTech Connect

    Levitskii, Yu.N.

    1982-09-01

    This article reports on a thematic exhibition on ''New Developments in Treatment of Natural and Effluent Water'' in the Sanitary-Technical Construction Section at the Exhibition of Achievements of the National Economy of the USSR. The exhibition acquainted visitors with the achievements of leading organizations in different branches of industry with respect to treatment of natural and industrial effluent water. The Kharkov ''Vodkanalproekt'' Institute and the Kharkov affiliate of the All-Union Scientific-Research Institute of Water and Geodesy has jointly developed a ''Polymer-25'' filter for removal of oil products from nonexplosive effluent water discharged by machine building plants. A Baku affiliate has developed a new ShFP-1 screw-type press filter for dewatering the sediments from water treatment plants as well as for sediments from chemical, food, and other types of plants. The State Institute for Applied Chemistry has designed a continuous process plant for treating effluent water and removing toxic organic waste by converting them into mineral salts with high efficiency.

  8. Surface Water Treatment Workshop Manual.

    ERIC Educational Resources Information Center

    Ontario Ministry of the Environment, Toronto.

    This manual was developed for use at workshops designed to increase the knowledge of experienced water treatment plant operators. Each of the fourteen lessons in this document has clearly stated behavioral objectives to tell the trainee what he should know or do after completing that topic. Areas covered in this manual include: basic water…

  9. Guidelines for makeup water treatment

    SciTech Connect

    Cline, D.A. Jr.; Shields, K.J. Associates, Baltimore, MD )

    1990-03-01

    The EPRI Fossil Plant Cycle Chemistry Program, RP 2712, was developed in recognition of the importance of controlling cycle water and steam purity in attainment of maximized unit availability, reliability and efficiency. This guideline characterizes the state-of-the-art technology for production of cycle makeup water. It is intended to complement other RP 2712 projects in the areas of cycle chemistry guidelines, instrumentation and control, guideline demonstration and verification, and related subject areas. This guideline reviews available technology for and preferred approaches to production of fossil plant cycle makeup from various raw water supplies. Subject areas covered include makeup water source and source characteristics, unit processes comprising makeup treatment systems, guidelines for process selection, resin and membrane selection guidelines, techniques for monitoring performance and cost effectiveness, and waste disposal considerations. The report also identifies additional research activity needed to advance the state-of-the-art for makeup water treatment, results of a utility industry survey and other related topics. 72 refs., 60 figs., 74 tabs.

  10. Guidelines for sustainable building design: Recommendations from the Presidio of San Francisco energy efficiency design charrette

    SciTech Connect

    Brown, K.; Sartor, D.; Greenberg, S.

    1996-05-01

    In 1994, the Bay Chapter of the Association of Energy Engineers{reg_sign} organized a two-day design charrette for energy-efficient redevelopment of buildings by the National Park Services (NPS) at the Presidio of San Francisco. This event brought together engineers, researchers, architects, government officials, and students in a participatory environment to apply their experience to create guidelines for the sustainable redesign of Presidio buildings. The venue for the charrette was a representative barracks building located at the Main Post of the Presidio. Examination of this building allowed for the development of design recommendations, both for the building and for the remainder of the facilities. The charrette was organized into a committee structure consisting of: steering, measurement and monitoring, modeling, building envelope and historic preservation (architectural), HVAC and controls, lighting, and presentation. Prior to the charrette itself, the modeling and measurement/monitoring committees developed substantial baseline data for the other committees during the charrette. An integrated design approach was initiated through interaction between the committees during the charrette. Later, committee reports were cross-referenced to emphasize whole building design and systems integration.

  11. Drinking water safely during cancer treatment

    MedlinePLUS

    Centers for Disease Control and Prevention. A guide to drinking water treatment technologies for household use. http://www.cdc.gov/healthywater/drinking/travel/household_water_treatment.html. Accessed May 7, 2014.

  12. [Treatment of thermal pool waters].

    PubMed

    Signorelli, Carlo; Pasquarella, Cesira; Saccani, Elisa; Sansebastiano, Giuliano

    2006-01-01

    No laws currently exist regarding the treatment of spa pool water, since it is not completely logical that these should have the same requirements as normal swimming pools. The problem arises especially with regards to the use of chlorine as a disinfectant, which may actually annulate the therapeutic effects of spring waters by altering their physical-chemical characteristics. Possible choices may be represented by frequent replacement of pool water, which may be easily achievable for small pools but more difficult to implement for larger pools, or by alternative disinfection methods such as ozone or ultraviolet rays. The efficacy of these methods must be shown through frequent chemical and microbiological analyses and future, to be hoped-for laws or guidelines, will need to be aimed at defining safety performance standards rather than prescribing analytical intervention and control methods. Beyond the choice of disinfection method, it is extremely important to highlight some relevant hygienic measures that bathers should take and that play a fundamental role in preventing infectious diseases which may be acquired in pools. The most important of these include: showering before entering the pool, wearing slippers around the pool, not urinating in the pool, not bathing if affected by diarrhea, wearing a bathing cap, avoiding the use of contact lenses while bathing and avoiding exchanging towels. Pool managers have the important role of avoiding overcrowding of the facilities and ensuring that all technological systems function properly. PMID:17206228

  13. Apparatus and process for water treatment

    DOEpatents

    Phifer, Mark A.; Nichols, Ralph L.

    2001-01-01

    An apparatus is disclosed utilizing permeable treatment media for treatment of contaminated water, along with a method for enhanced passive flow of contaminated water through the treatment media. The apparatus includes a treatment cell including a permeable structure that encloses the treatment media, the treatment cell may be located inside a water collection well, exterior to a water collection well, or placed in situ within the pathway of contaminated groundwater. The passive flow of contaminated water through the treatment media is maintained by a hydraulic connection between a collecting point of greater water pressure head, and a discharge point of lower water pressure head. The apparatus and process for passive flow and groundwater treatment utilizes a permeable treatment media made up of granular metal, bimetallics, granular cast iron, activated carbon, cation exchange resins, and/or additional treatment materials. An enclosing container may have an outer permeable wall for passive flow of water into the container and through the enclosed treatment media to an effluent point. Flow of contaminated water is attained without active pumping of water through the treatment media. Remediation of chlorinated hydrocarbons and other water contaminants to acceptable regulatory concentration levels is accomplished without the costs of pumping, pump maintenance, and constant oversight by personnel.

  14. [Status of water supply treatment techniques].

    PubMed

    Flinspach, D; Werner, G

    1990-01-01

    The paper portrays the difficulties with which the water works presently have to contend in the preparation of drinking water from polluted sources. Particular emphasis is on describing the present state of water treatment methods and what they are capable of achieving. After an overview of the substances found in ground and surface water that impair the preparation of drinking water, the methods available today for water treatment are described. Finally, practical examples showing the most effective combination of these methods in modern water treatment plants are presented. PMID:2146547

  15. DRINKING WATER TREATMENT PLANT ADVISOR - USER DOCUMENTATION

    EPA Science Inventory

    The Drinking Water Treatment Plant (DWTP) Advisor is a software application which has been designed to provide assistance in the evaluation of drinking water treatment plants. Specifically, this program, which is based on the source document Interim Handbook Optimizing Water Trea...

  16. Chemisty of water treatment. Second edition

    SciTech Connect

    Faust, S.D.; Aly, O.M.

    1998-12-31

    This books focuses on the chemical aspects of water quality and water treatment that influence the design of treatment processes. The information in the book covers the removal of organic and inorganic compounds, heavy metals, particulate matter, pathogenic bacteria, protozoans, and viruses from water. In addition, a new chapter is included on aeration technology.

  17. Technology for Water Treatment (National Water Management)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The buildup of scale and corrosion is the most costly maintenance problem in cooling tower operation. Jet Propulsion Laboratory successfully developed a non-chemical system that not only curbed scale and corrosion, but also offered advantages in water conservation, cost savings and the elimination of toxic chemical discharge. In the system, ozone is produced by an on-site generator and introduced to the cooling tower water. Organic impurities are oxidized, and the dissolved ozone removes bacteria and scale. National Water Management, a NASA licensee, has installed its ozone advantage systems at some 200 cooling towers. Customers have saved money and eliminated chemical storage and discharge.

  18. TREATMENT OF SEASONAL PESTICIDES IN SURFACE WATERS

    EPA Science Inventory

    Numerous pesticides were monitored in surface waters in agricultural areas. Atrazine, alachlor, metolachlor, cyanazine, metribuzin, carbofuran, linuron, and simazine were found in the influent to three water treatment plants in storm runoff following their application. Studies at...

  19. Water Treatment Technology - General Plant Operation.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on general plant operations provides instructional materials for seven competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: water supply regulations, water plant

  20. Setting up the water chemistry for thermal water treatment

    NASA Astrophysics Data System (ADS)

    Boglovskii, A. V.; Chernozubov, V. B.; Chernykh, N. E.; Gorbunov, A. V.; Birdin, R. Kh.

    2007-07-01

    Results are presented from the development and setting up of water-chemistry conditions for a thermal water treatment process that allows saline effluents from a boiler house to be eliminated. Peculiarities of reducing scale formation in the evaporator through the use of chalk primer and type PAF-13A antiscale agent are discussed. The results of industrial tests of a thermal water treatment plant are presented that confirm the possibility of producing makeup water for heating networks and steam boilers.

  1. How to select a water treatment supplier

    SciTech Connect

    Keister, T.E.

    1995-06-01

    This paper is a continuation of one first presented in 1984 at the International Water Conference. Since that time many things have changed, not the least of which is my means of earning a living. While my prospective upon the world has changed due to conversion from user to supplier, the industrial world today is also much different than that of ten years ago. Major factors driving change are the explosion in computer technology, new environmental realities and restrictions, and a radically different world from both the political and economic standpoints. All of these areas directly impact upon water treatment and the selection of a supplier. Your attention is called to the sponsor of this paper, the Association of Water Technologies (AWT). The AWT is the trade association representing {open_quotes}small{close_quotes} water treatment companies, which presently control at least 21% of the US market in water treatment services. This 21% plus market share is greater than that of any single water treatment supplier. Growth of the AWT has been quite remarkable since its founding nine short years ago, membership now stands at approximately 370 companies. The growth of the Association is a good indication that the individual small water treatment suppliers, making up 74% of the membership, are also growing. Given the huge marketing budgets of the six major water treatment companies, it is sometimes difficult to realize that there are approximately 800 other water treatment companies in the market. Many of these smaller companies can oftentimes provide a better water treatment program than a major company can due to better service, closer customer contact, superior technology, and lower overhead costs. Selection of a water treatment supplier, be it a major or one of the smaller companies, should be made upon a firm foundation of facts, not marketing {open_quotes}hype{close_quotes}.

  2. Wafer Treatment Using Electrolysis-Ionized Water

    NASA Astrophysics Data System (ADS)

    Aoki, Hidemitsu; Nakamori, Masaharu; Aoto, Nahomi; Ikawa, Eiji

    1994-10-01

    Electrolysis-ionized water treatment is shown to be useful for removing polystyrene particles from contact holes, silicon surface cleaning and the removal of metal contamination such as copper. Electrolysis-ionized waterhas a controllable pH and a higher oxidation-reduction potential than chemicals. Moreover, this water does notcontain acid or alkaline chemicals, and can easily be neutralized without adding chemicals. Electrolysis-ionized water treatment has great potential for ecologically safe and low cost semiconductor processing.

  3. Ozone in water treatment: Application and engineering

    SciTech Connect

    Langlais, B.; Reckhow, D.A.; Brink, D.R.

    1991-01-01

    This book is a cumulative effort between the American Water Works Association Research Foundation and Champagnie General des Eaux. It is designed to provide guidance in two areas: application of ozone to drinking water and appropriate system design and operation. It is geared for use by environmentalists, engineers, and water treatment plant personnel.

  4. Water Treatment Technology - Chemistry/Bacteriology.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on chemistry/bacteriology provides instructional materials for twelve competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: waterborne diseases, water sampling

  5. Household Water Treatments in Developing Countries

    ERIC Educational Resources Information Center

    Smieja, Joanne A.

    2011-01-01

    Household water treatments (HWT) can help provide clean water to millions of people worldwide who do not have access to safe water. This article describes four common HWT used in developing countries and the pertinent chemistry involved. The intent of this article is to inform both high school and college chemical educators and chemistry students

  6. Water Treatment Technology - Chemistry/Bacteriology.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on chemistry/bacteriology provides instructional materials for twelve competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: waterborne diseases, water sampling…

  7. Household Water Treatments in Developing Countries

    ERIC Educational Resources Information Center

    Smieja, Joanne A.

    2011-01-01

    Household water treatments (HWT) can help provide clean water to millions of people worldwide who do not have access to safe water. This article describes four common HWT used in developing countries and the pertinent chemistry involved. The intent of this article is to inform both high school and college chemical educators and chemistry students…

  8. A Primer on Waste Water Treatment.

    ERIC Educational Resources Information Center

    Department of the Interior, Washington, DC. Federal Water Pollution Control Administration.

    This information pamphlet is for teachers, students, or the general public concerned with the types of waste water treatment systems, the need for further treatment, and advanced methods of treating wastes. Present day pollution control methods utilizing primary and secondary waste treatment plants, lagoons, and septic tanks are described,…

  9. 36 CFR 1012.9 - What criteria will the Presidio Trust consider in responding to my Touhy Request?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ability to obtain the testimony or records from another source; (b) The appropriateness of the employee testimony and record production under the relevant regulations of procedure and substantive law, including the FOIA or the Privacy Act; and (c) The Presidio Trust's ability to: (1) Conduct its...

  10. 36 CFR 1012.9 - What criteria will the Presidio Trust consider in responding to my Touhy Request?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ability to obtain the testimony or records from another source; (b) The appropriateness of the employee testimony and record production under the relevant regulations of procedure and substantive law, including the FOIA or the Privacy Act; and (c) The Presidio Trust's ability to: (1) Conduct its...

  11. 36 CFR 1012.9 - What criteria will the Presidio Trust consider in responding to my Touhy Request?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ability to obtain the testimony or records from another source; (b) The appropriateness of the employee testimony and record production under the relevant regulations of procedure and substantive law, including the FOIA or the Privacy Act; and (c) The Presidio Trust's ability to: (1) Conduct its...

  12. 36 CFR 1012.9 - What criteria will the Presidio Trust consider in responding to my Touhy Request?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ability to obtain the testimony or records from another source; (b) The appropriateness of the employee testimony and record production under the relevant regulations of procedure and substantive law, including the FOIA or the Privacy Act; and (c) The Presidio Trust's ability to: (1) Conduct its...

  13. 36 CFR 1011.9 - When will the Presidio Trust transfer a debt to the Financial Management Service for collection?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... transfer a debt to the Financial Management Service for collection? 1011.9 Section 1011.9 Parks, Forests... When will the Presidio Trust transfer a debt to the Financial Management Service for collection? (a... in 31 CFR 285.12. The FMS takes appropriate action to collect or compromise the transferred debt,...

  14. 36 CFR 1011.9 - When will the Presidio Trust transfer a debt to the Financial Management Service for collection?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... transfer a debt to the Financial Management Service for collection? 1011.9 Section 1011.9 Parks, Forests... When will the Presidio Trust transfer a debt to the Financial Management Service for collection? (a... in 31 CFR 285.12. The FMS takes appropriate action to collect or compromise the transferred debt,...

  15. 78 FR 25973 - Final Environmental Impact Statement for the Real Property Master Plan at the Presidio of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    ... Department of the Army Final Environmental Impact Statement for the Real Property Master Plan at the Presidio... Department of the Army announces the availability of the Final Environmental Impact Statement (EIS) for the... libraries in the cities of Monterey, Pacific Grove and Seaside, and the Chamberlain Library on the OMC....

  16. 36 CFR 1011.6 - When will the Presidio Trust allow a debtor to enter into a repayment agreement?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... allow a debtor to enter into a repayment agreement? 1011.6 Section 1011.6 Parks, Forests, and Public... Presidio Trust allow a debtor to enter into a repayment agreement? (a) Voluntary repayment. In response to... Trust will consider a request to enter into a voluntary repayment agreement in accordance with the...

  17. 36 CFR 1011.6 - When will the Presidio Trust allow a debtor to enter into a repayment agreement?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... allow a debtor to enter into a repayment agreement? 1011.6 Section 1011.6 Parks, Forests, and Public... Presidio Trust allow a debtor to enter into a repayment agreement? (a) Voluntary repayment. In response to... Trust will consider a request to enter into a voluntary repayment agreement in accordance with the...

  18. 36 CFR 1011.6 - When will the Presidio Trust allow a debtor to enter into a repayment agreement?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... allow a debtor to enter into a repayment agreement? 1011.6 Section 1011.6 Parks, Forests, and Public... Presidio Trust allow a debtor to enter into a repayment agreement? (a) Voluntary repayment. In response to... Trust will consider a request to enter into a voluntary repayment agreement in accordance with the...

  19. 36 CFR 1011.6 - When will the Presidio Trust allow a debtor to enter into a repayment agreement?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... allow a debtor to enter into a repayment agreement? 1011.6 Section 1011.6 Parks, Forests, and Public... Presidio Trust allow a debtor to enter into a repayment agreement? (a) Voluntary repayment. In response to... Trust will consider a request to enter into a voluntary repayment agreement in accordance with the...

  20. 36 CFR 1011.6 - When will the Presidio Trust allow a debtor to enter into a repayment agreement?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... allow a debtor to enter into a repayment agreement? 1011.6 Section 1011.6 Parks, Forests, and Public... Presidio Trust allow a debtor to enter into a repayment agreement? (a) Voluntary repayment. In response to... Trust will consider a request to enter into a voluntary repayment agreement in accordance with the...

  1. EPA's Drinking Water Treatment Research

    EPA Science Inventory

    Research conducted since EPA inception Research conducted by several EPA organizations in Cincinnati ORD NRMRL NERL NCEA NHSRC OGWDW TSC WSD USEPA drinking water research facilities in Cincinnati Andrew W. Breidenbach Environmental Research Center (AWBERC) Test and E...

  2. WATER TREATMENT PROBLEMS AND CONSEQUENCES

    EPA Science Inventory

    In recent years the emphasis on removing microbes from drinking water has increased. This increased concern was brought about partly by documented waterborne disease outbreaks in the US. Cryptosporidium concerns were elevated after the cryptosporodiosis outbreak in Milwaukee. Oth...

  3. MEMBRANES FOR DRINKING WATER TREATMENT

    EPA Science Inventory

    Various treatment technologies have proven effective in controlling halogenated disinfection by-products such as precursor removal and the use of alternative disinfectants. One of the most promising methods for halogenated by-product control includes removal of precursors before ...

  4. Verifying Ballast Water Treatment Performance

    EPA Science Inventory

    The U.S. Environmental Protection Agency, NSF International, Battelle, and U.S. Coast Guard are jointly developing a protocol for verifying the technical performance of commercially available technologies designed to treat ship ballast water for potentially invasive species. The...

  5. The artificial water cycle: emergy analysis of waste water treatment.

    PubMed

    Bastianoni, Simone; Fugaro, Laura; Principi, Ilaria; Rosini, Marco

    2003-04-01

    The artificial water cycle can be divided into the phases of water capture from the environment, potabilisation, distribution, waste water collection, waste water treatment and discharge back into the environment. The terminal phase of this cycle, from waste water collection to discharge into the environment, was assessed by emergy analysis. Emergy is the quantity of solar energy needed directly or indirectly to provide a product or energy flow in a given process. The emergy flow attributed to a process is therefore an index of the past and present environmental cost to support it. Six municipalities on the western side of the province of Bologna were analysed. Waste water collection is managed by the municipal councils and treatment is carried out in plants managed by a service company. Waste water collection was analysed by compiling a mass balance of the sewer system serving the six municipalities, including construction materials and sand for laying the pipelines. Emergy analysis of the water treatment plants was also carried out. The results show that the great quantity of emergy required to treat a gram of water is largely due to input of non renewable fossil fuels. As found in our previous analysis of the first part of the cycle, treatment is likewise characterised by high expenditure of non renewable resources, indicating a correlation with energy flows. PMID:12817633

  6. Water/Wastewater Treatment Plant Operator Qualifications.

    ERIC Educational Resources Information Center

    Water and Sewage Works, 1979

    1979-01-01

    This article summarizes in tabular form the U.S. and Canadian programs for classification of water and wastewater treatment plant personnel. Included are main characteristics of the programs, educational and experience requirements, and indications of requirement substitutions. (CS)

  7. ESTIMATION OF SMALL SYSTEM WATER TREATMENT COSTS

    EPA Science Inventory

    This report presents cost data for unit processes that are capable of removing contaminants included in the National Interim Primary Drinking Water Regulations. Construction and operation and maintenance cost data are presented for 45 centralized treatment unit processes that are...

  8. INTEGRATED WATER TREATMENT SYSTEM PERFORMANCE EVALUATION

    SciTech Connect

    SEXTON RA; MEEUWSEN WE

    2009-03-12

    This document describes the results of an evaluation of the current Integrated Water Treatment System (IWTS) operation against design performance and a determination of short term and long term actions recommended to sustain IWTS performance.

  9. ALTERNATIVE DISINFECTION FOR DRINKING WATER TREATMENT

    EPA Science Inventory

    During a one-yr study at Jefferson Parish, La., the chemical, microbiological, and mutagenic effects os using the major drinkgin water disinfectants (chlorine, chlorine dioxide, chloramine, ozone) were evaluated. Tests were performed on samples collected from various treatment s...

  10. SUMMARY REPORT: SMALL COMMUNITY WATER AND WASTE- WATER TREATMENT

    EPA Science Inventory

    This summary report presents information on the unique needs of small communities facing new water and wastewater treatment requirements. t contains three main sections: technology overviews (each presents a process description, O&M requirements, technology limitations, and finan...

  11. TREATMENT TECHNOLOGY EVALUATION BRANCH (WATER SUPPLY AND WATER RESOURCES DIVISION)

    EPA Science Inventory

    Research in the Treatment Technology Evaluation Branch (TTEB) is focused on several key problems that face the potable water industry today. These include the formation and removal of disinfection byproducts -- both ozonation DBPs and chlorination DBPs, the removal of pathogenic...

  12. Analysis of Serpentine Soils in the Presidio of San Francisco, CA

    NASA Astrophysics Data System (ADS)

    Matthew, A.; Chan, L.; Cheng, J.; Khalil, M.; White, L. D.; Gonzales, J.; La Force, M. J.

    2004-12-01

    Serpentine soils and their associated serpentine prairie habitats are extremely rare. Within California, serpentine-derived soil comprises only 2,860 km2 of the State and represents less than 1% of the total land surface. The Presidio, a National Park located in San Francisco, CA, hosts several patches of serpentine habitat, which are currently being encroached by non-native plant species. The serpentine soils support threatened and endangered plant species, and are defined by the geochemical properties inherent to the soils. We analyzed the physical and geochemical properties of soils within the West Grassland area of the Presidio to characterize the distribution of serpentine soils across the study site. Our goal is to further understand sub-surface conditions, including depth to bedrock and changes in lithology with depth. Nine locations throughout the West Grassland portion of the Park were randomly selected and hand augured to a depth of 3-5 feet, and soil samples were obtained at 1-foot intervals. Physical properties including color and texture were obtained in the field. Soils overlying serpentine bedrock were found to have a clayey-loam texture. Depth to bedrock was shallow in hilly areas underlain by resistant, hill-forming serpentine bedrock. Auguring further revealed that topographic lows correlated to changes in lithology from soils that were serpentine-derived to sandy loams consistent with sand dune deposits found elsewhere in the vicinity. The geochemistry of selected samples is being analyzed for namely pH, nitrogen, calcium, and magnesium concentrations. Geochemical data will be compared to an existing database and a statistical analysis of the geochemical data will be used to correlate physical and textural data.

  13. Water-conserving cooling tower treatment

    SciTech Connect

    Mathie, A.J.

    1996-12-31

    Water conservation in cooling towers and evaporative coolers can finally become a reality. Also, fouled closed hot and chilled water systems can be restored to near original efficiency using the same technology. The barrier limiting the traditional water treatment industry from serious involvement in water conservation is the lack of a really good chemical to control scale. Poor scale inhibitors are the reason for a heavy bleed. Minerals concentrated by evaporation is wasted to the sewer while low solids make-up water fills the tower. Water conservation is important because of the increasing usable water shortage, the cost to add infrastructure to deliver increasing amounts of water to accommodate growth and the limitations imposed on disposal to the sewer. Now, due to innovations in chemical treatment, users of cooling towers and evaporative coolers can conserve water. In this presentation the author assumes the audience has some knowledge of traditional water treatment. Except for a few general references to establish common understanding, the author confines his remarks to discussing an advanced technology developed by DIAS, Inc., and the economics of its use.

  14. Water Treatment Technology - Taste, Odor & Color.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on taste, odor, and color provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: taste and odor determination, control of

  15. Water Treatment Technology - Taste, Odor & Color.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on taste, odor, and color provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: taste and odor determination, control of…

  16. Water Treatment Technology - Cross-Connections.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on cross connections provides instructional materials for two competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on cross connections terminology and control devices. For each

  17. TREATMENT EFFECTIVENESS: OIL TANKER BALLAST WATER FACILITY

    EPA Science Inventory

    A study dealing with the effectiveness of large-scale treatment of ballast water was conducted at the terminal facility of the TransAlaska Pipeline in Valdez, Alaska. The plant was found to be generally effective in reducing the petroleum content of the ballast water. On the aver...

  18. Treatment: improvement or deterioration of water quality?

    PubMed

    Khn, W; Sontheimer, H

    1981-04-01

    The formation of trihalomethanes through chlorination has shown very clearly that water treatment processes may adversely affect water quality. There are many more examples of such effects, including the following which are discussed in detail: 1. Formation of organohalogen compounds in addition to trihalomethanes by chlorination and other oxidation processes. 2. Formation of more polar, more biodegradable organics by ozonation for example, and the consequent increase in bacterial growth in the distribution system. 3. Formation and removal of organic and inorganic corrosion inhibitors by treatment, and the consequent higher heavy metal concentrations in tap water. PMID:7233162

  19. Rational design of nanomaterials for water treatment.

    PubMed

    Li, Renyuan; Zhang, Lianbin; Wang, Peng

    2015-11-01

    The ever-increasing human demand for safe and clean water is gradually pushing conventional water treatment technologies to their limits. It is now a popular perception that the solutions to the existing and future water challenges will hinge upon further developments in nanomaterial sciences. The concept of rational design emphasizes on 'design-for-purpose' and it necessitates a scientifically clear problem definition to initiate the nanomaterial design. The field of rational design of nanomaterials for water treatment has experienced a significant growth in the past decade and is poised to make its contribution in creating advanced next-generation water treatment technologies in the years to come. Within the water treatment context, this review offers a comprehensive and in-depth overview of the latest progress in rational design, synthesis and applications of nanomaterials in adsorption, chemical oxidation and reduction reactions, membrane-based separation, oil-water separation, and synergistic multifunctional all-in-one nanomaterials/nanodevices. Special attention is paid to the chemical concepts related to nanomaterial design throughout the review. PMID:26437738

  20. Rational design of nanomaterials for water treatment

    NASA Astrophysics Data System (ADS)

    Li, Renyuan; Zhang, Lianbin; Wang, Peng

    2015-10-01

    The ever-increasing human demand for safe and clean water is gradually pushing conventional water treatment technologies to their limits. It is now a popular perception that the solutions to the existing and future water challenges will hinge upon further developments in nanomaterial sciences. The concept of rational design emphasizes on `design-for-purpose' and it necessitates a scientifically clear problem definition to initiate the nanomaterial design. The field of rational design of nanomaterials for water treatment has experienced a significant growth in the past decade and is poised to make its contribution in creating advanced next-generation water treatment technologies in the years to come. Within the water treatment context, this review offers a comprehensive and in-depth overview of the latest progress in rational design, synthesis and applications of nanomaterials in adsorption, chemical oxidation and reduction reactions, membrane-based separation, oil-water separation, and synergistic multifunctional all-in-one nanomaterials/nanodevices. Special attention is paid to the chemical concepts related to nanomaterial design throughout the review.

  1. Water and wastewater treatment system

    SciTech Connect

    Wang, L.K.; Kurylko, L.; Wang, M.H.S.

    1993-08-31

    An apparatus is described for dissolving a plurality of gases into a recycled liquid stream by pressurization, releasing the pressurized recycled liquid stream, generating micro gas bubbles in a depressurized liquid stream, concentrating microorganisms as a floating scum on the surface of the depressurized liquid stream, recycling a portion of the concentrated microorganisms in the floating scum to an influent liquid stream for treating the influent liquid stream, and discharging a clarified effluent liquid stream comprising: (a) an influent pipe apparatus and a liquid flow measuring apparatus connected to the influent pipe apparatus for measuring the flow of an influent liquid stream; (b) a pretreatment chamber apparatus directly or indirectly connected to the influent pipe apparatus comprising feeder apparatus for feeding chemicals and/or microorganisms into the influent liquid stream; (c) a bioreactor; (d) apparatus for delivering at least one gas comprises a bubbles distribution apparatus positioned near bottom of the bioreactor apparatus for generating coarse gas bubbles with diameter greater than 80 microns; (e) apparatus positioned inside the bioreactor for holding microorganisms; (f) apparatus connected to the bioreactor for discharging the bioreactor effluent liquid stream; (g) apparatus connected to the bioreactor for receiving the recycled floating scum or settled sludges or both containing microorganisms; (h) an inlet pipe connected to a nozzle assembly; a gas injector connected to the inlet pipe, and a pump connected to the inlet pipe; (i) an enclosed cylindrical pressure vessel having a tangentially disposed liquid stream vessel inlet connected to the inlet pipe and pump; (k) the open vessel connected directly or indirectly to the bioreactor; (l) sludge removal apparatus; (m) post-treatment apparatus; and (n) a third discharge apparatus.

  2. Saving Energy, Water, and Money with Efficient Water Treatment Technologies

    SciTech Connect

    Not Available

    2004-06-01

    Reverse Osmosis (RO) is a method of purifying water for industrial processes and human consumption; RO can remove mineral salts as well as contaminants such as bacteria and pesticides. Advances in water treatment technologies have enhanced and complemented the conventional RO process, reducing energy and water consumption, lowering capital and operating costs, and producing purer water. This publication of the Department of Energy's Federal Energy Management Program introduces RO, describes the benefits of high-efficiency reverse osmosis (HERO), and compares HERO with RO/electrodeionization (EDI) technology.

  3. Evaluating Nanoparticle Breakthrough during Drinking Water Treatment

    PubMed Central

    Chalew, Talia E. Abbott; Ajmani, Gaurav S.; Huang, Haiou

    2013-01-01

    Background: Use of engineered nanoparticles (NPs) in consumer products is resulting in NPs in drinking water sources. Subsequent NP breakthrough into treated drinking water is a potential exposure route and human health threat. Objectives: In this study we investigated the breakthrough of common NPs—silver (Ag), titanium dioxide (TiO2), and zinc oxide (ZnO)—into finished drinking water following conventional and advanced treatment. Methods: NPs were spiked into five experimental waters: groundwater, surface water, synthetic freshwater, synthetic freshwater containing natural organic matter, and tertiary wastewater effluent. Bench-scale coagulation/flocculation/sedimentation simulated conventional treatment, and microfiltration (MF) and ultrafiltration (UF) simulated advanced treatment. We monitored breakthrough of NPs into treated water by turbidity removal and inductively coupled plasma–mass spectrometry (ICP-MS). Results: Conventional treatment resulted in 2–20%, 3–8%, and 48–99% of Ag, TiO2, and ZnO NPs, respectively, or their dissolved ions remaining in finished water. Breakthrough following MF was 1–45% for Ag, 0–44% for TiO2, and 36–83% for ZnO. With UF, NP breakthrough was 0–2%, 0–4%, and 2–96% for Ag, TiO2, and ZnO, respectively. Variability was dependent on NP stability, with less breakthrough of aggregated NPs compared with stable NPs and dissolved NP ions. Conclusions: Although a majority of aggregated or stable NPs were removed by simulated conventional and advanced treatment, NP metals were detectable in finished water. As environmental NP concentrations increase, we need to consider NPs as emerging drinking water contaminants and determine appropriate drinking water treatment processes to fully remove NPs in order to reduce their potential harmful health outcomes. Citation: Abbott Chalew TE, Ajmani GS, Huang H, Schwab KJ. 2013. Evaluating nanoparticle breakthrough during drinking water treatment. Environ Health Perspect 121:1161–1166; http://dx.doi.org/10.1289/ehp.1306574 PMID:23933526

  4. Nanotechnology-based water treatment strategies.

    PubMed

    Kumar, Sandeep; Ahlawat, Wandit; Bhanjana, Gaurav; Heydarifard, Solmaz; Nazhad, Mousa M; Dilbaghi, Neeraj

    2014-02-01

    The most important component for living beings on the earth is access to clean and safe drinking water. Globally, water scarcity is pervasive even in water-rich areas as immense pressure has been created by the burgeoning human population, industrialization, civilization, environmental changes and agricultural activities. The problem of access to safe water is inevitable and requires tremendous research to devise new, cheaper technologies for purification of water, while taking into account energy requirements and environmental impact. This review highlights nanotechnology-based water treatment technologies being developed and used to improve desalination of sea and brackish water, safe reuse of wastewater, disinfection and decontamination of water, i.e., biosorption and nanoadsorption for contaminant removal, nanophotocatalysis for chemical degradation of contaminants, nanosensors for contaminant detection, different membrane technologies including reverse osmosis, nanofiltration, ultrafiltration, electro-dialysis etc. This review also deals with the fate and transport of engineered nanomaterials in water and wastewater treatment systems along with the risks associated with nanomaterials. PMID:24749460

  5. Innovations in nanotechnology for water treatment

    PubMed Central

    Gehrke, Ilka; Geiser, Andreas; Somborn-Schulz, Annette

    2015-01-01

    Important challenges in the global water situation, mainly resulting from worldwide population growth and climate change, require novel innovative water technologies in order to ensure a supply of drinking water and reduce global water pollution. Against this background, the adaptation of highly advanced nanotechnology to traditional process engineering offers new opportunities in technological developments for advanced water and wastewater technology processes. Here, an overview of recent advances in nanotechnologies for water and wastewater treatment processes is provided, including nanobased materials, such as nanoadsorbents, nanometals, nanomembranes, and photocatalysts. The beneficial properties of these materials as well as technical barriers when compared with conventional processes are reported. The state of commercialization is presented and an outlook on further research opportunities is given for each type of nanobased material and process. In addition to the promising technological enhancements, the limitations of nanotechnology for water applications, such as laws and regulations as well as potential health risks, are summarized. The legal framework according to nanoengineered materials and processes that are used for water and wastewater treatment is considered for European countries and for the USA. PMID:25609931

  6. 7 CFR 305.22 - Hot water immersion treatment schedules.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Fruit must be submerged at least 4 inches below the water's surface in a hot water immersion treatment... treatment begins. (2) Fruit must be submerged at least 4 inches below the water's surface in a hot water... inches below the water's surface in a hot water immersion treatment tank certified by APHIS. (2)...

  7. Water Purification by Using Microplasma Treatment

    NASA Astrophysics Data System (ADS)

    Shimizu, K.; Masamura, N.; Blajan, M.

    2013-06-01

    Dielectric barrier discharge microplasma generated at the surface of water is proposed as a solution for water treatment. It is an economical and an ecological technology for water treatment due to its generation at atmospheric pressure and low discharge voltage. Microplasma electrodes were placed at small distance above the water thus active species and radicals were flown by the gas towards the water surface and furthermore reacted with the target to be decomposed. Indigo carmine was chosen as the target to be decomposed by the effect of active species and radicals generated between the electrodes. Air, oxygen, nitrogen and argon were used as discharge gases. Measurement of absorbance showed the decomposition of indigo carmine by microplasma treatment. Active species and radicals of oxygen origin so called ROS (reactive oxidative species) were considered to be the main factor in indigo carmine decomposition. The decomposition rate increased with the increase of the treatment time as shown by the spectrophotometer analysis. Discharge voltage also influenced the decomposition process.

  8. Industrial water technology: Treatment, reuse and recycling

    SciTech Connect

    Chin, K.K.; Kumarasivam, K.

    1986-01-01

    The papers published in this book provide a synthesis of industrial water problems in both developing and developed countries. Reflecting the practical emphasis of the topic, the material concentrates upon case studies of recently commissioned plants, reporting on the processes and experiences to date in treatment, reuses and resource recovery. Areas considered in detail include: the electronics industry, with its requirement for ultra pure water; the problems of oil contaminated water from oil refineries; tanneries, slaughter houses and metal plating; reuse of treated sewage effluent; problems of the pulp and paper industries; and industries local to South East Asia.

  9. Treatment Technology and Alternative Water Resources

    NASA Astrophysics Data System (ADS)

    Chapman, M. J.

    2014-12-01

    At this point in our settlement of the planet Earth, with over seven billion human inhabitants, there are very few unallocated sources of fresh water. We are turning slowly toward "alternatives" such as municipal and industrial wastewater, saline groundwater, the sea, irrigation return flow, and produced water that comes up with oil and gas deposits from deep beneath the surface of the earth. Slowly turning, not because of a lack in technological ability, but because it takes a large capital investment to acquire and treat these sources to a level at which they can be used. The regulatory system is not geared up for alternative sources and treatment processes. Permitting can be circular, contradictory, time consuming, and very expensive. The purpose for the water, or the value of the product obtained using the water, must be such that the capital and ongoing expense seem reasonable. There are so many technological solutions for recovering water quality that choosing the most reliable, economical, and environmentally sound technology involves unraveling the "best" weave of treatment processes from a tangled knot of alternatives. Aside from permitting issues, which are beyond the topic for this presentation, the "best" weave of processes will be composed of four strands specifically fitted to the local situation: energy, pretreatment, driving force for separation processes, and waste management. A range of treatment technologies will be examined in this presentation with a focus on how the quality of the feed water, available power sources, materials, and waste management opportunities aid in choosing the best weave of treatment technologies, and how innovative use of a wide variety of driving forces are increasing the efficiency of treatment processes.

  10. Acid mine water treatment using engineered wetlands

    NASA Astrophysics Data System (ADS)

    Kleinmann, Robert L. P.

    1990-03-01

    During the last two decades, the United States mining industry has greatly increased the amount it spends on pollution control. The application of biotechnology to mine water can reduce the industry's water treatment costs (estimated at over a million dollars a day) and improve water quality in streams and rivers adversely affected by acidic mine water draining from abandoned mines. Biological treatment of mine waste water is typically conducted in a series of small excavated ponds that resemble, in a superficial way, a small marsh area. The ponds are engineered to first facilitate bacterial oxidation of iron; ideally, the water then flows through a composted organic substrate that supports a population of sulfate-reducing bacteria. The latter process raises the pH. During the past four years, over 400 wetland water treatment systems have been built on mined lands as a result of research by the U.S. Bureau of Mines. In general, mine operators find that the wetlands reduce chemical treatment costs enough to repay the cost of wetland construction in less than a year. Actual rates of iron removal at field sites have been used to develop empirical sizing criteria based on iron loading and pH. If the pH is 6 or above, the wetland area (m2) required is equivalent to the iron load (grams/day) divided by 10. Theis requirement doubles at a pH of 4 to 5. At a pH below 4, the iron load (grams/day) should be divided by 2 to estimate the area required (m2).

  11. Magnetic water treatment: A coming attraction?

    SciTech Connect

    Fryer, L.

    1995-10-01

    United Airlines and pharmaceutical company Eli Lilly and Company are among a number of users that are controlling scale and corrosion in cooling tower loops with magnetic water treatment, a controversial technology that has met with skepticism, disbelief, and claims of fraud. Experts and hundreds of published papers disagree on whether magnetic water treatment works, and if so, how. No scientific theory has proven how magnets can treat water, nor are there documented, reproducible laboratory test results. Field experience is mixed, with some installations working well and others failing. Despite the controversy and the lack of an adequately documented theoretical underpinning, the existence of large, apparently successful installations lends credence to the view that at least some magnetic water treatment systems are effective. The stakes are high. Most large HVAC systems are currently treated with chemicals. These chemicals generally work well, but they are costly, in many cases are environmentally damaging, and are subject to increasingly strict regulations. A reliable, low-cost, and more environmentally benign alternative that eliminates or sharply reduces the need for chemical treatment would have obvious benefits. Based on the review of the literature, discussions with users, vendors, and independent analysts, and tours of several apparently successful installations, E Source believes that this technology works in some cases and warrants further investigation. They caution prospective users to shop carefully and to select vendors with an established track record.

  12. CHEMICAL DOSER FOR AGUACLARA WATER TREATMENT PLANTS

    EPA Science Inventory

    The design procedure for the nonlinear chemical doser will be validated and extended over a wide range of flow rates. The doser will be tested in several full-scale municipal water treatment plants. We will also generate improved design algorithms for rapid mix, flocculation,...

  13. Cellulose nanomaterials in water treatment technologies.

    PubMed

    Carpenter, Alexis Wells; de Lannoy, Charles-Franois; Wiesner, Mark R

    2015-05-01

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials' potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials' beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization. PMID:25837659

  14. Cellulose Nanomaterials in Water Treatment Technologies

    PubMed Central

    Carpenter, Alexis Wells; de Lannoy, Charles François; Wiesner, Mark R.

    2015-01-01

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials’ potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials’ beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization. PMID:25837659

  15. Evaluation of semidecentralized emergency drinking water treatment.

    PubMed

    Eloidin, Ocane; Dorea, Caetano C

    2015-01-01

    This study evaluates the potential for a novel semidecentralized approach that uses coagulant disinfectant products (CDPs) for humanitarian water treatment, by testing two commercially available products (CDP-W and CDP-T). Their performances were evaluated against the relevant water quality treatment objectives (The Sphere Project) under laboratory conditions, using a standardized testing protocol with both synthetic and natural surface test waters. Tests indicated a satisfactory performance by one of the products (CDP-W) with respect to humanitarian water quality objectives, (i.e., free chlorine residual, pH, and turbidity) that was dependent on initial water quality characteristics. Adequate bacterial inactivation (final thermotolerant coliform concentration of < 1 cfu/100 mL) was always attained and log reductions of up to 5 were achieved. The other product (CDP-T) did not exhibit any measurable coagulation and disinfection properties, indicating the variability of product quality and the need to conduct evaluations such as the ones presented in this study. Such results are of relevance to relief agencies delivering water supply interventions. PMID:26121019

  16. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER

    SciTech Connect

    John R. Gallagher

    2001-07-31

    During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the reactor. Batch tests were conducted to examine naphthenic acid biodegradability under several conditions. The conditions used were seed from the anaerobic reactor, wetland sediments under aerobic and anaerobic conditions, and a sterile control. The naphthenic acid was from a commercial source isolated from Gulf Coast petroleum as was dosed at 2 mg/mL. The incubations were for 30 days at 30 C. The results showed that the naphthenic acids were not biodegraded under anaerobic conditions, but were degraded under aerobic conditions. Despite poor performance of the anaerobic reactor, it remains likely that anaerobic treatment of acetate, toluene, and, potentially, other produced-water components is feasible.

  17. Water Treatment Systems for Long Spaceflights

    NASA Technical Reports Server (NTRS)

    FLynn, Michael T.

    2012-01-01

    Space exploration will require new life support systems to support the crew on journeys lasting from a few days to several weeks, or longer. These systems should also be designed to reduce the mass required to keep humans alive in space. Water accounts for about 80 percent of the daily mass intake required to keep a person alive. As a result, recycling water offers a high return on investment for space life support. Water recycling can also increase mission safety by providing an emergency supply of drinking water, where another supply is exhausted or contaminated. These technologies also increase safety by providing a lightweight backup to stored supplies, and they allow astronauts to meet daily drinking water requirements by recycling the water contained in their own urine. They also convert urine into concentrated brine that is biologically stable and nonthreatening, and can be safely stored onboard. This approach eliminates the need to have a dedicated vent to dump urine overboard. These needs are met by a system that provides a contaminant treatment pouch, referred to as a urine cell or contaminant cell, that converts urine or another liquid containing contaminants into a fortified drink, engineered to meet human hydration, electrolyte, and caloric requirements, using a variant of forward osmosis (FO) to draw water from a urine container into the concentrated fortified drink as part of a recycling stage. An activated carbon pretreatment removes most organic molecules. Salinity of the initial liquid mix (urine plus other) is synergistically used to enhance the precipitation of organic molecules so that activated carbon can remove most of the organics. A functional osmotic bag is then used to remove inorganic contaminants. If a contaminant is processed for which the saline content is different than optimal for precipitating organic molecules, the saline content of the liquid should be adjusted toward the optimal value for that contaminant. A first urine treatment method converts urine into a fortified sports drink, resembling Gatorade, using a first urine cell.

  18. Purge water characterization and treatment summary

    SciTech Connect

    Garrett, L.; Olson, P.M.

    1990-09-01

    A number of groundwaters at the Hanford Site are contaminated with a variety of radioactive and nonradioactive constituents. The contaminants and the movement of these groundwaters are monitored in accordance with US Department of Energy (DOE) and the Washington State Department of Ecology (Ecology) requirements. The monitoring activities generate four types of purge water: (1) well sampling purge water for analysis, (2) well development purge water, (3) well rehabilitation purge water, and (4) aquifer testing purge water. There are a large number of wells (approximately 650 currently active) distributed over 570 mi. The contaminants vary with the location. The average yearly volume of purge water generated over the next 5 yr is projected to be 4.4 Mgal. This projection does not take into account aquifer testing of new Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) wells because as of September 1, 1989, the scope of the CERCLA aquifer testing has not been defined. This document presents a comprehensive summary of the groundwater contaminants, a preliminary evaluation of applicable technologies for groundwater cleanup, and a discussion of viable options for consideration as treatment methods. 9 refs., 11 figs., 10 tabs.

  19. Characterization of drinking water treatment sludge after ultrasound treatment.

    PubMed

    Zhou, Zhiwei; Yang, Yanling; Li, Xing; Zhang, Yang; Guo, Xuan

    2015-05-01

    Ultrasonic technology alone or the combination of ultrasound with alkaline or thermal hydrolysis as pretreatment for anaerobic digestion of activated sludge has been extensively documented. However, there are few reports on ultrasound as pretreatment of drinking water treatment sludge (DWTS), and thereby the characteristic variability of sonicated DWTS has not been fully examined. This research presents a lab-scale study on physical, chemical and biological characteristics of a DWTS sample collected from a water plant after ultrasonic treatment via a bath/probe sonoreactor. By doing this work, we provide implications for using ultrasound as pretreatment of enhanced coagulation of recycling sludge, and for the conditioning of water and wastewater mixed sludge by ultrasound combined with polymers. Our results indicate that the most vigorous DWTS disintegration quantified by particles' size reduction and organic solubilization is achieved with 5 W/ml for 30 min ultra-sonication (specific energy of 1590 kWh/kg TS). The Brunauer, Emmett and Teller (BET) specific surface area of sonicated DWTS flocs increase as ultra-sonication prolongs at lower energy densities (0.03 and 1 W/ml), while decrease as ultra-sonication prolongs at higher energy densities (3 and 5 W/ml). Additionally, the pH and zeta potential of sonicated DWTS slightly varies under all conditions observed. A shorter sonication with higher energy density plays a more effective role in restraining microbial activity than longer sonication with lower energy density. PMID:25443278

  20. Energy requirements for waste water treatment.

    PubMed

    Svardal, K; Kroiss, H

    2011-01-01

    The actual mathematical models describing global climate closely link the detected increase in global temperature to anthropogenic activity. The only energy source we can rely on in a long perspective is solar irradiation which is in the order of 10,000 kW/inhabitant. The actual primary power consumption (mainly based on fossil resources) in the developed countries is in the range of 5 to 10 kW/inhabitant. The total power contained in our nutrition is in the range of 0.11 kW/inhabitant. The organic pollution of domestic waste water corresponds to approximately 0.018 kW/inhabitant. The nutrients contained in the waste water can also be converted into energy equivalents replacing market fertiliser production. This energy equivalent is in the range of 0.009 kW/inhabitant. Hence waste water will never be a relevant source of energy as long as our primary energy consumption is in the range of several kW/inhabitant. The annual mean primary power demand of conventional municipal waste water treatment with nutrient removal is in the range of 0.003-0.015 kW/inhabitant. In principle it is already possible to reduce this value for external energy supply to zero. Such plants should be connected to an electrical grid in order to keep investment costs low. Peak energy demand will be supported from the grid and surplus electric energy from the plant can be is fed to the grid. Zero 'carbon footprint' will not be affected by this solution. Energy minimisation must never negatively affect treatment efficiency because water quality conservation is more important for sustainable development than the possible reduction in energy demand. This argument is strongly supported by economical considerations as the fixed costs for waste water infrastructure are dominant. PMID:22214091

  1. The Reagent-sorption Technology of Water Treatment

    NASA Astrophysics Data System (ADS)

    Kurchatov, I. M.; Laguntsov, N. I.; Neschimenko, Y. P.; Feklistov, D. Y.

    The main purpose of this work is to intensify and to improve the efficiency of water treatment processes as well as to combine optimally modern techniques and technological devices in water treatment processes. Offered comprehensive hybrid water treatment developing technology of different origin is based on the combination of the treatment by reagent and membrane electro dialysis. In offered technology, of water treatment as a reagent is proposed to use alumino-silicic reagent, which simultaneously is coagulant, flocculant and adsorbent.

  2. ACTIVATED CARBON FROM LIGNITE FOR WATER TREATMENT

    SciTech Connect

    Edwin S. Olson; Daniel J. Stepan

    2000-07-01

    High concentrations of humate in surface water result in the formation of excess amounts of chlorinated byproducts during disinfection treatment. These precursors can be removed in water treatment prior to disinfection using powdered activated carbon. In the interest of developing a more cost-effective method for removal of humates in surface water, a comparison of the activities of carbons prepared from North Dakota lignites with those of commercial carbons was conducted. Previous studies indicated that a commercial carbon prepared from Texas lignite (Darco HDB) was superior to those prepared from bituminous coals for water treatment. That the high alkali content of North Dakota lignites would result in favorable adsorptive properties for the very large humate molecules was hypothesized, owing to the formation of larger pores during activation. Since no standard humate test has been previously developed, initial adsorption testing was performed using smaller dye molecules with various types of ionic character. With the cationic dye, methylene blue, a carbon prepared from a high-sodium lignite (HSKRC) adsorbed more dye than the Darco HDB. The carbon from the low-sodium lignite was much inferior. With another cationic dye, malachite green, the Darco HDB was slightly better. With anionic dyes, methyl red and azocarmine-B, the results for the HSKRC and Darco HDB were comparable. A humate test was developed using Aldrich humic acid. The HSKRC and the Darco HDB gave equally high adsorption capacities for the humate (138 mg/g), consistent with the similarities observed in earlier tests. A carbon prepared from a high-sodium lignite from a different mine showed an outstanding improvement (201 mg/g). The carbons prepared from the low-sodium lignites from both mines showed poor adsorption capacities for humate. Adsorption isotherms were performed for the set of activated carbons in the humate system. These exhibited a complex behavior interpreted as resulting from two types of sorption sites. The effect of pH on adsorption was investigated using buffered solutions. The sorption capacity decreased with increasing pH. A study of the effect of activation conditions on the adsorption capacity of the resulting carbon showed that steam activation at 750 C provides the optimum activity with the high-sodium char. An attempt to scale up the carbon production to the 2-kg scale failed to produce the same high activity that was obtained in the 100-g batch unit. Although this research demonstrated that a highly active carbon for water treatment can be produced from high-sodium lignites, much further work is needed to understand what methods and equipment will be needed for large-scale production of this carbon.

  3. Optimized alumina coagulants for water treatment

    DOEpatents

    Nyman, May D.; Stewart, Thomas A.

    2012-02-21

    Substitution of a single Ga-atom or single Ge-atom (GaAl.sub.12 and GeAl.sub.12 respectively) into the center of an aluminum Keggin polycation (Al.sub.13) produces an optimal water-treatment product for neutralization and coagulation of anionic contaminants in water. GaAl.sub.12 consistently shows .about.1 order of magnitude increase in pathogen reduction, compared to Al.sub.13. At a concentration of 2 ppm, GaAl.sub.12 performs equivalently to 40 ppm alum, removing .about.90% of the dissolved organic material. The substituted GaAl.sub.12 product also offers extended shelf-life and consistent performance. We also synthesized a related polyaluminum chloride compound made of pre-hydrolyzed dissolved alumina clusters of [GaO.sub.4Al.sub.12(OH).sub.24(H.sub.2O).sub.12].sup.7+.

  4. OBLIQUE VIEW OF EAST AND NORTH SIDES OF WATER TREATMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE VIEW OF EAST AND NORTH SIDES OF WATER TREATMENT PLANT, LOCK TENDER'S HOUSE IN BACKGROUND, VIEW TOWARDS SOUTHWEST - Ortona Lock, Lock No. 2, Water Treatment Plant, Caloosahatchee River, Cross-State Canal, Okeechobee Intracoastal Waterway, Ortona, Glades County, FL

  5. OBLIQUE VIEW OF SOUTH AND EAST SIDES OF WATER TREATMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE VIEW OF SOUTH AND EAST SIDES OF WATER TREATMENT PLANT, VIEW TOWARDS NORTHWEST - Ortona Lock, Lock No. 2, Water Treatment Plant, Caloosahatchee River, Cross-State Canal, Okeechobee Intracoastal Waterway, Ortona, Glades County, FL

  6. OBLIQUE VIEW OF NORTH AND WEST SIDES OF WATER TREATMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE VIEW OF NORTH AND WEST SIDES OF WATER TREATMENT PLANT, FIRE PUMP HOUSE IN BACKGROUND, VIEW TOWARDS SOUTHEAST - Ortona Lock, Lock No. 2, Water Treatment Plant, Caloosahatchee River, Cross-State Canal, Okeechobee Intracoastal Waterway, Ortona, Glades County, FL

  7. 4. PHOTOCOPY, ARCHITECTURAL DETAILS FOR WATER TREATMENT PUMPING AND STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. PHOTOCOPY, ARCHITECTURAL DETAILS FOR WATER TREATMENT PUMPING AND STORAGE BUILDING. - NIKE Missile Base SL-40, Water Treatment & Storage Building, Southern portion of launch area, southeast of Ready Building, Hecker, Monroe County, IL

  8. 2. WATER TREATMENT PUMPING AND STORAGE BUILDING, REAR AND RIGHT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. WATER TREATMENT PUMPING AND STORAGE BUILDING, REAR AND RIGHT SIDES, LOOKING SOUTHWEST. - NIKE Missile Base SL-40, Water Treatment & Storage Building, Southern portion of launch area, southeast of Ready Building, Hecker, Monroe County, IL

  9. 1. WATER TREATMENT PUMPING AND STORAGE BUILDING, FRONT AND LEFT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. WATER TREATMENT PUMPING AND STORAGE BUILDING, FRONT AND LEFT SIDES, LOOKING NORTHEAST. - NIKE Missile Base SL-40, Water Treatment & Storage Building, Southern portion of launch area, southeast of Ready Building, Hecker, Monroe County, IL

  10. DISINFECTION BY-PRODUCTS IN DRINKING WATER TREATMENT SYSTEMS

    EPA Science Inventory

    Due to concerns over trihalomethanes (THMs) and other halogenated by-products that can be formed during chlorination of drinking water, alternative disinfectants are being explored. Several drinking water treatment plants in the United States have altered their treatment methods...

  11. EPA's Drinking Water Treatability Database and Treatment Cost Models

    EPA Science Inventory

    USEPA Drinking Water Treatability Database and Drinking Water Treatment Cost Models are valuable tools for determining the effectiveness and cost of treatment for contaminants of emerging concern. The models will be introduced, explained, and demonstrated.

  12. 5. Water treatment plant, view to N, berm in foreground ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Water treatment plant, view to N, berm in foreground - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  13. 6. Water treatment plant, view NE, berm in foreground ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Water treatment plant, view NE, berm in foreground - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  14. 10. Water treatment plant, view to S. 1965 addition is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Water treatment plant, view to S. 1965 addition is in the foreground - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  15. 8. Water treatment plant, view to SE, berm in foreground ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Water treatment plant, view to SE, berm in foreground covering settling tank - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  16. 3. Water treatment plant, view to W, detail of door ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Water treatment plant, view to W, detail of door area - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  17. 14. Water treatment plant interior view of chlorination room. View ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Water treatment plant interior view of chlorination room. View to N - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  18. 7. Water treatment plant, view to E, berm in foreground ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Water treatment plant, view to E, berm in foreground covering settling tank - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  19. 2. Water treatment plant entrance, view to W Fort ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Water treatment plant entrance, view to W - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  20. 4. Water treatment plant, view to NW, berm in foreground ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Water treatment plant, view to NW, berm in foreground - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  1. 13. Water treatment plant interior view of tanks in control ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Water treatment plant interior view of tanks in control room. View to SW - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  2. VIEW OF BUILDING 124, THE WATER TREATMENT PLANT, LOOKING NORTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF BUILDING 124, THE WATER TREATMENT PLANT, LOOKING NORTHEAST. THE ROCKY FLATS PLANT WATER SUPPLY, TREATMENT, STORAGE, AND DISTRIBUTION SYSTEM HAS OPERATED CONTINUOUSLY SINCE 1953 - Rocky Flats Plant, Water Treatment Plant, West of Third Street, north of Cedar Avenue, Golden, Jefferson County, CO

  3. Bacterial Cyanuric Acid Hydrolase for Water Treatment.

    PubMed

    Yeom, Sujin; Mutlu, Baris R; Aksan, Alptekin; Wackett, Lawrence P

    2015-10-01

    Di- and trichloroisocyanuric acids are widely used as water disinfection agents, but cyanuric acid accumulates with repeated additions and must be removed to maintain free hypochlorite for disinfection. This study describes the development of methods for using a cyanuric acid-degrading enzyme contained within nonliving cells that were encapsulated within a porous silica matrix. Initially, three different bacterial cyanuric acid hydrolases were compared: TrzD from Acidovorax citrulli strain 12227, AtzD from Pseudomonas sp. strain ADP, and CAH from Moorella thermoacetica ATCC 39073. Each enzyme was expressed recombinantly in Escherichia coli and tested for cyanuric acid hydrolase activity using freely suspended or encapsulated cell formats. Cyanuric acid hydrolase activities differed by only a 2-fold range when comparing across the different enzymes with a given format. A practical water filtration system is most likely to be used with nonviable cells, and all cells were rendered nonviable by heat treatment at 70C for 1 h. Only the CAH enzyme from the thermophile M. thermoacetica retained significant activity under those conditions, and so it was tested in a flowthrough system simulating a bioreactive pool filter. Starting with a cyanuric acid concentration of 10,000 ?M, more than 70% of the cyanuric acid was degraded in 24 h, it was completely removed in 72 h, and a respike of 10,000 ?M cyanuric acid a week later showed identical biodegradation kinetics. An experiment conducted with water obtained from municipal swimming pools showed the efficacy of the process, although cyanuric acid degradation rates decreased by 50% in the presence of 4.5 ppm hypochlorite. In total, these experiments demonstrated significant robustness of cyanuric acid hydrolase and the silica bead materials in remediation. PMID:26187963

  4. Costs of water treatment due to diminished water quality: A case study in Texas

    NASA Astrophysics Data System (ADS)

    Dearmont, David; McCarl, Bruce A.; Tolman, Deborah A.

    1998-04-01

    The cost of municipal water treatment due to diminished water quality represents an important component of the societal costs of water pollution. Here the chemical costs of municipal water treatment are expressed as a function of raw surface water quality. Data are used for a 3-year period for 12 water treatment plants in Texas. Results show that when regional raw water contamination is present, the chemical cost of water treatment is increased by 95 per million gallons (per 3785 m3) from a base of 75. A 1% increase in turbidity is shown to increase chemical costs by 0.25%.

  5. Evaluation of appropriate technologies for grey water treatments and reuses.

    PubMed

    Li, Fangyue; Wichmann, Knut; Otterpohl, Ralf

    2009-01-01

    As water is becoming a rare resource, the onsite reuse and recycling of grey water is practiced in many countries as a sustainable solution to reduce the overall urban water demand. However, the lack of appropriate water quality standards or guidelines has hampered the appropriate grey water reuses. Based on literature review, a non-potable urban grey water treatment and reuse scheme is proposed and the treatment alternatives for grey water reuse are evaluated according to the grey water characteristics, the proposed standards and economical feasibility. PMID:19182334

  6. Mountain Lake, Presidio National Park, San Francisco: Paleoenvironment, heavy metal contamination, sedimentary record rescue, remediation, and public outreach

    NASA Astrophysics Data System (ADS)

    Myrbo, A.; Rodysill, J. R.; Jones, K.; Reidy, L. M.

    2014-12-01

    Sediment cores from Mountain Lake, a small natural lake in Presidio National Park, San Francisco, CA, provide a record of Bay Area environmental change spanning the past 2000 years, and of unusually high heavy metal contamination in the last century (Reidy 2001). In 2013, partial dredging of the lake removed the upper two meters of lake sediment as part of a remediation effort. Prior to dredging, long and short cores spatially covering the lake and representing deep and shallow environments were recovered from the lake to preserve the paleoenvironmental record of one of the only natural lakes on the San Francisco Peninsula. The cores are curated at LacCore and are available for research by the scientific community. Mountain Lake formed in an interdunal depression and was shallow and fluctuating in its first few hundred years. Lake level rise and inundation of a larger area was followed by lowstands under drier conditions around 550-700 and 1300 CE. Nonnative taxa and cultivars appeared at the time of Spanish settlement in the late 18th century, and the lake underwent eutrophication due to livestock pasturing. U.S. Army landscaping introduced trees to the watershed in the late 19th century. The upper ~1m of sediments document unusually high heavy metal contamination, especially for lead and zinc, caused by the construction and heavy use of Highway 1 on the lake shore. Lead levels peak in 1975 and decline towards the surface, reflecting the history of leaded gasoline use in California. Zinc is derived mainly from automobile tires, and follows a pattern similar to that of lead, but continues to increase towards the surface. Ongoing research includes additional radiocarbon dating and detailed lithological analysis to form the basis of lake-level reconstruction and archeological investigations. Because the Presidio archaeological record does not record human habitation in the area until approximately 1300 years before present, the core analysis also has the potential to determine whether people lived at the tip of the SF peninsula as early as 2000 BP. In October 2014 the Presidio Trust opened a Heritage Gallery that interprets the cultural and natural history of the park for the public. The Mountain Lake sedimentary record is an important component of this exhibit, which includes an epoxy-embedded core from the lake.

  7. Water Treatment: Can You Purify Water for Drinking?

    ERIC Educational Resources Information Center

    Harris, Mary E.

    1996-01-01

    Presents a three-day mini unit on purification of drinking water that uses the learning cycle approach. Demonstrates the typical technology that water companies use to provide high-quality drinking water. (JRH)

  8. Innovative Biological Water Treatment for the Removal of Elevated Ammonia

    EPA Science Inventory

    The objective of this work was to demonstrate the effectiveness of an innovative and simple biological water treatment approach for removing 3.3 mg N/L ammonia and iron from water using a pilot study conducted at a utility in Iowa. Biological water treatment can be an effective a...

  9. [Immediate cooling with water: emergency treatment of burns].

    PubMed

    Latarjet, J

    1990-01-01

    Experimental data have demonstrated that prolonged immediate cooling with cold water is the best first-aid treatment for burn injuries. However in France, this treatment is rarely applied; instead old, inefficient and aggravating methods are still very popular. Pediatricians must help to change this practice by recommending immediate cold water treatment for burns in children. PMID:2163508

  10. Reviewing efficacy of alternative water treatment techniques.

    PubMed

    Hambidge, A

    2001-06-01

    This section is designed to provide a brief summary of some of the findings. A good deal of work has been conducted by Mr N. L. Pavey and the team at BSRIA, Bracknell. The BSRIA publications are an excellent source of further information. Ultraviolet radiation: UV radiation of wavelength 254 nm destroys bacteria by a mechanism of damaging nucleic acids by producing thymine dimers which disrupt DNA replication [Gavdy and Gavdy, 1980]. L. pneumophila has been reported as sensitive to UV dosages of 2,500-7,000 uW.s/cm2 [Antopol & Ellner, 1979; Knudson, 1985]. Antopol and Ellner [1979] examined the susceptibility of L. pneumophila to UV dosage. Their results indicated that 50% of the organisms were killed by 380 uWs/cm2 and 90% were killed by 920 uWs/cm2. Kills of 99 and 99.9% were obtained using 1,840 and 2,760 uWs/cm2 respectively. Muraca et al [1987] showed that continuous UV irradiation resulted in a 5 logarithm decrease in waterborne L. pneumophila in a circulating system. Gilpin [1984] reported that in laboratory buffer solutions, exposure to 1 uW of UV radiation per cm2 achieved a 50% kill of L longbeachae in 5 minutes, L. gormanii in 2-30 minutes and L pneumophila in 17 minutes. Exposure times for 99% kills for L. longbeachae, L pneumophila and L. Gormanii were 33, 48 and 63 minutes respectively. The same research worker conducted experiments using a 3 litre circulating water system, connected to a stainless steel housing containing a UV source. The UV lamp output was 7 ergs/mm2 per second per 100 cm at 254 nm. L. pneumophila was killed within 15 seconds, that is within their first pass through the system. Continuous disinfection with UV has the advantages of imparting no taste, odour or harmful chemical by-products and requires minimal operation and maintenance [Muraca et al 1988]. Keevil et al [1989] state that UV irradiation fails to clear systems of biofilm because of poor penetration into microflocs of the micro-organisms. Copper/silver ionisation: A recent study of full scale hot water test rigs incorporating copper-silver ionisation systems has been reported by Pavey, 1996. Copper and silver ions were introduced into the water by electrolysis. One of the principal mechanisms of biocidal action of these ions is thought to be cell penetration. The positively charged copper ions form electrostatic bonds with negatively charged sites on the cell wall. The cell membrane is thus distorted, allowing ingress of silver ions which attack the cell by binding at specific sites to DNA, RNA, respiratory enzymes and cellular protein, causing catastrophic failure of the life support systems of the cell. Silver and copper ion concentrations of 40 and 400 ug/L respectively were effective against planktonic Legionellae in cold water systems and hot water systems containing soft water. In hard water, the ionisation was ineffective due to the inability to control silver ion concentrations. This was caused by scaling of the electrodes and silver ion complexation by the high concentration of dissolved solids. Bosch et al [1993] had earlier extended the application of copper-silver disinfection to human enteric viruses in water, such as adenovirus, rotavirus, hepatitis A virus, and poliovirus. Their work showed that copper and silver ions in the presence of reduced levels of free chlorine did not ensure the total elimination of viral pathogens from water. In the case of an amoeba, Naegleria fowleria [responsible for primary amoebic meningoencephalitis], Cassells et al [1995] have demonstrated that a combination of silver and copper ions were ineffective at inactivating the amoebae at 80 and 800 ug/L respectively. However addition of 1.0 mg/L free chlorine produced a synergistic effect, with superior inactivation relative to either chlorine or silver-copper in isolation. A similar synergy was reported by Yahya et al [1989] in their study of Staphylococcus sp. and Pseudomonas aeruginosa. Yahya et al [1992] also suggested an additive or synergistic effect in the inactivation of coliphage MS-2 and poliovirus. Other techniques: There are a number of other techniques. We have conducted trials of most of these in the control of Legionella sp., but these fall out of the scope of this article, and as such less emphasis has been placed on them here. Ozonation: Ozone [O3] is an oxidising gas, generated electrically from oxygen [O2]. L. pneumophila can be killed at < 1 mg/L of ozone [Edelstien et al 1982]. Muraca et al [1987] found that 1-2 mg/L of continuous ozone over a six hour contact time, produced a 5 logarithm decrease of L. pneumophila. The effectiveness of ozone treatment against a range of bacteria and coliphages has been studied Botzenhart et al [1993]. E. coli was least resistant to ozone, followed by MS 2-coliphage and PhiX 174-coliphage, with L. pneumophila and Bacillus subtilis spores being the most resistant. (ABSTRACT TRUNCATED) PMID:11447890

  11. 36 CFR 1002.63 - Boating and water use activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Boating and water use activities. 1002.63 Section 1002.63 Parks, Forests, and Public Property PRESIDIO TRUST RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 1002.63 Boating and water use activities. Swimming, boating and the use of any water vessel are prohibited within...

  12. 36 CFR 1002.63 - Boating and water use activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Boating and water use activities. 1002.63 Section 1002.63 Parks, Forests, and Public Property PRESIDIO TRUST RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 1002.63 Boating and water use activities. Swimming, boating and the use of any water vessel are prohibited within...

  13. 50. NORTHERN VIEW OF NONEVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. NORTHERN VIEW OF NON-EVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS IN CENTER, AND EVAPORATIVE WASTE WATER COOLING TOWERS ON RIGHT. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  14. Biological Treatment of Drinking Water: Applications, Advantages and Disadvantages

    EPA Science Inventory

    The fundamentals of biological treatment are presented to an audience of state drinking water regulators. The presentation covers definitions, applications, the basics of bacterial metabolism, a discussion of treatment options, and the impact that implementation of these options...

  15. Radium and Other Radiological Chemicals: Drinking Water Treatment Strategies

    EPA Science Inventory

    Radium and Other Radiological Chemicals: Drinking Water Treatment Technologies Topics include: Introduction to Rad Chemistry, Summary of the Rad, Regulations Treatment Technology, and Disposal. The introductions cover atoms, ions, radium and uranium and the removal of radioac...

  16. MICROBIAL ASPECTS OF WATER TREATMENT PROCESSES: A PROGRESS REPORT

    EPA Science Inventory

    Modifications in water treatment processes or in their sequential placement to optimize reductions in disinfection byproduct formation must be cautiously evaluated and monitored for their impact on microbial barriers. our major treatment concepts were investigated either in pilot...

  17. COMPUTER COST MODELS FOR POTABLE WATER TREATMENT PLANTS

    EPA Science Inventory

    A series of computer programs have been developed which calculate costs for specific unit treatment processes used in water treatment plants. The programs contained in this report are as follows: chlorination, chlorine dioxide, ozone, and granular activated carbon adsorption. Tab...

  18. K West integrated water treatment system subproject safety analysis document

    SciTech Connect

    SEMMENS, L.S.

    1999-02-24

    This Accident Analysis evaluates unmitigated accident scenarios, and identifies Safety Significant and Safety Class structures, systems, and components for the K West Integrated Water Treatment System.

  19. Influence of water quality on the embodied energy of drinking water treatment.

    PubMed

    Santana, Mark V E; Zhang, Qiong; Mihelcic, James R

    2014-01-01

    Urban water treatment plants rely on energy intensive processes to provide safe, reliable water to users. Changes in influent water quality may alter the operation of a water treatment plant and its associated energy use or embodied energy. Therefore the objective of this study is to estimate the effect of influent water quality on the operational embodied energy of drinking water, using the city of Tampa, Florida as a case study. Water quality and water treatment data were obtained from the David L Tippin Water Treatment Facility (Tippin WTF). Life cycle energy analysis (LCEA) was conducted to calculate treatment chemical embodied energy values. Statistical methods including Pearson's correlation, linear regression, and relative importance were used to determine the influence of water quality on treatment plant operation and subsequently, embodied energy. Results showed that influent water quality was responsible for about 14.5% of the total operational embodied energy, mainly due to changes in treatment chemical dosages. The method used in this study can be applied to other urban drinking water contexts to determine if drinking water source quality control or modification of treatment processes will significantly minimize drinking water treatment embodied energy. PMID:24517328

  20. Mobile Emergency Response Water Treatment Technology Results

    EPA Science Inventory

    When natural disasters like hurricanes, floods and earthquakes occur, safe drinking water can be compromised, limited or unavailable. Under such situations, communities have emergency response plans. One of many options for providing safe drinking water during emergency situati...

  1. PHOSPHATE CHEMICALS FOR BUILDING POTABLE WATER TREATMENT

    EPA Science Inventory

    Buildings can contribute significant quantities of trace metal contamination to drinking water, particularly lead, copper and zinc. Discolored water may also result in corroded galvanized and steel plumbing and after prolonged stagnation times. To protect human health as well as ...

  2. Successful treatment with supercritical water oxidation

    SciTech Connect

    Jensen, R.

    1994-06-01

    Supercritical Water Oxidation (SCWO) operates in a totally enclosed system. It uses water at high temperatures and high pressure to chemically change wastes. Oily substances become soluble and complex hydrocarbons are converted into water and carbon dioxide. Research and development on SCWO is described.

  3. Emergency Response and Protection Water Treatment Technologies

    EPA Science Inventory

    The Expeditionary Unit Water Purifier (EUWP) is supported and deployed by NFESC, the TARDEC, and the USBR. The EUWP was deployed to Biloxi, MS after Hurricane Katrina to supply potable water to a hospital, using seawater from the Gulf of Mexico as the source water. The EUWP ...

  4. WATER QUALITY IN SOURCE WATER, TREATMENT, AND DISTRIBUTION SYSTEMS

    EPA Science Inventory

    Most drinking water utilities practice the multiple-barrier concept as the guiding principle for providing safe water. This chapter discusses multiple barriers as they relate to the basic criteria for selecting and protecting source waters, including known and potential sources ...

  5. SUSTAINABLE CATALYTIC TREATMENT OF WASTE ION EXCHANGE BRINES FOR REUSE DURING OXYANION TREATMENT IN DRINKING WATER

    EPA Science Inventory

    We expect the proposed work to result in the design of full-scale treatment systems for catalytic brine treatment that provides a more economical and sustainable option for removing mixtures of oxyanions from drinking water at small water treatment utilities. This will allo...

  6. INL Bettis Water Treatment Project Report

    SciTech Connect

    Not Available

    2009-06-01

    Bechtel Bettis Atomic Power Laboratory (Bettis), West Mifflin, PA, requested that the Idaho National Laboratory (INL) (Battelle Energy Alliance) perform tests using water simulants and three specified media to determine if those ion-exchange (IX) resins will be effective at removing the plutonium contamination from water. This report details the testing and results of the tests to determine the suitability of the media to treat plutonium contaminated water at near nuetral pH.

  7. Case history advanced coatings for water treatment plant components

    SciTech Connect

    Stephenson, L.D.; Kumar, A.

    2008-12-15

    Components of water treatment plants (WTPs) are susceptible to corrosion from constant immersion in water. A case history of corrosion and proximity to chlorine problems and their treatment at an Army WTP is presented. Solutions included using high micro-silica restoration mortar and advanced coal tar epoxy coatings.

  8. BARIUM AND RADIUM IN WATER TREATMENT PLANT WASTES

    EPA Science Inventory

    Water treatment plants at nine locations (10 plants) in Illinois and Iowa were studied to determine the characteristics and disposal practices for the sludge, brine, and backwash water containing radium (Ra) and/or barium (Ba). The treatment processes in these ten plants include ...

  9. INORGANIC CHEMICAL CHARACTERIZATION OF WATER TREATMENT PLANT RESIDUALS

    EPA Science Inventory

    The study obtained field data on the inorganic contaminants and constituents in residuals produced by Water Treatment Plants (WTPs). Eight WTPs were studied based on treatment technology, contamination or suspected contamination of raw water, and efficiency in the removal of cont...

  10. Improvement of water treatment at thermal power plants

    NASA Astrophysics Data System (ADS)

    Larin, B. M.; Bushuev, E. N.; Larin, A. B.; Karpychev, E. A.; Zhadan, A. V.

    2015-04-01

    Prospective and existing technologies for water treatment at thermal power plants, including pretreatment, ion exchange, and membrane method are considered. The results obtained from laboratory investigations and industrial tests of the proposed technologies carried out at different thermal power plants are presented. The possibilities of improving the process and environmental indicators of water treatment plants are shown.

  11. BENEFICIAL DISPOSAL OF WATER PURIFICATION PLANT SLUDGES IN WASTEWATER TREATMENT

    EPA Science Inventory

    This report discusses the advantages and disadvantages of the disposal of waste alum sludge from a water treatment plant to a municipal wastewater treatment plant and is submitted in fulfillment of Grant No. 803336-01 by Novato Sanitary District and North Marin County Water Distr...

  12. 12. Water treatment plant interior view of pipes and pump ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Water treatment plant interior view of pipes and pump in heater room. View to W - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  13. 11. Water treatment plant interior view of pipes, stairs, and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Water treatment plant interior view of pipes, stairs, and pump in pump room. View to SW - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  14. ARSENIC MOBILITY FROM IRON OXIDE SOLIDS PRODUCED DURING WATER TREATMENT

    EPA Science Inventory

    The Arsenic Rule under the Safe Drinking Water Act will require certain drinking water suppliers to add to or modify their existing treatment in order to comply with the new 10 ppb arsenic standard. One of the treatment options is co-precipitation of arsenic with iron. This tre...

  15. 40 CFR 141.83 - Source water treatment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... water monitoring (§ 141.88(b)) and make a treatment recommendation to the State (§ 141.83(b)(1)) no... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Source water treatment requirements. 141.83 Section 141.83 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)...

  16. Development of innovative flotation processes for water treatment and waste-water reclamation. Technical report

    SciTech Connect

    Krofta, M.; Wang, L.K.

    1988-08-01

    The engineering designs and applications of various newly developed flotation clarifiers (Supracell, Sandfloat, Sedifloat, Lakeguard, Float Skimmer, and Foamer) are presented. Supracell is a high-rate dissolved air flotation clarifier for industrial water-treatment and in-plant water recycle. Sandfloat is a package water treatment plant designed for treatment of surface water, ground water, or waste water. Sedifloat is a package plant from reclamation of process waste water or pretreatment of raw water containing heavy silts and/or high concentrations of suspended solids. Lakeguard is an extremely compact package plant for single families, factories, and small institutions. Both lake water and ground water can be properly treated by Lakeguard for potable applications and for treatment of septic-tank effluent. Foamer is a high-rate cost-effective dispersed air flotation clarifier. Float skimmer is specifically designed for applications in paper and pulp mills.

  17. Treatment of oil-in-water emulsions

    SciTech Connect

    Presley, C.T.; Harrison, R.J.

    1980-01-08

    Petroleum is separated from an oil-in-water emulsion containing water-soluble polymer such as polyacrylamide prior to refining by adding amphoteric metal cations (Zn, Al, Sn, and Co) to the emulsion to form a flocculate and then treating the resulting flocculate with a strong base to recover the oil and metal. 11 claims.

  18. Treatment of oil-in-water emulsions

    SciTech Connect

    Harrison, R.J.; Presley, C.T.

    1980-01-08

    Petroleum is separated from an ''oil-in-water'' emulsion containing water-soluble polymer prior to refining by adding amphoteric metal cations to the emulsion to form a flocculate and then treating the resulting flocculate with a strong base to recover the oil and metal.

  19. EPAs Drinking Water Treatment Research

    EPA Science Inventory

    Riverbank filtration has been utilized for decades as a pretreatment for waters that will be used for drinking water. A study investigating the occurrence and potential for removal of suspected endocrine disrupting compounds (EDCs) during riverbank filtration at a municipal well...

  20. Outsourcing water treatment chemicals and equipment -- guidelines for success

    SciTech Connect

    Loretitsch, G.A.; Puckorius, P.R.; Maxwell, R.

    1998-12-31

    Outsourcing of water treatment chemicals, services and related equipment is a technique and process available to end users. Outsourcing enables the use of capital for plant equipment expansion and/or modernization of salable products -- not towards utilities. Outsourcing also enables reduced costs of water treatment chemicals and reduced plant labor for applying controlling and evaluating these chemicals. Today, the water business resembles a sort of market bazaar teeming with all variety of players -- equipment makers, specialty chemical producers, analytical monitoring firms, engineers and consultants, service providers, and system integrators. The industry is made up of a vast range of companies whose only real similarity in many cases is the ultimate goal of providing clean water to their varied markets. In recent years. the overall water treatment marketplace has grown dramatically and was recently estimated at $300 billion worldwide in all categories of water and wastewater treatment companies. One study has estimated that the international market could grow to more than $500 billion within just the next four years. Other reports are somewhat less sanguine and predict slightly smaller market sizes. However, no matter how one analyzes the field. one thing has become clear to all observers - the overall water services industry is a growing business whose true economic significance is gaining wider appreciation. Water markets are often broadly broken down into two key segments: (1) Industrial and process water and wastewater treatment; and (2) municipal potable water delivery and sewage treatment. In a simplistic sense, water markets can be divided into the following categories: (1) Heavy industrial process and high-purity water; (2) Light commercial and industrial water; and (3) Commercial and residential drinking water (point of use and water dispensers).

  1. Two-stage treatment reduces water/oil ratio

    SciTech Connect

    Wood, F.; Dairymple, D. ); McKown, K.; Matthews, B. )

    1990-09-10

    This paper reports how a treatment of amphoteric polymer followed by chrome-complexed anionic polyacrylamide has successfully decreased the water/oil (WOR) ratio of wells producing from the Arbuckle dolomite formation in central Kansas. This technique, the fractured-matrix, water-control (FMWC) treatment, is designed to alter both primary and secondary permeability to water production. In 10 treated wells, the average WOR was reduced by a factor of five.

  2. Introducing Water-Treatment Subjects into Chemical Engineering Education.

    ERIC Educational Resources Information Center

    Caceres, L.; And Others

    1992-01-01

    Proposes that inclusion of waste water treatment subjects within the chemical engineering curriculum can provide students with direct access to environmental issues from both a biotechnological and an ethical perspective. The descriptive details of water recycling at a copper plant and waste water stabilization ponds exemplify this approach from…

  3. Introducing Water-Treatment Subjects into Chemical Engineering Education.

    ERIC Educational Resources Information Center

    Caceres, L.; And Others

    1992-01-01

    Proposes that inclusion of waste water treatment subjects within the chemical engineering curriculum can provide students with direct access to environmental issues from both a biotechnological and an ethical perspective. The descriptive details of water recycling at a copper plant and waste water stabilization ponds exemplify this approach from

  4. Microbial As(III) Oxidation in Water Treatment Plant Filters

    EPA Science Inventory

    Arsenic exists in two oxidation states in water - arsenite [As(III)] and arsenate [As(V)]. As(III) is relatively mobile in water and difficult to remove by arsenic-removal treatment processes. Source waters that contain As(III) must add a strong oxidant such as free chlorine or p...

  5. Drinking water treatment residuals: A Review of recent uses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coagulants such as alum [Al2(SO4)3•14H2O], FeCl3, or Fe2(SO4)3 are commonly used to remove particulate and dissolved constituents from water supplies in the production of drinking water. The resulting waste product, called water-treatment residuals (WTR), contains precipitated Al and Fe oxyhydroxide...

  6. MAGNESIUM CARBONATE - A RECYCLED COAGULANT FROM WATER TREATMENT. CAPSULE REPORT

    EPA Science Inventory

    This Capsule Report explains the new magnesium recycle coagulation system for water treatment, which is based on a combination of water softening and conventional coagulation techniques which can be applied to all types of water. This system offers an alternative approach to chem...

  7. 40 CFR 141.83 - Source water treatment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Source water treatment requirements. 141.83 Section 141.83 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Control of Lead and Copper § 141.83...

  8. 40 CFR 141.83 - Source water treatment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Source water treatment requirements. 141.83 Section 141.83 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Control of Lead and Copper § 141.83...

  9. 40 CFR 141.83 - Source water treatment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Source water treatment requirements. 141.83 Section 141.83 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Control of Lead and Copper § 141.83...

  10. 40 CFR 141.83 - Source water treatment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Source water treatment requirements. 141.83 Section 141.83 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Control of Lead and Copper § 141.83...

  11. Comparing drinking water treatment costs to source water protection costs using time series analysis.

    EPA Science Inventory

    We present a framework to compare water treatment costs to source water protection costs, an important knowledge gap for drinking water treatment plants (DWTPs). This trade-off helps to determine what incentives a DWTP has to invest in natural infrastructure or pollution reductio...

  12. 36 CFR 1002.63 - Boating and water use activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Boating and water use activities. 1002.63 Section 1002.63 Parks, Forests, and Public Property PRESIDIO TRUST RESOURCE PROTECTION, PUBLIC USE AND RECREATION 1002.63 Boating and water use activities. Swimming, boating and the use...

  13. 36 CFR 1002.63 - Boating and water use activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Boating and water use activities. 1002.63 Section 1002.63 Parks, Forests, and Public Property PRESIDIO TRUST RESOURCE PROTECTION, PUBLIC USE AND RECREATION 1002.63 Boating and water use activities. Swimming, boating and the use...

  14. 36 CFR 1002.63 - Boating and water use activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Boating and water use activities. 1002.63 Section 1002.63 Parks, Forests, and Public Property PRESIDIO TRUST RESOURCE PROTECTION, PUBLIC USE AND RECREATION 1002.63 Boating and water use activities. Swimming, boating and the use...

  15. POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect

    V. King

    2000-06-19

    The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of the Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous radiological monitoring of the pool water. The Pool Water Treatment and Cooling System interfaces with the Waste Handling Building System, Site-Generated Radiological Waste Handling System, Site Radiological Monitoring System, Waste Handling Building Electrical System, Site Water System, and the Monitored Geologic Repository Operations Monitoring and Control System.

  16. CAN MEMBRANES BE ACCEPTABLE TREATMENT TECHNOLOGY FOR DRINKING WATER TREATMENT?

    EPA Science Inventory

    Various treatment technologies have proven effective in controlling halogenated disinfection by-products such as precursor removal and the use of alternative disinfectants. ne of the most promising methods for halogenated by-product control includes removal of precursors before d...

  17. Water Treatment Systems Make a Big Splash

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In the 1960s, NASA's Manned Space Center (now known as Johnson Space Center) and the Garrett Corporation, Air Research Division, conducted a research program to develop a small, lightweight water purifier for the Apollo spacecraft that would require minimal power and would not need to be monitored around-the-clock by astronauts in orbit. The 9-ounce purifier, slightly larger than a cigarette pack and completely chlorine-free, dispensed silver ions into the spacecraft s water supply to successfully kill off bacteria. A NASA Technical Brief released around the time of the research reported that the silver ions did not impart an unpleasant taste to the water. NASA s ingenuity to control microbial contamination in space caught on quickly, opening the doors for safer methods of controlling water pollutants on Earth.

  18. ALTERNATIVE DISINFECTANTS FOR DRINKING WATER TREATMENT

    EPA Science Inventory

    During a one-year study at Jefferson Parish, Louisiana the chemical, microbiological, and mutagenic effects of using the major drinking water disinfectants (chlorine, chlorine dioxide, chloramine, ozone) were evaluated. ests were performed on samples collected from various treatm...

  19. Asbestos survey for Fort Point U. S. Coast Guard Station. Volume 1. The Presidio of San Francisco. Phase 2 environmental study. Final report

    SciTech Connect

    Not Available

    1991-09-01

    R.L. Stollar and Associates conducted an asbestos survey in all the buildings associated with the former U.S. Coast Guard Station at Fort Point on the Presidio of San Francisco. The intent of the survey was to identify the location and condition of all asbestos containing material and recommend asbestos abatement measures for any asbestos containing material which is in deteriorated condition. The report recommended remedial action in the duct work in Building 992 of the station.

  20. Design and Compilation of a Geodatabase of Existing Salinity Information for the Rio Grande Basin, from the Rio Arriba-Sandoval County Line, New Mexico, to Presidio, Texas, 2010

    USGS Publications Warehouse

    Shah, Sachin D.; Maltby, David R., II

    2010-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, compiled salinity-related water-quality data and information in a geodatabase containing more than 6,000 sampling sites. The geodatabase was designed as a tool for water-resource management and includes readily available digital data sources from the U.S. Geological Survey, U.S. Environmental Protection Agency, New Mexico Interstate Stream Commission, Sustainability of semi-Arid Hydrology and Riparian Areas, Paso del Norte Watershed Council, numerous other State and local databases, and selected databases maintained by the University of Arizona and New Mexico State University. Salinity information was compiled for an approximately 26,000-square-mile area of the Rio Grande Basin from the Rio Arriba-Sandoval County line, New Mexico, to Presidio, Texas. The geodatabase relates the spatial location of sampling sites with salinity-related water-quality data reported by multiple agencies. The sampling sites are stored in a geodatabase feature class; each site is linked by a relationship class to the corresponding sample and results stored in data tables.

  1. Integrated water quality, emergy and economic evaluation of three bioremediation treatment systems for eutrophic water

    EPA Science Inventory

    This study was targeted at ?nding one or more environmentally efficient, economically feasible and ecologically sustainable bioremediation treatment modes for eutrophic water. Three biological species, i.e. water spinach (Ipomoea aquatica), loach (Misgurus anguillicaudatus) and ...

  2. Integrated water quality, emergy and economic evaluation of three bioremediation treatment systems for eutrophic water

    EPA Science Inventory

    This study was targeted at finding one or more environmentally efficient, economically feasible and ecologically sustainable bioremediation treatment modes for eutrophic water. Three biological species, i.e. water spinach (Ipomoea aquatica), loach (Misgurus anguillicaudatus) and ...

  3. Evaluation of advanced wastewater treatment systems for water reuse in the era of advanced wastewater treatment

    NASA Astrophysics Data System (ADS)

    Kon, Hisao; Watanabe, Masahiro

    This study focuses on effluent COD concentration from wastewater treatment in regards to the reduction of pathogenic bacteria and trace substances in public waters. The main types of secondary wastewater treatment were conventional activated sludge processes. Recently, however, advance wastewater treatment processes have been developed aimed at the removal of nitrogen and phosphorus, and the effluent quality of these processes was analyzed in this study. Treatment processes for water reclamation that make effluent to meet the target water quality for reuse purposes were selected and also optimum design parameters for these processes were proposed. It was found that the treatment cost to water reclamation was greatly affected by the effluent COD of the secondary treatment. It is important to maintain low COD concentration in the secondary treated effluent. Therefore, it is considered that adequate cost benefits would be obtained by achieving target COD quality through shifting from a conventional activated sludge process to an advanced treatment process.

  4. Acid mine water aeration and treatment system

    DOEpatents

    Ackman, Terry E. (Finleyville, PA); Place, John M. (Bethel Park, PA)

    1987-01-01

    An in-line system is provided for treating acid mine drainage which basically comprises the combination of a jet pump (or pumps) and a static mixer. The jet pump entrains air into the acid waste water using a Venturi effect so as to provide aeration of the waste water while further aeration is provided by the helical vanes of the static mixer. A neutralizing agent is injected into the suction chamber of the jet pump and the static mixer is formed by plural sections offset by 90 degrees.

  5. OZONATION AND BIOLOGICAL STABILITY OF WATER IN AN OPERATING WATER TREATMENT PLANT

    EPA Science Inventory

    Ozonation of drinking water may adversely affect the biological stability of the inished water. his study was designed assess the effect of ozone as a preoxidant on the nutrient status of water treated in a full-scale water treatment plant. he study was conducted over a ten week ...

  6. Removal of uranium from drinking water by conventional treatment methods

    SciTech Connect

    Sorg, T.J.

    1989-01-01

    The USEPA currently does not regulate uranium in drinking water but will be revising the radionuclide regulations during 1989 and will propose a maximum contaminant level for uranium. This paper presents treatment technology information on the effectiveness of conventional methods to removal uranium from drinking water. Treatment information based primarily on laboratory and pilot plant studies is presented on conventional coagulation/filtration, ion exchange, lime softening, and reverse osmosis. Ion-exchange treatment has been applied successfully on ground waters by small systems.

  7. Climate Adaptation Capacity for Conventional Drinking Water Treatment Facilities

    NASA Astrophysics Data System (ADS)

    Levine, A.; Goodrich, J.; Yang, J.

    2013-12-01

    Water supplies are vulnerable to a host of climate- and weather-related stressors such as droughts, intense storms/flooding, snowpack depletion, sea level changes, and consequences from fires, landslides, and excessive heat or cold. Surface water resources (lakes, reservoirs, rivers, and streams) are especially susceptible to weather-induced changes in water availability and quality. The risks to groundwater systems may also be significant. Typically, water treatment facilities are designed with an underlying assumption that water quality from a given source is relatively predictable based on historical data. However, increasing evidence of the lack of stationarity is raising questions about the validity of traditional design assumptions, particularly since the service life of many facilities can exceed fifty years. Given that there are over 150,000 public water systems in the US that deliver drinking water to over 300 million people every day, it is important to evaluate the capacity for adapting to the impacts of a changing climate. Climate and weather can induce or amplify changes in physical, chemical, and biological water quality, reaction rates, the extent of water-sediment-air interactions, and also impact the performance of treatment technologies. The specific impacts depend on the watershed characteristics and local hydrological and land-use factors. Water quality responses can be transient, such as erosion-induced increases in sediment and runoff. Longer-term impacts include changes in the frequency and intensity of algal blooms, gradual changes in the nature and concentration of dissolved organic matter, dissolved solids, and modulation of the microbiological community structure, sources and survival of pathogens. In addition, waterborne contaminants associated with municipal, industrial, and agricultural activities can also impact water quality. This presentation evaluates relationships between climate and weather induced water quality variability and the capacity of treatment facilities and supporting water infrastructure to deliver safe drinking water consistently and reliably. Simulation models of water treatment facilities are used to evaluate the outcome of specific source water quality scenarios on treatment system performance and reliability. Modeling results are used to evaluate the process and operational capacity to respond to transient water quality changes and adapt to longer-term variability in water quality and availability. In some cases, changes in temperature and mineral content serve to improve the overall treatment performance. In addition, the integration of microbially enhanced treatment systems such as biological filtration can provide additional capacity. Conversely, changes in the nutrient and temperature dynamics can trigger algal and cyanobacterial blooms that can impair performance. Research needs are identified and the importance of developing more integrated modeling systems is highlighted.

  8. Detection of Cyanotoxins During Potable Water Treatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2007, the U.S. EPA listed three cyanobacterial toxins on the CCL3 containment priority list for potable drinking waters. This paper describes all methodologies used for detection of these toxins, and assesses each on a cost/benefit basis. Methodologies for microcystin, cylindrospermopsin, and a...

  9. Treatment Strategies for Lead in Drinking Water

    EPA Science Inventory

    Lead pipes are capable of lasting hundreds of years. Conservatively, there are over 12 million, still serving drinking water in the US. Probably, this is a substantial underestimate. Leaded solder joining copper pipe abounds. Leaded brasses have dominated the materials used for...

  10. DRINKING WATER TREATMENT USING SLOW SAND FILTRATION

    EPA Science Inventory

    Recent re-interest in slow sand filtration was brought about by the needs for small communities to install treatment technologies that are effective, less costly, and easier to operate and maintain than the more sophisticated rapid sand filters. These simpler technologies for sma...

  11. Economic crossover parameters for outsourcing water treatment equipment

    SciTech Connect

    Sinha, K.; Khan, S.

    1998-12-31

    Outsourcing water treatment systems is an attractive alternative to installing permanent systems. The current industry trend favors leased and outsourced systems for demineralized water applications when water demands are small and no pretreatment system is required. This paper provides economic crossover parameters for power plant applications, taking life cycle costs into consideration, including operation and maintenance (O and M) and capital costs, auxiliary load and heat rate penalties, O and M personnel requirements, and other economic considerations. Furthermore, the paper establishes ground rules for such comparisons between outsourced and permanent water treatment systems considering demineralization of water as well as impact on other power plant systems. Water production costs and $/1,000 gallon cost parameters for water production are presented, with graphical references to the economic parameters discussed.

  12. Water treatment facilities (excluding wastewater facilities). (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-07-01

    The bibliography contains citations concerning the design, construction, costs, and operation of water treatment facilities. Facilities covered include those that provide drinking water, domestic water, and water for industrial use. Types of water treatment covered include reverse osmosis, chlorination, filtration, and ozonization. Waste water treatment facilities are excluded from this bibliography. (Contains 250 citations and includes a subject term index and title list.)

  13. Hanford facilities tracer study report (315 Water Treatment Facility)

    SciTech Connect

    Ambalam, T.

    1995-04-14

    This report presents the results and findings of a tracer study to determine contact time for the disinfection process of 315 Water Treatment Facility that supplies sanitary water for the 300 Area. The study utilized fluoride as the tracer and contact times were determined for two flow rates. Interpolation of data and short circuiting effects are also discussed. The 315 Water Treatment Facility supplies sanitary water for the 300 Area to various process and domestic users. The Surface Water Treatment Rule (SWTR), outlined in the 1986 Safe Drinking Water Act Amendments enacted by the EPA in 1989 and regulated by the Washington State Department of Health (DOH) in Section 246-290-600 of the Washington Administrative Code (WAC), stipulates filtration and disinfection requirements for public water systems under the direct influence of surface water. The SWTR disinfection guidelines require that each treatment system achieves predetermined inactivation ratios. The inactivation by disinfection is approximated with a measure called CxT, where C is the disinfectant residual concentration and T is the effective contact time of the water with the disinfectant. The CxT calculations for the Hanford water treatment plants were derived from the total volume of the contact basin(s). In the absence of empirical data to support CxT calculations, the DOH determined that the CxT values used in the monthly reports for the water treatment plants on the Hanford site were invalid and required the performance of a tracer study at each plant. In response to that determination, a tracer study will be performed to determine the actual contact times of the facilities for the CxT calculations.

  14. Alternative cooling tower water treatment methods

    SciTech Connect

    Wilsey, C.A.

    1996-11-01

    The factors that contribute to proper water balance include total alkalinity, calcium hardness, and pH. In order to keep the cooling tower from scaling or corroding, a manipulation of these components is often necessary. This has traditionally been achieved with the use of chemicals, including but not limited to the following: acid, soda ash, sodium bicarbonate, calcium bicarbonate, algicide, and bactericide. Extensive research has shown that a balanced water system can also be achieved by using the proper combination of copper with a known halogen. Microbiologists have determined that a small amount of copper, acting as a supplement to chlorine at 0.4 ppm, has the same efficiency as 2.0 ppm free chlorine. Therefore, by using the following combination of components and procedures, the desired results can still be achieved: production of copper compound ions as a supplement to the chemical regimen; analysis and manipulation of make-up water; the use of copper as a coagulant for reduction of scale; copper as a supplemental bacterial disinfectant; and copper as an algicide.

  15. 12. NORTHEAST VIEW OF THE WASTE WATER TREATMENT COMPLEX FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. NORTHEAST VIEW OF THE WASTE WATER TREATMENT COMPLEX FOR THE PRIMARY AND 22 BAR MILLS. - U.S. Steel Duquesne Works, Auxiliary Buildings & Shops, Along Monongahela River, Duquesne, Allegheny County, PA

  16. 51. LOOKING NORTHEAST AT EIMCO WASTE WATER TREATMENT THICKENER No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. LOOKING NORTHEAST AT EIMCO WASTE WATER TREATMENT THICKENER No. 2, ELECTRIC POWERHOUSE No. 2, AND OUTDOOR ELECTRICAL SUBSTATION IN BACKGROUND. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  17. MICROORGANISMS AND HIGHER PLANTS FOR WASTE WATER TREATMENT

    EPA Science Inventory

    Batch experiments were conducted to compare the waste water treatment efficiencies of plant-free microbial filters with filters supporting the growth of reeds (Phragmites communis), cattail (Typha latifolia), rush (Juncus effusus), and bamboo (Bambusa multiplex). The experimental...

  18. INTERACTIONS OF SILICA PARTICLES IN DRINKING WATER TREATMENT PROCESSES

    EPA Science Inventory

    EPA Identifier: U915331
    Title: Interactions of Silica Particles in Drinking Water Treatment Processes
    Fellow (Principal Investigator): Christina L. Clarkson
    Institution: Virginia Polytechnic Institute and State University
    EPA GRANT R...

  19. OPTIMIZING WATER TREATMENT PLANT PERFORMANCE WITH THE COMPOSITE CORRECTION PROGRAM

    EPA Science Inventory

    This Technology Transfer Summary Report summarizes the results of an ongoing project to evaluate the utility of the Composite Correction Program (CCP) approach to improving the performance of drinking water treatment facilities. The CCP approach, which has already proven successf...

  20. Sacramento River Water Treatment Plant Intake Pier & Access Bridge, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  1. Looking east at the boiler water treatment tank located off ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking east at the boiler water treatment tank located off the west wall of the boiler house. - Wheeling-Pittsburgh Steel Corporation, Allenport Works, Boiler House, Route 88 on West bank of Monongahela River, Allenport, Washington County, PA

  2. Generic Protocol for the Verification of Ballast Water Treatment Technology

    EPA Science Inventory

    In anticipation of the need to address performance verification and subsequent approval of new and innovative ballast water treatment technologies for shipboard installation, the U.S Coast Guard and the Environmental Protection Agency‘s Environmental Technology Verification Progr...

  3. Generic Protocol for the Verification of Ballast Water Treatment Technology

    EPA Science Inventory

    In anticipation of the need to address performance verification and subsequent approval of new and innovative ballast water treatment technologies for shipboard installation, the U.S Coast Guard and the Environmental Protection Agencys Environmental Technology Verification Progr...

  4. AERIAL VIEW LOOKING FURTHER SOUTH EAST, VILLAGE CREEK WATER TREATMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL VIEW LOOKING FURTHER SOUTH EAST, VILLAGE CREEK WATER TREATMENT PLANT ON RIGHT SIDE, ENSLEY IN BACKGROUND. - Birmingham Southern Railroad Yard, Thirty-fourth Street, Ensley, Jefferson County, AL

  5. Fate of High Priority Pesticides During Drinking Water Treatment

    EPA Science Inventory

    The fate of organophosphorus (OP) pesticides in the presence of chlorinated oxidants was investigated under drinking water treatment conditions. In the presence of aqueous chlorine, intrinsic rate coefficients were found for the reaction of hypochlorous acid and hypochlorite ion ...

  6. OZONE FOR INDUSTRIAL WATER AND WASTEWATER TREATMENT, AN ANNOTATED BIBLIOGRAPHY

    EPA Science Inventory

    The project explored the technology of ozonation applicable to industrial water and wastewater treatment. The final report documents existing equipment, extent of application and practical usage, contract systems, monitoring and detection devices, general and specific economics, ...

  7. REMOVAL OF URANIUM FROM DRINKING WATER BY CONVENTIONAL TREATMENT METHODS

    EPA Science Inventory

    The USEPA currently does not regulate uranium in drinking water but will be revising the radionuclide regulations during 1989 and will propose a maximum contaminant level for uranium. The paper presents treatment technology information on the effectiveness of conventional method...

  8. SUMMARY REPORT - SMALL COMMUNITY WATER AND WASTEWATER TREATMENT

    EPA Science Inventory

    This summary report presents information on the unique needs of small communities facing new water and wastewater treatment requirements. t contains three main sections: technology overviews (each presents a process description, O&M requirements, technology limitations, and finan...

  9. TREATMENT TECHNOLOGY FOR REMOVING RADON FROM SMALL COMMUNITY WATER SUPPLIES

    EPA Science Inventory

    Radon contamination of drinking water primarily affects individual homeowners and communities using groundwater supplies. resently, three types of treatment processes have been used to remove radon: granular activated carbon adsorption (GAG>, diffused bubble aeration, and packed ...

  10. OZONE FOR INDUSTRIAL WATER AND WASTEWATER TREATMENT: A LITERATURE SURVEY

    EPA Science Inventory

    The project explored the technology of ozonation applicable to industrial water and wastewater treatment. The final report documents existing equipment, extent of application and practical usage, contract systems, monitoring and detection devices, general and specific economics, ...

  11. Factors influencing biological treatment of MTBE contaminated ground water

    SciTech Connect

    Stringfellow, William T.; Hines Jr., Robert D.; Cockrum, Dirk K.; Kilkenny, Scott T.

    2001-09-14

    Methyl tert-butyl ether (MTBE) contamination has complicated the remediation of gasoline contaminated sites. Many sites are using biological processes for ground water treatment and would like to apply the same technology to MTBE. However, the efficiency and reliability of MTBE biological treatment is not well documented. The objective of this study was to examine the operational and environmental variables influencing MTBE biotreatment. A fluidized bed reactor was installed at a fuel transfer station and used to treat ground water contaminated with MTBE and gasoline hydrocarbons. A complete set of chemical and operational data was collected during this study and a statistical approach was used to determine what variables were influencing MTBE treatment efficiency. It was found that MTBE treatment was more sensitive to up-set than gasoline hydrocarbon treatment. Events, such as excess iron accumulation, inhibited MTBE treatment, but not hydrocarbon treatment. Multiple regression analysis identified biomass accumulation and temperature as the most important variables controlling the efficiency of MTBE treatment. The influent concentration and loading of hydrocarbons, but not MTBE, also impacted MTBE treatment efficiency. The results of this study suggest guidelines for improving MTBE treatment. Long cell retention times in the reactor are necessary for maintaining MTBE treatment. The onset of nitrification only occurs when long cell retention times have been reached and can be used as an indicator in fixed film reactors that conditions favorable to MTBE treatment exist. Conversely, if the reactor can not nitrify, it is unlikely to have stable MTBE treatment.

  12. Using wastewater for cooling: Increasing water reuse poses treatment challenges

    SciTech Connect

    Lutey, R.W.

    1996-04-01

    Technologies for control of biofouling, scale, corrosion and microbiologically influenced corrosion (MIC) in cooling water systems are discussed. Techniques involving water reuse and using wastewater as makeup are emphasized, and associated problems are identified. Appropriate chemical treatments, including biocides and biostats, biodispersants, sludge dispersants, corrosion inhibitors, and supplementary chemical treatments, are outlined. New and developing technologies reviewed include microorganism control based on biodispersants and on enzymes.

  13. Online Produced Water Treatment Catalog and Decision Tool

    SciTech Connect

    J. Arthur

    2012-03-31

    The objective of this project was to create an internet-based Water Treatment Technology Catalog and Decision Tool that will increase production, decrease costs and enhance environmental protection. This is to be accomplished by pairing an operator's water treatment cost and capacity needs to specific water treatments. This project cataloged existing and emerging produced water treatment technologies and allows operators to identify the most cost-effective approaches for managing their produced water. The tool captures the cost and capabilities of each technology and the disposal and beneficial use options for each region. The tool then takes location, chemical composition, and volumetric data for the operator's water and identifies the most cost effective treatment options for that water. Regulatory requirements or limitations for each location are also addressed. The Produced Water Treatment Catalog and Decision Tool efficiently matches industry decision makers in unconventional natural gas basins with: 1) appropriate and applicable water treatment technologies for their project, 2) relevant information on regulatory and legal issues that may impact the success of their project, and 3) potential beneficial use demands specific to their project area. To ensure the success of this project, it was segmented into seven tasks conducted in three phases over a three year period. The tasks were overseen by a Project Advisory Council (PAC) made up of stakeholders including state and federal agency representatives and industry representatives. ALL Consulting has made the catalog and decision tool available on the Internet for the final year of the project. The second quarter of the second budget period, work was halted based on the February 18, 2011 budget availability; however previous project deliverables were submitted on time and the deliverables for Task 6 and 7 were completed ahead of schedule. Thus the application and catalog were deployed to the public Internet. NETL did not provide additional funds and work on the project stopped on February 18, 2011. NETL ended the project on March 31, 2012.

  14. Impact of riverbank filtration on treatment of polluted river water.

    PubMed

    Singh, P; Kumar, P; Mehrotra, I; Grischek, T

    2010-05-01

    The impact of riverbank filtration (RBF) on the treatment of water from the River Yamuna at Mathura, which has disagreeable visual properties, has been investigated. The dissolved organic carbon (DOC) and colour of the river water were 4.0-6.8mg/L and 40-65 colour units (CU), respectively. Pre-chlorination is in practice to improve raw water quality. Chlorine doses as high as 60mg/L ahead of the water treatment units reduced colour by about 78%. Removal of DOC and UV-absorbance was less than 18%. In comparison to direct pumping of the river water, collection of water through RBF resulted in the reduction of DOC, colour, UV-absorbance and fecal coliforms by around 50%. However, riverbank filtrate did not conform to the drinking water quality standards. Therefore, riverbank-filtered water along with the Yamuna water were ozonated for different durations. To reduce DOC to the desired level, the dose of ozone required for the riverbank filtrate was found to be considerably less than the ozone required for the river water. RBF as compared to direct pumping of Yamuna water appears to be effective in improving the quality of the raw water. PMID:20089349

  15. Plasma treatment of diamond nanoparticles for dispersion improvement in water

    SciTech Connect

    Yu Qingsong; Kim, Young Jo; Ma, Hongbin

    2006-06-05

    Low-temperature plasmas of methane and oxygen mixtures were used to treat diamond nanoparticles to modify their surface characteristics and thus improve their dispersion capability in water. It was found that the plasma treatment significantly reduced water contact angle of diamond nanoparticles and thus rendered the nanoparticles with strong water affinity for dispersion enhancement in polar media such as water. Surface analysis using Fourier transform infrared spectroscopy confirmed that polar groups were imparted on nanoparticle surfaces. As a result, improved suspension stability was observed with plasma treated nanoparticles when dispersed in water.

  16. Linking ceragenins to water-treatment membranes to minimize biofouling.

    SciTech Connect

    Hibbs, Michael R.; Altman, Susan Jeanne; Feng, Yanshu; Savage, Paul B.; Pollard, Jacob; Branda, Steven S.; Goeres, Darla; Buckingham-Meyer, Kelli; Stafslien, Shane; Marry, Christopher; Jones, Howland D. T.; Lichtenberger, Alyssa; Kirk, Matthew F.; McGrath, Lucas K.

    2012-01-01

    Ceragenins were used to create biofouling resistant water-treatment membranes. Ceragenins are synthetically produced antimicrobial peptide mimics that display broad-spectrum bactericidal activity. While ceragenins have been used on bio-medical devices, use of ceragenins on water-treatment membranes is novel. Biofouling impacts membrane separation processes for many industrial applications such as desalination, waste-water treatment, oil and gas extraction, and power generation. Biofouling results in a loss of permeate flux and increase in energy use. Creation of biofouling resistant membranes will assist in creation of clean water with lower energy usage and energy with lower water usage. Five methods of attaching three different ceragenin molecules were conducted and tested. Biofouling reduction was observed in the majority of the tests, indicating the ceragenins are a viable solution to biofouling on water treatment membranes. Silane direct attachment appears to be the most promising attachment method if a high concentration of CSA-121a is used. Additional refinement of the attachment methods are needed in order to achieve our goal of several log-reduction in biofilm cell density without impacting the membrane flux. Concurrently, biofilm forming bacteria were isolated from source waters relevant for water treatment: wastewater, agricultural drainage, river water, seawater, and brackish groundwater. These isolates can be used for future testing of methods to control biofouling. Once isolated, the ability of the isolates to grow biofilms was tested with high-throughput multiwell methods. Based on these tests, the following species were selected for further testing in tube reactors and CDC reactors: Pseudomonas ssp. (wastewater, agricultural drainage, and Colorado River water), Nocardia coeliaca or Rhodococcus spp. (wastewater), Pseudomonas fluorescens and Hydrogenophaga palleronii (agricultural drainage), Sulfitobacter donghicola, Rhodococcus fascians, Rhodobacter katedanii, and Paracoccus marcusii (seawater), and Sphingopyxis spp. (groundwater). The testing demonstrated the ability of these isolates to be used for biofouling control testing under laboratory conditions. Biofilm forming bacteria were obtained from all the source water samples.

  17. USEPA'S RESEARCH EFFORTS IN SMALL DRINKING WATER TREATMENT TECHNOLOGIES

    EPA Science Inventory

    Currently, in the United States there are approximately 50,000 small community and 130,000 non-community systems providing water to over 25 million people. The drinking water treatment systems at these locations are not always adequate to comply with current and pending regulati...

  18. PRELIMINARY DESIGN FOR DRINKING WATER TREATMENT PROCESS SYSTEMS

    EPA Science Inventory

    A computer model has been developed for use in estimating the performance and associated costs of proposed and existing water supply systems. Design procedures and cost-estimating relationships for 25 unit processes that can be used for drinking water treatment are contained with...

  19. TECHNOLOGY TRANSFER HANDBOOK: MANAGEMENT OF WATER TREATMENT PLANT RESIDUALS

    EPA Science Inventory

    Potable water treatment processes produce safe drinking water and generate a wide variety of waste products known as residuals, including organic and inorganic compounds in liquid, solid, and gaseous forms. In the current regulatory climate, a complete management program for a w...

  20. Selenium adsorption to aluminum-based water treatment residuals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aluminum-based water treatment residuals (WTR) can adsorb water- and soil-borne P, As(V), As(III), and perchlorate, and may be able to adsorb excess environmental selenium. WTR, clay minerals, and amorphous aluminum hydroxide were shaken for 24 hours in selenate or selenite solutions at pH values o...

  1. EVALUATION OF DRINKING WATER TREATMENT TECHNIQUES FOR EDC REMOVAL

    EPA Science Inventory

    Many of the chemicals identified as potential endocrine disrupting chemicals (EDCs) may be present in surface or ground waters used as drinking water sources, due to their disposal via domestic and industrial sewage treatment systems and wet-weather runoff. In order to decrease t...

  2. Selenium Adsorption To Aluminum-Based Water Treatment Residuals

    EPA Science Inventory

    Aluminum-based water treatment residuals (WTR) can adsorb water-and soil-borne P, As(V), As(III), and perchlorate, and may be able to adsorb excess environmental selenium. WTR, clay minerals, and amorphous aluminum hydroxide were shaken for 24 hours in selenate or selenite solut...

  3. RECOVERY OF LIME AND MAGNESIUM IN POTABLE WATER TREATMENT

    EPA Science Inventory

    A hard, turbid surface water was successfully treated using the magnesium carbonate process in a 2 mgd pilot plant at the treatment works of Water District No. 1 of Johnson County, Kansas, for one year during 1975 and 1976. During this study, froth flotation was used to separate ...

  4. ECONOMIC ASSESSMENT OF WASTE WATER AQUACULTURE TREATMENT SYSTEMS

    EPA Science Inventory

    This study attempted to ascertain the economic viability of aquaculture as an alternative to conventional waste water treatment systems for small municipalities in the Southwestern region of the United States. A multiple water quality objective level cost-effectiveness model was ...

  5. Bilogical Treatment for Ammonia Oxidation in Drinking Water Facilities

    EPA Science Inventory

    Ammonia is an unregulated compound, but is naturally occurring in many drinking water sources. It is also used by some treatment facilities to produce chloramines for disinfection purposes. Because ammonia is non-toxic, its presence in drinking water is often disregarded. Thro...

  6. MANUAL: GROUND-WATER AND LEACHATE TREATMENT SYSTEMS

    EPA Science Inventory

    This manual was developed for remedial design engineers and regulatory personnel who oversee the ex situ ground water or leachate treatment efforts of the regulated community. The manual can be used as a treatment technology screening tool in conjunction with other references. Mo...

  7. COST ESTIMATION MODELS FOR DRINKING WATER TREATMENT UNIT PROCESSES

    EPA Science Inventory

    Cost models for unit processes typically utilized in a conventional water treatment plant and in package treatment plant technology are compiled in this paper. The cost curves are represented as a function of specified design parameters and are categorized into four major catego...

  8. A Movable Combined Water Treatment Facility for Rainwater Harvesting

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Liao, L.

    2003-12-01

    Alarming water shortage and increased water scarcity world wide has led to increased interests in alternative water sources. Rainwater harvesting is one of them which is getting more and more attention. There is a huge potential for generalization and extension of rainwater harvesting system as an alternative water supply. This is especially important for arid and semi-arid regions where the water shortage blocks further social, economical development. Earlier laboratory experiments and field study showed that harvested rainwater requires treatments of different degrees in order to meet the WHO drinking water standards. The main focus of this study is to ascertain the quality of stored rainwater for drinking purposes with emphasis on water disinfection and pollutants removal. A movable, low-cost, fully functional small scale treatment facility is proposed and tested under simulated field condition. A number of actual and potential hazardous pollutants were identified in the collected water samples together with laboratory test. The corresponding water purification procedure and fresh-keeping methods are discussed. The final proposal of this movable facility needs to be further examined to achieve optimal combined treatment efficiency.

  9. MSWT-01, flood disaster water treatment solution from common ideas

    NASA Astrophysics Data System (ADS)

    Ananto, Gamawan; Setiawan, Albertus B.; Z, Darman M.

    2013-06-01

    Indonesia has a lot of potential flood disaster places with clean water problems faced. Various solution programs always initiated by Government, companies CSR, and people sporadical actions to provide clean water; with their advantages and disadvantages respectively. One solution is easy to operate for instance, but didn't provide adequate capacity, whereas the other had ideal performance but more costly. This situation inspired to develop a water treatment machine that could be an alternative favor. There are many methods could be choosed; whether in simple, middle or high technology, depends on water source input and output result quality. MSWT, Mobile Surface Water Treatment, is an idea for raw water in flood area, basically made for 1m3 per hour. This water treatment design adopted from combined existing technologies and related literatures. Using common ideas, the highlight is how to make such modular process put in compact design elegantly, and would be equipped with mobile feature due to make easier in operational. Through prototype level experiment trials, the machine is capable for producing clean water that suitable for sanitation and cooking/drinking purposes although using contaminated water input source. From the investment point of view, such machine could be also treated as an asset that will be used from time to time when needed, instead of made for project approach only.

  10. Waste Water Treatment Apparatus and Methods

    NASA Technical Reports Server (NTRS)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2014-01-01

    An improved draft tube spout fluid bed (DTSFB) mixing, handling, conveying, and treating apparatus and systems, and methods for operating are provided. The apparatus and systems can accept particulate material and pneumatically or hydraulically conveying the material to mix and/or treat the material. In addition to conveying apparatus, a collection and separation apparatus adapted to receive the conveyed particulate material is also provided. The collection apparatus may include an impaction plate against which the conveyed material is directed to improve mixing and/or treatment. The improved apparatus are characterized by means of controlling the operation of the pneumatic or hydraulic transfer to enhance the mixing and/or reacting by controlling the flow of fluids, for example, air, into and out of the apparatus. The disclosed apparatus may be used to mix particulate material, for example, mortar; react fluids with particulate material; coat particulate material, or simply convey particulate material.

  11. Comparing drinking water treatment costs to source water protection costs using time series analysis

    NASA Astrophysics Data System (ADS)

    Heberling, Matthew T.; Nietch, Christopher T.; Thurston, Hale W.; Elovitz, Michael; Birkenhauer, Kelly H.; Panguluri, Srinivas; Ramakrishnan, Balaji; Heiser, Eric; Neyer, Tim

    2015-11-01

    We present a framework to compare water treatment costs to source water protection costs, an important knowledge gap for drinking water treatment plants (DWTPs). This trade-off helps to determine what incentives a DWTP has to invest in natural infrastructure or pollution reduction in the watershed rather than pay for treatment on site. To illustrate, we use daily observations from 2007 to 2011 for the Bob McEwen Water Treatment Plant, Clermont County, Ohio, to understand the relationship between treatment costs and water quality and operational variables (e.g., turbidity, total organic carbon [TOC], pool elevation, and production volume). Part of our contribution to understanding drinking water treatment costs is examining both long-run and short-run relationships using error correction models (ECMs). Treatment costs per 1000 gallons (per 3.79 m3) were based on chemical, pumping, and granular activated carbon costs. Results from the ECM suggest that a 1% decrease in turbidity decreases treatment costs by 0.02% immediately and an additional 0.1% over future days. Using mean values for the plant, a 1% decrease in turbidity leads to $1123/year decrease in treatment costs. To compare these costs with source water protection costs, we use a polynomial distributed lag model to link total phosphorus loads, a source water quality parameter affected by land use changes, to turbidity at the plant. We find the costs for source water protection to reduce loads much greater than the reduction in treatment costs during these years. Although we find no incentive to protect source water in our case study, this framework can help DWTPs quantify the trade-offs.

  12. Application of hydrodynamic cavitation in ballast water treatment.

    PubMed

    Cvetković, Martina; Kompare, Boris; Klemenčič, Aleksandra Krivograd

    2015-05-01

    Ballast water is, together with hull fouling and aquaculture, considered the most important factor of the worldwide transfer of invasive non-indigenous organisms in aquatic ecosystems and the most important factor in European Union. With the aim of preventing and halting the spread of the transfer of invasive organisms in aquatic ecosystems and also in accordance with IMO's International Convention for the Control and Management of Ships Ballast Water and Sediments, the systems for ballast water treatment, whose work includes, e.g. chemical treatment, ozonation and filtration, are used. Although hydrodynamic cavitation (HC) is used in many different areas, such as science and engineering, implied acoustics, biomedicine, botany, chemistry and hydraulics, the application of HC in ballast water treatment area remains insufficiently researched. This paper presents the first literature review that studies lab- and large-scale setups for ballast water treatment together with the type-approved systems currently available on the market that use HC as a step in their operation. This paper deals with the possible advantages and disadvantages of such systems, as well as their influence on the crew and marine environment. It also analyses perspectives on the further development and application of HC in ballast water treatment. PMID:25810104

  13. Effect of water treatment processes on Cryptosporidium infectivity.

    PubMed

    Keegan, Alexandra; Daminato, David; Saint, Christopher P; Monis, Paul T

    2008-03-01

    Conventional water treatment processes have the ability to remove Cryptosporidium oocysts through coagulation, flocculation, sedimentation and filtration, provided there is efficient management of plant performance. The potential exists for the breakthrough of oocysts through the treatment train. The effect of the water treatment chemical aluminium sulphate (alum) on Cryptosporidium oocyst infectivity has been assessed using an assay that combines cell culture and real-time polymerase chain reaction techniques. The infectivity of fresh and temperature-aged oocysts (stored up to 6 months at 4 or 15 degrees C) was unaffected by exposure to a range of doses of alum in standard jar test procedures and dissolved air flotation processes and subsequent exposure to chlorine or chloramine. Removal efficiencies and infectivity measures are important in determining risk to public health and will reflect the ability of water treatment plants to act as a barrier to these pathogens. PMID:18067945

  14. Assessing the water quality index of water treatment plant and bore wells, in Delhi, India.

    PubMed

    Chaturvedi, M K; Bassin, J K

    2010-04-01

    Water quality monitoring exercise was carried out with water quality index (WQI) method by using water characteristics data for bore wells and a water treatment plant in Delhi city from December 2006 to August 2007. The water treatment plant received surface water as raw water, and product water is supplied after treatment. The WQI is used to classify water quality as excellent, good, medium, bad, and very bad. The National Sanitation Foundation WQI procedure was used to calculate the WQI. The index ranges from 0 to 100, where 100 represents an excellent water quality condition. Water samples were collected monthly from a bore well in Nehru Camp (site 1), a bore well in Sanjay Gandhi pumping station (site 2), and water treatment plant in Haiderpur (site 3). Five parameters were analyzed, namely, nitrate, pH, total dissolved solids, turbidity, and temperature. We found that the WQI was around 73-80 in site 3, which corresponds to "good," and it decreased to 54.32-60.19 and 59.93-70.63 in site 1 and site 2, respectively, indicating that these bore wells were classified as "medium" quality. PMID:19343515

  15. 77 FR 12227 - Long Term 2 Enhanced Surface Water Treatment Rule: Uncovered Finished Water Reservoirs; Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... AGENCY 40 CFR Parts 141 and 142 Long Term 2 Enhanced Surface Water Treatment Rule: Uncovered Finished Water Reservoirs; Public Meeting AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of public..., concerning information that may inform the regulatory review of the uncovered finished water...

  16. Alternative treatment strategy for tannery water reuse and material recovery.

    PubMed

    Nacheva, Mijaylova P; Chvez, Moeller G; Herrera, M Jurez

    2004-01-01

    Most tanneries use conventional systems for treatment of the mixture of all production effluents. Such an approach makes it possible to meet environmental regulations, but because of the high cost of the treatment facilities, its implementation has been scarce, especially in developing countries. With the waste reduction-elimination concept in view, an alternative strategy for water management is proposed based on individual treatment of the effluents from different processing steps to obtain multiquality recycled water for various reuse purposes, materials recovery and complete reuse of treated water. The methodology includes a database generation of tanneries in Mexico, a mass balance and pollution index determination, formulation of water management scenarios and technical-economical evaluation. To replace the traditionally used sulfde oxidation, a sulfide recovering was proposed. Chromium, grease and protein recovery were considered too. The proposed alternative allows a 90% fresh water reduction, the recovery of more than 95% of chromium and sulfide, 90% of grease, 65% of protein and zero discharge of wastewater. Simultaneous implementation of various water saving methods using in-house wastewater treatment techniques for recovering of chemicals and sub-products reduces substantially the cost of water management. PMID:15344782

  17. Changes in water quality in the Owabi water treatment plant in Ghana

    NASA Astrophysics Data System (ADS)

    Akoto, Osei; Gyamfi, Opoku; Darko, Godfred; Barnes, Victor Rex

    2014-09-01

    The study was conducted on the status of the quality of water from the Owabi water treatment plant that supplies drinking water to Kumasi, a major city in Ghana, to ascertain the change in quality of water from source to point-of-use. Physico-chemical, bacteriological water quality parameters and trace metal concentration of water samples from five different treatment points from the Owabi water treatment plant were investigated. The raw water was moderately hard with high turbidity and colour that exceeds the WHO guideline limits. Nutrient concentrations were of the following order: NH3 < NO2 - < NO3 - < PO4 3- < SO4 2- and were all below WHO permissible level for drinking water in all the samples at different stages of treatment. Trace metal concentrations of the reservoir were all below WHO limit except chromium (0.06 mg/L) and copper (0.24 mg/L). The bacteriological study showed that the raw water had total coliform (1,766 cfu/100 mL) and faecal coliform (257 cfu/100 mL) that exceeded the WHO standard limits, rendering it unsafe for domestic purposes without treatment. Colour showed strong positive correlation with turbidity (r = 0.730), TSS (r ≥ 0.922) and alkalinity (0.564) significant at p < 0.01. The quality of the treated water indicates that colour, turbidity, Cr and Cu levels reduced and fall within the WHO permissible limit for drinking water. Treatment process at the water treatment plant is adjudged to be good.

  18. Ultrasonic treatment of water contaminated with ibuprofen.

    PubMed

    Méndez-Arriaga, F; Torres-Palma, R A; Pétrier, C; Esplugas, S; Gimenez, J; Pulgarin, C

    2008-10-01

    The application of ultrasound (US) waves for remediation of wastewater is an area of increasing interest and promising results. The aim of this paper is to evaluate the influence of several parameters of the US process on the degradation of ibuprofen (IBP), a widely used non-steroidal anti-inflammatory recalcitrant drug found in water. Applied US power, dissolved gas, pH and initial concentration of IBP were the parameters investigated under sonication (300 kHz). Ultrasound increased the degradation of IBP from 30 to 98% in 30 min. Initial rate of IBP degradation was evaluated in the range of 1.35 and 6.1 micromolL(-1)min(-1) for initial concentrations of 2 to 21 mgL(-1) or 9.7 micromolL(-1) to 101 micromolL(-1), respectively. Under air and oxygen the degradation rate of IBP was 4 micromolL(-1)min(-1) being higher than that when argon was used. The most favorable degradation pH was acidic media. Complete removal of IBP was achieved but some dissolved organic carbon (DOC) remained in solution showing that long-lived intermediates were recalcitrant to the US irradiation. However, chemical and biological oxygen demands (COD and BOD(5)) indicated that the process oxidize the ibuprofen compound to biodegradable substances removable in a subsequent biological step. PMID:18789474

  19. Produced Water Treatment Using Microbial Fuel Cell Technology

    SciTech Connect

    Borole, A. P.; Campbell, R.

    2011-05-20

    ORNL has developed a treatment for produced water using a combination of microbial fuel cells and electrosorption. A collaboration between Campbell Applied Physics and ORNL was initiated to further investigate development of the technology and apply it to treatment of field produced water. The project successfully demonstrated the potential of microbial fuel cells to generate electricity from organics in produced water. A steady voltage was continuously generated for several days using the system developed in this study. In addition to the extraction of electrical energy from the organic contaminants, use of the energy at the representative voltage was demonstrated for salts removal or desalination of the produced water. Thus, the technology has potential to remove organic as well as ionic contaminants with minimal energy input using this technology. This is a novel energy-efficient method to treat produced water. Funding to test the technology at larger scale is being pursued to enable application development.

  20. Whole-house arsenic water treatment provided more effective arsenic exposure reduction than point-of-use water treatment at New Jersey homes with arsenic in well water

    PubMed Central

    Spayd, Steven E.; Robson, Mark G.; Buckley, Brian T.

    2014-01-01

    A comparison of the effectiveness of whole house (point-of-entry) and point-of-use arsenic water treatment systems in reducing arsenic exposure from well water was conducted. The non-randomized observational study recruited 49 subjects having elevated arsenic in their residential home well water in New Jersey. The subjects obtained either point-of-entry or point-of-use arsenic water treatment. Prior ingestion exposure to arsenic in well water was calculated by measuring arsenic concentrations in the well water and obtaining water-use histories for each subject, including years of residence with the current well and amount of water consumed from the well per day. A series of urine samples were collected from the subjects, some starting before water treatment was installed and continuing for at least nine months after treatment had begun. Urine samples were analyzed and speciated for inorganic-related arsenic concentrations. A two-phase clearance of inorganic-related arsenic from urine and the likelihood of a significant body burden from chronic exposure to arsenic in drinking water were identified. After nine months of water treatment the adjusted mean of the urinary inorganic-related arsenic concentrations were significantly lower (p < 0.0005) in the point-of-entry treatment group (2.5 ?g/g creatinine) than in the point-of-use treatment group (7.2 ?g/g creatinine). The results suggest that whole house arsenic water treatment systems provide a more effective reduction of arsenic exposure from well water than that obtained by point-of-use treatment. PMID:24975493

  1. Nanofiltration technology in water treatment and reuse: applications and costs.

    PubMed

    Shahmansouri, Arash; Bellona, Christopher

    2015-01-01

    Nanofiltration (NF) is a relatively recent development in membrane technology with characteristics that fall between ultrafiltration and reverse osmosis (RO). While RO membranes dominate the seawater desalination industry, NF is employed in a variety of water and wastewater treatment and industrial applications for the selective removal of ions and organic substances, as well as certain niche seawater desalination applications. The purpose of this study was to review the application of NF membranes in the water and wastewater industry including water softening and color removal, industrial wastewater treatment, water reuse, and desalination. Basic economic analyses were also performed to compare the profitability of using NF membranes over alternative processes. Although any detailed cost estimation is hampered by some uncertainty (e.g. applicability of estimation methods to large-scale systems, labor costs in different areas of the world), NF was found to be a cost-effective technology for certain investigated applications. The selection of NF over other treatment technologies, however, is dependent on several factors including pretreatment requirements, influent water quality, treatment facility capacity, and treatment goals. PMID:25714628

  2. SMALL DRINKING WATER TREATMENT TECHNOLOGIES FOR COMPLIANCE WITH THE ENHANCED SURFACE WATER TREATMENT RULES

    EPA Science Inventory

    According to FY2003 statistics compiled by the Office of Ground Water and Drinking Water, the U.S. regulates about 160,000 small drinking water systems that impact close to 70 million people. Small systems (serving transient and non-transient populations of 10,000 people or less...

  3. Public water supplies of North Carolina : a summary of water sources, use, treatment, and capacity of water-supply systems

    USGS Publications Warehouse

    Mann, L.T., Jr.

    1978-01-01

    Data were collected during 1970-76 on 224 public water supply systems in North Carolina with 500 or more customers. This report summarizes these data that were previously published in five separate regional reports. The data are presented in order to Council of Government region, county, and water system name and include population served, average and maximum daily use, industrial use, water source, allowable draft of surface-water supplies, raw water pumping capacity, raw and finished water storage, type of water treatment, treatment plant capacity, and a summary of the chemical quality of finished water. Tables and maps provide cross references for system names, counties, Council of Government regions and water source.

  4. The future for electrocoagulation as a localised water treatment technology.

    PubMed

    Holt, Peter K; Barton, Geoffrey W; Mitchell, Cynthia A

    2005-04-01

    Electrocoagulation is an electrochemical method of treating polluted water whereby sacrificial anodes corrode to release active coagulant precursors (usually aluminium or iron cations) into solution. Accompanying electrolytic reactions evolve gas (usually as hydrogen bubbles) at the cathode. Electrocoagulation has a long history as a water treatment technology having been employed to remove a wide range of pollutants. However electrocoagulation has never become accepted as a 'mainstream' water treatment technology. The lack of a systematic approach to electrocoagulation reactor design/operation and the issue of electrode reliability (particularly passivation of the electrodes over time) have limited its implementation. However recent technical improvements combined with a growing need for small-scale decentralised water treatment facilities have led to a re-evaluation of electrocoagulation. Starting with a review of electrocoagulation reactor design/operation, this article examines and identifies a conceptual framework for electrocoagulation that focuses on the interactions between electrochemistry, coagulation and flotation. In addition detailed experimental data are provided from a batch reactor system removing suspended solids together with a mathematical analysis based on the 'white water' model for the dissolved air flotation process. Current density is identified as the key operational parameter influencing which pollutant removal mechanism dominates. The conclusion is drawn that electrocoagulation has a future as a decentralised water treatment technology. A conceptual framework is presented for future research directed towards a more mechanistic understanding of the process. PMID:15763088

  5. Innovative Treatment Technologies for Natural Waters and Wastewaters

    SciTech Connect

    Childress, Amy E.

    2011-07-01

    The research described in this report focused on the development of novel membrane contactor processes (in particular, forward osmosis (FO), pressure retarded osmosis (PRO), and membrane distillation (MD)) in low energy desalination and wastewater treatment applications and in renewable energy generation. FO and MD are recently gaining national and international attention as viable, economic alternatives for removal of both established and emerging contaminants from natural and process waters; PRO is gaining worldwide attention as a viable source of renewable energy. The interrelationship of energy and water are at the core of this study. Energy and water are inextricably bound; energy usage and production must be considered when evaluating any water treatment process for practical application. Both FO and MD offer the potential for substantial energy and resource savings over conventional treatment processes and PRO offers the potential for renewable energy or energy offsets in desalination. Combination of these novel technologies with each other, with existing technologies (e.g., reverse osmosis (RO)), and with existing renewable energy sources (e.g., salinity gradient solar ponds) may enable much less expensive water production and also potable water production in remote or distributed locations. Two inter-related projects were carried out in this investigation. One focused on membrane bioreactors for wastewater treatment and PRO for renewable energy generation; the other focused on MD driven by a salinity gradient solar pond.

  6. Water: from the source to the treatment plan

    NASA Astrophysics Data System (ADS)

    Marquet, V.; Baude, I.

    2012-04-01

    As a biology and geology teacher, I have worked on water, from the source to the treatment plant, with pupils between 14 and 15 years old. Lesson 1. Introduction, the water in Vienna Aim: The pupils have to consider why the water is so important in Vienna (history, economy etc.) Activities: Brainstorming about where and why we use water every day and why the water is different in Vienna. Lesson 2. Soil, rock and water Aim: Permeability/ impermeability of the different layers of earth Activities: The pupils have measure the permeability and porosity of different stones: granite, clay, sand, carbonate and basalt. Lesson 3. Relationship between water's ion composition and the stone's mineralogy Aim: Each water source has the same ion composition as the soil where the water comes from. Activities: Comparison between the stone's mineralogy and ions in water. They had a diagram with the ions of granite, clay, sand, carbonate and basalt and the label of different water. They had to make hypotheses about the type of soil where the water came from. They verified this with a geology map of France and Austria. They have to make a profile of the area where the water comes from. They had to confirm or reject their hypothesis. Lesson 4 .Water-catchment and reservoir rocks Aim: Construction of a confined aquifer and artesian well Activities: With sand, clay and a basin, they have to model a confined aquifer and make an artesian well, using what they have learned in lesson 2. Lesson 5. Organic material breakdown and it's affect on the oxygen levels in an aquatic ecosystem Aim: Evaluate the relationship between oxygen levels and the amount of organic matter in an aquatic ecosystem. Explain the relationship between oxygen levels, bacteria and the breakdown of organic matter using an indicator solution. Activities: Put 5 ml of a different water sample in each tube with 20 drops of methylene blue. Observe the tubes after 1 month. Lesson 6. Visit to the biggest water treatment plant in Europe in Vienna Lesson 7 Water Quality Monitoring: Biochemical Oxygen Demand Aim: Measure the quantity of oxygen used by microorganisms in the oxidation of organic matter for different water; downstream and upstream of polluting refuse, after addition of glucose, milk or humus in the water. Activities: After dissolution of the different samples of water they measure the dissolved oxygen with the Winkler Method.

  7. Development of an advanced water treatment system for wastewater reuse.

    PubMed

    Chung, H; Ku, B; Gregory, J

    2008-09-01

    The aim of this research was to develop an optimal reuse system applying various types of advanced oxidation processes such as titanium dioxide (TiO2), ozone (O3) and electro-coagulation/oxidation methods. This system is suitable for improving the treatment efficiency of difficult wastewaters, and for the efficient reuse of wastewater. The connecting systems were divided into various types to investigate the stability and treatment efficiency according to the kinds of waste load. Different treatment sequences were examined taking into consideration the characteristics and economical efficiency. In the case of electro-coagulation/oxidation + ozone system, the mean treatment efficiency in terms of BOD5, CODCr and SS removal was 98.7%. The effluent concentration was 50.2 mg l(-1), 38.3 mg l(-1), 30.4 mg l(-1), respectively. In considering the economical efficiency and commercial use, around an eighth of the treatment expenses and around a fifth of the maintenance expenses could be saved compared with existing water treatment systems. The initial construction expenses could be reduced by a third to a fifth. Therefore, if a proper implementation of this research is carried out in relation to site conditions and the purpose of the water reuse, the water reuse rate will be higher and water resources can be protected. PMID:18844120

  8. Carbon isotopic characterisation of dissolved organic matter during water treatment.

    PubMed

    Bridgeman, John; Gulliver, Pauline; Roe, Jessie; Baker, Andy

    2014-01-01

    Water treatment is a series of physio-chemical processes to aid organic matter (OM) removal, which helps to minimise the formation of potentially carcinogenic disinfection by-products and microbial regrowth. Changes in OM character through the treatment processes can provide insight into the treatment efficiency, but radiogenic isotopic characterisation techniques have yet to be applied. Here, we show for the first time that analysis of (13)C and (14)C of dissolved organic carbon (DOC) effectively characterises dissolved OM through a water treatment works. At the sites investigated: post-clarification, DOC becomes isotopically lighter, due to an increased proportion of relatively hydrophilic DOC. Filtration adds 'old' (14)C-DOC from abrasion of the filter media, whilst the use of activated carbon adds 'young' (14)C-DOC, most likely from the presence of biofilms. Overall, carbon isotopes provide clear evidence for the first time that new sources of organic carbon are added within the treatment processes, and that treated water is isotopically lighter and typically younger in (14)C-DOC age than untreated water. We anticipate our findings will precipitate real-time monitoring of treatment performance using stable carbon isotopes, with associated improvements in energy and carbon footprint (e.g. isotopic analysis used as triggers for filter washing and activated carbon regeneration) and public health benefits resulting from improved carbon removal. PMID:24075722

  9. ETV REPORT: REMOVAL OF ARSENIC IN DRINKING WATER ORCA WATER TECHNOLOGIES KEMLOOP 1000 COAGULATION AND FILTRATION WATER TREATMENT SYSTEM

    EPA Science Inventory

    Verification testing of the ORCA Water Technologies KemLoop 1000 Coagulation and Filtration Water Treatment System for arsenic removal was conducted at the St. Louis Center located in Washtenaw County, Michigan, from March 23 through April 6, 2005. The source water was groundwate...

  10. Biological treatment options for consolidated tailings release waters

    SciTech Connect

    Gunter, C.P.; Nix, P.G.; Sander, B.; Knezevic, Z.

    1995-12-31

    Suncor Inc., Oil Sands Group, operates a large oil sands mining and extraction operation in northeastern Alberta. The extraction plant produces large volumes of a tailings slurry which resists dewatering and treatment, and is toxic to aquatic organisms. Consolidated tailings (CT) technology is used to treat tailings by either acid/lime or gypsum and enhances the possibility of treating residual fine tails in a ``dry`` land reclamation scenario and treating the release water in a wastewater treatment reclamation scenario. The objective was to assess the treatability of CT release water (i.e., the reduction of acute and chronic toxicities to trout, Ceriodaphnia, and bacteria) in bench-scale biological treatment systems. Microtox{reg_sign} IC20 test showed complete detoxification for the gypsum CT release water within 3 to 5 weeks compared with little reduction in toxicity for dyke drainage. Acute toxicity (fish) and chronic toxicity (Ceriodaphnia, bacterial) was removed from both CT release waters. Phosphate and aeration enhanced detoxification rates. Concentrations of naphthenic acids (an organic toxicant) were not reduced, but levels of dissolved organic compounds decreased faster than was the case for dyke drainage water, indicating that some of the organic compounds in both acid/lime and gypsum CT waters were more biodegradable. There was a pattern of increasing toxicity for dyke drainage water which confirmed observations during field-scale testing in the constructed wetlands and which was not observed for CT release waters. Acid/lime and gypsum CT water can be treated biologically in either an aeration pond, constructed wetlands, or a combination of both thereby avoiding the expense of long-term storage and/or conventional waste treatment systems.

  11. Microbial Characterization of Biological Filters Used for Drinking Water Treatment

    PubMed Central

    Moll, Deborah M.; Summers, R. Scott; Breen, Alec

    1998-01-01

    The impact of preozonation and filter contact time (depth) on microbial communities was examined in drinking water biofilters treating Ohio River water which had undergone conventional treatment (coagulation, flocculation, sedimentation) or solutions of natural organic matter isolated from groundwater (both ozonated and nonozonated). With respect to filter depth, compared to filters treating nonozonated waters, preozonation of treated water led to greater differences in community phospholipid fatty acid (PLFA) profiles, utilization of sole carbon sources (Biolog), and arbitrarily primed PCR fingerprints. PLFA profiles indicated that there was a shift toward anaerobic bacteria in the communities found in the filter treating ozonated water compared to the communities found in the filter treating nonozonated settled water, which had a greater abundance of eukaryotic markers. PMID:9647864

  12. An opacity-sampled treatment of water vapor

    NASA Technical Reports Server (NTRS)

    Alexander, David R.; Augason, Gordon C.; Johnson, Hollis R.

    1989-01-01

    Although the bands of H2O are strong in the spectra of cool stars and calculations have repeatedly demonstrated their significance as opacity sources, only approximate opacities are currently available, due both to the difficulty of accounting for the millions of lines involved and to the inadequacy of laboratory and theoretical data. To overcome these obstacles, a new treatment is presented, based upon a statistical representation of the water vapor spectrum derived from available laboratory data. This statistical spectrum of water vapor employs an exponential distribution of line strengths and random positions of lines whose overall properties are forced to reproduce the mean opacities observed in the laboratory. The resultant data set is then treated by the opacity-sampling method exactly as are all other lines, both molecular and atomic. Significant differences are found between the results of this improved treatment and the results obtained with previous treatments of water-vapor opacity.

  13. Large area radiation source for water and wastewater treatment

    NASA Astrophysics Data System (ADS)

    Mueller, Michael T.; Lee, Seungwoo; Kloba, Anthony; Hellmer, Ronald; Kumar, Nalin; Eaton, Mark; Rambo, Charlotte; Pillai, Suresh

    2011-06-01

    There is a strong desire for processes that improve the safety of water supplies and that minimize disinfection byproducts. Stellarray is developing mercury-free next-generation x-ray and UV-C radiation sources in flat-panel and pipe form factors for water and wastewater treatment applications. These new radiation sources are designed to sterilize sludge and effluent, and to enable new treatment approaches to emerging environmental concerns such as the accumulation of estrogenic compounds in water. Our UV-C source, based on cathodoluminescent technology, differs significantly from traditional disinfection approaches using mercury arc lamps or UV LEDs. Our sources accelerate electrons across a vacuum gap, converting their energy into UV-C when striking a phosphor, or x-rays when striking a metallic anode target. Stellarray's large area radiation sources for wastewater treatment allow matching of the radiation source area to the sterilization target area for maximum coverage and improved efficiency.

  14. Transformation of sulfonylurea herbicides in simulated drinking water treatment processes.

    PubMed

    Wang, Binnan; Kong, Deyang; Lu, Junhe; Zhou, Quansuo

    2015-03-01

    Sulfonylurea herbicides (SUs) were detected in natural waters and could be potentially exposed to human beings via portable use. Thus, the removal of five representative SUs in simulated water treatment processes including coagulation, activated carbon adsorption, and chlorination disinfection was systematically investigated. Results showed that coagulation had little effect on the removal of the herbicides with the average removal less than 10 %. Powder-activated carbon adsorption was apparently more effective with removal rates of 50?~?70 %. SUs were also partially removed in chlorination process. A complete removal was achieved when the three treatments were performed in series. However, it was found that parts of the SUs were transformed into certain stable products with triazine/pyrimidine structures which might be of potential health risks in chlorination process. Thus, current drinking water treatment processes are not likely to provide sufficient protection for human population from exposure to SUs. PMID:25269843

  15. Minireview: the health implications of water treatment with ozone

    SciTech Connect

    Carmichael, N.G.; Winder, C.; Borges, S.H.; Backhouse, B.L.; Lewis, P.D.

    1982-01-11

    Ozone is a highly efficient disinfectant which may have significant advantages in water treatment compared to chlorine. It has, however, been shown that mutagenic and possibly carcinogenic byproducts may be produced under certain conditions of ozonation. Light chlorination following ozonization may meet the highest standards of disinfection. In addition the destruction of much of the organic matter by prior ozone treatment may well result in less harmful chlorinated and brominated products in the finished water. In many cases ozone treatment alone may suffice. It would be desirable to test with long term in vivo experiments which of the alternatives produces the best combination of microbiologically clean and pleasant water with minimum mutagenic and carcinogenic effect.

  16. Water: from the source to the treatment plan

    NASA Astrophysics Data System (ADS)

    Baude, I.; Marquet, V.

    2012-04-01

    Isabelle BAUDE isa.baude@free.fr Lycee français de Vienne Liechtensteinstrasse 37AVienna As a physics and chemistry teacher, I have worked on water from the source to the treatment plant with 27 pupils between 14 and 15 years old enrolled in the option "Science and laboratory". The objectives of this option are to interest students in science, to introduce them to practical methods of laboratory analyses, and let them use computer technology. Teaching takes place every two weeks and lasts 1.5 hours. The theme of water is a common project with the biology and geology teacher, Mrs. Virginie Marquet. Lesson 1: Introduction: The water in Vienna The pupils have to consider why the water is so important in Vienna (history, economy etc.) and where tap water comes from. Activities: Brainstorming about where and why we use water every day and why the water is different in Vienna. Lesson 2: Objectives of the session: What are the differences between mineral waters? Activities: Compare water from different origins (France: Evian, Vittel, Contrex. Austria: Vöslauer, Juvina, Gasteiner and tap water from Vienna) by tasting and finding the main ions they contain. Testing ions: Calcium, magnesium, sulphate, chloride, sodium, and potassium Lesson 3: Objectives of the session: Build a hydrometer Activities: Producing a range of calibration solutions, build and calibrate the hydrometer with different salt-water solutions. Measure the density of the Dead Sea's water and other mineral waters. Lesson 4: Objectives of the session: How does a fountain work? Activities: Construction of a fountain as Heron of Alexandria with simple equipment and try to understand the hydrostatic principles. Lesson 5: Objectives of the session: Study of the physical processes of water treatment (decantation, filtration, screening) Activities: Build a natural filter with sand, stone, carbon, and cotton wool. Retrieve the filtered water to test it during lesson 7. Lesson 6: Visit of the biggest treatment plant of Europe in Vienna. Lesson 7: Objectives of the session: Water Quality Monitoring: Biochemical Oxygen Demand (chemical analysis) in common with my colleague.

  17. Novel Americium Treatment Process for Surface Water and Dust Suppression Water

    SciTech Connect

    Tiepel, E.W.; Pigeon, P.; Nesta, S.; Anderson, J.

    2006-07-01

    The Rocky Flats Environmental Technology Site (RFETS), a former nuclear weapons production plant, has been remediated under CERCLA and decommissioned to become a National Wildlife Refuge. The site conducted this cleanup effort under the Rocky Flats Cleanup Agreement (RFCA) that established limits for the discharge of surface and process waters from the site. At the end of 2004, while a number of process buildings were undergoing decommissioning, routine monitoring of a discharge pond (Pond A-4) containing approximately 28 million gallons of water was discovered to have been contaminated with a trace amount of Americium-241 (Am-241). While the amount of Am-241 in the pond waters was very low (0.5 - 0.7 pCi/l), it was above the established Colorado stream standard of 0.15 pCi/l for release to off site drainage waters. The rapid successful treatment of these waters to the regulatory limit was important to the site for two reasons. The first was that the pond was approaching its hold-up limit. Without rapid treatment and release of the Pond A-4 water, typical spring run-off would require water management actions to other drainages onsite or a mass shuttling of water for disposal. The second reason was that this type of contaminated water had not been treated to the stringent stream standard at Rocky Flats before. Technical challenges in treatment could translate to impacts on water and secondary waste management, and ultimately, cost impacts. All of the technical challenges and specific site criteria led to the conclusion that a different approach to the treatment of this problem was necessary and a crash treatability program to identify applicable treatment techniques was undertaken. The goal of this program was to develop treatment options that could be implemented very quickly and would result in the generation of no high volume secondary waste that would be costly to dispose. A novel chemical treatment system was developed and implemented at the RFETS to treat Am-241 contaminated pond water, surface run-off and D and D dust suppression water during the later stages of the D and D effort at Rocky Flats. This novel chemical treatment system allowed for highly efficient, high-volume treatment of all contaminated waste waters to the very low stream standard of 0.15 pCi/1 with strict compliance to the RFCA discharge criteria for release to off-site surface waters. The rapid development and implementation of the treatment system avoided water management issues that would have had to be addressed if contaminated water had remained in Pond A-4 into the Spring of 2005. Implementation of this treatment system for the Pond A-4 waters and the D and D waters from Buildings 776 and 371 enabled the site to achieve cost-effective treatment that minimized secondary waste generation, avoiding the need for expensive off-site water disposal. Water treatment was conducted for a cost of less than $0.20/gal which included all development costs, capital costs and operational costs. This innovative and rapid response effort saved the RFETS cleanup program well in excess of $30 million for the potential cost of off-site transportation and treatment of radioactive liquid waste. (authors)

  18. Is hot water immersion an effective treatment for marine envenomation?

    PubMed Central

    Atkinson, P R T; Boyle, A; Hartin, D; McAuley, D

    2006-01-01

    Envenomation by marine creatures is common. As more people dive and snorkel for leisure, the incidence of envenomation injuries presenting to emergency departments has increased. Although most serious envenomations occur in the temperate or tropical waters of the Indo?Pacific region, North American and European waters also provide a habitat for many stinging creatures. Marine envenomations can be classified as either surface stings or puncture wounds. Antivenom is available for a limited number of specific marine creatures. Various other treatments such as vinegar, fig juice, boiled cactus, heated stones, hot urine, hot water, and ice have been proposed, although many have little scientific basis. The use of heat therapies, previously reserved for penetrating fish spine injuries, has been suggested as treatment for an increasing variety of marine envenomation. This paper reviews the evidence for the effectiveness of hot water immersion (HWI) and other heat therapies in the management of patients presenting with pain due to marine envenomation. PMID:16794088

  19. Croatian refiner meets waste water treatment standards, reduces fines

    SciTech Connect

    Meier, A.L.; Nikolic, O.

    1995-11-27

    A new approach to waste water treatment at a refinery in Croatia produces effluent that not only meets the region`s regulations for disposal into the Adriatic Sea, but also surpasses the refinery`s specifications for recycling process water. Key to the dramatic reduction in pollutants was the installation of a Sandfloat unit developed by Krofta Engineering Corp. The Sandfloat unit is a dissolved air flotation clarifier that combines flocculation, flotation, and multilayer filtration to produce high-quality effluent. In fact, the effluent from the unit has a lower hydrocarbon concentration than water from the underground wells that supply process water to the refinery. While similar systems have been used for decades in industrial applications, this is the first time a Sandfloat unit has been installed in an oil refinery. The article describes the problem, refinery operations, treatment costs, and effluent recycling.

  20. Treatment of oil spill water by ozonation and sand filtration.

    PubMed

    Hong, P K Andy; Xiao, Ting

    2013-04-01

    Increasing volumes of crude oil being produced and transported throughout the world in recent decades have resulted in increased risks of spill and high-profile spill incidents of significant environmental and ecological impacts over extended periods of time. While immediate in situ and ex situ responses have been implemented, none are available for onsite treatment of contaminated water for immediate release of the treated water. We demonstrate here a potential treatment scheme involving ozonation and sand filtration intended for immediate treatment and discharge of the impacted water. Waters of tap, Utah Lake, and Great Salt Lake sources were spiked with crude oil of the Great Natural Butte of Utah at 2.5% and 0.025% oil (v/v) and tested for treatment. The results showed near complete removal (100%) of both Chemical Oxygen Demand (COD) and oil and grease (O&G) from initially 20000 and 11000 mg L(-1), respectively, via flotation pretreatment, ozonation in pressure cycles, and sand filtration. At lower oil level of 0.025%, complete removal of COD and O&G from waters were achieved without floatation. The treated waters showed reduction of turbidity to <1 from 4000 NTU and high Biochemical Oxygen Demand/COD ratio of 0.3-0.5 that reflected highly biodegradable residual organics. The results showed synergistic oil removal when two well practiced methods, namely ozonation and sand filtration that either alone seems ineffective, are combined sequentially. It indicates a potential on-site treatment response for oil spill incidents where the collection and transport of a large amount of contaminated water may be avoided. PMID:23394956

  1. Characterizing raw surface water amenable to minimal water-supply treatment

    SciTech Connect

    Geldreich, E.E.; Goodrich, J.A.; Clark, R.M.

    1988-08-01

    Monitoring strategy must be sensitive to frequent and unpredictable fluctuations in water quality caused by major storm events and seasonal destratifications of the lake/impoundment. Therefore, daily monitoring of raw source water and the finished-water quality entering distribution systems at a point near the first customer is necessary. When water-quality fluctuations reach beyond the 90th percentile for coliforms, morning and afternoon, afternoon sampling of the finished water should be done to demonstrate continued treatment barrier protection. Monitoring data should not only be utilized to form a continual historical record that demonstrates water-quality suitability for minimal treatment but also as an integral part of guidance in making day-to-day changes in process control to avoid any chance for microbial penetration into the public water supply.

  2. Prototype spectral analysis of water samples for monitoring and treatment of public water resources

    NASA Astrophysics Data System (ADS)

    Lambrakos, S. G.; Lee, M.; Yapijakis, C.; Ramsey, L. S.; Huang, L.; Shabaev, A.; Massa, L.

    2014-06-01

    Experimental measurements conducted in the laboratory, involving hyperspectral analysis of water samples taken from public water resources in the New York City metro area, have motivated a reevaluation of issues concerning the potential application of this type of analysis for water monitoring, treatment and evaluation prior to filtration. One issue concerns hyperspectral monitoring of contaminants with respect to types and relative concentrations. This implies a need for better understanding the statistical profiles of water contaminants in terms of spatial-temporal distributions of electromagnetic absorption spectra ranging from the ultraviolet to infrared, which are associated with specific water resources. This issue also implies the need for establishing correlations between hyperspectral signatures and types of contaminants to be found within specific water resources. Another issue concerns the use of absorption spectra for determining changes in chemical and physical characteristics of contaminants after application of water treatments in order to determine levels of toxicity with respect to the environment.

  3. Enhanced drinking water supply through harvested rainwater treatment

    NASA Astrophysics Data System (ADS)

    Naddeo, Vincenzo; Scannapieco, Davide; Belgiorno, Vincenzo

    2013-08-01

    Decentralized drinking water systems represent an important element in the process of achieving the Millennium Development Goals, as centralized systems are often inefficient or nonexistent in developing countries. In those countries, most water quality related problems are due to hygiene factors and pathogens. A potential solution might include decentralized systems, which might rely on thermal and/or UV disinfection methods as well as physical and chemical treatments to provide drinking water from rainwater. For application in developing countries, decentralized systems major constraints include low cost, ease of use, environmental sustainability, reduced maintenance and independence from energy sources. This work focuses on an innovative decentralized system that can be used to collect and treat rainwater for potable use (drinking and cooking purposes) of a single household, or a small community. The experimented treatment system combines in one compact unit a Filtration process with an adsorption step on GAC and a UV disinfection phase in an innovative design (FAD - Filtration Adsorption Disinfection). All tests have been carried out using a full scale FAD treatment unit. The efficiency of FAD technology has been discussed in terms of pH, turbidity, COD, TOC, DOC, Escherichia coli and Total coliforms. FAD technology is attractive since it provides a total barrier for pathogens and organic contaminants, and reduces turbidity, thus increasing the overall quality of the water. The FAD unit costs are low, especially if compared to other water treatment technologies and could become a viable option for developing countries.

  4. Technology assessment of aquaculture systems for municipal waste water treatment

    SciTech Connect

    Hyde, H.C.; Ross, R.S.; Sturmer, L.

    1984-08-01

    The innovative and alternative technology provisions of the Clean Water Act of 1977 (PL 95-217) provide financial incentives to communities that use wastewater treatment alternatives to reduce costs or energy consumption over conventional systems. Some of these technologies have been only recently developed and are not in widespread use in the United States. This document discusses the applicability and technical and economic feasibility of using aquaculture systems for municipal wastewater treatment facilities.

  5. Laboratory study of electro-coagulation-flotation for water treatment.

    PubMed

    Jiang, Jia-Qian; Graham, Nigel; André, Cecile; Kelsall, Geoff H; Brandon, Nigel

    2002-09-01

    An electro-coagulation-flotation process has been developed for water treatment. This involved an electrolytic reactor with aluminium electrodes and a separation/flotation tank. The water to be treated passed through the reactor and was subjected to coagulation/flotation, by Al(III) ions dissolved from the electrodes, the resulting flocs floating after being captured by hydrogen gas bubbles generated at cathode surfaces. Apparent current efficiencies for Al dissolution as aqueous Al(III) species at pH 6.5 and 7.8 were greater than unity. This was due to additional reactions occurring in parallel with Al dissolution: oxygen reduction at anodes and cathodes, and hydrogen evolution at cathodes, resulting in net (i.e. oxidation + reduction) currents at both anodes and cathodes. The specific electrical energy consumption of the reactor for drinking water treatment was as low as 20 kWh (kg Al)(-1) for current densities of 10-20A m(-2). The water treatment performance of the electrocoagulation process was found to be superior to that of conventional coagulation with aluminium sulphate for treating a model-coloured water, with 20% more dissolved organic carbon (DOC) being removed for the same Al(III) dose. However, for a lowland surface water sample, the two processes achieved a similar performance for DOC and UV-absorbance removal. In addition, an up-flow electrocoagulator configuration performed better than a horizontal flow configuration, with both bipolar and monopolar electrodes. PMID:12405415

  6. Water drinking as a treatment for orthostatic syndromes

    NASA Technical Reports Server (NTRS)

    Shannon, John R.; Diedrich, Andre; Biaggioni, Italo; Tank, Jens; Robertson, Rose Marie; Robertson, David; Jordan, Jens

    2002-01-01

    PURPOSE: Water drinking increases blood pressure in a substantial proportion of patients who have severe orthostatic hypotension due to autonomic failure. We tested the hypothesis that water drinking can be used as a practical treatment for patients with orthostatic and postprandial hypotension, as well as those with orthostatic tachycardia. SUBJECTS AND METHODS: We studied the effect of drinking water on seated and standing blood pressure and heart rate in 11 patients who had severe orthostatic hypotension due to autonomic failure and in 9 patients who had orthostatic tachycardia due to idiopathic orthostatic intolerance. We also tested the effect of water drinking on postprandial hypotension in 7 patients who had autonomic failure. Patients drank 480 mL of tap water at room temperature in less than 5 minutes. RESULTS: In patients with autonomic failure, mean (+/- SD) blood pressure after 1 minute of standing was 83 +/- 6/53 +/- 3.4 mm Hg at baseline, which increased to 114 +/- 30/66 +/- 18 mm Hg (P <0.01) 35 minutes after drinking. After a meal, blood pressure decreased by 43 +/- 36/20 +/- 13 mm Hg without water drinking, compared with 22 +/- 10/12 +/- 5 mm Hg with drinking (P <0.001). In patients with idiopathic orthostatic intolerance, water drinking attenuated orthostatic tachycardia (123 +/- 23 beats per minute) at baseline to 108 +/- 21 beats per minute after water drinking ( P <0.001). CONCLUSION: Water drinking elicits a rapid pressor response in patients with autonomic failure and can be used to treat orthostatic and postprandial hypotension. Water drinking moderately reduces orthostatic tachycardia in patients with idiopathic orthostatic intolerance. Thus, water drinking may serve as an adjunctive treatment in patients with impaired orthostatic tolerance.

  7. Removal of antibiotics from surface and distilled water in conventional water treatment processes

    USGS Publications Warehouse

    Adams, C.; Wang, Y.; Loftin, K.; Meyer, M.

    2002-01-01

    Conventional drinking water treatment processes were evaluated under typical water treatment plant conditions to determine their effectiveness in the removal of seven common antibiotics: carbadox, sulfachlorpyridazine, sulfadimethoxine, sulfamerazine, sulfamethazine, sulfathiazole, and trimethoprim. Experiments were conducted using synthetic solutions prepared by spiking both distilled/ deionized water and Missouri River water with the studied compounds. Sorption on Calgon WPH powdered activated carbon, reverse osmosis, and oxidation with chlorine and ozone under typical plant conditions were all shown to be effective in removing the studied antibiotics. Conversely, coagulation/flocculation/sedimentation with alum and iron salts, excess lime/soda ash softening, ultraviolet irradiation at disinfection dosages, and ion exchange were all relatively ineffective methods of antibiotic removal. This study shows that the studied antibiotics could be effectively removed using processes already in use many water treatment plants. Additional work is needed on by-product formation and the removal of other classes of antibiotics.

  8. Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse.

    PubMed

    Qu, Xiaolei; Brame, Jonathon; Li, Qilin; Alvarez, Pedro J J

    2013-03-19

    Ensuring reliable access to clean and affordable water is one of the greatest global challenges of this century. As the world's population increases, water pollution becomes more complex and difficult to remove, and global climate change threatens to exacerbate water scarcity in many areas, the magnitude of this challenge is rapidly increasing. Wastewater reuse is becoming a common necessity, even as a source of potable water, but our separate wastewater collection and water supply systems are not designed to accommodate this pressing need. Furthermore, the aging centralized water and wastewater infrastructure in the developed world faces growing demands to produce higher quality water using less energy and with lower treatment costs. In addition, it is impractical to establish such massive systems in developing regions that currently lack water and wastewater infrastructure. These challenges underscore the need for technological innovation to transform the way we treat, distribute, use, and reuse water toward a distributed, differential water treatment and reuse paradigm (i.e., treat water and wastewater locally only to the required level dictated by the intended use). Nanotechnology offers opportunities to develop next-generation water supply systems. This Account reviews promising nanotechnology-enabled water treatment processes and provides a broad view on how they could transform our water supply and wastewater treatment systems. The extraordinary properties of nanomaterials, such as high surface area, photosensitivity, catalytic and antimicrobial activity, electrochemical, optical, and magnetic properties, and tunable pore size and surface chemistry, provide useful features for many applications. These applications include sensors for water quality monitoring, specialty adsorbents, solar disinfection/decontamination, and high performance membranes. More importantly, the modular, multifunctional and high-efficiency processes enabled by nanotechnology provide a promising route both to retrofit aging infrastructure and to develop high performance, low maintenance decentralized treatment systems including point-of-use devices. Broad implementation of nanotechnology in water treatment will require overcoming the relatively high costs of nanomaterials by enabling their reuse and mitigating risks to public and environmental health by minimizing potential exposure to nanoparticles and promoting their safer design. The development of nanotechnology must go hand in hand with environmental health and safety research to alleviate unintended consequences and contribute toward sustainable water management. PMID:22738389

  9. Treatment of tunnel wash water and implications for its disposal.

    PubMed

    Hallberg, M; Renman, G; Byman, L; Svenstam, G; Norling, M

    2014-01-01

    The use of road tunnels in urban areas creates water pollution problems, since the tunnels must be frequently cleaned for traffic safety reasons. The washing generates extensive volumes of highly polluted water, for example, more than fivefold higher concentrations of suspended solids compared to highway runoff. The pollutants in the wash water have an affinity for particulate material, so sedimentation should be a viable treatment option. In this study, 12 in situ sedimentation trials were carried out on tunnel wash water, with and without addition of chemical flocculent. Initial suspended solids concentration ranged from 804 to 9,690 mg/L. With sedimentation times of less than 24 hours and use of a chemical flocculent, it was possible to reach low concentrations of suspended solids (<15 mg/L), PAH (<0.1 ?g/L), As (<1.0 ?g/L), Cd (<0.05 ?g/L), Hg (<0.02 ?g/L), Fe (<200 ?g/L), Ni (<8 ?g/L), Pb (<0.5 ?g/L), Zn (<60 ?g/L) and Cr (<8 ?g/L). Acute Microtox() toxicity, mainly attributed to detergents used for the tunnel wash, decreased significantly at low suspended solids concentrations after sedimentation using a flocculent. The tunnel wash water did not inhibit nitrification. The treated water should be suitable for discharge into recipient waters or a wastewater treatment plant. PMID:24845317

  10. Amend soils with residues from water-treatment processes

    SciTech Connect

    Makansi, J.

    1993-09-01

    This article reports that land application is emerging as a viable disposal/reuse method for water-treatment-process residues. In many cases, these residues actually enhance soil quality and arrest fertilizer loss. Water treatment usually generates solid residues requiring disposal. These include sludges from lime softening and related pretreatment processes and spent ion-exchange resins and adsorbents used for softening, dealkalization, and deionization of surface and well water. Although it may not appear so at first glance, according to consultant Dr. Robert Kunin, these materials have properties that can benefit the soil for agricultural and horticultural needs. Treating water with lime is popular and effective for removing hardness, phosphates, and some silica. Small amounts of alum, chlorine, and/or organic flocculants may also be added in lime-softening processes. Resulting sludge consists of calcium carbonate (CaCO[sub 3]), magnesium hydroxide, and calcium/magnesium/phosphate compounds, along with humic matter and related organic compounds that originate in the raw water. If softening is conducted at high temperatures, large, dense CaCO[sub 3] particles form as the compound crystallizes around sand particles. Disposal of this sludge is often considered a major disadvantage of lime softening. But if the water being treated meets EPA regulations for heavy metals, especially arsenic, then chemical analysis suggests benefits for soils. This has been well-described in texts addressing water treatment. For example, the sludge serves as a mild liming agent and may even supply various plant nutrients. Note that this application is different from municipal wastewater treatment plant sludge, which is difficult to land apply.

  11. Car wash wastewater treatment and water reuse - a case study.

    PubMed

    Zaneti, R N; Etchepare, R; Rubio, J

    2013-01-01

    Recent features of a car wash wastewater reclamation system and results from a full-scale car wash wastewater treatment and recycling process are reported. This upcoming technology comprises a new flocculation-column flotation process, sand filtration, and a final chlorination. A water usage and savings audit (22 weeks) showed that almost 70% reclamation was possible, and fewer than 40 L of fresh water per wash were needed. Wastewater and reclaimed water were characterized by monitoring chemical, physicochemical and biological parameters. Results were discussed in terms of aesthetic quality (water clarification and odour), health (pathological) and chemical (corrosion and scaling) risks. A microbiological risk model was applied and the Escherichia coli proposed criterion for car wash reclaimed water is 200 CFU 100 mL(-1). It is believed that the discussions on car wash wastewater reclamation criteria may assist institutions to create laws in Brazil and elsewhere. PMID:23128624

  12. REMOVAL OF ARSENIC IN DRINKING WATER: ARS CFU-50 APC ELECTROFLOCCULATION AND FILTRATION WATER TREATMENT SYSTEM

    EPA Science Inventory

    ETV testing of the ARS CFU-50 APC Electroflocculation and Filtration Water Treatment System (ARS CFU-50 APC) for arsenic removal was conducted at the Town of Bernalillo Well #3 site from April 18 through May 2, 2006. The source water was chlorinated groundwater from two supply w...

  13. Problems of drinking water treatment along Ismailia Canal Province, Egypt*

    PubMed Central

    Geriesh, Mohamed H.; Balke, Klaus-Dieter; El-Rayes, Ahmed E.

    2008-01-01

    The present drinking water purification system in Egypt uses surface water as a raw water supply without a preliminary filtration process. On the other hand, chlorine gas is added as a disinfectant agent in two steps, pre- and post-chlorination. Due to these reasons most of water treatment plants suffer low filtering effectiveness and produce the trihalomethane (THM) species as a chlorination by-product. The Ismailia Canal represents the most distal downstream of the main Nile River. Thus its water contains all the proceeded pollutants discharged into the Nile. In addition, the downstream reaches of the canal act as an agricultural drain during the closing period of the High Dam gates in January and February every year. Moreover, the wide industrial zone along the upstream course of the canal enriches the canal water with high concentrations of heavy metals. The obtained results indicate that the canal gains up to 24.06×106 m3 of water from the surrounding shallow aquifer during the closing period of the High Dam gates, while during the rest of the year, the canal acts as an influent stream losing about 99.6×106 m3 of its water budget. The reduction of total organic carbon (TOC) and suspended particulate matters (SPMs) should be one of the central goals of any treatment plan to avoid the disinfectants by-products. The combination of sedimentation basins, gravel pre-filtration and slow sand filtration, and underground passage with microbiological oxidation-reduction and adsorption criteria showed good removal of parasites and bacteria and complete elimination of TOC, SPM and heavy metals. Moreover, it reduces the use of disinfectants chemicals and lowers the treatment costs. However, this purification system under the arid climate prevailing in Egypt should be tested and modified prior to application. PMID:18357626

  14. Problems of drinking water treatment along Ismailia Canal Province, Egypt.

    PubMed

    Geriesh, Mohamed H; Balke, Klaus-Dieter; El-Rayes, Ahmed E

    2008-03-01

    The present drinking water purification system in Egypt uses surface water as a raw water supply without a preliminary filtration process. On the other hand, chlorine gas is added as a disinfectant agent in two steps, pre- and post-chlorination. Due to these reasons most of water treatment plants suffer low filtering effectiveness and produce the trihalomethane (THM) species as a chlorination by-product. The Ismailia Canal represents the most distal downstream of the main Nile River. Thus its water contains all the proceeded pollutants discharged into the Nile. In addition, the downstream reaches of the canal act as an agricultural drain during the closing period of the High Dam gates in January and February every year. Moreover, the wide industrial zone along the upstream course of the canal enriches the canal water with high concentrations of heavy metals. The obtained results indicate that the canal gains up to 24.06x10(6) m3 of water from the surrounding shallow aquifer during the closing period of the High Dam gates, while during the rest of the year, the canal acts as an influent stream losing about 99.6x10(6) m3 of its water budget. The reduction of total organic carbon (TOC) and suspended particulate matters (SPMs) should be one of the central goals of any treatment plan to avoid the disinfectants by-products. The combination of sedimentation basins, gravel pre-filtration and slow sand filtration, and underground passage with microbiological oxidation-reduction and adsorption criteria showed good removal of parasites and bacteria and complete elimination of TOC, SPM and heavy metals. Moreover, it reduces the use of disinfectants chemicals and lowers the treatment costs. However, this purification system under the arid climate prevailing in Egypt should be tested and modified prior to application. PMID:18357626

  15. 49. LOOKING NORTH AT EVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. LOOKING NORTH AT EVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS, WITH BLOW ENGINE HOUSE No. 3 ON RIGHT, AND FILTER CAKE HOUSE IN FOREGROUND. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  16. An Analysis of the Waste Water Treatment Operator Occupation.

    ERIC Educational Resources Information Center

    Clark, Anthony B.; And Others

    The occupational analysis contains a brief job description for the waste water treatment occupations of operator and maintenance mechanic and 13 detailed task statements which specify job duties (tools, equipment, materials, objects acted upon, performance knowledge, safety considerations/hazards, decisions, cues, and errors) and learning skills…

  17. Treatment of RO brine-towards sustainable water reclamation practice.

    PubMed

    Ng, H Y; Lee, L Y; Ong, S L; Tao, G; Viawanath, B; Kekre, K; Lay, W; Seah, H

    2008-01-01

    Treatment and disposal of RO brine is an important part in sustaining the water reclamation practice. RO brine generated from water reclamation contains high concentration of organic and inorganic compounds. Cost-effective technologies for treatment of RO brine are still relatively unexplored. Thus, this study aim to determine a feasible treatment process for removal of both organic and inorganic compounds in RO brine generated from NEWater production. The proposed treatment consists of biological activated carbon (BAC) column followed by capacitive deionization (CDI) process for organic and inorganic removals, respectively. Preliminary bench-scale study demonstrated about 20% TOC removal efficiency was achieved using BAC at 40 mins empty bed contact time (EBCT) while the CDI process was able to remove more than 90% conductivity reducing it from 2.19 mS/cm to only about 164 microS/cm. More than 90% cations and anions in the BAC effluent were removed using CDI process. In addition, TOC and TN removals of 78% and 91%, respectively were also attained through this process. About 90% water recovery was achieved. This process shows the potential of increased water recovery in the reclamation process while volume for disposal can be further minimized. Further studies on the sustainable operation and process optimization are ongoing. PMID:18776632

  18. Treatment for hydrazine-containing waste water solution

    NASA Technical Reports Server (NTRS)

    Yade, N.

    1986-01-01

    The treatment for waste solutions containing hydrazine is presented. The invention attempts oxidation and decomposition of hydrazine in waste water in a simple and effective processing. The method adds activated charcoal to waste solutions containing hydrazine while maintaining a pH value higher than 8, and adding iron salts if necessary. Then, the solution is aerated.

  19. Treatment of toxic organics in water by advanced oxidation processes

    SciTech Connect

    Glaze, W.H.; Iwamasa, K.; Homewood, S.

    1995-12-31

    This paper provides a brief description of advanced oxidation processes (AOPs) for the treatment of water contaminated with undesirable organic compounds. Challenges posed by the practical use of AOPs are outlined, including the potential production of chemical byproducts. The lack of accurate mechanistic models is also discussed.

  20. Advances in cooling water treatment monitoring and control

    SciTech Connect

    Richardson, J.; Trulear, M.G.

    1999-07-01

    The importance of active treatment-based cooling water monitoring and control is demonstrated through the development of two new techniques, the on-line analysis of phosphonates and the off-line analysis of total and available polymer. Laboratory pilot experiments and field case histories are presented.

  1. UV Water Treatment Facility Funded by the GLRI

    USGS Multimedia Gallery

    Funding for the USGS Tunison Laboratory's UV water treatment facility and salmon rearing capabilities come from the Great Lakes Restoration Initiative and from a 2005 Congressional appropriation. Herring splash in oudoor containment channels beside the new facility. A new, sophisticated fish r...

  2. REVERSE OSMOSIS FIELD TEST: TREATMENT OF WATTS NICKEL RINSE WATERS

    EPA Science Inventory

    A field test was conducted to determine the feasibility of using a polyamide reverse-osmosis membrane in hollow fine fiber configuration for closed-loop treatment of rinse water from a Watts-type nickel bath. Performance of the membrane module was determined by measuring the prod...

  3. POU/POE TREATMENT OF ARSENIC IN GROUND WATER

    EPA Science Inventory

    Point-of-use/Point-of-entry (POU/POE) arsenic removal systems were installed in seventeen homes that were found to have high levels of arsenic (50-480ug/L) in their well water. This presetation will describe the process and the problems encountered in selecting the treatment syst...

  4. Selenium-Water Treatment Residual Adsorption And Characterization

    EPA Science Inventory

    Aluminum-based water treatment residuals (WTR) have the ability to adsorb tremendous quantities of soil-borne P, and have been shown to adsorb other anions, such as As (V), As (III), and ClO4-. Environmental issues associated with Se in the Western US led us to study W...

  5. ORGANOPHOSPHATE PESTICIDE DEGRADATION UNDER DRINKING WATER TREATMENT CONDITIONS

    EPA Science Inventory

    Chlorpyrifos (CP) was used as a model compound to develop experimental methods and prototype modeling tools to forecast the fate of organophosphate (OP) pesticides under drinking water treatment conditions. CP was found to rapidly oxidize to chlorpyrifos oxon (CPO) in the presen...

  6. 7. VIEW OF WATER TREATMENT PLANT, ADJACENT TO THE COAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF WATER TREATMENT PLANT, ADJACENT TO THE COAL CONVEYOR; IN THE DISTANCE IS THE FREQUENCY CHANGER HOUSE, WHICH IS ATTACHED TO SWITCH HOUSE NO. 1; LOOKING WEST. - Commonwealth Electric Company, Fisk Street Electrical Generating Station, 1111 West Cermak Avenue, Chicago, Cook County, IL

  7. COMPUTER ASSISTED PRELIMINARY DESIGN FOR DRINKING WATER TREATMENT PROCESS SYSTEMS

    EPA Science Inventory

    The purpose of the study was to develop an interactive computer program to aid the design engineer in evaluating the performance and cost for any proposed drinking water treatment system consisting of individual unit processes. The 25 unit process models currently in the program ...

  8. WATER TREATMENT PROJECT: OBSERVATIONS ON USE OF GAC IN PRACTICE

    EPA Science Inventory

    The objectives of this project were: (1) to determine if granular activated carbon (GAC) adsorption beds applied in water treatment practice slough-off organic materials during the spring warm-up and (2) to evaluate the feasibility of the dilute or low-level COD procedure for the...

  9. An Analysis of the Waste Water Treatment Maintenance Mechanic Occupation.

    ERIC Educational Resources Information Center

    Clark, Anthony B.; And Others

    The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the waste water treatment mechanics occupation. The document opens with a brief introduction followed by a job description. The bulk of the document is presented in table form. Twelve duties are broken…

  10. USE OF FERRATE IN SMALL DRINKING WATER TREATMENT SYSTEMS

    EPA Science Inventory

    The proposed project will result in a document providing guidance for the beneficial use of ferrate in small systems. We will highlight the ways it can be used to improve water quality, lower cost and provide a more sustainable treatment alternative to other technologies. W...

  11. Chemical cooling water treatment cuts corrosion rate 80%

    SciTech Connect

    Bayne, W.R. ); Herman, K.W. )

    1991-06-01

    A study of the cooling water system at the Farley Nuclear Plant was made to establish the degree of corrosion and fouling that would take place with and without chemical treatment, and to determine the effect that increased cycles of concentration might have on fouling. It was established that a need for chemical treatment existed. The new cooling water treatment program yielded no fouling, a reduction in corrosion rates of 80%, and a decrease in water usage of about 10%. Experience showed that condenser fouling was not a problem, but that corrosion of mild steel piping was a possibility. Control of corrosion without causing any fouling problems, coupled with a desire to conserve water and reduce associated pumping costs, prompted studies to establish the current degree of corrosion and to determine the effect of increasing cycles of concentration of both corrosion and fouling, with and without chemical treatment. This paper covers a period of three years of plant operation. During the first year, the corrosion rates were measured and tests were made to evaluate the potential effect of increasing cycles of concentration.

  12. 52. NORTHEASTERN EXTERIOR VIEW OF DOOROLIVER WAST WATER TREATMENT THICKENER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. NORTHEASTERN EXTERIOR VIEW OF DOOR-OLIVER WAST WATER TREATMENT THICKENER No. 1. ELECTRIC POWERHOUSE No. 2 AND BLOW ENGINE HOUSE No. 3 IS IN THE BACKGROUND. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  13. Impact of Arsenic Treatment Techniques on Distribution Water Quality

    EPA Science Inventory

    This presentation will summarize the results of the distribution water quality studies (arsenic, lead, and copper) of the demonstration program. The impact of the treatment systems by type of system (adsorptive media, coagulation/filtration, ion exchange, etc) will be shown by co...

  14. GARRETT A. MORGAN WATER TREATMENT PLANT, LOOKING NORTHWEST FROM BERM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GARRETT A. MORGAN WATER TREATMENT PLANT, LOOKING NORTHWEST FROM BERM OF WEST SHOREWAY. DIVISION AVENUE PUMPING STATION AT RIGHT. NEW PUMPING STATION, NEARING COMPLETION, AT LEFT. - Division Avenue Pumping Station & Filtration Plant, West 45th Street and Division Avenue, Cleveland, Cuyahoga County, OH

  15. GARRETT A. MORGAN WATER TREATMENT PLANT, LOOKING NORTHWEST FROM BERM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GARRETT A. MORGAN WATER TREATMENT PLANT, LOOKING NORTHWEST FROM BERM OF WEST SHOREWAY, SHOWING (CLOCKWISE FROM LEFT) CHEMICAL BUILDING, PUMPING STATION, FILTRATION/ADMINISTRATION BUILDING, AND FLOCCULATION BUILDING (IN FOREGROUND). - Division Avenue Pumping Station & Filtration Plant, West 45th Street and Division Avenue, Cleveland, Cuyahoga County, OH

  16. GARRETT A. MORGAN WATER TREATMENT PLANT, LOOKING NORTHEAST FROM BERM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GARRETT A. MORGAN WATER TREATMENT PLANT, LOOKING NORTHEAST FROM BERM OF WEST SHOREWAY, SHOWING DIVISION AVENUE PUMPING STATION (AT LEFT), FILTRATION PLANT (CENTER), AND CHEMICAL HOUSE (IN SHADOW AT RIGHT). - Division Avenue Pumping Station & Filtration Plant, West 45th Street and Division Avenue, Cleveland, Cuyahoga County, OH

  17. EVALUATING A COMPOSITE CARTRIDGE FOR SMALL SYSTEM DRINKING WATER TREATMENT

    EPA Science Inventory

    A multi-layer, cartridge-based system that combines physical filtration with carbon adsorption and ultraviolet (UV) light disinfection has been developed to perform as a water treatment security device to protect homes against accidental or intentional contaminant events. A seri...

  18. Evaluation of Current Water Treatment and Distribution System Optimization to Provide Safe Drinking Water from Various Source Water Types and Conditions (Deliverable 5.2.C.1)

    EPA Science Inventory

    Increasingly, drinking water treatment plants (DWTPs) are being challenged by changes in the quality of their source waters and by their aging treatment and distribution system infrastructure. Individually or in combination, factors such as shrinking water and financial resources...

  19. Waste Water Management and Infectious Disease. Part II: Impact of Waste Water Treatment

    ERIC Educational Resources Information Center

    Cooper, Robert C.

    1975-01-01

    The ability of various treatment processes, such as oxidation ponds, chemical coagulation and filtration, and the soil mantle, to remove the agents of infectious disease found in waste water is discussed. The literature concerning the efficiency of removal of these organisms by various treatment processes is reviewed. (BT)

  20. WATER FACTORY 21: RECLAIMED WATER, VOLATILE ORGANICS, VIRUS, AND TREATMENT PERFORMANCE

    EPA Science Inventory

    This report describes the performance of Water Factory 21, a 0.66 cu m/s advanced wastewater treatment plant designed to reclaim secondary effluent from a municipal wastewater treatment plant so that it can be used for injection and recharge of a groundwater system. Included in t...

  1. Assessment of didecyldimethylammonium chloride as a ballast water treatment method.

    PubMed

    van Slooten, Cees; Peperzak, Louis; Buma, Anita G J

    2015-01-01

    Ballast water-mediated transfer of aquatic invasive species is considered a major threat to marine biodiversity, marine industry and human health. A ballast water treatment is needed to comply with International Maritime Organization (IMO) ballast water discharge regulations. Didecyldimethylammonium chloride (DDAC) was tested for its applicability as a ballast water treatment method. The treatment of the marine phytoplankton species Tetraselmis suecica, Isochrysis galbana and Chaetoceros calcitrans showed that at 2.5?L?L(-1) DDAC was able to inactivate photosystem II (PSII) efficiency and disintegrate the cells after 5 days of dark incubation. The treatment of natural marine plankton communities with 2.5?L?L(-1) DDAC did not sufficiently decrease zooplankton abundance to comply with the IMO D-2 standard. Bivalve larvae showed the highest resistance to DDAC. PSII efficiency was inactivated within 5 days but phytoplankton cells remained intact. Regrowth occurred within 2 days of incubation in the light. However, untreated phytoplankton exposed to residual DDAC showed delayed cell growth and reduced PSII efficiency, indicating residual DDAC toxicity. Natural marine plankton communities treated with 5?L?L(-1) DDAC showed sufficient disinfection of zooplankton and inactivation of PSII efficiency. Phytoplankton regrowth was not detected after 9 days of light incubation. Bacteria were initially reduced due to the DDAC treatment but regrowth was observed within 5 days of dark incubation. Residual DDAC remained too high after 5 days to be safely discharged. Two neutralization cycles of 50?mg?L(-1) bentonite were needed to inactivate residual DDAC upon discharge. The inactivation of residual DDAC may seriously hamper the practical use of DDAC as a ballast water disinfectant. PMID:25182049

  2. Physical injury risks associated with drinking water arsenic treatment.

    PubMed

    Frost, Floyd J; Chwirka, Joseph; Craun, Gunther F; Thomson, Bruce; Stomps, John

    2002-04-01

    We estimated the number of transportation deaths that would be associated with water treatment in Albuquerque to meet the EPA's recently proposed revisions of the Maximum Contaminant Level (MCL) for arsenic. Vehicle mileage was estimated for ion exchange, activated alumina, and iron coagulation/microfiltration water treatment processes to meet an MCL of 0.020 mg/L, 0.010 mg/L, 0.005 mg/L, and 0.003 mg/L. Local crash, injury, and death rates per million vehicle miles were used to estimate the number of injuries and deaths. Depending on the water treatment options chosen, we estimate that meeting an arsenic MCL of 0.005 mg/L will result in 143 to 237 crashes, 58 to 98 injuries, and 0.6 to 2.6 deaths in Albuquerque over a 70-year period, resulting in 26 to 113 years of life lost. The anticipated health benefits for Albuquerque residents from a 0.005 mg/L arsenic MCL, estimated using either a multistage Weibull or Poisson model, ranged from 3 to 80 arsenic-related bladder and lung cancer deaths prevented over a 70-year period, adding between 43 and 1,123 years of life. Whether a revised arsenic MCL increases or reduces overall loss of life in Albuquerque depends on the accuracy of EPA's cancer risk assessment. If the multistage Weibull model accurately estimates the benefits, the years of life added is comparable or lower than the anticipated years lost due to transportation associated with the delivery of chemicals, disposal of treatment waste, and operation of the water treatment system. Coagulation/microfiltration treatment will result in substantially fewer transportation deaths than either ion exchange or activated alumina. PMID:12022673

  3. Treatment of poly- and perfluoroalkyl substances in U.S. full-scale water treatment systems.

    PubMed

    Appleman, Timothy D; Higgins, Christopher P; Quiones, Oscar; Vanderford, Brett J; Kolstad, Chad; Zeigler-Holady, Janie C; Dickenson, Eric R V

    2014-03-15

    The near ubiquitous presence of poly- and perfluoroalkyl substances (PFASs) in humans has raised concerns about potential human health effects from these chemicals, some of which are both extremely persistent and bioaccumulative. Because some of these chemicals are highly water soluble, one major pathway for human exposure is the consumption of contaminated drinking water. This study measured concentrations of PFASs in 18 raw drinking water sources and 2 treated wastewater effluents and evaluated 15 full-scale treatment systems for the attenuation of PFASs in water treatment utilities throughout the U.S. A liquid-chromatography tandem mass-spectrometry method was used to enable measurement of a suite of 23 PFASs, including perfluorocarboxylic acids (PFCAs) and perfluorosulfonic acids (PFSAs). Despite the differences in reporting levels, the PFASs that were detected in >70% of the source water samples (n=39) included PFSAs, perfluorobutane sulfonic acid (74%), perfluorohexane sulfonic acid (79%), and perfluorooctane sulfonic acid (84%), and PFCAs, perfluoropentanoic acid (74%), perfluorohexanoic acid (79%), perfluoroheptanoic acid (74%), and perfluorooctanoic acid (74%). More importantly, water treatment techniques such as ferric or alum coagulation, granular/micro-/ultra- filtration, aeration, oxidation (i.e., permanganate, ultraviolet/hydrogen peroxide), and disinfection (i.e., ozonation, chlorine dioxide, chlorination, and chloramination) were mostly ineffective in removing PFASs. However, anion exchange and granular activated carbon treatment preferably removed longer-chain PFASs and the PFSAs compared to the PFCAs, and reverse osmosis demonstrated significant removal for all the PFASs, including the smallest PFAS, perfluorobutanoic acid. PMID:24275109

  4. Study on the TOC concentration in raw water and HAAs in Tehran's water treatment plant outlet.

    PubMed

    Ghoochani, Mahboobeh; Rastkari, Noushin; Nabizadeh Nodehi, Ramin; Mahvi, Amir Hossein; Nasseri, Simin; Nazmara, Shahrokh

    2013-01-01

    A sampling has been undertaken to investigate the variation of haloacetic acids formation and nature organic matter through 81 samples were collected from three water treatment plant and three major rivers of Tehran Iran. Changes in the total organic matter (TOC), ultraviolet absorbance (UV254), specific ultraviolet absorbance (SUVA) were measured in raw water samples. Haloacetic acids concentrations were monitored using a new static headspace GC-ECD method without a manual pre-concentration in three water treatment plants. The average concentration of TOC and HAAs in three rivers and three water treatment plants in spring, summer and fall, were 4, 2.41 and 4.03 mg/L and 48.75, 43.79 and 51.07 μg/L respectively. Seasonal variation indicated that HAAs levels were much higher in spring and fall. PMID:24283403

  5. Halogenated phenols in water at forty Canadian potable water treatment facilities

    SciTech Connect

    Sithole, B.B.; Williams, D.T.

    1986-09-01

    Samples of raw and treated water were collected once in each of 3 seasons at 40 potable water treatment plants across Canada and were analyzed for phenol and 33 halogenated phenolic compounds including chlorophenols, bromophenols, bromochlorophenols, and chloroguaiacols. Eighteen of the compounds were not found at any treatment plant; phenol and each of the remaining halogenated phenols were found in at least 1 sample. Pentachlorophenol was the only halogenated phenolic compound found in more than 20% of the raw water samples in the fall and winter samples at levels up to 53 ng/L with mean values of 1.9 and 2.8 ng/L, respectively. No halogenated phenols were detected in raw water summer samples. The halogenated phenols found most frequently in treated water samples were 4-chloro-, 2,4-dichloro-, 2,4,6-trichloro-, and bromodichlorophenols. Mean values were less than 15 ng/L and maximum values seldom exceeded 100 ng/L. Most of the positive values for the treated water samples were found at 8 of the 40 treatment plants but no correlations could be found between halogenated phenol levels and raw water type, treatment process, or chemical dosages.

  6. Evaluation of Water Treatment Methods for Endocrine Disrupting Compounds

    NASA Astrophysics Data System (ADS)

    Thomas, S. M.; Murray, K. E.

    2006-05-01

    Endocrine disrupting compounds (EDCs) have caught recent attention as one of the major concerns in the environment. They are known to interfere with the activity of growth-related hormones and usually, as a result, cause disruption in normal functioning of the body. The compounds currently classified as EDCs range from a variety of both natural and synthetic organic compounds and also some heavy metals. Most of these compounds are used in household, pharmaceutical, industrial, agricultural activities, the consumption or usage of which increases with population. There is a lack of detailed chemical and biological analysis as to what concentrations each of these EDCs pose harmless to the environment because of the large number of the suspected compounds. However, several published reports have established that endocrine disruption is observed in aquatic species due to chronic exposure to concentrations of some EDCs as low as a few ng/l. Conventional water treatment facilities do not usually suffice to remove EDCs in concentrations below 1 ng/l. Available technologies for removal of EDCs include adsorption, degradation and membrane treatment. The removal rates, however, are dependant on the properties of the compound, such as molecular weight, water- octanol partition coefficient and vapor pressure; physiochemical conditions of the matrix such as, redox and temperature conditions; type and dose of degrading agent and the concentration of the EDCs. Since, EDCs comprise a vast variety of compounds, their response to each of these treatment methods will be different and hence it is plausible that a single treatment technique will not be sufficient to remove the EDCs to very low concentrations. Based on our review of existing water treatment methods, we believe that a sequential treatment technique that consists of an adsorption, a degradation and finally a fine membrane treatment, each optimized for favorable, efficient and inexpensive removal may be required to remove EDCs to the desired low concentrations.

  7. Treatment of produced waters by electrocoagulation and reverse osmosis

    SciTech Connect

    Tuggle, K.; Humenick, M.; Barker, F.

    1992-08-01

    Two oil field produced waters and one coal bed methane produced water from Wyoming were treated with electrocoagulation and reverse osmosis. All three produced waters would require treatment to meet the new Wyoming Department of Environmental Quality requirements for effluent discharge into a class III or IV stream. The removal of radium 226 and oil and grease was the primary focus of the study. Radium 226 and oil and grease were removed from the produced waters with electrocoagulation. The best removal of radium 226 (>84%) was achieved with use of a non-sacrificial anode (titanium). The best removal of oil and grease (>93%) was achieved using a sacrificial anode (aluminum). By comparison, reverse osmosis removed up to 87% of the total dissolved solids and up to 95% of the radium 226.

  8. Development of ash and waste water mixture treatment system (AWMT)

    SciTech Connect

    Yagasaki, T.; Ohishi, T.; Okino, S.

    1995-06-01

    In thermal power station burning heavy oil, especially orimulsion, flyash captured at ESP needs to be handled in slurry form to avoid handling difficulty. Further, such removal of ammonia included highly in both flyash and FGD waste water is desirable for environmental protection. Accordingly, large merit can be expected if a system integrated with FGD facility can be developed where FGD waste water is utilized for preparing ash slurry and ammonia is recovered from this flyash and FGD waste water mixture for reutilization in the flue gas treatment section while reducing process waste matter amount and making the FGD process waste-water-free. Thereupon, Chubu Electric Power Co., Inc. and Mitsubishi Heavy Industries Ltd. jointly carried out a feasibility study including elementary research and realized an economical system based on the foregoing processing. This paper introduces this system and a 20MW pilot plant under construction at Owase-Mita Thermal Power Station.

  9. Effect of microalgal treatments on pesticides in water.

    PubMed

    Hultberg, Malin; Bodin, Hristina; Ardal, Embla; Asp, Håkan

    2016-04-01

    The effect of the microalgae Chlorella vulgaris on a wide range of different pesticides in water was studied. Treatments included short-term exposure (1 h) to living and dead microalgal biomass and long-term exposure (4 days) to actively growing microalgae. The initial pesticide concentration was 63.5 ± 3.9 µg L(-1). There was no significant overall reduction of pesticides after short-term exposure. A significant reduction of the total amount of pesticides was achieved after the long-term exposure to growing microalgae (final concentration 29.7 ± 1.0 µg L(-1)) compared with the long-term control (37.0 ± 1.2 µg L(-1)). The concentrations of 10 pesticides out of 38 tested were significantly lowered in the long-term algal treatment. A high impact of abiotic factors such as sunlight and aeration for pesticide reduction was observed when the initial control (63.5 ± 3.9 µg L(-1)) and the long-term control (37.0 ± 1.2 µg L(-1)) were compared. The results suggest that water treatment using microalgae, natural inhabitants of polluted surface waters, could be further explored not only for removal of inorganic nutrients but also for removal of organic pollutants in water. PMID:26370171

  10. Treatment of municipal sewage sludge in supercritical water: A review.

    PubMed

    Qian, Lili; Wang, Shuzhong; Xu, Donghai; Guo, Yang; Tang, Xingying; Wang, Laisheng

    2016-02-01

    With increasing construction of wastewater treatment plants and stricter policies, municipal sewage sludge (MSS) disposal has become a serious problem. Treatment of MSS in supercritical water (SCW) can avoid the pre-drying procedure and secondary pollution of conventional methods. SCW treatment methods can be divided into supercritical water gasification (SCWG), supercritical water partial oxidation (SCWPO) and supercritical water oxidation (SCWO) technologies with increasing amounts of oxidants. Hydrogen-rich gases can be generated from MSS by SCWG or SCWPO technology using oxidants less than stoichiometric ratio while organic compounds can be completely degraded by SCWO technology with using an oxidant excess. For SCWG and SCWPO technologies, this paper reviews the influences of different process variables (MSS properties, moisture content, temperature, oxidant amount and catalysts) on the production of gases. For SCWO technology, this paper reviews research regarding the removal of organics with or without hydrothermal flames and the changes in heavy metal speciation and risk. Finally, typical systems for handling MSS are summarized and research needs and challenges are proposed. PMID:26645649

  11. Assessment of coliphage surrogates for testing drinking water treatment devices.

    PubMed

    Gerba, Charles P; Abd-Elmaksoud, Sherif; Newick, Huikheng; El-Esnawy, Nagwa A; Barakat, Ahmed; Ghanem, Hossam

    2015-03-01

    Test protocols have been developed by the United States Environmental Protection Agency (USEPA) and the World Health Organization (WHO) to test water treatment devices/systems that are used at the individual and home levels to ensure the removal of waterborne viruses. The goal of this study was to assess if coliphage surrogates could be used in this testing in place of the currently required use of animal or human enteric viruses. Five different coliphages (MS-2, PRD1, ?X-174, Q?, and fr) were compared to the removal of poliovirus type 1 (LSc-2ab) by eight different water treatment devices/systems using a general case and a challenge case (high organic load, dissolved solids, and turbidity) test water as defined by the USEPA. The performance of the units was rated as a pass/fail based on a 4 log removal/inactivation of the viruses. In all cases, a failure or a pass of the units/system for poliovirus also corresponded to a pass/fail by all of the coliphages. In summary, in using pass/fail criteria as recommended under USEPA guidelines for testing water treatment device/systems, the use of coliphages should be considered as an alternative to reduce cost and time of testing such devices/systems. PMID:25399400

  12. Water treatment cartridge filter pilot test at Pond C-2

    SciTech Connect

    Moritz, E.J.; Hoffman, C.R.

    1994-12-31

    This study determined the performance of a pilot scale cartridge filter tank utilized to treat raw water at Rocky Flats Plant terminal Pond C-2. No chemical treatment was used during this study. The filter tank was fitted with eight polypropylene 3M{reg_sign} Model 723 cartridges vendor rated at 99% removal efficiency for particles of 2 microns and larger. The duration of the test was 30 minutes at a flowrate of 200 gallons per minutes. Performance was determined by measuring total suspended solids (TSS), total dissolved solids (TDS), nephelometric turbidity units (NTU), gross alpha activity, gross beta activity, plutonium ({sup 239}Pu) levels, total particle counts (TPC), and differential particle counts (DPC) before and after treatment at specific time intervals throughout the test. Performance testing shows this treatment method produced a high quality effluent. Compared to raw water levels, TSS, NTU, gross alpha, and Pu{sup 239} were significantly reduced in the treated water samples. TPC and DPC data showed an average filtration efficiency of 97% for particles in the 1--50 micron range. This treatment method had no statistically significant affect on TDS and gross beta activity levels.

  13. Sterilization of Fungus in Water by Pulsed Power Gas Discharge Reactor Spraying Water Droplets for Water Treatment

    NASA Astrophysics Data System (ADS)

    Saito, Tsukasa; Handa, Taiki; Minamitani, Yasushi

    We study sterilization of bacteria in water using pulsed streamer discharge of gas phase. This method enhances efficiency of water treatment by spraying pretreatment water in a streamer discharge area. In this paper, yeast was sterilized because we assumed a case that fungus like mold existed in wastewater. As a result, colony forming units decreased rapidly for 2 minutes of the processing time, and all yeast sterilized by 45 minutes of the processing time.

  14. Understanding the Permeation of Solutes in Water Treatment Membranes

    NASA Astrophysics Data System (ADS)

    Phillip, William

    2013-03-01

    The responsible management of the world's water resources is essential to supporting human life on earth. The successful development of reverse osmosis seawater desalination makes it a crucial component in the portfolio of water supply options. However, other measures to alleviate the stresses on water supplies are necessary to responsibly and sustainably meet the worldwide demand for fresh water. Osmotically driven membrane processes (ODMP) are an emerging set of technologies that show promise in water conservation and reuse, as well as wastewater reclamation. The majority of research in the field has focused on predicting and enhancing water permeation through membranes, however, the effective operation of ODMP systems requires that the permeation of solutes across water treatment membranes be better understood. For example, the reverse flux of draw solute from the concentrated draw solution into the feed solution should be minimized. Additionally, due to the presence of solute-solute interactions that arise because of the unique geometry of ODMPs, the rejection of dilute solutes in these processes can be dramatically different than those observed in traditional pressure driven operations. In this talk, theoretical and experimental approaches are used to explore the permeation of solutes in osmotically driven membrane processes. Phenomenological models were developed that describe the forward and reverse permeation of the solutes across an asymmetric membrane in forward osmosis operation; and experiments were carried out to validate the model predictions. Using independently determined membrane transport coefficients, strong agreement between the model predictions and experimental results was observed.

  15. Treatment methods for breaking certain oil and water emulsions

    DOEpatents

    Sealock, Jr., L. John; Baker, Eddie G.; Elliott, Douglas C.

    1992-01-01

    Disclosed are treatment methods for breaking emulsions of petroleum oil and salt water, fatty oil and water, and those resulting from liquefication of organic material. The emulsions are broken by heating to a predetermined temperature at or above about 200.degree. C. and pressurizing to a predetermined pressure above the vapor pressure of water at the predetermined temperature to produce a heated and pressurized fluid. The heated and pressurized fluid is contained in a single vessel at the predetermined temperature and pressure for a predetermined period of time to effectively separate the emulsion into substantially distinct first and second phases, the first phase comprising primarily the petroleum oil, the second phase comprising primarily the water. The first and second phases are separately withdrawn from the vessel at a withdraw temperature between about 200.degree. C. and 374.degree. C. and a withdraw pressure above the vapor pressure of water at the withdraw temperature. Where solids are present in the certain emulsions, the above described treatment may also effectively separate the certain emulsion into a substantially distinct third phase comprising primarily the solids.

  16. Ultrasonic treatment for microbiological control of water systems.

    PubMed

    Broekman, S; Pohlmann, O; Beardwood, E S; de Meulenaer, E Cordemans

    2010-08-01

    A combination treatment of shear, micro-bubbles, and high-frequency low-power ultrasound introduced via side-stream treatment of industrial water systems has shown excellent results in controlling bacteria and algae. Through the physical, high-stress environment created by ultrasonic waves, sessile and planktonic biological populations, some of which may undergo programmed cell death (PCD), can be controlled. Additionally, the instability and reduction of biofilm have been observed in systems treated by ultrasound and may be attributed to starvation-stress and lack of available cross-linking cations in the biofilm. PMID:20083420

  17. Groundwater Treatment at the Fernald Preserve: Status and Path Forward for the Water Treatment Facility - 12320

    SciTech Connect

    Powel, J.; Hertel, B.; Glassmeyer, C.; Broberg, K.

    2012-07-01

    Operating a water treatment facility at the Fernald Preserve in Cincinnati, Ohio-to support groundwater remediation and other wastewater treatment needs-has become increasingly unnecessary. The Fernald Preserve became a U.S. Department of Energy Office of Legacy Management (LM) site in November 2006, once most of the Comprehensive Environmental Response, Compensation, and Liability Act environmental remediation and site restoration had been completed. Groundwater remediation is anticipated to continue beyond 2020. A portion of the wastewater treatment facility that operated during the CERCLA cleanup continued to operate after the site was transferred to LM, to support the remaining groundwater remediation effort. The treatment facility handles the site's remaining water treatment needs (for groundwater, storm water, and wastewater) as necessary, to ensure that uranium discharge limits specified in the Operable Unit 5 Record of Decision are met. As anticipated, the need to treat groundwater to meet uranium discharge limits has greatly diminished over the last several years. Data indicate that the groundwater treatment facility is no longer needed to support the ongoing aquifer remediation effort. (authors)

  18. INTEC CPP-603 Basin Water Treatment System Closure: Process Design

    SciTech Connect

    Kimmitt, Raymond Rodney; Faultersack, Wendell Gale; Foster, Jonathan Kay; Berry, Stephen Michael

    2002-09-01

    This document describes the engineering activities that have been completed in support of the closure plan for the Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603 Basin Water Treatment System. This effort includes detailed assessments of methods and equipment for performing work in four areas: 1. A cold (nonradioactive) mockup system for testing equipment and procedures for vessel cleanout and vessel demolition. 2. Cleanout of process vessels to meet standards identified in the closure plan. 3. Dismantlement and removal of vessels, should it not be possible to clean them to required standards in the closure plan. 4. Cleanout or removal of pipelines and pumps associated with the CPP-603 basin water treatment system. Cleanout standards for the pipes will be the same as those used for the process vessels.

  19. Towards development of an ozone compatible cooling water treatment

    SciTech Connect

    Rao, N.M.

    1994-12-31

    The use of ozone as a biocide in conjunction with conventional chemical treatment for corrosion, scale and deposit control was investigated using bench top and process simulation experiments. Aspects of aqueous ozone chemistry relevant to cooling water operation were discussed. For a given water chemistry, the degradation kinetics of a given chemical vs. microbial kill rate was identified as the parameter of interest. A relatively ozone resistant phosphonate CaCO{sub 3} scale inhibitor and a calcium phosphate dispersant were identified. None of the commercially available yellow metal corrosion inhibitors, including tolyltriazole (TT) and butylbenzotriazole (BBT) were found to be ozone compatible. Results from a field application where ozone is used in conjunction with an identified ozone compatible treatment are presented.

  20. EWR takes the waste out of waste water treatment

    SciTech Connect

    Helsing, L.D.

    1982-01-01

    A waste water treatment capability emphasizing energy recovery for internal use or sale as well as recycling of valuable materials from waste streams is described. The method, developed by Environmental Waste Removal, Inc. (EWR) consists of a proprietary multistep chemical treatment process to detoxify the aqueous waste and separate and recover oils, solvents, and water. A nationwide waste exchange program featuring a computer-based databank is planned. It will list descriptions of wastes wanted or materials available. A centralized computerized manifest system for use by hazardous waste generators, transporters, and owners of such facilities is in operation by EWR. This tool can track movement of waste from point of generation to point of disposal. The system is described. (MCW)

  1. Land disposal of water treatment plant sludge -- A feasibility analysis

    SciTech Connect

    Viraraghavan, T.; Multon, L.M.; Wasylenchuk, E.J.

    1998-07-01

    In this study, the following alternative disposal methods for the Buffalo Pound Water Treatment Sludge were evaluated: landfilling, discharge into sanitary sewers, long-term lagooning, use in manufacturing, co-composting, alum recovery and land application. Land application was chosen at the best disposal alternative. Preliminary design resulted in a 1% dry alum sludge loading rate (25 tonnes/ha), requiring 35 ha over a nine-year period and a phosphorus fertilizer supplement of about 50kg/ha.

  2. Influence of softening sequencing on electrocoagulation treatment of produced water.

    PubMed

    Esmaeilirad, Nasim; Carlson, Ken; Omur Ozbek, Pinar

    2015-01-01

    Electrocoagulation has been used to remove solids and some metals from both water and wastewater sources for decades. Additionally, chemical softening is commonly employed in water treatment systems to remove hardness. This paper assesses the combination and sequence of softening and EC methods to treat hydraulic fracturing flowback and produced water from shale oil and gas operations. EC is one of the available technologies to treat produced water for reuse in frac fluids, eliminating not only the need to transport more water but also the costs of providing fresh water. In this paper, the influence of chemical softening on EC was studied. In the softening process, pH was raised to 9.5 and 10.2 before and after EC, respectively. Softening, when practiced before EC was more effective for removing turbidity with samples from wells older than one month (99% versus 88%). However, neither method was successful in treating samples collected from early flowback (1-day and 2-day samples), likely due to the high concentration of organic matter. For total organic carbon, hardness, Ba, Sr, and B removal, application of softening before EC appeared to be the most efficient approach, likely due to the formation of solids before the coagulation process. PMID:25464315

  3. Evaluation of treatment technologies for water reuse in coal gasification

    SciTech Connect

    Luthy, R.G.; Campbell, J.R.; McLaughlin, L.; Walters, R.W.

    1980-07-01

    This investigation assessed significant issues and conducted bench scale experiments pertinent to management and reuse of coal coking and coal gasification process wastewaters. For the case of high-BTU coal gasification processes, the cooling tower is the most likely target for reuse of process wastewater. Treatment studies were performed with high BTU pilot coal gasification process quench waters to evaluate enhanced organic removal via powdered activated carbon-activated sludge treatment, and to evaluate a coal gasification wastewater treatment train comprised of sequential processing via ammonia removal, biological oxidation, lime-soda softening, granular activated carbon adsorption and reverse osmosis. Biological oxidation of coal gasification wastewater showed excellent removal efficiencies at moderate loadings; addition of powdered activated carbon provided lower effluent COD and color. Gasification process wastewater treated through activated carbon adsorption appears suitable for reuse as cooling tower make-up water. Screening studies indicate that reverse osmosis is an attractive technique for reducing wastewater dissolved solids. Additional study is needed to determine quality constraints regarding acceptable wastewater organic loading in cooling tower make-up water, and to evaluate possible release of toxic/hazardous organics to the environment via cooling tower drift. Additional follow-up work to this study is in progress to evaluate solvent extraction of gasification process wastewaters to recover phenolics and to reduce priority organic pollutants.

  4. OZONE TREATMENT OF SOLUBLE ORGANICS IN PRODUCED WATER (FEAC307)

    SciTech Connect

    Klasson, KT

    2001-03-20

    Oil production is shifting from ''shallow'' wells (0-650 ft water depth) to off-shore, deep-water operations (>2,600 ft.). Production from these operations is now approaching 20%. By 2007, it is projected that as much as 70% of the U.S. oil production will be from deep-water operations. The crude oil from these deep wells is more polar, thus increasing the amount of dissolved hydrocarbons in the produced water. Early data from Gulf of Mexico (GOM) wells indicate that the problem with soluble organics will increase significantly as deep-water production increases. Existing physical/chemical treatment technologies used to remove dispersed oil from produced water will not remove dissolved organics. GOM operations are rapidly moving toward design of high-capacity platforms that will require compact, low-cost, efficient treatment processes to comply with current and future water quality regulations. This project is an extension of previous research to improve the applicability of ozonation and will help address the petroleum industry-wide problem of treating water containing soluble organics. The goal of this project is to maximize oxidation of water-soluble organics during a single-pass operation. The project investigates: (1) oxidant production by electrochemical and sonochemical methods, (2) increasing the mass transfer rate in the reactor by forming microbubbles during ozone injection into the produced water, and (3) using ultraviolet irradiation to enhance the reaction if needed. Industrial collaborators include Chevron, Shell, Phillips, BP Amoco, Statoil, and Marathon Oil through a joint project with the Petroleum Environmental Research Forum (PERF). The research and demonstration program consists of three phases: (1) Laboratory testing in batch reactors to compare effectiveness of organics destruction using corona discharge ozone generation methods with hydrogen peroxide generated sonochemically and to evaluate the enhancement of destruction by UV light and micro-bubble spraying. (2) Continuous-flow studies to determine the efficacy of various contactors, the dependency of organics destruction on process variables, and scale-up issues. (3) Field testing of a prototype system in close collaboration with an industrial partner to generate performance data suitable for scale-up and economic evaluation.

  5. Process water treatment at the Ranger uranium mine, Northern Australia.

    PubMed

    Topp, H; Russell, H; Davidson, J; Jones, D; Levy, V; Gilderdale, M; Davis, S; Ring, R; Conway, G; Macintosh, P; Sertorio, L

    2003-01-01

    The conceptual development and piloting of an innovative water treatment system for process water produced by a uranium mine mill is described. The process incorporates lime/CO2 softening (Stage 1), reverse osmosis (Stage 2) and biopolishing (Stage 3) to produce water of quality suitable for release to the receiving environment. Comprehensive performance data are presented for each stage. The unique features of the proposed process are: recycling of the lime/CO2 softening sludge to the uranium mill as a neutralant, the use of power station off-gas for carbonation, the use of residual ammonia as the pH buffer in carbonation; and the recovery and recycling of ammonia from the RO reject stream. PMID:12862230

  6. A carbon nanotube wall membrane for water treatment.

    PubMed

    Lee, Byeongho; Baek, Youngbin; Lee, Minwoo; Jeong, Dae Hong; Lee, Hong H; Yoon, Jeyong; Kim, Yong Hyup

    2015-01-01

    Various forms of carbon nanotubes have been utilized in water treatment applications. The unique characteristics of carbon nanotubes, however, have not been fully exploited for such applications. Here we exploit the characteristics and corresponding attributes of carbon nanotubes to develop a millimetre-thick ultrafiltration membrane that can provide a water permeability that approaches 30,000 l m(-2) h(-1) bar(-1), compared with the best water permeability of 2,400 l m(-2) h(-1) bar(-1) reported for carbon nanotube membranes. The developed membrane consists only of vertically aligned carbon nanotube walls that provide 6-nm-wide inner pores and 7-nm-wide outer pores that form between the walls of the carbon nanotubes when the carbon nanotube forest is densified. The experimental results reveal that the permeance increases as the pore size decreases. The carbon nanotube walls of the membrane are observed to impede bacterial adhesion and resist biofilm formation. PMID:25971895

  7. OZONE TREATMENT OF SOLUBLE ORGANICS IN PRODUCED WATER

    SciTech Connect

    Klasson, KT

    2002-03-14

    This project was an extension of previous research to improve the applicability of ozonation and will help address the petroleum-industry problem of treating produced water containing soluble organics. The goal of this project was to maximize oxidation of hexane-extractable organics during a single-pass operation. The project investigated: (1) oxidant production by electrochemical and sonochemical methods, (2) increasing the mass transfer rate in the reactor by forming microbubbles during ozone injection into the produced water, and (3) using ultraviolet irradiation to enhance the reaction if needed. Several types of methodologies for treatment of soluble organics in synthetic and actual produced waters have been performed. The technologies tested may be categorized as follows: (1) Destruction via sonochemical oxidation at different pH, salt concentration, ultraviolet irradiation, and ferrous iron concentrations. (2) Destruction via ozonation at different pH, salt concentration, hydrogen peroxide concentrations, ultraviolet irradiation, temperature, and reactor configurations.

  8. Selenium adsorption to aluminum-based water treatment residuals

    SciTech Connect

    Ippolito, James A.; Scheckel, Kirk G.; Barbarick, Ken A.

    2009-09-02

    Aluminum-based water treatment residuals (WTR) can adsorb water- and soil-borne P, As(V), As(III), and perchlorate, and may be able to adsorb excess environmental selenium. WTR, clay minerals, and amorphous aluminum hydroxide were shaken for 24 h in selenate or selenite solutions at pH values of 5-9, and then analyzed for selenium content. Selenate and selenite adsorption edges were unaffected across the pH range studied. Selenate adsorbed on to WTR, reference mineral phases, and amorphous aluminum hydroxide occurred as outer sphere complexes (relatively loosely bound), while selenite adsorption was identified as inner-sphere complexation (relatively tightly bound). Selenite sorption to WTR in an anoxic environment reduced Se(IV) to Se(0), and oxidation of Se(0) or Se(IV) appeared irreversible once sorbed to WTR. Al-based WTR could play a favorable role in sequestering excess Se in affected water sources.

  9. A carbon nanotube wall membrane for water treatment

    NASA Astrophysics Data System (ADS)

    Lee, Byeongho; Baek, Youngbin; Lee, Minwoo; Jeong, Dae Hong; Lee, Hong H.; Yoon, Jeyong; Kim, Yong Hyup

    2015-05-01

    Various forms of carbon nanotubes have been utilized in water treatment applications. The unique characteristics of carbon nanotubes, however, have not been fully exploited for such applications. Here we exploit the characteristics and corresponding attributes of carbon nanotubes to develop a millimetre-thick ultrafiltration membrane that can provide a water permeability that approaches 30,000 l m-2 h-1 bar-1, compared with the best water permeability of 2,400 l m-2 h-1 bar-1 reported for carbon nanotube membranes. The developed membrane consists only of vertically aligned carbon nanotube walls that provide 6-nm-wide inner pores and 7-nm-wide outer pores that form between the walls of the carbon nanotubes when the carbon nanotube forest is densified. The experimental results reveal that the permeance increases as the pore size decreases. The carbon nanotube walls of the membrane are observed to impede bacterial adhesion and resist biofilm formation.

  10. Kinetics and mechanism of dimethoate chlorination during drinking water treatment.

    PubMed

    Tian, Fang; Liu, Wenjun; Guo, Guang; Qiang, Zhimin; Zhang, Can

    2014-05-01

    Dimethoate (DMT), a commonly used organophosphorus pesticide, is of great concern because of its toxicity and potentially harmful effects on water sources. The elimination of DMT as well as the toxicity and persistence of the byproducts formed during DMT degradation is most important for the safety of drinking water. This study first determined the reaction kinetics of DMT with free chlorine (FC) under typical water treatment conditions. The reaction between DMT and FC proceeded rapidly, exhibiting first-order with respect to each reactant. The degradation of DMT by FC was highly pH dependent, and the pseudo-first-order rate constant decreased obviously from 0.13 to 0.02 s(-1) with an increase in pH from 7.0 to 8.3. Bromide ion accelerated the reaction by acting as a catalyst, and the accelerated reaction rate was linearly proportional to the bromide concentration. As a ubiquitous component in natural waters, humic acid also increased the reaction rate. However, the presence of ammonium inhibited the degradation of DMT due to its rapid converting FC to chloramines. Omethoate (OMT) was identified as an important byproduct of DMT chlorination, but only accounted for ca. 28% of the DMT degraded; and other two organic byproducts were also identified. The acute toxicity of DMT solution increased after treatment with FC due to the formation of more toxic byproducts (e.g. OMT). PMID:24377445

  11. Efficient taste and odour removal by water treatment plants around the Han River water supply system.

    PubMed

    Ahn, H; Chae, S; Kim, S; Wang, C; Summers, R S

    2007-01-01

    Seven major water treatment plants in Seoul Metropolitan Area, which are under Korea Water Resources Corporation (KOWACO)'s management, take water from the Paldang Reservoir in the Han River System for drinking water supply. There are taste and odour (T&O) problems in the finished water because the conventional treatment processes do not efficiently remove the T&O compounds. This study evaluated T&O removal by ozonation, granular activated carbon (GAC) treatment, powder activated carbon (PAC) and an advanced oxidation process in a pilot-scale treatment plant and bench-scale laboratory experiments. During T&O episodes, PAC alone was not adequate, but as a pretreatment together with GAC it could be a useful option. The optimal range of ozone dose was 1 to 2 mg/L at a contact time of 10 min. However, with ozone alone it was difficult to meet the T&O target of 3 TON and 15 ng/L of MIB or geosmin. The GAC adsorption capacity for DOC in the three GAC systems (F/A, GAC and O3 + GAC) at an EBCT of 14 min is mostly exhausted after 9 months. However, substantial TON removal continued for more than 2 years (>90,000 bed volumes). GAC was found to be effective for T&O control and the main removal mechanisms were adsorption capacity and biodegradation. PMID:17489399

  12. Characterization of hydraulic fracturing flowback water in Colorado: implications for water treatment.

    PubMed

    Lester, Yaal; Ferrer, Imma; Thurman, E Michael; Sitterley, Kurban A; Korak, Julie A; Aiken, George; Linden, Karl G

    2015-04-15

    A suite of analytical tools was applied to thoroughly analyze the chemical composition of an oil/gas well flowback water from the Denver-Julesburg (DJ) basin in Colorado, and the water quality data was translated to propose effective treatment solutions tailored to specific reuse goals. Analysis included bulk quality parameters, trace organic and inorganic constituents, and organic matter characterization. The flowback sample contained salts (TDS=22,500 mg/L), metals (e.g., iron at 81.4 mg/L) and high concentration of dissolved organic matter (DOC=590 mgC/L). The organic matter comprised fracturing fluid additives such as surfactants (e.g., linear alkyl ethoxylates) and high levels of acetic acid (an additives' degradation product), indicating the anthropogenic impact on this wastewater. Based on the water quality results and preliminary treatability tests, the removal of suspended solids and iron by aeration/precipitation (and/or filtration) followed by disinfection was identified as appropriate for flowback recycling in future fracturing operations. In addition to these treatments, a biological treatment (to remove dissolved organic matter) followed by reverse osmosis desalination was determined to be necessary to attain water quality standards appropriate for other water reuse options (e.g., crop irrigation). The study provides a framework for evaluating site-specific hydraulic fracturing wastewaters, proposing a suite of analytical methods for characterization, and a process for guiding the choice of a tailored treatment approach. PMID:25658325

  13. Reliability analysis of an advanced water treatment facility

    SciTech Connect

    Eisenberg, D.; Olivieri, A.; Soller, J.; Gagliardo, P.

    1998-07-01

    The evaluation of wastewater treatment plant reliability is an important component in the assessment of potential impacts associated with any wastewater discharge of water reuse project. The reliability of the San Diego Aqua III Advanced Water Treatment (AWT) facility is probabilistically analyzed using data collected between October 1994 and September 1995. Reliability is evaluated in terms of the facility's ability produce a consistent effluent quality and the probability of failure of mechanical components. The analysis includes characterizing the effluent from individual unit processes in terms of magnitude and variability of concentration of a number of pollutants, and expressing the mechanical reliability of the system in terms of equipment availability. Pollutants used to characterize treatment performance include physical parameters, nitrogen compounds, anions, trace and major metals, organic compounds, and bacteriological indicators. The results show that the Aqua III AWT produced a highly consistent effluent with minimal variation, and that the mechanical systems were available nearly 100% of the time. It is demonstrated that mechanical failures did not significantly affect effluent quality. The methodology that was used for this analysis is applicable to any continuous treatment or production process in which the effectiveness of individual process units can be determined by direct measurements or by analysis of specific or indicator constituents.

  14. Life Cycle Assesment of Daugavgriva Waste Water Treatment Plant

    NASA Astrophysics Data System (ADS)

    Romagnoli, F.; Sampaio, F.; Blumberga, D.

    2009-01-01

    This paper presents the assessment of the environmental impacts caused by the treatment of Riga's waste water in the Daugavgriva plant with biogas energy cogeneration through the life cycle assessment (LCA). The LCA seems to be a good tool to assess and evaluate the most serious environmental impacts of a facility The results showed clearly that the impact category contributing the most to the total impact -eutrophicationcomes from the wastewater treatment stage. Climate change also seems to be a relevant impact coming from the wastewater treatment stage and the main contributor to the Climate change is N2O. The main environmental benefits, in terms of the percentages of the total impact, associated to the use of biogas instead of any other fossil fuel in the cogeneration plant are equal to: 3,11% for abiotic depletation, 1,48% for climate change, 0,51% for acidification and 0,12% for eutrophication.

  15. Comparison of drinking water treatment process streams for optimal bacteriological water quality.

    PubMed

    Ho, Lionel; Braun, Kalan; Fabris, Rolando; Hoefel, Daniel; Morran, Jim; Monis, Paul; Drikas, Mary

    2012-08-01

    Four pilot-scale treatment process streams (Stream 1 - Conventional treatment (coagulation/flocculation/dual media filtration); Stream 2 - Magnetic ion exchange (MIEX)/Conventional treatment; Stream 3 - MIEX/Conventional treatment/granular activated carbon (GAC) filtration; Stream 4 - Microfiltration/nanofiltration) were commissioned to compare their effectiveness in producing high quality potable water prior to disinfection. Despite receiving highly variable source water quality throughout the investigation, each stream consistently reduced colour and turbidity to below Australian Drinking Water Guideline levels, with the exception of Stream 1 which was difficult to manage due to the reactive nature of coagulation control. Of particular interest was the bacteriological quality of the treated waters where flow cytometry was shown to be the superior monitoring tool in comparison to the traditional heterotrophic plate count method. Based on removal of total and active bacteria, the treatment process streams were ranked in the order: Stream 4 (average log removal of 2.7)>Stream 2 (average log removal of 2.3)>Stream 3 (average log removal of 1.5)>Stream 1 (average log removal of 1.0). The lower removals in Stream 3 were attributed to bacteria detaching from the GAC filter. Bacterial community analysis revealed that the treatments affected the bacteria present, with the communities in streams incorporating conventional treatment clustering with each other, while the community composition of Stream 4 was very different to those of Streams 1, 2 and 3. MIEX treatment was shown to enhance removal of bacteria due to more efficient flocculation which was validated through the novel application of the photometric dispersion analyser. PMID:22608607

  16. Hydraulic modeling of clay ceramic water filters for point-of-use water treatment.

    PubMed

    Schweitzer, Ryan W; Cunningham, Jeffrey A; Mihelcic, James R

    2013-01-01

    The acceptability of ceramic filters for point-of-use water treatment depends not only on the quality of the filtered water, but also on the quantity of water the filters can produce. This paper presents two mathematical models for the hydraulic performance of ceramic water filters under typical usage. A model is developed for two common filter geometries: paraboloid- and frustum-shaped. Both models are calibrated and evaluated by comparison to experimental data. The hydraulic models are able to predict the following parameters as functions of time: water level in the filter (h), instantaneous volumetric flow rate of filtrate (Q), and cumulative volume of water produced (V). The models' utility is demonstrated by applying them to estimate how the volume of water produced depends on factors such as the filter shape and the frequency of filling. Both models predict that the volume of water produced can be increased by about 45% if users refill the filter three times per day versus only once per day. Also, the models predict that filter geometry affects the volume of water produced: for two filters with equal volume, equal wall thickness, and equal hydraulic conductivity, a filter that is tall and thin will produce as much as 25% more water than one which is shallow and wide. We suggest that the models can be used as tools to help optimize filter performance. PMID:23210424

  17. 40 CFR 141.404 - Treatment technique violations for ground water systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....404 Treatment technique violations for ground water systems. (a) A ground water system with a... ground water system is in violation of the treatment technique requirement if, within 120 days (or...) before or at the first customer for a ground water source is in violation of the treatment...

  18. 40 CFR 141.404 - Treatment technique violations for ground water systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....404 Treatment technique violations for ground water systems. (a) A ground water system with a... ground water system is in violation of the treatment technique requirement if, within 120 days (or...) before or at the first customer for a ground water source is in violation of the treatment...

  19. 40 CFR 141.404 - Treatment technique violations for ground water systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....404 Treatment technique violations for ground water systems. (a) A ground water system with a... ground water system is in violation of the treatment technique requirement if, within 120 days (or...) before or at the first customer for a ground water source is in violation of the treatment...

  20. 40 CFR 141.404 - Treatment technique violations for ground water systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....404 Treatment technique violations for ground water systems. (a) A ground water system with a... ground water system is in violation of the treatment technique requirement if, within 120 days (or...) before or at the first customer for a ground water source is in violation of the treatment...

  1. INTERGRATING SOURCE WATER PROTECTION AND DRINKING WATER TREATMENT: U.S. ENVIRONMENTAL PROTECTION AGENCY'S WATER SUPPLY AND WATER RESOURCES DIVISION

    EPA Science Inventory

    The U.S. Environmental Protection Agency's (EPA) Water Supply and Water Resources Division (WSWRD) is an internationally recognized water research organization established to assist in responding to public health concerns related to drinking water supplies. WSWRD has evolved from...

  2. INTEGRATING SOURCE WATER PROTECTION AND DRINKING WATER TREATMENT: U.S. ENVIRONMENTAL PROTECTION AGENCY'S WATER SUPPLY AND WATER RESOURCES DIVISION

    EPA Science Inventory

    The U.S. Environmental Protection Agency's (EPA) Water Supply and Water Resources Division (WSWRD) is an internationally recognized water research organization established to assist in responding to public health concerns related to drinking water supplies. WSWRD has evolved from...

  3. Disposal of water treatment wastes containing arsenic - a review.

    PubMed

    Sullivan, Colin; Tyrer, Mark; Cheeseman, Christopher R; Graham, Nigel J D

    2010-03-15

    Solid waste management in developing countries is often unsustainable, relying on uncontrolled disposal in waste dumps. Particular problems arise from the disposal of treatment residues generated by removing arsenic (As) from drinking water because As can be highly mobile and has the potential to leach back to ground and surface waters. This paper reviews the disposal of water treatment wastes containing As, with a particular emphasis on stabilisation/solidification (S/S) technologies which are currently used to treat industrial wastes containing As. These have been assessed for their appropriateness for treating As containing water treatment wastes. Portland cement/lime mixes are expected (at least in part) to be appropriate for wastes from sorptive filters, but may not be appropriate for precipitative sludges, because ferric flocs often used to sorb As can retard cement hydration. Brine resulting from the regeneration of activated alumina filters is likely to accelerate cement hydration. Portland cement can immobilize soluble arsenites and has been successfully used to stabilise As-rich sludges and it may also be suitable for treating sludges generated from precipitative removal units. Oxidation of As(III) to As(V) and the formation of calcium-arsenic compounds are important immobilisation mechanisms for As in cements. Geopolymers are alternative binder systems that are effective for treating wastes rich in alumina and metal hydroxides and may have potential for As wastes generated using activated alumina. The long-term stability of cemented, arsenic-bearing wastes is however uncertain, as like many cements, they are susceptible to carbonation effects which may result in the subsequent re-release of As. PMID:20153878

  4. Coagulant recovery and reuse for drinking water treatment.

    PubMed

    Keeley, James; Jarvis, Peter; Smith, Andrea D; Judd, Simon J

    2016-01-01

    Coagulant recovery and reuse from waterworks sludge has the potential to significantly reduce waste disposal and chemicals usage for water treatment. Drinking water regulations demand purification of recovered coagulant before they can be safely reused, due to the risk of disinfection by-product precursors being recovered from waterworks sludge alongside coagulant metals. While several full-scale separation technologies have proven effective for coagulant purification, none have matched virgin coagulant treatment performance. This study examines the individual and successive separation performance of several novel and existing ferric coagulant recovery purification technologies to attain virgin coagulant purity levels. The new suggested approach of alkali extraction of dissolved organic compounds (DOC) from waterworks sludge prior to acidic solubilisation of ferric coagulants provided the same 14:1 selectivity ratio (874 mg/L Fe vs. 61 mg/L DOC) to the more established size separation using ultrafiltration (1285 mg/L Fe vs. 91 mg/L DOC). Cation exchange Donnan membranes were also examined: while highly selective (2555 mg/L Fe vs. 29 mg/L DOC, 88:1 selectivity), the low pH of the recovered ferric solution impaired subsequent treatment performance. The application of powdered activated carbon (PAC) to ultrafiltration or alkali pre-treated sludge, dosed at 80 mg/mg DOC, reduced recovered ferric DOC contamination to <1 mg/L but in practice, this option would incur significant costs. The treatment performance of the purified recovered coagulants was compared to that of virgin reagent with reference to key water quality parameters. Several PAC-polished recovered coagulants provided the same or improved DOC and turbidity removal as virgin coagulant, as well as demonstrating the potential to reduce disinfection byproducts and regulated metals to levels comparable to that attained from virgin material. PMID:26521220

  5. Use of hydrodynamic cavitation in (waste)water treatment.

    PubMed

    Dular, Matevž; Griessler-Bulc, Tjaša; Gutierrez-Aguirre, Ion; Heath, Ester; Kosjek, Tina; Krivograd Klemenčič, Aleksandra; Oder, Martina; Petkovšek, Martin; Rački, Nejc; Ravnikar, Maja; Šarc, Andrej; Širok, Brane; Zupanc, Mojca; Žitnik, Miha; Kompare, Boris

    2016-03-01

    The use of acoustic cavitation for water and wastewater treatment (cleaning) is a well known procedure. Yet, the use of hydrodynamic cavitation as a sole technique or in combination with other techniques such as ultrasound has only recently been suggested and employed. In the first part of this paper a general overview of techniques that employ hydrodynamic cavitation for cleaning of water and wastewater is presented. In the second part of the paper the focus is on our own most recent work using hydrodynamic cavitation for removal of pharmaceuticals (clofibric acid, ibuprofen, ketoprofen, naproxen, diclofenac, carbamazepine), toxic cyanobacteria (Microcystis aeruginosa), green microalgae (Chlorella vulgaris), bacteria (Legionella pneumophila) and viruses (Rotavirus) from water and wastewater. As will be shown, hydrodynamic cavitation, like acoustic, can manifest itself in many different forms each having its own distinctive properties and mechanisms. This was until now neglected, which eventually led to poor performance of the technique. We will show that a different type of hydrodynamic cavitation (different removal mechanism) is required for successful removal of different pollutants. The path to use hydrodynamic cavitation as a routine water cleaning method is still long, but recent results have already shown great potential for optimisation, which could lead to a low energy tool for water and wastewater cleaning. PMID:26515938

  6. Clean option: Berkeley Pit water treatment and resource recovery strategy

    SciTech Connect

    Gerber, M.A.; Orth, R.J.; Elmore, M.R.; Monzyk, B.F.

    1995-09-01

    The US Department of Energy (DOE), Office of Technology Development, established the Resource Recovery Project (RRP) in 1992 as a five-year effort to evaluate and demonstrate multiple technologies for recovering water, metals, and other industrial resources from contaminated surface and groundwater. Natural water resources located throughout the DOE complex and the and western states have been rendered unusable because of contamination from heavy metals. The Berkeley Pit, a large, inactive, open pit copper mine located in Butte, Montana, along with its associated groundwater system, has been selected by the RRP for use as a feedstock for a test bed facility located there. The test bed facility provides the infrastructure needed to evaluate promising technologies at the pilot plant scale. Data obtained from testing these technologies was used to assess their applicability for similar mine drainage water applications throughout the western states and at DOE. The objective of the Clean Option project is to develop strategies that provides a comprehensive and integrated approach to resource recovery using the Berkeley Pit water as a feedstock. The strategies not only consider the immediate problem of resource recovery from the contaminated water, but also manage the subsequent treatment of all resulting process streams. The strategies also employ the philosophy of waste minimization to optimize reduction of the waste volume requiring disposal, and the recovery and reuse of processing materials.

  7. Household Pasteurization of Drinking-water: The Chulli Water-treatment System

    PubMed Central

    Islam, Mohammad Fakhrul

    2006-01-01

    A simple flow-through system has been developed which makes use of wasted heat generated in traditional clay ovens (chullis) to pasteurize surface water. A hollow aluminium coil is built into the clay chulli, and water is passed through the coil during normal cooking events. By adjusting the flow rate, effluent temperature can be maintained at approximately 70 C. Laboratory testing, along with over 400 field tests on chulli systems deployed in six pilot villages, showed that the treatment completely inactivated thermotolerant coliforms. The chulli system produces up to 90 litres per day of treated water at the household level, without any additional time or fuel requirement. The technology has been developed to provide a safe alternative source of drinking-water in arsenic-contaminated areas, but can also have wide application wherever people consume microbiologically-contaminated water. PMID:17366777

  8. An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale

    SciTech Connect

    Matthew Bruff; Ned Godshall; Karen Evans

    2011-04-30

    This Final Scientific/ Technical Report submitted with respect to Project DE-FE0000833 titled 'An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale' in support of final reporting requirements. This final report contains a compilation of previous reports with the most current data in order to produce one final complete document. The goal of this research was to provide an integrated approach aimed at addressing the increasing water resource challenges between natural gas production and other water stakeholders in shale gas basins. The objective was to demonstrate that the AltelaRain{reg_sign} technology could be successfully deployed in the Marcellus Shale Basin to treat frac flow-back water. That objective has been successfully met.

  9. Adsorption of Roxarsone onto Drinking Water Treatment Residuals: Preliminary Studies

    NASA Astrophysics Data System (ADS)

    Salazar, J.; Sarkar, D.; Datta, R.; Sharma, S.

    2006-05-01

    Roxarsone (3-nitro-4-hydroxyphenyl-arsonic acid) is an organo-arsenical compound, commonly used as a feed additive in the broiler poultry industry to control coccidial intestinal parasites. Roxarsone is not toxic to the birds not only because of the low dose, and also because it most likely does not convert to toxic inorganic arsenic (As) in their systems. However, upon excretion, roxarsone may undergo transformation to inorganic As, posing a serious risk of contaminating the agricultural land and water bodies via surface runoff or leaching. The use of poultry litter as fertilizer results in As accumulation rates of up to 50 metric tons per year in agricultural lands. The immediate challenge, as identified by the various regulatory bodies in recent years is to develop an efficient, yet cost-effective and environmentally sound approach to cleaning up such As- contaminated soils. Recent studies conducted by our group have suggested that the drinking water treatment residuals (WTRs) can effectively retain As, thereby decreasing its mobility in the environment. The WTRs are byproducts of drinking water treatment processes and are typically composed of amorphous Fe/Al oxides, activated C and cationic polymers. They can be obtained free-of-cost from water treatment plants. It is well demonstrated that the environmental mobility of As is controlled by adsorption/desorption reactions onto mineral surfaces. Hence, knowledge of adsorption and desorption of As onto the WTRs is of environmental relevance. The reported study examined the adsorption and desorption characteristics of As using two types of WTRs, namely the Fe-WTRs (byproduct of Fe salt treatment), and the Al-WTRs (byproduct of Al salt treatment). All adsorption experiments were carried out in batch and As retention on the WTRs was investigated as a function of solid/solution ratio (1:5, 1:10, 1:25 and 1:50), equilibration time (10 min - 48 hr), pH (2 - 10) and initial As load (100, 500, 1000 and 2000 mg As/L). The above parameters were varied one at a time to study their effects on roxarsone adsorption. Desorption studies were carried out using 125 mg/L phosphorous at predetermined interval of time. In addition to analyzing for total As by an ICP-MS, aqueous speciation of As was performed using a coupled HPLC-ICP-MS system. Preliminary studies show significant roxarsone adsorption capacity of the WTRs.

  10. Introduction to Chemistry for Water and Wastewater Treatment Plant Operators. Water and Wastewater Training Program.

    ERIC Educational Resources Information Center

    South Dakota Dept. of Environmental Protection, Pierre.

    Presented are basic concepts of chemistry necessary for operators who manage drinking water treatment plants and wastewater facilities. It includes discussions of chemical terms and concepts, laboratory procedures for basic analyses of interest to operators, and discussions of appropriate chemical calculations. Exercises are included and answer

  11. Mathematics for Water and Wastewater Treatment Plant Operators. Water and Wastewater Training Program.

    ERIC Educational Resources Information Center

    South Dakota Dept. of Environmental Protection, Pierre.

    This booklet is intended to aid the prospective waste treatment plant operator or drinking water plant operator in learning to solve mathematical problems, which is necessary for Class I certification. It deals with the basic mathematics which a Class I operator may require in accomplishing day-to-day tasks. The book also progresses into problems

  12. MICROBIOLOGICAL CHANGES IN SOURCE WATER TREATMENT: REFLECTIONS IN DISTRIBUTION WATER QUALITY

    EPA Science Inventory

    Microbial quality in the distribution system is a reflection of raw source water characteristics, treatment process configurations and their modifications. ased on case history experiences there may at times be a microbial breakthrough that is caused by fluctuations in raw surfac...

  13. Produced water treatment by micellar-enhanced ultrafiltration.

    PubMed

    Deriszadeh, Ali; Husein, Maen M; Harding, Thomas G

    2010-03-01

    A water treatment approach combining ultrafiltration (UF) and micellar-enhanced ultrafiltration (MEUF) techniques was used for the removal of organic contaminants in field produced water samples from Canada and the United States. Free oil droplets and suspended solids were separated by initial UF treatments while MEUF was necessary for the removal of dissolved organics. It was shown that the amphiphilic characteristics of some organics commonly existing in produced water contributed to lowering the critical micelle concentration (CMC) of the surfactant employed. Lower surfactant concentrations could, therefore, be employed leading to lower fouling and back contamination and higher permeate flux. In addition, the incorporation of organic contaminants into the structure of cetylpyridinium chloride (CPC) micelles resulted in larger size and higher dissolution capacity of the "mixed micelles". The performance of polymeric and ceramic membranes of different molecular weight cutoffs (MWCOs) was evaluated by analyzing the permeate flux, recovery ratio, and solute percent rejection as functions of trans-membrane pressure (TMP). A mathematical model based on Darcy's law and the resistance in-series model successfully described the flux decline as a function of TMP for the two field samples and the two membranes studied. PMID:20121232

  14. Electrocoagulation treatment of peat bog drainage water containing humic substances.

    PubMed

    Kuokkanen, V; Kuokkanen, T; Rämö, J; Lassi, U

    2015-08-01

    Electrocoagulation (EC) treatment of 100 mg/L synthetic wastewater (SWW) containing humic acids was optimized (achieving 90% CODMn and 80% DOC removal efficiencies), after which real peat bog drainage waters (PBDWs) from three northern Finnish peat bogs were also treated. High pollutant removal efficiencies were achieved: Ptot, TS, and color could be removed completely, while Ntot, CODMn, and DOC/TOC removal efficiencies were in the range of 33-41%, 75-90%, and 62-75%, respectively. Al and Fe performed similarly as the anode material. Large scale experiments (1 m(3)) using cold (T = 10-11 °C) PBDWs were also conducted successfully, with optimal treatment times of 60-120 min (applying current densities of 60-75 A/m(2)). Residual values of Al and Fe (complete removal) were lower than their initial values in the EC-treated PBDWs. Electricity consumption and operational costs in optimum conditions were found to be low and similar for all the waters studied: 0.94 kWh/m(3) and 0.15 €/m(3) for SWW and 0.35-0.70 kWh/m(3) and 0.06-0.12 €/m(3) for the PBDWs (large-scale). Thus, e.g. solar cells could be considered as a power source for this EC application. In conclusion, EC treatment of PBDW containing humic substances was shown to be feasible. PMID:25973580

  15. Selection criteria for wastewater treatment technologies to protect drinking water.

    PubMed

    von Sperling, M

    2000-01-01

    The protection of water bodies used as sources for drinking water is intimately linked to the adoption of adequate technologies for the treatment of the wastewater generated in the catchment area. The paper presents a general overview of the main technologies used for the treatment of domestic sewage, with a special emphasis on developing countries, and focussing on the main parameters of interest, such as BOD, coliforms and nutrients. A series of tables, figures and charts that can be used for the preliminary selection of treatment technologies is presented. The systems analysed are: stabilisation ponds, activated sludge, trickling filters, anaerobic systems and land disposal. Within each system, the main process variants are covered. Two summary tables are presented, one for quantitative analysis, including easily usable information based on per capita values (US$/cap, Watts/cap, m2 area/cap, m3 sludge/cap), and another for a qualitative comparison among the technologies, based on a one-to-five-star scoring system. The recent trend in tropical countries in the use of UASB (Upflow Anaerobic Sludge Blanket) reactors is also discussed. PMID:10842828

  16. Ferrates: greener oxidants with multimodal action in water treatment technologies.

    PubMed

    Sharma, Virender K; Zboril, Radek; Varma, Rajender S

    2015-02-17

    CONSPECTUS: One of the biggest challenges for humanity in the 21st century is easy access to purified and potable water. The presence of pathogens and toxins in water causes more than two million deaths annually, mostly among children under the age of five. Identifying and deploying effective and sustainable water treatment technologies is critical to meet the urgent need for clean water globally. Among the various agents used in the purification and treatment of water, iron-based materials have garnered particular attention in view of their special attributes such as their earth-abundant and environmentally friendly nature. In recent years, higher-valent tetraoxy iron(VI) (Fe(VI)O4(2-), Fe(VI)), commonly termed, ferrate, is being explored for a broad portfolio of applications, including a greener oxidant in synthetic organic transformations, a water oxidation catalyst, and an efficient agent for abatement of pollutants in water. The use of Fe(VI) as an oxidant/disinfectant and further utilization of the ensuing iron(III) oxides/hydroxide as coagulants are other additional attributes of ferrate for water treatment. This multimodal action and environmentally benign character of Fe(VI) are key advantages over other commonly used oxidants (e.g., chlorine, chlorine dioxide, permanganate, hydrogen peroxide, and ozone). This Account discusses current state-of-the-art applications of Fe(VI) and the associated unique chemistry of these high-valence states of iron. The main focus centers around the description and salient properties of ferrate species involving various electron transfer and oxygen-atom transfer pathways in terms of presently accepted mechanisms. The mechanisms derive the number of electron equivalents per Fe(VI) (i.e., oxidation capacity) in treating various contaminants. The role of pH in the kinetics of the reactions and in determining the removal efficiency of pollutants is highlighted; the rates of competing reactions of Fe(VI) with itself, water, and the contaminants, which are highly pH dependent, determine the optimum pH range of maximum efficacy. The main emphasis of this account is placed on cases where various modes of ferrate action are utilized, including the treatment of nitrogen- and sulfur-containing waste products, antibiotics, viruses, bacteria, arsenic, and heavy metals. For example, the oxidative degradation of N- and S-bearing contaminants by Fe(VI) yields either Fe(II) or Fe(III) via the intermediacy of Fe(IV) and Fe(V) species, respectively (e.g., Fe(VI) → Fe(IV) → Fe(II) and Fe(VI) → Fe(V) → Fe(III)). Oxidative transformations of antibiotics such as trimethoprim by Fe(VI) generate products with no residual antibiotic activity. Disinfection and inactivation of bacteria and viruses can easily be achieved by Fe(VI). Advanced applications involve the use of ferrate for the degradation of cyanobacteria and microcystin originating from algal blooms and for covalently embedding arsenic and heavy metals into the structure of formed magnetic iron(III) oxides, therefore preventing their leaching. Applications of state-of-the-art analytical techniques, namely, in situ Mössbauer spectroscopy, rapid-freeze electron paramagnetic resonance, nuclear forward scattering of synchrotron radiation, and mass spectrometry will enhance the mechanistic understanding of ferrate species. This will make it possible to unlock the true potential of ferrates for degrading emerging toxins and pollutants, and in the sustainable production and use of nanomaterials in an energy-conserving environment. PMID:25668700

  17. Measurement of near-surface seismic compressional wave velocities using refraction tomography at a proposed construction site on the Presidio of Monterey, California

    USGS Publications Warehouse

    Powers, Michael H.; Burton, Bethany L.

    2012-01-01

    The U.S. Army Corps of Engineers is determining the feasibility of constructing a new barracks building on the U.S. Army Presidio of Monterey in Monterey, California. Due to the presence of an endangered orchid in the proposed area, invasive techniques such as exploratory drill holes are prohibited. To aid in determining the feasibility, budget, and design of this building, a compressional-wave seismic refraction survey was proposed by the U.S. Geological Survey as an alternative means of investigating the depth to competent bedrock. Two sub-parallel profiles were acquired along an existing foot path and a fence line to minimize impacts on the endangered flora. The compressional-wave seismic refraction tomography data for both profiles indicate that no competent rock classified as non-rippable or marginally rippable exists within the top 30 feet beneath the ground surface.

  18. Water balance of rice plots under three different water treatments: monitoring activity and experimental results

    NASA Astrophysics Data System (ADS)

    Chiaradia, Enrico Antonio; Romani, Marco; Facchi, Arianna; Gharsallah, Olfa; Cesari de Maria, Sandra; Ferrari, Daniele; Masseroni, Daniele; Rienzner, Michele; Battista Bischetti, Gian; Gandolfi, Claudio

    2014-05-01

    In the agricultural seasons 2012 and 2013, a broad monitoring activity was carried out at the Rice Research Centre of Ente Nazionale Risi (CRR-ENR) located in Castello d'Agogna (PV, Italy) with the purpose of comparing the water balance components of paddy rice (Gladio cv.) under different water regimes and assessing the possibility of reducing the high water inputs related to the conventional practice of continuous submergence. The experiments were laid out in six plots of about 20 m x 80 m each, with two replicates for each of the following water regimes: i) continuous flooding with wet-seeded rice (FLD), ii) continuous flooding from around the 3-leaf stage with dry-seeded rice (3L-FLD), and iii) surface irrigation every 7-10 days with dry-seeded rice (IRR). One out of the two replicates of each treatment was instrumented with: water inflow and outflow meters, set of piezometers, set of tensiometers and multi-sensor moisture probes. Moreover, an eddy covariance station was installed on the bund between the treatments FLD and IRR. Data were automatically recorded and sent by a wireless connection to a PC, so as to be remotely controlled thanks to the development of a Java interface. Furthermore, periodic measurements of crop biometric parameters (LAI, crop height and rooting depth) were performed in both 2012 and 2013 (11 and 14 campaigns respectively). Cumulative water balance components from dry-seeding (3L-FLD and IRR), or flooding (FLD), to harvest were calculated for each plot by either measurements (i.e. rainfall, irrigation and surface drainage) or estimations (i.e. difference in the field water storage, evaporation from both the soil and the water surface and transpiration), whereas the sum of percolation and capillary rise (i.e. the 'net percolation') was obtained as the residual term of the water balance. Incidentally, indices of water application efficiency (evapotranspiration over net water input) and water productivity (grain production over net water input) were calculated for each treatment. The outcomes show that the water application efficiencies of all treatments were higher in 2013 than in 2012 (by 23%, 25% and 4% for FLD, 3L-FLD, and IRR respectively). These results could be ascribed to the higher groundwater level observed in 2013 (about 10-15 cm closer to the soil surface), likely due to the conversion of the field beyond the monitored plots from soybean to flooded rice. Moreover, a small increase of the water application efficiency of 3L-FLD was found if compared to FLD (3% on average), while the water application efficiency of IRR was, on average, higher by 67% compared to FLD. The good performance of IRR is related to lower percolation rates and a relevant contribution of capillary rise due to the shallow groundwater table maintained by the continuous submergence of the surrounding paddy fields. The performed experiment highlighted that significant improvement in the water use efficiency at the field scale can be achieved. However, a widespread adoption of water regimes different from continuous flooding should be carefully evaluated by a larger-scale approach since a consequent drop in the groundwater table depth could have repercussions on the potential gains themselves.

  19. Water treatment plants assessment at Talkha power plant.

    PubMed

    El-Sebaie, Olfat D; Abd El-Kerim, Ghazy E; Ramadan, Mohamed H; Abd El-Atey, Magda M; Taha, Sahr Ahmed

    2002-01-01

    Talkha power plant is the only power plant located in El-Mansoura. It generates electricity using two different methods by steam turbine and gas turbine. Both plants drew water from River Nile (208 m3 /h). The Nile raw water passes through different treatment processes to be suitable for drinking and operational uses. At Talkha power plant, there are two purification plants used for drinking water supply (100 m3/h) and for water demineralization supply (108 m3/h). This study aimed at studying the efficiency of the water purification plants. For drinking water purification plant, the annual River Nile water characterized by slightly alkaline pH (7.4-8), high annual mean values of turbidity (10.06 NTU), Standard Plate Count (SPC) (313.3 CFU/1 ml), total coliform (2717/100 ml), fecal coliform (0-2400/100 ml), and total algae (3 x 10(4) org/I). The dominant group of algae all over the study period was green algae. The blue green algae was abundant in Summer and Autumn seasons. The pH range, and the annual mean values of turbidity, TDS, total hardness, sulfates, chlorides, nitrates, nitrites, fluoride, and residual chlorine for purified water were in compliance with Egyptian drinking water standards. All the SPC recorded values with an annual mean value of 10.13 CFU/1 ml indicated that chlorine dose and contact time were not enough to kill the bacteria. However, they were in compliance with Egyptian decree (should not exceed 50 CFU/1 ml). Although the removal efficiency of the plant for total coliform and blue green algae was high (98.5% and 99.2%, respectively), the limits of the obtained results with an annual mean values of 40/100 ml and 15.6 org/l were not in compliance with the Egyptian decree (should be free from total coliform, fecal coliform and blue green algae). For water demineralization treatment plant, the raw water was characterized by slightly alkaline pH. The annual mean values of conductivity, turbidity, and TDS were 354.6 microS/cm, 10.84 NTU, and 214.6 mg/I, respectively. There was an increase in the results of conductivity, turbidity, total hardness, and TDS in carbon filter effluent which was attributed to the desorption of adsorbed ions on the carbon media. The removal efficiencies of turbidity, total hardness, and TDS indicated the high efficiency of the cationic filter. The annual removal efficiencies of conductivity, turbidity, chloride, and TDS proved the efficiency of the anionic filter for removing the dissolved and suspended ions. All of the recorded values of the pH, conductivity, turbidity, chlorides, hardness, and TDS of the mixed bed effluent indicated that the water at this stage was of high quality for boiler feed. The study recommended adjustment of coagulant and residual chlorine doses as well as contact time, and continuous monitoring and maintenance of the different units. PMID:17216967

  20. Advanced treatment of sodium acetate in water by ozone oxidation.

    PubMed

    Yang, De-Min; Yuan, Jian-Mei

    2014-02-01

    Ozone oxidation is an advanced oxidation process for treatment of organic and inorganic wastewater. In this paper, sodium acetate (according to chemical oxygen demand [COD]) was selected as the model pollutant in water, and the degradation efficiencies and mechanism of sodium acetate in water by ozone oxidation were investigated. The results showed that the ozone oxidation was an effective treatment technology for advanced treatment of sodium acetate in water; the COD removal rate obtained the maximum value of 45.89% from sodium acetate solution when the pH value was 10.82, ozone concentration was 100 mg/L, reaction time was 30 minutes, and reaction temperature was 25 degrees C. The COD removal rate increased first and decreased subsequently with the bicarbonate (HCO3-) concentration from 0 to 200 mg/L, the largest decline being 20.35%. The COD removal rate declined by 25.38% with the carbonate (CO3(2-)) concentration from 0 to 200 mg/L; CO3(2-) has a more obvious scavenging effect to inhibit the formation of hydroxyl free radicals than HCO3-. Calcium chloride (CaCl2) and calcium hydroxide (Ca(OH)2) could enhance the COD removal rate greatly; they could reach 77.35 and 96.53%, respectively, after a reaction time of 30 minutes, which was increased by 31.46 and 50.64%, respectively, compared with only ozone oxidation. It was proved that the main ozone oxidation product of sodium acetate was carbon dioxide (CO2), and the degradation of sodium acetate in the ozone oxidation process followed the mechanism of hydroxyl free radicals. PMID:24645544

  1. Enhanced performance of crumb rubber filtration for ballast water treatment.

    PubMed

    Tang, Zhijian; Butkus, Michael A; Xie, Yuefeng F

    2009-03-01

    Waste-tire-derived crumb rubber was utilized as filter media to develop an efficient filter for ballast water treatment. In this study, the effects of coagulation, pressure filtration and dual-media (gravity) filtration on the performance of the crumb rubber filtration were investigated. The removal efficiencies of turbidity, phytoplankton and zooplankton, and head loss development were monitored during the filtration process. The addition of a coagulant enhanced the removal efficiencies of all targeted matter, but resulted in substantial increase of head loss. Pressure filtration increased filtration rates to 220 m(3)h(-1)m(-2) for 8-h operation and improved the zooplankton removal. Dual-media (crumb rubber/sand) gravity filtration also improved the removal efficiencies of phytoplankton and zooplankton over mono-media gravity crumb rubber filtration. However, these filtration techniques alone did not meet the criteria for removing indigenous organisms from ballast water. A combination of filtration and disinfection is suggested for future studies. PMID:19117590

  2. Characterization and treatment of the phosphoric gypsum transport water.

    PubMed

    Orescanin, Visnja; Mikelic, Luka; Tomasic, Nenad; Medunic, Gordana; Kampic, Stefica; Mikulic, Nenad; Rubcic, Mirta; Lulic, Stipe; Harambasic, Matija

    2009-06-01

    This paper presents a new treatment procedure applied on phosphogypsum transport water. Untreated transport water is highly acidic (pH 1.79), having fluoride content of 1540 mg/L and elevated values of phosphates (215 mg/L) and heavy metals (Fe=25.8 mg/L; Zn=5.7 mg/L; Mn=2.7 mg/L, V=1.7 mg/L). Neutralization/purification of the transport water was carried out with wood fly ash, otherwise a rich source of calcium, composed of calcite, dipotassium calcium carbonate and hydroxylapatite. Maximum removal efficiency of fluoride was observed at pH 7 (99.99%) and phosphate at pH 9 (96.29%). The removal of fluorides was a consequence of the formation of fluorite and fluorapatite mineral phases derived from the reaction of calcium (released from the fly ash minerals) and fluorides (from the transport water). The removal of phosphates resulted from the formation of fluorapathite and hydroxilapatite. At the optimum conditions removal efficiencies for the elements Pb, V, Cr(VI), Mn, Fe, Ni, Cu, and Zn were 95%, 98.14%, 91.11%, 100%, 99.71%, 96.33%, 97.24%, and 99.65%, respectively. Optimal heavy metal removal occurred in major cases at pH 7. PMID:19412850

  3. High-rate dissolved air flotation for water treatment.

    PubMed

    Reall, M A; Marchetto, M

    2001-01-01

    This paper presents the results of an experimental investigation about the performance of a horizontal flow high-rate pilot scale Dissolved Air Flotation (HRDAF) unit containing inclined parallel plates for treating a coloured and low turbidity raw water. Experiments were performed with the DAF unit in order to verify the influence on flotation of: (i) the water velocity (Vh) between the plates, in the range 18 to 96.5 cm.min-1 with corresponding Reynolds numbers between 240 and 1060; (ii) the supplied air (S*) value ranging from 2.2 to 8.5 g of air/m3 of water; (iii) the angle of the plates (60 degrees or 70 degrees). The best pilot plant operational condition was obtained applying only 4.0 g/m3 (S*) with Vh around 18 cm.min-1 for treatment of water coagulated with a Al2(SO4)3 dosage of 40 mg.l-1. In these conditions, the unit presented very good removal efficiencies of colour (90%, residual of 10 uC), turbidity (88%, residual of 0.8 NTU) and TSS (94%, residual of 1.8 mg.l-1). Furthermore, the unit could operate at higher Vh values up to 76 cm.min-1 and still present good results. The DAF unit thus behaved as a high rate unit presenting good performance with low air requirement. PMID:11394278

  4. Behavior of Ru surfaces after ozonated water treatment

    NASA Astrophysics Data System (ADS)

    Seo, Dongwan; Park, Chanhyoung; Jung, Juneui; Yoon, Mihyun; Lee, Dongwook; Kim, Chang Yeol; Lim, Sangwoo

    2011-10-01

    In order for the development of cleaning technology of extreme ultra violet lithography photomask, the behavior of Ru surfaces after treatment with ozonated deionized water (DIO 3) solution was studied using Ru and ruthenium oxide particles and 2 nm-thick Ru capping layers. No significant changes in crystalline structures or chemical states of the Ru surfaces, nor any similarities with the structures or states of ruthenium oxide, were observed after DIO 3 treatment. Oxidation of ruthenium to form RuO 2 or RuO 3 was not observed. Adsorption of H 2O molecules on the Ru layer increased the surface roughness, but the desorption of H 2O molecules recovered it. Local chemisorption of H 2O molecules on the Ru surface may be the reason why rougher Ru surfaces were observed after DIO 3 cleaning.

  5. Lightweight bricks manufactured from water treatment sludge and rice husks.

    PubMed

    Chiang, Kung-Yuh; Chou, Ping-Huai; Hua, Ching-Rou; Chien, Kuang-Li; Cheeseman, Chris

    2009-11-15

    Novel lightweight bricks have been produced by sintering mixes of dried water treatment sludge and rice husk. Samples containing up to 20 wt.% rice husk have been fired using a heating schedule that allowed effective organic burn-out. Rice husk addition increased the porosity of sintered samples and higher sintering temperatures increased compressive strengths. Materials containing 15 wt.% rice husk that were sintered at 1100 degrees C produced low bulk density and relatively high strength materials that were compliant with relevant Taiwan standards for use as lightweight bricks. PMID:19596512

  6. Treatment Technology to Meet the Interim Primary Drinking Water Regulations for Inorganics: Part 3.

    ERIC Educational Resources Information Center

    Sorg, Thomas J.; And Others

    1978-01-01

    This article is the third in a series summarizing existing treatment technology to meet the inorganic National Interim Primary Drinking Water Regulations. This report deals specifically with treatment methods for removing cadmium, lead, and silver from drinking water. (CS)

  7. IDENTIFY THE OCCURRENCE OF DISINFECTION BY-PRODUCTS IN WATER TREATMENT SYSTEMS

    EPA Science Inventory

    Due to concerns over trihalomethanes (THMs) and other halogenated by-products that can be formed during chlorination of drinking water, alternative disinfectants are being explored. Several drinking water treatment plants in the United States have altered their treatment methods...

  8. REGULATIONS ON THE DISPOSAL OF ARSENIC RESIDUALS FROM DRINKING WATER TREATMENT PLANTS

    EPA Science Inventory

    This report summarizes federal and selected state regulations that govern the management of residuals produced by small water treatment systems removing arsenic from drinking water. The document focuses on the residuals produced by five treatment processes: anion exchange, activa...

  9. 1. DOMESTIC WATER SUPPLY TREATMENT HOUSE, ON PENSTOCK ABOVE SAR1. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. DOMESTIC WATER SUPPLY TREATMENT HOUSE, ON PENSTOCK ABOVE SAR-1. VIEW TO NORTWEST. - Santa Ana River Hydroelectric System, SAR-1 Domestic Water Supply Treatment House, Redlands, San Bernardino County, CA

  10. Effect of drinking water treatment process parameters on biological removal of manganese from surface water.

    PubMed

    Hoyland, Victoria W; Knocke, William R; Falkinham, Joseph O; Pruden, Amy; Singh, Gargi

    2014-12-01

    Soluble manganese (Mn) presents a significant treatment challenge to many water utilities, causing aesthetic and operational concerns. While application of free chlorine to oxidize Mn prior to filtration can be effective, this is not feasible for surface water treatment plants using ozonation followed by biofiltration because it inhibits biological removal of organics. Manganese-oxidizing bacteria (MOB) readily oxidize Mn in groundwater treatment applications, which normally involve pH>7.0. The purpose of this study was to evaluate the potential for biological Mn removal at the lower pH conditions (6.2-6.3) often employed in enhanced coagulation to optimize organics removal. Four laboratory-scale biofilters were operated over a pH range of 6.3-7.3. The biofilters were able to oxidize Mn at a pH as low as pH 6.3 with greater than 98% Mn removal. Removal of simulated organic ozonation by-products was also greater than 90% in all columns. Stress studies indicated that well-acclimated MOB can withstand variations in Mn concentration (e.g., 0.1-0.2mg/L), hydraulic loading rate (e.g., 2-4gpm/ft(2); 1.36נ10(-3)-2.72נ10(-3)m/s), and temperature (e.g., 7-22C) typically found at surface water treatment plants at least for relatively short (1-2 days) periods of time. PMID:25181615

  11. CONSTRUCTED WETLAND TREATMENT SYSTEMS FOR WATER QUALITY IMPROVEMENT

    SciTech Connect

    Nelson, E.

    2010-07-19

    The Savannah River National Laboratory implemented a constructed wetland treatment system (CWTS) in 2000 to treat industrial discharge and stormwater from the Laboratory area. The industrial discharge volume is 3,030 m{sup 3} per day with elevated toxicity and metals (copper, zinc and mercury). The CWTS was identified as the best treatment option based on performance, capital and continuing cost, and schedule. A key factor for this natural system approach was the long-term binding capacity of heavy metals (especially copper, lead, and zinc) in the organic matter and sediments. The design required that the wetland treat the average daily discharge volume and be able to handle 83,280 m{sup 3} of stormwater runoff in a 24 hour period. The design allowed all water flow within the system to be driven entirely by gravity. The CWTS for A-01 outfall is composed of eight one-acre wetland cells connected in pairs and planted with giant bulrush to provide continuous organic matter input to the system. The retention basin was designed to hold stormwater flow and to allow controlled discharge to the wetland. The system became operational in October of 2000 and is the first wetland treatment system permitted by South Carolina DHEC for removal of metals. Because of the exceptional performance of the A-01 CWTS, the same strategy was used to improve water quality of the H-02 outfall that receives discharge and stormwater from the Tritium Area of SRS. The primary contaminants in this outfall were also copper and zinc. The design for this second system required that the wetland treat the average discharge volume of 415 m{sup 3} per day, and be able to handle 9,690 m{sup 3} of stormwater runoff in a 24 hour period. This allowed the building of a system much smaller than the A-01 CWTS. The system became operational in July 2007. Metal removal has been excellent since water flow through the treatment systems began, and performance improved with the maturation of the vegetation during the first season of growth of each system. Sediment samples after the first and third years of operation indicated that copper was being bound in the sediments very rapidly after entering the treatment system. The design of the system encourages low redox and sulfide production in the sediments. The objective is to stabilize metals, including mercury, as sulfide compounds in the sediments. Costs for maintenance and operation of the systems are minimal, consisting primarily of ensuring that the pipes are not clogged and that water is flowing through the system. The treatment cost per thousand gallons is many times less than conventional wastewater treatment facilities. Life expectancy and function of the biological system is based on the life of the engineering aspects and not the wetland ecology.

  12. Performance of a Small-scale Treatment Wetland for Treatment of Landscaping Wash Water

    NASA Astrophysics Data System (ADS)

    Thompson, R. J.; Fayed, E.; Fish, W.

    2011-12-01

    A large number of lawn mowers and related equipment must be cleaned each day by commercial landscaping operations and state and local highway maintenance crews. Washing these devices produces wastewater that contains high amounts of organic matter and potentially problematic nutrients, as well as oil and grease and other chemicals and metals that come from the machinery itself. Dirty water washes off the mowers, flows off the pavement and into nearby storm drains without any kind of treatment. A better idea would be to collect such wastewater, retain it in an appropriate catchment such as an engineered wetland where natural processes could break down any pollutants in the wash water, and allow the water to naturally evaporate or percolate into the soil where it could recharge ground water resources safely. This research examines the performance of a small-scale treatment wetland tailored to remove nitrogen from landscaping wash water by incorporating both aerobic and anaerobic phases. Contaminants are analyzed through physical and chemical methods. Both methods involve collection of samples, followed by standardized, validated analytical laboratory tests for measuring total solids, total kjeldahl nitrogen, nitrates, total and dissolved phosphorus, COD, BOD, oil and grease, and metals (Zn and Cu). High levels of total solids, total kjeldahl nitrogen, nitrates, total and dissolved phosphorus, COD, BOD, oil and grease are found. Zinc and copper levels are low. Wetland treatment removes 99% total solids, 77% total kjeldahl nitrogen, 100% nitrates, 94% total phosphorus, 86% dissolved phosphorus, 94% COD, 97% BOD, and 76% oil and grease. The results will be a critical step towards developing a sustainable low-energy system for treating such wastewater that could be used by private landscaping companies and government agencies.

  13. Optofluidic planar reactors for photocatalytic water treatment using solar energy

    PubMed Central

    Lei, Lei; Wang, Ning; Zhang, X. M.; Tai, Qidong; Tsai, Din Ping; Chan, Helen L. W.

    2010-01-01

    Optofluidics may hold the key to greater success of photocatalytic water treatment. This is evidenced by our findings in this paper that the planar microfluidic reactor can overcome the limitations of mass transfer and photon transfer in the previous photocatalytic reactors and improve the photoreaction efficiency by more than 100 times. The microreactor has a planar chamber (5 cm1.8 cm100 ?m) enclosed by two TiO2-coated glass slides as the top cover and bottom substrate and a microstructured UV-cured NOA81 layer as the sealant and flow input?output. In experiment, the microreactor achieves 30% degradation of 3 ml 310?5M methylene blue within 5 min and shows a reaction rate constant two orders higher than the bulk reactor. Under optimized conditions, a reaction rate of 8% s?1 is achieved under solar irradiation. The average apparent quantum efficiency is found to be only 0.25%, but the effective apparent quantum efficiency reaches as high as 25%. Optofluidic reactors inherit the merits of microfluidics, such as large surface?volume ratio, easy flow control, and rapid fabrication and offer a promising prospect for large-volume photocatalytic water treatment. PMID:21267436

  14. Integral water treatment plant modeling: improvements for particle processes.

    PubMed

    Lawler, Desmond F; Nason, Jeffrey A

    2005-09-01

    An update of research on particle behavior in water treatment plants first performed 25 years ago under the direction of Charles O'Melia is provided. The earlier work involved mathematical modeling of the changes in particle size distributions in the flocculation and sedimentation processes in water treatment plants. The current model includes corrections for short-range interactions between particles as they approach one another. These corrections severely reduce the expected collision frequency between particles that are very different in size and, therefore, substantially change the model predictions. Both experimental and field measurements of particle size distributions are provided; such measurements were unavailable in the earlier work and represent a touchstone to reality for the modeling efforts. The short-range model successfully fits experimental results for flocculation when the mechanism of particle destabilization is charge neutralization. However, the model does not account for the creation of new solids by precipitation either when hydrolyzing salts of aluminum or iron are added for particle destabilization by "sweep floc" destabilization or lime is added to remove calcium and magnesium as calcium carbonate and magnesium hydroxide in softening. The flocculent sedimentation model yields results that are in strong qualitative agreement with typical field measurements. PMID:16190185

  15. Removal of coagulant aluminum from water treatment residuals by acid.

    PubMed

    Okuda, Tetsuji; Nishijima, Wataru; Sugimoto, Mayo; Saka, Naoyuki; Nakai, Satoshi; Tanabe, Kazuyasu; Ito, Junki; Takenaka, Kenji; Okada, Mitsumasa

    2014-09-01

    Sediment sludge during coagulation and sedimentation in drinking water treatment is called "water treatment residuals (WTR)". Polyaluminum chloride (PAC) is mainly used as a coagulant in Japan. The recycling of WTR has been desired; one method for its reuse is as plowed soil. However, WTR reuse in this way is inhibited by the aluminum from the added PAC, because of its high adsorption capacity for phosphate and other fertilizer components. The removal of such aluminum from WTR would therefore be advantageous for its reuse as plowed soil; this research clarified the effect of acid washing on aluminum removal from WTR and on plant growth in the treated soil. The percentage of aluminum removal from raw WTR by sulphuric acid solution was around 90% at pH 3, the percentage decreasing to 40% in the case of a sun-dried sample. The maximum phosphate adsorption capacity was decreased and the available phosphorus was increased by acid washing, with 90% of aluminum removal. The enhancement of Japanese mustard spinach growth and the increased in plant uptake of phosphates following acid washing were observed. PMID:24835954

  16. Occurrence, molecular characterization and antibiogram of water quality indicator bacteria in river water serving a water treatment plant.

    PubMed

    Okeke, Benedict C; Thomson, M Sue; Moss, Elica M

    2011-11-01

    Water pollution by microorganisms of fecal origin is a current world-wide public health concern. Total coliforms, fecal coliforms (Escherichia coli) and enterococci are indicators commonly used to assess the microbiological safety of water resources. In this study, influent water samples and treated water were collected seasonally from a water treatment plant and two major water wells in a Black Belt county of Alabama and evaluated for water quality indicator bacteria. Influent river water samples serving the treatment plant were positive for total coliforms, fecal coliforms (E. coli), and enterococci. The highest number of total coliform most probable number (MPN) was observed in the winter (847.5 MPN/100 mL) and the lowest number in the summer (385.6 MPN/100 mL). Similarly E. coli MPN was substantially higher in the winter (62.25 MPN/100 mL). Seasonal variation of E. coli MPN in influent river water samples was strongly correlated with color (R(2)=0.998) and turbidity (R(2)=0.992). Neither E. coli nor other coliform type bacteria were detected in effluent potable water from the treatment plant. The MPN of enterococci was the highest in the fall and the lowest in the winter. Approximately 99.7 and 51.5 enterococci MPN/100 mL were recorded in fall and winter seasons respectively. One-way ANOVA tests revealed significant differences in seasonal variation of total coliforms (P<0.05), fecal coliforms (P<0.01) and enterococci (P<0.01). Treated effluent river water samples and well water samples revealed no enterococci contamination. Representative coliform bacteria selected by differential screening on Coliscan Easygel were identified by 16S ribosomal RNA gene sequence analysis. E. coli isolates were sensitive to gentamicin, trimethoprim/sulfamethazole, ciprofloxacin, vancomycin, tetracycline, ampicillin, cefixime, and nitrofurantoin. Nonetheless, isolate BO-54 displayed decreased sensitivity compared to other E. coli isolates. Antibiotic sensitivity pattern can be employed in microbial source tracking. PMID:21920587

  17. Electropulse treatment of water solution of humic substances in a layer iron granules in process of water treatment

    NASA Astrophysics Data System (ADS)

    Lobanova, G. L.; Yurmazova, T. A.; Shiyan, L. N.; Machekhina, K. I.

    2016-02-01

    The present work is a part of a continuations study of the physical and chemical processes complex in natural waters containing humic-type organic substances at the influence of pulsed electrical discharges in a layer of iron pellets. The study of humic substances processing in the iron granules layer by means of pulsed electric discharge for the purpose of water purification from organic compounds humic origin from natural water of the northern regions of Russia is relevant for the water treatment technologies. In case of molar humate sodium - iron ions (II) at the ratio 2:3, reduction of solution colour and chemical oxygen demand occur due to the humate sodium ions and iron (II) participation in oxidation-reduction reactions followed by coagulation insoluble compounds formation at a pH of 6.5. In order to achieve this molar ratio and the time of pulsed electric discharge, equal to 10 seconds is experimentally identified. The role of secondary processes that occur after disconnection of the discharge is shown. The time of contact in active erosion products with sodium humate, equal to 1 hour is established. During this time, the value of permanganate oxidation and iron concentration in solution achieves the value of maximum permissible concentrations and further contact time increase does not lead to the controlled parameters change.

  18. 40 CFR 403.19 - Provisions of specific applicability to the Owatonna Waste Water Treatment Facility.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the Owatonna Waste Water Treatment Facility. 403.19 Section 403.19 Protection of Environment... Owatonna Waste Water Treatment Facility. (a) For the purposes of this section, the term “Participating... Industrial User discharging to the Owatonna Waste Water Treatment Facility in Owatonna, Minnesota, when...

  19. 40 CFR 403.19 - Provisions of specific applicability to the Owatonna Waste Water Treatment Facility.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to the Owatonna Waste Water Treatment Facility. 403.19 Section 403.19 Protection of Environment... Owatonna Waste Water Treatment Facility. (a) For the purposes of this section, the term “Participating... Industrial User discharging to the Owatonna Waste Water Treatment Facility in Owatonna, Minnesota, when...

  20. 40 CFR 403.19 - Provisions of specific applicability to the Owatonna Waste Water Treatment Facility.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the Owatonna Waste Water Treatment Facility. 403.19 Section 403.19 Protection of Environment... Owatonna Waste Water Treatment Facility. (a) For the purposes of this section, the term “Participating... Industrial User discharging to the Owatonna Waste Water Treatment Facility in Owatonna, Minnesota, when...

  1. 43 CFR 3904.40 - Long-term water treatment trust funds.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Long-term water treatment trust funds...-GENERAL Bonds and Trust Funds § 3904.40 Long-term water treatment trust funds. (a) The BLM may require the...-term treatment to achieve water quality standards and for other long-term, post-mining...

  2. 43 CFR 3904.40 - Long-term water treatment trust funds.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-term treatment to achieve water quality standards and for other long-term, post-mining maintenance... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Long-term water treatment trust funds...-GENERAL Bonds and Trust Funds § 3904.40 Long-term water treatment trust funds. (a) The BLM may require...

  3. 21 CFR 1250.83 - Storage of water prior to treatment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... CONVEYANCE SANITATION Sanitation Facilities and Conditions on Vessels 1250.83 Storage of water prior to treatment. The following requirements with respect to the storage of water on vessels prior to treatment... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Storage of water prior to treatment....

  4. 21 CFR 1250.83 - Storage of water prior to treatment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... CONVEYANCE SANITATION Sanitation Facilities and Conditions on Vessels 1250.83 Storage of water prior to treatment. The following requirements with respect to the storage of water on vessels prior to treatment... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Storage of water prior to treatment....

  5. 21 CFR 1250.83 - Storage of water prior to treatment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... CONVEYANCE SANITATION Sanitation Facilities and Conditions on Vessels 1250.83 Storage of water prior to treatment. The following requirements with respect to the storage of water on vessels prior to treatment... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Storage of water prior to treatment....

  6. 21 CFR 1250.83 - Storage of water prior to treatment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... CONVEYANCE SANITATION Sanitation Facilities and Conditions on Vessels § 1250.83 Storage of water prior to treatment. The following requirements with respect to the storage of water on vessels prior to treatment... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Storage of water prior to treatment....

  7. 21 CFR 1250.83 - Storage of water prior to treatment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... CONVEYANCE SANITATION Sanitation Facilities and Conditions on Vessels § 1250.83 Storage of water prior to treatment. The following requirements with respect to the storage of water on vessels prior to treatment... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Storage of water prior to treatment....

  8. Pretreatment for low pressure membranes in water treatment: a review.

    PubMed

    Huang, Haiou; Schwab, Kellogg; Jacangelo, Joseph G

    2009-05-01

    The application of low pressure membranes (LPMs) to drinking water treatment and wastewater reuse has undergone accelerated development in the past decade. Integration of pretreatment with LPM filtration has been widely employed at full scale to reduce membrane fouling and/or increase the removal of certain aquatic contaminants. In principle, pretreatment of source water can impact membrane filtration in three ways: altering contaminant size distributions, changing mutual affinities of contaminants or their affinities to membrane surfaces, and suppressing undesirable microbial growth or removing biodegradable contaminants. The literature shows that, compared to the well-demonstrated enhancement of contaminant removal, impact of pretreatment to membrane fouling is often small or even negative, which isfurther complicated by variations in source water quality and membrane properties. Coagulation has been the most successful pretreatment for fouling reduction. Novel technologies are in immediate need for fouling control; ones which rely on a better understanding of the mechanisms of pretreatment and LPM filtration are warranted. This article provides a critical review of the state-of-the-art of pretreatment for LPMs, and discusses potential areas for future technical development and scientific studies. PMID:19534107

  9. Optimization of conventional water treatment plant using dynamic programming.

    PubMed

    Mostafa, Khezri Seyed; Bahareh, Ghafari; Elahe, Dadvar; Pegah, Dadras

    2015-12-01

    In this research, the mathematical models, indicating the capability of various units, such as rapid mixing, coagulation and flocculation, sedimentation, and the rapid sand filtration are used. Moreover, cost functions were used for the formulation of conventional water and wastewater treatment plant by applying Clark's formula (Clark, 1982). Also, by applying dynamic programming algorithm, it is easy to design a conventional treatment system with minimal cost. The application of the model for a case reduced the annual cost. This reduction was approximately in the range of 4.5-9.5% considering variable limitations. Sensitivity analysis and prediction of system's feedbacks were performed for different alterations in proportion from parameters optimized amounts. The results indicated (1) that the objective function is more sensitive to design flow rate (Q), (2) the variations in the alum dosage (A), and (3) the sand filter head loss (H). Increasing the inflow by 20%, the total annual cost would increase to about 12.6%, while 20% reduction in inflow leads to 15.2% decrease in the total annual cost. Similarly, 20% increase in alum dosage causes 7.1% increase in the total annual cost, while 20% decrease results in 7.9% decrease in the total annual cost. Furthermore, the pressure decrease causes 2.95 and 3.39% increase and decrease in total annual cost of treatment plants. PMID:23625909

  10. Research trends in electrochemical technology for water and wastewater treatment

    NASA Astrophysics Data System (ADS)

    Zheng, Tianlong; Wang, Juan; Wang, Qunhui; Meng, Huimin; Wang, Lihong

    2015-03-01

    It is difficult to completely degrade wastewater containing refractory pollutants without secondary pollution by biological treatment, as well as physical-chemical process. Therefore, electrochemical technology has attracted much attention for its environmental compatibility, high removal efficiency, and potential cost effectiveness, especially on the industrial wastewater treatment. An effective bibliometric analysis based on the Science Citation Index Core Collection database was conducted to evaluate electrochemical technology for water and wastewater treatment related research from 1994 to 2013. The amount of publications significantly increased in the last two decades. Journal of the Electrochemical Society published the most articles in this field with a top h-index of 90, taking 5.8 % of all, followed by Electrochimica Acta and Journal of Electroanalytical Chemistry. The researchers focused on categories of chemistry, electrochemistry, and materials science. China and Chinese Academy of Sciences were the most productive country and institution, respectively, while the USA, with the most international collaborative articles and highest h-index of 130, was the major collaborator with 15 other countries in top 20 most productive countries. Moreover, based on the analysis of author keywords, title, abstract, and `KeyWords Plus', a new method named "word cluster analysis" was successfully applied to trace the research hotspot. Nowadays, researchers mainly focused on novel anodic electrode, especially on its physiochemical and electrochemical properties.

  11. 40 CFR 141.403 - Treatment technique requirements for ground water systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Treatment technique requirements for ground water systems. 141.403 Section 141.403 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Ground Water Rule § 141.403 Treatment technique requirements...

  12. Use of ceregenins to create novel biofouling resistant water water-treatment membranes.

    SciTech Connect

    Kirk, Matthew F.; Jones, Howland D. T.; Feng, Yanshu; McGrath, Lucas K.; Altman, Susan Jeanne; Pollard, Jacob; Hibbs, Michael R.; Savage, Paul B.

    2010-05-01

    Scoping studies have demonstrated that ceragenins, when linked to water-treatment membranes have the potential to create biofouling resistant water-treatment membranes. Ceragenins are synthetically produced molecules that mimic antimicrobial peptides. Evidence includes measurements of CSA-13 prohibiting the growth of and killing planktonic Pseudomonas fluorescens. In addition, imaging of biofilms that were in contact of a ceragenin showed more dead cells relative to live cells than in a biofilm that had not been treated with a ceragenin. This work has demonstrated that ceragenins can be attached to polyamide reverse osmosis (RO) membranes, though work needs to improve the uniformity of the attachment. Finally, methods have been developed to use hyperspectral imaging with multivariate curve resolution to view ceragenins attached to the RO membrane. Future work will be conducted to better attach the ceragenin to the RO membranes and more completely test the biocidal effectiveness of the ceragenins on the membranes.

  13. Characterization of ballasted flocs in water treatment using microscopy.

    PubMed

    Lapointe, Mathieu; Barbeau, Benoit

    2016-03-01

    Ballasted flocculation is widely used in the water industry for drinking water, municipal wastewater, storm water and industrial water treatment. This gravity-based physicochemical separation process involves the injection of a ballasting agent, typically microsand, to increase the floc density and size. However, the physical characteristics of the final ballasted flocs are still ill-defined. A microscopic method was specifically developed to characterize floc 1) density, 2) size and 3) shape factor. Using this information, probability density functions (PDFs) of the floc settling velocity were calculated. The impacts of the mixing intensity, polymer dosage, microsand size and contact time during the floc maturation phase were assessed. No correlation was identified between the floc diameter, form and density PDFs. The floc equivalent diameter mainly controls the settling velocity (r = 0.94), with the floc density (r = 0.26) and shape factor (r = 0.25) having lower impacts. A velocity gradient of 165 s(-1) was optimal to maintain the microsand in suspension while simultaneously maximizing the floc diameter. An anionic high molecular weight polyacrylamide formed 1.5-fold larger aggregates compared with the starch-based polymer tested, but both polymers produced flocs of similar density (relative density = 1.53 ± 0.03). Generally, the floc mean settling velocity is a good predictor of the turbidity removal. An in-depth analysis of the floc characteristics indicates a correlation between the floc size and the largest microsand grain potentially embeddable in the floc structure. PMID:26724446

  14. Abatement vs. treatment for efficient diffuse source water pollution management in terrestrial-marine systems.

    PubMed

    Roebeling, P C; Cunha, M C; Arroja, L; van Grieken, M E

    2015-01-01

    Marine ecosystems are affected by water pollution originating from coastal catchments. The delivery of water pollutants can be reduced through water pollution abatement as well as water pollution treatment. Hence, sustainable economic development of coastal regions requires balancing of the marginal costs from water pollution abatement and/or treatment and the associated marginal benefits from marine resource appreciation. Water pollution delivery reduction costs are, however, not equal across abatement and treatment options. In this paper, an optimal control approach is developed and applied to explore welfare maximizing rates of water pollution abatement and/or treatment for efficient diffuse source water pollution management in terrestrial-marine systems. For the case of diffuse source dissolved inorganic nitrogen water pollution in the Tully-Murray region, Queensland, Australia, (agricultural) water pollution abatement cost, (wetland) water pollution treatment cost and marine benefit functions are determined to explore welfare maximizing rates of water pollution abatement and/or treatment. Considering partial (wetland) treatment costs and positive water quality improvement benefits, results show that welfare gains can be obtained, primarily, through diffuse source water pollution abatement (improved agricultural management practices) and, to a minor extent, through diffuse source water pollution treatment (wetland restoration). PMID:26287831

  15. Risk management program for the 283-W water treatment facility

    SciTech Connect

    GREEN, W.E.

    1999-05-11

    This Risk Management (RM) Program covers the 283-W Water Treatment Facility (283W Facility), located in the 200 West Area of the Hanford Site. A RM Program is necessary for this facility because it stores chlorine, a listed substance, in excess of or has the potential to exceed the threshold quantities defined in Title 40 of the Code of Federal Regulations (CFR) Part 68 (EPA, 1998). The RM Program contains data that will be used to prepare a RM Plan, which is required by 40 CFR 68. The RM Plan is a summary of the RM Program information, contained within this document, and will be submitted to the U.S. Environmental Protection Agency (EPA) ultimately for distribution to the public. The RM Plan will be prepared and submitted separately from this document.

  16. THE USE OF RANDOMIZED CONTROLLED TRIALS OF IN-HOME DRINKING WATER TREATMENT TO STUDY ENDEMIC WATERBORNE DISEASE

    EPA Science Inventory

    Randomized trials of water treatment have demonstrated the ability of simple water treatments to significantly reduce the incidence of gastrointestinal illnesses in developing countries where drinking water is of poor quality. Whether or not additional treatment at the tap reduc...

  17. Evaluation of hybrid treatments to produce high quality reuse water.

    PubMed

    Luiz, D B; Silva, G S; Vaz, E A C; Jos, H J; Moreira, R F P M

    2011-01-01

    Four tertiary hybrid treatments to produce high quality reused water, fulfilling Brazilian drinking water regulations, from a slaughterhouse's secondary treated effluent were evaluated. The pilot plant with a capacity of 500 L h(-1) was set up and consisted of these stages: pre-filtration system (cartridge filter 50 micron, activated carbon filter, cartridge filter 10 micron), oxidation (H2O2) or second filtration (ceramic filter, UF) followed by UV radiation (90 L h(-1)). The best combination was T4: pre-filtration followed by H2O2 addition and UV radiation (AOP H2O2/UV). Disinfection kinetics by T4 followed pseudo first-order kinetics: k(T4) = 0.00943 s(-1) or 0.00101 cm2 mJ(-1). Three different zones (A, B, C) were observed in the UV254 degradation kinetics (pseudo-first order kinetics): k' decreased over time (k'(A) > k'(B) > k'(C)). PMID:21902048

  18. Reuse of drinking water treatment sludge for olive oil mill wastewater treatment.

    PubMed

    Fragoso, R A; Duarte, E A

    2012-01-01

    Olive mill wastewater (OMW) results from the production of olive oil, which is an important traditional agro-industry in Mediterranean countries. In continuous three-phase centrifugation 1.0-1.2 m(3) of OMW are produced per ton of processed olives. Discharge of OMW is of serious environmental concern due to its high content of organic matter with phytotoxic properties, namely phenolic compounds. Meanwhile, drinking water treatment sludge (DWTS) is produced in high amounts and has long been considered as a waste for landfill. The aim of this work was the assessment of reusing DWTS for OMW treatment. High performance liquid chromatography (HPLC) analysis was carried out to determine the phenolic compounds present and to evaluate if they are recalcitrant. Treatability assays were performed using a dosage of DWTS from 50 to 300 g L(-1). Treatment efficiency was evaluated based on the removal of chemical oxygen demand (COD), biochemical oxygen demand (BOD), total solids (TS), total suspended solids (TSS), total volatile solids (TVS), oil and grease (OG), phenols (total phosphorous (TP) and HPLC fraction). Results from OMW HPLC characterization identified a total of 13 compounds; the major ones were hydroxytyrosol, tyrosol, caffeic acid, p-cumaric acid and oleuropein. Treatability assays led to a maximum reduction of about 90% of some of the phenolic compounds determined by HPLC. Addition of 200-300 g L(-1) of DWTS reduced 40-50% of COD, 45-50% of TP, a maximum of nearly 70% TSS and 45% for TS and TVS. The OG fraction showed a reduction of about 90%, achieved adding 300 g L(-1) od DWTS. This study points out the possibility of establishing an integrated management of OMW and DWTS, contributing to a decrease in the environmental impact of two industrial activities, olive oil production and drinking water treatment. PMID:22766882

  19. Practices that Prevent the Formation of Cyanobacterial Blooms in Water Resources and remove Cyanotoxins during Physical Treatment of Drinking Water

    EPA Science Inventory

    This book chapter presents findings of different studies on the prevention and elimination of cyanobacterial blooms in raw water resources as well as the removal of cyanotoxins during water treatment with physical processes. Initially,treatments that can be applied at the source ...

  20. Long-term Impact of Integration of Household Water Treatment and Hygiene Promotion with Antenatal Services on Maternal Water Treatment and Hygiene Practices in Malawi

    PubMed Central

    Loharikar, Anagha; Russo, Elizabeth; Sheth, Anandi; Menon, Manoj; Kudzala, Amose; Tauzie, Blessius; Masuku, Humphreys D.; Ayers, Tracy; Hoekstra, Robert M.; Quick, Robert

    2013-01-01

    A clinic-based program to integrate antenatal services with distribution of hygiene kits including safe water storage containers, water treatment solution (brand name WaterGuard), soap, and hygiene education, was implemented in Malawi in 2007 and evaluated in 2010. We surveyed 389 participants at baseline in 2007, and found and surveyed 232 (60%) participants to assess water treatment, test stored drinking water for residual chlorine (an objective measure of treatment), and observe handwashing technique at follow-up in 2010. Program participants were more likely to know correct water treatment procedures (67% versus 36%; P < 0.0001), treat drinking water with WaterGuard (24% versus 2%; P < 0.0001), purchase and use WaterGuard (21% versus 1%; P < 0.001), and demonstrate correct handwashing technique (50% versus 21%; P < 0.001) at the three-year follow-up survey than at baseline. This antenatal-clinic-based program may have contributed to sustained water treatment and proper handwashing technique among program participants. PMID:23243106

  1. Arsenite Sorption by Drinking-Water Treatment Residuals: Redox Effects

    NASA Astrophysics Data System (ADS)

    Makris, K. C.; Sarkar, D.; Datta, R.

    2005-05-01

    Arsenic (As) is a major human carcinogen and could pose a serious human health risk at concentrations as low as 50 ppb in drinking water. Elevated As concentrations in soils currently used for residential purposes (located on former agricultural lands amended with arsenical pesticides) have increased the possibility of human contact with soil-As. Studies have shown that As bioavailability in the environment is primarily a function of its chemical speciation, which depends upon the redox potential. Arsenic toxicity and carcinogenicity to living organisms is primarily due to exposure to the reduced species of As - arsenite, i.e., As(III), rather than the oxidized species - arsenate, i.e., As(V); the mobility of As(III) is much higher than As(V). One of the most promising methods to decrease the mobility of arsenite in the soil-water system is promoting its retention onto amorphous Fe/Al hydroxides. Drinking-Water Treatment Residuals (WTRs) are an inexpensive source of such Fe/Al hydroxides, which can be land-applied following the USEPA-regulated biosolids application rules. The WTRs are byproducts of drinking-water purification processes and generally contain sediment, organic carbon, and Al/Fe hydroxides. The hydroxides are typically amorphous and have tremendous affinity for oxyanions (e.g., arsenate). Preliminary work showed that WTRs are characterized by large internal surface area and porosity that partly explains their high affinity for As(V). The current study examines the potential of two WTRs (Fe-based and Al-based) to adsorb arsenite from solution. We hypothesize that As(III) adsorption onto the Fe-based WTR (whose stability is highly redox-sensitive) would be vastly different from the adsorption of As(III) onto the redox-insensitive Al-based WTR. Our main objective is to characterize As(III) sorption by both Fe- and Al-based WTRs by changing critical factors, such as the solid:solution ratio, contact time, and initial As(III) load. Results from this study are expected to identify the optimal conditions for As(III) sorption onto WTRs as a function of solution pH and redox potential. Potential desorption of the retained As will be assessed in batch studies using phosphate as the competing ligand.

  2. TREATMENT OF DRINKING WATER CONTAINING TRICHLOROETHYLENE AND RELATED INDUSTRIAL SOLVENTS

    EPA Science Inventory

    Volatile chlorinated and non-chlorinated compounds occur in both untreated and treated drinking water. Because volatilization is restricted, ground waters rather than surface waters are more likely to have high concentrations of these compounds. This document reviews properties, ...

  3. TREATMENT OF VOLATILE ORGANIC COMPOUNDS IN DRINKING WATER

    EPA Science Inventory

    Volatile chlorinated and non-chlorinated compounds occur in both untreated and treated drinking water. Because volatilization is restricted, ground waters rather than surface waters are more likely to have high concentrations of these compounds. This document reviews properties, ...

  4. Evaluation of Effectiveness Technological Process of Water Purification Exemplified on Modernized Water Treatment Plant at Otoczna

    NASA Astrophysics Data System (ADS)

    Jordanowska, Joanna; Jakubus, Monika

    2014-12-01

    The article presents the work of the Water Treatment Plant in the town of Otoczna, located in the Wielkopolska province, before and after the modernization of the technological line. It includes the quality characteristics of the raw water and treated water with particular emphasis on changes in the quality indicators in the period 2002 -2012 in relation to the physicochemical parameters: the content of total iron and total manganese, the ammonium ion as well as organoleptic parameters(colour and turbidity). The efficiency of technological processes was analysed, including the processes of bed start up with chalcedonic sand to remove total iron and manganese and ammonium ion. Based on the survey, it was found that the applied modernization helped solve the problem of water quality, especially the removal of excessive concentrations of iron, manganese and ammonium nitrogen from groundwater. It has been shown that one year after modernization of the technological line there was a high reduction degree of most parameters, respectively for the general iron content -99%, general manganese - 93% ammonia - 93%, turbidity - 94%. It has been proved, that chalcedonic turned out to be better filter material than quartz sand previously used till 2008. The studies have confirmed that the stage of modernization was soon followed by bed start-up for removing general iron from the groundwater. The stage of manganese removal required more time, about eight months for bed start-up. Furthermore, the technological modernization contributed to the improvement of the efficiency of the nitrification process.

  5. Development of a Water Treatment Plant Operation Manual Using an Algorithmic Approach.

    ERIC Educational Resources Information Center

    Counts, Cary A.

    This document describes the steps to be followed in the development of a prescription manual for training of water treatment plant operators. Suggestions on how to prepare both flow and narrative prescriptions are provided for a variety of water treatment systems, including: raw water, flocculation, rapid sand filter, caustic soda feed, alum feed,…

  6. SPECIATION OF ELEMENTS RELEASED FROM WATER TREATMENT RESDUALS AND THEIR MIGRATION THROUGH A SANDY SOIL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water treatment residuals (WTRs) are by-products from drinking water treatment facilities that use chemical amendments to flocculate sediments from raw water sources. These residuals are composed of a variety of organic and inorganic compounds as a result of the mineral composition of the sediments,...

  7. AN OVERVIEW PRESENTATION OF USEPA AND USDA DRINKING WATER TREATMENT SYSTEM DEMONSTRATIONS IN CHINA

    EPA Science Inventory

    Under an interagency agreement with the US Department of Agriculture, US EPA is coordinating support for several water treatment research demonstrations in China. EPA has installed two small drinking water treatment technologies (a bottled water system for a small community and ...

  8. AN OVERVIEW PAPER OF USEPA AND USDA DRINKING WATER TREATMENT SYSTEM DEMONSTRATIONS IN CHINA

    EPA Science Inventory

    Under an interagency agreement with the US Department of Agriculture, US EPA is coordinating support for several water treatment research demonstrations in China. EPA has installed two small drinking water treatment technologies (a bottled water system for a small community and ...

  9. 40 CFR 141.403 - Treatment technique requirements for ground water systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... significant deficiencies or source water fecal contamination. (1) The treatment technique requirements of this... have potential for causing, the introduction of contamination into the water delivered to consumers. (5... water; (iii) Eliminate the source of contamination; or (iv) Provide treatment that reliably achieves...

  10. 7 CFR 305.21 - Hot water dip treatment schedule for mangoes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... microbial contamination. Chlorinated water must be used. (d) Pulp temperature must be 70 °F or above before... 7 Agriculture 5 2010-01-01 2010-01-01 false Hot water dip treatment schedule for mangoes. 305.21... Hot water dip treatment schedule for mangoes. Mangoes may be treated using schedule T102-a: (a)...

  11. 40 CFR 141.403 - Treatment technique requirements for ground water systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... significant deficiencies or source water fecal contamination. (1) The treatment technique requirements of this... have potential for causing, the introduction of contamination into the water delivered to consumers. (5... water; (iii) Eliminate the source of contamination; or (iv) Provide treatment that reliably achieves...

  12. 40 CFR 141.403 - Treatment technique requirements for ground water systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... significant deficiencies or source water fecal contamination. (1) The treatment technique requirements of this... have potential for causing, the introduction of contamination into the water delivered to consumers. (5... water; (iii) Eliminate the source of contamination; or (iv) Provide treatment that reliably achieves...

  13. 40 CFR 141.403 - Treatment technique requirements for ground water systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... significant deficiencies or source water fecal contamination. (1) The treatment technique requirements of this... have potential for causing, the introduction of contamination into the water delivered to consumers. (5... water; (iii) Eliminate the source of contamination; or (iv) Provide treatment that reliably achieves...

  14. Development of a Water Treatment Plant Operation Manual Using an Algorithmic Approach.

    ERIC Educational Resources Information Center

    Counts, Cary A.

    This document describes the steps to be followed in the development of a prescription manual for training of water treatment plant operators. Suggestions on how to prepare both flow and narrative prescriptions are provided for a variety of water treatment systems, including: raw water, flocculation, rapid sand filter, caustic soda feed, alum feed,

  15. Relationship between use of water from community-scale water treatment refill kiosks and childhood diarrhea in Jakarta.

    PubMed

    Sima, Laura C; Desai, Mayur M; McCarty, Kathleen M; Elimelech, Menachem

    2012-12-01

    In developing countries, safe piped drinking water is generally unavailable, and bottled water is unaffordable for most people. Purchasing drinking water from community-scale decentralized water treatment and refill kiosks (referred to as isi ulang depots in Indonesia) is becoming a common alternative. This study investigates the association between diarrhea risk and community-scale water treatment and refill kiosk. We monitored daily diarrhea status and water source for 1,000 children 1-4 years of age in Jakarta, Indonesia, for up to 5 months. Among children in an urban slum, rate of diarrhea/1,000 child-days varied significantly by primary water source: 8.13 for tap water, 3.60 for bottled water, and 3.97 for water kiosks. In multivariable Poisson regression analysis, diarrhea risk remained significantly lower among water kiosk users (adjusted rate ratio [RR] = 0.49, 95% confidence interval [CI] = 0.29-0.83) and bottled water users (adjusted RR = 0.45, 95% CI = 0.21-0.97), compared with tap water users. In a peri-urban area, where few people purchased from water kiosk (N = 28, 6% of total population), diarrhea rates were lower overall: 2.44 for well water, 1.90 for bottled water, and 2.54 for water kiosks. There were no significant differences in diarrhea risk for water kiosk users or bottled water users compared with well water users. Purchasing water from low-cost water kiosks is associated with a reduction in diarrhea risk similar to that found for bottled water. PMID:23128290

  16. Relationship between Use of Water from Community-Scale Water Treatment Refill Kiosks and Childhood Diarrhea in Jakarta

    PubMed Central

    Sima, Laura C.; Desai, Mayur M.; McCarty, Kathleen M.; Elimelech, Menachem

    2012-01-01

    In developing countries, safe piped drinking water is generally unavailable, and bottled water is unaffordable for most people. Purchasing drinking water from community-scale decentralized water treatment and refill kiosks (referred to as isi ulang depots in Indonesia) is becoming a common alternative. This study investigates the association between diarrhea risk and community-scale water treatment and refill kiosk. We monitored daily diarrhea status and water source for 1,000 children 1–4 years of age in Jakarta, Indonesia, for up to 5 months. Among children in an urban slum, rate of diarrhea/1,000 child-days varied significantly by primary water source: 8.13 for tap water, 3.60 for bottled water, and 3.97 for water kiosks. In multivariable Poisson regression analysis, diarrhea risk remained significantly lower among water kiosk users (adjusted rate ratio [RR] = 0.49, 95% confidence interval [CI] = 0.29–0.83) and bottled water users (adjusted RR = 0.45, 95% CI = 0.21–0.97), compared with tap water users. In a peri-urban area, where few people purchased from water kiosk (N = 28, 6% of total population), diarrhea rates were lower overall: 2.44 for well water, 1.90 for bottled water, and 2.54 for water kiosks. There were no significant differences in diarrhea risk for water kiosk users or bottled water users compared with well water users. Purchasing water from low-cost water kiosks is associated with a reduction in diarrhea risk similar to that found for bottled water. PMID:23128290

  17. MODIFIED REVERSE OSMOSIS SYSTEM FOR TREATMENT OF PRODUCED WATERS

    SciTech Connect

    T.M. Whitworth; Liangxiong Li

    2002-09-15

    This report describes work performed during the first year of the project ''Modified Reverse Osmosis System for Treatment of Produced Waters.'' This research project has two objectives. The first objective is to test the use of clay membranes in the treatment of produced waters by reverse osmosis. The second objective is to test the ability of a system patented by the New Mexico Tech Research Foundation to remove salts from reverse osmosis waste streams as a solid. We performed 12 experiments using clay membranes in cross-flow experimental cells. We found that, due to dispersion in the porous frit used adjacent to the membrane, the concentration polarization layer seems to be completely (or nearly completely) destroyed at low flow rates. This observation suggests that clay membranes used with porous frit material many reach optimum rejection rates at lower pumping rates than required for use with synthetic membranes. The solute rejection efficiency decreases with increasing solution concentration. For the membranes and experiments reported here, the rejection efficiency ranged from 71% with 0.01 M NaCl solution down to 12% with 2.3 M NaCl solution. More compacted clay membranes will have higher rejection capabilities. The clay membranes used in our experiments were relatively thick (approximately 0.5 mm). The active layer of most synthetic membranes is only 0.04 {micro}m (0.00004 mm), approximately 1250 times thinner than the clay membranes used in these experiments. Yet clay membranes as thin as 12 {micro}m have been constructed (Fritz and Eady, 1985). Since Darcy's law states that the flow through a material of constant permeability is inversely proportional to it's the material's thickness, then, based on these experimental observations, a very thin clay membrane would be expected to have much higher flow rates than the ones used in these experiments. Future experiments will focus on testing very thin clay membranes. The membranes generally exhibited reasonable stable rejection rates over time for chloride for a range of concentrations between 0.01 and 2.5 M. One membrane ran in excess of three months with no apparent loss of usability. This suggests that clay membranes may have a long useable life. Twenty different hyperfiltration-induced solute precipitation experiments were either attempted or completed and are reported here. The results of these experiments suggest that hyperfiltration-induced solute precipitation is possible, even for very soluble substances such as NaCl. However, the precipitation rates obtained in the laboratory do not appear to be adequate for commercial application at this time. Future experiments will focus on making the clay membranes more compact and thinner in order to obtain higher flux rates. Two alternative methods of removing solutes from solution, for which the New Mexico Tech Research Foundation is preparing patent applications, are also being investigated. These methods will be described in the next annual report after the patent applications are filed. Technology transfer efforts included two meetings (one in Farmington NM, and one in Hobbs, NM) where the results of this research were presented to independent oil producers and other interested parties. In addition, members of the research team gave seven presentations concerning this research and because of this research project T. M. (Mike) Whitworth was asked to sit on the advisory board for development of a new water treatment facility for the City of El Paso, Texas. Several papers are in preparation for submission to peer-reviewed journals based on the data presented in this report.

  18. AN INVESTIGATION OF ARSENIC MOBILITY FROM IRON OXIDE SOLIDS PRODUCED DURING DRINKING WATER TREATMENT

    EPA Science Inventory

    The Arsenic Rule under the Safe Drinking Water Act will require certain drinking water suppliers to add to or modify their existing treatment in order to comply with the regulations. One of the treatment options is iron co-precipitation. This treatment is attractive because ars...

  19. Recycle of Alum recovered from water treatment sludge in chemically enhanced primary treatment.

    PubMed

    Xu, G R; Yan, Z C; Wang, Y C; Wang, N

    2009-01-30

    An investigation was made to study the feasibility of recovering the Alum from coagulation sludges and reusing it in chemically enhanced primary treatment (CEPT) process to make the CEPT more cost-effective and recover the resource (Alum) efficiently. The optimum condition and efficiency of the acidification method for Alum recovery from coagulation sludge were investigated in the test. The results show that when the recovery rate of Alum reaches its highest level, 84.5%, the reduction rate of sludge is 35.5%. It turns out that the capability of recovered coagulant to remove turbidity, UV(254) and COD are 96%, 46% and 53%, respectively. The results prove that the recovered coagulants could be used in CEPT and the efficiency of recovered coagulant to remove pollutants is similar to that of fresh coagulant. Although some substances will be enriched during recycle, they have little effect on the quality of treated wastewater. The experiments verify that it would be an advisable and cost-effective way to recover Alum from coagulation sludges in water treatment and chemical wastewater treatment, and it could be then recycled to CEPT as well as reduce sludge volume. PMID:18486332

  20. Influence of water treatment residuals on phosphorus solubility and leaching.

    PubMed

    Elliott, H A; O'Connor, G A; Lu, P; Brinton, S

    2002-01-01

    Laboratory and greenhouse studies compared the ability of water treatment residuals (WTRs) to alter P solubility and leaching in Immokalee sandy soil (sandy, siliceous, hyperthermic Arenic Alaquod) amended with biosolids and triple superphosphate (TSP). Aluminum sulfate (Al-WTR) and ferric sulfate (Fe-WTR) coagulation residuals, a lime softening residual (Ca-WTR) produced during hardness removal, and pure hematite were examined. In equilibration studies, the ability to reduce soluble P followed the order Al-WTR > Ca-WTR = Fe-WTR > hematite. Differences in the P-fixing capacity of the sesquioxide-dominated materials (Al-WTR, Fe-WTR, hematite) were attributed to their varying reactive Fe- and Al-hydrous oxide contents as measured by oxalate extraction. Leachate P was monitored from greenhouse columns where bahiagrass (Paspalum notatum Flugge) was grown on Immokalee soil amended with biosolids or TSP at an equivalent rate of 224 kg P ha(-1) and WTRs at 2.5% (56 Mg ha(-1)). In the absence of WTRs, 21% of TSP and 11% of Largo cake biosolids total phosphorus (PT) leached over 4 mo. With co-applied WTRs, losses from TSP columns were reduced to 3.5% (Fe-WTR), 2.5% (Ca-WTR), and <1% (Al-WTR) of applied P. For the Largo biosolids treatments all WTRs retarded downward P flux such that leachate P was not statistically different than for control (soil only) columns. The phosphorus saturation index (PSI = [Pox]/ [Al(ox) + Fe(ox)], where Pox, Al, and Fe(ox) are oxalate-extractable P, Al, and Fe, respectively) based on a simple oxalate extraction of the WTR and biosolids is potentially useful for determining WTR application rates for controlled reduction of P in drainage when biosolids are applied to low P-sorbing soils. PMID:12175057

  1. Comparative analysis of effluent water quality from a municipal treatment plant and two on-site wastewater treatment systems.

    PubMed

    Garcia, Santos N; Clubbs, Rebekah L; Stanley, Jacob K; Scheffe, Brian; Yelderman, Joe C; Brooks, Bryan W

    2013-06-01

    Though decentralized on-site technologies are extensively employed for wastewater treatment around the globe, an understanding of effluent water quality impairments associated with these systems remain less understood than effluent discharges from centralized municipal wastewater treatment facilities. Using a unique experimental facility, a novel comparative analysis of effluent water quality was performed from model decentralized aerobic (ATS) and septic (STS) on-site wastewater treatment systems and a centralized municipal wastewater treatment plant (MTP). The ATS and STS units did not benefit from further soil treatment. Each system received common influent wastewater from the Waco, Texas, USA Metropolitan Area Regional Sewerage System. We tested the hypothesis that MTP effluent would exhibit higher water quality than on-site effluents, based on parameters selected for study. A tiered testing approach was employed to assess the three effluent discharges: select routine water quality parameters (Tier I), whole effluent toxicity (Tier II), and select endocrine-active compounds (Tier III). Contrary to our hypothesis, ATS effluent was not statistically different from MTP effluents, based on Tier I and III parameters, but reproductive responses of Daphnia magna were slightly more sensitive to ATS than MTP effluents. STS effluent water quality was identified as most degraded of the three wastewater treatment systems. Parameters used to assess centralized wastewater treatment plant effluent water quality such as whole effluent toxicity and endocrine active substances appear useful for water quality assessments of decentralized discharges. Aerobic on-site wastewater treatment systems may represent more robust options than traditional septic systems for on-site wastewater treatment in watersheds with appreciable groundwater - surface water exchange. PMID:23557723

  2. Hydrolysis of bamboo biomass by subcritical water treatment.

    PubMed

    Mohan, Mood; Banerjee, Tamal; Goud, Vaibhav V

    2015-09-01

    The aim of present study was to obtain total reducing sugars (TRS) from bamboo under subcritical water (SCW) treatment in a batch reactor at the temperature ranging from 170 C to 220 C and 40 min hydrolysis time. Experiments were performed to investigate the effects of temperature and time on TRS yield. The maximum TRS yield (42.21%) was obtained at lower temperature (180 C), however longer reaction time (25 min). X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM) analysis were used to characterise treated and untreated bamboo samples. The XRD profile revealed that crystallinity of bamboo increased to 71.90% with increase in temperature up to 210 C and decreased thereafter to 70.92%. The first-order reaction kinetic model was used to fit the experimental data to obtain rate constants. From the Arrhenius plot, activation energy and pre-exponential factor at 25 min time were found to be 17.97 kJ mol(-1) and 0.154 min(-1), respectively. PMID:26000834

  3. Treatment of pulp mill sludges by supercritical water oxidation

    SciTech Connect

    Modell, M.

    1990-07-01

    Supercritical water oxidation (SCWO) is new process that can oxidize organics very effectively at moderate temperatures (400 to 650{degree}C) and high pressure (3700 psi). It is an environmentally acceptable alternative for sludge treatment. In bench scale tests, total organic carbon (TOC) and total organic halide (TOX) reductions of 99 to 99.9% were obtained; dioxin reductions were 95 to 99.9%. A conceptual design for commercial systems has been completed and preliminary economics have been estimated. Comparisons confirm that SCWO is less costly than dewatering plus incineration for treating pulp mill sludges. SCWO can also compete effectively with dewatering plus landfilling where tipping fees exceed $35/yd{sup 3}. In some regions of the US, tipping fees are now $75/yd{sup 3} and rising steadily. In the 1995 to 2000 time frame, SCWO has a good chance of becoming the method of choice. MODEC's objective is to bring the technology to commercial availability by 1993. 10 refs., 6 figs., 19 tabs.

  4. Microbial removals by a novel biofilter water treatment system.

    PubMed

    Wendt, Christopher; Ives, Rebecca; Hoyt, Anne L; Conrad, Ken E; Longstaff, Stephanie; Kuennen, Roy W; Rose, Joan B

    2015-04-01

    Two point-of-use drinking water treatment systems designed using a carbon filter and foam material as a possible alternative to traditional biosand systems were evaluated for removal of bacteria, protozoa, and viruses. Two configurations were tested: the foam material was positioned vertically around the carbon filter in the sleeve unit or horizontally in the disk unit. The filtration systems were challenged with Cryptosporidium parvum, Raoultella terrigena, and bacteriophages P22 and MS2 before and after biofilm development to determine average log reduction (ALR) for each organism and the role of the biofilm. There was no significant difference in performance between the two designs, and both designs showed significant levels of removal (at least 4 log10 reduction in viruses, 6 log10 for protozoa, and 8 log10 for bacteria). Removal levels meet or exceeded Environmental Protection Agency (EPA) standards for microbial purifiers. Exploratory test results suggested that mature biofilm formation contributed 1-2 log10 reductions. Future work is recommended to determine field viability. PMID:25758649

  5. Microbial Removals by a Novel Biofilter Water Treatment System

    PubMed Central

    Wendt, Christopher; Ives, Rebecca; Hoyt, Anne L.; Conrad, Ken E.; Longstaff, Stephanie; Kuennen, Roy W.; Rose, Joan B.

    2015-01-01

    Two point-of-use drinking water treatment systems designed using a carbon filter and foam material as a possible alternative to traditional biosand systems were evaluated for removal of bacteria, protozoa, and viruses. Two configurations were tested: the foam material was positioned vertically around the carbon filter in the sleeve unit or horizontally in the disk unit. The filtration systems were challenged with Cryptosporidium parvum, Raoultella terrigena, and bacteriophages P22 and MS2 before and after biofilm development to determine average log reduction (ALR) for each organism and the role of the biofilm. There was no significant difference in performance between the two designs, and both designs showed significant levels of removal (at least 4 log10 reduction in viruses, 6 log10 for protozoa, and 8 log10 for bacteria). Removal levels meet or exceeded Environmental Protection Agency (EPA) standards for microbial purifiers. Exploratory test results suggested that mature biofilm formation contributed 1–2 log10 reductions. Future work is recommended to determine field viability. PMID:25758649

  6. ANALYSIS ON EFFLUENT WATER QUALITY AND ELECTRICITY CONSUMPTION AFTER INTRODUCING ADVANCED SEWAGE TREATMENT

    NASA Astrophysics Data System (ADS)

    Shiojiri, Yasuo; Maekawa, Shunich

    We analyze effluent water quality and electricity consumption after in troducing advanced treatment in sewage treatment plant. We define 'advanced treatment ratio' as volume of treated water through advanced treatment processes divided by total volume of treated water in plant. Advanced treatment ratio represents degree of introducing advanced treatment. We build two types of equation. One represents relation between effluent water quality and advanced treatment ratio, the other between electricity consumption and advanced treatment ratio. Each equation is fitted by least squares on 808 samples: 8 fiscal years operation data of 101 plants working in Kanagawa, Tokyo, Saitama and Chiba areas, and coefficient of advanced treatment ratio is estimated. The result is as follows. (1) After introducing advanced treatment aimed at nitrogen removal, T-N in effluent water decreases by 51.3% and electricity consum ption increases by 52.2%. (2) After introducing advanced treatment aimed at phosphorus removal, T-P in effluent water decreases by 27.8%. Using the above result, we try prioritizing 71 plants in Tokyo Bay watershed about raising advanced treatment ratio, so that, in total, pollutant in effluent water decreases with minimized increase of electricity consumption.

  7. TREATMENT TECHNOLOGY TO MEET THE INTERIM PRIMARY DRINKING WATER REGULATIONS FOR INORGANICS: PART 5

    EPA Science Inventory

    The fifth in a series summarizing existing treatment technology to meet the inorganic National Interim Primary Drinking Water Regulations, this report describes current methods for removing barium and radionuclides from drinking water.

  8. The electrochemistry of chlorophenols and its implications for waste water treatment

    SciTech Connect

    Gattrell, M.; MacDougall, B.

    1996-12-31

    Chlorophenols end up in waste water and consequently in soils and ground water. This paper describes electrochemical approaches to the waste treatment of pentachlorophenol containing wastes and the efficiency of the process.

  9. NONPHOTOSYNTHETIC PIGMENTED BACTERIA IN A POTABLE WATER TREATMENT AND DISTRIBUTION SYSTEM

    EPA Science Inventory

    The occurrence of pigmented bacteria in potable water from raw source water through treatment to distribution water, including dead-end locations, was compared at sample sites in a large municipal water system. edia used to enumerate heterotrophic bacteria and differentiate pigme...

  10. Laboratory comparison of four iron-based filter materials for drainage water phosphate treatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphate released with agricultural subsurface drainage water can cause environmental degradation of downstream water bodies. On-site filter treatment with iron-based filter materials could potentially remove phosphate from drainage waters before these waters are discharged into local streams. Th...

  11. MODIFIED REVERSE OSMOSIS SYSTEM FOR TREATMENT OF PRODUCED WATERS

    SciTech Connect

    T.M. Whitworth; Liangxiong Li

    2002-09-15

    This report describes work performed during the second year of the project ''Modified reverse osmosis system for treatment of produced waters.'' We performed two series of reverse osmosis experiments using very thin bentonite clay membranes compacted to differing degrees. The first series of 10 experiments used NaCl solutions with membranes that ranged between 0.041 and 0.064mm in thickness. Our results showed compaction of such ultra-thin clay membranes to be problematic. The thickness of the membranes was exceeded by the dimensional variation in the machined experimental cell and this is believed to have resulted in local bypassing of the membrane with a resultant decrease in solute rejection efficiency. In two of the experiments, permeate flow was varied as a percentage of the total flow to investigate results of changing permeate flow on solute rejection. In one experiment, the permeate flow was varied between 2.4 and 10.3% of the total flow with no change in solute rejection. In another experiment, the permeate flow was varied between 24.6 and 52.5% of the total flow. In this experiment, the solute rejection rate decreased as the permeate occupied greater fractions of the total flow. This suggests a maximum solute rejection efficiency for these clay membranes for a permeate flow of between 10.3 and 24.6% of the total; flow. Solute rejection was found to decrease with increasing salt concentration and ranged between 62.9% and 19.7% for chloride and between 61.5 and 16.8% for sodium. Due to problems with the compaction procedure and potential membrane bypassing, these rejection rates are probably not the upper limit for NaCl rejection by bentonite membranes. The second series of four reverse osmosis experiments was conducted with a 0.057mm-thick bentonite membrane and dilutions of a produced water sample with an original TDS of 196,250 mg/l obtained from a facility near Loco Hill, New Mexico, operated by an independent. These experiments tested the separation efficiency of the bentonite membrane for each of the dilutions. We found that membrane efficiency decreased with increasing solute concentration and with increasing TDS. The rejection of SO{sub 4}{sup 2-} was greater than Cl{sup -}. This may be because the SO{sub 4}{sup 2-} concentration was much lower than the Cl{sup -} concentration in the waters tested. The cation rejection sequence varied with solute concentration and TDS. The solute rejection sequence for multi-component solutions is difficult to predict for synthetic membranes; it may not be simple for clay membranes either. The permeate flows in our experiments were 4.1 to 5.4% of the total flow. This suggests that very thin clay membranes may be useful for some separations. Work on development of a spiral-wound clay membrane module found that it is difficult to maintain compaction of the membrane if the membrane is rolled and then inserted in the outer tube. A different design was tried using a cylindrical clay membrane and this also proved difficult to assemble with adequate membrane compaction. The next step is to form the membrane in place using hydraulic pressure on a thin slurry of clay in either water or a nonpolar organic solvent such as ethanol. Technology transfer efforts included four manuscripts submitted to peer-reviewed journals, two abstracts, and chairing a session on clays as membranes at the Clay Minerals Society annual meeting.

  12. Effects of Vermicompost and Water Treatment Residuals on Soil Physical Properties and Wheat Yield

    NASA Astrophysics Data System (ADS)

    Ibrahim, Mahmoud M.; Mahmoud, Essawy K.; Ibrahim, Doaa A.

    2015-04-01

    The application of vermicompost and water treatment residuals to improve the physical properties in the salt affected soils is a promising technology to meet the requirements of high plant growth and cost-effective reclamation. Therefore, the aim of this study was to investigate the effect of vermicompost and its mixtures with water treatment residuals on selected physical properties of saline sodic soil and on wheat yield. The treatments were vermicompost, water treatment residuals, vermicompost + water treatment residuals (1:1 and 2:1 wet weight ratio) at levels of 5 and 10 g dry weight kg-1 dry soil. The considered physical properties included aggregate stability, mean weight diameter, pore size distribution and dry bulk density. The addition of vermicompost and water treatment residuals had significant positive effects on the studied soil physical properties, and improved the grain yield of wheat. The treatment of (2 vermicompost + 1 water treatment residuals) at level of 5 g kg-1 soil gave the best grain yield. Combination of vermicompost and water treatment residuals improved the water treatment residuals efficiency in ameliorating the soil physical properties, and could be considered as an ameliorating material for the reclamation of salt affected soils.

  13. Decision algorithm based on data mining for coagulant type and dosage in water treatment systems.

    PubMed

    Bae, H; Kim, S; Kim, Y J

    2006-01-01

    Water shortages are gradually accelerating because higher standards of living are required and water resources are more heavily utilised. Therefore, effective water treatment is necessary in order to retain the required quality and amount of water. General treatment includes coagulation, flocculation, filtering and disinfection. Coagulation, flocculation and disinfection are major components of water treatment processes. In this paper, a new automatic decision algorithm is proposed for coagulation. The proposed method shows how to determine the coagulant type and amount using data mining techniques. PMID:16722083

  14. EDI as a Treatment Module in Recycling Spent Rinse Waters

    SciTech Connect

    Donovan, Robert P.; Morrison, Dennis J.

    1999-08-11

    Recycling of the spent rinse water discharged from the wet benches commonly used in semiconductor processing is one tactic for responding to the targets for water usage published in the 1997 National Technology Roadmap for Semiconductors (NTRS). Not only does the NTRS list a target that dramatically reduces total water usage/unit area of silicon manufactured by the industry in the future but for the years 2003 and beyond, the NTRS actually touts goals which would have semiconductor manufacturers drawing less water from a regional water supply per unit area of silicon manufactured than the quantity of ultrapure water (UPW) used in the production of that same silicon. Achieving this latter NTRS target strongly implies more widespread recycling of spent rinse waters at semiconductor manufacturing sites. In spite of the fact that, by most metrics, spent rinse waters are of much higher purity than incoming municipal waters, recycling of these spent rinse waters back into the UPW production plant is not a simple, straightforward task. The rub is that certain of the chemicals used in semiconductor manufacturing, and thus potentially present in trace concentrations (or more) in spent rinse waters, are not found in municipal water supplies and are not necessarily removed by the conventional UPW production sequence used by semiconductor manufacturers. Some of these contaminants, unique to spent rinse waters, may actually foul the resins and membranes of the UPW system, posing a threat to UPW production and potentially even causing a shutdown.

  15. MODIFIED REVERSE OSMOSIS SYSTEM FOR TREATMENT OF PRODUCED WATERS

    SciTech Connect

    Robert L. Lee; Junghan Dong

    2004-06-03

    This final report of ''Modified Reverse Osmosis System for Treatment of Produced Water,'' DOE project No. DE-FC26-00BC15326 describes work performed in the third year of the project. Several good results were obtained, which are documented in this report. The compacted bentonite membranes were replaced by supported bentonite membranes, which exhibited the same salt rejection capability. Unfortunately, it also inherited the clay expansion problem due to water invasion into the interlayer spaces of the compacted bentonite membranes. We noted that the supported bentonite membrane developed in the project was the first of its kind reported in the literature. An {alpha}-alumina-supported MFI-type zeolite membrane synthesized by in-situ crystallization was fabricated and tested. Unlike the bentonite clay membranes, the zeolite membranes maintained stability and high salt rejection rate even for a highly saline solution. Actual produced brines from gas and oil fields were then tested. For gas fields producing brine, the 18,300 ppm TDS (total dissolved solids) in the produced brine was reduced to 3060 ppm, an 83.3% rejection rate of 15,240 ppm salt rejection. For oilfield brine, while the TDS was reduced from 181,600 ppm to 148,900 ppm, an 18% rejection rate of 32,700 ppm reduction, the zeolite membrane was stable. Preliminary results show the dissolved organics, mainly hydrocarbons, did not affect the salt rejection. However, the rejection of organics was inconclusive at this point. Finally, the by-product of this project, the {alpha}-alumina-supported Pt-Co/Na Y catalytic zeolite membrane was developed and demonstrated for overcoming the two-step limitation of nonoxidation methane (CH{sub 4}) conversion to higher hydrocarbons (C{sub 2+}) and hydrogen (H{sub 2}). Detailed experiments to obtain quantitative results of H{sub 2} generation for various conditions are now being conducted. Technology transfer efforts included five manuscripts submitted to peer-reviewed journals and five conference presentations.

  16. Home Water Treatment Habits and Effectiveness in a Rural Arizona Community

    PubMed Central

    Lothrop, Nathan; Wilkinson, Sarah T.; Verhougstraete, Marc; Sugeng, Anastasia; Loh, Miranda M.; Klimecki, Walter; Beamer, Paloma I.

    2015-01-01

    Drinking water quality in the United States (US) is among the safest in the world. However, many residents, often in rural areas, rely on unregulated private wells or small municipal utilities for water needs. These utilities may violate the Safe Drinking Water Act contaminant guidelines, often because they lack the required financial resources. Residents may use alternative water sources or install a home water treatment system. Despite increased home water treatment adoption, few studies have examined their use and effectiveness in the US. Our study addresses this knowledge gap by examining home water treatment in a rural Arizona community. Water samples were analyzed for metal(loid)s, and home treatment and demographic data were recorded in 31 homes. Approximately 42% of homes treated their water. Independent of source water quality, residents with higher income (OR = 1.25; 95%CI (1.00 – 1.64)) and education levels (OR = 1.49; 95%CI (1.12 – 2.12)) were more likely to treat their water. Some contaminant concentrations were effectively reduced with treatment, while some were not. We conclude that increased educational outreach on contaminant testing and treatment, especially to rural areas with endemic water contamination, would result in a greater public health impact while reducing rural health disparities. PMID:26120482

  17. Chapter 24. emerging technologies for irrigation water treatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several disinfestants that have potential for treating recycled irrigation water are less commonly used or newer developing technologies. Hydrogen peroxide can reduce spread of pathogens in water that contains nutrients or pesticide residues without generating toxic residues. Benefits potentially in...

  18. THE TREATMENT OF CONTAMINATED WATER AT REMEDIAL WOOD PRESERVING SITES

    EPA Science Inventory

    Contaminated groundwater and surface water have posed a great challenge in restoring wood preserving sites to beneficial use. Often contaminated groundwater plumes extend far beyond the legal property limits, adversely impacting drinking water supplies and crop lands. To contain,...

  19. ADVERSE IMPACTS OF WASTE WATER TREATMENT ­ A CASE STUDY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Industrial metal plating processes coat materials with metals, such as chromium, copper and nickel. After the plating process, excess metals are rinsed off and the rinse water is collected and then treated to remove metals prior to discharge of the rinse water into rivers. This waste water is typica...

  20. PACKAGE WATER TREATMENT PLANTS. VOLUME 1. A PERFORMANCE EVALUATION

    EPA Science Inventory

    Many small and rural water systems have both cost and quality problems. Their unit costs tend to be higher because of the small number of connections they service. As shown by the Community Water Supply Survey of 1969 many small systems have trouble meeting minimal drinking water...

  1. ADVANCES IN DRINKING WATER TREATMENT IN THE UNITED STATES

    EPA Science Inventory

    The United States drinking water public health protection goal is to provide water that meets all health-based standards to ninety-five percent of the population served by public drinking water supplies by 2005. In 2002, the level of compliance with some eighty-five health-based ...

  2. ETV REPORT: REMOVAL OF CHEMICAL CONTAMINANTS IN DRINKING WATER — PALL/KINETICO PUREFECTA DRINKING WATER TREATMENT SYSTEM

    EPA Science Inventory

    The Pall/Kinetico Purefecta™ POU drinking water treatment system was tested for removal of aldicarb, benzene, cadmium, carbofuran, cesium, chloroform, dichlorvos, dicrotophos, fenamiphos, mercury, mevinphos, oxamyl, strontium, and strychnine. The Purefecta™ employs several compon...

  3. ETV REPORT: REMOVAL OF CHEMICAL CONTAMINANTS IN DRINKING WATER PALL/KINETICO PUREFECTA DRINKING WATER TREATMENT SYSTEM

    EPA Science Inventory

    The Pall/Kinetico Purefecta POU drinking water treatment system was tested for removal of aldicarb, benzene, cadmium, carbofuran, cesium, chloroform, dichlorvos, dicrotophos, fenamiphos, mercury, mevinphos, oxamyl, strontium, and strychnine. The Purefecta employs several compon...

  4. Effectiveness of water treatment for the removal of Cryptosporidium and Giardia spp.

    PubMed

    Bajer, A; Toczylowska, B; Bednarska, M; Sinski, E

    2012-11-01

    Cryptosporidium and Giardia are intestinal parasites of humans and of many other species of animals. Water constitutes an important route of transmission for human infections in both developed and developing countries. In Poland, contamination of water sources with oocysts/cysts is not routinely monitored and scientific research in this field is scarce. Our aim was to compare the contamination of surface and treated water and thus the success of water treatment processes. Water samples (n=94) of between 30 l (surface water) to over 1000 l for tap water, were taken in the period of 2008-2009 using specially constructed equipment with cartridge filtration (Filta-Max; IDEXX, USA). Immunofluorescent assay, and nested polymerase chain reaction were used for the detection of parasites. Cryptosporidium oocysts were found in 85% of surface water and in 59% of raw (intake) water samples. Oocysts were also detected in treated water (16%) but were absent in samples of swimming pool water. The highest mean number of Cryptosporidium oocysts [geometric mean (GM)=61/10 l] was found in samples of rinsing water. Giardia cysts were observed in 61% of surface water samples, in 6% of raw water and in 19% of treated water, with the highest number of cysts noted in rinsing water samples (GM=70 cysts/10 l). Our study highlights the frequent occurrence of parasites in surface waters in Poland and the effectiveness of water treatment for the removal of parasites from drinking water. PMID:22217301

  5. Concentration of natural radionuclides in raw water and packaged drinking water and the effect of water treatment.

    PubMed

    Manu, Anitha; Santhanakrishnan, V; Rajaram, S; Ravi, P M

    2014-12-01

    The raw water (RW) samples collected from natural sources are subjected to water treatment process, including reverse osmosis (RO), and are packed in bottles as packaged drinking water (PDW). Raw water (21samples) taken from deep wells of Chennai and Secunderabad which are used in the production of PDW, were analysed for (234)U, (235)U, (238)U, (226)Ra, (228)Ra and (210)Pb activity concentrations. Activity Concentrations of (234)U, (235)U, (238)U, (226)Ra, (228)Ra, (210)Pb and (210)Po in PDW were also analysed. The mean activity concentrations of (234)U, (235)U, (238)U, (226)Ra, (228)Ra and (210)Pb in RW at Chennai were 12.1, ?1.3, 7.1, 2.6, 27.5, and 16.3mBq/L respectively. The mean activity concentrations of (234)U, (235)U, (238)U, (226)Ra, (228)Ra and (210)Pb in RW at Secunderabad were found to be 40.9, 1.7, 41.5 84.5, 100.1, and 17.0mBq/L respectively. The mean concentrations of (234)U, (235)U, (238)U, (226)Ra, (228)Ra, (210)Pb and (210)Po in PDW at Chennai were found to be ?1.3, ?1.3, ?1.3, ?0.2, ?1.7, 28.0 and 1.2mBq/L at Secunderabad were found to be ?1.3, ?1.3, 1.7, 4.3, 5.0 and 28.1mBq/L. The study indicated a considerable reduction in the concentration of natural radionuclides due to water treatment. The reduction ratios of RW to PDW for (234)U, (238)U, (226)Ra, (228)Ra were 97, 96, 94 and 95%. In case of (210)Pb, the PDW showed higher concentration of (210)Pb than RW. This was due to its in growth from (222)Rn which was not removed in the RO process. PMID:25223293

  6. Occurrence and elimination of cyanobacterial toxins in drinking water treatment plants

    SciTech Connect

    Hoeger, Stefan J.; Hitzfeld, Bettina C.; Dietrich, Daniel R

    2005-03-15

    Toxin-producing cyanobacteria (blue-green algae) are abundant in surface waters used as drinking water resources. The toxicity of one group of these toxins, the microcystins, and their presence in surface waters used for drinking water production has prompted the World Health Organization (WHO) to publish a provisional guideline value of 1.0 {mu}g microcystin (MC)-LR/l drinking water. To verify the efficiency of two different water treatment systems with respect to reduction of cyanobacterial toxins, the concentrations of MC in water samples from surface waters and their associated water treatment plants in Switzerland and Germany were investigated. Toxin concentrations in samples from drinking water treatment plants ranged from below 1.0 {mu}g MC-LR equiv./l to more than 8.0 {mu}g/l in raw water and were distinctly below 1.0 {mu}g/l after treatment. In addition, data to the worldwide occurrence of cyanobacteria in raw and final water of water works and the corresponding guidelines for cyanobacterial toxins in drinking water worldwide are summarized.

  7. Characterizing the concentration of Cryptosporidium in Australian surface waters for setting health-based targets for drinking water treatment.

    PubMed

    Petterson, S; Roser, D; Deere, D

    2015-09-01

    It is proposed that the next revision of the Australian Drinking Water Guidelines will include 'health-based targets', where the required level of potable water treatment quantitatively relates to the magnitude of source water pathogen concentrations. To quantify likely Cryptosporidium concentrations in southern Australian surface source waters, the databases for 25 metropolitan water supplies with good historical records, representing a range of catchment sizes, land use and climatic regions were mined. The distributions and uncertainty intervals for Cryptosporidium concentrations were characterized for each site. Then, treatment targets were quantified applying the framework recommended in the World Health Organization Guidelines for Drinking-Water Quality 2011. Based on total oocyst concentrations, and not factoring in genotype or physiological state information as it relates to infectivity for humans, the best estimates of the required level of treatment, expressed as log10 reduction values, ranged among the study sites from 1.4 to 6.1 log10. Challenges associated with relying on historical monitoring data for defining drinking water treatment requirements were identified. In addition, the importance of quantitative microbial risk assessment input assumptions on the quantified treatment targets was investigated, highlighting the need for selection of locally appropriate values. PMID:26322774

  8. Nanofiltration/reverse osmosis for treatment of coproduced waters

    SciTech Connect

    Mondal, S.; Hsiao, C.L.; Wickramasinghe, S.R.

    2008-07-15

    Current high oil and gas prices have lead to renewed interest in exploration of nonconventional energy sources such as coal bed methane, tar sand, and oil shale. However oil and gas production from these nonconventional sources has lead to the coproduction of large quantities of produced water. While produced water is a waste product from oil and gas exploration it is a very valuable natural resource in the arid Western United States. Thus treated produced water could be a valuable new source of water. Commercially available nanofiltration and low pressure reverse osmosis membranes have been used to treat three produced waters. The results obtained here indicate that the permeate could be put to beneficial uses such as crop and livestock watering. However minimizing membrane fouling will be essential for the development of a practical process. Field Emission Scanning Electron Microscopy imaging may be used to observe membrane fouling.

  9. ETV REPORT: REMOVAL OF CHEMICAL CONTAMINANTS IN DRINKING WATER ECOWATER SYSTEMS, INC. ERO-R450E WATER TREATMENT SYSTEM

    EPA Science Inventory

    The EcoWater Systems ERO-R450E POU drinking water treatment system was tested for removal of aldicarb, benzene, cadmium, carbofuran, cesium, chloroform, dichlorvos, dicrotophos, fenamiphos, mercury, mevinphos, oxamyl, strontium, and strychnine. The ERO-R450E employs a reverse os...

  10. Pre- and post-treatment techniques for spacecraft water recovery

    NASA Technical Reports Server (NTRS)

    Putnam, David F.; Colombo, Gerald V.; Chullen, Cinda

    1986-01-01

    Distillation-based waste water pretreatment and recovered water posttreatment methods are proposed for the NASA Space Station. Laboratory investigation results are reported for two nonoxidizing urine pretreatment formulas (hexadecyl trimethyl ammonium bromide and Cu/Cr) which minimize the generation of volatile organics, thereby significantly reducing posttreatment requirements. Three posttreatment methods (multifiltration, reverse osmosis, and UV-assisted ozone oxidation) have been identified which appear promising for the removal of organic contaminants from recovered water.

  11. 7 CFR 1780.63 - Sewage treatment and bulk water sales contracts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 12 2010-01-01 2010-01-01 false Sewage treatment and bulk water sales contracts. 1780... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE (CONTINUED) WATER AND WASTE LOANS AND GRANTS Planning, Designing, Bidding, Contracting, Constructing and Inspections § 1780.63 Sewage treatment and bulk...

  12. 7 CFR 1780.63 - Sewage treatment and bulk water sales contracts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 12 2013-01-01 2013-01-01 false Sewage treatment and bulk water sales contracts. 1780... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE (CONTINUED) WATER AND WASTE LOANS AND GRANTS Planning, Designing, Bidding, Contracting, Constructing and Inspections 1780.63 Sewage treatment and bulk...

  13. 7 CFR 1780.63 - Sewage treatment and bulk water sales contracts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 12 2012-01-01 2012-01-01 false Sewage treatment and bulk water sales contracts. 1780... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE (CONTINUED) WATER AND WASTE LOANS AND GRANTS Planning, Designing, Bidding, Contracting, Constructing and Inspections 1780.63 Sewage treatment and bulk...

  14. 7 CFR 1780.63 - Sewage treatment and bulk water sales contracts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 12 2014-01-01 2013-01-01 true Sewage treatment and bulk water sales contracts. 1780... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE (CONTINUED) WATER AND WASTE LOANS AND GRANTS Planning, Designing, Bidding, Contracting, Constructing and Inspections 1780.63 Sewage treatment and bulk...

  15. Water Treatment Plant Operation. Volume I. A Field Study Training Program.

    ERIC Educational Resources Information Center

    California State Univ., Sacramento. School of Engineering.

    The purpose of this water treatment field study training program is to: (1) develop new qualified water treatment plant operators; (2) expand the abilities of existing operators, permitting better service both to employers and public; and (3) prepare operators for civil service and certification examinations (examinations administered by

  16. Water Treatment Plant Operation. Volume II. A Field Study Training Program.

    ERIC Educational Resources Information Center

    California State Univ., Sacramento. School of Engineering.

    The purpose of this water treatment field study training program is to: (1) develop new qualified water treatment plant operators; (2) expand the abilities of existing operators, permitting better service both to employers and public; and (3) prepare operators for civil service and certification examinations (examinations administered by

  17. Water Treatment Plant Operation. Volume I. A Field Study Training Program.

    ERIC Educational Resources Information Center

    California State Univ., Sacramento. School of Engineering.

    The purpose of this water treatment field study training program is to: (1) develop new qualified water treatment plant operators; (2) expand the abilities of existing operators, permitting better service both to employers and public; and (3) prepare operators for civil service and certification examinations (examinations administered by…

  18. Water Treatment Plant Operation. Volume II. A Field Study Training Program.

    ERIC Educational Resources Information Center

    California State Univ., Sacramento. School of Engineering.

    The purpose of this water treatment field study training program is to: (1) develop new qualified water treatment plant operators; (2) expand the abilities of existing operators, permitting better service both to employers and public; and (3) prepare operators for civil service and certification examinations (examinations administered by…

  19. Water Treatment Plant Operation Volume 2. A Field Study Training Program. Revised.

    ERIC Educational Resources Information Center

    California State Univ., Sacramento. School of Engineering.

    The purpose of this water treatment field study training program is to: (1) develop new qualified water treatment plant operators; (2) expand the abilities of existing operators, permitting better service both to employers and public; and (3) prepare operators for civil service and certification examinations (examinations administered by…

  20. Effectiveness and potential toxicological impact of the PERACLEAN Ocean ballast water treatment technology.

    PubMed

    de Lafontaine, Yves; Despatie, Simon-Pierre; Wiley, Chris

    2008-10-01

    The efficacy and the potential toxicological impact of a proposed ballast water treatment (PERACLEAN Ocean) using peracetic acid (PAA) as active substances to control species introduction was assessed in both fresh- and salt water experiments at very cold water temperatures (1-2 degrees C). Levels of PAA gradually declined over the 5-day experiments, while levels of hydrogen peroxide remained relatively stable. The rate of decay of both the PAA and hydrogen peroxide in water was accelerated in the presence of sediments. Water quality properties varied significantly with treatment level with a maximum reduction of pH by 2.0 units and a concomitant 20-fold increase in dissolved organic carbon levels. Living biomass of organisms in treated water was reduced by 99% after 2 days. Results from six toxicological tests revealed very steep dose-response curves of the treatment. The toxic response of treated waters was higher in fresh water than in salt water. The PERACLEAN Ocean treatment may represent an effective technology to treat ballast waters under a wide range of temperature and salinity conditions. The discharge of treated fresh water may however pose some toxicological risk to fresh water receiving environments and to cold waters in particular. PMID:18078993