Science.gov

Sample records for presidio water treatment

  1. 10. Office of the Post Engineer, Presidio of San Francisco. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Office of the Post Engineer, Presidio of San Francisco. Location of Water Lines, Presidio of San Francisco. Sheet 30. November 1943. SHOWING EASTERN PORTION OF CRISSY FIELD AND AREA A. - Presidio of San Francisco, Storehouse & Administration, Crissy Field North cantonment, Allen Street, San Francisco, San Francisco County, CA

  2. 9. Office of the Post Engineer, Presidio of San Francisco. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Office of the Post Engineer, Presidio of San Francisco. Location of Water Lines, Presidio of San Francisco. Sheet 29. June 1944. SHOWING EASTERN PORTION OF CRISSY FIELD. - Presidio of San Francisco, Storehouse & Administration, Crissy Field North cantonment, Allen Street, San Francisco, San Francisco County, CA

  3. 11. Office of the Post Engineer, Presidio of San Francisco. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Office of the Post Engineer, Presidio of San Francisco. Location of Water Lines, Presidio of San Francisco. Sheet 31. November 1943. SHOWING EASTERN PORTION OF AREA A; BUILDINGS 274, 275, AND 277; AND POST ENGINEER'S SHOP AND YARDS INCLUDING BUILDINGS 280, 282-285, AND 288. - Presidio of San Francisco, Storehouse & Administration, Crissy Field North cantonment, Allen Street, San Francisco, San Francisco County, CA

  4. Ground-water data for the Salt Basin, Eagle Flat, Red Light Draw, Green River Valley and Presidio Bolson in westernmost Texas

    USGS Publications Warehouse

    White, Donald E.; Gates, Joseph S.; Smith, James T.; Fry, Bonnie J.

    1980-01-01

    From October 1971 through October 1974. the U.S. Geological Survey collected ground-water data in the basins in Texas west of the Pecos River drainage area and northwest of the Big Bend country. The basins included are, from east to west: The Presidio Bolson; the Salt Basin; Green River Valley, Eagle Flat, and Red Light Draw. These data, which were collected in cooperation with the Texas Department of Water Resources (formerly Texas Water Development Board), will provide information for a continuing assessment of water availability within the State.

  5. Level 1 Water-Quality Inventory of Baseline Levels of Pesticides in Urban Creeks - Golden Gate National Recreation Area and the Presidio of San Francisco, California

    USGS Publications Warehouse

    Hladik, Michelle L.; Orlando, James L.

    2008-01-01

    To characterize baseline water-quality levels of pesticides in Golden Gate National Recreation Area and the Presidio of San Francisco, the U.S. Geological Survey collected and analyzed surface-water and bed-sediment samples at 10 creeks during February, April, and July 2006. Pesticide data were obtained using previously developed methods. Samples from sites in the Presidio were analyzed only for pyrethroid insecticides, whereas the remaining samples were analyzed for pyrethroids and additional current and historical-use pesticides. Pesticide concentrations were low in both the water (below 30 ng/L) and sediment (below 3 ng/g). The pyrethroid bifenthrin was detected in water samples from two sites at concentrations below 2 ng/L. Other compounds detected in water included the herbicides dacthal (DCPA) and prometryn, the insecticide fipronil, the insecticide degradates p,p'-DDE and fipronil sulfone, and the fungicides cyproconazole, myclobutanil and tetraconazole. The only pesticides detected in the sediment samples were p,p'-DDT and its degradates (p,p'-DDD and p,p'-DDE). Pesticide information from the samples collected can provide a reference point for future sampling and can help National Park Service managers assess the water quality of the urban creeks.

  6. Ground-water data for the Salt Basin, Eagle Flat, Red Light Draw, Green River Valley, and Presidio Bolson in westernmost Texas

    USGS Publications Warehouse

    White, Donald Edward; Gates, J.S.; Smith, Joe T.; Fry, B.J.

    1978-01-01

    From October 1971 through October 1974, the U.S. Geological Survey collected groundwater data in the basins in Texas west of the Pecos River drainage area and northwest of the Big Bend country. The basins included are, from east to west: The Presidio Bolson; the Salt Basin; Green River Valley, Eagle Flat, and Red Light Draw. The data collection program consisted of an inventory of all major irrigation, municipal-supply, and industrial wells; selected stock and domestic wells; and selected springs. Water samples were collected from representative wells and springs for chemical analyses. (Woodard-USGS)

  7. Streamflow gains and losses and selected water-quality observations in five subreaches of the Rio Grande/Rio Bravo del Norte from near Presidio to Langtry, Texas, Big Bend area, United States and Mexico, 2006

    USGS Publications Warehouse

    Raines, Timothy H.; Turco, Michael J.; Connor, Patrick J.; Bennett, Jeffery B.

    2012-01-01

    Few historical streamflow and water-quality data are available to characterize the segment of the Rio Grande/Rio Bravo del Norte (hereinafter Rio Grande) extending from near Presidio to near Langtry, Texas. The U.S. Geological Survey, in cooperation with the National Park Service and the Texas Commission on Environmental Quality, collected water-quality and streamflow data from the Rio Grande from near Presidio to near Langtry, Texas, to characterize the streamflow gain and loss and selected constituent concentrations in a 336.3-mile reach of the Rio Grande from near Presidio to near Langtry, Texas. Streamflow was measured at 38 sites and water-quality samples were collected at 20 sites along the Rio Grande in February, March, and June 2006. Streamflow gains and losses over the course of the stream were measured indirectly by computing the differences in measured streamflow between sites along the stream. Water-quality data were collected and analyzed for salinity, dissolved solids, major ions, nutrients, trace elements, and stable isotopes. Selected properties and constituents were compared to available Texas Commission on Environmental Quality general use protection criteria or screening levels. Summary statistics of selected water-quality data were computed for each of the five designated subreaches. Streamflow gain and loss and water-quality constituent concentration were compared for each subreach, rather than the entire segment because of the temporal variation in sample collection caused by controlled releases upstream. Subreach A was determined to be a losing reach, and subreaches B, C, D, and E were determined to be gaining reaches. Compared to concentrations measured in upstream subreaches, downstream subreaches exhibited evidence of dilution of selected constituent concentrations. Subreaches A and B had measured total dissolved solids, chloride, and sulfate exceeding the Texas Commission on Environmental Quality general use protection criteria

  8. Usage and administration manual for a geodatabase compendium of water-resources data-Rio Grande Basin from the Rio Arriba-Sandoval County line, New Mexico, to Presidio, Texas, 1889-2009

    USGS Publications Warehouse

    Burley, Thomas E.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the New Mexico Interstate Stream Commission, developed a geodatabase compendium (hereinafter referred to as the 'geodatabase') of available water-resources data for the reach of the Rio Grande from Rio Arriba-Sandoval County line, New Mexico, to Presidio, Texas. Since 1889, a wealth of water-resources data has been collected in the Rio Grande Basin from Rio Arriba-Sandoval County line, New Mexico, to Presidio, Texas, for a variety of purposes. Collecting agencies, researchers, and organizations have included the U.S. Geological Survey, Bureau of Reclamation, International Boundary and Water Commission, State agencies, irrigation districts, municipal water utilities, universities, and other entities. About 1,750 data records were recently (2010) evaluated to enhance their usability by compiling them into a single geospatial relational database (geodatabase). This report is intended as a user's manual and administration guide for the geodatabase. All data available, including water quality, water level, and discharge data (both instantaneous and daily) from January 1, 1889, through December 17, 2009, were compiled for the study area. A flexible and efficient geodatabase design was used, enhancing the ability of the geodatabase to handle data from diverse sources and helping to ensure sustainability of the geodatabase with long-term maintenance. Geodatabase tables include daily data values, site locations and information, sample event information, and parameters, as well as data sources and collecting agencies. The end products of this effort are a comprehensive water-resources geodatabase that enables the visualization of primary sampling sites for surface discharges, groundwater elevations, and water-quality and associated data for the study area. In addition, repeatable data processing scripts, Structured Query Language queries for loading prepared data sources, and a detailed process for refreshing all data in the

  9. 2. POST ENGINEER'S SHOPS AND YARD BUILDINGS FROM PRESIDIO ENTRANCE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. POST ENGINEER'S SHOPS AND YARD BUILDINGS FROM PRESIDIO ENTRANCE GATE AT MASON STREET, LOOKING 270 DEGREES WEST - Presidio of San Francisco, Post Engineer's Headquarters Office, Crissy Field North cantonment, San Francisco, San Francisco County, CA

  10. WATER TREATMENT

    DOEpatents

    Pitman, R.W.; Conley, W.R. Jr.

    1962-12-01

    An automated system for adding clarifying chemicals to water in a water treatment plant is described. To a sample of the floc suspension polyacrylamide or similar filter aid chemicals are added, and the sample is then put through a fast filter. The resulting filtrate has the requisite properties for monitoring in an optical turbidimeter to control the automated system. (AEC)

  11. Interior view of garage facing back wall (east) Presidio ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view of garage facing back wall (east) - Presidio of San Francisco, Officers' Vehicles Garage, 1055 General Kennedy Avenue, Letterman Hospital Complex, San Francisco, San Francisco County, CA

  12. 42. Post Engineer Office, Presidio of San Francisco, Letterman Army ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. Post Engineer Office, Presidio of San Francisco, Letterman Army Hospital, X-Ray Department and Second Floor Plan, X-Ray Department Plan, Building 1006. no date. BUILDING 1006. - Presidio of San Francisco, Letterman General Hospital, Building No. 27, Letterman Hospital Complex, Edie Road, San Francisco, San Francisco County, CA

  13. 17. 'BIRDSEYEVIEW, PRESIDIO OF MONTEREY, CAL., JAN. 1938.' No signature, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. 'BIRDSEYEVIEW, PRESIDIO OF MONTEREY, CAL., JAN. 1938.' No signature, photographer probably Anton C. Heidrick. This panoramic view looks west over Soldier Field from the upper floor or roof of the gymnasium. Original cool toned silver gelatin print measures 85.1 cm by 22.4 cm, flush mounted on mat board. - Presidio of Monterey, Soldier Field, Monterey, Monterey County, CA

  14. 21. Post Engineer Office, Presidio of San Francisco, Letterman Army ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Post Engineer Office, Presidio of San Francisco, Letterman Army Hospital. EKG Cardiology Clinic, Building 1049. December 1955. BUILDING 1049. - Presidio of San Francisco, Letterman General Hospital, Building No. 12, Letterman Hospital Complex, Edie Road, San Francisco, San Francisco County, CA

  15. 22. Post Engineer Office, Presidio of San Francisco, Building # ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Post Engineer Office, Presidio of San Francisco, Building # 1049 Letterman General Hospital. Alterations to EKG Cardiology Clinic. November 1963. BUILDING 1049. - Presidio of San Francisco, Letterman General Hospital, Building No. 12, Letterman Hospital Complex, Edie Road, San Francisco, San Francisco County, CA

  16. 36. Post Engineer Office, Presidio of San Francisco. Plot Plan, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. Post Engineer Office, Presidio of San Francisco. Plot Plan, Letterman Army Hospital, San Francisco, Calif. 1958. SHOWING LOCATION OF BUILDINGS 1006 AND 1049 IN LETTERMAN HOSPITAL COMPLEX IN 1958. - Presidio of San Francisco, Letterman General Hospital, Building No. 27, Letterman Hospital Complex, Edie Road, San Francisco, San Francisco County, CA

  17. 14. 'TROOP A, OREGON CAVALRY IN CAMP AT PRESIDIO OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. 'TROOP A, OREGON CAVALRY IN CAMP AT PRESIDIO OF MONTEREY, CALIFORNIA, 1915.' Anton C. Heidrick, photographer. This panoramic view looks west from the lower end of Soldier Field, before construction of walls and roads. Original warm toned silver gelatin print measures 94.9 cm by 19.7 cm, flush mounted on mat board. - Presidio of Monterey, Soldier Field, Monterey, Monterey County, CA

  18. 36 CFR 1004.10 - Travel on Presidio Trust roads and designated routes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... roads and designated routes. 1004.10 Section 1004.10 Parks, Forests, and Public Property PRESIDIO TRUST VEHICLES AND TRAFFIC SAFETY § 1004.10 Travel on Presidio Trust roads and designated routes. (a) Operating a motor vehicle is prohibited except on Presidio Trust roads and in parking areas. (b) The following...

  19. 36 CFR 1004.10 - Travel on Presidio Trust roads and designated routes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Travel on Presidio Trust roads... VEHICLES AND TRAFFIC SAFETY § 1004.10 Travel on Presidio Trust roads and designated routes. (a) Operating a motor vehicle is prohibited except on Presidio Trust roads and in parking areas. (b) The following...

  20. 36 CFR 1004.10 - Travel on Presidio Trust roads and designated routes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... roads and designated routes. 1004.10 Section 1004.10 Parks, Forests, and Public Property PRESIDIO TRUST VEHICLES AND TRAFFIC SAFETY § 1004.10 Travel on Presidio Trust roads and designated routes. (a) Operating a motor vehicle is prohibited except on Presidio Trust roads and in parking areas. (b) The following...

  1. 36 CFR 1004.10 - Travel on Presidio Trust roads and designated routes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... roads and designated routes. 1004.10 Section 1004.10 Parks, Forests, and Public Property PRESIDIO TRUST VEHICLES AND TRAFFIC SAFETY § 1004.10 Travel on Presidio Trust roads and designated routes. (a) Operating a motor vehicle is prohibited except on Presidio Trust roads and in parking areas. (b) The following...

  2. 36 CFR 1004.10 - Travel on Presidio Trust roads and designated routes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... roads and designated routes. 1004.10 Section 1004.10 Parks, Forests, and Public Property PRESIDIO TRUST VEHICLES AND TRAFFIC SAFETY § 1004.10 Travel on Presidio Trust roads and designated routes. (a) Operating a motor vehicle is prohibited except on Presidio Trust roads and in parking areas. (b) The following...

  3. 78 FR 41839 - Establishment of Class E Airspace; Presidio, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-12

    ..., 40113, 40120; E. O. 10854, 24 FR 9565, 3 CFR, 1959-1963 Comp., p. 389. ] Sec. 71.1 0 2. The... Federal Aviation Administration 14 CFR Part 71 Establishment of Class E Airspace; Presidio, TX AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action establishes Class...

  4. 36 CFR 1012.2 - What is the Presidio Trust's policy on granting requests for employee testimony or Presidio Trust...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... testimony or Presidio Trust records? (a) Except for proceedings covered by § 1012.1(c) and (d), it is the... through 1012.11. United States ex rel. Touhy v. Ragen, 340 U.S. 462 (1951). Responsibilities of Requesters...

  5. Alternative disinfectant water treatments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alternative disinfestant water treatments are disinfestants not as commonly used by the horticultural industry. Chlorine products that produce hypochlorous acid are the main disinfestants used for treating irrigation water. Chlorine dioxide will be the primary disinfestant discussed as an alternativ...

  6. 36 CFR 1011.22 - What does the Presidio Trust do upon receipt of a request to offset the salary of a Presidio...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... amount) and that the provisions of 5 CFR 550.1109 have been fully complied with. The creditor agency is... agency? (a) Notice to the Presidio Trust employee. When the Presidio Trust receives proper certification... Trust will provide a copy of the certification to the creditor agency. The creditor agency...

  7. Water Treatment Technology - Chlorination.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on chlorination provides instructional materials for nine competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: purpose and process of chlorination, chlorine…

  8. Water Treatment Technology - Filtration.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on filtration provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: purposes of sedimentation basins and flocculation…

  9. Water Treatment Technology - Springs.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on springs provides instructional materials for two competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on spring basin construction and spring protection. For each competency, student…

  10. Water Treatment Technology - Wells.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on wells provides instructional materials for five competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: dug, driven, and chilled wells, aquifer types, deep well…

  11. Water Treatment Technology - Flouridation.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on flouridation provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: purpose and process of flouridation, correct…

  12. Water Treatment Technology - Pumps.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on pumps provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pumps in plant and distribution systems, pump…

  13. Water Treatment Technology - Hydraulics.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on hydraulics provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: head loss in pipes in series, function loss in…

  14. 36 CFR 1011.2 - Why is the Presidio Trust issuing these regulations and what do they cover?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Why is the Presidio Trust issuing these regulations and what do they cover? 1011.2 Section 1011.2 Parks, Forests, and Public Property PRESIDIO TRUST DEBT COLLECTION General Provisions § 1011.2 Why is the Presidio Trust issuing...

  15. 36 CFR 1011.2 - Why is the Presidio Trust issuing these regulations and what do they cover?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Why is the Presidio Trust issuing these regulations and what do they cover? 1011.2 Section 1011.2 Parks, Forests, and Public Property PRESIDIO TRUST DEBT COLLECTION General Provisions § 1011.2 Why is the Presidio Trust issuing...

  16. Basic Water Treatment Operation.

    ERIC Educational Resources Information Center

    Ontario Ministry of the Environment, Toronto.

    This manual was developed for use at workshops designed to introduce the fundamentals of water treatment plant operations. The course consists of lecture-discussions and hands-on activities. Each of the fourteen lessons in this document has clearly stated behavioral objectives to tell the trainee what he should know or do after completing that…

  17. DRINKING WATER TREATMENT

    EPA Science Inventory

    The purpose of water treatment is threefold: 1. To improve the aethetic quality ofwater, 2. to remove toxic or health-hazardous chemicals, 3. to remove and/or inactivate any disease causing microorganisms. These objectives should be accomplished using a reasonable safety factor...

  18. Electrocoagulation in Water Treatment

    NASA Astrophysics Data System (ADS)

    Liu, Huijuan; Zhao, Xu; Qu, Jiuhui

    Electrocoagulation (EC) is an electrochemical method of treating polluted water where sacrificial anodes corrode to release active coagulant precursors (usually aluminum or iron cations) into solution. At the cathode, gas evolves (usually as hydrogen bubbles) accompanying electrolytic reactions. EC needs simple equipments and is designable for virtually any size. It is cost effective and easily operable. Specially, the recent technical improvements combined with a growing need for small-scale water treatment facilities have led to a revaluation of EC. In this chapter, the basic principle of EC was introduced first. Following that, reactions at the electrodes and electrode assignment were reviewed; electrode passivation process and activation method were presented; comparison between electrocoagulation and chemical coagulation was performed; typical design of the EC reactors was also described; and factors affecting electrocoagulation including current density, effect of conductivity, temperature, and pH were introduced in details. Finally, application of EC in water treatment was given in details.

  19. 36 CFR 1011.14 - How will the Presidio Trust report debts to credit bureaus?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... accordance with the requirements of § 1011.4 of this part. The Presidio Trust may authorize the FMS to report to credit bureaus those delinquent debts that have been transferred to the FMS under § 1011.9 of...

  20. 36 CFR 1011.14 - How will the Presidio Trust report debts to credit bureaus?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... accordance with the requirements of § 1011.4 of this part. The Presidio Trust may authorize the FMS to report to credit bureaus those delinquent debts that have been transferred to the FMS under § 1011.9 of...

  1. 36 CFR 1011.14 - How will the Presidio Trust report debts to credit bureaus?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... accordance with the requirements of § 1011.4 of this part. The Presidio Trust may authorize the FMS to report to credit bureaus those delinquent debts that have been transferred to the FMS under § 1011.9 of...

  2. 36 CFR 1011.14 - How will the Presidio Trust report debts to credit bureaus?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... accordance with the requirements of § 1011.4 of this part. The Presidio Trust may authorize the FMS to report to credit bureaus those delinquent debts that have been transferred to the FMS under § 1011.9 of...

  3. 36 CFR 1011.14 - How will the Presidio Trust report debts to credit bureaus?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... accordance with the requirements of § 1011.4 of this part. The Presidio Trust may authorize the FMS to report to credit bureaus those delinquent debts that have been transferred to the FMS under § 1011.9 of...

  4. Tenant guidelines for energy-efficient renovation of buildings at the Presidio of San Francisco

    SciTech Connect

    Warner, J.L.; Sartor, D.; Diamond, R.

    1997-06-01

    These Guidelines are intended to help current and future tenants of the Presidio work with designers and contractors to incorporate energy efficiency and sustainable practices into the renovations of the buildings. This guide is designed to complement the detailed Guidelines for Rehabilitating Buildings at the Presidio of San Francisco, available from the National Park Service. Energy efficiency yields benefits far beyond energy savings. Daylighting and efficient electric lighting, natural ventilation and cooling, and other conservation strategies improve tenant health, comfort, and productivity, while preserving the historical heritage of Presidio buildings. This guide examines the use of energy and resources and opportunities for efficiency in Presidio buildings on the basis of individual components and systems. The authors begin with recommended and discouraged practices for roofs, walls, and foundations, then move to windows and other opening. Next they address efficiency issues in building interiors--lighting, office equipment, and spacing planning. The authors follow with recommendations for mechanical and plumbing systems and conclude with insights on miscellaneous outdoor energy and resource concerns. A concise listing of sources of more detailed information is provided at the end of the document. The authors expect this guide to help tenants begin the process of using energy-efficient and sustainable practices throughout the Presidio of San Francisco.

  5. Water treatment method

    DOEpatents

    Martin, Frank S.; Silver, Gary L.

    1991-04-30

    A method for reducing the concentration of any undesirable metals dissolved in contaminated water, such as waste water. The method involves uniformly reacting the contaminated water with an excess amount of solid particulate calcium sulfite to insolubilize the undesirable metal ions, followed by removal thereof and of the unreacted calcium sulfite.

  6. Water treatment method

    DOEpatents

    Martin, F.S.; Silver, G.L.

    1991-04-30

    A method is described for reducing the concentration of any undesirable metals dissolved in contaminated water, such as waste water. The method involves uniformly reacting the contaminated water with an excess amount of solid particulate calcium sulfite to insolubilize the undesirable metal ions, followed by removal thereof and of the unreacted calcium sulfite.

  7. Water treatment technology for produced water.

    PubMed

    Szép, Angéla; Kohlheb, Robert

    2010-01-01

    Large amounts of produced water are generated during oil and gas production. Produced water, as it is known in the oil industry, is briny fluid trapped in the rock of oil reservoirs. The objective of this study was to test produced waters from a Montana USA oilfield using a mobile station to design a plant to cost efficiently treat the produced water for agricultural irrigation. We used combined physical and chemical treatment of produced water in order to comply with reuse and discharge limits. This mobile station consists of three stages: pretreatments, membrane filtration and post treatment. Two spiral-wound membrane units were employed and the rejections of various constituents were examined. The performance of two membranes, 20 kDa weight cut-off (MWCO) ultrafiltration and a polyamide-composite reverse osmosis membrane was investigated. The mobile station effectively decreased conductivity by 98%, COD by 100% and the SAR by 2.15 mgeqv(0.5) in the produced water tested in this study. Cost analysis showed that the treatment cost of produced water is less expensive than to dispose of it by injection and this treated water may be of great value in water-poor regions. We can conclude that the mobile station provided a viable and cost-effective result to beneficial use of produced water. PMID:21076224

  8. 36 CFR 1011.5 - What interest, penalty charges and administrative costs will the Presidio Trust add to a debt?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false What interest, penalty charges and administrative costs will the Presidio Trust add to a debt? 1011.5 Section 1011.5 Parks... § 1011.5 What interest, penalty charges and administrative costs will the Presidio Trust add to a...

  9. 36 CFR 1011.5 - What interest, penalty charges and administrative costs will the Presidio Trust add to a debt?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false What interest, penalty charges and administrative costs will the Presidio Trust add to a debt? 1011.5 Section 1011.5 Parks... § 1011.5 What interest, penalty charges and administrative costs will the Presidio Trust add to a...

  10. 36 CFR 1011.5 - What interest, penalty charges and administrative costs will the Presidio Trust add to a debt?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false What interest, penalty charges and administrative costs will the Presidio Trust add to a debt? 1011.5 Section 1011.5 Parks... § 1011.5 What interest, penalty charges and administrative costs will the Presidio Trust add to a...

  11. 36 CFR 1011.5 - What interest, penalty charges and administrative costs will the Presidio Trust add to a debt?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true What interest, penalty charges and administrative costs will the Presidio Trust add to a debt? 1011.5 Section 1011.5 Parks, Forests... What interest, penalty charges and administrative costs will the Presidio Trust add to a debt?...

  12. 36 CFR 1011.5 - What interest, penalty charges and administrative costs will the Presidio Trust add to a debt?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false What interest, penalty charges and administrative costs will the Presidio Trust add to a debt? 1011.5 Section 1011.5 Parks... § 1011.5 What interest, penalty charges and administrative costs will the Presidio Trust add to a...

  13. Technology for Water Treatment

    NASA Technical Reports Server (NTRS)

    1992-01-01

    There are approximately 500,000 water cooling towers in the United States, all of which must be kept clear of "scale" and corrosion and free of pollutants and bacteria. Electron Pure, Ltd. manufactures a hydro cooling tower conditioner as well as an automatic pool sanitizer. The pool sanitizer consists of two copper/silver electrodes placed in a chamber mounted in the pool's recirculation system. The tower conditioner combines the ionization system with a water conditioner, pump, centrifugal solids separator and timer. The system saves water, eliminates algae and operates maintenance and chemical free. The company has over 100 distributors in the U.S. as well as others in 20 foreign countries. The buildup of scale and corrosion is the most costly maintenance problem in cooling tower operation. Jet Propulsion Laboratory successfully developed a non-chemical system that not only curbed scale and corrosion, but also offered advantages in water conservation, cost savings and the elimination of toxic chemical discharge. In the system, ozone is produced by an on-site generator and introduced to the cooling tower water. Organic impurities are oxidized, and the dissolved ozone removes bacteria and scale. National Water Management, a NASA licensee, has installed its ozone advantage systems at some 200 cooling towers. Customers have saved money and eliminated chemical storage and discharge.

  14. Contaminated water treatment

    NASA Technical Reports Server (NTRS)

    Gormly, Sherwin J. (Inventor); Flynn, Michael T. (Inventor)

    2010-01-01

    Method and system for processing of a liquid ("contaminant liquid") containing water and containing urine and/or other contaminants in a two step process. Urine, or a contaminated liquid similar to and/or containing urine and thus having a relatively high salt and urea content is passed through an activated carbon filter to provide a resulting liquid, to remove most of the organic molecules. The resulting liquid is passed through a semipermeable membrane from a membrane first side to a membrane second side, where a fortified drink having a lower water concentration (higher osmotic potential) than the resulting liquid is positioned. Osmotic pressure differential causes the water, but not most of the remaining inorganic (salts) contaminant(s) to pass through the membrane to the fortified drink. Optionally, the resulting liquid is allowed to precipitate additional organic molecules before passage through the membrane.

  15. Structure of the Presidio Bolson area, Texas, interpreted from gravity data

    SciTech Connect

    Mraz, J.R.; Keller, G.R.

    1980-01-01

    To obtain a better understanding of the structure and tectonism of the region, an integrated geophysical-geological study of the Presidio area, Texas, was undertaken using gravity measurements and deep drilling data. New gravity data were combined with existing data to construct simple Bouguer anomaly maps of the Presidio area, and two-dimensional computer modeling of gravity profiles was used to derive earth models. These data outline the major geologic features of the area that are dominated by the effects of Tertiary block faulting and volcanism. The main feature of interest was the Presidio Graben, which is approximately 1.5 km deep near Ruidosa, Texas. One motivation for this study was the collection of a part of the basic scientific data needed to assess the geothermal potential of the area, and the results obtained support the hypothesis that hot springs associated with the Presidio Graben derive their heat from deep circulation along its boundary faults. However, some gravity anomalies observed could be interpreted as indicating the presence of late Tertiary intrusions that could provide heat for the hot springs.

  16. 36 CFR 1012.3 - How can I obtain employee testimony or Presidio Trust records?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... § 1012.3 How can I obtain employee testimony or Presidio Trust records? (a) To obtain employee testimony, you must submit: (1) A written request (hereafter a “Touhy Request;” see § 1012.5 and United States ex rel. Touhy v. Ragen, 340 U.S. 462 (1951)); and (2) A statement that you will submit a valid check...

  17. Water Treatment Technology - Distribution Systems.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on distribution systems provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pipe for distribution systems, types…

  18. 36 CFR 1011.16 - When will the Presidio Trust refer debts to the Department of Justice?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... activity should not be suspended or terminated. The Presidio Trust may authorize the FMS to refer to the Department of Justice for litigation those delinquent debts that have been transferred to the FMS...

  19. 36 CFR 1011.16 - When will the Presidio Trust refer debts to the Department of Justice?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... activity should not be suspended or terminated. The Presidio Trust may authorize the FMS to refer to the Department of Justice for litigation those delinquent debts that have been transferred to the FMS...

  20. 36 CFR 1011.16 - When will the Presidio Trust refer debts to the Department of Justice?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... activity should not be suspended or terminated. The Presidio Trust may authorize the FMS to refer to the Department of Justice for litigation those delinquent debts that have been transferred to the FMS...

  1. 36 CFR 1011.16 - When will the Presidio Trust refer debts to the Department of Justice?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... activity should not be suspended or terminated. The Presidio Trust may authorize the FMS to refer to the Department of Justice for litigation those delinquent debts that have been transferred to the FMS...

  2. 36 CFR 1011.16 - When will the Presidio Trust refer debts to the Department of Justice?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... activity should not be suspended or terminated. The Presidio Trust may authorize the FMS to refer to the Department of Justice for litigation those delinquent debts that have been transferred to the FMS...

  3. Treatment of industrial waste water

    SciTech Connect

    Anderson, D. R.

    1980-02-12

    A method is disclosed for processing industrial waste waters and , in particular, blow down water from thermal electric plants. The water is processed to concentrate the salts contained therein and to obtain a concentrated brine which can then be passed to a thermal evaporator and/or solar evaporation ponds. The water is processed by the addition of magnesium hydroxide and carbon dioxide in amounts sufficient to precipitate the calcium as calcium carbonate, thereby obtaining a water reduced in calcium content and increased in magnesium content from the industrial waste water. The treated water is processed to recover a purified water from a brine, preferably by reverse osmosis. Calcium hydroxide is added to the brine generated by the reverse osmosis process in an amount sufficient to precipitate magnesium hydroxide therefrom which can be recycled to supply the magnesium hydroxide used in pre-treatment of the water prior to the reverse osmosis process. A clarified brine is recovered from the magnesium hydroxide precipitation step and may then be naturally or thermally evaporated to produce a saturated slurry of salt solids. This slurry can then be further reduced to dryness by solar evaporation.

  4. 36 CFR 1011.11 - How will the Presidio Trust use tax refund offset to collect a debt?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Trust use tax refund offset to collect a debt? (a) Tax refund offset. In most cases, the FMS uses the... § 1011.9(c) of this part. If not already transferred to the FMS under § 1011.9 of this part, the Presidio... requirements of § 1011.4 of this part. The Presidio Trust will certify to the FMS's Treasury Offset Program,...

  5. 36 CFR 1011.11 - How will the Presidio Trust use tax refund offset to collect a debt?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Trust use tax refund offset to collect a debt? (a) Tax refund offset. In most cases, the FMS uses the... § 1011.9(c) of this part. If not already transferred to the FMS under § 1011.9 of this part, the Presidio... requirements of § 1011.4 of this part. The Presidio Trust will certify to the FMS's Treasury Offset Program,...

  6. 36 CFR 1011.11 - How will the Presidio Trust use tax refund offset to collect a debt?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Trust use tax refund offset to collect a debt? (a) Tax refund offset. In most cases, the FMS uses the... § 1011.9(c) of this part. If not already transferred to the FMS under § 1011.9 of this part, the Presidio... requirements of § 1011.4 of this part. The Presidio Trust will certify to the FMS's Treasury Offset Program,...

  7. 36 CFR 1011.11 - How will the Presidio Trust use tax refund offset to collect a debt?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Trust use tax refund offset to collect a debt? (a) Tax refund offset. In most cases, the FMS uses the... § 1011.9(c) of this part. If not already transferred to the FMS under § 1011.9 of this part, the Presidio... requirements of § 1011.4 of this part. The Presidio Trust will certify to the FMS's Treasury Offset Program,...

  8. 36 CFR 1011.11 - How will the Presidio Trust use tax refund offset to collect a debt?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Trust use tax refund offset to collect a debt? (a) Tax refund offset. In most cases, the FMS uses the... § 1011.9(c) of this part. If not already transferred to the FMS under § 1011.9 of this part, the Presidio... requirements of § 1011.4 of this part. The Presidio Trust will certify to the FMS's Treasury Offset Program,...

  9. Surface Water Treatment Workshop Manual.

    ERIC Educational Resources Information Center

    Ontario Ministry of the Environment, Toronto.

    This manual was developed for use at workshops designed to increase the knowledge of experienced water treatment plant operators. Each of the fourteen lessons in this document has clearly stated behavioral objectives to tell the trainee what he should know or do after completing that topic. Areas covered in this manual include: basic water…

  10. Guidelines for makeup water treatment

    SciTech Connect

    Cline, D.A. Jr.; Shields, K.J. Associates, Baltimore, MD )

    1990-03-01

    The EPRI Fossil Plant Cycle Chemistry Program, RP 2712, was developed in recognition of the importance of controlling cycle water and steam purity in attainment of maximized unit availability, reliability and efficiency. This guideline characterizes the state-of-the-art technology for production of cycle makeup water. It is intended to complement other RP 2712 projects in the areas of cycle chemistry guidelines, instrumentation and control, guideline demonstration and verification, and related subject areas. This guideline reviews available technology for and preferred approaches to production of fossil plant cycle makeup from various raw water supplies. Subject areas covered include makeup water source and source characteristics, unit processes comprising makeup treatment systems, guidelines for process selection, resin and membrane selection guidelines, techniques for monitoring performance and cost effectiveness, and waste disposal considerations. The report also identifies additional research activity needed to advance the state-of-the-art for makeup water treatment, results of a utility industry survey and other related topics. 72 refs., 60 figs., 74 tabs.

  11. Guidelines for sustainable building design: Recommendations from the Presidio of San Francisco energy efficiency design charrette

    SciTech Connect

    Brown, K.; Sartor, D.; Greenberg, S.

    1996-05-01

    In 1994, the Bay Chapter of the Association of Energy Engineers{reg_sign} organized a two-day design charrette for energy-efficient redevelopment of buildings by the National Park Services (NPS) at the Presidio of San Francisco. This event brought together engineers, researchers, architects, government officials, and students in a participatory environment to apply their experience to create guidelines for the sustainable redesign of Presidio buildings. The venue for the charrette was a representative barracks building located at the Main Post of the Presidio. Examination of this building allowed for the development of design recommendations, both for the building and for the remainder of the facilities. The charrette was organized into a committee structure consisting of: steering, measurement and monitoring, modeling, building envelope and historic preservation (architectural), HVAC and controls, lighting, and presentation. Prior to the charrette itself, the modeling and measurement/monitoring committees developed substantial baseline data for the other committees during the charrette. An integrated design approach was initiated through interaction between the committees during the charrette. Later, committee reports were cross-referenced to emphasize whole building design and systems integration.

  12. Drinking water safely during cancer treatment

    MedlinePlus

    ... Disease Control and Prevention. A guide to drinking water treatment technologies for household use. http://www.cdc.gov/healthywater/drinking/travel/household_water_treatment.html. Accessed May 7, 2014.

  13. Apparatus and process for water treatment

    DOEpatents

    Phifer, Mark A.; Nichols, Ralph L.

    2001-01-01

    An apparatus is disclosed utilizing permeable treatment media for treatment of contaminated water, along with a method for enhanced passive flow of contaminated water through the treatment media. The apparatus includes a treatment cell including a permeable structure that encloses the treatment media, the treatment cell may be located inside a water collection well, exterior to a water collection well, or placed in situ within the pathway of contaminated groundwater. The passive flow of contaminated water through the treatment media is maintained by a hydraulic connection between a collecting point of greater water pressure head, and a discharge point of lower water pressure head. The apparatus and process for passive flow and groundwater treatment utilizes a permeable treatment media made up of granular metal, bimetallics, granular cast iron, activated carbon, cation exchange resins, and/or additional treatment materials. An enclosing container may have an outer permeable wall for passive flow of water into the container and through the enclosed treatment media to an effluent point. Flow of contaminated water is attained without active pumping of water through the treatment media. Remediation of chlorinated hydrocarbons and other water contaminants to acceptable regulatory concentration levels is accomplished without the costs of pumping, pump maintenance, and constant oversight by personnel.

  14. Progress on Direct Plasma Water Treatments

    NASA Astrophysics Data System (ADS)

    Yasuoka, Koichi

    Various types of discharge plasmas in water or along water surface have been studied since 1973 due to the importance of plasma-chemical reactions utilized in the applications of water purification, deactivating microorganisms, material synthesis, and so on. This paper reviews the history and the current status of water-plasma studies, especially for water purification and wastewater treatment.

  15. Technology for Water Treatment (National Water Management)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The buildup of scale and corrosion is the most costly maintenance problem in cooling tower operation. Jet Propulsion Laboratory successfully developed a non-chemical system that not only curbed scale and corrosion, but also offered advantages in water conservation, cost savings and the elimination of toxic chemical discharge. In the system, ozone is produced by an on-site generator and introduced to the cooling tower water. Organic impurities are oxidized, and the dissolved ozone removes bacteria and scale. National Water Management, a NASA licensee, has installed its ozone advantage systems at some 200 cooling towers. Customers have saved money and eliminated chemical storage and discharge.

  16. Chemisty of water treatment. Second edition

    SciTech Connect

    Faust, S.D.; Aly, O.M.

    1998-12-31

    This books focuses on the chemical aspects of water quality and water treatment that influence the design of treatment processes. The information in the book covers the removal of organic and inorganic compounds, heavy metals, particulate matter, pathogenic bacteria, protozoans, and viruses from water. In addition, a new chapter is included on aeration technology.

  17. Setting up the water chemistry for thermal water treatment

    NASA Astrophysics Data System (ADS)

    Boglovskii, A. V.; Chernozubov, V. B.; Chernykh, N. E.; Gorbunov, A. V.; Birdin, R. Kh.

    2007-07-01

    Results are presented from the development and setting up of water-chemistry conditions for a thermal water treatment process that allows saline effluents from a boiler house to be eliminated. Peculiarities of reducing scale formation in the evaporator through the use of chalk primer and type PAF-13A antiscale agent are discussed. The results of industrial tests of a thermal water treatment plant are presented that confirm the possibility of producing makeup water for heating networks and steam boilers.

  18. Water Treatment Technology - General Plant Operation.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on general plant operations provides instructional materials for seven competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: water supply regulations, water plant…

  19. VIRUS REMOVAL DURING CONVENTIONAL DRINKING WATER TREATMENT

    EPA Science Inventory

    The reduction of enteroviruses and rotaviruses was studied at a full scale 205 mgd water treatment plant involving chemical clarification, sand filtration and chlorination. Reduction of enteroviruses and rotaviruses averaged 81% and 93%, respectively, for the complete treatment p...

  20. 36 CFR 1011.9 - When will the Presidio Trust transfer a debt to the Financial Management Service for collection?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... transfer a debt to the Financial Management Service for collection? 1011.9 Section 1011.9 Parks, Forests... When will the Presidio Trust transfer a debt to the Financial Management Service for collection? (a... in 31 CFR 285.12. The FMS takes appropriate action to collect or compromise the transferred debt,...

  1. 36 CFR 1011.9 - When will the Presidio Trust transfer a debt to the Financial Management Service for collection?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... transfer a debt to the Financial Management Service for collection? 1011.9 Section 1011.9 Parks, Forests... When will the Presidio Trust transfer a debt to the Financial Management Service for collection? (a... in 31 CFR 285.12. The FMS takes appropriate action to collect or compromise the transferred debt,...

  2. 36 CFR 1011.9 - When will the Presidio Trust transfer a debt to the Financial Management Service for collection?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... transfer a debt to the Financial Management Service for collection? 1011.9 Section 1011.9 Parks, Forests... When will the Presidio Trust transfer a debt to the Financial Management Service for collection? (a... in 31 CFR 285.12. The FMS takes appropriate action to collect or compromise the transferred debt,...

  3. 36 CFR 1011.9 - When will the Presidio Trust transfer a debt to the Financial Management Service for collection?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... delinquent to the FMS for debt collection services, a process known as “cross-servicing.” The Presidio Trust may transfer debts delinquent 180 days or less to the FMS in accordance with the procedures described in 31 CFR 285.12. The FMS takes appropriate action to collect or compromise the transferred debt,...

  4. 36 CFR 1011.9 - When will the Presidio Trust transfer a debt to the Financial Management Service for collection?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... delinquent to the FMS for debt collection services, a process known as “cross-servicing.” The Presidio Trust may transfer debts delinquent 180 days or less to the FMS in accordance with the procedures described in 31 CFR 285.12. The FMS takes appropriate action to collect or compromise the transferred debt,...

  5. Household Water Treatments in Developing Countries

    ERIC Educational Resources Information Center

    Smieja, Joanne A.

    2011-01-01

    Household water treatments (HWT) can help provide clean water to millions of people worldwide who do not have access to safe water. This article describes four common HWT used in developing countries and the pertinent chemistry involved. The intent of this article is to inform both high school and college chemical educators and chemistry students…

  6. Water Treatment Technology - Chemistry/Bacteriology.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on chemistry/bacteriology provides instructional materials for twelve competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: waterborne diseases, water sampling…

  7. A Primer on Waste Water Treatment.

    ERIC Educational Resources Information Center

    Department of the Interior, Washington, DC. Federal Water Pollution Control Administration.

    This information pamphlet is for teachers, students, or the general public concerned with the types of waste water treatment systems, the need for further treatment, and advanced methods of treating wastes. Present day pollution control methods utilizing primary and secondary waste treatment plants, lagoons, and septic tanks are described,…

  8. WATER TREATMENT PROBLEMS AND CONSEQUENCES

    EPA Science Inventory

    In recent years the emphasis on removing microbes from drinking water has increased. This increased concern was brought about partly by documented waterborne disease outbreaks in the US. Cryptosporidium concerns were elevated after the cryptosporodiosis outbreak in Milwaukee. Oth...

  9. MEMBRANES FOR DRINKING WATER TREATMENT

    EPA Science Inventory

    Various treatment technologies have proven effective in controlling halogenated disinfection by-products such as precursor removal and the use of alternative disinfectants. One of the most promising methods for halogenated by-product control includes removal of precursors before ...

  10. 36 CFR 1011.10 - How will the Presidio Trust use administrative offset (offset of non-tax federal payments) to...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) If not already transferred to the FMS under § 1011.9 of this part, the Presidio Trust will refer any... the FMS, in writing, that the debt is valid, delinquent, legally enforceable and that there are...

  11. Verifying Ballast Water Treatment Performance

    EPA Science Inventory

    The U.S. Environmental Protection Agency, NSF International, Battelle, and U.S. Coast Guard are jointly developing a protocol for verifying the technical performance of commercially available technologies designed to treat ship ballast water for potentially invasive species. The...

  12. SUMMARY REPORT: SMALL COMMUNITY WATER AND WASTE- WATER TREATMENT

    EPA Science Inventory

    This summary report presents information on the unique needs of small communities facing new water and wastewater treatment requirements. t contains three main sections: technology overviews (each presents a process description, O&M requirements, technology limitations, and finan...

  13. INTEGRATED WATER TREATMENT SYSTEM PERFORMANCE EVALUATION

    SciTech Connect

    SEXTON RA; MEEUWSEN WE

    2009-03-12

    This document describes the results of an evaluation of the current Integrated Water Treatment System (IWTS) operation against design performance and a determination of short term and long term actions recommended to sustain IWTS performance.

  14. ESTIMATION OF SMALL SYSTEM WATER TREATMENT COSTS

    EPA Science Inventory

    This report presents cost data for unit processes that are capable of removing contaminants included in the National Interim Primary Drinking Water Regulations. Construction and operation and maintenance cost data are presented for 45 centralized treatment unit processes that are...

  15. Water/Wastewater Treatment Plant Operator Qualifications.

    ERIC Educational Resources Information Center

    Water and Sewage Works, 1979

    1979-01-01

    This article summarizes in tabular form the U.S. and Canadian programs for classification of water and wastewater treatment plant personnel. Included are main characteristics of the programs, educational and experience requirements, and indications of requirement substitutions. (CS)

  16. ALTERNATIVE DISINFECTION FOR DRINKING WATER TREATMENT

    EPA Science Inventory

    During a one-yr study at Jefferson Parish, La., the chemical, microbiological, and mutagenic effects os using the major drinkgin water disinfectants (chlorine, chlorine dioxide, chloramine, ozone) were evaluated. Tests were performed on samples collected from various treatment s...

  17. Water-conserving cooling tower treatment

    SciTech Connect

    Mathie, A.J.

    1996-12-31

    Water conservation in cooling towers and evaporative coolers can finally become a reality. Also, fouled closed hot and chilled water systems can be restored to near original efficiency using the same technology. The barrier limiting the traditional water treatment industry from serious involvement in water conservation is the lack of a really good chemical to control scale. Poor scale inhibitors are the reason for a heavy bleed. Minerals concentrated by evaporation is wasted to the sewer while low solids make-up water fills the tower. Water conservation is important because of the increasing usable water shortage, the cost to add infrastructure to deliver increasing amounts of water to accommodate growth and the limitations imposed on disposal to the sewer. Now, due to innovations in chemical treatment, users of cooling towers and evaporative coolers can conserve water. In this presentation the author assumes the audience has some knowledge of traditional water treatment. Except for a few general references to establish common understanding, the author confines his remarks to discussing an advanced technology developed by DIAS, Inc., and the economics of its use.

  18. Water treatment for hemodialysis: a 2005 update.

    PubMed

    Cappelli, Gianni; Ravera, Federica; Ricardi, Marco; Ballestri, Marco; Perrone, Salvatore; Albertazzi, Alberto

    2005-01-01

    Water for dialysis represents an additive risk factors to the chronic inflammatory state documented in patients on ESRD. The possibility of sustaining proinflammatory cytokines through microbial derived products, coming from dialysate or infused solutions, is enhanced by biofilm presence on piping and on water treatment system or monitor components. Spread use of reverse osmosis, loop distribution system and pre-treatment components tailored to local raw water characteristics have greatly contributed to a general improvement in final water quality. Notwithstanding these contributions literature still reports fatal accidents or significant percentage of dialysis units not complying to the water quality standards. Technological improvement lowers chemical contamination but microbial quality relays more on quality assurance programs than on technology. Optimal water quality represents part of the anti-inflammatory strategies we need to assure to our dialysis patients to improve outcome. PMID:15876827

  19. Water Treatment Technology - Taste, Odor & Color.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on taste, odor, and color provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: taste and odor determination, control of…

  20. Water Treatment Technology - Cross-Connections.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on cross connections provides instructional materials for two competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on cross connections terminology and control devices. For each…

  1. Rational design of nanomaterials for water treatment

    NASA Astrophysics Data System (ADS)

    Li, Renyuan; Zhang, Lianbin; Wang, Peng

    2015-10-01

    The ever-increasing human demand for safe and clean water is gradually pushing conventional water treatment technologies to their limits. It is now a popular perception that the solutions to the existing and future water challenges will hinge upon further developments in nanomaterial sciences. The concept of rational design emphasizes on `design-for-purpose' and it necessitates a scientifically clear problem definition to initiate the nanomaterial design. The field of rational design of nanomaterials for water treatment has experienced a significant growth in the past decade and is poised to make its contribution in creating advanced next-generation water treatment technologies in the years to come. Within the water treatment context, this review offers a comprehensive and in-depth overview of the latest progress in rational design, synthesis and applications of nanomaterials in adsorption, chemical oxidation and reduction reactions, membrane-based separation, oil-water separation, and synergistic multifunctional all-in-one nanomaterials/nanodevices. Special attention is paid to the chemical concepts related to nanomaterial design throughout the review.

  2. Rational design of nanomaterials for water treatment.

    PubMed

    Li, Renyuan; Zhang, Lianbin; Wang, Peng

    2015-11-01

    The ever-increasing human demand for safe and clean water is gradually pushing conventional water treatment technologies to their limits. It is now a popular perception that the solutions to the existing and future water challenges will hinge upon further developments in nanomaterial sciences. The concept of rational design emphasizes on 'design-for-purpose' and it necessitates a scientifically clear problem definition to initiate the nanomaterial design. The field of rational design of nanomaterials for water treatment has experienced a significant growth in the past decade and is poised to make its contribution in creating advanced next-generation water treatment technologies in the years to come. Within the water treatment context, this review offers a comprehensive and in-depth overview of the latest progress in rational design, synthesis and applications of nanomaterials in adsorption, chemical oxidation and reduction reactions, membrane-based separation, oil-water separation, and synergistic multifunctional all-in-one nanomaterials/nanodevices. Special attention is paid to the chemical concepts related to nanomaterial design throughout the review. PMID:26437738

  3. Saving Energy, Water, and Money with Efficient Water Treatment Technologies

    SciTech Connect

    Not Available

    2004-06-01

    Reverse Osmosis (RO) is a method of purifying water for industrial processes and human consumption; RO can remove mineral salts as well as contaminants such as bacteria and pesticides. Advances in water treatment technologies have enhanced and complemented the conventional RO process, reducing energy and water consumption, lowering capital and operating costs, and producing purer water. This publication of the Department of Energy's Federal Energy Management Program introduces RO, describes the benefits of high-efficiency reverse osmosis (HERO), and compares HERO with RO/electrodeionization (EDI) technology.

  4. Nanotechnology-based water treatment strategies.

    PubMed

    Kumar, Sandeep; Ahlawat, Wandit; Bhanjana, Gaurav; Heydarifard, Solmaz; Nazhad, Mousa M; Dilbaghi, Neeraj

    2014-02-01

    The most important component for living beings on the earth is access to clean and safe drinking water. Globally, water scarcity is pervasive even in water-rich areas as immense pressure has been created by the burgeoning human population, industrialization, civilization, environmental changes and agricultural activities. The problem of access to safe water is inevitable and requires tremendous research to devise new, cheaper technologies for purification of water, while taking into account energy requirements and environmental impact. This review highlights nanotechnology-based water treatment technologies being developed and used to improve desalination of sea and brackish water, safe reuse of wastewater, disinfection and decontamination of water, i.e., biosorption and nanoadsorption for contaminant removal, nanophotocatalysis for chemical degradation of contaminants, nanosensors for contaminant detection, different membrane technologies including reverse osmosis, nanofiltration, ultrafiltration, electro-dialysis etc. This review also deals with the fate and transport of engineered nanomaterials in water and wastewater treatment systems along with the risks associated with nanomaterials. PMID:24749460

  5. Experiences in optimizing water treatment plant performance

    SciTech Connect

    Hess, A.F.; Huntley, G.

    1996-11-01

    The South Central Connecticut Regional Water Authority (RWA) provides an average of 55 million gallons per day (mgd) to approximately 380,000 people in 12 municipalities in the Greater New Haven area of Connecticut. About 80 percent of the water is supplied from three surface water treatment plants and the other 20 percent comes from five wellfields. The surface water supply system includes 9 reservoirs with a total capacity of about 16 billion gallons. The Authority owns and controls approximately 40% of the 67 square miles of the watershed for these reservoirs. The source water quality is consistent and generally very good. A summary of average water for selected parameters which impact the treatability of the supplies is presented in Table 1.

  6. Innovations in nanotechnology for water treatment

    PubMed Central

    Gehrke, Ilka; Geiser, Andreas; Somborn-Schulz, Annette

    2015-01-01

    Important challenges in the global water situation, mainly resulting from worldwide population growth and climate change, require novel innovative water technologies in order to ensure a supply of drinking water and reduce global water pollution. Against this background, the adaptation of highly advanced nanotechnology to traditional process engineering offers new opportunities in technological developments for advanced water and wastewater technology processes. Here, an overview of recent advances in nanotechnologies for water and wastewater treatment processes is provided, including nanobased materials, such as nanoadsorbents, nanometals, nanomembranes, and photocatalysts. The beneficial properties of these materials as well as technical barriers when compared with conventional processes are reported. The state of commercialization is presented and an outlook on further research opportunities is given for each type of nanobased material and process. In addition to the promising technological enhancements, the limitations of nanotechnology for water applications, such as laws and regulations as well as potential health risks, are summarized. The legal framework according to nanoengineered materials and processes that are used for water and wastewater treatment is considered for European countries and for the USA. PMID:25609931

  7. Water Purification by Using Microplasma Treatment

    NASA Astrophysics Data System (ADS)

    Shimizu, K.; Masamura, N.; Blajan, M.

    2013-06-01

    Dielectric barrier discharge microplasma generated at the surface of water is proposed as a solution for water treatment. It is an economical and an ecological technology for water treatment due to its generation at atmospheric pressure and low discharge voltage. Microplasma electrodes were placed at small distance above the water thus active species and radicals were flown by the gas towards the water surface and furthermore reacted with the target to be decomposed. Indigo carmine was chosen as the target to be decomposed by the effect of active species and radicals generated between the electrodes. Air, oxygen, nitrogen and argon were used as discharge gases. Measurement of absorbance showed the decomposition of indigo carmine by microplasma treatment. Active species and radicals of oxygen origin so called ROS (reactive oxidative species) were considered to be the main factor in indigo carmine decomposition. The decomposition rate increased with the increase of the treatment time as shown by the spectrophotometer analysis. Discharge voltage also influenced the decomposition process.

  8. Treatment Technology and Alternative Water Resources

    NASA Astrophysics Data System (ADS)

    Chapman, M. J.

    2014-12-01

    At this point in our settlement of the planet Earth, with over seven billion human inhabitants, there are very few unallocated sources of fresh water. We are turning slowly toward "alternatives" such as municipal and industrial wastewater, saline groundwater, the sea, irrigation return flow, and produced water that comes up with oil and gas deposits from deep beneath the surface of the earth. Slowly turning, not because of a lack in technological ability, but because it takes a large capital investment to acquire and treat these sources to a level at which they can be used. The regulatory system is not geared up for alternative sources and treatment processes. Permitting can be circular, contradictory, time consuming, and very expensive. The purpose for the water, or the value of the product obtained using the water, must be such that the capital and ongoing expense seem reasonable. There are so many technological solutions for recovering water quality that choosing the most reliable, economical, and environmentally sound technology involves unraveling the "best" weave of treatment processes from a tangled knot of alternatives. Aside from permitting issues, which are beyond the topic for this presentation, the "best" weave of processes will be composed of four strands specifically fitted to the local situation: energy, pretreatment, driving force for separation processes, and waste management. A range of treatment technologies will be examined in this presentation with a focus on how the quality of the feed water, available power sources, materials, and waste management opportunities aid in choosing the best weave of treatment technologies, and how innovative use of a wide variety of driving forces are increasing the efficiency of treatment processes.

  9. Magnetic water treatment: A coming attraction?

    SciTech Connect

    Fryer, L.

    1995-10-01

    United Airlines and pharmaceutical company Eli Lilly and Company are among a number of users that are controlling scale and corrosion in cooling tower loops with magnetic water treatment, a controversial technology that has met with skepticism, disbelief, and claims of fraud. Experts and hundreds of published papers disagree on whether magnetic water treatment works, and if so, how. No scientific theory has proven how magnets can treat water, nor are there documented, reproducible laboratory test results. Field experience is mixed, with some installations working well and others failing. Despite the controversy and the lack of an adequately documented theoretical underpinning, the existence of large, apparently successful installations lends credence to the view that at least some magnetic water treatment systems are effective. The stakes are high. Most large HVAC systems are currently treated with chemicals. These chemicals generally work well, but they are costly, in many cases are environmentally damaging, and are subject to increasingly strict regulations. A reliable, low-cost, and more environmentally benign alternative that eliminates or sharply reduces the need for chemical treatment would have obvious benefits. Based on the review of the literature, discussions with users, vendors, and independent analysts, and tours of several apparently successful installations, E Source believes that this technology works in some cases and warrants further investigation. They caution prospective users to shop carefully and to select vendors with an established track record.

  10. CHEMICAL DOSER FOR AGUACLARA WATER TREATMENT PLANTS

    EPA Science Inventory

    The design procedure for the nonlinear chemical doser will be validated and extended over a wide range of flow rates. The doser will be tested in several full-scale municipal water treatment plants. We will also generate improved design algorithms for rapid mix, flocculation,...

  11. Cellulose nanomaterials in water treatment technologies.

    PubMed

    Carpenter, Alexis Wells; de Lannoy, Charles-François; Wiesner, Mark R

    2015-05-01

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials' potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials' beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization. PMID:25837659

  12. Cellulose Nanomaterials in Water Treatment Technologies

    PubMed Central

    Carpenter, Alexis Wells; de Lannoy, Charles François; Wiesner, Mark R.

    2015-01-01

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials’ potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials’ beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization. PMID:25837659

  13. Evaluation of semidecentralized emergency drinking water treatment.

    PubMed

    Eloidin, Océane; Dorea, Caetano C

    2015-01-01

    This study evaluates the potential for a novel semidecentralized approach that uses coagulant disinfectant products (CDPs) for humanitarian water treatment, by testing two commercially available products (CDP-W and CDP-T). Their performances were evaluated against the relevant water quality treatment objectives (The Sphere Project) under laboratory conditions, using a standardized testing protocol with both synthetic and natural surface test waters. Tests indicated a satisfactory performance by one of the products (CDP-W) with respect to humanitarian water quality objectives, (i.e., free chlorine residual, pH, and turbidity) that was dependent on initial water quality characteristics. Adequate bacterial inactivation (final thermotolerant coliform concentration of < 1 cfu/100 mL) was always attained and log reductions of up to 5 were achieved. The other product (CDP-T) did not exhibit any measurable coagulation and disinfection properties, indicating the variability of product quality and the need to conduct evaluations such as the ones presented in this study. Such results are of relevance to relief agencies delivering water supply interventions. PMID:26121019

  14. Discharges in Water and Applications to Wasted Water Treatment

    NASA Astrophysics Data System (ADS)

    Yamabe, Chobei; Yamashita, Takanori; Ihara, Satoshi

    Recently the electrical discharge in water has been used for the water treatment. In this study, various shape of electrodes were examined to observe and measure the electrical discharge phenomena in water. Both the Marx generator and the pulsed power generator were used to generate the discharge in water. The oscillation on the waveforms of both applied voltage and discharge current was observed using the pulsed power generator whose peak applied voltage was about 80-120 kV and its discharge repetition rate was about one pulse per thirty seconds although it wasn't observed on the waveforms in the practical use of the high voltage generator (peak applied voltage was about 30-40 kV) with high repetition rate of discharge (20-300 pulses per second). Bubbles were introduced into the discharge region of main electrode using the ejector and the generation of hydroxyl radicals (OH) was confirmed by the measurement of emission spectrum of discharge in water and the intensity of OH radicals increased with the ratio of G/L (where, G is gas flow rate and L is water flow rate). The hydrogen peroxide (H2O2) was also measured and this reactor system was applied for the de-color of water.

  15. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER

    SciTech Connect

    John R. Gallagher

    2001-07-31

    During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the

  16. [Maintenance and monitoring of water treatment system].

    PubMed

    Pontoriero, G; Pozzoni, P; Tentori, F; Scaravilli, P; Locatelli, F

    2005-01-01

    Water treatment systems must be submitted to maintenance, disinfections and monitoring periodically. The aim of this review is to analyze how these processes must complement each other in order to preserve the efficiency of the system and optimize the dialysis fluid quality. The correct working of the preparatory process (pre-treatment) and the final phase of depuration (reverse osmosis) of the system need a periodic preventive maintenance and the regular substitution of worn or exhausted components (i.e. the salt of softeners' brine tank, cartridge filters, activated carbon of carbon tanks) by a competent and trained staff. The membranes of reverse osmosis and the water distribution system, including dialysis machine connections, should be submitted to dis-infections at least monthly. For this purpose it is possible to use chemical and physical agents according to manufacturer' recommendations. Each dialysis unit should predispose a monitoring program designed to check the effectiveness of technical working, maintenance and disinfections and the achievement of chemical and microbiological standards taken as a reference. Generally, the correct composition of purified water is monitored by continuous measuring of conductivity, controlling bacteriological cultures and endotoxin levels (monthly) and checking water contaminants (every 6-12 months). During pre-treatment, water hardness (after softeners) and total chlorine (after chlorine tank) should be checked periodically. Recently the Italian Society of Nephrology has developed clinical guidelines for water and dialysis solutions aimed at suggesting rational procedures for production and monitoring of dialysis fluids. It is hopeful that the application of these guidelines will lead to a positive cultural change and to an improvement in dialysis fluid quality. PMID:16342048

  17. Performance of small water treatment plants: The case study of Mutshedzi Water Treatment Plant

    NASA Astrophysics Data System (ADS)

    Makungo, R.; Odiyo, J. O.; Tshidzumba, N.

    The performance of small water treatment plants (SWTPs) was evaluated using Mutshedzi WTP as a case study. The majority of SWTPs in South Africa (SA) that supply water to rural villages face problems of cost recovery, water wastages, limited size and semi-skilled labour. The raw and final water quality analyses and their compliance were used to assess the performance of the Mutshedzi WTP. Electrical conductivity (EC), pН and turbidity were measured in the field using a portable multimeter and a turbidity meter respectively. Atomic Absorption Spectrometry and Ion Chromatography were used to analyse metals and non-metals respectively. The results were compared with the Department of Water Affairs (DWA) guidelines for domestic use. The turbidity levels partially exceeded the recommended guidelines for domestic water use of 1 NTU. The concentrations of chemical parameters in final water were within the DWA guidelines for domestic water use except for fluoride, which exceeded the maximum allowable guideline of 1.5 mg/L in August 2009. Mutshedzi WTP had computed compliance for raw and final water analyses ranging from 79% to 93% and 86% to 93% throughout the sampling period, respectively. The results from earlier studies showed that the microbiological quality of final water in Mutshedzi WTP complied with the recommended guidelines, eliminating the slight chance of adverse aesthetic effects and infectious disease transmission associated with the turbidity values between 1 and 5 NTU. The study concluded that Mutshedzi WTP, though moving towards compliance, is still not producing adequate quality of water. Other studies also indicated that the quantity of water produced from Mutshedzi WTP was inadequate. The findings of the study indicate that lack of monitoring of quantity of water supplied to each village, dosage of treatment chemicals, the treatment capacity of the WTP and monitoring the quality of water treated are some of the factors that limit the performance of

  18. Water Treatment Systems for Long Spaceflights

    NASA Technical Reports Server (NTRS)

    FLynn, Michael T.

    2012-01-01

    Space exploration will require new life support systems to support the crew on journeys lasting from a few days to several weeks, or longer. These systems should also be designed to reduce the mass required to keep humans alive in space. Water accounts for about 80 percent of the daily mass intake required to keep a person alive. As a result, recycling water offers a high return on investment for space life support. Water recycling can also increase mission safety by providing an emergency supply of drinking water, where another supply is exhausted or contaminated. These technologies also increase safety by providing a lightweight backup to stored supplies, and they allow astronauts to meet daily drinking water requirements by recycling the water contained in their own urine. They also convert urine into concentrated brine that is biologically stable and nonthreatening, and can be safely stored onboard. This approach eliminates the need to have a dedicated vent to dump urine overboard. These needs are met by a system that provides a contaminant treatment pouch, referred to as a urine cell or contaminant cell, that converts urine or another liquid containing contaminants into a fortified drink, engineered to meet human hydration, electrolyte, and caloric requirements, using a variant of forward osmosis (FO) to draw water from a urine container into the concentrated fortified drink as part of a recycling stage. An activated carbon pretreatment removes most organic molecules. Salinity of the initial liquid mix (urine plus other) is synergistically used to enhance the precipitation of organic molecules so that activated carbon can remove most of the organics. A functional osmotic bag is then used to remove inorganic contaminants. If a contaminant is processed for which the saline content is different than optimal for precipitating organic molecules, the saline content of the liquid should be adjusted toward the optimal value for that contaminant. A first urine

  19. Immobilized microbe bioreactors for waste water treatment.

    PubMed

    Portier, R J; Miller, G P

    1991-10-01

    The application of adapted microbial populations immobilized on a porous diatomaceous earth carrier to pre-treat and reduce toxic concentration of volatile organics, pesticides, petroleum aliphatics and aromatics has been demonstrated for several industrial sites. In the pre-treatment of industrial effluents and contaminated groundwaters, these bioreactors have been used to optimize and reduce the cost of conventional treatment systems, i.e. steam stripping, carbon adsorption and traditional biotreatment. Additionally, these systems have been employed as seeding devices for larger biotreatment systems. The cost effective utilization of an immobilized microbe reactor system for water supply regeneration in a microgravity environment is presented. The feasibility of using immobilized biomass reactors as an effluent treatment technology for the biotransformation and biodegradation of phenols, chlorinated halocarbons, residual oils and lubricants was evaluated. Primary biotransformation tests of two benchmark toxicants, phenol and ethylene dichloride at concentrations expected in life support effluents were conducted. Biocatalyst supports were evaluated for colonization potential, surface and structural integrity, and performance in continuous flow bioreactors. The implementation of such approaches in space will be outlined and specific areas for interfacing with other non-biological treatment approaches will be considered for advanced life support, tertiary waste water biotreatment. PMID:11537697

  20. Characterization of drinking water treatment sludge after ultrasound treatment.

    PubMed

    Zhou, Zhiwei; Yang, Yanling; Li, Xing; Zhang, Yang; Guo, Xuan

    2015-05-01

    Ultrasonic technology alone or the combination of ultrasound with alkaline or thermal hydrolysis as pretreatment for anaerobic digestion of activated sludge has been extensively documented. However, there are few reports on ultrasound as pretreatment of drinking water treatment sludge (DWTS), and thereby the characteristic variability of sonicated DWTS has not been fully examined. This research presents a lab-scale study on physical, chemical and biological characteristics of a DWTS sample collected from a water plant after ultrasonic treatment via a bath/probe sonoreactor. By doing this work, we provide implications for using ultrasound as pretreatment of enhanced coagulation of recycling sludge, and for the conditioning of water and wastewater mixed sludge by ultrasound combined with polymers. Our results indicate that the most vigorous DWTS disintegration quantified by particles' size reduction and organic solubilization is achieved with 5 W/ml for 30 min ultra-sonication (specific energy of 1590 kWh/kg TS). The Brunauer, Emmett and Teller (BET) specific surface area of sonicated DWTS flocs increase as ultra-sonication prolongs at lower energy densities (0.03 and 1 W/ml), while decrease as ultra-sonication prolongs at higher energy densities (3 and 5 W/ml). Additionally, the pH and zeta potential of sonicated DWTS slightly varies under all conditions observed. A shorter sonication with higher energy density plays a more effective role in restraining microbial activity than longer sonication with lower energy density. PMID:25443278

  1. The Reagent-sorption Technology of Water Treatment

    NASA Astrophysics Data System (ADS)

    Kurchatov, I. M.; Laguntsov, N. I.; Neschimenko, Y. P.; Feklistov, D. Y.

    The main purpose of this work is to intensify and to improve the efficiency of water treatment processes as well as to combine optimally modern techniques and technological devices in water treatment processes. Offered comprehensive hybrid water treatment developing technology of different origin is based on the combination of the treatment by reagent and membrane electro dialysis. In offered technology, of water treatment as a reagent is proposed to use alumino-silicic reagent, which simultaneously is coagulant, flocculant and adsorbent.

  2. ACTIVATED CARBON FROM LIGNITE FOR WATER TREATMENT

    SciTech Connect

    Edwin S. Olson; Daniel J. Stepan

    2000-07-01

    High concentrations of humate in surface water result in the formation of excess amounts of chlorinated byproducts during disinfection treatment. These precursors can be removed in water treatment prior to disinfection using powdered activated carbon. In the interest of developing a more cost-effective method for removal of humates in surface water, a comparison of the activities of carbons prepared from North Dakota lignites with those of commercial carbons was conducted. Previous studies indicated that a commercial carbon prepared from Texas lignite (Darco HDB) was superior to those prepared from bituminous coals for water treatment. That the high alkali content of North Dakota lignites would result in favorable adsorptive properties for the very large humate molecules was hypothesized, owing to the formation of larger pores during activation. Since no standard humate test has been previously developed, initial adsorption testing was performed using smaller dye molecules with various types of ionic character. With the cationic dye, methylene blue, a carbon prepared from a high-sodium lignite (HSKRC) adsorbed more dye than the Darco HDB. The carbon from the low-sodium lignite was much inferior. With another cationic dye, malachite green, the Darco HDB was slightly better. With anionic dyes, methyl red and azocarmine-B, the results for the HSKRC and Darco HDB were comparable. A humate test was developed using Aldrich humic acid. The HSKRC and the Darco HDB gave equally high adsorption capacities for the humate (138 mg/g), consistent with the similarities observed in earlier tests. A carbon prepared from a high-sodium lignite from a different mine showed an outstanding improvement (201 mg/g). The carbons prepared from the low-sodium lignites from both mines showed poor adsorption capacities for humate. Adsorption isotherms were performed for the set of activated carbons in the humate system. These exhibited a complex behavior interpreted as resulting from two types

  3. Optimized alumina coagulants for water treatment

    SciTech Connect

    Nyman, May D.; Stewart, Thomas A.

    2012-02-21

    Substitution of a single Ga-atom or single Ge-atom (GaAl.sub.12 and GeAl.sub.12 respectively) into the center of an aluminum Keggin polycation (Al.sub.13) produces an optimal water-treatment product for neutralization and coagulation of anionic contaminants in water. GaAl.sub.12 consistently shows .about.1 order of magnitude increase in pathogen reduction, compared to Al.sub.13. At a concentration of 2 ppm, GaAl.sub.12 performs equivalently to 40 ppm alum, removing .about.90% of the dissolved organic material. The substituted GaAl.sub.12 product also offers extended shelf-life and consistent performance. We also synthesized a related polyaluminum chloride compound made of pre-hydrolyzed dissolved alumina clusters of [GaO.sub.4Al.sub.12(OH).sub.24(H.sub.2O).sub.12].sup.7+.

  4. DISINFECTION BY-PRODUCTS IN DRINKING WATER TREATMENT SYSTEMS

    EPA Science Inventory

    Due to concerns over trihalomethanes (THMs) and other halogenated by-products that can be formed during chlorination of drinking water, alternative disinfectants are being explored. Several drinking water treatment plants in the United States have altered their treatment methods...

  5. EPA's Drinking Water Treatability Database and Treatment Cost Models

    EPA Science Inventory

    USEPA Drinking Water Treatability Database and Drinking Water Treatment Cost Models are valuable tools for determining the effectiveness and cost of treatment for contaminants of emerging concern. The models will be introduced, explained, and demonstrated.

  6. 2. Water treatment plant entrance, view to W Fort ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Water treatment plant entrance, view to W - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  7. 6. Water treatment plant, view NE, berm in foreground ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Water treatment plant, view NE, berm in foreground - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  8. 5. Water treatment plant, view to N, berm in foreground ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Water treatment plant, view to N, berm in foreground - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  9. 1. WATER TREATMENT PUMPING AND STORAGE BUILDING, FRONT AND LEFT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. WATER TREATMENT PUMPING AND STORAGE BUILDING, FRONT AND LEFT SIDES, LOOKING NORTHEAST. - NIKE Missile Base SL-40, Water Treatment & Storage Building, Southern portion of launch area, southeast of Ready Building, Hecker, Monroe County, IL

  10. 2. WATER TREATMENT PUMPING AND STORAGE BUILDING, REAR AND RIGHT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. WATER TREATMENT PUMPING AND STORAGE BUILDING, REAR AND RIGHT SIDES, LOOKING SOUTHWEST. - NIKE Missile Base SL-40, Water Treatment & Storage Building, Southern portion of launch area, southeast of Ready Building, Hecker, Monroe County, IL

  11. 4. Water treatment plant, view to NW, berm in foreground ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Water treatment plant, view to NW, berm in foreground - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  12. 3. Water treatment plant, view to W, detail of door ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Water treatment plant, view to W, detail of door area - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  13. 13. Water treatment plant interior view of tanks in control ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Water treatment plant interior view of tanks in control room. View to SW - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  14. 4. PHOTOCOPY, ARCHITECTURAL DETAILS FOR WATER TREATMENT PUMPING AND STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. PHOTOCOPY, ARCHITECTURAL DETAILS FOR WATER TREATMENT PUMPING AND STORAGE BUILDING. - NIKE Missile Base SL-40, Water Treatment & Storage Building, Southern portion of launch area, southeast of Ready Building, Hecker, Monroe County, IL

  15. OBLIQUE VIEW OF EAST AND NORTH SIDES OF WATER TREATMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE VIEW OF EAST AND NORTH SIDES OF WATER TREATMENT PLANT, LOCK TENDER'S HOUSE IN BACKGROUND, VIEW TOWARDS SOUTHWEST - Ortona Lock, Lock No. 2, Water Treatment Plant, Caloosahatchee River, Cross-State Canal, Okeechobee Intracoastal Waterway, Ortona, Glades County, FL

  16. 14. Water treatment plant interior view of chlorination room. View ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Water treatment plant interior view of chlorination room. View to N - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  17. 8. Water treatment plant, view to SE, berm in foreground ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Water treatment plant, view to SE, berm in foreground covering settling tank - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  18. 7. Water treatment plant, view to E, berm in foreground ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Water treatment plant, view to E, berm in foreground covering settling tank - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  19. 10. Water treatment plant, view to S. 1965 addition is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Water treatment plant, view to S. 1965 addition is in the foreground - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  20. OBLIQUE VIEW OF NORTH AND WEST SIDES OF WATER TREATMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE VIEW OF NORTH AND WEST SIDES OF WATER TREATMENT PLANT, FIRE PUMP HOUSE IN BACKGROUND, VIEW TOWARDS SOUTHEAST - Ortona Lock, Lock No. 2, Water Treatment Plant, Caloosahatchee River, Cross-State Canal, Okeechobee Intracoastal Waterway, Ortona, Glades County, FL

  1. OBLIQUE VIEW OF SOUTH AND EAST SIDES OF WATER TREATMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE VIEW OF SOUTH AND EAST SIDES OF WATER TREATMENT PLANT, VIEW TOWARDS NORTHWEST - Ortona Lock, Lock No. 2, Water Treatment Plant, Caloosahatchee River, Cross-State Canal, Okeechobee Intracoastal Waterway, Ortona, Glades County, FL

  2. 36 CFR 1011.13 - How will the Presidio Trust use administrative wage garnishment to collect a debt from a debtor's...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... FCCS and other applicable law. This part adopts and incorporates all of the provisions of 31 CFR 285.11... requirements of § 1011.4(a)(10) of this part. For debts referred to the FMS under § 1011.9 of this part, the Presidio Trust may authorize the FMS to send a notice informing the debtor that administrative...

  3. 36 CFR 1011.13 - How will the Presidio Trust use administrative wage garnishment to collect a debt from a debtor's...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... FCCS and other applicable law. This part adopts and incorporates all of the provisions of 31 CFR 285.11... requirements of § 1011.4(a)(10) of this part. For debts referred to the FMS under § 1011.9 of this part, the Presidio Trust may authorize the FMS to send a notice informing the debtor that administrative...

  4. 36 CFR 1011.13 - How will the Presidio Trust use administrative wage garnishment to collect a debt from a debtor's...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... FCCS and other applicable law. This part adopts and incorporates all of the provisions of 31 CFR 285.11... requirements of § 1011.4(a)(10) of this part. For debts referred to the FMS under § 1011.9 of this part, the Presidio Trust may authorize the FMS to send a notice informing the debtor that administrative...

  5. VIEW OF BUILDING 124, THE WATER TREATMENT PLANT, LOOKING NORTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF BUILDING 124, THE WATER TREATMENT PLANT, LOOKING NORTHEAST. THE ROCKY FLATS PLANT WATER SUPPLY, TREATMENT, STORAGE, AND DISTRIBUTION SYSTEM HAS OPERATED CONTINUOUSLY SINCE 1953 - Rocky Flats Plant, Water Treatment Plant, West of Third Street, north of Cedar Avenue, Golden, Jefferson County, CO

  6. 7 CFR 305.22 - Hot water immersion treatment schedules.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Hot water immersion treatment schedules. 305.22... Hot water immersion treatment schedules. (a) T102-d. (1) Fruit must be grown and treated in Hawaii. (2) Fruit must be submerged at least 4 inches below the water's surface in a hot water immersion...

  7. Mountain Lake, Presidio National Park, San Francisco: Paleoenvironment, heavy metal contamination, sedimentary record rescue, remediation, and public outreach

    NASA Astrophysics Data System (ADS)

    Myrbo, A.; Rodysill, J. R.; Jones, K.; Reidy, L. M.

    2014-12-01

    Sediment cores from Mountain Lake, a small natural lake in Presidio National Park, San Francisco, CA, provide a record of Bay Area environmental change spanning the past 2000 years, and of unusually high heavy metal contamination in the last century (Reidy 2001). In 2013, partial dredging of the lake removed the upper two meters of lake sediment as part of a remediation effort. Prior to dredging, long and short cores spatially covering the lake and representing deep and shallow environments were recovered from the lake to preserve the paleoenvironmental record of one of the only natural lakes on the San Francisco Peninsula. The cores are curated at LacCore and are available for research by the scientific community. Mountain Lake formed in an interdunal depression and was shallow and fluctuating in its first few hundred years. Lake level rise and inundation of a larger area was followed by lowstands under drier conditions around 550-700 and 1300 CE. Nonnative taxa and cultivars appeared at the time of Spanish settlement in the late 18th century, and the lake underwent eutrophication due to livestock pasturing. U.S. Army landscaping introduced trees to the watershed in the late 19th century. The upper ~1m of sediments document unusually high heavy metal contamination, especially for lead and zinc, caused by the construction and heavy use of Highway 1 on the lake shore. Lead levels peak in 1975 and decline towards the surface, reflecting the history of leaded gasoline use in California. Zinc is derived mainly from automobile tires, and follows a pattern similar to that of lead, but continues to increase towards the surface. Ongoing research includes additional radiocarbon dating and detailed lithological analysis to form the basis of lake-level reconstruction and archeological investigations. Because the Presidio archaeological record does not record human habitation in the area until approximately 1300 years before present, the core analysis also has the potential to

  8. 36 CFR 1002.63 - Boating and water use activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Boating and water use..., PUBLIC USE AND RECREATION § 1002.63 Boating and water use activities. Swimming, boating and the use of any water vessel are prohibited within the area administered by the Presidio Trust....

  9. 36 CFR 1002.63 - Boating and water use activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Boating and water use..., PUBLIC USE AND RECREATION § 1002.63 Boating and water use activities. Swimming, boating and the use of any water vessel are prohibited within the area administered by the Presidio Trust....

  10. 36 CFR 1002.63 - Boating and water use activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Boating and water use..., PUBLIC USE AND RECREATION § 1002.63 Boating and water use activities. Swimming, boating and the use of any water vessel are prohibited within the area administered by the Presidio Trust....

  11. 36 CFR 1002.63 - Boating and water use activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Boating and water use activities. 1002.63 Section 1002.63 Parks, Forests, and Public Property PRESIDIO TRUST RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 1002.63 Boating and water use activities. Swimming, boating and the use of any water vessel are prohibited within...

  12. 36 CFR 1002.63 - Boating and water use activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Boating and water use activities. 1002.63 Section 1002.63 Parks, Forests, and Public Property PRESIDIO TRUST RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 1002.63 Boating and water use activities. Swimming, boating and the use of any water vessel are prohibited within...

  13. Costs of water treatment due to diminished water quality: A case study in Texas

    NASA Astrophysics Data System (ADS)

    Dearmont, David; McCarl, Bruce A.; Tolman, Deborah A.

    1998-04-01

    The cost of municipal water treatment due to diminished water quality represents an important component of the societal costs of water pollution. Here the chemical costs of municipal water treatment are expressed as a function of raw surface water quality. Data are used for a 3-year period for 12 water treatment plants in Texas. Results show that when regional raw water contamination is present, the chemical cost of water treatment is increased by 95 per million gallons (per 3785 m3) from a base of 75. A 1% increase in turbidity is shown to increase chemical costs by 0.25%.

  14. Bacterial Cyanuric Acid Hydrolase for Water Treatment.

    PubMed

    Yeom, Sujin; Mutlu, Baris R; Aksan, Alptekin; Wackett, Lawrence P

    2015-10-01

    Di- and trichloroisocyanuric acids are widely used as water disinfection agents, but cyanuric acid accumulates with repeated additions and must be removed to maintain free hypochlorite for disinfection. This study describes the development of methods for using a cyanuric acid-degrading enzyme contained within nonliving cells that were encapsulated within a porous silica matrix. Initially, three different bacterial cyanuric acid hydrolases were compared: TrzD from Acidovorax citrulli strain 12227, AtzD from Pseudomonas sp. strain ADP, and CAH from Moorella thermoacetica ATCC 39073. Each enzyme was expressed recombinantly in Escherichia coli and tested for cyanuric acid hydrolase activity using freely suspended or encapsulated cell formats. Cyanuric acid hydrolase activities differed by only a 2-fold range when comparing across the different enzymes with a given format. A practical water filtration system is most likely to be used with nonviable cells, and all cells were rendered nonviable by heat treatment at 70°C for 1 h. Only the CAH enzyme from the thermophile M. thermoacetica retained significant activity under those conditions, and so it was tested in a flowthrough system simulating a bioreactive pool filter. Starting with a cyanuric acid concentration of 10,000 μM, more than 70% of the cyanuric acid was degraded in 24 h, it was completely removed in 72 h, and a respike of 10,000 μM cyanuric acid a week later showed identical biodegradation kinetics. An experiment conducted with water obtained from municipal swimming pools showed the efficacy of the process, although cyanuric acid degradation rates decreased by 50% in the presence of 4.5 ppm hypochlorite. In total, these experiments demonstrated significant robustness of cyanuric acid hydrolase and the silica bead materials in remediation. PMID:26187963

  15. Bacterial Cyanuric Acid Hydrolase for Water Treatment

    PubMed Central

    Yeom, Sujin; Mutlu, Baris R.; Aksan, Alptekin

    2015-01-01

    Di- and trichloroisocyanuric acids are widely used as water disinfection agents, but cyanuric acid accumulates with repeated additions and must be removed to maintain free hypochlorite for disinfection. This study describes the development of methods for using a cyanuric acid-degrading enzyme contained within nonliving cells that were encapsulated within a porous silica matrix. Initially, three different bacterial cyanuric acid hydrolases were compared: TrzD from Acidovorax citrulli strain 12227, AtzD from Pseudomonas sp. strain ADP, and CAH from Moorella thermoacetica ATCC 39073. Each enzyme was expressed recombinantly in Escherichia coli and tested for cyanuric acid hydrolase activity using freely suspended or encapsulated cell formats. Cyanuric acid hydrolase activities differed by only a 2-fold range when comparing across the different enzymes with a given format. A practical water filtration system is most likely to be used with nonviable cells, and all cells were rendered nonviable by heat treatment at 70°C for 1 h. Only the CAH enzyme from the thermophile M. thermoacetica retained significant activity under those conditions, and so it was tested in a flowthrough system simulating a bioreactive pool filter. Starting with a cyanuric acid concentration of 10,000 μM, more than 70% of the cyanuric acid was degraded in 24 h, it was completely removed in 72 h, and a respike of 10,000 μM cyanuric acid a week later showed identical biodegradation kinetics. An experiment conducted with water obtained from municipal swimming pools showed the efficacy of the process, although cyanuric acid degradation rates decreased by 50% in the presence of 4.5 ppm hypochlorite. In total, these experiments demonstrated significant robustness of cyanuric acid hydrolase and the silica bead materials in remediation. PMID:26187963

  16. Water Treatment: Can You Purify Water for Drinking?

    ERIC Educational Resources Information Center

    Harris, Mary E.

    1996-01-01

    Presents a three-day mini unit on purification of drinking water that uses the learning cycle approach. Demonstrates the typical technology that water companies use to provide high-quality drinking water. (JRH)

  17. Innovative Biological Water Treatment for the Removal of Elevated Ammonia

    EPA Science Inventory

    The objective of this work was to demonstrate the effectiveness of an innovative and simple biological water treatment approach for removing 3.3 mg N/L ammonia and iron from water using a pilot study conducted at a utility in Iowa. Biological water treatment can be an effective a...

  18. MANAGEMENT OF POINT-OF-USE DRINKING WATER TREATMENT SYSTEMS

    EPA Science Inventory

    One alternative solution to drinking water contamination problems which has received more attention in recent years is treatment of contaminated water at the home, or point-of-use. While point-of-use treatment may provide a cost effective solution to drinking water contamination,...

  19. Reviewing efficacy of alternative water treatment techniques.

    PubMed

    Hambidge, A

    2001-06-01

    This section is designed to provide a brief summary of some of the findings. A good deal of work has been conducted by Mr N. L. Pavey and the team at BSRIA, Bracknell. The BSRIA publications are an excellent source of further information. Ultraviolet radiation: UV radiation of wavelength 254 nm destroys bacteria by a mechanism of damaging nucleic acids by producing thymine dimers which disrupt DNA replication [Gavdy and Gavdy, 1980]. L. pneumophila has been reported as sensitive to UV dosages of 2,500-7,000 uW.s/cm2 [Antopol & Ellner, 1979; Knudson, 1985]. Antopol and Ellner [1979] examined the susceptibility of L. pneumophila to UV dosage. Their results indicated that 50% of the organisms were killed by 380 uWs/cm2 and 90% were killed by 920 uWs/cm2. Kills of 99 and 99.9% were obtained using 1,840 and 2,760 uWs/cm2 respectively. Muraca et al [1987] showed that continuous UV irradiation resulted in a 5 logarithm decrease in waterborne L. pneumophila in a circulating system. Gilpin [1984] reported that in laboratory buffer solutions, exposure to 1 uW of UV radiation per cm2 achieved a 50% kill of L longbeachae in 5 minutes, L. gormanii in 2-30 minutes and L pneumophila in 17 minutes. Exposure times for 99% kills for L. longbeachae, L pneumophila and L. Gormanii were 33, 48 and 63 minutes respectively. The same research worker conducted experiments using a 3 litre circulating water system, connected to a stainless steel housing containing a UV source. The UV lamp output was 7 ergs/mm2 per second per 100 cm at 254 nm. L. pneumophila was killed within 15 seconds, that is within their first pass through the system. Continuous disinfection with UV has the advantages of imparting no taste, odour or harmful chemical by-products and requires minimal operation and maintenance [Muraca et al 1988]. Keevil et al [1989] state that UV irradiation fails to clear systems of biofilm because of poor penetration into microflocs of the micro-organisms. Copper/silver ionisation: A

  20. 50. NORTHERN VIEW OF NONEVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. NORTHERN VIEW OF NON-EVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS IN CENTER, AND EVAPORATIVE WASTE WATER COOLING TOWERS ON RIGHT. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  1. [Gambro hemodialysis reverse osmosis water treatment system troubleshooting].

    PubMed

    Jiang, Youhao; Peng, Wen; Kong, Lingwei; Ma, Li; Wang, Hao

    2013-01-01

    Described gambro hemodialysis reverse osmosis water treatment system can not supply water due to PC PLC failure, the reasons of failure were analysed, troubleshooting methods and procedures were introduced. PMID:23668052

  2. Radium and Other Radiological Chemicals: Drinking Water Treatment Strategies

    EPA Science Inventory

    Radium and Other Radiological Chemicals: Drinking Water Treatment Technologies Topics include: Introduction to Rad Chemistry, Summary of the Rad, Regulations Treatment Technology, and Disposal. The introductions cover atoms, ions, radium and uranium and the removal of radioac...

  3. Biological Treatment of Drinking Water: Applications, Advantages and Disadvantages

    EPA Science Inventory

    The fundamentals of biological treatment are presented to an audience of state drinking water regulators. The presentation covers definitions, applications, the basics of bacterial metabolism, a discussion of treatment options, and the impact that implementation of these options...

  4. K West integrated water treatment system subproject safety analysis document

    SciTech Connect

    SEMMENS, L.S.

    1999-02-24

    This Accident Analysis evaluates unmitigated accident scenarios, and identifies Safety Significant and Safety Class structures, systems, and components for the K West Integrated Water Treatment System.

  5. Improving the efficiency of clarifiers for coagulation treatment of water

    NASA Astrophysics Data System (ADS)

    Vinogradov, V. N.; Smirnov, B. A.; Zhadan, A. V.; Avan, V. K.

    2010-08-01

    Technological and design possibilities of improving clarifiers for coagulation treatment of water are considered. The results obtained from implementing these possibilities in real devices are presented.

  6. Influence of water quality on the embodied energy of drinking water treatment.

    PubMed

    Santana, Mark V E; Zhang, Qiong; Mihelcic, James R

    2014-01-01

    Urban water treatment plants rely on energy intensive processes to provide safe, reliable water to users. Changes in influent water quality may alter the operation of a water treatment plant and its associated energy use or embodied energy. Therefore the objective of this study is to estimate the effect of influent water quality on the operational embodied energy of drinking water, using the city of Tampa, Florida as a case study. Water quality and water treatment data were obtained from the David L Tippin Water Treatment Facility (Tippin WTF). Life cycle energy analysis (LCEA) was conducted to calculate treatment chemical embodied energy values. Statistical methods including Pearson's correlation, linear regression, and relative importance were used to determine the influence of water quality on treatment plant operation and subsequently, embodied energy. Results showed that influent water quality was responsible for about 14.5% of the total operational embodied energy, mainly due to changes in treatment chemical dosages. The method used in this study can be applied to other urban drinking water contexts to determine if drinking water source quality control or modification of treatment processes will significantly minimize drinking water treatment embodied energy. PMID:24517328

  7. WATER QUALITY IN SOURCE WATER, TREATMENT, AND DISTRIBUTION SYSTEMS

    EPA Science Inventory

    Most drinking water utilities practice the multiple-barrier concept as the guiding principle for providing safe water. This chapter discusses multiple barriers as they relate to the basic criteria for selecting and protecting source waters, including known and potential sources ...

  8. PHOSPHATE CHEMICALS FOR BUILDING POTABLE WATER TREATMENT

    EPA Science Inventory

    Buildings can contribute significant quantities of trace metal contamination to drinking water, particularly lead, copper and zinc. Discolored water may also result in corroded galvanized and steel plumbing and after prolonged stagnation times. To protect human health as well as ...

  9. Mobile Emergency Response Water Treatment Technology Results

    EPA Science Inventory

    When natural disasters like hurricanes, floods and earthquakes occur, safe drinking water can be compromised, limited or unavailable. Under such situations, communities have emergency response plans. One of many options for providing safe drinking water during emergency situati...

  10. Drinking water treatment for a rural karst region in Indonesia

    NASA Astrophysics Data System (ADS)

    Matthies, K.; Schott, C.; Anggraini, A. K.; Silva, A.; Diedel, R.; Mühlebach, H.; Fuchs, S.; Obst, U.; Brenner-Weiss, G.

    2016-06-01

    An interdisciplinary German-Indonesian joint research project on Integrated Water Resources Management (IWRM) focused on the development and exemplary implementation of adapted technologies to improve the water supply situation in a model karst region in southern Java. The project involving 19 sub-projects covers exploration of water resources, water extraction, distribution as well as water quality assurance, and waste water treatment. For the water quality assurance, an appropriate and sustainable drinking water treatment concept was developed and exemplarily implemented. Monitoring results showed that the main quality issue was the contamination with hygienically relevant bacteria. Based on the gained results, a water treatment concept was developed consisting of a central sand filtration prior to the distribution network, a semi-central hygienization where large water volumes are needed to remove bacteria deriving from water distribution and a final point-of-use water treatment. This paper focuses on the development of a central sand filtration plant and some first analysis for the development of a recipe for the local production of ceramic filters for household water treatment. The first results show that arsenic and manganese are leaching from the filters made of local raw material. Though discarding the first, filtrates should be sufficient to reduce arsenic and manganese concentration effectively. Moreover, hydraulic conductivities of filter pots made of 40 % pore-forming agents are presented and discussed.

  11. Emergency Response and Protection Water Treatment Technologies

    EPA Science Inventory

    The Expeditionary Unit Water Purifier (EUWP) is supported and deployed by NFESC, the TARDEC, and the USBR. The EUWP was deployed to Biloxi, MS after Hurricane Katrina to supply potable water to a hospital, using seawater from the Gulf of Mexico as the source water. The EUWP ...

  12. Successful treatment with supercritical water oxidation

    SciTech Connect

    Jensen, R.

    1994-06-01

    Supercritical Water Oxidation (SCWO) operates in a totally enclosed system. It uses water at high temperatures and high pressure to chemically change wastes. Oily substances become soluble and complex hydrocarbons are converted into water and carbon dioxide. Research and development on SCWO is described.

  13. WATER TREATMENT AT ST. LOUIS, MO

    PubMed Central

    Wall, Edward E.

    1920-01-01

    With three kinds of water, Mississippi, Missouri and Illinois rivers, of different natures, and coming in an infinite variety of mixtures, St. Louis has peculiar water supply problems. This outline of methods will interest water engineers. Of the success of the St. Louis methods, the low mortality rates of the city are evidence. PMID:18010313

  14. Asbestos survey for Fort Point U. S. Coast Guard Station. Volume 1. The Presidio of San Francisco. Phase 2 environmental study. Final report

    SciTech Connect

    Not Available

    1991-09-01

    R.L. Stollar and Associates conducted an asbestos survey in all the buildings associated with the former U.S. Coast Guard Station at Fort Point on the Presidio of San Francisco. The intent of the survey was to identify the location and condition of all asbestos containing material and recommend asbestos abatement measures for any asbestos containing material which is in deteriorated condition. The report recommended remedial action in the duct work in Building 992 of the station.

  15. High Conductivity Water Treatment Using Water Surface Discharge with Nonmetallic Electrodes

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoping; Zhang, Xingwang; Lei, Lecheng

    2013-06-01

    Although electrohydraulic discharge is effective for wastewater treatment, its application is restricted by water conductivity and limited to the treatment of low conductivity water. For high conductivity water treatment, water-surface discharge is the preferred choice. However, the metallic electrodes are easily corroded because of the high temperature and strong oxidative environment caused by gas phase discharge and the electrochemical reaction in water. As a result, the efficiency of the water treatment might be affected and the service life of the reactor might be shortened. In order to avoid the corrosion problem, nonmetallic electrode water-surface discharge is introduced into high conductivity water treatment in the present study. Carbon-felt and water were used as the high voltage electrode and ground electrode, respectively. A comparison of the electrical and chemical characteristics showed that nonmetallic electrode discharge maintained the discharge characteristics and enhanced the energy efficiency, and furthermore, the corrosion of metal electrodes was avoided.

  16. Treatment Process Requirements for Waters Containing Hydraulic Fracturing Chemicals

    NASA Astrophysics Data System (ADS)

    Stringfellow, W. T.; Camarillo, M. K.; Domen, J. K.; Sandelin, W.; Varadharajan, C.; Cooley, H.; Jordan, P. D.; Heberger, M. G.; Reagan, M. T.; Houseworth, J. E.; Birkholzer, J. T.

    2015-12-01

    A wide variety of chemical additives are used as part of the hydraulic fracturing (HyF) process. There is concern that HyF chemicals will be released into the environment and contaminate drinking water, agricultural water, or other water used for beneficial purposes. There is also interest in using produced water (water extracted from the subsurface during oil and gas production) for irrigation and other beneficial purposes, especially in the arid Southwest US. Reuse of produced water is not speculative: produced water can be low in salts and is being used in California for irrigation after minimal treatment. In this study, we identified chemicals that are used for hydraulic fracturing in California and conducted an analysis to determine if those chemicals would be removed by a variety of technically available treatment processes, including oil/water separation, air stripping, a variety of sorption media, advanced oxidation, biological treatment, and a variety of membrane treatment systems. The approach taken was to establish major physiochemical properties for individual chemicals (log Koc, Henry's constant, biodegradability, etc.), group chemicals by function (e.g corrosion inhibition, biocides), and use those properties to predict the fate of chemical additives in a treatment process. Results from this analysis is interpreted in the context of what is known about existing systems for the treatment of produced water before beneficial reuse, which includes a range of treatment systems from oil/water separators (the most common treatment) to sophisticated treatment trains used for purifying produced water for groundwater recharge. The results show that most HyF chemical additives will not be removed in existing treatment systems, but that more sophisticated treatment trains can be designed to remove additives before beneficial reuse.

  17. Design and Compilation of a Geodatabase of Existing Salinity Information for the Rio Grande Basin, from the Rio Arriba-Sandoval County Line, New Mexico, to Presidio, Texas, 2010

    USGS Publications Warehouse

    Shah, Sachin D.; Maltby, David R., II

    2010-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, compiled salinity-related water-quality data and information in a geodatabase containing more than 6,000 sampling sites. The geodatabase was designed as a tool for water-resource management and includes readily available digital data sources from the U.S. Geological Survey, U.S. Environmental Protection Agency, New Mexico Interstate Stream Commission, Sustainability of semi-Arid Hydrology and Riparian Areas, Paso del Norte Watershed Council, numerous other State and local databases, and selected databases maintained by the University of Arizona and New Mexico State University. Salinity information was compiled for an approximately 26,000-square-mile area of the Rio Grande Basin from the Rio Arriba-Sandoval County line, New Mexico, to Presidio, Texas. The geodatabase relates the spatial location of sampling sites with salinity-related water-quality data reported by multiple agencies. The sampling sites are stored in a geodatabase feature class; each site is linked by a relationship class to the corresponding sample and results stored in data tables.

  18. Improvement of water treatment at thermal power plants

    NASA Astrophysics Data System (ADS)

    Larin, B. M.; Bushuev, E. N.; Larin, A. B.; Karpychev, E. A.; Zhadan, A. V.

    2015-04-01

    Prospective and existing technologies for water treatment at thermal power plants, including pretreatment, ion exchange, and membrane method are considered. The results obtained from laboratory investigations and industrial tests of the proposed technologies carried out at different thermal power plants are presented. The possibilities of improving the process and environmental indicators of water treatment plants are shown.

  19. 40 CFR 141.83 - Source water treatment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... water monitoring (§ 141.88(b)) and make a treatment recommendation to the State (§ 141.83(b)(1)) no... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Source water treatment requirements. 141.83 Section 141.83 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)...

  20. 11. Water treatment plant interior view of pipes, stairs, and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Water treatment plant interior view of pipes, stairs, and pump in pump room. View to SW - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  1. 12. Water treatment plant interior view of pipes and pump ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Water treatment plant interior view of pipes and pump in heater room. View to W - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  2. ARSENIC MOBILITY FROM IRON OXIDE SOLIDS PRODUCED DURING WATER TREATMENT

    EPA Science Inventory

    The Arsenic Rule under the Safe Drinking Water Act will require certain drinking water suppliers to add to or modify their existing treatment in order to comply with the new 10 ppb arsenic standard. One of the treatment options is co-precipitation of arsenic with iron. This tre...

  3. INORGANIC CHEMICAL CHARACTERIZATION OF WATER TREATMENT PLANT RESIDUALS

    EPA Science Inventory

    The study obtained field data on the inorganic contaminants and constituents in residuals produced by Water Treatment Plants (WTPs). Eight WTPs were studied based on treatment technology, contamination or suspected contamination of raw water, and efficiency in the removal of cont...

  4. INL Bettis Water Treatment Project Report

    SciTech Connect

    Not Available

    2009-06-01

    Bechtel Bettis Atomic Power Laboratory (Bettis), West Mifflin, PA, requested that the Idaho National Laboratory (INL) (Battelle Energy Alliance) perform tests using water simulants and three specified media to determine if those ion-exchange (IX) resins will be effective at removing the plutonium contamination from water. This report details the testing and results of the tests to determine the suitability of the media to treat plutonium contaminated water at near nuetral pH.

  5. SUSTAINABLE CATALYTIC TREATMENT OF WASTE ION EXCHANGE BRINES FOR REUSE DURING OXYANION TREATMENT IN DRINKING WATER

    EPA Science Inventory

    We expect the proposed work to result in the design of full-scale treatment systems for catalytic brine treatment that provides a more economical and sustainable option for removing mixtures of oxyanions from drinking water at small water treatment utilities. This will allo...

  6. Comparing drinking water treatment costs to source water protection costs using time series analysis.

    EPA Science Inventory

    We present a framework to compare water treatment costs to source water protection costs, an important knowledge gap for drinking water treatment plants (DWTPs). This trade-off helps to determine what incentives a DWTP has to invest in natural infrastructure or pollution reductio...

  7. EPA’s Drinking Water Treatment Research

    EPA Science Inventory

    Riverbank filtration has been utilized for decades as a pretreatment for waters that will be used for drinking water. A study investigating the occurrence and potential for removal of suspected endocrine disrupting compounds (EDCs) during riverbank filtration at a municipal well...

  8. Treatment of oil-in-water emulsions

    SciTech Connect

    Presley, C.T.; Harrison, R.J.

    1980-01-08

    Petroleum is separated from an oil-in-water emulsion containing water-soluble polymer such as polyacrylamide prior to refining by adding amphoteric metal cations (Zn, Al, Sn, and Co) to the emulsion to form a flocculate and then treating the resulting flocculate with a strong base to recover the oil and metal. 11 claims.

  9. Treatment of oil-in-water emulsions

    SciTech Connect

    Harrison, R.J.; Presley, C.T.

    1980-01-08

    Petroleum is separated from an ''oil-in-water'' emulsion containing water-soluble polymer prior to refining by adding amphoteric metal cations to the emulsion to form a flocculate and then treating the resulting flocculate with a strong base to recover the oil and metal.

  10. Two-stage treatment reduces water/oil ratio

    SciTech Connect

    Wood, F.; Dairymple, D. ); McKown, K.; Matthews, B. )

    1990-09-10

    This paper reports how a treatment of amphoteric polymer followed by chrome-complexed anionic polyacrylamide has successfully decreased the water/oil (WOR) ratio of wells producing from the Arbuckle dolomite formation in central Kansas. This technique, the fractured-matrix, water-control (FMWC) treatment, is designed to alter both primary and secondary permeability to water production. In 10 treated wells, the average WOR was reduced by a factor of five.

  11. 40 CFR 141.83 - Source water treatment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Source water treatment requirements. 141.83 Section 141.83 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Control of Lead and Copper § 141.83...

  12. 40 CFR 141.83 - Source water treatment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Source water treatment requirements. 141.83 Section 141.83 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Control of Lead and Copper § 141.83...

  13. 40 CFR 141.83 - Source water treatment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Source water treatment requirements. 141.83 Section 141.83 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Control of Lead and Copper § 141.83...

  14. 40 CFR 141.83 - Source water treatment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Source water treatment requirements. 141.83 Section 141.83 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Control of Lead and Copper § 141.83...

  15. BACTERIAL COLONIZATION OF POINT-OF-USE WATER TREATMENT DEVICES

    EPA Science Inventory

    Point-of-use water treatment devices were investigated for types of organisms that may colonize these filters, the magnitude of microbial post colonization release in the product water during daily use or after periods of non use, and the impact of tap waters of marginal bacterio...

  16. Introducing Water-Treatment Subjects into Chemical Engineering Education.

    ERIC Educational Resources Information Center

    Caceres, L.; And Others

    1992-01-01

    Proposes that inclusion of waste water treatment subjects within the chemical engineering curriculum can provide students with direct access to environmental issues from both a biotechnological and an ethical perspective. The descriptive details of water recycling at a copper plant and waste water stabilization ponds exemplify this approach from…

  17. Microbial As(III) Oxidation in Water Treatment Plant Filters

    EPA Science Inventory

    Arsenic exists in two oxidation states in water - arsenite [As(III)] and arsenate [As(V)]. As(III) is relatively mobile in water and difficult to remove by arsenic-removal treatment processes. Source waters that contain As(III) must add a strong oxidant such as free chlorine or p...

  18. Drinking water treatment residuals: A Review of recent uses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coagulants such as alum [Al2(SO4)3•14H2O], FeCl3, or Fe2(SO4)3 are commonly used to remove particulate and dissolved constituents from water supplies in the production of drinking water. The resulting waste product, called water-treatment residuals (WTR), contains precipitated Al and Fe oxyhydroxide...

  19. POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect

    V. King

    2000-06-19

    The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of the Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous

  20. Water Treatment Systems Make a Big Splash

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In the 1960s, NASA's Manned Space Center (now known as Johnson Space Center) and the Garrett Corporation, Air Research Division, conducted a research program to develop a small, lightweight water purifier for the Apollo spacecraft that would require minimal power and would not need to be monitored around-the-clock by astronauts in orbit. The 9-ounce purifier, slightly larger than a cigarette pack and completely chlorine-free, dispensed silver ions into the spacecraft s water supply to successfully kill off bacteria. A NASA Technical Brief released around the time of the research reported that the silver ions did not impart an unpleasant taste to the water. NASA s ingenuity to control microbial contamination in space caught on quickly, opening the doors for safer methods of controlling water pollutants on Earth.

  1. ALTERNATIVE DISINFECTANTS FOR DRINKING WATER TREATMENT

    EPA Science Inventory

    During a one-year study at Jefferson Parish, Louisiana the chemical, microbiological, and mutagenic effects of using the major drinking water disinfectants (chlorine, chlorine dioxide, chloramine, ozone) were evaluated. ests were performed on samples collected from various treatm...

  2. Integrated water quality, emergy and economic evaluation of three bioremediation treatment systems for eutrophic water

    EPA Science Inventory

    This study was targeted at finding one or more environmentally efficient, economically feasible and ecologically sustainable bioremediation treatment modes for eutrophic water. Three biological species, i.e. water spinach (Ipomoea aquatica), loach (Misgurus anguillicaudatus) and ...

  3. OZONATION AND BIOLOGICAL STABILITY OF WATER IN AN OPERATING WATER TREATMENT PLANT

    EPA Science Inventory

    Ozonation of drinking water may adversely affect the biological stability of the inished water. his study was designed assess the effect of ozone as a preoxidant on the nutrient status of water treated in a full-scale water treatment plant. he study was conducted over a ten week ...

  4. Costs and water quality effects of wastewater treatment plant centralization

    SciTech Connect

    Macal, C.M.; Broomfield, B.J.

    1980-01-01

    The costs and water quality impacts of two regional configurations of municipal wastewater treatment plants in Northeastern Illinois are compared. In one configuration, several small treatment plants are consolidated into a smaller number of regional facilities. In the other, the smaller plants continue to operate. Costs for modifying the plants to obtain various levels of pollutant removal are estimated using a simulation model that considers the type of equipment existing at the plants and the costs of modifying that equipment to obtain a range of effluent levels for various pollutants. A dynamic water-quality/hydrology simulation model is used to determine the water quality effects of the various treatment technologies and pollutant levels. Cost and water quality data are combined and the cost-effectiveness of the two treatment configurations is compared. The regionalized treatment-plant configuration is found to be the more cost-effective.

  5. Climate Adaptation Capacity for Conventional Drinking Water Treatment Facilities

    NASA Astrophysics Data System (ADS)

    Levine, A.; Goodrich, J.; Yang, J.

    2013-12-01

    Water supplies are vulnerable to a host of climate- and weather-related stressors such as droughts, intense storms/flooding, snowpack depletion, sea level changes, and consequences from fires, landslides, and excessive heat or cold. Surface water resources (lakes, reservoirs, rivers, and streams) are especially susceptible to weather-induced changes in water availability and quality. The risks to groundwater systems may also be significant. Typically, water treatment facilities are designed with an underlying assumption that water quality from a given source is relatively predictable based on historical data. However, increasing evidence of the lack of stationarity is raising questions about the validity of traditional design assumptions, particularly since the service life of many facilities can exceed fifty years. Given that there are over 150,000 public water systems in the US that deliver drinking water to over 300 million people every day, it is important to evaluate the capacity for adapting to the impacts of a changing climate. Climate and weather can induce or amplify changes in physical, chemical, and biological water quality, reaction rates, the extent of water-sediment-air interactions, and also impact the performance of treatment technologies. The specific impacts depend on the watershed characteristics and local hydrological and land-use factors. Water quality responses can be transient, such as erosion-induced increases in sediment and runoff. Longer-term impacts include changes in the frequency and intensity of algal blooms, gradual changes in the nature and concentration of dissolved organic matter, dissolved solids, and modulation of the microbiological community structure, sources and survival of pathogens. In addition, waterborne contaminants associated with municipal, industrial, and agricultural activities can also impact water quality. This presentation evaluates relationships between climate and weather induced water quality variability and

  6. Proposed water treatment approach for commercial tar sand wastewaters

    SciTech Connect

    Kocornik, D.

    1986-09-01

    Waters produced during the steamflood extraction of bitumen from tar sand require treatment before they can be recycled as feedwater for steam generation. The characterization of two waters from commercial-scale tar sand operations indicates that the levels of hardness, oil and grease, silica, suspended solids, and iron must be reduced before these waters can be reused in the bitumen extraction process. The Western Research Institute proposes two treatment methods (electrocoagulation and ultrafiltration) that may, when used in conjunction with standard practices, improve the efficiency of the overall treatment process. 21 refs., 3 tabs.

  7. Water treatment facilities (excluding wastewater facilities). (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-07-01

    The bibliography contains citations concerning the design, construction, costs, and operation of water treatment facilities. Facilities covered include those that provide drinking water, domestic water, and water for industrial use. Types of water treatment covered include reverse osmosis, chlorination, filtration, and ozonization. Waste water treatment facilities are excluded from this bibliography. (Contains 250 citations and includes a subject term index and title list.)

  8. Acid mine water aeration and treatment system

    DOEpatents

    Ackman, Terry E.; Place, John M.

    1987-01-01

    An in-line system is provided for treating acid mine drainage which basically comprises the combination of a jet pump (or pumps) and a static mixer. The jet pump entrains air into the acid waste water using a Venturi effect so as to provide aeration of the waste water while further aeration is provided by the helical vanes of the static mixer. A neutralizing agent is injected into the suction chamber of the jet pump and the static mixer is formed by plural sections offset by 90 degrees.

  9. Desalting and water treatment membrane manual: A guide to membranes for municipal water treatment. Water treatment technology program report No. 1

    SciTech Connect

    Chapman-Wilbert, M.

    1993-09-01

    The Bureau of Reclamation prepared this manual to provide an overview of microfiltration, ultrafiltration, nanofiltration, reverse osmosis, and electrodialysis processes as they are used for water treatment. Membrane composition, the chemical processes, and the physical processes involved with each membrane type are described and compared. Because care and maintenance of water treatment membranes are vital to their performance and life expectancy, pretreatment, cleaning, and storage requirements are discussed in some detail. Options for concentrate disposal, also a problematic feature of membrane processes, are discussed. The culmination of this wealth of knowledge is an extensive comparison of water treatment membranes commercially available at this time. The tables cover physical characteristics, performance data, and operational tolerances.

  10. Treatment Strategies for Lead in Drinking Water

    EPA Science Inventory

    Lead pipes are capable of lasting hundreds of years. Conservatively, there are over 12 million, still serving drinking water in the US. Probably, this is a substantial underestimate. Leaded solder joining copper pipe abounds. Leaded brasses have dominated the materials used for...

  11. Detection of Cyanotoxins During Potable Water Treatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2007, the U.S. EPA listed three cyanobacterial toxins on the CCL3 containment priority list for potable drinking waters. This paper describes all methodologies used for detection of these toxins, and assesses each on a cost/benefit basis. Methodologies for microcystin, cylindrospermopsin, and a...

  12. Fate of perfluorooctanesulfonate and perfluorooctanoate in drinking water treatment processes.

    PubMed

    Takagi, Sokichi; Adachi, Fumie; Miyano, Keiichi; Koizumi, Yoshihiko; Tanaka, Hidetsugu; Watanabe, Isao; Tanabe, Shinsuke; Kannan, Kurunthachalam

    2011-07-01

    Perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) have been recognized as global environmental pollutants. Although PFOS and PFOA have been detected in tap water from Japan and several other countries, very few studies have examined the fate, especially removal, of perfluorinated compounds (PFCs) in drinking water treatment processes. In this study, we analyzed PFOS and PFOA at every stages of drinking water treatment processes in several water purification plants that employ advanced water treatment technologies. PFOS and PFOA concentrations did not vary considerably in raw water, sand filtered water, settled water, and ozonated water. Sand filtration and ozonation did not have an effect on the removal of PFOS and PFOA in drinking water. PFOS and PFOA were removed effectively by activated carbon that had been used for less than one year. However, activated carbon that had been used for a longer period of time (>1 year) was not effective in removing PFOS and PFOA from water. Variations in the removal ratios of PFOS and PFOA by activated carbon were found between summer and winter months. PMID:21628066

  13. Hanford facilities tracer study report (315 Water Treatment Facility)

    SciTech Connect

    Ambalam, T.

    1995-04-14

    This report presents the results and findings of a tracer study to determine contact time for the disinfection process of 315 Water Treatment Facility that supplies sanitary water for the 300 Area. The study utilized fluoride as the tracer and contact times were determined for two flow rates. Interpolation of data and short circuiting effects are also discussed. The 315 Water Treatment Facility supplies sanitary water for the 300 Area to various process and domestic users. The Surface Water Treatment Rule (SWTR), outlined in the 1986 Safe Drinking Water Act Amendments enacted by the EPA in 1989 and regulated by the Washington State Department of Health (DOH) in Section 246-290-600 of the Washington Administrative Code (WAC), stipulates filtration and disinfection requirements for public water systems under the direct influence of surface water. The SWTR disinfection guidelines require that each treatment system achieves predetermined inactivation ratios. The inactivation by disinfection is approximated with a measure called CxT, where C is the disinfectant residual concentration and T is the effective contact time of the water with the disinfectant. The CxT calculations for the Hanford water treatment plants were derived from the total volume of the contact basin(s). In the absence of empirical data to support CxT calculations, the DOH determined that the CxT values used in the monthly reports for the water treatment plants on the Hanford site were invalid and required the performance of a tracer study at each plant. In response to that determination, a tracer study will be performed to determine the actual contact times of the facilities for the CxT calculations.

  14. Sacramento River Water Treatment Plant Intake Pier & Access Bridge, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  15. 51. LOOKING NORTHEAST AT EIMCO WASTE WATER TREATMENT THICKENER No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. LOOKING NORTHEAST AT EIMCO WASTE WATER TREATMENT THICKENER No. 2, ELECTRIC POWERHOUSE No. 2, AND OUTDOOR ELECTRICAL SUBSTATION IN BACKGROUND. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  16. 12. NORTHEAST VIEW OF THE WASTE WATER TREATMENT COMPLEX FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. NORTHEAST VIEW OF THE WASTE WATER TREATMENT COMPLEX FOR THE PRIMARY AND 22 BAR MILLS. - U.S. Steel Duquesne Works, Auxiliary Buildings & Shops, Along Monongahela River, Duquesne, Allegheny County, PA

  17. Fate of High Priority Pesticides During Drinking Water Treatment

    EPA Science Inventory

    The fate of organophosphorus (OP) pesticides in the presence of chlorinated oxidants was investigated under drinking water treatment conditions. In the presence of aqueous chlorine, intrinsic rate coefficients were found for the reaction of hypochlorous acid and hypochlorite ion ...

  18. Generic Protocol for the Verification of Ballast Water Treatment Technology

    EPA Science Inventory

    In anticipation of the need to address performance verification and subsequent approval of new and innovative ballast water treatment technologies for shipboard installation, the U.S Coast Guard and the Environmental Protection Agency‘s Environmental Technology Verification Progr...

  19. MICROORGANISMS AND HIGHER PLANTS FOR WASTE WATER TREATMENT

    EPA Science Inventory

    Batch experiments were conducted to compare the waste water treatment efficiencies of plant-free microbial filters with filters supporting the growth of reeds (Phragmites communis), cattail (Typha latifolia), rush (Juncus effusus), and bamboo (Bambusa multiplex). The experimental...

  20. REMOVAL OF URANIUM FROM DRINKING WATER BY CONVENTIONAL TREATMENT METHODS

    EPA Science Inventory

    The USEPA currently does not regulate uranium in drinking water but will be revising the radionuclide regulations during 1989 and will propose a maximum contaminant level for uranium. The paper presents treatment technology information on the effectiveness of conventional method...

  1. 6. PHOTOCOPY, WATER TREATMENT PUMPING AND STORAGE BUILDING, MISSILE TEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. PHOTOCOPY, WATER TREATMENT PUMPING AND STORAGE BUILDING, MISSILE TEST AND ASSEMBLY BUILDING, GENERATOR BUILDING No. 3, AND WARHEADING BUILDING OF LAUNCH AREA. - NIKE Missile Base SL-40, Beck Road between Nike & M Roads, Hecker, Monroe County, IL

  2. AERIAL VIEW LOOKING FURTHER SOUTH EAST, VILLAGE CREEK WATER TREATMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL VIEW LOOKING FURTHER SOUTH EAST, VILLAGE CREEK WATER TREATMENT PLANT ON RIGHT SIDE, ENSLEY IN BACKGROUND. - Birmingham Southern Railroad Yard, Thirty-fourth Street, Ensley, Jefferson County, AL

  3. Looking east at the boiler water treatment tank located off ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking east at the boiler water treatment tank located off the west wall of the boiler house. - Wheeling-Pittsburgh Steel Corporation, Allenport Works, Boiler House, Route 88 on West bank of Monongahela River, Allenport, Washington County, PA

  4. TREATMENT TECHNOLOGY FOR REMOVING RADON FROM SMALL COMMUNITY WATER SUPPLIES

    EPA Science Inventory

    Radon contamination of drinking water primarily affects individual homeowners and communities using groundwater supplies. resently, three types of treatment processes have been used to remove radon: granular activated carbon adsorption (GAG>, diffused bubble aeration, and packed ...

  5. INTERACTIONS OF SILICA PARTICLES IN DRINKING WATER TREATMENT PROCESSES

    EPA Science Inventory

    EPA Identifier: U915331
    Title: Interactions of Silica Particles in Drinking Water Treatment Processes
    Fellow (Principal Investigator): Christina L. Clarkson
    Institution: Virginia Polytechnic Institute and State University
    EPA GRANT R...

  6. Alternative cooling tower water treatment methods

    SciTech Connect

    Wilsey, C.A.

    1996-11-01

    The factors that contribute to proper water balance include total alkalinity, calcium hardness, and pH. In order to keep the cooling tower from scaling or corroding, a manipulation of these components is often necessary. This has traditionally been achieved with the use of chemicals, including but not limited to the following: acid, soda ash, sodium bicarbonate, calcium bicarbonate, algicide, and bactericide. Extensive research has shown that a balanced water system can also be achieved by using the proper combination of copper with a known halogen. Microbiologists have determined that a small amount of copper, acting as a supplement to chlorine at 0.4 ppm, has the same efficiency as 2.0 ppm free chlorine. Therefore, by using the following combination of components and procedures, the desired results can still be achieved: production of copper compound ions as a supplement to the chemical regimen; analysis and manipulation of make-up water; the use of copper as a coagulant for reduction of scale; copper as a supplemental bacterial disinfectant; and copper as an algicide.

  7. Factors influencing biological treatment of MTBE contaminated ground water

    SciTech Connect

    Stringfellow, William T.; Hines Jr., Robert D.; Cockrum, Dirk K.; Kilkenny, Scott T.

    2001-09-14

    Methyl tert-butyl ether (MTBE) contamination has complicated the remediation of gasoline contaminated sites. Many sites are using biological processes for ground water treatment and would like to apply the same technology to MTBE. However, the efficiency and reliability of MTBE biological treatment is not well documented. The objective of this study was to examine the operational and environmental variables influencing MTBE biotreatment. A fluidized bed reactor was installed at a fuel transfer station and used to treat ground water contaminated with MTBE and gasoline hydrocarbons. A complete set of chemical and operational data was collected during this study and a statistical approach was used to determine what variables were influencing MTBE treatment efficiency. It was found that MTBE treatment was more sensitive to up-set than gasoline hydrocarbon treatment. Events, such as excess iron accumulation, inhibited MTBE treatment, but not hydrocarbon treatment. Multiple regression analysis identified biomass accumulation and temperature as the most important variables controlling the efficiency of MTBE treatment. The influent concentration and loading of hydrocarbons, but not MTBE, also impacted MTBE treatment efficiency. The results of this study suggest guidelines for improving MTBE treatment. Long cell retention times in the reactor are necessary for maintaining MTBE treatment. The onset of nitrification only occurs when long cell retention times have been reached and can be used as an indicator in fixed film reactors that conditions favorable to MTBE treatment exist. Conversely, if the reactor can not nitrify, it is unlikely to have stable MTBE treatment.

  8. Online Produced Water Treatment Catalog and Decision Tool

    SciTech Connect

    J. Arthur

    2012-03-31

    The objective of this project was to create an internet-based Water Treatment Technology Catalog and Decision Tool that will increase production, decrease costs and enhance environmental protection. This is to be accomplished by pairing an operator's water treatment cost and capacity needs to specific water treatments. This project cataloged existing and emerging produced water treatment technologies and allows operators to identify the most cost-effective approaches for managing their produced water. The tool captures the cost and capabilities of each technology and the disposal and beneficial use options for each region. The tool then takes location, chemical composition, and volumetric data for the operator's water and identifies the most cost effective treatment options for that water. Regulatory requirements or limitations for each location are also addressed. The Produced Water Treatment Catalog and Decision Tool efficiently matches industry decision makers in unconventional natural gas basins with: 1) appropriate and applicable water treatment technologies for their project, 2) relevant information on regulatory and legal issues that may impact the success of their project, and 3) potential beneficial use demands specific to their project area. To ensure the success of this project, it was segmented into seven tasks conducted in three phases over a three year period. The tasks were overseen by a Project Advisory Council (PAC) made up of stakeholders including state and federal agency representatives and industry representatives. ALL Consulting has made the catalog and decision tool available on the Internet for the final year of the project. The second quarter of the second budget period, work was halted based on the February 18, 2011 budget availability; however previous project deliverables were submitted on time and the deliverables for Task 6 and 7 were completed ahead of schedule. Thus the application and catalog were deployed to the public Internet

  9. Impact of riverbank filtration on treatment of polluted river water.

    PubMed

    Singh, P; Kumar, P; Mehrotra, I; Grischek, T

    2010-05-01

    The impact of riverbank filtration (RBF) on the treatment of water from the River Yamuna at Mathura, which has disagreeable visual properties, has been investigated. The dissolved organic carbon (DOC) and colour of the river water were 4.0-6.8mg/L and 40-65 colour units (CU), respectively. Pre-chlorination is in practice to improve raw water quality. Chlorine doses as high as 60mg/L ahead of the water treatment units reduced colour by about 78%. Removal of DOC and UV-absorbance was less than 18%. In comparison to direct pumping of the river water, collection of water through RBF resulted in the reduction of DOC, colour, UV-absorbance and fecal coliforms by around 50%. However, riverbank filtrate did not conform to the drinking water quality standards. Therefore, riverbank-filtered water along with the Yamuna water were ozonated for different durations. To reduce DOC to the desired level, the dose of ozone required for the riverbank filtrate was found to be considerably less than the ozone required for the river water. RBF as compared to direct pumping of Yamuna water appears to be effective in improving the quality of the raw water. PMID:20089349

  10. Soluble arsenic removal at water treatment plants

    SciTech Connect

    McNeill, L.S.; Edwards, M.

    1995-04-01

    Arsenic profiles were obtained from full-scale conventional treatment (coagulation, Fe-Mn oxidation, or softening) plants, facilitating testing of theories regarding arsenic removal. Soluble As(V) removal efficiency was controlled primarily by pH during coagulation, be Fe{sup +2} oxidation and Fe(OH){sub 3} precipitation during Fe-Mn oxidation, and by Mg(OH){sub 2} formation during softening. Insignificant soluble As(V) removal occurred during calcite precipitation at softening plants or during Mn{sup +2} oxidation-precipitation at Fe-Mn oxidation plants. The extent of soluble As(V) removal during coagulation and softening treatments was lower than expected. Somewhat surprisingly, during coagulation As(V) removal efficiencies were limited by particulate aluminum formation and removal, because much of the added coagulant was not removed by 0.45-{mu}m-pore-size filters. At one utility, reducing the coagulation pH from 7.4 to 6.8 (at constant alum dose) improved removal of particulate aluminum, thereby enhancing soluble As(V) removal during treatment.

  11. Plasma treatment of diamond nanoparticles for dispersion improvement in water

    SciTech Connect

    Yu Qingsong; Kim, Young Jo; Ma, Hongbin

    2006-06-05

    Low-temperature plasmas of methane and oxygen mixtures were used to treat diamond nanoparticles to modify their surface characteristics and thus improve their dispersion capability in water. It was found that the plasma treatment significantly reduced water contact angle of diamond nanoparticles and thus rendered the nanoparticles with strong water affinity for dispersion enhancement in polar media such as water. Surface analysis using Fourier transform infrared spectroscopy confirmed that polar groups were imparted on nanoparticle surfaces. As a result, improved suspension stability was observed with plasma treated nanoparticles when dispersed in water.

  12. Linking ceragenins to water-treatment membranes to minimize biofouling.

    SciTech Connect

    Hibbs, Michael R.; Altman, Susan Jeanne; Feng, Yanshu; Savage, Paul B.; Pollard, Jacob; Branda, Steven S.; Goeres, Darla; Buckingham-Meyer, Kelli; Stafslien, Shane; Marry, Christopher; Jones, Howland D. T.; Lichtenberger, Alyssa; Kirk, Matthew F.; McGrath, Lucas K.

    2012-01-01

    Ceragenins were used to create biofouling resistant water-treatment membranes. Ceragenins are synthetically produced antimicrobial peptide mimics that display broad-spectrum bactericidal activity. While ceragenins have been used on bio-medical devices, use of ceragenins on water-treatment membranes is novel. Biofouling impacts membrane separation processes for many industrial applications such as desalination, waste-water treatment, oil and gas extraction, and power generation. Biofouling results in a loss of permeate flux and increase in energy use. Creation of biofouling resistant membranes will assist in creation of clean water with lower energy usage and energy with lower water usage. Five methods of attaching three different ceragenin molecules were conducted and tested. Biofouling reduction was observed in the majority of the tests, indicating the ceragenins are a viable solution to biofouling on water treatment membranes. Silane direct attachment appears to be the most promising attachment method if a high concentration of CSA-121a is used. Additional refinement of the attachment methods are needed in order to achieve our goal of several log-reduction in biofilm cell density without impacting the membrane flux. Concurrently, biofilm forming bacteria were isolated from source waters relevant for water treatment: wastewater, agricultural drainage, river water, seawater, and brackish groundwater. These isolates can be used for future testing of methods to control biofouling. Once isolated, the ability of the isolates to grow biofilms was tested with high-throughput multiwell methods. Based on these tests, the following species were selected for further testing in tube reactors and CDC reactors: Pseudomonas ssp. (wastewater, agricultural drainage, and Colorado River water), Nocardia coeliaca or Rhodococcus spp. (wastewater), Pseudomonas fluorescens and Hydrogenophaga palleronii (agricultural drainage), Sulfitobacter donghicola, Rhodococcus fascians, Rhodobacter

  13. TECHNOLOGY TRANSFER HANDBOOK: MANAGEMENT OF WATER TREATMENT PLANT RESIDUALS

    EPA Science Inventory

    Potable water treatment processes produce safe drinking water and generate a wide variety of waste products known as residuals, including organic and inorganic compounds in liquid, solid, and gaseous forms. In the current regulatory climate, a complete management program for a w...

  14. Bilogical Treatment for Ammonia Oxidation in Drinking Water Facilities

    EPA Science Inventory

    Ammonia is an unregulated compound, but is naturally occurring in many drinking water sources. It is also used by some treatment facilities to produce chloramines for disinfection purposes. Because ammonia is non-toxic, its presence in drinking water is often disregarded. Thro...

  15. ECONOMIC ASSESSMENT OF WASTE WATER AQUACULTURE TREATMENT SYSTEMS

    EPA Science Inventory

    This study attempted to ascertain the economic viability of aquaculture as an alternative to conventional waste water treatment systems for small municipalities in the Southwestern region of the United States. A multiple water quality objective level cost-effectiveness model was ...

  16. Occurrence, Monitoring and Treatment of Cyanobacterial Toxins in Drinking Water

    EPA Science Inventory

    In the summer of 2014 a number of drinking water treatment plants (DWTPs) on Lake Erie supplied water samples on a monthly basis for analysis. Chlorophyll-a measurements, LC/MS/MS and ELISA techniques specific to microcystins were employed to measure potential harmful algal bloom...

  17. EVALUATION OF DRINKING WATER TREATMENT TECHNIQUES FOR EDC REMOVAL

    EPA Science Inventory

    Many of the chemicals identified as potential endocrine disrupting chemicals (EDCs) may be present in surface or ground waters used as drinking water sources, due to their disposal via domestic and industrial sewage treatment systems and wet-weather runoff. In order to decrease t...

  18. Selenium adsorption to aluminum-based water treatment residuals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aluminum-based water treatment residuals (WTR) can adsorb water- and soil-borne P, As(V), As(III), and perchlorate, and may be able to adsorb excess environmental selenium. WTR, clay minerals, and amorphous aluminum hydroxide were shaken for 24 hours in selenate or selenite solutions at pH values o...

  19. PRELIMINARY DESIGN FOR DRINKING WATER TREATMENT PROCESS SYSTEMS

    EPA Science Inventory

    A computer model has been developed for use in estimating the performance and associated costs of proposed and existing water supply systems. Design procedures and cost-estimating relationships for 25 unit processes that can be used for drinking water treatment are contained with...

  20. Selenium Adsorption To Aluminum-Based Water Treatment Residuals

    EPA Science Inventory

    Aluminum-based water treatment residuals (WTR) can adsorb water-and soil-borne P, As(V), As(III), and perchlorate, and may be able to adsorb excess environmental selenium. WTR, clay minerals, and amorphous aluminum hydroxide were shaken for 24 hours in selenate or selenite solut...

  1. USEPA'S RESEARCH EFFORTS IN SMALL DRINKING WATER TREATMENT TECHNOLOGIES

    EPA Science Inventory

    Currently, in the United States there are approximately 50,000 small community and 130,000 non-community systems providing water to over 25 million people. The drinking water treatment systems at these locations are not always adequate to comply with current and pending regulati...

  2. RECOVERY OF LIME AND MAGNESIUM IN POTABLE WATER TREATMENT

    EPA Science Inventory

    A hard, turbid surface water was successfully treated using the magnesium carbonate process in a 2 mgd pilot plant at the treatment works of Water District No. 1 of Johnson County, Kansas, for one year during 1975 and 1976. During this study, froth flotation was used to separate ...

  3. MANUAL: GROUND-WATER AND LEACHATE TREATMENT SYSTEMS

    EPA Science Inventory

    This manual was developed for remedial design engineers and regulatory personnel who oversee the ex situ ground water or leachate treatment efforts of the regulated community. The manual can be used as a treatment technology screening tool in conjunction with other references. Mo...

  4. COST ESTIMATION MODELS FOR DRINKING WATER TREATMENT UNIT PROCESSES

    EPA Science Inventory

    Cost models for unit processes typically utilized in a conventional water treatment plant and in package treatment plant technology are compiled in this paper. The cost curves are represented as a function of specified design parameters and are categorized into four major catego...

  5. Comparing drinking water treatment costs to source water protection costs using time series analysis

    NASA Astrophysics Data System (ADS)

    Heberling, Matthew T.; Nietch, Christopher T.; Thurston, Hale W.; Elovitz, Michael; Birkenhauer, Kelly H.; Panguluri, Srinivas; Ramakrishnan, Balaji; Heiser, Eric; Neyer, Tim

    2015-11-01

    We present a framework to compare water treatment costs to source water protection costs, an important knowledge gap for drinking water treatment plants (DWTPs). This trade-off helps to determine what incentives a DWTP has to invest in natural infrastructure or pollution reduction in the watershed rather than pay for treatment on site. To illustrate, we use daily observations from 2007 to 2011 for the Bob McEwen Water Treatment Plant, Clermont County, Ohio, to understand the relationship between treatment costs and water quality and operational variables (e.g., turbidity, total organic carbon [TOC], pool elevation, and production volume). Part of our contribution to understanding drinking water treatment costs is examining both long-run and short-run relationships using error correction models (ECMs). Treatment costs per 1000 gallons (per 3.79 m3) were based on chemical, pumping, and granular activated carbon costs. Results from the ECM suggest that a 1% decrease in turbidity decreases treatment costs by 0.02% immediately and an additional 0.1% over future days. Using mean values for the plant, a 1% decrease in turbidity leads to $1123/year decrease in treatment costs. To compare these costs with source water protection costs, we use a polynomial distributed lag model to link total phosphorus loads, a source water quality parameter affected by land use changes, to turbidity at the plant. We find the costs for source water protection to reduce loads much greater than the reduction in treatment costs during these years. Although we find no incentive to protect source water in our case study, this framework can help DWTPs quantify the trade-offs.

  6. MSWT-01, flood disaster water treatment solution from common ideas

    NASA Astrophysics Data System (ADS)

    Ananto, Gamawan; Setiawan, Albertus B.; Z, Darman M.

    2013-06-01

    Indonesia has a lot of potential flood disaster places with clean water problems faced. Various solution programs always initiated by Government, companies CSR, and people sporadical actions to provide clean water; with their advantages and disadvantages respectively. One solution is easy to operate for instance, but didn't provide adequate capacity, whereas the other had ideal performance but more costly. This situation inspired to develop a water treatment machine that could be an alternative favor. There are many methods could be choosed; whether in simple, middle or high technology, depends on water source input and output result quality. MSWT, Mobile Surface Water Treatment, is an idea for raw water in flood area, basically made for 1m3 per hour. This water treatment design adopted from combined existing technologies and related literatures. Using common ideas, the highlight is how to make such modular process put in compact design elegantly, and would be equipped with mobile feature due to make easier in operational. Through prototype level experiment trials, the machine is capable for producing clean water that suitable for sanitation and cooking/drinking purposes although using contaminated water input source. From the investment point of view, such machine could be also treated as an asset that will be used from time to time when needed, instead of made for project approach only.

  7. Removal of estrogens and estrogenicity through drinking water treatment.

    PubMed

    Schenck, Kathleen; Rosenblum, Laura; Wiese, Thomas E; Wymer, Larry; Dugan, Nicholas; Williams, Daniel; Mash, Heath; Merriman, Betty; Speth, Thomas

    2012-03-01

    Estrogenic compounds have been shown to be present in surface waters, leading to concerns over their possible presence in finished drinking waters. In this work, two in vitro human cell line bioassays for estrogenicity were used to evaluate the removal of estrogens through conventional drinking water treatment using a natural water. Bench-scale studies utilizing chlorine, alum coagulation, ferric chloride coagulation, and powdered activated carbon (PAC) were conducted using Ohio River water spiked with three estrogens, 17β-estradiol, 17α-ethynylestradiol, and estriol. Treatment of the estrogens with chlorine, either alone or with coagulant, resulted in approximately 98% reductions in the concentrations of the parent estrogens, accompanied by formation of by-products. The MVLN reporter gene and MCF-7 cell proliferation assays were used to characterize the estrogenic activity of the water before and after treatment. The observed estrogenic activities of the chlorinated samples showed that estrogenicity of the water was reduced commensurate with removal of the parent estrogen. Therefore, the estrogen chlorination by-products did not contribute appreciably to the estrogenic activity of the water. Coagulation alone did not result in significant removals of the estrogens. However, addition of PAC, at a typical drinking water plant dose, resulted in removals ranging from approximately 20 to 80%. PMID:22361701

  8. 77 FR 12227 - Long Term 2 Enhanced Surface Water Treatment Rule: Uncovered Finished Water Reservoirs; Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... AGENCY 40 CFR Parts 141 and 142 Long Term 2 Enhanced Surface Water Treatment Rule: Uncovered Finished Water Reservoirs; Public Meeting AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of public..., concerning information that may inform the regulatory review of the uncovered finished water...

  9. Changes in water quality in the Owabi water treatment plant in Ghana

    NASA Astrophysics Data System (ADS)

    Akoto, Osei; Gyamfi, Opoku; Darko, Godfred; Barnes, Victor Rex

    2014-09-01

    The study was conducted on the status of the quality of water from the Owabi water treatment plant that supplies drinking water to Kumasi, a major city in Ghana, to ascertain the change in quality of water from source to point-of-use. Physico-chemical, bacteriological water quality parameters and trace metal concentration of water samples from five different treatment points from the Owabi water treatment plant were investigated. The raw water was moderately hard with high turbidity and colour that exceeds the WHO guideline limits. Nutrient concentrations were of the following order: NH3 < NO2 - < NO3 - < PO4 3- < SO4 2- and were all below WHO permissible level for drinking water in all the samples at different stages of treatment. Trace metal concentrations of the reservoir were all below WHO limit except chromium (0.06 mg/L) and copper (0.24 mg/L). The bacteriological study showed that the raw water had total coliform (1,766 cfu/100 mL) and faecal coliform (257 cfu/100 mL) that exceeded the WHO standard limits, rendering it unsafe for domestic purposes without treatment. Colour showed strong positive correlation with turbidity (r = 0.730), TSS (r ≥ 0.922) and alkalinity (0.564) significant at p < 0.01. The quality of the treated water indicates that colour, turbidity, Cr and Cu levels reduced and fall within the WHO permissible limit for drinking water. Treatment process at the water treatment plant is adjudged to be good.

  10. Waste Water Treatment Apparatus and Methods

    NASA Technical Reports Server (NTRS)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2014-01-01

    An improved draft tube spout fluid bed (DTSFB) mixing, handling, conveying, and treating apparatus and systems, and methods for operating are provided. The apparatus and systems can accept particulate material and pneumatically or hydraulically conveying the material to mix and/or treat the material. In addition to conveying apparatus, a collection and separation apparatus adapted to receive the conveyed particulate material is also provided. The collection apparatus may include an impaction plate against which the conveyed material is directed to improve mixing and/or treatment. The improved apparatus are characterized by means of controlling the operation of the pneumatic or hydraulic transfer to enhance the mixing and/or reacting by controlling the flow of fluids, for example, air, into and out of the apparatus. The disclosed apparatus may be used to mix particulate material, for example, mortar; react fluids with particulate material; coat particulate material, or simply convey particulate material.

  11. Application of hydrodynamic cavitation in ballast water treatment.

    PubMed

    Cvetković, Martina; Kompare, Boris; Klemenčič, Aleksandra Krivograd

    2015-05-01

    Ballast water is, together with hull fouling and aquaculture, considered the most important factor of the worldwide transfer of invasive non-indigenous organisms in aquatic ecosystems and the most important factor in European Union. With the aim of preventing and halting the spread of the transfer of invasive organisms in aquatic ecosystems and also in accordance with IMO's International Convention for the Control and Management of Ships Ballast Water and Sediments, the systems for ballast water treatment, whose work includes, e.g. chemical treatment, ozonation and filtration, are used. Although hydrodynamic cavitation (HC) is used in many different areas, such as science and engineering, implied acoustics, biomedicine, botany, chemistry and hydraulics, the application of HC in ballast water treatment area remains insufficiently researched. This paper presents the first literature review that studies lab- and large-scale setups for ballast water treatment together with the type-approved systems currently available on the market that use HC as a step in their operation. This paper deals with the possible advantages and disadvantages of such systems, as well as their influence on the crew and marine environment. It also analyses perspectives on the further development and application of HC in ballast water treatment. PMID:25810104

  12. Recent developments in photocatalytic water treatment technology: a review.

    PubMed

    Chong, Meng Nan; Jin, Bo; Chow, Christopher W K; Saint, Chris

    2010-05-01

    In recent years, semiconductor photocatalytic process has shown a great potential as a low-cost, environmental friendly and sustainable treatment technology to align with the "zero" waste scheme in the water/wastewater industry. The ability of this advanced oxidation technology has been widely demonstrated to remove persistent organic compounds and microorganisms in water. At present, the main technical barriers that impede its commercialisation remained on the post-recovery of the catalyst particles after water treatment. This paper reviews the recent R&D progresses of engineered-photocatalysts, photoreactor systems, and the process optimizations and modellings of the photooxidation processes for water treatment. A number of potential and commercial photocatalytic reactor configurations are discussed, in particular the photocatalytic membrane reactors. The effects of key photoreactor operation parameters and water quality on the photo-process performances in terms of the mineralization and disinfection are assessed. For the first time, we describe how to utilize a multi-variables optimization approach to determine the optimum operation parameters so as to enhance process performance and photooxidation efficiency. Both photomineralization and photo-disinfection kinetics and their modellings associated with the photocatalytic water treatment process are detailed. A brief discussion on the life cycle assessment for retrofitting the photocatalytic technology as an alternative waste treatment process is presented. This paper will deliver a scientific and technical overview and useful information to scientists and engineers who work in this field. PMID:20378145

  13. Pretreatment for membrane water treatment systems: a laboratory study

    SciTech Connect

    Wend, Christopher F.; Stewart, Philip S.; Jones, Warren L.; Camper, Anne K.

    2003-09-30

    The goal of the work was to determine if biological treatment of water containing soil-derived humic substances has the potential for reducing the fouling of membranes used in water treatment. Laboratory scale biological filters containing biologically active carbon or iron oxide coated sand were fed humic-laden water with or without prechlorination. This stream was split, with half being further treated by microfiltration. Treated water was assessed for total organic carbon removal and biofouling potential using a glass bead assay and membrane assay for total cell counts, fouling layer thickness, and flux reduction. A combination of these assays provided more insight than any single measurement. Compared to untreated control water, biological treatment was capable of reducing downstream fouling of membrane systems. For example, fouling layer thickness was reduced by half after biological treatment, and cell counts were reduced four- to five-fold. Biological treatment coupled with microfiltration provided the best reduction of fouling, while prechlorination did not appear to impact the process. These results suggest that biological treatment may be valuable in reducing membrane fouling while reducing the amount of disinfectants used in pretreatment.

  14. Effect of water treatment processes on Cryptosporidium infectivity.

    PubMed

    Keegan, Alexandra; Daminato, David; Saint, Christopher P; Monis, Paul T

    2008-03-01

    Conventional water treatment processes have the ability to remove Cryptosporidium oocysts through coagulation, flocculation, sedimentation and filtration, provided there is efficient management of plant performance. The potential exists for the breakthrough of oocysts through the treatment train. The effect of the water treatment chemical aluminium sulphate (alum) on Cryptosporidium oocyst infectivity has been assessed using an assay that combines cell culture and real-time polymerase chain reaction techniques. The infectivity of fresh and temperature-aged oocysts (stored up to 6 months at 4 or 15 degrees C) was unaffected by exposure to a range of doses of alum in standard jar test procedures and dissolved air flotation processes and subsequent exposure to chlorine or chloramine. Removal efficiencies and infectivity measures are important in determining risk to public health and will reflect the ability of water treatment plants to act as a barrier to these pathogens. PMID:18067945

  15. Phosphorus removal with membrane filtration for surface water treatment.

    PubMed

    Dietze, A; Gnirss, R; Wiesmann, U

    2002-01-01

    Surface waters are often burdened with inflows of low quality water, so that drinking-water production, swimming or ground water charging must be restricted. To ensure the long-term use of such surface water it is necessary to treat the influents or the water used for ground water charging. The current treatment process for phosphorus and turbidity removal is a process combination called floc filtration. By using this conventional method it is possible to reduce the dissolved ortho-phosphate and the turbidity (particulate phosphorus) as well as the amounts of algae and pathogenic organisms to very low concentrations. The high degree of reduction is only achieved by a relatively high dosage of chemicals. A comparison will be made between this process, which represents the state-of-the-art, and the combination of precipitation/coagulation with micro-/ultrafiltration in dead-end filtration mode. PMID:12361018

  16. [Microbial contamination in a water-treatment system].

    PubMed

    Roĭ, A A; Koval', E Z; Iakushin, V M

    1995-01-01

    Microorganisms destructors of organic compounds contained in the Kremenchug reservoir and water treatment system of heat power station have been distinguished and identified. This system does not completely remove microflora at all stages of technological process that results in infestation of ion-exchange resins of the 1st stage filters for water desalting with microorganisms. The reasons have been established of the 1st stage desalting filters infestation by the reservoir water microflora. It is necessary to form a complex approach to solution of the problem of preventing the accident situations: microbe infestation of ion-exchange resins of water-desalting filters in the system of chemical water treatment of heat power stations. PMID:8548072

  17. Produced Water Treatment Using Microbial Fuel Cell Technology

    SciTech Connect

    Borole, A. P.; Campbell, R.

    2011-05-20

    ORNL has developed a treatment for produced water using a combination of microbial fuel cells and electrosorption. A collaboration between Campbell Applied Physics and ORNL was initiated to further investigate development of the technology and apply it to treatment of field produced water. The project successfully demonstrated the potential of microbial fuel cells to generate electricity from organics in produced water. A steady voltage was continuously generated for several days using the system developed in this study. In addition to the extraction of electrical energy from the organic contaminants, use of the energy at the representative voltage was demonstrated for salts removal or desalination of the produced water. Thus, the technology has potential to remove organic as well as ionic contaminants with minimal energy input using this technology. This is a novel energy-efficient method to treat produced water. Funding to test the technology at larger scale is being pursued to enable application development.

  18. Public water supplies of North Carolina : a summary of water sources, use, treatment, and capacity of water-supply systems

    USGS Publications Warehouse

    Mann, L.T., Jr.

    1978-01-01

    Data were collected during 1970-76 on 224 public water supply systems in North Carolina with 500 or more customers. This report summarizes these data that were previously published in five separate regional reports. The data are presented in order to Council of Government region, county, and water system name and include population served, average and maximum daily use, industrial use, water source, allowable draft of surface-water supplies, raw water pumping capacity, raw and finished water storage, type of water treatment, treatment plant capacity, and a summary of the chemical quality of finished water. Tables and maps provide cross references for system names, counties, Council of Government regions and water source.

  19. ETV REPORT: REMOVAL OF ARSENIC IN DRINKING WATER ORCA WATER TECHNOLOGIES KEMLOOP 1000 COAGULATION AND FILTRATION WATER TREATMENT SYSTEM

    EPA Science Inventory

    Verification testing of the ORCA Water Technologies KemLoop 1000 Coagulation and Filtration Water Treatment System for arsenic removal was conducted at the St. Louis Center located in Washtenaw County, Michigan, from March 23 through April 6, 2005. The source water was groundwate...

  20. Is biological treatment a viable alternative for micropollutant removal in drinking water treatment processes?

    PubMed

    Benner, Jessica; Helbling, Damian E; Kohler, Hans-Peter E; Wittebol, Janneke; Kaiser, Elena; Prasse, Carsten; Ternes, Thomas A; Albers, Christian N; Aamand, Jens; Horemans, Benjamin; Springael, Dirk; Walravens, Eddy; Boon, Nico

    2013-10-15

    In western societies, clean and safe drinking water is often taken for granted, but there are threats to drinking water resources that should not be underestimated. Contamination of drinking water sources by anthropogenic chemicals is one threat that is particularly widespread in industrialized nations. Recently, a significant amount of attention has been given to the occurrence of micropollutants in the urban water cycle. Micropollutants are bioactive and/or persistent chemicals originating from diverse sources that are frequently detected in water resources in the pg/L to μg/L range. The aim of this review is to critically evaluate the viability of biological treatment processes as a means to remove micropollutants from drinking water resources. We first place the micropollutant problem in context by providing a comprehensive summary of the reported occurrence of micropollutants in raw water used directly for drinking water production and in finished drinking water. We then present a critical discussion on conventional and advanced drinking water treatment processes and their contribution to micropollutant removal. Finally, we propose biological treatment and bioaugmentation as a potential targeted, cost-effective, and sustainable alternative to existing processes while critically examining the technical limitations and scientific challenges that need to be addressed prior to implementation. This review will serve as a valuable source of data and literature for water utilities, water researchers, policy makers, and environmental consultants. Meanwhile this review will open the door to meaningful discussion on the feasibility and application of biological treatment and bioaugmentation in drinking water treatment processes to protect the public from exposure to micropollutants. PMID:24053940

  1. Water: from the source to the treatment plan

    NASA Astrophysics Data System (ADS)

    Marquet, V.; Baude, I.

    2012-04-01

    As a biology and geology teacher, I have worked on water, from the source to the treatment plant, with pupils between 14 and 15 years old. Lesson 1. Introduction, the water in Vienna Aim: The pupils have to consider why the water is so important in Vienna (history, economy etc.) Activities: Brainstorming about where and why we use water every day and why the water is different in Vienna. Lesson 2. Soil, rock and water Aim: Permeability/ impermeability of the different layers of earth Activities: The pupils have measure the permeability and porosity of different stones: granite, clay, sand, carbonate and basalt. Lesson 3. Relationship between water's ion composition and the stone's mineralogy Aim: Each water source has the same ion composition as the soil where the water comes from. Activities: Comparison between the stone's mineralogy and ions in water. They had a diagram with the ions of granite, clay, sand, carbonate and basalt and the label of different water. They had to make hypotheses about the type of soil where the water came from. They verified this with a geology map of France and Austria. They have to make a profile of the area where the water comes from. They had to confirm or reject their hypothesis. Lesson 4 .Water-catchment and reservoir rocks Aim: Construction of a confined aquifer and artesian well Activities: With sand, clay and a basin, they have to model a confined aquifer and make an artesian well, using what they have learned in lesson 2. Lesson 5. Organic material breakdown and it's affect on the oxygen levels in an aquatic ecosystem Aim: Evaluate the relationship between oxygen levels and the amount of organic matter in an aquatic ecosystem. Explain the relationship between oxygen levels, bacteria and the breakdown of organic matter using an indicator solution. Activities: Put 5 ml of a different water sample in each tube with 20 drops of methylene blue. Observe the tubes after 1 month. Lesson 6. Visit to the biggest water treatment plant in

  2. Nanofiltration technology in water treatment and reuse: applications and costs.

    PubMed

    Shahmansouri, Arash; Bellona, Christopher

    2015-01-01

    Nanofiltration (NF) is a relatively recent development in membrane technology with characteristics that fall between ultrafiltration and reverse osmosis (RO). While RO membranes dominate the seawater desalination industry, NF is employed in a variety of water and wastewater treatment and industrial applications for the selective removal of ions and organic substances, as well as certain niche seawater desalination applications. The purpose of this study was to review the application of NF membranes in the water and wastewater industry including water softening and color removal, industrial wastewater treatment, water reuse, and desalination. Basic economic analyses were also performed to compare the profitability of using NF membranes over alternative processes. Although any detailed cost estimation is hampered by some uncertainty (e.g. applicability of estimation methods to large-scale systems, labor costs in different areas of the world), NF was found to be a cost-effective technology for certain investigated applications. The selection of NF over other treatment technologies, however, is dependent on several factors including pretreatment requirements, influent water quality, treatment facility capacity, and treatment goals. PMID:25714628

  3. SMALL DRINKING WATER TREATMENT TECHNOLOGIES FOR COMPLIANCE WITH THE ENHANCED SURFACE WATER TREATMENT RULES

    EPA Science Inventory

    According to FY2003 statistics compiled by the Office of Ground Water and Drinking Water, the U.S. regulates about 160,000 small drinking water systems that impact close to 70 million people. Small systems (serving transient and non-transient populations of 10,000 people or less...

  4. Innovative Treatment Technologies for Natural Waters and Wastewaters

    SciTech Connect

    Childress, Amy E.

    2011-07-01

    The research described in this report focused on the development of novel membrane contactor processes (in particular, forward osmosis (FO), pressure retarded osmosis (PRO), and membrane distillation (MD)) in low energy desalination and wastewater treatment applications and in renewable energy generation. FO and MD are recently gaining national and international attention as viable, economic alternatives for removal of both established and emerging contaminants from natural and process waters; PRO is gaining worldwide attention as a viable source of renewable energy. The interrelationship of energy and water are at the core of this study. Energy and water are inextricably bound; energy usage and production must be considered when evaluating any water treatment process for practical application. Both FO and MD offer the potential for substantial energy and resource savings over conventional treatment processes and PRO offers the potential for renewable energy or energy offsets in desalination. Combination of these novel technologies with each other, with existing technologies (e.g., reverse osmosis (RO)), and with existing renewable energy sources (e.g., salinity gradient solar ponds) may enable much less expensive water production and also potable water production in remote or distributed locations. Two inter-related projects were carried out in this investigation. One focused on membrane bioreactors for wastewater treatment and PRO for renewable energy generation; the other focused on MD driven by a salinity gradient solar pond.

  5. The future for electrocoagulation as a localised water treatment technology.

    PubMed

    Holt, Peter K; Barton, Geoffrey W; Mitchell, Cynthia A

    2005-04-01

    Electrocoagulation is an electrochemical method of treating polluted water whereby sacrificial anodes corrode to release active coagulant precursors (usually aluminium or iron cations) into solution. Accompanying electrolytic reactions evolve gas (usually as hydrogen bubbles) at the cathode. Electrocoagulation has a long history as a water treatment technology having been employed to remove a wide range of pollutants. However electrocoagulation has never become accepted as a 'mainstream' water treatment technology. The lack of a systematic approach to electrocoagulation reactor design/operation and the issue of electrode reliability (particularly passivation of the electrodes over time) have limited its implementation. However recent technical improvements combined with a growing need for small-scale decentralised water treatment facilities have led to a re-evaluation of electrocoagulation. Starting with a review of electrocoagulation reactor design/operation, this article examines and identifies a conceptual framework for electrocoagulation that focuses on the interactions between electrochemistry, coagulation and flotation. In addition detailed experimental data are provided from a batch reactor system removing suspended solids together with a mathematical analysis based on the 'white water' model for the dissolved air flotation process. Current density is identified as the key operational parameter influencing which pollutant removal mechanism dominates. The conclusion is drawn that electrocoagulation has a future as a decentralised water treatment technology. A conceptual framework is presented for future research directed towards a more mechanistic understanding of the process. PMID:15763088

  6. Development of an advanced water treatment system for wastewater reuse.

    PubMed

    Chung, H; Ku, B; Gregory, J

    2008-09-01

    The aim of this research was to develop an optimal reuse system applying various types of advanced oxidation processes such as titanium dioxide (TiO2), ozone (O3) and electro-coagulation/oxidation methods. This system is suitable for improving the treatment efficiency of difficult wastewaters, and for the efficient reuse of wastewater. The connecting systems were divided into various types to investigate the stability and treatment efficiency according to the kinds of waste load. Different treatment sequences were examined taking into consideration the characteristics and economical efficiency. In the case of electro-coagulation/oxidation + ozone system, the mean treatment efficiency in terms of BOD5, CODCr and SS removal was 98.7%. The effluent concentration was 50.2 mg l(-1), 38.3 mg l(-1), 30.4 mg l(-1), respectively. In considering the economical efficiency and commercial use, around an eighth of the treatment expenses and around a fifth of the maintenance expenses could be saved compared with existing water treatment systems. The initial construction expenses could be reduced by a third to a fifth. Therefore, if a proper implementation of this research is carried out in relation to site conditions and the purpose of the water reuse, the water reuse rate will be higher and water resources can be protected. PMID:18844120

  7. Novel Americium Treatment Process for Surface Water and Dust Suppression Water

    SciTech Connect

    Tiepel, E.W.; Pigeon, P.; Nesta, S.; Anderson, J.

    2006-07-01

    The Rocky Flats Environmental Technology Site (RFETS), a former nuclear weapons production plant, has been remediated under CERCLA and decommissioned to become a National Wildlife Refuge. The site conducted this cleanup effort under the Rocky Flats Cleanup Agreement (RFCA) that established limits for the discharge of surface and process waters from the site. At the end of 2004, while a number of process buildings were undergoing decommissioning, routine monitoring of a discharge pond (Pond A-4) containing approximately 28 million gallons of water was discovered to have been contaminated with a trace amount of Americium-241 (Am-241). While the amount of Am-241 in the pond waters was very low (0.5 - 0.7 pCi/l), it was above the established Colorado stream standard of 0.15 pCi/l for release to off site drainage waters. The rapid successful treatment of these waters to the regulatory limit was important to the site for two reasons. The first was that the pond was approaching its hold-up limit. Without rapid treatment and release of the Pond A-4 water, typical spring run-off would require water management actions to other drainages onsite or a mass shuttling of water for disposal. The second reason was that this type of contaminated water had not been treated to the stringent stream standard at Rocky Flats before. Technical challenges in treatment could translate to impacts on water and secondary waste management, and ultimately, cost impacts. All of the technical challenges and specific site criteria led to the conclusion that a different approach to the treatment of this problem was necessary and a crash treatability program to identify applicable treatment techniques was undertaken. The goal of this program was to develop treatment options that could be implemented very quickly and would result in the generation of no high volume secondary waste that would be costly to dispose. A novel chemical treatment system was developed and implemented at the RFETS to treat Am

  8. Microbial Characterization of Biological Filters Used for Drinking Water Treatment

    PubMed Central

    Moll, Deborah M.; Summers, R. Scott; Breen, Alec

    1998-01-01

    The impact of preozonation and filter contact time (depth) on microbial communities was examined in drinking water biofilters treating Ohio River water which had undergone conventional treatment (coagulation, flocculation, sedimentation) or solutions of natural organic matter isolated from groundwater (both ozonated and nonozonated). With respect to filter depth, compared to filters treating nonozonated waters, preozonation of treated water led to greater differences in community phospholipid fatty acid (PLFA) profiles, utilization of sole carbon sources (Biolog), and arbitrarily primed PCR fingerprints. PLFA profiles indicated that there was a shift toward anaerobic bacteria in the communities found in the filter treating ozonated water compared to the communities found in the filter treating nonozonated settled water, which had a greater abundance of eukaryotic markers. PMID:9647864

  9. Prototype spectral analysis of water samples for monitoring and treatment of public water resources

    NASA Astrophysics Data System (ADS)

    Lambrakos, S. G.; Lee, M.; Yapijakis, C.; Ramsey, L. S.; Huang, L.; Shabaev, A.; Massa, L.

    2014-06-01

    Experimental measurements conducted in the laboratory, involving hyperspectral analysis of water samples taken from public water resources in the New York City metro area, have motivated a reevaluation of issues concerning the potential application of this type of analysis for water monitoring, treatment and evaluation prior to filtration. One issue concerns hyperspectral monitoring of contaminants with respect to types and relative concentrations. This implies a need for better understanding the statistical profiles of water contaminants in terms of spatial-temporal distributions of electromagnetic absorption spectra ranging from the ultraviolet to infrared, which are associated with specific water resources. This issue also implies the need for establishing correlations between hyperspectral signatures and types of contaminants to be found within specific water resources. Another issue concerns the use of absorption spectra for determining changes in chemical and physical characteristics of contaminants after application of water treatments in order to determine levels of toxicity with respect to the environment.

  10. Water: from the source to the treatment plan

    NASA Astrophysics Data System (ADS)

    Baude, I.; Marquet, V.

    2012-04-01

    Isabelle BAUDE isa.baude@free.fr Lycee français de Vienne Liechtensteinstrasse 37AVienna As a physics and chemistry teacher, I have worked on water from the source to the treatment plant with 27 pupils between 14 and 15 years old enrolled in the option "Science and laboratory". The objectives of this option are to interest students in science, to introduce them to practical methods of laboratory analyses, and let them use computer technology. Teaching takes place every two weeks and lasts 1.5 hours. The theme of water is a common project with the biology and geology teacher, Mrs. Virginie Marquet. Lesson 1: Introduction: The water in Vienna The pupils have to consider why the water is so important in Vienna (history, economy etc.) and where tap water comes from. Activities: Brainstorming about where and why we use water every day and why the water is different in Vienna. Lesson 2: Objectives of the session: What are the differences between mineral waters? Activities: Compare water from different origins (France: Evian, Vittel, Contrex. Austria: Vöslauer, Juvina, Gasteiner and tap water from Vienna) by tasting and finding the main ions they contain. Testing ions: Calcium, magnesium, sulphate, chloride, sodium, and potassium Lesson 3: Objectives of the session: Build a hydrometer Activities: Producing a range of calibration solutions, build and calibrate the hydrometer with different salt-water solutions. Measure the density of the Dead Sea's water and other mineral waters. Lesson 4: Objectives of the session: How does a fountain work? Activities: Construction of a fountain as Heron of Alexandria with simple equipment and try to understand the hydrostatic principles. Lesson 5: Objectives of the session: Study of the physical processes of water treatment (decantation, filtration, screening) Activities: Build a natural filter with sand, stone, carbon, and cotton wool. Retrieve the filtered water to test it during lesson 7. Lesson 6: Visit of the biggest treatment

  11. A parametric study of alum recovery from water treatment sludge.

    PubMed

    Ayoub, Mohamed; Abdelfattah, Abdallah

    2016-01-01

    Alum recovery from water treatment sludge is a promising technique applied to decrease usage of fresh coagulants in the water treatment industry. In addition, alum recovery reduces sludge volume for easy handling. The undertaken work investigated the parametric conditions for alum recovery procedure by acidification. The results show that alum recovery reaches up to 69.03%, and the reduction of sludge volume reaches its highest level at 90%. Moreover, results of the parametric investigation reveal that the mixing time of 60 minutes and mixing intensity of 150 rpm are the optimum conditions of mixing for alum recovery from water treatment sludge. The optimum pH level is 1.50 for alum recovery as indicated by maximum aluminum releasing, maximum reduction of sludge volume, and reasonable dosages of added sulfuric acid. PMID:27438258

  12. Minireview: the health implications of water treatment with ozone

    SciTech Connect

    Carmichael, N.G.; Winder, C.; Borges, S.H.; Backhouse, B.L.; Lewis, P.D.

    1982-01-11

    Ozone is a highly efficient disinfectant which may have significant advantages in water treatment compared to chlorine. It has, however, been shown that mutagenic and possibly carcinogenic byproducts may be produced under certain conditions of ozonation. Light chlorination following ozonization may meet the highest standards of disinfection. In addition the destruction of much of the organic matter by prior ozone treatment may well result in less harmful chlorinated and brominated products in the finished water. In many cases ozone treatment alone may suffice. It would be desirable to test with long term in vivo experiments which of the alternatives produces the best combination of microbiologically clean and pleasant water with minimum mutagenic and carcinogenic effect.

  13. Large area radiation source for water and wastewater treatment

    NASA Astrophysics Data System (ADS)

    Mueller, Michael T.; Lee, Seungwoo; Kloba, Anthony; Hellmer, Ronald; Kumar, Nalin; Eaton, Mark; Rambo, Charlotte; Pillai, Suresh

    2011-06-01

    There is a strong desire for processes that improve the safety of water supplies and that minimize disinfection byproducts. Stellarray is developing mercury-free next-generation x-ray and UV-C radiation sources in flat-panel and pipe form factors for water and wastewater treatment applications. These new radiation sources are designed to sterilize sludge and effluent, and to enable new treatment approaches to emerging environmental concerns such as the accumulation of estrogenic compounds in water. Our UV-C source, based on cathodoluminescent technology, differs significantly from traditional disinfection approaches using mercury arc lamps or UV LEDs. Our sources accelerate electrons across a vacuum gap, converting their energy into UV-C when striking a phosphor, or x-rays when striking a metallic anode target. Stellarray's large area radiation sources for wastewater treatment allow matching of the radiation source area to the sterilization target area for maximum coverage and improved efficiency.

  14. An opacity-sampled treatment of water vapor

    NASA Technical Reports Server (NTRS)

    Alexander, David R.; Augason, Gordon C.; Johnson, Hollis R.

    1989-01-01

    Although the bands of H2O are strong in the spectra of cool stars and calculations have repeatedly demonstrated their significance as opacity sources, only approximate opacities are currently available, due both to the difficulty of accounting for the millions of lines involved and to the inadequacy of laboratory and theoretical data. To overcome these obstacles, a new treatment is presented, based upon a statistical representation of the water vapor spectrum derived from available laboratory data. This statistical spectrum of water vapor employs an exponential distribution of line strengths and random positions of lines whose overall properties are forced to reproduce the mean opacities observed in the laboratory. The resultant data set is then treated by the opacity-sampling method exactly as are all other lines, both molecular and atomic. Significant differences are found between the results of this improved treatment and the results obtained with previous treatments of water-vapor opacity.

  15. Is hot water immersion an effective treatment for marine envenomation?

    PubMed Central

    Atkinson, P R T; Boyle, A; Hartin, D; McAuley, D

    2006-01-01

    Envenomation by marine creatures is common. As more people dive and snorkel for leisure, the incidence of envenomation injuries presenting to emergency departments has increased. Although most serious envenomations occur in the temperate or tropical waters of the Indo‐Pacific region, North American and European waters also provide a habitat for many stinging creatures. Marine envenomations can be classified as either surface stings or puncture wounds. Antivenom is available for a limited number of specific marine creatures. Various other treatments such as vinegar, fig juice, boiled cactus, heated stones, hot urine, hot water, and ice have been proposed, although many have little scientific basis. The use of heat therapies, previously reserved for penetrating fish spine injuries, has been suggested as treatment for an increasing variety of marine envenomation. This paper reviews the evidence for the effectiveness of hot water immersion (HWI) and other heat therapies in the management of patients presenting with pain due to marine envenomation. PMID:16794088

  16. Croatian refiner meets waste water treatment standards, reduces fines

    SciTech Connect

    Meier, A.L.; Nikolic, O.

    1995-11-27

    A new approach to waste water treatment at a refinery in Croatia produces effluent that not only meets the region`s regulations for disposal into the Adriatic Sea, but also surpasses the refinery`s specifications for recycling process water. Key to the dramatic reduction in pollutants was the installation of a Sandfloat unit developed by Krofta Engineering Corp. The Sandfloat unit is a dissolved air flotation clarifier that combines flocculation, flotation, and multilayer filtration to produce high-quality effluent. In fact, the effluent from the unit has a lower hydrocarbon concentration than water from the underground wells that supply process water to the refinery. While similar systems have been used for decades in industrial applications, this is the first time a Sandfloat unit has been installed in an oil refinery. The article describes the problem, refinery operations, treatment costs, and effluent recycling.

  17. Guide to land treatment of municipal waste water in Illinois

    SciTech Connect

    Skelton, L.W.; Hinesly, T.D.; John, S.F.

    1989-01-01

    Waste water is a recyclable commodity. Organic matter, nitrogen, phosphorus, and micronutrients in waste water are generally harmful when discharged to lakes and streams, but these constituents have a positive economic value when applied under properly controlled conditions to vegetated soils. The guide provides an overview of planning for a land-treatment system. It first discusses the potential for land treatment in Illinois, how to modify lagoons for land treatment, economic considerations, health and environmental concerns, regulatory requirements, and public education. It then provides more technical information on land-treatment processes, site and waste-load evaluation, systems for agricultural production, the potential for supplemental irrigation in Illinois, general site management, and system monitoring.

  18. Apparatus and a method for biological treatment of waste waters

    SciTech Connect

    Besik, F.

    1983-12-20

    An apparatus and a method for biological treatment of waste waters achieving biological oxidation of organic matter, biological nitrification and denitrification of nitrogenous compounds and biological removal of phosphorus and clarification of the treated waste water in a single reaction tank in a single suspended growth sludge system without the use of traditional compressors, mixers, recirculation pumps, piping and valving and without the use of the traditional clarifier.

  19. Enhanced drinking water supply through harvested rainwater treatment

    NASA Astrophysics Data System (ADS)

    Naddeo, Vincenzo; Scannapieco, Davide; Belgiorno, Vincenzo

    2013-08-01

    Decentralized drinking water systems represent an important element in the process of achieving the Millennium Development Goals, as centralized systems are often inefficient or nonexistent in developing countries. In those countries, most water quality related problems are due to hygiene factors and pathogens. A potential solution might include decentralized systems, which might rely on thermal and/or UV disinfection methods as well as physical and chemical treatments to provide drinking water from rainwater. For application in developing countries, decentralized systems major constraints include low cost, ease of use, environmental sustainability, reduced maintenance and independence from energy sources. This work focuses on an innovative decentralized system that can be used to collect and treat rainwater for potable use (drinking and cooking purposes) of a single household, or a small community. The experimented treatment system combines in one compact unit a Filtration process with an adsorption step on GAC and a UV disinfection phase in an innovative design (FAD - Filtration Adsorption Disinfection). All tests have been carried out using a full scale FAD treatment unit. The efficiency of FAD technology has been discussed in terms of pH, turbidity, COD, TOC, DOC, Escherichia coli and Total coliforms. FAD technology is attractive since it provides a total barrier for pathogens and organic contaminants, and reduces turbidity, thus increasing the overall quality of the water. The FAD unit costs are low, especially if compared to other water treatment technologies and could become a viable option for developing countries.

  20. Quorum sensing in water and wastewater treatment biofilms.

    PubMed

    Feng, Lin; Wu, Zhuoying; Yu, Xin

    2013-04-01

    Fixed film processes and activated sludge processes are two main families of wastewater treatment systems which all refer to the heterogeneous microbial communities. Meanwhile, biofilms in drinking water distribution systems (DWDS) and biofouling in membrane systems are significant problems in the water and wastewater treatment which reduce the microbial quality of drinking water and limit the development of membrane system respectively. Since biofilms and quorum sensing (QS) as two microbial social behaviors have been inextricably linked, a number of studies have focused on the role of QS signaling and QS inhibition in the processes of water and wastewater treatment, which will help us engineer these biological treatment processes successfully and develop promising approaches for control of microbial adhesion, colonization and biofilm formation. This review gives a summary of recent known QS mechanisms and their role in biofilm formation for different species. Particular attentions are dedicated to the signaling molecules involved in some microbial granulation processes and the potential applications by some of their natural and synthetic analogues in the treatment of membrane biofouling. PMID:24620615

  1. Removal of antibiotics from surface and distilled water in conventional water treatment processes

    USGS Publications Warehouse

    Adams, C.; Wang, Y.; Loftin, K.; Meyer, M.

    2002-01-01

    Conventional drinking water treatment processes were evaluated under typical water treatment plant conditions to determine their effectiveness in the removal of seven common antibiotics: carbadox, sulfachlorpyridazine, sulfadimethoxine, sulfamerazine, sulfamethazine, sulfathiazole, and trimethoprim. Experiments were conducted using synthetic solutions prepared by spiking both distilled/ deionized water and Missouri River water with the studied compounds. Sorption on Calgon WPH powdered activated carbon, reverse osmosis, and oxidation with chlorine and ozone under typical plant conditions were all shown to be effective in removing the studied antibiotics. Conversely, coagulation/flocculation/sedimentation with alum and iron salts, excess lime/soda ash softening, ultraviolet irradiation at disinfection dosages, and ion exchange were all relatively ineffective methods of antibiotic removal. This study shows that the studied antibiotics could be effectively removed using processes already in use many water treatment plants. Additional work is needed on by-product formation and the removal of other classes of antibiotics.

  2. Laboratory study of electro-coagulation-flotation for water treatment.

    PubMed

    Jiang, Jia-Qian; Graham, Nigel; André, Cecile; Kelsall, Geoff H; Brandon, Nigel

    2002-09-01

    An electro-coagulation-flotation process has been developed for water treatment. This involved an electrolytic reactor with aluminium electrodes and a separation/flotation tank. The water to be treated passed through the reactor and was subjected to coagulation/flotation, by Al(III) ions dissolved from the electrodes, the resulting flocs floating after being captured by hydrogen gas bubbles generated at cathode surfaces. Apparent current efficiencies for Al dissolution as aqueous Al(III) species at pH 6.5 and 7.8 were greater than unity. This was due to additional reactions occurring in parallel with Al dissolution: oxygen reduction at anodes and cathodes, and hydrogen evolution at cathodes, resulting in net (i.e. oxidation + reduction) currents at both anodes and cathodes. The specific electrical energy consumption of the reactor for drinking water treatment was as low as 20 kWh (kg Al)(-1) for current densities of 10-20A m(-2). The water treatment performance of the electrocoagulation process was found to be superior to that of conventional coagulation with aluminium sulphate for treating a model-coloured water, with 20% more dissolved organic carbon (DOC) being removed for the same Al(III) dose. However, for a lowland surface water sample, the two processes achieved a similar performance for DOC and UV-absorbance removal. In addition, an up-flow electrocoagulator configuration performed better than a horizontal flow configuration, with both bipolar and monopolar electrodes. PMID:12405415

  3. Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse.

    PubMed

    Qu, Xiaolei; Brame, Jonathon; Li, Qilin; Alvarez, Pedro J J

    2013-03-19

    Ensuring reliable access to clean and affordable water is one of the greatest global challenges of this century. As the world's population increases, water pollution becomes more complex and difficult to remove, and global climate change threatens to exacerbate water scarcity in many areas, the magnitude of this challenge is rapidly increasing. Wastewater reuse is becoming a common necessity, even as a source of potable water, but our separate wastewater collection and water supply systems are not designed to accommodate this pressing need. Furthermore, the aging centralized water and wastewater infrastructure in the developed world faces growing demands to produce higher quality water using less energy and with lower treatment costs. In addition, it is impractical to establish such massive systems in developing regions that currently lack water and wastewater infrastructure. These challenges underscore the need for technological innovation to transform the way we treat, distribute, use, and reuse water toward a distributed, differential water treatment and reuse paradigm (i.e., treat water and wastewater locally only to the required level dictated by the intended use). Nanotechnology offers opportunities to develop next-generation water supply systems. This Account reviews promising nanotechnology-enabled water treatment processes and provides a broad view on how they could transform our water supply and wastewater treatment systems. The extraordinary properties of nanomaterials, such as high surface area, photosensitivity, catalytic and antimicrobial activity, electrochemical, optical, and magnetic properties, and tunable pore size and surface chemistry, provide useful features for many applications. These applications include sensors for water quality monitoring, specialty adsorbents, solar disinfection/decontamination, and high performance membranes. More importantly, the modular, multifunctional and high-efficiency processes enabled by nanotechnology provide a

  4. Water drinking as a treatment for orthostatic syndromes

    NASA Technical Reports Server (NTRS)

    Shannon, John R.; Diedrich, Andre; Biaggioni, Italo; Tank, Jens; Robertson, Rose Marie; Robertson, David; Jordan, Jens

    2002-01-01

    PURPOSE: Water drinking increases blood pressure in a substantial proportion of patients who have severe orthostatic hypotension due to autonomic failure. We tested the hypothesis that water drinking can be used as a practical treatment for patients with orthostatic and postprandial hypotension, as well as those with orthostatic tachycardia. SUBJECTS AND METHODS: We studied the effect of drinking water on seated and standing blood pressure and heart rate in 11 patients who had severe orthostatic hypotension due to autonomic failure and in 9 patients who had orthostatic tachycardia due to idiopathic orthostatic intolerance. We also tested the effect of water drinking on postprandial hypotension in 7 patients who had autonomic failure. Patients drank 480 mL of tap water at room temperature in less than 5 minutes. RESULTS: In patients with autonomic failure, mean (+/- SD) blood pressure after 1 minute of standing was 83 +/- 6/53 +/- 3.4 mm Hg at baseline, which increased to 114 +/- 30/66 +/- 18 mm Hg (P <0.01) 35 minutes after drinking. After a meal, blood pressure decreased by 43 +/- 36/20 +/- 13 mm Hg without water drinking, compared with 22 +/- 10/12 +/- 5 mm Hg with drinking (P <0.001). In patients with idiopathic orthostatic intolerance, water drinking attenuated orthostatic tachycardia (123 +/- 23 beats per minute) at baseline to 108 +/- 21 beats per minute after water drinking ( P <0.001). CONCLUSION: Water drinking elicits a rapid pressor response in patients with autonomic failure and can be used to treat orthostatic and postprandial hypotension. Water drinking moderately reduces orthostatic tachycardia in patients with idiopathic orthostatic intolerance. Thus, water drinking may serve as an adjunctive treatment in patients with impaired orthostatic tolerance.

  5. Evaluation of Current Water Treatment and Distribution System Optimization to Provide Safe Drinking Water from Various Source Water Types and Conditions (Deliverable 5.2.C.1)

    EPA Science Inventory

    Increasingly, drinking water treatment plants (DWTPs) are being challenged by changes in the quality of their source waters and by their aging treatment and distribution system infrastructure. Individually or in combination, factors such as shrinking water and financial resources...

  6. Treatment of tunnel wash water and implications for its disposal.

    PubMed

    Hallberg, M; Renman, G; Byman, L; Svenstam, G; Norling, M

    2014-01-01

    The use of road tunnels in urban areas creates water pollution problems, since the tunnels must be frequently cleaned for traffic safety reasons. The washing generates extensive volumes of highly polluted water, for example, more than fivefold higher concentrations of suspended solids compared to highway runoff. The pollutants in the wash water have an affinity for particulate material, so sedimentation should be a viable treatment option. In this study, 12 in situ sedimentation trials were carried out on tunnel wash water, with and without addition of chemical flocculent. Initial suspended solids concentration ranged from 804 to 9,690 mg/L. With sedimentation times of less than 24 hours and use of a chemical flocculent, it was possible to reach low concentrations of suspended solids (<15 mg/L), PAH (<0.1 μg/L), As (<1.0 μg/L), Cd (<0.05 μg/L), Hg (<0.02 μg/L), Fe (<200 μg/L), Ni (<8 μg/L), Pb (<0.5 μg/L), Zn (<60 μg/L) and Cr (<8 μg/L). Acute Microtox(®) toxicity, mainly attributed to detergents used for the tunnel wash, decreased significantly at low suspended solids concentrations after sedimentation using a flocculent. The tunnel wash water did not inhibit nitrification. The treated water should be suitable for discharge into recipient waters or a wastewater treatment plant. PMID:24845317

  7. REMOVAL OF ARSENIC IN DRINKING WATER: ARS CFU-50 APC ELECTROFLOCCULATION AND FILTRATION WATER TREATMENT SYSTEM

    EPA Science Inventory

    ETV testing of the ARS CFU-50 APC Electroflocculation and Filtration Water Treatment System (ARS CFU-50 APC) for arsenic removal was conducted at the Town of Bernalillo Well #3 site from April 18 through May 2, 2006. The source water was chlorinated groundwater from two supply w...

  8. WATER FACTORY 21: RECLAIMED WATER, VOLATILE ORGANICS, VIRUS, AND TREATMENT PERFORMANCE

    EPA Science Inventory

    This report describes the performance of Water Factory 21, a 0.66 cu m/s advanced wastewater treatment plant designed to reclaim secondary effluent from a municipal wastewater treatment plant so that it can be used for injection and recharge of a groundwater system. Included in t...

  9. Waste Water Management and Infectious Disease. Part II: Impact of Waste Water Treatment

    ERIC Educational Resources Information Center

    Cooper, Robert C.

    1975-01-01

    The ability of various treatment processes, such as oxidation ponds, chemical coagulation and filtration, and the soil mantle, to remove the agents of infectious disease found in waste water is discussed. The literature concerning the efficiency of removal of these organisms by various treatment processes is reviewed. (BT)

  10. Problems of drinking water treatment along Ismailia Canal Province, Egypt*

    PubMed Central

    Geriesh, Mohamed H.; Balke, Klaus-Dieter; El-Rayes, Ahmed E.

    2008-01-01

    The present drinking water purification system in Egypt uses surface water as a raw water supply without a preliminary filtration process. On the other hand, chlorine gas is added as a disinfectant agent in two steps, pre- and post-chlorination. Due to these reasons most of water treatment plants suffer low filtering effectiveness and produce the trihalomethane (THM) species as a chlorination by-product. The Ismailia Canal represents the most distal downstream of the main Nile River. Thus its water contains all the proceeded pollutants discharged into the Nile. In addition, the downstream reaches of the canal act as an agricultural drain during the closing period of the High Dam gates in January and February every year. Moreover, the wide industrial zone along the upstream course of the canal enriches the canal water with high concentrations of heavy metals. The obtained results indicate that the canal gains up to 24.06×106 m3 of water from the surrounding shallow aquifer during the closing period of the High Dam gates, while during the rest of the year, the canal acts as an influent stream losing about 99.6×106 m3 of its water budget. The reduction of total organic carbon (TOC) and suspended particulate matters (SPMs) should be one of the central goals of any treatment plan to avoid the disinfectants by-products. The combination of sedimentation basins, gravel pre-filtration and slow sand filtration, and underground passage with microbiological oxidation-reduction and adsorption criteria showed good removal of parasites and bacteria and complete elimination of TOC, SPM and heavy metals. Moreover, it reduces the use of disinfectants chemicals and lowers the treatment costs. However, this purification system under the arid climate prevailing in Egypt should be tested and modified prior to application. PMID:18357626

  11. [Water treatment systems of hemodialysis centers in Lithuania and trace metals in purified water in 2002].

    PubMed

    Skarupskiene, Inga; Kuzminskis, Vytautas; Abdrachmanovas, Olegas; Ryselis, Stanislovas; Smalinskiene, Alina; Naginiene, Rima

    2003-01-01

    The objective of this survey was to obtain information on hemodialysis chemical water quality and on water treatment systems of hemodialysis centers in Lithuania. Five trace metals (Al, Pb, Cd, Zn, Cu) were examined in the purified water (sample from a point after the water treatment system) of 28 hemodialysis centers. Atomic absorption spectrophotometry was applied to measure water trace metals levels. All hemodialysis centers in Lithuania used treated water. Softeners were used by 100%, reverse osmosis by 86.2% of the centers. Concomitant use of sand filter, softeners, activated carbon, reverse osmosis was found in 72.4% of the centers. The age of the water treatment system varied from 1 to 117 months (mean=39.7+/-30.4). Concentrations of Al, Pb, Cd, Zn, Cu in the purified water of 28 hemodialysis centers did not exceed standards of the European Pharmacopoeia. There was significant decrease in the mean levels of investigated trace elements in the treated water in Lithuania in 2002 compared with examined in 1998. PMID:12761429

  12. An Analysis of the Waste Water Treatment Operator Occupation.

    ERIC Educational Resources Information Center

    Clark, Anthony B.; And Others

    The occupational analysis contains a brief job description for the waste water treatment occupations of operator and maintenance mechanic and 13 detailed task statements which specify job duties (tools, equipment, materials, objects acted upon, performance knowledge, safety considerations/hazards, decisions, cues, and errors) and learning skills…

  13. An Analysis of the Waste Water Treatment Maintenance Mechanic Occupation.

    ERIC Educational Resources Information Center

    Clark, Anthony B.; And Others

    The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the waste water treatment mechanics occupation. The document opens with a brief introduction followed by a job description. The bulk of the document is presented in table form. Twelve duties are broken…

  14. USE OF FERRATE IN SMALL DRINKING WATER TREATMENT SYSTEMS

    EPA Science Inventory

    The proposed project will result in a document providing guidance for the beneficial use of ferrate in small systems. We will highlight the ways it can be used to improve water quality, lower cost and provide a more sustainable treatment alternative to other technologies. W...

  15. 7. VIEW OF WATER TREATMENT PLANT, ADJACENT TO THE COAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF WATER TREATMENT PLANT, ADJACENT TO THE COAL CONVEYOR; IN THE DISTANCE IS THE FREQUENCY CHANGER HOUSE, WHICH IS ATTACHED TO SWITCH HOUSE NO. 1; LOOKING WEST. - Commonwealth Electric Company, Fisk Street Electrical Generating Station, 1111 West Cermak Avenue, Chicago, Cook County, IL

  16. Treatment of RO brine-towards sustainable water reclamation practice.

    PubMed

    Ng, H Y; Lee, L Y; Ong, S L; Tao, G; Viawanath, B; Kekre, K; Lay, W; Seah, H

    2008-01-01

    Treatment and disposal of RO brine is an important part in sustaining the water reclamation practice. RO brine generated from water reclamation contains high concentration of organic and inorganic compounds. Cost-effective technologies for treatment of RO brine are still relatively unexplored. Thus, this study aim to determine a feasible treatment process for removal of both organic and inorganic compounds in RO brine generated from NEWater production. The proposed treatment consists of biological activated carbon (BAC) column followed by capacitive deionization (CDI) process for organic and inorganic removals, respectively. Preliminary bench-scale study demonstrated about 20% TOC removal efficiency was achieved using BAC at 40 mins empty bed contact time (EBCT) while the CDI process was able to remove more than 90% conductivity reducing it from 2.19 mS/cm to only about 164 microS/cm. More than 90% cations and anions in the BAC effluent were removed using CDI process. In addition, TOC and TN removals of 78% and 91%, respectively were also attained through this process. About 90% water recovery was achieved. This process shows the potential of increased water recovery in the reclamation process while volume for disposal can be further minimized. Further studies on the sustainable operation and process optimization are ongoing. PMID:18776632

  17. ORGANOPHOSPHATE PESTICIDE DEGRADATION UNDER DRINKING WATER TREATMENT CONDITIONS

    EPA Science Inventory

    Chlorpyrifos (CP) was used as a model compound to develop experimental methods and prototype modeling tools to forecast the fate of organophosphate (OP) pesticides under drinking water treatment conditions. CP was found to rapidly oxidize to chlorpyrifos oxon (CPO) in the presen...

  18. Bacterial Diversity in a Mine Water Treatment Plant▿ †

    PubMed Central

    Heinzel, Elke; Hedrich, Sabrina; Janneck, Eberhard; Glombitza, Franz; Seifert, Jana; Schlömann, Michael

    2009-01-01

    We investigated the microbial community in a pilot plant for treatment of acid mine water by biological ferrous iron oxidation using clone library analysis and calculated statistical parameters for further characterization. The microbial community in the plant was conspicuously dominated by a group of Betaproteobacteria affiliated with “Ferribacter polymyxa”. PMID:19047391

  19. 49. LOOKING NORTH AT EVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. LOOKING NORTH AT EVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS, WITH BLOW ENGINE HOUSE No. 3 ON RIGHT, AND FILTER CAKE HOUSE IN FOREGROUND. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  20. REVERSE OSMOSIS FIELD TEST: TREATMENT OF WATTS NICKEL RINSE WATERS

    EPA Science Inventory

    A field test was conducted to determine the feasibility of using a polyamide reverse-osmosis membrane in hollow fine fiber configuration for closed-loop treatment of rinse water from a Watts-type nickel bath. Performance of the membrane module was determined by measuring the prod...

  1. Impact of Arsenic Treatment Techniques on Distribution Water Quality

    EPA Science Inventory

    This presentation will summarize the results of the distribution water quality studies (arsenic, lead, and copper) of the demonstration program. The impact of the treatment systems by type of system (adsorptive media, coagulation/filtration, ion exchange, etc) will be shown by co...

  2. WATER TREATMENT PROJECT: OBSERVATIONS ON USE OF GAC IN PRACTICE

    EPA Science Inventory

    The objectives of this project were: (1) to determine if granular activated carbon (GAC) adsorption beds applied in water treatment practice slough-off organic materials during the spring warm-up and (2) to evaluate the feasibility of the dilute or low-level COD procedure for the...

  3. COMPUTER ASSISTED PRELIMINARY DESIGN FOR DRINKING WATER TREATMENT PROCESS SYSTEMS

    EPA Science Inventory

    The purpose of the study was to develop an interactive computer program to aid the design engineer in evaluating the performance and cost for any proposed drinking water treatment system consisting of individual unit processes. The 25 unit process models currently in the program ...

  4. Fetal loss and work in a waste water treatment plant

    SciTech Connect

    Morgan, R.W.; Kheifets, L.; Obrinsky, D.L.; Whorton, M.D.; Foliart, D.E.

    1984-05-01

    We investigated pregnancy outcomes in 101 wives of workers employed in a waste water treatment plant (WWTP), and verified fetal losses by hospital records. Paternal work histories were compiled and each of the 210 pregnancies was assigned a paternal exposure category. The relative risk of fetal loss was increased when paternal exposure to the WWTP occurred around the time of conception.

  5. Treatment for hydrazine-containing waste water solution

    NASA Technical Reports Server (NTRS)

    Yade, N.

    1986-01-01

    The treatment for waste solutions containing hydrazine is presented. The invention attempts oxidation and decomposition of hydrazine in waste water in a simple and effective processing. The method adds activated charcoal to waste solutions containing hydrazine while maintaining a pH value higher than 8, and adding iron salts if necessary. Then, the solution is aerated.

  6. EVALUATING A COMPOSITE CARTRIDGE FOR SMALL SYSTEM DRINKING WATER TREATMENT

    EPA Science Inventory

    A multi-layer, cartridge-based system that combines physical filtration with carbon adsorption and ultraviolet (UV) light disinfection has been developed to perform as a water treatment security device to protect homes against accidental or intentional contaminant events. A seri...

  7. POU/POE TREATMENT OF ARSENIC IN GROUND WATER

    EPA Science Inventory

    Point-of-use/Point-of-entry (POU/POE) arsenic removal systems were installed in seventeen homes that were found to have high levels of arsenic (50-480ug/L) in their well water. This presetation will describe the process and the problems encountered in selecting the treatment syst...

  8. Selenium-Water Treatment Residual Adsorption And Characterization

    EPA Science Inventory

    Aluminum-based water treatment residuals (WTR) have the ability to adsorb tremendous quantities of soil-borne P, and have been shown to adsorb other anions, such as As (V), As (III), and ClO4-. Environmental issues associated with Se in the Western US led us to study W...

  9. Emissions from Produced Water Treatment Ponds, Uintah Basin, Utah, USA

    NASA Astrophysics Data System (ADS)

    Mansfield, M. L.; Lyman, S. N.; Tran, H.; O'Neil, T.; Anderson, R.

    2015-12-01

    An aqueous phase, known as "produced water," usually accompanies the hydrocarbon fluid phases that are extracted from Earth's crust during oil and natural gas extraction. Produced water contains dissolved and suspended organics and other contaminants and hence cannot be discharged directly into the hydrosphere. One common disposal method is to discharge produced water into open-pit evaporation ponds. Spent hydraulic fracturing fluids are also often discharged into the same ponds. It is obvious to anyone with a healthy olfactory system that such ponds emit volatile organics to the atmosphere, but very little work has been done to characterize such emissions. Because oil, gas, and water phases are often in contact in geologic formations, we can expect that more highly soluble compounds (e.g., salts, alcohols, carbonyls, carboxyls, BTEX, etc.) partition preferentially into produced water. However, as the water in the ponds age, many physical, chemical, and biological processes alter the composition of the water, and therefore the composition and strength of volatile organic emissions. For example, some ponds are aerated to hasten evaporation, which also promotes oxidation of organics dissolved in the water. Some ponds are treated with microbes to promote bio-oxidation. In other words, emissions from ponds are expected to be a complex function of the composition of the water as it first enters the pond, and also of the age of the water and of its treatment history. We have conducted many measurements of emissions from produced water ponds in the Uintah Basin of eastern Utah, both by flux chamber and by evacuated canister sampling with inverse modeling. These measurements include fluxes of CO2, CH4, methanol, and many other volatile organic gases. We have also measured chemical compositions and microbial content of water in the ponds. Results of these measurements will be reported.

  10. Assessment of didecyldimethylammonium chloride as a ballast water treatment method.

    PubMed

    van Slooten, Cees; Peperzak, Louis; Buma, Anita G J

    2015-01-01

    Ballast water-mediated transfer of aquatic invasive species is considered a major threat to marine biodiversity, marine industry and human health. A ballast water treatment is needed to comply with International Maritime Organization (IMO) ballast water discharge regulations. Didecyldimethylammonium chloride (DDAC) was tested for its applicability as a ballast water treatment method. The treatment of the marine phytoplankton species Tetraselmis suecica, Isochrysis galbana and Chaetoceros calcitrans showed that at 2.5 µL L(-1) DDAC was able to inactivate photosystem II (PSII) efficiency and disintegrate the cells after 5 days of dark incubation. The treatment of natural marine plankton communities with 2.5 µL L(-1) DDAC did not sufficiently decrease zooplankton abundance to comply with the IMO D-2 standard. Bivalve larvae showed the highest resistance to DDAC. PSII efficiency was inactivated within 5 days but phytoplankton cells remained intact. Regrowth occurred within 2 days of incubation in the light. However, untreated phytoplankton exposed to residual DDAC showed delayed cell growth and reduced PSII efficiency, indicating residual DDAC toxicity. Natural marine plankton communities treated with 5 µL L(-1) DDAC showed sufficient disinfection of zooplankton and inactivation of PSII efficiency. Phytoplankton regrowth was not detected after 9 days of light incubation. Bacteria were initially reduced due to the DDAC treatment but regrowth was observed within 5 days of dark incubation. Residual DDAC remained too high after 5 days to be safely discharged. Two neutralization cycles of 50 mg L(-1) bentonite were needed to inactivate residual DDAC upon discharge. The inactivation of residual DDAC may seriously hamper the practical use of DDAC as a ballast water disinfectant. PMID:25182049

  11. Characterization of water treatment sludge and its reuse as coagulant.

    PubMed

    Ahmad, Tarique; Ahmad, Kafeel; Ahad, Abdul; Alam, Mehtab

    2016-11-01

    Coagulation-flocculation process results in the generation of large volume of waste or residue, known as water treatment sludge (WTS), in the purification of surface water for potable supplies. Sustainable management of the inevitable waste requires careful attention from the plant operators and sludge managers. In this study, WTS produced with the optimum alum dose of 30 ml/L at the laboratory scale has been treated with sulphuric acid to bring forth a product known as sludge reagent product (SRP). The performance of SRP is evaluated for its efficiency in removing the colloidal suspensions from the Yamuna river water over wide pH range of 2-13. 1% sludge acidified with sulphuric acid of normality 2.5 at the rate of 0.05 ml/ml sludge has been observed as the optimum condition for preparing SRP from WTS. The percentage turbidity removal is greater at higher pH value and increases with increasing the dosage of SRP. The optimum SRP dosage of 8 ml/L in the pH range of 6-8 performed well in removing the colloidal suspension and other impurities from the Yamuna water. The quality of treated water met the prescribed standards for most of the quality parameters. Thus, SRP has the potential to substitute the conventional coagulants partially or completely in the water treatment process, depending on the quality needed at the users end. PMID:27544647

  12. SMALL DRINKING WATER SYSTEMS: STATE OF THE INDUSTRY AND TREATMENT TECHNOLOGIES TO MEET THE SAFE DRINKING WATER ACT REQUIREMENTS

    EPA Science Inventory

    This report reviews current national data for small drinking water treatment systems, regulations pertaining to small systems, current treatment technologies, disposal of wastes, source water protection, security, and monitoring. The document serves as a roadmap for future small...

  13. Sterilization of Fungus in Water by Pulsed Power Gas Discharge Reactor Spraying Water Droplets for Water Treatment

    NASA Astrophysics Data System (ADS)

    Saito, Tsukasa; Handa, Taiki; Minamitani, Yasushi

    We study sterilization of bacteria in water using pulsed streamer discharge of gas phase. This method enhances efficiency of water treatment by spraying pretreatment water in a streamer discharge area. In this paper, yeast was sterilized because we assumed a case that fungus like mold existed in wastewater. As a result, colony forming units decreased rapidly for 2 minutes of the processing time, and all yeast sterilized by 45 minutes of the processing time.

  14. Treatment of poly- and perfluoroalkyl substances in U.S. full-scale water treatment systems.

    PubMed

    Appleman, Timothy D; Higgins, Christopher P; Quiñones, Oscar; Vanderford, Brett J; Kolstad, Chad; Zeigler-Holady, Janie C; Dickenson, Eric R V

    2014-03-15

    The near ubiquitous presence of poly- and perfluoroalkyl substances (PFASs) in humans has raised concerns about potential human health effects from these chemicals, some of which are both extremely persistent and bioaccumulative. Because some of these chemicals are highly water soluble, one major pathway for human exposure is the consumption of contaminated drinking water. This study measured concentrations of PFASs in 18 raw drinking water sources and 2 treated wastewater effluents and evaluated 15 full-scale treatment systems for the attenuation of PFASs in water treatment utilities throughout the U.S. A liquid-chromatography tandem mass-spectrometry method was used to enable measurement of a suite of 23 PFASs, including perfluorocarboxylic acids (PFCAs) and perfluorosulfonic acids (PFSAs). Despite the differences in reporting levels, the PFASs that were detected in >70% of the source water samples (n = 39) included PFSAs, perfluorobutane sulfonic acid (74%), perfluorohexane sulfonic acid (79%), and perfluorooctane sulfonic acid (84%), and PFCAs, perfluoropentanoic acid (74%), perfluorohexanoic acid (79%), perfluoroheptanoic acid (74%), and perfluorooctanoic acid (74%). More importantly, water treatment techniques such as ferric or alum coagulation, granular/micro-/ultra- filtration, aeration, oxidation (i.e., permanganate, ultraviolet/hydrogen peroxide), and disinfection (i.e., ozonation, chlorine dioxide, chlorination, and chloramination) were mostly ineffective in removing PFASs. However, anion exchange and granular activated carbon treatment preferably removed longer-chain PFASs and the PFSAs compared to the PFCAs, and reverse osmosis demonstrated significant removal for all the PFASs, including the smallest PFAS, perfluorobutanoic acid. PMID:24275109

  15. Evaluation of Water Treatment Methods for Endocrine Disrupting Compounds

    NASA Astrophysics Data System (ADS)

    Thomas, S. M.; Murray, K. E.

    2006-05-01

    Endocrine disrupting compounds (EDCs) have caught recent attention as one of the major concerns in the environment. They are known to interfere with the activity of growth-related hormones and usually, as a result, cause disruption in normal functioning of the body. The compounds currently classified as EDCs range from a variety of both natural and synthetic organic compounds and also some heavy metals. Most of these compounds are used in household, pharmaceutical, industrial, agricultural activities, the consumption or usage of which increases with population. There is a lack of detailed chemical and biological analysis as to what concentrations each of these EDCs pose harmless to the environment because of the large number of the suspected compounds. However, several published reports have established that endocrine disruption is observed in aquatic species due to chronic exposure to concentrations of some EDCs as low as a few ng/l. Conventional water treatment facilities do not usually suffice to remove EDCs in concentrations below 1 ng/l. Available technologies for removal of EDCs include adsorption, degradation and membrane treatment. The removal rates, however, are dependant on the properties of the compound, such as molecular weight, water- octanol partition coefficient and vapor pressure; physiochemical conditions of the matrix such as, redox and temperature conditions; type and dose of degrading agent and the concentration of the EDCs. Since, EDCs comprise a vast variety of compounds, their response to each of these treatment methods will be different and hence it is plausible that a single treatment technique will not be sufficient to remove the EDCs to very low concentrations. Based on our review of existing water treatment methods, we believe that a sequential treatment technique that consists of an adsorption, a degradation and finally a fine membrane treatment, each optimized for favorable, efficient and inexpensive removal may be required to remove

  16. Treatment of produced waters by electrocoagulation and reverse osmosis

    SciTech Connect

    Tuggle, K.; Humenick, M.; Barker, F.

    1992-08-01

    Two oil field produced waters and one coal bed methane produced water from Wyoming were treated with electrocoagulation and reverse osmosis. All three produced waters would require treatment to meet the new Wyoming Department of Environmental Quality requirements for effluent discharge into a class III or IV stream. The removal of radium 226 and oil and grease was the primary focus of the study. Radium 226 and oil and grease were removed from the produced waters with electrocoagulation. The best removal of radium 226 (>84%) was achieved with use of a non-sacrificial anode (titanium). The best removal of oil and grease (>93%) was achieved using a sacrificial anode (aluminum). By comparison, reverse osmosis removed up to 87% of the total dissolved solids and up to 95% of the radium 226.

  17. Review of technologies for oil and gas produced water treatment.

    PubMed

    Fakhru'l-Razi, Ahmadun; Pendashteh, Alireza; Abdullah, Luqman Chuah; Biak, Dayang Radiah Awang; Madaeni, Sayed Siavash; Abidin, Zurina Zainal

    2009-10-30

    Produced water is the largest waste stream generated in oil and gas industries. It is a mixture of different organic and inorganic compounds. Due to the increasing volume of waste all over the world in the current decade, the outcome and effect of discharging produced water on the environment has lately become a significant issue of environmental concern. Produced water is conventionally treated through different physical, chemical, and biological methods. In offshore platforms because of space constraints, compact physical and chemical systems are used. However, current technologies cannot remove small-suspended oil particles and dissolved elements. Besides, many chemical treatments, whose initial and/or running cost are high and produce hazardous sludge. In onshore facilities, biological pretreatment of oily wastewater can be a cost-effective and environmental friendly method. As high salt concentration and variations of influent characteristics have direct influence on the turbidity of the effluent, it is appropriate to incorporate a physical treatment, e.g., membrane to refine the final effluent. For these reasons, major research efforts in the future could focus on the optimization of current technologies and use of combined physico-chemical and/or biological treatment of produced water in order to comply with reuse and discharge limits. PMID:19505758

  18. Assessment of coliphage surrogates for testing drinking water treatment devices.

    PubMed

    Gerba, Charles P; Abd-Elmaksoud, Sherif; Newick, Huikheng; El-Esnawy, Nagwa A; Barakat, Ahmed; Ghanem, Hossam

    2015-03-01

    Test protocols have been developed by the United States Environmental Protection Agency (USEPA) and the World Health Organization (WHO) to test water treatment devices/systems that are used at the individual and home levels to ensure the removal of waterborne viruses. The goal of this study was to assess if coliphage surrogates could be used in this testing in place of the currently required use of animal or human enteric viruses. Five different coliphages (MS-2, PRD1, ΦX-174, Qβ, and fr) were compared to the removal of poliovirus type 1 (LSc-2ab) by eight different water treatment devices/systems using a general case and a challenge case (high organic load, dissolved solids, and turbidity) test water as defined by the USEPA. The performance of the units was rated as a pass/fail based on a 4 log removal/inactivation of the viruses. In all cases, a failure or a pass of the units/system for poliovirus also corresponded to a pass/fail by all of the coliphages. In summary, in using pass/fail criteria as recommended under USEPA guidelines for testing water treatment device/systems, the use of coliphages should be considered as an alternative to reduce cost and time of testing such devices/systems. PMID:25399400

  19. Treatment of municipal sewage sludge in supercritical water: A review.

    PubMed

    Qian, Lili; Wang, Shuzhong; Xu, Donghai; Guo, Yang; Tang, Xingying; Wang, Laisheng

    2016-02-01

    With increasing construction of wastewater treatment plants and stricter policies, municipal sewage sludge (MSS) disposal has become a serious problem. Treatment of MSS in supercritical water (SCW) can avoid the pre-drying procedure and secondary pollution of conventional methods. SCW treatment methods can be divided into supercritical water gasification (SCWG), supercritical water partial oxidation (SCWPO) and supercritical water oxidation (SCWO) technologies with increasing amounts of oxidants. Hydrogen-rich gases can be generated from MSS by SCWG or SCWPO technology using oxidants less than stoichiometric ratio while organic compounds can be completely degraded by SCWO technology with using an oxidant excess. For SCWG and SCWPO technologies, this paper reviews the influences of different process variables (MSS properties, moisture content, temperature, oxidant amount and catalysts) on the production of gases. For SCWO technology, this paper reviews research regarding the removal of organics with or without hydrothermal flames and the changes in heavy metal speciation and risk. Finally, typical systems for handling MSS are summarized and research needs and challenges are proposed. PMID:26645649

  20. Effect of microalgal treatments on pesticides in water.

    PubMed

    Hultberg, Malin; Bodin, Hristina; Ardal, Embla; Asp, Håkan

    2016-01-01

    The effect of the microalgae Chlorella vulgaris on a wide range of different pesticides in water was studied. Treatments included short-term exposure (1 h) to living and dead microalgal biomass and long-term exposure (4 days) to actively growing microalgae. The initial pesticide concentration was 63.5 ± 3.9 µg L(-1). There was no significant overall reduction of pesticides after short-term exposure. A significant reduction of the total amount of pesticides was achieved after the long-term exposure to growing microalgae (final concentration 29.7 ± 1.0 µg L(-1)) compared with the long-term control (37.0 ± 1.2 µg L(-1)). The concentrations of 10 pesticides out of 38 tested were significantly lowered in the long-term algal treatment. A high impact of abiotic factors such as sunlight and aeration for pesticide reduction was observed when the initial control (63.5 ± 3.9 µg L(-1)) and the long-term control (37.0 ± 1.2 µg L(-1)) were compared. The results suggest that water treatment using microalgae, natural inhabitants of polluted surface waters, could be further explored not only for removal of inorganic nutrients but also for removal of organic pollutants in water. PMID:26370171

  1. Water treatment cartridge filter pilot test at Pond C-2

    SciTech Connect

    Moritz, E.J.; Hoffman, C.R.

    1994-12-31

    This study determined the performance of a pilot scale cartridge filter tank utilized to treat raw water at Rocky Flats Plant terminal Pond C-2. No chemical treatment was used during this study. The filter tank was fitted with eight polypropylene 3M{reg_sign} Model 723 cartridges vendor rated at 99% removal efficiency for particles of 2 microns and larger. The duration of the test was 30 minutes at a flowrate of 200 gallons per minutes. Performance was determined by measuring total suspended solids (TSS), total dissolved solids (TDS), nephelometric turbidity units (NTU), gross alpha activity, gross beta activity, plutonium ({sup 239}Pu) levels, total particle counts (TPC), and differential particle counts (DPC) before and after treatment at specific time intervals throughout the test. Performance testing shows this treatment method produced a high quality effluent. Compared to raw water levels, TSS, NTU, gross alpha, and Pu{sup 239} were significantly reduced in the treated water samples. TPC and DPC data showed an average filtration efficiency of 97% for particles in the 1--50 micron range. This treatment method had no statistically significant affect on TDS and gross beta activity levels.

  2. Treatment methods for breaking certain oil and water emulsions

    DOEpatents

    Sealock, Jr., L. John; Baker, Eddie G.; Elliott, Douglas C.

    1992-01-01

    Disclosed are treatment methods for breaking emulsions of petroleum oil and salt water, fatty oil and water, and those resulting from liquefication of organic material. The emulsions are broken by heating to a predetermined temperature at or above about 200.degree. C. and pressurizing to a predetermined pressure above the vapor pressure of water at the predetermined temperature to produce a heated and pressurized fluid. The heated and pressurized fluid is contained in a single vessel at the predetermined temperature and pressure for a predetermined period of time to effectively separate the emulsion into substantially distinct first and second phases, the first phase comprising primarily the petroleum oil, the second phase comprising primarily the water. The first and second phases are separately withdrawn from the vessel at a withdraw temperature between about 200.degree. C. and 374.degree. C. and a withdraw pressure above the vapor pressure of water at the withdraw temperature. Where solids are present in the certain emulsions, the above described treatment may also effectively separate the certain emulsion into a substantially distinct third phase comprising primarily the solids.

  3. Sunlight-induced photochemical decay of oxidants in natural waters: implications in ballast water treatment.

    PubMed

    Cooper, William J; Jones, Adam C; Whitehead, Robert F; Zika, Rod G

    2007-05-15

    The transport and discharge of ship ballast water has been recognized as a major vector for the introduction of invasive species. Chemical oxidants, long used in drinking water and wastewater treatment, are alternative treatment methods for the control of invasive species currently being tested for use on ships. One concern when a ballasted vessel arrives in port is the adverse effects of residual oxidant in the treated water. The most common oxidants include chlorine (HOCl/OCl-), bromine (HOBr/OBr-), ozone (03), hydrogen peroxide (H2O2), chlorine dioxide (ClO2), and monochloramine (NH2Cl). The present study was undertaken to evaluate the sunlight-mediated photochemical decomposition of these oxidants. Sunlight photodecomposition was measured at various pH using either distilled water or oligotrophic Gulf Stream water for specific oxidants. For selected oxidants, quantum yields at specific wavelengths were obtained. An environmental photochemical model, GCSOLAR, also provided predictions of the fate (sunlight photolysis half-lives) of HOCI/OCl-, HOBr/OBr-, ClO2, and NH2Cl for two different seasons at latitude 40 degrees and in water with two different concentrations of chromophoric dissolved organic matter. These data are useful in assessing the environmental fate of ballast water treatment oxidants if they were to be discharged in port. PMID:17547204

  4. Towards development of an ozone compatible cooling water treatment

    SciTech Connect

    Rao, N.M.

    1994-12-31

    The use of ozone as a biocide in conjunction with conventional chemical treatment for corrosion, scale and deposit control was investigated using bench top and process simulation experiments. Aspects of aqueous ozone chemistry relevant to cooling water operation were discussed. For a given water chemistry, the degradation kinetics of a given chemical vs. microbial kill rate was identified as the parameter of interest. A relatively ozone resistant phosphonate CaCO{sub 3} scale inhibitor and a calcium phosphate dispersant were identified. None of the commercially available yellow metal corrosion inhibitors, including tolyltriazole (TT) and butylbenzotriazole (BBT) were found to be ozone compatible. Results from a field application where ozone is used in conjunction with an identified ozone compatible treatment are presented.

  5. Groundwater Treatment at the Fernald Preserve: Status and Path Forward for the Water Treatment Facility - 12320

    SciTech Connect

    Powel, J.; Hertel, B.; Glassmeyer, C.; Broberg, K.

    2012-07-01

    Operating a water treatment facility at the Fernald Preserve in Cincinnati, Ohio-to support groundwater remediation and other wastewater treatment needs-has become increasingly unnecessary. The Fernald Preserve became a U.S. Department of Energy Office of Legacy Management (LM) site in November 2006, once most of the Comprehensive Environmental Response, Compensation, and Liability Act environmental remediation and site restoration had been completed. Groundwater remediation is anticipated to continue beyond 2020. A portion of the wastewater treatment facility that operated during the CERCLA cleanup continued to operate after the site was transferred to LM, to support the remaining groundwater remediation effort. The treatment facility handles the site's remaining water treatment needs (for groundwater, storm water, and wastewater) as necessary, to ensure that uranium discharge limits specified in the Operable Unit 5 Record of Decision are met. As anticipated, the need to treat groundwater to meet uranium discharge limits has greatly diminished over the last several years. Data indicate that the groundwater treatment facility is no longer needed to support the ongoing aquifer remediation effort. (authors)

  6. Measurement of near-surface seismic compressional wave velocities using refraction tomography at a proposed construction site on the Presidio of Monterey, California

    USGS Publications Warehouse

    Powers, Michael H.; Burton, Bethany L.

    2012-01-01

    The U.S. Army Corps of Engineers is determining the feasibility of constructing a new barracks building on the U.S. Army Presidio of Monterey in Monterey, California. Due to the presence of an endangered orchid in the proposed area, invasive techniques such as exploratory drill holes are prohibited. To aid in determining the feasibility, budget, and design of this building, a compressional-wave seismic refraction survey was proposed by the U.S. Geological Survey as an alternative means of investigating the depth to competent bedrock. Two sub-parallel profiles were acquired along an existing foot path and a fence line to minimize impacts on the endangered flora. The compressional-wave seismic refraction tomography data for both profiles indicate that no competent rock classified as non-rippable or marginally rippable exists within the top 30 feet beneath the ground surface.

  7. Land disposal of water treatment plant sludge -- A feasibility analysis

    SciTech Connect

    Viraraghavan, T.; Multon, L.M.; Wasylenchuk, E.J.

    1998-07-01

    In this study, the following alternative disposal methods for the Buffalo Pound Water Treatment Sludge were evaluated: landfilling, discharge into sanitary sewers, long-term lagooning, use in manufacturing, co-composting, alum recovery and land application. Land application was chosen at the best disposal alternative. Preliminary design resulted in a 1% dry alum sludge loading rate (25 tonnes/ha), requiring 35 ha over a nine-year period and a phosphorus fertilizer supplement of about 50kg/ha.

  8. Influence of softening sequencing on electrocoagulation treatment of produced water.

    PubMed

    Esmaeilirad, Nasim; Carlson, Ken; Omur Ozbek, Pinar

    2015-01-01

    Electrocoagulation has been used to remove solids and some metals from both water and wastewater sources for decades. Additionally, chemical softening is commonly employed in water treatment systems to remove hardness. This paper assesses the combination and sequence of softening and EC methods to treat hydraulic fracturing flowback and produced water from shale oil and gas operations. EC is one of the available technologies to treat produced water for reuse in frac fluids, eliminating not only the need to transport more water but also the costs of providing fresh water. In this paper, the influence of chemical softening on EC was studied. In the softening process, pH was raised to 9.5 and 10.2 before and after EC, respectively. Softening, when practiced before EC was more effective for removing turbidity with samples from wells older than one month (99% versus 88%). However, neither method was successful in treating samples collected from early flowback (1-day and 2-day samples), likely due to the high concentration of organic matter. For total organic carbon, hardness, Ba, Sr, and B removal, application of softening before EC appeared to be the most efficient approach, likely due to the formation of solids before the coagulation process. PMID:25464315

  9. Characterization of hydraulic fracturing flowback water in Colorado: implications for water treatment.

    PubMed

    Lester, Yaal; Ferrer, Imma; Thurman, E Michael; Sitterley, Kurban A; Korak, Julie A; Aiken, George; Linden, Karl G

    2015-04-15

    A suite of analytical tools was applied to thoroughly analyze the chemical composition of an oil/gas well flowback water from the Denver-Julesburg (DJ) basin in Colorado, and the water quality data was translated to propose effective treatment solutions tailored to specific reuse goals. Analysis included bulk quality parameters, trace organic and inorganic constituents, and organic matter characterization. The flowback sample contained salts (TDS=22,500 mg/L), metals (e.g., iron at 81.4 mg/L) and high concentration of dissolved organic matter (DOC=590 mgC/L). The organic matter comprised fracturing fluid additives such as surfactants (e.g., linear alkyl ethoxylates) and high levels of acetic acid (an additives' degradation product), indicating the anthropogenic impact on this wastewater. Based on the water quality results and preliminary treatability tests, the removal of suspended solids and iron by aeration/precipitation (and/or filtration) followed by disinfection was identified as appropriate for flowback recycling in future fracturing operations. In addition to these treatments, a biological treatment (to remove dissolved organic matter) followed by reverse osmosis desalination was determined to be necessary to attain water quality standards appropriate for other water reuse options (e.g., crop irrigation). The study provides a framework for evaluating site-specific hydraulic fracturing wastewaters, proposing a suite of analytical methods for characterization, and a process for guiding the choice of a tailored treatment approach. PMID:25658325

  10. INTERGRATING SOURCE WATER PROTECTION AND DRINKING WATER TREATMENT: U.S. ENVIRONMENTAL PROTECTION AGENCY'S WATER SUPPLY AND WATER RESOURCES DIVISION

    EPA Science Inventory

    The U.S. Environmental Protection Agency's (EPA) Water Supply and Water Resources Division (WSWRD) is an internationally recognized water research organization established to assist in responding to public health concerns related to drinking water supplies. WSWRD has evolved from...

  11. INTEGRATING SOURCE WATER PROTECTION AND DRINKING WATER TREATMENT: U.S. ENVIRONMENTAL PROTECTION AGENCY'S WATER SUPPLY AND WATER RESOURCES DIVISION

    EPA Science Inventory

    The U.S. Environmental Protection Agency's (EPA) Water Supply and Water Resources Division (WSWRD) is an internationally recognized water research organization established to assist in responding to public health concerns related to drinking water supplies. WSWRD has evolved from...

  12. Gasifier waste water treatment: Phase I cooling tower assessment

    SciTech Connect

    Mann, M.D.; Willson, W.G.; Hendrikson, J.G.; Winton, S.L.

    1985-02-01

    Details of an advanced study of the treatability of waste waters from the fixed-bed gasification of lignite describe the test equipment and results at a pilot plant in North Dakota using stripped-gas liquor (SGL) as cooling tower makeup. Ammonia, alkalinity, phenol, and other non-hydantoin organics were removed from the cooling water by stripping and/or biological degradation, with the phenol concentration in the exhaust air exceeding the odor threshold. It will be necessary to control foaming of the circulating water, but both glycol and silicon based agents performed well during the test. It will also be necessary to reduce the high level of biofouling on heat transfer surfaces, although stainless steel fouling was not a major problem. The conclusion is that SGL is limited by potentially serious operating problems without additional treatment. 5 references, 4 figures, 7 tables.

  13. OZONE TREATMENT OF SOLUBLE ORGANICS IN PRODUCED WATER

    SciTech Connect

    Klasson, KT

    2002-03-14

    This project was an extension of previous research to improve the applicability of ozonation and will help address the petroleum-industry problem of treating produced water containing soluble organics. The goal of this project was to maximize oxidation of hexane-extractable organics during a single-pass operation. The project investigated: (1) oxidant production by electrochemical and sonochemical methods, (2) increasing the mass transfer rate in the reactor by forming microbubbles during ozone injection into the produced water, and (3) using ultraviolet irradiation to enhance the reaction if needed. Several types of methodologies for treatment of soluble organics in synthetic and actual produced waters have been performed. The technologies tested may be categorized as follows: (1) Destruction via sonochemical oxidation at different pH, salt concentration, ultraviolet irradiation, and ferrous iron concentrations. (2) Destruction via ozonation at different pH, salt concentration, hydrogen peroxide concentrations, ultraviolet irradiation, temperature, and reactor configurations.

  14. An evaluation of free water surface wetlands as tertiary sewage water treatment of micro-pollutants.

    PubMed

    Breitholtz, Magnus; Näslund, Maria; Stråe, Daniel; Borg, Hans; Grabic, Roman; Fick, Jerker

    2012-04-01

    Increased attention is currently directed towards potential negative effects of pharmaceuticals and other micro-pollutants discharged into the aquatic environment via municipal sewage water. A number of additional treatment technologies, such as ozonation, have therefore been suggested as promising tools for improving the removal efficiency of pharmaceuticals in existing Sewage Treatment Plants (STPs). Constructed wetlands are also capable of removing a variety of micro-pollutants, including some pharmaceuticals, and could hence be a resource efficient complement to more advanced treatment technologies. The purpose of the present study was therefore to increase the knowledge base concerning the potential use of constructed wetlands as a treatment step to reduce emissions of organic micro-pollutants from municipal sewage effluents. Under cold winter conditions, incoming and outgoing waters from four Swedish free water surface wetlands, operated as final treatment steps of sewage effluent from municipal STPs, were sampled and analyzed for levels of a set of 92 pharmaceuticals and 22 inorganic components as well as assessed using subchronic ecotoxicity tests with a macro-alga and a crustacean. Sixty-five pharmaceuticals were detected in the range from 1 ng L(-1) to 7.6 μg L(-1) in incoming and outgoing waters from the four investigated wetlands. Although the sampling design used in the present study lacks the robustness of volume proportional to 24h composite samples, the average estimated removal rates ranged from 42% to 52%, which correlates to previous published values. The effects observed in the ecotoxicity tests with the macro-alga (EC(50)s in the range of 7.5-46%) and the crustacean (LOECs in the range of 11.25-90%) could not be assigned to either pharmaceutical residues or metals, but in general showed that these treatment facilities release water with a relatively low toxic potential, comparable to water that has been treated with advanced tertiary

  15. Water treatment residuals amended soils release Mn, Na, S and C

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water treatment residuals (WTRs) are drinking water treatment byproducts containing chemicals used to purify raw water. Water treatment residuals are used to remediate P-enriched soils. Following soil application, elements present in WTRs have the potential of converting to soluble forms and cause c...

  16. Life Cycle Assesment of Daugavgriva Waste Water Treatment Plant

    NASA Astrophysics Data System (ADS)

    Romagnoli, F.; Sampaio, F.; Blumberga, D.

    2009-01-01

    This paper presents the assessment of the environmental impacts caused by the treatment of Riga's waste water in the Daugavgriva plant with biogas energy cogeneration through the life cycle assessment (LCA). The LCA seems to be a good tool to assess and evaluate the most serious environmental impacts of a facility The results showed clearly that the impact category contributing the most to the total impact -eutrophicationcomes from the wastewater treatment stage. Climate change also seems to be a relevant impact coming from the wastewater treatment stage and the main contributor to the Climate change is N2O. The main environmental benefits, in terms of the percentages of the total impact, associated to the use of biogas instead of any other fossil fuel in the cogeneration plant are equal to: 3,11% for abiotic depletation, 1,48% for climate change, 0,51% for acidification and 0,12% for eutrophication.

  17. 7 CFR 305.21 - Hot water dip treatment schedule for mangoes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Hot water dip treatment schedule for mangoes. 305.21... Hot water dip treatment schedule for mangoes. Mangoes may be treated using schedule T102-a: (a) Fruit... the treatment. (c) Water in the treatment tank must be treated or changed regularly to...

  18. National primary drinking water regulations: Long Term 1 Enhanced Surface Water Treatment Rule. Final rule.

    PubMed

    2002-01-14

    In this document, EPA is finalizing the Long Term 1 Enhanced Surface Water Treatment Rule (LT1ESWTR). The purposes of the LT1ESWTR are to improve control of microbial pathogens, specifically the protozoan Cryptosporidium, in drinking water and address risk trade- offs with disinfection byproducts. The rule will require systems to meet strengthened filtration requirements as well as to calculate levels of microbial inactivation to ensure that microbial protection is not jeopardized if systems make changes to comply with disinfection requirements of the Stage 1 Disinfection and Disinfection Byproducts Rule (DBPR). The LT1ESWTR applies to public water systems that use surface water or ground water under the direct influence of surface water and serve fewer than 10,000 persons. The LT1ESWTR builds upon the framework established for systems serving a population of 10,000 or more in the Interim Enhanced Surface Water Treatment Rule (IESWTR). This rule was proposed in combination with the Filter Backwash Recycling Rule (FBRR) in April 2000. PMID:11800007

  19. An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale

    SciTech Connect

    Matthew Bruff; Ned Godshall; Karen Evans

    2011-04-30

    This Final Scientific/ Technical Report submitted with respect to Project DE-FE0000833 titled 'An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale' in support of final reporting requirements. This final report contains a compilation of previous reports with the most current data in order to produce one final complete document. The goal of this research was to provide an integrated approach aimed at addressing the increasing water resource challenges between natural gas production and other water stakeholders in shale gas basins. The objective was to demonstrate that the AltelaRain{reg_sign} technology could be successfully deployed in the Marcellus Shale Basin to treat frac flow-back water. That objective has been successfully met.

  20. Disposal of water treatment wastes containing arsenic - a review.

    PubMed

    Sullivan, Colin; Tyrer, Mark; Cheeseman, Christopher R; Graham, Nigel J D

    2010-03-15

    Solid waste management in developing countries is often unsustainable, relying on uncontrolled disposal in waste dumps. Particular problems arise from the disposal of treatment residues generated by removing arsenic (As) from drinking water because As can be highly mobile and has the potential to leach back to ground and surface waters. This paper reviews the disposal of water treatment wastes containing As, with a particular emphasis on stabilisation/solidification (S/S) technologies which are currently used to treat industrial wastes containing As. These have been assessed for their appropriateness for treating As containing water treatment wastes. Portland cement/lime mixes are expected (at least in part) to be appropriate for wastes from sorptive filters, but may not be appropriate for precipitative sludges, because ferric flocs often used to sorb As can retard cement hydration. Brine resulting from the regeneration of activated alumina filters is likely to accelerate cement hydration. Portland cement can immobilize soluble arsenites and has been successfully used to stabilise As-rich sludges and it may also be suitable for treating sludges generated from precipitative removal units. Oxidation of As(III) to As(V) and the formation of calcium-arsenic compounds are important immobilisation mechanisms for As in cements. Geopolymers are alternative binder systems that are effective for treating wastes rich in alumina and metal hydroxides and may have potential for As wastes generated using activated alumina. The long-term stability of cemented, arsenic-bearing wastes is however uncertain, as like many cements, they are susceptible to carbonation effects which may result in the subsequent re-release of As. PMID:20153878

  1. Use of hydrodynamic cavitation in (waste)water treatment.

    PubMed

    Dular, Matevž; Griessler-Bulc, Tjaša; Gutierrez-Aguirre, Ion; Heath, Ester; Kosjek, Tina; Krivograd Klemenčič, Aleksandra; Oder, Martina; Petkovšek, Martin; Rački, Nejc; Ravnikar, Maja; Šarc, Andrej; Širok, Brane; Zupanc, Mojca; Žitnik, Miha; Kompare, Boris

    2016-03-01

    The use of acoustic cavitation for water and wastewater treatment (cleaning) is a well known procedure. Yet, the use of hydrodynamic cavitation as a sole technique or in combination with other techniques such as ultrasound has only recently been suggested and employed. In the first part of this paper a general overview of techniques that employ hydrodynamic cavitation for cleaning of water and wastewater is presented. In the second part of the paper the focus is on our own most recent work using hydrodynamic cavitation for removal of pharmaceuticals (clofibric acid, ibuprofen, ketoprofen, naproxen, diclofenac, carbamazepine), toxic cyanobacteria (Microcystis aeruginosa), green microalgae (Chlorella vulgaris), bacteria (Legionella pneumophila) and viruses (Rotavirus) from water and wastewater. As will be shown, hydrodynamic cavitation, like acoustic, can manifest itself in many different forms each having its own distinctive properties and mechanisms. This was until now neglected, which eventually led to poor performance of the technique. We will show that a different type of hydrodynamic cavitation (different removal mechanism) is required for successful removal of different pollutants. The path to use hydrodynamic cavitation as a routine water cleaning method is still long, but recent results have already shown great potential for optimisation, which could lead to a low energy tool for water and wastewater cleaning. PMID:26515938

  2. Clean option: Berkeley Pit water treatment and resource recovery strategy

    SciTech Connect

    Gerber, M.A.; Orth, R.J.; Elmore, M.R.; Monzyk, B.F.

    1995-09-01

    The US Department of Energy (DOE), Office of Technology Development, established the Resource Recovery Project (RRP) in 1992 as a five-year effort to evaluate and demonstrate multiple technologies for recovering water, metals, and other industrial resources from contaminated surface and groundwater. Natural water resources located throughout the DOE complex and the and western states have been rendered unusable because of contamination from heavy metals. The Berkeley Pit, a large, inactive, open pit copper mine located in Butte, Montana, along with its associated groundwater system, has been selected by the RRP for use as a feedstock for a test bed facility located there. The test bed facility provides the infrastructure needed to evaluate promising technologies at the pilot plant scale. Data obtained from testing these technologies was used to assess their applicability for similar mine drainage water applications throughout the western states and at DOE. The objective of the Clean Option project is to develop strategies that provides a comprehensive and integrated approach to resource recovery using the Berkeley Pit water as a feedstock. The strategies not only consider the immediate problem of resource recovery from the contaminated water, but also manage the subsequent treatment of all resulting process streams. The strategies also employ the philosophy of waste minimization to optimize reduction of the waste volume requiring disposal, and the recovery and reuse of processing materials.

  3. Coagulant recovery and reuse for drinking water treatment.

    PubMed

    Keeley, James; Jarvis, Peter; Smith, Andrea D; Judd, Simon J

    2016-01-01

    Coagulant recovery and reuse from waterworks sludge has the potential to significantly reduce waste disposal and chemicals usage for water treatment. Drinking water regulations demand purification of recovered coagulant before they can be safely reused, due to the risk of disinfection by-product precursors being recovered from waterworks sludge alongside coagulant metals. While several full-scale separation technologies have proven effective for coagulant purification, none have matched virgin coagulant treatment performance. This study examines the individual and successive separation performance of several novel and existing ferric coagulant recovery purification technologies to attain virgin coagulant purity levels. The new suggested approach of alkali extraction of dissolved organic compounds (DOC) from waterworks sludge prior to acidic solubilisation of ferric coagulants provided the same 14:1 selectivity ratio (874 mg/L Fe vs. 61 mg/L DOC) to the more established size separation using ultrafiltration (1285 mg/L Fe vs. 91 mg/L DOC). Cation exchange Donnan membranes were also examined: while highly selective (2555 mg/L Fe vs. 29 mg/L DOC, 88:1 selectivity), the low pH of the recovered ferric solution impaired subsequent treatment performance. The application of powdered activated carbon (PAC) to ultrafiltration or alkali pre-treated sludge, dosed at 80 mg/mg DOC, reduced recovered ferric DOC contamination to <1 mg/L but in practice, this option would incur significant costs. The treatment performance of the purified recovered coagulants was compared to that of virgin reagent with reference to key water quality parameters. Several PAC-polished recovered coagulants provided the same or improved DOC and turbidity removal as virgin coagulant, as well as demonstrating the potential to reduce disinfection byproducts and regulated metals to levels comparable to that attained from virgin material. PMID:26521220

  4. Mathematics for Water and Wastewater Treatment Plant Operators. Water and Wastewater Training Program.

    ERIC Educational Resources Information Center

    South Dakota Dept. of Environmental Protection, Pierre.

    This booklet is intended to aid the prospective waste treatment plant operator or drinking water plant operator in learning to solve mathematical problems, which is necessary for Class I certification. It deals with the basic mathematics which a Class I operator may require in accomplishing day-to-day tasks. The book also progresses into problems…

  5. MICROBIOLOGICAL CHANGES IN SOURCE WATER TREATMENT: REFLECTIONS IN DISTRIBUTION WATER QUALITY

    EPA Science Inventory

    Microbial quality in the distribution system is a reflection of raw source water characteristics, treatment process configurations and their modifications. ased on case history experiences there may at times be a microbial breakthrough that is caused by fluctuations in raw surfac...

  6. Introduction to Chemistry for Water and Wastewater Treatment Plant Operators. Water and Wastewater Training Program.

    ERIC Educational Resources Information Center

    South Dakota Dept. of Environmental Protection, Pierre.

    Presented are basic concepts of chemistry necessary for operators who manage drinking water treatment plants and wastewater facilities. It includes discussions of chemical terms and concepts, laboratory procedures for basic analyses of interest to operators, and discussions of appropriate chemical calculations. Exercises are included and answer…

  7. [Organohalogen contamination of a dialysis-water treatment plant].

    PubMed

    Formica, M; Vallero, A; Forneris, G; Cesano, G; Pozzato, M; Borca, M; Iadarola, G M; Quarello, F

    2002-01-01

    On March 2001 the regular quality control test of the water used for dialysis in an urban centre using a reverse osmosis system revealed a high level of organo-halogenated contamination. The compounds implicated were: trichloroethylene (trielene) [M.Wt. 131 D], tetrachloroethylene, trichloromethane (chloroform) [M.Wt. 121 D], chlorodibromomethane. The dialysis unit was closed. Water samples were analysed in duplicate. The table shows the values (in ppm or microgram/l) obtained for chloroform at the given times: March 8th, altered sample; March 12th, confirmation sample; March 16th, after osmosis membranes change; March 22nd, after carbon filtration replacement; March 26th, after softener resins substitution. The AAMI doesn't recommend any value for organo-halogenated compounds in dialysis water. In the past, the European Pharmacopoeia and the Italian Health Ministry released some reference values for tap water, values which were extended to water used for dialysis. The values are 1 ppm as reference value, 30 ppm as maximum accepted value for the sum of all organo-halogenated compounds, and 10 ppm as the recommended value. In conclusion, the problem was solved by progressive replacement of the components of the water treatment system, even though the real cause remained undetermined. No clinical symptom was recorded and no level of chloroform or trielene was detected in patients' sera despite the low molecular weight and low protein binding of the compounds. A strict control of the water quality and a more comprehensive and updated reference guide are needed for better and safer dialysis delivery. PMID:12369053

  8. Water balance of rice plots under three different water treatments: monitoring activity and experimental results

    NASA Astrophysics Data System (ADS)

    Chiaradia, Enrico Antonio; Romani, Marco; Facchi, Arianna; Gharsallah, Olfa; Cesari de Maria, Sandra; Ferrari, Daniele; Masseroni, Daniele; Rienzner, Michele; Battista Bischetti, Gian; Gandolfi, Claudio

    2014-05-01

    In the agricultural seasons 2012 and 2013, a broad monitoring activity was carried out at the Rice Research Centre of Ente Nazionale Risi (CRR-ENR) located in Castello d'Agogna (PV, Italy) with the purpose of comparing the water balance components of paddy rice (Gladio cv.) under different water regimes and assessing the possibility of reducing the high water inputs related to the conventional practice of continuous submergence. The experiments were laid out in six plots of about 20 m x 80 m each, with two replicates for each of the following water regimes: i) continuous flooding with wet-seeded rice (FLD), ii) continuous flooding from around the 3-leaf stage with dry-seeded rice (3L-FLD), and iii) surface irrigation every 7-10 days with dry-seeded rice (IRR). One out of the two replicates of each treatment was instrumented with: water inflow and outflow meters, set of piezometers, set of tensiometers and multi-sensor moisture probes. Moreover, an eddy covariance station was installed on the bund between the treatments FLD and IRR. Data were automatically recorded and sent by a wireless connection to a PC, so as to be remotely controlled thanks to the development of a Java interface. Furthermore, periodic measurements of crop biometric parameters (LAI, crop height and rooting depth) were performed in both 2012 and 2013 (11 and 14 campaigns respectively). Cumulative water balance components from dry-seeding (3L-FLD and IRR), or flooding (FLD), to harvest were calculated for each plot by either measurements (i.e. rainfall, irrigation and surface drainage) or estimations (i.e. difference in the field water storage, evaporation from both the soil and the water surface and transpiration), whereas the sum of percolation and capillary rise (i.e. the 'net percolation') was obtained as the residual term of the water balance. Incidentally, indices of water application efficiency (evapotranspiration over net water input) and water productivity (grain production over net water

  9. Adsorption of Roxarsone onto Drinking Water Treatment Residuals: Preliminary Studies

    NASA Astrophysics Data System (ADS)

    Salazar, J.; Sarkar, D.; Datta, R.; Sharma, S.

    2006-05-01

    Roxarsone (3-nitro-4-hydroxyphenyl-arsonic acid) is an organo-arsenical compound, commonly used as a feed additive in the broiler poultry industry to control coccidial intestinal parasites. Roxarsone is not toxic to the birds not only because of the low dose, and also because it most likely does not convert to toxic inorganic arsenic (As) in their systems. However, upon excretion, roxarsone may undergo transformation to inorganic As, posing a serious risk of contaminating the agricultural land and water bodies via surface runoff or leaching. The use of poultry litter as fertilizer results in As accumulation rates of up to 50 metric tons per year in agricultural lands. The immediate challenge, as identified by the various regulatory bodies in recent years is to develop an efficient, yet cost-effective and environmentally sound approach to cleaning up such As- contaminated soils. Recent studies conducted by our group have suggested that the drinking water treatment residuals (WTRs) can effectively retain As, thereby decreasing its mobility in the environment. The WTRs are byproducts of drinking water treatment processes and are typically composed of amorphous Fe/Al oxides, activated C and cationic polymers. They can be obtained free-of-cost from water treatment plants. It is well demonstrated that the environmental mobility of As is controlled by adsorption/desorption reactions onto mineral surfaces. Hence, knowledge of adsorption and desorption of As onto the WTRs is of environmental relevance. The reported study examined the adsorption and desorption characteristics of As using two types of WTRs, namely the Fe-WTRs (byproduct of Fe salt treatment), and the Al-WTRs (byproduct of Al salt treatment). All adsorption experiments were carried out in batch and As retention on the WTRs was investigated as a function of solid/solution ratio (1:5, 1:10, 1:25 and 1:50), equilibration time (10 min - 48 hr), pH (2 - 10) and initial As load (100, 500, 1000 and 2000 mg As/L). The

  10. Produced water treatment by micellar-enhanced ultrafiltration.

    PubMed

    Deriszadeh, Ali; Husein, Maen M; Harding, Thomas G

    2010-03-01

    A water treatment approach combining ultrafiltration (UF) and micellar-enhanced ultrafiltration (MEUF) techniques was used for the removal of organic contaminants in field produced water samples from Canada and the United States. Free oil droplets and suspended solids were separated by initial UF treatments while MEUF was necessary for the removal of dissolved organics. It was shown that the amphiphilic characteristics of some organics commonly existing in produced water contributed to lowering the critical micelle concentration (CMC) of the surfactant employed. Lower surfactant concentrations could, therefore, be employed leading to lower fouling and back contamination and higher permeate flux. In addition, the incorporation of organic contaminants into the structure of cetylpyridinium chloride (CPC) micelles resulted in larger size and higher dissolution capacity of the "mixed micelles". The performance of polymeric and ceramic membranes of different molecular weight cutoffs (MWCOs) was evaluated by analyzing the permeate flux, recovery ratio, and solute percent rejection as functions of trans-membrane pressure (TMP). A mathematical model based on Darcy's law and the resistance in-series model successfully described the flux decline as a function of TMP for the two field samples and the two membranes studied. PMID:20121232

  11. The chulli water purifier: acceptability and effectiveness of an innovative strategy for household water treatment in Bangladesh.

    PubMed

    Gupta, Sundeep K; Islam, M S; Johnston, Richard; Ram, Pavani Kalluri; Luby, Stephen P

    2008-06-01

    To evaluate the effectiveness of the chulli water purifier, a new household water treatment strategy in Bangladesh that relies on passing water through a stove, we interviewed persons who had this water purifier. From households using it regularly, we tested untreated water, sand-filtered water without heat pasteurization, sand-filtered and heat pasteurized water, and household stored, treated water. Reasons for discontinuing use among 80 of 101 persons included mechanical problems (49%), inconvenience (35%), and high cost (10%). Only four households were regularly using the purifier. Three (19%) of 16 heat-treated samples were positive for Escherichia coli. The median log reduction from source water was > 5. Nine (56%) stored water samples were positive for E. coli, indicating recontamination. Poor durability, inconvenience, high cost, and post-treatment contamination limit the usefulness of the purifier. These issues, which are relevant for other household water treatment strategies, should be resolved before further implementation. PMID:18541780

  12. Ferrates: greener oxidants with multimodal action in water treatment technologies.

    PubMed

    Sharma, Virender K; Zboril, Radek; Varma, Rajender S

    2015-02-17

    CONSPECTUS: One of the biggest challenges for humanity in the 21st century is easy access to purified and potable water. The presence of pathogens and toxins in water causes more than two million deaths annually, mostly among children under the age of five. Identifying and deploying effective and sustainable water treatment technologies is critical to meet the urgent need for clean water globally. Among the various agents used in the purification and treatment of water, iron-based materials have garnered particular attention in view of their special attributes such as their earth-abundant and environmentally friendly nature. In recent years, higher-valent tetraoxy iron(VI) (Fe(VI)O4(2-), Fe(VI)), commonly termed, ferrate, is being explored for a broad portfolio of applications, including a greener oxidant in synthetic organic transformations, a water oxidation catalyst, and an efficient agent for abatement of pollutants in water. The use of Fe(VI) as an oxidant/disinfectant and further utilization of the ensuing iron(III) oxides/hydroxide as coagulants are other additional attributes of ferrate for water treatment. This multimodal action and environmentally benign character of Fe(VI) are key advantages over other commonly used oxidants (e.g., chlorine, chlorine dioxide, permanganate, hydrogen peroxide, and ozone). This Account discusses current state-of-the-art applications of Fe(VI) and the associated unique chemistry of these high-valence states of iron. The main focus centers around the description and salient properties of ferrate species involving various electron transfer and oxygen-atom transfer pathways in terms of presently accepted mechanisms. The mechanisms derive the number of electron equivalents per Fe(VI) (i.e., oxidation capacity) in treating various contaminants. The role of pH in the kinetics of the reactions and in determining the removal efficiency of pollutants is highlighted; the rates of competing reactions of Fe(VI) with itself, water, and

  13. Water treatment plant sludge disposal into stabilization ponds.

    PubMed

    Filho, Sidney Seckler Ferreira; Piveli, Roque Passos; Cutolo, Silvana Audrá; de Oliveira, Alexandre Alves

    2013-01-01

    Researchers have paid particular attention to the disposal of sludge produced in water treatment plants (WTPs) into wastewater treatment plants (WWTPs) for further processing, mainly because it is considered an attractive alternative for the treatment of waste generated in water production processes. This study evaluated the effects of flow equalization and disposal of sludge, from a conventional WTP, into a WWTP system that includes an anaerobic stabilization pond followed by a facultative pond. During the period of sludge discharge from the WTP into the wastewater system, the influent to the WWTP presented an increase of 17% (from 171 to 200 mg L(-1)) of total suspended solids (TSS) and a 7.0% flow rate increase, without showing adverse effects on the organic load, TSS and nutrients removal. The most significant impact observed in the WWTP was the increase of solids accumulation rate in the anaerobic pond, with a value of 141 mm/year during the sludge discharge period. The operating time, before the dredging and desludging cycles required for this specific anaerobic pond, decreased from 12.7 to 10.4 years, which is consistent with previous studies in literature. Thus, based on the observed parameters of this study, it is viable to release solids from a WTP effluent into a WWTP that includes anaerobic stabilization ponds followed by a facultative pond. Indeed, this process scheme becomes a viable technical, environmental, and economical alternative for small to medium WWTPs. PMID:23416593

  14. Electrocoagulation treatment of peat bog drainage water containing humic substances.

    PubMed

    Kuokkanen, V; Kuokkanen, T; Rämö, J; Lassi, U

    2015-08-01

    Electrocoagulation (EC) treatment of 100 mg/L synthetic wastewater (SWW) containing humic acids was optimized (achieving 90% CODMn and 80% DOC removal efficiencies), after which real peat bog drainage waters (PBDWs) from three northern Finnish peat bogs were also treated. High pollutant removal efficiencies were achieved: Ptot, TS, and color could be removed completely, while Ntot, CODMn, and DOC/TOC removal efficiencies were in the range of 33-41%, 75-90%, and 62-75%, respectively. Al and Fe performed similarly as the anode material. Large scale experiments (1 m(3)) using cold (T = 10-11 °C) PBDWs were also conducted successfully, with optimal treatment times of 60-120 min (applying current densities of 60-75 A/m(2)). Residual values of Al and Fe (complete removal) were lower than their initial values in the EC-treated PBDWs. Electricity consumption and operational costs in optimum conditions were found to be low and similar for all the waters studied: 0.94 kWh/m(3) and 0.15 €/m(3) for SWW and 0.35-0.70 kWh/m(3) and 0.06-0.12 €/m(3) for the PBDWs (large-scale). Thus, e.g. solar cells could be considered as a power source for this EC application. In conclusion, EC treatment of PBDW containing humic substances was shown to be feasible. PMID:25973580

  15. Water treatment plants assessment at Talkha power plant.

    PubMed

    El-Sebaie, Olfat D; Abd El-Kerim, Ghazy E; Ramadan, Mohamed H; Abd El-Atey, Magda M; Taha, Sahr Ahmed

    2002-01-01

    Talkha power plant is the only power plant located in El-Mansoura. It generates electricity using two different methods by steam turbine and gas turbine. Both plants drew water from River Nile (208 m3 /h). The Nile raw water passes through different treatment processes to be suitable for drinking and operational uses. At Talkha power plant, there are two purification plants used for drinking water supply (100 m3/h) and for water demineralization supply (108 m3/h). This study aimed at studying the efficiency of the water purification plants. For drinking water purification plant, the annual River Nile water characterized by slightly alkaline pH (7.4-8), high annual mean values of turbidity (10.06 NTU), Standard Plate Count (SPC) (313.3 CFU/1 ml), total coliform (2717/100 ml), fecal coliform (0-2400/100 ml), and total algae (3 x 10(4) org/I). The dominant group of algae all over the study period was green algae. The blue green algae was abundant in Summer and Autumn seasons. The pH range, and the annual mean values of turbidity, TDS, total hardness, sulfates, chlorides, nitrates, nitrites, fluoride, and residual chlorine for purified water were in compliance with Egyptian drinking water standards. All the SPC recorded values with an annual mean value of 10.13 CFU/1 ml indicated that chlorine dose and contact time were not enough to kill the bacteria. However, they were in compliance with Egyptian decree (should not exceed 50 CFU/1 ml). Although the removal efficiency of the plant for total coliform and blue green algae was high (98.5% and 99.2%, respectively), the limits of the obtained results with an annual mean values of 40/100 ml and 15.6 org/l were not in compliance with the Egyptian decree (should be free from total coliform, fecal coliform and blue green algae). For water demineralization treatment plant, the raw water was characterized by slightly alkaline pH. The annual mean values of conductivity, turbidity, and TDS were 354.6 microS/cm, 10.84 NTU, and 214

  16. Treatment of oilfield produced water by waste stabilization ponds.

    PubMed

    Shpiner, R; Vathi, S; Stuckey, D C

    2007-01-01

    Produced water (PW) from oil wells can serve as an alternative water resource for agriculture if the main pollutants (hydrocarbons and heavy metals) can be removed to below irrigation standards. Waste stabilization ponds seem like a promising solution for PW treatment, especially in the Middle East where solar radiation is high and land is available. In this work, hydrocarbon removal from PW in a biological waste stabilization pond was examined at lab-scale followed by an intermittent slow sand filter. The system was run for 300 days and removed around 90% of the oil in the pond, and 95% after the sand filter. COD removal was about 80% in the pond effluent, and 85% after the filter. The system was tested under various operational modes and found to be stable to shock loads. Installation of oil booms and decantation of surface oil seem to be important in order to maintain good system performance over time. PMID:17591220

  17. Point-of-entry treatment of petroleum contaminated water supplies

    SciTech Connect

    Malley, J.P. Jr.; Eliason, P.A.; Wagler, J.L.

    1993-03-01

    Contamination of individual wells in rural area from leaking petroleum storage tanks poses unique problems for regulatory agencies utilities, and potentially responsible parties. A potential solution is the use of point-of-entry (POE) treatment techniques. Results indicate POE systems using aeration followed by granular activated carbon (GAC) are a viable, cost effective, short-term solution while ground water remediation is performed or an alternate drinking water supply is secured. Selection and design of POE systems should consider variations in water usage and contaminant concentrations. Iron and manganese did not affect POE system performance at the ten sites studied. However, iron precipitation was observed and may pose problems in some POE applications. Increased concentrations of nonpurgeable dissolved organic carbon consisting primarily of methy-t-butyl ether (MTBE) and hydrophilic petroleum hydrocarbons were found in the raw waters but did not affect volatile organic chemical (VOC) removals by aeration of GAC. Microbial activity as measured by heterotrophie plate count significantly increased through four of the ten POE systems studied. Reliability of the POE systems will best be achieved by specifying top quality system components, educating POE users, and providing routine maintenance and VOC monitoring. 20 refs., 9 figs., 4 tabs.

  18. Behavior of Ru surfaces after ozonated water treatment

    NASA Astrophysics Data System (ADS)

    Seo, Dongwan; Park, Chanhyoung; Jung, Juneui; Yoon, Mihyun; Lee, Dongwook; Kim, Chang Yeol; Lim, Sangwoo

    2011-10-01

    In order for the development of cleaning technology of extreme ultra violet lithography photomask, the behavior of Ru surfaces after treatment with ozonated deionized water (DIO 3) solution was studied using Ru and ruthenium oxide particles and 2 nm-thick Ru capping layers. No significant changes in crystalline structures or chemical states of the Ru surfaces, nor any similarities with the structures or states of ruthenium oxide, were observed after DIO 3 treatment. Oxidation of ruthenium to form RuO 2 or RuO 3 was not observed. Adsorption of H 2O molecules on the Ru layer increased the surface roughness, but the desorption of H 2O molecules recovered it. Local chemisorption of H 2O molecules on the Ru surface may be the reason why rougher Ru surfaces were observed after DIO 3 cleaning.

  19. Treatment of dairy waste by using water hyacinth.

    PubMed

    Trivedy, R K; Pattanshetty, S M

    2002-01-01

    In the present study treatment of wastewater from a large dairy by using water hyacinth was studied in laboratory experiments. Effects of depth of the system, variations in area coverage, prior settling and of daily renewal of the plants was also studied on the efficacy of hyacinth in treating the dairy waste. Water hyacinth (Eichhornia crassipes) was found to grow exceptionally well in the waste (BOD 840.0 mg/L) and brought down the level of BOD from 840.0 to 121.0 mg/L; COD from 1,160.0 to 164.0 mg/L, total suspended solids from 359.0 mg/L to 245.0 mg/L, TDS from 848.0 mg/L to 352.0 mg/L, total nitrogen from 26.6 mg/L to 8.9 mg/L in 4 days. There was very little reduction, however in calcium, sodium and potassium concentration. Results of different experiments showed that systems with shallow depth were more efficient in removing dissolved solids, suspended solids, BOD, COD, nitrogen and phosphorus. Daily renewal of the plants led to slightly better reduction in suspended and dissolved solids, BOD, COD and nitrogen. Water hyacinth coverage was found to have a direct bearing on the treatment efficiency. Pretreatment (settling) of the waste was also found to be favourable as dissolved oxygen content increased rapidly in the experimental sets with pretreatment. Efficiency of removal of various parameters was also good in these sets. From the study it can be concluded that dairy waste can be effectively treated by water hyacinth. Consideration of above parameters and incorporating them in design factors can greatly increase the efficiency of the system. PMID:12201119

  20. Evaluation of water treatment sludge for ameliorating acid mine waste.

    PubMed

    Van Rensburg, L; Morgenthal, T L

    2003-01-01

    This study investigated the liming effect of water treatment sludge on acid mine spoils. The study was conducted with sludge from a water purification plant along the Vaal River catchments in South Africa. The optimum application rate for liming acid spoils and the speed and depth with which the sludge reacted with the mine waste were investigated. Chemical analysis indicated that the sludge is suitable as a liming agent because of its alkaline pH (8.08), high bicarbonate concentration (183.03 mg L(-1)), and low salinity (electrical conductivity = 76 mS m(-1)). The high cation exchange capacity of 15.47 cmol(c) kg(-1) and elevated nitrate concentration (73.16 mg L(-1)) also increase its value as an ameliorative material. The soluble concentrations for manganese, aluminum, lead, and selenium were high at a pH of 5 although only selenium (0.83 mg L(-1)) warranted some concern. According to experimental results, the application of 10 Mg ha(-1) of sludge to acid gold tailings increased the leach water pH from 4.5 to more than 7.5 and also increased the medium pH from 2.4 to 7.5. The addition of sludge further reduced the solubility of iron, manganese, copper, and zinc in the ameliorated gold tailings, but increased the electrical conductivity. The liming tempo was highest in the coal discard profile that had a coarse particle size distribution and took the longest to move through the gold tailings that had a fine particle size distribution. Results from this study indicate that the water treatment sludge investigated is suitable as a liming agent for rehabilitation of acid mine waste. PMID:14535306

  1. Mercury Bioaccumulation Potential from Wastewater Treatment Plants in Receiving Waters

    NASA Astrophysics Data System (ADS)

    Dean, J. D.; Mason, R. P.

    2008-12-01

    In early 2007, the Water Environment Research Foundation (WERF) mercury bioavailability project was initiated in response to the establishment of mercury Total Maximum Daily Load (TMDL) criteria around the country. While many TMDLs recognize that point sources typically constitute a small fraction of the mercury load to a water body, the question was raised concerning the relative bioavailablity of mercury coming from various sources. For instance, is the mercury discharged from a wastewater treatment plant more or less bioavailable than mercury contributed from other sources? This talk will focus on the results of a study investigating approaches to the estimation of bioavailability and potential bioaccumulation of mercury from wastewater treatment plants and other sources in receiving waters. From the outset, a working definition of bioavailability was developed which included not only methylmercury, the form that readily bioaccumulates in aquatic food chains, but also bioavailable inorganic mercury species that could be converted to methylmercury within a scientifically reasonable time frame. Factors that enhance or mitigate the transformation of inorganic mercury to methylmercury and its subsequent bioaccumulation were identified. Profiles were developed for various sources of mercury in watersheds, including wastewater treatment plants, with regard to methylmercury and inorganic bioavailable mercury, and the key factors that enhance or mitigate mercury bioavailability. Technologies that remove mercury from wastewater were reviewed and evaluated for their effect on bioavailability. A screening procedure was developed for making preliminary estimates of bioavailable mercury concentrations and fluxes in wastewater effluents and in fresh, estuarine and marine receiving waters. The procedure was validated using several diverse river and reservoir data sets. A "Bioavailability Tool" was developed which allows a user to estimate the bioavailability of an effluent and

  2. Impact of harmful algal blooms on several Lake Erie drinking water treatment facilities; methodology considerations

    EPA Science Inventory

    The propagation of cyanbacterial cells and their toxins were investigated at seven drinking water treatment plants (DWTPs) on Lake Erie were investigated with regards to harmful algal bloom (HAB) toxin concentrations, water quality variations in treatment plant influents, and pr...

  3. REGULATIONS ON THE DISPOSAL OF ARSENIC RESIDUALS FROM DRINKING WATER TREATMENT PLANTS

    EPA Science Inventory

    This report summarizes federal and selected state regulations that govern the management of residuals produced by small water treatment systems removing arsenic from drinking water. The document focuses on the residuals produced by five treatment processes: anion exchange, activa...

  4. IDENTIFY THE OCCURRENCE OF DISINFECTION BY-PRODUCTS IN WATER TREATMENT SYSTEMS

    EPA Science Inventory

    Due to concerns over trihalomethanes (THMs) and other halogenated by-products that can be formed during chlorination of drinking water, alternative disinfectants are being explored. Several drinking water treatment plants in the United States have altered their treatment methods...

  5. 1. DOMESTIC WATER SUPPLY TREATMENT HOUSE, ON PENSTOCK ABOVE SAR1. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. DOMESTIC WATER SUPPLY TREATMENT HOUSE, ON PENSTOCK ABOVE SAR-1. VIEW TO NORTWEST. - Santa Ana River Hydroelectric System, SAR-1 Domestic Water Supply Treatment House, Redlands, San Bernardino County, CA

  6. Treatment Technology to Meet the Interim Primary Drinking Water Regulations for Inorganics: Part 3.

    ERIC Educational Resources Information Center

    Sorg, Thomas J.; And Others

    1978-01-01

    This article is the third in a series summarizing existing treatment technology to meet the inorganic National Interim Primary Drinking Water Regulations. This report deals specifically with treatment methods for removing cadmium, lead, and silver from drinking water. (CS)

  7. Biological black water treatment combined with membrane separation.

    PubMed

    van Voorthuizen, Ellen; Zwijnenburg, Arie; van der Meer, Walter; Temmink, Hardy

    2008-10-01

    Separate treatment of black (toilet) water offers the possibility to recover energy and nutrients. In this study three combinations of biological treatment and membrane filtration were compared for their biological and membrane performance and nutrient conservation: a UASB followed by effluent membrane filtration, an anaerobic MBR and an aerobic MBR. Methane production in the anaerobic systems was lower than expected. Sludge production was highest in the aerobic MBR, followed by the anaerobic MBR and the UASB-membrane system. The level of nutrient conservation in the effluent was high in all three treatment systems, which is beneficial for their recovery from the effluent. Membrane treatment guaranteed an effluent which is free of suspended and colloidal matter. However, the concentration of soluble COD in the effluent still was relatively high and this may seriously hamper subsequent nutrient recovery by physical-chemical processes. The membrane filtration behaviour of the three systems was very different, and seemed to be dominated by the concentration of colloidals in the membrane feed. In general, membrane fouling was the lowest in the aerobic MBR, followed by the membranes used for UASB effluent filtration and the anaerobic MBR. PMID:18774157

  8. CONSTRUCTED WETLAND TREATMENT SYSTEMS FOR WATER QUALITY IMPROVEMENT

    SciTech Connect

    Nelson, E.

    2010-07-19

    The Savannah River National Laboratory implemented a constructed wetland treatment system (CWTS) in 2000 to treat industrial discharge and stormwater from the Laboratory area. The industrial discharge volume is 3,030 m{sup 3} per day with elevated toxicity and metals (copper, zinc and mercury). The CWTS was identified as the best treatment option based on performance, capital and continuing cost, and schedule. A key factor for this natural system approach was the long-term binding capacity of heavy metals (especially copper, lead, and zinc) in the organic matter and sediments. The design required that the wetland treat the average daily discharge volume and be able to handle 83,280 m{sup 3} of stormwater runoff in a 24 hour period. The design allowed all water flow within the system to be driven entirely by gravity. The CWTS for A-01 outfall is composed of eight one-acre wetland cells connected in pairs and planted with giant bulrush to provide continuous organic matter input to the system. The retention basin was designed to hold stormwater flow and to allow controlled discharge to the wetland. The system became operational in October of 2000 and is the first wetland treatment system permitted by South Carolina DHEC for removal of metals. Because of the exceptional performance of the A-01 CWTS, the same strategy was used to improve water quality of the H-02 outfall that receives discharge and stormwater from the Tritium Area of SRS. The primary contaminants in this outfall were also copper and zinc. The design for this second system required that the wetland treat the average discharge volume of 415 m{sup 3} per day, and be able to handle 9,690 m{sup 3} of stormwater runoff in a 24 hour period. This allowed the building of a system much smaller than the A-01 CWTS. The system became operational in July 2007. Metal removal has been excellent since water flow through the treatment systems began, and performance improved with the maturation of the vegetation during

  9. 40 CFR 141.404 - Treatment technique violations for ground water systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ground water systems. 141.404 Section 141.404 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Ground Water Rule § 141.404 Treatment technique violations for ground water systems. (a) A ground water system with...

  10. Performance of a Small-scale Treatment Wetland for Treatment of Landscaping Wash Water

    NASA Astrophysics Data System (ADS)

    Thompson, R. J.; Fayed, E.; Fish, W.

    2011-12-01

    A large number of lawn mowers and related equipment must be cleaned each day by commercial landscaping operations and state and local highway maintenance crews. Washing these devices produces wastewater that contains high amounts of organic matter and potentially problematic nutrients, as well as oil and grease and other chemicals and metals that come from the machinery itself. Dirty water washes off the mowers, flows off the pavement and into nearby storm drains without any kind of treatment. A better idea would be to collect such wastewater, retain it in an appropriate catchment such as an engineered wetland where natural processes could break down any pollutants in the wash water, and allow the water to naturally evaporate or percolate into the soil where it could recharge ground water resources safely. This research examines the performance of a small-scale treatment wetland tailored to remove nitrogen from landscaping wash water by incorporating both aerobic and anaerobic phases. Contaminants are analyzed through physical and chemical methods. Both methods involve collection of samples, followed by standardized, validated analytical laboratory tests for measuring total solids, total kjeldahl nitrogen, nitrates, total and dissolved phosphorus, COD, BOD, oil and grease, and metals (Zn and Cu). High levels of total solids, total kjeldahl nitrogen, nitrates, total and dissolved phosphorus, COD, BOD, oil and grease are found. Zinc and copper levels are low. Wetland treatment removes 99% total solids, 77% total kjeldahl nitrogen, 100% nitrates, 94% total phosphorus, 86% dissolved phosphorus, 94% COD, 97% BOD, and 76% oil and grease. The results will be a critical step towards developing a sustainable low-energy system for treating such wastewater that could be used by private landscaping companies and government agencies.

  11. Removal of coagulant aluminum from water treatment residuals by acid.

    PubMed

    Okuda, Tetsuji; Nishijima, Wataru; Sugimoto, Mayo; Saka, Naoyuki; Nakai, Satoshi; Tanabe, Kazuyasu; Ito, Junki; Takenaka, Kenji; Okada, Mitsumasa

    2014-09-01

    Sediment sludge during coagulation and sedimentation in drinking water treatment is called "water treatment residuals (WTR)". Polyaluminum chloride (PAC) is mainly used as a coagulant in Japan. The recycling of WTR has been desired; one method for its reuse is as plowed soil. However, WTR reuse in this way is inhibited by the aluminum from the added PAC, because of its high adsorption capacity for phosphate and other fertilizer components. The removal of such aluminum from WTR would therefore be advantageous for its reuse as plowed soil; this research clarified the effect of acid washing on aluminum removal from WTR and on plant growth in the treated soil. The percentage of aluminum removal from raw WTR by sulphuric acid solution was around 90% at pH 3, the percentage decreasing to 40% in the case of a sun-dried sample. The maximum phosphate adsorption capacity was decreased and the available phosphorus was increased by acid washing, with 90% of aluminum removal. The enhancement of Japanese mustard spinach growth and the increased in plant uptake of phosphates following acid washing were observed. PMID:24835954

  12. Optofluidic planar reactors for photocatalytic water treatment using solar energy

    PubMed Central

    Lei, Lei; Wang, Ning; Zhang, X. M.; Tai, Qidong; Tsai, Din Ping; Chan, Helen L. W.

    2010-01-01

    Optofluidics may hold the key to greater success of photocatalytic water treatment. This is evidenced by our findings in this paper that the planar microfluidic reactor can overcome the limitations of mass transfer and photon transfer in the previous photocatalytic reactors and improve the photoreaction efficiency by more than 100 times. The microreactor has a planar chamber (5 cm×1.8 cm×100 μm) enclosed by two TiO2-coated glass slides as the top cover and bottom substrate and a microstructured UV-cured NOA81 layer as the sealant and flow input∕output. In experiment, the microreactor achieves 30% degradation of 3 ml 3×10−5M methylene blue within 5 min and shows a reaction rate constant two orders higher than the bulk reactor. Under optimized conditions, a reaction rate of 8% s−1 is achieved under solar irradiation. The average apparent quantum efficiency is found to be only 0.25%, but the effective apparent quantum efficiency reaches as high as 25%. Optofluidic reactors inherit the merits of microfluidics, such as large surface∕volume ratio, easy flow control, and rapid fabrication and offer a promising prospect for large-volume photocatalytic water treatment. PMID:21267436

  13. Biological waste-water treatment of azo dyes

    SciTech Connect

    Shaul, G.M.; Dempsey, C.R.; Dostal, K.A.

    1988-05-01

    The U.S. Environmental Protection Agency's (EPA) Office of Toxic Substances evaluates existing chemicals under Section 4 of the Toxic Substances Control Act (TSCA) and Premanufacture Notification (PMN) submissions under Section 5 of TSCA. Azo dyes constitute a significant portion of these PMN submissions and specific azo dyes have recently been added to the priority list for considerations in the development of test rules under Section 4. Azo dyes are of concern because some of the dyes, dye precurors, and/or their degradation products such as aromatic amines (which are also dye precurors) have been shown to be, or are suspected to be, carcinogenic. The fate of azo dyes in biological waste-water treatment systems was studied to aid in the review of PMN submissions and to assist in the possible development of test rules. Results from extensive pilot-scale activated-sludge process testing for 18 azo dyes are presented. Results from fate studies of C.I. Disperse Blue 79 in aerobic and anaerobic waste-water treatment will also be presented.

  14. Electropulse treatment of water solution of humic substances in a layer iron granules in process of water treatment

    NASA Astrophysics Data System (ADS)

    Lobanova, G. L.; Yurmazova, T. A.; Shiyan, L. N.; Machekhina, K. I.

    2016-02-01

    The present work is a part of a continuations study of the physical and chemical processes complex in natural waters containing humic-type organic substances at the influence of pulsed electrical discharges in a layer of iron pellets. The study of humic substances processing in the iron granules layer by means of pulsed electric discharge for the purpose of water purification from organic compounds humic origin from natural water of the northern regions of Russia is relevant for the water treatment technologies. In case of molar humate sodium - iron ions (II) at the ratio 2:3, reduction of solution colour and chemical oxygen demand occur due to the humate sodium ions and iron (II) participation in oxidation-reduction reactions followed by coagulation insoluble compounds formation at a pH of 6.5. In order to achieve this molar ratio and the time of pulsed electric discharge, equal to 10 seconds is experimentally identified. The role of secondary processes that occur after disconnection of the discharge is shown. The time of contact in active erosion products with sodium humate, equal to 1 hour is established. During this time, the value of permanganate oxidation and iron concentration in solution achieves the value of maximum permissible concentrations and further contact time increase does not lead to the controlled parameters change.

  15. 40 CFR 141.404 - Treatment technique violations for ground water systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Treatment technique violations for ground water systems. 141.404 Section 141.404 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Ground Water Rule § 141.404 Treatment technique violations...

  16. 40 CFR 141.403 - Treatment technique requirements for ground water systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Treatment technique requirements for ground water systems. 141.403 Section 141.403 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Ground Water Rule § 141.403 Treatment technique requirements...

  17. Use of ceregenins to create novel biofouling resistant water water-treatment membranes.

    SciTech Connect

    Kirk, Matthew F.; Jones, Howland D. T.; Feng, Yanshu; McGrath, Lucas K.; Altman, Susan Jeanne; Pollard, Jacob; Hibbs, Michael R.; Savage, Paul B.

    2010-05-01

    Scoping studies have demonstrated that ceragenins, when linked to water-treatment membranes have the potential to create biofouling resistant water-treatment membranes. Ceragenins are synthetically produced molecules that mimic antimicrobial peptides. Evidence includes measurements of CSA-13 prohibiting the growth of and killing planktonic Pseudomonas fluorescens. In addition, imaging of biofilms that were in contact of a ceragenin showed more dead cells relative to live cells than in a biofilm that had not been treated with a ceragenin. This work has demonstrated that ceragenins can be attached to polyamide reverse osmosis (RO) membranes, though work needs to improve the uniformity of the attachment. Finally, methods have been developed to use hyperspectral imaging with multivariate curve resolution to view ceragenins attached to the RO membrane. Future work will be conducted to better attach the ceragenin to the RO membranes and more completely test the biocidal effectiveness of the ceragenins on the membranes.

  18. Laboratory validation of an ozone device for recreational water treatment.

    PubMed

    Donofrio, Robert S; Aridi, Sal; Saha, Ratul; Bechanko, Robin; Schaefer, Kevin; Bestervelt, Lorelle L; Hamil, Beth

    2013-06-01

    Obtaining an accurate assessment of a treatment system's antimicrobial efficacy in recreational water is difficult given the large scale and high flow rates of the water systems. A laboratory test system was designed to mimic the water conditions and potential microbial contaminants found in swimming pools. This system was utilized to evaluate the performance of an in situ ozone disinfection device against four microorganisms: Cryptosporidium parvum, bacteriophage MS2, Enterococcus faecium, and Pseudomonas aeruginosa. The sampling regimen evaluated the antimicrobial effectiveness in a single pass fashion, with samples being evaluated initially after exposure to the ozone unit, as well as at points downstream from the device. Based on the flow dynamics and log reductions, cycle threshold (Ct) values were calculated. The observed organism log reductions were as follows: >6.7 log for E. faecium and P. aeruginosa; >5.9 log for bacteriophage MS2; and between 2.7 and 4.1 log for C. parvum. The efficacy results indicate that the test system effectively functions as a secondary disinfection system as defined by the Centers for Disease Control and Prevention's Model Aquatic Health Code. PMID:23708574

  19. Renibacterium salmoninarum: effect of hypochlorite treatment, and survival in water.

    PubMed

    Hirvelä-Koski, Varpu

    2004-04-21

    The effect of different concentrations of sodium hypochlorite on Renibacterium salmoninarum and the survival of the bacterium in autoclaved river water and groundwater were examined. The disinfection trial was performed using R. salmoninarum ATCC 33209. The concentrations of free chlorine were 10, 50, 100 and 200 mg 1(-1), the contact times were 5, 15, and 30 min and 24 h, and the test suspensions were subcultured both on Kidney disease medium (KDM2) agar and in 3 parallel KDM2 broths, which were then subcultured on KDM2 and selective KDM (SKDM) agar. The survival of the bacterium in river water and groundwater was studied using 4 isolates of R. salmoninarum including ATCC 33209. Treatment with sodium hypochlorite effectively reduced the number of culturable cells of R. salmoninarum, but use of the recovery broth showed that small numbers of cells remained viable at all concentrations of free chlorine. The numbers of R. salmoninarum decreased to an undetectable level after 4 wk incubation in the survival trials, but low numbers of colonies were again found in the subculture after 5 wk incubation. Viable cells of R. salmoninarum were still detected in subcultures of all strains after 20 wk of incubation in river water. PMID:15212289

  20. Research trends in electrochemical technology for water and wastewater treatment

    NASA Astrophysics Data System (ADS)

    Zheng, Tianlong; Wang, Juan; Wang, Qunhui; Meng, Huimin; Wang, Lihong

    2015-03-01

    It is difficult to completely degrade wastewater containing refractory pollutants without secondary pollution by biological treatment, as well as physical-chemical process. Therefore, electrochemical technology has attracted much attention for its environmental compatibility, high removal efficiency, and potential cost effectiveness, especially on the industrial wastewater treatment. An effective bibliometric analysis based on the Science Citation Index Core Collection database was conducted to evaluate electrochemical technology for water and wastewater treatment related research from 1994 to 2013. The amount of publications significantly increased in the last two decades. Journal of the Electrochemical Society published the most articles in this field with a top h-index of 90, taking 5.8 % of all, followed by Electrochimica Acta and Journal of Electroanalytical Chemistry. The researchers focused on categories of chemistry, electrochemistry, and materials science. China and Chinese Academy of Sciences were the most productive country and institution, respectively, while the USA, with the most international collaborative articles and highest h-index of 130, was the major collaborator with 15 other countries in top 20 most productive countries. Moreover, based on the analysis of author keywords, title, abstract, and `KeyWords Plus', a new method named "word cluster analysis" was successfully applied to trace the research hotspot. Nowadays, researchers mainly focused on novel anodic electrode, especially on its physiochemical and electrochemical properties.

  1. Continuous water treatment by adsorption and electrochemical regeneration.

    PubMed

    Mohammed, F M; Roberts, E P L; Hill, A; Campen, A K; Brown, N W

    2011-05-01

    This study describes a process for water treatment by continuous adsorption and electrochemical regeneration using an air-lift reactor. The process is based on the adsorption of dissolved organic pollutants onto an adsorbent material (a graphite intercalation compound, Nyex(®)1000) and subsequent electrochemical regeneration of the adsorbent leading to oxidation of the adsorbed pollutant. Batch experiments were carried out to determine the adsorption kinetics and equilibrium isotherm for adsorption of a sample contaminant, the organic dye Acid Violet 17. The adsorbent circulation rate, the residence time distribution (RTD) of the reactor, and treatment by continuous adsorption and electrochemical regeneration were studied to investigate the process performance. The RTD behaviour could be approximated as a continuously stirred tank. It was found that greater than 98% removal could be achieved for continuous treatment by adsorption and electrochemical regeneration for feed concentrations of up to 300 mg L(-1). A steady state model has been developed for the process performance, assuming full regeneration of the adsorbent in the electrochemical cell. Experimental data and modelled predictions (using parameters for the adsorbent circulation rate, adsorption kinetics and isotherm obtained experimentally) of the dye removal achieved were found to be in good agreement. PMID:21511325

  2. Copper corrosion in potable water systems: Impacts of natural organic matter and water treatment processes

    SciTech Connect

    Rehring, J.P.; Edwards, M.

    1996-04-01

    Copper corrosion was examined in the presence of natural organic matter (NOM) and in situations where NOM was altered by drinking water treatment. Corrosion rates (i{sub corr}) increased with higher NOM concentration at pH 6, whereas insignificant effects were observed at pH 7.5 and 9.0. Corrosion byproduct release was affected adversely by 4 mg/L NOM at pH 6.0, 7.5 and 9.0, with soluble copper increasing by 0.6 mg/L to 0.7 mg/L when compared to solutions without NOM. Alum-coagulated waters had higher i{sub corr} than untreated waters, but ferric chloride (FeCl{sub 3}{center_dot}6H{sub 2}O)-coagulated waters exhibited reduced i{sub corr}. This difference was attributed to the relative effects of added sulfate via alum coagulation vs added chloride via FeCl{sub 3}{center_dot}6H{sub 2}O coagulation. The effect of combined treatment (alum coagulation, ozonation, and granular activated carbon) was similar to that using alum coagulation alone.

  3. Characterization of ballasted flocs in water treatment using microscopy.

    PubMed

    Lapointe, Mathieu; Barbeau, Benoit

    2016-03-01

    Ballasted flocculation is widely used in the water industry for drinking water, municipal wastewater, storm water and industrial water treatment. This gravity-based physicochemical separation process involves the injection of a ballasting agent, typically microsand, to increase the floc density and size. However, the physical characteristics of the final ballasted flocs are still ill-defined. A microscopic method was specifically developed to characterize floc 1) density, 2) size and 3) shape factor. Using this information, probability density functions (PDFs) of the floc settling velocity were calculated. The impacts of the mixing intensity, polymer dosage, microsand size and contact time during the floc maturation phase were assessed. No correlation was identified between the floc diameter, form and density PDFs. The floc equivalent diameter mainly controls the settling velocity (r = 0.94), with the floc density (r = 0.26) and shape factor (r = 0.25) having lower impacts. A velocity gradient of 165 s(-1) was optimal to maintain the microsand in suspension while simultaneously maximizing the floc diameter. An anionic high molecular weight polyacrylamide formed 1.5-fold larger aggregates compared with the starch-based polymer tested, but both polymers produced flocs of similar density (relative density = 1.53 ± 0.03). Generally, the floc mean settling velocity is a good predictor of the turbidity removal. An in-depth analysis of the floc characteristics indicates a correlation between the floc size and the largest microsand grain potentially embeddable in the floc structure. PMID:26724446

  4. Abatement vs. treatment for efficient diffuse source water pollution management in terrestrial-marine systems.

    PubMed

    Roebeling, P C; Cunha, M C; Arroja, L; van Grieken, M E

    2015-01-01

    Marine ecosystems are affected by water pollution originating from coastal catchments. The delivery of water pollutants can be reduced through water pollution abatement as well as water pollution treatment. Hence, sustainable economic development of coastal regions requires balancing of the marginal costs from water pollution abatement and/or treatment and the associated marginal benefits from marine resource appreciation. Water pollution delivery reduction costs are, however, not equal across abatement and treatment options. In this paper, an optimal control approach is developed and applied to explore welfare maximizing rates of water pollution abatement and/or treatment for efficient diffuse source water pollution management in terrestrial-marine systems. For the case of diffuse source dissolved inorganic nitrogen water pollution in the Tully-Murray region, Queensland, Australia, (agricultural) water pollution abatement cost, (wetland) water pollution treatment cost and marine benefit functions are determined to explore welfare maximizing rates of water pollution abatement and/or treatment. Considering partial (wetland) treatment costs and positive water quality improvement benefits, results show that welfare gains can be obtained, primarily, through diffuse source water pollution abatement (improved agricultural management practices) and, to a minor extent, through diffuse source water pollution treatment (wetland restoration). PMID:26287831

  5. Comparative assessment of water treatment using polymeric and inorganic coagulants

    NASA Astrophysics Data System (ADS)

    Manda, Innocent K. M.; Chidya, Russel C. G.; Saka, John D. K.; Biswick, Timothy T.

    2016-06-01

    Portable water plays a vital role in improving human life, particularly in controlling the spread of diseases. However, problems associated with lack of potable water are still common especially in developing countries including Malawi. Until now little information exists on the effectiveness of available commercial coagulants used by national water boards in Malawi. Therefore, this study was undertaken in Southern Region Water Board (SRWB) to investigate the efficiency of polymeric coagulants (sufdfloc 3850 and algaefloc 19s) in turbidity reduction comparative with inorganic coagulant (aluminium sulphate) at Zomba, Liwonde, Mangochi, Chikwawa and Mulanje Treatment plants. The jar test method was used to determine the effectiveness of the water coagulants. The results revealed that sudfloc 3850 was most effective in reducing turbidity at Mangochi (99.4 ± 0.06%) and Liwonde (97.2 ± 0.04%) using 0.4 mg L-1 flocculant dose. The Zomba, Mulanje and Chikwawa plants gave 19.56 ± 0.03%, 29.23 ± 0.02% and 9.43 ± 0.02% total reductions respectively. Algaefloc 19s afforded the highest turbidity reduction at Liwonde and Mangochi plants (98.66 ± 0.06 and 97.48 ± 0.05% at a dose of 0.4 and 0.6 mg L-1 respectively), while Chikwawa provided the lowest (9.52 ± 0.01%). At the Zomba and Mulanje plants 20.5 ± 0.03% and 28.4 ± 0.04% reductions were obtained respectively. The inorganic flocculant, alum provided a 99.0 ± 0.05% and 98.6 ± 0.04% reduction at a dose of 4.0 mg L-1 and 6.0 mg L-1 at Zomba and Liwonde plants respectively. The lowest reductions in turbidity were achieved at Chikwawa (7.50 ± 0.01%), Mangochi (12.97 ± 0.02%) and Mulanje (25.00 ± 0.02). The best and optimum pH ranges for polymeric and inorganic coagulants were 7.20-7.80 and 7.35 to 7.57 respectively. The results further revealed that sudfloc 3850 and algaefloc 19s achieved faster formation of heavy flocs than alum. At 0.4 mg L-1 flocculant dosage sudfloc 3850 and algaefloc 19s required ten times

  6. THE USE OF RANDOMIZED CONTROLLED TRIALS OF IN-HOME DRINKING WATER TREATMENT TO STUDY ENDEMIC WATERBORNE DISEASE

    EPA Science Inventory

    Randomized trials of water treatment have demonstrated the ability of simple water treatments to significantly reduce the incidence of gastrointestinal illnesses in developing countries where drinking water is of poor quality. Whether or not additional treatment at the tap reduc...

  7. Parameter identification in dynamical models of anaerobic waste water treatment.

    PubMed

    Müller, T G; Noykova, N; Gyllenberg, M; Timmer, J

    2002-01-01

    Biochemical reactions can often be formulated mathematically as ordinary differential equations. In the process of modeling, the main questions that arise are concerned with structural identifiability, parameter estimation and practical identifiability. To clarify these questions and the methods how to solve them, we analyze two different second order models for anaerobic waste water treatment processes using two data sets obtained from different experimental setups. In both experiments only biogas production rate was measured which complicates the analysis considerably. We show that proving structural identifiability of the mathematical models with currently used methods fails. Therefore, we introduce a new, general method based on the asymptotic behavior of the maximum likelihood estimator to show local structural identifiability. For parameter estimation we use the multiple shooting approach which is described. Additionally we show that the Hessian matrix approach to compute confidence intervals fails in our examples while a method based on Monte Carlo Simulation works well. PMID:11965253

  8. FERRATES: SYNTHESIS, PROPERTIES AND APPLICATIONS IN WATER AND WASTEWATER TREATMENT.

    SciTech Connect

    CABELLI, D.E.; SHARMA, V.K.

    2006-05-19

    The higher oxidation states of iron (Fe(VI) and Fe(V) in particular) have been shown to be strongly oxidizing in enzymatic systems, where they can carry out aliphatic hydrogen abstraction. In addition, they have been postulated as intermediates in Fenton-type systems. Fe(VI) itself is relatively stable and has been shown to have potential as an oxidant in the so-called ''green'' treatment of polluted waters. By contrast, Fe(V) is a relatively short-lived transient when produced in aqueous solution in the absence of strongly bonding ligands other than hydroxide, a feature that has limited studies of its reactivity. Fe(VI) has been proposed to be useful in battery design and a very interesting study suggested that ferrate may be able to oxidize insoluble chromium to chromate and thus serve to remove chromium contamination in the Hanford radioactive waste tanks.

  9. Water treatment plant site location using rough set theory.

    PubMed

    Arabani, M; Pirouz, M

    2015-10-01

    Currently, advanced methods have been developed to select an appropriate site for an engineering project. The ability to make a good decision in site selection can help the engineers to reduce the expensive costs, which are very important in large construction projects. In this paper, a new approach for site selection is presented. This method is based on rough set theory which is a mathematical theory presented by professor Pawlak. In this study, the results of the rough set decision-making are compared with the results of the regression method in a practical case study for the site location of a water treatment plant in Ardabil Province in the northwest of Iran, to demonstrate that the rough set theory provides a useful method for site selection. The results of practical studies indicate that using this method for site selection decision-making can reduce costs and prevent hazards that may happen due to civil engineering uncertainties. PMID:27613288

  10. Risk management program for the 283-W water treatment facility

    SciTech Connect

    GREEN, W.E.

    1999-05-11

    This Risk Management (RM) Program covers the 283-W Water Treatment Facility (283W Facility), located in the 200 West Area of the Hanford Site. A RM Program is necessary for this facility because it stores chlorine, a listed substance, in excess of or has the potential to exceed the threshold quantities defined in Title 40 of the Code of Federal Regulations (CFR) Part 68 (EPA, 1998). The RM Program contains data that will be used to prepare a RM Plan, which is required by 40 CFR 68. The RM Plan is a summary of the RM Program information, contained within this document, and will be submitted to the U.S. Environmental Protection Agency (EPA) ultimately for distribution to the public. The RM Plan will be prepared and submitted separately from this document.

  11. Practices that Prevent the Formation of Cyanobacterial Blooms in Water Resources and remove Cyanotoxins during Physical Treatment of Drinking Water

    EPA Science Inventory

    This book chapter presents findings of different studies on the prevention and elimination of cyanobacterial blooms in raw water resources as well as the removal of cyanotoxins during water treatment with physical processes. Initially,treatments that can be applied at the source ...

  12. Sea-urchin-like iron oxide nanostructures for water treatment.

    PubMed

    Lee, Hyun Uk; Lee, Soon Chang; Lee, Young-Chul; Vrtnik, Stane; Kim, Changsoo; Lee, Sanggap; Lee, Young Boo; Nam, Bora; Lee, Jae Won; Park, So Young; Lee, Sang Moon; Lee, Jouhahn

    2013-11-15

    To obtain adsorbents with high capacities for removing heavy metals and organic pollutants capable of quick magnetic separation, we fabricated unique sea-urchin-like magnetic iron oxide (mixed γ-Fe2O3/Fe3O4 phase) nanostructures (called u-MFN) with large surface areas (94.1m(2) g(-1)) and strong magnetic properties (57.9 emu g(-1)) using a simple growth process and investigated their potential applications in water treatment. The u-MFN had excellent removal capabilities for the heavy metals As(V) (39.6 mg g(-1)) and Cr(VI) (35.0 mg g(-1)) and the organic pollutant Congo red (109.2 mg g(-1)). The u-MFN also displays excellent adsorption of Congo red after recycling. Because of its high adsorption capacity, fast adsorption rate, and quick magnetic separation from treated water, the u-MFN developed in the present study is expected to be an efficient magnetic adsorbent for heavy metals and organic pollutants in aqueous solutions. PMID:24021165

  13. Evaluation of hybrid treatments to produce high quality reuse water.

    PubMed

    Luiz, D B; Silva, G S; Vaz, E A C; José, H J; Moreira, R F P M

    2011-01-01

    Four tertiary hybrid treatments to produce high quality reused water, fulfilling Brazilian drinking water regulations, from a slaughterhouse's secondary treated effluent were evaluated. The pilot plant with a capacity of 500 L h(-1) was set up and consisted of these stages: pre-filtration system (cartridge filter 50 micron, activated carbon filter, cartridge filter 10 micron), oxidation (H2O2) or second filtration (ceramic filter, UF) followed by UV radiation (90 L h(-1)). The best combination was T4: pre-filtration followed by H2O2 addition and UV radiation (AOP H2O2/UV). Disinfection kinetics by T4 followed pseudo first-order kinetics: k(T4) = 0.00943 s(-1) or 0.00101 cm2 mJ(-1). Three different zones (A, B, C) were observed in the UV254 degradation kinetics (pseudo-first order kinetics): k' decreased over time (k'(A) > k'(B) > k'(C)). PMID:21902048

  14. Algal-bacterial treatment facility removes selenium from drainage water

    SciTech Connect

    Quinn, Nigel W.T.; Lundquist, Tryg J.; Green, F. Bailey; Zarate, Max A.; Oswald, William J.; Leighton, Terrance

    2000-01-25

    A demonstration algal-bacterial selenium removal (ABSR) facility has been treating agricultural drainage water in the Panoche Drainage District on the west side of the San Joaquin Valley since 1997. The project goals are to demonstrate the effectiveness of the ABSR technology for selenium removal, to investigate potential wildlife exposure to selenium at full-scale facilities, and to develop an operational plant configuration that will minimize the life-cycle cost for each pound of selenium removed. The facility consists of a series of ponds designed to promote native microorganisms that remove nitrate and selenium. Previous treatment research efforts sought to reduce selenium concentrations to less than 5 mu g/L, but the ABSR Facility demonstration focuses on providing affordable reduction of the selenium load that is discharged to the San Joaquin River. During 1997 and 1998, the best-performing ABSR plant configuration reduced nitrate by more than 95 percent and reduced total soluble selenium mass by 80 percent. Ongoing investigations focus on optimizing operational parameters and determining operational costs and scale-up engineering requirements. The preliminary total cost estimate for a 10-acre-foot per day ABSR facility is less than $200 per acre-foot of treated drainage water.

  15. Catalytic membrane reactor for water and wastewater treatment

    NASA Astrophysics Data System (ADS)

    Heng, Samuel

    A double membrane reactor was fabricated and assessed for continuous treatment of water containing organic contaminants by ozonation. This innovative reactor consisted of a zeolite membrane prepared on the inner surface of a porous a-alumina support, which served as water selective extractor and active contactor, and a porous stainless membrane which was the ozone gas diffuser. The coupling of membrane separation and chemical oxidation was found to be highly beneficial to both processes. The total organic carbon (TOC) removal rate at the retentate was enhanced by up to 2.2 times, as compared to membrane ozonation. Simultaneously, clean water (< 2 mg C.L-1 ) was consistently produced on the permeate side, using a feed solution containing up to 1000 mg C.L-1, while the retentate was concentrated and treated. Most significantly, the addition of an adsorbing material, as a bed or a coated layer, onto the pores of the membrane support, was shown to further enhance TOC degradation, permeated TOC concentration, permeate flux, and moreover, ozone yield. The achievements of this project included: (1) The development of a novel low-temperature zeolite membrane activation method that generates consistently high quality membranes (i.e. high reproducibility and fewer defects). (2) The demonstration that gamma-alumina and gamma-alumina supported catalysts do not have significant activity and that the TOC removal enhancement usually observed during catalytic ozonation was due primarily to the contribution of adsorption and metal leaching. Thermogravimetric analysis (TGA) and elemental analysis (EA) of the spent catalyst showed that, during catalytic ozonation, oxygenated by-products of increased adsorbability were concentrated onto the gamma-alumina contactor, and were subsequently degraded. (3) The development of a method for coating high surface area gamma-alumina layers onto the grains of zeolite membrane support used as the active membrane contactor.

  16. Reuse of drinking water treatment sludge for olive oil mill wastewater treatment.

    PubMed

    Fragoso, R A; Duarte, E A

    2012-01-01

    Olive mill wastewater (OMW) results from the production of olive oil, which is an important traditional agro-industry in Mediterranean countries. In continuous three-phase centrifugation 1.0-1.2 m(3) of OMW are produced per ton of processed olives. Discharge of OMW is of serious environmental concern due to its high content of organic matter with phytotoxic properties, namely phenolic compounds. Meanwhile, drinking water treatment sludge (DWTS) is produced in high amounts and has long been considered as a waste for landfill. The aim of this work was the assessment of reusing DWTS for OMW treatment. High performance liquid chromatography (HPLC) analysis was carried out to determine the phenolic compounds present and to evaluate if they are recalcitrant. Treatability assays were performed using a dosage of DWTS from 50 to 300 g L(-1). Treatment efficiency was evaluated based on the removal of chemical oxygen demand (COD), biochemical oxygen demand (BOD), total solids (TS), total suspended solids (TSS), total volatile solids (TVS), oil and grease (OG), phenols (total phosphorous (TP) and HPLC fraction). Results from OMW HPLC characterization identified a total of 13 compounds; the major ones were hydroxytyrosol, tyrosol, caffeic acid, p-cumaric acid and oleuropein. Treatability assays led to a maximum reduction of about 90% of some of the phenolic compounds determined by HPLC. Addition of 200-300 g L(-1) of DWTS reduced 40-50% of COD, 45-50% of TP, a maximum of nearly 70% TSS and 45% for TS and TVS. The OG fraction showed a reduction of about 90%, achieved adding 300 g L(-1) od DWTS. This study points out the possibility of establishing an integrated management of OMW and DWTS, contributing to a decrease in the environmental impact of two industrial activities, olive oil production and drinking water treatment. PMID:22766882

  17. Long-term Impact of Integration of Household Water Treatment and Hygiene Promotion with Antenatal Services on Maternal Water Treatment and Hygiene Practices in Malawi

    PubMed Central

    Loharikar, Anagha; Russo, Elizabeth; Sheth, Anandi; Menon, Manoj; Kudzala, Amose; Tauzie, Blessius; Masuku, Humphreys D.; Ayers, Tracy; Hoekstra, Robert M.; Quick, Robert

    2013-01-01

    A clinic-based program to integrate antenatal services with distribution of hygiene kits including safe water storage containers, water treatment solution (brand name WaterGuard), soap, and hygiene education, was implemented in Malawi in 2007 and evaluated in 2010. We surveyed 389 participants at baseline in 2007, and found and surveyed 232 (60%) participants to assess water treatment, test stored drinking water for residual chlorine (an objective measure of treatment), and observe handwashing technique at follow-up in 2010. Program participants were more likely to know correct water treatment procedures (67% versus 36%; P < 0.0001), treat drinking water with WaterGuard (24% versus 2%; P < 0.0001), purchase and use WaterGuard (21% versus 1%; P < 0.001), and demonstrate correct handwashing technique (50% versus 21%; P < 0.001) at the three-year follow-up survey than at baseline. This antenatal-clinic-based program may have contributed to sustained water treatment and proper handwashing technique among program participants. PMID:23243106

  18. Long-term impact of integration of household water treatment and hygiene promotion with antenatal services on maternal water treatment and hygiene practices in Malawi.

    PubMed

    Loharikar, Anagha; Russo, Elizabeth; Sheth, Anandi; Menon, Manoj; Kudzala, Amose; Tauzie, Blessius; Masuku, Humphreys D; Ayers, Tracy; Hoekstra, Robert M; Quick, Robert

    2013-02-01

    A clinic-based program to integrate antenatal services with distribution of hygiene kits including safe water storage containers, water treatment solution (brand name WaterGuard), soap, and hygiene education, was implemented in Malawi in 2007 and evaluated in 2010. We surveyed 389 participants at baseline in 2007, and found and surveyed 232 (60%) participants to assess water treatment, test stored drinking water for residual chlorine (an objective measure of treatment), and observe handwashing technique at follow-up in 2010. Program participants were more likely to know correct water treatment procedures (67% versus 36%; P < 0.0001), treat drinking water with WaterGuard (24% versus 2%; P < 0.0001), purchase and use WaterGuard (21% versus 1%; P < 0.001), and demonstrate correct handwashing technique (50% versus 21%; P < 0.001) at the three-year follow-up survey than at baseline. This antenatal-clinic-based program may have contributed to sustained water treatment and proper handwashing technique among program participants. PMID:23243106

  19. Relationship between Use of Water from Community-Scale Water Treatment Refill Kiosks and Childhood Diarrhea in Jakarta

    PubMed Central

    Sima, Laura C.; Desai, Mayur M.; McCarty, Kathleen M.; Elimelech, Menachem

    2012-01-01

    In developing countries, safe piped drinking water is generally unavailable, and bottled water is unaffordable for most people. Purchasing drinking water from community-scale decentralized water treatment and refill kiosks (referred to as isi ulang depots in Indonesia) is becoming a common alternative. This study investigates the association between diarrhea risk and community-scale water treatment and refill kiosk. We monitored daily diarrhea status and water source for 1,000 children 1–4 years of age in Jakarta, Indonesia, for up to 5 months. Among children in an urban slum, rate of diarrhea/1,000 child-days varied significantly by primary water source: 8.13 for tap water, 3.60 for bottled water, and 3.97 for water kiosks. In multivariable Poisson regression analysis, diarrhea risk remained significantly lower among water kiosk users (adjusted rate ratio [RR] = 0.49, 95% confidence interval [CI] = 0.29–0.83) and bottled water users (adjusted RR = 0.45, 95% CI = 0.21–0.97), compared with tap water users. In a peri-urban area, where few people purchased from water kiosk (N = 28, 6% of total population), diarrhea rates were lower overall: 2.44 for well water, 1.90 for bottled water, and 2.54 for water kiosks. There were no significant differences in diarrhea risk for water kiosk users or bottled water users compared with well water users. Purchasing water from low-cost water kiosks is associated with a reduction in diarrhea risk similar to that found for bottled water. PMID:23128290

  20. Arsenite Sorption by Drinking-Water Treatment Residuals: Redox Effects

    NASA Astrophysics Data System (ADS)

    Makris, K. C.; Sarkar, D.; Datta, R.

    2005-05-01

    Arsenic (As) is a major human carcinogen and could pose a serious human health risk at concentrations as low as 50 ppb in drinking water. Elevated As concentrations in soils currently used for residential purposes (located on former agricultural lands amended with arsenical pesticides) have increased the possibility of human contact with soil-As. Studies have shown that As bioavailability in the environment is primarily a function of its chemical speciation, which depends upon the redox potential. Arsenic toxicity and carcinogenicity to living organisms is primarily due to exposure to the reduced species of As - arsenite, i.e., As(III), rather than the oxidized species - arsenate, i.e., As(V); the mobility of As(III) is much higher than As(V). One of the most promising methods to decrease the mobility of arsenite in the soil-water system is promoting its retention onto amorphous Fe/Al hydroxides. Drinking-Water Treatment Residuals (WTRs) are an inexpensive source of such Fe/Al hydroxides, which can be land-applied following the USEPA-regulated biosolids application rules. The WTRs are byproducts of drinking-water purification processes and generally contain sediment, organic carbon, and Al/Fe hydroxides. The hydroxides are typically amorphous and have tremendous affinity for oxyanions (e.g., arsenate). Preliminary work showed that WTRs are characterized by large internal surface area and porosity that partly explains their high affinity for As(V). The current study examines the potential of two WTRs (Fe-based and Al-based) to adsorb arsenite from solution. We hypothesize that As(III) adsorption onto the Fe-based WTR (whose stability is highly redox-sensitive) would be vastly different from the adsorption of As(III) onto the redox-insensitive Al-based WTR. Our main objective is to characterize As(III) sorption by both Fe- and Al-based WTRs by changing critical factors, such as the solid:solution ratio, contact time, and initial As(III) load. Results from this study

  1. Evaluation of Effectiveness Technological Process of Water Purification Exemplified on Modernized Water Treatment Plant at Otoczna

    NASA Astrophysics Data System (ADS)

    Jordanowska, Joanna; Jakubus, Monika

    2014-12-01

    The article presents the work of the Water Treatment Plant in the town of Otoczna, located in the Wielkopolska province, before and after the modernization of the technological line. It includes the quality characteristics of the raw water and treated water with particular emphasis on changes in the quality indicators in the period 2002 -2012 in relation to the physicochemical parameters: the content of total iron and total manganese, the ammonium ion as well as organoleptic parameters(colour and turbidity). The efficiency of technological processes was analysed, including the processes of bed start up with chalcedonic sand to remove total iron and manganese and ammonium ion. Based on the survey, it was found that the applied modernization helped solve the problem of water quality, especially the removal of excessive concentrations of iron, manganese and ammonium nitrogen from groundwater. It has been shown that one year after modernization of the technological line there was a high reduction degree of most parameters, respectively for the general iron content -99%, general manganese - 93% ammonia - 93%, turbidity - 94%. It has been proved, that chalcedonic turned out to be better filter material than quartz sand previously used till 2008. The studies have confirmed that the stage of modernization was soon followed by bed start-up for removing general iron from the groundwater. The stage of manganese removal required more time, about eight months for bed start-up. Furthermore, the technological modernization contributed to the improvement of the efficiency of the nitrification process.

  2. AN OVERVIEW PAPER OF USEPA AND USDA DRINKING WATER TREATMENT SYSTEM DEMONSTRATIONS IN CHINA

    EPA Science Inventory

    Under an interagency agreement with the US Department of Agriculture, US EPA is coordinating support for several water treatment research demonstrations in China. EPA has installed two small drinking water treatment technologies (a bottled water system for a small community and ...

  3. AN OVERVIEW PRESENTATION OF USEPA AND USDA DRINKING WATER TREATMENT SYSTEM DEMONSTRATIONS IN CHINA

    EPA Science Inventory

    Under an interagency agreement with the US Department of Agriculture, US EPA is coordinating support for several water treatment research demonstrations in China. EPA has installed two small drinking water treatment technologies (a bottled water system for a small community and ...

  4. Development of a Water Treatment Plant Operation Manual Using an Algorithmic Approach.

    ERIC Educational Resources Information Center

    Counts, Cary A.

    This document describes the steps to be followed in the development of a prescription manual for training of water treatment plant operators. Suggestions on how to prepare both flow and narrative prescriptions are provided for a variety of water treatment systems, including: raw water, flocculation, rapid sand filter, caustic soda feed, alum feed,…

  5. 21 CFR 1250.83 - Storage of water prior to treatment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Storage of water prior to treatment. 1250.83... CONVEYANCE SANITATION Sanitation Facilities and Conditions on Vessels § 1250.83 Storage of water prior to treatment. The following requirements with respect to the storage of water on vessels prior to...

  6. 21 CFR 1250.83 - Storage of water prior to treatment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Storage of water prior to treatment. 1250.83... CONVEYANCE SANITATION Sanitation Facilities and Conditions on Vessels § 1250.83 Storage of water prior to treatment. The following requirements with respect to the storage of water on vessels prior to...

  7. 21 CFR 1250.83 - Storage of water prior to treatment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Storage of water prior to treatment. 1250.83... CONVEYANCE SANITATION Sanitation Facilities and Conditions on Vessels § 1250.83 Storage of water prior to treatment. The following requirements with respect to the storage of water on vessels prior to...

  8. TREATMENT OF VOLATILE ORGANIC COMPOUNDS IN DRINKING WATER

    EPA Science Inventory

    Volatile chlorinated and non-chlorinated compounds occur in both untreated and treated drinking water. Because volatilization is restricted, ground waters rather than surface waters are more likely to have high concentrations of these compounds. This document reviews properties, ...

  9. TREATMENT OF DRINKING WATER CONTAINING TRICHLOROETHYLENE AND RELATED INDUSTRIAL SOLVENTS

    EPA Science Inventory

    Volatile chlorinated and non-chlorinated compounds occur in both untreated and treated drinking water. Because volatilization is restricted, ground waters rather than surface waters are more likely to have high concentrations of these compounds. This document reviews properties, ...

  10. AN INVESTIGATION OF ARSENIC MOBILITY FROM IRON OXIDE SOLIDS PRODUCED DURING DRINKING WATER TREATMENT

    EPA Science Inventory

    The Arsenic Rule under the Safe Drinking Water Act will require certain drinking water suppliers to add to or modify their existing treatment in order to comply with the regulations. One of the treatment options is iron co-precipitation. This treatment is attractive because ars...

  11. MODIFIED REVERSE OSMOSIS SYSTEM FOR TREATMENT OF PRODUCED WATERS

    SciTech Connect

    T.M. Whitworth; Liangxiong Li

    2002-09-15

    This report describes work performed during the first year of the project ''Modified Reverse Osmosis System for Treatment of Produced Waters.'' This research project has two objectives. The first objective is to test the use of clay membranes in the treatment of produced waters by reverse osmosis. The second objective is to test the ability of a system patented by the New Mexico Tech Research Foundation to remove salts from reverse osmosis waste streams as a solid. We performed 12 experiments using clay membranes in cross-flow experimental cells. We found that, due to dispersion in the porous frit used adjacent to the membrane, the concentration polarization layer seems to be completely (or nearly completely) destroyed at low flow rates. This observation suggests that clay membranes used with porous frit material many reach optimum rejection rates at lower pumping rates than required for use with synthetic membranes. The solute rejection efficiency decreases with increasing solution concentration. For the membranes and experiments reported here, the rejection efficiency ranged from 71% with 0.01 M NaCl solution down to 12% with 2.3 M NaCl solution. More compacted clay membranes will have higher rejection capabilities. The clay membranes used in our experiments were relatively thick (approximately 0.5 mm). The active layer of most synthetic membranes is only 0.04 {micro}m (0.00004 mm), approximately 1250 times thinner than the clay membranes used in these experiments. Yet clay membranes as thin as 12 {micro}m have been constructed (Fritz and Eady, 1985). Since Darcy's law states that the flow through a material of constant permeability is inversely proportional to it's the material's thickness, then, based on these experimental observations, a very thin clay membrane would be expected to have much higher flow rates than the ones used in these experiments. Future experiments will focus on testing very thin clay membranes. The membranes generally exhibited reasonable

  12. Toxicological assessment of polyhexamethylene biguanide for water treatment.

    PubMed

    Asiedu-Gyekye, Isaac J; Mahmood, Abdulai Seidu; Awortwe, Charles; Nyarko, Alexander K

    2015-12-01

    Polyhexamethylene biguanide (PHMB) is an antiseptic with antiviral and antibacterial properties used in a variety of products including wound care dressings, contact lens cleaning solutions, perioperative cleansing products, and swimming pool cleaners. There are regulatory concerns with regard to its safety in humans for water treatment. We decided to assess the safety of this chemical in Sprague-Dawley rats. PHMB was administered in a single dose by gavage via a stomach tube as per the manufacturer's instruction within a dose range of 2 mg/kg to 40 mg/kg. Subchronic toxicity studies were also conducted at doses of 2 mg/kg, 8 mg/kg and 32 mg/kg body weight and hematological, biochemical and histopathological findings of the major organs were assessed. Administration of a dose of 25.6 mg/kg, i.e. 1.6 mL of 0.4% PHMB solution (equivalent to 6.4x10(3) mg/L of 0.1% solution) resulted in 50% mortality. Histopathological analysis in the acute toxicity studies showed that no histopathological lesions were observed in the heart and kidney samples but 30% of the animals had mild hydropic changes in zone 1 of their liver samples, while at a dosage of 32 mg/kg in the subchronic toxicity studies, 50% of the animals showed either mild hepatocyte cytolysis with or without lymphocyte infiltration and feathery degeneration. Lymphocyte infiltration was, for the first time, observed in one heart sample, whereas one kidney sample showed mild tubular damage. The acute studies showed that the median lethal dose (LD50) is 25.6 mg/kg (LC50 of 1.6 mL of 0.4% PHMB. Subchronic toxicological studies also revealed few deleterious effects on the internal organs examined, as seen from the results of the biochemical parameters evaluated. These results have implications for the use of PHMB to make water potable. PMID:27486381

  13. Toxicological assessment of polyhexamethylene biguanide for water treatment

    PubMed Central

    Mahmood, Abdulai Seidu; Awortwe, Charles; Nyarko, Alexander K.

    2015-01-01

    Polyhexamethylene biguanide (PHMB) is an antiseptic with antiviral and antibacterial properties used in a variety of products including wound care dressings, contact lens cleaning solutions, perioperative cleansing products, and swimming pool cleaners. There are regulatory concerns with regard to its safety in humans for water treatment. We decided to assess the safety of this chemical in Sprague-Dawley rats. PHMB was administered in a single dose by gavage via a stomach tube as per the manufacturer's instruction within a dose range of 2 mg/kg to 40 mg/kg. Subchronic toxicity studies were also conducted at doses of 2 mg/kg, 8 mg/kg and 32 mg/kg body weight and hematological, biochemical and histopathological findings of the major organs were assessed. Administration of a dose of 25.6 mg/kg, i.e. 1.6 mL of 0.4% PHMB solution (equivalent to 6.4x103 mg/L of 0.1% solution) resulted in 50% mortality. Histopathological analysis in the acute toxicity studies showed that no histopathological lesions were observed in the heart and kidney samples but 30% of the animals had mild hydropic changes in zone 1 of their liver samples, while at a dosage of 32 mg/kg in the subchronic toxicity studies, 50% of the animals showed either mild hepatocyte cytolysis with or without lymphocyte infiltration and feathery degeneration. Lymphocyte infiltration was, for the first time, observed in one heart sample, whereas one kidney sample showed mild tubular damage. The acute studies showed that the median lethal dose (LD50) is 25.6 mg/kg (LC50 of 1.6 mL of 0.4% PHMB. Subchronic toxicological studies also revealed few deleterious effects on the internal organs examined, as seen from the results of the biochemical parameters evaluated. These results have implications for the use of PHMB to make water potable. PMID:27486381

  14. Influence of water treatment residuals on phosphorus solubility and leaching.

    PubMed

    Elliott, H A; O'Connor, G A; Lu, P; Brinton, S

    2002-01-01

    Laboratory and greenhouse studies compared the ability of water treatment residuals (WTRs) to alter P solubility and leaching in Immokalee sandy soil (sandy, siliceous, hyperthermic Arenic Alaquod) amended with biosolids and triple superphosphate (TSP). Aluminum sulfate (Al-WTR) and ferric sulfate (Fe-WTR) coagulation residuals, a lime softening residual (Ca-WTR) produced during hardness removal, and pure hematite were examined. In equilibration studies, the ability to reduce soluble P followed the order Al-WTR > Ca-WTR = Fe-WTR > hematite. Differences in the P-fixing capacity of the sesquioxide-dominated materials (Al-WTR, Fe-WTR, hematite) were attributed to their varying reactive Fe- and Al-hydrous oxide contents as measured by oxalate extraction. Leachate P was monitored from greenhouse columns where bahiagrass (Paspalum notatum Flugge) was grown on Immokalee soil amended with biosolids or TSP at an equivalent rate of 224 kg P ha(-1) and WTRs at 2.5% (56 Mg ha(-1)). In the absence of WTRs, 21% of TSP and 11% of Largo cake biosolids total phosphorus (PT) leached over 4 mo. With co-applied WTRs, losses from TSP columns were reduced to 3.5% (Fe-WTR), 2.5% (Ca-WTR), and <1% (Al-WTR) of applied P. For the Largo biosolids treatments all WTRs retarded downward P flux such that leachate P was not statistically different than for control (soil only) columns. The phosphorus saturation index (PSI = [Pox]/ [Al(ox) + Fe(ox)], where Pox, Al, and Fe(ox) are oxalate-extractable P, Al, and Fe, respectively) based on a simple oxalate extraction of the WTR and biosolids is potentially useful for determining WTR application rates for controlled reduction of P in drainage when biosolids are applied to low P-sorbing soils. PMID:12175057

  15. Economies of density for on-site waste water treatment.

    PubMed

    Eggimann, Sven; Truffer, Bernhard; Maurer, Max

    2016-09-15

    Decentralised wastewater treatment is increasingly gaining interest as a means of responding to sustainability challenges. Cost comparisons are a crucial element of any sustainability assessment. While the cost characteristics of centralised waste water management systems (WMS) have been studied extensively, the economics of decentralised WMS are less understood. A key motivation for studying the costs of decentralised WMS is to compare the cost of centralised and decentralised WMS in order to decide on cost-efficient sanitation solutions. This paper outlines a model designed to assess those costs which depend on the spatial density of decentralised wastewater treatment plants in a region. Density-related costs are mostly linked to operation and maintenance activities which depend on transportation, like sludge removal or the visits of professionals to the plants for control, servicing or repairs. We first specify a modelled cost-density relationship for a region in a geometric two-dimensional space by means of heuristic routing algorithms that consider time and load-capacity restrictions. The generic model is then applied to a Swiss case study for which we specify a broad range of modelling parameters. As a result, we identify a 'hockey-stick'-shaped cost curve that is characterised by strong cost reductions at high density values which level out at around 1 to 1.5 plants per km(2). Variations in the cost curves are mostly due to differences in management approaches (scheduled or unscheduled emptying). In addition to the well-known diseconomies of scale in the case of centralised sanitation, we find a similar generic cost behaviour for decentralised sanitation due to economies of density. Low densities in sparsely populated regions thus result in higher costs for both centralised and decentralised system. Policy implications are that efforts to introduce decentralised options in a region should consider the low-density/high-cost problem when comparing centralised

  16. ANALYSIS ON EFFLUENT WATER QUALITY AND ELECTRICITY CONSUMPTION AFTER INTRODUCING ADVANCED SEWAGE TREATMENT

    NASA Astrophysics Data System (ADS)

    Shiojiri, Yasuo; Maekawa, Shunich

    We analyze effluent water quality and electricity consumption after in troducing advanced treatment in sewage treatment plant. We define 'advanced treatment ratio' as volume of treated water through advanced treatment processes divided by total volume of treated water in plant. Advanced treatment ratio represents degree of introducing advanced treatment. We build two types of equation. One represents relation between effluent water quality and advanced treatment ratio, the other between electricity consumption and advanced treatment ratio. Each equation is fitted by least squares on 808 samples: 8 fiscal years operation data of 101 plants working in Kanagawa, Tokyo, Saitama and Chiba areas, and coefficient of advanced treatment ratio is estimated. The result is as follows. (1) After introducing advanced treatment aimed at nitrogen removal, T-N in effluent water decreases by 51.3% and electricity consum ption increases by 52.2%. (2) After introducing advanced treatment aimed at phosphorus removal, T-P in effluent water decreases by 27.8%. Using the above result, we try prioritizing 71 plants in Tokyo Bay watershed about raising advanced treatment ratio, so that, in total, pollutant in effluent water decreases with minimized increase of electricity consumption.

  17. Microbial Removals by a Novel Biofilter Water Treatment System

    PubMed Central

    Wendt, Christopher; Ives, Rebecca; Hoyt, Anne L.; Conrad, Ken E.; Longstaff, Stephanie; Kuennen, Roy W.; Rose, Joan B.

    2015-01-01

    Two point-of-use drinking water treatment systems designed using a carbon filter and foam material as a possible alternative to traditional biosand systems were evaluated for removal of bacteria, protozoa, and viruses. Two configurations were tested: the foam material was positioned vertically around the carbon filter in the sleeve unit or horizontally in the disk unit. The filtration systems were challenged with Cryptosporidium parvum, Raoultella terrigena, and bacteriophages P22 and MS2 before and after biofilm development to determine average log reduction (ALR) for each organism and the role of the biofilm. There was no significant difference in performance between the two designs, and both designs showed significant levels of removal (at least 4 log10 reduction in viruses, 6 log10 for protozoa, and 8 log10 for bacteria). Removal levels meet or exceeded Environmental Protection Agency (EPA) standards for microbial purifiers. Exploratory test results suggested that mature biofilm formation contributed 1–2 log10 reductions. Future work is recommended to determine field viability. PMID:25758649

  18. Influence of water treatment residuals on dewaterability of wastewater biosolids.

    PubMed

    Taylor, Malcolm; Elliott, Herschel A

    2013-01-01

    Co-dewatering of water treatment residuals (WTR) and wastewater biosolids can potentially benefit municipalities by reducing processing equipment and costs. This study investigated dewaterability (using capillary suction time, CST) of combined alum residuals (Al-WTR) and anaerobically digested biosolids at various blending ratios (BR), defined as the mass ratio of WTR to biosolids on a dry solids basis. Without polymer addition, the CST was 160 s for a BR of 0.75 compared with 355 s for the biosolids alone. The optimum polymer dose (OPD), defined as the polymer dose yielding CST of 20 s, was reduced from 20.6 g kg(-1) dry solids for the biosolids alone to 16.3 and 12.6 g kg(-1) when BR was 0.75 and 1.5, respectively. Precipitated Al hydrous oxides in the WTR likely caused flocculation of the biosolids particles through heterocoagulation or charge neutralization. The solids contents of the blended materials and biosolids at their respective OPDs were not statistically different (α = 0.05) following dewatering by a belt-filter press. We conclude addition of Al-WTR improved biosolids dewaterability and reduced polymer dosage. In practice, the extent of these benefits may be limited by the quantity of WTR produced relative to the amount of wastewater solids generated by a municipality. PMID:23128637

  19. Hydrolysis of bamboo biomass by subcritical water treatment.

    PubMed

    Mohan, Mood; Banerjee, Tamal; Goud, Vaibhav V

    2015-09-01

    The aim of present study was to obtain total reducing sugars (TRS) from bamboo under subcritical water (SCW) treatment in a batch reactor at the temperature ranging from 170 °C to 220 °C and 40 min hydrolysis time. Experiments were performed to investigate the effects of temperature and time on TRS yield. The maximum TRS yield (42.21%) was obtained at lower temperature (180 °C), however longer reaction time (25 min). X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM) analysis were used to characterise treated and untreated bamboo samples. The XRD profile revealed that crystallinity of bamboo increased to 71.90% with increase in temperature up to 210 °C and decreased thereafter to 70.92%. The first-order reaction kinetic model was used to fit the experimental data to obtain rate constants. From the Arrhenius plot, activation energy and pre-exponential factor at 25 min time were found to be 17.97 kJ mol(-1) and 0.154 min(-1), respectively. PMID:26000834

  20. Treatment of pulp mill sludges by supercritical water oxidation

    SciTech Connect

    Modell, M.

    1990-07-01

    Supercritical water oxidation (SCWO) is new process that can oxidize organics very effectively at moderate temperatures (400 to 650{degree}C) and high pressure (3700 psi). It is an environmentally acceptable alternative for sludge treatment. In bench scale tests, total organic carbon (TOC) and total organic halide (TOX) reductions of 99 to 99.9% were obtained; dioxin reductions were 95 to 99.9%. A conceptual design for commercial systems has been completed and preliminary economics have been estimated. Comparisons confirm that SCWO is less costly than dewatering plus incineration for treating pulp mill sludges. SCWO can also compete effectively with dewatering plus landfilling where tipping fees exceed $35/yd{sup 3}. In some regions of the US, tipping fees are now $75/yd{sup 3} and rising steadily. In the 1995 to 2000 time frame, SCWO has a good chance of becoming the method of choice. MODEC's objective is to bring the technology to commercial availability by 1993. 10 refs., 6 figs., 19 tabs.

  1. Comparative analysis of effluent water quality from a municipal treatment plant and two on-site wastewater treatment systems.

    PubMed

    Garcia, Santos N; Clubbs, Rebekah L; Stanley, Jacob K; Scheffe, Brian; Yelderman, Joe C; Brooks, Bryan W

    2013-06-01

    Though decentralized on-site technologies are extensively employed for wastewater treatment around the globe, an understanding of effluent water quality impairments associated with these systems remain less understood than effluent discharges from centralized municipal wastewater treatment facilities. Using a unique experimental facility, a novel comparative analysis of effluent water quality was performed from model decentralized aerobic (ATS) and septic (STS) on-site wastewater treatment systems and a centralized municipal wastewater treatment plant (MTP). The ATS and STS units did not benefit from further soil treatment. Each system received common influent wastewater from the Waco, Texas, USA Metropolitan Area Regional Sewerage System. We tested the hypothesis that MTP effluent would exhibit higher water quality than on-site effluents, based on parameters selected for study. A tiered testing approach was employed to assess the three effluent discharges: select routine water quality parameters (Tier I), whole effluent toxicity (Tier II), and select endocrine-active compounds (Tier III). Contrary to our hypothesis, ATS effluent was not statistically different from MTP effluents, based on Tier I and III parameters, but reproductive responses of Daphnia magna were slightly more sensitive to ATS than MTP effluents. STS effluent water quality was identified as most degraded of the three wastewater treatment systems. Parameters used to assess centralized wastewater treatment plant effluent water quality such as whole effluent toxicity and endocrine active substances appear useful for water quality assessments of decentralized discharges. Aerobic on-site wastewater treatment systems may represent more robust options than traditional septic systems for on-site wastewater treatment in watersheds with appreciable groundwater - surface water exchange. PMID:23557723

  2. NONPHOTOSYNTHETIC PIGMENTED BACTERIA IN A POTABLE WATER TREATMENT AND DISTRIBUTION SYSTEM

    EPA Science Inventory

    The occurrence of pigmented bacteria in potable water from raw source water through treatment to distribution water, including dead-end locations, was compared at sample sites in a large municipal water system. edia used to enumerate heterotrophic bacteria and differentiate pigme...

  3. Laboratory comparison of four iron-based filter materials for drainage water phosphate treatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphate released with agricultural subsurface drainage water can cause environmental degradation of downstream water bodies. On-site filter treatment with iron-based filter materials could potentially remove phosphate from drainage waters before these waters are discharged into local streams. Th...

  4. Investigation of early water breakthrough and the likely effectiveness of water shut-off treatments in heterogeneous carbonate reservoirs

    NASA Astrophysics Data System (ADS)

    Alblooshi, Younes

    Progressive percentage of total fluid produced in the oil industry is formation brine. Ever, increasing water cut will reduce oil recovery, diminish wells' productivity and increase cost of eventual artificial lift and produced water handling. This study investigates the problem of early water development in layered and heterogeneous reservoirs and determines the effect of various reservoir parameters on the development of water front movement in the presence of thief zones. A water injection in a line-staggered pattern was simulated to analyze these effects on the water breakthrough time, WBTT, and the evolution of water front in the thief zone. To achieve this, sensitivity analysis is conducted to investigate and determine the effect of some reservoir parameters that would explain the experience of having unpredicted advancement of injected water resulting in early water breakthrough and high water cut wells. These reservoir parameters included layers' horizontal permeability, Kv/Kh ratio, thickness of high permeability layers, water gravity effect, oil API gravity effect, and injection/production rate ratio (or IPR). Threshold of these parameters beyond which its effect would be constant is also determined to help operators to better estimate the water breakthrough time and hence better decision making process in waterflooding projects. Moreover, water shut-off, WSO, treatments are simulated to determine their effectiveness in delaying the water breakthrough time, and reducing water cut percentages for maximum possible time, under different thief zones' conditions. Extreme thief zone cases are selected from the first part of the study for this purpose. Also, the optimum WSO treatment thickness is identified at which a maximum delay in time is achieved which yields to best treatment practices in the fields. Finally, this study summarizes the applicability of these WSO treatment methods, and it identifies the level of effectiveness based on specific given

  5. Effects of Vermicompost and Water Treatment Residuals on Soil Physical Properties and Wheat Yield

    NASA Astrophysics Data System (ADS)

    Ibrahim, Mahmoud M.; Mahmoud, Essawy K.; Ibrahim, Doaa A.

    2015-04-01

    The application of vermicompost and water treatment residuals to improve the physical properties in the salt affected soils is a promising technology to meet the requirements of high plant growth and cost-effective reclamation. Therefore, the aim of this study was to investigate the effect of vermicompost and its mixtures with water treatment residuals on selected physical properties of saline sodic soil and on wheat yield. The treatments were vermicompost, water treatment residuals, vermicompost + water treatment residuals (1:1 and 2:1 wet weight ratio) at levels of 5 and 10 g dry weight kg-1 dry soil. The considered physical properties included aggregate stability, mean weight diameter, pore size distribution and dry bulk density. The addition of vermicompost and water treatment residuals had significant positive effects on the studied soil physical properties, and improved the grain yield of wheat. The treatment of (2 vermicompost + 1 water treatment residuals) at level of 5 g kg-1 soil gave the best grain yield. Combination of vermicompost and water treatment residuals improved the water treatment residuals efficiency in ameliorating the soil physical properties, and could be considered as an ameliorating material for the reclamation of salt affected soils.

  6. MODIFIED REVERSE OSMOSIS SYSTEM FOR TREATMENT OF PRODUCED WATERS

    SciTech Connect

    T.M. Whitworth; Liangxiong Li

    2002-09-15

    This report describes work performed during the second year of the project ''Modified reverse osmosis system for treatment of produced waters.'' We performed two series of reverse osmosis experiments using very thin bentonite clay membranes compacted to differing degrees. The first series of 10 experiments used NaCl solutions with membranes that ranged between 0.041 and 0.064mm in thickness. Our results showed compaction of such ultra-thin clay membranes to be problematic. The thickness of the membranes was exceeded by the dimensional variation in the machined experimental cell and this is believed to have resulted in local bypassing of the membrane with a resultant decrease in solute rejection efficiency. In two of the experiments, permeate flow was varied as a percentage of the total flow to investigate results of changing permeate flow on solute rejection. In one experiment, the permeate flow was varied between 2.4 and 10.3% of the total flow with no change in solute rejection. In another experiment, the permeate flow was varied between 24.6 and 52.5% of the total flow. In this experiment, the solute rejection rate decreased as the permeate occupied greater fractions of the total flow. This suggests a maximum solute rejection efficiency for these clay membranes for a permeate flow of between 10.3 and 24.6% of the total; flow. Solute rejection was found to decrease with increasing salt concentration and ranged between 62.9% and 19.7% for chloride and between 61.5 and 16.8% for sodium. Due to problems with the compaction procedure and potential membrane bypassing, these rejection rates are probably not the upper limit for NaCl rejection by bentonite membranes. The second series of four reverse osmosis experiments was conducted with a 0.057mm-thick bentonite membrane and dilutions of a produced water sample with an original TDS of 196,250 mg/l obtained from a facility near Loco Hill, New Mexico, operated by an independent. These experiments tested the separation

  7. Removal of dissolved organic matter in water-hyacinth waste-water treatment lagoons

    SciTech Connect

    Victoria-Rueda, C.H.

    1991-01-01

    Secondary treatment of domestic wastewater in water hyacinth lagoons was evaluated under experimental conditions to assess the role of the roots' bacterial biofilm in the removal of dissolved organic matter (DOM). Research was conducted to (1) quantify removal rates by the biofilm as a function of bulk DOM concentration, (2) formulate an analytical model of DOM removal incorporating biofilm activity, and (3) test the model response to variable organic loads in a pilot-scale plant. Removal of DOM by the biofilm was quantified in continuous-flow water hyacinth tanks at ten concentrations ranging from 45 to 330 g COD m {sup {minus}3} . Total DOM removal in the denitrifying, acetate-based experimental system was measured and partitioned into two fractions associated with the activity of biofilm and suspended bacteria. Calculated DOM removal by the biofilm was adjusted for the release of organic compounds by debris decomposition. Values of DOM removal were used to calculate oxygen transfer rates from the water hyacinth roots. A model of DOM removal in water hyacinth lagoons was formulated. The model, composed of four differential equations, was solved at steady-state conditions and the validity of its simulation results was tested in pilot-scale tanks. Hydraulic detection times ranging from 2 to 28 days were evaluated using biofilm density and concentrations of DOM and particulate organics as monitoring parameters of the model response. The observed decrease of suspended bacterial biomass along the tank was correctly simulated by the model, but predictions of effluent concentrations were not always consistent. Predicted values of biofilm bacterial mass were similar to those measured in the tanks, except when large algal populations were present in the film.

  8. Integrating Water Treatment into Antenatal Care: Impact on Use of Maternal Health Services and Household Water Treatment by Mothers-Rural Uganda, 2013.

    PubMed

    Matanock, Almea; Anderson, Tara; Ayers, Tracy; Likicho, Lilian; Wamimbi, Richard; Lu, Xin; Emeetai, Thomas; Kakande, Celia; Mutabazi, Miriam; Quick, Robert

    2016-05-01

    To increase maternal health service use and household water treatment (HWT), free water treatment kits were provided at first antenatal care (ANC) visits and free water treatment sachet refills were provided at follow-up ANC visits, delivery, and postnatal visits in 46 health facilities in rural Uganda. We evaluated the impact by surveying 226 women in the initiative (intervention group) and 207 women who received ANC before the initiative began (comparison group). There was no differences in the percentages of intervention and comparison group women with ≥ 4 ANC visits; however, a higher percentage of intervention group women reported treating their drinking water (31.7% versus 19.7%, P = 0.01), and had free chlorine residual in stored water (13.5% versus 3.4%, P = 0.02) than comparison group women. The intervention did not appear to motivate increased maternal health service use, but demonstrated improvements in HWT. PMID:27001758

  9. Home Water Treatment Habits and Effectiveness in a Rural Arizona Community

    PubMed Central

    Lothrop, Nathan; Wilkinson, Sarah T.; Verhougstraete, Marc; Sugeng, Anastasia; Loh, Miranda M.; Klimecki, Walter; Beamer, Paloma I.

    2015-01-01

    Drinking water quality in the United States (US) is among the safest in the world. However, many residents, often in rural areas, rely on unregulated private wells or small municipal utilities for water needs. These utilities may violate the Safe Drinking Water Act contaminant guidelines, often because they lack the required financial resources. Residents may use alternative water sources or install a home water treatment system. Despite increased home water treatment adoption, few studies have examined their use and effectiveness in the US. Our study addresses this knowledge gap by examining home water treatment in a rural Arizona community. Water samples were analyzed for metal(loid)s, and home treatment and demographic data were recorded in 31 homes. Approximately 42% of homes treated their water. Independent of source water quality, residents with higher income (OR = 1.25; 95%CI (1.00 – 1.64)) and education levels (OR = 1.49; 95%CI (1.12 – 2.12)) were more likely to treat their water. Some contaminant concentrations were effectively reduced with treatment, while some were not. We conclude that increased educational outreach on contaminant testing and treatment, especially to rural areas with endemic water contamination, would result in a greater public health impact while reducing rural health disparities. PMID:26120482

  10. EDI as a Treatment Module in Recycling Spent Rinse Waters

    SciTech Connect

    Donovan, Robert P.; Morrison, Dennis J.

    1999-08-11

    Recycling of the spent rinse water discharged from the wet benches commonly used in semiconductor processing is one tactic for responding to the targets for water usage published in the 1997 National Technology Roadmap for Semiconductors (NTRS). Not only does the NTRS list a target that dramatically reduces total water usage/unit area of silicon manufactured by the industry in the future but for the years 2003 and beyond, the NTRS actually touts goals which would have semiconductor manufacturers drawing less water from a regional water supply per unit area of silicon manufactured than the quantity of ultrapure water (UPW) used in the production of that same silicon. Achieving this latter NTRS target strongly implies more widespread recycling of spent rinse waters at semiconductor manufacturing sites. In spite of the fact that, by most metrics, spent rinse waters are of much higher purity than incoming municipal waters, recycling of these spent rinse waters back into the UPW production plant is not a simple, straightforward task. The rub is that certain of the chemicals used in semiconductor manufacturing, and thus potentially present in trace concentrations (or more) in spent rinse waters, are not found in municipal water supplies and are not necessarily removed by the conventional UPW production sequence used by semiconductor manufacturers. Some of these contaminants, unique to spent rinse waters, may actually foul the resins and membranes of the UPW system, posing a threat to UPW production and potentially even causing a shutdown.

  11. MODIFIED REVERSE OSMOSIS SYSTEM FOR TREATMENT OF PRODUCED WATERS

    SciTech Connect

    Robert L. Lee; Junghan Dong

    2004-06-03

    This final report of ''Modified Reverse Osmosis System for Treatment of Produced Water,'' DOE project No. DE-FC26-00BC15326 describes work performed in the third year of the project. Several good results were obtained, which are documented in this report. The compacted bentonite membranes were replaced by supported bentonite membranes, which exhibited the same salt rejection capability. Unfortunately, it also inherited the clay expansion problem due to water invasion into the interlayer spaces of the compacted bentonite membranes. We noted that the supported bentonite membrane developed in the project was the first of its kind reported in the literature. An {alpha}-alumina-supported MFI-type zeolite membrane synthesized by in-situ crystallization was fabricated and tested. Unlike the bentonite clay membranes, the zeolite membranes maintained stability and high salt rejection rate even for a highly saline solution. Actual produced brines from gas and oil fields were then tested. For gas fields producing brine, the 18,300 ppm TDS (total dissolved solids) in the produced brine was reduced to 3060 ppm, an 83.3% rejection rate of 15,240 ppm salt rejection. For oilfield brine, while the TDS was reduced from 181,600 ppm to 148,900 ppm, an 18% rejection rate of 32,700 ppm reduction, the zeolite membrane was stable. Preliminary results show the dissolved organics, mainly hydrocarbons, did not affect the salt rejection. However, the rejection of organics was inconclusive at this point. Finally, the by-product of this project, the {alpha}-alumina-supported Pt-Co/Na Y catalytic zeolite membrane was developed and demonstrated for overcoming the two-step limitation of nonoxidation methane (CH{sub 4}) conversion to higher hydrocarbons (C{sub 2+}) and hydrogen (H{sub 2}). Detailed experiments to obtain quantitative results of H{sub 2} generation for various conditions are now being conducted. Technology transfer efforts included five manuscripts submitted to peer-reviewed journals

  12. Radiological assessment of water treatment processes in a water treatment plant in Saudi Arabia: Water and sludge radium content, radon air concentrations and dose rates.

    PubMed

    Al-Jaseem, Q Kh; Almasoud, Fahad I; Ababneh, Anas M; Al-Hobaib, A S

    2016-09-01

    There is an increase demand for clean water sources in Saudi Arabia and, yet, renewable water resources are very limited. This has forced the authorities to explore deep groundwater which is known to contain large concentrations of radionuclides, mainly radium isotopes. Lately, there has been an increase in the number of water treatment plants (WTPs) around the country. In this study, a radiological assessment of a WTP in Saudi Arabia was performed. Raw water was found to have total radium activity of 0.23Bq/L, which exceeds the international limit of 0.185Bq/L (5pCi/L). The WTP investigated uses three stages of treatment: flocculation/sedimentation, sand filtration and reverse osmosis. The radium removal efficiency was evaluated for each stage and the respective values were 33%, 22% and 98%. Moreover, the activity of radium in the solid waste generated from the WTP in the sedimentation and sand filtrations stages were measured and found to be 4490 and 6750Bq/kg, respectively, which exceed the national limit of 1000Bq/kg for radioactive waste. A radiological assessment of the air inside the WTP was also performed by measuring the radon concentrations and dose rates and were found in the ranges of 2-18Bq/m(3) and 70-1000nSv/h, respectively. The annual effective dose was calculated and the average values was found to be 0.3mSv which is below the 1mSv limit. PMID:27169731

  13. THE TREATMENT OF CONTAMINATED WATER AT REMEDIAL WOOD PRESERVING SITES

    EPA Science Inventory

    Contaminated groundwater and surface water have posed a great challenge in restoring wood preserving sites to beneficial use. Often contaminated groundwater plumes extend far beyond the legal property limits, adversely impacting drinking water supplies and crop lands. To contain,...

  14. Chapter 24. emerging technologies for irrigation water treatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several disinfestants that have potential for treating recycled irrigation water are less commonly used or newer developing technologies. Hydrogen peroxide can reduce spread of pathogens in water that contains nutrients or pesticide residues without generating toxic residues. Benefits potentially in...

  15. ADVANCES IN DRINKING WATER TREATMENT IN THE UNITED STATES

    EPA Science Inventory

    The United States drinking water public health protection goal is to provide water that meets all health-based standards to ninety-five percent of the population served by public drinking water supplies by 2005. In 2002, the level of compliance with some eighty-five health-based ...

  16. ADVERSE IMPACTS OF WASTE WATER TREATMENT ­ A CASE STUDY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Industrial metal plating processes coat materials with metals, such as chromium, copper and nickel. After the plating process, excess metals are rinsed off and the rinse water is collected and then treated to remove metals prior to discharge of the rinse water into rivers. This waste water is typica...

  17. ETV REPORT: REMOVAL OF CHEMICAL CONTAMINANTS IN DRINKING WATER — PALL/KINETICO PUREFECTA DRINKING WATER TREATMENT SYSTEM

    EPA Science Inventory

    The Pall/Kinetico Purefecta™ POU drinking water treatment system was tested for removal of aldicarb, benzene, cadmium, carbofuran, cesium, chloroform, dichlorvos, dicrotophos, fenamiphos, mercury, mevinphos, oxamyl, strontium, and strychnine. The Purefecta™ employs several compon...

  18. Occurrence and elimination of cyanobacterial toxins in drinking water treatment plants

    SciTech Connect

    Hoeger, Stefan J.; Hitzfeld, Bettina C.; Dietrich, Daniel R

    2005-03-15

    Toxin-producing cyanobacteria (blue-green algae) are abundant in surface waters used as drinking water resources. The toxicity of one group of these toxins, the microcystins, and their presence in surface waters used for drinking water production has prompted the World Health Organization (WHO) to publish a provisional guideline value of 1.0 {mu}g microcystin (MC)-LR/l drinking water. To verify the efficiency of two different water treatment systems with respect to reduction of cyanobacterial toxins, the concentrations of MC in water samples from surface waters and their associated water treatment plants in Switzerland and Germany were investigated. Toxin concentrations in samples from drinking water treatment plants ranged from below 1.0 {mu}g MC-LR equiv./l to more than 8.0 {mu}g/l in raw water and were distinctly below 1.0 {mu}g/l after treatment. In addition, data to the worldwide occurrence of cyanobacteria in raw and final water of water works and the corresponding guidelines for cyanobacterial toxins in drinking water worldwide are summarized.

  19. Characterizing the concentration of Cryptosporidium in Australian surface waters for setting health-based targets for drinking water treatment.

    PubMed

    Petterson, S; Roser, D; Deere, D

    2015-09-01

    It is proposed that the next revision of the Australian Drinking Water Guidelines will include 'health-based targets', where the required level of potable water treatment quantitatively relates to the magnitude of source water pathogen concentrations. To quantify likely Cryptosporidium concentrations in southern Australian surface source waters, the databases for 25 metropolitan water supplies with good historical records, representing a range of catchment sizes, land use and climatic regions were mined. The distributions and uncertainty intervals for Cryptosporidium concentrations were characterized for each site. Then, treatment targets were quantified applying the framework recommended in the World Health Organization Guidelines for Drinking-Water Quality 2011. Based on total oocyst concentrations, and not factoring in genotype or physiological state information as it relates to infectivity for humans, the best estimates of the required level of treatment, expressed as log10 reduction values, ranged among the study sites from 1.4 to 6.1 log10. Challenges associated with relying on historical monitoring data for defining drinking water treatment requirements were identified. In addition, the importance of quantitative microbial risk assessment input assumptions on the quantified treatment targets was investigated, highlighting the need for selection of locally appropriate values. PMID:26322774

  20. Chitosan Coagulation to Improve Microbial and Turbidity Removal by Ceramic Water Filtration for Household Drinking Water Treatment

    PubMed Central

    Abebe, Lydia S.; Chen, Xinyu; Sobsey, Mark D.

    2016-01-01

    The use of porous ceramic filters is promoted globally for household water treatment, but these filters are ineffective in removing viruses from water. In order to increase virus removal, we combine a promising natural coagulant, chitosan, as a pretreatment for ceramic water filters (CWFs) and evaluate the performance of this dual barrier water treatment system. Chitosan is a non-toxic and biodegradable organic polymer derived by simple chemical treatments from chitin, a major source of which is the leftover shells of crustacean seafoods, such as shrimp, prawns, crabs, and lobsters. To determine the effectiveness of chitosan, model test water was contaminated with Escherichia coli K011 and coliphage MS2 as a model enteric bacterium and virus, respectively. Kaolinite clay was used to model turbidity. Coagulation effectiveness of three types of modified chitosans was determine at various doses ranging from 5 to 30 mg/L, followed by flocculation and sedimentation. The pre-treated supernatant water was then decanted into the CWF for further treatment by filtration. There were appreciable microbial removals by chitosan HCl, acetate, and lactate pretreatment followed by CWF treatment, with mean reductions (95% CI) between 4.7 (±1.56) and 7.5 (±0.02) log10 for Escherichia coli, and between 2.8 (±0.10) and 4.5 (±1.04) log10 for MS2. Turbidity reduction with chitosan treatment and filtration consistently resulted in turbidities < 1 NTU, which meet turbidity standards of the US EPA and guidance by the World Health Organization (WHO). According to WHO health-based microbial removal targets for household water treatment technology, chitosan coagulation achieved health protective targets for both viruses and bacteria. Therefore, the results of this study support the use of chitosan to improve household drinking water filtration processes by increasing virus and bacteria reductions. PMID:26927152

  1. Chitosan Coagulation to Improve Microbial and Turbidity Removal by Ceramic Water Filtration for Household Drinking Water Treatment.

    PubMed

    Abebe, Lydia S; Chen, Xinyu; Sobsey, Mark D

    2016-03-01

    The use of porous ceramic filters is promoted globally for household water treatment, but these filters are ineffective in removing viruses from water. In order to increase virus removal, we combine a promising natural coagulant, chitosan, as a pretreatment for ceramic water filters (CWFs) and evaluate the performance of this dual barrier water treatment system. Chitosan is a non-toxic and biodegradable organic polymer derived by simple chemical treatments from chitin, a major source of which is the leftover shells of crustacean seafoods, such as shrimp, prawns, crabs, and lobsters. To determine the effectiveness of chitosan, model test water was contaminated with Escherichia coli K011 and coliphage MS2 as a model enteric bacterium and virus, respectively. Kaolinite clay was used to model turbidity. Coagulation effectiveness of three types of modified chitosans was determine at various doses ranging from 5 to 30 mg/L, followed by flocculation and sedimentation. The pre-treated supernatant water was then decanted into the CWF for further treatment by filtration. There were appreciable microbial removals by chitosan HCl, acetate, and lactate pretreatment followed by CWF treatment, with mean reductions (95% CI) between 4.7 (± 1.56) and 7.5 (± 0.02) log10 for Escherichia coli, and between 2.8 (± 0.10) and 4.5 (± 1.04) log10 for MS2. Turbidity reduction with chitosan treatment and filtration consistently resulted in turbidities < 1 NTU, which meet turbidity standards of the US EPA and guidance by the World Health Organization (WHO). According to WHO health-based microbial removal targets for household water treatment technology, chitosan coagulation achieved health protective targets for both viruses and bacteria. Therefore, the results of this study support the use of chitosan to improve household drinking water filtration processes by increasing virus and bacteria reductions. PMID:26927152

  2. Nanofiltration/reverse osmosis for treatment of coproduced waters

    SciTech Connect

    Mondal, S.; Hsiao, C.L.; Wickramasinghe, S.R.

    2008-07-15

    Current high oil and gas prices have lead to renewed interest in exploration of nonconventional energy sources such as coal bed methane, tar sand, and oil shale. However oil and gas production from these nonconventional sources has lead to the coproduction of large quantities of produced water. While produced water is a waste product from oil and gas exploration it is a very valuable natural resource in the arid Western United States. Thus treated produced water could be a valuable new source of water. Commercially available nanofiltration and low pressure reverse osmosis membranes have been used to treat three produced waters. The results obtained here indicate that the permeate could be put to beneficial uses such as crop and livestock watering. However minimizing membrane fouling will be essential for the development of a practical process. Field Emission Scanning Electron Microscopy imaging may be used to observe membrane fouling.

  3. Naturally occurring radionuclides in materials derived from urban water treatment plants in southeast Queensland, Australia.

    PubMed

    Kleinschmidt, Ross; Akber, Riaz

    2008-04-01

    An assessment of radiologically enhanced residual materials generated during treatment of domestic water supplies in southeast Queensland, Australia, was conducted. Radioactivity concentrations of U-238, Th-232, Ra-226, Rn-222, and Po-210 in water, sourced from both surface water catchments and groundwater resources were examined both pre- and post-treatment under typical water treatment operations. Surface water treatment processes included sedimentation, coagulation, flocculation and filtration, while the groundwater was treated using cation exchange, reverse osmosis, activated charcoal or methods similar to surface water treatment. Waste products generated as a result of treatment included sediments and sludges, filtration media, exhausted ion exchange resin, backwash and wastewaters. Elevated residual concentrations of radionuclides were identified in these waste products. The waste product activity concentrations were used to model the radiological impact of the materials when either utilised for beneficial purposes, or upon disposal. The results indicate that, under current water resource exploitation programs, reuse or disposal of the treatment wastes from large scale urban water treatment plants in Australia do not pose a significant radiological risk. PMID:17980468

  4. 43 CFR 3904.40 - Long-term water treatment trust funds.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Long-term water treatment trust funds... Bonds and Trust Funds § 3904.40 Long-term water treatment trust funds. (a) The BLM may require the operator or lessee to establish a trust fund or other funding mechanism to ensure the continuation of...

  5. 43 CFR 3904.40 - Long-term water treatment trust funds.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Long-term water treatment trust funds...-GENERAL Bonds and Trust Funds § 3904.40 Long-term water treatment trust funds. (a) The BLM may require the operator or lessee to establish a trust fund or other funding mechanism to ensure the continuation of...

  6. 43 CFR 3904.40 - Long-term water treatment trust funds.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Long-term water treatment trust funds...-GENERAL Bonds and Trust Funds § 3904.40 Long-term water treatment trust funds. (a) The BLM may require the operator or lessee to establish a trust fund or other funding mechanism to ensure the continuation of...

  7. Water Treatment Plant Operation. Volume I. A Field Study Training Program.

    ERIC Educational Resources Information Center

    California State Univ., Sacramento. School of Engineering.

    The purpose of this water treatment field study training program is to: (1) develop new qualified water treatment plant operators; (2) expand the abilities of existing operators, permitting better service both to employers and public; and (3) prepare operators for civil service and certification examinations (examinations administered by…

  8. 7 CFR 1780.63 - Sewage treatment and bulk water sales contracts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 12 2012-01-01 2012-01-01 false Sewage treatment and bulk water sales contracts. 1780..., Designing, Bidding, Contracting, Constructing and Inspections § 1780.63 Sewage treatment and bulk water sales contracts. Owners entering into agreements with private or public parties to treat sewage...

  9. 7 CFR 1780.63 - Sewage treatment and bulk water sales contracts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 12 2013-01-01 2013-01-01 false Sewage treatment and bulk water sales contracts. 1780..., Designing, Bidding, Contracting, Constructing and Inspections § 1780.63 Sewage treatment and bulk water sales contracts. Owners entering into agreements with private or public parties to treat sewage...

  10. 7 CFR 1780.63 - Sewage treatment and bulk water sales contracts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 12 2014-01-01 2013-01-01 true Sewage treatment and bulk water sales contracts. 1780..., Designing, Bidding, Contracting, Constructing and Inspections § 1780.63 Sewage treatment and bulk water sales contracts. Owners entering into agreements with private or public parties to treat sewage...

  11. 7 CFR 1780.63 - Sewage treatment and bulk water sales contracts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 12 2010-01-01 2010-01-01 false Sewage treatment and bulk water sales contracts. 1780..., Designing, Bidding, Contracting, Constructing and Inspections § 1780.63 Sewage treatment and bulk water sales contracts. Owners entering into agreements with private or public parties to treat sewage...

  12. Impact of Harmful Algal Blooms on Several Lake Erie Drinking Water Treatment Plants

    EPA Science Inventory

    Recent events in Ohio have demonstrated the challenge treatment facilities face in providing safe drinking water when encountering extreme harmful algal bloom (HAB) events. Over the last two years the impact of HAB-related microcystins on several drinking water treatment facilit...

  13. Water Treatment Plant Operation. Volume II. A Field Study Training Program.

    ERIC Educational Resources Information Center

    California State Univ., Sacramento. School of Engineering.

    The purpose of this water treatment field study training program is to: (1) develop new qualified water treatment plant operators; (2) expand the abilities of existing operators, permitting better service both to employers and public; and (3) prepare operators for civil service and certification examinations (examinations administered by…

  14. Water Treatment Plant Operation Volume 2. A Field Study Training Program. Revised.

    ERIC Educational Resources Information Center

    California State Univ., Sacramento. School of Engineering.

    The purpose of this water treatment field study training program is to: (1) develop new qualified water treatment plant operators; (2) expand the abilities of existing operators, permitting better service both to employers and public; and (3) prepare operators for civil service and certification examinations (examinations administered by…

  15. Pre- and post-treatment techniques for spacecraft water recovery

    NASA Technical Reports Server (NTRS)

    Putnam, David F.; Colombo, Gerald V.; Chullen, Cinda

    1986-01-01

    Distillation-based waste water pretreatment and recovered water posttreatment methods are proposed for the NASA Space Station. Laboratory investigation results are reported for two nonoxidizing urine pretreatment formulas (hexadecyl trimethyl ammonium bromide and Cu/Cr) which minimize the generation of volatile organics, thereby significantly reducing posttreatment requirements. Three posttreatment methods (multifiltration, reverse osmosis, and UV-assisted ozone oxidation) have been identified which appear promising for the removal of organic contaminants from recovered water.

  16. Ecotoxicological assessment of grey water treatment systems with Daphnia magna and Chironomus riparius.

    PubMed

    Hernández Leal, L; Soeter, A M; Kools, S A E; Kraak, M H S; Parsons, J R; Temmink, H; Zeeman, G; Buisman, C J N

    2012-03-15

    In order to meet environmental quality criteria, grey water was treated in four different ways: 1) aerobic 2) anaerobic+aerobic 3) aerobic+activated carbon 4) aerobic+ozone. Since each treatment has its own specific advantages and disadvantages, the aim of this study was to compare the ecotoxicity of differently treated grey water using Chironomus riparius (96 h test) and Daphnia magna (48 h and 21d test) as test organisms. Grey water exhibited acute toxicity to both test organisms. The aerobic and combined anaerobic+aerobic treatment eliminated mortality in the acute tests, but growth of C. riparius was still affected by these two effluents. Post-treatment by ozone and activated carbon completely removed the acute toxicity from grey water. In the chronic toxicity test the combined anaerobic+aerobic treatment strongly affected D. magna population growth rate (47%), while the aerobic treatment had a small (9%) but significant effect. Hence, aerobic treatment is the best option for biological treatment of grey water, removing most of the toxic effects of grey water. If advanced treatment is required, the treatment with either ozone or GAC were shown to be very effective in complete removal of toxicity from grey water. PMID:22197265

  17. Using coagulation to restrict microbial re-growth in tap water by phosphate limitation in water treatment.

    PubMed

    Wen, Gang; Ma, Jun; Huang, Ting-Lin; Egli, Thomas

    2014-09-15

    Extensive microbial re-growth in a drinking water distribution system can deteriorate water quality. The limiting factor for microbial re-growth in a tap water produced by a conventional drinking water treatment plant in China was identified by determining the microbial re-growth potential (MRP) by adding different nutrients to stimulate growth of a natural microbial consortium as inoculum and flow-cytometric enumeration. No obvious change of MRP was found in tap water after addition of carbon, whereas, a 1- to 2-fold increase of MRP was observed after addition of phosphate (P). This clearly demonstrated that microbial re-growth in this tap water was limited by P. Most of the re-grown microbial flora (>85%) consisted of high nucleic acid content cells. A subsequent investigation of the MRP in the actual water treatment plant demonstrated that coagulation was the crucial step for decreasing MRP and producing P-limited water. Therefore, a comparison concerning the control of MRP by three different coagulants was conducted. It showed that all the three coagulants efficiently reduced the MRP and shifted the limitation regime from C to P, but the required dose was different. The study shows that it is feasible to restrict microbial re-growth by P limitation using coagulation in water treatment. PMID:25179107

  18. Anaerobic treatment as a core technology for energy, nutrients and water recovery from source-separated domestic waste(water).

    PubMed

    Zeeman, Grietje; Kujawa, Katarzyna; de Mes, Titia; Hernandez, Lucia; de Graaff, Marthe; Abu-Ghunmi, Lina; Mels, Adriaan; Meulman, Brendo; Temmink, Hardy; Buisman, Cees; van Lier, Jules; Lettinga, Gatze

    2008-01-01

    Based on results of pilot scale research with source-separated black water (BW) and grey water (GW), a new sanitation concept is proposed. BW and GW are both treated in a UASB (-septic tank) for recovery of CH4 gas. Kitchen waste is added to the anaerobic BW treatment for doubling the biogas production. Post-treatment of the effluent is providing recovery of phosphorus and removal of remaining COD and nitrogen. The total energy saving of the new sanitation concept amounts to 200 MJ/year in comparison with conventional sanitation, moreover 0.14 kg P/p/year and 90 litres of potential reusable water are produced. PMID:18469391

  19. Assessing the Impacts of Climate Change on Drinking Water Treatment

    EPA Science Inventory

    Climate change may affect both surface water and ground water quality. Increases (or decreases) in precipitation and related changes in flow can result in problematic turbidity levels, increased levels of organic matter, high levels of bacteria, virus and parasites and increased...

  20. U.S. DRINKING WATER REGULATIONS: TREATMENT TECHNOLOGIES AND COST.

    EPA Science Inventory

    The Safe Drinking Water Act and its Amendments have imposed a large number of new regulations on the U.S. drinking water industry. A major set of regulations currently under consideration will control disinfectants and disinfection by-products. Included in the development of th...

  1. Disinfection By-Products and Drinking Water Treatment

    EPA Science Inventory

    The disinfection of drinking water has been rightly hailed as a public health triumph of the 20th century. Before its widespread use, millions of people died from waterborne diseases. Now, people in developed nations receive quality drinking water every day from their public wa...

  2. TREATMENT OF ARSENIC RESIDUALS FROM DRINKING WATER REMOVAL PROCESSES

    EPA Science Inventory

    The drinking water MCL was recently lowered from 0.05 mg/L to 0.01 mg/L. One concern was that reduction in the TCLP arsenic limit in response to the drinking water MCL could be problematic with regard to disposal of solid residuals generated at arsenic removal facilities. This pr...

  3. Ferrates: Greener Oxidants with Multimodal Action in Water Treatment Technologies

    EPA Science Inventory

    One of the biggest challenges for humanity in the 21st century is easy access to purified and potable water. The presence of pathogens and toxins in water causes more than two million deaths annually, mostly among children under the age of five. Identifying and deploying effectiv...

  4. GAMMA RADIATION TREATMENT OF WATERS FROM LIGNITE MINES

    EPA Science Inventory

    Discussed in this report are results of laboratory investigations carried out with the application of gamma radiation for the purification of waters drained from surface lignite mines. These waters are polluted to a considerable extent with suspended matter of various sizes, a la...

  5. Removal of Estrogens and Estrogenicity through Drinking Water Treatment

    EPA Science Inventory

    Estrogenic compounds have been shown to be present in surface waters, leading to concerns over their possible presence in finished drining waters. In this work, two in vitro human cell line bioassays for estrogenicity were used to evaluate the removal of estrogens through conven...

  6. PERFORMANCE VERIFICATION OF SHIP BALLAST WATER TREATMENT TECHNOLOGIES

    EPA Science Inventory

    Ships use ballast water to provide stability during voyages and during loading and unloading operations. Water is taken on at one port when cargo is unloaded and usually discharged at another port when the ship receives cargo. Because sediments and/or organisms ranging in size ...

  7. Water chemistry and antimicrobial treatment in poultry processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study examined the influence of calcium and magnesium ions in process water on the solubility of trisodium phosphate. Water used in poultry processing operations may be treated with sanitizers such as trisodium phosphate to reduce microbial activity and the risk of contamination. This occurs wh...

  8. Assessing Waste Water Treatment Plant Effluent for Thyroid Hormone Disruption

    EPA Science Inventory

    Much information has been coming to light on the estrogenic and androgenic activity of chemicals present in the waste water stream and in surface waters, but much less is known about the presence of chemicals with thyroid activity. To address this issue, we have utilized two assa...

  9. TREATMENT ALTERNATIVES FOR CONTROLLING CHLORINATED ORGANIC CONTAMINANTS IN DRINKING WATER

    EPA Science Inventory

    A pilot plant study was conducted by the City of Thornton, Colorado, to evaluate techniques for controlling chlorinated organic compounds formed in drinking water as a result of breakpoint, or free, chlorination. The pilot plant was operated for 46 months using the raw water sour...

  10. SAFE DRINKING WATER FROM SMALL SYSTEMS: TREATMENT OPTIONS

    EPA Science Inventory

    Bringing small water systems into compliance with the ever-increasing number of regulations will require flexibility in terms of technology application and institional procedures. his article looks at the means by which small systems can provide safe drinking water, focusing on t...

  11. WasteWater Treatment And Heavy Metals Removal In The A-01 Constructed Wetland 2003 Report

    SciTech Connect

    ANNA, KNOX

    2004-08-01

    The A-01 wetland treatment system (WTS) was designed to remove metals from the effluent at the A-01 NPDES outfall. The purpose of research conducted during 2003 was to evaluate (1) the ability of the A-01 wetland treatment system to remediate waste water, (2) retention of the removed contaminants in wetland sediment, and (3) the potential remobilization of these contaminants from the sediment into the water column. Surface water and sediment samples were collected and analyzed in this study.

  12. ENTERIC VIRUS AND INDICATOR BACTERIA LEVELS IN A WATER TREATMENT SYSTEM MODIFIED TO REDUCE TRIHALOMETHANE PRODUCTION

    EPA Science Inventory

    A drinking water treatment plant with high concentrations of trihalomethanes (THMs) in its finished water and large numbers of viruses in its source water was located. This plant was used to study the effect of an alteration in the point of chlorination from the first to last ste...

  13. Description of the surface water filtration and ozone treatment system at the Northeast Fishery Center

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A water filtration and ozone disinfection system was installed at the U.S. Fish and Wildlife Service's Northeast Fishery Center in Lamar, Pennsylvania to treat a surface water supply that is used to culture sensitive and endangered fish. The treatment system first passes the surface water through dr...

  14. Hot water drench treatment for control of reniform nematodes in potted dracaena

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A continuous hot water drench treatment was evaluated for disinfesting potted dracaena of reniform nematodes, Rotylenchulus reniformis. Modifications were made to a hot water shower container to allow the delivery of a continuous stream of hot water directly to the media and roots of infested plant...

  15. Handbook of ozone technology and applications. Vol. 2. Ozone for drinking water treatment

    SciTech Connect

    Rice, R.G.; Netzer, A.

    1984-01-01

    This volume of the handbook series concerns the application of ozone for the treatment of drinking water. Great emphasis is given ozone's powerful disinfectant and oxidant properties with the added advantage of the non-production of undesirable by-products. European sources have been heavily drawn upon since that is where most of the experience has been. Over one-third of the volume is devoted to a bibliography of some 1600 citations (in addition to 260 as chapter references). Contents: Ozone disinfection of drinking water. Removal of color from drinking water with ozone. Removal of ammonia and other nitrogen derivatives from drinking water with ozone. Raw water preozonation. Recent developments in the treatment of drinking water. Ozone for drinking water treatment - a bibliography. Index.

  16. Adapting water treatment design and operations to the impacts of global climate change

    NASA Astrophysics Data System (ADS)

    Clark, Robert M.; Li, Zhiwei; Buchberger, Steven G.

    2011-12-01

    It is anticipated that global climate change will adversely impact source water quality in many areas of the United States and will therefore, potentially, impact the design and operation of current and future water treatment systems. The USEPA has initiated an effort called the Water Resources Adaptation Program (WRAP) which is intended to develop tools and techniques that can assess the impact of global climate change on urban drinking water and wastewater infrastructure. A three step approach for assessing climate change impacts on water treatment operation and design is being persude in this effort. The first step is the stochastic characterization of source water quality, the second step is the application of the USEPA Water Treatment Plant model and the third step is the application of cost algorithms to provide a metric that can be used to assess the coat impact of climate change. A model has been validated using data collected from Cincinnati's Richard Miller Water Treatment Plant for the USEPA Information Collection Rule (ICR) database. An analysis of the water treatment processes in response to assumed perturbations in raw water quality identified TOC, pH, and bromide as the three most important parameters affecting performance of the Miller WTP. The Miller Plant was simulated using the EPA WTP model to examine the impact of these parameters on selected regulated water quality parameters. Uncertainty in influent water quality was analyzed to estimate the risk of violating drinking water maximum contaminant levels (MCLs).Water quality changes in the Ohio River were projected for 2050 using Monte Carlo simulation and the WTP model was used to evaluate the effects of water quality changes on design and operation. Results indicate that the existing Miller WTP might not meet Safe Drinking Water Act MCL requirements for certain extreme future conditions. However, it was found that the risk of MCL violations under future conditions could be controlled by

  17. Bioanalytical tools for the evaluation of organic micropollutants during sewage treatment, water recycling and drinking water generation.

    PubMed

    Macova, Miroslava; Toze, Simon; Hodgers, Leonie; Mueller, Jochen F; Bartkow, Michael; Escher, Beate I

    2011-08-01

    A bioanalytical test battery was used for monitoring organic micropollutants across an indirect potable reuse scheme testing sites across the complete water cycle from sewage to drinking water to assess the efficacy of different treatment barriers. The indirect potable reuse scheme consists of seven treatment barriers: (1) source control, (2) wastewater treatment plant, (3) microfiltration, (4) reverse osmosis, (5) advanced oxidation, (6) natural environment in a reservoir and (7) drinking water treatment plant. Bioanalytical results provide complementary information to chemical analysis on the sum of micropollutants acting together in mixtures. Six endpoints targeting the groups of chemicals with modes of toxic action of particular relevance for human and environmental health were included in the evaluation: genotoxicity, estrogenicity (endocrine disruption), neurotoxicity, phytotoxicity, dioxin-like activity and non-specific cell toxicity. The toxicity of water samples was expressed as toxic equivalent concentrations (TEQ), a measure that translates the effect of the mixtures of unknown and potentially unidentified chemicals in a water sample to the effect that a known reference compound would cause. For each bioassay a different representative reference compound was selected. In this study, the TEQ concept was applied for the first time to the umuC test indicative of genotoxicity using 4-nitroquinoline as the reference compound for direct genotoxicity and benzo[a]pyrene for genotoxicity after metabolic activation. The TEQ were observed to decrease across the seven treatment barriers in all six selected bioassays. Each bioassay showed a differentiated picture representative for a different group of chemicals and their mixture effect. The TEQ of the samples across the seven barriers were in the same order of magnitude as seen during previous individual studies in wastewater and advanced water treatment plants and reservoirs. For the first time a benchmarking was

  18. Simultaneous stack-gas scrubbing and waste water treatment

    NASA Technical Reports Server (NTRS)

    Poradek, J. C.; Collins, D. D.

    1980-01-01

    Simultaneous treatment of wastewater and S02-laden stack gas make both treatments more efficient and economical. According to results of preliminary tests, solution generated by stack gas scrubbing cycle reduces bacterial content of wastewater. Both processess benefit by sharing concentrations of iron.

  19. Assessing arsenic exposure in households using bottled water or point-of-use treatment systems to mitigate well water contamination.

    PubMed

    Smith, Andrew E; Lincoln, Rebecca A; Paulu, Chris; Simones, Thomas L; Caldwell, Kathleen L; Jones, Robert L; Backer, Lorraine C

    2016-02-15

    There is little published literature on the efficacy of strategies to reduce exposure to residential well water arsenic. The objectives of our study were to: 1) determine if water arsenic remained a significant exposure source in households using bottled water or point-of-use treatment systems; and 2) evaluate the major sources and routes of any remaining arsenic exposure. We conducted a cross-sectional study of 167 households in Maine using one of these two strategies to prevent exposure to arsenic. Most households included one adult and at least one child. Untreated well water arsenic concentrations ranged from <10 μg/L to 640 μg/L. Urine samples, water samples, daily diet and bathing diaries, and household dietary and water use habit surveys were collected. Generalized estimating equations were used to model the relationship between urinary arsenic and untreated well water arsenic concentration, while accounting for documented consumption of untreated water and dietary sources. If mitigation strategies were fully effective, there should be no relationship between urinary arsenic and well water arsenic. To the contrary, we found that untreated arsenic water concentration remained a significant (p ≤ 0.001) predictor of urinary arsenic levels. When untreated water arsenic concentrations were <40 μg/L, untreated water arsenic was no longer a significant predictor of urinary arsenic. Time spent bathing (alone or in combination with water arsenic concentration) was not associated with urinary arsenic. A predictive analysis of the average study participant suggested that when untreated water arsenic ranged from 100 to 500 μg/L, elimination of any untreated water use would result in an 8%-32% reduction in urinary arsenic for young children, and a 14%-59% reduction for adults. These results demonstrate the importance of complying with a point-of-use or bottled water exposure reduction strategy. However, there remained unexplained, water-related routes of exposure

  20. Photocatalytic post-treatment in waste water reclamation systems

    NASA Technical Reports Server (NTRS)

    Cooper, Gerald; Ratcliff, Matthew A.; Verostko, Charles E.

    1989-01-01

    A photocatalytic water purification process is described which effectively oxidizes organic impurities common to reclaimed waste waters and humidity condensates to carbon dioxide at ambient temperatures. With this process, total organic carbon concentrations below 500 ppb are readily achieved. The temperature dependence of the process is well described by the Arrhenius equation and an activation energy barrier of 3.5 Kcal/mole. The posttreatment approach for waste water reclamation described here shows potential for integration with closed-loop life support systems.

  1. The degradation behaviour of nine diverse contaminants in urban surface water and wastewater prior to water treatment.

    PubMed

    Cormier, Guillaume; Barbeau, Benoit; Arp, Hans Peter H; Sauvé, Sébastien

    2015-12-01

    An increasing diversity of emerging contaminants are entering urban surface water and wastewater, posing unknown risks for the environment. One of the main contemporary challenges in ensuring water quality is to design efficient strategies for minimizing such risks. As a first step in such strategies, it is important to establish the fate and degradation behavior of contaminants prior to any engineered secondary water treatment. Such information is relevant for assessing treatment solutions by simple storage, or to assess the impacts of contaminant spreading in the absence of water treatment, such as during times of flooding or in areas of poor infrastructure. Therefore in this study we examined the degradation behavior of a broad array of water contaminants in actual urban surface water and wastewater, in the presence and absence of naturally occurring bacteria and at two temperatures. The chemicals included caffeine, sulfamethoxazole, carbamazepine, atrazine, 17β-estradiol, ethinylestradiol, diclofenac, desethylatrazine and norethindrone. Little information on the degradation behavior of these pollutants in actual influent wastewater exist, nor in general in water for desethylatrazine (a transformation product of atrazine) and the synthetic hormone norethindrone. Investigations were done in aerobic conditions, in the absence of sunlight. The results suggest that all chemicals except estradiol are stable in urban surface water, and in waste water neither abiotic nor biological degradation in the absence of sunlight contribute significantly to the disappearance of desethylatrazine, atrazine, carbamazepine and diclofenac. Biological degradation in wastewater was effective at transforming norethindrone, 17β-estradiol, ethinylestradiol, caffeine and sulfamethoxazole, with measured degradation rate constants k and half-lives ranging respectively from 0.0082-0.52 d(-1) and 1.3-85 days. The obtained degradation data generally followed a pseudo-first-order-kinetic model

  2. REMOVING TRIHALOMETHANES FROM DRINKING WATER - AN OVERVIEW OF TREATMENT TECHNIQUES

    EPA Science Inventory

    In 1974 trihalomethanes (chloroform, bromodichloromethane, dibromochloromethane, and bromoform) were discovered to be formed during the disinfection step of drinking water if free chlorine was the disinfectant. This, coupled with the perceived hazard to the consumer's health, led...

  3. SELECTION GUIDE FOR VOLATILIZATION TECHNOLOGIES FOR WATER TREATMENT

    EPA Science Inventory

    The guide presents a methodology for evaluating applicability of volatilization technologies for removing volatile organics from water. The volatilization technologies assessed in the study include: surface sprayers, surface aerators, bubble columns, cooling towers, steam strippe...

  4. Treatment of arsenic-contaminated water using akaganeite adsorption

    DOEpatents

    Cadena C., Fernando; Johnson, Michael D.

    2008-01-01

    The present invention comprises a method and composition using akaganeite, an iron oxide, as an ion adsorption medium for the removal of arsenic from water and affixing it onto carrier media so that it can be used in filtration systems.

  5. Water recovery by catalytic treatment of urine vapor

    NASA Technical Reports Server (NTRS)

    Budininkas, P.; Quattrone, P. D.; Leban, M. I.

    1980-01-01

    The objective of this investigation was to demonstrate the feasibility of water recovery on a man-rated scale by the catalytic processing of untreated urine vapor. For this purpose, two catalytic systems, one capable of processing an air stream containing low urine vapor concentrations and another to process streams with high urine vapor concentrations, were designed, constructed, and tested to establish the quality of the recovered water.

  6. Calibrating an optimal condition model for solar water disinfection in peri-urban household water treatment in Kampala, Uganda.

    PubMed

    Okurut, Kenan; Wozei, Eleanor; Kulabako, Robinah; Nabasirye, Lillian; Kinobe, Joel

    2013-03-01

    In low income settlements where the quality of drinking water is highly contaminated due to poor hygienic practices at community and household levels, there is need for appropriate, simple, affordable and environmentally sustainable household water treatment technology. Solar water disinfection (SODIS) that utilizes both the thermal and ultra-violet effect of solar radiation to disinfect water can be used to treat small quantities of water at household level to improve its bacteriological quality for drinking purposes. This study investigated the efficacy of the SODIS treatment method in Uganda and determined the optimal condition for effective disinfection. Results of raw water samples from the study area showed deterioration in bacteriological quality of water moved from source to the household; from 3 to 36 cfu/100 mL for tap water and 75 to 126 cfu/100 mL for spring water, using thermotolerant coliforms (TTCs) as indicator microorganisms. SODIS experiments showed over 99.9% inactivation of TTCs in 6 h of exposure, with a threshold temperature of 39.5 ± 0.7°C at about 12:00 noon, in the sun during a clear sunny day. A mathematical optimal condition model for effective disinfection has been calibrated to predict the decline of the number of viable microorganisms over time. PMID:23428553

  7. Promoting Household Water Treatment through Women's Self Help Groups in Rural India: Assessing Impact on Drinking Water Quality and Equity

    PubMed Central

    Freeman, Matthew C.; Trinies, Victoria; Boisson, Sophie; Mak, Gregory; Clasen, Thomas

    2012-01-01

    Household water treatment, including boiling, chlorination and filtration, has been shown effective in improving drinking water quality and preventing diarrheal disease among vulnerable populations. We used a case-control study design to evaluate the extent to which the commercial promotion of household water filters through microfinance institutions to women's self-help group (SHG) members improved access to safe drinking water. This pilot program achieved a 9.8% adoption rate among women targeted for adoption. Data from surveys and assays of fecal contamination (thermotolerant coliforms, TTC) of drinking water samples (source and household) were analyzed from 281 filter adopters and 247 non-adopters exposed to the program; 251 non-SHG members were also surveyed. While adopters were more likely than non-adopters to have children under 5 years, they were also more educated, less poor, more likely to have access to improved water supplies, and more likely to have previously used a water filter. Adopters had lower levels of fecal contamination of household drinking water than non-adopters, even among those non-adopters who treated their water by boiling or using traditional ceramic filters. Nevertheless, one-third of water samples from adopter households exceeded 100 TTC/100ml (high risk), and more than a quarter of the filters had no stored treated water available when visited by an investigator, raising concerns about correct, consistent use. In addition, the poorest adopters were less likely to see improvements in their water quality. Comparisons of SHG and non-SHG members suggest similar demographic characteristics, indicating SHG members are an appropriate target group for this promotion campaign. However, in order to increase the potential for health gains, future programs will need to increase uptake, particularly among the poorest households who are most susceptible to disease morbidity and mortality, and focus on strategies to improve the correct, consistent

  8. Automated resource-saving technology of ion-exchange water treatment

    NASA Astrophysics Data System (ADS)

    Livshits, M.

    2015-01-01

    Stable high quality of the purified water can be provided by adaptive control of water-treatment installations with the observer in a loop of the control system on the basis of observer of ion exchange processes. To obtain this goal the following problems have been solved: the hierarchic structure of water treatment system is developed; the system of water treatment quality criteria for ion exchange processes is developed; the created mathematical model of ionic exchange processes is functionally oriented to application in control system as an observer; methodologies of identification of a mathematical model of ionic exchange processes is developed; verification of the mathematical model of ionic exchange is performed on experimental-industrial basis; automatic control system of water treatment with observer in the loop is developed for low-waste installation of a heat supply system.

  9. Perceptions of Health Communication, Water Treatment and Sanitation in Artibonite Department, Haiti, March-April 2012

    PubMed Central

    Williams, Holly Ann; Gaines, Joanna; Patrick, Molly; Berendes, David; Fitter, David; Handzel, Thomas

    2015-01-01

    The international response to Haiti’s ongoing cholera outbreak has been multifaceted, including health education efforts by community health workers and the distribution of free water treatment products. Artibonite Department was the first region affected by the outbreak. Numerous organizations have been involved in cholera response efforts in Haiti with many focusing on efforts to improve water, sanitation, and hygiene (WASH). Multiple types of water treatment products have been distributed, creating the potential for confusion over correct dosage and water treatment methods. We utilized qualitative methods in Artibonite to determine the population’s response to WASH messages, use and acceptability of water treatment products, and water treatment and sanitation knowledge, attitudes and practices at the household level. We conducted eighteen focus group discussions (FGDs): 17 FGDs were held with community members (nine among females, eight among males); one FGD was held with community health workers. Health messages related to WASH were well-retained, with reported improvements in hand-washing. Community health workers were identified as valued sources of health information. Most participants noted a paucity of water-treatment products. Sanitation, specifically the construction of latrines, was the most commonly identified need. Lack of funds was the primary reason given for not constructing a latrine. The construction and maintenance of potable water and sanitation services is needed to ensure a sustainable change. PMID:26562658

  10. Perceptions of Health Communication, Water Treatment and Sanitation in Artibonite Department, Haiti, March-April 2012.

    PubMed

    Williams, Holly Ann; Gaines, Joanna; Patrick, Molly; Berendes, David; Fitter, David; Handzel, Thomas

    2015-01-01

    The international response to Haiti's ongoing cholera outbreak has been multifaceted, including health education efforts by community health workers and the distribution of free water treatment products. Artibonite Department was the first region affected by the outbreak. Numerous organizations have been involved in cholera response efforts in Haiti with many focusing on efforts to improve water, sanitation, and hygiene (WASH). Multiple types of water treatment products have been distributed, creating the potential for confusion over correct dosage and water treatment methods. We utilized qualitative methods in Artibonite to determine the population's response to WASH messages, use and acceptability of water treatment products, and water treatment and sanitation knowledge, attitudes and practices at the household level. We conducted eighteen focus group discussions (FGDs): 17 FGDs were held with community members (nine among females, eight among males); one FGD was held with community health workers. Health messages related to WASH were well-retained, with reported improvements in hand-washing. Community health workers were identified as valued sources of health information. Most participants noted a paucity of water-treatment products. Sanitation, specifically the construction of latrines, was the most commonly identified need. Lack of funds was the primary reason given for not constructing a latrine. The construction and maintenance of potable water and sanitation services is needed to ensure a sustainable change. PMID:26562658

  11. Microbial Community Structures and Dynamics in the O3/BAC Drinking Water Treatment Process

    PubMed Central

    Tian, Jian; Lu, Jun; Zhang, Yu; Li, Jian-Cheng; Sun, Li-Chen; Hu, Zhang-Li

    2014-01-01

    Effectiveness of drinking water treatment, in particular pathogen control during the water treatment process, is always a major public health concern. In this investigation, the application of PCR-DGGE technology to the analysis of microbial community structures and dynamics in the drinking water treatment process revealed several dominant microbial populations including: α-Proteobacteria, β-Proteobacteria, γ-Proteobacteria, Bacteroidetes, Actinobacteria Firmicutes and Cyanobacteria. α-Proteobacteria and β-Proteobacteria were the dominant bacteria during the whole process. Bacteroidetes and Firmicutes were the dominant bacteria before and after treatment, respectively. Firmicutes showed season-dependent changes in population dynamics. Importantly, γ-Proteobacteria, which is a class of medically important bacteria, was well controlled by the O3/biological activated carbon (BAC) treatment, resulting in improved effluent water bio-safety. PMID:24937529

  12. Radiation processing applications in the Czechoslovak water treatment technologies

    NASA Astrophysics Data System (ADS)

    Vacek, K.; Pastuszek, F.; Sedláček, M.

    The regeneration of biologically clogged water wells by radiation proved to be a successful and economically beneficial process among other promising applications of ionizing radiation in the water supply technology. The application conditions and experience are mentioned. The potential pathogenic Mycobacteria occuring in the warm washing and bathing water are resistant against usual chlorine and ozone concentrations. The radiation sensitivity of Mycobacteria allowed to suggest a device for their destroying by radiation. Some toxic substances in the underground water can be efficiently degraded by gamma radiation directly in the wells drilled as a hydraulic barrier surrounding the contaminated land area. Substantial decrease of CN - concentration and C.O.D. value was observed in water pumped from such well equipped with cobalt sources and charcoal. The removing of pathogenic contamination remains to be the main goal of radiation processing in the water purification technologies. The decrease of liquid sludge specific filter resistance and sedimentation acceleration by irradiation have a minor technological importance. The hygienization of sludge cake from the mechanical belt filter press by electron beam appears to be the optimum application in the Czechoslovak conditions. The potatoes and barley crop yields from experimental plots treated with sludge were higher in comparison with using the manure. Biological sludge from the municipal and food industry water purification plants contains nutritive components. The proper hygienization is a necessary condition for using them as a livestock feed supplement. Feeding experiments with broilers and pigs confirmed the possibility of partial (e.g. 50%) replacement of soya-, bone- or fish flour in feed mixtures by dried sludge hygienized either by heat or by the irradiation.

  13. Elimination of viruses and indicator bacteria at each step of treatment during preparation of drinking water at seven water treatment plants.

    PubMed Central

    Payment, P; Trudel, M; Plante, R

    1985-01-01

    Seven drinking water treatment plants were sampled twice a month for 12 months to evaluate the removal of indicator bacteria and cytopathogenic enteric viruses. Samples were obtained at each level of treatment: raw water, postchlorination, postsedimentation, postfiltration, postozonation, and finished (tap) water. Raw water quality was usually poor, with total coliform counts exceeding 105 to 106 CFU/liter and the average virus count in raw water of 3.3 most probable number of cytopathogenic units (MPNCU)/liter; several samples contained more than 100 MPNCU/liter. All plants distributed finished water that was essentially free of indicator bacteria as judged by analysis of 1 liter for total coliforms, fecal coliforms, fecal streptococci, coagulase-positive staphylococci, and Pseudomonas aeruginosa. The total plate counts at 20 and 35 degrees C were also evaluated as a measure of the total microbial population and were usually very low. Viruses were detected in 7% (11 of 155) of the finished water samples (1,000 liters) at an average density of 0.0006 MPNCU/liter the highest virus density measured being 0.2 MPNCU/liter. The average cumulative virus reduction was 95.15% after sedimentation and 99.97% after filtration and did not significantly decrease after ozonation or final chlorination. The viruses isolated from treated waters were all enteroviruses: poliovirus types 1, 2, and 3, coxsackievirus types B3, B4, and B5, echovirus type 7, and untyped picornaviruses. PMID:2990337

  14. A three step approach for removing organic matter from South African water sources and treatment plants

    NASA Astrophysics Data System (ADS)

    Nkambule, T. I.; Krause, R. W. M.; Haarhoff, J.; Mamba, B. B.

    The high variability in the levels and composition of natural organic matter (NOM) in South-African water sources in different regions means that no single treatment process can be prescribed for each water treatment plant operating in the country. In order to remove NOM from water in a water treatment train, the composition of the NOM in the source water must be taken into account, especially as it may not necessarily be uniform since the composition is dependent on local environmental situation. The primary objective of this study was to characterise the NOM present in South African source waters through an extensive sampling of representative water types across the country and then develop a rapid NOM characterisation protocol. Water samples were thus collected from eight different water treatment plants located throughout the country at different sites of their water treatment trains. Raw water samples, the intermediate samples before filtration and water samples before disinfection were collected at these drinking water treatment plants. The fluorescence excitation-emission matrices (FEEMs), biodegradable dissolved organic carbon (BDOC), ultraviolet (UV) characterisation (200-900 nm) and dissolved organic carbon (DOC) analysis were used to characterise the NOM in the water samples. The FEEM and UV results revealed that the samples were composed mainly of humic substances with a high UV-254 absorbance, while some samples had marine humic substances and non-humic substances. The sample’s DOC results were within the range of 3.25-21.44 mg C/L, which was indicative of the varying nature of the NOM composition in the regions where samples were obtained. The BDOC fraction of the NOM, on the other hand, ranged from 20% to 65%, depending on the geographical location of the sampling site. It is evident from the results obtained that the NOM composition varied per sampling site which would eventually have a bearing on its treatability. The various water treatment

  15. Use of alum water treatment sludge to stabilize C and immobilize P and metals in composts.

    PubMed

    Haynes, R J; Zhou, Y-F

    2015-09-01

    Alum water treatment sludge is composed of amorphous hydroxyl-Al, which has variable charge surfaces with a large Brunauer-Emmett-Teller (BET) surface area (103 m(-2) g(-1)) capable of specific adsorption of organic matter molecules, phosphate, and heavy metals. The effects of adding dried, ground, alum water treatment sludge (10% w/w) to the feedstock for composting municipal green waste alone, green waste plus poultry manure, or green waste plus biosolids were determined. Addition of water treatment sludge reduced water soluble C, microbial biomass C, CO2 evolution, extractable P, and extractable heavy metals during composting. The decrease in CO2 evolution (i.e., C sequestration) was greatest for poultry manure and least for biosolid composts. The effects of addition of water treatment sludge to mature green waste-based poultry manure and biosolid composts were also determined in a 24-week incubation experiment. The composts were either incubated alone or after addition to a soil. Extractable P and heavy metal concentrations were decreased by additions of water treatment sludge in all treatments, and CO2 evolution was also reduced from the poultry manure compost over the first 16-18 weeks. However, for biosolid compost, addition of water treatment sludge increased microbial biomass C and CO2 evolution rate over the entire 24-week incubation period. This was attributed to the greatly reduced extractable heavy metal concentrations (As, Cr, Cu, Pb, and Zn) present following addition of water treatment sludge, and thus increased microbial activity. It was concluded that addition of water treatment sludge reduces concentrations of extractable P and heavy metals in composts and that its effect on organic matter stabilization is much greater during the composting process than for mature compost because levels of easily decomposable organic matter are initially much higher in the feedstock than those in matured composts. PMID:25948380

  16. A Biofilm Treatment Approach for Produced Water from Hydraulic Fracturing Using Engineered Microbial Mats

    NASA Astrophysics Data System (ADS)

    Akyon, B.; Stachler, E.; Bibby, K. J.

    2015-12-01

    Hydraulic fracturing results in large volumes of wastewater, called "produced water". Treatment of produced water is challenged by its high salt, organic compound, and radionuclide concentrations. Current disposal approaches include deep well injection and physical-chemical treatment for surface disposal; however, deep well injection has been recently linked to induced seismicity and physical-chemical treatments suffer from fouling and high cost. The reuse of the produced water has emerged as a desirable management option; however, this requires pretreatment to generate a water of usable quality and limit microbial activity. Biological treatment is an underexplored area in produced water management and has the potential to remove organics and reduce overall costs for physiochemical treatment or reuse. Suspended growth biological treatment techniques are known to be limited by salinity motivating a more robust biofilm approach: 'microbial mats'. In this study, we used engineered microbial mats as a biofilm treatment for the produced water. Evaluation of the biodegradation performance of microbial mats in synthetic and real produced waters showed microbial activity at up to 100,000 mg/L TDS concentration (three times the salt concentration of the ocean). Organic removal rates reached to 1.45 mg COD/gramwet-day at 91,351 mg/L TDS in real produced water samples and initial evaluation demonstrated the potential for field-scale application. Metagenomic analyses of microbial mats demonstrated an adaptive shift in the microbial community treating different samples, suggesting the wide applicability of this treatment approach for produced waters with varying chemical composition. On-going studies focus on the evaluation of the removal of the organics and the contaminants of high concern in produced water using microbial mats as well as the effect of the biofilm growth conditions on the biodegradation in changing salt concentrations.

  17. Drinking water treatment is not associated with an observed increase in neural tube defects in mice.

    PubMed

    Melin, Vanessa E; Johnstone, David W; Etzkorn, Felicia A; Hrubec, Terry C

    2014-06-01

    Disinfection by-products (DBPs) arise when natural organic matter in source water reacts with disinfectants used in the water treatment process. Studies have suggested an association between DBPs and birth defects. Neural tube defects (NTDs) in embryos of untreated control mice were first observed in-house in May 2006 and have continued to date. The source of the NTD-inducing agent was previously determined to be a component of drinking water. Tap water samples from a variety of sources were analyzed for trihalomethanes (THMs) to determine if they were causing the malformations. NTDs were observed in CD-1 mice provided with treated and untreated surface water. Occurrence of NTDs varied by water source and treatment regimens. THMs were detected in tap water derived from surface water but not detected in tap water derived from a groundwater source. THMs were absent in untreated river water and laboratory purified waters, yet the percentage of NTDs in untreated river water were similar to the treated water counterpart. These findings indicate that THMs were not the primary cause of NTDs in the mice since the occurrence of NTDs was unrelated to drinking water disinfection. PMID:24497082

  18. Impact of Water Management on Efficacy of Insecticide Seed Treatments Against Rice Water Weevil (Coleoptera: Curculionidae) in Mississippi Rice.

    PubMed

    Adams, A; Gore, J; Musser, F; Cook, D; Catchot, A; Walker, T; Awuni, G A

    2015-06-01

    Two experiments were conducted at the Delta Research and Extension Center in Stoneville, MS, during 2011 and 2012 to determine the impact of water management practices on the efficacy of insecticidal seed treatments targeting rice water weevil, Lissorhoptrus oryzophilus Kuschel. Larval densities and yield were compared for plots treated with labeled rates of thiamethoxam, chlorantraniliprole, and clothianidin and an untreated control. In the first experiment, plots were subjected to flood initiated at 6 and 8 wk after planting. Seed treatments significantly reduced larval densities with the 8-wk flood timing, but not the 6-wk flood timing. Overall, the treated plots yielded higher than the control plots. In the second experiment, the impact of multiple flushes on the efficacy of insecticidal seed treatments was evaluated. Plots were subjected to zero, one, or two flushes with water. All seed treatments reduced larval densities compared with the untreated control. Significantly fewer larvae were observed in plots that received one or two flushes compared with plots that did not receive a flush. All seed treatments resulted in higher yields compared to the untreated control in the zero and one flush treatments. When two flushes were applied, yield from the thiamethoxam and clothianidin treated plots was not significantly different from those of the control plots, while the chlorantraniliprole treated plots yielded significantly higher than the control. These data suggest that time from planting to flood did not impact the efficacy of seed treatments, but multiple flushes reduced the efficacy of thiamethoxam and clothianidin. PMID:26470232

  19. Impact of Water Management on Efficacy of Insecticide Seed Treatments Against Rice Water Weevil (Coleoptera: Curculionidae) in Mississippi Rice

    PubMed Central

    Adams, A.; Gore, J.; Musser, F.; Cook, D.; Catchot, A.; Walker, T.; Awuni, G. A.

    2015-01-01

    Two experiments were conducted at the Delta Research and Extension Center in Stoneville, MS, during 2011 and 2012 to determine the impact of water management practices on the efficacy of insecticidal seed treatments targeting rice water weevil, Lissorhoptrus oryzophilus Kuschel. Larval densities and yield were compared for plots treated with labeled rates of thiamethoxam, chlorantraniliprole, and clothianidin and an untreated control. In the first experiment, plots were subjected to flood initiated at 6 and 8 wk after planting. Seed treatments significantly reduced larval densities with the 8-wk flood timing, but not the 6-wk flood timing. Overall, the treated plots yielded higher than the control plots. In the second experiment, the impact of multiple flushes on the efficacy of insecticidal seed treatments was evaluated. Plots were subjected to zero, one, or two flushes with water. All seed treatments reduced larval densities compared with the untreated control. Significantly fewer larvae were observed in plots that received one or two flushes compared with plots that did not receive a flush. All seed treatments resulted in higher yields compared to the untreated control in the zero and one flush treatments. When two flushes were applied, yield from the thiamethoxam and clothianidin treated plots was not significantly different from those of the control plots, while the chlorantraniliprole treated plots yielded significantly higher than the control. These data suggest that time from planting to flood did not impact the efficacy of seed treatments, but multiple flushes reduced the efficacy of thiamethoxam and clothianidin. PMID:26470232

  20. Potential of Nanotechnology based water treatment solutions for the improvement of drinking water supplies in developing countries

    NASA Astrophysics Data System (ADS)

    Dutta, Joydeep; Bhattacharya, Prosun; Bundschuh, Jochen

    2016-04-01

    Over the last decades explosive population growth in the world has led to water scarcity across the globe putting additional pressure already scarce ground water resources and is pushing scientists and researchers to come up with new alternatives to monitor and treat water for use by mankind and for food security. Nearly 4 billion people around the world are known to lack access to clean water supply. Systematic water quality data is important for the assessment of health risks as well as for developing appropriate and affordable technologies for waste and drinking water treatments, and long-term decision making policy against water quality management. Traditional water treatment technologies are generally chemical-intensive processes requiring extremely large infrastructural support thus limiting their effective applications in developing nations which creates an artificial barrier to the application of technological solutions for the provision of clean water. Nanotechnology-based systems are in retrospect, smaller, energy and resource efficient. Economic impact assessment of the implementation of nanotechnology in water treatment and studies on cost-effectiveness and environmental and social impacts is of key importance prior to its wide spread acceptance. Government agencies and inter-governmental bodies driving research and development activities need to measure the effective potential of nanotechnology as a solution to global water challenges in order to effectively engage in fiscal, economic and social issues at national and international levels for different types of source waters with new national and international initiatives on nanotechnology and water need to be launched. Environmental pollution and industrialization in global scale is further leading to pollution of available water sources and thus hygienically friendly purification technologies are the need of the hour. Thus cost-effective treatment of pollutants for the transformation of hazardous