Science.gov

Sample records for pressed ceramic tiles

  1. Ceramic tile expansion engine housing

    DOEpatents

    Myers, B.

    1995-04-11

    An expandable ceramic tile housing for a high temperature engine is disclosed wherein each tile is independently supported in place in an interlocking matrix by retention mechanisms which mechanically couple the individual ceramic tiles to an outer metal support housing while maintaining thermal isolation of the metal housing from the ceramic tiles. The ceramic tiles are formed with either an octagonal front face portion and a square shank portion or a square front face portion with an octagonal shank portion. The length of the sides of the octagonal front face portion on one tile is equal to the length of the sides of the square front face portion of adjoining tiles to permit formation of an interlocking matrix. Fibrous ceramic sealing material may be placed between radial and tangential facing surfaces of adjacent tiles to limit radial gas flow there between. Labyrinth-sealed pressure-controlled compartments may be established between the tile housing and the outer metal support housing to control radial gas flow. 8 figures.

  2. Ceramic tile expansion engine housing

    DOEpatents

    Myers, Blake

    1995-01-01

    An expandable ceramic tile housing for a high temperature engine is disclosed wherein each tile is independently supported in place in an interlocking matrix by retention mechanisms which mechanically couple the individual ceramic tiles to an outer metal support housing while maintaining thermal isolation of the metal housing from the ceramic tiles. The ceramic tiles are formed with either an octagonal front face portion and a square shank portion or a square front face portion with an octagonal shank portion. The length of the sides of the octagonal front face portion on one tile is equal to the length of the sides of the square front face portion of adjoining tiles to permit formation of an interlocking matrix. Fibrous ceramic sealing material may be placed between radial and tangential facing surfaces of adjacent tiles to limit radial gas flow therebetween. Labyrinth-sealed pressure-controlled compartments may be established between the tile housing and the outer metal support housing to control radial gas flow.

  3. Interlocking wettable ceramic tiles

    SciTech Connect

    Tabereaux, Jr., Alton T.; Fredrickson, Guy L.; Groat, Eric; Mroz, Thomas; Ulicny, Alan; Walker, Mark F.

    2005-03-08

    An electrolytic cell for the reduction of aluminum having a layer of interlocking cathode tiles positioned on a cathode block. Each tile includes a main body and a vertical restraining member to prevent movement of the tiles away from the cathode block during operation of the cell. The anode of the electrolytic cell may be positioned about 1 inch from the interlocking cathode tiles.

  4. Dry pressing technical ceramics

    SciTech Connect

    Lewis, W.A. Jr.

    1996-04-01

    Dry pressing of technical ceramics is a fundamental method of producing high-quality ceramic components. The goals of dry pressing technical ceramics are uniform compact size and green density, consistent part-to-part green density and defect-free compact. Dry pressing is the axial compaction of loosely granulated dry ceramic powders (< 3% free moisture) within a die/punch arrangement. The powder, under pressure, conforms to the specific shape of the punch faces and die. Powder compaction occurs within a rigid-walled die and usually between a top and bottom punch. Press configurations include anvil, rotary, multiple-punch and multiple-action.

  5. Fly ash of mineral coal as ceramic tiles raw material.

    PubMed

    Zimmer, A; Bergmann, C P

    2007-01-01

    The aim of this work was to evaluate the use of mineral coal fly ash as a raw material in the production of ceramic tiles. The samples of fly ash came from Capivari de Baixo, a city situated in the Brazilian Federal State of Santa Catarina. The fly ash and the raw materials were characterized regarding their physical chemical properties, and, based on these results; batches containing fly ash and typical raw materials for ceramic tiles were prepared. The fly ash content in the batches varied between 20 and 80 wt%. Specimens were molded using a uniaxial hydraulic press and were fired. All batches containing ash up to 60 wt% present adequate properties to be classified as several kinds of products in the ISO 13006 standard () regarding its different absorption groups (pressed). The results obtained indicate that fly ash, when mixed with traditional raw materials, has the necessary requirements to be used as a raw material for production of ceramic tiles. PMID:16540298

  6. Composite treatment of ceramic tile armor

    DOEpatents

    Hansen, James G. R.; Frame, Barbara J.

    2012-01-02

    An improved ceramic tile armor has a core of boron nitride and a polymer matrix composite (PMC) facing of carbon fibers fused directly to the impact face of the tile. A polyethylene fiber composite backing and spall cover are preferred. The carbon fiber layers are cured directly onto the tile, not adhered using a separate adhesive so that they are integral with the tile, not a separate layer.

  7. Composite treatment of ceramic tile armor

    DOEpatents

    Hansen, James G. R. [Oak Ridge, TN; Frame, Barbara J [Oak Ridge, TN

    2010-12-14

    An improved ceramic tile armor has a core of boron nitride and a polymer matrix composite (PMC) facing of carbon fibers fused directly to the impact face of the tile. A polyethylene fiber composite backing and spall cover are preferred. The carbon fiber layers are cured directly onto the tile, not adhered using a separate adhesive so that they are integral with the tile, not a separate layer.

  8. Fibrous-Ceramic/Aerogel Composite Insulating Tiles

    NASA Technical Reports Server (NTRS)

    White, Susan M.; Rasky, Daniel J.

    2004-01-01

    Fibrous-ceramic/aerogel composite tiles have been invented to afford combinations of thermal-insulation and mechanical properties superior to those attainable by making tiles of fibrous ceramics alone or aerogels alone. These lightweight tiles can be tailored to a variety of applications that range from insulating cryogenic tanks to protecting spacecraft against re-entry heating. The advantages and disadvantages of fibrous ceramics and aerogels can be summarized as follows: Tiles made of ceramic fibers are known for mechanical strength, toughness, and machinability. Fibrous ceramic tiles are highly effective as thermal insulators in a vacuum. However, undesirably, the porosity of these materials makes them permeable by gases, so that in the presence of air or other gases, convection and gas-phase conduction contribute to the effective thermal conductivity of the tiles. Other disadvantages of the porosity and permeability of fibrous ceramic tiles arise because gases (e.g., water vapor or cryogenic gases) can condense in pores. This condensation contributes to weight, and in the case of cryogenic systems, the heat of condensation undesirably adds to the heat flowing to the objects that one seeks to keep cold. Moreover, there is a risk of explosion associated with vaporization of previously condensed gas upon reheating. Aerogels offer low permeability, low density, and low thermal conductivity, but are mechanically fragile. The basic idea of the present invention is to exploit the best features of fibrous ceramic tiles and aerogels. In a composite tile according to the invention, the fibrous ceramic serves as a matrix that mechanically supports the aerogel, while the aerogel serves as a low-conductivity, low-permeability filling that closes what would otherwise be the open pores of the fibrous ceramic. Because the aerogel eliminates or at least suppresses permeation by gas, gas-phase conduction, and convection, the thermal conductivity of such a composite even at

  9. Shaving Ceramic Tiles To Final Dimensions

    NASA Technical Reports Server (NTRS)

    Shaw, Ernest

    1992-01-01

    Combination of template and routing tool cuts ceramic tiles to final dimensions. Template guides router along precisely defined planes to accurately and uniformly shave chamfers on edge of tiles. Legs of template temporarily bonded to workpiece by double-backed adhesive tape. Adaptable to in-situ final machining of other nominally flat, narrow surfaces.

  10. 55. QUARRY TILE CUTTERS, SECOND FLOOR, NORTH WING. WORKERS PRESSED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    55. QUARRY TILE CUTTERS, SECOND FLOOR, NORTH WING. WORKERS PRESSED THE CUTTERS INTO SLABS OF CLAY, LIFTED THEM ONTO DRYING BOARDS AND PRESSED THE PLUNGERS TO RELEASE THE CUT TILES. REPRODUCTIONS CUTTERS ARE NOT USED IN PRODUCTION. WOODEN FORMS FOR PRODUCING CLAY SLABS WITH ROLLING PINS REST AGAINST THE WALL. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  11. Manufacture of ceramic tiles from fly ash

    DOEpatents

    Hnat, J.G.; Mathur, A.; Simpson, J.C.

    1999-08-10

    The present invention relates to a process for forming glass-ceramic tiles. Fly ash containing organic material, metal contaminants, and glass forming materials is oxidized under conditions effective to combust the organic material and partially oxidize the metallic contaminants and the glass forming materials. The oxidized glass forming materials are vitrified to form a glass melt. This glass melt is then formed into tiles containing metallic contaminants. 6 figs.

  12. Cutting Symmetrical Recesses In Soft Ceramic Tiles

    NASA Technical Reports Server (NTRS)

    Nesotas, Tony C.; Tyler, Brent

    1989-01-01

    Simple tool cuts hemispherical recesses in soft ceramic tiles. Designed to expose wires of thermocouples embedded in tiles without damaging leads. Creates neat, precise holes around wires. End mill includes axial hole to accommodate thermocouple wires embedded in material to be cut. Wires pass into hole without being bent or broken. Dimensions in inches. Used in place of such tools as dental picks, tweezers, spatulas, and putty knives.

  13. Manufacture of ceramic tiles from fly ash

    DOEpatents

    Hnat, James G.; Mathur, Akshay; Simpson, James C.

    1999-01-01

    The present invention relates to a process for forming glass-ceramic tiles. Fly ash containing organic material, metal contaminants, and glass forming materials is oxidized under conditions effective to combust the organic material and partially oxidize the metallic contaminants and the glass forming materials. The oxidized glass forming materials are vitrified to form a glass melt. This glass melt is then formed into tiles containing metallic contaminants.

  14. 57. ORIGINAL TILE PRESS AND EXPERIMENTAL DENTAL KILN, SECOND FLOOR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    57. ORIGINAL TILE PRESS AND EXPERIMENTAL DENTAL KILN, SECOND FLOOR, NORTH WING, HENRY MERCER USED THE KILN FOR HIS EARLIEST GLAZE TESTS. THE PRESS WAS DESIGNED TO BE USED WITH METAL CASED MOLDS. SINCE ONLY THE EARLIEST TILE DESIGNS ARE IN METAL CASES. THIS TECHNIQUE WAS PROBABLY DISCONTINUED. THIS PRESS WAS, THEREFORE, PROBABLY NOT USED EXTENSIVELY AT THIS SITE. THE UPPER PART OF GLAZE KILN No. 2 IS AT THE LEFT REAR. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  15. Wedge edge ceramic combustor tile

    DOEpatents

    Shaffer, James E.; Holsapple, Allan C.

    1997-01-01

    A multipiece combustor has a portion thereof being made of a plurality of ceramic segments. Each of the plurality of ceramic segments have an outer surface and an inner surface. Each of the plurality of ceramic segments have a generally cylindrical configuration and including a plurality of joints. The joints define joint portions, a first portion defining a surface being skewed to the outer surface and the inner surface. The joint portions have a second portion defining a surface being skewed to the outer surface and the inner surface. The joint portions further include a shoulder formed intermediate the first portion and the second portion. The joints provide a sealing interlocking joint between corresponding ones of the plurality of ceramic segments. Thus, the multipiece combustor having the plurality of ceramic segment with the plurality of joints reduces the physical size of the individual components and the degradation of the surface of the ceramic components in a tensile stress zone is generally eliminated reducing the possibility of catastrophic failures.

  16. Wedge edge ceramic combustor tile

    DOEpatents

    Shaffer, J.E.; Holsapple, A.C.

    1997-06-10

    A multipiece combustor has a portion thereof being made of a plurality of ceramic segments. Each of the plurality of ceramic segments have an outer surface and an inner surface. Each of the plurality of ceramic segments have a generally cylindrical configuration and including a plurality of joints. The joints define joint portions, a first portion defining a surface being skewed to the outer surface and the inner surface. The joint portions have a second portion defining a surface being skewed to the outer surface and the inner surface. The joint portions further include a shoulder formed intermediate the first portion and the second portion. The joints provide a sealing interlocking joint between corresponding ones of the plurality of ceramic segments. Thus, the multipiece combustor having the plurality of ceramic segment with the plurality of joints reduces the physical size of the individual components and the degradation of the surface of the ceramic components in a tensile stress zone is generally eliminated reducing the possibility of catastrophic failures. 7 figs.

  17. Hot isostatic pressing of ceramics

    NASA Technical Reports Server (NTRS)

    Honma, K.

    1985-01-01

    A mixture containing glass 70 to 95 and BN or B4C powder (0.1-10 microns) 5 to 30 vol. % is used as a secondary pressure medium in hot isostatic pressing of ceramics. Thus, Pyrex beads were mixed with 15% vol. BN powder (average diameter 2 microns), fused at 1400 deg for 2 h, cooled, crushed, and put into a graphite crucible. A Si3N4 sintered body was embedded in the powder, heated in vacuum at 1200 deg for 2 h, treated in a hot isostatic press furnace at 1700 deg and 1000 atm. for 1 h, and cooled to give a Si3N4 ceramic. It was easily separated from the crucible.

  18. Firing ceramic tiles in solar energy equipment

    SciTech Connect

    Pasichnyi, V.V.; Berezhetskaya, V.Ya.; Chop, Yu.I.; Kashket, G.I.

    1987-03-01

    In the interest of satisfying the growing demand for glazed ceramic tiles and conserving the natural gas ordinarily used to fire them, the authors assess the feasibility of using a solar kiln for the process. Their design incorporates a parabolic reflector and a tracking system to continuously focus radiant solar energy on the tile. Their energy analysis includes such factors as solar thermal input, radiant heat transfer, and heat flow, the relationship between the firing time and the heat flow density, and the surface quality of the glaze and colorizer. Their results indicate that when the heat flow density rises above a level at which the specific expenditure of heat is no longer dependent on the color of the pigment, this expenditure or input comes to a quarter of what is currently needed using existing technologies and fuels.

  19. Two Views of Islam: Ceramic Tile Design and Miniatures.

    ERIC Educational Resources Information Center

    Macaulay, Sara Grove

    2001-01-01

    Describes an art project focusing on Islamic art that consists of two parts: (1) ceramic tile design; and (2) Islamic miniatures. Provides background information on Islamic art and step-by-step instructions for designing the Islamic tile and miniature. Includes learning objectives and resources on Islamic tile miniatures. (CMK)

  20. Solar-energy treatment of ceramic tile. Final report

    SciTech Connect

    Harris, J.N.; Clayton, M.E.

    1981-12-01

    The 400 kW Advanced Components Test Facility was used to provide a concentrated source of solar energy for firing ceramic wall tile. A domed top cylindrical cavity with a white refractory fiber lining provided diffuse reflection of the concentrated solar beam directly onto the upper surface of the unfired wall tile. The tile were placed directly on the cavity floor in a circular pattern, centered at 45/sup 0/ intervals so that eight tile could be fired at one time. The tile and cavity walls were instrumented with thermocouples, and pyrometric cones were used to determine temperature distribution within the cavity. The glazed and unglazed solar fired tiles were subjected to standard ceramic testing procedures to determine: flatness, modulus of rupture, water absorption, porosity, bulk density, apparent specific gravity, percent linear thermal expansion and crystalline phases present in the fired bodies. These data were compared with the same data for commercial fired tiles from the same batch of raw materials. The glazed tile surfaces were compared with commercially fired tile for reflectance and color match. The major problems encountered were: cracking by thermal shock, and uneven shrinkage and glaze maturity across individual tile. The cavity also failed to provide even heating at all eight tile positions. An alternate air heat exchanger system is recommended to fire the tile by convection rather than direct radiation.

  1. Self-glazing ceramic tiles based on acidic igneous glasses

    SciTech Connect

    Merkin, A.P.; Nanazashvili, V.I.

    1988-07-01

    A technology was derived to produce self-glazing ceramic tiles based on single-component systems of acidic igneous (volcanic) glasses. A weakly alkaline solution of NaOH or KOH was used as the sealing water to activate the sintering process. Tests conducted on the self-glazing ceramic tiles showed that their water absorption amounts to 2.5-8%, linear shrinkage is 3.2-7%, and frost resistance amounts to 35-70 cycles. The application of acidic igneous glasses as the main raw material for the production of ceramic facing tiles made it possible to widen the raw material base and simplify the technology for fabricating ceramic facing tiles at lower cost. The use of waste products when processing perlite-bearing rocks, when carrying out mining and cutting of tuffs, slags, and tuff breccia for recovering cut materials was recommended.

  2. Ceramic-ceramic shell tile thermal protection system and method thereof

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore R. (Inventor); Smith, Marnell (Inventor); Goldstein, Howard E. (Inventor); Zimmerman, Norman B. (Inventor)

    1986-01-01

    A ceramic reusable, externally applied composite thermal protection system (TPS) is proposed. The system functions by utilizing a ceramic/ceramic upper shell structure which effectively separates its primary functions as a thermal insulator and as a load carrier to transmit loads to the cold structure. The composite tile system also prevents impact damage to the atmospheric entry vehicle thermal protection system. The composite tile comprises a structurally strong upper ceramic/ceramic shell manufactured from ceramic fibers and ceramic matrix meeting the thermal and structural requirements of a tile used on a re-entry aerospace vehicle. In addition, a lightweight high temperature ceramic lower temperature base tile is used. The upper shell and lower tile are attached by means effective to withstand the extreme temperatures (3000 to 3200F) and stress conditions. The composite tile may include one or more layers of variable density rigid or flexible thermal insulation. The assembly of the overall tile is facilitated by two or more locking mechanisms on opposing sides of the overall tile assembly. The assembly may occur subsequent to the installation of the lower shell tile on the spacecraft structural skin.

  3. Ceramic tile grout removal & sealing using high power lasers

    SciTech Connect

    Lawrence, J.; Li, L.; Spencer, J.T.

    1996-12-31

    Work has been conducted using a Nd:YAG laser, a CO{sub 2} laser and a high power diode laser (HPDL) in order to determine the feasibility of removing contaminated tile grout from the void between adjoining vitrified ceramic tiles, and to seal the void permanently with a material having an impermeable surface glaze. Reported on in the paper are; the basic process phenomena, the process effectiveness, suitable vitrifiable material development, a heat affect study and a morphological and compositional analysis.

  4. Military Curriculum Materials for Vocational and Technical Education. Builders School, Ceramic Tile Setting 3-9.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This course, for individualized or group instruction on ceramic tile setting, was developed from military sources for use in vocational education. The course provides students with skills in mortar preparation, surface preparation, tile layout planning, tile setting, tile cutting, and the grouting of tile joints. Both theory and shop assignments…

  5. Ballistic performance of polyurea-coated armor grade ceramic tiles

    NASA Astrophysics Data System (ADS)

    Samiee, Ahsan; Isaacs, Jon; Nemat-Nasser, Sia

    2010-04-01

    The use of ceramics as energy absorbents has been studied by many researchers and some improvements in the ballistic performance of ceramic tiles have been made by coating them with different classes of materials (e.g. E-glass/epoxy, carbon-fiber/epoxy, etc.). Using ceramics for energy absorbing applications leads to a significant weight reduction of the system. Therefore, any modification to the ceramic configuration in the system which leads to more energy absorption with the same or less areal density is significant. On the other hand, polyurea has been proved to be an excellent energy dissipating agent in many applications. Inspired by this, we are studying the effect of coating ceramics with polyurea and other materials, on the energy absorption and ballistic performance of the resulting ceramic-based composites. In this study, we investigate the effect of polyurea on ballistic efficiency of ceramic tiles. To this end, we have performed a set of penetration tests on polyurea-ceramic composites. In our experiments, a high velocity projectile is propelled to impact and perforate the ceramic-polyurea composite. The velocity and mass of the projectile are measured before and after the penetration. The change in the kinetic energy of the projectile is evaluated and compared for different polyurea-ceramic configurations (e.g., polyurea on front face, polyurea on back face, polyurea between two ceramic tiles, etc.). The experimental results suggest that polyurea is not as effective as other restraining materials such as E-glass/epoxy and carbon-fiber/epoxy.

  6. Modelling the viscoelasticity of ceramic tiles by finite element

    NASA Astrophysics Data System (ADS)

    Pavlovic, Ana; Fragassa, Cristiano

    2016-05-01

    This research details a numerical method aiming at investigating the viscoelastic behaviour of a specific family of ceramic material, the Grès Porcelain, during an uncommon transformation, known as pyroplasticity, which occurs when a ceramic tile bends under a combination of thermal stress and own weight. In general, the theory of viscoelasticity can be considered extremely large and precise, but its application on real cases is particularly delicate. A time-depending problem, as viscoelasticity naturally is, has to be merged with a temperature-depending situation. This paper investigates how the viscoelastic response of bending ceramic materials can be modelled by commercial Finite Elements codes.

  7. Analysis of Thick Sandwich Shells with Embedded Ceramic Tiles

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Smith, C.; Lumban-Tobing, F.

    1996-01-01

    The Composite Armored Vehicle (CAV) is an advanced technology demonstrator of an all-composite ground combat vehicle. The CAV upper hull is made of a tough light-weight S2-glass/epoxy laminate with embedded ceramic tiles that serve as armor. The tiles are bonded to a rubber mat with a carefully selected, highly viscoelastic adhesive. The integration of armor and structure offers an efficient combination of ballistic protection and structural performance. The analysis of this anisotropic construction, with its inherent discontinuous and periodic nature, however, poses several challenges. The present paper describes a shell-based 'element-layering' technique that properly accounts for these effects and for the concentrated transverse shear flexibility in the rubber mat. One of the most important advantages of the element-layering technique over advanced higher-order elements is that it is based on conventional elements. This advantage allows the models to be portable to other structural analysis codes, a prerequisite in a program that involves the computational facilities of several manufacturers and government laboratories. The element-layering technique was implemented into an auto-layering program that automatically transforms a conventional shell model into a multi-layered model. The effects of tile layer homogenization, tile placement patterns, and tile gap size on the analysis results are described.

  8. Air quality comparison between two European ceramic tile clusters

    NASA Astrophysics Data System (ADS)

    Minguillón, M. C.; Monfort, E.; Escrig, A.; Celades, I.; Guerra, L.; Busani, G.; Sterni, A.; Querol, X.

    2013-08-01

    The European ceramic tile industry is mostly concentrated in two clusters, one in Castelló (Spain) and another one in Modena (Italy). Industrial clusters may have problems to accomplish the EU air quality regulations because of the concentration of some specific pollutants and, hence, the feasibility of the industrial clusters can be jeopardised. The present work assesses the air quality in these ceramic clusters in 2008, when the new EU emission regulations where put into force. PM10 samples were collected at two sampling sites in the Modena ceramic cluster and one sampling site in the Castelló ceramic cluster. PM10 annual average concentrations were 12-14 μg m-3 higher in Modena than in Castelló, and were close to or exceeded the European limit. Air quality in Modena was mainly influenced by road traffic and, in a lower degree, the metalmechanical industry, as evidenced by the high concentrations of Mn, Cu, Zn, Sn and Sb registered. The stagnant weather conditions from Modena hindering dispersion of pollutants also contributed to the relatively high pollution levels. In Castelló, the influence of the ceramic industry is evidenced by the high concentrations of Ti, Se, Tl and Pb, whereas this influence is not seen in Modena. The difference in the impact of the ceramic industry on the air quality in the two areas was attributed to: better abatement systems in the spray-drier facilities in Modena, higher coverage of the areas for storage and handling of dusty raw materials in Modena, presence of two open air quarries in the Castelló region, low degree of abatement systems in the ceramic tile kilns in Castelló, and abundance of ceramic frit, glaze and pigment manufacture in Castelló as opposed to scarce manufacture of these products in Modena. The necessity of additional measures to fulfil the EU air quality requirements in the Modena region is evidenced, despite the high degree of environmental measures implemented in the ceramic industry. The Principal

  9. Biofilm formation on the surface of ceramic tiles.

    PubMed

    Sessa, R; Di Pietro, M; Zamparelli, M; Schiavoni, G; Del Piano, M

    2000-10-01

    The aim of the study was to investigate the formation of biofilm on the surface of ceramic tiles, widely present in public and private buildings, using six parallel flow chambers. Our flow system was conceived and made to compare biofilm results by parallel distributed rectangular tiles. The tiles, divided into two identical A and B sections, were placed within the flow chambers. Biofilm formation was performed after 72 h and was quantified by viable counts of bacteria. Average viable counts ranged from 1.1x10(7) to 7.3x10(7) cfu cm(-2) and from 1.1x10(7) to 5.8x10(7) cfu cm(-2) respectively for biofilm A and B sections. As statistical analysis does not show significant differences, we can conclude that biofilms obtained were so similar to each other that they confirmed the system reproducibility. Our next step will be to use our system to study Legionella pneumophila and to evaluate the efficacy of antibacterial agents. PMID:11061629

  10. Parametric Weight Comparison of Advanced Metallic, Ceramic Tile, and Ceramic Blanket Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Myers, David E.; Martin, Carl J.; Blosser, Max L.

    2000-01-01

    A parametric weight assessment of advanced metallic panel, ceramic blanket, and ceramic tile thermal protection systems (TPS) was conducted using an implicit, one-dimensional (I-D) finite element sizing code. This sizing code contained models to account for coatings fasteners, adhesives, and strain isolation pads. Atmospheric entry heating profiles for two vehicles, the Access to Space (ATS) vehicle and a proposed Reusable Launch Vehicle (RLV), were used to ensure that the trends were not unique to a certain trajectory. Ten TPS concepts were compared for a range of applied heat loads and substructural heat capacities to identify general trends. This study found the blanket TPS concepts have the lightest weights over the majority of their applicable ranges, and current technology ceramic tiles and metallic TPS concepts have similar weights. A proposed, state-of-the-art metallic system which uses a higher temperature alloy and efficient multilayer insulation was predicted to be significantly lighter than the ceramic tile stems and approaches blanket TPS weights for higher integrated heat loads.

  11. Computational modeling of thin ceramic tiles backed by thin substrates

    SciTech Connect

    Walker, J.D.; Anderson, C.E. Jr.; Cox, P.A.

    1995-12-31

    Building on the work of Wilkins, Eulerian hydrocode calculations were performed with ceramic models to examine the behavior of thin ceramic tiles backed by a thin substrate. In order to match ballistic limit data it was necessary to include a pressure dependent flow stress for failed ceramic. Reasonable agreement is found between the modified model and ballistic limit data for a simulated armor piercing round impacting an AD-85 alumina/6061T6 aluminum laminate. Based upon this success, the modified model was used to examine the performance of a SiC/6061T6 aluminum laminate when impacted by an M80 ball round (7.62 mm) at muzzle velocity. The projectile undergoes large deformation, as does the aluminum backing sheet. The computational results indicate, for the M80 projectile impacting at muzzle velocity, that the ballistic limit thickness for the SiC/aluminum laminate should weigh 10% less than the ballistic limit thickness for steel. The talk will include a video tape of calculations.

  12. High-Strength, Low-Shrinkage Ceramic Tiles

    NASA Technical Reports Server (NTRS)

    Wheeler, W. H.; Creedon, J. F.

    1986-01-01

    Addition of refractory fibers and whiskers to insulating tiles composed primarily of fibrous silica, such as those used on the skin of Space Shuttle orbiter, greatly improves properties. New composition suitable for lightweight, thermally-stable mirror blanks and as furnace and kiln insulation. Improved tiles made with current tile-fabrication processes. For given density, tiles containing silicon carbide and boron additives stronger in flexure than tiles made from silica alone. In addition, tiles with additives nearly immune to heat distortion, whereas pure-silica tiles shrink and become severely distorted.

  13. Porosity Detection in Ceramic Armor Tiles via Ultrasonic Time-Of

    NASA Astrophysics Data System (ADS)

    Margetan, Frank J.; Richter, Nathaniel; Jensen, Terrence

    2011-06-01

    Some multilayer armor panels contain ceramic tiles as one constituent, and porosity in the tiles can affect armor performance. It is well known that porosity in ceramic materials leads to a decrease in ultrasonic velocity. We report on a feasibility study exploring the use of ultrasonic time-of-flight (TOF) to locate and characterize porous regions in armor tiles. The tiles in question typically have well-controlled thickness, thus simplifying the translation of TOF data into velocity data. By combining UT velocity measurements and X-ray absorption measurements on selected specimens, one can construct a calibration curve relating velocity to porosity. That relationship can then be used to translate typical ultrasonic C-scans of TOF-versus-position into C-scans of porosity-versus-position. This procedure is demonstrated for pulse/echo, focused-transducer inspections of silicon carbide (SiC) ceramic tiles.

  14. Porosity detection in ceramic armor tiles via ultrasonic time-of-flight

    SciTech Connect

    Margetan, Frank J.; Richter, Nathaniel; Jensen, Terrence

    2011-06-23

    Some multilayer armor panels contain ceramic tiles as one constituent, and porosity in the tiles can affect armor performance. It is well known that porosity in ceramic materials leads to a decrease in ultrasonic velocity. We report on a feasibility study exploring the use of ultrasonic time-of-flight (TOF) to locate and characterize porous regions in armor tiles. The tiles in question typically have well-controlled thickness, thus simplifying the translation of TOF data into velocity data. By combining UT velocity measurements and X-ray absorption measurements on selected specimens, one can construct a calibration curve relating velocity to porosity. That relationship can then be used to translate typical ultrasonic C-scans of TOF-versus-position into C-scans of porosity-versus-position. This procedure is demonstrated for pulse/echo, focused-transducer inspections of silicon carbide (SiC) ceramic tiles.

  15. Thermal insulation attaching means. [adhesive bonding of felt vibration insulators under ceramic tiles

    NASA Technical Reports Server (NTRS)

    Leger, L. J. (Inventor)

    1978-01-01

    An improved isolation system is provided for attaching ceramic tiles of insulating material to the surface of a structure to be protected against extreme temperatures of the nature expected to be encountered by the space shuttle orbiter. This system isolates the fragile ceramic tiles from thermally and mechanically induced vehicle structural strains. The insulating tiles are affixed to a felt isolation pad formed of closely arranged and randomly oriented fibers by means of a flexible adhesive and in turn the felt pad is affixed to the metallic vehicle structure by an additional layer of flexible adhesive.

  16. Installation of Ceramic Tile: Residential Thin-Set Methods.

    ERIC Educational Resources Information Center

    Short, Sam

    This curriculum guide contains materials for use in teaching a course on residential thin-set methods of tile installation. Covered in the individual units are the following topics: the tile industry; basic math; tools; measurement; safety in tile setting; installation materials and guidelines for their use; floors; counter tops and backsplashes;…

  17. Possible production of ceramic tiles from marine dredging spoils alone and mixed with other waste materials.

    PubMed

    Baruzzo, Daniela; Minichelli, Dino; Bruckner, Sergio; Fedrizzi, Lorenzo; Bachiorrini, Alessandro; Maschio, Stefano

    2006-06-30

    Dredging spoils, due to their composition could be considered a new potential source for the production of monolithic ceramics. Nevertheless, abundance of coloured oxides in these materials preclude the possibility of obtaining white products, but not that of producing ceramics with a good mechanical behaviour. As goal of the present research we have produced and studied samples using not only dredging spoils alone, but also mixtures with other waste materials such as bottom ashes from an incinerator of municipal solid waste, incinerated seawage sludge from a municipal seawage treatment plant and steelworks slag. Blending of different components was done by attrition milling. Powders were pressed into specimens which were air sintered in a muffle furnace and their shrinkage on firing was determined. Water absorption, density, strength, hardness, fracture toughness, thermal expansion coefficient of the fired bodies were measured; XRD and SEM images were also examined. The fired samples were finally tested in acidic environment in order to evaluate their elution behaviour and consequently their environmental compatibility. It is observed that, although the shrinkage on firing is too high for the production of tiles, in all the compositions studied the sintering procedure leads to fine microstructures, good mechanical properties and to a limitation of the release of many of the most hazardous metals contained in the starting powders. PMID:16343751

  18. Recycling of Malaysia's electric arc furnace (EAF) slag waste into heavy-duty green ceramic tile.

    PubMed

    Teo, Pao-Ter; Anasyida, Abu Seman; Basu, Projjal; Nurulakmal, Mohd Sharif

    2014-12-01

    Recently, various solid wastes from industry such as glass waste, fly ash, sewage sludge and slag have been recycled into various value-added products such as ceramic tile. The conventional solutions of dumping the wastes in landfills or incineration, including in Malaysia are getting obsolete as the annual huge amount of the solid wastes would boost-up disposal cost and may cause permanent damage to the flora and fauna. This recent waste recycling approach is much better and greener as it can resolve problems associated with over-limit storage of industrial wastes and reduce exploration of natural resources for ceramic tile to continuously sustain the nature. Therefore, in this project, an attempt was made to recycle electric arc furnace (EAF) slag waste, obtained from Malaysia's steel making industry, into ceramic tile via conventional powder compaction method. The research work was divided into two stages. The first stage was to evaluate the suitability of EAF slag in ceramic tile by varying weight percentage of EAF slag (40 wt.%, 50 wt.% and 60 wt.%) and ball clay (40 wt.%, 50 wt.% and 60 wt.%), with no addition of silica and potash feldspar. In the second stage, the weight percentage of EAF slag was fixed at 40 wt.% and the percentage of ball clay (30 wt.% and 40 wt.%), feldspar (10 wt.% and 20 wt.%) and silica (10 wt.% and 20 wt.%) added was varied accordingly. Results obtained show that as weight percentage of EAF slag increased up to 60 wt.%, the percentage of apparent porosity and water absorption also rose, with a reduction in tile flexural strength and increased porosity. On the other hand, limiting the weight percentage of EAF slag to 40 wt.% while increasing the weight percentage of ball clay led to a higher total percentage of anorthite and wollastonite minerals, resulting in higher flexural strength. It was found that introduction of silica and feldspar further improved the flexural strength due to optimization of densification process. The highest

  19. Contact pressure distribution during the polishing process of ceramic tiles: A laboratory investigation

    NASA Astrophysics Data System (ADS)

    Sani, A. S. A.; Sousa, F. J. P.; Hamedon, Z.; Azhari, A.

    2016-02-01

    During the polishing process of porcelain tiles the difference in scratching speed between innermost and peripheral abrasives leads to pressure gradients linearly distributed along the radial direction of the abrasive tool. The aim of this paper is to investigate such pressure gradient in laboratory scale. For this purpose polishing tests were performed on ceramic tiles according to the industrial practices using a custom-made CNC tribometer. Gradual wear on both abrasives and machined surface of the floor tile were measured. The experimental results suggested that the pressure gradient tends to cause an inclination of the abraded surfaces, which becomes stable after a given polishing period. In addition to the wear depth of the machined surface, the highest value of gloss and finest surface finish were observed at the lowest point of the worn out surface of the ceramic floor tile corresponding to the point of highest pressure and lowest scratching speed.

  20. Electrospun SiO2 "necklaces" on unglazed ceramic tiles: a planarizing strategy

    NASA Astrophysics Data System (ADS)

    Di Mauro, Alessandro; Fragalà, Maria Elena

    2015-05-01

    Silica based nanofibres have been deposited on unglazed ceramic tiles by combining electrospinning and sol-gel processes. Poly(vinyl pyrrolidone) (PVP) alcoholic solutions and commercial spin on glass (Accuglass) mixtures have been used to obtain composite fibrous non-woven mats totally converted, after thermal annealing at 600 °C, to SiO2 microsphere "necklaces". The possibility to get an uniform fibres coverage onto the tile surface confirms the validity of electrospinning (easily scalable to large surface samples) as coating strategy to cover the macroscopic defects typical of the polished unglazed tile surface and improve surface planarization.

  1. Hydrothermally prepared inorganic siliceous wastes: Hydrothermal reaction of calcareous and steatite ceramic tile wastes

    SciTech Connect

    Maenami, Hiroki; Yamamoto, Takeyuki; Ishida, Hideki

    1996-12-31

    Possibility of solidification of various ceramic wastes by hydrothermal processing was investigated. The starting materials were feldspathic porcelain tile waste, steatite ceramic tile waste, and calcareous ceramic tile waste. These were mixed with CaO so as to obtain a Ca/Si molar ratio of 0.5. After forming, they were cured for 2 to 20 h under the saturated steam pressure at 200{degrees}C. Although the SiO{sub 2} content of these ceramic wastes was about 70 mass% and they contain various alkaline ions and alkaline earth ions, solidified specimens with flexural strength up to 35MPa were obtained. This is within the range of strengths when quartz or fused silica is used as pure SiO{sub 2} sources. Formation of tobermorite, which was detected in all systems after 2 h of curing, was considered to affect the increase of the strength. It was found that there is a possibility of aluminum and alkali ions being included in the structure of the formed tobermorite. In the case of using steatite ceramic tile waste containing Mg, magnesium silicate hydrates were also formed. The modal pore diameter shifted to 0.01 {mu} m with the formation of these hydrates and there was correlation between the flexural strength and the pore size distribution.

  2. Joining of ceramics of different biofunction by hot isostatic pressing

    SciTech Connect

    Li, Jianguo . Center for Dental Technology and Biomaterials); Harmansson, L. ); Soeremark, R. . Dept. of Prosthodontics)

    1993-10-01

    Monolithic zirconia (Z) and zirconia-hydroxyapatite (Z/HA) composites were joined by cold isostatic pressing (CIP at 300 MPa) and subsequently by glass-encapsulated hot isostatic pressing (HIP at 1225 C, 1 h and 200 MPa). The physical and mechanical properties of the materials were measured. The fracture surface was studied using a light microscope. The results indicate a strength level of the joint similar to that of the corresponding composite material (Z/HA), 845 and 860 MPa, respectively. Similar experiments with monolithic alumina (A) and alumina-hydroxyapatite (A/HA) were carried out without success. Cracking occurred in the joint area during the cold isostatic pressing process. It seems that ceramics with high green strength and similar green density are essential when joining ceramics by combined CIP and HIP processes.

  3. Evaluation of angle dependence in spectral emissivity of ceramic tiles measured by FT-IR

    NASA Astrophysics Data System (ADS)

    Kobayashi, C.; Ogasawara, N.; Yamada, H.; Yamada, S.; Kikuchi, T.

    2015-05-01

    Ceramic tiles are widely used for building walls. False detections are caused in inspections by infrared thermography because of the infrared reflection and angle dependence of emissivity. As the first problem, ceramic tile walls are influenced from backgrounds reflection. As the second problem, in inspection for tall buildings, the camera angles are changed against the height. Thus, to reveal the relation between the emissivity and angles is needed. However, there is very little data about it. It is impossible to decrease the false detection on ceramic tile walls without resolving these problems; background reflection and angle dependence of emissivity. In this study, the angle problem was investigated. The purpose is to establish a revision method in the angle dependence of the emissivity for infrared thermography. To reveal the relation between the emissivity and angles, the spectral emissivity of a ceramic tile at various angles was measured by FT-IR and infrared thermographic instrument. These two experimental results were compared with the emissivity-angle curves from the theoretical formula. In short wavelength range, the two experimental results showed similar behavior, but they did not agree with the theoretical curve. This will be the subject of further study. In long wavelength range, the both experimental results almost obeyed the theoretical curve. This means that it is possible to revise the angle dependence of spectral emissivity, for long wavelength range.

  4. A portable high-power diode laser-based single-stage ceramic tile grout sealing system

    NASA Astrophysics Data System (ADS)

    Lawrence, J.; Schmidt, M. J. J.; Li, L.; Edwards, R. E.; Gale, A. W.

    2002-02-01

    By means of a 60 W high-power diode laser (HPDL) and a specially developed grout material the void between adjoining ceramic tiles has been successfully sealed. A single-stage process has been developed which uses a crushed ceramic tile mix to act as a tough, inexpensive bulk substrate and a glazed enamel surface to provide an impervious surface glaze. The single-stage ceramic tile grout sealing process yielded seals produced in normal atmospheric conditions that displayed no discernible cracks and porosities. The single-stage grout is simple to formulate and easy to apply. Tiles were successfully sealed with power densities as low as 200 kW/ mm2 and at rates of up to 600 mm/ min. Bonding of the enamel to the crushed ceramic tile mix was identified as being primarily due to van der Waals forces and, on a very small scale, some of the crushed ceramic tile mix material dissolving into the glaze. In terms of mechanical, physical and chemical characteristics, the single-stage ceramic tile grout was found to be far superior to the conventional epoxy tile grout and, in many instances, matched and occasionally surpassed that of the ceramic tiles themselves. What is more, the development of a hand-held HPDL beam delivery unit and the related procedures necessary to lead to the commercialisation of the single-stage ceramic tile grout sealing process are presented. Further, an appraisal of the potential hazards associated with the use of the HPDL in an industrial environment and the solutions implemented to ensure that the system complies with the relevant safety standards are given.

  5. Sewage sludge ash characteristics and potential for use in bricks, tiles and glass ceramics.

    PubMed

    Lynn, Ciarán J; Dhir, Ravindra K; Ghataora, Gurmel S

    2016-01-01

    The characteristics of sewage sludge ash (SSA) and its use in ceramic applications pertaining to bricks, tiles and glass ceramics have been assessed using the globally published literature in the English medium. It is shown that SSA possesses similar chemical characteristics to established ceramic materials and under heat treatment achieves the targeted densification, strength increases and absorption reductions. In brick and tile applications, technical requirements relating to strength, absorption and durability are achievable, with merely manageable performance reductions with SSA as a partial clay replacement. Fluxing properties of SSA facilitate lower firing temperatures during ceramics production, although reductions in mix plasticity leads to higher forming water requirements. SSA glass ceramics attained strengths in excess of natural materials such as granite and marble and displayed strong durability properties. The thermal treatment and nature of ceramic products also effectively restricted heavy metal leaching to low levels. Case studies, predominantly in bricks applications, reinforce confidence in the material with suitable technical performances achieved in practical conditions. PMID:27386979

  6. Prevalence of Cardiovascular Risk Factors among Tile and Ceramic Workers in Yazd, Iran.

    PubMed

    Mehrparvar, Amir Houshang; Mirmohammadi, Seyyed Jalil; Mostaghaci, Mehrdad; Bahaloo, Maryam; Heydari, Mohammad; Samimi, Ehsan; Zohal, Mahnaz; Davari, Mohammad Hossein

    2013-01-01

    Introduction. Cardiovascular disorders (CVDs) are among the most important diseases in the world and determination of their risk factors is essential for primary and secondary prevention. This study aimed to evaluate these risk factors in workers of tile and ceramic industry, a main industry in Yazd. Materials and Methods. In a cross-sectional study, 1075 tile and ceramic workers were selected by simple sampling method. BMI, blood pressure, FBS, and lipid profile were measured and compared to international standards. Results. 731 individuals (68%) had at least one risk factor, and 52%, 12%, 3%, and 0.7% had one, two, three, and four risk factors, respectively. The most common risk factor was abnormal BMI (49.6%); low HDL (48.4%) and high TG (14.1%) were in the second and third orders. Conclusion. This study showed a relatively high prevalence for CVD risk factors among tile and ceramic workers. Low HDL, high TG, and overweight were the most frequent risk factors in this population. PMID:24967143

  7. Prevalence of Cardiovascular Risk Factors among Tile and Ceramic Workers in Yazd, Iran

    PubMed Central

    Mehrparvar, Amir Houshang; Mirmohammadi, Seyyed Jalil; Heydari, Mohammad; Samimi, Ehsan; Zohal, Mahnaz

    2013-01-01

    Introduction. Cardiovascular disorders (CVDs) are among the most important diseases in the world and determination of their risk factors is essential for primary and secondary prevention. This study aimed to evaluate these risk factors in workers of tile and ceramic industry, a main industry in Yazd. Materials and Methods. In a cross-sectional study, 1075 tile and ceramic workers were selected by simple sampling method. BMI, blood pressure, FBS, and lipid profile were measured and compared to international standards. Results. 731 individuals (68%) had at least one risk factor, and 52%, 12%, 3%, and 0.7% had one, two, three, and four risk factors, respectively. The most common risk factor was abnormal BMI (49.6%); low HDL (48.4%) and high TG (14.1%) were in the second and third orders. Conclusion. This study showed a relatively high prevalence for CVD risk factors among tile and ceramic workers. Low HDL, high TG, and overweight were the most frequent risk factors in this population. PMID:24967143

  8. Process-generated nanoparticles from ceramic tile sintering: Emissions, exposure and environmental release.

    PubMed

    Fonseca, A S; Maragkidou, A; Viana, M; Querol, X; Hämeri, K; de Francisco, I; Estepa, C; Borrell, C; Lennikov, V; de la Fuente, G F

    2016-09-15

    The ceramic industry is an industrial sector in need of significant process changes, which may benefit from innovative technologies such as laser sintering of ceramic tiles. Such innovations result in a considerable research gap within exposure assessment studies for process-generated ultrafine and nanoparticles. This study addresses this issue aiming to characterise particle formation, release mechanisms and their impact on personal exposure during a tile sintering activity in an industrial-scale pilot plant, as a follow-up of a previous study in a laboratory-scale plant. In addition, possible particle transformations in the exhaust system, the potential for particle release to the outdoor environment, and the effectiveness of the filtration system were also assessed. For this purpose, a tiered measurement strategy was conducted. The main findings evidence that nanoparticle emission patterns were strongly linked to temperature and tile chemical composition, and mainly independent of the laser treatment. Also, new particle formation (from gaseous precursors) events were detected, with nanoparticles <30nm in diameter being formed during the thermal treatment. In addition, ultrafine and nano-sized airborne particles were generated and emitted into workplace air during sintering process on a statistically significant level. These results evidence the risk of occupational exposure to ultrafine and nanoparticles during tile sintering activity since workers would be exposed to concentrations above the nano reference value (NRV; 4×10(4)cm(-3)), with 8-hour time weighted average concentrations in the range of 1.4×10(5)cm(-3) and 5.3×10(5)cm(-3). A potential risk for nanoparticle and ultrafine particle release to the environment was also identified, despite the fact that the efficiency of the filtration system was successfully tested and evidenced a >87% efficiency in particle number concentrations removal. PMID:26848012

  9. Effect of biological treatment of the ceramic mass on the drying and firing of facing tiles

    SciTech Connect

    Baranov, V.V.; Sidorova, V.A.; Skripnik, V.P.; Solnyshkina, T.N.; Vainberg, S.N.; Vlasov, A.S.; Yashchenko, O.I.

    1985-12-01

    The authors studied the ceramic masses of the Minsk Building Materials Production complex (MZSM) and the Kishinev FinishingMaterials Plant (KZOM) having the following compositions: MZSM--48% Vesejovsk VGP clay, 22% nepheline concentrate, 17% quartz sand, 8% dolomite, 5% title scrap, and above 100% 3% bentonite, 0.1% soda ash, and 0.28% liquid glass; KZOM-48% Veselovsk VGP clay, 28% nepheline-syenite, 8% limestone filings (scrap), 16% title scrap, and, above 100%, 1% bentonite and 3% sodium tripolyphosphate. Improving the quality of ceramic tiles and reducing the mineral and fuel-energy consumption in their production are among the practical industrial problems. This paper discusses a method of solving them by improving the drying and firing processes of the products.

  10. Comparison of ceramic waste forms produced by hot uniaxial pressing and by cold pressing and sintering

    SciTech Connect

    Oversby, V.M.; Vance, E.R.

    1994-09-01

    Synroc C waste form specimens prepared using the Australian-developed technology are uniaxially pressed in stainless steel bellows at 1200{degrees}C and 20MPa. This produces a material with high chemical and physical durability and with the radioactivity enclosed inside both the waste form and the bellows. An alternative method of producing the ceramic product is to use cold pressing of pellets followed by reactive sintering to provide densification and mineralization. Depending on the scale of waste form preparation required and on the activity level and nature of the waste streams, the cold press and sinter method may have advantages. To evaluate the effects of production method on waste form characteristics, especially resistance to dissolution or leaching of waste elements, we have prepared two simulated waste samples for evaluation. Both samples were prepared from liquid precursor materials (alkoxides, nitrates, and colloidal silica) and then doped with waste elements. The precursor material in each case corresponded to a basic phase assemblage of 60% zirconolite, 15% nepheline, 10% spinel, 10% perovskite, and 5% rutile. One sample was doped with 25% by weight of U; the other with 10% by weight each of U and Gd. Each sample was calcined at 750{degrees}C for 1 hr. in a 3.5% H{sub 2} in N{sub 2} atmosphere. Then one portion of each sample was hot pressed at temperatures ranging from 1120 to 1250{degrees}C and 20MPa pressure in steel bellows. A separate portion of each sample was formed into pellets, cold pressed, and sintered in various atmospheres at 1200{degrees}C to produce final products about 2/3 cm in diameter. Samples were then examined to determine density of the product, grain sizes of the phases, phase assemblage, and the location of the U and Gd in the final phases. Density data indicate that sintering gives good results provided that the samples are held at 200{degrees}C for long enough to allow trapped gases to escape.

  11. Optimal Non-Invasive Fault Classification Model for Packaged Ceramic Tile Quality Monitoring Using MMW Imaging

    NASA Astrophysics Data System (ADS)

    Agarwal, Smriti; Singh, Dharmendra

    2016-04-01

    Millimeter wave (MMW) frequency has emerged as an efficient tool for different stand-off imaging applications. In this paper, we have dealt with a novel MMW imaging application, i.e., non-invasive packaged goods quality estimation for industrial quality monitoring applications. An active MMW imaging radar operating at 60 GHz has been ingeniously designed for concealed fault estimation. Ceramic tiles covered with commonly used packaging cardboard were used as concealed targets for undercover fault classification. A comparison of computer vision-based state-of-the-art feature extraction techniques, viz, discrete Fourier transform (DFT), wavelet transform (WT), principal component analysis (PCA), gray level co-occurrence texture (GLCM), and histogram of oriented gradient (HOG) has been done with respect to their efficient and differentiable feature vector generation capability for undercover target fault classification. An extensive number of experiments were performed with different ceramic tile fault configurations, viz., vertical crack, horizontal crack, random crack, diagonal crack along with the non-faulty tiles. Further, an independent algorithm validation was done demonstrating classification accuracy: 80, 86.67, 73.33, and 93.33 % for DFT, WT, PCA, GLCM, and HOG feature-based artificial neural network (ANN) classifier models, respectively. Classification results show good capability for HOG feature extraction technique towards non-destructive quality inspection with appreciably low false alarm as compared to other techniques. Thereby, a robust and optimal image feature-based neural network classification model has been proposed for non-invasive, automatic fault monitoring for a financially and commercially competent industrial growth.

  12. Study of dynamic structure and heat and mass transfer of a vertical ceramic tiles dryer using CFD simulations

    NASA Astrophysics Data System (ADS)

    Kriaa, Wassim; Bejaoui, Salma; Mhiri, Hatem; Le Palec, Georges; Bournot, Philippe

    2014-02-01

    In this study, we developed a two-dimensional Computational Fluid Dynamics (CFD) model to simulate dynamic structure and heat and mass transfer of a vertical ceramic tiles dryer (EVA 702). The carrier's motion imposed the choice of a dynamic mesh based on two methods: "spring based smoothing" and "local remeshing". The dryer airflow is considered as turbulent ( Re = 1.09 × 105 at the dryer inlet), therefore the Re-Normalization Group model with Enhanced Wall Treatment was used as a turbulence model. The resolution of the governing equation was performed with Fluent 6.3 whose capacities do not allow the direct resolution of drying problems. Thus, a user defined scalar equation was inserted in the CFD code to model moisture content diffusion into tiles. User-defined functions were implemented to define carriers' motion, thermo-physical properties… etc. We adopted also a "two-step" simulation method: in the first step, we follow the heat transfer coefficient evolution (Hc). In the second step, we determine the mass transfer coefficient (Hm) and the features fields of drying air and ceramic tiles. The found results in mixed convection mode (Fr = 5.39 at the dryer inlet) were used to describe dynamic and thermal fields of airflow and heat and mass transfer close to the ceramic tiles. The response of ceramic tiles to heat and mass transfer was studied based on Biot numbers. The evolutions of averages temperature and moisture content of ceramic tiles were analyzed. Lastly, comparison between experimental and numerical results showed a good agreement.

  13. Removal of glass adhered to sintered ceramics in hot isostatic pressing

    NASA Technical Reports Server (NTRS)

    1985-01-01

    In the hot isostatic pressing of ceramic materials in molten glass using an inert gas as a pressing medium, glass adhered to the sintered ceramics is heated to convert it to a porous glass and removed. Thus, Si3N4 powder was compacted at 5000 kg/sq cm, coated with a 0.5 mm thick BN, embedded in Pyrex glass in a graphite crucible, put inside a hot isostatic press containing Argon, hot pressed at 1750 C and 100 kg/sq cm; cooled, taken out from the crucible, heated at 1100 C for 30 minutes, cooled, and then glass adhered to the sintered body was removed.

  14. Comparison of slime-producing coagulase-negative Staphylococcus colonization rates on vinyl and ceramic tile flooring materials.

    PubMed

    Yazgi, H; Uyanik, M H; Ayyildiz, A

    2009-01-01

    This study investigated the colonization of slime-producing coagulase-negative Staphylococcus (CoNS) in 80 patient wards in Turkey (40 vinyl and 40 ceramic tile floors). A total of 480 samples that included 557 CoNS isolates were obtained. Slime production was investigated with the Christensen method and methicillin-susceptibility was tested by the disk-diffusion method. There was a significant difference in the percentage of slime-producing CoNS isolates on vinyl (12.4%) versus ceramic tile flooring (4.4%). From vinyl flooring, the percentage of slime producing methicillin-resistant CoNS (MRCoNS) (8.9%) was significantly higher than for methicillin-sensitive CoNS (MSCoNS) (3.6%), whereas there was no difference from ceramic tile flooring (2.5% MRCoNS versus 1.8% MSCoNS). The most commonly isolated slime-producing CoNS species was S. epidermidis on both types of flooring. It is concluded that vinyl flooring seems to be a more suitable colonization surface for slime-producing CoNS than ceramic tile floors. Further studies are needed to investigate bacterial strains colonized on flooring materials, which are potential pathogens for nosocomial infections. PMID:19589249

  15. Modelling runoff on ceramic tile roofs using the kinematic wave equations.

    PubMed

    Silveira, A; Abrantes, J R C B; de Lima, J L M P; Lira, L C

    2016-01-01

    Generally, roofs are the best candidates for rainwater harvesting. In this context, the correct evaluation of the quantity and quality of runoff from roofs is essential to effectively design rainwater harvesting systems. This study aims to evaluate the performance of a kinematic wave based numerical model in simulating runoff on sloping roofs, by comparing the numerical results with the ones obtained from laboratory rainfall simulations on a real-scale Lusa ceramic tile roof. For all studied slopes, simulated discharge hydrographs had a good adjust to observed ones. Coefficient of determination and Nash-Sutcliffe efficiency values were close to 1.0. Particularly, peak discharges, times to peak, peak durations and runoff volumes were very well simulated. PMID:27232420

  16. Micro-XRF for characterization of Moroccan glazed ceramics and Portuguese tiles

    NASA Astrophysics Data System (ADS)

    Guilherme, A.; Manso, M.; Pessanha, S.; Zegzouti, A.; Elaatmani, M.; Bendaoud, R.; Coroado, J.; dos Santos, J. M. F.; Carvalho, M. L.

    2013-02-01

    A set of enamelled terracotta samples (Zellij) collected from five different monuments in Morocco were object of study. With the aim of characterizing these typically Moroccan artistic objects, X-ray spectroscopic techniques were used as analytical tool to provide elemental and compound information. A lack of information about these types of artistic ceramics is found by the research through international scientific journals, so this investigation is an opportunity to fulfill this gap. For this purpose, micro-Energy Dispersive X-ray Fluorescence (μ-EDXRF), and wavelength dispersive X-ray Fluorescence (WDXRF) and X-ray Diffraction (XRD) were the chosen methods. As complementary information, a comparison with other sort of artistic pottery objects is given, more precisely with Portuguese glazed wall tiles (Azulejos), based in the Islamic pottery traditions. Differences between these two types of decorative pottery were found and presented in this manuscript.

  17. Modelling runoff on ceramic tile roofs using the kinematic wave equations

    NASA Astrophysics Data System (ADS)

    Silveira, Alexandre; Abrantes, João; de Lima, João; Lira, Lincoln

    2016-04-01

    Rainwater harvesting is a water saving alternative strategy that presents many advantages and can provide solutions to address major water resources problems, such as fresh water scarcity, urban stream degradation and flooding. In recent years, these problems have become global challenges, due to climatic change, population growth and increasing urbanisation. Generally, roofs are the first to come into contact with rainwater; thus, they are the best candidates for rainwater harvesting. In this context, the correct evaluation of roof runoff quantity and quality is essential to effectively design rainwater harvesting systems. Despite this, many studies usually focus on the qualitative aspects in detriment of the quantitative aspects. Laboratory studies using rainfall simulators have been widely used to investigate rainfall-runoff processes. These studies enabled a detailed exploration and systematic replication of a large range of hydrologic conditions, such as rainfall spatial and temporal characteristics, providing for a fast way to obtain precise and consistent data that can be used to calibrate and validate numerical models. This study aims to evaluate the performance of a kinematic wave based numerical model in simulating runoff on sloping roofs, by comparing the numerical results with the ones obtained from laboratory rainfall simulations on a real-scale ceramic tile roof (Lusa tiles). For all studied slopes, simulated discharge hydrographs had a good adjust to observed ones. Coefficient of determination and Nash-Sutcliffe efficiency values were close to 1.0. Particularly, peak discharges, times to peak and peak durations were very well simulated.

  18. Compressive Strength and Water Absorption of Pervious Concrete that Using the Fragments of Ceramics and Roof Tiles

    NASA Astrophysics Data System (ADS)

    Prahara, E.; Meilani

    2014-03-01

    Pervious concrete was introduced in America in 2003, popularized by Dan Brown and used as a rigid pavement in the open parking lot. Rigid pavement using pervious concrete can absorb water in the surface to go straight through the concrete to the ground below.This water flow is one of the benefit of using the pervious concrete. Using of wastes such as broken roof and ceramics tiles are not commonly used in Indonesia. Utilization these kind of wastes is predicted lower the compressive strength of pervious concrete as they are used as a substitute for coarse aggregate.In this research, pervious concrete is made using a mixture of the fragment of ceramics and roof tiles.This research using broken ceramics and roof tiles with a grain size that loose from 38 mm sieve, retained on 19 mm sieve and the coarse aggregate from crushed stone that loose 12.5 mm sieve, retained on 9.5 mm sieve. The water cement ratio is 0.3 and to assist the mixing process, the addition of addictive in pervious concrete is used.The size of coarse aggregate used in the mixture affects the strength of pervious concrete. The larger the size of aggregate, the obtained compressive strength becomes smaller. It also affects the density of pervious concrete. The using of mixture of ceramics and roof tiles only reduce 2 MPa of pervious concrete compressive strength so this mixture can be used as a substitute for coarse aggregate with a maximum portion of 30 %. The high porosity of the specimens causes the reduction of pervious concrete density that affect the compressive strength. This high level of porosity can be seen from the high level of water absorption that exceed the required limit of water infiltration.

  19. Floor tile glass-ceramic glaze for improvement of the resistance to surface abrasion

    NASA Astrophysics Data System (ADS)

    Gajek, M.; Lis, J.; Partyka, J.; Wójczyk, M.

    2011-10-01

    The results of research aimed at the study on frits and glass-ceramic glazes for floor tiles, based on compositions located in the primary field of cordierite crystallization within the system MgO-Al2O3-SiO2, have been presented. The results comprise investigations on the frits crystallization abilities, stability of the crystallizing phase under conditions of single-stage a fast firing cycle (time below 60 minutes) depending on their chemical composition and the influence of the nucleation agents. The influence of the nucleating agents namely TiO2, ZrO2, V2O5 on phase composition of obtained crystalline glazes, mechanical parameters and microstructure, has been examined. The strength tests proved increased mechanical resistance of crystalline glazes. Obtained glazes are characterized by high microhardness in range 6~8 GPa, as well as the increased wear resistance measured by the loss of weight below 100 mg / 55 cm2 (PN-EN ISO 10545-7). Significant increase of these parameters as compared with non-crystalline glazes, where micro-hardness values range between 5~6 GPa and the wear resistance values range from 120 to 200 mg, has been proved. Starting glasses (frits) and glazes of the ternary system MgO-SiO2-Al2O3, were examined with use of DTA, XRD and SEM methods.

  20. Program-technical complex for sorting ceramic tiles with the method of artificial intellect

    NASA Astrophysics Data System (ADS)

    Aliyev, Namik; Aliyev, Elchin

    2001-08-01

    Development of areas of automated systems of management of technological processes and systems of local automation requires the resolving of a set of questions on identification of production operations, working out industrial methods of measuring and control. Program-technical complex containing the systems of artificial vision, integrating device and dynamic expert systems of ready-product quality control in the example of decorative tile are examined at this work. The problem of identification of image can not be fully formalized and solved with the usage of strict algorithmic procedures and mathematical methods. Due to the mentioned fact, the development of intellectual programming methods- expert systems of image identification should provide effectiveness of mathematical methods of processing and heuristic programming with the expert knowledge of characteristics in analyzed systems. Implementation of the proposed complex, spares the specialist from routine job, allows timely spotting of technological process, solves the problem of sorting of ceramic materials in real time frame. In the meantime, the implementation of the system in dialog mode gives suggestions and recommendations.

  1. Preparation and characterization of novel glass-ceramic tile with microwave absorption properties from iron ore tailings

    NASA Astrophysics Data System (ADS)

    Yao, Rui; Liao, SongYi; Dai, ChangLu; Liu, YuChen; Chen, XiaoYu; Zheng, Feng

    2015-03-01

    A novel glass-ceramic tile consisting of one glass-ceramic layer (GC) attaining microwave absorption properties atop ceramic substrate was prepared through quench-heat treatment route derived from iron ore tailings (IOTs) and commercial raw materials (purity range 73-99%). X-ray diffraction (XRD), SEM, Energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), Physical property measurement system (PPMS) and Vector network analyzer (VNA) measurements were carried out to investigate phase, microstructure, magnetic and microwave absorption aspects of the glass-ceramic layer. Roughly 80.6±1.7 wt% borosilicate glass and 19.4±1.7 wt% spinel ferrite with chemical formula of (Zn2+0.17Fe3+0.83)[Fe3+1.17Fe2+0.06Ni2+0.77]O4 were found among the tested samples. Absorption of Electromagnetic wave by 3 mm thick glass-ceramic layer at frequency of 2-18 GHz reached peak reflection loss (RL) of -17.61 dB (98.27% microwave absorption) at 10.31 GHz. Altering the thickness of the glass-ceramic layer can meet the requirements of different level of microwave absorption.

  2. Thermo Physical Characteristics of Vitrified Tile Polishing Waste for Use in Traditional Ceramics-An Initiative of Cgcri, Naroda Centre

    NASA Astrophysics Data System (ADS)

    Misra, S. N.; Machhoya, B. B.; Savsani, R. M.

    This paper reports the thermo physical characteristics of Vitrified tile polishing waste materials. As such growing production of vitrified tiles in the country generate large volume of this waste obtained during processing, polishing and cutting of the vitrified tiles to the tune of nearly 10-15 tonnes per day from each plant. The characteristic features of these materials are being studied and investigated to develop suitable technology for finding its gainful use especially in the traditional ceramics. It is known that ceramic as such building materials industry could be a large raw materials consumer and being heterogeneous and thus could utilize this vast quantity as the raw materials. However, the main problem would be it's firing nature as it showed thermal deformation after a particular temperature. Interestingly, the production process of most of the traditional ceramics follows a similar pattern starting from the raw materials processing up to a level of firing. Hence, to suggest suitable utility in the traditional ceramics as raw materials, it was the prime requisite that these waste must be thoroughly studied w. r. t various thermo physical characteristics to make use in this sectors. Hence, the present paper interestingly gone up to various study such as raw materials nature, particle size distribution, chemistry, XRD and DTA study for understanding typical physico chemical properties, and finally thermal properties to make it suitable for use in traditional ceramic industries. The higher fineness of the waste materials indicates its usefulness without extra grinding. The chemistry of typical sludge shows contamination from abrasive particles, sorrel cement bonding materials etc. originated from the polishing wheel and needs special precaution while suggesting use in the ceramic sectors. The firing characteristics of the sludge materials produces a foamy and spongy shapes and this could be the main guiding parameters in selecting the end use of the

  3. Influence of hot isostatic pressing on ZrO2-CaO dental ceramics properties.

    PubMed

    Gionea, Alin; Andronescu, Ecaterina; Voicu, Georgeta; Bleotu, Coralia; Surdu, Vasile-Adrian

    2016-08-30

    Different hot isostatic pressing conditions were used to obtain zirconia ceramics, in order to assess the influence of HIP on phase transformation, compressive strength, Young's modulus and density. First, CaO stabilized zirconia powder was synthesized through sol-gel method, using zirconium propoxide, calcium isopropoxide and 2-metoxiethanol as precursors, then HIP treatment was applied to obtain final dense ceramics. Ceramics were morphologically and structurally characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Density measurements, compressive strength and Young's modulus tests were also performed in order to evaluate the effect of HIP treatment. The zirconia powders heat treated at 500°C for 2h showed a pure cubic phase with average particle dimension about 70nm. The samples that were hot isostatic pressed presented a mixture of monoclinic-tetragonal or monoclinic-cubic phases, while for pre-sintered samples, cubic zirconia was the single crystalline form. Final dense ceramics were obtained after HIP treatment, with relative density values higher than 94%. ZrO2-CaO ceramics presented high compressive strength, with values in the range of 500-708.9MPa and elastic behavior with Young's modulus between 1739MPa and 4372MPa. Finally zirconia ceramics were tested for biocompatibility allowing the normal development of MG63 cells in vitro. PMID:26481467

  4. Application of exopolysaccharides to improve the performance of ceramic bodies in the unidirectional dry pressing process

    NASA Astrophysics Data System (ADS)

    Caneira, Inês; Machado-Moreira, Bernardino; Dionísio, Amélia; Godinho, Vasco; Neves, Orquídia; Dias, Diamantino; Saiz-Jimenez, Cesareo; Miller, Ana Z.

    2015-04-01

    Ceramic industry represents an important sector of economic activity in the European countries and involves complex and numerous manufacturing processes. The unidirectional dry pressing process includes milling and stirring of raw materials (mainly clay and talc minerals) in aqueous suspensions, followed by spray drying to remove excess water obtaining spray-dried powders further subjected to dry pressing process (conformation). However, spray-dried ceramic powders exhibit an important variability in their performance when subjected to the dry pressing process, particularly in the adhesion to the mold and mechanical strength, affecting the quality of the final conformed ceramic products. Therefore, several synthetic additives (deflocculants, antifoams, binders, lubricants and plasticizers) are introduced in the ceramic slips to achieve uniform and homogeneous pastes, conditioning their rheological properties. However, an important variability associated with the performance of the conformed products is still reported. Exopolysaccharides or Extracellular Polymeric Substances (EPS) are polymers excreted by living organisms, such as bacteria, fungi and algae, which may confer unique and potentially interesting properties with potential industrial uses, such as viscosity control, gelation, and flocculation. Polysaccharides, such as pullulan, gellan, carrageenan and xanthan have found a wide range of applications in food, pharmaceutical, petroleum, and in other industries. The aim of this study was the assessment of exopolysaccharides as natural additives to optimize the performance of spray-dried ceramic powders during the unidirectional dry pressing process, replacing the synthetic additives used in the ceramic production process. Six exopolysaccharides, namely pullulan, gellan, xanthan gum, κappa- and iota-carrageenan, and guar gum were tested in steatite-based spray-dried ceramic powders at different concentrations. Subsequently, these ceramic powders were

  5. Evaluation of shear bond strength between zirconia core and ceramic veneers fabricated by pressing and layering techniques: In vitro study

    PubMed Central

    Subash, M.; Vijitha, D.; Deb, Saikat; Satish, A.; Mahendirakumar, N.

    2015-01-01

    Statement of Problem: Although ceramic veneered on to zirconia core have been in use for quite some time, information regarding the comparative evaluation of the Shear bond strength of Pressable & Layered ceramic veneered on to zirconia core is limited. Purpose of study: To evaluate the shear bond strength of zirconia core and ceramic veneer fabricated by two different techniques, Layering (Noritake CZR) and Pressing (Noritake, CZR Press). Materials and Method: 20 samples of zirconia blocks were fabricated and the samples were divided into group A & B. Group A - Ceramic Veneered over zirconia core by pressing using Noritake CZR Press. Group B - Ceramic Veneered over zirconia core by layering using Noritake CZR. The veneered specimens were mounted on to the center of a PVC tube using self-cure acrylic resin leaving 3 mm of the veneered surface exposed as cantilever. Using a Universal testing machine the blocks were loaded up to failure. Result: The results were tabulated by using independent samples t-test. The mean shear bond strength for Pressed specimens was 12.458 ± 1.63(S.D) MPa and for layered specimens was 8.458 ± 0.845(S.D) MPa. Conclusion: Pressed specimens performed significantly better than the layered specimen with a P value 0.001. Clinicians and dental laboratory technicians should consider the use of pressed ceramics as an alternative to traditional layering procedures to reduce the chances of chipping or de-lamination of ceramics PMID:26538929

  6. Quality and seasonal variation of rainwater harvested from concrete, asphalt, ceramic tile and green roofs in Chongqing, China.

    PubMed

    Zhang, Qianqian; Wang, Xiaoke; Hou, Peiqiang; Wan, Wuxing; Li, Ruida; Ren, Yufen; Ouyang, Zhiyun

    2014-01-01

    There is an urgent requirement to examine the quality of harvested rainwater for potable and non-potable purposes, based on the type of roofing material. In this study, we examined the effect on the quality of harvested rainwater of conventional roofing materials (concrete, asphalt and ceramic tile roofs) compared with alternative roofing materials (green roof). The results showed that the ceramic tile roof was the most suitable for rainwater-harvesting applications because of the lower concentrations of leachable pollutants. However, in this study, the green roof was not suitable for rainwater harvesting applications. In addition, seasonal trends in water quality parameters showed that pollutants in roof runoff in summer and autumn were lower than those in winter and spring. This study revealed that the quality of harvested rainwater was significantly affected by the roofing material; therefore, local government and urban planners should develop stricter testing programs and produce more weathering resistant roofing materials to allow the harvesting of rainwater for domestic and public uses. PMID:24316751

  7. Evaluation of Bond Strength of Pressed and Layered Veneering Ceramics to Nickel-Chromium Alloy

    PubMed Central

    Farzin, Mitra; Khaledi, Amir Alireza; Malekpour, Behnam; Naseri, Mohammad Hassan

    2015-01-01

    Statement of the Problem The success of metal- ceramic- restorations (MCR) depends on the presence of strong bond between porcelain and metal substructure. Purpose The purpose of this study was to evaluate the effect of hot pressing technique on the bond strength of a metal-porcelain composite in comparison to layering technique. Materials and Method Thirty Nickel-Chromium specimens were produced by two methods; conventional porcelain layering on metal and hot pressing (n=15). Bond strengths of all specimens were assessed by the means of three–point bending test according to ISO 9693: 1999 (E) instructions. The data were analyzed using Students t-test (p< 0.001). Results The mean ± SD bond strength of conventional and hot pressing technique was 48.29 ± 6.02 and 56.52 ± 4.97, respectively. Therefore, the conventional layering technique yielded significantly lower mean bond strength values than hot pressing technique (p< 0.001). Conclusion This study showed that it is possible to improve metal–porcelain bond strength significantly by applying an overpressure during porcelain firing. PMID:26535402

  8. Additive-free hot-pressed silicon carbide ceramics-A material with exceptional mechanical properties

    SciTech Connect

    Sajgalik, P.; Sedlacek, J.; Lences, Z.; Dusza, J.; Lin, H. -T.

    2015-12-30

    Densification of silicon carbide without any sintering aids by hot-pressing and rapid hot pressing was investigated. Full density (>99% t.d.) has been reached at 1850 °C, a temperature of at least 150-200 °C lower compared to the up to now known solid state sintered silicon carbide powders. Silicon carbide was freeze granulated and heat treated prior the densification. Furthermore, evolution of microstructure, mechanical properties and creep behavior were evaluated and compared to reference ceramics from as received silicon carbide powder as well as those of commercial one. Novel method results in dense ceramics with Vickers hardness and indentation fracture toughness of 29.0 GPa and 5.25 MPam1/2, respectively. Moreover, the creep rate of 3.8 x 10–9 s–1 at 1450 °C and the load of 100 MPa is comparable to the commercial α-SiC solid state sintered at 2150 °C.

  9. Additive-free hot-pressed silicon carbide ceramics-A material with exceptional mechanical properties

    DOE PAGESBeta

    Sajgalik, P.; Sedlacek, J.; Lences, Z.; Dusza, J.; Lin, H. -T.

    2015-12-30

    Densification of silicon carbide without any sintering aids by hot-pressing and rapid hot pressing was investigated. Full density (>99% t.d.) has been reached at 1850 °C, a temperature of at least 150-200 °C lower compared to the up to now known solid state sintered silicon carbide powders. Silicon carbide was freeze granulated and heat treated prior the densification. Furthermore, evolution of microstructure, mechanical properties and creep behavior were evaluated and compared to reference ceramics from as received silicon carbide powder as well as those of commercial one. Novel method results in dense ceramics with Vickers hardness and indentation fracture toughnessmore » of 29.0 GPa and 5.25 MPam1/2, respectively. Moreover, the creep rate of 3.8 x 10–9 s–1 at 1450 °C and the load of 100 MPa is comparable to the commercial α-SiC solid state sintered at 2150 °C.« less

  10. Large enhancement of the electrocaloric effect in PLZT ceramics prepared by hot-pressing

    NASA Astrophysics Data System (ADS)

    Zhang, Guangzu; Chen, Zhibiao; Fan, Baoyan; Liu, Jianguo; Chen, Mo; Shen, Meng; Liu, Pin; Zeng, Yike; Jiang, Shenglin; Wang, Qing

    2016-06-01

    In this contribution, we demonstrate the optimization of the microstructures of the Pb0.85La0.1(Zr0.65Ti0.35)O3 (PLZT) relaxor ferroelectric ceramics and subsequent enhancements in their polarization and electrical resistivity by using a hot-pressing process. The resulting superior breakdown strength of hot-pressed PLZT enables the application of high electric field to induce a giant electrocaloric effect, in which the adiabatic change of temperature (ΔT) and the isothermal change of entropy (ΔS) are around 2 times greater than those of the samples prepared by the conventional sintering approach using muffle furnace. Moreover, the addition of extra PbO to make up the loss of Pb in the high-temperature sintering leads to the further improvements in the phase composition and electrical properties of PLZT, due to inhibition of the pyrochlore phase formation. The relationship among the sintering conditions, the content of excess PbO, and the microstructure as well as the electrical characteristics of PLZT have been investigated in a systematic manner. This work provides a facile approach to enhanced electrocaloric effect in bulk ceramics.

  11. Low-vacuum SEM analyses of ceramic tiles with emphasis on glaze defects characterisation

    SciTech Connect

    Kopar, Tinkara Ducman, Vilma

    2007-11-15

    The behaviour of glazed building ceramics exposed to different environment (weathering, chemicals, etc.) is determined by microstructural features; in many cases structural and surface defects at the micro- or nanometre scale are crucial for the functional properties of products. Many testing methods for materials characterization of a variety of ceramic products, physical and chemical methods, are time-consuming, large quantities of samples are needed, and are usually destructive. This paper illustrates the use of low-vacuum scanning electron microscopy (LV-SEM) as fast and almost non-destructive, as only a small amount of sample is needed. Examples are given of various surface and structural properties of building ceramics, for the identification of the material deterioration process as a result of environmental impact.

  12. Post-fatigue fracture resistance of metal core crowns: press-on metal ceramic versus a conventional veneering system

    PubMed Central

    Agustín-Panadero, Rubén; Campos-Estellés, Carlos; Labaig-Rueda, Carlos

    2015-01-01

    Background The aim of this in vitro study was to compare the mechanical failure behavior and to analyze fracture characteristics of metal ceramic crowns with two veneering systems – press-on metal (PoM) ceramic versus a conventional veneering system – subjected to static compressive loading. Material and Methods Forty-six crowns were constructed and divided into two groups according to porcelain veneer manufacture. Group A: 23 metal copings with porcelain IPS-InLine veneering (conventional metal ceramic). Group B: 23 metal copings with IPS-InLine PoM veneering porcelain. After 120,000 fatigue cycles, the crowns were axially loaded to the moment of fracture with a universal testing machine. The fractured specimens were examined under optical stereomicroscopy and scanning electron microscope. Results Fracture resistance values showed statistically significant differences (Student’s t-test) regarding the type of ceramic veneering technique (p=0.001): Group A (conventional metal ceramics) obtained a mean fracture resistance of 1933.17 N, and Group B 1325.74N (Press-on metal ceramics). The most common type of fracture was adhesive failure (with metal exposure) (p=0.000). Veneer porcelain fractured on the occlusal surface following a radial pattern. Conclusions Metal ceramic crowns made of IPS InLine or IPS InLine PoM ceramics with different laboratory techniques all achieved above-average values for clinical survival in the oral environment according to ISO 6872. Crowns made with IPS InLine by conventional technique resisted fracture an average of 45% more than IPS InLine PoM fabricated with the press-on technique. Key words:Mechanical failure, conventional feldspathic, pressable ceramic, chewing simulator, thermocycling, compressive testing, fracture types, scanning electron microscope. PMID:26155346

  13. Microwave versus conventional sintering of silicon carbide tiles

    SciTech Connect

    Kass, M.D.; Caughman, J.B.O.; Forrester, S.C.; Akerman, A.

    1997-05-07

    Silicon carbide is being evaluated as an armor material because of its lightweight, high-hardness, and excellent armor efficiency. However, one of the problems associated with silicon carbide is the high cost associated with achieving fully dense tiles. Full density requires either hot pressing and sintering or reaction bonding. Past efforts have shown that hot pressed tiles have a higher armor efficiency than those produced by reaction bonded sintering. An earlier stuy showed that the acoustic properties of fully-dense silicon carbide tiles were enhanced through the use of post-sintered microwave heat treatments. One of the least expensive forming techniques is to isostatically press-and-sinter. In this study, the authors have used microwave energy to densify silicon carbide green bodies. Microwave sintering has been demonstrated to be a very quick way to sinter ceramics such as alumina to exceptionally high densities. Previous work has shown that microwave post treatment of fully-dense reaction bonded silicon carbide tiles significantly improves the acoustic properties of the tiles. These properties include Poisson`s ratio, Young`s modulus, shear modulus, and bulk modulus.

  14. Studies on Various Functional Properties of Titania Thin Film Developed on Glazed Ceramic Wall Tiles

    NASA Astrophysics Data System (ADS)

    Anil, Asha; Darshana R, Bangoria; Misra, S. N.

    A sol-gel based TiO2 thin film was applied on glazed wall tiles for studying its various functional properties. Thin film was deposited by spin coating on the substrate and subjected to curing at different temperatures such as 600°C, 650, 700°C, 750°C and 800°C with 10 minutes soaking. The gel powder was characterized by FTIR, DTA/TG and XRD. Microstructure of thin film was analyzed by FESEM and EDX. Surface properties of the coatings such as gloss, colour difference, stain resistance, mineral hardness and wettability were extensively studied. The antibacterial activity of the surface of coated substrate against E. coli was also examined. The durability of the coated substrate in comparison to the uncoated was tested against alkali in accordance with ISO: 10545 (Part 13):1995 standard. FESEM images showed that thin films are dense and homogeneous. Coated substrates after firing results in lustre with high gloss, which increased from 330 to 420 GU as the curing temperature increases compared to that of uncoated one (72 GU). Coated substrate cured at 800°C shows higher mineral hardness (5 Mohs’) compared to uncoated one (4 Mohs’) and films cured at all temperatures showed stain resistance. The experimental results showed that the resistance towards alkali attack increase with increase in curing temperature and alkali resistance of sample cured at 800 °C was found to be superior compared to uncoated substrate. Contact angle of water on coated surface of substrates decreased with increase in temperature. Bacterial reduction percentages of the coated surface was 97% for sample cured at 700°C and it decreased from 97% to 87% as the curing temperature increased to 800 °C when treated with E. coli bacteria.

  15. Fabrication of a metal-ceramic crown to fit an existing partial removable dental prosthesis using ceramic pressed to metal technique: a clinical report

    PubMed Central

    Seo, Jae-Min

    2014-01-01

    Fabricating a crown to retrofit an existing abutment tooth for a partial removable dental prosthesis (PRDP) is one of the most time-consuming and labor-intensive clinical procedures. In particular, when the patient is concerned with esthetic aspects of restoration, the task of fabricating becomes more daunting. Many techniques for the fabrication of all-metallic or metal-ceramic crowns have been discussed in the literature. This article was aimed to describe a simple fabrication method in which a retrofitting crown was fabricated for a precise fit using a ceramic-pressed-to-metal system. PMID:25006389

  16. INTERIOR VIEW OF BATHROOM 1 SHOWING THE MOSAICPATTERN TILE FLOOR. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF BATHROOM 1 SHOWING THE MOSAIC-PATTERN TILE FLOOR. CERAMIC TILE WAINSCOT, AND CERAMIC ACCESSORIES. VIEW FACING NORTH. - Hickam Field, Officers' Housing Type H, 208 Sixth Street, Honolulu, Honolulu County, HI

  17. Microtensile Bond Strength of Cad-Cam and Pressed-Ceramic Inlays to Dentin

    PubMed Central

    Öztürk, A. Nilgün; İnan, Özgür; İnan, Erkan; Öztürk, Bora

    2007-01-01

    Objectives CAD-CAM system is popular because of high esthetic and short fabrication time. But, there is limited information available about the microtensile bonding of luting cements to CAD-CAM inlays and to dentin. The aim of this study was to examine the bond strength of CAD-CAM (Cerec 3) and pressed-ceramic (IPS Empress 2) inlays to dentin surface by microtensile testing using two luting cements. Materials and Methods Standardized mesio-occlusal cavities were made in forty extracted molar teeth. An occlusal reduction of 2 mm was made; the bucco-lingual width of the proximal boxes was 4 mm, the occlusal width 3 mm and the depth of the pulpal and axial walls 2 mm. The proximal boxes were extended 1 mm below the cemento-enamel junction. Teeth were randomly assigned to 2 groups to evaluate the bonding of 2 ceramic systems, Cerec 3 (Group I) and IPS Empress 2 (Group II), to dentin. Each of the 2 groups were further divided into 2 luting cement groups, Panavia F (Group A) and Variolink II (Group B). After cementation, the teeth were sectioned into two 1.2x1.2 mm wide ‘I’ shape sections. The specimens were then subjected to microtensile testing at a crosshead speed of 1 mm/min. Two-way ANOVA and Tukey HSD tests were used to evaluate the results. Results The mean microtensile bond strengths of Cerec 3 and IPS Empress 2 bonding to dentin with luting agents in MPa were Panavia F (13.98±3.44), Variolink II (14.19±3.12) and Panavia F (15.12±3.15), Variolink II (15.45±3.08) respectively. No significant differences were found among the 2 ceramic systems (P>.05) and 2 luting cements with regard to dentin bond strengths (P>.05). Conlusions There was no difference found between the dentin bond strength of the Cerec 3 and IPS Empress 2 inlays cemented with two luting cements. PMID:19212483

  18. Portfolio: Ceramics.

    ERIC Educational Resources Information Center

    Hardy, Jane; And Others

    1982-01-01

    Describes eight art activities using ceramics. Elementary students created ceramic tiles to depict ancient Egyptian and medieval European art, made ceramic cookie stamps, traced bisque plates on sketch paper, constructed clay room-tableaus, and designed clay relief masks. Secondary students pit-fired ceramic pots and designed ceramic Victorian…

  19. Tensile bond strength of a lithium-disilicate pressed glass ceramic to dentin of different surface treatments.

    PubMed

    Zortuk, Mustafa; Kilic, Kerem; Gurbulak, Aysegul Guleryuz; Kesim, Bulent; Uctasli, Sadullah

    2010-08-01

    The effects of desensitizer, disinfectant, saliva, blood, and hydrogen peroxide on the tensile bond strength between adhesive and ceramic as well as between adhesive and dentin were examined. Sixty 7x3 mm pressed ceramic discs of IPS e.max were fabricated and randomly assigned to six groups of different dentin surface treatments (control, desensitizer, disinfectant, saliva, blood, and hydrogen peroxide). Representative samples of fractured specimens were observed by SEM (scanning electron microscopy). There were significant differences between the control group and saliva, blood, and hydrogen peroxide groups (p<0.05). However, there were no significant differences between any other dentin surface treatment groups (p>0.05). Results of this study suggested that only saliva, blood, and hydrogen peroxide influenced the tensile bond strength between dentin and ceramic. PMID:20657150

  20. Effect of Workplace Noise on Hearing Ability in Tile and Ceramic Industry Workers in Iran: A 2-Year Follow-Up Study

    PubMed Central

    Mirmohammadi, Seyyed Jalil; Mehrparvar, Amir Houshang; Mollasadeghi, Abolfazl

    2013-01-01

    Introduction. Noise as a common physical hazard may lead to noise-induced hearing loss, an irreversible but preventable disorder. Annual audiometric evaluations help detect changes in hearing status before clinically significant hearing loss develops. This study was designed to track hearing threshold changes during 2-year follow-up among tile and ceramic workers. Methods. This follow-up study was conducted on 555 workers (totally 1110 ears). Subjects were divided into four groups according to the level of noise exposure. Hearing threshold in conventional audiometric frequencies was measured and standard threshold shift was calculated for each ear. Results. Hearing threshold was increased during 2 years of follow-up. Increased hearing threshold was most frequently observed at 4000, 6000, and 3000 Hz. Standard threshold shift was observed in 13 (2.34%), 49 (8.83%), 22 (3.96%), and 63 (11.35%) subjects in the first and second years of follow-up in the right and left ears, respectively. Conclusions. This study has documented a high incidence of noise-induced hearing loss in tile and ceramic workers that would put stress on the importance of using hearing protection devices. PMID:24453922

  1. MEASUREMENTS OF TRANSFERRABLE RESIDUE FROM CERAMIC TILE, VINYL TILE, HARDWOOD FLOORING, AND CARPET USING A PRESS SAMPLER AND C18, PUF, AND COTTON SAMPLING DISKS

    EPA Science Inventory

    Unintentional and avoidable human exposure is a consequence of pesticide use indoors. Pesticides on household surfaces are a source of exposure to children. Therefore, concern has been raised regarding the potential for contamination of foods in homes where pesticides have been...

  2. An accelerated technique for a ceramic-pressed-to-metal restoration with CAD/CAM technology.

    PubMed

    Lee, Ju-Hyoung

    2014-11-01

    The conventional fabrication of metal ceramic restorations depends on an experienced dental technician and requires a long processing time. However, complete-contour digital waxing and digital cutback with computer-aided design and computer-aided manufacturing (CAD/CAM) technology can overcome these disadvantages and provide a correct metal framework design and space for the ceramic material. PMID:24952883

  3. Measuring Fracture Times Of Ceramics

    NASA Technical Reports Server (NTRS)

    Shlichta, Paul J.; Bister, Leo; Bickler, Donald G.

    1989-01-01

    Electrical measurements complement or replace fast cinematography. Electronic system measures microsecond time intervals between impacts of projectiles on ceramic tiles and fracture tiles. Used in research on ceramics and ceramic-based composite materials such as armor. Hardness and low density of ceramics enable them to disintegrate projectiles more efficiently than metals. Projectile approaches ceramic tile specimen. Penetrating foil squares of triggering device activate display and recording instruments. As ceramic and resistive film break oscilloscope plots increase in electrical resistance of film.

  4. Effect of heat-pressing temperature and holding time on the microstructure and flexural strength of lithium disilicate glass-ceramics.

    PubMed

    Wang, Fu; Chai, Zhiguo; Deng, Zaixi; Gao, Jing; Wang, Hui; Chen, Jihua

    2015-01-01

    The present study aimed to evaluate the influence of various heat-pressing procedures (different holding time and heat pressing temperature) on the microstructure and flexural strength of lithium disilicate glass ceramic. An experimental lithium silicate glass ceramic (ELDC) was prepared from the SiO2-Li2O-K2O-Al2O3-ZrO2-P2O5 system and heat-pressed following different procedures by varying temperature and holding time. The flexural strength was tested and microstructure was analyzed. The relationships between the microstructure, mechanical properties and heat-pressing procedures were discussed in-depth. Results verified the feasibility of the application of dental heat-pressing technique in processing the experimental lithium disilicate glass ceramic. Different heat-pressing procedures showed significant influence on microstructure and flexural strength. ELDC heat-pressed at 950℃ with holding time of 15 min achieved an almost pore-free microstructure and the highest flexural strength, which was suitable for dental restorative application. PMID:25985206

  5. Effect of Heat-Pressing Temperature and Holding Time on the Microstructure and Flexural Strength of Lithium Disilicate Glass-Ceramics

    PubMed Central

    Gao, Jing; Wang, Hui; Chen, Jihua

    2015-01-01

    The present study aimed to evaluate the influence of various heat-pressing procedures (different holding time and heat pressing temperature) on the microstructure and flexural strength of lithium disilicate glass ceramic. An experimental lithium silicate glass ceramic (ELDC) was prepared from the SiO2-Li2O-K2O-Al2O3-ZrO2-P2O5 system and heat-pressed following different procedures by varying temperature and holding time. The flexural strength was tested and microstructure was analyzed. The relationships between the microstructure, mechanical properties and heat-pressing procedures were discussed in-depth. Results verified the feasibility of the application of dental heat-pressing technique in processing the experimental lithium disilicate glass ceramic. Different heat-pressing procedures showed significant influence on microstructure and flexural strength. ELDC heat-pressed at 950℃ with holding time of 15 min achieved an almost pore-free microstructure and the highest flexural strength, which was suitable for dental restorative application. PMID:25985206

  6. In-depth survey report: control technology for the ceramic industry at American Olean Tile Company, Lewisport, Kentucky

    SciTech Connect

    Godbey, F.W.; Mahon, R.D.

    1983-04-01

    The effectiveness of health-hazard control methods was evaluated at American Olean Tile Company, Lewisport, Kentucky in November, 1982. The company was selected for study based on results of an earlier survey. The company employed 198 workers to produce nonglazed quarry tile from clays containing crystalline silica. Air movement was measured at various sites, personal air samples were collected for respirable silica and total dust, and area air samples were collected for total dust. The authors recommend redesign of exhaust hoods in the grinding area; a ventilation technique combined with mechanical brushing for the automatic grinding wheel hold-down belts; use of replaceable, lined, and prefabricated sections of duct work; redesign of exhaust-duct pick up hoods around blenders and screens; and installation of a clean out/inspection door wherever there are long horizontal duct-work runs.

  7. Prototype Development of Remote Operated Hot Uniaxial Press (ROHUP) to Fabricate Advanced Tc-99 Bearing Ceramic Waste Forms - 13381

    SciTech Connect

    Alaniz, Ariana J.; Delgado, Luc R.; Werbick, Brett M.; Hartmann, Thomas

    2013-07-01

    The objective of this senior student project is to design and build a prototype construction of a machine that simultaneously provides the proper pressure and temperature parameters to sinter ceramic powders in-situ to create pellets of rather high densities of above 90% (theoretical). This ROHUP (Remote Operated Hot Uniaxial Press) device is designed specifically to fabricate advanced ceramic Tc-99 bearing waste forms and therefore radiological barriers have been included in the system. The HUP features electronic control and feedback systems to set and monitor pressure, load, and temperature parameters. This device operates wirelessly via portable computer using Bluetooth{sup R} technology. The HUP device is designed to fit in a standard atmosphere controlled glove box to further allow sintering under inert conditions (e.g. under Ar, He, N{sub 2}). This will further allow utilizing this HUP for other potential applications, including radioactive samples, novel ceramic waste forms, advanced oxide fuels, air-sensitive samples, metallic systems, advanced powder metallurgy, diffusion experiments and more. (authors)

  8. INTERIOR VIEW OF BATHROOM 1. SHOWING ORIGINAL MOSAIC PATTERN TILE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF BATHROOM 1. SHOWING ORIGINAL MOSAIC PATTERN TILE FLOOR, TILE WAINSCOT AND SHOWER SURROUND, AND CERAMIC ACCESSORIES. VIEW FACING EAST. - Hickam Field, Officers' Housing Type J, 701 Beard Street, Honolulu, Honolulu County, HI

  9. In-depth survey report: control technology for the Ceramic Industry at American Olean Tile Company, Jackson, Tennessee

    SciTech Connect

    Godbey, F.W.; McKinnery, W.N.; Caplan, P.E.; Cooper, T.C.

    1983-06-01

    Health-hazard control methods were evaluated at American Olean Tile Company, Jackson, Tennessee in April, 1983. The company employed about 360 workers to produce glazed floor and wall tiles from ball clays, pyrophyllite, and flint. The pyrophyllite came from an area in which the deposits were known to be contaminated with crystalline silica. Air movement was measured, and personal and area air samples were collected for respirable crystalline silica and total dust. Crushing and grinding operations were completely automated. Grinding and pyrophyllite storage buildings were separated from the main production building. All conveyor systems were troughs or enclosed design, and open material-transfer points were equipped with local exhaust ventilation hoods. Exposure control was facilitated by good work and housekeeping practices, equipment maintenance, personal-protective equipment, medical and environmental monitoring, and isolation of workers from dust sources. Dust-control systems were effective in keeping worker exposures below permissible exposure limits. Average respirable crystalline silica content was 13% for dry and 15% for wet dust. The authors suggest an average hood face velocity of 100 feet per minute to reduce dry dust emissions from open transfer points, and periodic inspection of ducts for holes and partial blockages.

  10. Pyrochlore-structured titanate ceramics for immobilisation of actinides: Hot isostatic pressing (HIPing) and stainless steel/waste form interactions

    NASA Astrophysics Data System (ADS)

    Zhang, Yingjie; Li, Huijun; Moricca, Sam

    2008-07-01

    A pyrochlore-structured titanate ceramic has been studied in respect of its overall feasibility for immobilisation of impure actinide-rich radioactive wastes through the hot isostatic pressing (HIPing) technique. The resultant waste form contains mainly pyrochlore (˜70%), rutile (˜14%) as well as perovskite (˜12%), hollandite (˜2%) and brannerite (˜1%). Optical spectroscopy confirms that uranium (used to simulate Pu) exists mainly in the stable pyrochlore-structured phase as tetravalent ions as designed. The stainless steel/waste form interactions under HIPing conditions (1280 °C/100 MPa/3 h) do not seem to change the actinide-bearing phases and therefore should have no detrimental effect on the waste form.

  11. Micro-analysis of SiC-Si 3N 4 ceramics made by hot isostatic pressing

    NASA Astrophysics Data System (ADS)

    Wang, Wenmin; Lu, Rongrong; Zhu, Jieqing; Shi, Jihong; Jiang, Dongliang

    1996-02-01

    SEM (Scanning Electron Microscopy) and micro-PEB (Proton Elastic Backscattering) were used to study a composite ceramic (Si 3N 4/SiC) layer generated on the surface of SiC by exposing SiC to an N 2 atmosphere at high temperatures (1850, 1950 and 2000°C) for different times of 0.5, 1, and 2 h, respectively. The thickness of the layers and the concentration of Si 3N 4 in the layers have been determined and correlated with the material properties, such as bending strength and fracture toughness, before and after the nitndation process. A remarkable improvement of the properties has been found to be related to the Si 3N 4 concentration in the nitndation layer. A model of N 2 diffusion in SiC under HIP (Hot Isostatic Pressing) is discussed.

  12. Thermal and stress analysis of hot isostatically pressed, alumina ceramic, nuclear waste containers

    SciTech Connect

    Chang, Yun; Hoenig, C.L.

    1990-03-01

    The Yucca Mountain Project is studying design and fabrication options for a safe durable container in which to store nuclear waste underground at Yucca Mountain, Nevada. The ceramic container discussed here is an alternative to using a metal container. This ceramic alternative would be selected if site conditions prove too corrosive to use metals for nuclear waste storage. Some of the engineering problems addressed in this study were: the stress generated in the alumina container by compressive loads when 4000 to 40,000 psi of external pressure is applied; the thermal stress in the container during the heating and cooling processes; the temperature histories of the container in various production scenarios and the power required for typical heaters; the fastest possible turnaround time to heat, seal, and cool the container commensurate with preserving the structural integrity of the ceramic and the closure; the testing of some commercial heating elements to determine the maximum available heat output; and the trade-offs between the minimization in thermal stress and cycle time for closure. 2 refs., 23 figs., 2 tabs.

  13. High Temperature Filler for Tile Gaps

    NASA Technical Reports Server (NTRS)

    Holt, J. W.; Wang, D. S.

    1983-01-01

    Gaps between ceramic tiles filled with ceramic-coated fabric that withstands temperatures as high as 2,000 degrees F (1,300 degrees C). Reusable high-temperature gap filler is made of fabric coated with ceramic slurry and bonded in place with room-temperature-vulcanized adhesive. Procedure used in kilns and furnaces.

  14. Deformation, recrystallization, strength, and fracture of press-forged ceramic crystals.

    NASA Technical Reports Server (NTRS)

    Rice, R. W.

    1972-01-01

    Sapphire and ruby were very difficult to press-forge because they deformed without cracking only in a limited temperature range before they melted. Spinel crystals were somewhat easier and MgO, CaO, and TiC crystals much easier to forge. The degree of recrystallization that occurred during forging (which was related to the ease and type of slip intersections) varied from essentially zero in Al2O3 to complete (i.e., random polycrystalline bodies were produced) in CaO. Forging of bi- and polycrystalline bodies produced incoherent bodies as a result of grain-boundary sliding. Strengths of the forged crystals were comparable to those of dense polycrystalline bodies of similar grain size. However, forged and recrystallized CaO crystals were ductile at lower temperatures than dense hot-pressed CaO. This behavior is attributed to reduced grain-boundary impurities and porosity. Fracture origins could be located, indicating that fracture in the CaO occurs internally as a result of surface work hardening caused by machining.-

  15. Magnetic and magneto elastic properties of cobalt ferrite ceramic compacted through cold isostatic pressing

    NASA Astrophysics Data System (ADS)

    Indla, Srinivas; Chelvane, Arout; Das, Dibakar

    2016-05-01

    Nano crystalline CoFe2O4 powder was prepared by combustion synthesis method. As synthesized powder was calcined at an appropriate condition to remove the impurities and to promote phase formation. Phase pure CoFe2O4 powder was pressed into cylindrical rod at an applied pressure of 200 MPa using a cold isostatic pressing. Sintering of the green compact at 1350°c for 12 hrs resulted in sintered cylindrical rod with ~85% of the theoretical density. Single phase cubic spinel structure was observed in the powder x-ray diffraction pattern of the sintered pellet. Scanning electron micrographs (SEM) of the as sintered pellet revealed the microstructure to be composed of ferrite grains of average size ~4 µm. Saturation magnetization of 72 emu/g and coercivity of 355 Oe were observed for cobalt ferrite sample. The magnetostriction was measured on a circular disc (12mm diameter and 12mm length) with the strain gauge (350 Ω) mounted on the flat surface of the circular disc. Magnetostriciton of 180 ppm and strain derivative of 1 × 10-9 m/A were observed for the sintered CoFe2O4 sample.

  16. Fast Glazing of Alumina/Silica Tiles

    NASA Technical Reports Server (NTRS)

    Creedon, J. F.; Gzowski, E. R.; Wheeler, W. H.

    1986-01-01

    Technique for applying ceramic coating to fibrous silica/alumina insulation tiles prevents cracks and substantially reduces firing time. To reduce thermal stresses in tile being coated, high-temperature, shorttime firing schedule implemented. Such schedule allows coating to mature while substrate remains at relatively low temperature, reducing stress differential between coating and substrate. Technique used to repair tiles with damaged coatings and possibly used in heat-treating objects made of materials having different thermal-expansion coefficients.

  17. Wind-Resistant Filler for Tile Gaps

    NASA Technical Reports Server (NTRS)

    Bellavia, J.; Quigley, I. A.; Callahan, T. S.

    1982-01-01

    Filler developed for gaps between insulating tiles on Space Shuttle finds application in industries that use tiles for thermal or environmental protection. Filler consists of tight-fitting ceramic tubes and fibrous alumina. Combination resists high wind loads while providing requisite heat protection. Quartz-thread stitching holds envelope together.

  18. The Sad Case of the Columbine Tiles.

    ERIC Educational Resources Information Center

    Dowling-Sendor, Benjamin

    2003-01-01

    Analyzes free-speech challenge to school district's guidelines for acceptable expressions on ceramic tiles painted by Columbine High School students to express their feelings about the massacre. Tenth Circuit found that tile painting constituted school-sponsored speech and thus district had the constitutional authority under "Hazelwood School…

  19. Fabrication and characterization of Si3N4 ceramics without additives by high pressure hot pressing

    NASA Technical Reports Server (NTRS)

    Shimada, M.; Tanaka, A.; Yamada, T.; Koizumi, M.

    1984-01-01

    High pressure hot-pressing of Si3N4 without additives was performed using various kinds of Si3N4 powder as starting materials, and the relation between densification and alpha-beta phase transformation was studied. The temperature dependences of Vickers microhardness and fracture toughness were also examined. Densification of Si3N4 was divided into three stages, and it was found that densification and phase transformation of Si3N4 under pressure were closely associated. The results of the temperature dependence of Vickers microhardness indicated that the high-temperature hardness was strongly influenced not only by the density and microstructure of sintered body but also by the purity of starting powder. The fracture toughness values of Si3N4 bodies without additives were 3.29-4.39 MN/m to the 3/2 power and independent of temperature up to 1400 C.

  20. The ceramic brittleness of the pressed and sintered yttria zirconia-mullite-magnesia system

    NASA Astrophysics Data System (ADS)

    Hakim, Budi L.; Soepriyanto, Syoni; Korda, Akhmad A.; Sunendar, Bambang

    2015-09-01

    The brittleness behaviour of the pressed and sintered Yttria Zirconia-Mullite-Magnesia system has been studied. Specifically, the brittleness index represents a correlation of material properties for predicting mechanical properties such as for the characterization of machinability, wear or erosion resistance. The brittleness index as well as fracture toughness were obtained from indentation testing of the Vickers hardness. In this study, the fracture toughness considered the crack extension mechanism to accommodate Palmqvist crack criteria for the measured data. The additional of Mullite at amount of 15% into 3Y-TZP system significantly reduces the brittleness index while compared to pure Mullite system up to 69%. In the other hand, the additional Mullite 15% by weight into 3Y-TZP system proved an increase of fracture toughness value up to 138% than pure 3Y-TZP system

  1. Strength and toughness of ceramic-metal composites prepared by reactive hot pressing

    SciTech Connect

    ELLERBY,DONALD T.; LOEHMAN,RONALD E.; FAHRENHOLTZ,WILLIAM G.

    2000-03-10

    Metal-reinforced Al{sub 2}0{sub 3}-matrix composites were prepared using reactive hot pressing. The volume fraction of the reinforcing phase was controlled by the stoichiometry of the particular displacement reaction used. Dense Al{sub 2}0{sub 3}-Ni and Al{sub 2}O{sub 3}-Nb composites were fabricated using this technique. The best combination of strength, 610 MPa, and toughness, 12 MPam{sup 1/2}, was found for the Al{sub 2}O{sub 3}-Ni composites. Indentation cracks and fracture surfaces showed evidence of ductile deformation of the Ni phase. The Al{sub 2}O{sub 3}-Nb composites had high strength, but the toughness was lower than expected due to the poor bonding between the Nb and A1{sub 2}0{sub 3}phases.

  2. Oxidation Characterization of Hafnium-Based Ceramics Fabricated by Hot Pressing and Electric Field-Assisted Sintering

    NASA Technical Reports Server (NTRS)

    Gasch, Matt; Johnson, Sylvia; Marschall, Jochen

    2010-01-01

    Ceramic borides, such as hafnium diboride (HfB2) and zirconium diboride (ZrB2), are members of a family of materials with extremely high melting temperatures referred to as Ultra High Temperature Ceramics (UHTCs). UHTCs constitute a class of promising materials for use in high temperature applications, such as sharp leading edges on future-generation hypersonic flight vehicles, because of their high melting points. The controlled development of microstructure has become important to the processing of UHTCs, with the prospect of improving their mechanical and thermal properties. The improved oxidation resistance of HfB2 has also become important if this material is to be successfully used at temperatures above 2000 C. Furthermore, the use of UHTCs on the leading edges of vehicles traveling at hypersonic speeds will mean exposure to a mixed oxidation environment comprised of both molecular and atomic oxygen. The current study has investigated the high-temperature oxidation behavior of HfB2-based materials in a pure O2 environment, as well as in environments containing different levels of dissociated oxygen (O/O2). Materials were processed by two techniques: conventional hot pressing (HP) and electric field-assisted sintering (FAS). Their oxidation behavior was evaluated in both a tube furnace at 1250 C for 3 hours and in a simulated re-entry environment in the Advanced Heating Facility (AHF) arcjet at NASA Ames Research Center, during a 10-minute exposure to a cold wall heat flux of 250W/sq cm and stagnation pressure of 0.1-0.2 atm. The microstructure of the different materials was characterized before and after oxidation using scanning electron microscopy (SEM).

  3. Marginal and internal fit of heat pressed versus CAD/CAM fabricated all-ceramic onlays after exposure to thermo-mechanical fatigue

    PubMed Central

    Guess, Petra C.; Vagopoulou, Thaleia; Zhang, Yu; Wolkewitz, Martin; Strub, Joerg R.

    2015-01-01

    Objectives The aim of the study was to evaluate the marginal and internal fit of heat-pressed and CAD/CAM fabricated all-ceramic onlays before and after luting as well as after thermo-mechanical fatigue. Materials and Methods Seventy-two caries-free, extracted human mandibular molars were randomly divided into three groups (n=24/group). All teeth received an onlay preparation with a mesio-occlusal-distal inlay cavity and an occlusal reduction of all cusps. Teeth were restored with heat-pressed IPS-e.max-Press* (IP, *Ivoclar-Vivadent) and Vita-PM9 (VP, Vita-Zahnfabrik) as well as CAD/CAM fabricated IPS-e.max-CAD* (IC, Cerec 3D/InLab/Sirona) all-ceramic materials. After cementation with a dual-polymerizing resin cement (VariolinkII*), all restorations were subjected to mouth-motion fatigue (98N, 1.2 million cycles; 5°C/55°C). Marginal fit discrepancies were examined on epoxy replicas before and after luting as well as after fatigue at 200x magnification. Internal fit was evaluated by multiple sectioning technique. For the statistical analysis, a linear model was fitted with accounting for repeated measurements. Results Adhesive cementation of onlays resulted in significantly increased marginal gap values in all groups, whereas thermo-mechanical fatigue had no effect. Marginal gap values of all test groups were equal after fatigue exposure. Internal discrepancies of CAD/CAM fabricated restorations were significantly higher than both press manufactured onlays. Conclusions Mean marginal gap values of the investigated onlays before and after luting as well as after fatigue were within the clinically acceptable range. Marginal fit was not affected by the investigated heat-press versus CAD/CAM fabrication technique. Press fabrication resulted in a superior internal fit of onlays as compared to the CAD/CAM technique. Clinical Relevance Clinical requirements of 100 μm for marginal fit were fulfilled by the heat-press as well as by the CAD/CAM fabricated all-ceramic onlays

  4. Processing ceramics

    NASA Technical Reports Server (NTRS)

    Moritoki, M.; Fujikawa, T.; Miyanaga, J.

    1984-01-01

    A method of hot hydrostatic pressing of ceramics is described. A detailed description of the invention is given. The invention is explained through an example, and a figure illustrates the temperature and pressure during the hot hydrostatic pressing treatment.

  5. Synroc-D Type Ceramics Produced by Hot Isostatic Pressing and Cold Crucible Melting for Immobilisation of (Al, U) Rich Nuclear Waste

    SciTech Connect

    Vance, Eric R.; La Robina, Michael; Li, Huijun; Davis, Joel

    2007-07-01

    A synroc-D ceramic consisting mostly of spinel, hollandite, pyrochlore-structured CaUTi{sub 2}O{sub 7}, UO{sub 2}, and Ti-rich regions shows promise for immobilisation of a HLW containing mainly Al and U, together with fission products. Ceramics with virtually zero porosities and waste loadings of 50-60 wt% on an oxide basis were prepared by cold crucible melting (CCM) at {approx}1500 deg. C, and also by subsolidus hot isostatic pressing (HIP) at 1100 deg. C to prevent volatile losses. PCT leaching test values for Cs were < 13 g/L, with all other normalised elemental extractions being well below 1 g/L. (authors)

  6. Influence of Immediate Dentin Sealing on the Shear Bond Strength of Pressed Ceramic Luted to Dentin with Self-Etch Resin Cement

    PubMed Central

    Dalby, Robert; Ellakwa, Ayman; Millar, Brian; Martin, F. Elizabeth

    2012-01-01

    Objectives. To examine the effect of immediate dentin sealing (IDS), with dentin bonding agents (DBAs) applied to freshly cut dentin, on the shear bond strength of etched pressed ceramic luted to dentin with RelyX Unicem (RXU) cement. Method. Eighty extracted noncarious third molars were ground flat to expose the occlusal dentin surfaces. The teeth were randomly allocated to five groups (A to E) of sixteen teeth each. Groups A to D were allocated a dentin bonding agent (Optibond FL, One Coat Bond, Single Bond, or Go!) that was applied to the dentin surface to mimic the clinical procedure of IDS. These specimen groups then had etched glass ceramic discs (Authentic) luted to the sealed dentin surface using RXU. Group E (control) had etched glass ceramic discs luted to the dentin surface (without a dentin bonding agent) using RXU following the manufacturer's instructions. All specimens were stored for one week in distilled water at room temperature and then shear stressed at a constant cross-head speed of 1 mm per minute until failure. Statistical analysis was performed by ANOVA followed by post hoc Tukey HSD method (P < 0.05) applied for multiple paired comparisons. Results. The shear bond strength results for group A to E ranged from 6.94 ± 1.53 to 10.03 ± 3.50 MPa. One-way ANOVA demonstrated a difference (P < 0.05) between the groups tested and the Tukey HSD demonstrated a significant (P < 0.05) difference between the shear bond strength (SBS) of Optibond FL (Group A) and Go! (Group D). There was no statistical difference (P > 0.05) in the SBS between the test groups (A–D) or the control (group E). Conclusion. IDS using the dentin bonding agents tested does not statistically (P > 0.05) affect the shear bond strength of etched pressed ceramic luted to dentin with RXU when compared to the control. PMID:22287963

  7. Aerogel: Tile Composites Toughen a Brittle Superinsulation

    NASA Technical Reports Server (NTRS)

    White, Susan; Rasky, Daniel; Arnold, James O. (Technical Monitor)

    1998-01-01

    Pure aerogels, though familiar in the laboratory for decades as exotic lightweight insulators with unusual physical properties, have had limited industrial applications due to their low strength and high brittleness. Composites formed of aerogels and the ceramic fiber matrices like those used as space shuttle tiles bypass the fragility of pure aerogels and can enhance the performance of space shuttle tiles in their harsh operating environment. Using a layer of aerogel embedded in a tile may open up a wide range of applications where thermal insulation, gas convection control and mechanical strength matter.

  8. Remotely replaceable tokamak plasma limiter tiles

    DOEpatents

    Gallix, R.

    1987-12-09

    U-shaped tiles placed end-to-end over a pair of parallel runners have two rods which engage L-shaped slots. A sliding bar between the runners has grooves with clips to retain the rods pressed into receiving legs of the L-shaped slots in the runners. Sliding the bar in the direction of retaining legs of the L-shaped slots latches the tiles in place over the wall. Resilient contact strips under the parallel sides of the U-shaped tile assure thermal and electrical contact with the wall. 6 figs.

  9. Ceramics

    NASA Astrophysics Data System (ADS)

    Yao, Lichun; Yang, Jian; Qiu, Tai

    2014-09-01

    The effects of CuO addition on phase composition, microstructure, sintering behavior, and microwave dielectric properties of 0.80Sm(Mg0.5Ti0.5)O3-0.20 Ca0.8Sr0.2TiO3(8SMT-2CST) ceramics prepared by a conventional solid-state ceramic route have been studied. CuO addition shows no obvious influence on the phase of the 8SMT-2CST ceramics and all the samples exhibit pure perovskite structure. Appropriate CuO addition can effectively promote sintering and grain growth, and consequently improve the dielectric properties of the ceramics. The sintering temperature of the ceramics decreases by 50°C by adding 1.00 wt.%CuO. Superior microwave dielectric properties with a ɛ r of 29.8, Q × f of 85,500 GHz, and τ f of 2.4 ppm/°C are obtained for 1.00 wt.%CuO doped 8SMT-2CST ceramics sintered at 1500°C, which shows dense and uniform microstructure as well as well-developed grain growth.

  10. Tantalum-Based Ceramics for Refractory Composites

    NASA Technical Reports Server (NTRS)

    Stewart, David A.; Leiser, Daniel; DiFiore, Robert; Kalvala, Victor

    2006-01-01

    A family of tantalum-based ceramics has been invented as ingredients of high-temperature composite insulating tiles. These materials are suitable for coating and/or permeating the outer layers of rigid porous (foam-like or fibrous) ceramic substrates to (1) render the resulting composite ceramic tiles impervious to hot gases and (2) enable the tiles to survive high heat fluxes at temperatures that can exceed 3,000 F ( 1,600 C).

  11. Efficient Tiled Loop Generation: D-Tiling

    NASA Astrophysics Data System (ADS)

    Kim, Daegon; Rajopadhye, Sanjay

    Tiling is an important loop optimization for exposing coarse-grained parallelism and enhancing data locality. Tiled loop generation from an arbitrarily shaped polyhedron is a well studied problem. Except for the special case of a rectangular iteration space, the tiled loop generation problem has been long believed to require heavy machinery such as Fourier-Motzkin elimination and projection, and hence to have an exponential complexity. In this paper we propose a simple and efficient tiled loop generation technique similar to that for a rectangular iteration space. In our technique, each loop bound is adjusted only once, syntactically and independently. Therefore, our algorithm runs linearly with the number of loop bounds. Despite its simplicity, we retain several advantages of recent tiled code generation schemes - unified generation for fixed, parameterized and hybrid tiled loops, scalability for multi-level tiled loop generation with the ability to separate full tiles at any levels, and compact code. We also explore various schemes for multi-level tiled loop generation. We formally prove the correctness of our scheme and experimentally validate that the efficiency of our technique is comparable to existing parameterized tiled loop generation approaches. Our experimental results also show that multi-level tiled loop generation schemes have an impact on performance of generated code. The fact that our scheme can be implemented without sophisticated machinery makes it well suited for autotuners and production compilers.

  12. Preassembly Of Insulating Tiles

    NASA Technical Reports Server (NTRS)

    Izu, Y. D.; Yoshioka, E. N.; Rosario, T.

    1988-01-01

    Concept for preassembling high-temperature insulating tiles speeds and simplifies installation and repair and reduces damage from handling. Preassembly concept facilitates placement of tiles on gently contoured surfaces as well as on flat ones. Tiles bonded to nylon mesh with room-temperature-vulcanizing silicon rubber. Spacing between tiles is 0.03 in. Applications include boilers, kilns, and furnaces.

  13. Ceramics

    NASA Astrophysics Data System (ADS)

    Chen, Song; Zhu, De-Gui; Cai, Xu-Sheng

    2014-08-01

    The dense monoclinic-SrAl2Si2O8 ceramics have been prepared by a two-step sintering process at a sintering temperature of 1173 K (900 °C). Firstly, the pre-sintered monoclinic-SrAl2Si2O8 powders containing small SiO2·Al2O3 crystal phases were obtained by continuously sintering a powder mixture of SrCO3 and kaolin at 1223 K (950 °C) for 6 hours and 1673 K (1400 °C) for 4 hours, respectively. Subsequently, by the combination of the pre-sintered ceramic powders with the composite flux agents, which are composed of a SrO·3B2O3 flux agent and α-Al2O3, the low-temperature densification sintering of the monoclinic-SrAl2Si2O8 ceramics was accomplished at 1173 K (900 °C). The low-temperature sintering behavior and microstructure evolvement of the monoclinic-SrAl2Si2O8 ceramics have been investigated in terms of Al2O3 in addition to the composite flux agents. It shows that due to the low-meting characteristics, the SrO·3B2O3 flux agent can urge the dense microstructure formation of the monoclinic-SrAl2Si2O8 ceramics and the re-crystallization of the grains via a liquid-phase sintering. The introduction of α-Al2O3 to the SrO·3B2O3 flux agent can apparently lead to more dense microstructures for the monoclinic-SrAl2Si2O8 ceramics but also cause the re-precipitation of SiO2·Al2O3 compounds because of an excessive Al2O3 content in the SrO·3B2O3 flux agent.

  14. Ceramic Processing

    SciTech Connect

    EWSUK,KEVIN G.

    1999-11-24

    Ceramics represent a unique class of materials that are distinguished from common metals and plastics by their: (1) high hardness, stiffness, and good wear properties (i.e., abrasion resistance); (2) ability to withstand high temperatures (i.e., refractoriness); (3) chemical durability; and (4) electrical properties that allow them to be electrical insulators, semiconductors, or ionic conductors. Ceramics can be broken down into two general categories, traditional and advanced ceramics. Traditional ceramics include common household products such as clay pots, tiles, pipe, and bricks, porcelain china, sinks, and electrical insulators, and thermally insulating refractory bricks for ovens and fireplaces. Advanced ceramics, also referred to as ''high-tech'' ceramics, include products such as spark plug bodies, piston rings, catalyst supports, and water pump seals for automobiles, thermally insulating tiles for the space shuttle, sodium vapor lamp tubes in streetlights, and the capacitors, resistors, transducers, and varistors in the solid-state electronics we use daily. The major differences between traditional and advanced ceramics are in the processing tolerances and cost. Traditional ceramics are manufactured with inexpensive raw materials, are relatively tolerant of minor process deviations, and are relatively inexpensive. Advanced ceramics are typically made with more refined raw materials and processing to optimize a given property or combination of properties (e.g., mechanical, electrical, dielectric, optical, thermal, physical, and/or magnetic) for a given application. Advanced ceramics generally have improved performance and reliability over traditional ceramics, but are typically more expensive. Additionally, advanced ceramics are typically more sensitive to the chemical and physical defects present in the starting raw materials, or those that are introduced during manufacturing.

  15. Damage Mechanisms and Controlled Crack Propagation in a Hot Pressed Silicon Nitride Ceramic. Ph.D. Thesis - Northwestern Univ., 1993

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony Martin

    1994-01-01

    The subcritical growth of cracks from pre-existing flaws in ceramics can severely affect the structural reliability of a material. The ability to directly observe subcritical crack growth and rigorously analyze its influence on fracture behavior is important for an accurate assessment of material performance. A Mode I fracture specimen and loading method has been developed which permits the observation of stable, subcritical crack extension in monolithic and toughened ceramics. The test specimen and procedure has demonstrated its ability to generate and stably propagate sharp, through-thickness cracks in brittle high modulus materials. Crack growth for an aluminum oxide ceramic was observed to be continuously stable throughout testing. Conversely, the fracture behavior of a silicon nitride ceramic exhibited crack growth as a series of subcritical extensions which are interrupted by dynamic propagation. Dynamic initiation and arrest fracture resistance measurements for the silicon nitride averaged 67 and 48 J/sq m, respectively. The dynamic initiation event was observed to be sudden and explosive. Increments of subcritical crack growth contributed to a 40 percent increase in fracture resistance before dynamic initiation. Subcritical crack growth visibly marked the fracture surface with an increase in surface roughness. Increments of subcritical crack growth loosen ceramic material near the fracture surface and the fracture debris is easily removed by a replication technique. Fracture debris is viewed as evidence that both crack bridging and subsurface microcracking may be some of the mechanisms contributing to the increase in fracture resistance. A Statistical Fracture Mechanics model specifically developed to address subcritical crack growth and fracture reliability is used together with a damaged zone of material at the crack tip to model experimental results. A Monte Carlo simulation of the actual experiments was used to establish a set of modeling input

  16. Ceramics

    NASA Astrophysics Data System (ADS)

    Bin, Tang; Feng, Si; Ying-xiang, Li; He-tuo, Chen; Xiao, Zhang; Shu-ren, Zhang

    2014-11-01

    The effects of Ta2O5/Y2O3 codoping on the microstructure and microwave dielectric properties of Ba(Co0.56Zn0.40)1/3Nb2/3O3- xA- xB (A = 0.045 wt.% Ta2O5; B = 0.113 wt.% Y2O3) ceramics ( x = 0, 1, 2, 4, 8, 16, 32) prepared according to the conventional solid-state reaction technique were investigated. The x-ray diffraction (XRD) results showed that the main crystal phase in the sintered ceramics was BaZn0.33Nb0.67O3-Ba3CoNb2O9. The additional surface phase of Ba8CoNb6O24 and trace amounts of Ba5Nb4O15 second phase were present when Ta2O5/Y2O3 was added to the ceramics. The 1:2 B-site cation ordering was affected by the substitution of Ta5+ and Y3+ in the crystal lattice, especially for x = 4. Scanning electron microscopy (SEM) images of the optimally doped ceramics sintered at 1340°C for 20 h showed a compact microstructure with crystal grains in dense contact. Though the dielectric constant increased with the x value, appropriate addition would result in a tremendous modification of the Q × f and τ f values. Excellent microwave dielectric properties ( ɛ r = 35.4, Q × f = 62,993 GHz, and τ f = 2.6 ppm/°C) were obtained for the ceramic with x = 0.4 sintered in air at 1340°C for 20 h.

  17. Ceramics

    NASA Astrophysics Data System (ADS)

    Li, Enzhu; Zou, Mengying; Duan, Shuxin; Xu, Ning; Yuan, Ying; Zhou, Xiaohua

    2014-11-01

    The effects of excess Li content on the phase structure and microwave dielectric properties, especially on the temperature coefficient, of LiNb0.6 Ti0.5O3 (LNT) ceramics were studied. The results show that small amounts of Li effectively enhanced the sintering process due to the compensation of high volatility of Li, leading to a densification and homogenous microstructure, and therefore enhanced the dielectric properties. However, too much Li leads to a secondary phase and cause abnormal grain growth. The LNT + 5 wt.% Li ceramic sintered at 1075°C in the air shows the best properties of ɛ r = 69.73, Q × f = 5543 GHz, and τ f = -4.4 ppm/°C.

  18. Geopolymers as potential repair material in tiles conservation

    NASA Astrophysics Data System (ADS)

    Geraldes, Catarina F. M.; Lima, Augusta M.; Delgado-Rodrigues, José; Mimoso, João Manuel; Pereira, Sílvia R. M.

    2016-03-01

    The restoration materials currently used to fill gaps in historical architectural tiles (e.g. lime or organic resin pastes) usually show serious drawbacks in terms of compatibility, effectiveness or durability. The existing solutions do not fully protect Portuguese faïence tiles ( azulejos) in outdoor conditions and frequently result in further deterioration. Geopolymers can be a potential solution for tile lacunae infill, given the chemical-mineralogical similitude to the ceramic body, and also the durability and versatile range of physical properties that can be obtained through the manipulation of their formulation and curing conditions. This work presents and discusses the viability of the use of geopolymeric pastes to fill lacunae in tiles or to act as "cold" cast ceramic tile surrogates reproducing missing tile fragments. The formulation of geopolymers, namely the type of activators, the alumino-silicate source, the quantity of water required for adequate workability and curing conditions, was studied. The need for post-curing desalination was also considered envisaging their application in the restoration of outdoor historical architectural tiles frequently exposed to adverse environmental conditions. The possible advantages and disadvantages of the use of geopolymers in the conservation of tiles are also discussed. The results obtained reveal that geopolymers pastes are a promising material for the restoration of tiles, when compared to other solutions currently in use.

  19. Task 4 supporting technology. Part 1: Detailed test plan for leading edge tile development. Leading edge material development and testing

    NASA Technical Reports Server (NTRS)

    Hogenson, P. A.; Staszak, Paul; Hinkle, Karrie

    1995-01-01

    This task develops two alternative candidate tile materials for leading edge applications: coated alumina enhanced thermal barrier (AETB) tile and silicone impregnated reusable ceramic ablator (SIRCA) tile. Upon reentry of the X-33/RLV space vehicle, the leading edges experience the highest heating rates and temperatures. The wing leading edge and nose cap experience peak temperatures in the range 2000 to 2700 F. Replacing reinforced carbon-carbon (RCC) with tile-based thermal protection system (TPS) materials is the primary objective. Weight, complexity, coating impact damage, and repairability are among the problems that this tile technology development addresses. The following subtasks will be performed in this development effort: tile coating development; SIRCA tile development; robustness testing of tiles; tile repair development; tile operations/processing; tile leading edge configuration; and life cycle testing.

  20. Task 4 supporting technology. Part 1: Detailed test plan for leading edge tile development. Leading edge material development and testing

    NASA Astrophysics Data System (ADS)

    Hogenson, P. A.; Staszak, Paul; Hinkle, Karrie

    1995-05-01

    This task develops two alternative candidate tile materials for leading edge applications: coated alumina enhanced thermal barrier (AETB) tile and silicone impregnated reusable ceramic ablator (SIRCA) tile. Upon reentry of the X-33/RLV space vehicle, the leading edges experience the highest heating rates and temperatures. The wing leading edge and nose cap experience peak temperatures in the range 2000 to 2700 F. Replacing reinforced carbon-carbon (RCC) with tile-based thermal protection system (TPS) materials is the primary objective. Weight, complexity, coating impact damage, and repairability are among the problems that this tile technology development addresses. The following subtasks will be performed in this development effort: tile coating development; SIRCA tile development; robustness testing of tiles; tile repair development; tile operations/processing; tile leading edge configuration; and life cycle testing.

  1. Thermal Characterization of TPS Tiles

    SciTech Connect

    Kacmar, C. J.; LaCivita, K. J.; Jata, K. V.; Sathish, S.

    2006-03-06

    The Thermal Protection System (TPS) used on space shuttles protects the metallic structure from the large amounts of heat created during travel through the atmosphere, both on takeoff and reentry. The shuttle experiences high thermo-acoustic loading and impact damage from micro-meteorites, which can cause disbonds, delaminations, chips, cracks, and other defects to the TPS system. To enhance durability and damage tolerance, new TPS tiles with an added protective ceramic-matrix-composite layer are being developed. This paper explores the use of pulsed thermography as a quick, diverse, non-destructive technique, to characterize the TPS system. The pulsed thermography images obtained are presented and analyzed.

  2. Light-weight ceramic insulation

    NASA Technical Reports Server (NTRS)

    Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    2002-01-01

    Ultra-high temperature, light-weight, ceramic insulation such as ceramic tile is obtained by pyrolyzing a siloxane gel derived from the reaction of at least one organo dialkoxy silane and at least one tetralkoxy silane in an acid or base liquid medium. The reaction mixture of the tetra- and dialkoxy silanes may contain also an effective amount of a mono- or trialkoxy silane to obtain the siloxane gel. The siloxane gel is dried at ambient pressures to form a siloxane ceramic precursor without significant shrinkage. The siloxane ceramic precursor is subsequently pyrolyzed, in an inert atmosphere, to form the black ceramic insulation comprising atoms of silicon, carbon and oxygen. The ceramic insulation, can be characterized as a porous, uniform ceramic tile resistant to oxidation at temperatures ranging as high as 1700.degree. C. and is particularly useful as lightweight tiles for spacecraft and other high-temperature insulation applications.

  3. Handmade Tile Mosaics

    ERIC Educational Resources Information Center

    Keeler, Rusty

    2007-01-01

    Just like the classroom, children's outdoor environments should be filled with artistic creations that add sparkle and imagination to the space. One of the author's favorite ways to add art to the outdoors is by installing a mosaic mural of child-made tiles. The process of making the tiles is fun for all; each tile is a charming work of art in…

  4. Remotely replaceable tokamak plasma limiter tiles

    DOEpatents

    Tsuo, Simon , Langford, Alison A.

    1989-01-01

    U-shaped limiter tiles placed end-to-end over a pair of parallel runners secured to a wall have two rods which engage L-shaped slots in the runners. The short receiving legs of the L-shaped slots are perpendicular to the wall and open away from the wall, while long retaining legs are parallel to and adjacent the wall. A sliding bar between the runners has grooves with clips to retain the rods pressed into receiving legs of the L-shaped slots in the runners. Sliding the bar in the direction of retaining legs of the L-shaped slots latches the tiles in place over the runners. Resilient contact strips between the parallel arms of the U-shaped tiles and the wall assure thermal and electrical contact with the wall.

  5. Chemically-bonded brick production based on burned clay by means of semidry pressing

    NASA Astrophysics Data System (ADS)

    Voroshilov, Ivan; Endzhievskaya, Irina; Vasilovskaya, Nina

    2016-01-01

    We presented a study on the possibility of using the burnt rocks of the Krasnoyarsk Territory for production of chemically-bonded materials in the form of bricks which are so widely used in multistory housing and private house construction. The radiographic analysis of the composition of burnt rock was conducted and a modifier to adjust the composition uniformity was identified. The mixing moisture content was identified and optimal amount at 13-15% was determined. The method of semidry pressing has been chosen. The process of obtaining moldings has been theoretically proved; the advantages of chemically-bonded wall materials compared to ceramic brick were shown. The production of efficient artificial stone based on material burnt rocks, which is comparable with conventionally effective ceramic materials or effective with cell tile was proved, the density of the burned clay-based cell tile makes up to 1630-1785 kg m3, with compressive strength of 13.6-20.0 MPa depending on the compression ratio and cement consumption, frost resistance index is F50, and the thermal conductivity in the masonry is λ = 0,459-0,546 W m * °C. The clear geometric dimensions of pressed products allow the use of the chemically-bonded brick based on burnt clay as a facing brick.

  6. Hot isostatically-pressed aluminosilicate glass-ceramic with natural crystalline analogues for immobilizing the calcined high-level nuclear waste at the Idaho Chemical Processing Plant

    SciTech Connect

    Raman, S.

    1993-12-01

    The additives Si, Al, MgO, P{sub 2}O{sub 5} were mechanically blended with fluorinelsodium calcine in varying proportions. The batches were vacuum sealed in stainless steel canisters and hot isostatically pressed at 20,000 PSI and 1000 C for 4 hours. The resulting suite of glass-ceramic waste forms parallels the natural rocks in microstructural and compositional heterogeneity. Several crystalline phases ar analogous in composition and structure to naturally occurring minerals. Additional crystalline phases are zirconia and Ca-Mg borate. The glasses are enriched in silica and alumina. Approximately 7% calcine elements occur dissolved in this glass and the total glass content in the waste forms averages 20 wt%. The remainder of the calcine elements are partitioned into crystalline phases at 75 wt% calcine waste loading. The waste forms were tested for chemical durability in accordance with the MCC1-test procedure. The leach rates are a function of the relative proportions of additives and calcine, which in turn influence the composition and abundances of the glass and crystalline phases. The DOE leach rate criterion of less than 1 g/m{sup 2}-day is met by all the elements B, Cs and Na are increased by lowering the melt viscosity. This is related to increased crystallization or devitrification with increases in MgO addition. This exploratory work has shown that the increases in waste loading occur by preferred partitioning of the calcine components among crystalline and glass phases. The determination of optimum processing parameters in the form of additive concentration levels, homogeneous blending among the components, and pressure-temperature stabilities of phases must be continued to eliminate undesirable effects of chemical composition, microstructure and glass devitrification.

  7. Rewaterproofing Silica Tiles

    NASA Technical Reports Server (NTRS)

    Lleger, L. J.; Wade, D. C.

    1983-01-01

    Waterproofing agent, vaporized in bubbler transported by gas flowing in system and deposits in pores of tiles. Vapor carried through hole of approximately 1/16 inch (1.6.mm) diameter made in tile coating. Technique used to waterproof buildups (concrete and brick) and possibly fabrics.

  8. Energy Saving Method of Manufacturing Ceramic Products from Fiber Glass Waste

    SciTech Connect

    Michael J. Haun

    2005-07-15

    The U.S. fiber glass industry disposes of more than 260,000 tons of industrial fiber glass waste in landfills annually. New technology is needed to reprocess this industrial waste into useful products. A low-cost energy-saving method of manufacturing ceramic tile from fiber glass waste was developed. The technology is based on sintering fiber glass waste at 700-900 degrees C to produce products which traditionally require firing temperatures of >1200 degrees C, or glass-melting temperatures >1500 degrees C. The process also eliminates other energy intensive processing steps, including mining and transportation of raw materials, spray-drying to produce granulated powder, drying pressed tile, and glazing. The technology completely transforms fiber glass waste into a dense ceramic product, so that all future environmental problems in the handling and disposal of the fibers is eliminated. The processing steps were developed and optimized to produce glossy and matte surface finishes for wall and floor tile applications. High-quality prototype tile samples were processed for demonstration and tile standards testing. A Market Assessment confirmed the market potential for tile products produced by the technology. Manufacturing equipment trials were successfully conducted for each step of the process. An industrial demonstration plant was designed, including equipment and operating cost analysis. A fiber glass manufacturer was selected as an industrial partner to commercialize the technology. A technology development and licensing agreement was completed with the industrial partner. Haun labs will continue working to transfer the technology and assist the industrial partner with commercialization beyond the DOE project.

  9. Life considerations of the shuttle orbiter densified-tile thermal protection system

    NASA Technical Reports Server (NTRS)

    Cooper, P. A.; Sawyer, J. W.

    1983-01-01

    The Shuttle orbiter themal protection system (TPS) incorporates ceramic reusable surface insulation tiles bonded to the orbiter substructure through a strain isolation pad. Densification of the bonding surface of the tiles increases the static strength of the tiles. The densification proces does not, however, necessarily lead to an equivalent increase in fatigue strength. Investigation of the expected lifetime of densified tile TPS under both sinusoidal loading and random loading simulating flight conditions indicates that the strain isolation pads are the weakest components of the TPS under fatigue loading. The felt pads loosen under repetitive loading and, in highly loaded regions, could possibly cause excessive step heights between tiles causing burning of the protective insulation between tiles. A method of improving the operational lifetime of the TPS by using a strain isolation pad with increased stiffness is presented as is the consequence of the effect of increased stiffness on the tile inplane strains and transverse stresses.

  10. Penrose tilings as model sets

    NASA Astrophysics Data System (ADS)

    Shutov, A. V.; Maleev, A. V.

    2015-11-01

    The Baake construction, based on generating a set of vertices of Penrose tilings as a model set, is refined. An algorithm and a corresponding computer program for constructing an uncountable set of locally indistinguishable Penrose tilings are developed proceeding from this refined construction. Based on an analysis of the parameters of tiling vertices, 62 versions of rhomb combinations at the tiling center are determined. The combinatorial structure of Penrose tiling worms is established. A concept of flip transformations of tilings is introduced that makes it possible to construct Penrose tilings that cannot be implemented in the Baake construction.

  11. Voronoi spiral tilings

    NASA Astrophysics Data System (ADS)

    Yamagishi, Yoshikazu; Sushida, Takamichi; Hizume, Akio

    2015-04-01

    The parameter set of Voronoi spiral tilings gives a dual of van Iterson's bifurcation diagram for phyllotactic spirals. We study the Voronoi tilings for the Bernoulli spiral site sets, as the simplest spirals in the centric representation with similarity symmetry. Their parameter set is composed of a family of real algebraic curves in the complex plane, with the Farey sequence structure. This naturally extends to the parameter set for multiple tilings, i.e., the tilings of the covering spaces of the punctured plane. We show the denseness of the parameters z = reiθ for quadrilateral Voronoi spiral multiple tilings. The techniques of dynamical systems are applied to the group of similarity symmetry. The parastichy numbers and the distortion of the Voronoi regions depend on the rational approximations of θ/2π. We consider the limit set of the shapes of the quadrilateral tiles by taking the limit as r → 1, with θ fixed. If θ/2π is a quadratic irrational number, then the limit set is a finite set of rectangles. In particular, if θ/2π is linearly equivalent to the golden section, then the limit is the square.

  12. Increasing the frost resistance of facade glazed tiles

    SciTech Connect

    Egerev, V.M.; Zotov, S.N.; Romanova, G.P.

    1986-09-01

    The authors investigate the protective properties of a coating of boron oxides and zirconium oxides applied as a glaze to ceramic tiles by conducting a series of tests to determine the frost resistance, the propensity to absorb water, the moisture expansion coefficient, the fracture behavior, and the effect of thermal cycling on the oxides. Results are graphed and tabulated.

  13. Ceramic colorant from untreated iron ore residue.

    PubMed

    Pereira, Oscar Costa; Bernardin, Adriano Michael

    2012-09-30

    This work deals with the development of a ceramic colorant for glazes from an untreated iron ore residue. 6 mass% of the residue was added in suspensions (1.80 g/cm(3) density and 30s viscosity) of white, transparent and matte glazes, which were applied as thin layers (0.5mm) on engobeb and not fired ceramic tiles. The tiles were fired in laboratory roller kiln in a cycle of 35 min and maximum temperatures between 1050 and 1180°C. The residue and glazes were characterized by chemical (XRF) and thermal (DTA and optical dilatometry) analyses, and the glazed tiles by colorimetric and XRD analyses. The results showed that the colorant embedded in the transparent glaze results in a reddish glaze (like pine nut) suitable for the ceramic roof tile industry. For the matte and white glazes, the residue has changed the color of the tiles with temperature. PMID:22795839

  14. Drill Presses.

    ERIC Educational Resources Information Center

    Engelbrecht, Nancy; And Others

    These instructional materials provide an orientation to the drill press for use at the postsecondary level. The first of seven sections lists seven types of drill presses. The second section identifies 14 drill press parts. The third section lists 21 rules for safe use of drilling machines. The fourth section identifies the six procedures for…

  15. Tiling Motion Patches.

    PubMed

    Hyun, Kyunglyul; Kim, Manmyung; Hwang, Youngseok; Lee, Jehee

    2013-05-01

    Simulating multiple character interaction is challenging because character actions must be carefully coordinated to align their spatial locations and synchronized with each other. We present an algorithm to create a dense crowd of virtual characters interacting with each other. The interaction may involve physical contacts, such as hand shaking, hugging, and carrying a heavy object collaboratively. We address the problem by collecting deformable motion patches, each of which describes an episode of multiple interacting characters, and tiling them spatially and temporally. The tiling of motion patches generates a seamless simulation of virtual characters interacting with each other in a non-trivial manner. Our tiling algorithm uses a combination of stochastic sampling and deterministic search to address the discrete and continuous aspects of the tiling problem. Our tiling algorithm made it possible to automatically generate highly-complex animation of multiple interacting characters. We achieved the level of complexity far beyond the current state-of-the-art animation techniques could generate, in terms of the diversity of human behaviors and the spatial/temporal density of interpersonal interactions. PMID:23669532

  16. Tiling motion patches.

    PubMed

    Hyun, Kyunglyul; Kim, Manmyung; Hwang, Youngseok; Lee, Jehee

    2013-11-01

    Simulating multiple character interaction is challenging because character actions must be carefully coordinated to align their spatial locations and synchronized with each other. We present an algorithm to create a dense crowd of virtual characters interacting with each other. The interaction may involve physical contacts, such as hand shaking, hugging, and carrying a heavy object collaboratively. We address the problem by collecting deformable motion patches, each of which describes an episode of multiple interacting characters, and tiling them spatially and temporally. The tiling of motion patches generates a seamless simulation of virtual characters interacting with each other in a nontrivial manner. Our tiling algorithm uses a combination of stochastic sampling and deterministic search to address the discrete and continuous aspects of the tiling problem. Our tiling algorithm made it possible to automatically generate highly complex animation of multiple interacting characters. We achieve the level of interaction complexity far beyond the current state of the art that animation techniques could generate, in terms of the diversity of human behaviors and the spatial/temporal density of interpersonal interactions. PMID:24029911

  17. Seamless tiled display system

    NASA Technical Reports Server (NTRS)

    Dubin, Matthew B. (Inventor); Larson, Brent D. (Inventor); Kolosowsky, Aleksandra (Inventor)

    2006-01-01

    A modular and scalable seamless tiled display apparatus includes multiple display devices, a screen, and multiple lens assemblies. Each display device is subdivided into multiple sections, and each section is configured to display a sectional image. One of the lens assemblies is optically coupled to each of the sections of each of the display devices to project the sectional image displayed on that section onto the screen. The multiple lens assemblies are configured to merge the projected sectional images to form a single tiled image. The projected sectional images may be merged on the screen by magnifying and shifting the images in an appropriate manner. The magnification and shifting of these images eliminates any visual effect on the tiled display that may result from dead-band regions defined between each pair of adjacent sections on each display device, and due to gaps between multiple display devices.

  18. Filler bar heating due to stepped tiles in the shuttle orbiter thermal protection system

    NASA Technical Reports Server (NTRS)

    Petley, D. H.; Smith, D. M.; Edwards, C. L. W.; Patten, A. B.; Hamilton, H. H., II

    1983-01-01

    An analytical study was performed to investigate the excessive heating in the tile to tile gaps of the Shuttle Orbiter Thermal Protection System due to stepped tiles. The excessive heating was evidence by visible discoloration and charring of the filler bar and strain isolation pad that is used in the attachment of tiles to the aluminum substrate. Two tile locations on the Shuttle orbiter were considered, one on the lower surface of the fuselage and one on the lower surface of the wing. The gap heating analysis involved the calculation of external and internal gas pressures and temperatures, internal mass flow rates, and the transient thermal response of the thermal protection system. The results of the analysis are presented for the fuselage and wing location for several step heights. The results of a study to determine the effectiveness of a half height ceramic fiber gap filler in preventing hot gas flow in the tile gaps are also presented.

  19. Refractory Oxidative-Resistant Ceramic Carbon Insulation

    NASA Technical Reports Server (NTRS)

    Leiser, Daniel B. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    2001-01-01

    High-temperature, lightweight, ceramic carbon insulation is prepared by coating or impregnating a porous carbon substrate with a siloxane gel derived from the reaction of an organodialkoxy silane and an organotrialkoxy silane in an acid or base medium in the presence of the carbon substrate. The siloxane gel is subsequently dried on the carbon substrate to form a ceramic carbon precursor. The carbon precursor is pyrolyzed, in an inert atmosphere, to form the ceramic insulation containing carbon, silicon, and oxygen. The carbon insulation is characterized as a porous, fibrous, carbon ceramic tile which is particularly useful as lightweight tiles for spacecraft.

  20. Tiling Microarray Analysis Tools

    SciTech Connect

    Nix, Davis Austin

    2005-05-04

    TiMAT is a package of 23 command line Java applications for use in the analysis of Affymetrix tiled genomic microarray data. TiMAT enables: 1) Rebuilding the genome annotation for entire tiled arrays (repeat filtering, chromosomal coordinate assignment). 2) Post processing of oligo intensity values (quantile normalization, median scaling, PMMM transformation), 3) Significance testing (Wilcoxon rank sum and signed rank tests, intensity difference and ratio tests) and Interval refinement (filtering based on multiple statistics, overlap comparisons), 4) Data visualization (detailed thumbnail/zoomed view with Interval Plots and data export to Affymetrix's Integrated Genome Browser) and Data reports (spreadsheet summaries and detailed profiles)

  1. Reuse of sugarcane bagasse ash (SCBA) to produce ceramic materials.

    PubMed

    Souza, A E; Teixeira, S R; Santos, G T A; Costa, F B; Longo, E

    2011-10-01

    Sugarcane bagasse ash (SCBA) is a residue resulting from the burning of bagasse in boilers in the sugarcane/alcohol industry. SCBA has a very high silica concentration and contains aluminum, iron, alkalis and alkaline earth oxides in smaller amounts. In this work, the properties of sintered ceramic bodies were evaluated based on the concentration of SCBA, which replaced non-plastic material. The ash was mixed (up to 60 wt%) with a clayed raw material that is used to produce roof tiles. Prismatic probes were pressed and sintered at different temperatures (up to 1200 °C). Technological tests of ceramic probes showed that the addition of ash has little influence on the ceramic properties up to 1000 °C. X-ray diffraction and thermal analysis data showed that, above this temperature the ash participates in the sintering process and in the formation of new important phases. The results reported show that the reuse of SCBA in the ceramic industry is feasible. PMID:21733619

  2. Molecular random tilings as glasses

    PubMed Central

    Garrahan, Juan P.; Stannard, Andrew; Blunt, Matthew O.; Beton, Peter H.

    2009-01-01

    We have recently shown that p-terphenyl-3,5,3′,5′-tetracarboxylic acid adsorbed on graphite self-assembles into a two-dimensional rhombus random tiling. This tiling is close to ideal, displaying long-range correlations punctuated by sparse localized tiling defects. In this article we explore the analogy between dynamic arrest in this type of random tilings and that of structural glasses. We show that the structural relaxation of these systems is via the propagation–reaction of tiling defects, giving rise to dynamic heterogeneity. We study the scaling properties of the dynamics and discuss connections with kinetically constrained models of glasses. PMID:19720990

  3. Phase change material in floor tiles for thermal energy storage

    NASA Astrophysics Data System (ADS)

    Lee, Amy Sarah

    Traditional passive solar systems have relied on sensible heat storage for energy savings. Recent research has investigated taking advantage of latent heat storage for additional energy savings. This is accomplished by the incorporation of phase change material into building materials used in traditional passive applications. Trombe walls, ceilings and floors can all be enhanced with phase change materials. This research introduces a new flooring material that incorporates a phase change material ready for commercial manufacture. An agglomerate floor tile containing 20% by mass of encapsulated octadecane has been manufactured. Flexural and compressive strength of 7.4 MPa and 24.5 MPa respectively, were measured for the tile. Peak melting transition temperature was determined to be 27.2°C with a latent heat of 33.9 J/g of tile. Structural and thermal performance of the tile surpassed that of a typical ceramic tile. Each tile was composed of quartz, resin and phase change material. Statistical modeling was performed to analyze the response of flexural and compressive strength on varying amounts of quartz, resin and phase change material. Resulting polynomials described the effect of adding phase change material into the tile. With as little as 10% by mass of phase change material, the strength was reduced to less than 50% of tile without phase change material. It was determined that the maximum phase change material content to attain structural integrity greater than ceramic tile was 20% by mass. The statistical analysis used for this research was based on mixture experiments. A procedure was developed to simplify the selection of data points used in the fit of the polynomials to describe the response of flexural and compressive strengths. Analysis of energy savings using this floor tile containing 20% by mass of phase change material was performed as an addendum to this research. A known static simulation method, SLR (solar load ratio), was adapted to include

  4. Quasiperiodic tilings generated by matrices

    NASA Astrophysics Data System (ADS)

    Rao, Nagaraja S.; Suryanarayan, E. R.

    1994-02-01

    Using the inflation method, Watanabe, Ito and Soma [3], Clark and Suryanarayan [4] and Balagurusamy, Ramesh and Gopal [5] have obtained nonperiodic tilings of the plane with n-fold rotational symmetry, n = 2, 3, 4, 5, 8, using two unit prototiles. Fortunately, there is an easier way to generate a more general class of nonperiodic tilings which contains the above-mentioned tilings as special cases. We do this by specifying two matrices of order two which define the two classes of tilings; thus, our approach uses the basic techniques from linear algebra in the study of quasiperiodic tilings and the method can be generalized to obtain tilings that have more than two prototiles. The tilings generated are fractals and their dimensions and the rate of growth are determined.

  5. Organic materials for ceramic molding processes

    NASA Technical Reports Server (NTRS)

    Saito, K.

    1984-01-01

    Ceramic molding processes are examined. Binders, wetting agents, lubricants, plasticizers, surface active agents, dispersants, etc., for pressing, rubber pressing, sip casting, injection casting, taping, extrusion, etc., are described, together with forming machines.

  6. Tiling Microarray Analysis Tools

    Energy Science and Technology Software Center (ESTSC)

    2005-05-04

    TiMAT is a package of 23 command line Java applications for use in the analysis of Affymetrix tiled genomic microarray data. TiMAT enables: 1) Rebuilding the genome annotation for entire tiled arrays (repeat filtering, chromosomal coordinate assignment). 2) Post processing of oligo intensity values (quantile normalization, median scaling, PMMM transformation), 3) Significance testing (Wilcoxon rank sum and signed rank tests, intensity difference and ratio tests) and Interval refinement (filtering based on multiple statistics, overlap comparisons),more » 4) Data visualization (detailed thumbnail/zoomed view with Interval Plots and data export to Affymetrix's Integrated Genome Browser) and Data reports (spreadsheet summaries and detailed profiles)« less

  7. Producing superhydrophobic roof tiles

    NASA Astrophysics Data System (ADS)

    Carrascosa, Luis A. M.; Facio, Dario S.; Mosquera, Maria J.

    2016-03-01

    Superhydrophobic materials can find promising applications in the field of building. However, their application has been very limited because the synthesis routes involve tedious processes, preventing large-scale application. A second drawback is related to their short-term life under outdoor conditions. A simple and low-cost synthesis route for producing superhydrophobic surfaces on building materials is developed and their effectiveness and their durability on clay roof tiles are evaluated. Specifically, an organic-inorganic hybrid gel containing silica nanoparticles is produced. The nanoparticles create a densely packed coating on the roof tile surface in which air is trapped. This roughness produces a Cassie-Baxter regime, promoting superhydrophobicity. A surfactant, n-octylamine, was also added to the starting sol to catalyze the sol-gel process and to coarsen the pore structure of the gel network, preventing cracking. The application of ultrasound obviates the need to use volatile organic compounds in the synthesis, thereby making a ‘green’ product. It was also demonstrated that a co-condensation process effective between the organic and inorganic species is crucial to obtain durable and effective coatings. After an aging test, high hydrophobicity was maintained and water absorption was completely prevented for the roof tile samples under study. However, a transition from a Cassie-Baxter to a Wenzel state regime was observed as a consequence of the increase in the distance between the roughness pitches produced by the aging of the coating.

  8. Producing superhydrophobic roof tiles.

    PubMed

    Carrascosa, Luis A M; Facio, Dario S; Mosquera, Maria J

    2016-03-01

    Superhydrophobic materials can find promising applications in the field of building. However, their application has been very limited because the synthesis routes involve tedious processes, preventing large-scale application. A second drawback is related to their short-term life under outdoor conditions. A simple and low-cost synthesis route for producing superhydrophobic surfaces on building materials is developed and their effectiveness and their durability on clay roof tiles are evaluated. Specifically, an organic-inorganic hybrid gel containing silica nanoparticles is produced. The nanoparticles create a densely packed coating on the roof tile surface in which air is trapped. This roughness produces a Cassie-Baxter regime, promoting superhydrophobicity. A surfactant, n-octylamine, was also added to the starting sol to catalyze the sol-gel process and to coarsen the pore structure of the gel network, preventing cracking. The application of ultrasound obviates the need to use volatile organic compounds in the synthesis, thereby making a 'green' product. It was also demonstrated that a co-condensation process effective between the organic and inorganic species is crucial to obtain durable and effective coatings. After an aging test, high hydrophobicity was maintained and water absorption was completely prevented for the roof tile samples under study. However, a transition from a Cassie-Baxter to a Wenzel state regime was observed as a consequence of the increase in the distance between the roughness pitches produced by the aging of the coating. PMID:26854839

  9. Covering the Plane with Rep-Tiles.

    ERIC Educational Resources Information Center

    Fosnaugh, Linda S.; Harrell, Marvin E.

    1996-01-01

    Presents an activity in which students use geometric figures, rep-tiles, to design a tile floor. Rep-tiles are geometric figures of which copies can fit together to form a larger similar figure. Includes reproducible student worksheet. (MKR)

  10. Tiles for Reo

    NASA Astrophysics Data System (ADS)

    Arbab, Farhad; Bruni, Roberto; Clarke, Dave; Lanese, Ivan; Montanari, Ugo

    Reo is an exogenous coordination model for software components. The informal semantics of Reo has been matched by several proposals of formalization, exploiting co-algebraic techniques, constraint-automata, and coloring tables. We aim to show that the Tile Model offers a flexible and adequate semantic setting for Reo, such that: (i) it is able to capture context-aware behavior; (ii) it is equipped with a natural notion of behavioral equivalence which is compositional; (iii) it offers a uniform setting for representing not only the ordinary execution of Reo systems but also dynamic reconfiguration strategies.

  11. High temperature ceramics for automobile gas turbines. Part 2: Development of ceramic components

    NASA Technical Reports Server (NTRS)

    Walzer, P.; Koehler, M.; Rottenkolber, P.

    1978-01-01

    The development of ceramic components for automobile gas turbine engines is described with attention given to the steady and unsteady thermal conditions the ceramics will experience, and their anti-corrosion and strain-resistant properties. The ceramics considered for use in the automobile turbines include hot-pressed Si3N4, reaction-sintered, isostatically pressed Si3N4, hot-pressed SiC, reaction-bonded SiC, and glass ceramics. Attention is given to the stress analysis of ceramic structures and the state of the art of ceramic structural technology is reviewed, emphasizing the use of ceramics for combustion chambers and ceramic shrouded turbomachinery (a fully ceramic impeller).

  12. Kinetics of DNA tile dimerization.

    PubMed

    Jiang, Shuoxing; Yan, Hao; Liu, Yan

    2014-06-24

    Investigating how individual molecular components interact with one another within DNA nanoarchitectures, both in terms of their spatial and temporal interactions, is fundamentally important for a better understanding of their physical behaviors. This will provide researchers with valuable insight for designing more complex higher-order structures that can be assembled more efficiently. In this report, we examined several spatial factors that affect the kinetics of bivalent, double-helical (DH) tile dimerization, including the orientation and number of sticky ends (SEs), the flexibility of the double helical domains, and the size of the tiles. The rate constants we obtained confirm our hypothesis that increased nucleation opportunities and well-aligned SEs accelerate tile-tile dimerization. Increased flexibility in the tiles causes slower dimerization rates, an effect that can be reversed by introducing restrictions to the tile flexibility. The higher dimerization rates of more rigid tiles results from the opposing effects of higher activation energies and higher pre-exponential factors from the Arrhenius equation, where the pre-exponential factor dominates. We believe that the results presented here will assist in improved implementation of DNA tile based algorithmic self-assembly, DNA based molecular robotics, and other specific nucleic acid systems, and will provide guidance to design and assembly processes to improve overall yield and efficiency. PMID:24794259

  13. Process for making a ceramic composition for immobilization of actinides

    DOEpatents

    Ebbinghaus, Bartley B.; Van Konynenburg, Richard A.; Vance, Eric R.; Stewart, Martin W.; Walls, Philip A.; Brummond, William Allen; Armantrout, Guy A.; Herman, Connie Cicero; Hobson, Beverly F.; Herman, David Thomas; Curtis, Paul G.; Farmer, Joseph

    2001-01-01

    Disclosed is a process for making a ceramic composition for the immobilization of actinides, particularly uranium and plutonium. The ceramic is a titanate material comprising pyrochlore, brannerite and rutile. The process comprises oxidizing the actinides, milling the oxides to a powder, blending them with ceramic precursors, cold pressing the blend and sintering the pressed material.

  14. Process for Making a Ceramic Composition for Immobilization of Actinides

    SciTech Connect

    Ebbinghaus, Bartley B.; Van Konynenburg, Richard A.; Vance, Eric R.; Stewart, Martin W.; Walls, Philip A.; Brummond, William Allen; Armantrout, Guy A.; Curtis, Paul G.; Hobson, Beverly F.; Farmer, Joseph; Herman, Connie Cicero; Herman, David Thomas

    1999-06-22

    Disclosed is a process for making a ceramic composition for the immobilization of actinides, particularly uranium and plutonium. The ceramic is a titanate material comprising pyrochlore, brannerite and rutile. The process comprises oxidizing the actinides, milling the oxides to a powder, blending them with ceramic precursors, cold pressing the blend and sintering the pressed material.

  15. Microwave sintering of ceramics

    SciTech Connect

    Snyder, W.B.

    1989-01-01

    Successful adaptation of microwave heating to the densification of ceramic materials require a marriage of microwave and materials technologies. Using an interdisciplinary team of microwave and materials engineers, we have successfully demonstrated the ability to density ceramic materials over a wide range of temperatures. Microstructural evolution during microwave sintering has been found to be significantly different from that observed in conventional sintering. Our results and those of others indicate that microwave sintering has the potential to fabricate components to near net shape with mechanical properties equivalent to hot pressed or hot isostatically pressed material. 6 refs., 11 figs.

  16. Recent advances in ceramics for dentistry.

    PubMed

    Deany, I L

    1996-01-01

    For the last ten years, the application of high-technology processes to dental ceramics allowed for the development of new materials such as heat-pressed, injection-molded, and slip-cast ceramics and glass-ceramics. The purpose of the present paper is to review advances in new materials and processes available for making all-ceramic dental restorations. Concepts on the structure and strengthening mechanisms of dental ceramics are provided. Major developments in materials for all-ceramic restorations are addressed. These advances include improved processing techniques and greater mechanical properties. An overview of the processing techniques available for all-ceramic materials is given, including sintering, casting, machining, slip-casting, and heat-pressing. The most recent ceramic materials are reviewed with respect to their principal crystalline phases, including leucite, alumina, forsterite, zirconia, mica, hydroxyapatite, lithium disilicate, sanidine, and spinel. Finally, a summary of flexural strength data available for all-ceramic materials is included. PMID:8875028

  17. Kiln for hot-pressing compacts in a continuous manner

    DOEpatents

    Reynolds, C.D Jr.

    1983-08-08

    The invention is directed to a hot pressing furnace or kiln which is capable of preheating, hot pressing, and cooling a plurality of articles in a sequential and continuous manner. The hot pressing furnace of the present invention comprises an elongated, horizontally disposed furnace capable of holding a plurality of displaceable pusher plates each supporting a die body loaded with refractory or ceramic material to be hot pressed. Each of these plates and the die body supported thereby is sequentially pushed through the preheating zone, a temperature stabilizing and a hot pressing zone, and a cooling zone so as to provide a continuous hot-pressing operation of a plurality of articles.

  18. Kiln for hot-pressing compacts in a continuous manner

    DOEpatents

    Reynolds, Jr., Carl D.

    1985-01-01

    The present invention is directed to a hot pressing furnace or kiln which is capable of preheating, hot pressing, and cooling a plurality of articles in a sequential and continuous manner. The hot pressing furnace of the present invention comprises an elongated, horizontally disposed furnace capable of holding a plurality of displaceable pusher plates each supporting a die body loaded with refractory or ceramic material to be hot pressed. Each of these plates and the die body supported thereby is sequentially pushed through the preheating zone, a temperature stabilizing and a hot pressing zone, and a cooling zone so as to provide a continuous hot-pressing operation of a plurality of articles.

  19. Repairing high-temperature glazed tiles

    NASA Technical Reports Server (NTRS)

    Ecord, G. M.; Schomburg, C.

    1981-01-01

    Tetraethyl orthosilicate (TEOS) mixture fills chips and cracks in glazed tile surface. Filler is made by mixing hydrolyzed TEOS, silicon tetraboride powder, and pulverized tile material. Repaired tiles survived testing by intense acoustic emissions, arc jets, and intense heat radiation. Repair is reliable and rapid, performed in 1-1 1/2 hours with tile in any or orientation.

  20. Lozenge Tilings and Hurwitz Numbers

    NASA Astrophysics Data System (ADS)

    Novak, Jonathan

    2015-10-01

    We give a new proof of the fact that, near a turning point of the frozen boundary, the vertical tiles in a uniformly random lozenge tiling of a large sawtooth domain are distributed like the eigenvalues of a GUE random matrix. Our argument uses none of the standard tools of integrable probability. In their place, it uses a combinatorial interpretation of the Harish-Chandra/Itzykson-Zuber integral as a generating function for desymmetrized Hurwitz numbers.

  1. Secondary polymer layered impregnated tile

    NASA Technical Reports Server (NTRS)

    Tran, Huy K. (Inventor); Rasky, Daniel J. (Inventor); Szalai, Christine E. (Inventor); Carroll, Joseph A. (Inventor); Hsu, Ming-ta S. (Inventor)

    2005-01-01

    A low density organic polymer impregnated preformed fibrous ceramic article includes a plurality of layers. A front layer includes ceramic fibers or carbon fibers or combinations of ceramic fibers and carbon fibers, and is impregnated with an effective amount of at least one organic polymer. A middle layer includes polymer impregnated ceramic fibers. A back layer includes ceramic fibers or carbon fibers or combinations of ceramic fibers and carbon fibers, and is impregnated with an effective amount of at least one low temperature pyrolyzing organic polymer capable of decomposing without depositing residues.

  2. 42. PRESSING A SLAB OF CLAY ONTO A MOSAIC MOLD. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. PRESSING A SLAB OF CLAY ONTO A MOSAIC MOLD. THE MOLD, WHICH HAS A RAISED DESIGN, LEAVES AND OUTLINE IN THE SLAB, THE PIECES THUS DEFINED, ARE THEN CUT APART TO BE FIRED SEPARATELY AND REASSEMBLED. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  3. Light-weight black ceramic insulation

    NASA Technical Reports Server (NTRS)

    Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    2003-01-01

    Ultra-high temperature, light-weight, black ceramic insulation having a density ranging from about 0.12 g/cc. to 0.6 g/cc. such as ceramic tile is obtained by pyrolyzing siloxane gels derived from the reaction of at least one organo dialkoxy silane and at least one tetralkoxy silane in an acid or base liquid medium. The reaction mixture of the tetra- and dialkoxy silanes also may contain an effective amount of a mono- or trialkoxy silane to obtain the siloxane gels. The siloxane gels are dried at ambient temperatures and pressures to form siloxane ceramic precursors without significant shrinkage. The siloxane ceramic precursors are subsequently pyrolyzed, in an inert atmosphere, to form the black ceramic insulation comprising atoms of silicon, carbon and oxygen. The ceramic insulation can be characterized as a porous, uniform ceramic tile resistant to oxidation at temperatures ranging as high as 1700.degree. C., and particularly useful as lightweight tiles for spacecraft and other high-temperature insulation applications.

  4. Image Composition Engine for Tiles

    Energy Science and Technology Software Center (ESTSC)

    2011-08-22

    The Image Composition Engine for Tiles (lceT) is a high-performance sort-last parallel rendering library. It is designed to be used in parallel applications requiring rendering. The primary purpose of IceT is to be integrated into parallel visualization applications such as ParaView to provide parallel rendering capabilities. The Image Composition Engine for Tiles (lceT) is a high-performance sort-last parallel rendering library. IceT uses a "sort-Iasf' approach to rendering. Each process in a parallel application independently rendersmore » a local piece of geometry. The resulting images are given to IceT, and IceT combines the images together to form a single cohesive image. Ice T is also capable of driving tiled displays, largeformat displays comprising an array of smaller displays. To this end IceT can collect the smaller tile images and organize them such that the entire tiled display can be driven. Ice T takes advantage of spatial coherence in geometry by identifying empty regions of the display and reducing the overall required work.« less

  5. Image Composition Engine for Tiles

    SciTech Connect

    Moreland, Kenneth

    2011-08-22

    The Image Composition Engine for Tiles (lceT) is a high-performance sort-last parallel rendering library. It is designed to be used in parallel applications requiring rendering. The primary purpose of IceT is to be integrated into parallel visualization applications such as ParaView to provide parallel rendering capabilities. The Image Composition Engine for Tiles (lceT) is a high-performance sort-last parallel rendering library. IceT uses a "sort-Iasf' approach to rendering. Each process in a parallel application independently renders a local piece of geometry. The resulting images are given to IceT, and IceT combines the images together to form a single cohesive image. Ice T is also capable of driving tiled displays, largeformat displays comprising an array of smaller displays. To this end IceT can collect the smaller tile images and organize them such that the entire tiled display can be driven. Ice T takes advantage of spatial coherence in geometry by identifying empty regions of the display and reducing the overall required work.

  6. Ceramic-Fibrous-Insulation Thermal-Protection System

    NASA Technical Reports Server (NTRS)

    Leiser, Daniel; Churchward, Rex; Katvala, Victor; Stewart, David; Balter, Aliza

    1992-01-01

    New composite thermal-protection system developed in which glass-ceramic impregnated into surface of fibrous insulation. Called TUFI for toughened unipiece fibrous insulation developed as replacement for tiles with reaction-cured-glass (RCG) coating. Impregnation of glass-ceramic results in thermal protection system with insulating properties comparable to existing system but with 20 to 100 times more resistance to impact.

  7. Ceramic materials for solar collectors. Final report

    SciTech Connect

    Ankeny, A.E.

    1982-09-29

    The purpose of this project was to identify ceramic materials which exhibit solar absorption properties which are appropriate for flat plate solar collectors. To accomplish this, various glaze formulations and clay combinations were produced and evaluated for their potential as solar absorbers. For purposes of comparison a black coated copper sheet was also tested concurrently with the ceramic materials. Thirty-five different coatings were prepared on fifty-six tiles. Two different clays, a porcelain and a stoneware clay, were used to make the tiles. From the tiles prepared, thirty of the most promising coatings were chosen for evaluation. The test apparatus consisted of a wooden frame which enclosed four mini-collectors. Each mini-collector was a rectangular ceramic heat exchanger on which a test tile could be mounted. The working fluid, water, was circulated into the collector, passed under the test tile where it gained heat, and then was discharged out of the collector. Thermometers were installed in the inlet and discharge areas to indicate the temperature increase of the water. The quantity of heat absorbed was determined by measuring the water flow (pounds per minute) and multiplying it by the temperature increase (/sup 0/F). The control sample, a copper wheet painted flat black, provided a base by which to compare the performance of the test tiles installed in the other three mini-collectors. Testing was conducted on various days during August and September, 1982. The test results indicate that coatings with very satisfactory solar absorbing properties can be made with ceramic materials. The results suggest that an economically viable ceramic solar collector could be constructed if engineered to minimize the effects of relatively low thermal conductivity of clay.

  8. Using SPC for the dry-pressing of beryllia parts

    SciTech Connect

    Sepulveda, J.L.; Jech, D.E.; Ferguson, G. )

    1994-01-01

    Recent advances in the development of high-power electronic devices require the use of materials which are both good electrical insulators and good thermal conductors. Beryllia ceramics exhibit excellent electrical and thermal management performance. Production of beryllia parts requires consistent, ceramic-grade powders and reliable fabrication processes. The extractive process, dry-pressing fabrication process, and the application of statistical process control techniques are reviewed. The important mechanical, thermal, and electrical properties of beryllia are compared to other common ceramic materials.

  9. Press Start

    NASA Astrophysics Data System (ADS)

    Harteveld, Casper

    This level sets the stage for the design philosophy called “Triadic Game Design” (TGD). This design philosophy can be summarized with the following sentence: it takes two to tango, but it takes three to design a meaningful game or a game with a purpose. Before the philosophy is further explained, this level will first delve into what is meant by a meaningful game or a game with a purpose. Many terms and definitions have seen the light and in this book I will specifically orient at digital games that aim to have an effect beyond the context of the game itself. Subsequently, a historical overview is given of the usage of games with a serious purpose which starts from the moment we human beings started to walk on our feet till our contemporary society. It turns out that we have been using games for all kinds of non-entertainment purposes for already quite a long time. With this introductory material in the back of our minds, I will explain the concept of TGD by means of a puzzle. After that, the protagonist of this book, the game Levee Patroller, is introduced. Based on the development of this game, the idea of TGD, which stresses to balance three different worlds, the worlds of Reality, Meaning, and Play, came into being. Interested? Then I suggest to quickly “press start!”

  10. Manufacture of high-density ceramic sinters

    NASA Technical Reports Server (NTRS)

    Hibata, Y.

    1986-01-01

    High density ceramic sinters are manufactured by coating premolded or presintered porous ceramics with a sealing material of high SiO2 porous glass or nitride glass and then sintering by hot isostatic pressing. The ceramics have excellent abrasion and corrosion resistances. Thus LC-10 (Si3N2 powder) and Y2O3-Al2O3 type sintering were mixed and molded to give a premolded porous ceramic (porosity 37%, relative bulk density 63%). The ceramic was dipped in a slurry containing high SiO2 porous glass and an alcohol solution of cellulose acetate and dried. The coated ceramic was treated in a nitrogen atmosphere and then sintered by hot isostatic pressing to give a dense ceramic sinter.

  11. Reusable Surface Insulation Tile Thermal Protection Materials: Past, Present and the Future

    NASA Technical Reports Server (NTRS)

    Leiser, Daniel B.; Stewart, David A.; Venkatapathy, Ethiras (Technical Monitor)

    2002-01-01

    Silica (LI-900) Reusable Surface Insulation (RSI) tile have been used on the majority of the Shuttle since its initial flight. Its overall performance with Reaction Cured Glass (RCG) coating applied will be reviewed. Improvements in insulations, Fibrous Refractory Composite Insulation (FRCI-12) and Alumina Enhanced Thermal Barrier (AETB-8) and coatings/surface treatments such as Toughened Uni-Piece Fibrous Insulation (TUFI) have been developed and successfully applied. The performance of these enhancements on the Shuttle Orbiters over the past few years along with the next version of tile materials, High Efficiency Tantalum-based Ceramic (HETC) with even broader applicability will also be discussed.

  12. Production of pyroxene ceramics from the fine fraction of incinerator bottom ash.

    PubMed

    Bourtsalas, A; Vandeperre, L J; Grimes, S M; Themelis, N; Cheeseman, C R

    2015-11-01

    Incinerator bottom ash (IBA) is normally processed to extract metals and the coarse mineral fraction is used as secondary aggregate. This leaves significant quantities of fine material, typically less than 4mm, that is problematic as reuse options are limited. This work demonstrates that fine IBA can be mixed with glass and transformed by milling, calcining, pressing and sintering into high density ceramics. The addition of glass aids liquid phase sintering, milling increases sintering reactivity and calcining reduces volatile loss during firing. Calcining also changes the crystalline phases present from quartz (SiO2), calcite (CaCO3), gehlenite (Ca2Al2SiO7) and hematite (Fe2O3) to diopside (CaMgSi2O6), clinoenstatite (MgSiO3) and andradite (Ca3Fe2Si3O12). Calcined powders fired at 1080°C have high green density, low shrinkage (<7%) and produce dense (2.78 g/cm(3)) ceramics that have negligible water absorption. The transformation of the problematic fraction of IBA into a raw material suitable for the manufacture of ceramic tiles for use in urban paving and other applications is demonstrated. PMID:25743204

  13. Properties of ceramics prepared using dry discharged waste to energy bottom ash dust.

    PubMed

    Bourtsalas, Athanasios; Vandeperre, Luc; Grimes, Sue; Themelis, Nicolas; Koralewska, Ralf; Cheeseman, Chris

    2015-09-01

    The fine dust of incinerator bottom ash generated from dry discharge systems can be transformed into an inert material suitable for the production of hard, dense ceramics. Processing involves the addition of glass, ball milling and calcining to remove volatile components from the incinerator bottom ash. This transforms the major crystalline phases present in fine incinerator bottom ash dust from quartz (SiO(2)), calcite (CaCO(3)), gehlenite (Ca(2)Al(2)SiO(7)) and hematite (Fe(2)O(3)), to the pyroxene group minerals diopside (CaMgSi(2)O(6)), clinoenstatite (MgSi(2)O(6)), wollastonite (CaSiO(3)) together with some albite (NaAlSi(3)O(8)) and andradite (Ca(3)Fe(2)Si(3)O(12)). Processed powders show minimal leaching and can be pressed and sintered to form dense (>2.5 g cm(-3)), hard ceramics that exhibit low firing shrinkage (<7%) and zero water absorption. The research demonstrates the potential to beneficially up-cycle the fine incinerator bottom ash dust from dry discharge technology into a raw material suitable for the production of ceramic tiles that have potential for use in a range of industrial applications. PMID:26060195

  14. Ceramic Fabric Coated With Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Riccitiello, S. R.; Smith, M.; Goldstein, H.; Zimmerman, N.

    1988-01-01

    Material used as high-temperature shell. Ceramic fabric coated with silicon carbide (SiC) serves as tough, heat-resistant covering for other refractory materials. Developed to protect reusable insulating tiles on advanced space transportation systems. New covering makes protective glaze unnecessary. Used on furnace bricks or on insulation for engines.

  15. Algebraic properties of basic isohedral marked tilings

    NASA Astrophysics Data System (ADS)

    Greco, Gabriele H.

    2006-05-01

    In 1977 Grünbaum and Shephard described all possible 93 types of isohedral marked tilings of the plane; 46 of them are called basic, since their induced tile group is trivial. The aim of this paper is to give an algebraic description of all basic tilings. A purely algebraic characterization of the adjacency symmetries of tiles of the 46 basic tilings is presented. Moreover, 46 related abstract definitions of two-dimensional crystallographic groups supplement and extend those of the well-known book Generators and Relations for Discrete Groups by Coxeter and Moser.

  16. Fractal tiles associated with shift radix systems.

    PubMed

    Berthé, Valérie; Siegel, Anne; Steiner, Wolfgang; Surer, Paul; Thuswaldner, Jörg M

    2011-01-15

    Shift radix systems form a collection of dynamical systems depending on a parameter r which varies in the d-dimensional real vector space. They generalize well-known numeration systems such as beta-expansions, expansions with respect to rational bases, and canonical number systems. Beta-numeration and canonical number systems are known to be intimately related to fractal shapes, such as the classical Rauzy fractal and the twin dragon. These fractals turned out to be important for studying properties of expansions in several settings. In the present paper we associate a collection of fractal tiles with shift radix systems. We show that for certain classes of parameters r these tiles coincide with affine copies of the well-known tiles associated with beta-expansions and canonical number systems. On the other hand, these tiles provide natural families of tiles for beta-expansions with (non-unit) Pisot numbers as well as canonical number systems with (non-monic) expanding polynomials. We also prove basic properties for tiles associated with shift radix systems. Indeed, we prove that under some algebraic conditions on the parameter r of the shift radix system, these tiles provide multiple tilings and even tilings of the d-dimensional real vector space. These tilings turn out to have a more complicated structure than the tilings arising from the known number systems mentioned above. Such a tiling may consist of tiles having infinitely many different shapes. Moreover, the tiles need not be self-affine (or graph directed self-affine). PMID:24068835

  17. All-ceramic crowns.

    PubMed

    Lehner, C R; Schärer, P

    1992-06-01

    Despite the good appearance and biocompatibility of dental porcelains, failures are still of considerable concern because of some limited properties common to all-ceramic crown systems. As in the years before, pertinent scientific articles published between November 1990 and December 1991 focused on strengthening mechanisms and compared fracture toughness for different ceramic systems by using various test methods. Some evaluated the clinical implications thereon for seating and loading crowns and measured wear against different ceramic surface conditions. Recently introduced with pleasing aesthetic qualities, IPS-Empress (Ivoclar, Schaan, Liechtenstein), a new European leucite-reinforced glass-ceramic, has finally drawn attention in some journals and has been reviewed with promising in vitro test results. Using a simple press-molding technique, well-fitting crowns, inlays, and veneers can be fabricated without an additional ceramming procedure. Again, only long-term clinical trials will validate achievements compared with other all-ceramic systems and with well-established metal ceramics. PMID:1325848

  18. Beautiful math, part 2: aesthetic patterns based on fractal tilings.

    PubMed

    Peichang Ouyang; Fathauer, Robert W

    2014-01-01

    A fractal tiling (f-tiling) is a tiling whose boundary is fractal. This article presents two families of rare, infinitely many f-tilings. Each f-tiling is constructed by reducing tiles by a fixed scaling factor, using a single prototile, which is a segment of a regular polygon. The authors designed invariant mappings to automatically produce appealing seamless, colored patterns from such tilings. PMID:24808170

  19. Ceramic fiber reinforced glass-ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P. (Inventor)

    1993-01-01

    A slurry of BSAS glass powders is cast into tapes which are cut to predetermined sizes. Mats of continuous chemical vapor deposition (CVD)-SiC fibers are alternately stacked with these matrix tapes. This tape-mat stack is warm-pressed to produce a 'green' composite which is heated to burn out organic constituents. The remaining interim material is then hot-pressed to form a BSAS glass-ceramic fiber-reinforced composite.

  20. Developing tiled projection display systems

    SciTech Connect

    Hereld, M.; Judson, I. R.; Paris, J.; Stevens, R. L.

    2000-06-08

    Tiled displays are an emerging technology for constructing high-resolution semi-immersive visualization environments capable of presenting high-resolution images from scientific simulation [EVL, PowerWall]. In this way, they complement other technologies such as the CAVE [Cruz-Niera92] or ImmersaDesk, [Czernuszenko97], which by design give up pure resolution in favor of width of view and stereo. However, the largest impact may well be in using large-format tiled displays as one of possibly multiple displays in building ''information'' or ''active'' spaces that surround the user with diverse ways of interacting with data and multimedia information flows [IPSI, Childers00, Raskar98, ROME, Stanford, UNC]. These environments may prove to be the ultimate successor of the desktop metaphor for information technology work.

  1. Geometrical Tile Design for Complex Neighborhoods

    PubMed Central

    Czeizler, Eugen; Kari, Lila

    2009-01-01

    Recent research has showed that tile systems are one of the most suitable theoretical frameworks for the spatial study and modeling of self-assembly processes, such as the formation of DNA and protein oligomeric structures. A Wang tile is a unit square, with glues on its edges, attaching to other tiles and forming larger and larger structures. Although quite intuitive, the idea of glues placed on the edges of a tile is not always natural for simulating the interactions occurring in some real systems. For example, when considering protein self-assembly, the shape of a protein is the main determinant of its functions and its interactions with other proteins. Our goal is to use geometric tiles, i.e., square tiles with geometrical protrusions on their edges, for simulating tiled paths (zippers) with complex neighborhoods, by ribbons of geometric tiles with simple, local neighborhoods. This paper is a step toward solving the general case of an arbitrary neighborhood, by proposing geometric tile designs that solve the case of a “tall” von Neumann neighborhood, the case of the f-shaped neighborhood, and the case of a 3 × 5 “filled” rectangular neighborhood. The techniques can be combined and generalized to solve the problem in the case of any neighborhood, centered at the tile of reference, and included in a 3 × (2k + 1) rectangle. PMID:19956398

  2. Geometrical tile design for complex neighborhoods.

    PubMed

    Czeizler, Eugen; Kari, Lila

    2009-01-01

    Recent research has showed that tile systems are one of the most suitable theoretical frameworks for the spatial study and modeling of self-assembly processes, such as the formation of DNA and protein oligomeric structures. A Wang tile is a unit square, with glues on its edges, attaching to other tiles and forming larger and larger structures. Although quite intuitive, the idea of glues placed on the edges of a tile is not always natural for simulating the interactions occurring in some real systems. For example, when considering protein self-assembly, the shape of a protein is the main determinant of its functions and its interactions with other proteins. Our goal is to use geometric tiles, i.e., square tiles with geometrical protrusions on their edges, for simulating tiled paths (zippers) with complex neighborhoods, by ribbons of geometric tiles with simple, local neighborhoods. This paper is a step toward solving the general case of an arbitrary neighborhood, by proposing geometric tile designs that solve the case of a "tall" von Neumann neighborhood, the case of the f-shaped neighborhood, and the case of a 3 x 5 "filled" rectangular neighborhood. The techniques can be combined and generalized to solve the problem in the case of any neighborhood, centered at the tile of reference, and included in a 3 x (2k + 1) rectangle. PMID:19956398

  3. Shuttle Upgrade Program: Tile TPS

    NASA Technical Reports Server (NTRS)

    Leiser, Daniel B.; Stewart, David A.; DiFiore, Robert; Irby, Ed; Arnold, James (Technical Monitor)

    2001-01-01

    One of the areas where the thermal protection system on the Space Shuttle Orbiter could be improved is the RSI (Reusable Surface Insulation) tile. The improvement would be in damage resistance that would reduce the resultant maintenance and inspection required. It has performed very well in every other aspect. Improving the system's damage resistance has been the subject of much research over the past several years. One of the results of that research was a new system developed for damage prone areas on the orbiter (i.e., base heat shield). That system, designated as TUFI, Toughened Uni-Piece Fibrous Insulation, was successfully demonstrated as an experiment on the Orbiter and is now baselined for the base heat shield. This paper describes the results of a current research program to further improve the TUFI tile system, thus making it applicable to more areas on the orbiter. The way to remove the current limitations of the TUFI system (i.e., weight or thermal conductivity differences between it and the baseline tile (LI-900)) is to improve the characteristics of LI-900 or AETB-8. Specifically this paper describes the results of two efforts. The first shows performance data of an improved LI-900 system involving the application of TUFI and the second describes data that shows a reduced difference in thermal conductivity between the advanced TUFI substrate (AETB-8) now used on the orbiter and LI-900.

  4. Effects of annealing on the microstructure and mechanical properties of hot pressed BaAl{sub 2}Si{sub 2}O{sub 8} (BAS) and SrAl{sub 2}Si{sub 2}O{sub 8} (SAS) glass-ceramics

    SciTech Connect

    Buzniak, J.J.; Dickerson, R.M.; Lagerlof, K.P.D.

    1994-12-31

    The crystallization behavior, microstructural development during annealing, and the four point bend strength of hot-pressed BaO{center_dot}Al{sub 2}O{sub 3}{center_dot}2SiO{sub 2} (BAS) and SrO{center_dot}Al{sub 2}O{sub 3}{center_dot}2SiO{sub 2} (SAS) glass ceramics have been investigated. Both BAS and SAS show strength loss above the glass transition temperature ({approximately}900{degrees}C), suggesting the presence of residual glass along the grain boundaries in the hot pressed material. Annealing of BAS at temperature above 1000{degrees}C, resulted in an increase of the bend strength when tested above its glass transition temperature. However, increasing porosity during annealing caused a decrease of the fracture strength at temperatures below the glass transition with respect to the as-hot-pressed material. The increased porosity is believed to be associated with the formation of gaseous reaction products during annealing.

  5. Programmable DNA tile self-assembly using a hierarchical sub-tile strategy

    NASA Astrophysics Data System (ADS)

    Shi, Xiaolong; Lu, Wei; Wang, Zhiyu; Pan, Linqiang; Cui, Guangzhao; Xu, Jin; LaBean, Thomas H.

    2014-02-01

    DNA tile based self-assembly provides a bottom-up approach to construct desired nanostructures. DNA tiles have been directly constructed from ssDNA and readily self-assembled into 2D lattices and 3D superstructures. However, for more complex lattice designs including algorithmic assemblies requiring larger tile sets, a more modular approach could prove useful. This paper reports a new DNA ‘sub-tile’ strategy to easily create whole families of programmable tiles. Here, we demonstrate the stability and flexibility of our sub-tile structures by constructing 3-, 4- and 6-arm DNA tiles that are subsequently assembled into 2D lattices and 3D nanotubes according to a hierarchical design. Assembly of sub-tiles, tiles, and superstructures was analyzed using polyacrylamide gel electrophoresis and atomic force microscopy. DNA tile self-assembly methods provide a bottom-up approach to create desired nanostructures; the sub-tile strategy adds a useful new layer to this technique. Complex units can be made from simple parts. The sub-tile approach enables the rapid redesign and prototyping of complex DNA tile sets and tiles with asymmetric designs.

  6. Tough Ceramic Mimics Mother of Pearl

    ScienceCinema

    Ritchie, Robert

    2013-05-29

    Berkeley Lab scientists have mimicked the structure of mother of pearl to create what may well be the toughest ceramic ever produced. http://newscenter.lbl.gov/press-releases/2008/12/05/scientists-create-tough-ceramic-that-mimics-mother-of-pearl/

  7. Tough Ceramic Mimics Mother of Pearl

    SciTech Connect

    Ritchie, Robert

    2009-01-01

    Berkeley Lab scientists have mimicked the structure of mother of pearl to create what may well be the toughest ceramic ever produced. http://newscenter.lbl.gov/press-releases/2008/12/05/scientists-create-tough-ceramic-that-mimics-mother-of-pearl/

  8. Optimizing Tile Concentrations to Minimize Errors and Time for DNA Tile Self-assembly Systems

    NASA Astrophysics Data System (ADS)

    Chen, Ho-Lin; Kao, Ming-Yang

    DNA tile self-assembly has emerged as a rich and promising primitive for nano-technology. This paper studies the problems of minimizing assembly time and error rate by changing the tile concentrations because changing the tile concentrations is easy to implement in actual lab experiments. We prove that setting the concentration of tile T i proportional to the square root of N i where N i is the number of times T i appears outside the seed structure in the final assembled shape minimizes the rate of growth errors for rectilinear tile systems. We also show that the same concentrations minimize the expected assembly time for a feasible class of tile systems. Moreover, for general tile systems, given tile concentrations, we can approximate the expected assembly time with high accuracy and probability by running only a polynomial number of simulations in the size of the target shape.

  9. Analysis of gap heating due to stepped tiles in the shuttle thermal protection system

    NASA Technical Reports Server (NTRS)

    Petley, D. H.; Smith, D. M.; Edwards, C. L. W.; Carlson, A. B.

    1983-01-01

    Analytical methods used to investigate entry gap heating in the Shuttle orbiter thermal protection system are described. Analytical results are given for a fuselage lower-surface location and a wing lower-surface location. These are locations where excessive gap heating occurred on the first flight of the Shuttle. The results of a study to determine the effectiveness of a half-height ceramic fiber gap filler in preventing hot-gas flow in the tile gaps are also given.

  10. C∗-algebras of Penrose hyperbolic tilings

    NASA Astrophysics Data System (ADS)

    Oyono-Oyono, Hervé; Petite, Samuel

    2011-02-01

    Penrose hyperbolic tilings are tilings of the hyperbolic plane which admit, up to affine transformations a finite number of prototiles. In this paper, we give a complete description of the C∗-algebras and of the K-theory for such tilings. Since the continuous hull of these tilings have no transversally invariant measure, these C∗-algebras are traceless. Nevertheless, harmonic currents give rise to 3-cyclic cocycles and we discuss in this setting a higher-order version of the gap-labeling.

  11. Global Swath and Gridded Data Tiling

    NASA Technical Reports Server (NTRS)

    Thompson, Charles K.

    2012-01-01

    This software generates cylindrically projected tiles of swath-based or gridded satellite data for the purpose of dynamically generating high-resolution global images covering various time periods, scaling ranges, and colors called "tiles." It reconstructs a global image given a set of tiles covering a particular time range, scaling values, and a color table. The program is configurable in terms of tile size, spatial resolution, format of input data, location of input data (local or distributed), number of processes run in parallel, and data conditioning.

  12. Multilayer Impregnated Fibrous Thermal Insulation Tiles

    NASA Technical Reports Server (NTRS)

    Tran, Huy K.; Rasky, Daniel J.; Szalai, Christine e.; Hsu, Ming-ta; Carroll, Joseph A.

    2007-01-01

    The term "secondary polymer layered impregnated tile" ("SPLIT") denotes a type of ablative composite-material thermal- insulation tiles having engineered, spatially non-uniform compositions. The term "secondary" refers to the fact that each tile contains at least two polymer layers wherein endothermic reactions absorb considerable amounts of heat, thereby helping to prevent overheating of an underlying structure. These tiles were invented to afford lighter-weight alternatives to the reusable thermal-insulation materials heretofore variously used or considered for use in protecting the space shuttles and other spacecraft from intense atmospheric-entry heating.

  13. Using mixture design of experiments to assess the environmental impact of clay-based structural ceramics containing foundry wastes.

    PubMed

    Coronado, M; Segadães, A M; Andrés, A

    2015-12-15

    This work describes the leaching behavior of potentially hazardous metals from three different clay-based industrial ceramic products (wall bricks, roof tiles, and face bricks) containing foundry sand dust and Waelz slag as alternative raw materials. For each product, ten mixtures were defined by mixture design of experiments and the leaching of As, Ba, Cd, Cr, Cu, Mo, Ni, Pb, and Zn was evaluated in pressed specimens fired simulating the three industrial ceramic processes. The results showed that, despite the chemical, mineralogical and processing differences, only chrome and molybdenum were not fully immobilized during ceramic processing. Their leaching was modeled as polynomial equations, functions of the raw materials contents, and plotted as response surfaces. This brought to evidence that Cr and Mo leaching from the fired products is not only dependent on the corresponding contents and the basicity of the initial mixtures, but is also clearly related with the mineralogical composition of the fired products, namely the amount of the glassy phase, which depends on both the major oxides contents and the firing temperature. PMID:26252997

  14. Ceramic Foams for TPS Applications

    NASA Technical Reports Server (NTRS)

    Stockpoole, Mairead

    2003-01-01

    Ceramic foams have potential in many areas of Thermal Protection Systems (TPS) including acreage and tile leading edges as well as being suitable as a repair approach for re-entry vehicles. NASA Ames is conducting ongoing research in developing lower-density foams from pre-ceramic polymer routes. One of the key factors to investigate, when developing new materials for re-entry applications, is their oxidation behavior in the appropriate re-entry environment which can be simulated using ground based arc jet (plasma jet) testing. Arc jet testing is required to provide the appropriate conditions (stagnation pressures, heat fluxes, enthalpies, heat loads and atmospheres) encountered during flight. This work looks at the response of ceramic foams (Si systems) exposed to simulated reentry environments and investigates the influence of microstructure and composition on the material? response. Other foam properties (mechanical and thermal) will also be presented.

  15. Optimising the bioreceptivity of porous glass tiles based on colonization by the alga Chlorella vulgaris.

    PubMed

    Ferrándiz-Mas, V; Bond, T; Zhang, Z; Melchiorri, J; Cheeseman, C R

    2016-09-01

    Green façades on buildings can mitigate greenhouse gas emissions. An option to obtain green facades is through the natural colonisation of construction materials. This can be achieved by engineering bioreceptive materials. Bioreceptivity is the susceptibility of a material to be colonised by living organisms. The aim of this research was to develop tiles made by sintering granular waste glass that were optimised for bioreceptivity of organisms capable of photosynthesis. Tiles were produced by pressing recycled soda-lime glass with a controlled particle size distribution and sintering compacted samples at temperatures between 680 and 740°C. The primary bioreceptivity of the tiles was evaluated by quantifying colonisation by the algae Chlorella vulgaris (C. vulgaris), which was selected as a model photosynthetic micro-organism. Concentrations of C. vulgaris were measured using chlorophyll-a extraction. Relationships between bioreceptivity and the properties of the porous glass tile, including porosity, sorptivity, translucency and pH are reported. Capillary porosity and water sorptivity were the key factors influencing the bioreceptivity of porous glass. Maximum C. vulgaris growth and colonisation was obtained for tiles sintered at 700°C, with chlorophyll-a concentrations reaching up to 11.1±0.4μg/cm(2) of tile. Bioreceptivity was positively correlated with sorptivity and porosity and negatively correlated with light transmittance. The research demonstrates that the microstructure of porous glass, determined by the processing conditions, significantly influences bioreceptivity. Porous glass tiles with high bioreceptivity that are colonised by photosynthetic algae have the potential to form carbon-negative façades for buildings and green infrastructure. PMID:27135568

  16. Method of making multilayered titanium ceramic composites

    DOEpatents

    Fisher, II, George T.; Hansen, Jeffrey S.; Oden, Laurance L.; Turner, Paul C.; Ochs, Thomas L.

    1998-01-01

    A method making a titanium ceramic composite involves forming a hot pressed powder body having a microstructure comprising at least one titanium metal or alloy layer and at least one ceramic particulate reinforced titanium metal or alloy layer and hot forging the hot pressed body follwed by hot rolling to substantially reduce a thickness dimension and substantially increase a lateral dimension thereof to form a composite plate or sheet that retains in the microstructure at least one titanium based layer and at least one ceramic reinforced titanium based layer in the thickness direction of the composite plate or sheet.

  17. Method of making multilayered titanium ceramic composites

    DOEpatents

    Fisher, G.T. II; Hansen, J.S.; Oden, L.L.; Turner, P.C.; Ochs, T.L.

    1998-08-25

    A method making a titanium ceramic composite involves forming a hot pressed powder body having a microstructure comprising at least one titanium metal or alloy layer and at least one ceramic particulate reinforced titanium metal or alloy layer and hot forging the hot pressed body followed by hot rolling to substantially reduce a thickness dimension and substantially increase a lateral dimension thereof to form a composite plate or sheet that retains in the microstructure at least one titanium based layer and at least one ceramic reinforced titanium based layer in the thickness direction of the composite plate or sheet. 3 figs.

  18. Method of making multilayered titanium ceramic composites

    DOEpatents

    Fisher, George T., II; Hansen; Jeffrey S.; Oden; Laurance L.; Turner; Paul C.; Ochs; Thomas L.

    1998-08-25

    A method making a titanium ceramic composite involves forming a hot pressed powder body having a microstructure comprising at least one titanium metal or alloy layer and at least one ceramic particulate reinforced titanium metal or alloy layer and hot forging the hot pressed body follwed by hot rolling to substantially reduce a thickness dimension and substantially increase a lateral dimension thereof to form a composite plate or sheet that retains in the microstructure at least one titanium based layer and at least one ceramic reinforced titanium based layer in the thickness direction of the composite plate or sheet.

  19. Parametric Multi-Level Tiling of Imperfectly Nested Loops

    SciTech Connect

    Hartono, Albert; Baskaran, Muthu M.; Bastoul, Cedric; Cohen, Albert; Krishnamoorthy, Sriram; Norris, Boyana; Ramanujam, J.; Sadayappan, Ponnuswamy

    2009-05-18

    Tiling is a critical loop transformation for generating high-performance code on modern architectures. Efficient generation of multilevel tiled code is essential to exploit several levels of parallelism and/or to maximize data reuse in deep memory hierarchies. Tiled loops with parameterized tile sizes (not compile time constants) facilitate runtime feedback and dynamic optimizations used in iterative compilation and automatic tuning. The existing parametric multilevel tiling approach has focused on transformation for perfectly nested loops, where all assignment statements are contained inside the innermost loop of a loop nest. Previous solutions to tiling for imperfect loop nests are limited to the case where tile sizes are fixed. In this paper, we present an approach to parameterized multilevel tiling for imperfectly nested loops. Our tiling algorithm generates loops that iterate over full rectangular tiles that are amenable for potential compiler optimizations such as register tiling. Experimental results using a number of computational benchmarks demonstrate the effectiveness of our tiling approach.

  20. TRANSFER EFFICIENCES OF PESTICIDES FROM HOUSEHOLD CERAMIC TILE TO FOODS

    EPA Science Inventory

    Traditional assessments of pesticide exposure through diet have focused on contamination during production (e.g., pesticides in agriculture). However, recent residential monitoring studies have demonstrated that a significant portion of total exposure to infants and children ...

  1. Reciprocating pellet press

    DOEpatents

    Jones, Charles W.

    1981-04-07

    A machine for pressing loose powder into pellets using a series of reciprocating motions has an interchangeable punch and die as its only accurately machines parts. The machine reciprocates horizontally between powder receiving and pressing positions. It reciprocates vertically to press, strip and release a pellet.

  2. The Global University Press

    ERIC Educational Resources Information Center

    Dougherty, Peter J.

    2012-01-01

    The modern world's understanding of American university press has long been shaped by university-press books. American university-press books are good international advertisements for the universities whose logos grace their spines. The growth of transnational scholarship and the expansion of digital communications networks are converging in ways…

  3. Ceramic applications in the advanced Stirling automotive engine

    NASA Technical Reports Server (NTRS)

    Tomazic, W. A.; Cairelli, J. E.

    1978-01-01

    The requirements of the ideal Stirling cycle, as well as basic types of practical engines are described. Advantages, disadvantages, and problem areas of these Stirling engines are discussed. The potential for ceramic components is also considered. Currently ceramics are used in only two areas, the air preheater and insulating tiles between the burner and the heater head. For the advanced Stirling engine to achieve high efficiency and low cost, the principal components are expected to be made from ceramic materials, including the heater head, air preheater, regenerator, the burner and the power piston. Supporting research and technology programs for ceramic component development are briefly described.

  4. Bonding Heat-Resistant Fabric to Tile

    NASA Technical Reports Server (NTRS)

    Holt, J. W.; Smiser, L. W.

    1985-01-01

    Acid etching, densification, and silica cement ensure strong bond. Key step in preparation for bonding to glazed tile is etching quartz fabric and tile with acid. This increases adhesion of silica cement used to form bond. Procedures use high-temperature materials exclusively and therefore suitable for securing flexible seals and heat barriers around doors and viewing ports in furnaces and kilns.

  5. Fibonacci words, hyperbolic tilings and grossone

    NASA Astrophysics Data System (ADS)

    Margenstern, Maurice

    2015-04-01

    In this paper, we study the contribution of the theory of grossone to the study of infinite Fibonacci words, combining this tool with the help of a particular tiling of the hyperbolic plane: the tiling { 7, 3 } , called the heptagrid. With the help of the numeral system based on grossone, we obtain a richer family of infinite Fibonacci words compared with the traditional approach.

  6. Performance of the Tile PreProcessor Demonstrator for the ATLAS Tile Calorimeter Phase II Upgrade

    NASA Astrophysics Data System (ADS)

    Carrió, F.; Moreno, P.; Valero, A.

    2016-03-01

    The Tile Calorimeter PreProcessor demonstrator is a high performance double AMC board based on FPGA resources and QSFP modules. This board has been designed in the framework of the ATLAS Tile Calorimeter Demonstrator project for the Phase II Upgrade as the first stage of the back-end electronics. The TilePPr demonstrator has been conceived to receive and process the data coming from the front-end electronics of the TileCal Demonstrator module, as well as to configure it. Moreover, the TilePPr demonstrator handles the communication with the Detector Control System to monitor and control the front-end electronics. The TilePPr demonstrator represents 1/8 of the final TilePPr that will be designed and installed into the detector for the ATLAS Phase II Upgrade.

  7. Mechanical and thermophysical properties of hot-pressed SYNROC B

    SciTech Connect

    Hoenig, C.L.; Newkirk, H.W.; Otto, R.A.; Brady, R.L.; Brown, A.E.; Ulrich, A.R.; Lum, R.C.

    1981-05-06

    The optimal SYNROC compositons for use with commercial waste are reviewed. Large amounts of powder (about 2.5 kg) were prepared by convention al ceramic operations to test the SYNROC concept on a processing scale. Samples, 15.2 cm in diameter, were hot pressed in graphite, and representative samples were cut for microstructural evaluations. Measured mechanical and thermophysical properties did not vary significantly as a function of sample location and were typical of titanate ceramic materials.

  8. Emittance measurements of RCG coated Shuttle tiles

    NASA Technical Reports Server (NTRS)

    Bouslog, Stanley A.; Cunnington, George R., Jr.

    1992-01-01

    The spectral and total normal emittance of the Reaction Cured Glass (RCG) coating used on Shuttle tiles has been measured for surface temperatures of 300 to 1905 K. These measurements were made on two virgin and two flown Shuttle tile samples. Room temperature directional emittance data were also obtained and used to determine the total hemispherical emittance of RCG as a function of temperature. The data obtained from this calculation indicate that the total hemispherical emittance decreases from a room temperature value of 0.83 to a value of 0.76 at 1905 K. The flown Shuttle tiles exhibited a change in the spectral distribution of emittance compared to that of the virgin tile, but no significant trends in the total emittance from a virgin to a flown tile could be established.

  9. Consistency and derangements in brane tilings

    NASA Astrophysics Data System (ADS)

    Hanany, Amihay; Jejjala, Vishnu; Ramgoolam, Sanjaye; Seong, Rak-Kyeong

    2016-09-01

    Brane tilings describe Lagrangians (vector multiplets, chiral multiplets, and the superpotential) of four-dimensional { N }=1 supersymmetric gauge theories. These theories, written in terms of a bipartite graph on a torus, correspond to worldvolume theories on N D3-branes probing a toric Calabi–Yau threefold singularity. A pair of permutations compactly encapsulates the data necessary to specify a brane tiling. We show that geometric consistency for brane tilings, which ensures that the corresponding quantum field theories are well behaved, imposes constraints on the pair of permutations, restricting certain products constructed from the pair to have no one-cycles. Permutations without one-cycles are known as derangements. We illustrate this formulation of consistency with known brane tilings. Counting formulas for consistent brane tilings with an arbitrary number of chiral bifundamental fields are written down in terms of delta functions over symmetric groups.

  10. Low-loss binder for hot pressing boron nitride

    DOEpatents

    Maya, Leon

    1991-01-01

    Borazine derivatives used as low-loss binders and precursors for making ceramic boron nitride structures. The derivative forms the same composition as the boron nitride starting material, thereby filling the voids with the same boron nitride material upon forming and hot pressing. The derivatives have a further advantage of being low in carbon thus resulting in less volatile byproduct that can result in bubble formation during pressing.

  11. Lightweight Ceramic Composition of Carbon Silicon Oxygen and Boron

    NASA Technical Reports Server (NTRS)

    Leiser, Daniel B. (Inventor); Hsu, Ming-Ta (Inventor); Chen, Timothy S. (Inventor)

    1997-01-01

    Lightweight, monolithic ceramics resistant to oxidation in air at high temperatures are made by impregnating a porous carbon preform with a sol which contains a mixture of tetraethoxysilane, dimethyldiethoxysilane and trimethyl borate. The sol is gelled and dried on the carbon preform to form a ceramic precursor. The precursor is pyrolyzed in an inert atmosphere to form the ceramic which is made of carbon, silicon, oxygen and boron. The carbon of the preform reacts with the dried gel during the pyrolysis to form a component of the resulting ceramic. The ceramic is of the same size, shape and form as the carbon precursor. Thus, using a porous, fibrous carbon precursor, such as a carbon felt, results in a porous, fibrous ceramic. Ceramics of the invention are useful as lightweight tiles for a reentry spacecraft.

  12. High impact resistant ceramic composite

    DOEpatents

    Derkacy, James A.

    1991-07-16

    A ceramic material and a method of forming a ceramic material which possesses a high impact resistance. The material comprises: (a) a first continuous phase of .beta.-SiC; and (b) a second phase of about 25-40 vol % TiB.sub.2. Al.sub.2 O.sub.3 is preferably used as a densification aid. The material is formed by hot-pressing the mixture at a temperature from greater than about 1800.degree. C. to less than the transition temperature of .beta.-SiC to .alpha.-SiC. The hot-pressing is performed at a pressure of about 2000 psi to about 4000 psi in an inert atmosphere for several hours and results in the formation of a two phase sintered ceramic composite material.

  13. High impact resistant ceramic composite

    DOEpatents

    Derkacy, J.A.

    1991-07-16

    A ceramic material and a method of forming a ceramic material which possesses a high impact resistance are disclosed. The material comprises: (a) a first continuous phase of [beta]-SiC; and (b) a second phase of about 25-40 vol % TiB[sub 2]. Al[sub 2]O[sub 3] is preferably used as a densification aid. The material is formed by hot-pressing the mixture at a temperature from greater than about 1800 C to less than the transition temperature of [beta]-SiC to [alpha]-SiC. The hot-pressing is performed at a pressure of about 2000 psi to about 4000 psi in an inert atmosphere for several hours and results in the formation of a two phase sintered ceramic composite material. 6 figures.

  14. Robotic end-effector for rewaterproofing shuttle tiles

    NASA Technical Reports Server (NTRS)

    Manouchehri, Davoud; Hansen, Joseph M.; Wu, Cheng M.; Yamamoto, Brian S.; Graham, Todd

    1992-01-01

    This paper summarizes work by Rockwell International's Space Systems Division's Robotics Group at Downey, California. The work is part of a NASA-led team effort to automate Space Shuttle rewaterproofing in the Orbiter Processing Facility at the Kennedy Space Center and the ferry facility at the Ames-Dryden Flight Research Facility. Rockwell's effort focuses on the rewaterproofing end-effector, whose function is to inject hazardous dimethylethyloxysilane into thousands of ceramic tiles on the underside of the orbiter after each flight. The paper has five sections. First, it presents background on the present manual process. Second, end-effector requirements are presented, including safety and interface control. Third, a design is presented for the five end-effector systems: positioning, delivery, containment, data management, and command and control. Fourth, end-effector testing and integrating to the total system are described. Lastly, future applications for this technology are discussed.

  15. Synthesis of crystalline ceramics for actinide immobilisation

    SciTech Connect

    Burakov, B.; Gribova, V.; Kitsay, A.; Ojovan, M.; Hyatt, N.C.; Stennett, M.C.

    2007-07-01

    Methods for the synthesis of ceramic wasteforms for the immobilization of actinides are common to those for non-radioactive ceramics: hot uniaxial pressing (HUP); hot isostatic pressing (HIP); cold pressing followed by sintering; melting (for some specific ceramics, such as garnet/perovskite composites). Synthesis of ceramics doped with radionuclides is characterized with some important considerations: all the radionuclides should be incorporated into crystalline structure of durable host-phases in the form of solid solutions and no separate phases of radionuclides should be present in the matrix of final ceramic wasteform; all procedures of starting precursor preparation and ceramic synthesis should follow safety requirements of nuclear industry. Synthesis methods that avoid the use of very high temperatures and pressures and are easily accomplished within the environment of a glove-box or hot cell are preferable. Knowledge transfer between the V. G. Khlopin Radium Institute (KRI, Russia) and Immobilisation Science Laboratory (ISL, UK) was facilitated in the framework of a joint project supported by UK Royal Society. In order to introduce methods of precursor preparation and ceramic synthesis we selected well-known procedures readily deployable in radiochemical processing plants. We accounted that training should include main types of ceramic wasteforms which are currently discussed for industrial applications. (authors)

  16. Microbial deterioration of artistic tiles from the façade of the Grande Albergo Ausonia & Hungaria (Venice, Italy).

    PubMed

    Giacomucci, Lucia; Bertoncello, Renzo; Salvadori, Ornella; Martini, Ilaria; Favaro, Monica; Villa, Federica; Sorlini, Claudia; Cappitelli, Francesca

    2011-08-01

    The Grande Albergo Ausonia & Hungaria (Venice Lido, Italy) has an Art Nouveau polychrome ceramic coating on its façade, which was restored in 2007. Soon after the conservation treatment, many tiles of the façade decoration showed coloured alterations putatively attributed to the presence of microbial communities. To confirm the presence of the biological deposit and the stratigraphy of the Hungaria tiles, stereomicroscope, optical and environmental scanning electron microscope observations were made. The characterisation of the microbial community was performed using a PCR-DGGE approach. This study reported the first use of a culture-independent approach to identify the total community present in biodeteriorated artistic tiles. The case study examined here reveals that the coloured alterations on the tiles were mainly due to the presence of cryptoendolithic cyanobacteria. In addition, we proved that the microflora present on the tiles was generally greatly influenced by the environment of the Hungaria hotel. We found several microorganisms related to the alkaline environment, which is in the range of the tile pH, and related to the aquatic environment, the presence of the acrylic resin Paraloid B72® used during the 2007 treatment and the pollutants of the Venice lagoon. PMID:21286701

  17. Fundamental ultrasonic wave propagation studies in a model thermal protection system (porous tiles bonded to aluminum bulkhead)

    NASA Astrophysics Data System (ADS)

    Kundu, Tribikram; Reibel, Richard; Jata, Kumar V.

    2006-03-01

    A model thermal protection system (TPS) was designed by bonding ceramic porous tiles to 2.2 and 3.5 mm thick 2124-T351 aluminum alloy plates. One of the goals of the present work was to investigate the potential of detecting simulated defects using guided waves. Simulated defects consisted of cracks, voids and delaminations at the tile-substrate interface. Cracks and voids were introduced into the porous tiles during the fabrication of the TPS. Delamination was created by cutting the gluing tape between the tile and the aluminum substrate. Guided wave propagation studies were conducted using the pitch-catch approach, while changing the angle of strike and the frequency of the transducer excitation to generate the appropriate guided wave mode. The receiver was placed at a distance so that only the guided waves were received during the immersion experiment. The delamination defect could be conclusively detected, however the presence of the imperfect bond between the tiles and the substrate interfered with the detection of the simulated cracks and voids in the porous tiles.

  18. Structural ceramics derived from a preceramic polymer

    SciTech Connect

    Semen, J.; Loop, J.G.

    1990-10-01

    Test pieces were uniaxially dry-pressed from formulations consisting of 20-30 wt pct polysilazane preceramic material and SiC and Si3N4 ceramic powders. Thermal crosslinking/pyrolysis of the molded pieces at temperatures well below normal powder sintering temperatures produced fully ceramic composites consisting of fully dense, submicrometer size, crystalline ceramic particles embedded in a highly nanoporous, amorphous Si-N-C ceramic matrix material. The mechanical and physical properties, and their relationship to the microstructure, of these materials are discussed.

  19. Penrose Tilings as Jammed Solids

    NASA Astrophysics Data System (ADS)

    Stenull, Olaf; Lubensky, T. C.

    2014-10-01

    Penrose tilings form lattices, exhibiting fivefold symmetry and isotropic elasticity, with inhomogeneous coordination much like that of the force networks in jammed systems. Under periodic boundary conditions, their average coordination is exactly four. We study the elastic and vibrational properties of rational approximants to these lattices as a function of unit-cell size NS and find that they have of order √NS zero modes and states of self-stress and yet all their elastic moduli vanish. In their generic form, obtained by randomizing site positions, their elastic and vibrational properties are similar to those of particulate systems at jamming with a nonzero bulk modulus, vanishing shear modulus, and a flat density of states.

  20. Evaluation of Ceramic Honeycomb Core Compression Behavior at Room Temperature

    NASA Technical Reports Server (NTRS)

    Bird, Richard K.; Lapointe, Thomas S.

    2013-01-01

    Room temperature flatwise compression tests were conducted on two varieties of ceramic honeycomb core specimens that have potential for high-temperature structural applications. One set of specimens was fabricated using strips of a commercially-available thin-gage "ceramic paper" sheet molded into a hexagonal core configuration. The other set was fabricated by machining honeycomb core directly from a commercially available rigid insulation tile material. This paper summarizes the results from these tests.

  1. On the structure of quadrilateral brane tilings

    NASA Astrophysics Data System (ADS)

    de Medeiros, Paul

    2012-01-01

    Brane tilings provide the most general framework in string and M-theory for matching toric Calabi-Yau singularities probed by branes with superconformal fixed points of quiver gauge theories. The brane tiling data consists of a bipartite tiling of the torus which encodes both the classical superpotential and gauge-matter couplings for the quiver gauge theory. We consider the class of tilings which contain only tiles bounded by exactly four edges and present a method for generating any tiling within this class by iterating combinations of certain graph-theoretic moves. In the context of D3-branes in IIB string theory, we consider the effect of these generating moves within the corresponding class of supersymmetric quiver gauge theories in four dimensions. Of particular interest are their effect on the superpotential, the vacuum moduli space and the conditions necessary for the theory to reach a superconformal fixed point in the infrared. We discuss the general structure of physically admissible quadrilateral brane tilings and Seiberg duality in terms of certain composite moves within this class.

  2. Seamless stitching of tile scan microscope images.

    PubMed

    Legesse, F B; Chernavskaia, O; Heuke, S; Bocklitz, T; Meyer, T; Popp, J; Heintzmann, R

    2015-06-01

    For diagnostic purposes, optical imaging techniques need to obtain high-resolution images of extended biological specimens in reasonable time. The field of view of an objective lens, however, is often smaller than the sample size. To image the whole sample, laser scanning microscopes acquire tile scans that are stitched into larger mosaics. The appearance of such image mosaics is affected by visible edge artefacts that arise from various optical aberrations which manifest in grey level jumps across tile boundaries. In this contribution, a technique for stitching tiles into a seamless mosaic is presented. The stitching algorithm operates by equilibrating neighbouring edges and forcing the brightness at corners to a common value. The corrected image mosaics appear to be free from stitching artefacts and are, therefore, suited for further image analysis procedures. The contribution presents a novel method to seamlessly stitch tiles captured by a laser scanning microscope into a large mosaic. The motivation for the work is the failure of currently existing methods for stitching nonlinear, multimodal images captured by our microscopic setups. Our method eliminates the visible edge artefacts that appear between neighbouring tiles by taking into account the overall illumination differences among tiles in such mosaics. The algorithm first corrects the nonuniform brightness that exists within each of the tiles. It then compensates for grey level differences across tile boundaries by equilibrating neighbouring edges and forcing the brightness at the corners to a common value. After these artefacts have been removed further image analysis procedures can be applied on the microscopic images. Even though the solution presented here is tailored for the aforementioned specific case, it could be easily adapted to other contexts where image tiles are assembled into mosaics such as in astronomical or satellite photos. PMID:25787148

  3. Superplastic forging nitride ceramics

    DOEpatents

    Panda, P.C.; Seydel, E.R.; Raj, R.

    1988-03-22

    A process is disclosed for preparing silicon nitride ceramic parts which are relatively flaw free and which need little or no machining, said process comprising the steps of: (a) preparing a starting powder by wet or dry mixing ingredients comprising by weight from about 70% to about 99% silicon nitride, from about 1% to about 30% of liquid phase forming additive and from 1% to about 7% free silicon; (b) cold pressing to obtain a preform of green density ranging from about 30% to about 75% of theoretical density; (c) sintering at atmospheric pressure in a nitrogen atmosphere at a temperature ranging from about 1,400 C to about 2,200 C to obtain a density which ranges from about 50% to about 100% of theoretical density and which is higher than said preform green density, and (d) press forging workpiece resulting from step (c) by isothermally uniaxially pressing said workpiece in an open die without initial contact between said workpiece and die wall perpendicular to the direction of pressing and so that pressed workpiece does not contact die wall perpendicular to the direction of pressing, to substantially final shape in a nitrogen atmosphere utilizing a temperature within the range of from about 1,400 C to essentially 1,750 C and strain rate within the range of about 10[sup [minus]7] to about 10[sup [minus]1] seconds[sup [minus]1], the temperature and strain rate being such that surface cracks do not occur, said pressing being carried out to obtain a shear deformation greater than 30% whereby superplastic forging is effected.

  4. The TileCal Laser Calibration System

    NASA Astrophysics Data System (ADS)

    Giangiobbe, Vincent; On Behalf Of The Atlas Tile Calorimeter Group

    TileCal is the central hadronic calorimeter of the ATLAS detector operating at LHC. It is a sampling calorimeter whose active material is made of scintillating plastic tiles. Scintillation light is read by photomultipliers. A Laser system is used to monitor their gain stability. During dedicated calibration runs the Laser system sends via long optical fibers, a monitored amount of light simultaneously to all the ≈10000 photomultipliers of TileCal. This note describes two complementary methods to measure the stability of the photomultipliers gain using the Laser calibration runs. The results of validation tests are presented for both methods and theirrespective performances and limitations are discussed.

  5. The challenging scales of the bird: Shuttle tile structural integrity

    NASA Technical Reports Server (NTRS)

    Schneider, W. C.; Miller, G. J.

    1985-01-01

    The principal design issues, tests, and analyses required to solve the tile integrity problem on the space shuttle orbiters are addressed. Proof testing of installed tiles is discussed along with an airflow test of special tiles. Orbiter windshield tiles are considered in terms of changes necessary to ensure acceptable margins of safety for flight.

  6. Directed enzymatic activation of 1-D DNA tiles.

    PubMed

    Garg, Sudhanshu; Chandran, Harish; Gopalkrishnan, Nikhil; LaBean, Thomas H; Reif, John

    2015-02-24

    The tile assembly model is a Turing universal model of self-assembly where a set of square shaped tiles with programmable sticky sides undergo coordinated self-assembly to form arbitrary shapes, thereby computing arbitrary functions. Activatable tiles are a theoretical extension to the Tile assembly model that enhances its robustness by protecting the sticky sides of tiles until a tile is partially incorporated into a growing assembly. In this article, we experimentally demonstrate a simplified version of the Activatable tile assembly model. In particular, we demonstrate the simultaneous assembly of protected DNA tiles where a set of inert tiles are activated via a DNA polymerase to undergo linear assembly. We then demonstrate stepwise activated assembly where a set of inert tiles are activated sequentially one after another as a result of attachment to a growing 1-D assembly. We hope that these results will pave the way for more sophisticated demonstrations of activated assemblies. PMID:25625898

  7. Relevance of magnetic properties for the characterisation of burnt clays and archaeological tiles

    NASA Astrophysics Data System (ADS)

    Beatrice, C.; Coïsson, M.; Ferrara, E.; Olivetti, E. S.

    The archaeomagnetism of pottery, bricks and tiles is typically employed for dating inferences, yet the magnetic properties of ancient ceramics can also be convenient for their characterisation, to evaluate the technological conditions applied for their production (temperature, atmosphere, and duration of firing), as well as to distinguish groups of sherds having different provenance. In this work, the measurement of hysteresis loops has been applied and combined with colour survey to characterise the magnetic properties of burnt clays and archaeological tiles. Four calcareous and non-calcareous clays, along with seventeen tile fragments excavated from the sites of the ancient Roman towns of Pompeii and Gravina di Puglia, in Southern Italy, are examined. The ferrimagnetic character of the clays, in general, enhances with increasing firing temperatures until vitrification processes occur (900-1000 °C) dissolving iron oxides and dispersing the colour and magnetic properties they provide. High values of saturation magnetization are observed in clays with relevant calcareous content after firing above 900 °C, which results in the formation of Ca-silicates able to delay the onset of the vitrification processes. Magnetic properties of the tiles have been evaluated in terms of the high coercivity (i.e. mainly ferrimagnetic) or low coercivity behaviour (i.e. including relevant paramagnetic and superparamagnetic contributions). Enhanced ferrimagnetic character, mostly depending on the growth in number and volume of iron oxide particles, is associated with the development of an intense reddish hue.

  8. Structural tests on a tile/strain isolation pad thermal protection system. [space shuttles

    NASA Technical Reports Server (NTRS)

    Williams, J. G.

    1980-01-01

    The aluminum skin of the space shuttle is covered by a thermal protection system (TPS) consisting of a low density ceramic tile bonded to a matted-felt material called strain insulation pad (SIP). The structural characteristics of the TPS were studied experimentally under selected extreme load conditions. Three basic types of loads were imposed: tension, eccentrically applied tension, and combined in-plane force and transverse pressure. For some tests, transverse pressure was applied rapidly to simulate a transient shock wave passing over the tile. The failure mode for all specimens involved separation of the tile from the SIP at the silicone rubber bond interface. An eccentrically applied tension load caused the tile to separate from the SIP at loads lower than experienced at failure for pure tension loading. Moderate in-plane as well as shock loading did not cause a measurable reduction in the TPS ultimate failure strength. A strong coupling, however, was exhibited between in-plane and transverse loads and displacements.

  9. On Ceramics.

    ERIC Educational Resources Information Center

    School Arts, 1982

    1982-01-01

    Presents four ceramics activities for secondary-level art classes. Included are directions for primitive kiln construction and glaze making. Two ceramics design activities are described in which students make bizarrely-shaped lidded jars, feet, and footwear. (AM)

  10. Lessons learned from the development and manufacture of ceramic reusable surface insulation materials for the space shuttle orbiters

    NASA Technical Reports Server (NTRS)

    Banas, R. P.; Elgin, D. R.; Cordia, E. R.; Nickel, K. N.; Gzowski, E. R.; Aguiler, L.

    1983-01-01

    Three ceramic, reusable surface insulation materials and two borosilicate glass coatings were used in the fabrication of tiles for the Space Shuttle orbiters. Approximately 77,000 tiles were made from these materials for the first three orbiters, Columbia, Challenger, and Discovery. Lessons learned in the development, scale up to production and manufacturing phases of these materials will benefit future production of ceramic reusable surface insulation materials. Processing of raw materials into tile blanks and coating slurries; programming and machining of tiles using numerical controlled milling machines; preparing and spraying tiles with the two coatings; and controlling material shrinkage during the high temperature (2100-2275 F) coating glazing cycles are among the topics discussed.

  11. A family of ternary decagonal tilings

    NASA Astrophysics Data System (ADS)

    Fujita, Nobuhisa

    2010-04-01

    A new family of decagonal quasiperiodic tilings are constructed by the use of generalized point substitution processes, which is a new substitution formalism developed by the author [N. Fujita, Acta Cryst. A 65, 342 (2009)]. These tilings are composed of three prototiles: an acute rhombus, a regular pentagon and a barrel shaped hexagon. In the perpendicular space, these tilings have windows with fractal boundaries, and the windows are analytically derived as the fixed sets of the conjugate maps associated with the relevant substitution rules. It is shown that the family contains an infinite number of local isomorphism classes which can be grouped into several symmetry classes (e.g., C10, D5, etc.). The member tilings are transformed into one another through collective simpleton flips, which are associated with the reorganization in the window boundaries.

  12. Radioactivity in zircon and building tiles

    SciTech Connect

    Wen Deng; Kaizhen Tian; Daifu Chen; Yiyun Zhang

    1997-08-01

    Zircon (ZrSiO{sub 4}) is commonly used in The manufacture of glazed tiles. In this study we found high concentrations of the radionuclides {sup 226}Ra, {sup 232}tH, {sup 40}k in zircon sand. The average radium equivalent (A{sub Ra} + 1.26 A{sub Th} + 0.086 A{sub k}) in zircon sand is 17,500 Bq kg{sup -1}, which is 106 times as much as that in ordinary building materials. The external radiation ({gamma} + {beta}) dose rates from 1.1 to 4.9 x 10{sup -2} mGy h{sup -1} with an average of 2.1 x 10{sup -2} mGy h{sup -1}. Although no elevated {gamma}-ray radiation or radon exhalation rate was detected in rooms decorated with glazed tiles, which is characteristic of combined {alpha}, {beta} and {gamma} emitting thin materials, the average {gamma} radiation dose rate at the surface of the tile stacks in shops is 1.5 times as much as the indoor background level. The average area density of total {beta} emitting radionuclides in glazed floor tiles and glazed wall tiles is 0.30 Bq cm{sup -2} and 0.28 Bq cm{sup -2}, respectively. It was estimated that the average {beta} dose rates in tissue at a depth 7 mg cm{sup -2} with a distance 20-100 cm from the floor tiles were 3.2 to 0.9 x 10{sup -7} Gy h{sup -1}. The study indicates that the {beta}-rays from glazed tiles might be one of the main factors leading to an increase in ionizing radiation received by the general public. Workers in glazed tile manufacturing factories and in tile shops or stores may be exposed to elevated levels of both {beta}-rays and {gamma}-rays from zircon sand or glazed tile stacks. No elevated radiation from unglazed tiles was detected. 10 refs., 1 fig., 3 tabs.

  13. High School Press Pressures.

    ERIC Educational Resources Information Center

    Rogers, Luella P.

    History shows that the high school press suffers through cycles that reflect economic factors and cultural climates within communities, states, and the nation. The direction of that cycle in the 1960s and early 1970s was toward more open, free-flowing information by a vigorous student press, but those economic and cultural signs now are pointing…

  14. Lyndon Johnson's Press Conferences.

    ERIC Educational Resources Information Center

    Cooper, Stephen

    Because President Lyndon Johnson understood well the publicity value of the American news media, he sought to exploit them. He saw reporters as "torch bearers" for his programs and policies and used the presidential press conference chiefly for promotional purposes. Although he met with reporters often, his press conferences were usually…

  15. Effect of hot pressing additives on the leachability of hot pressed sodium hydrous titanium oxide

    SciTech Connect

    Valentine, T.M.; Sambell, R.A.J.

    1980-01-01

    Sodium hydrous titanium oxide is an ion exchange resin which can be used for immobilizing medium level waste (MLW) liquors. When hot pressed, it undergoes conversion to a ceramic. Three low melting point materials (borax, bismuth trioxide, and a mixture of PbO/CuO) were added to the (Na)HTiO and the effect that each of these had on aiding densification was assessed. Hot pressing temperature, applied pressure, and percentage addition of hot pressing aid were varied. Percentage open porosity, flexural strength, and leachability were measured. There was a linear relationship between the percentage open porosity and the logarithm of the leach rate for a constant percentage addition of each additive.

  16. Structural Ceramics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This publication is a compilation of abstracts and slides of papers presented at the NASA Lewis Structural Ceramics Workshop. Collectively, these papers depict the scope of NASA Lewis' structural ceramics program. The technical areas include monolithic SiC and Si3N4 development, ceramic matrix composites, tribology, design methodology, nondestructive evaluation (NDE), fracture mechanics, and corrosion.

  17. Capsulation of moldings made from silicon ceramic material

    NASA Technical Reports Server (NTRS)

    Rossmann, A.; Schweitzer, K.; Huether, W.

    1985-01-01

    Ceramic articles are potted for hot isostatic pressing by porous glass and/or ceramic coating which is sintered to a pressure-tight coating in vacuo. Thus, a powdered SiO2 glass mixture with saturated alcohol sterin is sprayed on a SI3N4 ceramic, dried, introduced into the press which is evacuated to less than 0.013 mbar and heated to approximately 1200 C to drive off the organic binder and leave a powdered glass coating on the ceramic. The coating is sintered by heating to approximately 1200 C for 0.5 to 2 hours and forms a tight gass-impermeable layer. The press is heated to approximately 1700 C at 1000-300 bar and isostatic pressing is performed in the conventional manner.

  18. Ceramic technology for solar thermal receivers

    NASA Technical Reports Server (NTRS)

    Kudirka, A. A.; Smoak, R. H.

    1981-01-01

    The high-temperature capability, resistance to corrosive environments and non-strategic nature of ceramics have prompted applications in the solar thermal field whose advantages over metallic devices of comparable performance may begin to be assessed. It is shown by a survey of point-focusing receiver designs employing a variety of ceramic compositions and fabrication methods that the state-of-the-art in structural ceramics is not sufficiently advanced to fully realize the promised benefits of higher temperature capabilities at lower cost than metallic alternatives. The ceramics considered include alumina, berylia, magnesia, stabilized zirconia, fused silica, silicon nitride, silicon carbide, mullite and cordierite, processed by such methods as isostatic pressing, dry pressing, slip casting, extrusion, calendaring and injection molding.

  19. Wear characteristics of polished and glazed lithium disilicate ceramics opposed to three ceramic materials.

    PubMed

    Saiki, Osamu; Koizumi, Hiroyasu; Akazawa, Nobutaka; Kodaira, Akihisa; Okamura, Kentaro; Matsumura, Hideo

    2016-01-01

    This study compared the wear characteristics of a heat-pressed lithium disilicate ceramic material opposed to feldspathic porcelain, a lithium disilicate glass ceramic, and zirconia materials. Ceramic plate specimens were prepared from feldspathic porcelain (EX-3 nA1B), lithium disilicate glass ceramics (e.max CAD MO1/C14), and zirconia (Katana KT 10) and then ground or polished. Rounded rod specimens were fabricated from heat-pressed lithium disilicate glass ceramic (e.max press LT A3) and then glazed or polished. A sliding wear testing apparatus was used for wear testing. Wear of glazed rods was greater than that of polished rods when they were abraded with ground zirconia, ground porcelain, polished porcelain, or polished lithium disilicate ceramics. For both glazed and polished rods, wear was greater when the rods were abraded with ground plates. The findings indicate that application of a polished surface rather than a glazed surface is recommended for single restorations made of heat-pressed lithium disilicate material. In addition, care must be taken when polishing opposing materials, especially those used in occlusal contact areas. (J Oral Sci 58, 117-123, 2016). PMID:27021548

  20. Tile drainage as karst: Conduit flow and diffuse flow in a tile-drained watershed

    NASA Astrophysics Data System (ADS)

    Schilling, Keith E.; Helmers, Matthew

    2008-02-01

    SummaryThe similarity of tiled-drained watersheds to karst drainage basins can be used to improve understanding of watershed-scale nutrient losses from subsurface tile drainage networks. In this study, short-term variations in discharge and chemistry were examined from a tile outlet collecting subsurface tile flow from a 963 ha agricultural watershed. Study objectives were to apply analytical techniques from karst springs to tile discharge to evaluate water sources and estimate the loads of agricultural pollutants discharged from the tile with conduit, intermediate and diffuse flow regimes. A two-member mixing model using nitrate, chloride and specific conductance was used to distinguish rainwater versus groundwater inputs. Results indicated that groundwater comprised 75% of the discharge for a three-day storm period and rainwater was primarily concentrated during the hydrograph peak. A contrasting pattern of solute concentrations and export loads was observed in tile flow. During base flow periods, tile flow consisted of diffuse flow from groundwater sources and contained elevated levels of nitrate, chloride and specific conductance. During storm events, suspended solids and pollutants adhered to soil surfaces (phosphorus, ammonium and organic nitrogen) were concentrated and discharged during the rapid, conduit flow portion of the hydrograph. During a three-day period, conduit flow occurred for 5.6% of the time but accounted for 16.5% of the total flow. Nitrate and chloride were delivered primarily with diffuse flow (more than 70%), whereas 80-94% of total suspended sediment, phosphorus and ammonium were exported with conduit and intermediate flow regimes. Understanding the water sources contributing to tile drainage and the manner by which pollutant discharge occurs from these systems (conduit, intermediate or diffuse flow) may be useful for designing, implementing and evaluating non-point source reduction strategies in tile-drained landscapes.

  1. Trashing the Press.

    ERIC Educational Resources Information Center

    McMasters, Paul

    1994-01-01

    Discusses ominous assaults on press freedom on college campuses across the United States. Laments the lack of concern about First Amendment issues involved in these incidents, in which student newspapers have been stolen, trashed, and burned. (SR)

  2. In-flight investigation of shuttle tile pressure orifice installations

    NASA Astrophysics Data System (ADS)

    Moes, Timothy R.; Meyer, Robert R., Jr.

    1990-09-01

    To determine shuttle orbiter wing loads during ascent, wing load instrumentation was added to Columbia (OV-102). This instrumentation included strain gages and pressure orifices on the wing. The loads derived from wing pressure measurements taken during STS 61-C did not agree with those derived from strain gage measurements or with the loads predicted from the aerodynamic database. Anomalies in the surface immediately surrounding the pressure orifices in the thermal protection system (TPS) tiles were one possible cause of errors in the loads derived from wing pressure measurements. These surface anomalies were caused by a ceramic filler material which was installed around the pressure tubing. The filler material allowed slight movement of the TPS tile and pressure tube as the airframe flexed and bent under aerodynamic loads during ascent and descent. Postflight inspection revealed that this filler material had protruded from or receeded beneath the surface, causing the orifice to lose its flushness. Flight tests were conducted at NASA Ames Research Center Dryden Flight Research Facility to determine the effects of any anomaly in surface flushness of the orifice installation on the measured pressures at Mach numbers between 0.6 and 1.4. An F-104 aircraft with a flight test fixture mounted beneath the fuselage was used for these flights. Surface flushness anomalies typical of those on the orbiter after flight (STA 61-C) were tested. Also, cases with excessive protrusion and recession of the filler material were tested. This report shows that the anomalies in STS 61-C orifice installations adversely affected the pressure measurements. But the magnitude of the affect was not great enough to account for the discrepancies with the strain gage measurements and the aerodynamic predictions.

  3. In-flight investigation of shuttle tile pressure orifice installations

    NASA Technical Reports Server (NTRS)

    Moes, Timothy R.; Meyer, Robert R., Jr.

    1990-01-01

    To determine shuttle orbiter wing loads during ascent, wing load instrumentation was added to Columbia (OV-102). This instrumentation included strain gages and pressure orifices on the wing. The loads derived from wing pressure measurements taken during STS 61-C did not agree with those derived from strain gage measurements or with the loads predicted from the aerodynamic database. Anomalies in the surface immediately surrounding the pressure orifices in the thermal protection system (TPS) tiles were one possible cause of errors in the loads derived from wing pressure measurements. These surface anomalies were caused by a ceramic filler material which was installed around the pressure tubing. The filler material allowed slight movement of the TPS tile and pressure tube as the airframe flexed and bent under aerodynamic loads during ascent and descent. Postflight inspection revealed that this filler material had protruded from or receeded beneath the surface, causing the orifice to lose its flushness. Flight tests were conducted at NASA Ames Research Center Dryden Flight Research Facility to determine the effects of any anomaly in surface flushness of the orifice installation on the measured pressures at Mach numbers between 0.6 and 1.4. An F-104 aircraft with a flight test fixture mounted beneath the fuselage was used for these flights. Surface flushness anomalies typical of those on the orbiter after flight (STA 61-C) were tested. Also, cases with excessive protrusion and recession of the filler material were tested. This report shows that the anomalies in STS 61-C orifice installations adversely affected the pressure measurements. But the magnitude of the affect was not great enough to account for the discrepancies with the strain gage measurements and the aerodynamic predictions.

  4. Tiled WMS/KML Server V2

    NASA Technical Reports Server (NTRS)

    Plesea, Lucian

    2012-01-01

    This software is a higher-performance implementation of tiled WMS, with integral support for KML and time-varying data. This software is compliant with the Open Geospatial WMS standard, and supports KML natively as a WMS return type, including support for the time attribute. Regionated KML wrappers are generated that match the existing tiled WMS dataset. Ping and JPG formats are supported, and the software is implemented as an Apache 2.0 module that supports a threading execution model that is capable of supporting very high request rates. The module intercepts and responds to WMS requests that match certain patterns and returns the existing tiles. If a KML format that matches an existing pyramid and tile dataset is requested, regionated KML is generated and returned to the requesting application. In addition, KML requests that do not match the existing tile datasets generate a KML response that includes the corresponding JPG WMS request, effectively adding KML support to a backing WMS server.

  5. Approximation of virus structure by icosahedral tilings.

    PubMed

    Salthouse, D G; Indelicato, G; Cermelli, P; Keef, T; Twarock, R

    2015-07-01

    Viruses are remarkable examples of order at the nanoscale, exhibiting protein containers that in the vast majority of cases are organized with icosahedral symmetry. Janner used lattice theory to provide blueprints for the organization of material in viruses. An alternative approach is provided here in terms of icosahedral tilings, motivated by the fact that icosahedral symmetry is non-crystallographic in three dimensions. In particular, a numerical procedure is developed to approximate the capsid of icosahedral viruses by icosahedral tiles via projection of high-dimensional tiles based on the cut-and-project scheme for the construction of three-dimensional quasicrystals. The goodness of fit of our approximation is assessed using techniques related to the theory of polygonal approximation of curves. The approach is applied to a number of viral capsids and it is shown that detailed features of the capsid surface can indeed be satisfactorily described by icosahedral tilings. This work complements previous studies in which the geometry of the capsid is described by point sets generated as orbits of extensions of the icosahedral group, as such point sets are by construction related to the vertex sets of icosahedral tilings. The approximations of virus geometry derived here can serve as coarse-grained models of viral capsids as a basis for the study of virus assembly and structural transitions of viral capsids, and also provide a new perspective on the design of protein containers for nanotechnology applications. PMID:26131897

  6. Research on ultra-high-temperature materials, monolithic ceramics, ceramic matrix composites and carbon/carbon composites

    NASA Technical Reports Server (NTRS)

    Miller, T. J.; Grimes, H. H.

    1982-01-01

    Research on three classes of materials that show potential for allowing significant increases in operating temperatures in gas turbine engines is discussed. Monolithic ceramics, ceramic matrix composites, and carbon-carbon composites are discussed. Sintering, hot pressing, and densification are discussed.

  7. Ceramic burner

    SciTech Connect

    Laux, W.; Hebel, R.; Artelt, P.; Esfeld, G.; Jacob, A.

    1981-03-31

    Improvements in the mixing body and supporting structure of a molded-ceramic-brick burner enable the burner to withstand the vibrations induced during its operation. Designed for the combustion chambers of air heaters, the burner has a mixing body composed of layers of shaped ceramic bricks that interlock and are held together vertically by a ceramic holding bar. The mixing body is shaped like a mushroom - the upper layers have a larger radius than the lower ones.

  8. Ceramic joining

    SciTech Connect

    Loehman, R.E.

    1996-04-01

    This paper describes the relation between reactions at ceramic-metal interfaces and the development of strong interfacial bonds in ceramic joining. Studies on a number of systems are described, including silicon nitrides, aluminium nitrides, mullite, and aluminium oxides. Joints can be weakened by stresses such as thermal expansion mismatch. Ceramic joining is used in a variety of applications such as solid oxide fuel cells.

  9. Nematic colloidal tilings as photonic materials

    NASA Astrophysics Data System (ADS)

    Ravnik, M.; Dontabhaktuni, J.; Cancula, M.; Zumer, S.

    2014-02-01

    Colloidal platelets are explored as elementary building blocks for the shape-controlled assembly of crystalline and quasicrystalline tilings. Using three-dimensional (3D) numerical modelling based on the minimization of Landau-de Gennes free energy for modelling of colloids combined with Finite Difference Time Domain calculations for optics, we demonstrate the self-assembly and optical (transmission) properties of triangular, square and pentagonal sub-micrometer sized platelets in a thin layer of nematic liquid crystal. Interactions between platelets are explored, providing an insight into the assembly process. Two-dimensional tilings of various-shaped colloidal platelets are demonstrated, and their use as diffraction layers is explored by using FDTD simulations. Designing symmetry-breaking surface anchoring profiles on pentagonal platelets opens also a possibility to achieve interactions that could lead to tilings with non-crystalline symmetry.

  10. Fiber-tile optical studies at Argonne

    SciTech Connect

    Underwood, D.G.; Morgan, D.J.; Proudfoot, J.

    1991-07-23

    In support of a fiber-tile calorimeter for SDC, we have done studies on a number of topics. The most basic problems were light output and uniformity of response. Using a small electron beam, we have studied fiber placement, tile preparation, wrapping and masking, fiber splicing, fiber routing, phototube response, and some degradation factors. We found two configurations which produced more light output than the others and reasonably uniform response. We have chosen one of these to go into production for the EM test module on the basis of fiber routing for ease of assembly of the calorimeter. We have also applied some of the tools we developed to CDF end plug tile uniformity, shower max testing and development for a couple of detectors, and development of better techniques for radiation damage studies. 18 figs.

  11. Ceramic filters

    SciTech Connect

    Holmes, B.L.; Janney, M.A.

    1995-12-31

    Filters were formed from ceramic fibers, organic fibers, and a ceramic bond phase using a papermaking technique. The distribution of particulate ceramic bond phase was determined using a model silicon carbide system. As the ceramic fiber increased in length and diameter the distance between particles decreased. The calculated number of particles per area showed good agreement with the observed value. After firing, the papers were characterized using a biaxial load test. The strength of papers was proportional to the amount of bond phase included in the paper. All samples exhibited strain-tolerant behavior.

  12. Random and ordered phases of off-lattice rhombus tiles.

    PubMed

    Whitelam, Stephen; Tamblyn, Isaac; Beton, Peter H; Garrahan, Juan P

    2012-01-20

    We study the covering of the plane by nonoverlapping rhombus tiles, a problem well studied only in the limiting case of dimer coverings of regular lattices. We go beyond this limit by allowing tiles to take any position and orientation on the plane, to be of irregular shape, and to possess different types of attractive interactions. Using extensive numerical simulations, we show that at large tile densities there is a phase transition from a fluid of rhombus tiles to a solid packing with broken rotational symmetry. We observe self-assembly of broken-symmetry phases, even at low densities, in the presence of attractive tile-tile interactions. Depending on the tile shape and interactions, the solid phase can be random, possessing critical orientational fluctuations, or crystalline. Our results suggest strategies for controlling tiling order in experiments involving "molecular rhombi." PMID:22400760

  13. Random and ordered phases of off-lattice rhombus tiles

    NASA Astrophysics Data System (ADS)

    Whitelam, Stephen; Tamblyn, Isaac; Beton, Peter; Garrahan, Juan

    2012-02-01

    We study the covering of the plane by non-overlapping rhombus tiles, a problem well-studied only in the limiting case of dimer coverings of regular lattices. We go beyond this limit by allowing tiles to take any position and orientation on the plane, to be of irregular shape, and to possess different types of attractive interactions. Using extensive numerical simulations we show that at large tile densities there is a phase transition from a fluid of rhombus tiles to a solid packing with broken rotational symmetry. We observe self-assembly of broken-symmetry phases, even at low densities, in the presence of attractive tile-tile interactions. Depending on tile shape and interactions the solid phase can be random, possessing critical orientational fluctuations, or crystalline. Our results suggest strategies for controlling tiling order in experiments involving ``molecular rhombi.''

  14. Random and Ordered Phases of Off-Lattice Rhombus Tiles

    NASA Astrophysics Data System (ADS)

    Whitelam, Stephen; Tamblyn, Isaac; Beton, Peter H.; Garrahan, Juan P.

    2012-01-01

    We study the covering of the plane by nonoverlapping rhombus tiles, a problem well studied only in the limiting case of dimer coverings of regular lattices. We go beyond this limit by allowing tiles to take any position and orientation on the plane, to be of irregular shape, and to possess different types of attractive interactions. Using extensive numerical simulations, we show that at large tile densities there is a phase transition from a fluid of rhombus tiles to a solid packing with broken rotational symmetry. We observe self-assembly of broken-symmetry phases, even at low densities, in the presence of attractive tile-tile interactions. Depending on the tile shape and interactions, the solid phase can be random, possessing critical orientational fluctuations, or crystalline. Our results suggest strategies for controlling tiling order in experiments involving “molecular rhombi.”

  15. AIRBORNE ASBESTOS CONCENTRATIONS DURING BUFFING OF RESILIENT FLOOR TILE

    EPA Science Inventory

    Although asbestos-containing resilient floor tiles are considered nonfriable, the frictional forces exerted on the tile during routine maintenance operations can generate asbestos-containing structures. tudy was conducted to determine the level of airborne asbestos concentrations...

  16. Small form factor full parallax tiled light field display

    NASA Astrophysics Data System (ADS)

    Alpaslan, Zahir Y.; El-Ghoroury, Hussein S.

    2015-03-01

    With the recent introduction of Ostendo's Quantum Photonic Imager (QPI) display technology, a very small pixel pitch, emissive display with high brightness and low power consumption became available. We used QPI's to create a high performance light field display tiles with a very small form factor. Using 8 of these QPI light field displays tiled in a 4x2 array we created a tiled full parallax light field display. Each individual light field display tile combines custom designed micro lens array layers with monochrome green QPIs. Each of the light field display tiles can address 1000 x 800 pixels placed under an array of 20 x 16 lenslets with 500 μm diameters. The light field display tiles are placed with small gaps to create a tiled display of approximately 46 mm (W) x 17 mm (H) x 2 mm (D) in mechanical dimensions. The prototype tiled full parallax light field display demonstrates small form factor, high resolution and focus cues.

  17. Dynamical implications of Viral Tiling Theory.

    PubMed

    ElSawy, K M; Taormina, A; Twarock, R; Vaughan, L

    2008-05-21

    The Caspar-Klug classification of viruses whose protein shell, called viral capsid, exhibits icosahedral symmetry, has recently been extended to incorporate viruses whose capsid proteins are exclusively organised in pentamers. The approach, named 'Viral Tiling Theory', is inspired by the theory of quasicrystals, where aperiodic Penrose tilings enjoy 5-fold and 10-fold local symmetries. This paper analyses the extent to which this classification approach informs dynamical properties of the viral capsids, in particular the pattern of Raman active modes of vibrations, which can be observed experimentally. PMID:18353372

  18. Degenerate polygonal tilings in simple animal tissues

    NASA Astrophysics Data System (ADS)

    Ziherl, Primoz; Hocevar, Ana

    2009-03-01

    We study 2D polygonal tilings as models of the en-face structure of single-layer biological tissues. Using numerical simulations, we explore the phase diagram of equilibrium tilings of equal-area, equal-perimeter convex polygons whose energy is independent of their shape. We identify 3 distinct phases, which are all observed in simple epithelial tissues: The disordered phase of polygons with 4-9 sides, the hexatic phase, and the hexagonal phase with perfect 6-fold coordination. We quantify their structure using Edwards' statistical mechanics of cellular systems.

  19. Nondestructive Characterization of As-Fabricated Composite Ceramic Panels

    NASA Astrophysics Data System (ADS)

    Green, W. H.; Brennan, R. E.

    2011-06-01

    Decreasing the weight of protective systems, while minimizing the decrease in ballistic performance, is an ongoing goal of the Army. Ceramic materials are currently combined with other materials in these types of structures in order to decrease weight without losing ballistic performance. This includes structures in which the ceramic material is confined in some way and in which the ceramic material is completely encapsulated. Confinement or encapsulation of ceramic material within a structure generally adds complexity and cost. Relatively simple panel specimens fabricated with ceramic tiles on aluminum backings and side confinement using steel were evaluated using nondestructive methods, including x-ray computed tomography and ultrasonic testing. The nondestructive evaluation results will be discussed and compared, including the detectability and mapping of fabrication features.

  20. Nondestructive characterization of as-fabricated composite ceramic panels

    SciTech Connect

    Green, W. H.; Brennan, R. E.

    2011-06-23

    Decreasing the weight of protective systems, while minimizing the decrease in ballistic performance, is an ongoing goal of the Army. Ceramic materials are currently combined with other materials in these types of structures in order to decrease weight without losing ballistic performance. This includes structures in which the ceramic material is confined in some way and in which the ceramic material is completely encapsulated. Confinement or encapsulation of ceramic material within a structure generally adds complexity and cost. Relatively simple panel specimens fabricated with ceramic tiles on aluminum backings and side confinement using steel were evaluated using nondestructive methods, including x-ray computed tomography and ultrasonic testing. The nondestructive evaluation results will be discussed and compared, including the detectability and mapping of fabrication features.

  1. Pressurized heat treatment of glass ceramic

    DOEpatents

    Kramer, D.P.

    1984-04-19

    A method of producing a glass-ceramic having a specified thermal expansion value is disclosed. The method includes the step of pressurizing the parent glass material to a predetermined pressure during heat treatment so that the glass-ceramic produced has a specified thermal expansion value. Preferably, the glass-ceramic material is isostatically pressed. A method for forming a strong glass-ceramic to metal seal is also disclosed in which the glass-ceramic is fabricated to have a thermal expansion value equal to that of the metal. The determination of the thermal expansion value of a parent glass material placed in a high-temperature environment is also used to determine the pressure in the environment.

  2. Production and characterization of glazed tiles containing incinerated sewage sludge.

    PubMed

    Lin, D F; Chang, W C; Yuan, C; Luo, H L

    2008-01-01

    In this article, glaze with different colorants was applied to tile specimens manufactured by incinerated sewage sludge ash (ISSA) and clay. Improvements using different amounts of colorants, and glaze components and concentrations on tile bodies were investigated. Four different proportions of clay (by weight ratio) were replaced by ISSA. Tiles of size 12 cm x 6 cm x 1 cm were made and left in an electric furnace to make biscuit tiles at 800 degrees C. Afterwards, four colorants, Fe2O3 (red), V2O5 (yellow), CoCO3 (blue), and MnO2 (purple), and four different glaze concentrations were applied on biscuit tile specimens. These specimens were later sintered into glazed tiles at 1050 degrees C. The study shows that replacement of clay by sludge ash had adverse effects on properties of tiles. Water absorption increased and bending strength reduced with increased amounts of ash. However, both water absorption and bending strength improved for glazed ash tiles. Abrasion of grazed tiles reduced noticeably from 0.001 to 0.002 g. This implies glaze can enhance abrasion resistance of tiles. Effects like lightfastness and acid-alkali resistance improved as different glazes were applied on tiles. In general, red glazed tiles showed the most stable performance, followed by blue, yellow, and purple. PMID:17433656

  3. WATER TABLE LEVEL AS INFLUENCED BY TILING METHOD

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sections of the research farm were tiled in the fall of 1979. The primary reason for the tiling was to provide a good soil environment for large tillage trial plots that had been previously established. This was also used as an opportunity to install a comparison of tile installation with a conven...

  4. 21. TILES OF THE NEW WORLD PANEL, NORTH WALL OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. TILES OF THE NEW WORLD PANEL, NORTH WALL OF THE INDIAN HOUSE. THE RELIEF BROCADE TILES ILLUSTRATE SCENES OF NATIVE AMERICAN HISTORY AND CULTURE, AND THE EARLY EUROPEAN EXPLORATION OF THE NEW WORLD. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  5. 90. TILES OF THE NEW WORLD PANEL, NORTH WALL OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    90. TILES OF THE NEW WORLD PANEL, NORTH WALL OF THE INDIAN HOUSE. THE RELIEF BROCADE TILES ILLUSTRATE SCENES OF NATIVE AMERICAN HISTORY AND CULTURE, AND THE EARLY EUROPEAN EXPLORATION OF THE NEW WORLD. SAME VIEW AS PA-107-21. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  6. Ceramic/ceramic total hip arthroplasty.

    PubMed

    Bizot, P; Nizard, R; Lerouge, S; Prudhommeaux, F; Sedel, L

    2000-01-01

    Alumina-on-alumina total hip arthroplasty has been used for 30 years, mainly in Europe. The theoretical advantages of this combination are represented by its remarkable sliding characteristics, its very low wear debris generation, and its sufficient fracture toughness. These advantages are achieved if the material is properly controlled with high density, high purity, and small grains. The authors summarize the results obtained with ceramic/ceramic total hip arthroplasty. Information is provided about in vivo behavior regarding wear debris characterization and quantification, and histological tissue examinations for inflammatory reactions, which were not encountered except when alumina debris was mixed with metal or cement. Modification of socket fixation resulted in improved clinical outcomes. With a press-fit metal shell and an alumina liner utilized for 10 years, the results are excellent especially in a young and active population. Alumina-on-alumina seems at the moment to be one of the best choices when a total hip arthroplasty has to be performed in young and active patients. PMID:11180930

  7. Ceramic dentures manufactured with ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Werelius, Kristian; Weigl, Paul

    2004-06-01

    Conventional manufacturing of individual ceramic dental prosthesis implies a handmade metallic framework, which is then veneered with ceramic layers. In order to manufacture all-ceramic dental prosthesis a CAD/CAM system is necessary due to the three dimensional shaping of high strength ceramics. Most CAD/CAM systems presently grind blocks of ceramic after the construction process in order to create the prosthesis. Using high-strength ceramics, such as Hot Isostatic Pressed (HIP)-zirconia, this is limited to copings. Anatomically shaped fixed dentures have a sculptured surface with small details, which can't be created by existing grinding tools. This procedure is also time consuming and subject to significant loss in mechanical strength and thus reduced survival rate once inserted. Ultra-short laser pulses offer a possibility in machining highly complex sculptured surfaces out of high-strength ceramic with negligible damage to the surface and bulk of the ceramic. In order to determine efficiency, quality and damage, several laser ablation parameters such as pulse duration, pulse energy and ablation strategies were studied. The maximum ablation rate was found using 400 fs at high pulse energies. High pulse energies such as 200μJ were used with low damage in mechanical strength compared to grinding. Due to the limitation of available laser systems in pulse repetition rates and power, the use of special ablation strategies provide a possibility to manufacture fully ceramic dental prosthesis efficiently.

  8. Jagged Tiling for Intra-tile Parallelism and Fine-Grain Multithreading

    SciTech Connect

    Shrestha, Sunil; Manzano Franco, Joseph B.; Marquez, Andres; Feo, John T.; Gao, Guang R.

    2015-05-01

    In this paper, we have developed a novel methodology that takes into consideration multithreaded many-core designs to better utilize memory/processing resources and improve memory residence on tileable applications. It takes advantage of polyhedral analysis and transformation in the form of PLUTO, combined with a highly optimized finegrain tile runtime to exploit parallelism at all levels. The main contributions of this paper include the introduction of multi-hierarchical tiling techniques that increases intra tile parallelism; and a data-flow inspired runtime library that allows the expression of parallel tiles with an efficient synchronization registry. Our current implementation shows performance improvements on an Intel Xeon Phi board up to 32.25% against instances produced by state-of-the-art compiler frameworks for selected stencil applications.

  9. CFD-Predicted Tile Heating Bump Factors Due to Tile Overlay Repairs

    NASA Technical Reports Server (NTRS)

    Lessard, Victor R.

    2006-01-01

    A Computational Fluid Dynamics investigation of the Orbiter's Tile Overlay Repair (TOR) is performed to assess the aeroheating Damage Assessment Team's (DAT) existing heating correlation method for protuberance interference heating on the surrounding thermal protection system. Aerothermodynamic heating analyses are performed for TORs at the design reference damage locations body points 1800 and 1075 for a Mach 17.9 and a=39deg STS-107 flight trajectory point with laminar flow. Six different cases are considered. The computed peak heating bump factor on the surrounding tiles are below the DAT's heating bump factor values for smooth tile cases. However, for the uneven tiles cases the peak interference heating is shown to be considerably higher than the existing correlation prediction.

  10. Computer-controlled optical scanning tile microscope.

    PubMed

    Wang, C; Shumyatsky, P; Zeng, F; Zevallos, M; Alfano, R R

    2006-02-20

    A new type of computer-controlled optical scanning, high-magnification imaging system with a large field of view is described that overcomes the commonly believed incompatibility of achieving both high magnification and a large field of view. The new system incorporates galvanometer scanners, a CCD camera, and a high-brightness LED source for the fast acquisition of a large number of a high-resolution segmented tile images with a magnification of 800x for each tile. The captured segmented tile images are combined to create an effective enlarged view of a target totaling 1.6 mm x 1.2 mm in area. The speed and sensitivity of the system make it suitable for high-resolution imaging and monitoring of a small segmented area of 320 microm x 240 microm with 4 microm resolution. Each tile segment of the target can be zoomed up without loss of the high resolution. This new microscope imaging system gives both high magnification and a large field of view. This microscope can be utilized in medicine, biology, semiconductor inspection, device analysis, and quality control. PMID:16523776

  11. L-Tromino Tiling of Multilated Chessboards

    ERIC Educational Resources Information Center

    Gardner, Martin

    2009-01-01

    An "n" x "n" chessboard is called deficient if one square is missing from any spot on the board. Can all deficient boards with a number of cells divisible by 3 be tiled by bent (or L-shaped) trominoes? The answer is yes, with exception of the order-5 board. This paper deals with the general problem plus numerous related puzzles and proofs…

  12. TILE at Iowa: Adoption and Adaptation

    ERIC Educational Resources Information Center

    Florman, Jean C.

    2014-01-01

    This chapter introduces a University of Iowa effort to enhance and support active learning pedagogies in technology-enhanced (TILE) classrooms and three elements that proved essential to the campus-wide adoption of those pedagogies. It then describes the impact of those professional development efforts on the curricula and cultures of three…

  13. Performance of the ATLAS Tile Calorimeter

    NASA Astrophysics Data System (ADS)

    Heelan, Louise; ATLAS Collaboration

    2015-06-01

    The ATLAS Tile hadronic calorimeter (TileCal) provides highly-segmented energy measurements of incoming particles. It is a key detector for the measurement of hadrons, jets, tau leptons and missing transverse energy. It is also useful for identification and reconstruction of muons due to good signal to noise ratio. The calorimeter consists of thin steel plates and 460,000 scintillating tiles configured into 5000 cells, each viewed by two photomultipliers. The calorimeter response and its readout electronics is monitored to better than 1% using radioactive source, laser and charge injection systems. The calibration and performance of the calorimeter have been established through test beam measurements, cosmic ray muons and the large sample of proton-proton collisions acquired in 2011 and 2012. Results on the calorimeter performance are presented, including the absolute energy scale, timing, noise and associated stabilities. The results demonstrate that the Tile Calorimeter has performed well within the design requirements and it has given essential contribution to reconstructed objects and physics results. In addition, the data quality procedures used during the LHC data-taking are described and the outcome of the detector consolidation in the maintenance period is also presented.

  14. Investigation on Ballistic Performance of Armor Ceramics against Long-Rod Penetration

    NASA Astrophysics Data System (ADS)

    Huang, Feng-Lei; Zhang, Lian-Sheng

    2007-12-01

    A series of depth-of-penetration (DOF) tests are carried out to investigate the ballistic performance of armor ceramics. Based on the experimental results, an improved differential efficiency factor (DEF) is presented, which demonstrates that the general ballistic efficiency index is independent of the ceramic thickness. It is also shown that the density, internal friction, and compression strength of ceramics are crucial factors that affect the ballistic performance of ceramics significantly through the interaction between the long-rod projectiles and thick-tile armor.

  15. Role of ceramic implants. Design and clinical success with total hip prosthetic ceramic-to-ceramic bearings.

    PubMed

    Clarke, I C

    1992-09-01

    Ceramic implants have become of great interest because of the increased awareness that wear debris from metal-polyethylene components of total hip prostheses can cause osteolysis around implants. Polyethylene wear rates with the Charnley total hip prosthesis were found to be from 0.1 to 0.2 mm/year in the elderly, which corresponded to 30 to 80 mm3 of polyethylene debris being released to the joint tissues. This in turn can be related to 40 million to 40 billion particles being released into the joint every year. This polyethylene particulate is heavily implicated in the osteolytic destruction of periarticular tissues. The ceramic ball, ceramic cup combination of total hip prostheses may have promise of wear rates that could be thousands of times smaller than polyethylene alone. Such alumina ceramic prosthetic concepts were introduced in Europe from 1970 to 1973. Under Food and Drug Administration regulations at that time, the only U.S. introductions allowed circa 1980 were the Autophor and Xenophor types of ceramic prostheses. However, this particular prosthetic design was not successful in the United States because of pain, neck-socket impingement, ceramic fracture, and component loosening. This did not therefore appear to be a successful compromise in the hands of U.S. surgeons. Ceramic innovations from Europe now include cemented ceramic cups of "matching" tolerances with the femoral ball, and press-fit Ti-alloy acetabular shells with modular ceramic inserts. In addition, alumina and zirconia ceramic balls are now in routine clinical use in Europe. The objectives of this Symposium are to highlight these ceramic ball, ceramic cup innovations with their long-term clinical results from Europe. Then one can evaluate which of these innovations in material and design selections offers the best possible alternatives in the 1990s. PMID:1516312

  16. Preliminary control technology assessment of the Cambridge Tile Manufacturing Company, Cincinnati, Ohio

    SciTech Connect

    Mahon, R.D.

    1982-01-29

    A visit was made to the Cambridge Tile Manufacturing Company, Cincinnati, Ohio to evaluate methods used to control hazardous conditions arising during the manufacturing process. Particular attention was given to controlling exposures to harmful chemical agents, silica, noise and excessive heat. The company manufactured 20,000 square feet of tile per day including nonrefractory tiles. A fabric stocking-type sleeve between railroad car and underground hopper was used to control emissions during bulk material unloading. Two bag type dust collectors equipped with self-cleaning mechanisms were in use. Closed tube conveyors were well maintained. Dubois automatic mechanical power presses were equipped with shuttle transfers and each had a local exhaust system with blast gates. A 3M-W2940 air hat was worn by the employee formulating glazes. Respirator wearers were subjected to pulmonary function testing. Blood lead levels were checked every 3 months for employees who formulate glazes. All employees received a chest x-ray every 2 years. Other personal protective equipment was available. The author concludes that the safety precautions in place at this facility were good. There were several portions of the system which would be applicable for an in-depth evaluation unless better examples can be found in other on-site visits.

  17. Tile-based Level of Detail for the Parallel Age

    SciTech Connect

    Niski, K; Cohen, J D

    2007-08-15

    Today's PCs incorporate multiple CPUs and GPUs and are easily arranged in clusters for high-performance, interactive graphics. We present an approach based on hierarchical, screen-space tiles to parallelizing rendering with level of detail. Adapt tiles, render tiles, and machine tiles are associated with CPUs, GPUs, and PCs, respectively, to efficiently parallelize the workload with good resource utilization. Adaptive tile sizes provide load balancing while our level of detail system allows total and independent management of the load on CPUs and GPUs. We demonstrate our approach on parallel configurations consisting of both single PCs and a cluster of PCs.

  18. The effect of colouring agent on the physical properties of glass ceramic produced from waste glass for antimicrobial coating deposition

    NASA Astrophysics Data System (ADS)

    Juoi, J. M.; Ayoob, N. F.; Rosli, Z. M.; Rosli, N. R.; Husain, K.

    2016-07-01

    Domestic waste glass is utilized as raw material for the production of glass ceramic material (GCM) via sinter crystallisation route. The glass ceramic material in a form of tiles is to be utilized for the deposition of Ag-TiO2 antimicrobial coating. Two types of soda lime glass (SLG) that are non-coloured and green SLG are utilised as main raw materials during the batch formulation in order to study the effect of colouring agent (Fe2O3) on the physical and mechanical properties of glass ceramic produced. Glass powder were prepared by crushing bottles using hammer milled with milling machine and sieved until they passed through 75 µm sieve. The process continues by mixing glass powder with ball clay with ratio of 95:5 wt. %, 90:10 wt. % and 85:15 wt. %. Each batch mixture was then uniaxial pressed and sintered at 800°C, 825 °C and 850 °C. The physical and mechanical properties were then determined and compared between those produced from non-coloured and green coloured SLG in order to evaluate the effect of colouring agent (Fe2O3) on the GCM produced. The optimum properties of non-coloured SLG is produced with smaller ball clay content (10 wt. %) compared to green SLG (15 wt. %). The physical properties (determined thru ASTM C373) of the optimized GCM produced from non-coloured SLG and green SLG are 0.69 % of porosity, 1.92 g/cm3 of bulk density, 0.36 % of water absorption; and 1.96 % of porosity, 2.69 g/cm3 of bulk density, 0.73 % of water absorption; respectively. Results also indicate that the most suitable temperature in producing GCM from both glasses with optimized physical and mechanical properties is at 850 °C.

  19. Press-On Optics

    ERIC Educational Resources Information Center

    Thorson, Jon C.

    1972-01-01

    The article discusses the design, application, and clinical uses of press-on optics which are descirbed as 1 millimeter thick, flexible lenses or prisms that may be produced in virtually any desired plus or minus dioptric power as ophthalmic lenses, or in any range of usable prism diopter power. (GW)

  20. Meet the Press

    ERIC Educational Resources Information Center

    Quick, Brian L.

    2004-01-01

    Objective: To field questions from a room of students simulating a press conference. Type of speech: Impromptu. Point value: 10 participation points. To receive all 10 points, students must (1) address three questions from the lectern and ask three questions from their seat (3 points), (2) respond thoroughly to each question by providing a…

  1. Optically Aligned Drill Press

    NASA Technical Reports Server (NTRS)

    Adderholdt, Bruce M.

    1994-01-01

    Precise drill press equipped with rotary-indexing microscope. Microscope and drill exchange places when turret rotated. Microscope axis first aligned over future hole, then rotated out of way so drill axis assumes its precise position. New procedure takes less time to locate drilling positions and produces more accurate results. Apparatus adapted to such other machine tools as milling and measuring machines.

  2. Drill Press Work Sample.

    ERIC Educational Resources Information Center

    Shawsheen Valley Regional Vocational-Technical High School, Billerica, MA.

    This manual contains a work sample intended to assess a handicapped student's interest in and to screen interested students into a training program in basic machine shop I. (The course is based on the entry level of the drill press operator.) Section 1 describes the assessment, correlates the work performed and worker traits required for…

  3. Lacunae infills for in situ treatment of historic glazed tiles

    NASA Astrophysics Data System (ADS)

    Mendes, Marta T.; Esteves, Lurdes; Ferreira, Teresa A.; Candeias, António; Tennent, Norman H.; Rodrigues, José Delgado; Pereira, Sílvia R. M.

    2016-05-01

    Knowledge of current conservation materials and methods together with those adopted in the past is essential to aid research and improve or develop better conservation options. The infill and painting of tile lacunae are subjected to special requirements mainly when used in outdoor settings. A selection of the most commonly used materials was undertaken and performed based on inquiries to practitioners working in the field. The infill pastes comprised organic (epoxy, polyester), inorganic (slaked lime, hydraulic lime and zinc hydroxychloride) and mixed organic-inorganic (slaked lime mixed with a vinylic resin) binders. The selected aggregates were those most commonly used or those already present in the commercially formulated products. The infill pastes were characterised by SEM, MIP, open porosity, water absorption by capillarity, water vapour permeability, thermal and hydric expansibilities and adhesion to the ceramic body. Their performance was assessed after curing, artificial ageing (salt ageing and UV-Temp-RH cycles) and natural ageing. The results were interpreted in terms of their significance as indicators of effectiveness, compatibility and durability.

  4. Beautiful Math, Part 5: Colorful Archimedean Tilings from Dynamical Systems.

    PubMed

    Ouyang, Peichang; Zhao, Weiguo; Huang, Xuan

    2015-01-01

    The art of tiling originated very early in the history of civilization. Almost every known human society has made use of tilings in some form or another. In particular, tilings using only regular polygons have great visual appeal. Decorated regular tilings with continuous and symmetrical patterns were widely used in decoration field, such as mosaics, pavements, and brick walls. In science, these tilings provide inspiration for synthetic organic chemistry. Building on previous CG&A “Beautiful Math” articles, the authors propose an invariant mapping method to create colorful patterns on Archimedean tilings (1-uniform tilings). The resulting patterns simultaneously have global crystallographic symmetry and local cyclic or dihedral symmetry. PMID:26594960

  5. Ceramic Powders

    NASA Technical Reports Server (NTRS)

    1984-01-01

    In developing its product line of specialty ceramic powders and related products for government and industrial customers, including companies in the oil, automotive, electronics and nuclear industries, Advanced Refractory Technologies sought technical assistance from NERAC, Inc. in specific areas of ceramic materials and silicon technology, and for assistance in identifying possible applications of these materials in government programs and in the automotive and electronics industry. NERAC conducted a computerized search of several data bases and provided extensive information in the subject areas requested. NERAC's assistance resulted in transfer of technologies that helped ART staff develop a unique method for manufacture of ceramic materials to precise customer specifications.

  6. Transient liquid phase ceramic bonding

    DOEpatents

    Glaeser, Andreas M.

    1994-01-01

    Ceramics are joined to themselves or to metals using a transient liquid phase method employing three layers, one of which is a refractory metal, ceramic or alloy. The refractory layer is placed between two metal layers, each of which has a lower melting point than the refractory layer. The three layers are pressed between the two articles to be bonded to form an assembly. The assembly is heated to a bonding temperature at which the refractory layer remains solid, but the two metal layers melt to form a liquid. The refractory layer reacts with the surrounding liquid and a single solid bonding layer is eventually formed. The layers may be designed to react completely with each other and form refractory intermetallic bonding layers. Impurities incorporated into the refractory metal may react with the metal layers to form refractory compounds. Another method for joining ceramic articles employs a ceramic interlayer sandwiched between two metal layers. In alternative embodiments, the metal layers may include sublayers. A method is also provided for joining two ceramic articles using a single interlayer. An alternate bonding method provides a refractory-metal oxide interlayer placed adjacent to a strong oxide former. Aluminum or aluminum alloys are joined together using metal interlayers.

  7. Wear of a composite ceramic head caused by liner fracture.

    PubMed

    Morlock, Michael M; Witt, Florian; Bishop, Nick; Behn, Rainer; Dalla Pria, Paolo; Barrow, Rob; Dymond, Ian

    2014-07-01

    Third-generation composite ceramics (eg, Delta; DePuy Orthopaedics, Warsaw, Indiana; Ceramtec, Plochingen, Germany) have greatly improved material characteristics compared with second-generation products. This case report presents a patient after total hip arthroplasty with a fractured ceramic liner and a heavily worn ceramic head (both third-generation ceramics) retrieved 9 months after surgery. The patient showed no symptoms in the involved hip but presented to the hospital because of other symptoms. The failure was caused by a tilted liner that was overlooked after surgery and fractured consecutively. Rim chipping and splitting were the 2 fracture modes observed for the liner. The head did not fracture completely because of its high strength but became roughened by the ceramic fragments, causing major wear of the metal back of the cup. The phase transformation of the zirconium grains from tetragonal to monoclinic in the aluminum oxide matrix was shown by radiographic diffraction analysis in the heavily worn areas of the head. This transformation increases the fracture strength of the head. Metal debris caused by a roughened ceramic head without fracture is an unreported phenomenon for third-generation ceramic bearings in hip arthroplasty. This case shows that proper impaction of the ceramic liner into the metal shell to prevent later tiling during reduction is as important as correct component positioning. If a tilted ceramic liner is observed postoperatively, the position must be corrected immediately to prevent the major consequences observed in this patient. PMID:24992062

  8. DOP Test Evaluation of the Ballistic Performance of Armor Ceramics against Long Rod Penetration

    SciTech Connect

    Huang Fenglei; Zhang Liansheng

    2006-07-28

    A series of DOP tests with lateral confinement have been carried out and a linear relation between the residual penetration in RHA and the alumina thickness has been obtained. The rod configuration and the initial transient impact are the two factors that cause the gradual decrease of the differential efficiency factor (DEF) when the ceramic thickness is increased in literature. A new improved DEF definition is proposed to characterize the thick tile ceramic ballistic performance based on a more physical analysis.

  9. DOP test evaluation of the ballistic performance of armor ceramics against long rod penetration

    NASA Astrophysics Data System (ADS)

    Fenglei, Huang

    2005-07-01

    A series of DOP tests with lateral confinement has been carried out and a linear relation between the residual penetration in RHA and the alumina thickness been obtained. The rod configuration and the initial transient impact are thought to be responsible for the gradual decrease of differential efficiency factor (DEF) with the increase of ceramic thickness in literature DOP tests. A new revised DEF definition is proposed to more accurately characterize the thick tile ceramic ballistic performance on a more physically based analysis.

  10. DOP Test Evaluation of the Ballistic Performance of Armor Ceramics against Long Rod Penetration

    NASA Astrophysics Data System (ADS)

    Huang, Fenglei; Zhang, Liansheng

    2006-07-01

    A series of DOP tests with lateral confinement have been carried out and a linear relation between the residual penetration in RHA and the alumina thickness has been obtained. The rod configuration and the initial transient impact are the two factors that cause the gradual decrease of the differential efficiency factor (DEF) when the ceramic thickness is increased in literature. A new improved DEF definition is proposed to characterize the thick tile ceramic ballistic performance based on a more physical analysis.

  11. Anosov Diffeomorphisms and {γ}-Tilings

    NASA Astrophysics Data System (ADS)

    Almeida, João P.; Pinto, Alberto A.

    2016-07-01

    We consider a toral Anosov automorphism {G_γ:{mathbb{T}}_γto{mathbb{T}}_γ} given by {G_γ(x,y)=(ax+y,x)} in the { < v,w > } base, where {ainmathbb{N} backslash\\{1\\}}, {γ=1/(a+1/(a+1/ldots))}, {v=(γ,1)} and {w=(-1,γ)} in the canonical base of {{mathbb{R}}^2} and {{mathbb{T}}_γ={mathbb{R}}^2/(v{mathbb{Z}} × w{mathbb{Z}})}. We introduce the notion of {γ}-tilings to prove the existence of a one-to-one correspondence between (i) marked smooth conjugacy classes of Anosov diffeomorphisms, with invariant measures absolutely continuous with respect to the Lebesgue measure, that are in the isotopy class of {G_γ}; (ii) affine classes of {γ}-tilings; and (iii) {γ}-solenoid functions. Solenoid functions provide a parametrization of the infinite dimensional space of the mathematical objects described in these equivalences.

  12. Boeing's High Voltage Solar Tile Test Results

    NASA Technical Reports Server (NTRS)

    Reed, Brian J.; Harden, David E.; Ferguson, Dale C.; Snyder, David B.

    2002-01-01

    Real concerns of spacecraft charging and experience with solar array augmented electrostatic discharge arcs on spacecraft have minimized the use of high voltages on large solar arrays despite numerous vehicle system mass and efficiency advantages. Boeing's solar tile (patent pending) allows high voltage to be generated at the array without the mass and efficiency losses of electronic conversion. Direct drive electric propulsion and higher power payloads (lower spacecraft weight) will benefit from this design. As future power demand grows, spacecraft designers must use higher voltage to minimize transmission loss and power cable mass for very large area arrays. This paper will describe the design and discuss the successful test of Boeing's 500-Volt Solar Tile in NASA Glenn's Tenney chamber in the Space Plasma Interaction Facility. The work was sponsored by NASA's Space Solar Power Exploratory Research and Technology (SERT) Program and will result in updated high voltage solar array design guidelines being published.

  13. On Some New Properties of Binary Tilings

    NASA Astrophysics Data System (ADS)

    Aviram, Ira; Kleman, Maurice

    1996-05-01

    We show that one of the binary tilings introduced by Lançon & Billard (LB1) tends asymptotically towards an “universal” random tiling of decagonal symmetry, whatever the starting tiling may be, after an infinite sequence of random decorations preserving the LB1 structural properties; the successive steps of the sequence are described in terms of random substitution matrices. The universal character of the asymptotic tiling reveals in particular in: the existence of a well-defined intensive variable α_infty which measures the proportion of pairs of nearest neighbors of atoms of different species which belong to pairs o contiguous “fat” tiles F, its very characteristic Fourier transform, and finite size fluctuations. Our results rely on a series of extensive Monte-Carlo simulations and on analytic calculations of the statistics of the tilings (e.g. α_n) at different stages n of the substitution process. All these calculations concerns the sole entropy properties, which simplification is justified by the well known fact that binary tilings are degenerate for Lennard-Jones interactions between nearest-neighbors. A direct calculation of the entropy yields a value of α_infty slightly different from the value obtained by the analytic method above, by an amount of ≈ 1%. We suggest that the difference is due to long-range correlations which are not taken into account in the direct calculation as well as some specific ergodicity properties of our “microcanonical” ensemble of tilings realizations, which reveal for example in the non-abelian properties of the finite size fluctuations, and which remain to be studied in any case. Nous montrons que l'un des pavages binaires de Lançon & Billard (LB1) a une limite asymptotique “universelle”, c'est-à-dire ne dépendant pas du pavage de départ, sous l'effet d'une séquence infinie de substitutions aléatoires (décrites par une matrice de transfert aléatoire) qui préservent son caractère LB1. Le caract

  14. Four Theories of the Press.

    ERIC Educational Resources Information Center

    Siebert, Fred S.; And Others

    A systematic understanding of the press requires an understanding of the social and political structures within which the press operates. This book discusses four theories that have determined the kind of press the Western world has had: authoritarian, libertarian, socially responsible, and Soviet communist. Each chapter discusses press…

  15. The DELPHI small angle tile calorimeter

    SciTech Connect

    Alvsvaag, S.J.; Maeland, O.A.; Klovning, A.

    1995-08-01

    The Small angle TIle Calorimeter (STIC) provides calorimetric coverage in the very forward region for the DELPHI experiment at the CERN LEP collider. A veto system composed of two scintillator layers allows to trigger on single photon events and provides e{minus}{gamma} separation. The authors present here some results of extensive measurements performed on part of the calorimeter and the veto system in the CERN test beams prior to installation and report on the performance achieved during the 1994 LEP run.

  16. FITS Tile Compression in the NOAO DMS

    NASA Astrophysics Data System (ADS)

    Stobie, E.; Seaman, R.; Barg, I.

    2009-09-01

    The NOAO Data Management system (DMS) captures data from eleven NOAO and partner telescopes and transports these data from three mountaintops to replicate them between three data centers both North and South of the equator. Image files are annotated, remediated, ingested, and persisted through interfaces of the NOAO Science Archive. Wide-field optical and infrared images flow out of the archive, through the NOAO High Performance Pipeline creating several new data products that flow back into the archive. Raw, pipeline-reduced, and survey data products, both proprietary and post-proprietary, are made available through the NOAO Portal using VO standards and services. Each of these several steps requires access to both image data and metadata in the form of image header keywords. Measures of storage efficiency and throughput characterize performance, cost, schedule, and risk in a matrix across all telescopes and all subsystems. Anything that impedes access to data or metadata diminishes throughput, thus slowing schedules, increasing costs, revealing risks, and adversely affecting performance. The familiar gzip compression algorithm is often used to increase data storage efficiency. However, gzip actually reduces throughput due to initial and recurring overhead of compression and later uncompression. For example, if metadata for an image require remediation, the whole image must be compressed, uncompressed, and compressed again. By contrast, the FITS tile convention using the Rice algorithm achieves about 40% better compression than gzip in just one-third the time. Image headers remain readable such that images often need never be uncompressed at all; metadata can be simply edited in place. Further, a library such as CFITSIO can support tile compression as a native image format. The pixel tiling feature means that for applications such as a cutout service, only the tiles overlapping the desired image section need be uncompressed.

  17. Performance of the ATLAS Tile Calorimeter

    NASA Astrophysics Data System (ADS)

    Cole, Stephe

    2013-04-01

    The Tile Calorimeter is the central section (0 < |η| < 1.7) of the ATLAS hadronic calorimeter. It is a key detector for the measurement of hadrons, jets, tau leptons decaying hadronically, and missing transverse energy. Because of its very good signal to noise ratio it is also useful for the identification and reconstruction of muons. The calorimeter consists of thin steel plates and 460,000 scintillating tiles configured into 4900 cells, each viewed by two photomultipliers. The calorimeter response is monitored to better than 1% using radioactive source, laser, and electronic charge injection systems. The calibration and performance of the calorimeter have been established through test beam measurements, cosmic ray muons and the large sample of pp collisions acquired during 2011 and 2012. Results on the calorimeter performance will be presented, including the absolute energy scale, time resolution, and associated stabilities. These results demonstrate that the Tile Calorimeter is performing well within the design requirements and is giving essential input to the physics results.

  18. Foam-on-Tile Damage Model

    NASA Technical Reports Server (NTRS)

    Koharchik, Michael; Murphy, Lindsay; Parker, Paul

    2012-01-01

    An impact model was developed to predict how three specific foam types would damage the Space Shuttle Orbiter insulating tiles. The inputs needed for the model are the foam type, the foam mass, the foam impact velocity, the foam impact incident angle, the type being impacted, and whether the tile is new or aged (has flown at least one mission). The model will determine if the foam impact will cause damage to the tile. If it can cause damage, the model will output the damage cavity dimensions (length, depth, entry angle, exit angle, and sidewall angles). It makes the calculations as soon as the inputs are entered (less than 1 second). The model allows for the rapid calculation of numerous scenarios in a short time. The model was developed from engineering principles coupled with significant impact testing (over 800 foam impact tests). This model is applicable to masses ranging from 0.0002 up to 0.4 pound (0.09 up to 181 g). A prior tool performed a similar function, but was limited to the assessment of a small range of masses and did not have the large test database for verification. In addition, the prior model did not provide outputs of the cavity damage length, entry angle, exit angle, or sidewall angles.

  19. Structural Ceramics Database

    National Institute of Standards and Technology Data Gateway

    SRD 30 NIST Structural Ceramics Database (Web, free access)   The NIST Structural Ceramics Database (WebSCD) provides evaluated materials property data for a wide range of advanced ceramics known variously as structural ceramics, engineering ceramics, and fine ceramics.

  20. Ceramic Inlays: Effect of Mechanical Cycling and Ceramic Type on Restoration-dentin Bond Strength.

    PubMed

    Trindade, F Z; Kleverlaan, C J; da Silva, L H; Feilzer, A J; Cesar, P F; Bottino, M A; Valandro, L F

    2016-01-01

    This study aimed to evaluate the bond strength between dentin and five different ceramic inlays in permanent maxillary premolars, with and without mechanical cycling. One hundred permanent maxillary premolars were prepared and divided into 10 groups (n=10) according to the ceramic system (IPS e.Max Press; IPS e.Max CAD; Vita PM9; Vita Mark II; and Vita VM7) and the mechanical cycling factor (with and without [100 N, 2 Hz, 1.2×10(6) cycles]). The inlays were adhesively cemented, and all of the specimens were cut into microbars (1×1 mm, nontrimming method), which were tested under microtensile loading. The failure mode was classified and contact angle, roughness, and microtopographic analyses were performed on each ceramic surface. The mechanical cycling had a significant effect (p=0.0087) on the bond strength between dentin and IPS e.max Press. The Vita Mark II group had the highest bond strength values under both conditions, with mechanical cycling (9.7±1.8 MPa) and without (8.2±1.9 MPa), while IPS e.Max CAD had the lowest values (2.6±1.6 and 2.2±1.4, respectively). The adhesive failure mode at the ceramic/cement interface was the most frequent. Vita Mark II showed the highest value of average roughness. IPS e.max Press and Vita Mark II ceramics presented the lowest contact angles. In conclusion, the composition and manufacturing process of ceramics seem to have an influence on the ceramic surface and resin cement bond strength. Mechanical cycling did not cause significant degradation on the dentin and ceramic bond strength under the configuration used. PMID:27455117

  1. Interference Lattice-based Loop Nest Tilings for Stencil Computations

    NASA Technical Reports Server (NTRS)

    VanderWijngaart, Rob F.; Frumkin, Michael

    2000-01-01

    A common method for improving performance of stencil operations on structured multi-dimensional discretization grids is loop tiling. Tile shapes and sizes are usually determined heuristically, based on the size of the primary data cache. We provide a lower bound on the numbers of cache misses that must be incurred by any tiling, and a close achievable bound using a particular tiling based on the grid interference lattice. The latter tiling is used to derive highly efficient loop orderings. The total number of cache misses of a code is the sum of (necessary) cold misses and misses caused by elements being dropped from the cache between successive loads (replacement misses). Maximizing temporal locality is equivalent to minimizing replacement misses. Temporal locality of loop nests implementing stencil operations is optimized by tilings that avoid data conflicts. We divide the loop nest iteration space into conflict-free tiles, derived from the cache miss equation. The tiling involves the definition of the grid interference lattice an equivalence class of grid points whose images in main memory map to the same location in the cache-and the construction of a special basis for the lattice. Conflicts only occur on the boundaries of the tiles, unless the tiles are too thin. We show that the surface area of the tiles is bounded for grids of any dimensionality, and for caches of any associativity, provided the eccentricity of the fundamental parallelepiped (the tile spanned by the basis) of the lattice is bounded. Eccentricity is determined by two factors, aspect ratio and skewness. The aspect ratio of the parallelepiped can be bounded by appropriate array padding. The skewness can be bounded by the choice of a proper basis. Combining these two strategies ensures that pathologically thin tiles are avoided. They do not, however, minimize replacement misses per se. The reason is that tile visitation order influences the number of data conflicts on the tile boundaries. If two

  2. The study of dielectric, pyroelectric and piezoelectric properties on hot pressed PZT-PMN systems

    SciTech Connect

    Srivastava, Geetika; Umarji, A. M.; Maglione, Mario

    2012-12-15

    Hot uniaxial pressing technique has been adopted for the densification of PZT-PMN system with an aim to yield dense ceramics and to lower the sintering temperature and time for achieving better and reproducible electronic properties. The ceramics having >97% theoretical density and micron size grains are investigated for their dielectric, pyroelectric and piezoelectric properties. The effect of Li and Mn addition has also been studied.

  3. Design, fabrication, and tests of a metallic shell tile thermal protection system for space transportation

    NASA Technical Reports Server (NTRS)

    Macconochie, Ian O.; Kelly, H. Neale

    1989-01-01

    A thermal protection tile for earth-to-orbit transports is described. The tiles consist of a rigid external shell filled with a flexible insulation. The tiles tend to be thicker than the current Shuttle rigidized silica tiles for the same entry heat load but are projected to be more durable and lighter. The tiles were thermally tested for several simulated entry trajectories.

  4. Design optimization methods for genomic DNA tiling arrays

    PubMed Central

    Bertone, Paul; Trifonov, Valery; Rozowsky, Joel S.; Schubert, Falk; Emanuelsson, Olof; Karro, John; Kao, Ming-Yang; Snyder, Michael; Gerstein, Mark

    2006-01-01

    A recent development in microarray research entails the unbiased coverage, or tiling, of genomic DNA for the large-scale identification of transcribed sequences and regulatory elements. A central issue in designing tiling arrays is that of arriving at a single-copy tile path, as significant sequence cross-hybridization can result from the presence of non-unique probes on the array. Due to the fragmentation of genomic DNA caused by the widespread distribution of repetitive elements, the problem of obtaining adequate sequence coverage increases with the sizes of subsequence tiles that are to be included in the design. This becomes increasingly problematic when considering complex eukaryotic genomes that contain many thousands of interspersed repeats. The general problem of sequence tiling can be framed as finding an optimal partitioning of non-repetitive subsequences over a prescribed range of tile sizes, on a DNA sequence comprising repetitive and non-repetitive regions. Exact solutions to the tiling problem become computationally infeasible when applied to large genomes, but successive optimizations are developed that allow their practical implementation. These include an efficient method for determining the degree of similarity of many oligonucleotide sequences over large genomes, and two algorithms for finding an optimal tile path composed of longer sequence tiles. The first algorithm, a dynamic programming approach, finds an optimal tiling in linear time and space; the second applies a heuristic search to reduce the space complexity to a constant requirement. A Web resource has also been developed, accessible at http://tiling.gersteinlab.org, to generate optimal tile paths from user-provided DNA sequences. PMID:16365382

  5. NASA TileWorld manual (system version 2.2)

    NASA Technical Reports Server (NTRS)

    Philips, Andrew B.; Bresina, John L.

    1991-01-01

    The commands are documented of the NASA TileWorld simulator, as well as providing information about how to run it and extend it. The simulator, implemented in Common Lisp with Common Windows, encodes a particular range in a spectrum of domains, for controllable research experiments. TileWorld consists of a two dimensional grid of cells, a set of polygonal tiles, and a single agent which can grasp and move tiles. In addition to agent executable actions, there is an external event over which the agent has not control; this event correspond to a 'gust of wind'.

  6. The influence of clay fineness upon sludge recycling in a ceramic matrix

    NASA Astrophysics Data System (ADS)

    Szőke, A. M.; Muntean, M.; Sándor, M.; Brotea, L.

    2016-04-01

    The feasibility of sludge recycling in the ceramic manufacture was evaluated through laboratory testing. Such residues have similar chemical and mineralogical composition with the raw mixture of the green ceramic body used in construction. Several ceramic masses with clay and various proportion of sludge have been synthesized and then characterized by their physical-mechanical properties. The fineness of the clay, the main component of the green ceramic body, has been considered for every raw mixture. The proportion of the sludge waste addition depends on the clay fineness and the sintering capacity also, increases with the clay fineness. The ceramic properties, particularly, the open porosity, and mechanical properties, in presence of small sludge proportion (7, 20%) shows small modification. The introduction of such waste into building ceramic matrix (bricks, tiles, and plates) has a very good perspective.

  7. Ceramic fabrication R D final technical progress report

    SciTech Connect

    Not Available

    1991-01-01

    The goal of this research and development project has been to develop the cohesive ceramic fabrication (CCF) process and to demonstrate its application to various defense-related systems. The CCF process, which is proprietary to Ceramic Binder Systems, Inc. (CBSi), involves a binder system that yields a green ceramic having rubbery yet plastic and tacky properties. The tackiness allows green parts to be pressed together with light (hand) pressure, and the bond is maintained through firing. Fabricating of complex parts is possible via the assembly of simple shapes, easily fabricated by plastic forming and followed by firing to produce a ceramic bond. For some applications, this approach offers substantial potential cost savings over more conventional methods. Other possibilities include the potential for fabricating ceramic parts having graded properties and fabricating ceramic matrix composites.

  8. Ceramic fabrication R&D final technical progress report

    SciTech Connect

    Not Available

    1991-12-31

    The goal of this research and development project has been to develop the cohesive ceramic fabrication (CCF) process and to demonstrate its application to various defense-related systems. The CCF process, which is proprietary to Ceramic Binder Systems, Inc. (CBSi), involves a binder system that yields a green ceramic having rubbery yet plastic and tacky properties. The tackiness allows green parts to be pressed together with light (hand) pressure, and the bond is maintained through firing. Fabricating of complex parts is possible via the assembly of simple shapes, easily fabricated by plastic forming and followed by firing to produce a ceramic bond. For some applications, this approach offers substantial potential cost savings over more conventional methods. Other possibilities include the potential for fabricating ceramic parts having graded properties and fabricating ceramic matrix composites.

  9. Ceramics Analysis

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Lewis Research Center developed the CARES/LIFE software, which predicts the performance of brittle structures over time, such as ceramic compounds. Over 300 companies have used a version of the code, including Philips Display Components Company, AlliedSignal, Solar Turbines Incorporated, and TRW, Inc. for everything from engines to television tubes. The software enables a designer to test a variety of configurations for probability of failure and to adjust the structure's geometry to minimize the predicted failure or maximize durability for the lifetime of the ceramic component.

  10. Porosity and mechanical properties of zirconium ceramics

    SciTech Connect

    Buyakova, S. Kulkov, S.; Sablina, T.

    2015-11-17

    Has been studied a porous ceramics obtained from ultra-fine powders. Porous ceramic ZrO{sub 2}(MgO), ZrO{sub 2}(Y{sub 2}O{sub 3}) powder was prepared by pressing and subsequent sintering of compacts homologous temperatures ranging from 0.63 to 0.56 during the isothermal holding duration of 1 to 5 hours. The porosity of ceramic samples was from 15 to 80%. The structure of the ceramic materials produced from plasma-sprayed ZrO{sub 2} powder was represented as a system of cell and rod structure elements. Cellular structure formed by stacking hollow powder particles can be easily seen at the images of fracture surfaces of obtained ceramics. There were three types of pores in ceramics: large cellular hollow spaces, small interparticle pores which are not filled with powder particles and the smallest pores in the shells of cells. The cells generally did not have regular shapes. The size of the interior of the cells many times exceeded the thickness of the walls which was a single-layer packing of ZrO{sub 2} grains. A distinctive feature of all deformation diagrams obtained in the experiment was their nonlinearity at low deformations which was described by the parabolic law. It was shown that the observed nonlinear elasticity for low deformation on deformation diagrams is due to mechanical instability of the cellular elements in the ceramic carcass.

  11. Porosity and mechanical properties of zirconium ceramics

    NASA Astrophysics Data System (ADS)

    Buyakova, S.; Sablina, T.; Kulkov, S.

    2015-11-01

    Has been studied a porous ceramics obtained from ultra-fine powders. Porous ceramic ZrO2(MgO), ZrO2(Y2O3) powder was prepared by pressing and subsequent sintering of compacts homologous temperatures ranging from 0.63 to 0.56 during the isothermal holding duration of 1 to 5 hours. The porosity of ceramic samples was from 15 to 80%. The structure of the ceramic materials produced from plasma-sprayed ZrO2 powder was represented as a system of cell and rod structure elements. Cellular structure formed by stacking hollow powder particles can be easily seen at the images of fracture surfaces of obtained ceramics. There were three types of pores in ceramics: large cellular hollow spaces, small interparticle pores which are not filled with powder particles and the smallest pores in the shells of cells. The cells generally did not have regular shapes. The size of the interior of the cells many times exceeded the thickness of the walls which was a single-layer packing of ZrO2 grains. A distinctive feature of all deformation diagrams obtained in the experiment was their nonlinearity at low deformations which was described by the parabolic law. It was shown that the observed nonlinear elasticity for low deformation on deformation diagrams is due to mechanical instability of the cellular elements in the ceramic carcass.

  12. Manufacturing of planar ceramic interconnects

    SciTech Connect

    Armstrong, B.L.; Coffey, G.W.; Meinhardt, K.D.; Armstrong, T.R.

    1996-12-31

    The fabrication of ceramic interconnects for solid oxide fuel cells (SOFC) and separator plates for electrochemical separation devices has been a perennial challenge facing developers. Electrochemical vapor deposition (EVD), plasma spraying, pressing, tape casting and tape calendering are processes that are typically utilized to fabricate separator plates or interconnects for the various SOFC designs and electrochemical separation devices. For sake of brevity and the selection of a planar fuel cell or gas separation device design, pressing will be the only fabrication technique discussed here. This paper reports on the effect of the characteristics of two doped lanthanum manganite powders used in the initial studies as a planar porous separator for a fuel cell cathode and as a dense interconnect for an oxygen generator.

  13. Fabrication of ceramic substrate-reinforced and free forms by mandrel plasma spraying metal-ceramic composites

    NASA Technical Reports Server (NTRS)

    Quentmeyer, R. J.; Mcdonald, G.; Hendricks, R. C.

    1985-01-01

    Components fabricated of, or coated with, ceramics have lower parasitic cooling requirements. Techniques are discussed for fabricating thin-shell ceramic components and ceramic coatings for applications in rocket or jet engine environments. Thin ceramic shells with complex geometric forms involving convolutions and reentrant surfaces were fabricated by mandrel removal. Mandrel removal was combined with electroplating or plasma spraying and isostatic pressing to form a metal support for the ceramic. Rocket engine thrust chambers coated with 0.08 mm (3 mil) of ZrO2-8Y2O3 had no failures and a tenfold increase in engine life. Some measured mechanical properties of the plasma-sprayed ceramic are presented.

  14. Randomized, Controlled Clinical Trial of Bilayer Ceramic and Metal-Ceramic Crown Performance

    PubMed Central

    Esquivel-Upshaw, Josephine; Rose, William; Oliveira, Erica; Yang, Mark; Clark, Arthur E.; Anusavice, Kenneth

    2013-01-01

    Purpose Analyzing the clinical performance of restorative materials is important, as there is an expectation that these materials and procedures will restore teeth and do no harm. The objective of this research study was to characterize the clinical performance of metal-ceramic crowns, core ceramic crowns, and core ceramic/veneer ceramic crowns based on 11 clinical criteria. Materials and Methods An IRB-approved, randomized, controlled clinical trial was conducted as a single-blind pilot study. The following three types of full crowns were fabricated: (1) metal-ceramic crown (MC) made from a Pd-Au-Ag-Sn-In alloy (Argedent 62) and a glass-ceramic veneer (IPS d.SIGN veneer); (2) non-veneered (glazed) lithium disilicate glass-ceramic crown (LDC) (IPS e.max Press core and e.max Ceram Glaze); and (3) veneered lithia disilicate glass-ceramic crown (LDC/V) with glass-ceramic veneer (IPS Empress 2 core and IPS Eris). Single-unit crowns were randomly assigned. Patients were recalled for each of 3 years and were evaluated by two calibrated clinicians. Thirty-six crowns were placed in 31 patients. A total of 12 crowns of each of the three crown types were studied. Eleven criteria were evaluated: tissue health, marginal integrity, secondary caries, proximal contact, anatomic contour, occlusion, surface texture, cracks/chips (fractures), color match, tooth sensitivity, and wear (of crowns and opposing enamel). Numerical rankings ranged from 1 to 4, with 4 being excellent, and 1 indicating a need for immediate replacement. Statistical analysis of the numerical rankings was performed using a Fisher’s exact test. Results There was no statistically significant difference between performance of the core ceramic crowns and the two veneered crowns at year 1 and year 2 (p > 0.05). All crowns were rated either as excellent or good for each of the clinical criteria; however, between years 2 and 3, gradual roughening of the occlusal surface occurred in some of the ceramic-ceramic crowns

  15. Ceramic/metal seals. [refractory materials for hermetic seals for lighium-metal sulfide batteries

    NASA Technical Reports Server (NTRS)

    Bredbenner, A. M.

    1977-01-01

    Design criteria are discussed for a hermetic seal capable of withstanding the 450 C operating temperature of a lithium-metal sulfide battery system. A mechanical seal consisting of two high strength alloy metal sleeves welded or brazed to a conductor assembly and pressed onto a ceramic is described. The conductor center passes through the ceramic but is not sealed to it. The seal is effected on the outside of the taper where the tubular part is pressed down over and makes contact.

  16. Complex tiling patterns in liquid crystals

    PubMed Central

    Tschierske, C.; Nürnberger, C.; Ebert, H.; Glettner, B.; Prehm, M.; Liu, F.; Zeng, X.-B.; Ungar, G.

    2012-01-01

    In this account recent progress in enhancing the complexity of liquid crystal self-assembly is highlighted. The discussed superstructures are formed mainly by polyphilic T-shaped and X-shaped molecules composed of a rod-like core, tethered with glycerol units at both ends and flexible non-polar chain(s) in lateral position, but also related inverted molecular structures are considered. A series of honeycomb phases composed of polygonal cylinders ranging from triangular to hexagonal, followed by giant cylinder honeycombs is observed for ternary T-shaped polyphiles on increasing the size of the lateral chain(s). Increasing the chain size further leads to new modes of lamellar organization followed by three-dimensional and two-dimensional structures incorporating branched and non-branched axial rod-bundles. Grafting incompatible chains to opposite sides of the rod-like core leads to quaternary X-shaped polyphiles. These form liquid crystalline honeycombs where different cells are filled with different material. Projected on an Euclidian plane, all honeycomb phases can be described either by uniformly coloured Archimedean and Laves tiling patterns (T-shaped polyphiles) or as multi-colour tiling patterns (X-shaped polyphiles). It is shown that geometric frustration, combined with the tendency to segregate incompatible chains into different compartments and the need to find a periodic tiling pattern, leads to a significant increase in the complexity of soft self-assembly. Mixing of different chains greatly enhances the number of possible ‘colours’ and in this way, periodic structures comprising up to seven distinct compartments can be generated. Relations to biological self-assembly are discussed shortly. PMID:24098852

  17. Ceramic process equipment for the immobilization of plutonium

    SciTech Connect

    Armantrout, G; Brummond, W; Maddux. P

    1998-07-24

    Lawrence Livermore National Laboratory is developing a ceramic form for immobilizing excess US plutonium. The process used to produce the ceramic form is similar to the fabrication process used in the production of MOX fuel. In producing the ceramic form, the uranium and plutonium oxides are first milled to less than 20 microns. The milled actinide powder then goes through a mixing-blending step where the ceramic precursors, made from a mixture of calcined TiO2, Ca(OH)2, HfO2 and Gd03, are blended with the milled actinides. A subsequent granulation step ensures that the powder will flow freely into the press and die set. The pressed ceramic material is then sintered. The process parameters for the ceramic fabrication steps to make the ceramic form are less demanding than equivalent processing steps for MOX fuel fabrication. As an example, the pressing pressure for MOX is in excess of 137.0 MPa, whereas the pressing pressure for the ceramic form is only 13.8 MPa. This translates into less die wear for the ceramic material pressing. Similarly, the sintering temperatures and times are also different. MOX is sintered at 1,700°C in 4% H2 for a 24 hour cycle. The ceramic form is sintered at 1350°C in argon or air for a 15 hour cycle. Lawrence Livermore National Laboratory is demonstrating this ceramic fabrication process with a series of processing validation steps: first, using cerium as a surrogate for the plutonium and uranium, second, using uranium with thorium as the plutonium surrogate, and third, with plutonium. to this particle size is necessary to ensure essentially complete reaction of the plutonium with the ceramic precursors in subsequent sintering operations. Larger particles will only partially react, leaving islands of plutonium-rich minerals or unreacted plutonium oxide encased in the mineral structure. While this may be acceptable for the desired repository performance, it complicates the form

  18. The influence of metallic shell deformation on the contact mechanics of a ceramic-on-ceramic total hip arthroplasty.

    PubMed

    Qiu, Changdong; Wang, Ling; Li, Dichen; Jin, Zhongmin

    2016-01-01

    Total hip arthroplasty of ceramic-on-ceramic bearing combinations is increasingly used clinically. The majority of these implants are used with cementless fixation that a metal-backing shell is press-fitted into the pelvic bone. This usually results in the deformation of the metallic shell, which may also influence the ceramic liner deformation and consequently the contact mechanics between the liner and the femoral head under loading. The explicit dynamic finite element method was applied to model the implantation of a cementless ceramic-on-ceramic with a titanium shell and subsequently to investigate the effect of the metallic shell deformation on the contact mechanics. A total of three impacts were found to be necessary to seat the titanium alloy shell into the pelvic bone cavity with a 1 mm diameter interference and a 1.3 kg impactor at 4500 mm s(-1) velocity. The maximum deformation of the metallic shell was found to be 160 µm in the antero-superior and postero-inferior direction and 97 µm in the antero-inferior and postero-superior direction after the press-fit. The corresponding values were slightly reduced to 67 and 45 µm after the ceramic liner was inserted and then modified to 74 and 43 µm under loading, respectively. The maximum deformation and the maximum principal stress of the ceramic liner were 31 µm and 144 MPa (tensile stress), respectively, after it was inserted into the shell and further increased to 52 µm and 245 MPa under loading. This research highlights the importance of the press-fit of the metallic shell on the contact mechanics of the ceramic liner for ceramic-on-ceramic total hip arthroplasties and potential clinical performances. PMID:26511269

  19. Method of preparing fiber reinforced ceramic material

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T. (Inventor)

    1987-01-01

    Alternate layers of mats of specially coated SiC fibers and silicon monotapes are hot pressed in two stages to form a fiber reinforced ceramic material. In the first stage a die is heated to about 600 C in a vacuum furnace and maintained at this temperature for about one-half hour to remove fugitive binder. In the second stage the die temperature is raised to about 1000 C and the layers are pressed at between 35 and 138 MPa. The resulting preform is placed in a reactor tube where a nitriding gas is flowed past the preform at 1100 to 1400 C to nitride the same.

  20. Symmetries and color symmetries of a family of tilings with a singular point.

    PubMed

    Evidente, Imogene F; Felix, Rene P; Loquias, Manuel Joseph C

    2015-11-01

    Tilings with a singular point are obtained by applying conformal maps on regular tilings of the Euclidean plane and their symmetries are determined. The resulting tilings are then symmetrically colored by applying the same conformal maps on colorings of regular tilings arising from sublattice colorings of the centers of the tiles. In addition, conditions are determined in order that the coloring of a tiling with singularity that is obtained in this manner is perfect. PMID:26522407

  1. Patches for Repairing Ceramics and Ceramic-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Hogenson, Peter A.; Toombs, Gordon R.; Adam, Steven; Tompkins, James V.

    2006-01-01

    Patches consisting mostly of ceramic fabrics impregnated with partially cured polymers and ceramic particles are being developed as means of repairing ceramics and ceramic-matrix composites (CMCs) that must withstand temperatures above the melting points of refractory metal alloys. These patches were conceived for use by space-suited, space-walking astronauts in repairing damaged space-shuttle leading edges: as such, these patches could be applied in the field, in relatively simple procedures, and with minimal requirements for specialized tools. These design characteristics also make the patches useful for repairing ceramics and CMCs in terrestrial settings. In a typical patch as supplied to an astronaut or repair technician, the polymer would be in a tacky condition, denoted as an A stage, produced by partial polymerization of a monomeric liquid. The patch would be pressed against the ceramic or CMC object to be repaired, relying on the tackiness for temporary adhesion. The patch would then be bonded to the workpiece and cured by using a portable device to heat the polymer to a curing temperature above ambient temperature but well below the maximum operating temperature to which the workpiece is expected to be exposed. The patch would subsequently become pyrolized to a ceramic/glass condition upon initial exposure to the high operating temperature. In the original space-shuttle application, this exposure would be Earth-atmosphere-reentry heating to about 3,000 F (about 1,600 C). Patch formulations for space-shuttle applications include SiC and ZrO2 fabrics, a commercial SiC-based pre-ceramic polymer, and suitable proportions of both SiC and ZrO2 particles having sizes of the order of 1 m. These formulations have been tailored for the space-shuttle leading-edge material, atmospheric composition, and reentry temperature profile so as to enable repairs to survive re-entry heating with expected margin. Other formulations could be tailored for specific terrestrial

  2. Alternative Processing Methods for Ultra High Temperature Ceramics

    NASA Technical Reports Server (NTRS)

    Gusman, Michael; Beckman, Sarah; Gasch, Matthew; Ellerby, Don; Lau, Kai-Hung; Sanjurjo, Angel; Johnson, Sylvia M.; Venkatapathy, Ethiras (Technical Monitor)

    2002-01-01

    Ultra High Temperature Ceramics (UHTCs) are being developed for possible use in a number of structural applications including hypersonic vehicles, engines, plasma arc electrodes and high temperature shielding. Alternative methods of processing Ultra High Temperature Ceramics (UHTCs) will be discussed. Techniques that may improve oxidation resistance, strength, and reduce the processing temperature of the UHTCs will be presented. Hot-pressed UHTCs made using either milled/uncoated powders or non-milled coated powders will be compared.

  3. Sealing ceramic material in low melting point glass

    NASA Technical Reports Server (NTRS)

    Moritoki, M.; Fujikawa, T.; Miyanaga, J.

    1984-01-01

    A structured device placed in an aerated crucible to pack ceramics molding substance that is to be processed was designed. The structure is wrapped by sealing material made of pyrex glass and graphite foil or sheet with a weight attached on top of it. The crucible is made of carbon; the ceramics material to be treated through heat intervenient press process is molding substance consisting mainly of silicon nitride.

  4. 49. TILE PACKING AREA AND APPRENTICE WORKSPACE, SECOND FLOOR, SOUTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. TILE PACKING AREA AND APPRENTICE WORKSPACE, SECOND FLOOR, SOUTH END OF EAST WING. THE SKYLIGHT, ADDED IN 1976. COVERS A ROOF OPENING LEFT FOR THE CHIMNEY OF A POSSIBLE THIRD BISCUIT KILN. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  5. Highly Symmetric and Congruently Tiled Meshes for Shells and Domes

    PubMed Central

    Rasheed, Muhibur; Bajaj, Chandrajit

    2016-01-01

    We describe the generation of all possible shell and dome shapes that can be uniquely meshed (tiled) using a single type of mesh face (tile), and following a single meshing (tiling) rule that governs the mesh (tile) arrangement with maximal vertex, edge and face symmetries. Such tiling arrangements or congruently tiled meshed shapes, are frequently found in chemical forms (fullerenes or Bucky balls, crystals, quasi-crystals, virus nano shells or capsids), and synthetic shapes (cages, sports domes, modern architectural facades). Congruently tiled meshes are both aesthetic and complete, as they support maximal mesh symmetries with minimal complexity and possess simple generation rules. Here, we generate congruent tilings and meshed shape layouts that satisfy these optimality conditions. Further, the congruent meshes are uniquely mappable to an almost regular 3D polyhedron (or its dual polyhedron) and which exhibits face-transitive (and edge-transitive) congruency with at most two types of vertices (each type transitive to the other). The family of all such congruently meshed polyhedra create a new class of meshed shapes, beyond the well-studied regular, semi-regular and quasi-regular classes, and their duals (platonic, Catalan and Johnson). While our new mesh class is infinite, we prove that there exists a unique mesh parametrization, where each member of the class can be represented by two integer lattice variables, and moreover efficiently constructable. PMID:27563368

  6. Computerized Machine for Cutting Space Shuttle Thermal Tiles

    NASA Technical Reports Server (NTRS)

    Ramirez, Luis E.; Reuter, Lisa A.

    2009-01-01

    A report presents the concept of a machine aboard the space shuttle that would cut oversized thermal-tile blanks to precise sizes and shapes needed to replace tiles that were damaged or lost during ascent to orbit. The machine would include a computer-controlled jigsaw enclosed in a clear acrylic shell that would prevent escape of cutting debris. A vacuum motor would collect the debris into a reservoir and would hold a tile blank securely in place. A database stored in the computer would contain the unique shape and dimensions of every tile. Once a broken or missing tile was identified, its identification number would be entered into the computer, wherein the cutting pattern associated with that number would be retrieved from the database. A tile blank would be locked into a crib in the machine, the shell would be closed (proximity sensors would prevent activation of the machine while the shell was open), and a "cut" command would be sent from the computer. A blade would be moved around the crib like a plotter, cutting the tile to the required size and shape. Once the tile was cut, an astronaut would take a space walk for installation.

  7. Low-Density, Aerogel-Filled Thermal-Insulation Tiles

    NASA Technical Reports Server (NTRS)

    Santos, Maryann; Heng, Vann; Barney, Andrea; Oka, Kris; Droege, Michael

    2005-01-01

    Aerogel fillings have been investigated in a continuing effort to develop low-density thermal-insulation tiles that, relative to prior such tiles, have greater dimensional stability (especially less shrinkage), equal or lower thermal conductivity, and greater strength and durability. In preparation for laboratory tests of dimensional and thermal stability, prototypes of aerogel-filled versions of recently developed low-density tiles have been fabricated by impregnating such tiles to various depths with aerogel formations ranging in density from 1.5 to 5.6 lb/ft3 (about 53 to 200 kg/cu m). Results available at the time of reporting the information for this article showed that the thermal-insulation properties of the partially or fully aerogel- impregnated tiles were equivalent or superior to those of the corresponding non-impregnated tiles and that the partially impregnated tiles exhibited minimal (<1.5 percent) shrinkage after multiple exposures at a temperature of 2,300 F (1,260 C). Latest developments have shown that tiles containing aerogels at the higher end of the density range are stable after multiple exposures at the said temperature.

  8. Improving Efficiency of 3-SAT-Solving Tile Systems

    NASA Astrophysics Data System (ADS)

    Brun, Yuriy

    The tile assembly model has allowed the study of the nature's process of self-assembly and the development of self-assembling systems for solving complex computational problems. Research into this model has led to progress in two distinct classes of computational systems: Internet-sized distributed computation, such as software architectures for computational grids, and molecular computation, such as DNA computing. The design of large complex tile systems that emulate Turing machines has shown that the tile assembly model is Turing universal, while the design of small tile systems that implement simple algorithms has shown that tile assembly can be used to build private, fault-tolerant, and scalable distributed software systems and robust molecular machines. However, in order for these types of systems to compete with traditional computing devices, we must demonstrate that fairly simple tile systems can implement complex and intricate algorithms for important problems. The state of the art, however, requires vastly complex tile systems with large tile sets to implement such algorithms.

  9. Drainage water management effects on tile discharge and water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen (N) fluxes from tile drained watersheds have been implicated in water quality studies of the Mississippi River Basin, but the contribution of tile drains to N export in headwater watersheds is not well understood. The objective of this study was to ascertain seasonal and annual contribution...

  10. New SWAT tile drain equations: Modifications, Calibration, Validation, and Application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subsurface tile drainage is a commonly used agricultural practice to enhance crop yield in poorly drained but highly productive soils in many other regions of the world. However, the presence of subsurface tile drainage systems also expedites the transport of nitrate-nitrogen (NO3-N) and other chemi...

  11. Creative Tiling: A Story of 1000-and-1 Curves

    ERIC Educational Resources Information Center

    Al-Darwish, Nasir

    2012-01-01

    We describe a procedure that utilizes symmetric curves for building artistic tiles. One particular curve was found to mesh nicely with hundreds other curves, resulting in eye-catching tiling designs. The results of our work serve as a good example of using ideas from 2-D graphics and algorithms in a practical web-based application.

  12. METHOD FOR EVALUATING MOLD GROWTH ON CEILING TILE

    EPA Science Inventory

    A method to extract mold spores from porous ceiling tiles was developed using a masticator blender. Ceiling tiles were inoculated and analyzed using four species of mold. Statistical analysis comparing results obtained by masticator extraction and the swab method was performed. T...

  13. Nutrient and Pesticide Removal From Laboratory Simulated Tile Drainage Discharge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Excess nutrient and pesticide transport through subsurface tile drainage is well documented. One approach receiving consideration for reducing the amount of nutrients and pesticides in subsurface drainage waters is end-of-tile filters. The filters are often comprised of industrial wastes or by-produ...

  14. Ballistic Performance of Porous-Ceramic, Thermal Protection Systems to 9 km/s

    NASA Technical Reports Server (NTRS)

    Miller, Joshua E.; Bohl, William E.; Foreman, Cory D.; Christiansen, Eric C.; Davis, Bruce A.

    2010-01-01

    Porous-ceramic, thermal protection systems are used heavily in current reentry vehicles like the Orbiter, and they are currently being proposed for the next generation of US manned spacecraft, Orion. These materials insulate the structural components and sensitive components of a spacecraft against the intense thermal environments of atmospheric reentry. These materials are also highly exposed to solid particle space environment hazards. This paper discusses recent impact testing up to 9.65 km/s on ceramic tiles similar to those used on the Orbiter. These tiles are a porous-ceramic insulator of nominally 8 lb/ft(exp 3) alumina-fiber-enhanced-thermal-barrier (AETB8) coated with a damage-resistant, toughened-unipiece-fibrous-insulation/reaction-cured-glass layer (TUFI/RCG).

  15. CIDER PRESS, LOOKING SOUTHEAST ACROSS THE SCHUYLKILL RIVER. THIS PRESS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CIDER PRESS, LOOKING SOUTHEAST ACROSS THE SCHUYLKILL RIVER. THIS PRESS, CARVED OUT OF A LARGE BOULDER AT THE RIVERS EDGE, PROBABLY DATES FROM THE LIFETIME OF JOHN BARTRAM, IF NOT TO THE SWEDISH SETTLERS BEFORE HIM. THE IRON FENCE IS A NINETEENTH-CENTURY ADDITION - John Bartram House & Garden, 54th Street & Lindbergh Boulevard, Philadelphia, Philadelphia County, PA

  16. PRESS SHOP. SEVEN BLISS PRESSES STAMP OUT A VARIETY OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PRESS SHOP. SEVEN BLISS PRESSES STAMP OUT A VARIETY OF CARTRIDGE AND SHELL CASINGS. THIS DEPARTMENT WAS TRANSFORMED FROM A MONEY-LOSING OPERATION TO A PROFIT CENTER UNDER THE FIRST WORKER-MANAGED QUALITY CIRCLE IN THE PLANT. - American Brass Foundry, 70 Sayre Street, Buffalo, Erie County, NY

  17. Preparation and mechanical properties of the MgAl2O4 transparent phosphor ceramics

    NASA Astrophysics Data System (ADS)

    Bai, Xue; Li, Zhen; Lei, Muyun; Pang, Zhenli

    2014-09-01

    MgAl2O4 transparent phosphor ceramics were fabricated by hot-pressing and hot isostatic pressing using high-purity ultrafine MgAl2O4 powder mixed with phosphor. The microstructures of transparent phosphor ceramics were characterized by SEM and EDS. Moreover, the hardness and bending strength of transparent ceramics were measured. Effect of phosphor concentration (0~20%) on microstructure, hardness and bending flexture of transparent ceramics was analyzed. It was found that phosphor doping plays an important role in improving the mechanical property of transparent ceramics. So applying this kind of transparent phosphor ceramic to LED components as packaging material can significantly improve the lifetime and reliability of LED products.

  18. Introduction to building projection-based tiled display systems.

    SciTech Connect

    Hereld, M.; Judson, I. R.; Stevens, R.; Mathematics and Computer Science; Univ. of Chicago

    2000-07-01

    This tutorial introduces the concepts and technologies needed to build projector-based display systems. Tiled displays offer scalability, high resolution, and large formats for various applications. Tiled displays are an emerging technology for constructing semi-immersive visualization environments capable of presenting high-resolution images from scientific simulation. The largest impact may well arise from using large-format tiled displays as one of possibly multiple displays in building information or active spaces that surround the user with diverse ways of interacting with data and multimedia information flows. These environments may prove the ultimate successor to the desktop metaphor for information technology work. Several fundamental technological problems must be addressed to make tiled displays practical. These include: the choice of screen materials and support structures; choice of projectors, projector supports, and optional fine positioners; techniques for integrating image tiles into a seamless whole; interface devices for interaction with applications; display generators and interfaces; and the display software environment.

  19. Production of glass or glass-ceramic to metal seals with the application of pressure

    DOEpatents

    Kelly, M.D.; Kramer, D.P.

    1985-01-04

    In a process for preparing a glass or glass-ceramic to metal seal comprising contacting the glass with the metal and heat-treating the glass and metal under conditions whereby the glass to metal seal is effected and, optionally, the glass is converted to a glass-ceramic, an improvement comprises carrying out the heat-treating step using hot isostatic pressing.

  20. Production of glass or glass-ceramic to metal seals with the application of pressure

    DOEpatents

    Kelly, Michael D.; Kramer, Daniel P.

    1987-11-10

    In a process for preparing a glass or glass-ceramic to metal seal comprising contacting the glass with the metal and heat-treating the glass and metal under conditions whereby the glass to metal seal is effected and, optionally, the glass is converted to a glass-ceramic, an improvement comprises carrying out the heat-treating step using hot isostatic pressing.

  1. Initial Examination of Low Velocity Sphere Impact of Glass Ceramics

    SciTech Connect

    Morrissey, Timothy G; Fox, Ethan E; Wereszczak, Andrew A; Ferber, Mattison K

    2012-06-01

    This report summarizes US Army TARDEC sponsored work at Oak Ridge National Laboratory (ORNL) involving low velocity (< 30 m/s or < 65 mph) sphere impact testing of two materials from the lithium aluminosilicate family reinforced with different amounts of ceramic particulate, i.e., glass-ceramic materials, SCHOTT Resistan{trademark}-G1 and SCHOTT Resistan{trademark}-L. Both materials are provided by SCHOTT Glass (Duryea, PA). This work is a follow-up to similar sphere impact studies completed by the authors on PPG's Starphire{reg_sign} soda-lime silicate glass and SCHOTT BOROFLOAT{reg_sign} borosilicate glass. A gas gun or a sphere-drop test setup was used to produce controlled velocity delivery of silicon nitride (Si{sub 3}N{sub 4}) spheres against the glass ceramic tile targets. Minimum impact velocities to initiate fracture in the glass-ceramics were measured and interpreted in context to the kinetic energy of impact and the elastic property mismatch between sphere and target material. Quasistatic spherical indentation was also performed on both glass ceramics and their contact damage responses were compared to those of soda-lime silicate and borosilicate glasses. Lastly, variability of contact damage response was assessed by performing spherical indentation testing across the area of an entire glass ceramic tile. The primary observations from this low velocity (< 30 m/s or < 65 mph) testing were: (1) Resistan{trademark}-L glass ceramic required the highest velocity of sphere impact for damage to initiate. Starphire{reg_sign} soda-lime silicate glass was second best, then Resistan{trademark}-G1 glass ceramic, and then BOROFLOAT{reg_sign} borosilicate glass. (2) Glass-ceramic Resistan{trademark}-L also required the largest force to initiate ring crack from quasi-static indentation. That ranking was followed, in descending order, by Starphire{reg_sign} soda-lime silicate glass, Resistan{trademark}-G1 glass ceramic, and BOROFLOAT{reg_sign} borosilicate glass. (3

  2. Milestone 5 test report. Task 5, subtask 5.2: Tile to foam strength tests

    NASA Technical Reports Server (NTRS)

    Greenberg, H. S.

    1994-01-01

    This report summarizes work that has been performed to date on the strength of a cryotank insulation system using Rohacell foam and TUFI-coated AETB-12 ceramic tiles directly bonded to a simulated graphite-epoxy tank wall. Testing utilized a custom specimen design which consists of a long tensile specimen with eccentric loading to induce curvature similar to the curvature expected due to 'pillowing' of the tank when pressurized. A finite element model was constructed to predict the specific element strains in the test article, and to assist with design of the test specimen to meet the specific goals of curvature and laminate strain. The results indicate that the heat treated 3.25-pcf density Rohacell foam does not provide sufficient strength for the induced stresses due to curvature and stress concentration at the RTV bondline to the TUFI tile. The test was repeated using higher density non-heat treated Rohacell foam (6.9 pcf) without foam failure. The finite element model was shown to predict specimen behavior, and validation of the model was successful. It is pertinent to mention that the analyses described herein accurately predicted the failure of the heat treated foams and based on this analysis method it is expected that the untreated 3.25 pcf Rohacell foam will be successful.

  3. Milestone 5 test report. Task 5, subtask 5.2: Tile to foam strength tests

    NASA Astrophysics Data System (ADS)

    Greenberg, H. S.

    1994-12-01

    This report summarizes work that has been performed to date on the strength of a cryotank insulation system using Rohacell foam and TUFI-coated AETB-12 ceramic tiles directly bonded to a simulated graphite-epoxy tank wall. Testing utilized a custom specimen design which consists of a long tensile specimen with eccentric loading to induce curvature similar to the curvature expected due to 'pillowing' of the tank when pressurized. A finite element model was constructed to predict the specific element strains in the test article, and to assist with design of the test specimen to meet the specific goals of curvature and laminate strain. The results indicate that the heat treated 3.25-pcf density Rohacell foam does not provide sufficient strength for the induced stresses due to curvature and stress concentration at the RTV bondline to the TUFI tile. The test was repeated using higher density non-heat treated Rohacell foam (6.9 pcf) without foam failure. The finite element model was shown to predict specimen behavior, and validation of the model was successful. It is pertinent to mention that the analyses described herein accurately predicted the failure of the heat treated foams and based on this analysis method it is expected that the untreated 3.25 pcf Rohacell foam will be successful.

  4. Surface defect detection in tiling Industries using digital image processing methods: analysis and evaluation.

    PubMed

    Karimi, Mohammad H; Asemani, Davud

    2014-05-01

    Ceramic and tile industries should indispensably include a grading stage to quantify the quality of products. Actually, human control systems are often used for grading purposes. An automatic grading system is essential to enhance the quality control and marketing of the products. Since there generally exist six different types of defects originating from various stages of tile manufacturing lines with distinct textures and morphologies, many image processing techniques have been proposed for defect detection. In this paper, a survey has been made on the pattern recognition and image processing algorithms which have been used to detect surface defects. Each method appears to be limited for detecting some subgroup of defects. The detection techniques may be divided into three main groups: statistical pattern recognition, feature vector extraction and texture/image classification. The methods such as wavelet transform, filtering, morphology and contourlet transform are more effective for pre-processing tasks. Others including statistical methods, neural networks and model-based algorithms can be applied to extract the surface defects. Although, statistical methods are often appropriate for identification of large defects such as Spots, but techniques such as wavelet processing provide an acceptable response for detection of small defects such as Pinhole. A thorough survey is made in this paper on the existing algorithms in each subgroup. Also, the evaluation parameters are discussed including supervised and unsupervised parameters. Using various performance parameters, different defect detection algorithms are compared and evaluated. PMID:24502941

  5. Behavior of W-SiC/SiC dual layer tiles under LHD plasma exposure

    NASA Astrophysics Data System (ADS)

    Mohrez, Waleed A.; Kishimoto, Hirotatsu; Kohno, Yutaka; Hirotaki, S.; Kohyama, Akira

    2013-11-01

    Towards the early realization of fusion power reactors, high performance first wall and plasma facing components (PFCs) are essentially required. As one of the biggest challenges for this, high heat flux component (HHFC) design and R & D has been emphasized. This report provides the high performance HHFC materials R & D status and the first plasma exposure test result from large helical device (LHD). W-SiC/SiC dual layer tiles (hereafter, W-SiC/SiC) were developed by applied NITE process. This is the realistic concept of tungsten armor with ceramic composite substrates for fusion power reactors. The dual layer tiles were fabricated and tested their survival under the LHD divertor plasma exposure (Nominally 10 MW/m2 maximum heat load for 6 s operation cycle). The microstructure evolution, including crack and pore formation, was analyzed, besides the behavior of bonding layer between tungsten and SiC/SiC was evaluated by C-scanning images of ultrasonic method and Electron probe Micro-analyzer (EPMA). Thermal analysis was conducted by finite element method, where ANSYS code release 13.0 was used.

  6. Removal of nutrient and pesticides from tile drainage discharge using an end-of-tile cartridge approach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient transport from subsurface tile drainage is pretty well documented. One approach receiving consideration for reducing the amount of nutrients and pesticides in subsurface drainage waters is end-of-tile filters. The filters are often comprised of industrial wastes or by-products that have a s...

  7. Laser contouring of Space Shuttle tiles

    NASA Astrophysics Data System (ADS)

    Bishop, P. J.; Minardi, A.; He, Mingli; Shelton, Bret

    Straight through and partial cuts were made in fibrous silicon-based ceramic insulation materials (used on the Space Shuttle) to determine the feasibility of laser machining. Experimental results were accumulated from over 800 exposures to determine the belt conditions for cutting. Laser intensity, feedrate, and other parameters were varied to determine conditions for cutting and are discussed in the paper.

  8. The CIA and the Press.

    ERIC Educational Resources Information Center

    Carvalho, Bernardo A.

    The involvement of the Central Intelligence Agency (CIA) with both United States and foreign news media has been recorded in numerous publications. This report reviews the important aspects of the CIA-press relationships as they have appeared in print and discusses the implications of these relationsihps for the credibility of the press. Media…

  9. Press, Politics and Popular Government.

    ERIC Educational Resources Information Center

    Will, George F., Ed.

    A panel discussion on politics and the press was held at the convention of the American Political Science Association in September 1971. This volume contains an essay delivered at that panel on the various functions or activities of the press--adversary, surrogate, sovereign--and remarks of the three discussants. In addition, an essay especially…

  10. Microwave processing of ceramics

    SciTech Connect

    Katz, J.D.

    1989-01-01

    This paper discusses the following topics on microwave processing of ceramics: Microwave-material interactions; anticipated advantage of microwave sintering; ceramic sintering; and ceramic joining. 24 refs., 4 figs. (LSP)

  11. Expected radiation effects in plutonium immobilization ceramic

    SciTech Connect

    Van Konynenburg, R.A., LLNL

    1997-09-01

    The current formulation of the candidate ceramic for plutonium immobilization consists primarily of pyrochlore, with smaller amounts of hafnium-zirconolite, rutile, and brannerite or perovskite. At a plutonium loading of 10.5 weight %, this ceramic would be made metamict (amorphous) by radiation damage resulting from alpha decay in a time much less than 10,000 years, the actual time depending on the repository temperature as a function of time. Based on previous experimental radiation damage work by others, it seems clear that this process would also result in a bulk volume increase (swelling) of about 6% for ceramic that was mechanically unconfined. For the candidate ceramic, which is made by cold pressing and sintering and has porosity amounting to somewhat more than this amount, it seems likely that this swelling would be accommodated by filling in the porosity, if the material were tightly confined mechanically by the waste package. Some ceramics have been observed to undergo microcracking as a result of radiation-induced anisotropic or differential swelling. It is unlikely that the candidate ceramic will microcrack extensively, for three reasons: (1) its phase composition is dominated by a single matrix mineral phase, pyrochlore, which has a cubic crystal structure and is thus not subject to anisotropic swelling; (2) the proportion of minor phases is small, minimizing potential cracking due to differential swelling; and (3) there is some flexibility in sintering process parameters that will allow limitation of the grain size, which can further limit stresses resulting from either cause.

  12. The Press Research Centre, 1956-1976.

    ERIC Educational Resources Information Center

    Press Research Centre, Krakow (Poland).

    In 1956, the Press Research Centre was established in Cracow, Poland by a group of journalists and publishers, for the purpose of instituting press research that would have practical applications. The aims of the Centre were to conduct studies on the history of the Polish press, the contemporary press, press readership, and editorial techniques.…

  13. Tile-in-ONE: A web platform which integrates Tile Calorimeter data quality and calibration assessment

    NASA Astrophysics Data System (ADS)

    Sivolella, A.; Ferreira, F.; Maidantchik, C.; Solans, C.; Solodkov, A.; Burghgrave, B.; Smirnov, Y.

    2015-12-01

    The ATLAS Tile Calorimeter collaboration assesses the quality of calibration data in order to ensure its proper operation. A number of tasks is then performed by executing several tools and accessing web systems, which were independently developed to meet distinct collaboration's requirements and do not necessarily are connected with each other. Thus, to attend the collaboration needs, several programs are usually implemented without a global perspective of the detector, requiring basic software features. In addition, functionalities may overlap in their objectives and frequently replicate resources retrieval mechanisms. Tile-in-ONE is a designed and implemented platform that assembles various web systems used by the calorimeter community through a single framework and a standard technology. It provides an infrastructure to support the code implementation, avoiding duplication of work while integrating with an overall view of the detector status. Database connectors smooth the process of information access since developers do not need to be aware of where records are placed and how to extract them. Within the environment, a dashboard stands for a particular Tile operation aspect and gets together plug-ins, i.e. software components that add specific features to an existing application. A server contains the platform core, which represents the basic environment to deal with the configuration, manage user settings and load plug-ins at runtime. A web middleware assists users to develop their own plug-ins, perform tests and integrate them into the platform as a whole. Backends are employed to allow that any type of application is interpreted and displayed in a uniform way. This paper describes Tile-in-ONE web platform.

  14. Floor tile and mastic removal project report

    SciTech Connect

    Not Available

    1992-11-01

    A test program was developed and coordinated with State and Federal Regulators and carried out at Fort Sill, Oklahoma. This program was carefully designed to create the worst conditions in order to evaluate whether asbestos fibers are released when asbestos containing floor tile and mastic are removed. There were over 1,000 samples taken and analyzed during the execution of the program. The conclusions reached were based upon analysis of the critical samples using the Transmission Electron Microscope (TEM) technology. Additionally, the TEM procedures were used to evaluate personnel samples to determine whether those fibers found were asbestos or other materials. Most of the (TEM) samples were analyzed by the US Environmental Protection Agency (EPA) Risk Reduction Engineering Laboratory in Cincinnati, Ohio.

  15. Tile-Compressed FITS Kernel for IRAF

    NASA Astrophysics Data System (ADS)

    Seaman, R.

    2011-07-01

    The Flexible Image Transport System (FITS) is a ubiquitously supported standard of the astronomical community. Similarly, the Image Reduction and Analysis Facility (IRAF), developed by the National Optical Astronomy Observatory, is a widely used astronomical data reduction package. IRAF supplies compatibility with FITS format data through numerous tools and interfaces. The most integrated of these is IRAF's FITS image kernel that provides access to FITS from any IRAF task that uses the basic IMIO interface. The original FITS kernel is a complex interface of purpose-built procedures that presents growing maintenance issues and lacks recent FITS innovations. A new FITS kernel is being developed at NOAO that is layered on the CFITSIO library from the NASA Goddard Space Flight Center. The simplified interface will minimize maintenance headaches as well as add important new features such as support for the FITS tile-compressed (fpack) format.

  16. Local growth of icosahedral quasicrystalline tilings

    NASA Astrophysics Data System (ADS)

    Hann, Connor T.; Socolar, Joshua E. S.; Steinhardt, Paul J.

    2016-07-01

    Icosahedral quasicrystals (IQCs) with extremely high degrees of translational order have been produced in the laboratory and found in naturally occurring minerals, yet questions remain about how IQCs form. In particular, the fundamental question of how locally determined additions to a growing cluster can lead to the intricate long-range correlations in IQCs remains open. In answer to this question, we have developed an algorithm that is capable of producing a perfectly ordered IQC yet relies exclusively on local rules for sequential, face-to-face addition of tiles to a cluster. When the algorithm is seeded with a special type of cluster containing a defect, we find that growth is forced to infinity with high probability and that the resultant IQC has a vanishing density of defects. The geometric features underlying this algorithm can inform analyses of experimental systems and numerical models that generate highly ordered quasicrystals.

  17. Water reservoir as resource of raw material for ceramic industry

    NASA Astrophysics Data System (ADS)

    Irie, M.; Tarhouni, J.

    2015-04-01

    The industries related to the ceramics such as construction bricks, pottery and tile are the important sectors that cover the large part of the working population in Tunisia. The raw materials, clay or silt are excavated from opencast site of limestone clay stratum. The opencast site give the negative impact on landscape and environment, risks of landslide, soil erosion etc. On the other hand, a most serious problem in water resource management, especially in arid land such as Tunisia, is sedimentation in reservoirs. Sediment accumulation in the reservoirs reduces the water storage capacity. The authors proposed the exploitation of the sediment as raw material for the ceramics industries in the previous studies because the sediment in Tunisia is fine silt. In this study, the potential of the water reservoirs in Tunisia as the resource of the raw material for the ceramics industries is estimated from the sedimentation ratio in the water reservoirs.

  18. Nucleosome positioning from tiling microarray data

    PubMed Central

    Yassour, Moran; Kaplan, Tommy; Jaimovich, Ariel; Friedman, Nir

    2008-01-01

    Motivation: The packaging of DNA around nucleosomes in eukaryotic cells plays a crucial role in regulation of gene expression, and other DNA-related processes. To better understand the regulatory role of nucleosomes, it is important to pinpoint their position in a high (5–10 bp) resolution. Toward this end, several recent works used dense tiling arrays to map nucleosomes in a high-throughput manner. These data were then parsed and hand-curated, and the positions of nucleosomes were assessed. Results: In this manuscript, we present a fully automated algorithm to analyze such data and predict the exact location of nucleosomes. We introduce a method, based on a probabilistic graphical model, to increase the resolution of our predictions even beyond that of the microarray used. We show how to build such a model and how to compile it into a simple Hidden Markov Model, allowing for a fast and accurate inference of nucleosome positions. We applied our model to nucleosomal data from mid-log yeast cells reported by Yuan et al. and compared our predictions to those of the original paper; to a more recent method that uses five times denser tiling arrays as explained by Lee et al.; and to a curated set of literature-based nucleosome positions. Our results suggest that by applying our algorithm to the same data used by Yuan et al. our fully automated model traced 13% more nucleosomes, and increased the overall accuracy by about 20%. We believe that such an improvement opens the way for a better understanding of the regulatory mechanisms controlling gene expression, and how they are encoded in the DNA. Contact: nir@cs.huji.ac.il PMID:18586706

  19. Spectral response data for development of cool coloured tile coverings

    NASA Astrophysics Data System (ADS)

    Libbra, Antonio; Tarozzi, Luca; Muscio, Alberto; Corticelli, Mauro A.

    2011-03-01

    Most ancient or traditional buildings in Italy show steep-slope roofs covered by red clay tiles. As the rooms immediately below the roof are often inhabited in historical or densely urbanized centres, the combination of low solar reflectance of tile coverings and low thermal inertia of either wooden roof structures or sub-tile insulation panels makes summer overheating a major problem. The problem can be mitigated by using tiles coated with cool colours, that is colours with the same spectral response of clay tiles in the visible, but highly reflecting in the near infrared range, which includes more than half of solar radiation. Cool colours can yield the same visible aspect of common building surfaces, but higher solar reflectance. Studies aimed at developing cool colour tile coverings for traditional Italian buildings have been started. A few coating solutions with the typical red terracotta colour have been produced and tested in the laboratory, using easily available materials. The spectral response and the solar reflectance have been measured and compared with that of standard tiles.

  20. Colorimetric and microscopic study of the thermal behavior of new ceramic pigments.

    PubMed

    Saviuc-Paval, Ana Mihaela; Victor Sandu, Andrei; Marcel Popa, Ionel; Anca Sandu, Irina Crina; Petru Bertea, Andrei; Sandu, Ion

    2013-06-01

    The article studies thermal resistance variation by analyzing the colorimetric parameters correlated with the optical microscopy data of two groups of ceramic pigments obtained by co-precipitation in aqueous medium of phosphate anion and of a mixture of chromium phosphate with various chromophore cations. This research enabled us to reveal the thermal thresholds/domains within which significant color changes occur, thus allowing the choice of pigments compatible with the thermal varnishing-glazing processes involved in the manufacture of tesserae for mosaic and stained glass and of colored materials for floor tiles, wall tiles and painted porcelain. PMID:23495175

  1. Materials Science and Technology, Volume 17B, Processing of Ceramics Part II

    NASA Astrophysics Data System (ADS)

    Brook, Richard J.

    1996-12-01

    Progress in the processing of ceramics has made these materials very important for current and future technologies. Internationally renowned experts have contributed to this second of two volumes which provide a wealth of information indispensable for materials scientists and engineers. Contents of Volume B: Riedel: Advanced Ceramics from Inorganic Polymers. Calvert: Biomimetic Processing. Eisele: Sintering and Hot Pressing. Kwon: Liquid-Phase Sintering. Leriche/Cambier: Vitrification. Larker/Larker: Hot Isostatic Pressing. Harmer/Chan: Fired Microstructures and Their Charactzerization. Subramanian: Finishing. Nicholas: Joining of Ceramics. Hirai: Functional Gradient Materials.

  2. Formation of Ag-Pd contacts on Y-Ba-CuO ceramic and contact properties

    NASA Astrophysics Data System (ADS)

    Gartsman, K. G.; Duguzhev, Sh. M.; Parfen'eva, L. S.; Smirnov, I. A.

    1991-01-01

    Ag-Pd (30 pct Pd) contacts were formed on pellets of Y-Ba-CuO ceramic in the process of powder compaction by pressing a thin layer of Ag-Pd alloy, deposited on a 6-micron-thick organic film, to the end surfaces of the ceramic pellet. Cold pressing was followed by annealing, during which the organic substrate burned out and a bond was formed between the ceramic and the metal alloy. The resistance of the contacts produced by this method is 0.0026 ohm/sq cm, which is significantly better than that of contacts produced by using silver pastes.

  3. Porosity Dependence of Piezoelectric Properties for Porous Potassium Niobate System Ceramics

    NASA Astrophysics Data System (ADS)

    Wada, S.; Mase, Y.; Shimizu, S.; Maeda, K.; Fujii, I.; Nakashima, K.; Pulpan, P.; Miyajima, N.

    2011-10-01

    Porous potassium niobate (KNbO3, KN) system ceramics were prepared by a conventional sintering method using carbon black (CB) nanoparticles. First, KN nanoparticles with a size of 100 nm was mixed with CB nanoparticles and binder using ball milling with ethanol. The mixture was dried, and pressed into pellets using uniaxial pressing. After binder burnout, these ceramics was sintered in air. Their piezoelectric properties were measured and discussed a relationship between porosity and piezoelectric properties. As the results, with increasing porosity, piezoelectric g33 constant increased significantly, which suggested that porous ceramics were effective for stress sensor application.

  4. Compatibility of potential reinforcing ceramics with Ni and Fe aluminides

    NASA Technical Reports Server (NTRS)

    Moser, J. A.; Aindow, M.; Clark, W. A. T.; Draper, S.; Fraser, H. L.

    1990-01-01

    The compatibility of candidate ceramic reinforcement materials with intermetallic matrices for high temperature composite systems has been evaluated. Powders of FeAl and NiAl were mixed with ceramic powders and consolidated by hot isostatic pressing and subsequent heat treatment. The microstructures of these composites and the nature of the ceramic/matrix interfaces were assessed using a wide variety of electron-beam techniques. The system FeAl/TiB2 was found to be particularly promising. The matrix appears to be bonded to the ceramic particles, which may be the result of diffusion of Fe into the ceramic. The particles stabilized in a previously unreported monoclinic crystal structure, rather than the equilibrium hexagonal form exhibited by the binary compound.

  5. THz imaging of majolica tiles and biological attached marble fragments

    NASA Astrophysics Data System (ADS)

    Catapano, Ilaria; Soldovieri, Francesco

    2016-04-01

    Devices exploiting waves in the frequency range from 0.1 THz to 10 THz (corresponding to a free-space wavelength ranging from 30 μm to 3 mm) deserve attention as diagnostic technologies for cultural heritage. THz waves are, indeed, non-ionizing radiations capable of penetrating into non-metallic materials, which are opaque to both visible and infrared waves, without implying long term risks to the molecular stability of the exposed objects and humans. Moreover, THz surveys involve low poewr probing waves, are performed without contact with the object and, thanks to the recent developments, which have allowed the commercialization of compact, flexible and portable systems, maybe performed in loco (i.e. in the place where the artworks are usually located). On the other hand, THz devices can be considered as the youngest among the sensing and imaging electromagnetic techniques and their actual potentialities in terms of characterization of artworks is an ongoing research activity. As a contribution within this context, we have performed time of flight THz imaging [1,2] on ceramic and marble objects. In particular, we surveyed majolica tiles produced by Neapolitan ceramists in the 18th and 19th centuries with the aim to gather information on their structure, constructive technique and conservation state. Moreover, we investigated a Marmo di Candoglia fragment in order to characterize the biological attach affecting it. All the surveys were carried out by using the Fiber-Coupled Terahertz Time Domain System (FICO) developed by Z-Omega and available at the Institute of Electromagnetic Sensing of the Environment (IREA). This system is equipped with fiber optic coupled transmitting and receiving probes and with an automatic positioning system enabling to scan a 150 mm x 150 mm area under a reflection measurement configuration. Based on the obtained results we can state that the use of THz waves allows: - the reconstruction of the object topography; - the geometrical

  6. Tiling and demand-driven evaluation for picture processing

    NASA Astrophysics Data System (ADS)

    Horain, Patrick J.; Dogaru, Victor

    1995-08-01

    We propose a software architecture for picture processing that allows efficient memory management when algorithms with many operators are applied to large images, and that allows automated parallelization. This architecture relies on image tiling and operators with a call back function that evaluates image tiles on demand. Several tiling strategies with and without overlapping are discussed. The compexity of this evaluation strategy is hidden to application programs. This is shown with a sample program. This architecture is well suited for neighborhood operators such as convolutions and mathematical morphology operators.

  7. ATLAS Tile Calorimeter: simulation and validation of the response

    NASA Astrophysics Data System (ADS)

    Faltova, Jana; ATLAS Collaboration

    2015-02-01

    The Tile Calorimeter (TileCal) is the central section of the ATLAS hadronic calorimeter at the Large Hadron Collider. Scintillation light produced in the tiles is readout by wavelength shifting fibers and transmitted to photomultiplier tubes (PMTs). The resulting electronic signals from approximately 10000 PMTs are measured and digitized before being further transferred to off-detector data-acquisition systems. Detailed simulations are described in this contribution, ranging from the implementation of the geometrical elements to the realistic description of the electronics readout pulses, including specific noise treatment and the signal reconstruction. Special attention is given to the improved optical signal propagation and the validation with the real particle data.

  8. Structure, nanohardness and photoluminescence of ZnO ceramics based on nanopowders

    NASA Astrophysics Data System (ADS)

    Muktepavela, Faina; Grigorjeva, Larisa; Kundzins, Karlis; Gorokhova, Elena; Rodnyi, Piotr

    2015-09-01

    ZnO ceramics obtained from grained powders with different grain size by hot pressing and ceramics from tetrapods nanopowders obtained by press-less sintering have been investigated under identical conditions. Ceramics obtained by hot pressing were optically transparent but were composed of large inhomogeneous grains (d = 8-35 μm) exhibiting a substructure. Decreased values of elastic modulus within a grain and a wide defect-associated (‘green’) photoluminescence (PL) band at 2.2-2.8 eV in conjunction with a weak excitonic band indicate a high concentration of residual point defects in hot pressed ZnO ceramics. Utilization of more small-grained powders contributes to the formation of more uniform microstructure (d = 5-15 μm) and extraction of point defects. This reflects as a substantially decreased defect PL band and increased excitonic band. Ceramics obtained by press-less sintering from tetrapods had fine-grained structure (d = 1-4 μm) with no signs of a substructure. PL spectrum has a narrow excitonic band with phonon replicas (1LO_ExD0), whereas the defect ‘green’ luminescence is negligible. The effects of powders morphologies have been explained in terms of a hereditary influence of interaction processes between initial particles on the formation of a microstructure and kinetic of defect distribution on the grain growth stages during the sintering of ZnO ceramics.

  9. Investing in a Large Stretch Press

    NASA Technical Reports Server (NTRS)

    Choate, M.; Nealson, W.; Jay, G.; Buss, W.

    1986-01-01

    Press for forming large aluminum parts from plates provides substantial economies. Study assessed advantages and disadvantages of investing in large stretch-forming press, and also developed procurement specification for press.

  10. A study on improving mechanical properties of porous HA tissue engineering scaffolds by hot isostatic pressing.

    PubMed

    Zhao, Jing; Xiao, Suguang; Lu, Xiong; Wang, Jianxin; Weng, Jie

    2006-12-01

    Various interconnected porous hydroxyapatite (HA) ceramic scaffolds are universally used to induct the tissue growth for bone repair and replacement, and serve to support the adhesion, transfer, proliferation and differentiation of cells. Impregnation of polyurethane sponges with a ceramic slurry is adopted to produce highly porous HA ceramic scaffolds with a 3D interconnected structure. However, high porosity always accompanies a decrease in the strength of the HA ceramic scaffolds. Therefore, it is significant to improve the strength of the HA ceramic scaffolds with highly interconnected porosity so that they are more suitable in clinical applications. In this work, highly porous HA ceramic scaffolds are first produced by the polymer impregnation approach, and subsequently further sintered by hot isostatic pressing (HIP). The phase composition, macro- and micro-porous structure, sintering and mechanical properties of the porous HA scaffolds are investigated by x-ray diffraction (XRD), scanning electron microscopy (SEM), nanoindentation analysis and compressive test. The experimental results show that the nanohardness and compressive strength of HIP-sintered porous HA ceramics are higher than those of commonly sintered HA scaffolds. The HIP technique can effectively improve the sintering property and densification of porous HA ceramic scaffolds, so inducing an increase in the compression strength. PMID:18458404

  11. Ceramic stove

    SciTech Connect

    Goetz, M.

    1984-12-24

    A ceramic stove that may be supplied in kit form includes a base frame, a cast iron firebox secured on the base frame, a top frame attached to and surrounding the top of the firebox, and ceramic panels extending between and held by the frames in spaced relation from the firebox. The ceramic panels are ''ship-lapped'' relative to each other and are not cemented or otherwise positively attached to each other. Logs may be fed as fuel into the fire box door from one side of the stove allowing longer logs to be burned. The logs rest on a grate which includes a ''shakable'' portion for shaking ashes onto an ash pan located below the grate. A separate, small door into the firebox is provided for starting the fire and that door is covered by another, safety door which also closes the scape through whic the ash pan is removed for emptying. An outer screen gate is provided to overlie the firebox doors and the entire side of the firebos. Products of combustion rise in the firebox and are guided by a baffle in a desired serpentine path prolonging their containment, until they reach an outlet at the top of the fire box where they are then carried downwardly by a flue formed in part by a portion of the back wall of the firebox. A heat shield covers the back wall of the firebox including the flue whose outlet extends through the heat shield at mid elevation. Other features and advantages are also disclosed.

  12. Monolithic ceramics

    NASA Technical Reports Server (NTRS)

    Herbell, Thomas P.; Sanders, William A.

    1992-01-01

    A development history and current development status evaluation are presented for SiC and Si3N4 monolithic ceramics. In the absence of widely sought improvements in these materials' toughness, and associated reliability in structural applications, uses will remain restricted to components in noncritical, nonman-rated aerospace applications such as cruise missile and drone gas turbine engine components. In such high temperature engine-section components, projected costs lie below those associated with superalloy-based short-life/expendable engines. Advancements are required in processing technology for the sake of fewer and smaller microstructural flaws.

  13. Evaluation and ranking of candidate ceramic wafer engine seal materials

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.

    1991-01-01

    Modern engineered ceramics offer high temperature capabilities not found in even the best superalloy metals. The high temperature properties of several selected ceramics including aluminum oxide, silicon carbide, and silicon nitride are reviewed as they apply to hypersonic engine seal design. A ranking procedure is employed to objectively differentiate among four different monolithic ceramic materials considered, including: a cold-pressed and sintered aluminum oxide; a sintered alpha-phase silicon carbide; a hot-isostatically pressed silicon nitride; and a cold-pressed and sintered silicon nitride. This procedure is used to narrow the wide range of potential ceramics considered to an acceptable number for future detailed and costly analyses and tests. The materials are numerically scored according to their high temperature flexural strength; high temperature thermal conductivity; resistance to crack growth; resistance to high heating rates; fracture toughness; Weibull modulus; and finally according to their resistance to leakage flow, where materials having coefficients of thermal expansion closely matching the engine panel material resist leakage flow best. The cold-pressed and sintered material (Kyocera SN-251) ranked the highest in the overall ranking especially when implemented in engine panels made of low expansion rate materials being considered for the engine, including Incoloy and titanium alloys.

  14. Evaluation and ranking of candidate ceramic wafer engine seal materials

    SciTech Connect

    Steinetz, B.M.

    1991-05-01

    Modern engineered ceramics offer high temperature capabilities not found in even the best superalloy metals. The high temperature properties of several selected ceramics including aluminum oxide, silicon carbide, and silicon nitride are reviewed as they apply to hypersonic engine seal design. A ranking procedure is employed to objectively differentiate among four different monolithic ceramic materials considered, including: a cold-pressed and sintered aluminum oxide; a sintered alpha-phase silicon carbide; a hot-isostatically pressed silicon nitride; and a cold-pressed and sintered silicon nitride. This procedure is used to narrow the wide range of potential ceramics considered to an acceptable number for future detailed and costly analyses and tests. The materials are numerically scored according to their high temperature flexural strength; high temperature thermal conductivity; resistance to crack growth; resistance to high heating rates; fracture toughness; Weibull modulus; and finally according to their resistance to leakage flow, where materials having coefficients of thermal expansion closely matching the engine panel material resist leakage flow best. The cold-pressed and sintered material (Kyocera SN{sup -251}) ranked the highest in the overall ranking especially when implemented in engine panels made of low expansion rate materials being considered for the engine, including Incoloy and titanium alloys.

  15. 25. CAFETERIA Note remains of tile floor in foreground. Food ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. CAFETERIA Note remains of tile floor in foreground. Food cooked on the stove was served to workers in the eating area to the left of the counter (off picture). - Hovden Cannery, 886 Cannery Row, Monterey, Monterey County, CA

  16. Using Homemade Algebra Tiles To Develop Algebra and Prealgebra Concepts.

    ERIC Educational Resources Information Center

    Leitze, Annette Ricks; Kitt, Nancy A.

    2000-01-01

    Describes how to use homemade tiles, sketches, and the box method to reach a broader group of students for successful algebra learning. Provides a list of concepts appropriate for such an approach. (KHR)

  17. 44. Everett Weinreb, photographer DETAIL, CEMENT TILE PATTERN, FROM LOGGIA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. Everett Weinreb, photographer DETAIL, CEMENT TILE PATTERN, FROM LOGGIA LOOKING EAST ACROSS RECEPTION HALL - Los Angeles Union Passenger Terminal, Tracks & Shed, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  18. 45. Everett, Weinreb, photographer DETAIL, CEMENT TILE PATTERN FROM RECEPTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. Everett, Weinreb, photographer DETAIL, CEMENT TILE PATTERN FROM RECEPTION HALL LOOKING EAST ACROSS ARRIVAL LOBBY FLOOR - Los Angeles Union Passenger Terminal, Tracks & Shed, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  19. VIEW OF COMPASS ROSE TILE INLAY IN FLOOR OF LOBBY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF COMPASS ROSE TILE INLAY IN FLOOR OF LOBBY, BUILDING 1, LOOKING SOUTHEAST - Roosevelt Base, Administration & Brig Building, Bounded by Nevada & Colorado Streets, Reeves & Richardson Avenues, Long Beach, Los Angeles County, CA

  20. 12. FIREPLACE: TILES AND CARVED WOOD PANEL. IN THE LATTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. FIREPLACE: TILES AND CARVED WOOD PANEL. IN THE LATTER READS THE WORDS OF THE MORRIS FAMILY'S HOMES: CEDAR GROVE, A.D. 1774 AND COMPTON, A.D. 1887. - Compton, Meadowbrook Avenue, Philadelphia, Philadelphia County, PA

  1. South front, west part, showing wrought iron gates and tiling ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    South front, west part, showing wrought iron gates and tiling at the former main entrance. - San Bernardino Valley College, Life Science Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  2. Detail of first floor of loading dock showing composition tile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of first floor of loading dock showing composition tile over wood floor/basement ceiling - Southern Pacific Railroad Depot, Railroad Terminal Post Office & Express Building, Fifth & I Streets, Sacramento, Sacramento County, CA

  3. Interference Heating to Cavities Between Simulated RSI Tiles

    NASA Technical Reports Server (NTRS)

    Johnson, C. B.

    1973-01-01

    Test results for full scale simulated surface insulation tiles on both the tunnel wall and in the free stream, for in-line and staggered tile orientations, are summarized as follows: (1) The staggered tile orientation has heating on the forward face which is a factor of 4.5 times higher than the heating to the forward face of the in-line tile orientation; (2) the longitudinal gap heating was the highest for the 0.3175 cm gap and the lowest for the 0.1587 cm gap; and (3) there was an order of magnitude decrease in the heating on the forward face of a spanwise gap when the gap size was decreased from 0.3175 cm to 0.1587 cm.

  4. Method of producing a ceramic fiber-reinforced glass-ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P. (Inventor)

    1994-01-01

    A fiber-reinforced composite composed of a BaO-Al2O3-2SiO2 (BAS) glass ceramic matrix is reinforced with CVD silicon carbide continuous fibers. A slurry of BAS glass powders is prepared and celsian seeds are added during ball melting. The slurry is cast into tapes which are cut to the proper size. Continuous CVD-SiC fibers are formed into mats of the desired size. The matrix tapes and the fiber mats are alternately stacked in the proper orientation. This tape-mat stack is warm pressed to produce a 'green' composite. The 'green' composite is then heated to an elevated temperature to burn out organic constituents. The remaining interim material is then hot pressed to form a silicon carbide fiber-reinforced celsian (BAS) glass-ceramic matrix composite which may be machined to size.

  5. Master plate production for the tile calorimeter extended barrel modules.

    SciTech Connect

    Guarino, V.J.; Hill, N.; Petereit, E.; Price, L.E.; Proudfoot, J.; Wood, K.

    1999-03-10

    Approximately 41,000 master plates (Fig. 1) are required for the Extended Barrel Hadronic Calorimeter for the ATLAS experiment at the LHC. Early in the R&D program associated with the detector, it was recognized that the fabrication of these steel laminations was a significant issue, both in terms of the cost to produce these high precision formed plates, as well as the length of time required to produce all plates for the calorimeter. Two approaches were given serious consideration: laser cutting and die stamping. The Argonne group was a strong supporter of the latter approach and in late 1995 initiated an R&D program to demonstrate the feasibility and cost effectiveness of die stamping these plates by constructing a die and stamping approximately 2000 plates for use in construction of three full size prototype modules. This was extremely successful and die stamping was selected by the group for production of these plates. When the prototype die was constructed it was matched to the calorimeter envelope at that time. This subsequently changed. However with some minor adjustments in the design envelope and a small compromise in terms of instrumented volume, it became possible to use this same die for the production of all master plates for the Tile Calorimeter. Following an extensive series of discussions and an evaluation of the performance of the stamping presses available to our collaborators in Europe, it was decided to ship the US die to CERN for use in stamping master plates for the barrel section of the calorimeter. This was done under the supervision of CERN and JINR, Dubna, and carried out at the TATRA truck plant at Koprivinice, Czech Republic. It was a great success. Approximately 41,000 plates were stamped and fully met specification. Moreover, the production time was significantly reduced by avoiding the need of constructing and then qualifying a second die for use in Europe. This also precluded small geometrical differences between the barrel and

  6. Microstructure-property relationship in silicon carbide armor ceramics

    NASA Astrophysics Data System (ADS)

    Demirbas, Memduh Volkan

    Defects are one of the factors that show a negative effect on the ballistic performance. Uniform microstructures with a low percentage of well distributed porosity could possibly demonstrate high ballistic strength; therefore, it is of interest to estimate the parameters that define the spatial arrangement of defects. This aspect of microstructures was investigated in a variety of silicon carbide ceramics ranging from off-density sintered samples to high density hot-pressed armor grade samples. The spatial distribution of defects was examined by various techniques including nearest neighbor distance distributions, tessellation analysis, and pair correlation functions. Random distributions were observed for most of the samples with some degree of clustering. Hardness was selected as a mechanical property to correlate with microstructural findings. Hardness contour maps were constructed by indenting samples with a statistically significant number of indents per load to see the variation in terms of location. The large number of indents allowed for Weibull analysis to be used to examine the spread in the data and to test spatial variability. A high degree of correlation was obtained between microstructural parameters and hardness/Weibull modulus values. Smaller defect sizes and homogenous distribution of defects were shown to provide higher hardness values. A sintered SiC tile was examined using ultrasound to determine high and low amplitude regions in C-scan image maps. Serial sectioning was performed on diced samples from these two regions. Although no significant difference was observed in terms of density and average defect size, statistical tests showed that the difference in the largest defect size detected in low amplitude and high amplitude regions was significant. Clusters of defects were also identified in the samples from the low amplitude regions. The signal loss that was observed in C-scans maps could partially be attributed to these results. A

  7. ATLAS Tile Calorimeter performance with Run 1 data

    NASA Astrophysics Data System (ADS)

    Cerdá Alberich, L.

    2016-07-01

    The performance of the central hadronic calorimeter, TileCal, in the ATLAS Experiment at the Large Hadron Collider is studied using cosmic-ray muons and the large sample of proton-proton collisions acquired during the Run 1 of LHC (2010-2012). Results are presented for the precision of the absolute energy scale and timing, noise characterization, and time-stability of the detector. The results show that the Tile Calorimeter performance is within the design requirements of the detector.

  8. 56. ORIGINAL MOLDS. THE MORAVIAN POTTERY AND TILE WORKS HAS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. ORIGINAL MOLDS. THE MORAVIAN POTTERY AND TILE WORKS HAS APPROXIMATELY 6,000 PLASTER MOLDS OF VARIOUS TYPES, INCLUDING THE DEEP CAVITY MOLDS IN THE CENTER OF THE PHOTOGRAPH. THESE MOLDS PRODUCED ALLEGORICAL FIGURES TO BE INSTALLED AROUND THE CORNICES OF PUBLIC SCHOOLS. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  9. No inherent glassiness in a Penrose tiling quasicrystal

    SciTech Connect

    Strandburg, K.J.; Dressel, P.R.

    1988-11-01

    Consideration of the structure of the Penrose pattern has led to speculation that a system with a Penrose tiling ground state might be subject to inherent glassy behavior. Monte Carol simulations show, using a simple model of the energetics, that there is no inherent glassiness in the Penrose tiling. Thermodynamic quantities measured are completely reversible, displaying no observable hysterisis, and the system may be easily cooled from a highly disordered configuration into its lowest energy state. 11 refs., 7 figs.

  10. Ceramic fiber ceramic matrix filter development

    SciTech Connect

    Judkins, R.R.; Stinton, D.P.; Smith, R.G.; Fischer, E.M.

    1994-09-01

    The objectives of this project were to develop a novel type of candle filter based on a ceramic fiber-ceramic matrix composite material, and to extend the development to full-size, 60-mm OD by 1-meter-long candle filters. The goal is to develop a ceramic filter suitable for use in a variety of fossil energy system environments such as integrated coal gasification combined cycles (IGCC), pressurized fluidized-bed combustion (PFBC), and other advanced coal combustion environments. Further, the ceramic fiber ceramic matrix composite filter, hereinafter referred to as the ceramic composite filter, was to be inherently crack resistant, a property not found in conventional monolithic ceramic candle filters, such as those fabricated from clay-bonded silicon carbide. Finally, the adequacy of the filters in the fossil energy system environments is to be proven through simulated and in-plant tests.

  11. Environmental durability of ceramics and ceramic composites

    NASA Technical Reports Server (NTRS)

    Fox, Dennis S.

    1992-01-01

    An account is given of the current understanding of the environmental durability of both monolithic ceramics and ceramic-matrix composites, with a view to the prospective development of methods for the characterization, prediction, and improvement of ceramics' environmental durability. Attention is given to the environmental degradation behaviors of SiC, Si3N4, Al2O3, and glass-ceramic matrix compositions. The focus of corrosion prevention in Si-based ceramics such as SiC and Si3N4 is on the high and low sulfur fuel combustion-product effects encountered in heat engine applications of these ceramics; sintering additives and raw material impurities are noted to play a decisive role in ceramics' high temperature environmental response.

  12. Fabrication of translucent boron nitride dispersed polycrystalline silicon nitride ceramics

    NASA Astrophysics Data System (ADS)

    Joshi, B.; Fu, Z.; Niihara, K.; Lee, S. W.

    2011-03-01

    Optical transparency was achieved at infrared region and overall translucent silicon nitride was fabricated using hot press sintering (HPS). The increase in h-BN content decreased the optical transparency. Microstructral observations shows that the optical, mechanical and tribological properties of BN dispersed polycrystalline Si3N4 ceramics were affected by the density, α:β-phase ratio and content of h-BN in sintered ceramics. The hot pressed samples were prepared from the mixture of α-Si3N4, AlN, MgO and h-BN at 1850°C. The composite contained from 0.25 to 2 mass % BN powder with sintering aids (9% AlN + 3% MgO). Maximum transmittance of 57% was achieved for 0.25 mass % BN doped Si3N4 ceramics. Fracture toughness was increased and wear volume and friction coefficient were decreased with increase in BN content.

  13. Spatial chaos of Wang tiles with two symbols

    NASA Astrophysics Data System (ADS)

    Chen, Jin-Yu; Chen, Yu-Jie; Hu, Wen-Guei; Lin, Song-Sun

    2016-02-01

    This investigation completely classifies the spatial chaos problem in plane edge coloring (Wang tiles) with two symbols. For a set of Wang tiles B , spatial chaos occurs when the spatial entropy h ( B ) is positive. B is called a minimal cycle generator if P ( B ) ≠ 0̸ and P ( B ' ) = 0̸ whenever B ' ⫋ B , where P ( B ) is the set of all periodic patterns on ℤ2 generated by B . Given a set of Wang tiles B , write B = C 1 ∪ C 2 ∪ ⋯ ∪ C k ∪ N , where Cj, 1 ≤ j ≤ k, are minimal cycle generators and B contains no minimal cycle generator except those contained in C1∪C2∪⋯∪Ck. Then, the positivity of spatial entropy h ( B ) is completely determined by C1∪C2∪⋯∪Ck. Furthermore, there are 39 equivalence classes of marginal positive-entropy sets of Wang tiles and 18 equivalence classes of saturated zero-entropy sets of Wang tiles. For a set of Wang tiles B , h ( B ) is positive if and only if B contains a MPE set, and h ( B ) is zero if and only if B is a subset of a SZE set.

  14. Silicon carbide whisker reinforced ceramic composites and method for making same

    DOEpatents

    Wei, George C. [Oak Ridge, TN

    1989-01-24

    The present invention is directed to the fabrication of ceramic composites which possess improved mechanical properties especially increased fracture toughness. In the formation of these ceramic composites, the single crystal SiC whiskers are mixed with fine ceramic powders of a ceramic material such as Al.sub.2 O.sub.3, mullite, or B.sub.4 C. The mixtures which contain a homogeneous disperson of the SiC whiskers are hot pressed at pressures in a range of about 28 to 70 MPa and temperatures in the range of about 1600.degree. to 1950.degree. C. with pressing times varying from about 0.75 to 2.5 hours. The resulting ceramic composites show an increase in fracture toughness of up to about 9 MP.am.sup.1/2 which represents as much as a two-fold increase over that of the matrix material.

  15. Silicon carbide whisker reinforced ceramic composites and method for making same

    DOEpatents

    Wei, George C.

    1993-01-01

    The present invention is directed to the fabrication of ceramic composites which possess improved mechanical properties especially increased fracture toughness. In the formation of these ceramic composites, the single crystal SiC whiskers are mixed with fine ceramic powders of a ceramic material such as Al.sub.2 O.sub.3, mullite, or B.sub.4 C. The mixtures which contain a homogeneous disperson of the SiC whiskers are hot pressed at pressures in a range of about 28 to 70 MPa and temperatures in the range of about 1600.degree. to 1950.degree. C. with pressing times varying from about 0.075 to 2.5 hours. The resulting ceramic composites show an increase in fracture toughness of up to about 9 MPa.m.sup.1/2 which represents as much as a two-fold increase over that of the matrix material.

  16. Silicon carbide whisker reinforced ceramic composites and method for making same

    DOEpatents

    Wei, George C.

    1985-01-01

    The present invention is directed to the fabrication of ceramic composites which possess improved mechanical properties especially increased fracture toughness. In the formation of these ceramic composites, the single crystal SiC whiskers are mixed with fine ceramic powders of a ceramic material such as Al.sub.2 O.sub.3, mullite, or B.sub.4 C. The mixtures which contain a homogeneous dispersion of the SiC whiskers are hot pressed at pressures in a range of about 28 to 70 MPa and temperatures in the range of about 1600.degree. to 1950.degree. C. with pressing times varying from about 0.75 to 2.5 hours. The resulting ceramic composites show an increase in fracture toughness of up to about 9 MPa.m.sup.1/2 which represents as much as a two-fold increase over that of the matrix material.

  17. Silicon carbide whisker reinforced ceramic composites and method for making same

    DOEpatents

    Wei, G.C.

    1989-01-24

    The present invention is directed to the fabrication of ceramic composites which possess improved mechanical properties especially increased fracture toughness. In the formation of these ceramic composites, the single crystal SiC whiskers are mixed with fine ceramic powders of a ceramic material such as Al{sub 2}O{sub 3}, mullite, or B{sub 4}C. The mixtures which contain a homogeneous dispersion of the SiC whiskers are hot pressed at pressures in a range of about 28 to 70 MPa and temperatures in the range of about 1,600 to 1,950 C with pressing times varying from about 0.75 to 2.5 hours. The resulting ceramic composites show an increase in fracture toughness which represents as much as a two-fold increase over that of the matrix material.

  18. Silicon carbide whisker reinforced ceramic composites and method for making same

    DOEpatents

    Wei, George C.

    1993-11-16

    The present invention is directed to the fabrication of ceramic composites which possess improved mechanical properties especially increased fracture toughness. In the formation of these ceramic composites, the single crystal SiC whiskers are mixed with fine ceramic powders of a ceramic material such as Al.sub.2 O.sub.3, mullite, or B.sub.4 C. The mixtures which contain a homogeneous disperson of the SiC whiskers are hot pressed at pressures in a range of about 28 to 70 MPa and temperatures in the range of about 1600.degree. to 1950.degree. C. with pressing times varying from about 0.075 to 2.5 hours. The resulting ceramic composites show an increase in fracture toughness of up to about 9 MPa.m.sup.1/2 which represents as much as a two-fold increase over that of the matrix material.

  19. Tensile strength of bilayered ceramics and corresponding glass veneers

    PubMed Central

    Champirat, Tharee; Jirajariyavej, Bundhit

    2014-01-01

    PURPOSE To investigate the microtensile bond strength between two all-ceramic systems; lithium disilicate glass ceramic and zirconia core ceramics bonded with their corresponding glass veneers. MATERIALS AND METHODS Blocks of core ceramics (IPS e.max® Press and Lava™ Frame) were fabricated and veneered with their corresponding glass veneers. The bilayered blocks were cut into microbars; 8 mm in length and 1 mm2 in cross-sectional area (n = 30/group). Additionally, monolithic microbars of these two veneers (IPS e.max® Ceram and Lava™ Ceram; n = 30/group) were also prepared. The obtained microbars were tested in tension until fracture, and the fracture surfaces of the microbars were examined with fluorescent black light and scanning electron microscope (SEM) to identify the mode of failure. One-way ANOVA and the Dunnett's T3 test were performed to determine significant differences of the mean microtensile bond strength at a significance level of 0.05. RESULTS The mean microtensile bond strength of IPS e.max® Press/IPS e.max® Ceram (43.40 ± 5.51 MPa) was significantly greater than that of Lava™ Frame/Lava™ Ceram (31.71 ± 7.03 MPa)(P<.001). Fluorescent black light and SEM analysis showed that most of the tested microbars failed cohesively in the veneer layer. Furthermore, the bond strength of Lava™ Frame/Lava™ Ceram was comparable to the tensile strength of monolithic glass veneer of Lava™ Ceram, while the bond strength of bilayered IPS e.max® Press/IPS e.max® Ceram was significantly greater than tensile strength of monolithic IPS e.max® Ceram. CONCLUSION Because fracture site occurred mostly in the glass veneer and most failures were away from the interfacial zone, microtensile bond test may not be a suitable test for bonding integrity. Fracture mechanics approach such as fracture toughness of the interface may be more appropriate to represent the bonding quality between two materials. PMID:25006377

  20. Tiled fuzzy Hough transform for crack detection

    NASA Astrophysics Data System (ADS)

    Vaheesan, Kanapathippillai; Chandrakumar, Chanjief; Mathavan, Senthan; Kamal, Khurram; Rahman, Mujib; Al-Habaibeh, Amin

    2015-04-01

    Surface cracks can be the bellwether of the failure of any component under loading as it indicates the component's fracture due to stresses and usage. For this reason, crack detection is indispensable for the condition monitoring and quality control of road surfaces. Pavement images have high levels of intensity variation and texture content, hence the crack detection is difficult. Moreover, shallow cracks result in very low contrast image pixels making their detection difficult. For these reasons, studies on pavement crack detection is active even after years of research. In this paper, the fuzzy Hough transform is employed, for the first time to detect cracks on any surface. The contribution of texture pixels to the accumulator array is reduced by using the tiled version of the Hough transform. Precision values of 78% and a recall of 72% are obtaining for an image set obtained from an industrial imaging system containing very low contrast cracking. When only high contrast crack segments are considered the values move to mid to high 90%.

  1. Are Tiled Display Walls Needed for Astronomy?

    NASA Astrophysics Data System (ADS)

    Meade, Bernard F.; Fluke, Christopher J.; Manos, Steven; Sinnott, Richard O.

    2014-08-01

    Clustering commodity displays into a Tiled Display Wall (TDW) provides a cost-effective way to create an extremely high resolution display, capable of approaching the image sizes now generated by modern astronomical instruments. Many research institutions have constructed TDWs on the basis that they will improve the scientific outcomes of astronomical imagery. We test this concept by presenting sample images to astronomers and non-astronomers using a standard desktop display (SDD) and a TDW. These samples include standard English words, wide field galaxy surveys and nebulae mosaics from the Hubble telescope. Our experiments show that TDWs provide a better environment than SDDs for searching for small targets in large images. They also show that astronomers tend to be better at searching images for targets than non-astronomers, both groups are generally better when employing physical navigation as opposed to virtual navigation, and that the combination of two non-astronomers using a TDW rivals the experience of a single astronomer. However, there is also a large distribution in aptitude amongst the participants and the nature of the content also plays a significant role in success.

  2. Tiling solutions for optimal biological sensing

    NASA Astrophysics Data System (ADS)

    Walczak, Aleksandra M.

    2015-10-01

    Biological systems, from cells to organisms, must respond to the ever-changing environment in order to survive and function. This is not a simple task given the often random nature of the signals they receive, as well as the intrinsically stochastic, many-body and often self-organized nature of the processes that control their sensing and response and limited resources. Despite a wide range of scales and functions that can be observed in the living world, some common principles that govern the behavior of biological systems emerge. Here I review two examples of very different biological problems: information transmission in gene regulatory networks and diversity of adaptive immune receptor repertoires that protect us from pathogens. I discuss the trade-offs that physical laws impose on these systems and show that the optimal designs of both immune repertoires and gene regulatory networks display similar discrete tiling structures. These solutions rely on locally non-overlapping placements of the responding elements (genes and receptors) that, overall, cover space nearly uniformly. xml:lang="fr"

  3. Chemical durability of glaze on Zsolnay architectural ceramics (Budapest, Hungary) in acid solutions

    NASA Astrophysics Data System (ADS)

    Baricza, Ágnes; Bajnóczi, Bernadett; May, Zoltán; Tóth, Mária; Szabó, Csaba

    2015-04-01

    Zsolnay glazed architectural ceramics are among the most famous Hungarian ceramics, however, there is no profound knowledge about the deterioration of these building materials. The present study aims to reveal the influence of acidic solutions in the deterioration of Zsolnay ceramics. The studied ceramics are glazed roof tiles, which originate from two buildings in Budapest: one is located in the densely built-up city centre with high traffic rate and another one is in a city quarter with moderate traffic and more open space. The roof tiles represent the construction and the renovation periods of the buildings. The ceramics were mainly covered by lead glazes in the construction period and mainly alkali glazes in the renovation periods. The glaze of the tiles were coloured with iron (for yellow glaze) or chromium/copper/iron (for green glazes) in the case of the building located in the city centre, whereas cobalt was used as colorant and tin oxide as opacifier for the blue glaze of the ceramics of the other building. Six tiles were selected from each building. Sulphuric acid (H2SO4) solutions of pH2 and pH4 were used to measure the durability of the glazes up to 14 days at room temperature. The surfaces of the glazed ceramics after the treatment were measured by X-ray diffraction, Raman spectroscopy and SEM-EDS techniques to determine the precipitated phases on the surface of the glaze. Electron microprobe analysis was used to quantitatively characterise phases found and to determine the chemical composition of the treated glaze. The recovered sulphuric acid solutions were measured with ICP-OES technique in order to quantify the extent of the ion exchange between the glaze and the solutions. There is a significant difference in the dissolution rates in the treatments with sulphuric acid solutions of pH2 and pH4, respectively. The solution of pH2 induced greater ion exchange (approx. 7-10 times) from the glaze compared to the solution of pH4. Alkali and alkali earth

  4. Numerical Study on Anti-Penetration Process of Alumina Ceramic (AD95) to Tungsten Long Rod Projectiles

    NASA Astrophysics Data System (ADS)

    Zhang, Xianfeng; Zhang, Niansong; Li, Yongchi

    Numerical studies were conducted on the ballistic performance of alumina ceramic (AD95) tiles based on depth of penetration method, when subjected to normal impact of tungsten long rod projectiles at velocities ranging from 1100 to 2000 ms-1. The residual depth on after-effect target was derived in each case, and the ballistic efficiency factor was determined using the corresponding penetration depth on medium carbon steel. Anti-penetration experiment study of the AD95 ceramic tiles to tungsten long rod projectiles has been carried out to verify the accuracy of numerical simulation model. The result shows that numerical simulation results agree well with the corresponding experiment results and AD95 ceramic has excellent ballistic performance than medium carbon steel. The ballistic efficiency factor increases with velocity increasing when impact velocity lower than 1300 ms-1, and when it was higher than 1300 ms-1 the ballistic efficiency factor has almost no difference.

  5. Randomized Clinical Trial of Implant-Supported Ceramic-Ceramic and Metal-Ceramic Fixed Dental Prostheses: Preliminary Results

    PubMed Central

    Esquivel-Upshaw, Josephine F.; Clark, Arthur E.; Shuster, Jonathan J.; Anusavice, Kenneth J.

    2013-01-01

    Purpose The aim of this study was to determine the survival rates over time of implant-supported ceramic-ceramic and metal-ceramic prostheses as a function of core-veneer thickness ratio, gingival connector embrasure design, and connector height. Materials and Methods An IRB-approved, randomized, controlled clinical trial was conducted as a single-blind pilot study involving 55 patients missing three teeth in either one or two posterior areas. These patients (34 women; 21 men; age range 52–75 years) were recruited for the study to receive a 3-unit implant-supported fixed dental prosthesis (FDP). Two implants were placed for each of the 72 FDPs in the study. The implants (Osseospeed, Astra Tech), which were made of titanium, were grit blasted. A gold-shaded, custom-milled titanium abutment (Atlantis, Astra Tech), was secured to each implant body. Each of the 72 FDPs in 55 patients were randomly assigned based on one of the following options: (1) A. Material: ceramic-ceramic (Yttria-stabilized zirconia core, pressable fluorapatite glass-ceramic, IPS e.max ZirCAD and ZirPress, Ivoclar Vivadent) B. metal-ceramic (palladium-based noble alloy, Capricorn, Ivoclar Vivadent, with press-on leucite-reinforced glass-ceramic veneer, IPS InLine POM, Ivoclar Vivadent); (2) occlusal veneer thickness (0.5, 1.0, and 1.5 mm); (3) curvature of gingival embrasure (0.25, 0.5, and 0.75 mm diameter); and (4) connector height (3, 4, and 5 mm). FDPs were fabricated and cemented with dual-cure resin cement (RelyX, Universal Cement, 3M ESPE). Patients were recalled at 6 months, 1 year, and 2 years. FDPs were examined for cracks, fracture, and general surface quality. Results Recall exams of 72 prostheses revealed 10 chipping fractures. No fractures occurred within the connector or embrasure areas. Two-sided Fisher’s exact tests showed no significant correlation between fractures and type of material system (p = 0.51), veneer thickness (p = 0.75), radius of curvature of gingival embrasure

  6. Foam on Tile Impact Modeling for the STS-107 Investigation

    NASA Technical Reports Server (NTRS)

    Stellingwerf, R. F.; Robinson, J. H.; Richardson, S.; Evans, S. W.; Stallworth, R.; Hovater, M.

    2004-01-01

    Following the breakup of the Space Shuttle Columbia during reentry a NASA/Contractor investigation team was formed to examine the probable damage inflicted on Orbiter Thermal Protection System elements by impact of External Tank insulating foam projectiles. The authors formed a working subgroup within the larger team to apply the Smooth Particle Hydrodynamics code SPHC to the damage estimation problem. Numerical models of the Orbiter's tiles and of the Tank's foam were constructed and used as inputs into the code. Material properties needed to properly model the tiles and foam were obtained from other working subgroups who performed tests on these items for this purpose. Two- and three-dimensional models of the tiles were constructed, including the glass outer layer, the main body of LI-900 insulation, the densified lower layer of LI-900, the Nomex felt mounting layer, and the Aluminum 2024 vehicle skin. A model for the BX-250 foam including porous compression, elastic rebound, and surface erosion was developed. Code results for the tile damage and foam behavior were extensively validated through comparison with Southwest Research Institute foam-on-tile impact experiments carried out in 1999. These tests involved small projectiles striking individual tiles and small tile arrays. Following code and model validation we simulated impacts of larger foam projectiles on the examples of tile systems used on the Orbiter. Results for impacts on the main landing gear door are presented in this paper, including effects of impacts at several angles, and of rapidly rotating projectiles. General results suggest that foam impacts on tiles at about 500 mph could cause appreciable damage if the impact angle is greater than about 20 degrees. Some variations of the foam properties, such as increased brittleness or increased density could increase damage in some cases. Rotation up to 17 rps failed to increase the damage for the two cases considered. This does not rule out other cases

  7. Ballistic Performance of Porous Ceramic Thermal Protection Systems at 9 km/s

    NASA Technical Reports Server (NTRS)

    Miller, Joshua E.; Bohl, W. E.; Foreman, C. D.; Christiansen, Eric L.; Davis, B. A.

    2009-01-01

    Porous-ceramic, thermal-protection-systems are used heavily in current reentry vehicles like the Orbiter, and they are currently being proposed for the next generation of manned spacecraft, Orion. These materials insulate the structural components and sensitive electronic components of a spacecraft against the intense thermal environments of atmospheric reentry. Furthermore, these materials are also highly exposed to space environmental hazards like meteoroid and orbital debris impacts. This paper discusses recent impact testing up to 9 km/s on ceramic tiles similar to those used on the Orbiter. These tiles have a porous-batting of nominally 8 lb/cubic ft alumina-fiber-enhanced-thermal-barrier (AETB8) insulating material coated with a damage-resistant, toughened-unipiece-fibrous-insulation (TUFI) layer.

  8. Dental ceramics: An update

    PubMed Central

    Shenoy, Arvind; Shenoy, Nina

    2010-01-01

    In the last few decades, there have been tremendous advances in the mechanical properties and methods of fabrication of ceramic materials. While porcelain-based materials are still a major component of the market, there have been moves to replace metal ceramics systems with all ceramic systems. Advances in bonding techniques have increased the range and scope for use of ceramics in dentistry. In this brief review, we will discuss advances in ceramic materials and fabrication techniques. Examples of the microstructure property relationships for these ceramic materials will also be addressed. PMID:21217946

  9. Ceramic inspection system

    DOEpatents

    Werve, Michael E.

    2006-05-16

    A system for inspecting a ceramic component. The ceramic component is positioned on a first rotary table. The first rotary table rotates the ceramic component. Light is directed toward the first rotary table and the rotating ceramic component. A detector is located on a second rotary table. The second rotary table is operably connected to the first rotary table and the rotating ceramic component. The second rotary table is used to move the detector at an angle to the first rotary table and the rotating ceramic component.

  10. Hollow clay tile wall program summary report

    SciTech Connect

    Henderson, R.C.; Jones, W.D.

    1995-07-30

    Many of the Y-12 Plant buildings, constructed during the 1940s and 1950s, consist of steel ed concrete framing infilled with hollow clay tile (HCT). The infill was intended to provide for building enclosure and was not designed to have vertical or lateral load-carrying capacity. During the late 1970s and early 1980s, seismic and wind evaluations were performed on many of these buildings in conjunction with the preparation of a site-wide safety analysis report. This analytical work, based on the best available methodology, considered lateral load-carrying capacity of the HCT infill on the basis of building code allowable shear values. In parallel with the analysis effort, DOE initiated a program to develop natural phenomena capacity and performance criteria for existing buildings, but these criteria did not specify guidelines for determining the lateral force capacity of frames infilled with HCT. The evaluation of infills was, therefore, based on the provisions for the design of unreinforced masonry as outlined in standard masonry codes. When the results of the seismic and wind evaluations were compared with the new criteria, the projected building capacities fell short of the requirements. Apparently, if the buildings were to meet the new criteria, many millions of dollars would be required for building upgrades. Because the upgrade costs were significant, the assumptions and approaches used in the analyses were reevaluated. Four issues were identified: (1) Once the infilled walls cracked, what capacity (nonlinear response), if any, would the walls have to resist earthquake or wind loads applied in the plane of the infill (in-plane)? (2) Would the infilled walls remain within the steel or reinforced concrete framing when subjected to earthquake or high wind loads applied perpendicular to the infill (out-of-plane)? (3) What was the actual shear capacity of the HCT infill? (4) Was modeling the HCT infill as a shear wall the best approach?

  11. Apollo 13 Facts: Press Conference

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Flight Director Gene Krantz gives an overview of the Apollo 13 mission as corrections are made in the power down checklist, passive thermal control, and orbital burns after the spacecraft runs into problems. He then answers questions from the press with the help of Tony England, Bill Peters, and Dick Thorson. Footage then shows newspaper headlines 'We're Not Concerned' and 'Getting Ready to Land' as people watch televisions to see if the astronauts landed safely. The press conference section of this video has sound, the headlines section does not.

  12. Deformation processes in forging ceramics

    NASA Technical Reports Server (NTRS)

    Cannon, R. M.; Rhodes, W. H.

    1973-01-01

    The deformation processes involved in the forging of refractory ceramic oxides were investigated. A combination of mechanical testing and forging was utilized to investigate both the flow and fracture processes involved. Deformation studies of very fine grain Al203 revealed an apparent transition in behavior, characterized by a shift in the strain rate sensitivity from 0.5 at low stresses to near unity at higher stresses. The behavior is indicative of a shift in control between two dependent mechanisms, one of which is indicated to be cation limited diffusional creep with significant boundary enhancement. The possible contributions of slip, indicated by crystallographic texture, interface control of the diffusional creep and inhomogeneous boundary sliding are also discussed. Additional experiments indicated an independence of deformation behavior on MgO doping and retained hot pressing impurities, at least for ultrafine grained material, and also an independence of test atmosphere.

  13. Intermetallic bonded ceramic matrix composites

    SciTech Connect

    Plucknett, K.P.; Tiegs, T.N.; Alexander, K.B.; Becher, P.F.; Schneibel, J.H.; Waters, S.B.; Menchhofer, P.A.

    1995-07-01

    A range of carbide and oxide-based cermets have been developed utilizing ductile nickel aluminide (Ni{sub 3}Al) alloy binder phases. Some of these, notably materials based upon tungsten and titanium carbides (WC and TiC respectively), offer potential as alternatives to the cermets which use cobalt binders (i.e. WC/Co). Samples have been prepared by blending commercially available Ni{sub 3}Al alloy powders with the desired ceramic phases, followed by hot-pressing. Alumina (Al{sub 2}O{sub 3}) matrix materials have also been prepared by pressurized molten alloy infiltration. The microstructure, flexure strength and fracture toughness of selected materials are discussed.

  14. CaF2:Yb laser ceramics

    NASA Astrophysics Data System (ADS)

    Akchurin, M. Sh.; Basiev, T. T.; Demidenko, A. A.; Doroshenko, M. E.; Fedorov, P. P.; Garibin, E. A.; Gusev, P. E.; Kuznetsov, S. V.; Krutov, M. A.; Mironov, I. A.; Osiko, V. V.; Popov, P. A.

    2013-01-01

    CaF2:Yb fluoride laser ceramics, prepared by hot-forming, exhibit the same optical properties as starting single crystals. Slope efficiency of the Сa0.95Yb0.05F2.05 is equal to 35% in the pulsed mode of laser operation. Decrease of ytterbium concentration in CaF2:Yb samples down to 3 mol.% resulted in the essential improvement of Сa0.97Yb0.03F2.03 thermal conductivity from 3.5 to 4.5 W/m K, but slightly decreased (down to 30%) slope efficiency of the samples under both pulsed and CW mode of operation. Alternative hot-pressing synthesis of CaF2:Yb fluoride laser ceramics provided materials with superior mechanical properties (microhardness Н = 3.2 GPa and fracture toughness К1С = 0.65 МPа m1/2) in comparison with hot-formed and/or single crystal CaF2:Yb specimens. For the first time, lasing has been observed for the novel aforementioned hot-pressed CaF2:Yb ceramics.

  15. Construction of 2D quasi-periodic Rauzy tiling by similarity transformation

    SciTech Connect

    Zhuravlev, V. G.; Maleev, A. V.

    2009-05-15

    A new approach to constructing self-similar fractal tilings is proposed based on the construction of semigroups generated by a finite set of similarity transformations. The Rauzy tiling-a 2D analog of 1D Fibonacci tiling generated by the golden mean-is used as an example to illustrate this approach. It is shown that the Rauzy torus development and the elementary fractal boundary of Rauzy tiling can be constructed in the form of a set of centers of similarity semigroups generated by two and three similarity transformations, respectively. A centrosymmetric tiling, locally dual to the Rauzy tiling, is constructed for the first time and its parameterization is developed.

  16. Reappraisal of flow to tile drains III. Drains with limited flow capacity

    NASA Astrophysics Data System (ADS)

    Khan, S.; Rushton, K. R.

    1996-09-01

    This third paper of the series on the reappraisal of flow to tile drains considers the time-variant situations in tile drain drainage systems when the quantity of water carried by tile drains is limited due to the capacity of the drains or the pumping equipment. Two categories of problem are analysed in this paper: (i) a series of parallel tile drains with a maximum specified flow and (ii) interceptor drains in the vicinity of canals. Complete details for satisfying the maximum specified flow conditions in tile drains are given. The effect of different capacities of tile drains on the performance of drainage system is explored.

  17. Development of a ceramic matrix system for continuous delivery of azidothymidine.

    PubMed

    Nagy, E A; Bajpai, P K

    1994-01-01

    A beta-tricalcium phosphate (TCP) ceramic system was designed to deliver azidothymidine (AZT) in an aqueous medium (phosphate buffered saline pH 7.4) at 37 degrees C. Since AZT is an analog of thymidine, initial studies were conducted with thymidine. Ceramic capsules were made by pressing one gram of < 38 microns beta-TCP particles with or without the desired amount of thymidine or azidothymidine in a 10 mm die at a load of 4000 lbs in an electric hydraulic press. The amount thymidine released from TCP ceramic capsules was directly dependent on the amount of the drug loaded in the ceramic. Treatment of TCP ceramic particles with either sesame seed oil or wheat germ oil (vitamin E) delayed the release of thymidine and azidothymidine from TCP ceramic capsules. Incorporation of thymidine or azidothymidine in the form of a compressed pellet (5/16" diameter at a load of 4000 lbs) further inhibited the release of thymidine and azidothymidine from TCP ceramic capsules fabricated with oil-treated ceramic particles. Thus, ceramic drug delivery systems can be designed to deliver continuously desired therapeutic levels of AZT in AIDS patients. PMID:7948634

  18. Investigation of registration algorithms for the automatic tile processing system

    NASA Technical Reports Server (NTRS)

    Tamir, Dan E.

    1995-01-01

    The Robotic Tile Inspection System (RTPS), under development in NASA-KSC, is expected to automate the processes of post-flight re-water-proofing and the process of inspection of the Shuttle heat absorbing tiles. An important task of the robot vision sub-system is to register the 'real-world' coordinates with the coordinates of the robot model of the Shuttle tiles. The model coordinates relate to a tile data-base and pre-flight tile-images. In the registration process, current (post-flight) images are aligned with pre-flight images to detect the rotation and translation displacement required for the coordinate systems rectification. The research activities performed this summer included study and evaluation of the registration algorithm that is currently implemented by the RTPS, as well as, investigation of the utility of other registration algorithms. It has been found that the current algorithm is not robust enough. This algorithm has a success rate of less than 80% and is, therefore, not suitable for complying with the requirements of the RTPS. Modifications to the current algorithm has been developed and tested. These modifications can improve the performance of the registration algorithm in a significant way. However, this improvement is not sufficient to satisfy system requirements. A new algorithm for registration has been developed and tested. This algorithm presented very high degree of robustness with success rate of 96%.

  19. Leaching of dissolved phosphorus from tile-drained agricultural areas.

    PubMed

    Andersen, H E; Windolf, J; Kronvang, B

    2016-01-01

    We investigated leaching of dissolved phosphorus (P) from 45 tile-drains representing animal husbandry farms in all regions of Denmark. Leaching of P via tile-drains exhibits a high degree of spatial heterogeneity with a low concentration in the majority of tile-drains and few tile-drains (15% in our investigation) having high to very high concentration of dissolved P. The share of dissolved organic P (DOP) was high (up to 96%). Leaching of DOP has hitherto been a somewhat overlooked P loss pathway in Danish soils and the mechanisms of mobilization and transport of DOP needs more investigation. We found a high correlation between Olsen-P and water extractable P. Water extractable P is regarded as an indicator of risk of loss of dissolved P. Our findings indicate that Olsen-P, which is measured routinely in Danish agricultural soils, may be a useful proxy for the P leaching potential of soils. However, we found no straight-forward correlation between leaching potential of the top soil layer (expressed as either degree of P saturation, Olsen-P or water extractable P) and the measured concentration of dissolved P in the tile-drain. This underlines that not only the source of P but also the P loss pathway must be taken into account when evaluating the risk of P loss. PMID:27332841

  20. Interlaced Particle Systems and Tilings of the Aztec Diamond

    NASA Astrophysics Data System (ADS)

    Fleming, Benjamin J.; Forrester, Peter J.

    2011-02-01

    Motivated by the problem of domino tilings of the Aztec diamond, a weighted particle system is defined on N lines, with line j containing j particles. The particles are restricted to lattice points from 0 to N, and particles on successive lines are subject to an interlacing constraint. It is shown that this particle system is exactly solvable, to the extent that not only can the partition function be computed exactly, but so too can the marginal distributions. These results in turn are used to give new derivations within the particle picture of a number of known fundamental properties of the tiling problem, for example that the number of distinct configurations is 2 N( N+1)/2, and that there is a limit to the GUE minor process, which we show at the level of the joint PDFs. It is shown too that the study of tilings of the half Aztec diamond—not known from earlier literature—also leads to an interlaced particle system, now with successive lines 2 n-1 and 2 n ( n=1,…, N/2-1) having n particles. Its exact solution allows for an analysis of the half Aztec diamond tilings analogous to that given for the Aztec diamond tilings.

  1. The ATLAS tile calorimeter ROD injector and multiplexer board

    NASA Astrophysics Data System (ADS)

    Valero, A.; Castillo, V.; Ferrer, A.; González, V.; Hernández, Y.; Higón, E.; Sanchís, E.; Solans, C.; Torres, J.; Valls, J. A.

    2011-02-01

    The ATLAS Tile Calorimeter is a sampling detector composed by cells made of iron-scintillator tiles. The calorimeter cell signals are digitized in the front-end electronics and transmitted to the Read-Out Drivers (RODs) at the first level trigger rate. The ROD receives triggered data from up to 9856 channels and provides the energy, phase and quality factor of the signals to the second level trigger. The back-end electronics is divided into four partitions containing eight RODs each. Therefore, a total of 32 RODs are used to process and transmit the data of the TileCal detector. In order to emulate the detector signals in the production and commissioning of ROD modules a board called ROD Injector and Multiplexer Board (RIMBO) was designed. In this paper, the RIMBO main functional blocks, PCB design and the different operation modes are described. It is described the crucial role of the board within the TileCal ROD test-bench in order to emulate the front-end electronics during the validation of ROD boards as well as during the evaluation of the ROD signal reconstruction algorithms. Finally, qualification and performance results for the injection operation mode obtained during the Tile Calorimeter ROD production tests are presented.

  2. Calibration of the Tile Hadronic Calorimeter of ATLAS at LHC

    NASA Astrophysics Data System (ADS)

    Boumediene, Djamel; ATLAS Collaboration

    2015-02-01

    The Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment. The TileCal provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses iron plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by means of wavelength shifting fibers to photomultiplier tubes (PMTs). The TileCal readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read by two PMTs. A brief description of the individual calibration systems (Cs radioactive source, laser, charge injection, minimum bias) is provided. Their combination allows to calibrate each part of the data acquisition chain (optical part, photomultiplier, readout electronics) and to monitor its stability to better than 1%. The procedure for setting and preserving the electromagnetic energy scale during Run 1 data taking is discussed. The issues of linearity and stability of the response, as well as the timing adjustment are also shown.

  3. The ATLAS tile calorimeter performance at the LHC

    SciTech Connect

    Calkins, R.

    2011-07-01

    The Tile Calorimeter (TileCal), the central section of the hadronic calorimeter of the ATLAS experiment, is a key detector component to detect hadrons, jets and taus and to measure the missing transverse energy. Due to the very good muon signal to noise ratio it assists the spectrometer in the identification and reconstruction of muons. TileCal is built of steel and scintillating tiles coupled to optical fibers and read out by photomultipliers. The calorimeter is equipped with systems that allow to monitor and to calibrate each stage of the read out system exploiting different signal sources: laser light, charge injection and a radioactive source. The performance of the calorimeter has been measured and monitored using calibration data, random triggered data, cosmic muons and more importantly LHC collision events. The results presented here assess the absolute energy scale calibration precision, the energy and timing uniformity and the synchronization precision. The ensemble of the results demonstrates a very good understanding of the performance of the Tile Calorimeter that is proved to be well within the design expectations. (authors)

  4. Ceramic fiber insulation impregnated with an infra-red retardant coating and method for production thereof

    NASA Technical Reports Server (NTRS)

    Zinn, Alfred A. (Inventor); Tarkanian, Ryan Jeffrey (Inventor)

    2007-01-01

    The invented insulation is a ceramic fiber insulation wherein the ceramic fibers are treated with a coating which contains transition metal oxides. The invented process for coating the insulation is a process of applying the transition metal oxide coating to the fibers of the insulation after the fibers have been formed into a tile or other porous body. The coating of transition metal oxide lowers the transmittance of radiation through the insulation thereby lowering the temperature of the backface of the insulation and better protecting the structure that underlies the insulation.

  5. Ceramic compaction models: Useful design tools or simple trend indicators?

    SciTech Connect

    Mahoney, F.M.; Readey, M.J.

    1995-08-01

    It is well-known that dry pressing of ceramic powders leads to density gradients in a ceramic compact resulting in non-uniform shrinkage during densification. This necessitates diamond grinding to final dimensions which, in addition to being an extra processing step, greatly increases the manufacturing cost of ceramic components. To develop methods to control and thus mitigate density variations in compacted powders, it has been an objective of researchers to better understand the mechanics of the compaction process and the underlying material and tooling effects on the formation of density gradients. This paper presents a review of models existing in the literature related to the compaction behavior of ceramic powders. In particular, this paper focuses on several well-known compaction models that predict pressure and density variations in powder compacts.

  6. Ceramic planar waveguide structures for amplifiers and lasers

    SciTech Connect

    Konyushkin, V A; Nakladov, A N; Konyushkin, D V; Doroshenko, Maxim E; Osiko, Vyacheslav V; Karasik, Aleksandr Ya

    2013-01-31

    Ceramic and crystalline weakly guiding optical fibres with the core - cladding refractive index difference of 10{sup -2} - 10{sup -4} are fabricated by a hot pressing method. The waveguides with one or several cores for operation in the spectral range 0.2 - 5 {mu}m are produced. The waveguides are based on CaF{sub 2}, SrF{sub 2}, and BaF{sub 2} ceramics and crystals and their solid solutions doped with trivalent Pr, Nd, Tb, Dy, Yb, Ho, Er, and Tm ions, as well as on LiF ceramics and crystals with colour centres. The first results of investigation of the lasing properties of ceramic SrF{sub 2} : NdF waveguides under diode pumping are presented, and the prospects of further investigation are discussed. (lasers)

  7. On the use of Raman spectroscopy and instrumented indentation for characterizing damage in machined carbide ceramics

    NASA Astrophysics Data System (ADS)

    Groth, Benjamin Peter

    Machining is a necessary post-processing step in the manufacturing of many ceramic materials. Parts are machined to meet specific dimensions, with tight tolerances, not attainable from forming alone, as well as to achieve a desired surface finish. However, the machining process is very harsh, often employing the use of high temperatures and pressures to achieve the wanted result. In the case of silicon carbide, a material with extremely high hardness and stiffness, machining is very difficult and requires machining conditions that are highly aggressive. This can leave behind residual stresses in the surface of the material, cause unwanted phase transformations, and produce sub-surface deformation that can lead to failure. This thesis seeks to determine the effect of various machining conditions on the Raman spectra and elastic properties of sintered silicon carbide materials. Sample sets examined included hot-pressed silicon carbide tiles with four different surface finishes, as well as "ideal" single crystal silicon carbide wafers. The surface finishes studied were as follows: an as-pressed finish; a grit blast finish; a harsh rotary ground finish; and a mirror polish. Each finish imparts a different amount, as well as type, of deformation to the sample and are each utilized for a specific application. The sample surfaces were evaluated using a combination of Raman spectroscopy, for phase identification and stress analysis, and nanoindentation, for obtaining elastic properties and imparting uniform controlled deformation to the samples. Raman spectroscopy was performed over each sample surface using 514- and 633-nm wavelength excitation, along with confocal and non-confocal settings to study depth variation. Surfaces stresses were determined using peak shift information extracted from Raman spectra maps, while other spectral variations were used to compare levels of machining damage. Elastic modulus, hardness, and plastic work of indentation maps were generated

  8. Gifted Education Press Quarterly, 1995.

    ERIC Educational Resources Information Center

    Fisher, Maurice D., Ed.

    1995-01-01

    This document consists of the four issues of the newsletter "Gifted Education Press Quarterly" published during 1995. This newsletter addresses issues in the education of gifted children and youth. The major articles are: (1) "Using Today's Technology: Parents Can Help Challenge Gifted Children" (Adrienne O'Neill); (2) "Outcomes-Based Education…

  9. Law and the Student Press.

    ERIC Educational Resources Information Center

    Stevens, George E.; Webster, John B.

    Court cases and legal decisions involving the student press in the late 1960s and early 1970s are brought together in this book in order to show how the law has been applied to school officials and student journalists in high school, college, and the underground. The ten chapters cover the following topics: censorship, libel, obscenity, contempt,…

  10. NATIONAL ACADEMY PRESS WEB SITE

    EPA Science Inventory

    The National Academy Press is the publisher for the National Academy of Sciences, the National Academy of Engineering, the Institute of Medicine, and the National Research Council. Through this web site, you have access to a virtual treasure trove of books, reports and publicatio...

  11. 30th Arniversary Press Conference

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Marking the occasion of the Apollo 11 30th Anniversary, members of the Apollo and Saturn astronaut programs attended festivities at Marshall Space Flight Center in Huntsville, AL. A press conference was held at the U. S. Space and Rocket Center for the visiting astronauts. Pictured are (L/R): Edgar Mitchell, Walt Cunningham, Charlie Duke, Buzz Aldrin, Dick Gordon and Owen Garriott.

  12. Joining Ceramics By Brazing

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Francis P.; Sudsina, Michael W.

    1992-01-01

    Certain ceramic materials tightly bond together by brazing with suitable alloys. Enables fabrication of parts of wide variety of shapes from smaller initial pieces of ceramics produced directly in only limited variety of shapes.

  13. In vitro wear of four ceramic materials and human enamel on enamel antagonist.

    PubMed

    Nakashima, Jun; Taira, Yohsuke; Sawase, Takashi

    2016-06-01

    The purpose of the present study was to evaluate the wear of four different ceramics and human enamel. The ceramics used were lithium disilicate glass (e.max Press), leucite-reinforced glass (GN-Ceram), yttria-stabilized zirconia (Aadva Zr), and feldspathic porcelain (Porcelain AAA). Hemispherical styli were fabricated with these ceramics and with tooth enamel. Flattened enamel was used for antagonistic specimens. After 100,000 wear cycles of a two-body wear test, the height and volume losses of the styli and enamel antagonists were determined. The mean and standard deviation for eight specimens were calculated and statistically analyzed using a non-parametric (Steel-Dwass) test (α = 0.05). GN-Ceram exhibited greater stylus height and volume losses than did Porcelain AAA. E.max Press, Porcelain AAA, and enamel styli showed no significant differences, and Aadva Zr exhibited the smallest stylus height and volume losses. The wear of the enamel antagonist was not significantly different among GN-Ceram, e.max Press, Porcelain AAA, and enamel styli. Aadva Zr resulted in significantly lower wear values of the enamel antagonist than did GN-Ceram, Porcelain AAA, and enamel styli. In conclusion, leucite-reinforced glass, lithium disilicate glass, and feldspathic porcelain showed wear values closer to those for human enamel than did yttria-stabilized zirconia. PMID:27059093

  14. Silicon nitride: A ceramic material with outstanding resistance to thermal shock and corrosion

    NASA Technical Reports Server (NTRS)

    Huebner, K. H.; Saure, F.

    1983-01-01

    The known physical, mechanical and chemical properties of reaction-sintered silicon nitride are summarized. This material deserves interest especially because of its unusually good resistance to thermal shock and corrosion at high temperatures. Two types are distinguished: reaction-sintered (porous) and hot-pressed (dense) Si3N4. Only the reaction-sintered material which is being produced today in large scale as crucibles, pipes, nozzles and tiles is considered.

  15. Ceramic electrolyte coating methods

    DOEpatents

    Seabaugh, Matthew M.; Swartz, Scott L.; Dawson, William J.; McCormick, Buddy E.

    2004-10-12

    Processes for preparing aqueous suspensions of a nanoscale ceramic electrolyte material such as yttrium-stabilized zirconia. The invention also includes a process for preparing an aqueous coating slurry of a nanoscale ceramic electrolyte material. The invention further includes a process for depositing an aqueous spray coating slurry including a ceramic electrolyte material on pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.

  16. Identification of Low PT Muon with the Atlas Tile Calorimeter

    NASA Astrophysics Data System (ADS)

    Usai, G.

    2005-02-01

    A method for the identification of muons with the ATLAS Tile Calorimeter is presented and its efficiency and mis-tagging fraction are discussed. It is demonstrated that the Tile Calorimeter can identify muons with good efficiency down to 2 GeV/c transverse momentum, where the stand-alone Muon Spectrometer has zero efficiency. This kinematic region is important for study of B meson physics and in the particular for the CP violating decay channels. The effectiveness of this method is tested, in particular, in the case of bbar {b} events at low LHC luminosity (1033cm-1s-2) with full simulation of experimental conditions. The muon identification with the Tile Calorimeter is fast and can be used for muon selection at the trigger level. A method of exploiting the information available in other ATLAS sub-detectors in order to reduce spurious muon-tag and measure the candidate muon momentum is discussed.

  17. Solare Cell Roof Tile And Method Of Forming Same

    DOEpatents

    Hanoka, Jack I.; Real, Markus

    1999-11-16

    A solar cell roof tile includes a front support layer, a transparent encapsulant layer, a plurality of interconnected solar cells and a backskin layer. The front support layer is formed of light transmitting material and has first and second surfaces. The transparent encapsulant layer is disposed adjacent the second surface of the front support layer. The interconnected solar cells has a first surface disposed adjacent the transparent encapsulant layer. The backskin layer has a first surface disposed adjacent a second surface of the interconnected solar cells, wherein a portion of the backskin layer wraps around and contacts the first surface of the front support layer to form the border region. A portion of the border region has an extended width. The solar cell roof tile may have stand-offs disposed on the extended width border region for providing vertical spacing with respect to an adjacent solar cell roof tile.

  18. Flutter Analysis of the Shuttle Tile Overlay Repair Concept

    NASA Technical Reports Server (NTRS)

    Bey, Kim S.; Scott, Robert C.; Bartels, Robert E.; Waters, William A.; Chen, Roger

    2007-01-01

    The Space Shuttle tile overlay repair concept, developed at the NASA Johnson Space Center, is designed for on-orbit installation over an area of damaged tile to permit safe re-entry. The thin flexible plate is placed over the damaged area and secured to tile at discreet points around its perimeter. A series of flutter analyses were performed to determine if the onset of flutter met the required safety margins. Normal vibration modes of the panel, obtained from a simplified structural analysis of the installed concept, were combined with a series of aerodynamic analyses of increasing levels of fidelity in terms of modeling the flow physics to determine the onset of flutter. Results from these analyses indicate that it is unlikely that the overlay installed at body point 1800 will flutter during re-entry.

  19. Brittleness of ceramics

    NASA Technical Reports Server (NTRS)

    Kroupa, F.

    1984-01-01

    The main characteristics of mechanical properties of ceramics are summarized and the causes of their brittleness, especially the limited mobility of dislocations, are discussed. The possibility of improving the fracture toughness of ceramics and the basic research needs relating to technology, structure and mechanical properties of ceramics are stressed in connection with their possible applications in engineering at high temperature.

  20. Ceramic to metal seal

    DOEpatents

    Snow, Gary S.; Wilcox, Paul D.

    1976-01-01

    Providing a high strength, hermetic ceramic to metal seal by essentially heating a wire-like metal gasket and a ceramic member, which have been chemically cleaned, while simultaneously deforming from about 50 to 95 percent the metal gasket against the ceramic member at a temperature of about 30 to 75 percent of the melting temperature of the metal gasket.

  1. Thermal contact conductance measurements on Doublet III armor tile graphite

    SciTech Connect

    Doll, D.W.; Reis, E.

    1983-12-01

    Several tests were performed on the Doublet III wall armor tiles to determine the cool-down rate and to evaluate improvements made by changing the conditions at the interface between the graphite tile and the stainless steel backing plate. Thermal diffusivity tests were performed in vacuum on both TiC coated and bare graphite tiles with and without 0.13 mm (.005'') thick silver foil at the interface. The results of the armor tile cool-down tests showed improvement when a 0.13 mm (0.005'') silver foil is used at the interface. At 2.1 x 10/sup 5/ Pa (30 psi) contact pressure, the e-folding cool-down times for a TiC coated tile, bare graphite and bare graphite with a 0.06 mm (0.0035'') silver shim were 10 min., 5.0 min., and 4.1 min., respectively. Tests using high contact pressures showed that the cool-down rates converged to approx. 4.0 min. At this limit, the conduction path along the backing plate to the two cooling tubes controls the heat flow, and no further improvement could be expected. Thermal diffusivity measurements confirmed the results of the cool-down test showing that by introducing a silver foil at the interface, the contact conductance between Poco AXF-5Q graphite and 316 stainless steel could be improved by a factor of three to eight. The tests showed an increasing improvement over a range of temperatures from 25/sup 0/C to 400/sup 0/C. The data provides a technical basis for further applications of graphite tiles to cooled backing plates.

  2. PHASE CHANGE MATERIALS IN FLOOR TILES FOR THERMAL ENERGY STORAGE

    SciTech Connect

    Douglas C. Hittle

    2002-10-01

    Passive solar systems integrated into residential structures significantly reduce heating energy consumption. Taking advantage of latent heat storage has further increased energy savings. This is accomplished by the incorporation of phase change materials into building materials used in passive applications. Trombe walls, ceilings and floors can all be enhanced with phase change materials. Increasing the thermal storage of floor tile by the addition of encapsulated paraffin wax is the proposed topic of research. Latent heat storage of a phase change material (PCM) is obtained during a change in phase. Typical materials use the latent heat released when the material changes from a liquid to a solid. Paraffin wax and salt hydrates are examples of such materials. Other PCMs that have been recently investigated undergo a phase transition from one solid form to another. During this process they will release heat. These are known as solid-state phase change materials. All have large latent heats, which makes them ideal for passive solar applications. Easy incorporation into various building materials is must for these materials. This proposal will address the advantages and disadvantages of using these materials in floor tile. Prototype tile will be made from a mixture of quartz, binder and phase change material. The thermal and structural properties of the prototype tiles will be tested fully. It is expected that with the addition of the phase change material the structural properties will be compromised to some extent. The ratio of phase change material in the tile will have to be varied to determine the best mixture to provide significant thermal storage, while maintaining structural properties that meet the industry standards for floor tile.

  3. An automated data management/analysis system for space shuttle orbiter tiles. [stress analysis

    NASA Technical Reports Server (NTRS)

    Giles, G. L.; Ballas, M.

    1982-01-01

    An engineering data management system was combined with a nonlinear stress analysis program to provide a capability for analyzing a large number of tiles on the space shuttle orbiter. Tile geometry data and all data necessary of define the tile loads environment accessed automatically as needed for the analysis of a particular tile or a set of tiles. User documentation provided includes: (1) description of computer programs and data files contained in the system; (2) definitions of all engineering data stored in the data base; (3) characteristics of the tile anaytical model; (4) instructions for preparation of user input; and (5) a sample problem to illustrate use of the system. Description of data, computer programs, and analytical models of the tile are sufficiently detailed to guide extension of the system to include additional zones of tiles and/or additional types of analyses

  4. New experience with alumina-on-alumina ceramic bearings for total hip arthroplasty.

    PubMed

    D'Antonio, James; Capello, William; Manley, Michael; Bierbaum, Benjamin

    2002-06-01

    A major challenge for total hip arthroplasty is to minimize wear and osteolysis in young, active patients. Alumina ceramic bearings have shown superior wear resistance and lubrication and do not carry the risk of ion release. In a prospective randomized study, 514 hips were implanted. All patients (average age, 53 years) received the same press-fit hydroxyapatite coated femoral stem; two thirds (345 hips) received alumina ceramic bearings, and one third (169 hips) received a cobalt-chrome-on-polyethylene bearing. At a mean follow-up of 35.2 months (range, 24-48 months), there was no significant difference in clinical performance between the patient cohorts. No ceramic fracture or alumina ceramic bearing failure occurred. This new experience involves the use of improved ceramic materials and new design considerations that eliminate the risks and complications of past experiences with ceramic implants and provides a safe bearing option for young patients. PMID:12066265

  5. Comparative study of WLS fibres for the ATLAS Tile Calorimeter

    NASA Astrophysics Data System (ADS)

    Gomes, A.; David, M.; Henriques, A.; Maio, A.

    1998-02-01

    The Wave Length Shifting (WLS) fibres are one of the most important components of the ATLAS barrel hadronic tile calorimeter (Tilecal). The fibres collect the hght produced in the injection molded scintillating tiles and transport it to the photomultipliers. Parameters like attenuation length and light yield are important, as well as flexibility and radiation hardness. Comparative results of WLS fibres produced by Bicron, Kuraray and Pol.Hi.Tech are presented. The performance of the fibres BCF91A from Bicron and S048 from Pol.Hi.Tech was significatively improved, but the most performant are still the double clad Y11 fibres from Kuraray.

  6. Comparative study of WLS fibres for the ATLAS tile calorimeter

    NASA Astrophysics Data System (ADS)

    Gomes, A.; David, M.; Henriques, A.; Maio, A.

    1997-02-01

    The Wave Length Shifting (WLS) fibres are one of the most important components of the ATLAS barrel hadronic tile calorimeter (Tilecal). The fibres collect the light produced in the injection molded scintillating tiles and transport it to the photomultipliers. Parameters like attenuation length and light yield are important, as well as flexibility and radiation hardness. Comparative results of WLS fibres produced by Bicron, Kuraray and Pol.Hi.Tech are presented. The performance of the fibres BCF91A from Bicron and S048 from Pol.Hi.Tech was significatively improved, but the most performant are still the double clad Y11 fibres from Kuraray.

  7. Cesium monitoring system for ATLAS Tile Hadron Calorimeter

    NASA Astrophysics Data System (ADS)

    Starchenko, E.; Blanchot, G.; Bosman, M.; Cavalli-Sforza, M.; Karyukhin, A.; Kopikov, S.; Miagkov, A.; Nessi, M.; Shalimov, A.; Shalanda, N.; Soldatov, M.; Solodkov, A.; Soloviev, A.; Tsoupko-Sitnikov, V.; Zaitsev, A.

    2002-11-01

    A system to calibrate and monitor ATLAS Barrel Hadronic Calorimeter (TileCal) is under construction at CERN Laboratory. A movable radioactive source driven by a liquid flow travels through the calorimeter body deposing a known energy to the calorimeter cells. Extensive R&D studies have been carried out and the main system parameters are evaluated. The prototypes are currently used for quality check and inter-calibration of the TileCal modules. A distributed control system, hardware as well as corresponding on-line and off-line software is developed.

  8. High-Performance Tiled WMS and KML Web Server

    NASA Technical Reports Server (NTRS)

    Plesea, Lucian

    2007-01-01

    This software is an Apache 2.0 module implementing a high-performance map server to support interactive map viewers and virtual planet client software. It can be used in applications that require access to very-high-resolution geolocated images, such as GIS, virtual planet applications, and flight simulators. It serves Web Map Service (WMS) requests that comply with a given request grid from an existing tile dataset. It also generates the KML super-overlay configuration files required to access the WMS image tiles.

  9. Status of plutonium ceramic immobilization processes and immobilization forms

    SciTech Connect

    Ebbinghaus, B.B.; Van Konynenburg, R.A.; Vance, E.R.; Jostsons, A.

    1996-05-01

    Immobilization in a ceramic followed by permanent emplacement in a repository or borehole is one of the alternatives currently being considered by the Fissile Materials Disposition Program for the ultimate disposal of excess weapons-grade plutonium. To make Pu recovery more difficult, radioactive cesium may also be incorporated into the immobilization form. Valuable data are already available for ceramics form R&D efforts to immobilize high-level and mixed wastes. Ceramics have a high capacity for actinides, cesium, and some neutron absorbers. A unique characteristic of ceramics is the existence of mineral analogues found in nature that have demonstrated actinide immobilization over geologic time periods. The ceramic form currently being considered for plutonium disposition is a synthetic rock (SYNROC) material composed primarily of zirconolite (CaZrTi{sub 2}O{sub 7}), the desired actinide host phase, with lesser amounts of hollandite (BaAl{sub 2}Ti{sub 6}O{sub 16}) and rutile (TiO{sub 2}). Alternative actinide host phases are also being considered. These include pyrochlore (Gd{sub 2}Ti{sub 2}O{sub 7}), zircon (ZrSiO{sub 4}), and monazite (CePO{sub 4}), to name a few of the most promising. R&D activities to address important technical issues are discussed. Primarily these include moderate scale hot press fabrications with plutonium, direct loading of PuO{sub 2} powder, cold press and sinter fabrication methods, and immobilization form formulation issues.

  10. Thin film ceramic thermocouples

    NASA Technical Reports Server (NTRS)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  11. Ceramic gas turbine shroud

    DOEpatents

    Shi, Jun; Green, Kevin E.

    2014-07-22

    An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.

  12. Foam on Tile Impact Modeling for the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Stellingwerf, R. F.; Robinson, J. H.; Richardson, S.; Evans, S. W.; Stallworth, R.; Hovater, M.

    2003-01-01

    Following the breakup of the Space Shuttle Columbia during reentry a NASA-wide investigation team was formed to examine the probable damage inflicted on Orbiter Thermal Protection System (TPS) elements by impact of External Tank insulating foam projectiles. Our team was to apply rigorous, physics-based analysis techniques to help determine parameters of interest for an experimental test program, utilize validated codes to investigate the full range of impact scenarios, and use analysis derived models to predict aero-thermal-structural responses to entry conditions. We were to operate on a non-interference basis with the j Team, and were to supply significant findings to that team and to the Orbiter Vehicle Engineering Working Group, being responsive to any solicitations for support from these entities. The authors formed a working sub-group within the larger team to apply the Smooth Particle Hydrodynamics code SPHC to the damage estimation problem. Numerical models of the LI-900 TPS tiles and of the BX-250 foam were constructed and used as inputs into the code. Material properties needed to properly model the tiles and foam were obtained from other working sub-groups who performed tests on these items for this purpose. Two- and three- dimensional models of the tiles were constructed, including the glass outer layer, the densified lower layer of LI-900 insulation, the Nomex felt Strain Isolation Pad (SIP) mounting layer, and the underlying aluminum 2024 vehicle skin. A model for the BX-250 foam including porous compression, elastic rebound, and surface erosion was developed. Code results for the tile damage and foam behavior were extensively validated through comparison with the Southwest Research Institute (SwRI) foam-on-tile impact experiments carried out in 1999. These tests involved small projectiles striking individual tiles and small tile arrays. Following code and model validation we simulated impacts of larger ET foam projectiles on the TPS tile systems used

  13. Topological Invariants and CW Complexes of Cartesian Product and Hexagonal Tiling Paces

    NASA Astrophysics Data System (ADS)

    Escudero, Juan García

    2011-09-01

    The cohomology of a class of cartesian product tiling spaces in N dimensions when the inflation factor is a Pisot-Vijayaraghavan unit is analyzed. A CW complex for an hexagonal tiling space is defined in terms of collared tiles for the study of its topological invariants.

  14. Effect of tile effluent on nutrient concentration and retention efficiency in agricultural drainage ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tile drainage is a common water management practice in many agricultural landscapes in the Midwestern United States. Drainage ditches regularly receive water from agricultural fields through these tile drains. This field-scale study was conducted to determine the impact of tile discharge on ambient ...

  15. A scintillating tile/fiber system for the CDF plug upgrade EM calorimeter

    NASA Astrophysics Data System (ADS)

    Aota, S.; Asakawa, T.; Hara, K.; Hayashi, E.; Kim, S.; Kondo, K.; Kuwabara, T.; Miyashita, S.; Nakada, H.; Nakano, I.; Seiya, Y.; Takikawa, K.; Toyoda, H.; Uchida, T.; Yasuoka, K.; Mishina, M.; Iwai, J.; Albrow, M.; Freeman, J.; Limon, P. J.

    1995-01-01

    The plug calorimeter of the Collider Detector at Fermilab (CDF) [1] will be upgraded, replacing the existing gas calorimeter by a scintillating tile/fiber calorimeter. We have completed R&D for the CDF plug upgrade EM calorimeter. We describe the results of the R&D leading to the final design of the tile/fiber system for the calorimeter. Kuraray SCSN38, Kuraray Y11 and PET film (E65) were chosen as materials for scintillating tiles, wavelength shifting (WLS) fibers and a surface reflector on tiles, respectively, in view of obtaining large light yield and uniform response from a tile/fiber system. We decided fiber groove path in a tile, groove cross-sectional shape and groove depth for each tile to get uniform response from a tile/fiber. For the tile/fiber system of the final design, the average light yield was larger than 3.0 photoelectrons per minimum ionizing particle (MIP), the response uniformity in a tile was less than 2.5% and a total cross talk from a tile to the adjacent tiles was less than 2.0%. These results satisfied our requirements.

  16. Steep-Slope Assembly Testing of Clay and Concrete Tile With and Without Cool Pigmented Colors

    SciTech Connect

    Miller, William A

    2005-11-01

    Cool color pigments and sub-tile venting of clay and concrete tile roofs significantly impact the heat flow crossing the roof deck of a steep-slope roof. Field measures for the tile roofs revealed a 70% drop in the peak heat flow crossing the deck as compared to a direct-nailed asphalt shingle roof. The Tile Roofing Institute (TRI) and its affiliate members are keenly interested in documenting the magnitude of the drop for obtaining solar reflectance credits with state and federal "cool roof" building efficiency standards. Tile roofs are direct-nailed or are attached to a deck with batten or batten and counter-batten construction. S-Misson clay and concrete tile roofs, a medium-profile concrete tile roof, and a flat slate tile roof were installed on fully nstrumented attic test assemblies. Temperature measures of the roof, deck, attic, and ceiling, heat flows, solar reflectance, thermal emittance, and the ambient weather were recorded for each of the tile roofs and also on an adjacent attic cavity covered with a conventional pigmented and directnailed asphalt shingle roof. ORNL measured the tile's underside temperature and the bulk air temperature and heat flows just underneath the tile for batten and counter-batten tile systems and compared the results to the conventional asphalt shingle.

  17. GROWTH EVALUATION OF FUNGI (PENICILLIUM AND ASPERGILLUS SPP.) ON CEILING TILES

    EPA Science Inventory

    The paper gives results of an evaluation of the potential for fungal growth on four different ceiling tiles in static chambers. It was found that even new ceiling tiles supported fungal growth under favorable conditions. Used ceiling tiles appeared to be more susceptible to funga...

  18. 40 CFR 427.70 - Applicability; description of the asbestos floor tile subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... asbestos floor tile subcategory. 427.70 Section 427.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Floor Tile Subcategory § 427.70 Applicability; description of the asbestos floor tile...

  19. 40 CFR 427.70 - Applicability; description of the asbestos floor tile subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... asbestos floor tile subcategory. 427.70 Section 427.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Floor Tile Subcategory § 427.70 Applicability; description of the asbestos floor tile...

  20. Restoration of Endodontically Treated Molars Using All Ceramic Endocrowns

    PubMed Central

    Carlos, Roopak Bose; Thomas Nainan, Mohan; Pradhan, Shamina; Roshni Sharma; Benjamin, Shiny; Rose, Rajani

    2013-01-01

    Clinical success of endodontically treated posterior teeth is determined by the postendodontic restoration. Several options have been proposed to restore endodontically treated teeth. Endocrowns represent a conservative and esthetic restorative alternative to full coverage crowns. The preparation consists of a circular equigingival butt-joint margin and central retention cavity into the entire pulp chamber constructing both the crown and the core as a single unit. The case reports discussed here are moderately damaged endodontically treated molars restored using all ceramic endocrowns fabricated using two different systems, namely, CAD/CAM and pressed ceramic. PMID:24455318

  1. Advanced ceramic material for high temperature turbine tip seals

    NASA Technical Reports Server (NTRS)

    Vogan, J. W.; Solomon, N. G.; Stetson, A. R.

    1980-01-01

    Forty-one material systems were evaluated for potential use in turbine blade tip seal applications at 1370 C. Both ceramic blade tip inserts and abradable ceramic tip shoes were tested. Hot gas erosion, impact resistance, thermal stability, and dynamic rub performance were the criteria used in rating the various materials. Silicon carbide and silicon nitride were used, both as blade tips and abradables. The blade tip inserts were fabricated by hot pressing while low density and honeycomb abradables were sintered or reaction bonded.

  2. Ceramics manufacturing contributes to ambient silica air pollution and burden of lung disease.

    PubMed

    Liao, Chung-Min; Wu, Bo-Chun; Cheng, Yi-Hsien; You, Shu-Han; Lin, Yi-Jun; Hsieh, Nan-Hung

    2015-10-01

    Inhalation of silica (SiO2) in occupational exposures can cause pulmonary fibrosis (silicosis), lung function deficits, pulmonary inflammation, and lung cancer. Current risk assessment models, however, cannot fully explain the magnitude of silica-induced pulmonary disease risk. The purpose of this study was to assess human health risk exposed to airborne silica dust in Taiwan ceramics manufacturing. We conducted measurements to characterize workplace-specific airborne silica dust in tile and commodity ceramic factories and used physiologically based alveolar exposure model to estimate exposure dose. We constructed dose-response models for describing relationships between exposure dose and inflammatory responses, by which health risks among workers can be assessed. We found that silica contents were 0.22-33.04 % with mean concentration ranges of 0.11-5.48 and 0.46-1763.30 μg m(-3), respectively, in commodity and tile ceramic factories. We showed that granulation workers in tile ceramic factory had the highest total SiO2 lung burden (∼1000 mg) with cumulative SiO2 lung burden of ∼4 × 10(4) mg-year. The threshold estimates with an effect on human lung inflammation and fibrosis are 407.31 ± 277.10 (mean ± sd) and 505.91 ± 231.69 mg, respectively. For granulation workers, long-term exposure to airborne silica dust for 30-45 years was likely to pose severe adverse health risks of inflammation and fibrosis. We provide integrated assessment algorithms required to implement the analyses and maintain resulting concentration of silica dust at safety threshold level in the hope that they will stimulate further analyses and interpretation. We suggest that decision-makers take action to implement platforms for effective risk management to prevent the related long-term occupational disease in ceramics manufacturing. PMID:26002365

  3. A Conversation with Frank Press

    NASA Astrophysics Data System (ADS)

    Goodstein, Judith R.

    Geophysicist Frank Press was director of Caltech's Seismological Laboratory from 1957 to 1965. In this interview, he recalls his work with Maurice Ewing at Columbia's Lamont Geological Observatory; his directorship of Caltech's Seismological Laboratory and colleagues Charles Richter, Beno Gutenberg, and Hugo Benioff; his work on the free oscillations of the earth; and his part in establishing the worldwide network of seismographs for the detection of nuclear weapons testing.

  4. Influence of raw materials composition on firing shrinkage, porosity, heat conductivity and microstructure of ceramic tiles

    NASA Astrophysics Data System (ADS)

    Kurovics, E.; Buzimov, A. Y.; Gömze, L. A.

    2016-04-01

    In this work some new raw material compositions from alumina, conventional brick-clays and sawdust were mixed, compacted and heat treated by the authors. Depending on raw material compositions and firing temperatures the specimens were examined on shrinkage, water absorption, heat conductivity and microstructures. The real raised experiments have shown the important role of firing temperature and raw material composition on color, heat conductivity and microstructure of the final product.

  5. Radial Electromagnetic Press for IGNITOR

    NASA Astrophysics Data System (ADS)

    Cucchiaro, A.; Anzidei, L.; Capriccioli, A.; Celentano, G.; Crescenzi, C.; Gasparotto, M.; Guerrieri, A.; Pizzuto, A.; Palmieri, A.; Rita, C.; Roccella, M.; Coppi, B.

    1998-11-01

    The structural performance of the IGNITOR machine relies upon a combination of both bucking between Toroidal Field Coils (TFCs), Central Solenoid (CS) and the Central Post (CP), and wedging in a well-defined area of the TFCs and of the magnet mechanical structure (called C-Clamps). This requires a pre-loading system to enhance the load bearing capability. Several solutions have been assessed and compared with each other within the operational scenarios and eventually a radial electromagnetic press has been selected as reference(Pizzuto A. et al., ENEA Report IGN/MAC/001/96). The loading system is made up by active coils and passive restraining rings. The radial active press consists of two pairs of coils (200x200mm each), symmetrically located relative to the machine equatorial plane and seating onto the passive rings. The permanent pre--load of the rings is applied through a wedging system with a load of about 120 MN. A radial electromagnetic press has the purpose of modulating the axial pressure on the TFC inner legs during the pulse. Design aspects including stress analysis, manufacturing, assembly and operational scenarios of the selected solution are presented in this paper.

  6. The Small Book Press: A Cultural Essential.

    ERIC Educational Resources Information Center

    Henderson, Bill

    1984-01-01

    Discussion of small literary book publishers notes works of small-press authors (Thomas Paine, Washington Irving, Walt Whitman, Mark Twain, Upton Sinclair, Anais Nin); today's outstanding presses (Creative Arts Book Company, Persea Books, Full Court Press, Reed and Cannon Company, Tuumba Books); and role of little magazines. Thirty-seven…

  7. Yale University Press: Disseminating "Lux et Veritas"?

    ERIC Educational Resources Information Center

    Parrott, John B.

    2010-01-01

    America's university presses are situated within a network of over one hundred universities, learned societies, and scholarly associations. According to a pamphlet put out by the American Association of University Presses, these presses "make available to the broader public the full range and value of research generated by university faculty."…

  8. The Burger Court and the Press.

    ERIC Educational Resources Information Center

    Higdon, Philip R.

    This report discusses recent cases involving freedom of the press that have been heard before the Burger court of the United States Supreme Court. The report discerns a trend toward treating the press like an ordinary citizen; this is a reversal of the view of the Warren court that the First Amendment creates special rights for the press so that…

  9. Microstructure and Phase Composition of Cold Isostatically Pressed and Pressureless Sintered Silicon Nitride.

    PubMed

    Lukianova, O A; Krasilnikov, V V; Parkhomenko, A A; Sirota, V V

    2016-12-01

    The microstructure and physical properties of new Y2O3 and Al2O3 oxide-doped silicon nitride ceramics fabricated by cold isostatic pressing and free sintering were investigated. The phase composition of produced material was also studied by X-ray diffraction at room and elevated temperature. The fabricated ceramics featured a microstructure of Si5AlON7 grains with a fine-grained α-Si3N4 with a small amount of Y2SiAlON5. Described ceramics is attractive for many high-temperature structural applications due to beneficial combination of fine-grained structure with improved mechanical properties and small weight loss. PMID:26979726

  10. Microstructure and Phase Composition of Cold Isostatically Pressed and Pressureless Sintered Silicon Nitride

    NASA Astrophysics Data System (ADS)

    Lukianova, O. A.; Krasilnikov, V. V.; Parkhomenko, A. A.; Sirota, V. V.

    2016-03-01

    The microstructure and physical properties of new Y2O3 and Al2O3 oxide-doped silicon nitride ceramics fabricated by cold isostatic pressing and free sintering were investigated. The phase composition of produced material was also studied by X-ray diffraction at room and elevated temperature. The fabricated ceramics featured a microstructure of Si5AlON7 grains with a fine-grained α-Si3N4 with a small amount of Y2SiAlON5. Described ceramics is attractive for many high-temperature structural applications due to beneficial combination of fine-grained structure with improved mechanical properties and small weight loss.

  11. Heterogeneous solute transport in a tile-drained field

    NASA Astrophysics Data System (ADS)

    Basile, A.; Comegna, A.; Coppola, A.; Hassan, S.; Haikal, M. A.; Kassab, M.; Lamaddalena, N.

    2009-04-01

    Preferential flow and its diverse attributes: i) macropore flow; ii) fingered flow; iii) funnel flow, cannot be described by a single process hypothesis and are unpredictable from a priori analysis of field characteristics due to the inability of sampling methods to capture minute features triggering such flows. Most solute transport techniques are expensive and require extensive soil disturbance. Moreover, solute transport in heterogeneous porous media cannot always be conceptualized as being either a convective-dispersive or a stochastic-convective process. One approach to predict subsurface leaching could be the coupling of near surface measurements with a generalized transport model. A steady state field tracer experiment was conducted on a tile-drained "Terra Rossa" plot located in Valenzano (Bari - Italy), to test whether TDR BTCs measured 1 m a part along a transect of 40 m can be used in such a way for accurate prediction of tile's BTC. A Generalized Transfer Function (GTF) (Zhang, 2000) was fitted to the observed concentration a three depths for each site along the transect to identify the transfer function parameters. To account for vertical transport in the unsaturated zone and lateral divergence near the tile, these parameters were used in a 2D model (Utermann, 1990) to predict earlier breakthrough of tile flux concentration. The 2D model predictions of the flux concentrations were similar to the observed values, nearly reproducing the channel-like nature of solute flow.

  12. Nutrient export in tile drainage: Comparing manure injection to fertigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subsurface tile drainage of agricultural land is implicated as a major source of nutrients to the Mississippi River. To protect water quality, land application of manure should maximize crop nutrient use and minimize nutrient loss. Weather constraints and regulations restrict the period during which...

  13. REACTOR CANAL AFTER IT HAS BEEN TILED. WATER FILLS CANAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    REACTOR CANAL AFTER IT HAS BEEN TILED. WATER FILLS CANAL PART WAY TO TOP. CAMERA FACES WEST. INL NEGATIVE NO. 3993-A. Unknown Photographer, 12/28/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  14. EVALUATION OF FUNGAL GROWTH (PENICILLIUM GLABRUM) ON A CEILING TILE

    EPA Science Inventory

    The paper gives results of a study employing static chambers to study the impact of different equilibrium relative humidities (RHs) and moisture conditions on the ability of a new ceiling tile to support fungal growth. Amplification of the mold, Penicillium glabrum, occurred at R...

  15. Nutrient Transport in Tile-Fed Drainage Ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drainage ditches receive water and associated contaminants from agricultural fields via surface runoff or sub-surface tile drains. Little consideration has been given to the processes affecting nutrient transport once in surface water. The objective of this research was to evaluate the nutrient fa...

  16. Kinetics of the clay roofing tile convection drying

    SciTech Connect

    Thomas, S. . Faculty of Food Technology); Skansi, D. . Faculty of Chemical Engineering and Technology); Sokele, M. . Telecommunications Center)

    1993-01-01

    Kinetics of the convection drying process of flat tile has been investigated experimentally in an industrial tunnel dryer. Several velocities of wet tile movement through the dryer were tested to obtain maximum allowable drying rate curve. As there are various models to describe the kinetics of convection drying, finding a model that would fairly well approximate the kinetics of the whole drying process was part of the research. Especially the polynomial and exponential models were tested. It was found that exponential model of the type: B(t) = (a[minus]B[sub e])[center dot]EXP([minus]bt[sup 2])+B[sub e], ([minus]dB(t)/dt) = 2bt(B(t)[minus]B[sub e]) significantly correlates the kinetics of the whole tile drying process. Applying the maximum allowable drying rate curve obtained for flat tile in the first period of drying, a grapho-analytic model for the optimal conducting of the process has been developed.

  17. EVALUATION OF FUNGAL GROWTH (PENICILLIUM GLABRUM) ON A CEILING TILE

    EPA Science Inventory

    The paper gives results of a study employing static chambers to study the impact of different equilibrium relative humidities (RHs) and moisture conditions on the ability of a new ceiling tile to support fungal growth. mplification of the mold, Penicillium glabrum, occurred at RH...

  18. In-Field Bioreactor for Removing Nitrate from Tile Drainage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrate in water leaving subsurface drain ('tile') systems often exceeds the 10 mg-N L-1 maximum contaminant level (MCL) set by the U.S. EPA for drinking water and has been implicated in contributing to the hypoxia problem within the Gulf of Mexico. Much of the NO3 from agricultural lands impacting ...

  19. A design rationale for NASA TileWorld

    NASA Technical Reports Server (NTRS)

    Philips, Andrew B.; Swanson, Keith J.; Drummond, Mark E.; Bresina, John L.

    1991-01-01

    Automated systems that can operate in unrestricted real-world domains are still well beyond current computational capabilities. This paper argues that isolating essential problem characteristics found in real-world domains allows for a careful study of how particular control systems operate. By isolating essential problem characteristics and studying their impact on autonomous system performance, we should be able to more quickly deliver systems for practical real-world problems. For our research on planning, scheduling, and control, we have selected three particular domain attributes to study: exogenous events, uncertain action outcome, and metric time. We are not suggesting that studies of these attributes in isolation are sufficient to guarantee the obvious goals of good methodology, brilliant architectures, or first-class results; however, we are suggesting that such isolation facilitates the achievement of these goals. To study these attributes, we have developed the NASA TileWorld. We describe the NASA TileWorld simulator in general terms, present an example NASA TileWorld problem, and discuss some of our motivations and concerns for NASA TileWorld.

  20. A novel surface defect inspection algorithm for magnetic tile

    NASA Astrophysics Data System (ADS)

    Xie, Luofeng; Lin, Lijun; Yin, Ming; Meng, Lintao; Yin, Guofu

    2016-07-01

    In this paper, we propose a defect extraction method for magnetic tile images based on the shearlet transform. The shearlet transform is a method of multi-scale geometric analysis. Compared with similar methods, the shearlet transform offers higher directional sensitivity and this is useful to accurately extract geometric characteristics from data. In general, a magnetic tile image captured by CCD camera mainly consists of target area, background. Our strategy for extracting the surface defects of magnetic tile comprises two steps: image preprocessing and defect extraction. Both steps are critical. After preprocessing the image, we extract the target area. Due to the low contrast in the magnetic tile image, we apply the discrete shearlet transform to enhance the contrast between the defect area and the normal area. Next, we apply a threshold method to generate a binary image. To validate our algorithm, we compare our experimental results with Otsu method, the curvelet transform and the nonsubsampled contourlet transform. Results show that our algorithm outperforms the other methods considered and can very effectively extract defects.

  1. Phosphorus modeling in tile drained agricultural systems using APEX

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus losses through tile drained systems in agricultural landscapes may be causing the persistent eutrophication problems observed in surface water. The purpose of this paper is to evaluate the state of the science in the Agricultural Policy/Environmental eXtender (APEX) model related to surf...

  2. Contributions of systematic tile drainage to watershed scale phosphorus transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus (P) transport from agricultural fields continues be a focal point for addressing harmful algal blooms (HABs) and nuisance algae in freshwater systems throughout the world. In humid, poorly drained regions, attention has turned to P delivery through subsurface tile drainage. Research on th...

  3. Water Quality from Grass-Based Dairy Farm Tile Lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subsurface water quality from agricultural systems varies with the type of system and management. Systems with high inputs from fertilizer and/or manure may have high nutrient levels, e.g. NO3-N, in subsurface water. This study investigates the water quality from tile lines on grass-based dairy fa...

  4. Tiled architecture of a CNN-mostly IP system

    NASA Astrophysics Data System (ADS)

    Spaanenburg, Lambert; Malki, Suleyman

    2009-05-01

    Multi-core architectures have been popularized with the advent of the IBM CELL. On a finer grain the problems in scheduling multi-cores have already existed in the tiled architectures, such as the EPIC and Da Vinci. It is not easy to evaluate the performance of a schedule on such architecture as historical data are not available. One solution is to compile algorithms for which an optimal schedule is known by analysis. A typical example is an algorithm that is already defined in terms of many collaborating simple nodes, such as a Cellular Neural Network (CNN). A simple node with a local register stack together with a 'rotating wheel' internal communication mechanism has been proposed. Though the basic CNN allows for a tiled implementation of a tiled algorithm on a tiled structure, a practical CNN system will have to disturb this regularity by the additional need for arithmetical and logical operations. Arithmetic operations are needed for instance to accommodate for low-level image processing, while logical operations are needed to fork and merge different data streams without use of the external memory. It is found that the 'rotating wheel' internal communication mechanism still handles such mechanisms without the need for global control. Overall the CNN system provides for a practical network size as implemented on a FPGA, can be easily used as embedded IP and provides a clear benchmark for a multi-core compiler.

  5. Direct readout of gaseous detectors with tiled CMOS circuits

    NASA Astrophysics Data System (ADS)

    Visschers, J. L.; Blanco Carballo, V.; Chefdeville, M.; Colas, P.; van der Graaf, H.; Schmitz, J.; Smits, S.; Timmermans, J.

    2007-03-01

    A coordinated design effort is underway, exploring the three-dimensional direct readout of gaseous detectors by an anode plate equipped with a tiled array of many CMOS pixel readout ASICs, having amplification grids integrated on their topsides and being contacted on their backside.

  6. A new Energy Saving method of manufacturing ceramic products from waste glass

    SciTech Connect

    Haun Labs

    2002-07-05

    This final report summarizes the activities of the DOE Inventions and Innovations sponsored project, ''A New Energy Saving Method of Manufacturing Ceramic Products from Waste Glass.'' The project involved an innovative method of lowering energy costs of manufacturing ceramic products by substituting traditional raw materials with waste glass. The processing method is based on sintering of glass powder at {approx}750 C to produce products which traditionally require firing temperatures of >1200 C, or glass-melting temperatures >1500 C. The key to the new method is the elimination of previous processing problems, which have greatly limited the use of recycled glass as a ceramic raw material. The technology is aligned with the DOE-OIT Glass Industry Vision and Roadmap, and offers significant energy savings and environmental benefits compared to current technologies. A U.S. patent (No. 6,340,650) covering the technology was issued on January 22, 2002. An international PCT Patent Application is pending with designations made for all PCT regions and countries. The goal of the project was to provide the basis for the design and construction of an energy-efficient manufacturing plant that can convert large volumes of waste glass into high-quality ceramic tile. The main objectives of the project were to complete process development and optimization; construct and test prototype samples; and conduct market analysis and commercialization planning. Two types of ceramic tile products were targeted by the project. The first type was developed during the first year (Phase I) to have a glazed-like finish for applications where slip resistance is not critical, such as wall tile. The processing method optimized in Phase I produces a glossy surface with a translucent appearance, without the extra glazing steps required in traditional tile manufacturing. The second type of product was developed during the second year (Phase II). This product was designed to have an unglazed appearance

  7. Shock profile studies on selected silicon carbide ceramics with application to dynamic yield mechanisms

    NASA Astrophysics Data System (ADS)

    Grady, Dennis E.

    2000-04-01

    Recent shock wave profile studies have been performed on several hot-pressed silicon carbide ceramics and a reaction bonded silicon carbide ceramic. Comparisons of the data with earlier wave profile measurements reveal striking differences in dynamic yield behavior through observations of the compression precursor wave structure. New data are presented and underlying microstructural mechanisms are considered to explain observed differences in the dynamic yield process.

  8. Resistance Measurements and Activation Energies Calculations of Pure and Platinum Doped Stannic Oxide Ceramics in Air

    SciTech Connect

    Ibrahim, Zuhairi; Othman, Zulkafli; Karim, Mohd Mustamam Abd; Holland, Diane

    2007-05-09

    Pure SnO2 and Pt-SnO2 ceramics were fabricated by the dry pressing method using a pressure of 40 Mpa and sintered at 1000 deg. C. Electrical resistance measurements were made using an impedance analyzer, in air and temperatures between 25 deg. C and 450 deg. C. The change in resistance in both pure and platinum-doped stannic oxide ceramics was discussed.

  9. Development of a nondestructive method for underglaze painted tiles--demonstrated by the analysis of Persian objects from the nineteenth century.

    PubMed

    Reiche, Ina; Röhrs, Stefan; Salomon, Joseph; Kanngiesser, Birgit; Höhn, Yvonne; Malzer, Wolfgang; Voigt, Friederike

    2009-02-01

    The paper presents an analytical method developed for the nondestructive study of nineteenth-century Persian polychrome underglaze painted tiles. As an example, 9 tiles from French and German museum collections were investigated. Before this work was undertaken little was known about the materials used in pottery at that time, although the broad range of colors and shades, together with their brilliant glazes, made these objects stand out when compared with Iranian ceramics of the preceding periods and suggested the use of new pigments, colorants, and glaze compositions. These materials are thought to be related to provenance and as such appropriate criteria for art-historical attribution. The analytical method is based on the combination of different nondestructive spectroscopic techniques using microfocused beams such as proton-induced X-ray emission/proton-induced gamma-ray emission, X-ray fluorescence, 3D X-ray absorption near edge structure, and confocal Raman spectroscopy and also visible spectroscopy. It was established to address the specific difficulties these objects and the technique of underglaze painting raise. The exact definition of the colors observed on the tiles using the Natural Color System helped to attribute them to different colorants. It was possible to establish the presence of Cr- and U-based colorants as new materials in nineteenth-century Persian tilemaking. The difference in glaze composition (Pb, Sn, Na, and K contents) as well as the use of B and Sn were identified as a potential marker for different workshops. PMID:19030848

  10. Characterization of the glaze and in-glaze pigments of the nineteenth-century relief tiles from the Pena National Palace, Sintra, Portugal

    NASA Astrophysics Data System (ADS)

    Coutinho, M. L.; Veiga, J. P.; Alves, L. C.; Mirão, J.; Dias, L.; Lima, A. M.; Muralha, V. S.; Macedo, M. F.

    2016-07-01

    The glaze and in-glaze pigments of the historical nineteenth-century glazed tiles from the Pena National Palace (Sintra, Portugal) were characterized using a multi-analytical approach. Chemical composition and microstructural characterization were ascertained by µ-PIXE, µ-Raman, optical microscopy and VP-SEM-EDS. The manufacturing technique and colour palette in these tiles were found to be close to the ceramic pigments used in traditional majolica. The blue and purple colours derive from cobalt oxide and manganese oxide, respectively. A mixture of Pb-Sn-Sb yellow with cobalt oxide and iron oxide was used for green and dark yellow, respectively, while grey tonalities consist of a complex mixture of cobalt oxide, manganese oxide and Pb-Sn-Sb yellow in different proportions. Results obtained allowed the determination of the oxides and elements used in pigments as well as production techniques, resorting to traditional majolica manufacture, although the tiles were produced by the end of the nineteenth century.

  11. Corrosion Issues for Ceramics in Gas Turbines

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Fox, Dennis S.; Smialek, James L.; Opila, Elizabeth J.; Tortorelli, Peter F.; More, Karren L.; Nickel, Klaus G.; Hirata, Takehiko; Yoshida, Makoto; Yuri, Isao

    2000-01-01

    The requirements for hot-gas-path materials in gas turbine engines are demanding. These materials must maintain high strength and creep resistance in a particularly aggressive environment. A typical gas turbine environment involves high temperatures, rapid gas flow rates, high pressures, and a complex mixture of aggressive gases. Figure 26.1 illustrates the requirements for components of an aircraft engine and critical issues [1]. Currently, heat engines are constructed of metal alloys, which meet these requirements within strict temperature limits. In order to extend these temperature limits, ceramic materials have been considered as potential engine materials, due to their high melting points and stability at high temperatures. These materials include oxides, carbides, borides, and nitrides. Interest in using these materials in engines appears to have begun in the 1940s with BeO-based porcelains [2]. During the 1950s, the efforts shifted to cermets. These were carbide-based materials intended to exploit the best properties of metals and ceramics. During the 1960s and 1970s, the silicon-based ceramics silicon carbide (SiC) and silicon nitride (Si3N4) were extensively developed. Although the desirable high-temperature properties of SiC and Si3N4 had long been known, consolidation of powders into component-sized bodies required the development of a series of specialized processing routes [3]. For SiC, the major consolidation routes are reaction bonding, hot-pressing, and sintering. The use of boron and carbon as additives which enable sintering was a particularly noteworthy advance [4]. For Si3N4 the major consolidation routes are reaction bonding and hot pressing [5]. Reaction-bonding involves nitridation of silicon powder. Hot pressing involves addition of various refractory oxides, such as magnesia (MgO), alumina (Al2O3), and yttria (y2O3). Variations on these processes include a number of routes including Hot Isostatic Pressing (HIP), gas-pressure sintering

  12. Fixed tile rate codec for bandwidth saving in video processors

    NASA Astrophysics Data System (ADS)

    Lachine, Vladimir; Dinh, Chon-Tam Le; Le, Dinh Kha; Wong, Jeffrey

    2014-02-01

    The paper presents an image compression circuit for bandwidth saving in video display processors. This is intra frame tile based compression algorithm offering visually lossless quality for compression rates between 1.5 and 2.5. RGB and YCbCr (4:4:4, 4:2:2 and 4:2:0) video formats are supported for 8/10 bits video signals. The Band Width Compressor (BWC) consists of Lossless Compressor (LC) and Quantization Compressor (QC) that generate output bit streams for tiles of pixels. Size of output bit stream generated for a tile by the LC may be less or greater than a required size of output memory block. The QC generates bit stream that always fits output memory block of the required size. The output bit stream generated by the LC is transmitted if its size is less than the required size of the output memory block. Otherwise, the output bit stream generated by the QC is transmitted. The LC works on pixel basis. A difference between original and predicted pixel's values for each pixel of a tile is encoded as prefix and suffix. The prefix is encoded by means of variable length code, and suffix is encoded as is. The QC divides a tile of pixels on a set of blocks and quantizes pixels of each block independently of the other blocks. The number of quantization bits for all pixels of a block depends on standard deviation calculated over the block. A difference between pixel's value and average value over the block is quantized and transmitted.

  13. Substructure procedure for including tile flexibility in stress analysis of shuttle thermal protection system

    NASA Technical Reports Server (NTRS)

    Giles, G. L.

    1980-01-01

    A substructure procedure to include the flexibility of the tile in the stress analysis of the shuttle thermal protection system (TPS) is described. In this procedure, the TPS is divided into substructures of (1) the tile which is modeled by linear finite elements and (2) the SIP which is modeled as a nonlinear continuum. This procedure was applied for loading cases of uniform pressure, uniform moment, and an aerodynamic shock on various tile thicknesses. The ratios of through-the-thickness stresses in the SIP which were calculated using a flexible tile compared to using a rigid tile were found to be less than 1.05 for the cases considered.

  14. Pb(Fe1/2Nb1/2)O3 Perovskite Ceramics Produced by Simplified Wolframite Route

    NASA Astrophysics Data System (ADS)

    Liou, Yi-Cheng; Shih, Chung-Yu; Yu, Chun-Hung

    2002-06-01

    Pb(Fe1/2Nb1/2)O3 (PFN) perovskite ceramics produced by simplified wolframite route are investigated. Without calcining, the mixture of FeNbO4 and PbO was pressed and sintered directly to form PFN ceramics. Pyrochlore-free PFN ceramics are produced by simplified wolframite route after sintered at temperatures from 950°C to 1100°C for 2 h to 6 h. Density increases with sintering temperature and reaches a maximum around 8.2 g/cm3 at 1050°C for PFN ceramics with various soak times.

  15. Acetabular component deformation with press-fit fixation.

    PubMed

    Squire, Matthew; Griffin, William L; Mason, J Bohannon; Peindl, Richard D; Odum, Susan

    2006-09-01

    Acetabular component deformation secondary to forces encountered during insertion is a potential consequence of the press-fit technique. This study characterized the stiffness of Pinnacle 100 cups (DePuy, Warsaw, Ind) via mechanical testing and used this information with intraoperative measurements of cup deformation to calculate the in vivo forces acting on cups inserted during hip arthroplasty in 21 patients. We found that 90.5% of cups had measurable compression deformity, averaging 0.16 +/- 0.16 mm. The corresponding forces acting on these cups averaged 414 +/- 421 N. For hard-on-hard bearing surfaces, such in vivo deformation of acetabular shells may result in negative clinical consequences such as equatorial loading with increased wear and potential seizing of components, chipping of ceramic inserts, or locking mechanism damage. PMID:16950065

  16. Evaluation of the Hooghoudt and Kirkham tile drain equations in SWAT to simulate tile flow and nitrate-nitrogen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subsurface tile drains in agricultural systems of Midwest U.S. are a major contributor of nitrate-N (NO3-N) loadings to hypoxic conditions in the Gulf of Mexico. Existing soil moisture retention parameter computation algorithm in the widely used Soil and Water Assessment Tool (SWAT) model is known t...

  17. Tile-in-ONE An integrated framework for the data quality assessment and database management for the ATLAS Tile Calorimeter

    NASA Astrophysics Data System (ADS)

    Cunha, R.; Solans, C.; Sivolella, A.; Ferreira, F.; Maidantchik, C.

    2014-06-01

    In order to ensure the proper operation of the ATLAS Tile Calorimeter and assess the quality of data, many tasks are performed by means of several tools which have been developed independently. The features are displayed into standard dashboards, dedicated to each working group, covering different areas, such as Data Quality and Calibration.

  18. The friction and wear of ceramic/ceramic and ceramic/metal combinations in sliding contact

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.; Dellacorte, Christopher

    1994-01-01

    The tribological characteristics of ceramics sliding on ceramics are compared to those of ceramics sliding on a nickel-based turbine alloy. The friction and wear of oxide ceramics and silicon-based ceramics in air at temperatures from room ambient to 900 C (in a few cases to 1200 C) were measured for a hemispherically-tipped pin on a flat sliding contact geometry. In general, especially at high temperature, friction and wear were lower for ceramic/metal combinations than for ceramic/ceramic combinations. The better tribological performance for ceramic/metal combinations is attributed primarily to the lubricious nature of the oxidized surface of the metal.

  19. The friction and wear of ceramic/ceramic and ceramic/metal combinations in sliding contact

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.; Dellacorte, Christopher

    1993-01-01

    The tribological characteristics of ceramics sliding on ceramics are compared to those of ceramics sliding on a nickel based turbine alloy. The friction and wear of oxide ceramics and silicon-based ceramics in air at temperatures from room ambient to 900 C (in a few cases to 1200 C) were measured for a hemispherically-tipped pin on a flat sliding contact geometry. In general, especially at high temperature, friction and wear were lower for ceramic/metal combinations than for ceramic/ceramic combinations. The better tribological performance for ceramic/metal combinations is attributed primarily to the lubricious nature of the oxidized surface of the metal.

  20. Prediction of Behavior of Ceramic/Metal Composite Panels Under Two Consecutive Ballistic Impacts

    NASA Astrophysics Data System (ADS)

    Prakash, A.; Rajasankar, J.; Iyer, N. R.; Anandavalli, N.; Biswas, S. K.; Mukhopadhyay, A. K.

    2014-05-01

    This article presents a numerical investigation to predict the behavior of ceramic (Al2O3 99.5)/metal (Al5083 H116) composite panels under two consecutive high-velocity impacts of 7.62 mm sharp-nosed small projectiles. A numerical model is developed using the advanced nonlinear software AUTODYN. The aim of the study is to predict the impact behavior of ceramic/metal composite panels. The study mainly focuses on the effect of arrangement of front ceramic tiles having collinear and non-collinear joints on the impact damage pattern. The novelty of the study presented in this article is the prediction of high-velocity-impact response under two consecutive and closely spaced hits on composite panels carried out in a more realistic manner. Numerical responses, such as depth of penetration, and deformation in back plate and crack patterns, are found to match well with the experimental results. It is believed that the outcome of this study is helpful in the design of a ceramic tile joint arrangement to minimize damage in the target panel.