Sample records for presidio water treatment

  1. Ground-water data for the Salt Basin, Eagle Flat, Red Light Draw, Green River Valley and Presidio Bolson in westernmost Texas

    USGS Publications Warehouse

    White, Donald E.; Gates, Joseph S.; Smith, James T.; Fry, Bonnie J.

    1980-01-01

    From October 1971 through October 1974. the U.S. Geological Survey collected ground-water data in the basins in Texas west of the Pecos River drainage area and northwest of the Big Bend country. The basins included are, from east to west: The Presidio Bolson; the Salt Basin; Green River Valley, Eagle Flat, and Red Light Draw. These data, which were collected in cooperation with the Texas Department of Water Resources (formerly Texas Water Development Board), will provide information for a continuing assessment of water availability within the State.

  2. Ground-water data for the Salt Basin, Eagle Flat, Red Light Draw, Green River Valley, and Presidio Bolson in westernmost Texas

    USGS Publications Warehouse

    White, Donald Edward; Gates, J.S.; Smith, J.T.; Fry, B.J.

    1978-01-01

    From October 1971 through October 1974, the U.S. Geological Survey collected groundwater data in the basins in Texas west of the Pecos River drainage area and northwest of the Big Bend country. The basins included are, from east to west: The Presidio Bolson; the Salt Basin; Green River Valley, Eagle Flat, and Red Light Draw. The data collection program consisted of an inventory of all major irrigation, municipal-supply, and industrial wells; selected stock and domestic wells; and selected springs. Water samples were collected from representative wells and springs for chemical analyses. (Woodard-USGS)

  3. Presidio County State of the Community Reprort 

    E-print Network

    Xiao, Dong; Hwang, Jinuk; McCharen, Rob

    2015-01-01

    STATE OF THE COMMUNITY REPORT PRESIDIO COUNTY, TEXAS Dong Xiao|Jinuk Hwang|Rob McCharen Department of Landscape Architecture & Urban Planning State of the Community Report Presidio County, TX 1 Executive...PRESIDIO MARFA PRESIDIO COUNTY, TEXAS State of the Community Population Economy Housing Environment SWOT Analysis Department of Landscape Architecture & Urban Planning Jinuk Hwang | Robert McCharen | Dong Xiao Presidio County, TX Located...

  4. Water Treatment

    NSDL National Science Digital Library

    2013-12-18

    Water treatment on a large scale enables the supply of clean drinking water to communities. In this activity, learners develop methods to clean a polluted water sample, describe components of a water treatment process, and learn how humans impact Earth's freshwater supply. The activity simulates methods used in real water treatment including aeration, coagulation, sedimentation, filtration and disinfection. This activity would be an excellent adjunct to a guided tour of a local water treatment plant.

  5. Water Treatment

    NSDL National Science Digital Library

    This web site showcases Lenntech's Complete Water treatment and Air filtration solutions. This company designs, manufactures and installs complete air and water treatment system solutions. Lenntech proclaims, "Our wide range of technologies and extended know-how in all water-related sectors will guarantee you a cost-efficient solution meeting your water quality requirements." Whether or not you're looking to purchase one of these fine water treatment systems, the site will still provide beneficial resources about how said systems operate.

  6. Streamflow gains and losses and selected water-quality observations in five subreaches of the Rio Grande/Rio Bravo del Norte from near Presidio to Langtry, Texas, Big Bend area, United States and Mexico, 2006

    USGS Publications Warehouse

    Raines, Timothy H.; Turco, Michael J.; Connor, Patrick J.; Bennett, Jeffery B.

    2012-01-01

    Few historical streamflow and water-quality data are available to characterize the segment of the Rio Grande/Rio Bravo del Norte (hereinafter Rio Grande) extending from near Presidio to near Langtry, Texas. The U.S. Geological Survey, in cooperation with the National Park Service and the Texas Commission on Environmental Quality, collected water-quality and streamflow data from the Rio Grande from near Presidio to near Langtry, Texas, to characterize the streamflow gain and loss and selected constituent concentrations in a 336.3-mile reach of the Rio Grande from near Presidio to near Langtry, Texas. Streamflow was measured at 38 sites and water-quality samples were collected at 20 sites along the Rio Grande in February, March, and June 2006. Streamflow gains and losses over the course of the stream were measured indirectly by computing the differences in measured streamflow between sites along the stream. Water-quality data were collected and analyzed for salinity, dissolved solids, major ions, nutrients, trace elements, and stable isotopes. Selected properties and constituents were compared to available Texas Commission on Environmental Quality general use protection criteria or screening levels. Summary statistics of selected water-quality data were computed for each of the five designated subreaches. Streamflow gain and loss and water-quality constituent concentration were compared for each subreach, rather than the entire segment because of the temporal variation in sample collection caused by controlled releases upstream. Subreach A was determined to be a losing reach, and subreaches B, C, D, and E were determined to be gaining reaches. Compared to concentrations measured in upstream subreaches, downstream subreaches exhibited evidence of dilution of selected constituent concentrations. Subreaches A and B had measured total dissolved solids, chloride, and sulfate exceeding the Texas Commission on Environmental Quality general use protection criteria. Subreaches C, D, and E did not exceed the general use protection criteria for any constituent concentration criteria, but dissolved oxygen concentrations did not meet the general use criteria in these subreaches.

  7. Water Resources Water Quality and Water Treatment

    E-print Network

    Sohoni, Milind

    Water Resources TD 603 Lecture 1: Water Quality and Water Treatment CTARA Indian Institute of Technology, Bombay 2nd November, 2011 #12;OVERVIEW Water Quality WATER TREATMENT PLANTS WATER TREATMENT PLANTS WATER TREATMENT PLANTS WATER TRE OVERVIEW OF THE LECTURE 1. Water Distribution Schemes Hand Pump

  8. Presidio County State of the Community Reprort

    E-print Network

    Xiao, Dong; Hwang, Jinuk; McCharen, Rob

    2015-01-01

    Presidio County, Texas is nestled in far west Texas (Trans-Pecos) next to Big Bend National Park. This county presented a unique challenge due to the limited amount of information available to the general public. Request for information were sent...

  9. 42. Post Engineer Office, Presidio of San Francisco, Letterman Army ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. Post Engineer Office, Presidio of San Francisco, Letterman Army Hospital, X-Ray Department and Second Floor Plan, X-Ray Department Plan, Building 1006. no date. BUILDING 1006. - Presidio of San Francisco, Letterman General Hospital, Building No. 27, Letterman Hospital Complex, Edie Road, San Francisco, San Francisco County, CA

  10. 17. 'BIRDSEYEVIEW, PRESIDIO OF MONTEREY, CAL., JAN. 1938.' No signature, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. 'BIRDSEYEVIEW, PRESIDIO OF MONTEREY, CAL., JAN. 1938.' No signature, photographer probably Anton C. Heidrick. This panoramic view looks west over Soldier Field from the upper floor or roof of the gymnasium. Original cool toned silver gelatin print measures 85.1 cm by 22.4 cm, flush mounted on mat board. - Presidio of Monterey, Soldier Field, Monterey, Monterey County, CA

  11. 22. Post Engineer Office, Presidio of San Francisco, Building # ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Post Engineer Office, Presidio of San Francisco, Building # 1049 Letterman General Hospital. Alterations to EKG Cardiology Clinic. November 1963. BUILDING 1049. - Presidio of San Francisco, Letterman General Hospital, Building No. 12, Letterman Hospital Complex, Edie Road, San Francisco, San Francisco County, CA

  12. 21. Post Engineer Office, Presidio of San Francisco, Letterman Army ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Post Engineer Office, Presidio of San Francisco, Letterman Army Hospital. EKG Cardiology Clinic, Building 1049. December 1955. BUILDING 1049. - Presidio of San Francisco, Letterman General Hospital, Building No. 12, Letterman Hospital Complex, Edie Road, San Francisco, San Francisco County, CA

  13. Water Treatment Process

    NSDL National Science Digital Library

    This interactive diagram allows the user to follow a drop of water from the source through the treatment process. Water may be treated differently in different communities depending on the quality of the water which enters the plant. Groundwater is water located under ground and typically requires less treatment than water from lakes, rivers, and streams. Users are invited to click on each treatment point on the image to see a little information about that treatment point.

  14. Water Treatment Process

    NSDL National Science Digital Library

    In this activity students can follow a drop of water from the source through the treatment process. Stop at each treatment point and unscramble the words to show where the water is along the treatment path. Click on each treatment point on the image to view the unscrambled answer and a little information about that treatment point. The treatment points are: coagulation, sedimentation, filtration, disinfection, and storage.

  15. Acculturation at the La Bahia Mission and Presidio, Goliad, Texas 

    E-print Network

    Kloetzer, Diane Kimberley

    2000-01-01

    In this study ceramics are used to study acculturation at two Spanish colonial sites in Texas. The sites are the Mission Nuestra Senora del Espiritu Santo de Zuniga and the Presidio Nuestra Senora de Loreto. Spanish sites ...

  16. East wing. Elevation of east side along Presidio Avenue, as ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    East wing. Elevation of east side along Presidio Avenue, as seen from the rooftop of the Laurel Inn across the street. - Jewish Community Center of San Francisco, 3200 California Street, San Francisco, San Francisco County, CA

  17. Alternative disinfectant water treatments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alternative disinfestant water treatments are disinfestants not as commonly used by the horticultural industry. Chlorine products that produce hypochlorous acid are the main disinfestants used for treating irrigation water. Chlorine dioxide will be the primary disinfestant discussed as an alternativ...

  18. Drinking Water Treatment

    NSDL National Science Digital Library

    Matt Laposata

    This lesson provides an introduction to the treatment of drinking water to remove harmful or distasteful substances. Topics include the history of treatment and a brief listing of treatment processes. Students can examine a selection of online resources for more detailed information on modern treatment methods and potential contaminants. The lesson includes an activity in which they construct a model treatment plant and treat water that they have 'contaminated' themselves in order to observe firsthand the steps involved in purifying water for human consumption.

  19. 36 CFR 1011.15 - How will the Presidio Trust refer debts to private collection contractors?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Presidio Trust refer debts to private collection contractors...Presidio Trust refer debts to private collection contractors...collection services provided by private collection contractors. See § 1011.9 of this...

  20. 36 CFR 1011.15 - How will the Presidio Trust refer debts to private collection contractors?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...Presidio Trust refer debts to private collection contractors...Presidio Trust refer debts to private collection contractors...collection services provided by private collection contractors. See § 1011.9 of this...

  1. Water Treatment Plant

    NSDL National Science Digital Library

    In most parts of the United States, getting clean, safe water is as easy as turning on a faucet. Generally, this water comes from either groundwater or nearby streams and reservoirs. What most of us never see or have to worry about are the steps required to make this water drinkable. This video segment, adapted from a ZOOM television broadcast, shows how a water treatment facility in Cambridge, Massachusetts purifies its city's water. The segment is two minutes twenty seconds in length.

  2. 36 CFR 1004.10 - Travel on Presidio Trust roads and designated routes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 false Travel on Presidio Trust roads and designated routes. 1004.10 Section... § 1004.10 Travel on Presidio Trust roads and designated routes. (a) Operating...vehicle is prohibited except on Presidio Trust roads and in parking areas. (b) The...

  3. 36 CFR 1004.10 - Travel on Presidio Trust roads and designated routes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 false Travel on Presidio Trust roads and designated routes. 1004.10 Section... § 1004.10 Travel on Presidio Trust roads and designated routes. (a) Operating...vehicle is prohibited except on Presidio Trust roads and in parking areas. (b) The...

  4. 36 CFR 1004.10 - Travel on Presidio Trust roads and designated routes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 false Travel on Presidio Trust roads and designated routes. 1004.10 Section... § 1004.10 Travel on Presidio Trust roads and designated routes. (a) Operating...vehicle is prohibited except on Presidio Trust roads and in parking areas. (b) The...

  5. 36 CFR 1004.10 - Travel on Presidio Trust roads and designated routes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2012-07-01 true Travel on Presidio Trust roads and designated routes. 1004.10 Section... § 1004.10 Travel on Presidio Trust roads and designated routes. (a) Operating...vehicle is prohibited except on Presidio Trust roads and in parking areas. (b) The...

  6. 36 CFR 1004.10 - Travel on Presidio Trust roads and designated routes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 false Travel on Presidio Trust roads and designated routes. 1004.10 Section... § 1004.10 Travel on Presidio Trust roads and designated routes. (a) Operating...vehicle is prohibited except on Presidio Trust roads and in parking areas. (b) The...

  7. Electrotechnologies for water treatment

    SciTech Connect

    Douglas, J.

    1993-03-01

    Water and wastewater utilities face major changes in their treatment systems as a result of recent environmental regulations. Not only do these new rules specify reduction requirements for contaminants not previously regulated, they also target the by-products of chlorination, which has been the basic disinfection technique in this country since the early days of municipal water treatment. As a result, EPRI has been working with the American Water Works Association Research Foundation and the Water Environment Research Foundation to support the development of advanced treatment alternatives and improve energy efficiency at treatment facilities. The work has identified a number of innovative, electrically based treatment technologies that provide the additional capabilities required, promote higher efficiency in treatment processes, and serve electric utilities' demand-side management objectives. 5 refs.

  8. Water Treatment Technology - Filtration.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on filtration provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: purposes of sedimentation basins and flocculation…

  9. Water Treatment Technology - Wells.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on wells provides instructional materials for five competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: dug, driven, and chilled wells, aquifer types, deep well…

  10. Water Treatment Technology - Springs.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on springs provides instructional materials for two competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on spring basin construction and spring protection. For each competency, student…

  11. Water Treatment Technology - Hydraulics.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on hydraulics provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: head loss in pipes in series, function loss in…

  12. Water Treatment Technician

    NSDL National Science Digital Library

    This video, created by ATETV and presented by WGBH, looks at a community college graduate working at a water treatment plant and how the skills he learned helped to prepare them for this career. The video also gives a basic tour of the plant and the processes involved to provide fresh drinking water. This video is helpful for students interested in water treatment technology, or anyone just looking to learn how community colleges can prepare graduates for a career in industry. Educators will also find a background essay, discussion questions, and standards alignment for the material. Running time for the video is 4:16.

  13. NORDIC WASTE WATER TREATMENT SLUDGE TREATMENT

    E-print Network

    -Norway treats source separated household waste (food waste), organic industrial waste (food processingNORDIC WASTE WATER TREATMENT SLUDGE TREATMENT SWEDEN·FINLAND·DENMARK·NORWAY #12;SLUDGE TREATMENT TECHNOLOGY 19 #12;3 Sludge originates from the process of treatment of waste water. Due to the physical

  14. Basic Water Treatment Operation.

    ERIC Educational Resources Information Center

    Ontario Ministry of the Environment, Toronto.

    This manual was developed for use at workshops designed to introduce the fundamentals of water treatment plant operations. The course consists of lecture-discussions and hands-on activities. Each of the fourteen lessons in this document has clearly stated behavioral objectives to tell the trainee what he should know or do after completing that…

  15. DRINKING WATER TREATMENT

    EPA Science Inventory

    The purpose of water treatment is threefold: 1. To improve the aethetic quality ofwater, 2. to remove toxic or health-hazardous chemicals, 3. to remove and/or inactivate any disease causing microorganisms. These objectives should be accomplished using a reasonable safety factor...

  16. 36 CFR 1011.12 - How will the Presidio Trust offset a Federal employee's salary to collect a debt?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...Presidio Trust offset a Federal employee's salary to collect a debt? 1011.12 Section 1011...Presidio Trust offset a Federal employee's salary to collect a debt? (a) Federal salary offset . (1) Salary offset is used...

  17. 36 CFR 1011.12 - How will the Presidio Trust offset a Federal employee's salary to collect a debt?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...Presidio Trust offset a Federal employee's salary to collect a debt? 1011.12 Section 1011...Presidio Trust offset a Federal employee's salary to collect a debt? (a) Federal salary offset. (1) Salary offset is used...

  18. 36 CFR 1011.12 - How will the Presidio Trust offset a Federal employee's salary to collect a debt?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...Presidio Trust offset a Federal employee's salary to collect a debt? 1011.12 Section 1011...Presidio Trust offset a Federal employee's salary to collect a debt? (a) Federal salary offset . (1) Salary offset is used...

  19. PRESIDIO RICE - A NEW LONG GRAIN RICE WITH IMPROVED RATOON CROP POTENTIAL AND MILLING YIELD

    Technology Transfer Automated Retrieval System (TEKTRAN)

    USDA-ARS and TAES have announced the release of a new long grain cultivar for production in the South. Presidio rice was developed from a cross of a Jefferson sibling with Maybelle and Rosemont. Presidio is similar to Cocodrie in height and maturity. It has good sheath blight tolerance, similar to t...

  20. Occupational Analysis: Water Treatment Technician

    NSDL National Science Digital Library

    The Advanced Technology Environmental and Energy Center (ATEEC) has provided this document which includes an overview of general required competencies for water treatment technicians. General areas of competence such as water treatment processes, water sources and water quality are included,as well as specific tasks in each category.Users must download this resource for viewing, which requires a free log-in. There is no cost to download the item.

  1. Treatment of Well Water

    MedlinePLUS

    ... water softener is a device that reduces the hardness of the water. A water softener typically uses sodium or potassium ions to replace calcium and magnesium ions, the ions that create "hardness." Distillation Systems Distillation is a process in which ...

  2. Water treatment and monitor disinfection

    Microsoft Academic Search

    Gianni CAPPELLI; Marco RICCARDI; Salvatore PERRONE; Moreno BONDI; Giulia LIGABUE; Alberto ALBERTAZZI

    2006-01-01

    Water treatment system and dialysis monitors are susceptible to microbial contaminations and pe- riodical disinfection procedures are mandatory to obtain results requested from international stand- ards and guidelines. Several chemical germicides or some physical treatments are on the market validated by device manufacturer according to medical device directives. With time, interfering sub- stances from dialysis device or water are able

  3. Water treatment method

    SciTech Connect

    Martin, F.S.; Silver, G.L.

    1990-02-02

    A method for reducing the concentration of many undesirable metals dissolved in contaminated water, such as waste water. The method involves uniformly reacting the contaminated water with an excess amount of solid particulate calcium sulfite to insolubilize the undesirable metal ions, followed by removal thereof and of the unreacted calcium sulfite. 1 tab.

  4. Water treatment method

    DOEpatents

    Martin, Frank S. (Farmersville, OH); Silver, Gary L. (Centerville, OH)

    1991-04-30

    A method for reducing the concentration of any undesirable metals dissolved in contaminated water, such as waste water. The method involves uniformly reacting the contaminated water with an excess amount of solid particulate calcium sulfite to insolubilize the undesirable metal ions, followed by removal thereof and of the unreacted calcium sulfite.

  5. Technology for Water Treatment

    NASA Technical Reports Server (NTRS)

    1992-01-01

    There are approximately 500,000 water cooling towers in the United States, all of which must be kept clear of "scale" and corrosion and free of pollutants and bacteria. Electron Pure, Ltd. manufactures a hydro cooling tower conditioner as well as an automatic pool sanitizer. The pool sanitizer consists of two copper/silver electrodes placed in a chamber mounted in the pool's recirculation system. The tower conditioner combines the ionization system with a water conditioner, pump, centrifugal solids separator and timer. The system saves water, eliminates algae and operates maintenance and chemical free. The company has over 100 distributors in the U.S. as well as others in 20 foreign countries. The buildup of scale and corrosion is the most costly maintenance problem in cooling tower operation. Jet Propulsion Laboratory successfully developed a non-chemical system that not only curbed scale and corrosion, but also offered advantages in water conservation, cost savings and the elimination of toxic chemical discharge. In the system, ozone is produced by an on-site generator and introduced to the cooling tower water. Organic impurities are oxidized, and the dissolved ozone removes bacteria and scale. National Water Management, a NASA licensee, has installed its ozone advantage systems at some 200 cooling towers. Customers have saved money and eliminated chemical storage and discharge.

  6. Contaminated water treatment

    NASA Technical Reports Server (NTRS)

    Gormly, Sherwin J. (Inventor); Flynn, Michael T. (Inventor)

    2010-01-01

    Method and system for processing of a liquid ("contaminant liquid") containing water and containing urine and/or other contaminants in a two step process. Urine, or a contaminated liquid similar to and/or containing urine and thus having a relatively high salt and urea content is passed through an activated carbon filter to provide a resulting liquid, to remove most of the organic molecules. The resulting liquid is passed through a semipermeable membrane from a membrane first side to a membrane second side, where a fortified drink having a lower water concentration (higher osmotic potential) than the resulting liquid is positioned. Osmotic pressure differential causes the water, but not most of the remaining inorganic (salts) contaminant(s) to pass through the membrane to the fortified drink. Optionally, the resulting liquid is allowed to precipitate additional organic molecules before passage through the membrane.

  7. Surface Water Treatment Workshop Manual.

    ERIC Educational Resources Information Center

    Ontario Ministry of the Environment, Toronto.

    This manual was developed for use at workshops designed to increase the knowledge of experienced water treatment plant operators. Each of the fourteen lessons in this document has clearly stated behavioral objectives to tell the trainee what he should know or do after completing that topic. Areas covered in this manual include: basic water

  8. Water Treatment Technology - Distribution Systems.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on distribution systems provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pipe for distribution systems, types…

  9. Waste water treatment

    SciTech Connect

    Laferty, J.M.; Van Riper, G.G.; Zundel, W.P.

    1980-02-19

    Waste water containing over 2 ppm Mo and at least one heavy metal impurity selected from the group consisting of Fe, Mn, Cu, Zn, Pb, and Cd, and also containing cyanide ion (CN) is treated by passing waste water having an adjusted pH value ranging from about 3 to 4 through an ion-exchange resin column selective to the removal of Mo and provide an ion-exchange effluent containing at least one of said heavy metal impurities and said cyanide ion. The ph value of the effluent is then adjusted to a range of about 7 to 11 sufficient to precipitate the heavy metal impurity having the highest pH requirement for precipitation, following which the precipitate is flocculated and the effluent containing the flocculated precipitate then subjected to electrolysis using insoluble electrodes to form electrolytic oxygen and hydrogen and effect electroflotation of the flocculated precipitate and form a froth thereof which is separated from the effluent by skimming.

  10. Arsenic in water treatment.

    SciTech Connect

    Siegel, Malcolm Dean

    2004-12-01

    Sandia National Laboratories (SNL) is collaborating with the Awwa Research Foundation (AwwaRF) and WERC (A Consortium for Environmental Education and Technology Development) in a program for the development and testing of innovative technologies that have the potential to substantially reduce the costs associated with arsenic removal from drinking water. Sandia National Laboratories will administer contracts placed with AwwaRF and WERC to carry out bench scale studies and economic analyses/outreach activities, respectively. The elements of the AwwaRF program include (1) identification of new technologies, (2) proof-of-concept laboratory studies and, (3) a research program that will meet the other needs of small utilities by providing solutions to small utilities so that they may successfully meet the new arsenic MCL. WERC's activities will include development of an economic analysis tool for Pilot Scale Demonstrations and development of educational training and technical assistance tools. The objective of the Sandia Program is the field demonstration testing of innovative technologies. The primary deliverables of the Sandia program will be engineering analyses of candidate technologies; these will be contained in preliminary reports and final analysis reports. Projected scale-up costs will be generated using a cost model provided by WERC or another suitable model.

  11. Treatment of industrial effluent water

    SciTech Connect

    Levitskii, Yu.N.

    1982-09-01

    This article reports on a thematic exhibition on ''New Developments in Treatment of Natural and Effluent Water'' in the Sanitary-Technical Construction Section at the Exhibition of Achievements of the National Economy of the USSR. The exhibition acquainted visitors with the achievements of leading organizations in different branches of industry with respect to treatment of natural and industrial effluent water. The Kharkov ''Vodkanalproekt'' Institute and the Kharkov affiliate of the All-Union Scientific-Research Institute of Water and Geodesy has jointly developed a ''Polymer-25'' filter for removal of oil products from nonexplosive effluent water discharged by machine building plants. A Baku affiliate has developed a new ShFP-1 screw-type press filter for dewatering the sediments from water treatment plants as well as for sediments from chemical, food, and other types of plants. The State Institute for Applied Chemistry has designed a continuous process plant for treating effluent water and removing toxic organic waste by converting them into mineral salts with high efficiency.

  12. ENVIRONMENTAL ASSESSMENT WASTE WATER TREATMENT MODIFICATIONS

    E-print Network

    Ohta, Shigemi

    ENVIRONMENTAL ASSESSMENT FOR WASTE WATER TREATMENT MODIFICATIONS FOR IMPROVED EFFLUENT COMPLIANCE................................................38 5.3.4 Effects of the Enhanced Treatment Alternative on Water Resources........................39 5.................................................................................................. 21 4.3 Alternative 3 ­ Enhanced Effluent Treatment

  13. Copyright Awwa Research Foundation 2006 Advanced Water Treatment Impacts onAdvanced Water Treatment Impacts on

    E-print Network

    Keller, Arturo A.

    © Copyright Awwa Research Foundation 2006 Advanced Water Treatment Impacts onAdvanced Water Treatment Impacts on EnergyEnergy--Water LinkagesWater Linkages (The Water Utility Perspective)(The WaterKey questions How does the use of advanced waterHow does the use of advanced water treatment affect energy

  14. Coagulant control in water treatment

    Microsoft Academic Search

    1991-01-01

    Optimization of coagulant dosage in water treatment is becoming more critical as a result of increased attention to removal of micropollutants, THM precursors, and pathogens resistant to disinfection. At the same time, the availability of a large number of coagulants, flocculants, and other additives, and the recent introduction of technologies for the continuous characterization of coagulated flows, has increased the

  15. 36 CFR 1011.5 - What interest, penalty charges and administrative costs will the Presidio Trust add to a debt?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...administrative costs when it would be against equity and good conscience or not in the Presidio Trust's best interest to collect...these charges when accrual would be against equity and good conscience or not in the Presidio Trust's best interest. [70...

  16. 36 CFR 1011.5 - What interest, penalty charges and administrative costs will the Presidio Trust add to a debt?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...administrative costs when it would be against equity and good conscience or not in the Presidio Trust's best interest to collect...these charges when accrual would be against equity and good conscience or not in the Presidio Trust's best interest. [70...

  17. Polymers for waste water treatment

    Microsoft Academic Search

    D. Martin; M. Dragusin; M. Radoiu; R. Moraru; A. Radu; C. Oproiu; G. Cojocaru

    Two types of anionic polyelectrolites, co-polymer of the acrylamide-acrylic acid (PA type) and co-polymer of the acrylic acid-vinyl\\u000a acetate (PV type), obtained by gamma and electron beams irradiation, are presented. The experimental results concerning the\\u000a typical characteristics achieved for these polyelectrolites and their applications in real waste water treatments are also\\u000a presented. The influence of the chemical composition of the

  18. Drinking water safely during cancer treatment

    MedlinePLUS

    ... Disease Control and Prevention. A guide to drinking water treatment technologies for household use. http://www.cdc.gov/healthywater/drinking/travel/household_water_treatment.html. Accessed May 7, 2014.

  19. 36 CFR 1002.63 - Boating and water use activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Boating and water use activities. 1002.63...Parks, Forests, and Public Property PRESIDIO TRUST RESOURCE... § 1002.63 Boating and water use activities....

  20. 36 CFR 1002.63 - Boating and water use activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Boating and water use activities. 1002.63...Parks, Forests, and Public Property PRESIDIO TRUST RESOURCE... § 1002.63 Boating and water use activities....

  1. 36 CFR 1002.63 - Boating and water use activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Boating and water use activities. 1002.63...Parks, Forests, and Public Property PRESIDIO TRUST RESOURCE... § 1002.63 Boating and water use activities....

  2. 36 CFR 1002.63 - Boating and water use activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Boating and water use activities. 1002.63...Parks, Forests, and Public Property PRESIDIO TRUST RESOURCE... § 1002.63 Boating and water use activities....

  3. WATER TREATMENT COST CASE STUDY LIBRARY

    EPA Science Inventory

    Resource Purpose: The case study library is a collection of "real-world" examples of detailed water treatment costs for a variety of treatment technologies and water system sizes. This library allows comparisons between EPA's modeled water treatment costs and actual treatme...

  4. Benefits of Ozone Treatment for Bottled Water

    Microsoft Academic Search

    L. Joseph Bollyky

    2002-01-01

    The ozone treatment enhances the water quality of most drinking water in general. However, it is a key and essential treatment for the production of safe, high quality, good tasting, aesthetically pleasing and storage stable bottled water that the consumers have come to expect. The development and adaptation of ozone treatment in the 1970's resolved the troublesome and sometimes embarrassing

  5. 7 CFR 305.22 - Hot water immersion treatment schedules.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...2010-01-01 2010-01-01 false Hot water immersion treatment schedules. ...TREATMENTS Heat Treatments § 305.22 Hot water immersion treatment schedules. ...4 inches below the water's surface in a hot water immersion treatment tank...

  6. Developments in membrane technology for water treatment

    Microsoft Academic Search

    Bjarne Nicolaisen

    2003-01-01

    Membrane technology is widely accepted as a means of producing various qualities of water from surface water, well water, brackish water and seawater. Membrane technology is also used in industrial processes and in industrial wastewater treatment, and lately membrane technology has moved into the area of treating secondary and tertiary municipal wastewater and oil field produced water. In many cases

  7. 36 CFR 1012.9 - What criteria will the Presidio Trust consider in responding to my Touhy Request?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...possibility that the Presidio Trust will become involved in issues that are not related to its mission or programs; (4) Avoid spending public employees' time for private purposes; (5) Avoid any negative cumulative effect of granting similar...

  8. 36 CFR 1012.9 - What criteria will the Presidio Trust consider in responding to my Touhy Request?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...possibility that the Presidio Trust will become involved in issues that are not related to its mission or programs; (4) Avoid spending public employees' time for private purposes; (5) Avoid any negative cumulative effect of granting similar...

  9. Chemisty of water treatment. Second edition

    Microsoft Academic Search

    S. D. Faust; O. M. Aly

    1998-01-01

    This books focuses on the chemical aspects of water quality and water treatment that influence the design of treatment processes. The information in the book covers the removal of organic and inorganic compounds, heavy metals, particulate matter, pathogenic bacteria, protozoans, and viruses from water. In addition, a new chapter is included on aeration technology.

  10. DRINKING WATER TREATMENT PLANT ADVISOR - USER DOCUMENTATION

    EPA Science Inventory

    The Drinking Water Treatment Plant (DWTP) Advisor is a software application which has been designed to provide assistance in the evaluation of drinking water treatment plants. Specifically, this program, which is based on the source document Interim Handbook Optimizing Water Trea...

  11. WATER TREATMENT MODEL FOR POLLUTANT EXPOSURE ASSESSMENT

    EPA Science Inventory

    A mathematical model of potable water treatment for toxic substance removal for use in exposure assessment modeling has been developed. The sedimentation, coagulation-flocculation, filtration, aeration, chemical oxidation, and granular activated carbon adsorption treatment proces...

  12. Reverse osmosis in water treatment for boilers

    Microsoft Academic Search

    Pavel ?uda; Petr Pospíšil; Jaroslava Tenglerová

    2006-01-01

    Intense treatment of feed water solves high demands on a demineralized water quality in the processes involving hot water\\/steam boilers. There are various demands on water quality parameters — its hardness, alkalinity, pH value, carbon dioxide and oxygen content, etc. — according to the type of boiler and its working pressure. Collectively, efficient demineralization and\\/or softening are always inevitable. Every

  13. Water Treatment Technology - General Plant Operation.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on general plant operations provides instructional materials for seven competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: water supply regulations, water plant…

  14. Discharges in water and applications to wasted water treatment

    Microsoft Academic Search

    C. Yamabe; S. Ihara

    2009-01-01

    An electrical discharge in a bubble in water and above the water surface were applied to generate active radicals such as atomic oxygen, ozone and hydroxyl for wasted water treatment. The discharge along the inside of the bubble was optically observed. The onset voltage for different gases was measured with the different water conductivity. The use of discharge above the

  15. Technology for Water Treatment (National Water Management)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The buildup of scale and corrosion is the most costly maintenance problem in cooling tower operation. Jet Propulsion Laboratory successfully developed a non-chemical system that not only curbed scale and corrosion, but also offered advantages in water conservation, cost savings and the elimination of toxic chemical discharge. In the system, ozone is produced by an on-site generator and introduced to the cooling tower water. Organic impurities are oxidized, and the dissolved ozone removes bacteria and scale. National Water Management, a NASA licensee, has installed its ozone advantage systems at some 200 cooling towers. Customers have saved money and eliminated chemical storage and discharge.

  16. Uses of ozone in drinking water treatment

    Microsoft Academic Search

    Rip G. Rice; C. Michael Robson; G. Wade Miller; Archibald G. Hill

    1981-01-01

    Ozone has been used continuously for the treatment of drinking water since 1906, when it was first installed in the city of Nice, France, for disinfection purposes. Although many water treatment plants throughout the world still utilize ozone primarily for disinfection, most modern plants rely on ozone to perform one or more oxidation functions. Applications for ozonation now include oxidation

  17. Handbook of Industrial Water Treatment

    NSDL National Science Digital Library

    This site contains a forty-chapter text including chapters on environmental consideration, aeration, filtration, membrane systems, ion exchange, boiler water systems, cooling water systems, wastewater and gas cleaning systems, and analytical methods and equipment.

  18. Wafer Treatment Using Electrolysis-Ionized Water

    Microsoft Academic Search

    Hidemitsu Aoki; Masaharu Nakamori; Nahomi Aoto; Eiji Ikawa

    1994-01-01

    Electrolysis-ionized water treatment is shown to be useful for removing polystyrene particles from contact holes, silicon surface cleaning and the removal of metal contamination such as copper. Electrolysis-ionized waterhas a controllable pH and a higher oxidation-reduction potential than chemicals. Moreover, this water does notcontain acid or alkaline chemicals, and can easily be neutralized without adding chemicals. Electrolysis-ionized water treatment has

  19. Wafer Treatment Using Electrolysis-Ionized Water

    NASA Astrophysics Data System (ADS)

    Aoki, Hidemitsu; Nakamori, Masaharu; Aoto, Nahomi; Ikawa, Eiji

    1994-10-01

    Electrolysis-ionized water treatment is shown to be useful for removing polystyrene particles from contact holes, silicon surface cleaning and the removal of metal contamination such as copper. Electrolysis-ionized waterhas a controllable pH and a higher oxidation-reduction potential than chemicals. Moreover, this water does notcontain acid or alkaline chemicals, and can easily be neutralized without adding chemicals. Electrolysis-ionized water treatment has great potential for ecologically safe and low cost semiconductor processing.

  20. A Primer on Waste Water Treatment.

    ERIC Educational Resources Information Center

    Department of the Interior, Washington, DC. Federal Water Pollution Control Administration.

    This information pamphlet is for teachers, students, or the general public concerned with the types of waste water treatment systems, the need for further treatment, and advanced methods of treating wastes. Present day pollution control methods utilizing primary and secondary waste treatment plants, lagoons, and septic tanks are described,…

  1. Household Water Treatments in Developing Countries

    ERIC Educational Resources Information Center

    Smieja, Joanne A.

    2011-01-01

    Household water treatments (HWT) can help provide clean water to millions of people worldwide who do not have access to safe water. This article describes four common HWT used in developing countries and the pertinent chemistry involved. The intent of this article is to inform both high school and college chemical educators and chemistry students…

  2. Delta Drinking Water Quality and Treatment Costs

    E-print Network

    Pasternack, Gregory B.

    Delta Drinking Water Quality and Treatment Costs Technical Appendix H Wei-Hsiang Chen Kristine-San Joaquin Delta, prepared by a team of researchers from the Center for Watershed Sciences (University Acknowledgments v Acronyms vi Introduction 1 1. WATER QUALITY IN AND NEAR DELTA 2 Delta Drinking Water Intakes 2

  3. Grey Water Treatment Systems: A Review

    Microsoft Academic Search

    Lina Abu Ghunmi; Grietje Zeeman; Manar Fayyad; Jules B. van Lier

    2011-01-01

    This review aims to discern a treatment for grey water by examining grey water characteristics, reuse standards, technology performance and costs. The review reveals that the systems for treating grey water, whatever its quality, should consist of processes that are able to trap pollutants with a small particle size and convert organic matter to mineralized compounds. For efficient, simple and

  4. Water Treatment Technology - Chemistry/Bacteriology.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on chemistry/bacteriology provides instructional materials for twelve competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: waterborne diseases, water sampling…

  5. Arsenic Removal Technologies for Drinking Water Treatment

    Microsoft Academic Search

    Kuan-Seong Ng; Zaini Ujang; Pierre Le-Clech

    2004-01-01

    Arsenic contamination as a consequence of human activities such as mining and pesticide use is affecting the water resource quality worldwide. Because of the high risk of arsenic exposure, specific water treatment processes are required to meet the anticipated more severe water quality standards. Better understanding of presently available processes is necessary to develop economic, efficient and effective methods for

  6. Organic polyelectrolytes in water treatment

    Microsoft Academic Search

    Brian Bolto; John Gregory

    2007-01-01

    The use of polymers in the production of drinking water is reviewed, with emphasis on the nature of the impurities to be removed, the mechanisms of coagulation and flocculation, and the types of polymers commonly available. There is a focus on polymers for primary coagulation, their use as coagulant aids, in the recycling of filter backwash waters, and in sludge

  7. Evaluating Nanoparticle Breakthrough during Drinking Water Treatment

    PubMed Central

    Chalew, Talia E. Abbott; Ajmani, Gaurav S.; Huang, Haiou

    2013-01-01

    Background: Use of engineered nanoparticles (NPs) in consumer products is resulting in NPs in drinking water sources. Subsequent NP breakthrough into treated drinking water is a potential exposure route and human health threat. Objectives: In this study we investigated the breakthrough of common NPs—silver (Ag), titanium dioxide (TiO2), and zinc oxide (ZnO)—into finished drinking water following conventional and advanced treatment. Methods: NPs were spiked into five experimental waters: groundwater, surface water, synthetic freshwater, synthetic freshwater containing natural organic matter, and tertiary wastewater effluent. Bench-scale coagulation/flocculation/sedimentation simulated conventional treatment, and microfiltration (MF) and ultrafiltration (UF) simulated advanced treatment. We monitored breakthrough of NPs into treated water by turbidity removal and inductively coupled plasma–mass spectrometry (ICP-MS). Results: Conventional treatment resulted in 2–20%, 3–8%, and 48–99% of Ag, TiO2, and ZnO NPs, respectively, or their dissolved ions remaining in finished water. Breakthrough following MF was 1–45% for Ag, 0–44% for TiO2, and 36–83% for ZnO. With UF, NP breakthrough was 0–2%, 0–4%, and 2–96% for Ag, TiO2, and ZnO, respectively. Variability was dependent on NP stability, with less breakthrough of aggregated NPs compared with stable NPs and dissolved NP ions. Conclusions: Although a majority of aggregated or stable NPs were removed by simulated conventional and advanced treatment, NP metals were detectable in finished water. As environmental NP concentrations increase, we need to consider NPs as emerging drinking water contaminants and determine appropriate drinking water treatment processes to fully remove NPs in order to reduce their potential harmful health outcomes. Citation: Abbott Chalew TE, Ajmani GS, Huang H, Schwab KJ. 2013. Evaluating nanoparticle breakthrough during drinking water treatment. Environ Health Perspect 121:1161–1166;?http://dx.doi.org/10.1289/ehp.1306574 PMID:23933526

  8. Treatment of water closet flush water for recycle and reuse

    Microsoft Academic Search

    Clinton E. Parker

    1985-01-01

    Results from the operation of a 37.8 m\\/d extended aeration and sand filtration system in the closed?loop treatment of water closet flush water are presented.The system has operated for four and one?half years at 95 percent recycle. During this period over 30,000 m of flush water was treated and reused. Water inputs into the recycle system resulted from liquid human

  9. MEMBRANES FOR DRINKING WATER TREATMENT

    EPA Science Inventory

    Various treatment technologies have proven effective in controlling halogenated disinfection by-products such as precursor removal and the use of alternative disinfectants. One of the most promising methods for halogenated by-product control includes removal of precursors before ...

  10. INTEGRATED WATER TREATMENT SYSTEM PERFORMANCE EVALUATION

    SciTech Connect

    SEXTON RA; MEEUWSEN WE

    2009-03-12

    This document describes the results of an evaluation of the current Integrated Water Treatment System (IWTS) operation against design performance and a determination of short term and long term actions recommended to sustain IWTS performance.

  11. ESTIMATION OF SMALL SYSTEM WATER TREATMENT COSTS

    EPA Science Inventory

    This report presents cost data for unit processes that are capable of removing contaminants included in the National Interim Primary Drinking Water Regulations. Construction and operation and maintenance cost data are presented for 45 centralized treatment unit processes that are...

  12. Water/Wastewater Treatment Plant Operator Qualifications.

    ERIC Educational Resources Information Center

    Water and Sewage Works, 1979

    1979-01-01

    This article summarizes in tabular form the U.S. and Canadian programs for classification of water and wastewater treatment plant personnel. Included are main characteristics of the programs, educational and experience requirements, and indications of requirement substitutions. (CS)

  13. Water Evaporation Studies in Texas. 

    E-print Network

    Patterson, R. E. (Raleigh Elwood); Bloodgood, Dean W.; Smith, R. L.

    1954-01-01

    Water Evaporation Studies In Texas Isogram showing the relationship and comparison of evapor- ation losses from free-water surfaces and rainfall in Texas. in cooperation with the TEXAS BOARD OF WATER ENGINEERS and the U. S. DEPARTMENT... Brewster 2,100 29' 05' 103' 25' Maravillus Brewster 1,760 29' 30' 102' 50' Presidio Presidio 2,594 29' 30' 104' 25' 11) In cooperation with Lower Colorado River Authority, Austin 12) In cooperation with Water Department, City of Wichita Falls. 13...

  14. PHOTOCATALYTIC TREATMENT OF AIR EMISSIONS RESULTING FROM GROUND-WATER TREATMENT, "GROUND WATER CURRENTS": NEWSLETTER

    EPA Science Inventory

    NEWSLETTER NRMRL-CIN-1727 Gallardo*, V. Photocatalytic Treatment of Air Emissions Resulting from Ground-water Treatment, "Ground Water Currents" EPA/542-N-01-008, Issue 42. 2001. 12/21/2001 A new system for treating off-gas from ground water remediation systems containing ch...

  15. Coagulant-based emergency water treatment

    Microsoft Academic Search

    C. C. Dorea

    2009-01-01

    Emergency water treatment approaches relying on coagulation vary from centralised modular and portable “kits” to “point-of-use” or “household” interventions. Typical coagulation practice in emergencies is reviewed in view of field constraints (e.g. equipment and resources) and contrasted with underlying theory and conventional water treatment procedures. Examples of coagulation in emergencies are also presented based on documented field experiences alongside the

  16. Six decades of industrial water treatment (1915-1975)

    Microsoft Academic Search

    1976-01-01

    An extensive account of water treatment beginning with the internal treatment of boiler water used for steam generation in the teens to the later treatment of cooling water and industrial process water. In the teens external softening of boiler makeup water was recommended by various processes. In the twenties water problems intensified and research on boiler water scaling began and

  17. TREATMENT TECHNOLOGY EVALUATION BRANCH (WATER SUPPLY AND WATER RESOURCES DIVISION)

    EPA Science Inventory

    Research in the Treatment Technology Evaluation Branch (TTEB) is focused on several key problems that face the potable water industry today. These include the formation and removal of disinfection byproducts -- both ozonation DBPs and chlorination DBPs, the removal of pathogenic...

  18. SUMMARY REPORT: SMALL COMMUNITY WATER AND WASTE- WATER TREATMENT

    EPA Science Inventory

    This summary report presents information on the unique needs of small communities facing new water and wastewater treatment requirements. t contains three main sections: technology overviews (each presents a process description, O&M requirements, technology limitations, and finan...

  19. The artificial water cycle: emergy analysis of waste water treatment.

    PubMed

    Bastianoni, Simone; Fugaro, Laura; Principi, Ilaria; Rosini, Marco

    2003-04-01

    The artificial water cycle can be divided into the phases of water capture from the environment, potabilisation, distribution, waste water collection, waste water treatment and discharge back into the environment. The terminal phase of this cycle, from waste water collection to discharge into the environment, was assessed by emergy analysis. Emergy is the quantity of solar energy needed directly or indirectly to provide a product or energy flow in a given process. The emergy flow attributed to a process is therefore an index of the past and present environmental cost to support it. Six municipalities on the western side of the province of Bologna were analysed. Waste water collection is managed by the municipal councils and treatment is carried out in plants managed by a service company. Waste water collection was analysed by compiling a mass balance of the sewer system serving the six municipalities, including construction materials and sand for laying the pipelines. Emergy analysis of the water treatment plants was also carried out. The results show that the great quantity of emergy required to treat a gram of water is largely due to input of non renewable fossil fuels. As found in our previous analysis of the first part of the cycle, treatment is likewise characterised by high expenditure of non renewable resources, indicating a correlation with energy flows. PMID:12817633

  20. Water-conserving cooling tower treatment

    SciTech Connect

    Mathie, A.J. [A.J. Mathie Company, Roy, UT (United States)

    1996-12-31

    Water conservation in cooling towers and evaporative coolers can finally become a reality. Also, fouled closed hot and chilled water systems can be restored to near original efficiency using the same technology. The barrier limiting the traditional water treatment industry from serious involvement in water conservation is the lack of a really good chemical to control scale. Poor scale inhibitors are the reason for a heavy bleed. Minerals concentrated by evaporation is wasted to the sewer while low solids make-up water fills the tower. Water conservation is important because of the increasing usable water shortage, the cost to add infrastructure to deliver increasing amounts of water to accommodate growth and the limitations imposed on disposal to the sewer. Now, due to innovations in chemical treatment, users of cooling towers and evaporative coolers can conserve water. In this presentation the author assumes the audience has some knowledge of traditional water treatment. Except for a few general references to establish common understanding, the author confines his remarks to discussing an advanced technology developed by DIAS, Inc., and the economics of its use.

  1. Drinking Water Treatment: Activated Carbon Filtration

    NSDL National Science Digital Library

    Divorak, Bruce I.

    This site, presented by the University of Nebraska - Lincoln Extension, discusses the principles, processes and requirements of activated carbon filtration systems for the domestic (household) user. The site addresses contaminants removed, those not removed, water testing, principals of treatment and the equipment used in this treatment.

  2. Water Treatment Technology - Cross-Connections.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on cross connections provides instructional materials for two competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on cross connections terminology and control devices. For each…

  3. TREATMENT EFFECTIVENESS: OIL TANKER BALLAST WATER FACILITY

    EPA Science Inventory

    A study dealing with the effectiveness of large-scale treatment of ballast water was conducted at the terminal facility of the TransAlaska Pipeline in Valdez, Alaska. The plant was found to be generally effective in reducing the petroleum content of the ballast water. On the aver...

  4. Biological treatment of public water supplies

    Microsoft Academic Search

    Bruce E. Rittmann; Peter M. Huck; Edward J. Bouwer

    1989-01-01

    A relatively recent development in drinking?water technology is the use of biological treatment to produce a biologically stable water. Biological stability is achieved by removing biodegradable substances — mainly naturally occurring organic polymers, specific organic micropollutants, and ammonium?through the action of selected bacteria. The technology involves immobilization and accumulation of the desired bacteria through natural attachment to solid particles as

  5. Verifying Ballast Water Treatment Performance

    EPA Science Inventory

    The U.S. Environmental Protection Agency, NSF International, Battelle, and U.S. Coast Guard are jointly developing a protocol for verifying the technical performance of commercially available technologies designed to treat ship ballast water for potentially invasive species. The...

  6. Saving Energy, Water, and Money with Efficient Water Treatment Technologies

    SciTech Connect

    Not Available

    2004-06-01

    Reverse Osmosis (RO) is a method of purifying water for industrial processes and human consumption; RO can remove mineral salts as well as contaminants such as bacteria and pesticides. Advances in water treatment technologies have enhanced and complemented the conventional RO process, reducing energy and water consumption, lowering capital and operating costs, and producing purer water. This publication of the Department of Energy's Federal Energy Management Program introduces RO, describes the benefits of high-efficiency reverse osmosis (HERO), and compares HERO with RO/electrodeionization (EDI) technology.

  7. Microwave treatment of naphthenic acids in water.

    PubMed

    Mishra, Sabyasachi; Meda, Venkatesh; Dalai, Ajay K; Headley, John V; Peru, Kerry M; McMartin, Dena W

    2010-08-01

    Naphthenic acids (NAs) are natural constituents of bitumen and crude oil. These compounds are concentrated as part of the oil sands process water (OSPW) during petroleum refining and separation from oil sands. NAs are considered among the major water contaminants in OSPW due to their toxicity and environmental recalcitrance. A laboratory scale microwave system was developed and experiments were conducted to determine the efficiency of NA degradation during microwave treatment. The effects of water source and quality (deionized lab water and river water) and of TiO(2) catalyst in the degradation process were also investigated. Degradation kinetic parameters for both total NAs and individual z-family were calculated. The microwave system degraded OSPW NAs and commercial Fluka NAs in river water in the presence of TiO(2) rapidly, producing half-life values of 3.32 and 3.61 hours, respectively. Toxicity assessments of the NA samples pre-and post-treatment indicated that the microwave system reduced overall toxicity of water containing Fluka NAs from high (5 min. IC(50) v/v = 15.85%) to moderate (5 min. IC(50) v/v = 36.45%) toxicity levels. However, a slight increase in toxicity was noted post-treatment in OSPW NAs. PMID:20623403

  8. Innovations in nanotechnology for water treatment.

    PubMed

    Gehrke, Ilka; Geiser, Andreas; Somborn-Schulz, Annette

    2015-01-01

    Important challenges in the global water situation, mainly resulting from worldwide population growth and climate change, require novel innovative water technologies in order to ensure a supply of drinking water and reduce global water pollution. Against this background, the adaptation of highly advanced nanotechnology to traditional process engineering offers new opportunities in technological developments for advanced water and wastewater technology processes. Here, an overview of recent advances in nanotechnologies for water and wastewater treatment processes is provided, including nanobased materials, such as nanoadsorbents, nanometals, nanomembranes, and photocatalysts. The beneficial properties of these materials as well as technical barriers when compared with conventional processes are reported. The state of commercialization is presented and an outlook on further research opportunities is given for each type of nanobased material and process. In addition to the promising technological enhancements, the limitations of nanotechnology for water applications, such as laws and regulations as well as potential health risks, are summarized. The legal framework according to nanoengineered materials and processes that are used for water and wastewater treatment is considered for European countries and for the USA. PMID:25609931

  9. Innovations in nanotechnology for water treatment

    PubMed Central

    Gehrke, Ilka; Geiser, Andreas; Somborn-Schulz, Annette

    2015-01-01

    Important challenges in the global water situation, mainly resulting from worldwide population growth and climate change, require novel innovative water technologies in order to ensure a supply of drinking water and reduce global water pollution. Against this background, the adaptation of highly advanced nanotechnology to traditional process engineering offers new opportunities in technological developments for advanced water and wastewater technology processes. Here, an overview of recent advances in nanotechnologies for water and wastewater treatment processes is provided, including nanobased materials, such as nanoadsorbents, nanometals, nanomembranes, and photocatalysts. The beneficial properties of these materials as well as technical barriers when compared with conventional processes are reported. The state of commercialization is presented and an outlook on further research opportunities is given for each type of nanobased material and process. In addition to the promising technological enhancements, the limitations of nanotechnology for water applications, such as laws and regulations as well as potential health risks, are summarized. The legal framework according to nanoengineered materials and processes that are used for water and wastewater treatment is considered for European countries and for the USA. PMID:25609931

  10. The influence of waste water treatment on irrigation water quality

    Microsoft Academic Search

    P. Gamito; A. Arsénio; M. L. Faleiro; J. C. Brito; J. Beltrão

    Reclaimed wastewater has been used extensively as a source of irrigation water for centuries. In addition to provide a low\\u000a water source cost, other side benefits include increases in crop yields and decreased reliance on chemical fertilizers. One\\u000a of the main aspects of the wastewater related to its quality is the kind of treatment used. Thus, three wastewater plants\\u000a were

  11. Study of drinking water treatment by ultrafiltration of surface water and its application to China

    Microsoft Academic Search

    Shengji Xia; Jun Nan; Ruiping Liu; Guibai Li

    2004-01-01

    In China, many water supplies depend on conventional water treatment. Due to unfit soil and water conservationin some regions of China, conventional water treatment has showed some defects for the poor quality of water resource. In addition, advances in membrane technology and increasing requirements on water quality have stimulated ultrafiltration (UF) for water treatment. In this research, OF test apparatus

  12. Treatment Technology and Alternative Water Resources

    NASA Astrophysics Data System (ADS)

    Chapman, M. J.

    2014-12-01

    At this point in our settlement of the planet Earth, with over seven billion human inhabitants, there are very few unallocated sources of fresh water. We are turning slowly toward "alternatives" such as municipal and industrial wastewater, saline groundwater, the sea, irrigation return flow, and produced water that comes up with oil and gas deposits from deep beneath the surface of the earth. Slowly turning, not because of a lack in technological ability, but because it takes a large capital investment to acquire and treat these sources to a level at which they can be used. The regulatory system is not geared up for alternative sources and treatment processes. Permitting can be circular, contradictory, time consuming, and very expensive. The purpose for the water, or the value of the product obtained using the water, must be such that the capital and ongoing expense seem reasonable. There are so many technological solutions for recovering water quality that choosing the most reliable, economical, and environmentally sound technology involves unraveling the "best" weave of treatment processes from a tangled knot of alternatives. Aside from permitting issues, which are beyond the topic for this presentation, the "best" weave of processes will be composed of four strands specifically fitted to the local situation: energy, pretreatment, driving force for separation processes, and waste management. A range of treatment technologies will be examined in this presentation with a focus on how the quality of the feed water, available power sources, materials, and waste management opportunities aid in choosing the best weave of treatment technologies, and how innovative use of a wide variety of driving forces are increasing the efficiency of treatment processes.

  13. Evaluation of semidecentralized emergency drinking water treatment.

    PubMed

    Eloidin, Océane; Dorea, Caetano C

    2015-08-24

    This study evaluates the potential for a novel semidecentralized approach that uses coagulant disinfectant products (CDPs) for humanitarian water treatment, by testing two commercially available products (CDP-W and CDP-T). Their performances were evaluated against the relevant water quality treatment objectives (The Sphere Project) under laboratory conditions, using a standardized testing protocol with both synthetic and natural surface test waters. Tests indicated a satisfactory performance by one of the products (CDP-W) with respect to humanitarian water quality objectives, (i.e., free chlorine residual, pH, and turbidity) that was dependent on initial water quality characteristics. Adequate bacterial inactivation (final thermotolerant coliform concentration of < 1 cfu/100 mL) was always attained and log reductions of up to 5 were achieved. The other product (CDP-T) did not exhibit any measurable coagulation and disinfection properties, indicating the variability of product quality and the need to conduct evaluations such as the ones presented in this study. Such results are of relevance to relief agencies delivering water supply interventions. PMID:26121019

  14. Costs of water treatment due to diminished water quality: A case study in Texas

    Microsoft Academic Search

    David Dearmont; Bruce A. McCarl; Deborah A. Tolman

    1998-01-01

    The cost of municipal water treatment due to diminished water quality represents an important component of the societal costs of water pollution. Here the chemical costs of municipal water treatment are expressed as a function of raw surface water quality. Data are used for a 3-year period for 12 water treatment plants in Texas. Results show that when regional raw

  15. Costs of water treatment due to diminished water quality: A case study in Texas

    Microsoft Academic Search

    David Dearmont; Bruce A. McCarl; Deborah A. Tolman

    1998-01-01

    Abstract The cost of municipal water treatment due to diminished water quality represents an important component of the societal costs of water pollution. Here, the chemical costs of municipal water treatment are expressed as a function of raw surface water quality. Data are used for a three year period for 12 water treatment plants in Texas. Results show that when

  16. Technology of water treatment using pulsed electric discharges

    Microsoft Academic Search

    N. A. Yavorovsky; S. S. Peltsman; J. I. Komev; Yu. V. Volkov

    2000-01-01

    The article discusses the variant of construction of water treatment system using electric discharges. The method is based on the use of pulsed‘barrier discharge in water-air medium. This type of discharge is an effective source of ozone, ultraviolet radiation and various active particles. Electric discharge treatment is used as a component of water treatment systems incorporating aeration, electric discharge treatment

  17. Optimized alumina coagulants for water treatment

    Microsoft Academic Search

    May D. Nyman; Thomas A. Stewart

    2012-01-01

    Substitution of a single Ga-atom or single Ge-atom (GaAl.sub.12 and GeAl.sub.12 respectively) into the center of an aluminum Keggin polycation (Al.sub.13) produces an optimal water-treatment product for neutralization and coagulation of anionic contaminants in water. GaAl.sub.12 consistently shows .about.1 order of magnitude increase in pathogen reduction, compared to Al.sub.13. At a concentration of 2 ppm, GaAl.sub.12 performs equivalently to 40

  18. Water Treatment Systems for Long Spaceflights

    NASA Technical Reports Server (NTRS)

    FLynn, Michael T.

    2012-01-01

    Space exploration will require new life support systems to support the crew on journeys lasting from a few days to several weeks, or longer. These systems should also be designed to reduce the mass required to keep humans alive in space. Water accounts for about 80 percent of the daily mass intake required to keep a person alive. As a result, recycling water offers a high return on investment for space life support. Water recycling can also increase mission safety by providing an emergency supply of drinking water, where another supply is exhausted or contaminated. These technologies also increase safety by providing a lightweight backup to stored supplies, and they allow astronauts to meet daily drinking water requirements by recycling the water contained in their own urine. They also convert urine into concentrated brine that is biologically stable and nonthreatening, and can be safely stored onboard. This approach eliminates the need to have a dedicated vent to dump urine overboard. These needs are met by a system that provides a contaminant treatment pouch, referred to as a urine cell or contaminant cell, that converts urine or another liquid containing contaminants into a fortified drink, engineered to meet human hydration, electrolyte, and caloric requirements, using a variant of forward osmosis (FO) to draw water from a urine container into the concentrated fortified drink as part of a recycling stage. An activated carbon pretreatment removes most organic molecules. Salinity of the initial liquid mix (urine plus other) is synergistically used to enhance the precipitation of organic molecules so that activated carbon can remove most of the organics. A functional osmotic bag is then used to remove inorganic contaminants. If a contaminant is processed for which the saline content is different than optimal for precipitating organic molecules, the saline content of the liquid should be adjusted toward the optimal value for that contaminant. A first urine treatment method converts urine into a fortified sports drink, resembling Gatorade, using a first urine cell.

  19. Characterization of drinking water treatment sludge after ultrasound treatment.

    PubMed

    Zhou, Zhiwei; Yang, Yanling; Li, Xing; Zhang, Yang; Guo, Xuan

    2015-05-01

    Ultrasonic technology alone or the combination of ultrasound with alkaline or thermal hydrolysis as pretreatment for anaerobic digestion of activated sludge has been extensively documented. However, there are few reports on ultrasound as pretreatment of drinking water treatment sludge (DWTS), and thereby the characteristic variability of sonicated DWTS has not been fully examined. This research presents a lab-scale study on physical, chemical and biological characteristics of a DWTS sample collected from a water plant after ultrasonic treatment via a bath/probe sonoreactor. By doing this work, we provide implications for using ultrasound as pretreatment of enhanced coagulation of recycling sludge, and for the conditioning of water and wastewater mixed sludge by ultrasound combined with polymers. Our results indicate that the most vigorous DWTS disintegration quantified by particles' size reduction and organic solubilization is achieved with 5 W/ml for 30 min ultra-sonication (specific energy of 1590 kWh/kg TS). The Brunauer, Emmett and Teller (BET) specific surface area of sonicated DWTS flocs increase as ultra-sonication prolongs at lower energy densities (0.03 and 1 W/ml), while decrease as ultra-sonication prolongs at higher energy densities (3 and 5 W/ml). Additionally, the pH and zeta potential of sonicated DWTS slightly varies under all conditions observed. A shorter sonication with higher energy density plays a more effective role in restraining microbial activity than longer sonication with lower energy density. PMID:25443278

  20. Investigation on optimization of conventional drinking water treatment plant

    Microsoft Academic Search

    I. Piri; I. Homayoonnezhad; P. Amirian

    2010-01-01

    Conventional drinking water treatment plant consists of coagulation, flocculation, sedimentation, and filtration and disinfection units. Depending on water quality influent, each unit can be optimized to achieve the desired water quality effluent, both in design and operation stages. A typical water treatment plant has the combination of processes needed to treat the contaminants in the source water treated by the

  1. The New England Water Treatment Technology Assistance CenterThe New England Water Treatment Technology Assistance Center at theat the

    E-print Network

    Raw water Supernatant drain Filter drain & backfill Sand media Support gravel Drain tile Overflow weir11 The New England Water Treatment Technology Assistance CenterThe New England Water Treatment Filtration Treatment Performance #12;22 TACsTACs Mission StatementMission Statement The small public water

  2. Energy requirements for waste water treatment.

    PubMed

    Svardal, K; Kroiss, H

    2011-01-01

    The actual mathematical models describing global climate closely link the detected increase in global temperature to anthropogenic activity. The only energy source we can rely on in a long perspective is solar irradiation which is in the order of 10,000 kW/inhabitant. The actual primary power consumption (mainly based on fossil resources) in the developed countries is in the range of 5 to 10 kW/inhabitant. The total power contained in our nutrition is in the range of 0.11 kW/inhabitant. The organic pollution of domestic waste water corresponds to approximately 0.018 kW/inhabitant. The nutrients contained in the waste water can also be converted into energy equivalents replacing market fertiliser production. This energy equivalent is in the range of 0.009 kW/inhabitant. Hence waste water will never be a relevant source of energy as long as our primary energy consumption is in the range of several kW/inhabitant. The annual mean primary power demand of conventional municipal waste water treatment with nutrient removal is in the range of 0.003-0.015 kW/inhabitant. In principle it is already possible to reduce this value for external energy supply to zero. Such plants should be connected to an electrical grid in order to keep investment costs low. Peak energy demand will be supported from the grid and surplus electric energy from the plant can be is fed to the grid. Zero 'carbon footprint' will not be affected by this solution. Energy minimisation must never negatively affect treatment efficiency because water quality conservation is more important for sustainable development than the possible reduction in energy demand. This argument is strongly supported by economical considerations as the fixed costs for waste water infrastructure are dominant. PMID:22214091

  3. Presidio Ford 

    E-print Network

    Unknown

    2011-09-05

    This paper presents an in-depth survey of motors in a refinery and a chemical plant. The potential for energy and demand savings is then determined and hence the dollar savings using a sliding rate structure currently applicable to the petrochemical...

  4. 5. Water treatment plant, view to N, berm in foreground ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Water treatment plant, view to N, berm in foreground - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  5. 13. Water treatment plant interior view of tanks in control ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Water treatment plant interior view of tanks in control room. View to SW - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  6. 10. Water treatment plant, view to S. 1965 addition is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Water treatment plant, view to S. 1965 addition is in the foreground - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  7. OBLIQUE VIEW OF EAST AND NORTH SIDES OF WATER TREATMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE VIEW OF EAST AND NORTH SIDES OF WATER TREATMENT PLANT, LOCK TENDER'S HOUSE IN BACKGROUND, VIEW TOWARDS SOUTHWEST - Ortona Lock, Lock No. 2, Water Treatment Plant, Caloosahatchee River, Cross-State Canal, Okeechobee Intracoastal Waterway, Ortona, Glades County, FL

  8. 8. Water treatment plant, view to SE, berm in foreground ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Water treatment plant, view to SE, berm in foreground covering settling tank - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  9. 4. Water treatment plant, view to NW, berm in foreground ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Water treatment plant, view to NW, berm in foreground - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  10. 7. Water treatment plant, view to E, berm in foreground ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Water treatment plant, view to E, berm in foreground covering settling tank - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  11. 2. WATER TREATMENT PUMPING AND STORAGE BUILDING, REAR AND RIGHT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. WATER TREATMENT PUMPING AND STORAGE BUILDING, REAR AND RIGHT SIDES, LOOKING SOUTHWEST. - NIKE Missile Base SL-40, Water Treatment & Storage Building, Southern portion of launch area, southeast of Ready Building, Hecker, Monroe County, IL

  12. OBLIQUE VIEW OF SOUTH AND EAST SIDES OF WATER TREATMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE VIEW OF SOUTH AND EAST SIDES OF WATER TREATMENT PLANT, VIEW TOWARDS NORTHWEST - Ortona Lock, Lock No. 2, Water Treatment Plant, Caloosahatchee River, Cross-State Canal, Okeechobee Intracoastal Waterway, Ortona, Glades County, FL

  13. 4. PHOTOCOPY, ARCHITECTURAL DETAILS FOR WATER TREATMENT PUMPING AND STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. PHOTOCOPY, ARCHITECTURAL DETAILS FOR WATER TREATMENT PUMPING AND STORAGE BUILDING. - NIKE Missile Base SL-40, Water Treatment & Storage Building, Southern portion of launch area, southeast of Ready Building, Hecker, Monroe County, IL

  14. 2. Water treatment plant entrance, view to W Fort ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Water treatment plant entrance, view to W - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  15. 6. Water treatment plant, view NE, berm in foreground ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Water treatment plant, view NE, berm in foreground - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  16. OBLIQUE VIEW OF NORTH AND WEST SIDES OF WATER TREATMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE VIEW OF NORTH AND WEST SIDES OF WATER TREATMENT PLANT, FIRE PUMP HOUSE IN BACKGROUND, VIEW TOWARDS SOUTHEAST - Ortona Lock, Lock No. 2, Water Treatment Plant, Caloosahatchee River, Cross-State Canal, Okeechobee Intracoastal Waterway, Ortona, Glades County, FL

  17. 3. Water treatment plant, view to W, detail of door ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Water treatment plant, view to W, detail of door area - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  18. 14. Water treatment plant interior view of chlorination room. View ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Water treatment plant interior view of chlorination room. View to N - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  19. 1. WATER TREATMENT PUMPING AND STORAGE BUILDING, FRONT AND LEFT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. WATER TREATMENT PUMPING AND STORAGE BUILDING, FRONT AND LEFT SIDES, LOOKING NORTHEAST. - NIKE Missile Base SL-40, Water Treatment & Storage Building, Southern portion of launch area, southeast of Ready Building, Hecker, Monroe County, IL

  20. Characterization and stabilization of arsenic in water treatment residuals

    E-print Network

    Wee, Hun Young

    2004-11-15

    The characterization of water treatment residuals containing arsenic was investigated in the first study. Arsenic desorption and leachability from the residuals were the focus of this study. Arsenic leaching from water treatment residuals was found...

  1. Boiler System Efficiency Improves with Effective Water Treatment 

    E-print Network

    Bloom, D.

    1999-01-01

    Water treatment is an important aspect of boiler operation which can affect efficiency or result in damage if neglected. Without effective water treatment, scale can form on boiler tubes, reducing heat transfer, and causing a loss of boiler...

  2. 68 FR 47640 - National Primary Drinking Water Regulations: Long Term 2 Enhanced Surface Water Treatment Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2003-08-11

    ...treatment would be based on the density of Cryptosporidium in the source water. The proposal noted concerns...making site specific source water density estimates. This finding...treatment relates to the source water pathogen density. EPA believes many...

  3. 59 FR- National Primary Drinking Water Regulations: Enhanced Surface Water Treatment Requirements...

    Federal Register 2010, 2011, 2012, 2013, 2014

    1994-07-29

    ...Options for defining pathogen densities in source waters 2. Treatment alternatives...level for similar source water densities. In the absence of dose-response...level of treatment on source water pathogen densities, then the State must...

  4. ACTIVATED CARBON FROM LIGNITE FOR WATER TREATMENT

    SciTech Connect

    Edwin S. Olson; Daniel J. Stepan

    2000-07-01

    High concentrations of humate in surface water result in the formation of excess amounts of chlorinated byproducts during disinfection treatment. These precursors can be removed in water treatment prior to disinfection using powdered activated carbon. In the interest of developing a more cost-effective method for removal of humates in surface water, a comparison of the activities of carbons prepared from North Dakota lignites with those of commercial carbons was conducted. Previous studies indicated that a commercial carbon prepared from Texas lignite (Darco HDB) was superior to those prepared from bituminous coals for water treatment. That the high alkali content of North Dakota lignites would result in favorable adsorptive properties for the very large humate molecules was hypothesized, owing to the formation of larger pores during activation. Since no standard humate test has been previously developed, initial adsorption testing was performed using smaller dye molecules with various types of ionic character. With the cationic dye, methylene blue, a carbon prepared from a high-sodium lignite (HSKRC) adsorbed more dye than the Darco HDB. The carbon from the low-sodium lignite was much inferior. With another cationic dye, malachite green, the Darco HDB was slightly better. With anionic dyes, methyl red and azocarmine-B, the results for the HSKRC and Darco HDB were comparable. A humate test was developed using Aldrich humic acid. The HSKRC and the Darco HDB gave equally high adsorption capacities for the humate (138 mg/g), consistent with the similarities observed in earlier tests. A carbon prepared from a high-sodium lignite from a different mine showed an outstanding improvement (201 mg/g). The carbons prepared from the low-sodium lignites from both mines showed poor adsorption capacities for humate. Adsorption isotherms were performed for the set of activated carbons in the humate system. These exhibited a complex behavior interpreted as resulting from two types of sorption sites. The effect of pH on adsorption was investigated using buffered solutions. The sorption capacity decreased with increasing pH. A study of the effect of activation conditions on the adsorption capacity of the resulting carbon showed that steam activation at 750 C provides the optimum activity with the high-sodium char. An attempt to scale up the carbon production to the 2-kg scale failed to produce the same high activity that was obtained in the 100-g batch unit. Although this research demonstrated that a highly active carbon for water treatment can be produced from high-sodium lignites, much further work is needed to understand what methods and equipment will be needed for large-scale production of this carbon.

  5. VIEW OF BUILDING 124, THE WATER TREATMENT PLANT, LOOKING NORTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF BUILDING 124, THE WATER TREATMENT PLANT, LOOKING NORTHEAST. THE ROCKY FLATS PLANT WATER SUPPLY, TREATMENT, STORAGE, AND DISTRIBUTION SYSTEM HAS OPERATED CONTINUOUSLY SINCE 1953 - Rocky Flats Plant, Water Treatment Plant, West of Third Street, north of Cedar Avenue, Golden, Jefferson County, CO

  6. I. INTRODUCTION Previous research in water treatment has been

    E-print Network

    McMaster University

    I. INTRODUCTION Previous research in water treatment has been varied and extensive. In the past, water treatment research included remote plasma processes, such as ozone, UV and electron processes the knowledge gleaned from past research, PAED seems to be a viable water treatment option. PAED may provide

  7. Applications of nanotechnology in water and wastewater treatment

    E-print Network

    Alvarez, Pedro J.

    Applications of nanotechnology in water and wastewater treatment Xiaolei Qu, Pedro J.J. Alvarez Accepted 11 September 2012 Available online 26 March 2013 Keywords: Nanotechnology Nanomaterials Water. Nanotechnology holds great potential in advancing water and wastewater treatment to improve treatment efficiency

  8. Microbiological quality of drinking water at eight water treatment plants.

    PubMed

    El-Taweel, G E; Shaban, A M

    2001-11-01

    Eight drinking water treatment plants were sampled monthly during one year to evaluate the removal of bacterial indicators, new indicators and some pathogenic bacteria. Six plants are allocated along the Nile River at Cairo segment and the two others on Ismailia Canal. In this study many parameters were determined; the classical bacterial indicators (total bacterial counts at 22 and 37 degrees C, total coliforms, faecal coliforms and faecal streptococci) show the same trend in all plant intakes except faecal streptococci parameter. The numbers of faecal streptococci in plant intakes on the main stream of Nile River ranged from 8 to 250 MPN/100 ml, but the others ranged from 80 to 2700 MPN/100 ml. With regard to new indicators; total yeasts, Candida albicans, Aeromonas hydrophlia and total staphylococci ranged from 10(1) to 10(5), 10(2) to 10(5), 10(2) to 10(5) and 10(2) to 10(3) cfu/100 ml, respectively. In case of pathogens, salmonellae ranged between 10(2) and 10(3) cfu/100 ml, total vibrios varied between 10(2) and 10(4) and the Listeria group ranged from 10(2) to 10(5) cfu/100 ml from the intake samples. All tested samples from the outlet of water treatment plants, which produce drinking water, were free of classical bacterial indicators. So the produced water has a good quality from the bacteriological point, according to national and international regulations. On the other hand, the drinking water from some tested plants had one or more positive parameters of new indicators and pathogenic bacteria. PMID:11798415

  9. 40 CFR 141.83 - Source water treatment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 2010-07-01 false Source water treatment requirements. 141.83 Section...ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Control of Lead and Copper...

  10. 40 CFR 141.83 - Source water treatment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 2013-07-01 false Source water treatment requirements. 141.83 Section...ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Control of Lead and Copper...

  11. 40 CFR 141.83 - Source water treatment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 2011-07-01 false Source water treatment requirements. 141.83 Section...ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Control of Lead and Copper...

  12. 40 CFR 141.83 - Source water treatment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 2014-07-01 false Source water treatment requirements. 141.83 Section...ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Control of Lead and Copper...

  13. 40 CFR 141.83 - Source water treatment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 2012-07-01 false Source water treatment requirements. 141.83 Section...ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Control of Lead and Copper...

  14. Testing of filter technologies for ballast water treatment

    Microsoft Academic Search

    Scott Riley; E. Lemieux; S. Robbins

    2005-01-01

    Growing concern over the content of discharged ballast water necessitates development of technologies which can decontaminate the water before or during discharge. Many types of filtration technologies exist today which may be applicable candidates for the treatment of ships' ballast water. This treatment applies to the removal of organic and inorganic matter found within the ballast water. To adequately evaluate

  15. Optimized alumina coagulants for water treatment

    DOEpatents

    Nyman, May D. (Albuquerque, NM); Stewart, Thomas A. (Albuquerque, NM)

    2012-02-21

    Substitution of a single Ga-atom or single Ge-atom (GaAl.sub.12 and GeAl.sub.12 respectively) into the center of an aluminum Keggin polycation (Al.sub.13) produces an optimal water-treatment product for neutralization and coagulation of anionic contaminants in water. GaAl.sub.12 consistently shows .about.1 order of magnitude increase in pathogen reduction, compared to Al.sub.13. At a concentration of 2 ppm, GaAl.sub.12 performs equivalently to 40 ppm alum, removing .about.90% of the dissolved organic material. The substituted GaAl.sub.12 product also offers extended shelf-life and consistent performance. We also synthesized a related polyaluminum chloride compound made of pre-hydrolyzed dissolved alumina clusters of [GaO.sub.4Al.sub.12(OH).sub.24(H.sub.2O).sub.12].sup.7+.

  16. Magnetic treatment of industrial water. Silica activation

    NASA Astrophysics Data System (ADS)

    Szkatula, A.; Balanda, M.; Kope?, M.

    2002-04-01

    The paper presents two large-scale observations of magnetic treatment of industrial water, aimed at investigating changes in the formation of deposits. First, a four-month experiment is described with two identical 25 kW heat exchangers, where in one case the inlet water was treated by a magneto-hydrodynamic method. Deposits recovered from both exchangers were analyzed chemically, by X-ray diffraction, infrared spectroscopy and PIXE. The amount of deposit for untreated water, composed mostly of calcite, increased exponentially with temperature reaching 20 g/m of tube at the warm end of the heat exchanger. The mass of the deposit for magnetically treated water did not depend on temperature and was only ca. 0.5 g/m of tube. It was composed of mainly noncrystalline silica-rich material. Further results were obtained from the practical installation at three blocks of a 1 GW power plant. The soft, amorphous deposit for magnetically treated water had a specific surface area of 80 m^2/g and an infrared spectrum similar to that of a silicate hydrogel. Therefore, it appeared that, as a result of the passage through the magnetic device, crystallization of carbonates in water was blocked due to initiation of another, competitive process. This process is the activation of the colloidal silica, which will adsorb calcium, magnesium or other metal ions and then precipitate from the solution as the coagulated agglomerate. The most probable mechanism responsible for silica activation is a Lorentz-force induced deformation of the diffuse layer leading to the increased counterion concentration in the adsorption layer of the negatively charged silica.

  17. Recovery of municipal waste incineration bottom ash and water treatment sludge to water permeable pavement materials

    Microsoft Academic Search

    Cheng-Fang Lin; Chung-Hsin Wu; Hsiu-Mai Ho

    2006-01-01

    Water treatment plant sludge and municipal solid waste incinerator bottom ash are non-hazardous residues, and they can be reprocessed to produce useful materials for city public works. In this study, an effort was endeavored to investigate the properties of water permeable bricks made of water treatment sludge and bottom ash without involving an artificial aggregate step. The water treatment plant

  18. Life cycle assessment of water treatment technologies: wastewater and water-reuse in a small town

    Microsoft Academic Search

    M. Ortiz; R. G. Raluy; L. Serra

    2007-01-01

    This paper consists on a global environmental analysis of a waste water treatment (Conventional Activate Sludge System, CAS, designed for 13,200 population equivalent) and some possible additional tertiary treatments allowing water reuse to that purified waters (UF and immersed and external Membrane Biological Reactors, MBR). The environmental assessment of these water treatment technologies has been realized by means of the

  19. Onshore ballast water treatment: a viable option for major ports.

    PubMed

    Pereira, Newton Narciso; Brinati, Hernani Luiz

    2012-11-01

    Ballast water treatment consists of the elimination of exotic species. Currently, the development of alternative methods for this process is directed toward treatment onboard ships. However, we present onshore treatment as a viable alternative for ballast water treatment. We investigated onshore treatment in two iron ore ports with movement capacities of 25 and 90 million tons annually (Mta) that receive 7.5 and 25 million cubic meters annually (Mm(3)) of ballast water, respectively. Discrete event simulation was used as the method of analysis, considering the processes of arrival, berthing, ship loading and capture and treatment of ballast water. We analyzed data from 71 ships operating in these ports to validate our simulation model. We were able to demonstrate that onshore treatment does not impact the cargo capacity, occupation rate or average queuing time of ships at these ports. We concluded that implementation of onshore ballast water treatment may be practicable in ports that receive high volumes of ballast water. PMID:22920715

  20. Costs of water treatment due to diminished water quality: A case study in Texas

    NASA Astrophysics Data System (ADS)

    Dearmont, David; McCarl, Bruce A.; Tolman, Deborah A.

    1998-04-01

    The cost of municipal water treatment due to diminished water quality represents an important component of the societal costs of water pollution. Here the chemical costs of municipal water treatment are expressed as a function of raw surface water quality. Data are used for a 3-year period for 12 water treatment plants in Texas. Results show that when regional raw water contamination is present, the chemical cost of water treatment is increased by 95 per million gallons (per 3785 m3) from a base of 75. A 1% increase in turbidity is shown to increase chemical costs by 0.25%.

  1. Water treatment for industrial boilers with demineralized feedwater

    SciTech Connect

    Robinson, J.O. [BetzDearborn Inc., Horsham, PA (United States)

    1997-12-01

    Despite using demineralized feedwater, water related tube failures still occur in some industrial boilers. The failures occur due to overheating or corrosion. The corrosion may be either caustic or acidic attack. These tube failures can be avoided by employing water treatment programs that minimize deposition and maintain boiler water chemistry that does not become aggressive to the boiler steel when it is concentrated. The best boiler water chemistry to maintain, congruent phosphate-pH treatment, equilibrium phosphate treatment or phosphate treatment, depends on individual system operating conditions. Experience indicates that boiler deposition and boiler water chemistry control are the most significant factors affecting boiler tube failures.

  2. Effect of water treatment processes on Cryptosporidium infectivity

    Microsoft Academic Search

    Alexandra Keegan; David Daminato; Christopher P. Saint; Paul T. Monis

    2008-01-01

    Conventional water treatment processes have the ability to remove Cryptosporidium oocysts through coagulation, flocculation, sedimentation and filtration, provided there is efficient management of plant performance. The potential exists for the breakthrough of oocysts through the treatment train. The effect of the water treatment chemical aluminium sulphate (alum) on Cryptosporidium oocyst infectivity has been assessed using an assay that combines cell

  3. Drinking water treatment processes for removal of Cryptosporidium and Giardia

    Microsoft Academic Search

    Walter Q. Betancourt; Joan B. Rose

    2004-01-01

    Major waterborne cryptosporidiosis and giardiasis outbreaks associated with contaminated drinking water have been linked to evidence of suboptimal treatment. Cryptosporidium parvum oocysts are particularly more resistant than Giardia lamblia cysts to removal and inactivation by conventional water treatment (coagulation, sedimentation, filtration and chlorine disinfection); therefore, extensive research has been focused on the optimization of treatment processes and application of new

  4. Fixed-biofilm reactors applied to waste water treatment and aquacultural water recirculating systems

    Microsoft Academic Search

    J. Bovendeur

    1989-01-01

    Fixed-biofilm waste water treatment may be regarded as one of the oldest engineered biological waste water treatment methods. With the recent introduction of modern packing materials, this type of reactor has received a renewed impuls for implementation in a wide field of water treatment.In this thesis the possibilities are presented for fixed-film post-treatment of anaerobically digested domestic sewage and water

  5. Membrane treatment is versatile — A single treatment facility producing boiler feed, food processing water, and drinking water

    Microsoft Academic Search

    Mark D. Miller; John E. Potts

    1995-01-01

    Membrane treatment is gaining a reputation for consistent and stable performance, which might lead some to the impression that treatment systems utilizing membranes are not versatile. On the contrary, there is a recently completed facility operating in the agricultural area of Southeast Florida which provides boiler feed water, food processing water, and drinking water from a single facility. The versatility

  6. Big waste-treatment job for water hyacinths

    SciTech Connect

    Parkinson, G.

    1981-05-04

    Studies indicate that water hyacinths are at least 50% cheaper for the secondary treatment of sewage compared with activated-sludge plants, not taking into account the potential production of methane from the crop. Ultimately it is hoped that hyacinth aquaculture will permit tertiary treatment of sewage for recovery of potable water. Existing and planned water hyacinth treatment processes in the U.S. are reviewed.

  7. Linking ceragenins to water-treatment membranes to minimize biofouling

    Microsoft Academic Search

    Michael R. Hibbs; Susan Jeanne Altman; Yanshu Feng; Paul B. Savage; Jacob Pollard; Steven S. Branda; Darla Goeres; Kelli Buckingham-Meyer; Shane Stafslien; Christopher Marry; Howland D. T. Jones; Alyssa Lichtenberger; Matthew F. Kirk; Lucas K. McGrath

    2012-01-01

    Ceragenins were used to create biofouling resistant water-treatment membranes. Ceragenins are synthetically produced antimicrobial peptide mimics that display broad-spectrum bactericidal activity. While ceragenins have been used on bio-medical devices, use of ceragenins on water-treatment membranes is novel. Biofouling impacts membrane separation processes for many industrial applications such as desalination, waste-water treatment, oil and gas extraction, and power generation. Biofouling results

  8. ENVIRONMENTAL POLLUTION CONTROL ALTERNATIVES: DRINKING WATER TREATMENT FOR SMALL COMMUNITIES

    EPA Science Inventory

    This document provides information for small system owners, operators, managers, and local decision makers, such as town officials, regarding drinking water treatment requirements and the treatment technologies suitable for small systems. t is not intended to be a comprehensive m...

  9. 50. NORTHERN VIEW OF NONEVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. NORTHERN VIEW OF NON-EVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS IN CENTER, AND EVAPORATIVE WASTE WATER COOLING TOWERS ON RIGHT. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  10. Interrelationship of photooxidation and microfiltration in drinking water treatment

    Microsoft Academic Search

    F. Malek; J. L. Harris; F. A. Roddick

    2006-01-01

    Photooxidation by vacuum ultraviolet radiation (VUV, 254+185nm) was investigated as a pretreatment to break down the natural organic matter (NOM) in surface water and thus reduce fouling in microfiltration systems for drinking water treatment. The behaviour of variously treated waters, namely raw water, VUV-treated water and water with aluminium chlorohydrate as coagulant, were compared in a stirred cell using 0.22?m

  11. Improving the efficiency of clarifiers for coagulation treatment of water

    NASA Astrophysics Data System (ADS)

    Vinogradov, V. N.; Smirnov, B. A.; Zhadan, A. V.; Avan, V. K.

    2010-08-01

    Technological and design possibilities of improving clarifiers for coagulation treatment of water are considered. The results obtained from implementing these possibilities in real devices are presented.

  12. 67 FR 1812 - National Primary Drinking Water Regulations: Long Term 1 Enhanced Surface Water Treatment Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2002-01-14

    ...occurrence in finished drinking water. Cryptosporidium, however...health, occurrence, and water treatment control data regarding...address the health risk of high densities of pathogens in poorer quality source waters than the SWTR addressed...

  13. 62 FR 59486 - National Primary Drinking Water Regulations: Interim Enhanced Surface Water Treatment Rule Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    1997-11-03

    ...depend on the Giardia lamblia density in the source water as determined by monitoring...physical removal or the source water density of viruses. If the filtration...treatment based upon source water pathogen density (alternative B). One...

  14. Industrial water treatment chemicals and processes. Developments since 1978

    Microsoft Academic Search

    Collie

    1983-01-01

    The more than 250 processes on which this book is based relate to various aspects of industrial water treatment. The tightening of standards in recent years for industrial effluents and, subsequently, water quality makes these processes particularly attractive. Waters treated range from boiler water to cooling towers to process effluents and wastewaters; and the chemical agents used and methods of

  15. Long Contact Time Ozanation For Swimming Pool Water Treatment

    Microsoft Academic Search

    D. Eichelsdörfer; J. Jandik

    1985-01-01

    The elimination of contaminants in pool water through the “ozone – activated carbon process” is done stepwise. Sieving, flocculation and filtration steps are followed by ozonation. According to the German standards for the Treatment of Swimming Pool Water, the toxic ozone has to be removed from the water by filtration through an activated carbon layer before the water is brought

  16. TREATMENT OF GREATER-ZAB WATER BY DIRECT FILTRATION

    Microsoft Academic Search

    Shuokr Q. Aziz

    In this research, a water treatment plant is designed to treat Greater-Zab River water by direct filtration. Direct filtration comprises of intakes, coagulation, flocculation, and filtration is not preceded by in-plant sedimentation of flocculated water. To ensure which season is suitable for using direct filtration process; turbidity values of Greater- Zab water recorded throughout fourteen months, October 2004 to May

  17. Produced water treatment by nanofiltration and reverse osmosis membranes

    Microsoft Academic Search

    S. Mondal; S. Ranil Wickramasinghe

    2008-01-01

    Produced water, water that is co-produced during oil and gas manufacturing, represents the largest source of oily wastewaters. Given high oil and gas prices, oil and gas production from non-conventional sources such as tar sands, oil shale and coal bed methane will continue to expand resulting in large quantities of impaired produced water. Treatment of this produced water could improve

  18. Influence of water quality on the embodied energy of drinking water treatment.

    PubMed

    Santana, Mark V E; Zhang, Qiong; Mihelcic, James R

    2014-01-01

    Urban water treatment plants rely on energy intensive processes to provide safe, reliable water to users. Changes in influent water quality may alter the operation of a water treatment plant and its associated energy use or embodied energy. Therefore the objective of this study is to estimate the effect of influent water quality on the operational embodied energy of drinking water, using the city of Tampa, Florida as a case study. Water quality and water treatment data were obtained from the David L Tippin Water Treatment Facility (Tippin WTF). Life cycle energy analysis (LCEA) was conducted to calculate treatment chemical embodied energy values. Statistical methods including Pearson's correlation, linear regression, and relative importance were used to determine the influence of water quality on treatment plant operation and subsequently, embodied energy. Results showed that influent water quality was responsible for about 14.5% of the total operational embodied energy, mainly due to changes in treatment chemical dosages. The method used in this study can be applied to other urban drinking water contexts to determine if drinking water source quality control or modification of treatment processes will significantly minimize drinking water treatment embodied energy. PMID:24517328

  19. Applications of nanotechnology in water and wastewater treatment.

    PubMed

    Qu, Xiaolei; Alvarez, Pedro J J; Li, Qilin

    2013-08-01

    Providing clean and affordable water to meet human needs is a grand challenge of the 21st century. Worldwide, water supply struggles to keep up with the fast growing demand, which is exacerbated by population growth, global climate change, and water quality deterioration. The need for technological innovation to enable integrated water management cannot be overstated. Nanotechnology holds great potential in advancing water and wastewater treatment to improve treatment efficiency as well as to augment water supply through safe use of unconventional water sources. Here we review recent development in nanotechnology for water and wastewater treatment. The discussion covers candidate nanomaterials, properties and mechanisms that enable the applications, advantages and limitations as compared to existing processes, and barriers and research needs for commercialization. By tracing these technological advances to the physicochemical properties of nanomaterials, the present review outlines the opportunities and limitations to further capitalize on these unique properties for sustainable water management. PMID:23571110

  20. Water Treatment: Can You Purify Water for Drinking?

    ERIC Educational Resources Information Center

    Harris, Mary E.

    1996-01-01

    Presents a three-day mini unit on purification of drinking water that uses the learning cycle approach. Demonstrates the typical technology that water companies use to provide high-quality drinking water. (JRH)

  1. Microwave treatment of industrial waste water sludge

    SciTech Connect

    Goodwill, J.E. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    1995-12-31

    Steel mills in the US generate approximately 1 million tons of sludge annually. This is mainly a residue of cooling water, lubricating oils, and metallic fines from hot strip rolling mills and other operations. At present the separation of sludge from the liquid requires large settling tanks, takes several hours of time, and produces a residue that must be disposed of at high cost. The EPRI Center for Materials Production, sponsored by the Electric Power Research Institute (EPRI), has supported development of a microwave based treatment system. This new process, developed by Carnegie Mellon Research Institute of Carnegie Mellon University, and patented by EPRI is 30 times faster, requires 90% less space, and eliminates land-filling by producing materials of value. Electricity usage is only 0.5 kWh per gallon. A review by the American Iron and Steel Institute (AISI) Waste Recycle Technology Task Force of this and various other approaches, concluded that further work on the microwave technology was justified. Subsequently additional work was undertaken toward optimizing the process for treating metallic waste sludges containing lime and polymers. This effort cofunded by EPRI and the AISI was successfully concluded in late 1994. Next a two phase program is being developed to commercialize the process. Phase 1 will demonstrate the technology in a large scale batch mode. Phase 2 will be a commercial scale continuous installation at a steel mill site projected for 1996.

  2. 36 CFR 1002.63 - Boating and water use activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    36 ? Parks, Forests, and Public Property ? 3 ? 2013-07-01 ? 2012-07-01 ? true ? Boating and water use activities. ? 1002.63 ? Section 1002.63 ? Parks, Forests, and Public Property ? PRESIDIO TRUST ? RESOURCE PROTECTION, PUBLIC USE AND RECREATION ? § 1002.63 ? Boating and water use activities....

  3. Economic Comparison of Waste Water Cleaning for Central Waste Water Treatment Plant and Decentralised System with Smaller Waste Water Treatment Plants

    Microsoft Academic Search

    J. ZORKO; D. GORICANEC

    In presented paper two economic analysis of investments for integrated waste water collection and treatment in selected area are presented. The methods of Net present value (NPV) and Capitalised costs (CC) have been used to compare economic efficiency of construction central waste water treatment plant with collecting system and construction of decentralised waste water treatment plants with belonging collecting system

  4. ARSENIC MOBILITY FROM IRON OXIDE SOLIDS PRODUCED DURING WATER TREATMENT

    EPA Science Inventory

    The Arsenic Rule under the Safe Drinking Water Act will require certain drinking water suppliers to add to or modify their existing treatment in order to comply with the new 10 ppb arsenic standard. One of the treatment options is co-precipitation of arsenic with iron. This tre...

  5. 11. Water treatment plant interior view of pipes, stairs, and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Water treatment plant interior view of pipes, stairs, and pump in pump room. View to SW - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  6. Prestorage hot water treatments (immersion, rinsing and brushing)

    Microsoft Academic Search

    Elazar Fallik

    2004-01-01

    This review summarizes the latest developments in hot water immersion treatment (HWT) and hot water rinsing and brushing (HWRB) technologies. These treatments kill pathogens that cause surface decay, while maintaining fruit quality during prolonged storage and marketing. They also are relatively easy to use, have a short operating time, and are efficient in heat transfer. The cost of a typical

  7. 12. Water treatment plant interior view of pipes and pump ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Water treatment plant interior view of pipes and pump in heater room. View to W - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  8. Dairy Waste Water Treatment by Combining Ozonation and Nanofiltration

    Microsoft Academic Search

    Zsuzsanna László; Szabolcs Kertész; Cecilia Hodúr

    2007-01-01

    The aim of this investigation was to examine the applicability of the membrane technique and the effect of preozonation in dairy waste water treatment technology. The best degree of surfactant removal from model anionic surfactant solution by nanofiltration was achieved at 20°C and 40 bar. Investigations on the effects of ozone treatment of the waste water indicated that preozonation decreased the

  9. INORGANIC CHEMICAL CHARACTERIZATION OF WATER TREATMENT PLANT RESIDUALS

    EPA Science Inventory

    The study obtained field data on the inorganic contaminants and constituents in residuals produced by Water Treatment Plants (WTPs). Eight WTPs were studied based on treatment technology, contamination or suspected contamination of raw water, and efficiency in the removal of cont...

  10. PHOSPHATE CHEMICALS FOR BUILDING POTABLE WATER TREATMENT

    EPA Science Inventory

    Buildings can contribute significant quantities of trace metal contamination to drinking water, particularly lead, copper and zinc. Discolored water may also result in corroded galvanized and steel plumbing and after prolonged stagnation times. To protect human health as well as ...

  11. Mobile Emergency Response Water Treatment Technology Results

    EPA Science Inventory

    When natural disasters like hurricanes, floods and earthquakes occur, safe drinking water can be compromised, limited or unavailable. Under such situations, communities have emergency response plans. One of many options for providing safe drinking water during emergency situati...

  12. WATER TREATMENT AT ST. LOUIS, MO

    PubMed Central

    Wall, Edward E.

    1920-01-01

    With three kinds of water, Mississippi, Missouri and Illinois rivers, of different natures, and coming in an infinite variety of mixtures, St. Louis has peculiar water supply problems. This outline of methods will interest water engineers. Of the success of the St. Louis methods, the low mortality rates of the city are evidence. PMID:18010313

  13. Emergency Response and Protection Water Treatment Technologies

    EPA Science Inventory

    The Expeditionary Unit Water Purifier (EUWP) is supported and deployed by NFESC, the TARDEC, and the USBR. The EUWP was deployed to Biloxi, MS after Hurricane Katrina to supply potable water to a hospital, using seawater from the Gulf of Mexico as the source water. The EUWP ...

  14. Outsourcing water treatment chemicals and equipment -- guidelines for success

    SciTech Connect

    Loretitsch, G.A.; Puckorius, P.R. [Puckorius and Associates, Inc., Evergreen, CO (United States); Maxwell, R. [TechKNOWLEDGEY Strategic Group, Boulder, CO (United States)

    1998-12-31

    Outsourcing of water treatment chemicals, services and related equipment is a technique and process available to end users. Outsourcing enables the use of capital for plant equipment expansion and/or modernization of salable products -- not towards utilities. Outsourcing also enables reduced costs of water treatment chemicals and reduced plant labor for applying controlling and evaluating these chemicals. Today, the water business resembles a sort of market bazaar teeming with all variety of players -- equipment makers, specialty chemical producers, analytical monitoring firms, engineers and consultants, service providers, and system integrators. The industry is made up of a vast range of companies whose only real similarity in many cases is the ultimate goal of providing clean water to their varied markets. In recent years. the overall water treatment marketplace has grown dramatically and was recently estimated at $300 billion worldwide in all categories of water and wastewater treatment companies. One study has estimated that the international market could grow to more than $500 billion within just the next four years. Other reports are somewhat less sanguine and predict slightly smaller market sizes. However, no matter how one analyzes the field. one thing has become clear to all observers - the overall water services industry is a growing business whose true economic significance is gaining wider appreciation. Water markets are often broadly broken down into two key segments: (1) Industrial and process water and wastewater treatment; and (2) municipal potable water delivery and sewage treatment. In a simplistic sense, water markets can be divided into the following categories: (1) Heavy industrial process and high-purity water; (2) Light commercial and industrial water; and (3) Commercial and residential drinking water (point of use and water dispensers).

  15. Modelling of coagulant dosage in a water treatment plant

    Microsoft Academic Search

    Claude Gagnon; Bernard P. A. Grandjean; Jules Thibault

    1997-01-01

    The coagulation-flocculation is a major step in the drinkable water treatment process allowing the removal of colloidal particles. The water treatment facilities of the City of Sainte-Foy have been well instrumented and process variables such as temperature, pH, turbidity, conductivity of raw and treated water along with actual coagulant dosage available have been measured and stored each 5 min for

  16. Two-stage treatment reduces water/oil ratio

    SciTech Connect

    Wood, F.; Dairymple, D. (Halliburton Services, Duncan, OK (US)); McKown, K.; Matthews, B. (Halliburton Services, KS (US))

    1990-09-10

    This paper reports how a treatment of amphoteric polymer followed by chrome-complexed anionic polyacrylamide has successfully decreased the water/oil (WOR) ratio of wells producing from the Arbuckle dolomite formation in central Kansas. This technique, the fractured-matrix, water-control (FMWC) treatment, is designed to alter both primary and secondary permeability to water production. In 10 treated wells, the average WOR was reduced by a factor of five.

  17. Ultrafiltration for the reuse of spent filter backwash water from drinking water treatment

    Microsoft Academic Search

    Florian G. Reissmann; Wolfgang Uhl

    2006-01-01

    During most water treatment processes, spent filter backwash water (SFBW) is generated. Reuse of SFBW is of concern because of the possible recycling of heavy metals, precursors for disinfection by-products and microorganisms. Innovations in membrane technology, especially in micro- and ultrafiltration processes, offer a suitable treatment for SFBW in order to guarantee a water quality necessary for reuse. Results from

  18. MODELLING OF COAGULANT DOSAGE IN A WATER TREATMENT PLANT

    Microsoft Academic Search

    N. Valentin; T. Denoeux; F. Fotoohi

    Artificial Neural Network (ANN) techniques are applied to the control of coagulant dosing in a drinking water treatment plant. Coagulant dosing rate is non-linearly correlated to raw water parameters such as turbidity, conductivity, pH, temperature, etc. An important requirement of the application is robustness of the system against erroneous sensor measurements or unusual water characteristics. The hybrid system developed includes

  19. MAGNESIUM CARBONATE - A RECYCLED COAGULANT FROM WATER TREATMENT. CAPSULE REPORT

    EPA Science Inventory

    This Capsule Report explains the new magnesium recycle coagulation system for water treatment, which is based on a combination of water softening and conventional coagulation techniques which can be applied to all types of water. This system offers an alternative approach to chem...

  20. MORINGA OLEIFERA SEEDS AS NATURAL COAGULANT FOR WATER TREATMENT

    Microsoft Academic Search

    Eman N. Ali; Suleyman A. Muyibi; Hamzah M. Salleh

    Developing countries and third world countries are facing potable water supply problems because of inadequate financial resources. The cost of water treatment is increasing and the quality of river water is not stable due to suspended and colloidal particle load caused by land development and high storm runoff during the rainy seasons especially in a country like Malaysia. During the

  1. Direct drinking water treatment by spiral-wound ultrafiltration membranes

    Microsoft Academic Search

    J. C. Mierzwa; I. Hespanhol; M. C. C. da Silva; L. D. B. Rodrigues; C. F. Giorgi

    2008-01-01

    This paper presents the results of a research on direct drinking water treatment through an ultrafiltration pilot plant unit using spiral-wound membranes (3500 MWCO). The source of water is the Guarapiranga Reservoir, an eutrophicated water body located in the metropolitan region of São Paulo, Brazil. The data were collected during a period of almost 3400 h, from August 2005 to

  2. Drinking water treatment residuals: A Review of recent uses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coagulants such as alum [Al2(SO4)3•14H2O], FeCl3, or Fe2(SO4)3 are commonly used to remove particulate and dissolved constituents from water supplies in the production of drinking water. The resulting waste product, called water-treatment residuals (WTR), contains precipitated Al and Fe oxyhydroxide...

  3. Introducing Water-Treatment Subjects into Chemical Engineering Education.

    ERIC Educational Resources Information Center

    Caceres, L.; And Others

    1992-01-01

    Proposes that inclusion of waste water treatment subjects within the chemical engineering curriculum can provide students with direct access to environmental issues from both a biotechnological and an ethical perspective. The descriptive details of water recycling at a copper plant and waste water stabilization ponds exemplify this approach from…

  4. A Review of Chlorine Dioxide in Drinking Water Treatment

    Microsoft Academic Search

    E. Marco Aieta; James D. Berg

    1986-01-01

    There is increased interest in using chlorine dioxide to treat drinking water for trihalomethane control, taste and odor control, oxidation of iron and manganese, and oxidant-enhanced coagulation-sedimentation. This article reviews the physical, chemical, and biological properties of chlorine dioxide as they relate to water treatment. The generation reactions as well as the reactions likely to occur in treated water are

  5. POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT

    Microsoft Academic Search

    V. King

    2000-01-01

    The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability

  6. Cleaning membranes with focused ultrasound beams for drinking water treatment

    Microsoft Academic Search

    Jian-yu Lu; Xi Du; Glenn Lipscomb

    2009-01-01

    Traditional methods for water treatment are not effective to remove micro pollutants such as harmful organics and cannot meet the demand for high-quality drinking water. Membrane technologies are known to produce drinking water of the highest quality. However, membrane fouling is a significant problem, which limits a widespread use of these technologies. Currently, chemical cleaning is used to control fouling,

  7. Desalination and Water Treatment www.deswater.com

    E-print Network

    Messalem, Rami

    of agriculture [1]. Improving the management of water demand by preventing waste and introducing efficient management strategies are implemented, salt accumulates in the root zone unless large volumes of waterDesalination and Water Treatment www.deswater.com 1944-3994 / 1944-3986 © 2009 Desalination

  8. WATER QUALITY IN SOURCE WATER, TREATMENT, AND DISTRIBUTION SYSTEMS

    EPA Science Inventory

    Most drinking water utilities practice the multiple-barrier concept as the guiding principle for providing safe water. This chapter discusses multiple barriers as they relate to the basic criteria for selecting and protecting source waters, including known and potential sources ...

  9. POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect

    V. King

    2000-06-19

    The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of the Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous radiological monitoring of the pool water. The Pool Water Treatment and Cooling System interfaces with the Waste Handling Building System, Site-Generated Radiological Waste Handling System, Site Radiological Monitoring System, Waste Handling Building Electrical System, Site Water System, and the Monitored Geologic Repository Operations Monitoring and Control System.

  10. 36 CFR 1011.13 - How will the Presidio Trust use administrative wage garnishment to collect a debt from a debtor's...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...the requirements of § 1011.4(a)(10) of this part. For debts referred to the FMS under § 1011.9 of this part, the Presidio Trust may authorize the FMS to send a notice informing the debtor that administrative wage garnishment...

  11. INL Bettis Water Treatment Project Report

    SciTech Connect

    Not Available

    2009-06-01

    Bechtel Bettis Atomic Power Laboratory (Bettis), West Mifflin, PA, requested that the Idaho National Laboratory (INL) (Battelle Energy Alliance) perform tests using water simulants and three specified media to determine if those ion-exchange (IX) resins will be effective at removing the plutonium contamination from water. This report details the testing and results of the tests to determine the suitability of the media to treat plutonium contaminated water at near nuetral pH.

  12. Waste Water Treatment From Small Urban Areas

    Microsoft Academic Search

    Ivana Mahríková

    This paper describes some actual specific problems by sewage systems in small urban centres. It is dilemma to find compliance\\u000a with measures, which is following the strict requirements of EU by discharging of waste waters in receiving waters with lack\\u000a of funds required for the construction of new sewage systems and WWTPs in small municipalities. In 2002 a new Water

  13. Costs and water quality effects of wastewater treatment plant centralization

    SciTech Connect

    Macal, C.M.; Broomfield, B.J.

    1980-01-01

    The costs and water quality impacts of two regional configurations of municipal wastewater treatment plants in Northeastern Illinois are compared. In one configuration, several small treatment plants are consolidated into a smaller number of regional facilities. In the other, the smaller plants continue to operate. Costs for modifying the plants to obtain various levels of pollutant removal are estimated using a simulation model that considers the type of equipment existing at the plants and the costs of modifying that equipment to obtain a range of effluent levels for various pollutants. A dynamic water-quality/hydrology simulation model is used to determine the water quality effects of the various treatment technologies and pollutant levels. Cost and water quality data are combined and the cost-effectiveness of the two treatment configurations is compared. The regionalized treatment-plant configuration is found to be the more cost-effective.

  14. Water treatment facilities (excluding wastewater facilities). (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-07-01

    The bibliography contains citations concerning the design, construction, costs, and operation of water treatment facilities. Facilities covered include those that provide drinking water, domestic water, and water for industrial use. Types of water treatment covered include reverse osmosis, chlorination, filtration, and ozonization. Waste water treatment facilities are excluded from this bibliography. (Contains 250 citations and includes a subject term index and title list.)

  15. Treatment of oil-in-water emulsions

    SciTech Connect

    Harrison, R.J.; Presley, C.T.

    1980-01-08

    Petroleum is separated from an ''oil-in-water'' emulsion containing water-soluble polymer prior to refining by adding amphoteric metal cations to the emulsion to form a flocculate and then treating the resulting flocculate with a strong base to recover the oil and metal.

  16. Treatment of oil-in-water emulsions

    SciTech Connect

    Presley, C.T.; Harrison, R.J.

    1980-01-08

    Petroleum is separated from an oil-in-water emulsion containing water-soluble polymer such as polyacrylamide prior to refining by adding amphoteric metal cations (Zn, Al, Sn, and Co) to the emulsion to form a flocculate and then treating the resulting flocculate with a strong base to recover the oil and metal. 11 claims.

  17. Integrated water quality, emergy and economic evaluation of three bioremediation treatment systems for eutrophic water

    EPA Science Inventory

    This study was targeted at ¿nding one or more environmentally efficient, economically feasible and ecologically sustainable bioremediation treatment modes for eutrophic water. Three biological species, i.e. water spinach (Ipomoea aquatica), loach (Misgurus anguillicaudatus) and ...

  18. Decentralised water and wastewater treatment technologies to produce functional water for irrigation

    Microsoft Academic Search

    Adriano Battilani; Michele Steiner; Martin Andersen; Soren Nohr Back; J. Lorenzen; Avi Schweitzer; Anders Dalsgaard; Anita Forslund; Secondo Gola; Wolfram Klopmann; Finn Plauborg; Mathias N. Andersen

    2010-01-01

    The EU project SAFIR aimed to help farmers solve problems related to the use of low quality water for irrigation in a context of increasing scarcity of conventional freshwater resources. New decentralised water treatment devices (prototypes) were developed to allow a safe direct or indirect reuse of wastewater produced by small communities\\/industries or the use of polluted surface water. Water

  19. OZONATION AND BIOLOGICAL STABILITY OF WATER IN AN OPERATING WATER TREATMENT PLANT

    EPA Science Inventory

    Ozonation of drinking water may adversely affect the biological stability of the inished water. his study was designed assess the effect of ozone as a preoxidant on the nutrient status of water treated in a full-scale water treatment plant. he study was conducted over a ten week ...

  20. CAN MEMBRANES BE ACCEPTABLE TREATMENT TECHNOLOGY FOR DRINKING WATER TREATMENT?

    EPA Science Inventory

    Various treatment technologies have proven effective in controlling halogenated disinfection by-products such as precursor removal and the use of alternative disinfectants. ne of the most promising methods for halogenated by-product control includes removal of precursors before d...

  1. Economic crossover parameters for outsourcing water treatment equipment

    SciTech Connect

    Sinha, K.; Khan, S. [Bechtel Power Corp., Gaithersburg, MD (United States)

    1998-12-31

    Outsourcing water treatment systems is an attractive alternative to installing permanent systems. The current industry trend favors leased and outsourced systems for demineralized water applications when water demands are small and no pretreatment system is required. This paper provides economic crossover parameters for power plant applications, taking life cycle costs into consideration, including operation and maintenance (O and M) and capital costs, auxiliary load and heat rate penalties, O and M personnel requirements, and other economic considerations. Furthermore, the paper establishes ground rules for such comparisons between outsourced and permanent water treatment systems considering demineralization of water as well as impact on other power plant systems. Water production costs and $/1,000 gallon cost parameters for water production are presented, with graphical references to the economic parameters discussed.

  2. Water Treatment Systems Make a Big Splash

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In the 1960s, NASA's Manned Space Center (now known as Johnson Space Center) and the Garrett Corporation, Air Research Division, conducted a research program to develop a small, lightweight water purifier for the Apollo spacecraft that would require minimal power and would not need to be monitored around-the-clock by astronauts in orbit. The 9-ounce purifier, slightly larger than a cigarette pack and completely chlorine-free, dispensed silver ions into the spacecraft s water supply to successfully kill off bacteria. A NASA Technical Brief released around the time of the research reported that the silver ions did not impart an unpleasant taste to the water. NASA s ingenuity to control microbial contamination in space caught on quickly, opening the doors for safer methods of controlling water pollutants on Earth.

  3. Hanford facilities tracer study report (315 Water Treatment Facility)

    SciTech Connect

    Ambalam, T. [Kaiser Engineers Hanford Co., Richland, WA (United States)

    1995-04-14

    This report presents the results and findings of a tracer study to determine contact time for the disinfection process of 315 Water Treatment Facility that supplies sanitary water for the 300 Area. The study utilized fluoride as the tracer and contact times were determined for two flow rates. Interpolation of data and short circuiting effects are also discussed. The 315 Water Treatment Facility supplies sanitary water for the 300 Area to various process and domestic users. The Surface Water Treatment Rule (SWTR), outlined in the 1986 Safe Drinking Water Act Amendments enacted by the EPA in 1989 and regulated by the Washington State Department of Health (DOH) in Section 246-290-600 of the Washington Administrative Code (WAC), stipulates filtration and disinfection requirements for public water systems under the direct influence of surface water. The SWTR disinfection guidelines require that each treatment system achieves predetermined inactivation ratios. The inactivation by disinfection is approximated with a measure called CxT, where C is the disinfectant residual concentration and T is the effective contact time of the water with the disinfectant. The CxT calculations for the Hanford water treatment plants were derived from the total volume of the contact basin(s). In the absence of empirical data to support CxT calculations, the DOH determined that the CxT values used in the monthly reports for the water treatment plants on the Hanford site were invalid and required the performance of a tracer study at each plant. In response to that determination, a tracer study will be performed to determine the actual contact times of the facilities for the CxT calculations.

  4. Factors influencing biological treatment of MTBE contaminated ground water

    SciTech Connect

    Stringfellow, William T.; Hines Jr., Robert D.; Cockrum, Dirk K.; Kilkenny, Scott T.

    2001-09-14

    Methyl tert-butyl ether (MTBE) contamination has complicated the remediation of gasoline contaminated sites. Many sites are using biological processes for ground water treatment and would like to apply the same technology to MTBE. However, the efficiency and reliability of MTBE biological treatment is not well documented. The objective of this study was to examine the operational and environmental variables influencing MTBE biotreatment. A fluidized bed reactor was installed at a fuel transfer station and used to treat ground water contaminated with MTBE and gasoline hydrocarbons. A complete set of chemical and operational data was collected during this study and a statistical approach was used to determine what variables were influencing MTBE treatment efficiency. It was found that MTBE treatment was more sensitive to up-set than gasoline hydrocarbon treatment. Events, such as excess iron accumulation, inhibited MTBE treatment, but not hydrocarbon treatment. Multiple regression analysis identified biomass accumulation and temperature as the most important variables controlling the efficiency of MTBE treatment. The influent concentration and loading of hydrocarbons, but not MTBE, also impacted MTBE treatment efficiency. The results of this study suggest guidelines for improving MTBE treatment. Long cell retention times in the reactor are necessary for maintaining MTBE treatment. The onset of nitrification only occurs when long cell retention times have been reached and can be used as an indicator in fixed film reactors that conditions favorable to MTBE treatment exist. Conversely, if the reactor can not nitrify, it is unlikely to have stable MTBE treatment.

  5. Recovery and Reuse of Iron Coagulants in Water Treatment

    Microsoft Academic Search

    Paul E. Pigeon; K. D. Linstedt; E. R. Bennett

    1978-01-01

    Motivated by the difficulties and costs involved in sludge disposal, a laboratory study investigated a combined acidification-sulfide reduction method for recovering iron from water treatment plant sludge.

  6. REMOVAL OF URANIUM FROM DRINKING WATER BY CONVENTIONAL TREATMENT METHODS

    EPA Science Inventory

    The USEPA currently does not regulate uranium in drinking water but will be revising the radionuclide regulations during 1989 and will propose a maximum contaminant level for uranium. The paper presents treatment technology information on the effectiveness of conventional method...

  7. INTERACTIONS OF SILICA PARTICLES IN DRINKING WATER TREATMENT PROCESSES

    EPA Science Inventory

    EPA Identifier: U915331 Title: Interactions of Silica Particles in Drinking Water Treatment Processes Fellow (Principal Investigator): Christina L. Clarkson Institution: Virginia Polytechnic Institute and State University EPA GRANT R...

  8. Generic Protocol for the Verification of Ballast Water Treatment Technology

    EPA Science Inventory

    In anticipation of the need to address performance verification and subsequent approval of new and innovative ballast water treatment technologies for shipboard installation, the U.S Coast Guard and the Environmental Protection Agency?s Environmental Technology Verification Progr...

  9. AERIAL VIEW LOOKING FURTHER SOUTH EAST, VILLAGE CREEK WATER TREATMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL VIEW LOOKING FURTHER SOUTH EAST, VILLAGE CREEK WATER TREATMENT PLANT ON RIGHT SIDE, ENSLEY IN BACKGROUND. - Birmingham Southern Railroad Yard, Thirty-fourth Street, Ensley, Jefferson County, AL

  10. Sacramento River Water Treatment Plant Intake Pier & Access Bridge, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  11. 12. NORTHEAST VIEW OF THE WASTE WATER TREATMENT COMPLEX FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. NORTHEAST VIEW OF THE WASTE WATER TREATMENT COMPLEX FOR THE PRIMARY AND 22 BAR MILLS. - U.S. Steel Duquesne Works, Auxiliary Buildings & Shops, Along Monongahela River, Duquesne, Allegheny County, PA

  12. 51. LOOKING NORTHEAST AT EIMCO WASTE WATER TREATMENT THICKENER No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. LOOKING NORTHEAST AT EIMCO WASTE WATER TREATMENT THICKENER No. 2, ELECTRIC POWERHOUSE No. 2, AND OUTDOOR ELECTRICAL SUBSTATION IN BACKGROUND. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  13. 6. PHOTOCOPY, WATER TREATMENT PUMPING AND STORAGE BUILDING, MISSILE TEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. PHOTOCOPY, WATER TREATMENT PUMPING AND STORAGE BUILDING, MISSILE TEST AND ASSEMBLY BUILDING, GENERATOR BUILDING No. 3, AND WARHEADING BUILDING OF LAUNCH AREA. - NIKE Missile Base SL-40, Beck Road between Nike & M Roads, Hecker, Monroe County, IL

  14. SUMMARY REPORT - SMALL COMMUNITY WATER AND WASTEWATER TREATMENT

    EPA Science Inventory

    This summary report presents information on the unique needs of small communities facing new water and wastewater treatment requirements. t contains three main sections: technology overviews (each presents a process description, O&M requirements, technology limitations, and finan...

  15. Phosphorus Retention Mechanisms of a Water Treatment Residual

    Microsoft Academic Search

    J. A. Ippolito; K. A. Barbarick; D. M. Heil; J. P. Chandler; E. F. Redente

    2003-01-01

    Water treatment residuals (WTRs) are a by-product of municipal drinking water treatment plants and can have the,capacity to adsorb tremendous amounts of P. Understanding the WTR phosphorus ad- sorption process is important for discerning the mechanrism and tenac- ity of P retention. We studied P adsorbing mechanism(s) of an alumi- num-based (A12(SO 4),14H 2O) WTR from Englewood, CO. In a

  16. No Chemical, Zero Bleed Cooling Tower Water Treatment Process

    E-print Network

    Coke, A. L.

    and enhances the magnetic descaling process. The final stage filter separates solids from the water to prevent corrosion from impingement. These solids are automatically purged to the sanitary drain. Clarified water is returned to the sump where..., heat exchangers, etc. in a shorter than normal life span than the equipment is engineered for. CHEMICAL TREATMENT As you know, the conventional chemical treatment includes biocides, corrosion inhibitors, scale inhibitors, and anti-foaming agents...

  17. Online Produced Water Treatment Catalog and Decision Tool

    SciTech Connect

    J. Arthur

    2012-03-31

    The objective of this project was to create an internet-based Water Treatment Technology Catalog and Decision Tool that will increase production, decrease costs and enhance environmental protection. This is to be accomplished by pairing an operator's water treatment cost and capacity needs to specific water treatments. This project cataloged existing and emerging produced water treatment technologies and allows operators to identify the most cost-effective approaches for managing their produced water. The tool captures the cost and capabilities of each technology and the disposal and beneficial use options for each region. The tool then takes location, chemical composition, and volumetric data for the operator's water and identifies the most cost effective treatment options for that water. Regulatory requirements or limitations for each location are also addressed. The Produced Water Treatment Catalog and Decision Tool efficiently matches industry decision makers in unconventional natural gas basins with: 1) appropriate and applicable water treatment technologies for their project, 2) relevant information on regulatory and legal issues that may impact the success of their project, and 3) potential beneficial use demands specific to their project area. To ensure the success of this project, it was segmented into seven tasks conducted in three phases over a three year period. The tasks were overseen by a Project Advisory Council (PAC) made up of stakeholders including state and federal agency representatives and industry representatives. ALL Consulting has made the catalog and decision tool available on the Internet for the final year of the project. The second quarter of the second budget period, work was halted based on the February 18, 2011 budget availability; however previous project deliverables were submitted on time and the deliverables for Task 6 and 7 were completed ahead of schedule. Thus the application and catalog were deployed to the public Internet. NETL did not provide additional funds and work on the project stopped on February 18, 2011. NETL ended the project on March 31, 2012.

  18. Alternative water treatment for cooling towers

    SciTech Connect

    Wilsey, C.A. [Water Clear, Inc., Mound, MN (United States)

    1997-04-01

    Problems commonly found in cooling towers include: calcium scale formation, corrosion, algae and bacterial growth. These problems can inhibit a cooling tower from operating at its most efficient capacity. An energy-saving, cost-efficient method to control each of these problems in tower water will ultimately benefit the owner as well as the environment. Supplemental ionic water purification was developed to overcome the disadvantages associates with a total chemical disinfection system. The concept of supplemental ionic water purification was developed in the early 1900s and later reviewed by NASA in the mid-1960`s. Only in the past seven years have biologists combined copper ions with chlorine to act as a bactericide. The findings have shown that metal compound ions (copper), when absorbed by bacteria, affect the organisms enzyme balance. This combination inhibits the organism`s reproduction and respiration capabilities. This technology has been applied to cooling tower operations as an alternative to a chemical-only regimen.

  19. Process for treatment of waste water

    SciTech Connect

    Benjes, H.H.; Stukenberg, J.R.; Wahbeh, V.N.

    1982-01-19

    A method is provided for reducing the oxygen demand of waste water having a partial organic composition, especially a solution commonly known as MOSTOS which is the waste effluent of a molasses fermentation and distillation process. The waste water is fed into an anaerobic digester near the top thereof so as to flow downwardly through the interior of the digester. The digester is at least partially filled with a high surface area media. The digester contains a microorganism which preferentially produces methane when in contact with the organic material in the waste water and also reduces the oxygen demand of materials therein. Also preferentially, the microorganisms tend to grow on the media surface. Nitrogen and phosphorous containing materials are added as necessary to promote growth of the microorganisms. As the waste water flows downwardly through the digester, methane is released therefrom which bubbles to the surface whereupon the methane is collected for combusting to produce energy. A buffering component may be added to the digester so as to produce an optimum ph for the process. Preferred temperatures of the digesting process are 95/sup 0/ F. And the range of 125/sup 0/ to 130/sup 0/ F. During the process a portion of the biomass of the microorganisms growing on the media surface is sloughed therefrom and settles to the floor of the digester. The sloughed biomass along with a portion of the waste water is recirculated from the bottom of the digester to the top thereof, preferably at a rate of five times the flow of the influent to the digester. An effluent flow is removed from the digester in such a manner as to overflow the top thereof without allowing atmospheric air therein. When necessary to aid in removing biomass from the filter media, the collected methane may be selectively recirculated into the bottom of the digester and bubbled up through the waste water therein.

  20. Acid mine water aeration and treatment system

    DOEpatents

    Ackman, Terry E. (Finleyville, PA); Place, John M. (Bethel Park, PA)

    1987-01-01

    An in-line system is provided for treating acid mine drainage which basically comprises the combination of a jet pump (or pumps) and a static mixer. The jet pump entrains air into the acid waste water using a Venturi effect so as to provide aeration of the waste water while further aeration is provided by the helical vanes of the static mixer. A neutralizing agent is injected into the suction chamber of the jet pump and the static mixer is formed by plural sections offset by 90 degrees.

  1. Linking ceragenins to water-treatment membranes to minimize biofouling.

    SciTech Connect

    Hibbs, Michael R.; Altman, Susan Jeanne; Feng, Yanshu (Brigham Young University, Provo, Utah); Savage, Paul B. (Brigham Young University, Provo, Utah); Pollard, Jacob (Brigham Young University, Provo, Utah); Branda, Steven S.; Goeres, Darla (Montana State University, Bozeman, MT); Buckingham-Meyer, Kelli (Montana State University, Bozeman, MT); Stafslien, Shane (North Dakota State University, Fargo, ND); Marry, Christopher; Jones, Howland D. T.; Lichtenberger, Alyssa; Kirk, Matthew F.; McGrath, Lucas K. (LMATA, Albuquerque, NM)

    2012-01-01

    Ceragenins were used to create biofouling resistant water-treatment membranes. Ceragenins are synthetically produced antimicrobial peptide mimics that display broad-spectrum bactericidal activity. While ceragenins have been used on bio-medical devices, use of ceragenins on water-treatment membranes is novel. Biofouling impacts membrane separation processes for many industrial applications such as desalination, waste-water treatment, oil and gas extraction, and power generation. Biofouling results in a loss of permeate flux and increase in energy use. Creation of biofouling resistant membranes will assist in creation of clean water with lower energy usage and energy with lower water usage. Five methods of attaching three different ceragenin molecules were conducted and tested. Biofouling reduction was observed in the majority of the tests, indicating the ceragenins are a viable solution to biofouling on water treatment membranes. Silane direct attachment appears to be the most promising attachment method if a high concentration of CSA-121a is used. Additional refinement of the attachment methods are needed in order to achieve our goal of several log-reduction in biofilm cell density without impacting the membrane flux. Concurrently, biofilm forming bacteria were isolated from source waters relevant for water treatment: wastewater, agricultural drainage, river water, seawater, and brackish groundwater. These isolates can be used for future testing of methods to control biofouling. Once isolated, the ability of the isolates to grow biofilms was tested with high-throughput multiwell methods. Based on these tests, the following species were selected for further testing in tube reactors and CDC reactors: Pseudomonas ssp. (wastewater, agricultural drainage, and Colorado River water), Nocardia coeliaca or Rhodococcus spp. (wastewater), Pseudomonas fluorescens and Hydrogenophaga palleronii (agricultural drainage), Sulfitobacter donghicola, Rhodococcus fascians, Rhodobacter katedanii, and Paracoccus marcusii (seawater), and Sphingopyxis spp. (groundwater). The testing demonstrated the ability of these isolates to be used for biofouling control testing under laboratory conditions. Biofilm forming bacteria were obtained from all the source water samples.

  2. 40 CFR 749.68 - Hexavalent chromium-based water treatment chemicals in cooling systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 false Hexavalent chromium-based water treatment chemicals in cooling systems...CONTINUED) TOXIC SUBSTANCES CONTROL ACT WATER TREATMENT CHEMICALS Air Conditioning...749.68 Hexavalent chromium-based water treatment chemicals in cooling...

  3. 40 CFR 749.68 - Hexavalent chromium-based water treatment chemicals in cooling systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 false Hexavalent chromium-based water treatment chemicals in cooling systems...CONTINUED) TOXIC SUBSTANCES CONTROL ACT WATER TREATMENT CHEMICALS Air Conditioning...749.68 Hexavalent chromium-based water treatment chemicals in cooling...

  4. 40 CFR 749.68 - Hexavalent chromium-based water treatment chemicals in cooling systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 false Hexavalent chromium-based water treatment chemicals in cooling systems...CONTINUED) TOXIC SUBSTANCES CONTROL ACT WATER TREATMENT CHEMICALS Air Conditioning...749.68 Hexavalent chromium-based water treatment chemicals in cooling...

  5. 40 CFR 749.68 - Hexavalent chromium-based water treatment chemicals in cooling systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 false Hexavalent chromium-based water treatment chemicals in cooling systems...CONTINUED) TOXIC SUBSTANCES CONTROL ACT WATER TREATMENT CHEMICALS Air Conditioning...749.68 Hexavalent chromium-based water treatment chemicals in cooling...

  6. 40 CFR 749.68 - Hexavalent chromium-based water treatment chemicals in cooling systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 false Hexavalent chromium-based water treatment chemicals in cooling systems...CONTINUED) TOXIC SUBSTANCES CONTROL ACT WATER TREATMENT CHEMICALS Air Conditioning...749.68 Hexavalent chromium-based water treatment chemicals in cooling...

  7. 40 CFR 403.19 - Provisions of specific applicability to the Owatonna Waste Water Treatment Facility.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...applicability to the Owatonna Waste Water Treatment Facility. 403.19 Section...applicability to the Owatonna Waste Water Treatment Facility. (a) For the...discharging to the Owatonna Waste Water Treatment Facility in...

  8. 40 CFR 403.19 - Provisions of specific applicability to the Owatonna Waste Water Treatment Facility.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...applicability to the Owatonna Waste Water Treatment Facility. 403.19 Section...applicability to the Owatonna Waste Water Treatment Facility. (a) For the...discharging to the Owatonna Waste Water Treatment Facility in...

  9. 43 CFR 3904.40 - Long-term water treatment trust funds.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...2011-10-01 false Long-term water treatment trust funds. 3904.40... § 3904.40 Long-term water treatment trust funds. (a) The...continuation of long-term treatment to achieve water quality standards and...

  10. 43 CFR 3904.40 - Long-term water treatment trust funds.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...2014-10-01 false Long-term water treatment trust funds. 3904.40... § 3904.40 Long-term water treatment trust funds. (a) The...continuation of long-term treatment to achieve water quality standards and...

  11. 40 CFR 403.19 - Provisions of specific applicability to the Owatonna Waste Water Treatment Facility.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...applicability to the Owatonna Waste Water Treatment Facility. 403.19 Section...applicability to the Owatonna Waste Water Treatment Facility. (a) For the...discharging to the Owatonna Waste Water Treatment Facility in...

  12. 43 CFR 3904.40 - Long-term water treatment trust funds.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...2013-10-01 false Long-term water treatment trust funds. 3904.40... § 3904.40 Long-term water treatment trust funds. (a) The...continuation of long-term treatment to achieve water quality standards and...

  13. 40 CFR 403.19 - Provisions of specific applicability to the Owatonna Waste Water Treatment Facility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...applicability to the Owatonna Waste Water Treatment Facility. 403.19 Section...applicability to the Owatonna Waste Water Treatment Facility. (a) For the...discharging to the Owatonna Waste Water Treatment Facility in...

  14. 40 CFR 403.19 - Provisions of specific applicability to the Owatonna Waste Water Treatment Facility.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...applicability to the Owatonna Waste Water Treatment Facility. 403.19 Section...applicability to the Owatonna Waste Water Treatment Facility. (a) For the...discharging to the Owatonna Waste Water Treatment Facility in...

  15. 43 CFR 3904.40 - Long-term water treatment trust funds.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...2012-10-01 false Long-term water treatment trust funds. 3904.40... § 3904.40 Long-term water treatment trust funds. (a) The...continuation of long-term treatment to achieve water quality standards and...

  16. MANUAL: GROUND-WATER AND LEACHATE TREATMENT SYSTEMS

    EPA Science Inventory

    This manual was developed for remedial design engineers and regulatory personnel who oversee the ex situ ground water or leachate treatment efforts of the regulated community. The manual can be used as a treatment technology screening tool in conjunction with other references. Mo...

  17. Biological black water treatment combined with membrane separation

    Microsoft Academic Search

    Ellen van Voorthuizen; Arie Zwijnenburg; Walter van der Meer; Hardy Temmink

    2008-01-01

    Separate treatment of black (toilet) water offers the possibility to recover energy and nutrients. In this study three combinations of biological treatment and membrane filtration were compared for their biological and membrane performance and nutrient conservation: a UASB followed by effluent membrane filtration, an anaerobic MBR and an aerobic MBR. Methane production in the anaerobic systems was lower than expected.

  18. Application of data mining and artificial modeling for coagulant dosage of water treatment plants corresponding to water quality

    Microsoft Academic Search

    Hyeon Bael; Dae-Won Choi; Seng-Tai Lee; Yejin Kim; Sungshin Kim

    2004-01-01

    Shortage of water is gradually accelerated because a high standard of living is required and water resources are rapidly run dry. Therefore, effective water treatment is necessary to retain the required quality and amount of water. The general treatment includes coagulation, flocculation, filtering, and disinfections. Coagulation, flocculation, and disinfections are major parts of the water treatment processes. In this paper,

  19. The future for electrocoagulation as a localised water treatment technology

    Microsoft Academic Search

    Peter K. Holt; Geoffrey W. Barton; Cynthia A. Mitchell

    2005-01-01

    Electrocoagulation is an electrochemical method of treating polluted water whereby sacrificial anodes corrode to release active coagulant precursors (usually aluminium or iron cations) into solution. Accompanying electrolytic reactions evolve gas (usually as hydrogen bubbles) at the cathode.Electrocoagulation has a long history as a water treatment technology having been employed to remove a wide range of pollutants. However electrocoagulation has never

  20. Selenium Adsorption To Aluminum-Based Water Treatment Residuals

    EPA Science Inventory

    Aluminum-based water treatment residuals (WTR) can adsorb water-and soil-borne P, As(V), As(III), and perchlorate, and may be able to adsorb excess environmental selenium. WTR, clay minerals, and amorphous aluminum hydroxide were shaken for 24 hours in selenate or selenite solut...

  1. USEPA'S RESEARCH EFFORTS IN SMALL DRINKING WATER TREATMENT TECHNOLOGIES

    EPA Science Inventory

    Currently, in the United States there are approximately 50,000 small community and 130,000 non-community systems providing water to over 25 million people. The drinking water treatment systems at these locations are not always adequate to comply with current and pending regulati...

  2. BIOLOGICAL PROCESSES IN THE TREATMENT OF MUNICIPAL WATER SUPPLIES

    EPA Science Inventory

    The objective of this project was to study the use of Biologically Enhanced Granular Activated Carbon (BEGAC) technology in European water treatment plants and to determine its advantages and disadvantages for use in the United States. Seven European water works were visited in w...

  3. REVERSE OSMOSIS FIELD TEST: TREATMENT OF COPPER CYANIDE RINSE WATERS

    EPA Science Inventory

    Field tests of reverse osmosis (RO) were conducted on copper cyanide rinse waters at two different sites: Whyco Chromium Co. and New England Plating Co. At both sites, closed-loop treatment was used with plating chemicals recycled to the bath and purified water recycled to the ri...

  4. Benchmarking in the Dutch Waste-Water Treatment Sector

    Microsoft Academic Search

    Remco J. Admiraal; G. Jan van Helden

    2003-01-01

    The Dutch water boards have recently completed a performance measurement and evaluation project for waste-water treatment. This project was intended to strengthen the boards' accountability to their stakeholders and to identify starting points for performance improvement. The Balanced Scorecard was used as a framework to develop a broad set of performance indicators. This article describes the benchmarking project and how

  5. Use of horizontal flow roughing filtration in drinking water treatment

    Microsoft Academic Search

    A. Jafari Dastanaie; G. R. Nabi Bidhendi; T. Nasrabadi; R. Habibi; H. Hoveidi

    In order to evaluate the feasibility of implementation of horizontal-flow roughing filtration for drinking water treatment a pilot was designed and run at the bank of Zayandehroud river near the village of Chamkhalifeh. Pilot running was performed in summer 2003 (July, August and September), when the quality of river water was in relatively worst condition. The filter is comprised from

  6. WATER TREATMENT BY HETEROGENEOUS PHOTOCATALYSIS AN OVERVIEW1

    Microsoft Academic Search

    Radwan A. Al-Rasheed

    Photocatalysis process, as an environmental application is a relatively novel subject with tremendous potential in the near future. This paper describes the basics of heterogeneous photocatalysis, mainly on TiO2 and the application of photocatalytic processes to water purification and treatment. The paper also reviews more than 50 references covering the wide scale of heterogeneous water phase applications. Finally, a short

  7. RECOVERY OF LIME AND MAGNESIUM IN POTABLE WATER TREATMENT

    EPA Science Inventory

    A hard, turbid surface water was successfully treated using the magnesium carbonate process in a 2 mgd pilot plant at the treatment works of Water District No. 1 of Johnson County, Kansas, for one year during 1975 and 1976. During this study, froth flotation was used to separate ...

  8. Catalytic membrane reactor for water and wastewater treatment

    Microsoft Academic Search

    Samuel Heng

    2006-01-01

    A double membrane reactor was fabricated and assessed for continuous treatment of water containing organic contaminants by ozonation. This innovative reactor consisted of a zeolite membrane prepared on the inner surface of a porous a-alumina support, which served as water selective extractor and active contactor, and a porous stainless membrane which was the ozone gas diffuser. The coupling of membrane

  9. Selenium adsorption to aluminum-based water treatment residuals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aluminum-based water treatment residuals (WTR) can adsorb water- and soil-borne P, As(V), As(III), and perchlorate, and may be able to adsorb excess environmental selenium. WTR, clay minerals, and amorphous aluminum hydroxide were shaken for 24 hours in selenate or selenite solutions at pH values o...

  10. Alkaline industrial waters and wetlands: prospects for effective treatment

    E-print Network

    Heal, Kate

    1 Alkaline industrial waters and wetlands: prospects for effective treatment Will Mayes1 & Jon(OH)2 Ca2+ + 2OH- · NaOH-derived alkalinity at some sites: Bayer Process sources Alkaline leachates pentavalent form prevails Extremely alkaline waters Drainage from a former lime works at Harpur Hill near

  11. ECONOMIC ASSESSMENT OF WASTE WATER AQUACULTURE TREATMENT SYSTEMS

    EPA Science Inventory

    This study attempted to ascertain the economic viability of aquaculture as an alternative to conventional waste water treatment systems for small municipalities in the Southwestern region of the United States. A multiple water quality objective level cost-effectiveness model was ...

  12. Biological Processes in Drinking Water Treatment

    Microsoft Academic Search

    Edward J. Bouwer; Patricia B. Crowe

    1988-01-01

    Biological processes have the potential to remove pollutants that may be ineffectively removed by conventional treatment, such as biodegradable organics, synthetic organic compounds, ammonia, nitrate, iron, and manganese. Biooxidation of organic matter and ammonia decreases available substrates for microbial regrowth in distribution systems, reduces tastes and odors, and decreases the amount of precursor available to form disinfection by-products. Biological removal

  13. DRINKING WATER TREATMENT USING SLOW SAND FILTRATION

    EPA Science Inventory

    Recent re-interest in slow sand filtration was brought about by the needs for small communities to install treatment technologies that are effective, less costly, and easier to operate and maintain than the more sophisticated rapid sand filters. These simpler technologies for sma...

  14. Treatment Strategies for Lead in Drinking Water

    EPA Science Inventory

    Lead pipes are capable of lasting hundreds of years. Conservatively, there are over 12 million, still serving drinking water in the US. Probably, this is a substantial underestimate. Leaded solder joining copper pipe abounds. Leaded brasses have dominated the materials used for...

  15. PERFORMANCE CHARACTERISTICS OF PACKAGE WATER TREATMENT PLANTS

    EPA Science Inventory

    This study was undertaken to collect reliable onsite information on the quality of treated water produced by package plants. Six plants in operation year around were selected to be representative of those serving small populations and were monitored to assess their performance. P...

  16. Effect of Ultrasound on Sludge from Water Treatment Plant

    NASA Astrophysics Data System (ADS)

    Kim, Young U.; Ha, Junsoo; Yoon, Ki Yong; Lee, Seung-Hyun

    2004-10-01

    In this study, we investigated the effect of ultrasound on the reduction in the amount of heavy metals and the dewaterability of sludge from a water treatment plant. The investigation involved laboratory experiments, which were conducted under different conditions, including the energy levels of ultrasonic waves and treatment time. Results of the study show that ultrasound reduces the amount of heavy metals and enhances the dewaterability of sludge significantly. The degree of enhancement varies with ultrasonic energy and treatment time.

  17. Current and Long-Term Effects of Delta Water Quality on Drinking Water Treatment Costs from Disinfection Byproduct Formation

    E-print Network

    Chen, Wei-Hsiang; Haunschild, Kristine; Lund, Jay R.; Fleenor, William E.

    2010-01-01

    2007). Coagulation is common in most water treatment plants;Coagulation already exists in most water treatment plants totreatment plants that treat surface water com- monly remove DBP precursors through enhanced coagulation (

  18. A Movable Combined Water Treatment Facility for Rainwater Harvesting

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Liao, L.

    2003-12-01

    Alarming water shortage and increased water scarcity world wide has led to increased interests in alternative water sources. Rainwater harvesting is one of them which is getting more and more attention. There is a huge potential for generalization and extension of rainwater harvesting system as an alternative water supply. This is especially important for arid and semi-arid regions where the water shortage blocks further social, economical development. Earlier laboratory experiments and field study showed that harvested rainwater requires treatments of different degrees in order to meet the WHO drinking water standards. The main focus of this study is to ascertain the quality of stored rainwater for drinking purposes with emphasis on water disinfection and pollutants removal. A movable, low-cost, fully functional small scale treatment facility is proposed and tested under simulated field condition. A number of actual and potential hazardous pollutants were identified in the collected water samples together with laboratory test. The corresponding water purification procedure and fresh-keeping methods are discussed. The final proposal of this movable facility needs to be further examined to achieve optimal combined treatment efficiency.

  19. MSWT-01, flood disaster water treatment solution from common ideas

    NASA Astrophysics Data System (ADS)

    Ananto, Gamawan; Setiawan, Albertus B.; Z, Darman M.

    2013-06-01

    Indonesia has a lot of potential flood disaster places with clean water problems faced. Various solution programs always initiated by Government, companies CSR, and people sporadical actions to provide clean water; with their advantages and disadvantages respectively. One solution is easy to operate for instance, but didn't provide adequate capacity, whereas the other had ideal performance but more costly. This situation inspired to develop a water treatment machine that could be an alternative favor. There are many methods could be choosed; whether in simple, middle or high technology, depends on water source input and output result quality. MSWT, Mobile Surface Water Treatment, is an idea for raw water in flood area, basically made for 1m3 per hour. This water treatment design adopted from combined existing technologies and related literatures. Using common ideas, the highlight is how to make such modular process put in compact design elegantly, and would be equipped with mobile feature due to make easier in operational. Through prototype level experiment trials, the machine is capable for producing clean water that suitable for sanitation and cooking/drinking purposes although using contaminated water input source. From the investment point of view, such machine could be also treated as an asset that will be used from time to time when needed, instead of made for project approach only.

  20. Back-country water treatment to prevent giardiasis.

    PubMed Central

    Ongerth, J E; Johnson, R L; Macdonald, S C; Frost, F; Stibbs, H H

    1989-01-01

    This study was conducted to provide current information on the effectiveness of water treatment chemicals and filters for control of Giardia cysts in areas where treated water is not available. Four filters and seven chemical treatments were evaluated for both clear and turbid water at 10 degrees C. Three contact disinfection devices were also tested for cyst inactivation. Filters were tested with 1-liter volumes of water seeded with 3 x 10(4) cysts of G. lamblia produced in gerbils inoculated with in vitro cultured trophozoites; the entire volume of filtrate was examined for cyst passage. Chemical treatments were evaluated at concentrations specified by the manufacturer and for contact times that might be expected of hikers (30 minutes) and campers (eight hours, i.e., overnight). Two of the four filter devices tested were 100 percent effective for Giardia cyst removal. Of the other two filters, one was 90 percent effective and the other considerably less effective. Among the seven disinfection treatments, the iodine-based chemicals were all significantly more effective than the chlorine-based chemicals. None of the chemical treatments achieved 99.9 percent cyst inactivation with only 30-minute contact. After an eight-hour contact each of the iodine but none of the chlorine preparations achieved at least 99.9 percent cyst inactivation. None of the contact disinfection devices provided appreciable cyst inactivation. Heating water to at least 70 degrees C for 10 minutes was an acceptable alternative treatment. PMID:2817191

  1. Application of hydrodynamic cavitation in ballast water treatment.

    PubMed

    Cvetkovi?, Martina; Kompare, Boris; Klemen?i?, Aleksandra Krivograd

    2015-05-01

    Ballast water is, together with hull fouling and aquaculture, considered the most important factor of the worldwide transfer of invasive non-indigenous organisms in aquatic ecosystems and the most important factor in European Union. With the aim of preventing and halting the spread of the transfer of invasive organisms in aquatic ecosystems and also in accordance with IMO's International Convention for the Control and Management of Ships Ballast Water and Sediments, the systems for ballast water treatment, whose work includes, e.g. chemical treatment, ozonation and filtration, are used. Although hydrodynamic cavitation (HC) is used in many different areas, such as science and engineering, implied acoustics, biomedicine, botany, chemistry and hydraulics, the application of HC in ballast water treatment area remains insufficiently researched. This paper presents the first literature review that studies lab- and large-scale setups for ballast water treatment together with the type-approved systems currently available on the market that use HC as a step in their operation. This paper deals with the possible advantages and disadvantages of such systems, as well as their influence on the crew and marine environment. It also analyses perspectives on the further development and application of HC in ballast water treatment. PMID:25810104

  2. Carbon catalysts for waste water oxidative treatment

    Microsoft Academic Search

    N. M. Dobrynkin; A. S. Noskov

    2002-01-01

    Catalytic oxidation of environmental contaminants by oxygen has been investigated in water phase at elevated temperatures and pressures. Chlorine and nitrogen containing substances in model solutions, real wastewater of chocolate factory and alcohol plant (-oxygen-containing compounds), petrochemical plant (-sulfurous substances), chemical-recovery plant (-ammonia, sulfurous substances) were used for tests. Initial concentrations of contaminants were up 0.1 to 60 g\\/l, pH

  3. Application of Nanoparticles in Waste Water Treatment

    Microsoft Academic Search

    Dhermendra K. Tiwari; J. Behari; Prasenjit Sen

    In the area of water purification, nanotechnology offers the possibility of an efficient removal of pollutants and germs. Today nanoparticles, nanomembrane and nanopowder used for detection and removal of chemical and biological substances include metals (e.g. Cadmium, copper, lead, mercury, nickel, zinc), nutrients (e.g. Phosphate, ammonia, nitrate and nitrite), cyanide, organics, algae (e.g. cyanobacterial toxins) viruses, bacteria, parasites and antibiotics.

  4. Soluble arsenic removal at water treatment plants

    SciTech Connect

    McNeill, L.S.; Edwards, M. [Univ. of Colorado, Boulder, CO (United States). Dept. of Civil Engineering

    1995-04-01

    Arsenic profiles were obtained from full-scale conventional treatment (coagulation, Fe-Mn oxidation, or softening) plants, facilitating testing of theories regarding arsenic removal. Soluble As(V) removal efficiency was controlled primarily by pH during coagulation, be Fe{sup +2} oxidation and Fe(OH){sub 3} precipitation during Fe-Mn oxidation, and by Mg(OH){sub 2} formation during softening. Insignificant soluble As(V) removal occurred during calcite precipitation at softening plants or during Mn{sup +2} oxidation-precipitation at Fe-Mn oxidation plants. The extent of soluble As(V) removal during coagulation and softening treatments was lower than expected. Somewhat surprisingly, during coagulation As(V) removal efficiencies were limited by particulate aluminum formation and removal, because much of the added coagulant was not removed by 0.45-{mu}m-pore-size filters. At one utility, reducing the coagulation pH from 7.4 to 6.8 (at constant alum dose) improved removal of particulate aluminum, thereby enhancing soluble As(V) removal during treatment.

  5. Alternative cooling tower water treatment methods

    SciTech Connect

    Wilsey, C.A. [Water Clear, Mound, MN (United States)

    1996-11-01

    The factors that contribute to proper water balance include total alkalinity, calcium hardness, and pH. In order to keep the cooling tower from scaling or corroding, a manipulation of these components is often necessary. This has traditionally been achieved with the use of chemicals, including but not limited to the following: acid, soda ash, sodium bicarbonate, calcium bicarbonate, algicide, and bactericide. Extensive research has shown that a balanced water system can also be achieved by using the proper combination of copper with a known halogen. Microbiologists have determined that a small amount of copper, acting as a supplement to chlorine at 0.4 ppm, has the same efficiency as 2.0 ppm free chlorine. Therefore, by using the following combination of components and procedures, the desired results can still be achieved: production of copper compound ions as a supplement to the chemical regimen; analysis and manipulation of make-up water; the use of copper as a coagulant for reduction of scale; copper as a supplemental bacterial disinfectant; and copper as an algicide.

  6. Industrial water treatment chemicals and processes. Developments since 1978

    SciTech Connect

    Collie, M.J.

    1983-01-01

    The more than 250 processes on which this book is based relate to various aspects of industrial water treatment. The tightening of standards in recent years for industrial effluents and, subsequently, water quality makes these processes particularly attractive. Waters treated range from boiler water to cooling towers to process effluents and wastewaters; and the chemical agents used and methods of treatment include scale and corrosion inhibitors, flocculants, coagulants, adsorbents, biocides, flotation aids, metals removal, metals recovery, and dewatering. The large section on wastewater treatments covers the removal of organic and inorganic substances. Many of these processes have industry-specific applications - in paper, textile, food, or chemical manufacture; others are intended for general use.

  7. Changes in water quality in the Owabi water treatment plant in Ghana

    NASA Astrophysics Data System (ADS)

    Akoto, Osei; Gyamfi, Opoku; Darko, Godfred; Barnes, Victor Rex

    2014-09-01

    The study was conducted on the status of the quality of water from the Owabi water treatment plant that supplies drinking water to Kumasi, a major city in Ghana, to ascertain the change in quality of water from source to point-of-use. Physico-chemical, bacteriological water quality parameters and trace metal concentration of water samples from five different treatment points from the Owabi water treatment plant were investigated. The raw water was moderately hard with high turbidity and colour that exceeds the WHO guideline limits. Nutrient concentrations were of the following order: NH3 < NO2 - < NO3 - < PO4 3- < SO4 2- and were all below WHO permissible level for drinking water in all the samples at different stages of treatment. Trace metal concentrations of the reservoir were all below WHO limit except chromium (0.06 mg/L) and copper (0.24 mg/L). The bacteriological study showed that the raw water had total coliform (1,766 cfu/100 mL) and faecal coliform (257 cfu/100 mL) that exceeded the WHO standard limits, rendering it unsafe for domestic purposes without treatment. Colour showed strong positive correlation with turbidity (r = 0.730), TSS (r ? 0.922) and alkalinity (0.564) significant at p < 0.01. The quality of the treated water indicates that colour, turbidity, Cr and Cu levels reduced and fall within the WHO permissible limit for drinking water. Treatment process at the water treatment plant is adjudged to be good.

  8. Trace Element Analysis of Water and Sediment Before\\/After Passing a Waste Water Treatment Plant

    Microsoft Academic Search

    V. Orescanin; K. Nad; L. Kukec; A. Gajski; D. Sudac; V. Valkovic

    2003-01-01

    A system for waste water cleaning using activated red mud is described in this paper. This system was originally developed for heavy metals and turbidity removal from the waste water generated by pressure washing of the boats coated with antifouling paints. The major parts of the system are described. After the treatment clear water can be discharged directly into the

  9. Drinking water treatment and distribution systems must comply with US EPA water quality regula-

    E-print Network

    Fay, Noah

    . Water utilities primarily use chlorine to disinfect wa- ter for public use. Chlorine kills bacteria of chlorine dur- ing water treatment forms disinfection by-products (DBP), which are carcinogenic when/RESEARCH METHODS Disinfection of drinking water is critical to protecting the public against diseases caused

  10. Delta Drinking Water Quality and TreatmentDelta Drinking Water Quality and Treatment WeiWei--Hsiang ChenHsiang Chen

    E-print Network

    Pasternack, Gregory B.

    11 Delta Drinking Water Quality and TreatmentDelta Drinking Water Quality and Treatment Costs processes in the DeltaCurrent treatment processes in the Delta X X (a) X X (a) X X a X X a X X (a) X a X a ­ Ozonation (widely used for Delta water) ­ UV irradiation · Treatment processes for DBP precursor removal

  11. Produced Water Treatment Using Microbial Fuel Cell Technology

    SciTech Connect

    Borole, A. P.; Campbell, R. [Campbell Applied Physics

    2011-05-20

    ORNL has developed a treatment for produced water using a combination of microbial fuel cells and electrosorption. A collaboration between Campbell Applied Physics and ORNL was initiated to further investigate development of the technology and apply it to treatment of field produced water. The project successfully demonstrated the potential of microbial fuel cells to generate electricity from organics in produced water. A steady voltage was continuously generated for several days using the system developed in this study. In addition to the extraction of electrical energy from the organic contaminants, use of the energy at the representative voltage was demonstrated for salts removal or desalination of the produced water. Thus, the technology has potential to remove organic as well as ionic contaminants with minimal energy input using this technology. This is a novel energy-efficient method to treat produced water. Funding to test the technology at larger scale is being pursued to enable application development.

  12. Design and Compilation of a Geodatabase of Existing Salinity Information for the Rio Grande Basin, from the Rio Arriba-Sandoval County Line, New Mexico, to Presidio, Texas, 2010

    USGS Publications Warehouse

    Shah, Sachin D.; Maltby, David R., II

    2010-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, compiled salinity-related water-quality data and information in a geodatabase containing more than 6,000 sampling sites. The geodatabase was designed as a tool for water-resource management and includes readily available digital data sources from the U.S. Geological Survey, U.S. Environmental Protection Agency, New Mexico Interstate Stream Commission, Sustainability of semi-Arid Hydrology and Riparian Areas, Paso del Norte Watershed Council, numerous other State and local databases, and selected databases maintained by the University of Arizona and New Mexico State University. Salinity information was compiled for an approximately 26,000-square-mile area of the Rio Grande Basin from the Rio Arriba-Sandoval County line, New Mexico, to Presidio, Texas. The geodatabase relates the spatial location of sampling sites with salinity-related water-quality data reported by multiple agencies. The sampling sites are stored in a geodatabase feature class; each site is linked by a relationship class to the corresponding sample and results stored in data tables.

  13. Nanofiltration technology in water treatment and reuse: applications and costs.

    PubMed

    Shahmansouri, Arash; Bellona, Christopher

    2015-01-01

    Nanofiltration (NF) is a relatively recent development in membrane technology with characteristics that fall between ultrafiltration and reverse osmosis (RO). While RO membranes dominate the seawater desalination industry, NF is employed in a variety of water and wastewater treatment and industrial applications for the selective removal of ions and organic substances, as well as certain niche seawater desalination applications. The purpose of this study was to review the application of NF membranes in the water and wastewater industry including water softening and color removal, industrial wastewater treatment, water reuse, and desalination. Basic economic analyses were also performed to compare the profitability of using NF membranes over alternative processes. Although any detailed cost estimation is hampered by some uncertainty (e.g. applicability of estimation methods to large-scale systems, labor costs in different areas of the world), NF was found to be a cost-effective technology for certain investigated applications. The selection of NF over other treatment technologies, however, is dependent on several factors including pretreatment requirements, influent water quality, treatment facility capacity, and treatment goals. PMID:25714628

  14. Carbon isotopic characterisation of dissolved organic matter during water treatment.

    PubMed

    Bridgeman, John; Gulliver, Pauline; Roe, Jessie; Baker, Andy

    2014-01-01

    Water treatment is a series of physio-chemical processes to aid organic matter (OM) removal, which helps to minimise the formation of potentially carcinogenic disinfection by-products and microbial regrowth. Changes in OM character through the treatment processes can provide insight into the treatment efficiency, but radiogenic isotopic characterisation techniques have yet to be applied. Here, we show for the first time that analysis of (13)C and (14)C of dissolved organic carbon (DOC) effectively characterises dissolved OM through a water treatment works. At the sites investigated: post-clarification, DOC becomes isotopically lighter, due to an increased proportion of relatively hydrophilic DOC. Filtration adds 'old' (14)C-DOC from abrasion of the filter media, whilst the use of activated carbon adds 'young' (14)C-DOC, most likely from the presence of biofilms. Overall, carbon isotopes provide clear evidence for the first time that new sources of organic carbon are added within the treatment processes, and that treated water is isotopically lighter and typically younger in (14)C-DOC age than untreated water. We anticipate our findings will precipitate real-time monitoring of treatment performance using stable carbon isotopes, with associated improvements in energy and carbon footprint (e.g. isotopic analysis used as triggers for filter washing and activated carbon regeneration) and public health benefits resulting from improved carbon removal. PMID:24075722

  15. Development of an advanced water treatment system for wastewater reuse.

    PubMed

    Chung, H; Ku, B; Gregory, J

    2008-09-01

    The aim of this research was to develop an optimal reuse system applying various types of advanced oxidation processes such as titanium dioxide (TiO2), ozone (O3) and electro-coagulation/oxidation methods. This system is suitable for improving the treatment efficiency of difficult wastewaters, and for the efficient reuse of wastewater. The connecting systems were divided into various types to investigate the stability and treatment efficiency according to the kinds of waste load. Different treatment sequences were examined taking into consideration the characteristics and economical efficiency. In the case of electro-coagulation/oxidation + ozone system, the mean treatment efficiency in terms of BOD5, CODCr and SS removal was 98.7%. The effluent concentration was 50.2 mg l(-1), 38.3 mg l(-1), 30.4 mg l(-1), respectively. In considering the economical efficiency and commercial use, around an eighth of the treatment expenses and around a fifth of the maintenance expenses could be saved compared with existing water treatment systems. The initial construction expenses could be reduced by a third to a fifth. Therefore, if a proper implementation of this research is carried out in relation to site conditions and the purpose of the water reuse, the water reuse rate will be higher and water resources can be protected. PMID:18844120

  16. Innovative Treatment Technologies for Natural Waters and Wastewaters

    SciTech Connect

    Childress, Amy E.

    2011-07-01

    The research described in this report focused on the development of novel membrane contactor processes (in particular, forward osmosis (FO), pressure retarded osmosis (PRO), and membrane distillation (MD)) in low energy desalination and wastewater treatment applications and in renewable energy generation. FO and MD are recently gaining national and international attention as viable, economic alternatives for removal of both established and emerging contaminants from natural and process waters; PRO is gaining worldwide attention as a viable source of renewable energy. The interrelationship of energy and water are at the core of this study. Energy and water are inextricably bound; energy usage and production must be considered when evaluating any water treatment process for practical application. Both FO and MD offer the potential for substantial energy and resource savings over conventional treatment processes and PRO offers the potential for renewable energy or energy offsets in desalination. Combination of these novel technologies with each other, with existing technologies (e.g., reverse osmosis (RO)), and with existing renewable energy sources (e.g., salinity gradient solar ponds) may enable much less expensive water production and also potable water production in remote or distributed locations. Two inter-related projects were carried out in this investigation. One focused on membrane bioreactors for wastewater treatment and PRO for renewable energy generation; the other focused on MD driven by a salinity gradient solar pond.

  17. The future for electrocoagulation as a localised water treatment technology.

    PubMed

    Holt, Peter K; Barton, Geoffrey W; Mitchell, Cynthia A

    2005-04-01

    Electrocoagulation is an electrochemical method of treating polluted water whereby sacrificial anodes corrode to release active coagulant precursors (usually aluminium or iron cations) into solution. Accompanying electrolytic reactions evolve gas (usually as hydrogen bubbles) at the cathode. Electrocoagulation has a long history as a water treatment technology having been employed to remove a wide range of pollutants. However electrocoagulation has never become accepted as a 'mainstream' water treatment technology. The lack of a systematic approach to electrocoagulation reactor design/operation and the issue of electrode reliability (particularly passivation of the electrodes over time) have limited its implementation. However recent technical improvements combined with a growing need for small-scale decentralised water treatment facilities have led to a re-evaluation of electrocoagulation. Starting with a review of electrocoagulation reactor design/operation, this article examines and identifies a conceptual framework for electrocoagulation that focuses on the interactions between electrochemistry, coagulation and flotation. In addition detailed experimental data are provided from a batch reactor system removing suspended solids together with a mathematical analysis based on the 'white water' model for the dissolved air flotation process. Current density is identified as the key operational parameter influencing which pollutant removal mechanism dominates. The conclusion is drawn that electrocoagulation has a future as a decentralised water treatment technology. A conceptual framework is presented for future research directed towards a more mechanistic understanding of the process. PMID:15763088

  18. Waste Water Treatment Apparatus and Methods

    NASA Technical Reports Server (NTRS)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2014-01-01

    An improved draft tube spout fluid bed (DTSFB) mixing, handling, conveying, and treating apparatus and systems, and methods for operating are provided. The apparatus and systems can accept particulate material and pneumatically or hydraulically conveying the material to mix and/or treat the material. In addition to conveying apparatus, a collection and separation apparatus adapted to receive the conveyed particulate material is also provided. The collection apparatus may include an impaction plate against which the conveyed material is directed to improve mixing and/or treatment. The improved apparatus are characterized by means of controlling the operation of the pneumatic or hydraulic transfer to enhance the mixing and/or reacting by controlling the flow of fluids, for example, air, into and out of the apparatus. The disclosed apparatus may be used to mix particulate material, for example, mortar; react fluids with particulate material; coat particulate material, or simply convey particulate material.

  19. TU/NALPAS: Water treatment to total drainage management

    SciTech Connect

    Attaway, T.C. [NALCO Chemical Co., Plano, TX (United States); Cooney, S.T. [Texas Utilities Mining Company, Tatum, TX (United States)

    1997-12-31

    Water quality management is a critical task in the mining industry. Wastewater discharge from surface mining is required by Federal and State regulations to be compliant with all wastewater permits. The Texas Coal Mining Regulations state: {open_quotes}no...water quality statutes, regulations, standards, or effluent limitations be violated.{close_quotes} While guidelines are provided for meeting these standards, the operator must develop a strategy that best fits a specific site. During the past decade many techniques have been researched to satisfy objectives and regulations ranging from physical treatment (i.e., settling ponds) to chemical treatment. Research led to the conclusion that a combination of methods would best suit the water quality objectives for Texas Utilities in Northeast Texas. A partnering relationship was developed between a major chemical manufacturer and the mining company, investigating from a scientific standpoint, water properties, soil properties, geographic factors, and polymer characteristics. The data collected during a study period was done in conjunction with the actual water treatment program using a package system (TU/NALPAS). The system proved to be highly reliable, continually monitoring parameters and immediately adjusting treatment to match constantly changing water conditions. Parameters including clarity, water volume, peak flow, and pH have been monitored and used in optimizing the logic system. The system has also been used in remote areas by the addition of solar power and radio-controlled activation. This systematic approach has changed difficult and labor intensive water treatment to one which is automated and provides for reliable and cost effective mine drainage management.

  20. Estrogen-related receptor ? disruption of source water and drinking water treatment processes extracts

    Microsoft Academic Search

    Na Li; Weiwei Jiang; Kaifeng Rao; Mei Ma; Zijian Wang; Satyanarayanan Senthik Kumaran

    2011-01-01

    Environmental chemicals in drinking water can impact human health through nuclear receptors. Additionally, estrogen-related receptors (ERRs) are vulnerable to endocrine-disrupting effects. To date, however, ERR disruption of drinking water potency has not been reported. We used ERR? two-hybrid yeast assay to screen ERR? disrupting activities in a drinking water treatment plant (DWTP) located in north China and in source water

  1. Public water supplies of North Carolina : a summary of water sources, use, treatment, and capacity of water-supply systems

    USGS Publications Warehouse

    Mann, L.T., Jr.

    1978-01-01

    Data were collected during 1970-76 on 224 public water supply systems in North Carolina with 500 or more customers. This report summarizes these data that were previously published in five separate regional reports. The data are presented in order to Council of Government region, county, and water system name and include population served, average and maximum daily use, industrial use, water source, allowable draft of surface-water supplies, raw water pumping capacity, raw and finished water storage, type of water treatment, treatment plant capacity, and a summary of the chemical quality of finished water. Tables and maps provide cross references for system names, counties, Council of Government regions and water source.

  2. Water: from the source to the treatment plan

    NASA Astrophysics Data System (ADS)

    Marquet, V.; Baude, I.

    2012-04-01

    As a biology and geology teacher, I have worked on water, from the source to the treatment plant, with pupils between 14 and 15 years old. Lesson 1. Introduction, the water in Vienna Aim: The pupils have to consider why the water is so important in Vienna (history, economy etc.) Activities: Brainstorming about where and why we use water every day and why the water is different in Vienna. Lesson 2. Soil, rock and water Aim: Permeability/ impermeability of the different layers of earth Activities: The pupils have measure the permeability and porosity of different stones: granite, clay, sand, carbonate and basalt. Lesson 3. Relationship between water's ion composition and the stone's mineralogy Aim: Each water source has the same ion composition as the soil where the water comes from. Activities: Comparison between the stone's mineralogy and ions in water. They had a diagram with the ions of granite, clay, sand, carbonate and basalt and the label of different water. They had to make hypotheses about the type of soil where the water came from. They verified this with a geology map of France and Austria. They have to make a profile of the area where the water comes from. They had to confirm or reject their hypothesis. Lesson 4 .Water-catchment and reservoir rocks Aim: Construction of a confined aquifer and artesian well Activities: With sand, clay and a basin, they have to model a confined aquifer and make an artesian well, using what they have learned in lesson 2. Lesson 5. Organic material breakdown and it's affect on the oxygen levels in an aquatic ecosystem Aim: Evaluate the relationship between oxygen levels and the amount of organic matter in an aquatic ecosystem. Explain the relationship between oxygen levels, bacteria and the breakdown of organic matter using an indicator solution. Activities: Put 5 ml of a different water sample in each tube with 20 drops of methylene blue. Observe the tubes after 1 month. Lesson 6. Visit to the biggest water treatment plant in Europe in Vienna Lesson 7 Water Quality Monitoring: Biochemical Oxygen Demand Aim: Measure the quantity of oxygen used by microorganisms in the oxidation of organic matter for different water; downstream and upstream of polluting refuse, after addition of glucose, milk or humus in the water. Activities: After dissolution of the different samples of water they measure the dissolved oxygen with the Winkler Method.

  3. Biological treatment options for consolidated tailings release waters

    SciTech Connect

    Gunter, C.P.; Nix, P.G.; Sander, B. [EVS Environment Consultants, North Vancouver, British Columbia (Canada); Knezevic, Z.

    1995-12-31

    Suncor Inc., Oil Sands Group, operates a large oil sands mining and extraction operation in northeastern Alberta. The extraction plant produces large volumes of a tailings slurry which resists dewatering and treatment, and is toxic to aquatic organisms. Consolidated tailings (CT) technology is used to treat tailings by either acid/lime or gypsum and enhances the possibility of treating residual fine tails in a ``dry`` land reclamation scenario and treating the release water in a wastewater treatment reclamation scenario. The objective was to assess the treatability of CT release water (i.e., the reduction of acute and chronic toxicities to trout, Ceriodaphnia, and bacteria) in bench-scale biological treatment systems. Microtox{reg_sign} IC20 test showed complete detoxification for the gypsum CT release water within 3 to 5 weeks compared with little reduction in toxicity for dyke drainage. Acute toxicity (fish) and chronic toxicity (Ceriodaphnia, bacterial) was removed from both CT release waters. Phosphate and aeration enhanced detoxification rates. Concentrations of naphthenic acids (an organic toxicant) were not reduced, but levels of dissolved organic compounds decreased faster than was the case for dyke drainage water, indicating that some of the organic compounds in both acid/lime and gypsum CT waters were more biodegradable. There was a pattern of increasing toxicity for dyke drainage water which confirmed observations during field-scale testing in the constructed wetlands and which was not observed for CT release waters. Acid/lime and gypsum CT water can be treated biologically in either an aeration pond, constructed wetlands, or a combination of both thereby avoiding the expense of long-term storage and/or conventional waste treatment systems.

  4. ETV REPORT: REMOVAL OF ARSENIC IN DRINKING WATER ORCA WATER TECHNOLOGIES KEMLOOP 1000 COAGULATION AND FILTRATION WATER TREATMENT SYSTEM

    EPA Science Inventory

    Verification testing of the ORCA Water Technologies KemLoop 1000 Coagulation and Filtration Water Treatment System for arsenic removal was conducted at the St. Louis Center located in Washtenaw County, Michigan, from March 23 through April 6, 2005. The source water was groundwate...

  5. Transformation of sulfonylurea herbicides in simulated drinking water treatment processes.

    PubMed

    Wang, Binnan; Kong, Deyang; Lu, Junhe; Zhou, Quansuo

    2015-03-01

    Sulfonylurea herbicides (SUs) were detected in natural waters and could be potentially exposed to human beings via portable use. Thus, the removal of five representative SUs in simulated water treatment processes including coagulation, activated carbon adsorption, and chlorination disinfection was systematically investigated. Results showed that coagulation had little effect on the removal of the herbicides with the average removal less than 10 %. Powder-activated carbon adsorption was apparently more effective with removal rates of 50?~?70 %. SUs were also partially removed in chlorination process. A complete removal was achieved when the three treatments were performed in series. However, it was found that parts of the SUs were transformed into certain stable products with triazine/pyrimidine structures which might be of potential health risks in chlorination process. Thus, current drinking water treatment processes are not likely to provide sufficient protection for human population from exposure to SUs. PMID:25269843

  6. An opacity-sampled treatment of water vapor

    NASA Technical Reports Server (NTRS)

    Alexander, David R.; Augason, Gordon C.; Johnson, Hollis R.

    1989-01-01

    Although the bands of H2O are strong in the spectra of cool stars and calculations have repeatedly demonstrated their significance as opacity sources, only approximate opacities are currently available, due both to the difficulty of accounting for the millions of lines involved and to the inadequacy of laboratory and theoretical data. To overcome these obstacles, a new treatment is presented, based upon a statistical representation of the water vapor spectrum derived from available laboratory data. This statistical spectrum of water vapor employs an exponential distribution of line strengths and random positions of lines whose overall properties are forced to reproduce the mean opacities observed in the laboratory. The resultant data set is then treated by the opacity-sampling method exactly as are all other lines, both molecular and atomic. Significant differences are found between the results of this improved treatment and the results obtained with previous treatments of water-vapor opacity.

  7. Novel Americium Treatment Process for Surface Water and Dust Suppression Water

    SciTech Connect

    Tiepel, E.W.; Pigeon, P. [Golder Associates (United States); Nesta, S. [Kaiser-Hill Company, LLC (United States); Anderson, J. [Rocky Flats Closure Site Services - RFCSS (United States)

    2006-07-01

    The Rocky Flats Environmental Technology Site (RFETS), a former nuclear weapons production plant, has been remediated under CERCLA and decommissioned to become a National Wildlife Refuge. The site conducted this cleanup effort under the Rocky Flats Cleanup Agreement (RFCA) that established limits for the discharge of surface and process waters from the site. At the end of 2004, while a number of process buildings were undergoing decommissioning, routine monitoring of a discharge pond (Pond A-4) containing approximately 28 million gallons of water was discovered to have been contaminated with a trace amount of Americium-241 (Am-241). While the amount of Am-241 in the pond waters was very low (0.5 - 0.7 pCi/l), it was above the established Colorado stream standard of 0.15 pCi/l for release to off site drainage waters. The rapid successful treatment of these waters to the regulatory limit was important to the site for two reasons. The first was that the pond was approaching its hold-up limit. Without rapid treatment and release of the Pond A-4 water, typical spring run-off would require water management actions to other drainages onsite or a mass shuttling of water for disposal. The second reason was that this type of contaminated water had not been treated to the stringent stream standard at Rocky Flats before. Technical challenges in treatment could translate to impacts on water and secondary waste management, and ultimately, cost impacts. All of the technical challenges and specific site criteria led to the conclusion that a different approach to the treatment of this problem was necessary and a crash treatability program to identify applicable treatment techniques was undertaken. The goal of this program was to develop treatment options that could be implemented very quickly and would result in the generation of no high volume secondary waste that would be costly to dispose. A novel chemical treatment system was developed and implemented at the RFETS to treat Am-241 contaminated pond water, surface run-off and D and D dust suppression water during the later stages of the D and D effort at Rocky Flats. This novel chemical treatment system allowed for highly efficient, high-volume treatment of all contaminated waste waters to the very low stream standard of 0.15 pCi/1 with strict compliance to the RFCA discharge criteria for release to off-site surface waters. The rapid development and implementation of the treatment system avoided water management issues that would have had to be addressed if contaminated water had remained in Pond A-4 into the Spring of 2005. Implementation of this treatment system for the Pond A-4 waters and the D and D waters from Buildings 776 and 371 enabled the site to achieve cost-effective treatment that minimized secondary waste generation, avoiding the need for expensive off-site water disposal. Water treatment was conducted for a cost of less than $0.20/gal which included all development costs, capital costs and operational costs. This innovative and rapid response effort saved the RFETS cleanup program well in excess of $30 million for the potential cost of off-site transportation and treatment of radioactive liquid waste. (authors)

  8. Is hot water immersion an effective treatment for marine envenomation?

    PubMed Central

    Atkinson, P R T; Boyle, A; Hartin, D; McAuley, D

    2006-01-01

    Envenomation by marine creatures is common. As more people dive and snorkel for leisure, the incidence of envenomation injuries presenting to emergency departments has increased. Although most serious envenomations occur in the temperate or tropical waters of the Indo?Pacific region, North American and European waters also provide a habitat for many stinging creatures. Marine envenomations can be classified as either surface stings or puncture wounds. Antivenom is available for a limited number of specific marine creatures. Various other treatments such as vinegar, fig juice, boiled cactus, heated stones, hot urine, hot water, and ice have been proposed, although many have little scientific basis. The use of heat therapies, previously reserved for penetrating fish spine injuries, has been suggested as treatment for an increasing variety of marine envenomation. This paper reviews the evidence for the effectiveness of hot water immersion (HWI) and other heat therapies in the management of patients presenting with pain due to marine envenomation. PMID:16794088

  9. SMALL DRINKING WATER TREATMENT TECHNOLOGIES FOR COMPLIANCE WITH THE ENHANCED SURFACE WATER TREATMENT RULES

    EPA Science Inventory

    According to FY2003 statistics compiled by the Office of Ground Water and Drinking Water, the U.S. regulates about 160,000 small drinking water systems that impact close to 70 million people. Small systems (serving transient and non-transient populations of 10,000 people or less...

  10. Technology assessment of aquaculture systems for municipal waste water treatment

    SciTech Connect

    Hyde, H.C.; Ross, R.S.; Sturmer, L.

    1984-08-01

    The innovative and alternative technology provisions of the Clean Water Act of 1977 (PL 95-217) provide financial incentives to communities that use wastewater treatment alternatives to reduce costs or energy consumption over conventional systems. Some of these technologies have been only recently developed and are not in widespread use in the United States. This document discusses the applicability and technical and economic feasibility of using aquaculture systems for municipal wastewater treatment facilities.

  11. Laboratory study of electro-coagulation–flotation for water treatment

    Microsoft Academic Search

    Jia-Qian Jiang; Nigel Graham; Cecile André; Geoff H. Kelsall; Nigel Brandon

    2002-01-01

    An electro-coagulation–flotation process has been developed for water treatment. This involved an electrolytic reactor with aluminium electrodes and a separation\\/flotation tank. The water to be treated passed through the reactor and was subjected to coagulation\\/flotation, by Al(III) ions dissolved from the electrodes, the resulting flocs floating after being captured by hydrogen gas bubbles generated at cathode surfaces. Apparent current efficiencies

  12. Evaluation of Current Water Treatment and Distribution System Optimization to Provide Safe Drinking Water from Various Source Water Types and Conditions (Deliverable 5.2.C.1)

    EPA Science Inventory

    Increasingly, drinking water treatment plants (DWTPs) are being challenged by changes in the quality of their source waters and by their aging treatment and distribution system infrastructure. Individually or in combination, factors such as shrinking water and financial resources...

  13. Short communication Control of brown rot of stone fruits by brief heated water immersion treatments

    E-print Network

    Crisosto, Carlos H.

    Short communication Control of brown rot of stone fruits by brief heated water immersion treatments. Several studies have shown that hot water treatments by themselves or in combination with other treatments they require are an issue that has hindered the commercial adoption of hot water treatments. While higher water

  14. Water drinking as a treatment for orthostatic syndromes

    NASA Technical Reports Server (NTRS)

    Shannon, John R.; Diedrich, Andre; Biaggioni, Italo; Tank, Jens; Robertson, Rose Marie; Robertson, David; Jordan, Jens

    2002-01-01

    PURPOSE: Water drinking increases blood pressure in a substantial proportion of patients who have severe orthostatic hypotension due to autonomic failure. We tested the hypothesis that water drinking can be used as a practical treatment for patients with orthostatic and postprandial hypotension, as well as those with orthostatic tachycardia. SUBJECTS AND METHODS: We studied the effect of drinking water on seated and standing blood pressure and heart rate in 11 patients who had severe orthostatic hypotension due to autonomic failure and in 9 patients who had orthostatic tachycardia due to idiopathic orthostatic intolerance. We also tested the effect of water drinking on postprandial hypotension in 7 patients who had autonomic failure. Patients drank 480 mL of tap water at room temperature in less than 5 minutes. RESULTS: In patients with autonomic failure, mean (+/- SD) blood pressure after 1 minute of standing was 83 +/- 6/53 +/- 3.4 mm Hg at baseline, which increased to 114 +/- 30/66 +/- 18 mm Hg (P <0.01) 35 minutes after drinking. After a meal, blood pressure decreased by 43 +/- 36/20 +/- 13 mm Hg without water drinking, compared with 22 +/- 10/12 +/- 5 mm Hg with drinking (P <0.001). In patients with idiopathic orthostatic intolerance, water drinking attenuated orthostatic tachycardia (123 +/- 23 beats per minute) at baseline to 108 +/- 21 beats per minute after water drinking ( P <0.001). CONCLUSION: Water drinking elicits a rapid pressor response in patients with autonomic failure and can be used to treat orthostatic and postprandial hypotension. Water drinking moderately reduces orthostatic tachycardia in patients with idiopathic orthostatic intolerance. Thus, water drinking may serve as an adjunctive treatment in patients with impaired orthostatic tolerance.

  15. Supercritical water oxidation test bed effluent treatment study

    SciTech Connect

    Barnes, C.M.

    1994-04-01

    This report presents effluent treatment options for a 50 h Supercritical Water Test Unit. Effluent compositions are calculated for eight simulated waste streams, using different assumed cases. Variations in effluent composition with different reactor designs and operating schemes are discussed. Requirements for final effluent compositions are briefly reviewed. A comparison is made of two general schemes. The first is one in which the effluent is cooled and effluent treatment is primarily done in the liquid phase. In the second scheme, most treatment is performed with the effluent in the gas phase. Several unit operations are also discussed, including neutralization, mercury removal, and evaporation.

  16. Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse.

    PubMed

    Qu, Xiaolei; Brame, Jonathon; Li, Qilin; Alvarez, Pedro J J

    2013-03-19

    Ensuring reliable access to clean and affordable water is one of the greatest global challenges of this century. As the world's population increases, water pollution becomes more complex and difficult to remove, and global climate change threatens to exacerbate water scarcity in many areas, the magnitude of this challenge is rapidly increasing. Wastewater reuse is becoming a common necessity, even as a source of potable water, but our separate wastewater collection and water supply systems are not designed to accommodate this pressing need. Furthermore, the aging centralized water and wastewater infrastructure in the developed world faces growing demands to produce higher quality water using less energy and with lower treatment costs. In addition, it is impractical to establish such massive systems in developing regions that currently lack water and wastewater infrastructure. These challenges underscore the need for technological innovation to transform the way we treat, distribute, use, and reuse water toward a distributed, differential water treatment and reuse paradigm (i.e., treat water and wastewater locally only to the required level dictated by the intended use). Nanotechnology offers opportunities to develop next-generation water supply systems. This Account reviews promising nanotechnology-enabled water treatment processes and provides a broad view on how they could transform our water supply and wastewater treatment systems. The extraordinary properties of nanomaterials, such as high surface area, photosensitivity, catalytic and antimicrobial activity, electrochemical, optical, and magnetic properties, and tunable pore size and surface chemistry, provide useful features for many applications. These applications include sensors for water quality monitoring, specialty adsorbents, solar disinfection/decontamination, and high performance membranes. More importantly, the modular, multifunctional and high-efficiency processes enabled by nanotechnology provide a promising route both to retrofit aging infrastructure and to develop high performance, low maintenance decentralized treatment systems including point-of-use devices. Broad implementation of nanotechnology in water treatment will require overcoming the relatively high costs of nanomaterials by enabling their reuse and mitigating risks to public and environmental health by minimizing potential exposure to nanoparticles and promoting their safer design. The development of nanotechnology must go hand in hand with environmental health and safety research to alleviate unintended consequences and contribute toward sustainable water management. PMID:22738389

  17. 'Iraq Water Treatment Vulnerabilities': a challenge to public health ethics.

    PubMed

    MacQueen, Graeme; Nagy, Thomas; Santa Barbara, Joanna; Raichle, Claudia

    2004-01-01

    A formerly classified US document, 'Iraq Water Treatment Vulnerabilities,' provides evidence that ill health was knowingly induced in the population of Iraq through the ruination of that country's water purification system. We believe that the uncovering of this document should stimulate the public health community to clarify principles of public health ethics and to formulate statements giving voice to these principles. We propose here two statements, one dealing with the broad issue of public health ethics and international relations, and one dealing specifically with public health ethics and water purification. PMID:15260175

  18. Amend soils with residues from water-treatment processes

    SciTech Connect

    Makansi, J.

    1993-09-01

    This article reports that land application is emerging as a viable disposal/reuse method for water-treatment-process residues. In many cases, these residues actually enhance soil quality and arrest fertilizer loss. Water treatment usually generates solid residues requiring disposal. These include sludges from lime softening and related pretreatment processes and spent ion-exchange resins and adsorbents used for softening, dealkalization, and deionization of surface and well water. Although it may not appear so at first glance, according to consultant Dr. Robert Kunin, these materials have properties that can benefit the soil for agricultural and horticultural needs. Treating water with lime is popular and effective for removing hardness, phosphates, and some silica. Small amounts of alum, chlorine, and/or organic flocculants may also be added in lime-softening processes. Resulting sludge consists of calcium carbonate (CaCO[sub 3]), magnesium hydroxide, and calcium/magnesium/phosphate compounds, along with humic matter and related organic compounds that originate in the raw water. If softening is conducted at high temperatures, large, dense CaCO[sub 3] particles form as the compound crystallizes around sand particles. Disposal of this sludge is often considered a major disadvantage of lime softening. But if the water being treated meets EPA regulations for heavy metals, especially arsenic, then chemical analysis suggests benefits for soils. This has been well-described in texts addressing water treatment. For example, the sludge serves as a mild liming agent and may even supply various plant nutrients. Note that this application is different from municipal wastewater treatment plant sludge, which is difficult to land apply.

  19. Treatment of tunnel wash water and implications for its disposal.

    PubMed

    Hallberg, M; Renman, G; Byman, L; Svenstam, G; Norling, M

    2014-01-01

    The use of road tunnels in urban areas creates water pollution problems, since the tunnels must be frequently cleaned for traffic safety reasons. The washing generates extensive volumes of highly polluted water, for example, more than fivefold higher concentrations of suspended solids compared to highway runoff. The pollutants in the wash water have an affinity for particulate material, so sedimentation should be a viable treatment option. In this study, 12 in situ sedimentation trials were carried out on tunnel wash water, with and without addition of chemical flocculent. Initial suspended solids concentration ranged from 804 to 9,690 mg/L. With sedimentation times of less than 24 hours and use of a chemical flocculent, it was possible to reach low concentrations of suspended solids (<15 mg/L), PAH (<0.1 ?g/L), As (<1.0 ?g/L), Cd (<0.05 ?g/L), Hg (<0.02 ?g/L), Fe (<200 ?g/L), Ni (<8 ?g/L), Pb (<0.5 ?g/L), Zn (<60 ?g/L) and Cr (<8 ?g/L). Acute Microtox(®) toxicity, mainly attributed to detergents used for the tunnel wash, decreased significantly at low suspended solids concentrations after sedimentation using a flocculent. The tunnel wash water did not inhibit nitrification. The treated water should be suitable for discharge into recipient waters or a wastewater treatment plant. PMID:24845317

  20. 7 CFR 1780.63 - Sewage treatment and bulk water sales contracts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...2012-01-01 false Sewage treatment and bulk water sales contracts. 1780...AGRICULTURE (CONTINUED) WATER AND WASTE LOANS AND GRANTS...Inspections § 1780.63 Sewage treatment and bulk water sales contracts....

  1. 7 CFR 1780.63 - Sewage treatment and bulk water sales contracts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...2013-01-01 false Sewage treatment and bulk water sales contracts. 1780...AGRICULTURE (CONTINUED) WATER AND WASTE LOANS AND GRANTS...Inspections § 1780.63 Sewage treatment and bulk water sales contracts....

  2. 7 CFR 1780.63 - Sewage treatment and bulk water sales contracts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...2011-01-01 false Sewage treatment and bulk water sales contracts. 1780...AGRICULTURE (CONTINUED) WATER AND WASTE LOANS AND GRANTS...Inspections § 1780.63 Sewage treatment and bulk water sales contracts....

  3. 7 CFR 1780.63 - Sewage treatment and bulk water sales contracts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...2010-01-01 false Sewage treatment and bulk water sales contracts. 1780...AGRICULTURE (CONTINUED) WATER AND WASTE LOANS AND GRANTS...Inspections § 1780.63 Sewage treatment and bulk water sales contracts....

  4. Car wash wastewater treatment and water reuse - a case study.

    PubMed

    Zaneti, R N; Etchepare, R; Rubio, J

    2013-01-01

    Recent features of a car wash wastewater reclamation system and results from a full-scale car wash wastewater treatment and recycling process are reported. This upcoming technology comprises a new flocculation-column flotation process, sand filtration, and a final chlorination. A water usage and savings audit (22 weeks) showed that almost 70% reclamation was possible, and fewer than 40 L of fresh water per wash were needed. Wastewater and reclaimed water were characterized by monitoring chemical, physicochemical and biological parameters. Results were discussed in terms of aesthetic quality (water clarification and odour), health (pathological) and chemical (corrosion and scaling) risks. A microbiological risk model was applied and the Escherichia coli proposed criterion for car wash reclaimed water is 200 CFU 100 mL(-1). It is believed that the discussions on car wash wastewater reclamation criteria may assist institutions to create laws in Brazil and elsewhere. PMID:23128624

  5. Waste Water Management and Infectious Disease. Part II: Impact of Waste Water Treatment

    ERIC Educational Resources Information Center

    Cooper, Robert C.

    1975-01-01

    The ability of various treatment processes, such as oxidation ponds, chemical coagulation and filtration, and the soil mantle, to remove the agents of infectious disease found in waste water is discussed. The literature concerning the efficiency of removal of these organisms by various treatment processes is reviewed. (BT)

  6. WATER FACTORY 21: RECLAIMED WATER, VOLATILE ORGANICS, VIRUS, AND TREATMENT PERFORMANCE

    EPA Science Inventory

    This report describes the performance of Water Factory 21, a 0.66 cu m/s advanced wastewater treatment plant designed to reclaim secondary effluent from a municipal wastewater treatment plant so that it can be used for injection and recharge of a groundwater system. Included in t...

  7. Integrated operation of drinking water treatment plant at Amsterdam water supply

    Microsoft Academic Search

    G. J. Bosklopper; L. C. Rietveld; R. Babuska; B. Smaal; J. Timmer

    Water treatment plants are in general robust and designs are based on the performance of individual processes with pre-set boundary conditions. It is assumed that an integral approach of the entire treatment plant can lead to more efficient operation. Taking into account the developments in sensoring, automation and computation, it is a challenge to improve quality and reliability of the

  8. Impact of Arsenic Treatment Techniques on Distribution Water Quality

    EPA Science Inventory

    This presentation will summarize the results of the distribution water quality studies (arsenic, lead, and copper) of the demonstration program. The impact of the treatment systems by type of system (adsorptive media, coagulation/filtration, ion exchange, etc) will be shown by co...

  9. ORGANOPHOSPHATE PESTICIDE DEGRADATION UNDER DRINKING WATER TREATMENT CONDITIONS

    EPA Science Inventory

    Chlorpyrifos (CP) was used as a model compound to develop experimental methods and prototype modeling tools to forecast the fate of organophosphate (OP) pesticides under drinking water treatment conditions. CP was found to rapidly oxidize to chlorpyrifos oxon (CPO) in the presen...

  10. 7. VIEW OF WATER TREATMENT PLANT, ADJACENT TO THE COAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF WATER TREATMENT PLANT, ADJACENT TO THE COAL CONVEYOR; IN THE DISTANCE IS THE FREQUENCY CHANGER HOUSE, WHICH IS ATTACHED TO SWITCH HOUSE NO. 1; LOOKING WEST. - Commonwealth Electric Company, Fisk Street Electrical Generating Station, 1111 West Cermak Avenue, Chicago, Cook County, IL

  11. POU/POE TREATMENT OF ARSENIC IN GROUND WATER

    EPA Science Inventory

    Point-of-use/Point-of-entry (POU/POE) arsenic removal systems were installed in seventeen homes that were found to have high levels of arsenic (50-480ug/L) in their well water. This presetation will describe the process and the problems encountered in selecting the treatment syst...

  12. Anodic oxidation of phenol for waste water treatment

    Microsoft Academic Search

    Ch. Comninellis; C. Pulgarin

    1991-01-01

    The electrochemical oxidation of phenol for waste water treatment was studied at a platinum anode. Analysis of reaction intermediates and a carbon balance has shown that the reaction occurs by two parallel pathways; chemical oxidation with electrogenerated hydroxyl radicals and direct combustion of adsorbed phenol or\\/and its aromatic intermediates to CO2.

  13. Study of Salt Wash Water Toxicity on Wastewater Treatment

    Microsoft Academic Search

    Mostafa F. Hashad; Surabhi Sharma; Loring F. Nies; James E. Alleman

    2006-01-01

    This research effort focused on evaluating the toxicity of the saline waste water generated from washing of Indiana Department of Transportation (INDOT) deicing trucks and to study the feasibility of discharging it into wastewater treatment plants. Performance of activated sludge treating wastewater under varying levels of salt concentration was studied by measuring the Chemical Oxygen Demand (COD), activated sludge oxygen

  14. Parameter identification in dynamical models of anaerobic waste water treatment

    Microsoft Academic Search

    T. G. Müller; N. Noykova; M. Gyllenberg; J. Timmer

    2002-01-01

    Biochemical reactions can often be formulated mathematically as ordinary differential equations. In the process of modeling, the main questions that arise are concerned with structural identifiability, parameter estimation and practical identifiability. To clarify these questions and the methods how to solve them, we analyze two different second order models for anaerobic waste water treatment processes using two data sets obtained

  15. Application of fuzzy causal networks to waste water treatment plants

    Microsoft Academic Search

    Y. C. Huang; X. Z. Wang

    1999-01-01

    A graphical model, the extended fuzzy causal network is introduced and applied to a case study of waste water treatment plants. The structure of the network is developed using parameter sensitivity studies and the relationships between connected parameters are obtained using a learning approach adapted from fuzzy neural networks. The graphical model is shown to be able to translate the

  16. Fetal loss and work in a waste water treatment plant

    Microsoft Academic Search

    R. W. Morgan; L. Kheifets; D. L. Obrinsky; M. D. Whorton; D. E. Foliart

    1984-01-01

    We investigated pregnancy outcomes in 101 wives of workers employed in a waste water treatment plant (WWTP), and verified fetal losses by hospital records. Paternal work histories were compiled and each of the 210 pregnancies was assigned a paternal exposure category. The relative risk of fetal loss was increased when paternal exposure to the WWTP occurred around the time of

  17. A new generation of cooling water treatment technology

    Microsoft Academic Search

    R. W. Smith; N. S. Sherwood

    1984-01-01

    Preference for individual cooling water treatment programs is influenced by several factors: regulatory, economic, available state-of-the-art technology, etc. No single corrosion inhibiting system can be the best for all cooling systems. Each cooling system has its own specific requirements and available resources that should be carefully evaluated when selecting the corrosion control program that is technically and economically best for

  18. Model-Based Control of Drinking-Water Treatment Plants

    Microsoft Academic Search

    K. M. Van Schagen

    2009-01-01

    The drinking water in the Netherlands is of high quality and the production cost is low. This is the result of extensive research in the past decades to innovate and optimise the treatment processes. The processes are monitored and operated by motivated and skilled operators and process technologists, which leads to an operator-dependent, subjective, variable and possibly suboptimal operation of

  19. An Analysis of the Waste Water Treatment Maintenance Mechanic Occupation.

    ERIC Educational Resources Information Center

    Clark, Anthony B.; And Others

    The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the waste water treatment mechanics occupation. The document opens with a brief introduction followed by a job description. The bulk of the document is presented in table form. Twelve duties are broken…

  20. An Analysis of the Waste Water Treatment Operator Occupation.

    ERIC Educational Resources Information Center

    Clark, Anthony B.; And Others

    The occupational analysis contains a brief job description for the waste water treatment occupations of operator and maintenance mechanic and 13 detailed task statements which specify job duties (tools, equipment, materials, objects acted upon, performance knowledge, safety considerations/hazards, decisions, cues, and errors) and learning skills…

  1. Ozone-UV Water Treatment System for Shellfish Quarantine

    Microsoft Academic Search

    Walter J. Blogoslawski; Dudley W. Alleman

    1979-01-01

    An ozone-UV water treatment system was constructed and evaluated for quarantine use. Nonindigenous oyster larvae effluent is ozonized in a 1200 liter holding tank to eliminate all pathogenic bacteria. Effluent is exposed for 80 minutes with an average ozone residual of 1.78 mg\\/liter, after which it is treated with an ultraviolet sanitizer as an added precaution.

  2. Biofilm characterization and activity analysis in water and wastewater treatment

    Microsoft Academic Search

    V. Lazarova; J. Manem

    1995-01-01

    Biofilm composition and activity are two important parameters for the successful operation and control of fixed film processes in water and wastewater treatment. Widely used parameters for biofilm characterization are biofilm thickness, total dry weight and total cell count. These parameters are, however, not sufficient to describe biofilm activity. Improved analytical methods and procedures are needed in order to understand

  3. Selenium-Water Treatment Residual Adsorption And Characterization

    EPA Science Inventory

    Aluminum-based water treatment residuals (WTR) have the ability to adsorb tremendous quantities of soil-borne P, and have been shown to adsorb other anions, such as As (V), As (III), and ClO4-. Environmental issues associated with Se in the Western US led us to study W...

  4. WATER TREATMENT PROJECT: OBSERVATIONS ON USE OF GAC IN PRACTICE

    EPA Science Inventory

    The objectives of this project were: (1) to determine if granular activated carbon (GAC) adsorption beds applied in water treatment practice slough-off organic materials during the spring warm-up and (2) to evaluate the feasibility of the dilute or low-level COD procedure for the...

  5. EVALUATING A COMPOSITE CARTRIDGE FOR SMALL SYSTEM DRINKING WATER TREATMENT

    EPA Science Inventory

    A multi-layer, cartridge-based system that combines physical filtration with carbon adsorption and ultraviolet (UV) light disinfection has been developed to perform as a water treatment security device to protect homes against accidental or intentional contaminant events. A seri...

  6. Application of Ultrasonic Technology for Water and Wastewater Treatment

    Microsoft Academic Search

    AH Mahvi

    2009-01-01

    Ultrasonic technology as an innovative technology may be used for water and wastewater treatment for pollution removal. This technology acts as an advanced oxidation process. Application of this technology leads to the decomposition of many complex organic compounds to much simpler compounds during physical and chemical compounds during cavitation proc- ess. In this article review, some applications of this valuable

  7. Treatment for hydrazine-containing waste water solution

    NASA Technical Reports Server (NTRS)

    Yade, N.

    1986-01-01

    The treatment for waste solutions containing hydrazine is presented. The invention attempts oxidation and decomposition of hydrazine in waste water in a simple and effective processing. The method adds activated charcoal to waste solutions containing hydrazine while maintaining a pH value higher than 8, and adding iron salts if necessary. Then, the solution is aerated.

  8. DRINKING WATER TREATMENT AND RISK OF CANCER DEATH IN WISCONSIN

    EPA Science Inventory

    A case control study of drinking water treatment practices and female cancer mortality was conducted in Wisconsin. Cancer deaths for 1972-1977 from 28 Wisconsin counties and non-cancer deaths matched to cancer deaths on age, year of death and county of residence, were compared fo...

  9. Economic assessment of membrane processes for water and waste water treatment

    Microsoft Academic Search

    G. Owen; M. Bandi; J. A. Howell; S. J. Churchouse

    1995-01-01

    Membrane processes are increasingly being considered as an alternative to conventional water and waste water treatment methods in anticipation of future demands for high standards and reduced environmental impact. However, the use of membranes for these applications is currently limited by the high capital and operating costs with which they are associated. This paper looks at the economics of membrane

  10. Problems of drinking water treatment along Ismailia Canal Province, Egypt.

    PubMed

    Geriesh, Mohamed H; Balke, Klaus-Dieter; El-Rayes, Ahmed E

    2008-03-01

    The present drinking water purification system in Egypt uses surface water as a raw water supply without a preliminary filtration process. On the other hand, chlorine gas is added as a disinfectant agent in two steps, pre- and post-chlorination. Due to these reasons most of water treatment plants suffer low filtering effectiveness and produce the trihalomethane (THM) species as a chlorination by-product. The Ismailia Canal represents the most distal downstream of the main Nile River. Thus its water contains all the proceeded pollutants discharged into the Nile. In addition, the downstream reaches of the canal act as an agricultural drain during the closing period of the High Dam gates in January and February every year. Moreover, the wide industrial zone along the upstream course of the canal enriches the canal water with high concentrations of heavy metals. The obtained results indicate that the canal gains up to 24.06x10(6) m3 of water from the surrounding shallow aquifer during the closing period of the High Dam gates, while during the rest of the year, the canal acts as an influent stream losing about 99.6x10(6) m3 of its water budget. The reduction of total organic carbon (TOC) and suspended particulate matters (SPMs) should be one of the central goals of any treatment plan to avoid the disinfectants by-products. The combination of sedimentation basins, gravel pre-filtration and slow sand filtration, and underground passage with microbiological oxidation-reduction and adsorption criteria showed good removal of parasites and bacteria and complete elimination of TOC, SPM and heavy metals. Moreover, it reduces the use of disinfectants chemicals and lowers the treatment costs. However, this purification system under the arid climate prevailing in Egypt should be tested and modified prior to application. PMID:18357626

  11. Treatment of poly- and perfluoroalkyl substances in U.S. full-scale water treatment systems.

    PubMed

    Appleman, Timothy D; Higgins, Christopher P; Quiñones, Oscar; Vanderford, Brett J; Kolstad, Chad; Zeigler-Holady, Janie C; Dickenson, Eric R V

    2014-03-15

    The near ubiquitous presence of poly- and perfluoroalkyl substances (PFASs) in humans has raised concerns about potential human health effects from these chemicals, some of which are both extremely persistent and bioaccumulative. Because some of these chemicals are highly water soluble, one major pathway for human exposure is the consumption of contaminated drinking water. This study measured concentrations of PFASs in 18 raw drinking water sources and 2 treated wastewater effluents and evaluated 15 full-scale treatment systems for the attenuation of PFASs in water treatment utilities throughout the U.S. A liquid-chromatography tandem mass-spectrometry method was used to enable measurement of a suite of 23 PFASs, including perfluorocarboxylic acids (PFCAs) and perfluorosulfonic acids (PFSAs). Despite the differences in reporting levels, the PFASs that were detected in >70% of the source water samples (n = 39) included PFSAs, perfluorobutane sulfonic acid (74%), perfluorohexane sulfonic acid (79%), and perfluorooctane sulfonic acid (84%), and PFCAs, perfluoropentanoic acid (74%), perfluorohexanoic acid (79%), perfluoroheptanoic acid (74%), and perfluorooctanoic acid (74%). More importantly, water treatment techniques such as ferric or alum coagulation, granular/micro-/ultra- filtration, aeration, oxidation (i.e., permanganate, ultraviolet/hydrogen peroxide), and disinfection (i.e., ozonation, chlorine dioxide, chlorination, and chloramination) were mostly ineffective in removing PFASs. However, anion exchange and granular activated carbon treatment preferably removed longer-chain PFASs and the PFSAs compared to the PFCAs, and reverse osmosis demonstrated significant removal for all the PFASs, including the smallest PFAS, perfluorobutanoic acid. PMID:24275109

  12. Treatment of drinking water to improve its sanitary or bacteriological quality is

    E-print Network

    Treatment of drinking water to improve its sanitary or bacteriological quality is referred that the first treatment of water with chlorine may not kill all bacteria. Subsequent treat- ments may contamination of water. This method also can be used by private- water-well owners. Water Wells Water wells

  13. Assessment of didecyldimethylammonium chloride as a ballast water treatment method.

    PubMed

    van Slooten, Cees; Peperzak, Louis; Buma, Anita G J

    2015-02-01

    Ballast water-mediated transfer of aquatic invasive species is considered a major threat to marine biodiversity, marine industry and human health. A ballast water treatment is needed to comply with International Maritime Organization (IMO) ballast water discharge regulations. Didecyldimethylammonium chloride (DDAC) was tested for its applicability as a ballast water treatment method. The treatment of the marine phytoplankton species Tetraselmis suecica, Isochrysis galbana and Chaetoceros calcitrans showed that at 2.5?µL?L(-1) DDAC was able to inactivate photosystem II (PSII) efficiency and disintegrate the cells after 5 days of dark incubation. The treatment of natural marine plankton communities with 2.5?µL?L(-1) DDAC did not sufficiently decrease zooplankton abundance to comply with the IMO D-2 standard. Bivalve larvae showed the highest resistance to DDAC. PSII efficiency was inactivated within 5 days but phytoplankton cells remained intact. Regrowth occurred within 2 days of incubation in the light. However, untreated phytoplankton exposed to residual DDAC showed delayed cell growth and reduced PSII efficiency, indicating residual DDAC toxicity. Natural marine plankton communities treated with 5?µL?L(-1) DDAC showed sufficient disinfection of zooplankton and inactivation of PSII efficiency. Phytoplankton regrowth was not detected after 9 days of light incubation. Bacteria were initially reduced due to the DDAC treatment but regrowth was observed within 5 days of dark incubation. Residual DDAC remained too high after 5 days to be safely discharged. Two neutralization cycles of 50?mg?L(-1) bentonite were needed to inactivate residual DDAC upon discharge. The inactivation of residual DDAC may seriously hamper the practical use of DDAC as a ballast water disinfectant. PMID:25182049

  14. Evaluation of Water Treatment Methods for Endocrine Disrupting Compounds

    NASA Astrophysics Data System (ADS)

    Thomas, S. M.; Murray, K. E.

    2006-05-01

    Endocrine disrupting compounds (EDCs) have caught recent attention as one of the major concerns in the environment. They are known to interfere with the activity of growth-related hormones and usually, as a result, cause disruption in normal functioning of the body. The compounds currently classified as EDCs range from a variety of both natural and synthetic organic compounds and also some heavy metals. Most of these compounds are used in household, pharmaceutical, industrial, agricultural activities, the consumption or usage of which increases with population. There is a lack of detailed chemical and biological analysis as to what concentrations each of these EDCs pose harmless to the environment because of the large number of the suspected compounds. However, several published reports have established that endocrine disruption is observed in aquatic species due to chronic exposure to concentrations of some EDCs as low as a few ng/l. Conventional water treatment facilities do not usually suffice to remove EDCs in concentrations below 1 ng/l. Available technologies for removal of EDCs include adsorption, degradation and membrane treatment. The removal rates, however, are dependant on the properties of the compound, such as molecular weight, water- octanol partition coefficient and vapor pressure; physiochemical conditions of the matrix such as, redox and temperature conditions; type and dose of degrading agent and the concentration of the EDCs. Since, EDCs comprise a vast variety of compounds, their response to each of these treatment methods will be different and hence it is plausible that a single treatment technique will not be sufficient to remove the EDCs to very low concentrations. Based on our review of existing water treatment methods, we believe that a sequential treatment technique that consists of an adsorption, a degradation and finally a fine membrane treatment, each optimized for favorable, efficient and inexpensive removal may be required to remove EDCs to the desired low concentrations.

  15. Water treatment using activated carbon supporting silver and magnetite.

    PubMed

    Valušová, Eva; Vandžurová, Anna; Pristaš, Peter; Antalík, Marián; Javorský, Peter

    2012-01-01

    Recent efforts in water purification have led to the development of novel materials whose unique properties can offer effective biocidal capabilities with greater ease of use and at lower cost. In this study, we introduce a novel procedure for the preparation of activated carbon (charcoal) composite in which magnetite and silver are incorporated (MCAG); we also describe the use of this material for the disinfection of surface water. The formation process of magnetic MCAG composite was studied using ultraviolet-visible spectroscopy. The results demonstrated the high sorption efficiency of AgNO? to magnetic activated carbon. The antimicrobial capabilities of the prepared MCAG were examined and the results clearly demonstrate their inhibitory effect on total river water bacteria and on Pseudomonas koreensis and Bacillus mycoides cultures isolated from river water. The bacterial counts in river water samples were reduced by five orders of magnitude following 30 min of treatment using 1 g l?¹ of MCAG at room temperature. The removal of all bacteria from the surface water samples implies that the MCAG material would be a suitable disinfectant for such waters. In combination with its magnetic character, MCAG would be an excellent candidate for the simple ambulatory disinfection of surface water. PMID:23109597

  16. Home water treatment by direct filtration with natural coagulant.

    PubMed

    Babu, Raveendra; Chaudhuri, Malay

    2005-03-01

    Seeds of the plant species Strychnos potatorum and Moringa oleifera contain natural polyelectrolytes which can be used as coagulants to clarify turbid waters. In laboratory tests, direct filtration of a turbid surface water (turbidity 15-25 NTU, heterotrophic bacteria 280-500 cfu ml(-1), and fecal coliforms 280-500 MPN 100 ml(-1)), with seeds of S. potatorum or M. oleifera as coagulant, produced a substantial improvement in its aesthetic and microbiological quality (turbidity 0.3-1.5 NTU, heterotrophic bacteria 5-20 cfu ml(-1) and fecal coliforms 5-10 MPN 100 ml(-1)). The method appears suitable for home water treatment in rural areas of developing countries. These natural coagulants produce a 'low risk' water; however, additional disinfection or boiling should be practised during localised outbreaks/epidemics of enteric infections. PMID:15952450

  17. Benchmarking of municipal waste water treatment plants (an Austrian project).

    PubMed

    Lindtner, S; Kroiss, H; Nowak, O

    2004-01-01

    An Austrian research project focused on the development of process indicators for treatment plants with different process and operation modes. The whole treatment scheme was subdivided into four processes, i.e. mechanical pretreatment (Process 1), mechanical-biological waste water treatment (Process 2), sludge thickening and stabilisation (Process 3) and further sludge treatment and disposal (Process 4). In order to get comparable process indicators it was necessary to subdivide the sample of 76 individual treatment plants all over Austria into five groups according to their mean organic load (COD) in the influent. The specific total yearly costs, the yearly operating costs and the yearly capital costs of the four processes have been related to the yearly average of the measured organic load expressed in COD (110 g COD/pe/d). The specific investment costs for the whole treatment plant and for Process 2 have been related to a calculated standard design capacity of the mechanical-biological part of the treatment plant expressed in COD. The capital costs of processes 1, 3 and 4 have been related to the design capacity of the treatment plant. For each group (related to the size of the plant) a benchmark band has been defined for the total yearly costs, the total yearly operational costs and the total yearly capital costs. For the operational costs of the Processes 1 to 4 one benchmark ([see symbol in text] per pe/year) has been defined for each group. In addition a theoretical cost reduction potential has been calculated. The cost efficiency in regard to water protection and some special sub-processes such as aeration and sludge dewatering has been analysed. PMID:15553485

  18. Groundwater Treatment at the Fernald Preserve: Status and Path Forward for the Water Treatment Facility - 12320

    SciTech Connect

    Powel, J. [U.S. Department of Energy Office of Legacy Management, Harrison, Ohio (United States); Hertel, B.; Glassmeyer, C.; Broberg, K. [S.M. Stoller Corporation, Harrison, Ohio (United States)

    2012-07-01

    Operating a water treatment facility at the Fernald Preserve in Cincinnati, Ohio-to support groundwater remediation and other wastewater treatment needs-has become increasingly unnecessary. The Fernald Preserve became a U.S. Department of Energy Office of Legacy Management (LM) site in November 2006, once most of the Comprehensive Environmental Response, Compensation, and Liability Act environmental remediation and site restoration had been completed. Groundwater remediation is anticipated to continue beyond 2020. A portion of the wastewater treatment facility that operated during the CERCLA cleanup continued to operate after the site was transferred to LM, to support the remaining groundwater remediation effort. The treatment facility handles the site's remaining water treatment needs (for groundwater, storm water, and wastewater) as necessary, to ensure that uranium discharge limits specified in the Operable Unit 5 Record of Decision are met. As anticipated, the need to treat groundwater to meet uranium discharge limits has greatly diminished over the last several years. Data indicate that the groundwater treatment facility is no longer needed to support the ongoing aquifer remediation effort. (authors)

  19. 40 CFR 141.404 - Treatment technique violations for ground water systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...Treatment technique violations for ground water systems. 141.404 Section 141.404...ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Ground Water Rule §...

  20. 40 CFR 141.403 - Treatment technique requirements for ground water systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...Treatment technique requirements for ground water systems. 141.403 Section 141.403...ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Ground Water Rule §...

  1. 40 CFR 141.403 - Treatment technique requirements for ground water systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...Treatment technique requirements for ground water systems. 141.403 Section 141.403...ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Ground Water Rule §...

  2. 40 CFR 141.403 - Treatment technique requirements for ground water systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Treatment technique requirements for ground water systems. 141.403 Section 141.403...ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Ground Water Rule §...

  3. 40 CFR 141.404 - Treatment technique violations for ground water systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...Treatment technique violations for ground water systems. 141.404 Section 141.404...ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Ground Water Rule §...

  4. 40 CFR 141.403 - Treatment technique requirements for ground water systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...Treatment technique requirements for ground water systems. 141.403 Section 141.403...ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Ground Water Rule §...

  5. 40 CFR 141.404 - Treatment technique violations for ground water systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...Treatment technique violations for ground water systems. 141.404 Section 141.404...ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Ground Water Rule §...

  6. 40 CFR 141.404 - Treatment technique violations for ground water systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Treatment technique violations for ground water systems. 141.404 Section 141.404...ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Ground Water Rule §...

  7. 40 CFR 141.403 - Treatment technique requirements for ground water systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...Treatment technique requirements for ground water systems. 141.403 Section 141.403...ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Ground Water Rule §...

  8. 40 CFR 141.404 - Treatment technique violations for ground water systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...Treatment technique violations for ground water systems. 141.404 Section 141.404...ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Ground Water Rule §...

  9. WATER TREATMENT PLANT OPTIMIZATION BY CONTROLLING THE SUSPENDED SOLIDS PHYSICOCHEMICAL ENVIRONMENT

    Microsoft Academic Search

    Kamal El-Nahhas

    Optimizing water treatment plant operation is a concept should be applied to all plants because some operational improvements can always be made. Optimization at a water treatment plant can be considered achieved when certain goals are being met to attain the most efficient use of the water treatment plant facilities. The most important goals are to reduce the water wastes,

  10. Reverse osmosis (RO) treatment of Tucson's share of Central Arizona Project (CAP) water is being con-

    E-print Network

    Fay, Noah

    Reverse osmosis (RO) treatment of Tucson's share of Central Arizona Project (CAP) water is being for RO Treatment of CAP Water PROJECT TEAM This Arizona Water Institute PROJECT FACT SHEET is part improve- ments in both are needed to make RO treatment of CAP water truly cost-effective. The results

  11. The use of ozone and associated oxidation processes in drinking water treatment

    Microsoft Academic Search

    V Camel; A Bermond

    1998-01-01

    This paper summarizes the main applications of ozonation and associated oxidation processes in the treatment of natural waters (surface and ground waters) for drinking water production. In fact, oxidants may be added at several points throughout the treatment: pre-oxidation, intermediate oxidation or final disinfection. So, the numerous effects of chemical oxidation are discussed along the water treatment: removal of inorganic

  12. Removal of NOM in the different stages of the water treatment process

    Microsoft Academic Search

    Anu Matilainen; Niina Lindqvist; Susanna Korhonen; Tuula Tuhkanen

    2002-01-01

    Natural organic matter (NOM) is abundant in natural waters in Finland and in many ways affects the unit operations in water purification. In this study, the organic matter content in water in different stages of a full-scale treatment process over 1 year was measured. The full-scale treatment sequence, studied at the Rusko water treatment plant in Tampere, Finland, consisted of

  13. Water treatment residuals amended soils release Mn, Na, S and C

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water treatment residuals (WTRs) are drinking water treatment byproducts containing chemicals used to purify raw water. Water treatment residuals are used to remediate P-enriched soils. Following soil application, elements present in WTRs have the potential of converting to soluble forms and cause c...

  14. Development of microbubble aerator for waste water treatment using aerobic activated sludge

    Microsoft Academic Search

    Koichi Terasaka; Ai Hirabayashi; Takanori Nishino; Satoko Fujioka; Daisuke Kobayashi

    2011-01-01

    In large-scale waste water treatment plants, the aerobic biochemical reactor is the most important process, where the oxygen supply into the microorganisms often limits the overall waste water treatment rate. On the other hand, several kinds of microbubble distributors have been developed to enrich the oxygen dissolution in water. Therefore, the application of microbubbles for a waste water treatment system

  15. Treatment methods for breaking certain oil and water emulsions

    DOEpatents

    Sealock, Jr., L. John (W. Richland, WA); Baker, Eddie G. (Richland, WA); Elliott, Douglas C. (Richland, WA)

    1992-01-01

    Disclosed are treatment methods for breaking emulsions of petroleum oil and salt water, fatty oil and water, and those resulting from liquefication of organic material. The emulsions are broken by heating to a predetermined temperature at or above about 200.degree. C. and pressurizing to a predetermined pressure above the vapor pressure of water at the predetermined temperature to produce a heated and pressurized fluid. The heated and pressurized fluid is contained in a single vessel at the predetermined temperature and pressure for a predetermined period of time to effectively separate the emulsion into substantially distinct first and second phases, the first phase comprising primarily the petroleum oil, the second phase comprising primarily the water. The first and second phases are separately withdrawn from the vessel at a withdraw temperature between about 200.degree. C. and 374.degree. C. and a withdraw pressure above the vapor pressure of water at the withdraw temperature. Where solids are present in the certain emulsions, the above described treatment may also effectively separate the certain emulsion into a substantially distinct third phase comprising primarily the solids.

  16. Naturally occurring radionuclides in materials derived from urban water treatment plants in southeast Queensland, Australia

    Microsoft Academic Search

    Ross Kleinschmidt; Riaz Akber

    2008-01-01

    An assessment of radiologically enhanced residual materials generated during treatment of domestic water supplies in southeast Queensland, Australia, was conducted. Radioactivity concentrations of U-238, Th-232, Ra-226, Rn-222, and Po-210 in water, sourced from both surface water catchments and groundwater resources were examined both pre- and post-treatment under typical water treatment operations. Surface water treatment processes included sedimentation, coagulation, flocculation and

  17. INTEC CPP-603 Basin Water Treatment System Closure: Process Design

    SciTech Connect

    Kimmitt, Raymond Rodney; Faultersack, Wendell Gale; Foster, Jonathan Kay; Berry, Stephen Michael

    2002-09-01

    This document describes the engineering activities that have been completed in support of the closure plan for the Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603 Basin Water Treatment System. This effort includes detailed assessments of methods and equipment for performing work in four areas: 1. A cold (nonradioactive) mockup system for testing equipment and procedures for vessel cleanout and vessel demolition. 2. Cleanout of process vessels to meet standards identified in the closure plan. 3. Dismantlement and removal of vessels, should it not be possible to clean them to required standards in the closure plan. 4. Cleanout or removal of pipelines and pumps associated with the CPP-603 basin water treatment system. Cleanout standards for the pipes will be the same as those used for the process vessels.

  18. Treatment of gasoline-contaminated waters by advanced oxidation processes.

    PubMed

    Tiburtius, Elaine Regina Lopes; Peralta-Zamora, Patricio; Emmel, Alexandre

    2005-11-11

    In this study, the efficiency of advanced oxidative processes (AOPs) was investigated toward the degradation of aqueous solutions containing benzene, toluene and xylenes (BTX) and gasoline-contaminated waters. The results indicated that BTX can be effectively oxidized by near UV-assisted photo-Fenton process. The treatment permits almost total degradation of BTX and removal of more than 80% of the phenolic intermediates at reaction times of about 30 min. Preliminary investigations using water contaminated by gasoline suggest a good potentiality of the process for the treatment of large volumes of aqueous samples containing these polluting species. Heterogeneous photocatalysis and H2O2/UV system show lower degradation efficiency, probably due to the heterogeneous character of the TiO2-mediated system and lost of photonic efficiency of the H2O2/UV system in the presence of highly colored intermediated. PMID:16051429

  19. CONVENTIONAL WATER TREATMENT AND DIRECT FILTRATION: TREATMENT AND REMOVAL OF TOTAL ORGANIC CARBON AND TRIHALOMETHANE PRECURSORS

    EPA Science Inventory

    After describing the fundamentals of coagulation of humic substances for alum and cationic polyelectrolytes, field studies of two conventional-type water treatment plants are discussed. THM formation through the plants is examined, and removals of total organic carbon (TOC) and T...

  20. Synthesis and characterization of polymeric inorganic coagulants for water treatment

    Microsoft Academic Search

    Lim-Seok Kang; Seung-Woo Han; Chul-Woo Jung

    2001-01-01

    This research explored the feasibility of preparing and utilizing preformed polymeric solution of Al(III) and Fe(III) as coagulants\\u000a for water treatment. The differentiation and quantification of hydrolytic Al and Fe species in the coagulants were done by\\u000a utilizing spectrophotometric method based on the interaction of Al or Fe with ferron as a complexing agent. In addition, 27A1-NMR,\\u000a FT-IR, and powdered

  1. Evaluating a composite cartridge for small system drinking water treatment

    Microsoft Academic Search

    Nur Muhammad; Rajib Sinha; Radha Krishnan; Craig L. Patterson; Roy C. Haught; Harold H. Harms; Rick Seville

    A pilot-scale evaluation was conducted at the U.S Environmental Protection Agency (EPA) Test & Evaluation (T&E) Facility in Cincinnati, Ohio, on a multi-layer, cartridge-based system that combines physical filtration with carbon adsorption and ultraviolet (UV) light disinfection to serve as a home-base water treatment security device against accidental or intentional contaminant events. The system was challenged with different levels of

  2. Influence of Water Treatment Residuals on Phosphorus Solubility and Leaching

    Microsoft Academic Search

    H. A. Elliott; G. A. O'Connor; P. Lu; S. Brinton

    2002-01-01

    Laboratory and greenhouse studies compared the ability of water treatment residuals (WTRs) to alter P solubility and leaching in Immo- kalee sandy soil (sandy, siliceous, hyperthermic Arenic Alaquod) amended with biosolids and triple superphosphate (TSP). Aluminum sulfate (Al-WTR) and ferric sulfate (Fe-WTR) coagulation residuals, a lime softening residual (Ca-WTR) produced during hardness re- moval, and pure hematite were examined. In

  3. Coupling of waste water treatment with storage polymer production

    Microsoft Academic Search

    H. Chua; P. H. F. Yu; L. Y. Ho

    1997-01-01

    Storage polymers in bacterial cells can be extracted and used as biodegradable thermoplastics. However, widespread applications\\u000a have been limited by high production costs. In this study, activated sludge bacteria in a conventional waste water treatment\\u000a system were induced, by controlling the carbon-nitrogen (C:N) ratio in the reactor liquor, to accumulate storage polymers.\\u000a Specific polymer yield increased to a maximum of

  4. Treatment of gasoline-contaminated waters by advanced oxidation processes

    Microsoft Academic Search

    Elaine Regina Lopes Tiburtius; Patricio Peralta-Zamora; Alexandre Emmel

    2005-01-01

    In this study, the efficiency of advanced oxidative processes (AOPs) was investigated toward the degradation of aqueous solutions containing benzene, toluene and xylenes (BTX) and gasoline-contaminated waters. The results indicated that BTX can be effectively oxidized by near UV-assisted photo-Fenton process. The treatment permits almost total degradation of BTX and removal of more than 80% of the phenolic intermediates at

  5. Water treatment plant simulation program, version 1. 21, user's manual

    SciTech Connect

    Not Available

    1992-06-01

    The User's Manual for Version 1.21 of the Water Treatment Plant Simulation Program has been prepared to provide a basic understanding of (1) how to operate the program, and (2) the underlying assumptions and equations that are used to calculate the removal of natural organic matter and the formation of disinfection by-products. The manual represents the first public release of the program.

  6. Recovery of Iron Coagulants From Tehran Water-Treatment-Plant Sludge for Reusing in Textile Wastewater Treatment

    Microsoft Academic Search

    F Vaezi; F Batebi; Gh Moosavi

    Most of the water treatment plants in Iran discharge their sludge to the environment whithout consideration of possible side effects. Since this kind of sludge is generally considered pollutant, the sludge treatment of water industry seems to be an essential task. Obviously theweight and volume of solids produced during the coagulation process are much more than other wastes of water

  7. Natural organic matter removal by coagulation during drinking water treatment: A review

    Microsoft Academic Search

    Anu Matilainen; Mikko Vepsäläinen; Mika Sillanpää

    2010-01-01

    Natural organic matter (NOM) is found in all surface, ground and soil waters. An increase in the amount of NOM has been observed over the past 10–20years in raw water supplies in several areas, which has a significant effect on drinking water treatment. The presence of NOM causes many problems in drinking water and drinking water treatment processes, including (i)

  8. Thermophilic treatment of paper machine white water in laboratory-scale membrane bioreactors

    Microsoft Academic Search

    Cláudio Arcanjo de Sousa; Cláudio Mudado Silva; Nívea Moreira Vieira; Ann Honor Mounteer; Mateus Salomé Amaral; Marcos Rogério Tótola; Willian Gomes Nunes

    2011-01-01

    Paper mills consume large quantities of water and consequently produce large volume of effluent. Direct water reuse is not always possible because of poor effluent quality. Membrane biological reactor (MBR) treatment of paper machine white water is a technology that could allow for water reuse. This study examined the technical viability of thermophilic treatment of paper machine effluents (white water)

  9. Influence of softening sequencing on electrocoagulation treatment of produced water.

    PubMed

    Esmaeilirad, Nasim; Carlson, Ken; Omur Ozbek, Pinar

    2015-02-11

    Electrocoagulation has been used to remove solids and some metals from both water and wastewater sources for decades. Additionally, chemical softening is commonly employed in water treatment systems to remove hardness. This paper assesses the combination and sequence of softening and EC methods to treat hydraulic fracturing flowback and produced water from shale oil and gas operations. EC is one of the available technologies to treat produced water for reuse in frac fluids, eliminating not only the need to transport more water but also the costs of providing fresh water. In this paper, the influence of chemical softening on EC was studied. In the softening process, pH was raised to 9.5 and 10.2 before and after EC, respectively. Softening, when practiced before EC was more effective for removing turbidity with samples from wells older than one month (99% versus 88%). However, neither method was successful in treating samples collected from early flowback (1-day and 2-day samples), likely due to the high concentration of organic matter. For total organic carbon, hardness, Ba, Sr, and B removal, application of softening before EC appeared to be the most efficient approach, likely due to the formation of solids before the coagulation process. PMID:25464315

  10. Kinetics and mechanism of dimethoate chlorination during drinking water treatment.

    PubMed

    Tian, Fang; Liu, Wenjun; Guo, Guang; Qiang, Zhimin; Zhang, Can

    2014-05-01

    Dimethoate (DMT), a commonly used organophosphorus pesticide, is of great concern because of its toxicity and potentially harmful effects on water sources. The elimination of DMT as well as the toxicity and persistence of the byproducts formed during DMT degradation is most important for the safety of drinking water. This study first determined the reaction kinetics of DMT with free chlorine (FC) under typical water treatment conditions. The reaction between DMT and FC proceeded rapidly, exhibiting first-order with respect to each reactant. The degradation of DMT by FC was highly pH dependent, and the pseudo-first-order rate constant decreased obviously from 0.13 to 0.02 s(-1) with an increase in pH from 7.0 to 8.3. Bromide ion accelerated the reaction by acting as a catalyst, and the accelerated reaction rate was linearly proportional to the bromide concentration. As a ubiquitous component in natural waters, humic acid also increased the reaction rate. However, the presence of ammonium inhibited the degradation of DMT due to its rapid converting FC to chloramines. Omethoate (OMT) was identified as an important byproduct of DMT chlorination, but only accounted for ca. 28% of the DMT degraded; and other two organic byproducts were also identified. The acute toxicity of DMT solution increased after treatment with FC due to the formation of more toxic byproducts (e.g. OMT). PMID:24377445

  11. Polyfluorinated compounds in waste water treatment plant effluents and surface waters along the River Elbe, Germany

    Microsoft Academic Search

    Lutz Ahrens; Sebastian Felizeter; Renate Sturm; Zhiyong Xie; Ralf Ebinghaus

    2009-01-01

    Polyfluorinated compounds (PFCs) were investigated in waste water treatment plant (WWTP) effluents and surface waters of the River Elbe from samples collected in 2007. Concentrations of various PFCs, including C4–C8 perfluorinated sulfonates (PFSAs), C6 and C8 perfluorinated sulfinates, 6:2 fluorotelomer sulfonate, C5–C13 perfluorinated carboxylic acids (PFCAs), C4 and C8 perfluoroalkyl sulfonamides and 6:2, 8:2 and 10:2 unsaturated fluorotelomercarboxylic acids were

  12. Treatment Technology to Meet the Interim Primary Drinking Water Regulations for Inorganics: Part 3.

    ERIC Educational Resources Information Center

    Sorg, Thomas J.; And Others

    1978-01-01

    This article is the third in a series summarizing existing treatment technology to meet the inorganic National Interim Primary Drinking Water Regulations. This report deals specifically with treatment methods for removing cadmium, lead, and silver from drinking water. (CS)

  13. 1. DOMESTIC WATER SUPPLY TREATMENT HOUSE, ON PENSTOCK ABOVE SAR1. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. DOMESTIC WATER SUPPLY TREATMENT HOUSE, ON PENSTOCK ABOVE SAR-1. VIEW TO NORTWEST. - Santa Ana River Hydroelectric System, SAR-1 Domestic Water Supply Treatment House, Redlands, San Bernardino County, CA

  14. IDENTIFY THE OCCURRENCE OF DISINFECTION BY-PRODUCTS IN WATER TREATMENT SYSTEMS

    EPA Science Inventory

    Due to concerns over trihalomethanes (THMs) and other halogenated by-products that can be formed during chlorination of drinking water, alternative disinfectants are being explored. Several drinking water treatment plants in the United States have altered their treatment methods...

  15. REGULATIONS ON THE DISPOSAL OF ARSENIC RESIDUALS FROM DRINKING WATER TREATMENT PLANTS

    EPA Science Inventory

    This report summarizes federal and selected state regulations that govern the management of residuals produced by small water treatment systems removing arsenic from drinking water. The document focuses on the residuals produced by five treatment processes: anion exchange, activa...

  16. Household Pasteurization of Drinking-water: The Chulli Water-treatment System

    PubMed Central

    Islam, Mohammad Fakhrul

    2006-01-01

    A simple flow-through system has been developed which makes use of wasted heat generated in traditional clay ovens (chullis) to pasteurize surface water. A hollow aluminium coil is built into the clay chulli, and water is passed through the coil during normal cooking events. By adjusting the flow rate, effluent temperature can be maintained at approximately 70 °C. Laboratory testing, along with over 400 field tests on chulli systems deployed in six pilot villages, showed that the treatment completely inactivated thermotolerant coliforms. The chulli system produces up to 90 litres per day of treated water at the household level, without any additional time or fuel requirement. The technology has been developed to provide a safe alternative source of drinking-water in arsenic-contaminated areas, but can also have wide application wherever people consume microbiologically-contaminated water. PMID:17366777

  17. An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale

    SciTech Connect

    Matthew Bruff; Ned Godshall; Karen Evans

    2011-04-30

    This Final Scientific/ Technical Report submitted with respect to Project DE-FE0000833 titled 'An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale' in support of final reporting requirements. This final report contains a compilation of previous reports with the most current data in order to produce one final complete document. The goal of this research was to provide an integrated approach aimed at addressing the increasing water resource challenges between natural gas production and other water stakeholders in shale gas basins. The objective was to demonstrate that the AltelaRain{reg_sign} technology could be successfully deployed in the Marcellus Shale Basin to treat frac flow-back water. That objective has been successfully met.

  18. Adsorption of Roxarsone onto Drinking Water Treatment Residuals: Preliminary Studies

    NASA Astrophysics Data System (ADS)

    Salazar, J.; Sarkar, D.; Datta, R.; Sharma, S.

    2006-05-01

    Roxarsone (3-nitro-4-hydroxyphenyl-arsonic acid) is an organo-arsenical compound, commonly used as a feed additive in the broiler poultry industry to control coccidial intestinal parasites. Roxarsone is not toxic to the birds not only because of the low dose, and also because it most likely does not convert to toxic inorganic arsenic (As) in their systems. However, upon excretion, roxarsone may undergo transformation to inorganic As, posing a serious risk of contaminating the agricultural land and water bodies via surface runoff or leaching. The use of poultry litter as fertilizer results in As accumulation rates of up to 50 metric tons per year in agricultural lands. The immediate challenge, as identified by the various regulatory bodies in recent years is to develop an efficient, yet cost-effective and environmentally sound approach to cleaning up such As- contaminated soils. Recent studies conducted by our group have suggested that the drinking water treatment residuals (WTRs) can effectively retain As, thereby decreasing its mobility in the environment. The WTRs are byproducts of drinking water treatment processes and are typically composed of amorphous Fe/Al oxides, activated C and cationic polymers. They can be obtained free-of-cost from water treatment plants. It is well demonstrated that the environmental mobility of As is controlled by adsorption/desorption reactions onto mineral surfaces. Hence, knowledge of adsorption and desorption of As onto the WTRs is of environmental relevance. The reported study examined the adsorption and desorption characteristics of As using two types of WTRs, namely the Fe-WTRs (byproduct of Fe salt treatment), and the Al-WTRs (byproduct of Al salt treatment). All adsorption experiments were carried out in batch and As retention on the WTRs was investigated as a function of solid/solution ratio (1:5, 1:10, 1:25 and 1:50), equilibration time (10 min - 48 hr), pH (2 - 10) and initial As load (100, 500, 1000 and 2000 mg As/L). The above parameters were varied one at a time to study their effects on roxarsone adsorption. Desorption studies were carried out using 125 mg/L phosphorous at predetermined interval of time. In addition to analyzing for total As by an ICP-MS, aqueous speciation of As was performed using a coupled HPLC-ICP-MS system. Preliminary studies show significant roxarsone adsorption capacity of the WTRs.

  19. Introduction to Chemistry for Water and Wastewater Treatment Plant Operators. Water and Wastewater Training Program.

    ERIC Educational Resources Information Center

    South Dakota Dept. of Environmental Protection, Pierre.

    Presented are basic concepts of chemistry necessary for operators who manage drinking water treatment plants and wastewater facilities. It includes discussions of chemical terms and concepts, laboratory procedures for basic analyses of interest to operators, and discussions of appropriate chemical calculations. Exercises are included and answer…

  20. Estimating nitrifying biomass in drinking water filters for surface water treatment

    Microsoft Academic Search

    Jens Tränckner; Burkhard Wricke; Peter Krebs

    2008-01-01

    The objective of this work is to estimate active nitrifying biomass and its main influencing factors in low-loaded biofilters based on operational data. An analytical approach based on balancing growth, decay and biomass removed by backwashing is proposed. The method is developed and applied in pilot-scale rapid sand filters for drinking water treatment. Decay rate was measured directly in the

  1. Solar trough concentration for fresh water production and waste water treatment

    Microsoft Academic Search

    A. Scrivani; T. El Asmar; U. Bardi

    2007-01-01

    The present paper examines the concept of utilizing trough type solar concentration plants for water production, remediation and waste treatment. Solar trough plants are a mature technology which deserves to be diffused throughout the European Union and in the partner countries of the Mediterranean Area. The present study is intended to find applications of the solar through concentration technology beyond

  2. MICROBIOLOGICAL CHANGES IN SOURCE WATER TREATMENT: REFLECTIONS IN DISTRIBUTION WATER QUALITY

    EPA Science Inventory

    Microbial quality in the distribution system is a reflection of raw source water characteristics, treatment process configurations and their modifications. ased on case history experiences there may at times be a microbial breakthrough that is caused by fluctuations in raw surfac...

  3. Electrocoagulation treatment of peat bog drainage water containing humic substances.

    PubMed

    Kuokkanen, V; Kuokkanen, T; Rämö, J; Lassi, U

    2015-08-01

    Electrocoagulation (EC) treatment of 100 mg/L synthetic wastewater (SWW) containing humic acids was optimized (achieving 90% CODMn and 80% DOC removal efficiencies), after which real peat bog drainage waters (PBDWs) from three northern Finnish peat bogs were also treated. High pollutant removal efficiencies were achieved: Ptot, TS, and color could be removed completely, while Ntot, CODMn, and DOC/TOC removal efficiencies were in the range of 33-41%, 75-90%, and 62-75%, respectively. Al and Fe performed similarly as the anode material. Large scale experiments (1 m(3)) using cold (T = 10-11 °C) PBDWs were also conducted successfully, with optimal treatment times of 60-120 min (applying current densities of 60-75 A/m(2)). Residual values of Al and Fe (complete removal) were lower than their initial values in the EC-treated PBDWs. Electricity consumption and operational costs in optimum conditions were found to be low and similar for all the waters studied: 0.94 kWh/m(3) and 0.15 €/m(3) for SWW and 0.35-0.70 kWh/m(3) and 0.06-0.12 €/m(3) for the PBDWs (large-scale). Thus, e.g. solar cells could be considered as a power source for this EC application. In conclusion, EC treatment of PBDW containing humic substances was shown to be feasible. PMID:25973580

  4. Selection criteria for wastewater treatment technologies to protect drinking water.

    PubMed

    von Sperling, M

    2000-01-01

    The protection of water bodies used as sources for drinking water is intimately linked to the adoption of adequate technologies for the treatment of the wastewater generated in the catchment area. The paper presents a general overview of the main technologies used for the treatment of domestic sewage, with a special emphasis on developing countries, and focussing on the main parameters of interest, such as BOD, coliforms and nutrients. A series of tables, figures and charts that can be used for the preliminary selection of treatment technologies is presented. The systems analysed are: stabilisation ponds, activated sludge, trickling filters, anaerobic systems and land disposal. Within each system, the main process variants are covered. Two summary tables are presented, one for quantitative analysis, including easily usable information based on per capita values (US$/cap, Watts/cap, m2 area/cap, m3 sludge/cap), and another for a qualitative comparison among the technologies, based on a one-to-five-star scoring system. The recent trend in tropical countries in the use of UASB (Upflow Anaerobic Sludge Blanket) reactors is also discussed. PMID:10842828

  5. 21 CFR 1250.83 - Storage of water prior to treatment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...2014-04-01 false Storage of water prior to treatment. 1250.83 Section...1250.83 Storage of water prior to treatment. The following requirements...respect to the storage of water on vessels prior to treatment must be met in order...

  6. Modification and modeling of water ingress in limestone after application of a biocalcification treatment

    E-print Network

    to the water transfer properties of the stone, attributable to the bio- treatment, were measured and quantified. Bio-treatment has a limited service life over the period of the experimental run. Abstract Water. As water is involved in many types of stone decay [1], different surface treatments aimed at avoiding

  7. 21 CFR 1250.83 - Storage of water prior to treatment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...2012-04-01 false Storage of water prior to treatment. 1250.83 Section...1250.83 Storage of water prior to treatment. The following requirements...respect to the storage of water on vessels prior to treatment must be met in order...

  8. 21 CFR 1250.83 - Storage of water prior to treatment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 false Storage of water prior to treatment. 1250.83 Section...1250.83 Storage of water prior to treatment. The following requirements...respect to the storage of water on vessels prior to treatment must be met in order...

  9. 21 CFR 1250.83 - Storage of water prior to treatment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...2013-04-01 false Storage of water prior to treatment. 1250.83 Section...1250.83 Storage of water prior to treatment. The following requirements...respect to the storage of water on vessels prior to treatment must be met in order...

  10. 21 CFR 1250.83 - Storage of water prior to treatment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...2011-04-01 false Storage of water prior to treatment. 1250.83 Section...1250.83 Storage of water prior to treatment. The following requirements...respect to the storage of water on vessels prior to treatment must be met in order...

  11. Treatment of Methyl tert-Butyl Ether Contaminated Water Using a Dense

    E-print Network

    Dandy, David

    Treatment of Methyl tert-Butyl Ether Contaminated Water Using a Dense Medium Plasma Reactor 53706 Plasma treatment of contaminated water appears to be a promising alternative for the oxidation. The oxidation products from the treatment of MTBE-contaminated water in the DMP reactor were found

  12. Application of biologically activated sorptive columns for textile waste water treatment

    Microsoft Academic Search

    J. Paprowicz; S. S?odczyk

    1988-01-01

    Technological studies of mixture of communal and industrial waste water treatment on a pilot ? scale are described in the paper. Treatment of waste waters mixture was carried out in the following stages: coagulation, sedimentation, filtration, and sorption. After pre ?treatment and the removal of the suspension, waste water was directed on 3 columns filled with granular activated carbon. Waste

  13. www.barrandwray.com Barr + Wray 2013 The Treatment of Scottish Water

    E-print Network

    Painter, Kevin

    www.barrandwray.com © Barr + Wray 2013 The Treatment of Scottish Water for Private Communities + Wray 2013 Contents B+W Overview Our Approach Water Sources Treatment Decision Trees Case Study Water Treatment Company. Glasgow based SME with over 50 years experience. More than 200 reference sites

  14. INTERGRATING SOURCE WATER PROTECTION AND DRINKING WATER TREATMENT: U.S. ENVIRONMENTAL PROTECTION AGENCY'S WATER SUPPLY AND WATER RESOURCES DIVISION

    EPA Science Inventory

    The U.S. Environmental Protection Agency's (EPA) Water Supply and Water Resources Division (WSWRD) is an internationally recognized water research organization established to assist in responding to public health concerns related to drinking water supplies. WSWRD has evolved from...

  15. INTEGRATING SOURCE WATER PROTECTION AND DRINKING WATER TREATMENT: U.S. ENVIRONMENTAL PROTECTION AGENCY'S WATER SUPPLY AND WATER RESOURCES DIVISION

    EPA Science Inventory

    The U.S. Environmental Protection Agency's (EPA) Water Supply and Water Resources Division (WSWRD) is an internationally recognized water research organization established to assist in responding to public health concerns related to drinking water supplies. WSWRD has evolved from...

  16. Water treatment plants assessment at Talkha power plant.

    PubMed

    El-Sebaie, Olfat D; Abd El-Kerim, Ghazy E; Ramadan, Mohamed H; Abd El-Atey, Magda M; Taha, Sahr Ahmed

    2002-01-01

    Talkha power plant is the only power plant located in El-Mansoura. It generates electricity using two different methods by steam turbine and gas turbine. Both plants drew water from River Nile (208 m3 /h). The Nile raw water passes through different treatment processes to be suitable for drinking and operational uses. At Talkha power plant, there are two purification plants used for drinking water supply (100 m3/h) and for water demineralization supply (108 m3/h). This study aimed at studying the efficiency of the water purification plants. For drinking water purification plant, the annual River Nile water characterized by slightly alkaline pH (7.4-8), high annual mean values of turbidity (10.06 NTU), Standard Plate Count (SPC) (313.3 CFU/1 ml), total coliform (2717/100 ml), fecal coliform (0-2400/100 ml), and total algae (3 x 10(4) org/I). The dominant group of algae all over the study period was green algae. The blue green algae was abundant in Summer and Autumn seasons. The pH range, and the annual mean values of turbidity, TDS, total hardness, sulfates, chlorides, nitrates, nitrites, fluoride, and residual chlorine for purified water were in compliance with Egyptian drinking water standards. All the SPC recorded values with an annual mean value of 10.13 CFU/1 ml indicated that chlorine dose and contact time were not enough to kill the bacteria. However, they were in compliance with Egyptian decree (should not exceed 50 CFU/1 ml). Although the removal efficiency of the plant for total coliform and blue green algae was high (98.5% and 99.2%, respectively), the limits of the obtained results with an annual mean values of 40/100 ml and 15.6 org/l were not in compliance with the Egyptian decree (should be free from total coliform, fecal coliform and blue green algae). For water demineralization treatment plant, the raw water was characterized by slightly alkaline pH. The annual mean values of conductivity, turbidity, and TDS were 354.6 microS/cm, 10.84 NTU, and 214.6 mg/I, respectively. There was an increase in the results of conductivity, turbidity, total hardness, and TDS in carbon filter effluent which was attributed to the desorption of adsorbed ions on the carbon media. The removal efficiencies of turbidity, total hardness, and TDS indicated the high efficiency of the cationic filter. The annual removal efficiencies of conductivity, turbidity, chloride, and TDS proved the efficiency of the anionic filter for removing the dissolved and suspended ions. All of the recorded values of the pH, conductivity, turbidity, chlorides, hardness, and TDS of the mixed bed effluent indicated that the water at this stage was of high quality for boiler feed. The study recommended adjustment of coagulant and residual chlorine doses as well as contact time, and continuous monitoring and maintenance of the different units. PMID:17216967

  17. Economic costs of conventional surface-water treatment: A case study of the Mcallen northwest facility 

    E-print Network

    Rogers, Callie Sue

    2009-05-15

    , water rights costs, initial construction costs, and annual operations and maintenance, chemical, and energy costs. For example, alternative costs for water rights associated with sourcing water for conventional treatment facilities are considered...

  18. September 3, 1999 Characterization of Arsenic Occurrence in US Drinking Water Treatment

    E-print Network

    amendments to the US Safe Drinking Water Act (SDWA) mandate revision of current maxi­ mum contaminant levels Office of Ground Water anSeptember 3, 1999 Characterization of Arsenic Occurrence in US Drinking Water Treatment Facility

  19. Flocculant Dosage Optimizing in Water Treatment based on Nonlinear Mathematical Model

    Microsoft Academic Search

    Guo Yufeng; Ma Jun; Zhai Xuedong; Fan Yi

    2009-01-01

    The artificial mathematical model of feed water treatment is investigated by the method of mechanism and modeling of distributed parameter system; it includes the basic processes of feed water treatment, i.e.coagulation, flocculation and sedimentation. This model can give the dynamic response of relationship between coagulant dosage and water turbidity after flocculation and sedimentation. The influence of water plant design parameters

  20. Integrated optimization of a waste water treatment plant using statistical analysis

    Microsoft Academic Search

    Frank Halters; Edwin Zondervan; Andre de Haan

    2010-01-01

    In this research, a waste water treatment plant is systematically optimized. The waste water treatment plant is used to remove aluminium from waste water using precipitation, flocculation and flotation. In total 40 variables influence the combined unit. After systematic selection, the number of variables was reduced to six: the waste water flow, pH, agitation velocity, amount of poly-electrolyte, amount of

  1. Management of Concentrated Waste Streams from High-Pressure Membrane Water Treatment Systems

    Microsoft Academic Search

    Stuart J. Khan; David Murchland; Michelle Rhodes; T. David Waite

    2009-01-01

    The sustainable management of concentrated waste streams from high-pressure membrane-based water treatment processes are commonly the greatest limitations to the implementation of such processes. This applies to seawater desalination, brackish water desalination, groundwater softening, surface water treatment, and municipal water reclamation. This review provides an analysis of the potential environmental implications of concentrate disposal to marine, freshwater, and terrestrial environments.

  2. Treatment of oilfield produced water by waste stabilization ponds.

    PubMed

    Shpiner, R; Vathi, S; Stuckey, D C

    2007-01-01

    Produced water (PW) from oil wells can serve as an alternative water resource for agriculture if the main pollutants (hydrocarbons and heavy metals) can be removed to below irrigation standards. Waste stabilization ponds seem like a promising solution for PW treatment, especially in the Middle East where solar radiation is high and land is available. In this work, hydrocarbon removal from PW in a biological waste stabilization pond was examined at lab-scale followed by an intermittent slow sand filter. The system was run for 300 days and removed around 90% of the oil in the pond, and 95% after the sand filter. COD removal was about 80% in the pond effluent, and 85% after the filter. The system was tested under various operational modes and found to be stable to shock loads. Installation of oil booms and decantation of surface oil seem to be important in order to maintain good system performance over time. PMID:17591220

  3. [Performance of treatment wetland systems for surface water quality improvement].

    PubMed

    Liu, Hong; Dai, Ming-li; Liu, Xue-yan; Ouyang, Wei; Liu, Pei-bin

    2004-07-01

    Intercropped with Phragmites communis and Typha angustifolia, subsurface flow constructed wetland systems (CWs) with the surface area of 3 x 20m x 2m were established beside Guanting Reservoir, an important source water base of Beijing. The treatment performance of the systems with different season were studied, the impacts of influent concentration, hydraulic loading rate and water temperature on contaminations removal were analyzed. The result showed that the subsurface flow CWs had the better decontamination effect to micro-pollution surface water. The relationship between the concentrations of CODMn and NH4+ -N in inflow and outflow followed the linear equation. The removal rates of total nitrogen (TN) and total phosphorus (TP) in the systems were 20%-60% and 30%-45%, respectively. The removal rates of contaminations were reduced with the decrease of water temperature and the increase of hydraulic loading rate, the removal rates of CODMn, N4+ -N and TN showed the positive correlation with their inflow concentration, but the removal rate of TP showed the negative correlation with its inflow concentration. Operation and management considerations of the subsurface flow CWs in winter were investigated in this study. PMID:15515938

  4. Mercury Bioaccumulation Potential from Wastewater Treatment Plants in Receiving Waters

    NASA Astrophysics Data System (ADS)

    Dean, J. D.; Mason, R. P.

    2008-12-01

    In early 2007, the Water Environment Research Foundation (WERF) mercury bioavailability project was initiated in response to the establishment of mercury Total Maximum Daily Load (TMDL) criteria around the country. While many TMDLs recognize that point sources typically constitute a small fraction of the mercury load to a water body, the question was raised concerning the relative bioavailablity of mercury coming from various sources. For instance, is the mercury discharged from a wastewater treatment plant more or less bioavailable than mercury contributed from other sources? This talk will focus on the results of a study investigating approaches to the estimation of bioavailability and potential bioaccumulation of mercury from wastewater treatment plants and other sources in receiving waters. From the outset, a working definition of bioavailability was developed which included not only methylmercury, the form that readily bioaccumulates in aquatic food chains, but also bioavailable inorganic mercury species that could be converted to methylmercury within a scientifically reasonable time frame. Factors that enhance or mitigate the transformation of inorganic mercury to methylmercury and its subsequent bioaccumulation were identified. Profiles were developed for various sources of mercury in watersheds, including wastewater treatment plants, with regard to methylmercury and inorganic bioavailable mercury, and the key factors that enhance or mitigate mercury bioavailability. Technologies that remove mercury from wastewater were reviewed and evaluated for their effect on bioavailability. A screening procedure was developed for making preliminary estimates of bioavailable mercury concentrations and fluxes in wastewater effluents and in fresh, estuarine and marine receiving waters. The procedure was validated using several diverse river and reservoir data sets. A "Bioavailability Tool" was developed which allows a user to estimate the bioavailability of an effluent and compare it to another, and to mix an effluent in a receiving water to estimate bioavailability in the near- and far-field. As part of this project, a study was undertaken to evaluate methylmercury and reactive mercury in wastewater effluents. Effluent samples from 7 municipal wastewater plants from around the Unites States were collected weekly over a ten week period from late June through August of 2008. These data represent the first comprehensive study of bioavailable mercury in wastewater effluents and have not been published elsewhere. Initial data suggest that bioavailable (methyl plus reactive) mercury is less than 30 percent of total unfiltered mercury. Reactive mercury percentages (relative to dissolved total mercury) are somewhat higher than were initially predicted from theoretical calculations. This presentation will overview the project as a whole with a focus on the bioavailability study of these 7 wastewater plants.

  5. THE USE OF RANDOMIZED CONTROLLED TRIALS OF IN-HOME DRINKING WATER TREATMENT TO STUDY ENDEMIC WATERBORNE DISEASE

    EPA Science Inventory

    Randomized trials of water treatment have demonstrated the ability of simple water treatments to significantly reduce the incidence of gastrointestinal illnesses in developing countries where drinking water is of poor quality. Whether or not additional treatment at the tap reduc...

  6. Effect of drinking water treatment process parameters on biological removal of manganese from surface water.

    PubMed

    Hoyland, Victoria W; Knocke, William R; Falkinham, Joseph O; Pruden, Amy; Singh, Gargi

    2014-12-01

    Soluble manganese (Mn) presents a significant treatment challenge to many water utilities, causing aesthetic and operational concerns. While application of free chlorine to oxidize Mn prior to filtration can be effective, this is not feasible for surface water treatment plants using ozonation followed by biofiltration because it inhibits biological removal of organics. Manganese-oxidizing bacteria (MOB) readily oxidize Mn in groundwater treatment applications, which normally involve pH > 7.0. The purpose of this study was to evaluate the potential for biological Mn removal at the lower pH conditions (6.2-6.3) often employed in enhanced coagulation to optimize organics removal. Four laboratory-scale biofilters were operated over a pH range of 6.3-7.3. The biofilters were able to oxidize Mn at a pH as low as pH 6.3 with greater than 98% Mn removal. Removal of simulated organic ozonation by-products was also greater than 90% in all columns. Stress studies indicated that well-acclimated MOB can withstand variations in Mn concentration (e.g., 0.1-0.2 mg/L), hydraulic loading rate (e.g., 2-4 gpm/ft(2); 1.36 × 10(-3)-2.72 × 10(-3) m/s), and temperature (e.g., 7-22 °C) typically found at surface water treatment plants at least for relatively short (1-2 days) periods of time. PMID:25181615

  7. Utilization of water hyacinths to upgrade heavily loaded waste-water treatment-plant effuents

    SciTech Connect

    McAnally, A.S.

    1989-01-01

    In recent years, considerable attention has been focused on the use of aquatic plants of various types to treat municipal wastewaters. While several species of plants have been found to be useful in this regard, water hyacinths appear to offer the most promise in areas where the climate is mild enough for them to flourish during most of the year. Accordingly, the primary purpose of this research was to test the acceptability of such systems for use in Southern States such as Alabama. A wastewater treatment plant located at Union Springs, Alabama was selected as the site for this study. The experimental water hyacinth system was configured as a set of two treatment trains with two growth channels in series for each train. One train was harvested and the other was not. Each growth channel was constructed of 3/4-inch marine plywood and was 8 feet wide, 2 feet deep and 32 feet long. The system was operated from May 1986 to October 1987. Observations from this study indicate that a water hyacinth treatment system can be a reliable method for upgrading secondary effluents to advance secondary levels in central Alabama. The reliable treatment period will extend from about May through December with no plant protection (possibly longer in Southern Alabama.)

  8. Optofluidic planar reactors for photocatalytic water treatment using solar energy

    PubMed Central

    Lei, Lei; Wang, Ning; Zhang, X. M.; Tai, Qidong; Tsai, Din Ping; Chan, Helen L. W.

    2010-01-01

    Optofluidics may hold the key to greater success of photocatalytic water treatment. This is evidenced by our findings in this paper that the planar microfluidic reactor can overcome the limitations of mass transfer and photon transfer in the previous photocatalytic reactors and improve the photoreaction efficiency by more than 100 times. The microreactor has a planar chamber (5 cm×1.8 cm×100 ?m) enclosed by two TiO2-coated glass slides as the top cover and bottom substrate and a microstructured UV-cured NOA81 layer as the sealant and flow input?output. In experiment, the microreactor achieves 30% degradation of 3 ml 3×10?5M methylene blue within 5 min and shows a reaction rate constant two orders higher than the bulk reactor. Under optimized conditions, a reaction rate of 8% s?1 is achieved under solar irradiation. The average apparent quantum efficiency is found to be only 0.25%, but the effective apparent quantum efficiency reaches as high as 25%. Optofluidic reactors inherit the merits of microfluidics, such as large surface?volume ratio, easy flow control, and rapid fabrication and offer a promising prospect for large-volume photocatalytic water treatment. PMID:21267436

  9. Use of ceregenins to create novel biofouling resistant water water-treatment membranes.

    SciTech Connect

    Kirk, Matthew F.; Jones, Howland D. T.; Feng, Yanshu; McGrath, Lucas K.; Altman, Susan Jeanne; Pollard, Jacob; Hibbs, Michael R.; Savage, Paul B.

    2010-05-01

    Scoping studies have demonstrated that ceragenins, when linked to water-treatment membranes have the potential to create biofouling resistant water-treatment membranes. Ceragenins are synthetically produced molecules that mimic antimicrobial peptides. Evidence includes measurements of CSA-13 prohibiting the growth of and killing planktonic Pseudomonas fluorescens. In addition, imaging of biofilms that were in contact of a ceragenin showed more dead cells relative to live cells than in a biofilm that had not been treated with a ceragenin. This work has demonstrated that ceragenins can be attached to polyamide reverse osmosis (RO) membranes, though work needs to improve the uniformity of the attachment. Finally, methods have been developed to use hyperspectral imaging with multivariate curve resolution to view ceragenins attached to the RO membrane. Future work will be conducted to better attach the ceragenin to the RO membranes and more completely test the biocidal effectiveness of the ceragenins on the membranes.

  10. Copper Corrosion in Potable Water Systems: Impacts of Natural Organic Matter and Water Treatment Processes

    Microsoft Academic Search

    J. P. Rehring; M. P. Edwards

    1996-01-01

    Copper corrosion was examined in the presence of natural organic matter (NOM) and in situations where NOM was altered by drinking water treatment. Corrosion rates (i{sub corr}) increased with higher NOM concentration at pH 6, whereas insignificant effects were observed at pH 7.5 and 9.0. Corrosion byproduct release was affected adversely by 4 mg\\/L NOM at pH 6.0, 7.5 and

  11. A Case Study of the DAF-based Drinking Water Treatment Plant in Korea

    Microsoft Academic Search

    Byeong-Yong Sohn; Tae-Joon Park; Byung Soo Oh; Soon-Buhm Kwon; Joon-Wun Kang

    2008-01-01

    Since 2003, a full-scale dissolved air flotation (DAF) process has been operated by the Korea Water Resources Corporation (K-Water) in the Songjeon drinking water treatment plant (SWTP). The SWPT was designed with an adaptable operation mode so that it is able to produce safe and stable drinking water, even when the raw water is in very poor condition. The adaptable

  12. Regular Articles Coalbed methane produced water screening tool for treatment technology

    E-print Network

    industry. Due to the high demand for water and the costs associated with current pro- duced water disposal-effective alternatives for disposal or beneficial use of their produced water. Produced water quantity, supply durationRegular Articles Coalbed methane produced water screening tool for treatment technology

  13. Copper corrosion in potable water systems: Impacts of natural organic matter and water treatment processes

    SciTech Connect

    Rehring, J.P. [Camp, Dresser, McKee Inc., Denver, CO (United States); Edwards, M. [Univ. of Colorado, Boulder, CO (United States). Dept. of Civil, Environmental, and Architectural Engineering

    1996-04-01

    Copper corrosion was examined in the presence of natural organic matter (NOM) and in situations where NOM was altered by drinking water treatment. Corrosion rates (i{sub corr}) increased with higher NOM concentration at pH 6, whereas insignificant effects were observed at pH 7.5 and 9.0. Corrosion byproduct release was affected adversely by 4 mg/L NOM at pH 6.0, 7.5 and 9.0, with soluble copper increasing by 0.6 mg/L to 0.7 mg/L when compared to solutions without NOM. Alum-coagulated waters had higher i{sub corr} than untreated waters, but ferric chloride (FeCl{sub 3}{center_dot}6H{sub 2}O)-coagulated waters exhibited reduced i{sub corr}. This difference was attributed to the relative effects of added sulfate via alum coagulation vs added chloride via FeCl{sub 3}{center_dot}6H{sub 2}O coagulation. The effect of combined treatment (alum coagulation, ozonation, and granular activated carbon) was similar to that using alum coagulation alone.

  14. A Comparative Risk Approach to Assessing Point-of-Use Water treatment Systems in Developing Countries

    Microsoft Academic Search

    A. Varghese

    Unsafe water is a leadingcause of death and disease in economically disadvantaged societies. The development of centralized large-scale water treatment and supply systems has proven to be a slow, expensive strategy to provide safe drinking water in many low-income countries. Governments and non-governmental organizations have therefore increasingly been promoting point-of-use water treatment technologies in communities without reliable municipal water supplies.

  15. Long-term Impact of Integration of Household Water Treatment and Hygiene Promotion with Antenatal Services on Maternal Water Treatment and Hygiene Practices in Malawi

    PubMed Central

    Loharikar, Anagha; Russo, Elizabeth; Sheth, Anandi; Menon, Manoj; Kudzala, Amose; Tauzie, Blessius; Masuku, Humphreys D.; Ayers, Tracy; Hoekstra, Robert M.; Quick, Robert

    2013-01-01

    A clinic-based program to integrate antenatal services with distribution of hygiene kits including safe water storage containers, water treatment solution (brand name WaterGuard), soap, and hygiene education, was implemented in Malawi in 2007 and evaluated in 2010. We surveyed 389 participants at baseline in 2007, and found and surveyed 232 (60%) participants to assess water treatment, test stored drinking water for residual chlorine (an objective measure of treatment), and observe handwashing technique at follow-up in 2010. Program participants were more likely to know correct water treatment procedures (67% versus 36%; P < 0.0001), treat drinking water with WaterGuard (24% versus 2%; P < 0.0001), purchase and use WaterGuard (21% versus 1%; P < 0.001), and demonstrate correct handwashing technique (50% versus 21%; P < 0.001) at the three-year follow-up survey than at baseline. This antenatal-clinic-based program may have contributed to sustained water treatment and proper handwashing technique among program participants. PMID:23243106

  16. FERRATES: SYNTHESIS, PROPERTIES AND APPLICATIONS IN WATER AND WASTEWATER TREATMENT.

    SciTech Connect

    CABELLI, D.E.; SHARMA, V.K.

    2006-05-19

    The higher oxidation states of iron (Fe(VI) and Fe(V) in particular) have been shown to be strongly oxidizing in enzymatic systems, where they can carry out aliphatic hydrogen abstraction. In addition, they have been postulated as intermediates in Fenton-type systems. Fe(VI) itself is relatively stable and has been shown to have potential as an oxidant in the so-called ''green'' treatment of polluted waters. By contrast, Fe(V) is a relatively short-lived transient when produced in aqueous solution in the absence of strongly bonding ligands other than hydroxide, a feature that has limited studies of its reactivity. Fe(VI) has been proposed to be useful in battery design and a very interesting study suggested that ferrate may be able to oxidize insoluble chromium to chromate and thus serve to remove chromium contamination in the Hanford radioactive waste tanks.

  17. Risk management program for the 283-W water treatment facility

    SciTech Connect

    GREEN, W.E.

    1999-05-11

    This Risk Management (RM) Program covers the 283-W Water Treatment Facility (283W Facility), located in the 200 West Area of the Hanford Site. A RM Program is necessary for this facility because it stores chlorine, a listed substance, in excess of or has the potential to exceed the threshold quantities defined in Title 40 of the Code of Federal Regulations (CFR) Part 68 (EPA, 1998). The RM Program contains data that will be used to prepare a RM Plan, which is required by 40 CFR 68. The RM Plan is a summary of the RM Program information, contained within this document, and will be submitted to the U.S. Environmental Protection Agency (EPA) ultimately for distribution to the public. The RM Plan will be prepared and submitted separately from this document.

  18. Evaluation of physical-chemical and biological treatment of shale oil retort water

    Microsoft Academic Search

    B. W. Mercer; M. J. Mason; R. R. Spencer; A. L. Wong; W. Wakamiya

    1982-01-01

    Bench scale studies were conducted to evaluate conventional physical-chemical and biological treatment processes for removal of pollutants from retort water produced by in situ shale oil recovery methods. Prior to undertaking these studies, very little information had been reported on treatment of retort water. A treatment process train patterned after that generally used throughout the petroleum refining industry was envisioned

  19. Toxicity reduction evaluation at the Patapsco Waste Water Treatment plant. Final report, April 1986September 1987

    Microsoft Academic Search

    J. A. Botts; J. W. Braswell; E. C. Sullivan; W. L. Goodfellow; B. D. Sklar

    1988-01-01

    The EPA and the City of Baltimore (City) entered into a cooperative agreement to perform a TRE research study at the City's Patapsco Waste Water Treatment Plant (Patapsco WWTP). The Patapsco WWTP TRE represents one of the first case histories of a toxics management program at a municipal waste-water treatment plant. The study characterized treatment plant influent and operations data

  20. Dewatering behaviour of water treatment sludges associated with contaminated site remediation in Antarctica

    Microsoft Academic Search

    Kathy A. Northcott; Ian Snape; Peter J. Scales; Geoff W. Stevens

    2005-01-01

    Sludge reduction and dewatering is an important aspect of water and waste water treatment. This is especially true in the case of Australia's Antarctic contaminated site remediation program, where the reduction in volume of wastes to be returned to Australia can lead to significant transport and handling cost savings. The dewatering characterisation of water treatment sludges from an Antarctic contaminated

  1. Ozone by-products in drinking water produced under full scale treatment conditions

    Microsoft Academic Search

    W. H. Glaze; M. Koga; D. Cancilla; Kaixiong Wang; M. J. McGuire; M. K. Davis; C. H. Tate; E. M. Aieta; J. M. Montgomery

    1988-01-01

    The number of drinking water treatment plants utilizing ozone has been increasing in North America. The Metropolitan Water District of Southern California (MWD) has been evaluating the use of ozone as a treatment process through laboratory and pilot scale experiments. On October 27 and 28, 1987, the MWD passed state project water through the Los Angeles Aquaduct filtration Plant where

  2. Impact of backwashing on nitrification in the biological activated carbon filters used in drinking water treatment

    Microsoft Academic Search

    P. Laurent; A. Kihn; A. Andersson; P. Servais

    2003-01-01

    Nitrification during biological filtration is currently used in drinking water production to remove ammonia, which is the source of several water quality problems during treatment and distribution. We evaluated here the impact of backwashing on nitrification efficiency in filters used for drinking water treatment. Two different granular activated carbon (one open and one closed carbon superstructure) were tested. Ammonia removal

  3. Desalination and Water Treatment 16 (2010) 339353 www.deswater.com April

    E-print Network

    Lienhard V, John H.

    2010-01-01

    Desalination and Water Treatment 16 (2010) 339­353 www.deswater.com April 1944. Narayan et al. / Desalination and Water Treatment 16 (2010) 339­353340 released in an open cycle while technology for small-scale water production applications. There are several embodiments of this technology

  4. Infield monitoring of cleaning efficiency in waste water treatment plants using two phenol-sensitive biosensors

    Microsoft Academic Search

    Catalin Nistor; Andreas Rose; Marinella Farré; Leonard Stoica; Ulla Wollenberger; Tautgirdas Ruzgas; Dorothea Pfeiffer; Damià Barceló; Lo Gorton; Jenny Emnéus

    2002-01-01

    Two amperometric biosensors based on the enzymes cellobiose dehydrogenase (CDH) and quinoprotein-dependent glucose dehydrogenase (GDH), have been applied for monitoring the phenolic content in water samples, collected at different stages of a waste water treatment process, thus representing different cleaning levels of two waste water treatment plants (WWTPs). The biosensor measurements were performed in-field, compared with the results obtained by

  5. AN OVERVIEW PRESENTATION OF USEPA AND USDA DRINKING WATER TREATMENT SYSTEM DEMONSTRATIONS IN CHINA

    EPA Science Inventory

    Under an interagency agreement with the US Department of Agriculture, US EPA is coordinating support for several water treatment research demonstrations in China. EPA has installed two small drinking water treatment technologies (a bottled water system for a small community and ...

  6. AN OVERVIEW PAPER OF USEPA AND USDA DRINKING WATER TREATMENT SYSTEM DEMONSTRATIONS IN CHINA

    EPA Science Inventory

    Under an interagency agreement with the US Department of Agriculture, US EPA is coordinating support for several water treatment research demonstrations in China. EPA has installed two small drinking water treatment technologies (a bottled water system for a small community and ...

  7. Electrochemical advanced oxidation process for water treatment using DiaChem ® electrodes

    Microsoft Academic Search

    I. Tröster; M. Fryda; D. Herrmann; L. Schäfer; W. Hänni; A. Perret; M. Blaschke; A. Kraft; M. Stadelmann

    2002-01-01

    Currently applied water treatment techniques consist of a combination of different methods to achieve the elimination of harmful pollutants. Within this field, the capability of electrochemical water treatment is still not exhaustively exploited due to the lack of for instance appropriate electrode materials. The chemical inertness and unique electrochemical properties of boron-doped diamond electrodes present great potential for electrochemical water

  8. About the Physical Methods Applied by Underground Water Treatment in Food Industry

    Microsoft Academic Search

    Dumitru Vaju; Grigore Vlad; Clement Festila

    2006-01-01

    The modern food industry requires high quality processing water at greater flow rate. The actual paper presents an original computer controlled pilot equipment in multiple stages: fresh air treatment in the underground pipe, treatment in pulsating electric filed, water softening in electromagnetic field and the disinfection in ultraviolet (UV) ray. The high-level water purification is ensured in two additional stages:

  9. Reliable water supply by reusing wastewater after membrane treatment

    Microsoft Academic Search

    James Schaefer

    2001-01-01

    Wastewater reuse is a very reliable source of water supply for water short areas. Integrated membrane systems (IMS), microfiltration or ultrafiltration followed by reverse osmosis (RO), are frequently used for these applications to reliably produce high quality water for aquifer recharge, industrial uses, and irrigation. The reused water can guard against water shortages caused by droughts or increased potable-water usage,

  10. Sea-urchin-like iron oxide nanostructures for water treatment.

    PubMed

    Lee, Hyun Uk; Lee, Soon Chang; Lee, Young-Chul; Vrtnik, Stane; Kim, Changsoo; Lee, Sanggap; Lee, Young Boo; Nam, Bora; Lee, Jae Won; Park, So Young; Lee, Sang Moon; Lee, Jouhahn

    2013-11-15

    To obtain adsorbents with high capacities for removing heavy metals and organic pollutants capable of quick magnetic separation, we fabricated unique sea-urchin-like magnetic iron oxide (mixed ?-Fe2O3/Fe3O4 phase) nanostructures (called u-MFN) with large surface areas (94.1m(2) g(-1)) and strong magnetic properties (57.9 emu g(-1)) using a simple growth process and investigated their potential applications in water treatment. The u-MFN had excellent removal capabilities for the heavy metals As(V) (39.6 mg g(-1)) and Cr(VI) (35.0 mg g(-1)) and the organic pollutant Congo red (109.2 mg g(-1)). The u-MFN also displays excellent adsorption of Congo red after recycling. Because of its high adsorption capacity, fast adsorption rate, and quick magnetic separation from treated water, the u-MFN developed in the present study is expected to be an efficient magnetic adsorbent for heavy metals and organic pollutants in aqueous solutions. PMID:24021165

  11. Evaluation of hybrid treatments to produce high quality reuse water.

    PubMed

    Luiz, D B; Silva, G S; Vaz, E A C; José, H J; Moreira, R F P M

    2011-01-01

    Four tertiary hybrid treatments to produce high quality reused water, fulfilling Brazilian drinking water regulations, from a slaughterhouse's secondary treated effluent were evaluated. The pilot plant with a capacity of 500 L h(-1) was set up and consisted of these stages: pre-filtration system (cartridge filter 50 micron, activated carbon filter, cartridge filter 10 micron), oxidation (H2O2) or second filtration (ceramic filter, UF) followed by UV radiation (90 L h(-1)). The best combination was T4: pre-filtration followed by H2O2 addition and UV radiation (AOP H2O2/UV). Disinfection kinetics by T4 followed pseudo first-order kinetics: k(T4) = 0.00943 s(-1) or 0.00101 cm2 mJ(-1). Three different zones (A, B, C) were observed in the UV254 degradation kinetics (pseudo-first order kinetics): k' decreased over time (k'(A) > k'(B) > k'(C)). PMID:21902048

  12. Catalytic membrane reactor for water and wastewater treatment

    NASA Astrophysics Data System (ADS)

    Heng, Samuel

    A double membrane reactor was fabricated and assessed for continuous treatment of water containing organic contaminants by ozonation. This innovative reactor consisted of a zeolite membrane prepared on the inner surface of a porous a-alumina support, which served as water selective extractor and active contactor, and a porous stainless membrane which was the ozone gas diffuser. The coupling of membrane separation and chemical oxidation was found to be highly beneficial to both processes. The total organic carbon (TOC) removal rate at the retentate was enhanced by up to 2.2 times, as compared to membrane ozonation. Simultaneously, clean water (< 2 mg C.L-1 ) was consistently produced on the permeate side, using a feed solution containing up to 1000 mg C.L-1, while the retentate was concentrated and treated. Most significantly, the addition of an adsorbing material, as a bed or a coated layer, onto the pores of the membrane support, was shown to further enhance TOC degradation, permeated TOC concentration, permeate flux, and moreover, ozone yield. The achievements of this project included: (1) The development of a novel low-temperature zeolite membrane activation method that generates consistently high quality membranes (i.e. high reproducibility and fewer defects). (2) The demonstration that gamma-alumina and gamma-alumina supported catalysts do not have significant activity and that the TOC removal enhancement usually observed during catalytic ozonation was due primarily to the contribution of adsorption and metal leaching. Thermogravimetric analysis (TGA) and elemental analysis (EA) of the spent catalyst showed that, during catalytic ozonation, oxygenated by-products of increased adsorbability were concentrated onto the gamma-alumina contactor, and were subsequently degraded. (3) The development of a method for coating high surface area gamma-alumina layers onto the grains of zeolite membrane support used as the active membrane contactor.

  13. [Emergent treatment of source water contaminated by representative chemicals].

    PubMed

    Chen, Bei-Bei; Gao, Nai-Yun; Lu, Wen-Min; Shang, Ya-Bo; Qin, Zu-Qun

    2009-06-15

    Emergent treatment of source water polluted by representative chemical bisphenol-A (BPA) and Di-ethyl phthalate (DEP) was researched. The results indicate that activated carbon adsorption could achieve high efficiencies to remove the two chemicals. The pseudo second-order adsorption kinetic model and Elovich kinetic model can be used to describe the powdered activated carbon (PAC) adsorption process of BPA and DEP in raw water. In pilot test, 50 mg/L PAC dosage can get the pollution concentration of 500 microg/L BPA or 3.3 mg/L DEP comply with the requirement of water quality standard. The dynamic adsorption of carbon-sand filter was also studied, and removal efficiencies of BPA and DEP were hardly influenced by their original concentrations and the filtering velocity among 5.1-15.3 m/h of carbon-sand filter. When PAC adsorption was combined with carbon-sand filter, PAC adsorption contributes most to removing pollution, and carbon-sand filter as the supplement of PAC can strengthen safety. DEP can't be oxidized by KMnO4 or Cl2, but 850 microg/L BPA can be almost completely oxidized by 3 mg/L KMnO4 and 1.5 mg/L Cl2. The oxidation products of BPA as well as their toxicity need further study. PAC adsorption combined with 1.5 mg/L KMnO4 preoxidation can't improve the removal efficiency of DEP, but can improve BPA removal efficiency. PMID:19662842

  14. Multi-scale Cryptosporidium/sand interactions in water treatment.

    PubMed

    Tufenkji, Nathalie; Dixon, David R; Considine, Robert; Drummond, Calum J

    2006-10-01

    Owing to its widespread occurrence in drinking water supplies and its significant resistance to environmental stresses, Cryptosporidium parvum is regarded as one of the most important waterborne microbial parasites. Accordingly, a substantial research effort has been aimed at elucidating the physical, chemical and biological factors controlling the transport and removal of Cryptosporidium oocysts in natural subsurface environments and drinking water treatment facilities. In this review, a multi-scale approach is taken to discuss the current state-of-knowledge on Cryptosporidium-sand interactions at a nano-scale, bench-scale and field-scale relevant to water treatment operations. Studies conducted at the nano-scale and bench-scale illustrate how techniques based on the principles of colloid and surface chemistry are providing new insights about oocyst-sand interactions during transport of Cryptosporidium oocysts in granular porous media. Specifically, atomic force microscopy and impinging jet experiments reveal the importance of oocyst surface biomolecules in controlling Cryptosporidium/sand interactions by a mechanism of steric hindrance. Traditional bench-scale column transport studies conducted over a broad range of experimental conditions highlight the role of physicochemical filtration and physical straining in the removal of oocysts from the pore fluid. Such experiments have also been used to evaluate the influence of biofilms formed on grain surfaces and the presence of natural organic matter on oocyst-sand interactions. Whilst filtration studies conducted at the plant-scale have been useful for evaluating the effectiveness of various materials as surrogates for Cryptosporidium oocysts, at this macro-scale, little could be learnt about the fundamental mechanisms controlling oocyst-sand interactions. This review of the literature on Cryptosporidium-sand interactions at different length scales points to the importance of combining studies at the plant-scale with well-controlled investigations conducted at the nano- and bench-scales. Furthermore, because oocyst surface properties play an important role in controlling the extent of interaction with sand surfaces, a thorough discussion of Cryptosporidium oocyst characteristics and electrical properties is presented. PMID:16979211

  15. Clean water recycle in sugar extraction process: Performance analysis of reverse osmosis in the treatment of sugar beet press water

    Microsoft Academic Search

    M. Bogliolo; A. Bottino; G. Capannelli; M. De Petro; A. Servida; G. Pezzi; G. Vallini

    1997-01-01

    In the beet sugar manufacturing the treatment of the press water represents a challenging design task. In fact presently, press water is completely recycled to the extraction of sugar beet cossettes. Press water is essentially a dilute solution (1–3% total solids) containing, besides sugar (60–80% of the total solids), impurities in the form of dissolved species, salts, colloids, and suspended

  16. Comparative health-effects assessment of drinking-water-treatment technologies. Final report

    SciTech Connect

    Not Available

    1988-03-09

    On October 8-9, 1987 the Drinking Water Subcommittee of the Science Advisory Board's Environmental Health Committee met to independently review of Office of Drinking Water report to Congress entitled Comparative Health Effects Assessment of Drinking Water Treatment Technologies. The objective of the report is to compare the health effects resulting from the use of different drinking-water-treatment technologies with those prevented by biological treatment. The Subcommittee concludes that the constraints of time and available budget, the report adequately surveys the available information on health effects pf chemicals involved in water treatment, including cost estimates. The rationale for the specific approach used in examining water-treatment processes should be articulated. The introduction should also clearly state that there is a disparity in knowledge for the various treatment techniques.

  17. Recycle of Alum recovered from water treatment sludge in chemically enhanced primary treatment.

    PubMed

    Xu, G R; Yan, Z C; Wang, Y C; Wang, N

    2009-01-30

    An investigation was made to study the feasibility of recovering the Alum from coagulation sludges and reusing it in chemically enhanced primary treatment (CEPT) process to make the CEPT more cost-effective and recover the resource (Alum) efficiently. The optimum condition and efficiency of the acidification method for Alum recovery from coagulation sludge were investigated in the test. The results show that when the recovery rate of Alum reaches its highest level, 84.5%, the reduction rate of sludge is 35.5%. It turns out that the capability of recovered coagulant to remove turbidity, UV(254) and COD are 96%, 46% and 53%, respectively. The results prove that the recovered coagulants could be used in CEPT and the efficiency of recovered coagulant to remove pollutants is similar to that of fresh coagulant. Although some substances will be enriched during recycle, they have little effect on the quality of treated wastewater. The experiments verify that it would be an advisable and cost-effective way to recover Alum from coagulation sludges in water treatment and chemical wastewater treatment, and it could be then recycled to CEPT as well as reduce sludge volume. PMID:18486332

  18. Comparison of electrocoagulation and chemical coagulation with fiber filters for water treatment

    Microsoft Academic Search

    Young Man Cho; Gi Weon Ji; Pyeong Jong Yoo; Chang Weon Kim; Ki Baek Han

    2008-01-01

    A combined electrocoagulation(EC)-fiber filter system has been presented as a new technology for water treatment. The objective\\u000a of this study was to evaluate the feasibility of applying an aluminum EC-fiber filter for water treatment. We compared the\\u000a water treatment efficiency of the chemical coagulation (CC)-fiber filter and EC-fiber filter. A comparison of the EC and CC\\u000a processes reveals that EC

  19. Transformations of particles, metal elements and natural organic matter in different water treatment processes

    Microsoft Academic Search

    Ming-quan YAN; Dong-sheng WANG; Bao-you SHI; Qun-shan WEI; Jiu-hui QU; Hong-xiao TANG

    2007-01-01

    Characterizing natural organic matter (NOM), particles and elements in different water treatment processes can give a useful information to optimize water treatment operations. In this article, transformations of particles, metal elements and NOM in a pilot-scale water treatment plant were investigated by laser light granularity system, particle counter, glass-fiber membrane filtration, inductively coupled plasma-optical emission spectroscopy, ultra filtration and resin

  20. WATER TREATMENT MODEL FOR POLLUTANT EXPOSURE ASSESSMENT: SYSTEM DOCUMENTATION AND USERS MANUAL

    EPA Science Inventory

    A mathematical model of potable water treatment to remove toxic substances has been developed for use in exposure assessment modeling. Treatment processes modeled include sedimentation, coagulation-flocculation, filtration, aeration, chemical oxidation, and granular activated car...

  1. Properties and potential uses of water treatment sludge from the Neches River of southeast Texas 

    E-print Network

    Kan, Weiqun

    1995-01-01

    that influence utilization of the sludge as a soil amendment. Water treatment sludges were obtained from water utilities along the Neches Rivet-near Beaumont, Texas. They were mostly coagulated with organic polymers. Mineralogical composition, cation exchange...

  2. Monitoring effective use of household water treatment and safe storage technologies in Ethiopia and Ghana

    E-print Network

    Stevenson, Matthew M

    2009-01-01

    Household water treatment and storage (HWTS) technologies dissemination is beginning to scale-up to reach the almost 900 million people without access to an improved water supply (WHO/UNICEF/JMP, 2008). Without well-informed ...

  3. Determining the removal effectiveness of flame retardants from drinking water treatment processes

    E-print Network

    Lin, Joseph C. (Joseph Chris), 1981-

    2004-01-01

    Low concentrations of xenobiotic chemicals have recently become a concern in the surface water environment. The concern expands to drinking water treatment processes, and whether or not they remove these chemicals while ...

  4. Innovative Disinfection Processes Including Membrane Technology and Ultraviolet Light for Treatment of Reclaimed Water for Indirect Potable Reuse

    Microsoft Academic Search

    Sharon Beverly; George Lukasik; William J. Conlon; David MacIntyre

    Advanced water treatment technology exists which can provide a continuous supply of pure water from reclaimed water sources. Membrane technology in the form of microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and\\/or reverse osmosis (RO) has become an increasingly affordable alternative when compared to conventional water treatment processes to achieve the same water quality objectives. A treatment train, which utilizes membrane

  5. Metal sorption to natural filter substrates for storm water treatment—column studies

    Microsoft Academic Search

    Carina Färm

    2002-01-01

    Storm water generated from road runoff contains pollutants such as metals that are either dissolved in storm water or bound to particulates. Using detention ponds for the treatment of storm water from road runoff, where particles can settle, can reduce the level of particulate-bound metals in the water, while small particles and dissolved matter pass through the detention pond. Some

  6. Study of water penetration in rock materials by Nuclear Magnetic Resonance Tomography: hydrophobic treatment effects

    Microsoft Academic Search

    Giulio Cesare Borgia; Mara Camaiti; Fanny Cerri; Paola Fantazzini; Franco Piacenti

    2000-01-01

    The penetration of water in rock materials is the main cause of deterioration of stone surfaces exposed to rainfall. Their protection is generally achieved using water-repellents, in order to reduce the absorption of water. Nuclear Magnetic Resonance Imaging (MRI) provides a new tool to visualize the presence of water inside the stone and, hence, the performance of hydrophobic treatments. This

  7. Electrocoagulation–electroflotation as a surface water treatment for industrial uses

    Microsoft Academic Search

    Catherine Ricordel; André Darchen; Dimiter Hadjiev

    2010-01-01

    Water is a natural product that is needed in many industrial uses, but some processes like washing or cooling do not require drinking water. In this work we investigated the efficiency of an electrolytic treatment of surface waters in order to increase their quality. The waters were taken from a river and in a pond and they were treated by

  8. NONPHOTOSYNTHETIC PIGMENTED BACTERIA IN A POTABLE WATER TREATMENT AND DISTRIBUTION SYSTEM

    EPA Science Inventory

    The occurrence of pigmented bacteria in potable water from raw source water through treatment to distribution water, including dead-end locations, was compared at sample sites in a large municipal water system. edia used to enumerate heterotrophic bacteria and differentiate pigme...

  9. Effects of Vermicompost and Water Treatment Residuals on Soil Physical Properties and Wheat Yield

    NASA Astrophysics Data System (ADS)

    Ibrahim, Mahmoud M.; Mahmoud, Essawy K.; Ibrahim, Doaa A.

    2015-04-01

    The application of vermicompost and water treatment residuals to improve the physical properties in the salt affected soils is a promising technology to meet the requirements of high plant growth and cost-effective reclamation. Therefore, the aim of this study was to investigate the effect of vermicompost and its mixtures with water treatment residuals on selected physical properties of saline sodic soil and on wheat yield. The treatments were vermicompost, water treatment residuals, vermicompost + water treatment residuals (1:1 and 2:1 wet weight ratio) at levels of 5 and 10 g dry weight kg-1 dry soil. The considered physical properties included aggregate stability, mean weight diameter, pore size distribution and dry bulk density. The addition of vermicompost and water treatment residuals had significant positive effects on the studied soil physical properties, and improved the grain yield of wheat. The treatment of (2 vermicompost + 1 water treatment residuals) at level of 5 g kg-1 soil gave the best grain yield. Combination of vermicompost and water treatment residuals improved the water treatment residuals efficiency in ameliorating the soil physical properties, and could be considered as an ameliorating material for the reclamation of salt affected soils.

  10. Chemical Treatment Fosters Zero Discharge by Making Cooling Water Reusable 

    E-print Network

    Boffardi, B. P.

    1996-01-01

    consumption by increasing the use of recycled water. Simplistically, the circulating cooling water flows through heat exchanger equipment and is cooled by passing through a cooling tower. The recycled water is cooled by evaporation of some of the circulating...

  11. Chemical Treatment Fosters Zero Discharge by Making Cooling Water Reusable

    E-print Network

    Boffardi, B. P.

    Over the past decade, the water requirements for cooling industrial manufacturing processes have changed dramatically. Once-through cooling has been largely replaced by open recirculating cooling water methods. This approach reduces water...

  12. Home Water Treatment Habits and Effectiveness in a Rural Arizona Community

    PubMed Central

    Lothrop, Nathan; Wilkinson, Sarah T.; Verhougstraete, Marc; Sugeng, Anastasia; Loh, Miranda M.; Klimecki, Walter; Beamer, Paloma I.

    2015-01-01

    Drinking water quality in the United States (US) is among the safest in the world. However, many residents, often in rural areas, rely on unregulated private wells or small municipal utilities for water needs. These utilities may violate the Safe Drinking Water Act contaminant guidelines, often because they lack the required financial resources. Residents may use alternative water sources or install a home water treatment system. Despite increased home water treatment adoption, few studies have examined their use and effectiveness in the US. Our study addresses this knowledge gap by examining home water treatment in a rural Arizona community. Water samples were analyzed for metal(loid)s, and home treatment and demographic data were recorded in 31 homes. Approximately 42% of homes treated their water. Independent of source water quality, residents with higher income (OR = 1.25; 95%CI (1.00 – 1.64)) and education levels (OR = 1.49; 95%CI (1.12 – 2.12)) were more likely to treat their water. Some contaminant concentrations were effectively reduced with treatment, while some were not. We conclude that increased educational outreach on contaminant testing and treatment, especially to rural areas with endemic water contamination, would result in a greater public health impact while reducing rural health disparities. PMID:26120482

  13. In-line coagulation prior to ceramic microfiltration for surface water treatment—minimisation of flocculation pre-treatment

    Microsoft Academic Search

    Thomas Meyn; Johannes Altmann; TorOve Leiknes

    2012-01-01

    In-line coagulation\\/flocculation with subsequent low pressure ceramic membrane filtration has emerged during the last years as a treatment alternative for surface waters with high natural organic matter (NOM) content and low turbidity. In such a hybrid process, the requirements on the flocculation step may significantly differ, if compared to treatment schemes where for example rapid filters are used instead of

  14. Microbial Removals by a Novel Biofilter Water Treatment System

    PubMed Central

    Wendt, Christopher; Ives, Rebecca; Hoyt, Anne L.; Conrad, Ken E.; Longstaff, Stephanie; Kuennen, Roy W.; Rose, Joan B.

    2015-01-01

    Two point-of-use drinking water treatment systems designed using a carbon filter and foam material as a possible alternative to traditional biosand systems were evaluated for removal of bacteria, protozoa, and viruses. Two configurations were tested: the foam material was positioned vertically around the carbon filter in the sleeve unit or horizontally in the disk unit. The filtration systems were challenged with Cryptosporidium parvum, Raoultella terrigena, and bacteriophages P22 and MS2 before and after biofilm development to determine average log reduction (ALR) for each organism and the role of the biofilm. There was no significant difference in performance between the two designs, and both designs showed significant levels of removal (at least 4 log10 reduction in viruses, 6 log10 for protozoa, and 8 log10 for bacteria). Removal levels meet or exceeded Environmental Protection Agency (EPA) standards for microbial purifiers. Exploratory test results suggested that mature biofilm formation contributed 1–2 log10 reductions. Future work is recommended to determine field viability. PMID:25758649

  15. Hydrolysis of bamboo biomass by subcritical water treatment.

    PubMed

    Mohan, Mood; Banerjee, Tamal; Goud, Vaibhav V

    2015-09-01

    The aim of present study was to obtain total reducing sugars (TRS) from bamboo under subcritical water (SCW) treatment in a batch reactor at the temperature ranging from 170°C to 220°C and 40min hydrolysis time. Experiments were performed to investigate the effects of temperature and time on TRS yield. The maximum TRS yield (42.21%) was obtained at lower temperature (180°C), however longer reaction time (25min). X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM) analysis were used to characterise treated and untreated bamboo samples. The XRD profile revealed that crystallinity of bamboo increased to 71.90% with increase in temperature up to 210°C and decreased thereafter to 70.92%. The first-order reaction kinetic model was used to fit the experimental data to obtain rate constants. From the Arrhenius plot, activation energy and pre-exponential factor at 25min time were found to be 17.97kJmol(-1) and 0.154min(-1), respectively. PMID:26000834

  16. ETV REPORT: REMOVAL OF CHEMICAL CONTAMINANTS IN DRINKING WATER ? PALL/KINETICO PUREFECTA DRINKING WATER TREATMENT SYSTEM

    EPA Science Inventory

    The Pall/Kinetico Purefecta? POU drinking water treatment system was tested for removal of aldicarb, benzene, cadmium, carbofuran, cesium, chloroform, dichlorvos, dicrotophos, fenamiphos, mercury, mevinphos, oxamyl, strontium, and strychnine. The Purefecta? employs several compon...

  17. MODIFIED REVERSE OSMOSIS SYSTEM FOR TREATMENT OF PRODUCED WATERS

    SciTech Connect

    T.M. Whitworth; Liangxiong Li

    2002-09-15

    This report describes work performed during the second year of the project ''Modified reverse osmosis system for treatment of produced waters.'' We performed two series of reverse osmosis experiments using very thin bentonite clay membranes compacted to differing degrees. The first series of 10 experiments used NaCl solutions with membranes that ranged between 0.041 and 0.064mm in thickness. Our results showed compaction of such ultra-thin clay membranes to be problematic. The thickness of the membranes was exceeded by the dimensional variation in the machined experimental cell and this is believed to have resulted in local bypassing of the membrane with a resultant decrease in solute rejection efficiency. In two of the experiments, permeate flow was varied as a percentage of the total flow to investigate results of changing permeate flow on solute rejection. In one experiment, the permeate flow was varied between 2.4 and 10.3% of the total flow with no change in solute rejection. In another experiment, the permeate flow was varied between 24.6 and 52.5% of the total flow. In this experiment, the solute rejection rate decreased as the permeate occupied greater fractions of the total flow. This suggests a maximum solute rejection efficiency for these clay membranes for a permeate flow of between 10.3 and 24.6% of the total; flow. Solute rejection was found to decrease with increasing salt concentration and ranged between 62.9% and 19.7% for chloride and between 61.5 and 16.8% for sodium. Due to problems with the compaction procedure and potential membrane bypassing, these rejection rates are probably not the upper limit for NaCl rejection by bentonite membranes. The second series of four reverse osmosis experiments was conducted with a 0.057mm-thick bentonite membrane and dilutions of a produced water sample with an original TDS of 196,250 mg/l obtained from a facility near Loco Hill, New Mexico, operated by an independent. These experiments tested the separation efficiency of the bentonite membrane for each of the dilutions. We found that membrane efficiency decreased with increasing solute concentration and with increasing TDS. The rejection of SO{sub 4}{sup 2-} was greater than Cl{sup -}. This may be because the SO{sub 4}{sup 2-} concentration was much lower than the Cl{sup -} concentration in the waters tested. The cation rejection sequence varied with solute concentration and TDS. The solute rejection sequence for multi-component solutions is difficult to predict for synthetic membranes; it may not be simple for clay membranes either. The permeate flows in our experiments were 4.1 to 5.4% of the total flow. This suggests that very thin clay membranes may be useful for some separations. Work on development of a spiral-wound clay membrane module found that it is difficult to maintain compaction of the membrane if the membrane is rolled and then inserted in the outer tube. A different design was tried using a cylindrical clay membrane and this also proved difficult to assemble with adequate membrane compaction. The next step is to form the membrane in place using hydraulic pressure on a thin slurry of clay in either water or a nonpolar organic solvent such as ethanol. Technology transfer efforts included four manuscripts submitted to peer-reviewed journals, two abstracts, and chairing a session on clays as membranes at the Clay Minerals Society annual meeting.

  18. Application of Microbial Fuel Cell technology for a Waste Water Treatment Alternative

    E-print Network

    Application of Microbial Fuel Cell technology for a Waste Water Treatment Alternative Eric A. Zielke February 15, 2006 #12;Application of Microbial Fuel Cell technology for a Waste Water Treatment Alternative Microbial fuel cells (MFCs) are devices that use bacteria to generate electricity from organic

  19. Water Treatment Plant Operation. Volume II. A Field Study Training Program.

    ERIC Educational Resources Information Center

    California State Univ., Sacramento. School of Engineering.

    The purpose of this water treatment field study training program is to: (1) develop new qualified water treatment plant operators; (2) expand the abilities of existing operators, permitting better service both to employers and public; and (3) prepare operators for civil service and certification examinations (examinations administered by…

  20. Water Treatment Plant Operation Volume 2. A Field Study Training Program. Revised.

    ERIC Educational Resources Information Center

    California State Univ., Sacramento. School of Engineering.

    The purpose of this water treatment field study training program is to: (1) develop new qualified water treatment plant operators; (2) expand the abilities of existing operators, permitting better service both to employers and public; and (3) prepare operators for civil service and certification examinations (examinations administered by…

  1. Author's personal copy Modelling and automation of water and wastewater treatment processes

    E-print Network

    Author's personal copy Preface Modelling and automation of water and wastewater treatment processes on the applications of modelling and automation to water and wastewater treatment processes. The session, under their profession, with automation figuring prominently among the new disciplines required to improve

  2. The Diffusion of Biological Waste-Water Treatment Plants in the Dutch Food and Beverage Industry

    Microsoft Academic Search

    René Kemp

    1998-01-01

    This article develops an economic model of environmental technology adoption decisions. The model is applied econometrically to the diffusion of biological waste-water treatment plants in the Dutch food and beverage industry. It shows that it is possible to explain the overall diffusion pattern of biological waste-water treatment plants in terms of a rational choice model in which prospective adopters trade

  3. Study of different membrane spargers used in waste water treatment: characterisation and performance

    Microsoft Academic Search

    Pisut Painmanakul; Karine Loubiere; Gilles Hebrard; P. Buffiere

    2004-01-01

    In urban waste water treatment, a novel gas sparger based on flexible rubber membrane has been used for the last 10 years. The objective of this present work is to compare two flexible membranes (the new membrane and the old membrane provided by ONDEO-DEGREMONT group) used in waste water treatment. For this purpose, the different membrane properties (hole diameter, pressure

  4. Water Treatment Plant Operation. Volume I. A Field Study Training Program.

    ERIC Educational Resources Information Center

    California State Univ., Sacramento. School of Engineering.

    The purpose of this water treatment field study training program is to: (1) develop new qualified water treatment plant operators; (2) expand the abilities of existing operators, permitting better service both to employers and public; and (3) prepare operators for civil service and certification examinations (examinations administered by…

  5. PROCESS CONVERSION OF THE CITY OF SARASOTA'S REVERSE OSMOSIS WATER TREATMENT PLANT

    Microsoft Academic Search

    Steven J. Duranceau; Javier Vargas; Julie Nemeth; Donald T. Mullaney

    The City of Sarasota recently implemented a membrane process conversion replacement program at it's water treatment facility. The City owns and operates a 12 million gallon per day (MGD) water treatment facility, which is comprised of an ion-exchange process and a hollow-fiber reverse osmosis process. Over the past several years the City has implemented membrane replacement of the membrane process

  6. Treatment of low-contaminated waste water from the food industry to produce water of drinking quality for reuse

    Microsoft Academic Search

    V. Mavrov; A. Fähnrich; H. Chmiel

    1997-01-01

    The treatment of low-contaminated waste water from the meat processing industry was studied with the objective of producing water of drinking quality for reuse. A demonstration plant with a capacity of up to 2 m3\\/h was built based on our experiments to compare different treatment processes for the removal of suspended particles, dissolved inorganics, undissolved and dissolved organics and micro-organisms

  7. Ecotoxicological assessment of grey water treatment systems with Daphnia magna and Chironomus riparius.

    PubMed

    Hernández Leal, L; Soeter, A M; Kools, S A E; Kraak, M H S; Parsons, J R; Temmink, H; Zeeman, G; Buisman, C J N

    2012-03-15

    In order to meet environmental quality criteria, grey water was treated in four different ways: 1) aerobic 2) anaerobic+aerobic 3) aerobic+activated carbon 4) aerobic+ozone. Since each treatment has its own specific advantages and disadvantages, the aim of this study was to compare the ecotoxicity of differently treated grey water using Chironomus riparius (96 h test) and Daphnia magna (48 h and 21d test) as test organisms. Grey water exhibited acute toxicity to both test organisms. The aerobic and combined anaerobic+aerobic treatment eliminated mortality in the acute tests, but growth of C. riparius was still affected by these two effluents. Post-treatment by ozone and activated carbon completely removed the acute toxicity from grey water. In the chronic toxicity test the combined anaerobic+aerobic treatment strongly affected D. magna population growth rate (47%), while the aerobic treatment had a small (9%) but significant effect. Hence, aerobic treatment is the best option for biological treatment of grey water, removing most of the toxic effects of grey water. If advanced treatment is required, the treatment with either ozone or GAC were shown to be very effective in complete removal of toxicity from grey water. PMID:22197265

  8. MODIFIED REVERSE OSMOSIS SYSTEM FOR TREATMENT OF PRODUCED WATERS

    SciTech Connect

    Robert L. Lee; Junghan Dong

    2004-06-03

    This final report of ''Modified Reverse Osmosis System for Treatment of Produced Water,'' DOE project No. DE-FC26-00BC15326 describes work performed in the third year of the project. Several good results were obtained, which are documented in this report. The compacted bentonite membranes were replaced by supported bentonite membranes, which exhibited the same salt rejection capability. Unfortunately, it also inherited the clay expansion problem due to water invasion into the interlayer spaces of the compacted bentonite membranes. We noted that the supported bentonite membrane developed in the project was the first of its kind reported in the literature. An {alpha}-alumina-supported MFI-type zeolite membrane synthesized by in-situ crystallization was fabricated and tested. Unlike the bentonite clay membranes, the zeolite membranes maintained stability and high salt rejection rate even for a highly saline solution. Actual produced brines from gas and oil fields were then tested. For gas fields producing brine, the 18,300 ppm TDS (total dissolved solids) in the produced brine was reduced to 3060 ppm, an 83.3% rejection rate of 15,240 ppm salt rejection. For oilfield brine, while the TDS was reduced from 181,600 ppm to 148,900 ppm, an 18% rejection rate of 32,700 ppm reduction, the zeolite membrane was stable. Preliminary results show the dissolved organics, mainly hydrocarbons, did not affect the salt rejection. However, the rejection of organics was inconclusive at this point. Finally, the by-product of this project, the {alpha}-alumina-supported Pt-Co/Na Y catalytic zeolite membrane was developed and demonstrated for overcoming the two-step limitation of nonoxidation methane (CH{sub 4}) conversion to higher hydrocarbons (C{sub 2+}) and hydrogen (H{sub 2}). Detailed experiments to obtain quantitative results of H{sub 2} generation for various conditions are now being conducted. Technology transfer efforts included five manuscripts submitted to peer-reviewed journals and five conference presentations.

  9. Removal of dissolved organic matter in water-hyacinth waste-water treatment lagoons

    SciTech Connect

    Victoria-Rueda, C.H.

    1991-01-01

    Secondary treatment of domestic wastewater in water hyacinth lagoons was evaluated under experimental conditions to assess the role of the roots' bacterial biofilm in the removal of dissolved organic matter (DOM). Research was conducted to (1) quantify removal rates by the biofilm as a function of bulk DOM concentration, (2) formulate an analytical model of DOM removal incorporating biofilm activity, and (3) test the model response to variable organic loads in a pilot-scale plant. Removal of DOM by the biofilm was quantified in continuous-flow water hyacinth tanks at ten concentrations ranging from 45 to 330 g COD m {sup {minus}3} . Total DOM removal in the denitrifying, acetate-based experimental system was measured and partitioned into two fractions associated with the activity of biofilm and suspended bacteria. Calculated DOM removal by the biofilm was adjusted for the release of organic compounds by debris decomposition. Values of DOM removal were used to calculate oxygen transfer rates from the water hyacinth roots. A model of DOM removal in water hyacinth lagoons was formulated. The model, composed of four differential equations, was solved at steady-state conditions and the validity of its simulation results was tested in pilot-scale tanks. Hydraulic detection times ranging from 2 to 28 days were evaluated using biofilm density and concentrations of DOM and particulate organics as monitoring parameters of the model response. The observed decrease of suspended bacterial biomass along the tank was correctly simulated by the model, but predictions of effluent concentrations were not always consistent. Predicted values of biofilm bacterial mass were similar to those measured in the tanks, except when large algal populations were present in the film.

  10. Chapter 24. emerging technologies for irrigation water treatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several disinfestants that have potential for treating recycled irrigation water are less commonly used or newer developing technologies. Hydrogen peroxide can reduce spread of pathogens in water that contains nutrients or pesticide residues without generating toxic residues. Benefits potentially in...

  11. IMPACT OF DRINKING WATER TREATMENT ON ASSIMILABLE ORGANIC CARBON

    EPA Science Inventory

    Regrowth in the drinking water distribution system is a primary concern for water utilities. he disinfection process, although normally efficient for primary inactivation, is not always enough to discourage microbial regrowth if sufficient substrate is available. Previously, the,...

  12. No Chemical, Zero Bleed Cooling Tower Water Treatment Process 

    E-print Network

    Coke, A. L.

    1992-01-01

    out of the tower sump, water goes through a permanent magnetic descaler to increase the water solubility and begin the scale inhibition process. This also descales existing scale build-up in the system. Ozone is manufactured from ambient air...

  13. Roughing filtration as an effective pre-treatment system for high turbidity water.

    PubMed

    Khan, Zahiruddin; Farooqi, Rahimuddin

    2011-01-01

    Effective water treatment is the prime goal of every water treatment facility. Chakwal Water Treatment Plant in Pakistan has been treating high-turbidity surface water through crude coagulation, sedimentation and slow sand filtration since the early 1980s. The process has always been tedious in terms of high coagulant dosage, large volumes of sludge and short filter runs especially after wet spells. A laboratory-scale study was conducted to see if roughing filtration, as the pre-treatment process, would help in reducing coagulant dose and sludge volume and improving effluent quality. Results indicated that up-flow rouging filtration with media grades decreasing in the direction of flow could reduce wet weather raw water turbidity (by more than 90%) and coagulant dose. Overall, the plant could save over US $54,000 annually in terms of coagulant cost only. Longer filter runs, improved product water quality leading to lower chlorine dose requirement, would be additional benefits. PMID:22179638

  14. Point-of-use water treatment and diarrhoea reduction in the emergency context: an effectiveness trial in Liberia

    E-print Network

    Scharfstein, Daniel

    Point-of-use water treatment and diarrhoea reduction in the emergency context: an effectiveness in current water treatment technologies, and few products are capable of treating turbid water. We describe the findings of a 12-week effectiveness study of point-of-use water treatment with a flocculant

  15. ADVANCES IN DRINKING WATER TREATMENT IN THE UNITED STATES

    EPA Science Inventory

    The United States drinking water public health protection goal is to provide water that meets all health-based standards to ninety-five percent of the population served by public drinking water supplies by 2005. In 2002, the level of compliance with some eighty-five health-based ...

  16. Constructed wetland (CW) for industrial waste water treatment

    Microsoft Academic Search

    Dani Vrhovšek; Vlasta Kukanja; Tjaša Bulc

    1996-01-01

    The constructed wetland (CW) in Gradiš?e (Slovenia) has been in operation since 1991 for the purification of waste waters from a food processing plant. It functions according to the method of horizontal subsurface flow. Waste waters are composed of industrial, faecal and meteor waters. The CW is composed of two beds, filled with substrate and planted with Carex gracilis and

  17. Low-cost water treatment solves disposal problems

    Microsoft Academic Search

    Beckett

    1971-01-01

    Gulf Oil Corp. has eliminated open pit disposal of waste water from crude oil separators, and has significantly improved water quality for subsurface injection in its Red Ribbon Ranch plant near Bakersfield, Calif. The water purifying facility has been tested with throughputs of 10,600 bwpd with 100 ppm oil contamination. The discharge consistently tested less than 4 ppm oil, with

  18. ADVERSE IMPACTS OF WASTE WATER TREATMENT ­ A CASE STUDY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Industrial metal plating processes coat materials with metals, such as chromium, copper and nickel. After the plating process, excess metals are rinsed off and the rinse water is collected and then treated to remove metals prior to discharge of the rinse water into rivers. This waste water is typica...

  19. Water and air treatment using ultraviolet light sources

    Microsoft Academic Search

    Gordon Knight

    2011-01-01

    Advances in production of novel UV light sources is reviewed. The use of these devices for air and water purification is described, along with necessary validation procedures for verifying the operation of water disinfection systems. Ultraviolet light sources are currently used to neutralize pathogenic organisms and remove chemical contaminants from both air and water. These sources range from highly efficient

  20. Current and Long-Term Effects of Delta Water Quality on Drinking Water Treatment Costs from Disinfection Byproduct Formation

    E-print Network

    Pasternack, Gregory B.

    Disinfection Byproduct Formation Wei-Hsiang Chen, Kristine Haunschild, and Jay R. Lund* Department of Civil, Sacramento-San Joaquin Delta, Treatment Cost, Disinfection Byproduct, Bromide, Total Organic Carbon, Sea quality on drinking water treatment cost and residual public health risk from disinfection byproduct (DBP