Science.gov

Sample records for pressure coefficient

  1. Direct Measurements of the Pressure Coefficient, Partial

    NASA Astrophysics Data System (ADS)

    del Cueto, Joseph Antonio

    1984-06-01

    The pressure coefficient of liquid ('3)He-('4)He mixtures was coupled to directly, with a strain gauge capacitative cell. The cell was filled, pressurized and isolated with a mixture, of ('3)He mole fraction x between 0.50-0.80. The elastic properties of the cell effected a capacitance change in an LC tank circuit driven to oscillation by a Tunnel Diode. The frequency of the circuit, as well as the balance point of an AC Wheatstone circuit sensing a cryo-resistor mounted on the cell, were sampled by a data acquisition(DAS) system, to obtain pressure vs. temperature increments data. The DAS was enabled to perform temperature ramps and cycles with amplitudes of (TURN) (+OR-) 50-100 mK, while concurrently sampling pressure vs. temperature data. It is found that (PAR-DIFF)P/(PAR-DIFF)T)(,v,x) is a piecewise smooth function in the temperature T. For x < x(,t)(P), the data indicate a cusp discontinuity at the lambda temperature of the mixture T(,(lamda))(x,v(p(,(lamda)))), and a simple discontinuity at the onset of phase separation temperature T(,S)(x,v(p(,S))). For x > x(,t)(P), only the phase separation breaks the monotonic behaviour of the pressure coefficient. Where x(,t)(P) is the tricritical concentration at pressure P, referred to in the above. The data for the pressure coefficients are parametrized by smooth functions in appendix 5. This parametrization allows for further thermodynamic analysis, as that of appendix 6, the change in chemical potential difference upon compression. The thermodynamic implications of the measured step in (PAR -DIFF)P/(PAR-DIFF)T)(,v,x), across the onset separation temperature, are explored in appendix 4. The 'volume' minima at the pressures the isochores cross at their pressure minima in temperature, are plotted and analysed to imply that for some concentrations x, the entropy of the mixture is a double valued function of absolute pressure.

  2. Pressure-viscosity coefficient of biobased lubricants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Film thickness is an important tribological property that is dependent on the combined effect of lubricant properties, material property of friction surfaces, and the operating conditions of the tribological process. Pressure-viscosity coefficient (PVC) is one of the lubricant properties that influe...

  3. Pressure viscosity coefficient of vegetable oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The elastohydrodynamic (EHD) pressure viscosity coefficient (PVC) of ten vegetable oils from commodity and new crops, and two petroleum-based oils, polyalphaolefin (PAO) and hexadecane, were investigated. PVC was measured using three different methods: the So and Klaus (S-K) procedure from oil visco...

  4. Partition Coefficients at High Pressure and Temperature

    NASA Astrophysics Data System (ADS)

    Righter, K.; Drake, M. J.

    2003-12-01

    crystallize from a molten mantle, and become entrained in the convecting melt, or eventually settle out at the bottom. The entrainment and settling process has been studied in detail (e.g., Tonks and Melosh, 1990), and is a potential mechanism for differentiation between the deep and shallow parts of Earth's mantle. The lithophile elements, those elements that have D(metal/silicate) <1, fall into many different subclasses and all hold information about the deep mineral structure of the mantle. Rare-earth elements (REEs) have proven to be useful: europium anomalies have helped elucidate the role of plagioclase in lunar crust formation (e.g., Schnetzler and Philpotts, 1971; Weill et al., 1974), and LREE/HREE depletion and enrichment are indicators of partial melting in the presence of garnet in the mantle. High-field-strength elements (HFSEs) - niobium, zirconium, tantalum, and hafnium - are all refractory and hence more resilient to fractionation processes such as volatility or condensation. They also have an affinity for ilmenite and rutile, and can explain differences between lunar and martian samples as well as features of Earth's continental crust ( Taylor and McLennan, 1985). Alkaline-earth and alkaline elements include rubidium, strontium, barium, potassium, caesium, and calcium, some of which are involved in radioactive decay couples, e.g., Rb-Sr and K-Ar. The latter is important in understanding the contribution of radioactive decay to planetary heat production, and potential deep sources of radiogenic argon (see Chapter 2.06). Rubidium and potassium are further useful as tracers of hydrous phases such as mica and amphibole. Possible fractionation of any of these elements from chondritic abundances (see Chapter 2.01) can be assessed with the knowledge of partition coefficients. In this chapter we summarize our understanding of mineral/melt fractionation of minor and trace elements at high pressures and temperatures and discuss the implications for mantle

  5. Temperature and pressure dependence of CO2 extinction coefficients.

    NASA Technical Reports Server (NTRS)

    Demore, W. B.; Patapoff, M.

    1972-01-01

    Results are presented of CO2 extinction coefficient measurements that were performed under conditions of temperature and pressure different from those used by previous investigators. The results show that, whereas pressure effects are generally negligible, temperature dependence is strong enough to invalidate the use of room temperature data for the Mars atmosphere.

  6. High Pressure Seebeck Coefficient Measurements Using Paris-Edinburgh Cell

    NASA Astrophysics Data System (ADS)

    Baker, Jason; Kumar, Ravhi; Park, Changyong; Kenney-Benson, Curtis; Velisavljevic, Nenad; Hipsec; Department Of Physics, University Of Nevada, Las Vegas Collaboration; Hpcat, Geophysical Laboratory, Carnegie Institution Of Washington Collaboration; Shock; Detonation Physics Group, Los Alamos National Laboratory Collaboration

    We have developed a new type of sample cell assembly for the Paris-Edinburgh (PE) type large volume press for simultaneous x-ray diffraction, electrical resistance, and thermal measurements at high pressures. We demonstrate the feasibility of performing in situ measurements of the Seebeck coefficient over a broad range of pressure-temperature conditions by observing the well-known solid-solid and solid-melt transitions of bismuth (Bi) up to 3GPa and 450 K. We observed a gradual increase in the Seebeck coefficient which becomes positive during transition to the Bi - II phase. Also, we have performed successful Seebeck coefficient measurements on the thermoelectric material PbTe. This new capability enables us to directly correlate pressure-induced structural phase transitions to electrical and thermal properties.

  7. Vapor pressures and gas-film coefficients for ketones

    USGS Publications Warehouse

    Rathbun, R.E.; Tai, D.Y.

    1987-01-01

    Comparison of handbook vapor pressures for seven ketones with more recent literature data showed large differences for four of the ketones. Gas-film coefficients for the volatilization of these ketones from water determined by two different methods were in reasonable agreement. ?? 1987.

  8. Protein osmotic pressure gradients and microvascular reflection coefficients.

    PubMed

    Drake, R E; Dhother, S; Teague, R A; Gabel, J C

    1997-08-01

    Microvascular membranes are heteroporous, so the mean osmotic reflection coefficient for a microvascular membrane (sigma d) is a function of the reflection coefficient for each pore. Investigators have derived equations for sigma d based on the assumption that the protein osmotic pressure gradient across the membrane (delta II) does not vary from pore to pore. However, for most microvascular membranes, delta II probably does vary from pore to pore. In this study, we derived a new equation for sigma d. According to our equation, pore-to-pore differences in delta II increase the effect of small pores and decrease the effect of large pores on the overall membrane osmotic reflection coefficient. Thus sigma d for a heteroporous membrane may be much higher than previously derived equations indicate. Furthermore, pore-to-pore delta II differences increase the effect of plasma protein osmotic pressure to oppose microvascular fluid filtration. PMID:9277520

  9. Microvascular pressures and filtration coefficients in the cat mesentery.

    PubMed Central

    Fraser, P A; Smaje, L H; Verrinder, A

    1978-01-01

    1. Filtration coefficient and hydrostatic pressure have been measured in single capillaries and venules in the cat mesentery using a modification of the Landis (1927) single vessel occlusion technique. 2. Venules were found to be filtering fluid, not absorbing it as is often supposed. 3. The mean filtration coefficient in capillaries was 0.018 micrometers . s-1 . mmHg-1 (1.35 X 10(-10)m . s-1 . Pa-1) while that in venules, was 0.027 micrometers . s-1 . mmHg-1 (2.02 X 10(-10)m . s-1 . Pa-1). 4. In both capillaries and venules, filtration coefficient increased with decreasing pressure. 5. The difference between directly measured venular pressure and that calculated from the occlusion data was used to determine the contribution of the interstitium to fluid exchange. In the mesentery superfused with Krebs solution the tissue pressure so determined was found to be zero or subatmospheric initially but became increasingly positive with lengthening exposure of the mesentery. PMID:722585

  10. On the determinatino of high-pressure mass-diffusion coefficients for binary mixtures

    NASA Technical Reports Server (NTRS)

    Bellan, J.; Harstad, K.

    2003-01-01

    A model for high-pressure binary diffusion coefficient calculation is proposed based on considerations originating from recasting both the low pressure kinetic theory and the Stokes-Einstein infinite dilution expressions into forms consistent with corresponding states theory.

  11. Determination of pressure drop coefficient by CFD simulation

    NASA Astrophysics Data System (ADS)

    Skočilasová, Blanka; Skočilas, Jan

    2014-08-01

    The article deals with method applied to the verification of the turbulence models. The turbulence models were used in the simulation of the Newtonian fluid turbulent flow in the circular tube. The principle of the method is in the comparison of the pressure drop obtained by the simulation and the analytic solution. The parameters of the fluid flow were varied with the specified Reynolds number range. The pressure drop of inserted element in the pipe is evaluated.

  12. Measurement of the First Townsend's Ionization Coefficients in Helium, Air, and Nitrogen at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Ran, Junxia; Luo, Haiyun; Yue, Yang; Wang, Xinxin

    2014-07-01

    In the past the first Townsend’s ionization coefficient α could only be measured with Townsend discharge in gases at low pressure. After realizing Townsend discharge in some gases at atmospheric pressure by using dielectric barrier electrodes, we had developed a new method for measuring α coefficient at atmospheric pressure, a new optical method based on the discharge images taken with ICCD camera. With this newly developed method α coefficient in helium, nitrogen and air at atmospheric pressure were measured. The results were found to be in good agreement with the data obtained at lower pressure but same reduced field E/p by other groups. It seems that the value of α coefficient is sensitive to the purity of the working gas.

  13. Temperature and pressure dependence of methane correlations and osmotic second virial coefficients in water.

    PubMed

    Ashbaugh, Henry S; Weiss, Katie; Williams, Steven M; Meng, Bin; Surampudi, Lalitanand N

    2015-05-21

    We report methane's osmotic virial coefficient over the temperatures 275 to 370 K and pressures from 1 bar up to 5000 bar evaluated using molecular simulations of a united-atom description of methane in TIP4P/2005 water. In the first half of this work, we describe an approach for calculating the water-mediated contribution to the methane-methane potential-of-mean force over all separations down to complete overlap. The enthalpic, entropic, heat capacity, volumetric, compressibility, and thermal expansivity contributions to the water-mediated interaction free energy are subsequently extracted from these simulations by fitting to a thermodynamic expansion over all the simulated state points. In the second half of this work, methane's correlation functions are used to evaluate its osmotic second virial coefficient in the temperature-pressure plane. The virial coefficients evaluated from the McMillan-Mayer correlation function integral are shown to be in excellent agreement with those determined from the concentration dependence of methane's excess chemical potential, providing an independent thermodynamic consistency check on the accuracy of the procedures used here. At atmospheric pressure the osmotic virial coefficient decreases with increasing temperature, indicative of increasing hydrophobic interactions. At low temperature, the virial coefficient decreases with increasing pressure while at high temperature the virial coefficient increases with increasing pressure, reflecting the underlying hyperbolic dependence of the virial coefficient on temperature and pressure. The transition between a decreasing to increasing pressure response of the osmotic virial coefficient is shown to follow the response of the methane-methane contact peak to changes in pressure as a function of temperature, though a universal correlation is not observed. PMID:25932722

  14. Entropy-scaling laws for diffusion coefficients in liquid metals under high pressures

    SciTech Connect

    Cao, Qi-Long Shao, Ju-Xiang; Wang, Fan-Hou; Wang, Pan-Pan

    2015-04-07

    Molecular dynamic simulations on the liquid copper and tungsten are used to investigate the empirical entropy-scaling laws D{sup *}=A exp(BS{sub ex}), proposed independently by Rosenfeld and Dzugutov for diffusion coefficient, under high pressure conditions. We show that the scaling laws hold rather well for them under high pressure conditions. Furthermore, both the original diffusion coefficients and the reduced diffusion coefficients exhibit an Arrhenius relationship D{sub M}=D{sub M}{sup 0} exp(−E{sub M}/K{sub B}T), (M=un,R,D) and the activation energy E{sub M} increases with increasing pressure, the diffusion pre-exponential factors (D{sub R}{sup 0} and D{sub D}{sup 0}) are nearly independent of the pressure and element. The pair correlation entropy, S{sub 2}, depends linearly on the reciprocal temperature S{sub 2}=−E{sub S}/T, and the activation energy, E{sub S}, increases with increasing pressure. In particular, the ratios of the activation energies (E{sub un}, E{sub R}, and E{sub D}) obtained from diffusion coefficients to the activation energy, E{sub S}, obtained from the entropy keep constants in the whole pressure range. Therefore, the entropy-scaling laws for the diffusion coefficients and the Arrhenius law are linked via the temperature dependence of entropy.

  15. Effect of interfacial turbulence and accommodation coefficient on CFD predictions of pressurization and pressure control in cryogenic storage tank

    NASA Astrophysics Data System (ADS)

    Kassemi, Mohammad; Kartuzova, Olga

    2016-03-01

    Pressurization and pressure control in cryogenic storage tanks are to a large extent affected by heat and mass transport across the liquid-vapor interface. These mechanisms are, in turn, controlled by the kinetics of the phase change process and the dynamics of the turbulent recirculating flows in the liquid and vapor phases. In this paper, the effects of accommodation coefficient and interfacial turbulence on tank pressurization and pressure control simulations are examined. Comparison between numerical predictions and ground-based measurements in two large liquid hydrogen tank experiments, performed in the K-site facility at NASA Glenn Research Center (GRC) and the Multi-purpose Hydrogen Test Bed (MHTB) facility at NASA Marshall Space Flight Center (MSFC), are used to show the impact of accommodation coefficient and interfacial and vapor phase turbulence on evolution of pressure and temperatures in the cryogenic storage tanks. In particular, the self-pressurization comparisons indicate that: (1) numerical predictions are essentially independent of the magnitude of the accommodation coefficient; and (2) surprisingly, laminar models sometimes provide results that are in better agreement with experimental self-pressurization rates, even in parametric ranges where the bulk flow is deemed fully turbulent. In this light, shortcomings of the present CFD models, especially, numerical treatments of interfacial mass transfer and turbulence, as coupled to the Volume-of-Fluid (VOF) interface capturing scheme, are underscored and discussed.

  16. Local pressure measurements and heat transfer coefficients of flow boiling in a rectangular microchannel

    NASA Astrophysics Data System (ADS)

    Mirmanto, M.

    2016-01-01

    Experiments to investigate local pressure distribution and local heat transfer coefficients during flow boiling of water in a microchannel were performed. The hydraulic diameter of the channel was 0.635 mm. The nominal mass fluxes used were varied from 200 to 700 kg/m2 s and heat fluxes ranging from 171 to 685 kW/m2 were applied. An inlet fluid temperature of 98 °C and pressure of 125 kPa were maintained at the microchannel entrance. There were six pressure tappings inserted into the channel to measure the local pressures and six thermocouple inserted into the channel block with equally distances to measure the wall local temperatures. The local pressure measurements during flow boiling show a non linear line connecting each local pressure, especially at higher heat fluxes or pressure drops. The non linear local pressure influences the value of the estimated local heat transfer coefficient. The effects of mass flux and heat flux on local heat transfer coefficient are also discussed.

  17. Transport coefficients of bulk viscous pressure in the 14-moment approximation

    NASA Astrophysics Data System (ADS)

    Denicol, G. S.; Jeon, S.; Gale, C.

    2014-08-01

    We compute the transport coefficients that appear in the fluid-dynamical equations for the bulk viscous pressure and shear-stress tensor using the 14-moment approximation in the limit of small, but finite, masses. In this limit, we are able to express all these coefficients in terms of known thermodynamic quantities, such as the thermodynamic pressure, energy density, and the velocity of sound. We explicitly demonstrate that the ratio of bulk viscosity to bulk relaxation time behaves very differently, as a function of temperature, than the ratio of shear viscosity to shear relaxation time. We further explicitly compute, for the first time, the transport coefficients that couple the bulk viscous pressure to the shear-stress tensor and vice versa. The coefficient that couples bulk viscous pressure to shear-stress tensor is found to be orders of magnitude larger than the bulk viscosity itself, suggesting that bulk viscous pressure production owes more to this coupling than to the expansion rate of the system.

  18. A Simple Student Laboratory on Osmotic Flow, Osmotic Pressure, and the Reflection Coefficient.

    ERIC Educational Resources Information Center

    Feher, Joseph J.; Ford, George D.

    1995-01-01

    Describes a laboratory exercise containing a practical series of experiments that novice students can perform within two hours. The exercise provides a confirmation of van't Hoff's law while placing more emphasis on osmotic flow than pressure. Students can determine parameters such as the reflection coefficient which stress the interaction of both…

  19. Isotope-shift exponent, pressure coefficient of [ital T][sub [ital c

    SciTech Connect

    Sarkar, S.; Das, A.N. )

    1994-05-01

    Exact expression for the isotope-shift exponent and the pressure coefficient of the transition temperature are derived from the BCS gap equation for a density of states (DOS) with a van Hove singularity (VHS). The variations of these quantities with the shift of the Fermi level from the VHS and with [ital T][sub [ital c

  20. The pressure viscosity coefficient of polar and non-polar oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pressure viscosity coefficient (PVC) of several vegetable, polyalphaolefin (PAO), and hexadecane oils were investigated. Vegetable oils are polar because they have multiple ester functional groups in their structure. On the other hand, the petroleum based PAO and hexadecane have no functional g...

  1. Molar Mass and Second Virial Coefficient of Polyethylene Glycol by Vapor Pressure Osmometry

    ERIC Educational Resources Information Center

    Schwinefus, Jeffrey J.; Checkal, Caleb; Saksa, Brian; Baka, Nadia; Modi, Kalpit; Rivera, Carlos

    2015-01-01

    In this laboratory experiment, students determine the number-average molar masses and second virial coefficients of polyethylene glycol (PEG) polymers ranging in molar mass from 200 to 1500 g mol[superscript -1] using vapor pressure osmometry (VPO). Students assess VPO in relation to accurate molar mass calculations of PEG polymers. Additionally,…

  2. Irrecoverable pressure loss coefficients for a short radius of curvature piping elbow at high Reynolds numbers

    SciTech Connect

    Coffield, R.D.; Hammond, R.B.; Koczko, J.P.; McKeown, P.T.; Zirpoli, P.J.

    1998-06-01

    Pressure drops in a piping elbow are experimentally determined for high Reynolds number flows. The testing described has been performed in order to reduce uncertainties in the currently used design values for predicting irrecoverable pressure losses. The earlier high Reynolds number correlations had been based on extrapolations over several orders of magnitude in Reynolds number from where the original database existed. The test data shows about a factor of two lower elbow pressure loss coefficient (at 40 {times} 10{sup 6} Reynolds number) than those current correlations.

  3. Temperature and water vapor pressure effects on the friction coefficient of hydrogenated diamondlike carbon films.

    SciTech Connect

    Dickrell, P. L.; Sawyer, W. G.; Eryilmaz, O. L.; Erdemir, A.; Energy Technology; Univ. of Florida

    2009-07-01

    Microtribological measurements of a hydrogenated diamondlike carbon film in controlled gaseous environments show that water vapor plays a significant role in the friction coefficient. These experiments reveal an initial high friction transient behavior that does not reoccur even after extended periods of exposure to low partial pressures of H{sub 2}O and O{sub 2}. Experiments varying both water vapor pressure and sample temperature show trends of a decreasing friction coefficient as a function of both the decreasing water vapor pressure and the increasing substrate temperature. Theses trends are examined with regard to first order gas-surface interactions. Model fits give activation energies on the order of 40 kJ/mol, which is consistent with water vapor desorption.

  4. Vapor Pressure and Evaporation Coefficient of Silicon Monoxide over a Mixture of Silicon and Silica

    NASA Technical Reports Server (NTRS)

    Ferguson, Frank T.; Nuth, Joseph A., III

    2012-01-01

    The evaporation coefficient and equilibrium vapor pressure of silicon monoxide over a mixture of silicon and vitreous silica have been studied over the temperature range (1433 to 1608) K. The evaporation coefficient for this temperature range was (0.007 plus or minus 0.002) and is approximately an order of magnitude lower than the evaporation coefficient over amorphous silicon monoxide powder and in general agreement with previous measurements of this quantity. The enthalpy of reaction at 298.15 K for this reaction was calculated via second and third law analyses as (355 plus or minus 25) kJ per mol and (363.6 plus or minus 4.1) kJ per mol respectively. In comparison with previous work with the evaporation of amorphous silicon monoxide powder as well as other experimental measurements of the vapor pressure of silicon monoxide gas over mixtures of silicon and silica, these systems all tend to give similar equilibrium vapor pressures when the evaporation coefficient is correctly taken into account. This provides further evidence that amorphous silicon monoxide is an intimate mixture of small domains of silicon and silica and not strictly a true compound.

  5. The Townsend coefficient of ionization in atmospheric pressure rare gas plasma

    NASA Astrophysics Data System (ADS)

    Zvereva, G.

    2015-12-01

    In the work the influence of the processes characteristic for atmospheric pressure heavy inert gases discharge plasma on the value of the first Townsend ionization coefficient were investigated. Krypton plasma was considered. Calculations have shown that the greatest impact on the value of the first Townsend ionization coefficient has dissociative recombination of molecular ions, followed by descending influence processes occur: stepwise ionization, the electron-electron collisions and superelastic ones. The effect of these processes begins to appear at concentrations of electrons and excited particles higher than 1012 cm-3. At times shorter than the time of molecular ions formation, when dissociative recombination is absent, should expect a significant increase of the ionization coefficient.

  6. Fast Fourier transform to measure pressure coefficient of muons in the GRAPES-3 experiment

    NASA Astrophysics Data System (ADS)

    Mohanty, P. K.; Ahmad, S.; Antia, H. M.; Arunbabu, K. P.; Chandra, A.; Dugad, S. R.; Gupta, S. K.; Hariharan, B.; Hayashi, Y.; Jagadeesan, P.; Jain, A.; Kawakami, S.; Kojima, H.; Morris, S. D.; Nayak, P. K.; Oshima, A.; Rao, B. S.; Reddy, L. V.; Shibata, S.

    2016-06-01

    The GRAPES-3 large area (560 m2) tracking muon telescope is operating at Ooty in India since 2001. It records 4 × 109 muons of energy ≥ 1 GeV every day. These high statistics data have enabled extremely sensitive measurements of solar phenomena, including the solar anisotropies, Forbush decreases, coronal mass ejections etc. to be made. However, prior to such studies, the variation in observed muon rate caused by changes in atmospheric pressure needs to be corrected. Traditionally, the pressure coefficient (β) for the muon rate was derived from the observed data. But the influence of various solar effects makes the measurement of β somewhat difficult. In the present work, a different approach to circumvent this difficulty was used to measure β, almost independent of the solar activity. This approach exploits a small amplitude (∼1 hPa) periodic (12 h) variation of atmospheric pressure at Ooty that introduces a synchronous variation in the muon rate. By using the fast Fourier transform technique the spectral power distributions at 12 h from the atmospheric pressure, and muon rate were used to measure β. The value of pressure coefficient was found to be β =(- 0.128 ± 0.005) % hPa-1.

  7. Autofrettage to Counteract Coefficient of Thermal Expansion Mismatch in Cryogenic Pressurized Pipes with Metallic Liners

    NASA Technical Reports Server (NTRS)

    Wen, Ed; Barbero, Ever; Tygielski, Phlip; Turner, James E. (Technical Monitor)

    2001-01-01

    Composite feedlines with metal liners have the potential to reduce weight/cost while providing the same level of permeation resistance and material compatibility of all-metal feedlines carrying cryogenic propellants in spacecraft. The major technical challenges are the large difference in Coefficient of Thermal Expansion between the liner and the composite, and the manufacturing method required to make a very thin liner with the required strength and dimensional tolerance. This study investigates the use of autofrettage (compressive preload) to counteract Coefficient of Thermal Expansion when pre-pressurization procedures cannot be used to solve this problem. Promising materials (aluminum 2219, Inconel 718, nickel, nickel alloy) and manufacturing techniques (chemical milling, electroplating) are evaluated to determine the best liner candidates. Robust, autofrettaged feedlines with a low Coefficient of Thermal Expansion liner (Inconel 718 or nickel alloy) are shown to successfully counteract mismatch at LOX temperature. A new concept, autofrettage by temperature, is introduced for high Coefficient of Thermal Expansion materials (aluminum and pure nickel) where pressure cannot be used to add compressive preload.

  8. Measurement of optical extinction coefficients in sapphire as a function of the shock pressure

    NASA Astrophysics Data System (ADS)

    Zhou, Xianming; Li, Jun; Li, Jiabo

    2009-06-01

    Sapphire has been extensively used as a window material for both optical and thermal property measurements of shocked materials. Its optical extinction characteristic under dynamic compression is crucial in understanding the measured physical behaviors. Here we demonstrated a quantitative study of the dynamic optical extinction of sapphire in the shock pressure range from 72 to 183 GPa. Along its <1000> orientation, the optical extinction coefficient (α) of sapphire crystal has been in-situ measured at several discrete wavelengths with an optical pyrometer incorporated with a shock-generated bright light source. The significant findings indicated that: (i) the α coefficient increases with the shock pressure but decreases with the wavelength, showing a quite different behavior from that observed in the low-pressure compression in the literature; (ii) the obtained linear relationship between the square-root of α coefficient and the photon energy can be well described by a Mie scattering calculation assuming a particle radii of ˜140nm, which suggests that the optical extinction of sapphire is attributed to a light scattering mechanism related with the shock-induced crack-net distribution in this strong brittle material. These quantitative extinction data have provided new insight into the decay nature of thermal radiance histories previously concerned at a metal/sapphire interface, which is crucial for inferring an interfacial equilibrium temperature.

  9. Topology of calculating pressure and friction coefficients for time-dependent human hip joint lubrication.

    PubMed

    Wierzcholski, Krzysztof

    2011-01-01

    The paper deals with the calculations of the unsteady, impulsive pressure distributions, carrying capacities and friction forces under unsteady conditions in a super-thin layer of biological synovial fluid inside the slide biobearing gap limited by a spherical bone head. Unsteady and random flow conditions for the biobearing lubrication are given. Moreover, the numerical topology of pressure calculation for a difference method is applied. From a mathematical viewpoint the present method for the solution of the modified Reynolds equation allows this problem to be resolved by the partial recurrence nonhomogeneous equation of the second order with variable coefficients. To the best of the author knowledge, an adaptation of the known numerical difference method to the spherical boundary conditions applied during the pressure calculations for a human hip bonehead seems to be decisive. PMID:21500763

  10. Comparison of attenuation coefficients for VVER-440 and VVER-1000 pressure vessels

    SciTech Connect

    Marek, M.; Rataj, J.; Vandlik, S.

    2011-07-01

    The paper summarizes the attenuation coefficient of the neutron fluence with E > 0.5 MeV through a reactor pressure vessel for vodo-vodyanoi energetichesky reactor (VVER) reactor types measured and/or calculated for mock-up experiments, as well as for operated nuclear power plant (NPP) units. The attenuation coefficient is possible to evaluate directly only by using the retro-dosimetry, based on a combination of the measured activities from the weld sample and concurrent ex-vessel measurement. The available neutron fluence attenuation coefficients (E > 0.5 MeV), calculated and measured at a mock-up experiment simulating the VVER-440-unit conditions, vary from 3.5 to 6.15. A similar situation is used for the calculations and mock-up experiment measurements for the VVER-1000 RPV, where the attenuation coefficient of the neutron fluence varies from 5.99 to 8.85. Because of the difference in calculations for the real units and the mock-up experiments, the necessity to design and perform calculation benchmarks both for VVER-440 and VVER-1000 would be meaningful if the calculation model is designed adequately to a given unit. (authors)

  11. Stress-intensity-factor influence coefficients for semielliptical inner-surface flaws in clad pressure vessels

    SciTech Connect

    Keeney, J.A.; Bryson, J.W.

    1995-12-31

    A problem of particular interest in pressure vessel technology is the calculation of accurate stress-intensity factors for semielliptical surface cracks in cylinders. Computing costs for direct solution techniques can be prohibitive when applied to three-dimensional (3-D) geometries with time-varying boundary conditions such as those associated with pressurized thermal shock. An alternative superposition technique requires the calculation of a set of influence coefficients for a given 3-D crack model that can be superimposed to obtain mode-I stress-intensity factors. This paper presents stress-intensity-factor influence coefficients (SIFICs) for axially and circumferentially oriented finite-length semielliptical inner-surface flaws with aspect ratios (total crack length (2c) to crack depth (a)) of 2, 6, and 10 for clad cylinders having an internal radius to wall thickness (t) ratio of 10. SIFICs are computed for flaw depths in the range of 0.01 {le} a/t {le} 0.5 and two cladding thicknesses. The incorporate of this SIFIC data base in fracture mechanics codes will facilitate the generation of fracture mechanics solutions for a wide range of flaw geometries as may be required in structural integrity assessments of pressurized-water and boiling-water reactors.

  12. Solubility parameter and activity coefficient of HDEHP dimer in select organic diluents by vapor pressure osmometry

    SciTech Connect

    Gray, M.; Nilsson, M.; Zalupski, P.

    2013-07-01

    A thorough understanding of the non-ideal behavior of the chemical components utilized in solvent extraction contributes to the success of any large-scale spent nuclear fuel treatment. To address this, our current work uses vapor pressure osmometry to characterize the non-ideal behavior of the solvent extraction agent di-(2-ethylhexyl) phosphoric acid (HDEHP), a common extractant in proposed separation schemes. Solubility parameters were fit to data on HDEHP at four temperatures using models based on Scatchard Hildebrand regular solution theory with Flory Huggins entropic corrections. The results are comparable but not identical to the activity coefficients from prior slope analysis in the literature. (authors)

  13. Temperature- and pressure-dependent absorption coefficients for CO2 and O2 at 193 nm

    NASA Astrophysics Data System (ADS)

    Hartinger, K. T.; Nord, S.; Monkhouse, P. B.

    Absorption of laser radiation at 193 nm by CO2 and O2 was studied at a series of different temperatures up to 1273 K and pressures up to 1 bar. The spectrum for CO2 was found to be broadband, so that absorption could be fitted to a Beer-Lambert law. On the other hand, the corresponding O2 spectrum is strongly structured and parameterisation requires a more complex relation, depending on both temperature and the product (pressure × absorption path length). In this context, the influence of spectral structure on the resulting spectrally integrated absorption coefficients is discussed. Using the fitting parameters obtained, effective transmissions at 193 nm can be calculated for a wide range of experimental conditions. As an illustration of the practical application of these data, the calculation of effective transmission for a typical industrial flue gas is described.

  14. Heat transfer coefficient measurements on the pressure surface of a transonic airfoil

    NASA Astrophysics Data System (ADS)

    Kodzwa, Paul M.; Eaton, John K.

    2010-02-01

    This paper presents steady-state recovery temperature and heat transfer coefficient measurements on the pressure surface of a modern, highly cambered transonic airfoil. These measurements were collected with a peak Mach number of 1.5 and a maximum turbulence intensity of 30%. We used a single passage model to simulate the idealized two-dimensional flow path between rotor blades in a modern transonic turbine. This set up offered a simpler construction than a linear cascade, yet produced an equivalent flow condition. We performed validated high accuracy (±0.2°C) surface temperature measurements using wide-band thermochromic liquid crystals allowing separate measurements of the previously listed parameters with the same heat transfer surface. We achieved maximum heat transfer coefficient uncertainties that were equivalent to similar investigations (±10%). Two key observations are the heat transfer coefficient along the aft portion of the airfoil is sensitive to the surface heat flux and is highly insensitive to the level of freestream turbulence. Possible explanations for these observations are discussed.

  15. Monitoring the embrittlement of reactor pressure vessel steels by using the Seebeck coefficient

    NASA Astrophysics Data System (ADS)

    Niffenegger, M.; Leber, H. J.

    2009-06-01

    The degree of embrittlement of the reactor pressure vessel (RPV) limits the lifetime of nuclear power plants. Therefore, neutron irradiation-induced embrittlement of RPV steels demands accurate monitoring. Current federal legislation requires a surveillance program in which specimens are placed inside the RPV for several years before their fracture toughness is determined by destructive Charpy impact testing. Measuring the changes in the thermoelectric properties of the material due to irradiation, is an alternative and non-destructive method for the diagnostics of material embrittlement. In this paper, the measurement of the Seebeck coefficient ( K¯) of several Charpy specimens, made from two different grades of 22 NiMoCr 37 low-alloy steels, irradiated by neutrons with energies greater than 1 MeV, and fluencies ranging from 0 up to 4.5 × 10 19 neutrons per cm 2, are presented. Within this range, it was observed that K¯ increased by ≈500 nV/°C and a linear dependency was noted between K¯ and the temperature shift Δ T41 J of the Charpy energy vs. temperature curve, which is a measure for the embrittlement. We conclude that the change of the Seebeck coefficient has the potential for non-destructive monitoring of the neutron embrittlement of RPV steels if very precise measurements of the Seebeck coefficient are possible.

  16. Properties of meso-Erythritol; phase state, accommodation coefficient and saturation vapour pressure

    NASA Astrophysics Data System (ADS)

    Emanuelsson, Eva; Tschiskale, Morten; Bilde, Merete

    2016-04-01

    Introduction Saturation vapour pressure and the associated temperature dependence (enthalpy ΔH), are key parameters for improving predictive atmospheric models. Generally, the atmospheric aerosol community lack experimentally determined values of these properties for relevant organic aerosol compounds (Bilde et al., 2015). In this work we have studied the organic aerosol component meso-Erythritol. Methods Sub-micron airborne particles of meso-Erythritol were generated by nebulization from aqueous solution, dried, and a mono disperse fraction of the aerosol was selected using a differential mobility analyser. The particles were then allowed to evaporate in the ARAGORN (AaRhus Atmospheric Gas phase OR Nano particle) flow tube. It is a temperature controlled 3.5 m long stainless steel tube with an internal diameter of 0.026 m (Bilde et al., 2003, Zardini et al., 2010). Changes in particle size as function of evaporation time were determined using a scanning mobility particle sizer system. Physical properties like air flow, temperature, humidity and pressure were controlled and monitored on several places in the setup. The saturation vapour pressures were then inferred from the experimental results in the MATLAB® program AU_VaPCaP (Aarhus University_Vapour Pressure Calculation Program). Results Following evaporation, meso-Erythriol under some conditions showed a bimodal particle size distribution indicating the formation of particles of two different phase states. The issue of physical phase state, along with critical assumptions e.g. the accommodation coefficient in the calculations of saturation vapour pressures of atmospheric relevant compounds, will be discussed. Saturation vapour pressures from the organic compound meso-Erythritol will be presented at temperatures between 278 and 308 K, and results will be discussed in the context of atmospheric chemistry. References Bilde, M. et al., (2015), Chemical Reviews, 115 (10), 4115-4156. Bilde, M. et. al., (2003

  17. Rate Coefficient Determinations for H + NO2 → OH + NO from High Pressure Flow Reactor Measurements.

    PubMed

    Haas, Francis M; Dryer, Frederick L

    2015-07-16

    Rate coefficients for the reaction H + NO2 → OH + NO (R1) have been determined over the nominal temperature and pressure ranges of 737-882 K and 10-20 atm, respectively, from measurements in two different flow reactor facilities: one laminar and one turbulent. Considering the existing database of experimental k1 measurements, the present conditions add measurements of k1 at previously unconsidered temperatures between ∼820-880 K, as well as at pressures that exceed existing measurements by over an order of magnitude. Experimental measurements of NOx-perturbed H2 oxidation have been interpreted by a quasi-steady state NOx plateau (QSSP) method. At the QSSP conditions considered here, overall reactivity is sensitive only to the rates of R1 and H + O2 + M → HO2 + M (R2.M). Consequently, the ratio of k1 to k2.M may be extracted as a simple algebraic function of measured NO2, O2, and total gas concentrations with only minimal complication (within measurement uncertainty) due to treatment of overall gas composition M that differs slightly from pure bath gas B. Absolute values of k1 have been determined with reference to the relatively well-known, pressure-dependent rate coefficients of R2.B for B = Ar and N2. Rate coefficients for the title reaction determined from present experimental interpretation of both laminar and turbulent flow reactor results appear to be in very good agreement around a representative value of 1.05 × 10(14) cm(3) mol(-1) s(-1) (1.74 × 10(-10) cm(3) molecule(-1) s(-1)). Further, the results of this study agree both with existing low pressure flash photolysis k1 determinations of Ko and Fontijn (J. Phys. Chem. 95 3984) near 760 K as well as a present fit to the theoretical expression of Su et al. (J. Phys. Chem. A 106 8261). These results indicate that, over the temperature range considered in this study and up to at least 20 atm, net chemistry due to stabilization of the H-NO2 reaction intermediate to form isomers of HNO2 may proceed at

  18. Composition Dependence of the Hydrostatic Pressure Coefficients of the Bandgap of ZnSe(1-x)Te(x) Alloys

    NASA Technical Reports Server (NTRS)

    Wu, J.; Yu, K. M.; Walukiewicz, W.; Shan, W.; Ager, J. W., III; Haller, E. E.; Miotkowski, I.; Ramdas, A. K.; Su, Ching-Hua

    2003-01-01

    Optical absorption experiments have been performed using diamond anvil cells to measure the hydrostatic pressure dependence of the fundamental bandgap of ZnSe(sub 1-xTe(sub x) alloys over the entire composition range. The first and second-order pressure coefficients are obtained as a function of composition. Starting from the ZnSe side, the magnitude of both coefficients increases slowly until x approx. 0.7, where the ambient-pressure bandgap reaches a minimum. For larger values of x the coefficients rapidly approach the values of ZnTe. The large deviations of the pressure coefficients from the linear interpolation between ZnSe and ZnTe are explained in terms of the band anticrossing model.

  19. Predicted band-gap pressure coefficients of all diamond and zinc-blende semiconductors: Chemical trends

    SciTech Connect

    Wei, S.; Zunger, A.

    1999-08-01

    We have studied systematically the chemical trends of the band-gap pressure coefficients of all group IV, III-V, and II-VI semiconductors using first-principles band-structure method. We have also calculated the individual {open_quotes}absolute{close_quotes} deformation potentials of the valence-band maximum (VBM) and conduction-band minimum (CBM). We find that (1) the volume deformation potentials of the {Gamma}{sub 6c} CBM are usually large and always negative, while (2) the volume deformation potentials of the {Gamma}{sub 8v} VBM state are usually small and negative for compounds containing occupied valence {ital d} state but positive for compounds without occupied valence {ital d} orbitals. Regarding the chemical trends of the band-gap pressure coefficients, we find that (3) a{sub p}{sup {Gamma}{minus}{Gamma}} decreases as the ionicity increases (e.g., from Ge{r_arrow}GaAs{r_arrow}ZnSe), (4) a{sub p}{sup {Gamma}{minus}{Gamma}} increases significantly as anion atomic number increases (e.g., from GaN{r_arrow}GaP{r_arrow}GaAs{r_arrow}GaSb), (5) a{sub p}{sup {Gamma}{minus}{Gamma}} decreases slightly as cation atomic number increases (e.g., from AlAs{r_arrow}GaAs{r_arrow}InAs), (6) the variation of a{sub p}{sup {Gamma}{minus}L} are relatively small and follow similar trends as a{sub p}{sup {Gamma}{minus}{Gamma}}, and (7) the magnitude of a{sub p}{sup {Gamma}{minus}X} are small and usually negative, but are sometimes slightly positive for compounds containing first-row elements. Our calculated chemical trends are explained in terms of the energy levels of the atomic valence orbitals and coupling between these orbital. In light of the above, we suggest that {open_quotes}empirical rule{close_quotes} of the pressure coefficients should be modified. {copyright} {ital 1999} {ital The American Physical Society}

  20. Comparison of Hirs' equation of Moody's equation for determining rotordynamic coefficients of annular pressure seals

    NASA Technical Reports Server (NTRS)

    Nelson, Clayton C.; Nguyen, Dung T.

    1987-01-01

    The rotordynamic coefficients of an incompressible-flow annular pressure seal were determined using a bulk-flow model in conjunction with two different friction factor relationships. The first, Hirs' equation, assumes the friction factor is a function of Reynolds number only. The second, Moody's equation, approximates Moody's diagram and assumes the friction factor is a function of both Reynolds number and relative roughness. For each value of relative roughness, Hirs' constants were determined so that both equations gave the same magnitude and slope of the friction factor. For smooth seals, both relationships give the same results. For rough seals (e/2 H sub 0 = 0.05) Moody's equation predicts 44% greater direct stiffness, 35% greater cross-coupled stiffness, 19% smaller cross-coupled damping, 59% smaller cross-coupled inertia, and nominally the same direct damping and direct inertia.

  1. Pressure-induced absorption coefficients for radiative transfer calculations in Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Courtin, Regis

    1988-01-01

    The semiempirical theory of Birnbaum and Cohen (1976) is used to calculate the FIR pressure-induced absorption (PIA) spectra of N2, CH4, N2 + Ar, N2 + CH4, and N2 + H2 under conditions like those in the Titan troposphere. The results are presented graphically and compared with published data from laboratory measurements of PIA in the same gases and mixtures (Dagg et al., 1986; Dore et al., 1986). Good agreement is obtained, with only a slight underestimation of PIA at 300-400/cm in the case of CH4. The absorption coefficients are presented in tables, and it is suggested that the present findings are of value for evaluating the effects of tropospheric clouds on the Titan FIR spectrum and studying the greenhouse effect near the Titan surface.

  2. Temperature and pressure dependence of dichloro-difluoromethane (CF2C12) absorption coefficients for CO2 waveguide laser radiation

    NASA Technical Reports Server (NTRS)

    Harward, C. N.

    1977-01-01

    Measurements were performed to determine the pressure and temperature dependence of CFM-12 absorption coefficients for CO2 waveguide laser radiation. The absorption coefficients of CFM-12 for CO2 waveguide laser radiation were found to have no spectral structure within small spectral bandwidths around the CO2 waveguide laser lines in the CO2 spectral band for pressures above 20 torr. All of the absorption coefficients for the CO2 laser lines studied are independent of pressure above 100 torr, except for the P(36) laser CO2 spectral band. The absorption coefficients associated with the P(42) line in the same band showed the greatest change with temperature, and it also has the largest value of all the lines studied.

  3. Instrument for stable high temperature Seebeck coefficient and resistivity measurements under controlled oxygen partial pressure

    SciTech Connect

    Ihlefeld, Jon F.; Brown-Shaklee, Harlan James; Sharma, Peter Anand

    2015-04-28

    The transport properties of ceramic materials strongly depend on oxygen activity, which is tuned by changing the partial oxygen pressure (pO2) prior to and during measurement. Within, we describe an instrument for highly stable measurements of Seebeck coefficient and electrical resistivity at temperatures up to 1300 K with controlled oxygen partial pressure. An all platinum construction is used to avoid potential materials instabilities that can cause measurement drift. Two independent heaters are employed to establish a small temperature gradient for Seebeck measurements, while keeping the average temperature constant and avoiding errors associated with pO2-induced drifts in thermocouple readings. Oxygen equilibrium is monitored using both an O2 sensor and the transient behavior of the resistance as a proxy. A pO2 range of 10-25–100 atm can be established with appropriate gas mixtures. Seebeck measurements were calibrated against a high purity platinum wire, Pt/Pt–Rh thermocouple wire, and a Bi2Te3 Seebeck coefficient Standard Reference Material. To demonstrate the utility of this instrument for oxide materials we present measurements as a function of pO2 on a 1 % Nb-doped SrTiO3 single crystal, and show systematic changes in properties consistent with oxygen vacancy defect chemistry. Thus, an approximately 11% increase in power factor over a pO2 range of 10-19–10-8 atm at 973 K for the donor-doped single crystals is observed.

  4. Instrument for stable high temperature Seebeck coefficient and resistivity measurements under controlled oxygen partial pressure

    DOE PAGESBeta

    Ihlefeld, Jon F.; Brown-Shaklee, Harlan James; Sharma, Peter Anand

    2015-04-28

    The transport properties of ceramic materials strongly depend on oxygen activity, which is tuned by changing the partial oxygen pressure (pO2) prior to and during measurement. Within, we describe an instrument for highly stable measurements of Seebeck coefficient and electrical resistivity at temperatures up to 1300 K with controlled oxygen partial pressure. An all platinum construction is used to avoid potential materials instabilities that can cause measurement drift. Two independent heaters are employed to establish a small temperature gradient for Seebeck measurements, while keeping the average temperature constant and avoiding errors associated with pO2-induced drifts in thermocouple readings. Oxygen equilibriummore » is monitored using both an O2 sensor and the transient behavior of the resistance as a proxy. A pO2 range of 10-25–100 atm can be established with appropriate gas mixtures. Seebeck measurements were calibrated against a high purity platinum wire, Pt/Pt–Rh thermocouple wire, and a Bi2Te3 Seebeck coefficient Standard Reference Material. To demonstrate the utility of this instrument for oxide materials we present measurements as a function of pO2 on a 1 % Nb-doped SrTiO3 single crystal, and show systematic changes in properties consistent with oxygen vacancy defect chemistry. Thus, an approximately 11% increase in power factor over a pO2 range of 10-19–10-8 atm at 973 K for the donor-doped single crystals is observed.« less

  5. Air- and N2-Broadening Coefficients and Pressure-Shift Coefficients in the C-12(O2-16) Laser Bands

    NASA Technical Reports Server (NTRS)

    Devi, V. Malathy; Benner, D. Chris; Smith, Mary Ann H.; Rinsland, Curtis P.

    1998-01-01

    In this paper we report the pressure broadening and the pressure-induced line shift coefficients for 46 individual rovibrational lines in both the (12)C(16)O2, 00(sup 0)1-(10(sup 0)0-02(sup 0)0)I, and 00(sup 0)1-(10(sup 0)0-02(sup 0)0)II, laser bands (laser band I centered at 960.959/cm and laser band II centered at 1063.735/cm) determined from spectra recorded with the McMath-Pierce Fourier transform spectrometer. The results were obtained from analysis of 10 long-path laboratory absorption spectra recorded at room temperature using a multispectrum nonlinear least-squares technique. Pressure effects caused by both air and nitrogen have been investigated. The air-broadening coefficients determined in this study agree well with the values in the 1996 HITRAN database; ratios and standard deviations of the ratios of the present air-broadening measurements to the 1996 HITRAN values for the two laser bands are: 1.005(15) for laser band I and 1.005(14) for laser band II. Broadening by nitrogen is 3 to 4% larger than that of air. The pressure-induced line shift coefficients are found to be transition dependent and different for the P- and R-branch lines with same J" value. No noticeable differences in the shift coefficients caused by air and nitrogen were found. The results obtained are compared with available values previously reported in the literature.

  6. Measurements of Pressure Distributions and Force Coefficients in a Squeeze Film Damper. Part 1: Fully Open Ended Configuration

    NASA Technical Reports Server (NTRS)

    Jung, S. Y.; Sanandres, Luis A.; Vance, J. M.

    1991-01-01

    Measurements of pressure distributions and force coefficients were carried out in two types of squeeze film dampers, executing a circular centered orbit, an open-ended configuration, and a partially sealed one, in order to investigate the effect of fluid inertia and cavitation on pressure distributions and force coefficients. Dynamic pressure measurements were carried out for two orbit radii, epsilon 0.5 and 0.8. It was found that the partially sealed configuration was less influenced by fluid inertia than the open ended configuration.

  7. Irrecoverable pressure loss coefficients for two out-of-plane piping elbows at high Reynolds number

    SciTech Connect

    Coffield, R.D.; Hammond, R.B.; McKeown, P.T.

    1999-02-08

    Pressure drops of multiple piping elbows were experimentally determined for high Reynolds number flows. The testing described has been performed in order to reduce uncertainties in the currently used methods for predicting irrecoverable pressure losses and also to provide a qualification database for computational fluid dynamics (CFD) computer codes. The earlier high Reynolds number correlations had been based on extrapolations over several orders of magnitude in Reynolds number from where the original database existed. Recent single elbow test data shows about a factor of two lower elbow pressure loss coefficient (at 40x 106 Reynolds number) than those from current correlations. This single piping elbow data has been extended in this study to a multiple elbow configuration of two elbows that are 90o out-of-plane relative to each other. The effects of separation distance and Reynolds number have been correlated and presented in a form that can be used for design application. Contrary to earlier extrapolations from low Reynolds numbers (Re c 1.0x 106), a strong Reynolds number dependence was found to exist. The combination of the high Reynolds number single elbow data with the multiple elbow interaction effects measured in this study shows that earlier design correlations are conservative by significant margins at high Reynolds numbers. Qualification of CFD predictions with this new high Reynolds number database will help guide the need for additional high Reynolds number testing of other piping configurations. The study also included velocity measurements at several positions downstream of the first and second test elbows using an ultrasonic flowmeter. Reasonable agreement after the first test elbow was found relative to flow fields that are known to exist from low Reynolds number visual tests and also from CFD predictions. This data should help to qualify CFD predictions of the three-dimensional flow stream downstream of the second test elbow.

  8. Water absorption lines, 931-961 nm - Selected intensities, N2-collision-broadening coefficients, self-broadening coefficients, and pressure shifts in air

    NASA Technical Reports Server (NTRS)

    Giver, L. P.; Gentry, B.; Schwemmer, G.; Wilkerson, T. D.

    1982-01-01

    Intensities were measured for 97 lines of H2O vapor between 932 and 961 nm. The lines were selected for their potential usefulness for remote laser measurements of H2O vapor in the earth's atmosphere. The spectra were obtained with several different H2O vapor abundances and N2 broadening gas pressures; the spectral resolution was 0.046/cm FWHM. Measured H2O line intensities range from 7 x 10 to the -25th to 7 x 10 to the -22nd/cm per (molecules/sq cm). H2O self-broadening coefficients were measured for 13 of these strongest lines; the mean value was 0.5/cm per atm. N2-collision-broadening coefficients were measured for 73 lines, and the average was 0.11 cm per atm HWHM. Pressure shifts in air were determined for a sample of six lines between 948 and 950 nm; these lines shift to lower frequency by an amount comparable to 0.1 of the collision-broadened widths measured in air or N2. The measured intensities of many lines of 300-000 band are much larger than expected from prior computations, in some cases by over an order of magnitude. Coriolis interactions with the stronger 201-000 band appear to be the primary cause of the enhancement of these line intensities.

  9. COMPUTATIONAL CHEMISTRY METHOD FOR PREDICTING VAPOR PRESSURES AND ACTIVITY COEFFICIENTS OF POLAR ORGANIC OXYGENATES IN PM2.5

    EPA Science Inventory

    Parameterizations of interactions of polar multifunctional organic oxygenates in PM2.5 must be included in aerosol chemistry models for evaluating control strategies for reducing ambient concentrations of PM2.5 compounds. Vapor pressures and activity coefficients of these compo...

  10. Determination of the metal/die interfacial heat transfer coefficient of high pressure die cast B390 alloy

    NASA Astrophysics Data System (ADS)

    Cao, Yongyou; Guo, Zhipeng; Xiong, Shoumei

    2012-07-01

    High-pressure die cast B390 alloy was prepared on a 350 ton cold chamber die casting machine. The metal/die interfacial heat transfer coefficient of the alloy was investigated. Considering the filling process, a "finger"-shaped casting was designed for the experiments. This casting consisted of five plates with different thicknesses (0.05 inch or 1.27 mm to 0.25 inch or 6.35 mm) as well as individual ingates and overflows. Experiments under various operation conditions were conducted, and temperatures were measured at various specific locations inside the die. Based on the results, the interfacial heat transfer coefficient and heat flux were determined by solving the inverse heat transfer problem. The influence of the mold-filling sequence, sensor locations, as well as processing parameters including the casting pressure, die temperature, and fast/slow shot speeds on the heat transfer coefficient were discussed.

  11. Vapor pressures and evaporation coefficients for melts of ferromagnesian chondrule-like compositions

    NASA Astrophysics Data System (ADS)

    Fedkin, A. V.; Grossman, L.; Ghiorso, M. S.

    2006-01-01

    To determine evaporation coefficients for the major gaseous species that evaporate from silicate melts, the Hertz-Knudsen equation was used to model the compositions of residues of chondrule analogs produced by evaporation in vacuum by Hashimoto [Hashimoto A. (1983) Evaporation metamorphism in the early solar nebula-evaporation experiments on the melt FeO-MgO-SiO 2-CaO-Al 2O 3 and chemical fractionations of primitive materials. Geochem. J. 17, 111-145] and Wang et al. [Wang J., Davis A. M., Clayton R. N., Mayeda T. K., Hashimoto A. (2001) Chemical and isotopic fractionation during the evaporation of the FeO-MgO-SiO 2-CaO-Al 2O 3-TiO 2 rare earth element melt system. Geochim. Cosmochim. Acta 65, 479-494], in vacuum and in H 2 by Yu et al. [Yu Y., Hewins R. H., Alexander C. M. O'D., Wang J. (2003) Experimental study of evaporation and isotopic mass fractionation of potassium in silicate melts. Geochim. Cosmochim. Acta 67, 773-786], and in H 2 by Cohen et al. [Cohen B. A., Hewins R. H., Alexander C. M. O'D. (2004) The formation of chondrules by open-system melting of nebular condensates. Geochim. Cosmochim. Acta 68, 1661-1675]. Vapor pressures were calculated using the thermodynamic model of Ghiorso and Sack [Ghiorso M. S., Sack R. O. (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib. Mineral. Petrol. 119, 197-212], except for the late, FeO-free stages of the Wang et al. (2001) and Cohen et al. (2004) experiments, where the CMAS activity model of Berman [Berman R. G. (1983) A thermodynamic model for multicomponent melts, with application to the system CaO-MgO-Al 2O 3-SiO 2. Ph.D. thesis, University of British Columbia] was used. From these vapor pressures, evaporation coefficients ( α) were obtained that give the best fits to the time variation of the residue compositions

  12. Methods of precisely estimating the jacket pressure coefficient of controlled-clearance piston-cylinders at pressures up to 1 GPa

    NASA Astrophysics Data System (ADS)

    Kajikawa, Hiroaki; Ide, Kazunori; Kobata, Tokihiko

    2011-10-01

    Deformational characteristics of a controlled-clearance piston-cylinder (CCPC) have been evaluated to precisely estimate the pressure dependence of its effective area. Among the experimentally accessible characteristics, the jacket pressure coefficient d, which denotes the relative change in the effective area due to applied jacket pressure pj, is examined in this paper. Two methods for precisely determining d at pressures up to 1 GPa are proposed. One is a comparative method that uses a set of a pressure balance and a multiplier as the tare gauge. The other is a new method that uses precise pressure transducers as monitoring devices. Both pj and weights loaded on the CCPC are changed so that the pressure generated by the CCPC remains constant, which is monitored by the transducers. d is estimated by the relative change in the weights loaded on the CCPC itself. Using the two methods, d for a 1 MPa kg-1 CCPC is measured at pressures up to 1 GPa. At each system pressure, d obtained by each method is approximated by a linear function of pj. The consistency of the fit values of d by the two methods is confirmed. The method using pressure transducers as monitoring devices is advantageous in terms of efficiency and operability especially at higher pressures.

  13. Effect of Interfacial Turbulence and Accommodation Coefficient on CFD Predictions of Pressurization and Pressure Control in Cryogenic Storage Tank

    NASA Technical Reports Server (NTRS)

    Kassemi, Mohammad; Kartuzova, Olga; Hylton, Sonya

    2015-01-01

    Laminar models agree closely with the pressure evolution and vapor phase temperature stratification but under-predict liquid temperatures. Turbulent SST k-w and k-e models under-predict the pressurization rate and extent of stratification in the vapor but represent liquid temperature distributions fairly well. These conclusions seem to equally apply to large cryogenic tank simulations as well as small scale simulant fluid pressurization cases. Appropriate turbulent models that represent both interfacial and bulk vapor phase turbulence with greater fidelity are needed. Application of LES models to the tank pressurization problem can serve as a starting point.

  14. Pressure coefficient evaluation on the surface of the SONDA III model tested in the TTP Pilot Transonic Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Reis, M. L. C. C.; Falcao Filho, J. B. P.; Basso, E.; Caldas, V. R.

    2015-02-01

    A test campaign of the Brazilian sounding rocket Sonda III was carried out at the Pilot Transonic Wind Tunnel, TTP. The aim of the campaign was to investigate aerodynamic phenomena taking place at the connection region of the first and second stages. Shock and expansion waves are expected at this location causing high gradients in airflow properties around the vehicle. Pressure taps located on the surface of a Sonda III half model measure local static pressures. Other measured parameters were freestream static and total pressures of the airflow. Estimated parameters were pressure coefficients and Mach numbers. Uncertainties associated with the estimated parameters were calculated by employing the Law of Propagation of Uncertainty and the Monte Carlo method. It was found that both uncertainty evaluation methods resulted in similar values. A Computational Fluid Dynamics simulation code was elaborated to help understand the changes in the flow field properties caused by the disturbances.

  15. Application of deterministic chaos theory to local instantaneous temperature, pressure, and heat transfer coefficients in a gas fluidized bed

    SciTech Connect

    Karamavruc, A.I.; Clark, N.N.

    1996-09-01

    A stainless steel heat transfer tube, carrying a hot water flow, was placed in a cold bubbling fluidized bed. The tube was instrumented in the circumferential direction with five fast-responding surface thermocouples and a vertical pressure differential sensor. The local temperature and pressure data were measured simultaneously at a frequency of 120 Hz. Additionally, the local instantaneous heat transfer coefficient was evaluated by solving the transient two-dimensional heat conduction equation across the tube wall numerically. The mutual information function (MIF) has been applied to the signals to observe the relationship between points separated in time. MIF was also used to provide the most appropriate time delay constant {tau} to reconstruct an m-dimensional phase portrait of the one-dimensional time series. The distinct variation of MIF around the tube indicates the variations of solid-surface contact in the circumferential direction. The correlation coefficient was evaluated to calculate the correlation exponent {nu}, which is closely related to the fractal dimension. The correlation exponent is a measure of the strange attractor. The minimum embedding dimension as well as the degrees of freedom of the system were evaluated via the correlation coefficient. Kolmogorov entropies of the signals were approximated by using the correlation coefficient. Kolmogorov entropy considers the inherent multi-dimensional nature of chaotic data. A positive estimation of Kolmogorov entropy is an indication of the chaotic nature of the signal. The Kolmogorov entropies of the temperature data around the tube were found to be between 10 bits/s and 24 bits/s. A comparison between the signals has shown that the local instantaneous heat transfer coefficient exhibits a higher degree of chaos than the local temperature and pressure signals.

  16. Experimental verification of heat transfer coefficient for nucleate boiling at sub-atmospheric pressure and small heat fluxes

    NASA Astrophysics Data System (ADS)

    Zajaczkowski, Bartosz; Halon, Tomasz; Krolicki, Zbigniew

    2016-02-01

    In this paper we study the influence of sub-atmospheric pressure on nucleate boiling. Sixteen correlations for pool boiling available in literature are gathered and evaluated. Analysis is performed in the pressure range 1-10 kPa and for heat flux densities 10-45 kW/m2. Superheats are set between 6.2 and 28.7 K. The results of calculations were compared with experimental values for the same parameters. The experiments were conducted using isolated glass cylinder and water boiling above the copper plate. Results show that low pressure adjust the character of boiling curve—the curve flattened and the natural convection region of boiling is shifted towards higher wall temperature superheats due to the influence of low pressure on the bubble creation and process of its departure. In result, 8 of 16 analyzed correlations were determined as completely invalid in subatmospheric conditions and the remaining set of equations was compared to experimental results. Experimentally obtained values of heat transfer coefficients are between 1 and 2 kW/m2K. With mean absolute deviation (MAD) we have found that the most accurate approximation of heat transfer coefficient is obtained using Mostinski reduced pressure correlation (0.13-0.35 MAD) and Labuntsov correlation (0.12-0.89 MAD).

  17. Irrecoverable pressure loss coefficients for two elbows in series with various orientation angles and separation distances

    SciTech Connect

    Coffield, R.D.; McKeown, P.T.; Hammond, R.B.

    1997-05-01

    Test data is described for two ninety degree elbows that are in series for a piping network. Both elbows had a radius of curvature of 1.2. Three relative angles and seven different separation distances were investigated. The overall irrecoverable pressure loss for the two elbows is characterized relative to the irrecoverable pressure loss for a single elbow. In addition to providing design guidance relative to the net irrecoverable pressure loss for multiple elbows, the data provides a data base for helping qualify computational fluid dynamics (CFD) computer codes used to predict the irrecoverable pressure loss in piping systems.

  18. CFD Modeling of the Multipurpose Hydrogen Test Bed (MHTB) Self-Pressurization and Spray Bar Mixing Experiments in Normal Gravity: Effect of Accommodation Coefficient on the Tank Pressure

    NASA Technical Reports Server (NTRS)

    Kartuzova, Olga; Kassemi, Mohammad

    2015-01-01

    In this paper, a computational model that describes pressure control phase of a typical MHTB experiment will be presented. The fidelity of the model will be assessed by comparing the models predictions with MHTB experimental data. In this paper CFD results for MHTB spray bar cooling case with 50 tank fill ratio will be presented and analyzed. Effect of accommodation coefficient for calculating droplet-ullage mass transfer will be evaluated.

  19. Measurements of pressure drop, heat transfer coefficient and critical energy of a bundle conductor

    SciTech Connect

    Junghans, D.

    1981-09-01

    Friction factor, saturation temperature, heat transfer coefficient and critical energy of an eight strand bundle conductor were measured in the test facility SULTAN at SIN in Switzerland. The measured values of the critical energy are in good agreement with those calculated by the computer code LONSA. 10 refs.

  20. Optical rectification coefficient of a two-dimensional parabolic quantum dot: Effects of hydrogenic impurity, external fields, hydrostatic pressure and temperature

    NASA Astrophysics Data System (ADS)

    Rezaei, G.; Kish, S. Shojaeian; Vaseghi, B.; Taghizadeh, S. F.

    2014-10-01

    Simultaneous effects of hydrogenic impurity, hydrostatic pressure, temperature and external electric and magnetic fields on the intersubband optical rectification coefficient of a two-dimensional parabolic quantum dot are studied. Energy eigenvalues and eigenvectors are calculated using the direct matrix diagonalization method and optical rectification coefficient is obtained via the compact density matrix approach. The results indicate that the optical rectification coefficient is affected by the hydrogenic impurity, hydrostatic pressure, temperature and external fields.

  1. Evaluation of interfacial mass transfer coefficient as a function of temperature and pressure in carbon dioxide/normal alkane systems

    NASA Astrophysics Data System (ADS)

    Nikkhou, Fatemeh; Keshavarz, Peyman; Ayatollahi, Shahab; Jahromi, Iman Raoofi; Zolghadr, Ali

    2014-09-01

    CO2 gas injection is known as one of the most popular enhanced oil recovery techniques for light and medium oil reservoirs, therefore providing an acceptable mass transfer mechanism for CO2-oil systems seems necessary. In this study, interfacial mass transfer coefficient has been evaluated for CO2-normal heptane and CO2-normal hexadecane systems using equilibrium and dynamic interfacial tension data, which have been measured using the pendant drop method. Interface mass transfer coefficient has been calculated as a function of temperature and pressure in the range of 313-393 K and 1.7-8.6 MPa, respectively. The results showed that the interfacial resistance is a parameter that can control the mass transfer process for some CO2-normal alkane systems, and cannot be neglected. Additionally, it was found that interface mass transfer coefficient increased with pressure. However, the variation of this parameter with temperature did not show a clear trend and it was strongly dependent on the variation of diffusivity and solubility of CO2 in the liquid phase.

  2. Evaluation of interfacial mass transfer coefficient as a function of temperature and pressure in carbon dioxide/normal alkane systems

    NASA Astrophysics Data System (ADS)

    Nikkhou, Fatemeh; Keshavarz, Peyman; Ayatollahi, Shahab; Jahromi, Iman Raoofi; Zolghadr, Ali

    2015-04-01

    CO2 gas injection is known as one of the most popular enhanced oil recovery techniques for light and medium oil reservoirs, therefore providing an acceptable mass transfer mechanism for CO2-oil systems seems necessary. In this study, interfacial mass transfer coefficient has been evaluated for CO2-normal heptane and CO2-normal hexadecane systems using equilibrium and dynamic interfacial tension data, which have been measured using the pendant drop method. Interface mass transfer coefficient has been calculated as a function of temperature and pressure in the range of 313-393 K and 1.7-8.6 MPa, respectively. The results showed that the interfacial resistance is a parameter that can control the mass transfer process for some CO2-normal alkane systems, and cannot be neglected. Additionally, it was found that interface mass transfer coefficient increased with pressure. However, the variation of this parameter with temperature did not show a clear trend and it was strongly dependent on the variation of diffusivity and solubility of CO2 in the liquid phase.

  3. Determination of oral mucosal Poisson's ratio and coefficient of friction from in-vivo contact pressure measurements.

    PubMed

    Chen, Junning; Suenaga, Hanako; Hogg, Michael; Li, Wei; Swain, Michael; Li, Qing

    2016-01-01

    Despite their considerable importance to biomechanics, there are no existing methods available to directly measure apparent Poisson's ratio and friction coefficient of oral mucosa. This study aimed to develop an inverse procedure to determine these two biomechanical parameters by utilizing in vivo experiment of contact pressure between partial denture and beneath mucosa through nonlinear finite element (FE) analysis and surrogate response surface (RS) modelling technique. First, the in vivo denture-mucosa contact pressure was measured by a tactile electronic sensing sheet. Second, a 3D FE model was constructed based on the patient CT images. Third, a range of apparent Poisson's ratios and the coefficients of friction from literature was considered as the design variables in a series of FE runs for constructing a RS surrogate model. Finally, the discrepancy between computed in silico and measured in vivo results was minimized to identify the best matching Poisson's ratio and coefficient of friction. The established non-invasive methodology was demonstrated effective to identify such biomechanical parameters of oral mucosa and can be potentially used for determining the biomaterial properties of other soft biological tissues. PMID:26024011

  4. A comparison of experimental and theoretical results for leakage, pressure distribution, and rotordynamic coefficients for annular gas seals

    NASA Technical Reports Server (NTRS)

    Nicks, C. O.; Childs, D. W.

    1984-01-01

    The importance of seal behavior in rotordynamics is discussed and current annular seal theory is reviewed. A Nelson's analytical-computational method for determining rotordynamic coefficients for this type of compressible-flow seal is outlined. Various means for the experimental identification of the dynamic coefficients are given, and the method employed at the Texas A and M University (TAMU) test facility is explained. The TAMU test apparatus is described, and the test procedures are discussed. Experimental results, including leakage, entrance-loss coefficients, pressure distributions, and rotordynamic coefficients for a smooth and a honeycomb constant-clearance seal are presented and compared to theoretical results from Nelson's analysis. The results for both seals show little sensitivity to the running speed over the test range. Agreement between test results and theory for leakage through the seal is satisfactory. Test results for direct stiffness show a greater sensitivity to fluid pre-rotation than predicted. Results also indicate that the deliberately roughened surface of the honeycomb seal provides improved stability versus the smooth seal.

  5. Ab initio intermolecular potential energy surface and second pressure virial coefficients of methane.

    PubMed

    Hellmann, Robert; Bich, Eckard; Vogel, Eckhard

    2008-06-01

    A six-dimensional potential energy hypersurface (PES) for two interacting rigid methane molecules was determined from high-level quantum-mechanical ab initio computations. A total of 272 points for 17 different angular orientations on the PES were calculated utilizing the counterpoise-corrected supermolecular approach at the CCSD(T) level of theory with basis sets of aug-cc-pVTZ and aug-cc-pVQZ qualities. The calculated interaction energies were extrapolated to the complete basis set limit. An analytical site-site potential function with nine sites per methane molecule was fitted to the interaction energies. In addition, a semiempirical correction to the analytical potential function was introduced to take into account the effects of zero-point vibrations. This correction includes adjustments of the dispersion coefficients and of a single-parameter within the fit to the measured values of the second virial coefficient B(T) at room temperature. Quantitative agreement was then obtained with the measured B values over the whole temperature range of the measurements. The calculated B values should definitely be more reliable at very low temperatures (T<150 K) than values extrapolated using the currently recommended equation of state. PMID:18537418

  6. Experimental Study of the Momentum Coupling Coefficient with the Pulse Frequency and Ambient Pressure for Air-Breathing Laser Propulsion

    NASA Astrophysics Data System (ADS)

    Tang, Zhiping; Cai, Jian; Gong, Ping; Hu, Xiaojun; Tan, Rongqin; Zheng, Zhijun; Wu, Jin; Lu, Yan

    2006-05-01

    The air-breathing laser propulsion tests are conducted for parabolic models by using a high power TEA-CO2 pulsed laser. It is found the momentum coupling coefficient Cm varies with the pulse repeatable frequency and reaches the maximum near 50Hz. With a multi-use pendulum chamber, the change of Cm at different ambient pressure is measured. The experimental results show that the propulsion efficiency Cm does not decrease below the altitude of 10km, even increases a little bit. The calculated Cm fits the experimental result up to altitude 3km, then, they are separated. One possible reason is the temperature which is constant in the experiments.

  7. Aqueous solubilities, vapor pressures, and 1-octanol-water partition coefficients for C9-C14 linear alkylbenzenes

    USGS Publications Warehouse

    Sherblom, P.M.; Gschwend, P.M.; Eganhouse, R.P.

    1992-01-01

    Measurements and estimates of aqueous solubilities, 1-octanol-water partition coefficients (Kow), and vapor pressures were made for 29 linear alkylbenzenes having alkyl chain lengths of 9-14 carbons. The ranges of values observed were vapor pressures from 0.002 to 0.418 Pa, log Kow, from 6.83 to 9.95, and aqueous solubilities from 4 to 38 nmol??L-1. Measured values exhibited a relationship to both the alkyl chain length and the position of phenyl substitution on the alkyl chain. Measurement of the aqueous concentrations resulting from equilibration of a mixture of alkylbenzenes yielded higher than expected values, indicating cosolute or other interactive effects caused enhanced aqueous concentrations of these compounds. ?? 1992 American Chemical Society.

  8. CO2 pressure broadening and shift coefficients for the 2-0 band of 12C16O

    NASA Astrophysics Data System (ADS)

    Hashemi, R.; Predoi-Cross, A.; Dudaryonok, A. S.; Lavrentieva, N. N.; Vandaele, A. C.; Vander Auwera, J.

    2016-08-01

    Fourier transform absorption spectra of the 2-0 band of 12C16O mixed with CO2 have been recorded at total pressures from 156 to 1212 hPa and at 4 different temperatures between 240 K and 283 K. CO2 pressure-induced line broadening and line shift coefficients, and the temperature dependence of the former have been measured including line mixing using a multi-spectrum non-linear least squares fitting technique. Different line shape models have been considered to take into account the Dicke narrowing or speed dependence effects. Measured line-shape parameters were compared with theoretical values, calculated for individual temperatures using a semi-empirical method and the Exponential Power Gap (EPG) law.

  9. Measurements of Pressure Distributions and Force Coefficients in a Squeeze Film Damper. Part 2: Partially Sealed Configuration

    NASA Technical Reports Server (NTRS)

    Jung, S. Y.; Sanandres, Luis A.; Vance, J. M.

    1991-01-01

    Experimental results from a partially sealed squeeze film damper (SFD) test rig, executing a circular centered orbit are presented and discussed. A serrated piston ring is installed at the damper exit. This device involves a new sealing concept which produces high damping values while allowing for oil flow to cool the damper. In the partially sealed damper, large cavitation regions are observed in the pressure fields at orbit radii epsilon equals 0.5 and epsilon equals 0.8. The cavitated pressure distributions and the corresponding force coefficients are compared with a cavitated bearing solution. The experimental results show the significance of fluid inertia and vapor cavitation in the operation of squeeze film dampers. Squeeze film Reynolds numbers tested reach up to Re equals 50, spanning the range of contemporary applications.

  10. A comparison of experimental and theoretical results for leakage, pressure gradients, and rotordynamic coefficients for tapered annular gas seal

    NASA Technical Reports Server (NTRS)

    Elrod, D. A.; Childs, D. W.

    1986-01-01

    A brief review of current annular seal theory and a discussion of the predicted effect on stiffness of tapering the seal stator are presented. An outline of Nelson's analytical-computational method for determining rotordynamic coefficients for annular compressible-flow seals is included. Modifications to increase the maximum rotor speed of an existing air-seal test apparatus at Texas A&M University are described. Experimental results, including leakage, entrance-loss coefficients, pressure distributions, and normalized rotordynamic coefficients, are presented for four convergent-tapered, smooth-rotor, smooth-stator seals. A comparison of the test results shows that an inlet-to-exit clearance ratio of 1.5 to 2.0 provides the maximum direct stiffness, a clearance ratio of 2.5 provides the greatest stability, and a clearance ratio of 1.0 provides the least stability. The experimental results are compared to theoretical results from Nelson's analysis with good agreement. Test results for cross-coupled stiffness show less sensitivity of fluid prerotation than predicted.

  11. The Effect of Pressure on Siderophile-Element (Ni, Co, Mo, W, and P) Metal-Silicate Partition Coefficients

    NASA Astrophysics Data System (ADS)

    Righter, K.; Drake, M. J.

    1995-09-01

    Quantification of the effect of pressure on siderophile element metal-silicate partition coefficients (D) is essential in modelling the accretion histories of the the Earth and terrestrial planets [1], as metal-silicate equilibria may have been set over a range of pressures [2]. We report siderophile element partition coefficients from metal-silicate equilibrium experiments done at 10 and 15 kb, and 1300 degrees C. These new results show that metal-silicate partition coefficients for Ni (Fig. 1), Co, and P decrease with increasing pressure (at constant T and relative fO(sub)2), while those for Mo and W increase. Experiments were done in a 1/2" piston cylinder apparatus, with T, P and fO(sub)2 controlled and monitored as described in a previous study [3]. Synthetic basalt [see 3] powder, doped with 5 wt% levels of either MoO3, WO3 or apatite, was loaded into Fe54Ni29Co17 or Fe64Ni36 tubing, which was closed either by welding or plugging the open ends with small, tapered caps of the same alloy composition. The samples were quenched after 4 to 6 hrs. The metal and glass in the run products are then analyzed by electron microprobe to obtain a solid metal/liquid silicate (SM/LS) partition coefficient for a given element (D = wt% element in metal/ wt% element in glass). For several experiments, NiS was added as a sulfur source, and thus stabilizing a sulfur-bearing metallic liquid. For these experiments, both solid metal/ liquid silicate and liquid metal/ liquid silicate (LM/LS) partition coefficients are reported (Table 1). In order to isolate the effect of pressure on siderophile element partition coefficients, we have compared our results at high pressures to calculated 1 bar values at the same T and fO(sub)2 as our experiments (based on experiments of [4 - 11]; see results for Ni in Fig. 1; data from [3] and this study). The effect of pressure and other intensive variables on metal-silicate D's can be quantified using the thermodynamically-based relation: lnD (metal

  12. Determination of diffusion coefficients of carbon dioxide in water between 268 and 473 K in a high-pressure capillary optical cell with in situ Raman spectroscopic measurements

    NASA Astrophysics Data System (ADS)

    Lu, Wanjun; Guo, Huirong; Chou, I. M.; Burruss, R. C.; Li, Lanlan

    2013-08-01

    Accurate values of diffusion coefficients for carbon dioxide in water and brine at reservoir conditions are essential to our understanding of transport behavior of carbon dioxide in subsurface pore space. However, the experimental data are limited to conditions at low temperatures and pressures. In this study, diffusive transfer of carbon dioxide in water at pressures up to 45 MPa and temperatures from 268 to 473 K was observed within an optical capillary cell via time-dependent Raman spectroscopy. Diffusion coefficients were estimated by the least-squares method for the measured variations in carbon dioxide concentration in the cell at various sample positions and time. At the constant pressure of 20 MPa, the measured diffusion coefficients of carbon dioxide in water increase with increasing temperature from 268 to 473 K. The relationship between diffusion coefficient of carbon dioxide in water [D(CO2) in m2/s] and temperature (T in K) was derived with Speedy-Angell power-law approach as: D(CO>2)=D0[T/Ts-1]m where D0 = 13.942 × 10-9 m2/s, Ts = 227.0 K, and m = 1.7094. At constant temperature, diffusion coefficients of carbon dioxide in water decrease with pressure increase. However, this pressure effect is rather small (within a few percent).

  13. Determination of diffusion coefficients of carbon dioxide in water between 268 and 473 K in a high-pressure capillary optical cell with in situ Raman spectroscopic measurements

    USGS Publications Warehouse

    Lu, Wanjun; Guo, Huirong; Chou, I.-Ming; Burruss, R.C.; Li, Lanlan

    2013-01-01

    Accurate values of diffusion coefficients for carbon dioxide in water and brine at reservoir conditions are essential to our understanding of transport behavior of carbon dioxide in subsurface pore space. However, the experimental data are limited to conditions at low temperatures and pressures. In this study, diffusive transfer of carbon dioxide in water at pressures up to 45 MPa and temperatures from 268 to 473 K was observed within an optical capillary cell via time-dependent Raman spectroscopy. Diffusion coefficients were estimated by the least-squares method for the measured variations in carbon dioxide concentration in the cell at various sample positions and time. At the constant pressure of 20 MPa, the measured diffusion coefficients of carbon dioxide in water increase with increasing temperature from 268 to 473 K. The relationship between diffusion coefficient of carbon dioxide in water [D(CO2) in m2/s] and temperature (T in K) was derived with Speedy–Angell power-law approach as: D(CO2)=D0[T/Ts-1]m where D0 = 13.942 × 10−9 m2/s, Ts = 227.0 K, and m = 1.7094. At constant temperature, diffusion coefficients of carbon dioxide in water decrease with pressure increase. However, this pressure effect is rather small (within a few percent).

  14. Measured pressure distributions, aerodynamic coefficients and shock shapes on blunt bodies at incidence in hypersonic air and CF4

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III

    1982-01-01

    Pressure distributions, aerodynamic coefficients, and shock shapes were measured on blunt bodies of revolution in Mach 6 CF4 and in Mach 6 and Mach 10 air. The angle of attack was varied from 0 deg to 20 deg in 4 deg increments. Configurations tested were a hyperboloid with an asymptotic angle of 45 deg, a sonic-corner paraboloid, a paraboloid with an angle of 27.6 deg at the base, a Viking aeroshell generated in a generalized orthogonal coordinate system, and a family of cones having a 45 deg half-angle with spherical, flattened, concave, and cusp nose shapes. Real-gas effects were simulated for the hperboloid and paraboloid models at Mach 6 by testing at a normal-shock density ratio of 5.3 in air and 12 CF4. Predictions from simple theories and numerical flow field programs are compared with measurement. It is anticipated that the data presented in this report will be useful for verification of analytical methods for predicting hypersonic flow fields about blunt bodies at incidence.

  15. Clinical outcomes of combined flow-pressure drop measurements using newly developed diagnostic endpoint: Pressure drop coefficient in patients with coronary artery dysfunction

    PubMed Central

    Effat, Mohamed A; Peelukhana, Srikara Viswanath; Banerjee, Rupak K

    2016-01-01

    AIM: To combine pressure and flow parameter, pressure drop coefficient (CDP) will result in better clinical outcomes in comparison to the fractional flow reserve (FFR) group. METHODS: To test this hypothesis, a comparison was made between the FFR < 0.75 and CDP > 27.9 groups in this study, for the major adverse cardiac events [major adverse cardiac events (MACE): Primary outcome] and patients’ quality of life (secondary outcome). Further, a comparison was also made between the survival curves for the FFR < 0.75 and CDP > 27.9 groups. Two-tailed χ2 test proportions were performed for the comparison of primary and secondary outcomes. Kaplan-Meier survival analysis was performed to compare the survival curves of FFR < 0.75 and CDP > 27.9 groups (MedcalcV10.2, Mariakerke, Belgium). Results were considered statistically significant for P < 0.05. RESULTS: The primary outcomes (%MACE) in the FFR < 0.75 group (20%, 4 out of 20) was not statistically different (P = 0.24) from the %MACE occurring in CDP > 27.9 group (8.57%, 2 out of 35). Noteworthy is the reduction in the %MACE in the CDP > 27.9 group, in comparison to the FFR < 0.75 group. Further, the secondary outcomes were not statistically significant between the FFR < 0.75 and CDP > 27.9 groups. Survival analysis results suggest that the survival time for the CDP > 27.9 group (n = 35) is significantly higher (P = 0.048) in comparison to the survival time for the FFR < 0.75 group (n = 20). The results remained similar for a FFR = 0.80 cut-off. CONCLUSION: Based on the above, CDP could prove to be a better diagnostic end-point for clinical revascularization decision-making in the cardiac catheterization laboratories. PMID:27022460

  16. Measurements of argon broadened Lorentz width and pressure-induced line shift coefficients in the nu4 band of (C-12)H4

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Smith, Mary Ann H.; Devi, V. Malathy; Benner, D. Chris

    1989-01-01

    Room temperature argon broadened halfwidth and pressure-induced line shift coefficients have been determined for 118 transitions in the nu4 band of (C-12)H4 from analysis of high resolution laboratory absorption spectra recorded with the McMath Fourier transform spectrometer operated on Kitt Peak by the National Solar Observatory. Transitions up to J-double-prime = 12 have been measured using a nonlinear least-squares spectral fitting procedure. The variation of the measured halfwidth coefficients with symmetry type and rotational quantum number is very similar to that measured previously for N2 and air broadening, but the absolute values of the argon broadening coefficients are all smaller. On average, the ratio of the argon broadened halfwidth coefficient to the corresponding N2 broadened halfwidth coefficient is 0.877 + or - 0.017 (2 Sigma). More than 95 percent of the pressure-induced shifts are negative with values ranging from -0.0081 to +0.0055/cm atm. The pressure shifts in argon are nearly equal to corresponding values measured previously in N2 and air.

  17. New Orbit Simulations for BepiColombo Using Higher-Order Mercury Gravity Field Coefficients, Solar Gravity and Radiation Pressure

    NASA Astrophysics Data System (ADS)

    Lüdicke, F.; Hussmann, H.; Oberst, J.

    2008-09-01

    Introduction We developed an orbit simulation tool for BepiColombo scheduled for arrival at Mercury in 2019. The mission will consist of two spacecraft, the MPO (Mercury Planetary Orbiter, ESA) and the MMO (Mercury Magnetospheric Orbiter, JAXA). We simulate the orbit evolutions of the two considering perturbing forces for a time of 2 years from arrival. This study was undertaken for mission planning purposes and estimates of surface coverage for the onboard mapping instruments. Orbit Perturbations Perturbing forces acting on the Keplerian MPO and MMO orbits include Mercury's non-spherical mass distribution parameters, the gravitational force of the sun, and solar radiation pressure (faintest). Because of the perturbing accelerations, semi-major axis, eccentricity, inclination, ascending node, argument of pericenter, show complex variations. The program simulates the evolution of all these elements over a period of 2 years. The software was programmed in FORTRAN, using SPICE subroutines. Numerical Integration Several of the Runge-Kutta methods are implemented in the software for a numerical integration of the equations of motion. Starting from initial values for the state vector (i.e., position and velocity) at time t0 given in [2], we obtain the spacecraft trajectory with an accuracy of the order of 1 m by choosing a stepsize of 50 s [1]. The results of the numerical calculation were checked with the results of a similar Bepi Colombo orbit simulation by ESOC [2] and showed very good agreement. Gravity Field Coefficients The MARINER 10 spacecraft executed 3 flybys of Mercury (1974/75). From spacecraft tracking, a first estimate of the gravity parameter GM and crude limits for J2 could be obtained. Higher-order gravitational coefficients, e.g., C30 and C22 are practically unknown. Results (Examples) Fig. 1 shows the evolution of the pericenter height for the MPO during the 2 mission years using the typical error bounds (6.0 ± 2.0)E-5 [4] for J2 = -C20. In addition

  18. Measurement and modelling of forced convective heat transfer coefficient and pressure drop of Al2O3- and SiO2-water nanofluids

    NASA Astrophysics Data System (ADS)

    Julia, J. E.; Hernández, L.; Martínez-Cuenca, R.; Hibiki, T.; Mondragón, R.; Segarra, C.; Jarque, J. C.

    2012-11-01

    Forced convective heat transfer coefficient and pressure drop of SiO2- and Al2O3-water nanofluids were characterized. The experimental facility was composed of thermal-hydraulic loop with a tank with an immersed heater, a centrifugal pump, a bypass with a globe valve, an electromagnetic flow-meter, a 18 kW in-line pre-heater, a test section with band heaters, a differential pressure transducer and a heat exchanger. The test section consists of a 1000 mm long aluminium pipe with an inner diameter of 31.2 mm. Eighteen band heaters were placed all along the test section in order to provide a uniform heat flux. Heat transfer coefficient was calculated measuring fluid temperature using immersed thermocouples (Pt100) placed at both ends of the test section and surface thermocouples in 10 axial locations along the test section (Pt1000). The measurements have been performed for different nanoparticles (Al2O3 and SiO2 with primary size of 11 nm and 12 nm, respectively), volume concentrations (1% v., 5% v.), and flow rates (3 103Re<105). Maximum heat transfer coefficient enhancement (300%) and pressure drop penalty (1000%) is obtained with 5% v. SiO2 nanofluid. Existing correlations can predict, at least in a first approximation, the heat transfer coefficient and pressure drop of nanofluids if thermal conductivity, viscosity and specific heat were properly modelled.

  19. Densities, molar volumes, cubic expansion coefficients, and isothermal compressibilities of 1-alkanols from 323. 15 K to 373. 15 K and pressures up to 10 MPa

    SciTech Connect

    Garg, S.K.; Banipal, T.S.; Ahluwalia, J.C. )

    1993-04-01

    Densities of six alcohols, 1-pentanol, 1-hexanol, 1-heptanol, 1-octanol, 1-nonanol, and 1-dodecanol, in the liquid state have been measured with a vibrating-tube densimeter from 323.15 to 373.15 K at pressures up to 10 MPa. Molar volumes (derived from the densities) have been fitted to polynomials as a function of temperature and pressure. Cubic expansion coefficients and isothermal compressibilities have been derived from molar volumes as a function of temperature and pressure. The results have also been compared with the available literature values.

  20. Measurement of pressure-broadening and lineshift coefficients at 77 and 296 K of methane lines in the 727 nm band using intracavity laser spectroscopy

    NASA Technical Reports Server (NTRS)

    Singh, Kuldip; O'Brien, James J.

    1994-01-01

    Pressure-broadening coefficients and pressure-induced lineshifts of several rotational-vibrational lines have been measured in the 727 nm absorption band of methane at temperatures of 77 and 296 K, using nitrogen, hydrogen, and helium as the foreign-gas collision partners. A technique involving intracavity laser spectroscopy is used to record the methane spectra. Average values of the broadening coefficients (/cm/atm) at 77 K are: 0.199, 0.139, 0.055, and 0.29 for collision partners N2, H2, He, and CH4, respectively. Typical average values of the pressure-induced lineshifts (/cm/atm) at 77 K and for the range of foreign gas pressures between 10 and 200 torr are -0.052 for N2, -0.063 for H2, and +0.031 for He. All the values obtained at 296 K are considerably different from the corresponding values at 77 K. This represents the first report of pressure-broadening and shifting coefficients for the methane transitions in a region where the delta nu(sub C-H) = 5 band occurs.

  1. Flight-measured afterbody pressure coefficients from an airplane having twin side-by-side jet engines for Mach numbers from 0.6 to 1.6

    NASA Technical Reports Server (NTRS)

    Steers, L. L.

    1979-01-01

    Afterbody pressure distribution data were obtained in flight from an airplane having twin side-by-side jet exhausts. The data were obtained in level flight at Mach numbers from 0.60 to 1.60 and at elevated load factors for Mach numbers of 0.60, 0.90, and 1.20. The test altitude varied from 2300 meters (7500 feet) to 15,200 meters (50,000 feet) over a speed range that provided a matrix of constant Mach number and constant unit Reynolds number test conditions. The results of the full-scale flight afterbody pressure distribution program are presented in the form of plotted pressure distributions and tabulated pressure coefficients with Mach number, angle of attack, engine nozzle pressure ratio, and unit Reynolds number as controlled parameters.

  2. CFD Modeling of the Multipurpose Hydrogen Test Bed (MHTB) Self-Pressurization and Spray Bar Mixing Experiments in Normal Gravity: Effect of the Accommodation Coefficient on the Tank Pressure

    NASA Technical Reports Server (NTRS)

    Kartuzova, Olga; Kassemi, Mohammad

    2015-01-01

    A CFD model for simulating the self-pressurization of a large scale liquid hydrogen storage tank is utilized in this paper to model the MHTB self-pressurization experiment. The kinetics-based Schrage equation is used to account for the evaporative and condensi ng interfacial mass flows in this model. The effect of the accommodation coefficient for calculating the interfacial mass transfer rate on the tank pressure during tank selfpressurization is studied. The values of the accommodation coefficient which were considered in this study vary from 1.0e-3 to 1.0e-1 for the explicit VOF model and from 1.0e-4 to 1.0e-3 for the implicit VOF model. The ullage pressure evolutions are compared against experimental data. A CFD model for controlling pressure in cryogenic storage tanks by spraying cold liquid into the ullage is also presented. The Euler-Lagrange approach is utilized for tracking the spray droplets and for modeling the interaction between the droplets and the continuous phase (ullage). The spray model is coupled with the VOF model by performing particle tracking in the ullage, removing particles from the ullage when they reach the interface, and then adding their contributions to the liquid. Droplet-ullage heat and mass transfer are modeled. The flow, temperature, and interfacial mass flux, as well as droplets trajectories, size distribution and temperatures predicted by the model are presented. The ul lage pressure and vapor temperature evolutions are compared with experimental data obtained from the MHTB spray bar mixing experiment. The effect of the accommodation coefficient for calculating the interfacial and droplet mass transfer rates on the tank pressure during mixing of the vapor using spray is studied. The values used for the accommodation coefficient at the interface vary from 1.0e-5 to 1.0e-2. The droplet accommodation coefficient values vary from 2.0e-6 to 1.0e-4.

  3. Comparison of Regression Methods to Compute Atmospheric Pressure and Earth Tidal Coefficients in Water Level Associated with Wenchuan Earthquake of 12 May 2008

    NASA Astrophysics Data System (ADS)

    He, Anhua; Singh, Ramesh P.; Sun, Zhaohua; Ye, Qing; Zhao, Gang

    2016-05-01

    The earth tide, atmospheric pressure, precipitation and earthquake fluctuations, especially earthquake greatly impacts water well levels, thus anomalous co-seismic changes in ground water levels have been observed. In this paper, we have used four different models, simple linear regression (SLR), multiple linear regression (MLR), principal component analysis (PCA) and partial least squares (PLS) to compute the atmospheric pressure and earth tidal effects on water level. Furthermore, we have used the Akaike information criterion (AIC) to study the performance of various models. Based on the lowest AIC and sum of squares for error values, the best estimate of the effects of atmospheric pressure and earth tide on water level is found using the MLR model. However, MLR model does not provide multicollinearity between inputs, as a result the atmospheric pressure and earth tidal response coefficients fail to reflect the mechanisms associated with the groundwater level fluctuations. On the premise of solving serious multicollinearity of inputs, PLS model shows the minimum AIC value. The atmospheric pressure and earth tidal response coefficients show close response with the observation using PLS model. The atmospheric pressure and the earth tidal response coefficients are found to be sensitive to the stress-strain state using the observed data for the period 1 April-8 June 2008 of Chuan 03# well. The transient enhancement of porosity of rock mass around Chuan 03# well associated with the Wenchuan earthquake (Mw = 7.9 of 12 May 2008) that has taken its original pre-seismic level after 13 days indicates that the co-seismic sharp rise of water well could be induced by static stress change, rather than development of new fractures.

  4. Comparison of Regression Methods to Compute Atmospheric Pressure and Earth Tidal Coefficients in Water Level Associated with Wenchuan Earthquake of 12 May 2008

    NASA Astrophysics Data System (ADS)

    He, Anhua; Singh, Ramesh P.; Sun, Zhaohua; Ye, Qing; Zhao, Gang

    2016-07-01

    The earth tide, atmospheric pressure, precipitation and earthquake fluctuations, especially earthquake greatly impacts water well levels, thus anomalous co-seismic changes in ground water levels have been observed. In this paper, we have used four different models, simple linear regression (SLR), multiple linear regression (MLR), principal component analysis (PCA) and partial least squares (PLS) to compute the atmospheric pressure and earth tidal effects on water level. Furthermore, we have used the Akaike information criterion (AIC) to study the performance of various models. Based on the lowest AIC and sum of squares for error values, the best estimate of the effects of atmospheric pressure and earth tide on water level is found using the MLR model. However, MLR model does not provide multicollinearity between inputs, as a result the atmospheric pressure and earth tidal response coefficients fail to reflect the mechanisms associated with the groundwater level fluctuations. On the premise of solving serious multicollinearity of inputs, PLS model shows the minimum AIC value. The atmospheric pressure and earth tidal response coefficients show close response with the observation using PLS model. The atmospheric pressure and the earth tidal response coefficients are found to be sensitive to the stress-strain state using the observed data for the period 1 April-8 June 2008 of Chuan 03# well. The transient enhancement of porosity of rock mass around Chuan 03# well associated with the Wenchuan earthquake (Mw = 7.9 of 12 May 2008) that has taken its original pre-seismic level after 13 days indicates that the co-seismic sharp rise of water well could be induced by static stress change, rather than development of new fractures.

  5. Vapor pressure measurements on non-aqueous electrolyte solutions. Part 2. Tetraalkylammonium salts in methanol. Activity coefficients of various 1-1 electrolytes at high concentrations

    SciTech Connect

    Barthel, J.; Lauermann, G.; Neueder, R.

    1986-10-01

    Precise vapor pressure data for solutions of Et/sub 4/NBr, Bu/sub 4/NBr, Bu/sub 4/Nl, Bu/sub 4/NClO/sub 4/, and Am/sub 4/NBr in methanol at 25/sup 0/C in the concentration range 0.04 < m(mol-(kg of solvent)/sup -1/) < 1.6 are communicated and discussed. Polynomials in molalities are given which may be used for calculating precise vapor pressure depressions of these solutions. Osmotic coefficients are calculated by taking into account the second virial coefficient of methanol vapor. Discussion of the data at low concentrations is based on the chemical model of electrolyte solutions taking into account non-coulombic interactions; ion-pair association constants are compared to those of conductance measurements. Pitzer equations are used to reproduce osmotic and activity coefficient at high concentrations; the set of Pitzer parameters b = 3.2, ..cap alpha../sub 1/ = 2.0 and ..cap alpha../sub 2/ = 20.0 is proposed for methanol solutions.

  6. Donor impurity-related linear and nonlinear intraband optical absorption coefficients in quantum ring: effects of applied electric field and hydrostatic pressure

    PubMed Central

    2012-01-01

    The linear and nonlinear intraband optical absorption coefficients in GaAs three-dimensional single quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and electric field, applied along the growth direction of the heterostructure, the energies of the ground and first excited states of a donor impurity have been found using the effective mass approximation and a variational method. The energies of these states are examined as functions of the dimensions of the structure, electric field, and hydrostatic pressure. We have also investigated the dependencies of the linear, nonlinear, and total optical absorption coefficients as a function of incident photon energy for several configurations of the system. It is found that the variation of distinct sizes of the structure leads to either a redshift and/or a blueshift of the resonant peaks of the intraband optical spectrum. In addition, we have found that the application of an electric field leads to a redshift, whereas the influence of hydrostatic pressure leads to a blueshift (in the case of on-ring-center donor impurity position) of the resonant peaks of the intraband optical spectrum. PMID:23021497

  7. Donor impurity-related linear and nonlinear intraband optical absorption coefficients in quantum ring: effects of applied electric field and hydrostatic pressure.

    PubMed

    Barseghyan, Manuk G; Restrepo, Ricardo L; Mora-Ramos, Miguel E; Kirakosyan, Albert A; Duque, Carlos A

    2012-01-01

    : The linear and nonlinear intraband optical absorption coefficients in GaAs three-dimensional single quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and electric field, applied along the growth direction of the heterostructure, the energies of the ground and first excited states of a donor impurity have been found using the effective mass approximation and a variational method. The energies of these states are examined as functions of the dimensions of the structure, electric field, and hydrostatic pressure. We have also investigated the dependencies of the linear, nonlinear, and total optical absorption coefficients as a function of incident photon energy for several configurations of the system. It is found that the variation of distinct sizes of the structure leads to either a redshift and/or a blueshift of the resonant peaks of the intraband optical spectrum. In addition, we have found that the application of an electric field leads to a redshift, whereas the influence of hydrostatic pressure leads to a blueshift (in the case of on-ring-center donor impurity position) of the resonant peaks of the intraband optical spectrum. PMID:23021497

  8. A Numerical Procedure for Flow Distribution and Pressure Drops for U and Z Type Configurations Plate Heat Exchangers with Variable Coefficients

    NASA Astrophysics Data System (ADS)

    López, R.; Lecuona, A.; Ventas, R.; Vereda, C.

    2012-11-01

    In Plate Heat Exchangers it is important to determine the flow distribution and pressure drops, because they affect directly the performance of a heat exchanger [1]. This work proposes an incompressible, one-dimensional, steady state, discrete model allowing for variable overall momentum coefficients to determine these magnitudes. The model consists on a modified version of the Bajura and Jones [2] model for dividing and combining flow manifolds. The numerical procedure is based on the finite differences approximation approach proposed by Datta and Majumdar [3]. A linear overall momentum coefficient distribution is used in the dividing manifold, but the model is not limited to linear distributions. Comparisons are made with experimental, numerical and analytical data, yielding good results.

  9. Pressure coefficients for direct optical transitions in MoS2, MoSe2, WS2, and WSe2 crystals and semiconductor to metal transitions.

    PubMed

    Dybała, F; Polak, M P; Kopaczek, J; Scharoch, P; Wu, K; Tongay, S; Kudrawiec, R

    2016-01-01

    The electronic band structure of MoS2, MoSe2, WS2, and WSe2, crystals has been studied at various hydrostatic pressures experimentally by photoreflectance (PR) spectroscopy and theoretically within the density functional theory (DFT). In the PR spectra direct optical transitions (A and B) have been clearly observed and pressure coefficients have been determined for these transitions to be: αA = 2.0 ± 0.1 and αB = 3.6 ± 0.1 meV/kbar for MoS2, αA = 2.3 ± 0.1 and αB = 4.0 ± 0.1 meV/kbar for MoSe2, αA = 2.6 ± 0.1 and αB = 4.1 ± 0.1 meV/kbar for WS2, αA = 3.4 ± 0.1 and αB = 5.0 ± 0.5 meV/kbar for WSe2. It has been found that these coefficients are in an excellent agreement with theoretical predictions. In addition, a comparative study of different computational DFT approaches has been performed and analyzed. For indirect gap the pressure coefficient have been determined theoretically to be -7.9, -5.51, -6.11, and -3.79, meV/kbar for MoS2, MoSe2, WS2, and WSe2, respectively. The negative values of this coefficients imply a narrowing of the fundamental band gap with the increase in hydrostatic pressure and a semiconductor to metal transition for MoS2, MoSe2, WS2, and WSe2, crystals at around 140, 180, 190, and 240 kbar, respectively. PMID:27215469

  10. Pressure coefficients for direct optical transitions in MoS2, MoSe2, WS2, and WSe2 crystals and semiconductor to metal transitions

    PubMed Central

    Dybała, F.; Polak, M. P.; Kopaczek, J.; Scharoch, P.; Wu, K.; Tongay, S.; Kudrawiec, R.

    2016-01-01

    The electronic band structure of MoS2, MoSe2, WS2, and WSe2, crystals has been studied at various hydrostatic pressures experimentally by photoreflectance (PR) spectroscopy and theoretically within the density functional theory (DFT). In the PR spectra direct optical transitions (A and B) have been clearly observed and pressure coefficients have been determined for these transitions to be: αA = 2.0 ± 0.1 and αB = 3.6 ± 0.1 meV/kbar for MoS2, αA = 2.3 ± 0.1 and αB = 4.0 ± 0.1 meV/kbar for MoSe2, αA = 2.6 ± 0.1 and αB = 4.1 ± 0.1 meV/kbar for WS2, αA = 3.4 ± 0.1 and αB = 5.0 ± 0.5 meV/kbar for WSe2. It has been found that these coefficients are in an excellent agreement with theoretical predictions. In addition, a comparative study of different computational DFT approaches has been performed and analyzed. For indirect gap the pressure coefficient have been determined theoretically to be −7.9, −5.51, −6.11, and −3.79, meV/kbar for MoS2, MoSe2, WS2, and WSe2, respectively. The negative values of this coefficients imply a narrowing of the fundamental band gap with the increase in hydrostatic pressure and a semiconductor to metal transition for MoS2, MoSe2, WS2, and WSe2, crystals at around 140, 180, 190, and 240 kbar, respectively. PMID:27215469

  11. Pressure coefficients for direct optical transitions in MoS2, MoSe2, WS2, and WSe2 crystals and semiconductor to metal transitions

    NASA Astrophysics Data System (ADS)

    Dybała, F.; Polak, M. P.; Kopaczek, J.; Scharoch, P.; Wu, K.; Tongay, S.; Kudrawiec, R.

    2016-05-01

    The electronic band structure of MoS2, MoSe2, WS2, and WSe2, crystals has been studied at various hydrostatic pressures experimentally by photoreflectance (PR) spectroscopy and theoretically within the density functional theory (DFT). In the PR spectra direct optical transitions (A and B) have been clearly observed and pressure coefficients have been determined for these transitions to be: αA = 2.0 ± 0.1 and αB = 3.6 ± 0.1 meV/kbar for MoS2, αA = 2.3 ± 0.1 and αB = 4.0 ± 0.1 meV/kbar for MoSe2, αA = 2.6 ± 0.1 and αB = 4.1 ± 0.1 meV/kbar for WS2, αA = 3.4 ± 0.1 and αB = 5.0 ± 0.5 meV/kbar for WSe2. It has been found that these coefficients are in an excellent agreement with theoretical predictions. In addition, a comparative study of different computational DFT approaches has been performed and analyzed. For indirect gap the pressure coefficient have been determined theoretically to be ‑7.9, ‑5.51, ‑6.11, and ‑3.79, meV/kbar for MoS2, MoSe2, WS2, and WSe2, respectively. The negative values of this coefficients imply a narrowing of the fundamental band gap with the increase in hydrostatic pressure and a semiconductor to metal transition for MoS2, MoSe2, WS2, and WSe2, crystals at around 140, 180, 190, and 240 kbar, respectively.

  12. H2-,He-and CO2-line broadening coefficients and pressure shifts for the HITRAN database

    NASA Astrophysics Data System (ADS)

    Wilzewski, Jonas; Gordon, Iouli E.; Rothman, Laurence S.

    2014-06-01

    To increase the potential of the HITRAN database in astronomy, experimental and theoretical line broadening coefficients and line shifts of molecules of planetary interest broadened by H2,He,and CO2 have been assembled from available peer-reviewed sources. Since H2 and He are major constituents in the atmospheres of gas giants, and CO2 predominates in atmospheres of some rocky planets with volcanic activity, these spectroscopic data are important for studying planetary atmospheres. The collected data were used to create semi-empirical models for complete data sets from the microwave to the UV part of the spectrum of the studied molecules. The presented work will help identify the need for further investigations of broadening and shifting of spectral lines.

  13. Comments on laser-excited fluorescence of the hydroxyl radical: Relaxation coefficients at atmospheric pressure, appendix 5

    NASA Technical Reports Server (NTRS)

    Wang, C. C.

    1983-01-01

    The lifetime of the excited state of a atom or molecule is often determined from the rate of fluorescence decay originating as a function of buffer gas pressure, an accurate determination is made of the rates of collision induced transitions away from the excited state. Deconvolution can in principle be employed to resolve fluorescence times shorter than the response times of the system. However, attainable reproducibility and accuracy in actual experiments usually set a limit beyond which no meaningful results are expected. Prudence thus dictates that the results of deconvolution be viewed with extreme caution whenever fluorescence time much shorter than the response of times of the system are indicated.

  14. A study of the effects of Reynolds number and Mach number on constant pressure coefficient jump for shock-induced trailing-edge separation

    NASA Technical Reports Server (NTRS)

    Cunningham, Atlee M., Jr.; Spragle, Gregory S.

    1987-01-01

    The influence of Mach and Reynolds numbers as well as airfoil and planform geometry on the phenomenon of constant shock jump pressure coefficient for conditions of shock induced trailing edge separation (SITES) was studied. It was demonstrated that the phenomenon does exist for a wide variety of two and three dimensional flow cases and that the influence of free stream Mach number was not significant. The influence of Reynolds number was found to be important but was not strong. Airfoil and planform geometric characteristics were found to be very important where the pressure coefficient jump was shown to vary with the sum of: (1) airfoil curvature at the upper surface crest, and (2) camber surface slope at the trailing edge. It was also determined that the onset of SITES could be defined as a function of airfoil geometric parameters and Mach number normal to the leading edge. This onset prediction was shown to predict the angle of onset to within + or - 1 deg accuracy or better for about 90% of the cases studied.

  15. Overall heat transfer coefficient and pressure drop in a typical tubular exchanger employing alumina nano-fluid as the tube side hot fluid

    NASA Astrophysics Data System (ADS)

    Kabeel, A. E.; Abdelgaied, Mohamed

    2015-08-01

    Nano-fluids are used to improve the heat transfer rates in heat exchangers, especially; the shell-and-tube heat exchanger that is considered one of the most important types of heat exchangers. In the present study, an experimental loop is constructed to study the thermal characteristics of the shell-and-tube heat exchanger; at different concentrations of Al2O3 nonmetallic particles (0.0, 2, 4, and 6 %). This material concentrations is by volume concentrations in pure water as a base fluid. The effects of nano-fluid concentrations on the performance of shell and tube heat exchanger have been conducted based on the overall heat transfer coefficient, the friction factor, the pressure drop in tube side, and the entropy generation rate. The experimental results show that; the highest heat transfer coefficient is obtained at a nano-fluid concentration of 4 % of the shell side. In shell side the maximum percentage increase in the overall heat transfer coefficient has reached 29.8 % for a nano-fluid concentration of 4 %, relative to the case of the base fluid (water) at the same tube side Reynolds number. However; in the tube side the maximum relative increase in pressure drop has recorded the values of 12, 28 and 48 % for a nano-material concentration of 2, 4 and 6 %, respectively, relative to the case without nano-fluid, at an approximate value of 56,000 for Reynolds number. The entropy generation reduces with increasing the nonmetallic particle volume fraction of the same flow rates. For increase the nonmetallic particle volume fraction from 0.0 to 6 % the rate of entropy generation decrease by 10 %.

  16. Overall heat transfer coefficient and pressure drop in a typical tubular exchanger employing alumina nano-fluid as the tube side hot fluid

    NASA Astrophysics Data System (ADS)

    Kabeel, A. E.; Abdelgaied, Mohamed

    2016-08-01

    Nano-fluids are used to improve the heat transfer rates in heat exchangers, especially; the shell-and-tube heat exchanger that is considered one of the most important types of heat exchangers. In the present study, an experimental loop is constructed to study the thermal characteristics of the shell-and-tube heat exchanger; at different concentrations of Al2O3 nonmetallic particles (0.0, 2, 4, and 6 %). This material concentrations is by volume concentrations in pure water as a base fluid. The effects of nano-fluid concentrations on the performance of shell and tube heat exchanger have been conducted based on the overall heat transfer coefficient, the friction factor, the pressure drop in tube side, and the entropy generation rate. The experimental results show that; the highest heat transfer coefficient is obtained at a nano-fluid concentration of 4 % of the shell side. In shell side the maximum percentage increase in the overall heat transfer coefficient has reached 29.8 % for a nano-fluid concentration of 4 %, relative to the case of the base fluid (water) at the same tube side Reynolds number. However; in the tube side the maximum relative increase in pressure drop has recorded the values of 12, 28 and 48 % for a nano-material concentration of 2, 4 and 6 %, respectively, relative to the case without nano-fluid, at an approximate value of 56,000 for Reynolds number. The entropy generation reduces with increasing the nonmetallic particle volume fraction of the same flow rates. For increase the nonmetallic particle volume fraction from 0.0 to 6 % the rate of entropy generation decrease by 10 %.

  17. Modification of nitrogen Townsend ionization coefficient in a N2 laser with a weak corona preionization and high gas pressure using laser output power measurements

    NASA Astrophysics Data System (ADS)

    Sarikhani, S.; Hariri, A.

    2013-05-01

    Based on the reported experimental measurements on the output power in a transversely excited nitrogen laser with a weak corona preionization and rate equations, a simulation study was made to describe the laser output power behavior. For the study, we first made a literature survey for the appropriate E/p functional dependences of nitrogen molecules on drift velocity vd, and the Townsend ionization coefficient α, to be applied for the laser operational characteristics of high gas pressures up to 1 atmosphere, and 20 < E/p < 1000 V cm-1 Torr-1. For the study when the corona UV preionization is applied, it was realized that it is necessary to modify the Townsend ionization coefficient to include the effect of the preionization for the laser system. This realization revealed that the Townsend coefficient upon utilizing the corona effect, (α/p)corona, can be viewed as a perturbation to be added to the (α/p)main due to the main gas discharge, where the total (α/p)t = (α/p)main + (α/p)corona was used for the calculation. We also introduced a single α/p relation with A* and B* coefficients to explain the gas discharge due to both the main and corona discharges. The results of the two approaches are introduced and have been compared with each other. The present study indicates that laser optical measurements, by themselves, constitute a reliable approach for understanding the physical quantities that are involved during plasma formation in a gas discharge. Details of the approach will be presented in this paper.

  18. Temperature dependence of Lorentz air-broadening and pressure-shift coefficients of (12)CH4 lines in the 2.3-micron spectral region

    NASA Technical Reports Server (NTRS)

    Devi, V. Malathy; Benner, D. Chris; Smith, M. A. H.; Rinsland, C. P.

    1994-01-01

    High-resolution (0.01/cm) absorption spectra of lean mixtures of CH4 in dry air were recorded with the McMath-Pierce Fourier transform spectrometer (FTS) of the National Solar Observatory on Kitt Peak at various temperatures between 24 and -61 C. The spectra have been analyzed to determine the values at room temperature of pressure-broadened widths and pressure-induced shifts of more than 740 transitions. The temperature dependence of air-broadened widths and pressure-induced shifts was deduced for approx. 370 transitions in the nu(sub 1) + nu(sub 4), nu(sub 3) + nu(sub 4), and nu(sub 2) + nu(sub 3) bands of (12)CH4 located between 4118 and 4615/cm. These results were obtained by analyzing a total of 29 spectra simultaneously using a multi-spectral non-linear least-squares fitting technique. This new technique allowed the determination of correlated spectral line parameters (e.g. intensity and broadening coefficient) better than the procedure of averaging values obtained by fitting the spectra individually. This method also provided a direct determination of the uncertainties in the retrieved parameters due to random errors. For each band analysed in this study the dependence of the various spectral line parameters upon the tetrahedral symmetry species and the rotational quantum numbers of the transitions is also presented.

  19. Vapour pressures, aqueous solubility, Henry's law constants and air/water partition coefficients of 1,8-dichlorooctane and 1,8-dibromooctane.

    PubMed

    Sarraute, Sabine; Mokbel, Ilham; Costa Gomes, Margarida F; Majer, Vladimir; Delepine, Hervé; Jose, Jacques

    2006-09-01

    New data on the vapour pressures and aqueous solubility of 1,8-dichlorooctane and 1,8-dibromooctane are reported as a function of temperature between 20 degrees C and 80 degrees C and 1 degrees C and 40 degrees C, respectively. For the vapour pressures, a static method was used during the measurements which have an estimated uncertainty between 3% and 5%. The aqueous solubilities were determined using a dynamic saturation column method and the values are accurate to within +/-10%. 1,8-Dichlorooctane is more volatile than 1,8-dibromooctane in the temperature range covered (p(sat) varies from 3 to 250 Pa and from 0.53 to 62 Pa, respectively) and is also approximately three times more soluble in water (mole fraction solubilities at 25 degrees C of 5.95 x 10(-7) and 1.92 x 10(-7), respectively). A combination of the two sets of data allowed the calculation of the Henry's law constants and the air water partition coefficients. A simple group contribution concept was used to rationalize the data obtained. PMID:16530806

  20. Effect of Process Parameters, Casting Thickness, and Alloys on the Interfacial Heat-Transfer Coefficient in the High-Pressure Die-Casting Process

    NASA Astrophysics Data System (ADS)

    Guo, Zhi-Peng; Xiong, Shou-Mei; Liu, Bai-Cheng; Li, Mei; Allison, John

    2008-12-01

    The heat transfer at the metal-die interface is believed to have great influence on the solidification process and cast structure of the high-pressure die-casting (HPDC) process. The present article focused on the effects of process parameters, casting thickness, and alloys on the metal-die interfacial heat-transfer coefficient (IHTC) in the HPDC process. Experiment was carried out on a cold-chamber die-casting machine with two casting alloys AM50 and ADC12. A special casting, namely, “step-shape” casting, was used and cast against a H13 steel die. The IHTC was determined using an inverse approach based on the temperature measurements inside the die. Results show that the IHTC is different at different steps and changes as the solidification of the casting proceeds. Process parameters only influence the IHTC in its peak value, and for both AM50 and ADC12 alloys, a greater fast shot velocity leads to a greater IHTC peak value at steps 1 and 2. The initial die surface temperature has a more prominent influence on the IHTC peak values at the thicker steps, especially step 5. Results also show that a closer contact between the casting and die could be achieved when the casting alloy is ADC12 instead of AM50, which consequently leads to a higher IHTC.

  1. A full-dimensional model of ozone forming reaction: the absolute value of the recombination rate coefficient, its pressure and temperature dependencies.

    PubMed

    Teplukhin, Alexander; Babikov, Dmitri

    2016-07-28

    Rigorous calculations of scattering resonances in ozone are carried out for a broad range of rotational excitations. The accurate potential energy surface of Dawes is adopted, and a new efficient method for calculations of ro-vibrational energies, wave functions and resonance lifetimes is employed (which uses hyper-spherical coordinates, the sequential diagonalization/truncation approach, grid optimization and complex absorbing potential). A detailed analysis is carried out to characterize distributions of resonance energies and lifetimes, their rotational/vibrational content and their positions with respect to the centrifugal barrier. Emphasis is on the contribution of these resonances to the recombination process that forms ozone. It is found that major contributions come from localized resonances at energies near the top of the barrier. Delocalized resonances at higher energies should also be taken into account, while very narrow resonances at low energies (trapped far behind the centrifugal barrier) should be treated as bound states. The absolute value of the recombination rate coefficient, its pressure and temperature dependencies are obtained using the energy-transfer model developed in the earlier work. Good agreement with experimental data is obtained if one follows the suggestion of Troe, who argued that the energy transfer mechanism of recombination is responsible only for 55% of the recombination rate (with the remaining 45% coming from the competing chaperon mechanism). PMID:27364351

  2. COMPARISON OF THE OCTANOL-AIR PARTITION COEFFICIENT AND LIQUID-PHASE VAPOR PRESSURE AS DESCRIPTORS FOR PARTICLE/GAS PARTITIONING USING LABORATORY AND FIELD DATA FOR PCBS AND PCNS

    EPA Science Inventory

    The conventional Junge-Pankow adsorption model uses the sub-cooled liquid vapor pressure (pLo) as a correlation parameter for gas/particle interactions. An alternative is the octanol-air partition coefficient (Koa) absorption model. Log-log plots of the particle-gas partition c...

  3. Orbit determination modelling analysis using GPS including perturbations due to geopotential coefficients of high degree and order, solar radiation pressure and luni-solar attraction

    NASA Astrophysics Data System (ADS)

    Vilhena de Moraes, Rodolpho; Cristiane Pardal, Paula; Koiti Kuga, Helio

    The problem of orbit determination consists essentially of estimating parameter values that completely specify the body trajectory in the space, processing a set of information (measure-ments) from this body. Such observations can be collected through a conventional tracking network on Earth or through sensors like GPS. The Global Positioning System (GPS) is a powerful and low cost way to allow the computation of orbits for artificial Earth satellites. The Topex/Poseidon satellite is normally used as a reference for analyzing this system for space positioning. The orbit determination of artificial satellites is a nonlinear problem in which the disturbing forces are not easily modeled, like geopotential and direct solar radiation pressure. Through an onboard GPS receiver it is possible to obtain measurements (pseudo-range and phase) that can be used to estimate the state of the orbit. One intends to analyze the modeling of the orbit of an artificial satellite, using signals of the GPS constellation and least squares algorithms as a method of estimation, with the aim of analyzing the performance of the orbit estimation process. Accuracy is not the main goal; one pursues to verify how differences of modeling can affect the final accuracy of the orbit determination. To accomplish that, the following effects were considered: perturbations up to high degree and order for the geopoten-tial coefficients; direct solar radiation pressure, Sun attraction, and Moon attraction. It was also considered the position of the GPS antenna on the satellite body that, lately, consists of the influence of the satellite attitude motion in the orbit determination process. Although not presenting the ultimate accuracy, pseudo-range measurements corrected from ionospheric effects were considered enough to such analysis. The measurements were used to feed the batch least squares orbit determination process, in order to yield conclusive results about the orbit modeling issue. An application

  4. Calculation of the standard partial molal thermodynamic properties of KCl{sup 0} and activity coefficients of aqueous KCl at temperatures and pressures to 1000{degree}C and 5 kbar

    SciTech Connect

    Pokrovskii, V.A.; Helgeson, H.C.

    1997-06-01

    Regression of experimental activity coefficient and dissociation constant data reported in the literature with the Hueckel and Setchenow equations and the revised HKF equations of state generated parameters and thermodynamic properties of dissociated KCl and KCl{sup 0} at 25{degrees}C and bar that can be used to calculate the standard partial molal thermodynamic properties of KCl{sup 0} and the activity coefficients of KCl at temperatures and pressures to 1000{degrees}C and 5 kbar. 46 refs., 6 figs., 4 tabs.

  5. Room-temperature Broadening and Pressure-shift Coefficients in the nu(exp 2) Band of CH3D-O2: Measurements and Semi-classical Calculations

    NASA Technical Reports Server (NTRS)

    Predoi-Cross, Adriana; Hambrook, Kyle; Brawley-Tremblay, Shannon; Bouanich, Jean-Pierre; Devi, V. Malathy; Smith, Mary Ann H.

    2006-01-01

    We report measured Lorentz O2-broadening and O2-induced pressure-shift coefficients of CH3D in the nu(exp 2) fundamental band. Using a multispectrum fitting technique we have analyzed 11 laboratory absorption spectra recorded at 0.011 cm(exp 1) resolution using the McMath-Pierce Fourier transform spectrometer, Kitt Peak, Arizona. Two absorption cells with path lengths of 10.2 and 25 cm were used to record the spectra. The total sample pressures ranged from 0.98 to 339.85 Torr with CH3D volume mixing ratios of 0.012 in oxygen. We report measurements for O2 pressure-broadening coefficients of 320 nu(exp 2) transitions with quantum numbers as high as J0(sup w) = 17 and K = 14, where K(sup w) = K' is equivalent to K (for a parallel band). The measured O2-broadening coefficients range from 0.0153 to 0.0645 cm(exp -1) atm(exp -1) at 296 K. All the measured pressure-shifts are negative. The reported O2-induced pressure-shift coefficients vary from about -0.0017 to -0.0068 cm(exp -1) atm(exp -1). We have examined the dependence of the measured broadening and shift parameters on the J(sup W), and K quantum numbers and also developed empirical expressions to describe the broadening coefficients in terms of m (m = -J(sup W), J(sup W), and J(sup w) + 1 in the QP-, QQ-, and QR-branch, respectively) and K. On average, the empirical expressions reproduce the measured broadening coefficients to within 4.4%. The O2-broadening and pressure shift coefficients were calculated on the basis of a semiclassical model of interacting linear molecules performed by considering in addition to the electrostatic contributions the atom-atom Lennard-Jones potential. The theoretical results of the broadening coefficients are generally larger than the experimental data. Using for the trajectory model an isotropic Lennard-Jones potential derived from molecular parameters instead of the spherical average of the atom-atom model, a better agreement is obtained with these data, especially for |m| <= 12

  6. Determination of diffusion coefficients of hydrogen and deuterium in Zr-2.5%Nb pressure tube material using hot vacuum extraction-quadrupole mass spectrometry

    NASA Astrophysics Data System (ADS)

    Shrivastava, Komal Chandra; Kulkarni, A. S.; Ramanjaneyulu, P. S.; Sunil, Saurav; Saxena, M. K.; Singh, R. N.; Tomar, B. S.; Ramakumar, K. L.

    2015-06-01

    The diffusion coefficients of hydrogen and deuterium in Zr-2.5%Nb alloy were measured in the temperature range 523 to 673 K, employing hot vacuum extraction-quadrupole mass spectrometry (HVE-QMS). One end of the Zr-2.5%Nb alloy specimens was charged electrolytically with the desired hydrogen isotope. After annealing at different temperatures for a predetermined time, the specimens were cut into thin slices, which were analyzed for their H2/D2 content using the HVE-QMS technique. The depth profile data were fitted into the equation representing the solution of Fick's second law of diffusion. The activation energy of hydrogen/deuterium diffusion was obtained from the Arrhenius relation between the diffusion coefficient and temperature. The temperature dependent diffusion coefficient can be represented as DH = 1.41 × 10-7 exp(-36,000/RT) and DD = 6.16 × 10-8 exp(-35,262/RT) for hydrogen and deuterium, respectively.

  7. Absorption coefficients and frequency shifts measurement in the spectral range of 1071.88-1084.62 cm-1 vs. pressure for chlorodifluoromethane (CHClF2) using tunable CW CO2 laser

    NASA Astrophysics Data System (ADS)

    Al-Hawat, Sharif

    2013-02-01

    Infrared (IR) absorption in the spectral range of (1071.88-1084.62 cm-1) vs. pressure in chlorodifluoromethane (CFC-22, F-22, and CHClF2) was studied using a tunable continuous wave (CW) CO2 laser radiation on 9R branch lines with a maximum output power of about 2.12 W, provided with an absorber cell located outside the laser cavity. The absorption coefficients were determined vs. the gas pressure between 0.2 mbar and 170 mbar at lines from 9R branch for CFC-22. The frequency shifts of the absorption lines of CFC-22 in relative to the central frequencies of laser lines were calculated vs. the pressure on the basis of these absorption coefficients. The chosen lines were selected according to IR spectrum of the studied gas given by HITRAN cross section database. So the absorption was achieved for CFC-22 at the spectral lines of 9R branch situated from 9R (10) to 9R (30) emitted by a tunable CW CO2 laser. The absorption cross sections of CFC-22 determined in this work were compared with the relevant data given by HITRAN cross section database and a reasonable agreement was observed.

  8. In situ study of mass transfer in aqueous solutions under high pressures via Raman spectroscopy: A new method for the determination of diffusion coefficients of methane in water near hydrate formation conditions

    USGS Publications Warehouse

    Lu, W.J.; Chou, I.-Ming; Burruss, R.C.; Yang, M.Z.

    2006-01-01

    A new method was developed for in situ study of the diffusive transfer of methane in aqueous solution under high pressures near hydrate formation conditions within an optical capillary cell. Time-dependent Raman spectra of the solution at several different spots along the one-dimensional diffusion path were collected and thus the varying composition profile of the solution was monitored. Diffusion coefficients were estimated by the least squares method based on the variations in methane concentration data in space and time in the cell. The measured diffusion coefficients of methane in water at the liquid (L)-vapor (V) stable region and L-V metastable region are close to previously reported values determined at lower pressure and similar temperature. This in situ monitoring method was demonstrated to be suitable for the study of mass transfer in aqueous solution under high pressure and at various temperature conditions and will be applied to the study of nucleation and dissolution kinetics of methane hydrate in a hydrate-water system where the interaction of methane and water would be more complicated than that presented here for the L-V metastable condition. ?? 2006 Society for Applied Spectroscopy.

  9. A Multispectrum Analysis of the 2v2 Spectral Region of H12C14N: Intensities, Broadening and Pressure-Shift Coefficients

    SciTech Connect

    Devi, V M.; Benner, D C.; Smith, M.A.H.; Rinsland, Curtis P.; Sharpe, Steven W.; Sams, Robert L.

    2004-09-01

    High-resolution (0.005 cm-1) infrared absorption spectra of HCN in the 2v2 band region near 1411 cm-1 have been recorded at room temperature using the Bruker IFS120HR Fourier transform spectrometer located at Pacific Northwest National Laboratory. Four spectra of high-purity (99.8%) HCN together with three spectra of lean mixtures ({approx}3%) of HCN in dry air were simultaneously fit using a multispectrum non-linear least-squares procedure. The analysis yielded room temperature values for absolute intensities, self- and air-broadening coefficients, and self- and air-broadening coefficients for numerous lines in the 2v2 band of H13C14N, were also determined. Since there are no previous measurements of broadening and shift parameters reported in the 2v2 band, our results are compared with values recently determined in the v1 band of H13C14N and with current HITRAN values.

  10. Compilation and evaluation of gas phase diffusion coefficients of reactive trace gases in the atmosphere: Volume 2. Diffusivities of organic compounds, pressure-normalised mean free paths, and average Knudsen numbers for gas uptake calculations

    NASA Astrophysics Data System (ADS)

    Tang, M. J.; Shiraiwa, M.; Poschl, U.; Cox, R. A.; Kalberer, M.

    2015-05-01

    Diffusion of organic vapours to the surface of aerosol or cloud particles is an important step for the formation and transformation of atmospheric particles. So far, however, a database of gas phase diffusion coefficients for organic compounds of atmospheric interest has not been available. In this work we have compiled and evaluated gas phase diffusivities (pressure-independent diffusion coefficients) of organic compounds reported by previous experimental studies, and we compare the measurement data to estimates obtained with Fuller's semi-empirical method. The difference between measured and estimated diffusivities are mostly < 10%. With regard to gas-particle interactions, different gas molecules, including both organic and inorganic compounds, exhibit similar Knudsen numbers (Kn) although their gas phase diffusivities may vary over a wide range. This is because different trace gas molecules have similar mean free paths in air at a given pressure. Thus, we introduce the pressure-normalised mean free path, λP ~ 100 nm atm, as a near-constant generic parameter that can be used for approximate calculation of Knudsen numbers as a simple function of gas pressure and particle diameter to characterise the influence of gas phase diffusion on the uptake of gases by aerosol or cloud particles. We use a kinetic multilayer model of gas-particle interaction to illustrate the effects of gas phase diffusion on the condensation of organic compounds with different volatilities. The results show that gas phase diffusion can play a major role in determining the growth of secondary organic aerosol particles by condensation of low-volatility organic vapours.

  11. Laser-based air data system for aircraft control using Raman and elastic backscatter for the measurement of temperature, density, pressure, moisture, and particle backscatter coefficient.

    PubMed

    Fraczek, Michael; Behrendt, Andreas; Schmitt, Nikolaus

    2012-01-10

    Flight safety in all weather conditions demands exact and reliable determination of flight-critical air parameters. Air speed, temperature, density, and pressure are essential for aircraft control. Conventional air data systems can be impacted by probe failure caused by mechanical damage from hail, volcanic ash, and icing. While optical air speed measurement methods have been discussed elsewhere, in this paper, a new concept for optically measuring the air temperature, density, pressure, moisture, and particle backscatter is presented, being independent on assumptions on the atmospheric state and eliminating the drawbacks of conventional aircraft probes by providing a different measurement principle. The concept is based on a laser emitting laser pulses into the atmosphere through a window and detecting the signals backscattered from a fixed region just outside the disturbed area of the fuselage flows. With four receiver channels, different spectral portions of the backscattered light are extracted. The measurement principle of air temperature and density is based on extracting two signals out of the rotational Raman (RR) backscatter signal of air molecules. For measuring the water vapor mixing ratio-and thus the density of the moist air-a water vapor Raman channel is included. The fourth channel serves to detect the elastic backscatter signal, which is essential for extending the measurements into clouds. This channel contributes to the detection of aerosols, which is interesting for developing a future volcanic ash warning system for aircraft. Detailed and realistic optimization and performance calculations have been performed based on the parameters of a first prototype of such a measurement system. The impact and correction of systematic error sources, such as solar background at daytime and elastic signal cross talk appearing in optically dense clouds, have been investigated. The results of the simulations show the high potential of the proposed system for

  12. Measurements of octanol-air partition coefficients, vapor pressures and vaporization enthalpies of the (E) and (Z) isomers of the 2-ethylhexyl 4-methoxycinnamate as parameters of environmental impact assessment.

    PubMed

    Pegoraro, César N; Chiappero, Malisa S; Montejano, Hernán A

    2015-11-01

    2-Ethylhexyl 4-methoxycinnamate is one of the UVB blocking agents more widely used in a variety of industrial fields. There are more than one hundred industrial suppliers worldwide. Given the enormous annual consumption of octinoxate, problems that arise due to the accumulation of this compound in nature should be taken into consideration. The GC-RT was used in this work with the aim of determining the vapor pressure, enthalpies of vaporization and octanol-air partition coefficient, for the BBP, DOP, E- and Z-EHMC esters. The results showed that Z-EHMC is almost five times more volatile than E-EHMC. Moreover, BBP, Z-EHMC and E-EHMC can be classified as substances with a relatively low mobility since they lie within the range of 810 and log(PL/Pa)<-4, therefore, a low mobility can be expected. From these parameters, their particle-bound fraction and gas-particle partition coefficient were also derived. PMID:26210018

  13. Factor Scores, Structure Coefficients, and Communality Coefficients

    ERIC Educational Resources Information Center

    Goodwyn, Fara

    2012-01-01

    This paper presents heuristic explanations of factor scores, structure coefficients, and communality coefficients. Common misconceptions regarding these topics are clarified. In addition, (a) the regression (b) Bartlett, (c) Anderson-Rubin, and (d) Thompson methods for calculating factor scores are reviewed. Syntax necessary to execute all four…

  14. Effect of internal pressure and gas/liquid interface area on the CO mass transfer coefficient using hollow fibre membranes as a high mass transfer gas diffusing system for microbial syngas fermentation.

    PubMed

    Yasin, Muhammad; Park, Shinyoung; Jeong, Yeseul; Lee, Eun Yeol; Lee, Jinwon; Chang, In Seop

    2014-10-01

    This study proposed a submerged hollow fibre membrane bioreactor (HFMBR) system capable of achieving high carbon monoxide (CO) mass transfer for applications in microbial synthesis gas conversion systems. Hydrophobic polyvinylidene fluoride (PVDF) membrane fibres were used to fabricate a membrane module, which was used for pressurising CO in water phase. Pressure through the hollow fibre lumen (P) and membrane surface area per unit working volume of the liquid (A(S)/V(L)) were used as controllable parameters to determine gas-liquid volumetric mass transfer coefficient (k(L)a) values. We found a k(L)a of 135.72 h(-1) when P was 93.76 kPa and AS/VL was fixed at 27.5m(-1). A higher k(L)a of 155.16 h(-1) was achieved by increasing AS/VL to 62.5m(-1) at a lower P of 37.23 kPa. Practicality of HFMBR to support microbial growth and organic product formation was assessed by CO/CO2 fermentation using Eubacterium limosum KIST612. PMID:25105269

  15. Coefficients for Interrater Agreement.

    ERIC Educational Resources Information Center

    Zegers, Frits E.

    1991-01-01

    The degree of agreement between two raters rating several objects for a single characteristic can be expressed through an association coefficient, such as the Pearson product-moment correlation. How to select an appropriate association coefficient, and the desirable properties and uses of a class of such coefficients--the Euclidean…

  16. Measurements of thermal accommodation coefficients.

    SciTech Connect

    Rader, Daniel John; Castaneda, Jaime N.; Torczynski, John Robert; Grasser, Thomas W.; Trott, Wayne Merle

    2005-10-01

    A previously-developed experimental facility has been used to determine gas-surface thermal accommodation coefficients from the pressure dependence of the heat flux between parallel plates of similar material but different surface finish. Heat flux between the plates is inferred from measurements of temperature drop between the plate surface and an adjacent temperature-controlled water bath. Thermal accommodation measurements were determined from the pressure dependence of the heat flux for a fixed plate separation. Measurements of argon and nitrogen in contact with standard machined (lathed) or polished 304 stainless steel plates are indistinguishable within experimental uncertainty. Thus, the accommodation coefficient of 304 stainless steel with nitrogen and argon is estimated to be 0.80 {+-} 0.02 and 0.87 {+-} 0.02, respectively, independent of the surface roughness within the range likely to be encountered in engineering practice. Measurements of the accommodation of helium showed a slight variation with 304 stainless steel surface roughness: 0.36 {+-} 0.02 for a standard machine finish and 0.40 {+-} 0.02 for a polished finish. Planned tests with carbon-nanotube-coated plates will be performed when 304 stainless-steel blanks have been successfully coated.

  17. Coefficients of Effective Length.

    ERIC Educational Resources Information Center

    Edwards, Roger H.

    1981-01-01

    Under certain conditions, a validity Coefficient of Effective Length (CEL) can produce highly misleading results. A modified coefficent is suggested for use when empirical studies indicate that underlying assumptions have been violated. (Author/BW)

  18. Measuring Seebeck Coefficient

    NASA Technical Reports Server (NTRS)

    Snyder, G. Jeffrey (Inventor)

    2015-01-01

    A high temperature Seebeck coefficient measurement apparatus and method with various features to minimize typical sources of errors is described. Common sources of temperature and voltage measurement errors which may impact accurate measurement are identified and reduced. Applying the identified principles, a high temperature Seebeck measurement apparatus and method employing a uniaxial, four-point geometry is described to operate from room temperature up to 1300K. These techniques for non-destructive Seebeck coefficient measurements are simple to operate, and are suitable for bulk samples with a broad range of physical types and shapes.

  19. Bounding the Bogoliubov coefficients

    SciTech Connect

    Boonserm, Petarpa; Visser, Matt

    2008-11-15

    While over the last century or more considerable effort has been put into the problem of finding approximate solutions for wave equations in general, and quantum mechanical problems in particular, it appears that as yet relatively little work seems to have been put into the complementary problem of establishing rigourous bounds on the exact solutions. We have in mind either bounds on parametric amplification and the related quantum phenomenon of particle production (as encoded in the Bogoliubov coefficients), or bounds on transmission and reflection coefficients. Modifying and streamlining an approach developed by one of the present authors [M. Visser, Phys. Rev. A 59 (1999) 427-438, (arXiv:quant-ph/9901030)], we investigate this question by developing a formal but exact solution for the appropriate second-order linear ODE in terms of a time-ordered exponential of 2x2 matrices, then relating the Bogoliubov coefficients to certain invariants of this matrix. By bounding the matrix in an appropriate manner, we can thereby bound the Bogoliubov coefficients.

  20. Comment on "Measurements of the temperature dependent diffusion coefficient of nanoparticles in the range of 295-600 K at atmospheric pressure" by V. Y. Rudyak, S. N. Dubtsov, and A. M. Baklanov

    SciTech Connect

    Lewis, E.R.

    2010-03-01

    In a recent paper in this journal, Rudyak, Dubtsov, and Baklanov (2009) presented results of measurements of the penetration of nanoparticles with diameters from 3.5 to 84 nm at temperatures from {approx}300 to 600 K through a set of wire screens, from which they inferred diffusion coefficients. They argued that the formulation typically used for C, the Cunningham correction that accounts for non-continuum effects on the diffusion of nanoparticles, is not valid for temperatures greater than {approx}300 K, and they proposed a modification of this formulation which depends on both temperature and particle size. It is shown here that this modification produces unphysical results in that it yields negative values of the momentum accommodation coefficient. A likely reason for their results is that they used a polydisperse size distribution, for which the main contribution to the measured penetration would be from particles at sizes far from those attributed to them.

  1. Composite Transport Coefficient for Electron Thermal Energy

    NASA Astrophysics Data System (ADS)

    Coppi, B.; Daughton, W.

    1996-11-01

    A series of experiments by the Alcator C-Mod machine over a range of heating conditions (ohmic to strongly r.f. heated) has led to the construction of a composite transport coefficient for the electron thermal energy. This is represented by the difference of two terms: one corresponding to an outflow of thermal energy and the other one corresponding to an inflow. There are theoretical arguments(B. Coppi and F. Pegoraro, Phys. Fluids B) 3 p. 2582 (1991) in support of a composite transport coefficient involving the elements of a transport matrix with an inflow term related for instance to the features of the current density profile relative to those of the electron temperature. In deriving the transport coefficient D_e^th that has been used to simulate the Alcator C-Mod plasmas, we have assumed that the driving factor of the underlying modes is the plasma pressure gradient. Thus D_e^th ∝ D_e^o [β_p* - C] where β_p* = (8π p* / B_p^2), p* ≡ -r(dp/dr) is evaluated at the point of maximum pressure gradient, C ≈ 3/16 is a positive numerical coefficient and D_e^o ∝ I_p/(nT)^5/6 is basically the Coppi-Mazzucato-Gruber diffusion coefficient introduced earlier to reproduce the results of experiments with ohmic heating. Supported in part by the U.S. Department of Energy

  2. H2, He, and CO2 line-broadening coefficients, pressure shifts and temperature-dependence exponents for the HITRAN database. Part 1: SO2, NH3, HF, HCl, OCS and C2H2

    NASA Astrophysics Data System (ADS)

    Wilzewski, Jonas S.; Gordon, Iouli E.; Kochanov, Roman V.; Hill, Christian; Rothman, Laurence S.

    2016-01-01

    To increase the potential for use of the HITRAN database in astronomy, experimental and theoretical line-broadening coefficients, line shifts and temperature-dependence exponents of molecules of planetary interest broadened by H2, He, and CO2 have been assembled from available peer-reviewed sources. The collected data were used to create semi-empirical models so that every HITRAN line of the studied molecules has corresponding parameters. Since H2 and He are major constituents in the atmospheres of gas giants, and CO2 predominates in atmospheres of some rocky planets with volcanic activity, these spectroscopic data are important for remote sensing studies of planetary atmospheres. In this paper we make the first step in assembling complete sets of these parameters, thereby creating datasets for SO2, NH3, HF, HCl, OCS and C2H2.

  3. Reactive sticking coefficients of silane on silicon

    SciTech Connect

    Buss, R.J.; Ho, P.; Breiland, W.G.; Coltrin, M.E.

    1988-09-15

    Reactive sticking coefficients (RSCs) were measured for silane and disilane on polycrystalline silicon for a wide range of temperature and flux (pressure) conditions. The data were obtained from deposition rate measurements using molecular beam scattering and a very low pressure cold wall reactor. The RSCs have non-Arrhenius temperature dependences and decreases with increasing flux at low (710/sup 0/) temperatures. A simple model involving dissociative adsorption of silane is consistent with these results. The results are compared with previous studies of the SiH/sub 4//Si(s) reaction.

  4. Correlation and prediction of gaseous diffusion coefficients.

    NASA Technical Reports Server (NTRS)

    Marrero, T. R.; Mason, E. A.

    1973-01-01

    A new correlation method for binary gaseous diffusion coefficients from very low temperatures to 10,000 K is proposed based on an extended principle of corresponding states, and having greater range and accuracy than previous correlations. There are two correlation parameters that are related to other physical quantities and that are predictable in the absence of diffusion measurements. Quantum effects and composition dependence are included, but high-pressure effects are not. The results are directly applicable to multicomponent mixtures.

  5. Electron transport coefficients in the mixtures of H2O with N2, O2, CO2 and dry air for the optimization of non-thermal atmospheric pressure plasmas

    NASA Astrophysics Data System (ADS)

    Ruíz-Vargas, G.; Yousfi, M.; de Urquijo, J.

    2010-11-01

    This paper presents the simultaneous measurement and calculation of the electron drift velocity in binary and ternary mixtures of N2, O2, CO2 with H2O. The main aim of this study has been the generation of a self-consistent set of validated collision cross sections that explain thoroughly the dependence of the electron drift velocity in the above pure gases and their mixtures. In doing this, changes to the collision cross section set for H2O had to be made, while all other cross section sets remained unchanged. It is worth mentioning that only a few experiments had been performed before dealing with water mixtures. The electron drift velocities in the binary and ternary mixtures under study show the effects of negative differential conductivity, and this has been explained thoroughly in terms of the collision cross sections and electron distribution functions through a multi-term Boltzmann code. It is important to note that two-term codes fail to predict the dependence of the drift velocity at low water concentrations and low E/N values. Calculated values of longitudinal and transverse diffusion coefficients, mean energies and distribution functions are also given over the E/N range 0.1 Td-2 kTd (1 Td = 10-17 V cm2).

  6. Tabulations of static pressure coefficients on the surfaces of 3 pylon-mounted axisymmetric flow-through nacelles at Mach numbers from 0.40 to 0.98

    NASA Technical Reports Server (NTRS)

    Re, R. J.; Peddrew, K. H.

    1982-01-01

    Three flow through nacelles mounted on an 82 deg swept pylon (10 percent thickness-to-chord ratio) were tested in the Langley 16 foot Transonic Tunnel. The long uncambered pylon was supported from a small body of revolution so that pressure measurements on the nacelle and pylon represent a pylon nacelle flow field without a wing present. Two nacelles had NACA 1-85-100 inlets and different circular arc afterbodies. The third nacelle had an NACA 1-70-100 inlet with a circular arc afterbody having the same external shape as one of the other nacelles. Nacelle length to maximum diameter ratio was 3.5. Data were obtained at angles of attack from 2 deg to 8 deg at selected Mach numbers.

  7. Drag and lift coefficients evolution of a Savonius rotor

    NASA Astrophysics Data System (ADS)

    Chauvin, A.; Benghrib, D.

    1989-10-01

    The lift and drag coefficients of the rotating Savonius wind machine are determined from the pressure difference measured between the upper plane and the lower plane of a blade. Pressure measurements have been performed for two sets of experiments; the first one for U ∞ = 10 m/s and the second one for U ∞ = 12.5 m/s. In each case it is to be noted that a negative lift effect is present for low values of the tip speed ratio λ. The lift coefficient becomes positive when λ increases. The drag coefficient is of course always negative.

  8. Averaging Internal Consistency Reliability Coefficients

    ERIC Educational Resources Information Center

    Feldt, Leonard S.; Charter, Richard A.

    2006-01-01

    Seven approaches to averaging reliability coefficients are presented. Each approach starts with a unique definition of the concept of "average," and no approach is more correct than the others. Six of the approaches are applicable to internal consistency coefficients. The seventh approach is specific to alternate-forms coefficients. Although the…

  9. Cryogenic High Pressure Sensor Module

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams, Qamar A. (Inventor); Powers, William T. (Inventor)

    1999-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  10. Activity coefficients of chlorophenols in water at infinite dilution

    SciTech Connect

    Tabai, S.; Rogalski, M.; Solimando, R.; Malanowski, S.K.

    1997-11-01

    The total pressure of aqueous solutions of chlorophenols was determined by a ebulliometric total pressure method for the aqueous solutions of phenol, 2-chlorophenol, 3-chlorophenol, 4-chlorophenol, and 2,4-dichlorophenol in the temperature range from 40 to 90 C. The activity coefficients at infinite dilution and the Henry constants were derived.

  11. Drag Coefficient of Hexadecane Particles

    NASA Astrophysics Data System (ADS)

    Nakao, Yoshinobu; Hishida, Makoto; Kajimoto, Sadaaki; Tanaka, Gaku

    This paper deals with the drag coefficient of solidified hexadecane particles and their free rising velocity in liquid. The drag coefficient was experimentally investigated in Reynolds number range of about 40-300. The present experimental results are summarized in the following; (1) the drag coefficient of solidified hexadecane particles formed in liquid coolant by direct contact cooling is higher than that of a smooth surface sphere, this high drag coefficient seems to be attributed to the non-smooth surface of the solidified hexadecane particles, (2) experimental correlation for the drag coefficient of the solidified hexadecane particles was proposed, (3 ) the measured rising velocity of the solidified hexadecane particle agrees well with the calculated one, (4) the drag coefficients of hexadecane particles that were made by pouring hexadecane liquid into a solid hollow sphere agreed well with the drag coefficient of smooth surface sphere.

  12. Multiple element airfoils optimized for maximum lift coefficient.

    NASA Technical Reports Server (NTRS)

    Ormsbee, A. I.; Chen, A. W.

    1972-01-01

    Optimum airfoils in the sense of maximum lift coefficient are obtained for incompressible fluid flow at large Reynolds number. The maximum lift coefficient is achieved by requiring that the turbulent skin friction be zero in the pressure rise region on the airfoil upper surface. Under this constraint, the pressure distribution is optimized. The optimum pressure distribution is a function of Reynolds number and the trailing edge velocity. Geometries of those airfoils which will generate these optimum pressure distributions are obtained using a direct-iterative method which is developed in this study. This method can be used to design airfoils consisting of any number of elements. Numerical examples of one- and two-element airfoils are given. The maximum lift coefficients obtained range from 2 to 2.5.

  13. Calculation and application of combined diffusion coefficients in thermal plasmas.

    PubMed

    Murphy, Anthony B

    2014-01-01

    The combined diffusion coefficient method is widely used to treat the mixing and demixing of different plasma gases and vapours in thermal plasmas, such as welding arcs and plasma jets. It greatly simplifies the treatment of diffusion for many gas mixtures without sacrificing accuracy. Here, three subjects that are important in the implementation of the combined diffusion coefficient method are considered. First, it is shown that different expressions for the combined diffusion coefficients, arising from different definitions for the stoichiometric coefficients that assign the electrons to the two gases, are equivalent. Second, an approach is presented for calculating certain partial differential terms in the combined temperature and pressure diffusion coefficients that can cause difficulties. Finally, a method for applying the combined diffusion coefficients in computational models, which typically require diffusion to be expressed in terms of mass fraction gradients, is given. PMID:24603457

  14. Calculation and application of combined diffusion coefficients in thermal plasmas

    PubMed Central

    Murphy, Anthony B.

    2014-01-01

    The combined diffusion coefficient method is widely used to treat the mixing and demixing of different plasma gases and vapours in thermal plasmas, such as welding arcs and plasma jets. It greatly simplifies the treatment of diffusion for many gas mixtures without sacrificing accuracy. Here, three subjects that are important in the implementation of the combined diffusion coefficient method are considered. First, it is shown that different expressions for the combined diffusion coefficients, arising from different definitions for the stoichiometric coefficients that assign the electrons to the two gases, are equivalent. Second, an approach is presented for calculating certain partial differential terms in the combined temperature and pressure diffusion coefficients that can cause difficulties. Finally, a method for applying the combined diffusion coefficients in computational models, which typically require diffusion to be expressed in terms of mass fraction gradients, is given. PMID:24603457

  15. Quadrature formulas for Fourier coefficients

    NASA Astrophysics Data System (ADS)

    Bojanov, Borislav; Petrova, Guergana

    2009-09-01

    We consider quadrature formulas of high degree of precision for the computation of the Fourier coefficients in expansions of functions with respect to a system of orthogonal polynomials. In particular, we show the uniqueness of a multiple node formula for the Fourier-Tchebycheff coefficients given by Micchelli and Sharma and construct new Gaussian formulas for the Fourier coefficients of a function, based on the values of the function and its derivatives.

  16. Coefficient Alpha: A Reliability Coefficient for the 21st Century?

    ERIC Educational Resources Information Center

    Yang, Yanyun; Green, Samuel B.

    2011-01-01

    Coefficient alpha is almost universally applied to assess reliability of scales in psychology. We argue that researchers should consider alternatives to coefficient alpha. Our preference is for structural equation modeling (SEM) estimates of reliability because they are informative and allow for an empirical evaluation of the assumptions…

  17. Activity coefficient of aqueous sodium bicarbonate

    SciTech Connect

    Pitzer, Kenneth S.; Peiper, J. Christopher

    1980-09-01

    The determination of the activity coefficient and related properties of sodium bicarbonate presents special problems because of the appreciable vapor pressure of CO2 above such solutions. With the development of reliable equations for the thermodynamic properties of mixed electrolytes, it is possible to determine the parameters for NaHCO3 from cell measurements or NaCl-NaHCO3 mixtures. Literature data are analyzed to illustrate the method and provide interim values, hoever it is noted that further measurements over a wider range of concentrations would yield more definitive results. Lastly, an estimate is also given for the activity coefficient of KHCO3.

  18. Calculation of combined diffusion coefficients in SF{sub 6}-Cu mixtures

    SciTech Connect

    Zhong, Linlin; Wang, Xiaohua Rong, Mingzhe Wu, Yi; Murphy, Anthony B.

    2014-10-15

    Diffusion coefficients play an important role in the description of the transport of metal vapours in gas mixtures. This paper is devoted to the calculation of four combined diffusion coefficients, namely, the combined ordinary diffusion coefficient, combined electric field diffusion coefficient, combined temperature diffusion coefficient, and combined pressure diffusion coefficient in SF{sub 6}-Cu mixtures at temperatures up to 30 000 K. These four coefficients describe diffusion due to composition gradients, applied electric fields, temperature gradients, and pressure gradients, respectively. The influence of copper fluoride and sulfide species on the diffusion coefficients is shown to be negligible. The effect of copper proportion and gas pressures on these diffusion coefficients is investigated. It is shown that increasing the proportion of copper generally increases the magnitude of the four diffusion coefficients, except for copper mole fractions of 90% or more. It is further found that increasing the pressure reduces the magnitude of the coefficients, except for the combined temperature diffusion coefficient, and shifts the maximum of all four coefficients towards higher temperatures. The results presented in this paper can be applied to the simulation of high-voltage circuit breaker arcs.

  19. Third Order Elastic Coefficients of Rocks

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, K.

    2006-12-01

    We present a methodology to determine third order elastic (TOE) coefficients of rock from velocity measurements at different hydrostatic stress level. TOE coefficients help us to obtain a quantitative measure of the variation of velocity with stress. It is one of the most general ways to parameterize the stress sensitivity of rocks. We usually determine the isotropic TOE coefficients from measurements of all the independent stiffness elements under non-hydrostatic stress. However, for initially isotropic or weakly anisotropic rocks, most of the laboratory experiments are carried out under hydrostatic stress. In that case, the measurements of P- and S-wave velocities at different hydrostatic pressure alone are not enough to invert for the isotropic TOE parameters. In this underdetermined situation, more information about the rock microstructure causing the non-linearity is required to predict seismic velocities at any arbitrary stress state. Our workflow is based on the model of Mavko et al. (1995) to compute stress-induced anisotropy. This model assumes that the cause of elastic nonlinearity is the presence of compliant crack-like pore. The pressure dependence of generalized compliances is mainly governed by normal tractions resolved across cracks. This assumption allows one to map the pressure dependence from hydrostatic stress to any state of stress. Applying the model of Mavko et al. (1995), we obtain the full stiffness tensor at different non-hydrostatic stress levels from the usual Vp and Vs measurements. Changes in elastic stiffness elements from a reference state of stress are then used to invert for the TOE coefficients, C111, C112 and C123 using the third order stress- strain relations. This method allows us to compute the TOE elements using hydrostatic measurements of an initially isotropic rock. We show an application of the workflow with laboratory measurements of P- and S-wave velocities under varying hydrostatic stress. This enables us to express

  20. RADIONUCLIDE RISK COEFFICIENT UNCERTAINTY REPORT

    EPA Science Inventory

    EPA has published excess cancer risk coefficients for the US population in Federal Guidance Report 13 (FGR 13). FGR 13 gives separate risk coefficients for food ingestion, water ingestion, inhalation, and external exposure for each of over 800 radionuclides. Some information on...

  1. Standardized Discriminant Coefficients: A Rejoinder.

    ERIC Educational Resources Information Center

    Mueller, Ralph O.; Cozad, James B.

    1993-01-01

    Although comments of D.J. Nordlund and R. Nagel are welcomed, their arguments are not sufficient to accept the recommendation of using total variance estimates to standardize canonical discriminant function coefficients. If standardized coefficients are used to help interpret a discriminant analysis, pooled within-group variance estimates should…

  2. Experimental rotordynamic coefficient results for honeycomb seals

    NASA Technical Reports Server (NTRS)

    Elrod, David A.; Childs, Dara W.

    1988-01-01

    Test results (leakage and rotordynamic coefficients) are presented for seven honeycomb-stator smooth-rotor seals. Tests were carried out with air at rotor speeds up to 16,000 cpm and supply pressures up to 8.2 bars. Test results for the seven seals are compared, and the most stable configuration is identified based on the whirl frequency ratio. Results from tests of a smooth-rotor/smooth-stator seal, a teeth-on-stator labyrinth seal, and the most stable honeycomb seal are compared.

  3. Intermittent-flow coefficients of a poppet valve

    NASA Technical Reports Server (NTRS)

    Waldron, C D

    1939-01-01

    Flow coefficients were determined for the inlet valve of a modern air-cooled cylinder during operation of the valve. The cylinder head with valves was mounted on a large tank that could be evacuated. Operating the valve with a rotating cam allowed air to flow through the valve into the evacuated tank. The change of pressure in the tank was a measure of the amount of air flowing though the valve in a given number of cycles. The flow coefficients were determined from the pressure across the valve, the quantity of air flowing, and the valve-lift curve. Coefficients were measured with lifts of 0.1 to 0.6 inch and speeds of 130 to 1,200 r.p.m. The results obtained with intermittent flow were compared with the results of tests made with steady flow through this cylinder head. This comparison indicated that steady-flow coefficients can be used for intermittent flow.

  4. Uranium plasma emission coefficient in the visible and near UV.

    NASA Technical Reports Server (NTRS)

    Mack, J. M., Jr.; Usher, J. L.; Schneider, R. T.; Campbell, H. D.

    1971-01-01

    Measurements of the specific emission coefficient in the near ultra-violet and visible region of a uranium arc plasma are reported. Spatial unfolding of the intensity profile is used to determine the emission coefficient in the spectral range of 2000 A to 6000 A. The uranium partial pressure is estimated to range between .001 and .01 atmosphere, and the corresponding temperature range is 5000 - 10,000 K.

  5. Calculating rotordynamic coefficients of seals by finite-difference techniques

    NASA Technical Reports Server (NTRS)

    Dietzen, F. J.; Nordmann, R.

    1987-01-01

    For modelling the turbulent flow in a seal the Navier-Stokes equations in connection with a turbulence (kappa-epsilon) model are solved by a finite-difference method. A motion of the shaft round the centered position is assumed. After calculating the corresponding flow field and the pressure distribution, the rotor-dynamic coefficients of the seal can be determined. These coefficients are compared with results obtained by using the bulk flow theory of Childs and with experimental results.

  6. Transport Coefficients in weakly compressible turbulence

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Erlebacher, Gordon

    1996-01-01

    A theory of transport coefficients in weakly compressible turbulence is derived by applying Yoshizawa's two-scale direct interaction approximation to the compressible equations of motion linearized about a state of incompressible turbulence. The result is a generalization of the eddy viscosity representation of incompressible turbulence. In addition to the usual incompressible eddy viscosity, the calculation generates eddy diffusivities for entropy and pressure, and an effective bulk viscosity acting on the mean flow. The compressible fluctuations also generate an effective turbulent mean pressure and corrections to the speed of sound. Finally, a prediction unique to Yoshizawa's two-scale approximation is that terms containing gradients of incompressible turbulence quantities also appear in the mean flow equations. The form these terms take is described.

  7. Combined diffusion coefficients for a mixture of three ionized gases

    NASA Astrophysics Data System (ADS)

    Zhang, X. N.; Murphy, A. B.; Li, H. P.; Xia, W. D.

    2014-12-01

    The combined diffusion coefficient method has been demonstrated to greatly simplify the treatment of diffusion in the modelling of thermal plasmas in gas mixtures without loss of accuracy. In this paper, an extension of this method to allow treatment of diffusion of a three-gas mixture has been achieved, provided that the gases are homonuclear and do not react with each other, and satisfy local chemical equilibrium. Formulas for the combined diffusion coefficients are presented, and combined diffusion coefficients for different mixtures of helium, argon and carbon at temperatures up to 30 000 K and at atmosphere pressure are calculated as an example.

  8. Calculation of self-diffusion coefficients in iron

    SciTech Connect

    Zhang, Baohua

    2014-01-15

    On the basis of available P-V-T equation of state of iron, the temperature and pressure dependence of self-diffusion coefficients in iron polymorphs (α, δ, γ and ε phases) have been successfully reproduced in terms of the bulk elastic and expansivity data by means of a thermodynamical model that interconnects point defects parameters with bulk properties. The calculated diffusion parameters, such as self-diffusion coefficient, activation energy and activation volume over a broad temperature range (500-2500 K) and pressure range (0-100 GPa), compare favorably well with experimental or theoretical ones when the uncertainties are considered.

  9. Discharge Coefficients for Axisymmetric Supersonic Nozzles

    NASA Technical Reports Server (NTRS)

    Ahmad, Rashid A.; McCool, A. A. (Technical Monitor)

    2000-01-01

    Computational Fluid Dynamics (CFD) analysis was used to compute effective nozzle discharge coefficients for subscale sharp-edged converging/diverging nozzles, with a variety of convergence half-angles, motor operating conditions, and two propellants with different ballistics. Convergence half-angles ranged from 0 to 80 deg. Analysis was conducted at total temperatures from 2946K (5303R) to 3346K (6023R) and over total pressures ranged from 2.72 MPa (395 psia) to 20.68 MPa (3000 psia). Area ratios (A(sub e)/A*) ranged from 7.43 to 9.39. Ratio of specific heats (gamma) ranged from 1.13 to 1.18. Throat and exit Reynolds numbers were calculated to be 8.26 x 10(exp 5) and 5.51 x 10(exp 5), respectively. Present results of nozzle discharge coefficients are reported and correlated as a function of nozzle convergence half-angle (theta(sub c)) and area ratios (A(sub e)/A*) for a constant divergence half-angle (theta(sub d)) of 15 deg. Computed discharge coefficients ranged from 0.88 to 0.97. They are compared with theory and experimental data available in literature. Available turbulence models with respect to grid refinements and heat transfer are discussed.

  10. Rotordynamic coefficients for stepped labyrinth gas seals

    NASA Technical Reports Server (NTRS)

    Scharrer, Joseph K.

    1989-01-01

    The basic equations are derived for compressible flow in a stepped labyrinth gas seal. The flow is assumed to be completely turbulent in the circumferential direction where the friction factor is determined by the Blasius relation. Linearized zeroth and first-order perturbation equations are developed for small motion about a centered position by an expansion in the eccentricity ratio. The zeroth-order pressure distribution is found by satisfying the leakage equation while the circumferential velocity distribution is determined by satisfying the momentum equations. The first order equations are solved by a separation of variables solution. Integration of the resultant pressure distribution along and around the seal defines the reaction force developed by the seal and the corresponding dynamic coefficients. The results of this analysis are presented in the form of a parametric study, since there are no known experimental data for the rotordynamic coefficients of stepped labyrinth gas seals. The parametric study investigates the relative rotordynamic stability of convergent, straight and divergent stepped labyrinth gas seals. The results show that, generally, the divergent seal is more stable, rotordynamically, than the straight or convergent seals. The results also show that the teeth-on-stator seals are not always more stable, rotordynamically, then the teeth-on-rotor seals as was shown by experiment by Childs and Scharrer (1986b) for a 15 tooth seal.

  11. Wrong Signs in Regression Coefficients

    NASA Technical Reports Server (NTRS)

    McGee, Holly

    1999-01-01

    When using parametric cost estimation, it is important to note the possibility of the regression coefficients having the wrong sign. A wrong sign is defined as a sign on the regression coefficient opposite to the researcher's intuition and experience. Some possible causes for the wrong sign discussed in this paper are a small range of x's, leverage points, missing variables, multicollinearity, and computational error. Additionally, techniques for determining the cause of the wrong sign are given.

  12. Fuel Temperature Coefficient of Reactivity

    SciTech Connect

    Loewe, W.E.

    2001-07-31

    A method for measuring the fuel temperature coefficient of reactivity in a heterogeneous nuclear reactor is presented. The method, which is used during normal operation, requires that calibrated control rods be oscillated in a special way at a high reactor power level. The value of the fuel temperature coefficient of reactivity is found from the measured flux responses to these oscillations. Application of the method in a Savannah River reactor charged with natural uranium is discussed.

  13. Transport coefficients of heavy baryons

    NASA Astrophysics Data System (ADS)

    Tolos, Laura; Torres-Rincon, Juan M.; Das, Santosh K.

    2016-08-01

    We compute the transport coefficients (drag and momentum diffusion) of the low-lying heavy baryons Λc and Λb in a medium of light mesons formed at the later stages of high-energy heavy-ion collisions. We employ the Fokker-Planck approach to obtain the transport coefficients from unitarized baryon-meson interactions based on effective field theories that respect chiral and heavy-quark symmetries. We provide the transport coefficients as a function of temperature and heavy-baryon momentum, and analyze the applicability of certain nonrelativistic estimates. Moreover we compare our outcome for the spatial diffusion coefficient to the one coming from the solution of the Boltzmann-Uehling-Uhlenbeck transport equation, and we find a very good agreement between both calculations. The transport coefficients for Λc and Λb in a thermal bath will be used in a subsequent publication as input in a Langevin evolution code for the generation and propagation of heavy particles in heavy-ion collisions at LHC and RHIC energies.

  14. Analysis of internal conversion coefficients

    PubMed

    Coursol; Gorozhankin; Yakushev; Briancon; Vylov

    2000-03-01

    An extensive database has been assembled that contains the three most widely used sets of calculated internal conversion coefficients (ICC): [Hager R.S., Seltzer E.C., 1968. Internal conversion tables. K-, L-, M-shell Conversion coefficients for Z = 30 to Z = 103, Nucl. Data Tables A4, 1-237; Band I.M., Trzhaskovskaya M.B., 1978. Tables of gamma-ray internal conversion coefficients for the K-, L- and M-shells, 10 < or = Z < or = 104, Special Report of Leningrad Nuclear Physics Institute; Rosel F., Fries H.M., Alder K., Pauli H.C., 1978. Internal conversion coefficients for all atomic shells, At. Data Nucl. Data Tables 21, 91-289] and also includes new Dirac Fock calculations [Band I.M. and Trzhaskovskaya M.B., 1993. Internal conversion coefficients for low-energy nuclear transitions, At. Data Nucl. Data Tables 55, 43-61]. This database is linked to a computer program to plot ICCs and their combinations (sums and ratios) as a function of Z and energy, as well as relative deviations of ICC or their combinations for any pair of tabulated data. Examples of these analyses are presented for the K-shell and total ICCs of the gamma-ray standards [Hansen H.H., 1985. Evaluation of K-shell and total internal conversion coefficients for some selected nuclear transitions, Eur. Appl. Res. Rept. Nucl. Sci. Tech. 11.6 (4) 777-816] and for the K-shell and total ICCs of high multipolarity transitions (total, K-, L-, M-shells of E3 and M3 and K-shell of M4). Experimental data sets are also compared with the theoretical values of these specific calculations. PMID:10724406

  15. Seebeck coefficient of one electron

    SciTech Connect

    Durrani, Zahid A. K.

    2014-03-07

    The Seebeck coefficient of one electron, driven thermally into a semiconductor single-electron box, is investigated theoretically. With a finite temperature difference ΔT between the source and charging island, a single electron can charge the island in equilibrium, directly generating a Seebeck effect. Seebeck coefficients for small and finite ΔT are calculated and a thermally driven Coulomb staircase is predicted. Single-electron Seebeck oscillations occur with increasing ΔT, as one electron at a time charges the box. A method is proposed for experimental verification of these effects.

  16. A technique for measuring dynamic friction coefficient under impact loading

    NASA Astrophysics Data System (ADS)

    Lin, Y. L.; Qin, J. G.; Chen, R.; Zhao, P. D.; Lu, F. Y.

    2014-09-01

    We develop a novel setup based on the split Hopkinson pressure bar technique to test the dynamic friction coefficient under impact loading. In the setup, the major improvement is that the end of the incident bar near the specimen is wedge-shaped, which results in a combined compressive and shear loading applied to the specimen. In fact, the shear loading is caused by the interfacial friction between specimen and bars. Therefore, when the two loading force histories are measured, the friction coefficient histories can be calculated without any assumptions and theoretical derivations. The geometry of the friction pairs is simple, and can be either cuboid or cylindrical. Regarding the measurements, two quartz transducers are used to directly record the force histories, and an optical apparatus is designed to test the interfacial slip movement. By using the setup, the dynamic friction coefficient of PTFE/aluminum 7075 friction pairs was tested. The time resolved dynamic friction coefficient and slip movement histories were achieved. The results show that the friction coefficient changes during the loading process, the average data of the relatively stable flat plateau section of the friction coefficient curves is 0.137, the maximum normal pressure is 52 MPa, the maximum relative slip velocity is 1.5 m/s, and the acceleration is 8400 m2/s. Furthermore, the friction test was simulated using an explicit FEM code LS-DYNA. The simulation results showed that the constant pressure and slip velocity can both be obtained with a wide flat plateau incident pulse. For some special friction pairs, normal pressure up to a few hundred MPa, interfacial slip velocities up to 10 m/s, and slip movement up to centimeter-level can be expected.

  17. A technique for measuring dynamic friction coefficient under impact loading.

    PubMed

    Lin, Y L; Qin, J G; Chen, R; Zhao, P D; Lu, F Y

    2014-09-01

    We develop a novel setup based on the split Hopkinson pressure bar technique to test the dynamic friction coefficient under impact loading. In the setup, the major improvement is that the end of the incident bar near the specimen is wedge-shaped, which results in a combined compressive and shear loading applied to the specimen. In fact, the shear loading is caused by the interfacial friction between specimen and bars. Therefore, when the two loading force histories are measured, the friction coefficient histories can be calculated without any assumptions and theoretical derivations. The geometry of the friction pairs is simple, and can be either cuboid or cylindrical. Regarding the measurements, two quartz transducers are used to directly record the force histories, and an optical apparatus is designed to test the interfacial slip movement. By using the setup, the dynamic friction coefficient of PTFE/aluminum 7075 friction pairs was tested. The time resolved dynamic friction coefficient and slip movement histories were achieved. The results show that the friction coefficient changes during the loading process, the average data of the relatively stable flat plateau section of the friction coefficient curves is 0.137, the maximum normal pressure is 52 MPa, the maximum relative slip velocity is 1.5 m/s, and the acceleration is 8400 m(2)/s. Furthermore, the friction test was simulated using an explicit FEM code LS-DYNA. The simulation results showed that the constant pressure and slip velocity can both be obtained with a wide flat plateau incident pulse. For some special friction pairs, normal pressure up to a few hundred MPa, interfacial slip velocities up to 10 m/s, and slip movement up to centimeter-level can be expected. PMID:25273746

  18. Effect of applied mechanical stress on absorption coefficient of compounds

    SciTech Connect

    Gupta, Manoj Kumar; Singh, Gurinderjeet; Dhaliwal, A. S.; Kahlon, K. S.

    2015-08-28

    The absorption coefficient of given materials is the parameter required for the basic information. The measurement of absorption coefficient of compounds Al{sub 2}O{sub 3}, CaCO{sub 3}, ZnO{sub 2}, SmO{sub 2} and PbO has been taken at different incident photon energies 26, 59.54, 112, 1173, 1332keV. The studies involve the measurements of absorption coefficient of the self supporting samples prepared under different mechanical stress. This mechanical stress is render in terms of pressure up to 0-6 ton by using hydraulic press. Measurements shows that absorption coefficient of a material is directly proportional to applied mechanical stress on it up to some extent then become independent. Experimentally measured results are in fairly good agreement with in theoretical values obtained from WinXCOM.

  19. Effect of applied mechanical stress on absorption coefficient of compounds

    NASA Astrophysics Data System (ADS)

    Gupta, Manoj Kumar; Singh, Gurinderjeet; Dhaliwal, A. S.; Kahlon, K. S.

    2015-08-01

    The absorption coefficient of given materials is the parameter required for the basic information. The measurement of absorption coefficient of compounds Al2O3, CaCO3, ZnO2, SmO2 and PbO has been taken at different incident photon energies 26, 59.54, 112, 1173, 1332keV. The studies involve the measurements of absorption coefficient of the self supporting samples prepared under different mechanical stress. This mechanical stress is render in terms of pressure up to 0-6 ton by using hydraulic press. Measurements shows that absorption coefficient of a material is directly proportional to applied mechanical stress on it up to some extent then become independent. Experimentally measured results are in fairly good agreement with in theoretical values obtained from WinXCOM.

  20. Reactive sticking coefficients for silane and disilane on polycrystalline silicon

    SciTech Connect

    Buss, R.J.; Ho, P.; Breiland, W.G.; Coltrin, M.E.

    1988-04-15

    Reactive sticking coefficients (RSCs) were measured for silane and disilane on polycrystalline silicon for a wide range of temperature and flux (pressure) conditions. The data were obtained from deposition-rate measurements using molecular beam scattering and a very low-pressure cold-wall reactor. The RSCs have nonlinear Arrhenius temperature dependencies and decrease with increasing flux at low (710 /sup 0/C) temperatures. Several simple models are proposed to explain these observations. The results are compared with previous studies of the SiH/sub 4//Si(s) reaction and low-pressure chemical vapor deposition-rate measurements.

  1. Integer Solutions of Binomial Coefficients

    ERIC Educational Resources Information Center

    Gilbertson, Nicholas J.

    2016-01-01

    A good formula is like a good story, rich in description, powerful in communication, and eye-opening to readers. The formula presented in this article for determining the coefficients of the binomial expansion of (x + y)n is one such "good read." The beauty of this formula is in its simplicity--both describing a quantitative situation…

  2. Prediction of stream volatilization coefficients

    USGS Publications Warehouse

    Rathbun, Ronald E.

    1990-01-01

    Equations are developed for predicting the liquid-film and gas-film reference-substance parameters for quantifying volatilization of organic solutes from streams. Molecular weight and molecular-diffusion coefficients of the solute are used as correlating parameters. Equations for predicting molecular-diffusion coefficients of organic solutes in water and air are developed, with molecular weight and molal volume as parameters. Mean absolute errors of prediction for diffusion coefficients in water are 9.97% for the molecular-weight equation, 6.45% for the molal-volume equation. The mean absolute error for the diffusion coefficient in air is 5.79% for the molal-volume equation. Molecular weight is not a satisfactory correlating parameter for diffusion in air because two equations are necessary to describe the values in the data set. The best predictive equation for the liquid-film reference-substance parameter has a mean absolute error of 5.74%, with molal volume as the correlating parameter. The best equation for the gas-film parameter has a mean absolute error of 7.80%, with molecular weight as the correlating parameter.

  3. Tables of the coefficients A

    NASA Technical Reports Server (NTRS)

    Chandra, N.

    1974-01-01

    Numerical coefficients required to express the angular distribution for the rotationally elastic or inelastic scattering of electrons from a diatomic molecule were tabulated for the case of nitrogen and in the energy range from 0.20 eV to 10.0 eV. Five different rotational states are considered.

  4. Estimating the Polyserial Correlation Coefficient.

    ERIC Educational Resources Information Center

    Bedrick, Edward J.; Breslin, Frederick C.

    1996-01-01

    Simple noniterative estimators of the polyserial correlation coefficient are developed by exploiting a general relationship between the polyserial correlation and the point polyserial correlation to give extensions of the biserial estimators of K. Pearson (1909), H. E. Brogden (1949), and F. M. Lord (1963) to the multicategory setting. (SLD)

  5. Ionization coefficient measurements in DC microplasmas

    NASA Astrophysics Data System (ADS)

    Stefanovic, Ilija; Kuschel, Thomas; Winter, Joerg; Maric, Dragana; Petrovic, Zoran Lj.

    2012-10-01

    While steady state Townsend discharges may provide data for ionization coefficients those are often not as accurate as those produced in dedicated pulsed current growth experiments. In this paper we show that one may be able to measure ionization coefficients in DC microdischarges that are of excellent quality. Measurements were made for argon and argon/nitrogen mixtures with different gas flow rates. The technique based measuring the spatial profile of emission a Townsend discharge. In spite of having the drift length of only 1 mm, excellent agreement has been found between our new measurements and the data for low-pressure, larger dimension (2-4cm) discharges in argon (Jelenak et al) for the E/N in the range from 300 Td to 4000 Td, where E/N is normalized electrical field strength. Below 300 Td our measured values are larger then those by Jelenak et al. This discrepancy with previous measurements will be discussed. The influence of the gas flow-rate and nitrogen concentration on the radial discharge profile in the Townsend mode will also be presented and discussed. Jelenak et al 1993 Phys. Rev. E 47 3566

  6. High temperature Seebeck coefficient metrology

    SciTech Connect

    Martin, J.; Tritt, T.; Uher, C.

    2010-12-15

    We present an overview of the challenges and practices of thermoelectric metrology on bulk materials at high temperature (300 to 1300 K). The Seebeck coefficient, when combined with thermal and electrical conductivity, is an essential property measurement for evaluating the potential performance of novel thermoelectric materials. However, there is some question as to which measurement technique(s) provides the most accurate determination of the Seebeck coefficient at high temperature. This has led to the implementation of nonideal practices that have further complicated the confirmation of reported high ZT materials. To ensure meaningful interlaboratory comparison of data, thermoelectric measurements must be reliable, accurate, and consistent. This article will summarize and compare the relevant measurement techniques and apparatus designs required to effectively manage uncertainty, while also providing a reference resource of previous advances in high temperature thermoelectric metrology.

  7. Portable vapor diffusion coefficient meter

    DOEpatents

    Ho, Clifford K.

    2007-06-12

    An apparatus for measuring the effective vapor diffusion coefficient of a test vapor diffusing through a sample of porous media contained within a test chamber. A chemical sensor measures the time-varying concentration of vapor that has diffused a known distance through the porous media. A data processor contained within the apparatus compares the measured sensor data with analytical predictions of the response curve based on the transient diffusion equation using Fick's Law, iterating on the choice of an effective vapor diffusion coefficient until the difference between the predicted and measured curves is minimized. Optionally, a purge fluid can forced through the porous media, permitting the apparatus to also measure a gas-phase permeability. The apparatus can be made lightweight, self-powered, and portable for use in the field.

  8. Ionization coefficients in gas mixtures

    NASA Astrophysics Data System (ADS)

    Marić, D.; Šašić, O.; Jovanović, J.; Radmilović-Rađenović, M.; Petrović, Z. Lj.

    2007-03-01

    We have tested the application of the common E/N ( E—electric field, N—gas number density) or Wieland approximation [Van Brunt, R.J., 1987. Common parametrizations of electron transport, collision cross section, and dielectric strength data for binary gas mixtures. J. Appl. Phys. 61 (5), 1773-1787.] and the common mean energy (CME) combination of the data for pure gases to obtain ionization coefficients for mixtures. Test calculations were made for Ar-CH4, Ar-N2, He-Xe and CH4-N2 mixtures. Standard combination procedure gives poor results in general, due to the fact that the electron energy distribution is considerably different in mixtures and in individual gases at the same values of E/N. The CME method may be used for mixtures of gases with ionization coefficients that do not differ by more than two orders of magnitude which is better than any other technique that was proposed [Marić, D., Radmilović-Rađenović, M., Petrović, Z.Lj., 2005. On parametrization and mixture laws for electron ionization coefficients. Eur. Phys. J. D 35, 313-321.].

  9. Reactive sticking coefficients of silane on silicon

    SciTech Connect

    Buss, R.J.; Ho, P.; Breiland, W.G.; Coltrin, M.E.

    1987-01-01

    We have investigated the reaction of room-temperature silane and disilane on a hot polycrystalline silicon surface using both a collision-free molecular beam and a very low pressure CVD cell. Reactive sticking coefficients were obtained from deposition rate data over a wide range of temperatures and silane (disilane) fluxes. The RSCs are substantially less than one, ranging from 6 x 10/sup -5/ to 4 x 10/sup -2/. For silane we observed curved Arrhenius plots with slopes decreasing from approx.60 kcal mol/sup -1/ at low temperatures to approx.2 kcal mol/sup -1/ at higher temperatures. The RSCs are independent of flux (pressure) at 1040/sup 0/C, but vary as flux to the approx.-1/2 power at 710/sup 0/C. A model comprised of a dissociative adsorption mechanism with competing associative desorption and reaction was found to give reasonable agreement. For disilane, we observed RSCs that were roughly ten times higher than those for silane. We also observed a curved Arrhenius plot and a flux dependence at 710/sup 0/C for disilane. 22 refs., 5 figs.

  10. Discharge coefficients of cooling holes with radiused and chamfered inlets

    NASA Astrophysics Data System (ADS)

    Hay, N.; Spencer, A.

    1991-06-01

    The flow of cooling air within the internal passages of gas turbines is controlled and metered using holes in disks and casings. The effects of inlet radiusing and chamfering of these holes on the discharge coefficient are discussed. Experimental results for a range of radiusing and chamfering ratios for holes of different length to diameter ratios are presented, covering the range of pressure ratios of practical interest. The results indicate that radiusing and chamfering are both beneficial in increasing the discharge coefficient. Increases of 10-30 percent are possible. Chamfered holes give the more desirable performance characteristics in addition to being easier to produce than radiused holes.

  11. Viscosity and thermal conductivity coefficients of gaseous and liquid oxygen

    NASA Technical Reports Server (NTRS)

    Hanley, H. J. M.; Mccarty, R. D.; Sengers, J. V.

    1974-01-01

    Equations and tables are presented for the viscosity and thermal conductivity coefficients of gaseous and liquid oxygen at temperatures between 80 K and 400 K for pressures up to 200 atm. and at temperatures between 80 K and 2000 K for the dilute gas. A description of the anomalous behavior of the thermal conductivity in the critical region is included. The tabulated coefficients are reliable to within about 15% except for a region in the immediate vicinity of the critical point. Some possibilities for future improvements of this reliability are discussed.

  12. [Obtaining aerosol backscattering coefficient using pure rotational Raman-Mie scattering spectrum].

    PubMed

    Rong, Wei; Chen, Si-Ying; Zhang, Yin-Chao; Chen, He; Guo, Pan

    2012-11-01

    Both the traditional Klett and Fernald methods used to obtain atmospheric aerosol backscattering coefficient require the hypothesis of relationship between the extinction coefficient and backscattering coefficient, and this will bring error. According to the theory that the pure rotational Raman backscattering coefficient is only related to atmospheric temperature and pressure, a new method is presented for inverting aerosol backscattering coefficient, which needed the intensity of elastic scattering and rotational Raman combined with atmospheric temperature and pressure obtained with the sounding balloons in this article. This method can not only eliminate the errors of the traditional Klett and Fernald methods caused by the hypothesis, but also avoid the error caused by the correction of the overlap. Finally, the aerosol backscattering coefficient was acquired by using this method and the data obtained via the Raman-Mie scattering Lidar of our lab. And the result was compared with that of Klett and Fernald. PMID:23387171

  13. Experimental Determination of Paschen Curve and First Townsend Coefficient of Nitrogen Plasma Discharge

    NASA Astrophysics Data System (ADS)

    Wais, Sabah

    2011-10-01

    In the present work, an experimental study is performed to determine the first Townsend coefficient and Paschen curve for N2 gas chamber using a parallel plate geometrical configuration. Paschen curve coefficients are derived by exponential fitting of first Townsend coefficients data of plasma discharge. The experimental data is acquired at different working pressure and various electrode gap separations. Furthermore, the amplification process of the gas gain in non-uniform electric field is realized.

  14. Inflationary weak anisotropic model with general dissipation coefficient

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Saleem, Rabia

    2016-03-01

    This paper explores the dynamics of warm intermediate and logamediate inflationary models during weak dissipative regime with a general form of dissipative coefficient. We analyze these models within the framework of locally rotationally symmetric Bianchi type I universe. In both cases, we evaluate solution of inflaton, effective scalar potential, dissipative coefficient, slow-roll parameters, scalar and tensor power spectra, scalar spectral index and tensor to scalar ratio under slow-roll approximation. We constrain the model parameters using recent data and conclude that anisotropic inflationary universe model with generalized dissipation coefficient remains compatible with WMAP9, Planck and BICEP2 data. Finally, we have checked the effects of bulk viscous pressure on this considered model and found that it remains compatible with recent data only for intermediate case.

  15. Measurement of attenuation coefficients of the fundamental and second harmonic waves in water

    NASA Astrophysics Data System (ADS)

    Zhang, Shuzeng; Jeong, Hyunjo; Cho, Sungjong; Li, Xiongbing

    2016-02-01

    Attenuation corrections in nonlinear acoustics play an important role in the study of nonlinear fluids, biomedical imaging, or solid material characterization. The measurement of attenuation coefficients in a nonlinear regime is not easy because they depend on the source pressure and requires accurate diffraction corrections. In this work, the attenuation coefficients of the fundamental and second harmonic waves which come from the absorption of water are measured in nonlinear ultrasonic experiments. Based on the quasilinear theory of the KZK equation, the nonlinear sound field equations are derived and the diffraction correction terms are extracted. The measured sound pressure amplitudes are adjusted first for diffraction corrections in order to reduce the impact on the measurement of attenuation coefficients from diffractions. The attenuation coefficients of the fundamental and second harmonics are calculated precisely from a nonlinear least squares curve-fitting process of the experiment data. The results show that attenuation coefficients in a nonlinear condition depend on both frequency and source pressure, which are much different from a linear regime. In a relatively lower drive pressure, the attenuation coefficients increase linearly with frequency. However, they present the characteristic of nonlinear growth in a high drive pressure. As the diffraction corrections are obtained based on the quasilinear theory, it is important to use an appropriate source pressure for accurate attenuation measurements.

  16. Experimental study of the Biot coefficient of Bakken cores

    NASA Astrophysics Data System (ADS)

    Ma, X.; Zoback, M. D.

    2015-12-01

    We have performed a series of exhaustive experiments to measure the Biot coefficient (α) of the tight cores from the Bakken shale oil play. Five distinct, bedding-normal cores from a vertical well were tested, covering the sequences of Three Forks, Lower, Middle, and Upper Bakken, and Lodgepole. The scope of this laboratory study is two-fold: (1) to obtain realistic Biot coefficient for modeling reservoir stress changes due to depletion and injection; (2) to characterize the poromechanical properties in relation to rock's mineral composition and microstructure. The experiments were carried out as follows: Argon-saturated specimen (1-inch length, 1-inch diameter) was subjected to hydrostatic confining pressure under drained conditions. Pore pressure was regulated as Argon was injected into both ends of the specimen. We drilled multiple non-through-going boreholes (1-mm diameter) in the specimen to facilitate pressure equilibrium, without compromising its integrity. The specimen was put through a loading path to experience confining pressure and pore pressure up to 70 and 60 MPa, respectively. Axial and lateral strains were recorded and used to calculate the rock's bulk stiffness, and subsequently the static Biot coefficient, which is related to reservoir deformation and associated stress changes. Results of all five cores unanimously show that α is less than unity and is a function of both confining and pore pressure. α generally varies between 0.3 and 0.9 for the pressure levels we applied. This implies that models of reservoir deformation and its stress change using Terzaghi's simple effective stress law (α = 1) or a constant α less than 1 may be erroneous. Typically, α rises significantly with pore pressure, but declines with confining pressure to the degree that is dependent on rock's bulk stiffness. We found the stiffness of these rocks does not correlate well with the content of compliant components (e.g., clay and kerogen), and the drastic difference in

  17. Generic transport coefficients of a confined electrolyte solution.

    PubMed

    Yoshida, Hiroaki; Mizuno, Hideyuki; Kinjo, Tomoyuki; Washizu, Hitoshi; Barrat, Jean-Louis

    2014-11-01

    Physical parameters characterizing electrokinetic transport in a confined electrolyte solution are reconstructed from the generic transport coefficients obtained within the classical nonequilibrium statistical thermodynamic framework. The electro-osmotic flow, the diffusio-osmotic flow, the osmotic current, as well as the pressure-driven Poiseuille-type flow, the electric conduction, and the ion diffusion are described by this set of transport coefficients. The reconstruction is demonstrated for an aqueous NaCl solution between two parallel charged surfaces with a nanoscale gap, by using the molecular dynamic (MD) simulations. A Green-Kubo approach is employed to evaluate the transport coefficients in the linear-response regime, and the fluxes induced by the pressure, electric, and chemical potential fields are compared with the results of nonequilibrium MD simulations. Using this numerical scheme, the influence of the salt concentration on the transport coefficients is investigated. Anomalous reversal of diffusio-osmotic current, as well as that of electro-osmotic flow, is observed at high surface charge densities and high added-salt concentrations. PMID:25493746

  18. Generic transport coefficients of a confined electrolyte solution

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroaki; Mizuno, Hideyuki; Kinjo, Tomoyuki; Washizu, Hitoshi; Barrat, Jean-Louis

    2014-11-01

    Physical parameters characterizing electrokinetic transport in a confined electrolyte solution are reconstructed from the generic transport coefficients obtained within the classical nonequilibrium statistical thermodynamic framework. The electro-osmotic flow, the diffusio-osmotic flow, the osmotic current, as well as the pressure-driven Poiseuille-type flow, the electric conduction, and the ion diffusion are described by this set of transport coefficients. The reconstruction is demonstrated for an aqueous NaCl solution between two parallel charged surfaces with a nanoscale gap, by using the molecular dynamic (MD) simulations. A Green-Kubo approach is employed to evaluate the transport coefficients in the linear-response regime, and the fluxes induced by the pressure, electric, and chemical potential fields are compared with the results of nonequilibrium MD simulations. Using this numerical scheme, the influence of the salt concentration on the transport coefficients is investigated. Anomalous reversal of diffusio-osmotic current, as well as that of electro-osmotic flow, is observed at high surface charge densities and high added-salt concentrations.

  19. Higher Order Macro Coefficients in Periodic Homogenization

    NASA Astrophysics Data System (ADS)

    Conca, Carlos; San Martin, Jorge; Smaranda, Loredana; Vanninathan, Muthusamy

    2011-09-01

    A first set of macro coefficients known as the homogenized coefficients appear in the homogenization of PDE on periodic structures. If energy is increased or scale is decreased, these coefficients do not provide adequate approximation. Using Bloch decomposition, it is first realized that the above coefficients correspond to the lowest energy and the largest scale. This naturally paves the way to introduce other sets of macro coefficients corresponding to higher energies and lower scales which yield better approximation. The next task is to compare their properties with those of the homogenized coefficients. This article reviews these developments along with some new results yet to be published.

  20. Ratios of internal conversion coefficients

    SciTech Connect

    Raman, S.; Ertugrul, M.; Nestor, C.W. . E-mail: CNestorjr@aol.com; Trzhaskovskaya, M.B.

    2006-03-15

    We present here a database of available experimental ratios of internal conversion coefficients for different atomic subshells measured with an accuracy of 10% or better for a number of elements in the range 26 {<=} Z {<=} 100. The experimental set involves 414 ratios for pure and 1096 ratios for mixed-multipolarity nuclear transitions in the transition energy range from 2 to 2300 keV. We give relevant theoretical ratios calculated in the framework of the Dirac-Fock method with and without regard for the hole in the atomic subshell after conversion. For comparison, the ratios obtained within the relativistic Hartree-Fock-Slater approximation are also presented. In cases where several ratios were measured for the same transition in a given isotope in which two multipolarities were involved, we present the mixing ratio {delta} {sup 2} obtained by a least squares fit.

  1. Blood pressure

    MedlinePlus Videos and Cool Tools

    Normal blood pressure is important for proper blood flow to the body’s organs and tissues. The force of the blood on the walls of the arteries is called blood pressure. Blood pressure is measured both as the heart ...

  2. Blood pressure

    MedlinePlus Videos and Cool Tools

    Normal blood pressure is important for proper blood flow to the body’s organs and tissues. The force of the blood on the walls of the arteries is called blood pressure. Blood pressure is measured both ...

  3. The emission coefficient of uranium plasmas

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.; Campbell, H. D.; Mack, J. M.

    1973-01-01

    The emission coefficient for uranium plasmas (Temperature: 8000 K) was measured for the wavelength range (200 A - 6000 A). The results are compared to theory and other measurements. The absorption coefficient for the same wavelength interval is also given.

  4. M-Bonomial Coefficients and Their Identities

    ERIC Educational Resources Information Center

    Asiru, Muniru A.

    2010-01-01

    In this note, we introduce M-bonomial coefficients or (M-bonacci binomial coefficients). These are similar to the binomial and the Fibonomial (or Fibonacci-binomial) coefficients and can be displayed in a triangle similar to Pascal's triangle from which some identities become obvious.

  5. Soccer Ball Lift Coefficients via Trajectory Analysis

    ERIC Educational Resources Information Center

    Goff, John Eric; Carre, Matt J.

    2010-01-01

    We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin…

  6. Standards for Standardized Logistic Regression Coefficients

    ERIC Educational Resources Information Center

    Menard, Scott

    2011-01-01

    Standardized coefficients in logistic regression analysis have the same utility as standardized coefficients in linear regression analysis. Although there has been no consensus on the best way to construct standardized logistic regression coefficients, there is now sufficient evidence to suggest a single best approach to the construction of a…

  7. A parameter identification method for the rotordynamic coefficients of a high Reynolds number hydrostatic bearing

    NASA Technical Reports Server (NTRS)

    Rouvas, C.; Childs, D. W.

    1993-01-01

    In identifying the rotordynamic coefficients of a high-Reynolds-number hydrostatic bearing, fluid-flow induced forces present a unique problem, in that they provide an unmeasureable and uncontrollable excitation to the bearing. An analysis method is developed that effectively eliminates the effects of fluid-flow induced excitation on the estimation of the bearing rotordynamic coefficients, by using power spectral densities. In addition to the theoretical development, the method is verified experimentally by single-frequency testing, and repeatability tests. Results obtained for a bearing are the twelve rotordynamic coefficients (stiffness, damping, and inertia coefficients) as functions of eccentricity ratio, speed, and supply pressure.

  8. Pressure Sores

    MedlinePlus

    ... may form. Pressure sores are also called bedsores, pressure ulcers and decubitus ulcers. Symptoms What are the symptoms ... do to help pressure sores heal: Relieving the pressure that caused the sore Treating the sore itself Improving nutrition and other conditions to help the sore heal ...

  9. Coefficient of thermal expansion of Fluorinert FC-86

    SciTech Connect

    Pane, A.J.

    1982-05-01

    The cubical coefficient of thermal expansion (CTE) pf Fluorinert Fluid, FC-86 was measured before and after degassing. The CTE for the FC-86 before degassing is: ..beta.. = 9.282 x 10/sup -6/T + 1.6115 x 10/sup -3/ with T = -30 to + 75/sup 0/C. The CTE for the FC-86 (degassed) is: ..beta.. = 6.133 x 10/sup -6/T + 1.7643 x 10/sup -3/ with T = -30 to + 75/sup 0/C. Measurements were also made of the pressures required to prevent cavitation in the degassed FC-86 and in FC-86 containing 2.4 volume percent of air. At 71.0/sup 0/C the cavitational pressure of degassed FC-86 is 1285 torr and at 73.8/sup 0/C the cavitational pressure of the FC-86 containing 2.4 volume percent of air is 1229 torr.

  10. The Sampling Distribution of the Kristof Reliability Coefficient, the Feldt Coefficient, and Guttman's Lambda-2

    ERIC Educational Resources Information Center

    Sedere, M. U.; Feldt, Leonard S.

    1977-01-01

    Two new reliability coefficients have been derived for situations in which a test must be divided into parts of unequal length. This report summarizes a study of the statistical bias and the standard errors of these coefficients and compares them to Guttman's lambda coefficients and Cronbach's alpha coefficient. (Author/JKS)

  11. Gas-film coefficients for streams

    USGS Publications Warehouse

    Rathbun, R.E.; Tai, D.Y.

    1983-01-01

    Equations for predicting the gas-film coefficient for the volatilization of organic solutes from streams are developed. The film coefficient is a function of windspeed and water temperature. The dependence of the coefficient on windspeed is determined from published information on the evaporation of water from a canal. The dependence of the coefficient on temperature is determined from laboratory studies on the evaporation of water. Procedures for adjusting the coefficients for different organic solutes are based on the molecular diffusion coefficient and the molecular weight. The molecular weight procedure is easiest to use because of the availability of molecular weights. However, the theoretical basis of the procedure is questionable. The diffusion coefficient procedure is supported by considerable data. Questions, however, remain regarding the exact dependence of the film coefficint on the diffusion coefficient. It is suggested that the diffusion coefficient procedure with a 0.68-power dependence be used when precise estimate of the gas-film coefficient are needed and that the molecular weight procedure be used when only approximate estimates are needed.

  12. Investigating bias in squared regression structure coefficients

    PubMed Central

    Nimon, Kim F.; Zientek, Linda R.; Thompson, Bruce

    2015-01-01

    The importance of structure coefficients and analogs of regression weights for analysis within the general linear model (GLM) has been well-documented. The purpose of this study was to investigate bias in squared structure coefficients in the context of multiple regression and to determine if a formula that had been shown to correct for bias in squared Pearson correlation coefficients and coefficients of determination could be used to correct for bias in squared regression structure coefficients. Using data from a Monte Carlo simulation, this study found that squared regression structure coefficients corrected with Pratt's formula produced less biased estimates and might be more accurate and stable estimates of population squared regression structure coefficients than estimates with no such corrections. While our findings are in line with prior literature that identified multicollinearity as a predictor of bias in squared regression structure coefficients but not coefficients of determination, the findings from this study are unique in that the level of predictive power, number of predictors, and sample size were also observed to contribute bias in squared regression structure coefficients. PMID:26217273

  13. Estimation of high temperature metal-silicate partition coefficients

    NASA Technical Reports Server (NTRS)

    Jones, John H.; Capobianco, Christopher J.; Drake, Michael J.

    1992-01-01

    It has been known for some time that abundances of siderophile elements in the upper mantle of the Earth are far in excess of those expected from equilibrium between metal and silicate at low pressures and temperatures. Murthy (1991) has re-examined this excess of siderophile element problem by estimating liquid metal/liquid silicate partition coefficients reduces from their measured values at a lower temperature, implying that siderophile elements become much less siderophilic at high temperatures. Murthy then draws the important conclusion that metal/silicate equilibrium at high temperatures can account for the abundances of siderophile elements in the Earth's mantle. Of course, his conclusion is critically dependent on the small values of the partition coefficients he calculates. Because the numerical values of most experimentally-determined partition coefficients increase with increasing temperature at both constant oxygen fugacity and at constant redox buffer, we think it is important to try an alternative extrapolation for comparison. We have computed high temperature metal/silicate partition coefficients under a different set of assumptions and show that such long temperature extrapolations yield values which are critically dependent upon the presumed chemical behavior of the siderophile elements in the system.

  14. Transport coefficients for driven granular mixtures at low density

    NASA Astrophysics Data System (ADS)

    Khalil, Nagi; Garzó, Vicente

    2013-11-01

    The transport coefficients of a granular binary mixture driven by a stochastic bath with friction are determined from the inelastic Boltzmann kinetic equation. A normal solution is obtained via the Chapman-Enskog method for states near homogeneous steady states. The mass, momentum, and heat fluxes are determined to first order in the spatial gradients of the hydrodynamic fields, and the associated transport coefficients are identified. They are given in terms of the solutions of a set of coupled linear integral equations. As in the monocomponent case, since the collisional cooling cannot be compensated for locally by the heat produced by the external driving, the reference distributions (zeroth-order approximations) fi(0) (i=1,2) for each species depend on time through their dependence on the pressure and the temperature. Explicit forms for the diffusion transport coefficients and the shear viscosity coefficient are obtained by assuming the steady-state conditions and by considering the leading terms in a Sonine polynomial expansion. A comparison with previous results obtained for granular Brownian motion and by using a (local) stochastic thermostat is also carried out. The present work extends previous theoretical results derived for monocomponent dense gases [Garzó, Chamorro, and Vega Reyes, Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.87.032201 87, 032201 (2013)] to granular mixtures at low density.

  15. Transport coefficients for driven granular mixtures at low density.

    PubMed

    Khalil, Nagi; Garzó, Vicente

    2013-11-01

    The transport coefficients of a granular binary mixture driven by a stochastic bath with friction are determined from the inelastic Boltzmann kinetic equation. A normal solution is obtained via the Chapman-Enskog method for states near homogeneous steady states. The mass, momentum, and heat fluxes are determined to first order in the spatial gradients of the hydrodynamic fields, and the associated transport coefficients are identified. They are given in terms of the solutions of a set of coupled linear integral equations. As in the monocomponent case, since the collisional cooling cannot be compensated for locally by the heat produced by the external driving, the reference distributions (zeroth-order approximations) f(i)((0)) (i=1,2) for each species depend on time through their dependence on the pressure and the temperature. Explicit forms for the diffusion transport coefficients and the shear viscosity coefficient are obtained by assuming the steady-state conditions and by considering the leading terms in a Sonine polynomial expansion. A comparison with previous results obtained for granular Brownian motion and by using a (local) stochastic thermostat is also carried out. The present work extends previous theoretical results derived for monocomponent dense gases [Garzó, Chamorro, and Vega Reyes, Phys. Rev. E 87, 032201 (2013)] to granular mixtures at low density. PMID:24329253

  16. An experimental assembly for precise measurement of thermal accommodation coefficients.

    PubMed

    Trott, Wayne M; Castañeda, Jaime N; Torczynski, John R; Gallis, Michael A; Rader, Daniel J

    2011-03-01

    An experimental apparatus has been developed to determine thermal accommodation coefficients for a variety of gas-surface combinations. Results are obtained primarily through measurement of the pressure dependence of the conductive heat flux between parallel plates separated by a gas-filled gap. Measured heat-flux data are used in a formula based on Direct Simulation Monte Carlo (DSMC) simulations to determine the coefficients. The assembly also features a complementary capability for measuring the variation in gas density between the plates using electron-beam fluorescence. Surface materials examined include 304 stainless steel, gold, aluminum, platinum, silicon, silicon nitride, and polysilicon. Effects of gas composition, surface roughness, and surface contamination have been investigated with this system; the behavior of gas mixtures has also been explored. Without special cleaning procedures, thermal accommodation coefficients for most materials and surface finishes were determined to be near 0.95, 0.85, and 0.45 for argon, nitrogen, and helium, respectively. Surface cleaning by in situ argon-plasma treatment reduced coefficient values by up to 0.10 for helium and by ∼0.05 for nitrogen and argon. Results for both single-species and gas-mixture experiments compare favorably to DSMC simulations. PMID:21456801

  17. Recombination coefficients of O and N radicals on stainless steel

    NASA Astrophysics Data System (ADS)

    Singh, Harmeet; Coburn, J. W.; Graves, David B.

    2000-09-01

    Surface recombination coefficients of O and N radicals in pure O2 and N2 plasmas, respectively, have been estimated on the stainless steel walls of a low-pressure inductively coupled plasma reactor. The recombination coefficients are estimated using a steady state plasma model describing the balance between the volume generation of the radicals from electron-impact dissociation of the parent molecules, and the loss of the radicals due to surface recombination. The model uses radical and parent molecule number densities and the electron energy distribution function (EEDF) as input parameters. We have measured the radical number density using appearance potential mass spectrometry. The parent neutral number density is measured using mass spectrometry. The EEDF is measured using a Langmuir probe. The recombination coefficient of O radicals on stainless steel walls at approximately 330 K is estimated to be 0.17±0.02, and agrees well with previous measurements. The recombination coefficient of N radicals is estimated to be 0.07±0.02 on stainless steel at 330 K.

  18. Recombination Coefficient Measurements of O and N radicals

    NASA Astrophysics Data System (ADS)

    Singh, Harmeet; Coburn, John; Graves, David

    1999-10-01

    Surface recombination of radicals in low-pressure high-density plasmas has direct influence on the neutral and ionic composition of the plasma. While, electron impact dissociation of molecules is the dominant mechanism for creation of radicals, the surface recombination of radicals is often expected to be the dominant loss mechanism. We have a combination of measurements and a model to determine the recombination coefficients of O and N, to O2 and N2, respectively on the stainless steel walls of our inductively coupled plasma chamber. The radial variation of the electron energy distribution function (EEDF) is measured using a tuned, cylindrical Langmuir probe. The number density of the molecular species is measured using line-of-sight modulated beam mass spectrometry. The mass spectrometer is differentially pumped in three stages to ensure a good beam to background signal ratio. The radical absolute number density is measured using appearance potential mass spectrometry with the aforementioned mass spectrometer. The recombination coefficient is calculated using a balance of the volume-generation and surface-loss rates of the radicals in the plasma. The generation rate of the radicals is calculated using the number density measurements of the parent molecule and the spatially resolved EEDFs. At approximately 330 K on stainless steel, the recombination coefficient for O is 0.16, and recombination coefficient for N is 0.07.

  19. Pressure ulcers.

    PubMed

    O'Byrne, Deborah

    2016-04-13

    My nursing experience is in acute care. Acute medical nurses are well placed to assess skin integrity, identify patients at risk of pressure ulcer development, and commence appropriate interventions to prevent or treat pressure ulcers. PMID:27073966

  20. Pressure Sores

    MedlinePlus

    Pressure sores are areas of damaged skin caused by staying in one position for too long. They ... wheelchair, or are unable to change your position. Pressure sores can cause serious infections, some of which ...

  1. Coupling coefficient of gain-guided lasers

    NASA Technical Reports Server (NTRS)

    Katz, J.; Kapon, E.; Lindsey, C.; Margalit, S.; Yariv, A.

    1984-01-01

    An analytical model is presented for the coupling coefficient for two gain-guided coupled waveguides, e.g., semiconductor laser arrays. A common parabolic gain distribution is assumed for the lasers, and the effective dielectric constant distribution is approximated in terms of the bulk refraction index, wavelength, power filling factor, and the antiguiding factor. The fundamental mode is then formulated and used in an integral for the coupling coefficient. The dependence of the coefficient of various waveguide parameters is described.

  2. Computation of virial coefficients from integral equations.

    PubMed

    Zhang, Cheng; Lai, Chun-Liang; Pettitt, B Montgomery

    2015-06-01

    A polynomial-time method of computing the virial coefficients from an integral equation framework is presented. The method computes the truncated density expansions of the correlation functions by series transformations, and then extracts the virial coefficients from the density components. As an application, the method was used in a hybrid-closure integral equation with a set of self-consistent conditions, which produced reasonably accurate virial coefficients for the hard-sphere fluid and Gaussian model in high dimensions. PMID:26049482

  3. Computation of virial coefficients from integral equations

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Lai, Chun-Liang; Pettitt, B. Montgomery

    2015-06-01

    A polynomial-time method of computing the virial coefficients from an integral equation framework is presented. The method computes the truncated density expansions of the correlation functions by series transformations, and then extracts the virial coefficients from the density components. As an application, the method was used in a hybrid-closure integral equation with a set of self-consistent conditions, which produced reasonably accurate virial coefficients for the hard-sphere fluid and Gaussian model in high dimensions.

  4. Apparatus for measurement of coefficient of friction

    NASA Technical Reports Server (NTRS)

    Slifka, A. J.; Siegwarth, J. D.; Sparks, L. L.; Chaudhuri, Dilip K.

    1990-01-01

    An apparatus designed to measure the coefficient of friction in certain controlled atmospheres is described. The coefficient of friction observed during high-load tests was nearly constant, with an average value of 0.56. This value is in general agreement with that found in the literature and also with the initial friction coefficient value of 0.67 measured during self-mated friction of 440C steel in an oxygen environment.

  5. Pressure Controller

    NASA Astrophysics Data System (ADS)

    1981-01-01

    EPIC is Electronic Pressure Indicating Controller produced by North American Manufacturing Company. It is a high-sensitivity device for improving combustion efficiency in industrial furnaces that interprets a signal from a pressure transducer on a furnace and regulates furnace pressure accordingly. A controller can provide savings of from five to 25 percent of an industrial user's annual furnace fuel bill.

  6. Barometric pressure

    NASA Technical Reports Server (NTRS)

    Billings, C. E.

    1973-01-01

    The effects of alterations in barometric pressure on human beings are described. Human tolerances for gaseous environments and low and high barometric pressure are discussed, including effects on specific areas, such as the ear, lungs, teeth, and sinuses. Problems due to trapped gas within the body, high dynamic pressures on the body, and blasts are also considered.

  7. Measurement of airfoil heat transfer coefficients on a turbine stage

    NASA Astrophysics Data System (ADS)

    Dring, Robert P.; Blair, Michael F.; Joslyn, H. David

    1987-10-01

    A combined experimental and analytical program was conducted to examine the impact of a number of variables on the midspan heat transfer coefficients of the three airfoil rows in a one and one-half stage large scale turbine model. Variables included stator/rotor axial spacing, Reynolds number, turbine inlet turbulence, flow coefficient, relevant stator 1/stator 2 circumferential position, and rotation. Heat transfer data were acquired on the suction and pressure surfaces of the three airfoils. High density data were also acquired in the leading edge stagnation regions. Extensive documentation of the steady and unsteady aerodynamics was acquired. Finally, heat transfer data were compared with both a steady and an unsteady boundary layer analysis.

  8. Relativistic quantum transport coefficients for second-order viscous hydrodynamics

    NASA Astrophysics Data System (ADS)

    Florkowski, Wojciech; Jaiswal, Amaresh; Maksymiuk, Ewa; Ryblewski, Radoslaw; Strickland, Michael

    2015-05-01

    We express the transport coefficients appearing in the second-order evolution equations for bulk viscous pressure and shear stress tensor using Bose-Einstein, Boltzmann, and Fermi-Dirac statistics for the equilibrium distribution function and Grad's 14-moment approximation as well as the method of Chapman-Enskog expansion for the nonequilibrium part. Focusing on the case of transversally homogeneous and boost-invariant longitudinal expansion of the viscous medium, we compare the results obtained using the above methods with those obtained from the exact solution of the massive 0+1 d relativistic Boltzmann equation in the relaxation-time approximation. We show that compared to the 14-moment approximation, the hydrodynamic transport coefficients obtained by employing the Chapman-Enskog method lead to better agreement with the exact solution of the relativistic Boltzmann equation.

  9. The evaluation of the power coefficient of a Savonius rotor

    NASA Astrophysics Data System (ADS)

    Chauvin, A.; Botrini, M.; Brun, R.; Beguier, C.

    1983-03-01

    Measurements of the pressure variations and the blade drag on a Savonius rotor with partially overlapping blades set at different angles of attack are employed to develop a model for the power coefficient. The data were taken in a wind tunnel with probes placed on the interior and exterior surfaces of a blade from the leading edge to the trailing edge in a series of seven trials with each angle of attack. Two rotationary regimes were noted, the first, motoring, which lasted up to an angle of attack of 145 deg, and a resistant mode, which lasted up to 180 deg. A two-dimensional model is developed for a horizontal slice of the Savonius, taking into account the aerodynamic forces on the retreating and advancing blades. It is found that the drag increase with the rotation speed, eventually providing an upper limit to the power available. A maximum power coefficient of 0.17 is projected.

  10. Periodic Heat Transfer at Small Pressure Fluctuations

    NASA Technical Reports Server (NTRS)

    Pfriem, H.

    1943-01-01

    The effect of cyclic gas pressure variations on the periodic heat transfer at a flat wall is theoretically analyzed and the differential equation describing the process and its solution for relatively. Small pressure fluctuations developed, thus explaining the periodic heat cycle between gas and wall surface. The processes for pure harmonic pressure and temperature oscillations, respectively, in the gas space are described by means of a constant heat transfer coefficient and the equally constant phase angle between the appearance of the maximum values of the pressure and heat flow most conveniently expressed mathematically in the form of a complex heat transfer coefficient. Any cyclic pressure oscillations, can be reduced by Fourier analysis to harmonic oscillations, which result in specific, mutual relationships of heat-transfer coefficients and phase angles for the different harmonics.

  11. Deriving Second Osmotic Virial Coefficients from Equations of State and from Experiment.

    PubMed

    Koga, K; Holten, Vincent; Widom, B

    2015-10-22

    The osmotic virial coefficients, which are measures of the effective interactions between solute molecules in dilute solution, may be obtained from expansions of the osmotic pressure or of the solute activity in powers of the solute concentration. In these expansions, the temperature is held fixed, and one additional constraint is imposed. When the additional constraint is that of fixed chemical potential of the solvent, the coefficient of the second-order term yields directly the second osmotic virial coefficient itself. Alternative constraints, such as fixed pressure, fixed solvent density, or the specification of liquid-vapor equilibrium, yield alternative measures of the solute-solute interaction, different from but related to the osmotic virial coefficient. These relations are summarized and, where new, are derived here. The coefficient in question may be calculated from equations of state in which the parameters have been obtained by fitting to other experimental properties. Alternatively, the coefficients may be calculated from direct experimental measurements of the deviations from Henry's law based on measurements of the activity of the solute in a coexisting gas phase. It is seen for propane in water as a test case that with the latter method, even with what appear to be the best available experimental data, there are still large uncertainties in the resulting second osmotic virial coefficient. With the former method, by contrast, the coefficient may be obtained with high numerical precision but then depends for its accuracy on the quality of the equation of state from which it is derived. PMID:26378689

  12. Filtration coefficients and osmotic reflexion coefficients of the walls of single frog mesenteric capillaries.

    PubMed Central

    Michel, C C

    1980-01-01

    1. Single capillaries in the mesentery of pithed frogs were perfused with frog Ringer solutions containing various concentrations of bovine serum albumin and myoglobin. Filtration coefficients (Lp) of the capillary wall were determined from measurements of fluid filtration rate at a series of different capillary pressures (Michel, Mason, Curry & Tooke, 1974). The osmotic reflexion coefficients (sigma) to albumin and myoglobin were determined by comparing the effective osmotic pressure exerted by these solutes across the capillary walls with their osmotic pressures in a membrane osmometer. 2. Lp and sigma to albumin were measured in eighteen vessels at different sites in the capillary bed with the tissue temperature in the range of 20-24 degrees C. Lp varied from 1.5 x 10(-3) to 15 x 10(-3) micrometer sec-1 cm H2O-1 having a higher mean value in nine venous capillaries (11.33 x 10(-3) micrometer sec-1 cm H2O-1) than in nine arterial and mid-capillaries (4.83 x 10(-3) micrometer sec-1 cm H2O-1). For all eighteen vessels sigma to albumin had a mean value of 0.816 (S.E. of mean +/- 0.027). There was no correlation between Lp and sigma. The mean value of sigma for the venous capillaries was 0.841 (S.E. of mean +/- 0.04) and the other nine vessels 0.802 (S.E. of mean +/- 0.034). 3. The osmotic reflexion coefficient to myoglobin was measured in seven different capillaries and found to have a mean value of 0.348 (S.E. of mean +/- 0.012) at 20-24 degrees C. The Lp of the capillaries varied from 3.0 x 10(-3) to 10.5 x 10(-3) micrometer sec-1 cm H2O-1. There was no correlation between sigma for myoglobin and Lp. 4. The method of Curry, Mason & Michel (1976) was used to measure sigma for urea in eight capillaries at 20-24 degrees C (sigma for albumin was also measured in two of these vessels). The mean value of sigma for urea was 0.061 (S.E. of mean +/- 0.012). The exclusive water channel (Curry et al. 1976) was calculated to have a value of 0.209 x 10(-3) micrometer sec-1 H2O

  13. Ambulatory blood pressure monitoring in hypertensive adolescents.

    PubMed

    Fixler, D E; Wallace, J M; Thornton, W E; Dimmitt, P

    1990-04-01

    The purpose of this study was to determine the ability of ambulatory blood pressure monitoring to identify youths with chronic blood pressure elevation. Nineteen adolescent boys were studied, ten had 5-year average systolic or diastolic pressures above the 95th percentile, nine had normal pressure. A Del Mar Avionics Pressurometer III system recorded an average of 121 readings on each subject. The coefficients of variation for pressure were similar for hypertensive and normotensive individuals. During classes, eight of the ten hypertensive youths had elevated pressures in over half of the measurements. Also during these classes eight of ten hypertensive boys had average systolic or diastolic pressure above the 95th percentile, whereas only one of nine normotensive boys had average pressures above this level. We suggest that schooltime ambulatory pressures may be most useful in classifying the blood pressure trend in a youth. PMID:2346634

  14. High pressure pulsed capillary viscometry

    NASA Technical Reports Server (NTRS)

    Smith, R. L.; Walowitt, J. A.; Pan, C. H. T.

    1972-01-01

    An analytical and test program was conducted in order to establish the feasibility of a multichamber pulsed-capillary viscometer. The initial design incorporated a piston, ram, and seals which produced measured pulses up to 30,000 psi in the closed chamber system. Pressure pulses from one to ten milliseconds were investigated in a system volume of 1 cuin. Four test fluids: a MIL-L-7808, a 5P4E polyphenyl ether, a MIL-L-23699A, and a synthetic hydrocarbon were examined in the test pressure assembly. The pressure-viscosity coefficient and viscosity delay time were determined for the MIL-L-7808 lubricant tested.

  15. Commentary on Coefficient Alpha: A Cautionary Tale

    ERIC Educational Resources Information Center

    Green, Samuel B.; Yang, Yanyun

    2009-01-01

    The general use of coefficient alpha to assess reliability should be discouraged on a number of grounds. The assumptions underlying coefficient alpha are unlikely to hold in practice, and violation of these assumptions can result in nontrivial negative or positive bias. Structural equation modeling was discussed as an informative process both to…

  16. Radiometer gives true absorption and emission coefficients

    NASA Technical Reports Server (NTRS)

    Fymat, A. L.

    1977-01-01

    Novel radiometer, unaffected by scattering and polarization, measures true absorption and emmission coefficients for arbitrary mixture of gases and polluting particles. It has potential astronomical, meteorological, and environmental applications, such as determination of radiative heat budget, aerosol relative concentration, and morphology of cloud, haze, and fog formations. Data and temperature can be coupled directly to small computer for online calculation of radiation coefficients.

  17. On Burnett coefficients in periodic media

    NASA Astrophysics Data System (ADS)

    Conca, Carlos; Orive, Rafael; Vanninathan, Muthusamy

    2006-03-01

    The aim of this work is to demonstrate a curious property of general periodic structures. It is well known that the corresponding homogenized matrix is positive definite. We calculate here the next order Burnett coefficients associated with such structures. We prove that these coefficients form a tensor which is negative semidefinite. We also provide some examples showing degeneracy in multidimension.

  18. Coefficient Alpha and Reliability of Scale Scores

    ERIC Educational Resources Information Center

    Almehrizi, Rashid S.

    2013-01-01

    The majority of large-scale assessments develop various score scales that are either linear or nonlinear transformations of raw scores for better interpretations and uses of assessment results. The current formula for coefficient alpha (a; the commonly used reliability coefficient) only provides internal consistency reliability estimates of raw…

  19. Implications of NGA for NEHRP site coefficients

    USGS Publications Warehouse

    Borcherdt, Roger D.

    2012-01-01

    Three proposals are provided to update tables 11.4-1 and 11.4-2 of Minimum Design Loads for Buildings and Other Structures (7-10), by the American Society of Civil Engineers (2010) (ASCE/SEI 7-10), with site coefficients implied directly by NGA (Next Generation Attenuation) ground motion prediction equations (GMPEs). Proposals include a recommendation to use straight-line interpolation to infer site coefficients at intermediate values of ̅vs (average shear velocity). Site coefficients are recommended to ensure consistency with ASCE/SEI 7-10 MCER (Maximum Considered Earthquake) seismic-design maps and simplified site-specific design spectra procedures requiring site classes with associated tabulated site coefficients and a reference site class with unity site coefficients. Recommended site coefficients are confirmed by independent observations of average site amplification coefficients inferred with respect to an average ground condition consistent with that used for the MCER maps. The NGA coefficients recommended for consideration are implied directly by the NGA GMPEs and do not require introduction of additional models.

  20. A gain-coefficient switched Alexandrite laser

    NASA Astrophysics Data System (ADS)

    Lee, Chris J.; van der Slot, Peter J. M.; Boller, Klaus-J.

    2013-01-01

    We report on a gain-coefficient switched Alexandrite laser. An electro-optic modulator is used to switch between high and low gain states by making use of the polarization dependent gain of Alexandrite. In gain-coefficient switched mode, the laser produces 85 ns pulses with a pulse energy of 240 mJ at a repetition rate of 5 Hz.

  1. Diffusion coefficients of several aqueous alkanolamine solutions

    SciTech Connect

    Snijder, E.D.; Riele, M.J.M. te; Versteeg, G.F.; Swaaij, W.P.M. van . Dept. of Chemical Engineering)

    1993-07-01

    In absorption processes of acid gases (H[sub 2]S, CO[sub 2], COS) in alkanolamine solutions, diffusion coefficients are used for the calculation of the mass transfer rate. The Taylor dispersion technique was applied for the determination of diffusion coefficients of various systems. Experiments with the system KCl in water showed that the experimental setup provides accurate data. For the alkanolamines monoethanolamine (MEA), diethanolamine (DEA), methyldiethanolamine (MDEA), and di-2-propanolamine (DIPA), correlations for the diffusion coefficient as a function of temperature at different concentrations are given. A single relation for every amine has been derived which correlates the diffusion coefficients as a function of temperature and concentration. The temperature was varied between 298 and 348 K, and the concentration between 0 and 4000-5000 mol/m[sup 3]. Furthermore, a modified Stokes-Einstein relation is presented for the prediction of the diffusion coefficients in the alkanolamines in relation to the viscosity of the solvent and the diffusion coefficient at infinite dilution. The diffusion coefficients at low concentrations are compared with some available relations for the estimation of diffusion coefficients at infinite dilution, and it appears that the agreement is fairly good.

  2. Coefficient Alpha Bootstrap Confidence Interval under Nonnormality

    ERIC Educational Resources Information Center

    Padilla, Miguel A.; Divers, Jasmin; Newton, Matthew

    2012-01-01

    Three different bootstrap methods for estimating confidence intervals (CIs) for coefficient alpha were investigated. In addition, the bootstrap methods were compared with the most promising coefficient alpha CI estimation methods reported in the literature. The CI methods were assessed through a Monte Carlo simulation utilizing conditions…

  3. Calculator program set up for film coefficients

    SciTech Connect

    Gracey, J.O.; Teter, D.L.

    1982-11-15

    Describes a mechanized computation scheme for the film coefficients used in heat transfer calculations designed for the Texas Instruments TI-59 programmable calculator. Presents tables showing application conditions (small diagram included) and the corresponding heat transfer equations for 10 heat flow situations; symbols used; user instructions, a complete film coefficient program; and storage assignments. Example problem and corresponding printout are given.

  4. Code System to Calculate Correlation & Regression Coefficients.

    Energy Science and Technology Software Center (ESTSC)

    1999-11-23

    Version 00 PCC/SRC is designed for use in conjunction with sensitivity analyses of complex computer models. PCC/SRC calculates the partial correlation coefficients (PCC) and the standardized regression coefficients (SRC) from the multivariate input to, and output from, a computer model.

  5. Seebeck Coefficient Metrology: Do Contemporary Protocols Measure Up?

    NASA Astrophysics Data System (ADS)

    Martin, Joshua; Wong-Ng, Winnie; Green, Martin L.

    2015-06-01

    Comparative measurements of the Seebeck coefficient are challenging due to the diversity of instrumentation and measurement protocols. With the implementation of standardized measurement protocols and the use of Standard Reference Materials (SRMs®), for example, the recently certified National Institute of Standards and Technology (NIST) SRM® 3451 ``Low Temperature Seebeck Coefficient Standard (10-390 K)'', researchers can reliably analyze and compare data, both intra- and inter-laboratory, thereby accelerating the development of more efficient thermoelectric materials and devices. We present a comparative overview of commonly adopted Seebeck coefficient measurement practices. First, we examine the influence of asynchronous temporal and spatial measurement of electric potential and temperature. Temporal asynchronicity introduces error in the absolute Seebeck coefficient of the order of ≈10%, whereas spatial asynchronicity introduces error of the order of a few percent. Second, we examine the influence of poor thermal contact between the measurement probes and the sample. This is especially critical at high temperature, wherein the prevalent mode of measuring surface temperature is facilitated by pressure contact. Each topic will include the comparison of data measured using different measurement techniques and using different probe arrangements. We demonstrate that the probe arrangement is the primary limit to high accuracy, wherein the Seebeck coefficients measured by the 2-probe arrangement and those measured by the 4-probe arrangement diverge with the increase in temperature, approaching ≈14% at 900 K. Using these analyses, we provide recommended measurement protocols to guide members of the thermoelectric materials community in performing more accurate measurements and in evaluating more comprehensive uncertainty limits.

  6. An agreement coefficient for image comparison

    USGS Publications Warehouse

    Ji, L.; Gallo, K.

    2006-01-01

    Combination of datasets acquired from different sensor systems is necessary to construct a long time-series dataset for remotely sensed land-surface variables. Assessment of the agreement of the data derived from various sources is an important issue in understanding the data continuity through the time-series. Some traditional measures, including correlation coefficient, coefficient of determination, mean absolute error, and root mean square error, are not always optimal for evaluating the data agreement. For this reason, we developed a new agreement coefficient for comparing two different images. The agreement coefficient has the following properties: non-dimensional, bounded, symmetric, and distinguishable between systematic and unsystematic differences. The paper provides examples of agreement analyses for hypothetical data and actual remotely sensed data. The results demonstrate that the agreement coefficient does include the above properties, and therefore is a useful tool for image comparison. ?? 2006 American Society for Photogrammetry and Remote Sensing.

  7. Justification for change in AXAIR dispersion coefficients

    SciTech Connect

    Simpkins, A.A.

    1994-02-01

    AXAIR is the primary dose assessment code used at the Savannah River Site (SRS) to predict doses following hypothetical releases of relatively short durations. The atmospheric dispersion coefficients currently used in AXAIR are analytical expressions developed to fit the curves in the Turner Workbook as referred to in USNRC Regulatory Guide 1.145. This report explores the ramifications and benefits of changing the dispersion coefficients to a combination of Pasquill`s lateral dispersion coefficients and Briggs` vertical dispersion coefficients. The differences in the dispersion coefficients have a minor effect on the relative air concentrations for stability classes A--D, but a significant difference is seen for classes E, F, and G.

  8. Analytic structure of one-loop coefficients

    NASA Astrophysics Data System (ADS)

    Feng, Bo; Wang, Honghui

    2013-05-01

    By the unitarity cut method, analytic expressions of one-loop coefficients have been given in spinor forms. In this paper, we present one-loop coefficients of various bases in Lorentz-invariant contraction forms of external momenta. Using these forms, the analytic structure of these coefficients becomes manifest. Firstly, coefficients of bases contain only second-type singularities while the first-type singularities are included inside scalar bases. Secondly, the highest degree of each singularity is correlated with the degree of the inner momentum in the numerator. Thirdly, the same singularities will appear in different coefficients, thus our explicit results could be used to provide a clear physical picture under various limits (such as soft or collinear limits) when combining contributions from all bases.

  9. Influence of gas humidity on the reflection coefficient of multilayer dielectric mirrors.

    PubMed

    Serdyukov, V I; Sinitsa, L N; Lugovskoi, A A

    2016-06-10

    The influence of water vapor on the reflection coefficient of multilayer mirrors was studied using a gas cell with multiple reflections from the mirrors. A strong change in the reflection coefficient of the mirrors (up to 0.9%) was found when water vapor under a pressure of 23 mbar was injected into the cell, which was interpreted as a change in the refraction index of the layers of multilayer coatings when water vapor penetrated into the porous coating structure. PMID:27409037

  10. Pressure diffusion waves in porous media

    SciTech Connect

    Silin, Dmitry; Korneev, Valeri; Goloshubin, Gennady

    2003-04-08

    Pressure diffusion wave in porous rocks are under consideration. The pressure diffusion mechanism can provide an explanation of the high attenuation of low-frequency signals in fluid-saturated rocks. Both single and dual porosity models are considered. In either case, the attenuation coefficient is a function of the frequency.

  11. Non-local thermodynamic equilibrium effects on isentropic coefficient in argon and helium thermal plasmas

    SciTech Connect

    Sharma, Rohit; Singh, Kuldip

    2014-03-15

    In the present work, two cases of thermal plasma have been considered; the ground state plasma in which all the atoms and ions are assumed to be in the ground state and the excited state plasma in which atoms and ions are distributed over various possible excited states. The variation of Zγ, frozen isentropic coefficient and the isentropic coefficient with degree of ionization and non-equilibrium parameter θ(= T{sub e}/T{sub h}) has been investigated for the ground and excited state helium and argon plasmas at pressures 1 atm, 10 atm, and 100 atm in the temperature range from 6000 K to 60 000 K. For a given value of non-equilibrium parameter, the relationship of Zγ with degree of ionization does not show any dependence on electronically excited states in helium plasma whereas in case of argon plasma this dependence is not appreciable till degree of ionization approaches 2. The minima of frozen isentropic coefficient shifts toward lower temperature with increase of non-equilibrium parameter for both the helium and argon plasmas. The lowering of non-equilibrium parameter decreases the frozen isentropic coefficient more emphatically in helium plasma at high pressures in comparison to argon plasma. The increase of pressure slightly reduces the ionization range over which isentropic coefficient almost remains constant and it does not affect appreciably the dependence of isentropic coefficient on non-equilibrium parameter.

  12. Cavitation study of a pump-turbine at turbine mode with critical cavitation coefficient condition

    NASA Astrophysics Data System (ADS)

    Wang, J.; Yang, D.; Xu, J. W.; Liu, J. T.; Jiao, L.

    2016-05-01

    To study the cavitation phenomenon of a pump-turbine at turbine mode when it ran at the critical cavitation coefficient condition, a high-head model pump-turbine was disperse using hexahedron grid. Three dimensional, steady cavitating flow was numerically studied using SST k-ω model. It is confirmed that ZGB cavitation model and SST k-ω model are useful ways to study the two-phase cavitation flow in pump-turbine. Mass flow inlet and pressure outlet were specified at the casing inlet and draft tube outlet, respectively. The static pressure was set according to the cavitation coefficient. The steady cavitating flows at critical cavitation coefficient condition were analysed. The cavitation area in the runner was investigated. It was found that the pressure of the suction on the blade surface was decreasing gradually with the decrease of the cavitation coefficient. In addition, the vortex flow in the draft tube was observed at the critical cavitation coefficient. It was found that the vortex flow appeared at the center of the draft tube inlet with the decreasing of the cavitation coefficient. Compared with the experimental data, the simulation results show reasonable agreement with the experimental data.

  13. Experimental determination of the distributed dynamic coefficients for a hydrodynamic fluid film bearing

    NASA Astrophysics Data System (ADS)

    Gyurko, John Harrison

    Most current rotor bearing analysis utilizes lumped parameter bearing coefficients to model the static and dynamic characteristics of fluid film bearings. By treating the stiffness and damping properties of the fluid film as acting upon the axial centerline of the rotor, these models are limited in their analysis to first order lateral rotor-bearing motion. The development of numerical methods that distribute the dynamic properties of the fluid film around the bearing circumference allow for higher order analysis of the motion between the bearing and rotor. Assessment of the accuracy of the numerical method used to calculate distributed dynamic fluid film bearing coefficients is performed by developing a novel hydrodynamic journal bearing test rig and experimental testing procedure capable of obtaining measured distributed dynamic coefficients over a range of bearing operating conditions. The instrumented bearing test rig is used to measure the dynamic bearing displacement and fluid film pressure responses from application of an externally applied excitation force. Least squares solution to a system of perturbated pressure equations, populated by measured displacement and pressure responses, is used to determine the hydrodynamic stiffness and damping properties for a finite region of the bearing surface. Incremental rotation of pressure sensors embedded in the body of the test bearing allow for measurement of the fluid film circumferential pressure distribution which is used to calculate a set of experimentally determined dynamic bearing coefficients. Distributed bearing coefficients derived from experimental measurements are compared to numerically calculated distributed coefficients as well as to lumped parameter coefficients generated from experimental and numerical methods found in the literature. Overall, the numerically calculated distributed coefficients successfully model both the circumferential distribution and the operating conditions of the experimental

  14. Evaluation of Dimensionality in the Assessment of Internal Consistency Reliability: Coefficient Alpha and Omega Coefficients

    ERIC Educational Resources Information Center

    Green, Samuel B.; Yang, Yanyun

    2015-01-01

    In the lead article, Davenport, Davison, Liou, & Love demonstrate the relationship among homogeneity, internal consistency, and coefficient alpha, and also distinguish among them. These distinctions are important because too often coefficient alpha--a reliability coefficient--is interpreted as an index of homogeneity or internal consistency.…

  15. Low-speed aerodynamic characteristics of an airfoil optimized for maximum lift coefficient

    NASA Technical Reports Server (NTRS)

    Bingham, G. J.; Chen, A. W.

    1972-01-01

    An investigation has been conducted in the Langley low-turbulence pressure tunnel to determine the two-dimensional characteristics of an airfoil optimized for maximum lift coefficient. The design maximum lift coefficient was 2.1 at a Reynolds number of 9.7 million. The airfoil with a smooth surface and with surface roughness was tested at angles of attack from 6 deg to 26 deg, Reynolds numbers (based on airfoil chord) from 2.0 million to 12.9 million, and Mach numbers from 0.10 to 0.35. The experimental results are compared with values predicted by theory. The experimental pressure distributions observed at angles of attack up to at least 12 deg were similar to the theoretical values except for a slight increase in the experimental upper-surface pressure coefficients forward of 26 percent chord and a more severe gradient just behind the minimum-pressure-coefficient location. The maximum lift coefficients were measured with the model surface smooth and, depending on test conditions, varied from 1.5 to 1.6 whereas the design value was 2.1.

  16. Hydraulic forces caused by annular pressure seals in centrifugal pumps

    NASA Technical Reports Server (NTRS)

    Iino, T.; Kaneko, H.

    1980-01-01

    The hydraulic forces caused by annular pressure seals were investigated. The measured inlet and exit loss coefficients of the flow through the seals were much smaller than the conventional values. The results indicate that the damping coefficient and the inertia coefficient of the fluid film in the seal are not affected much by the rotational speed or the eccentricity of the rotor, though the stiffness coefficient seemed to be influenced by the eccentricity.

  17. Spin Diffusion Coefficient of A1-PHASE of Superfluid 3He at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Afzali, R.; Pashaee, F.

    The spin diffusion coefficient tensor of the A1-phase of superfluid 3He at low temperatures and melting pressure is calculated using the Boltzmann equation approach and Pfitzner procedure. Then considering Bogoliubov-normal interaction, we show that the total spin diffusion is proportional to 1/T2, the spin diffusion coefficient of superfluid component D\\uparrowxzxz is proportional to T-2, and the spin diffusion coefficient of super-fluid component D\\uparrowxxxx (=D\\uarrowxyxy) is independent of temperature. Furthermore, it is seen that superfluid components play an important role in spin diffusion of the A1-phase.

  18. Theory versus experiment for the rotordynamic coefficients of annular gas seals. I - Test facility and apparatus

    NASA Technical Reports Server (NTRS)

    Childs, D. W.; Nelson, C. E.; Nicks, C.; Scharrer, J.; Elrod, D.

    1985-01-01

    A facility and apparatus are described for determining the rotordynamic coefficients and leakage characteristics of annular gas seals. The coefficients and leakage characteristics of annular gas seals. The apparatus has a current top speed of 8000 cpm with a nominal seal diameter of 15.24 cmn (6 in.). The air supply unit yields a seal pressure ratio of approximately 7. An external shaker is used to excite the test rotor. The capability to independently calculate all rotordynamic coefficients at a given operating condition with one excitation frequency are discussed.

  19. In Situ Raman Spectroscopic Study of the Diffusion Coefficients and Solubility:Indicates to Carbon Dioxide Injection into Hexadecane

    NASA Astrophysics Data System (ADS)

    Wu, Dan; Lu, Wanjun

    2015-04-01

    Injecting CO2 into lean-oil reservoirs is not only a way to geological storage but also enhanced oil recovery. In the secondary displacements of oil reservoir by CO2-injection, diffusion coefficients and solubility of CO2 are key parameters to calculate the volume of CO2 injected and the time to achieve the desired viscosity in the numerical simulation. Unfortunately, the experimental data on the CO2 diffusion coefficient and solubility in liquid hydrocarbons under high pressure conditions are scarce. Hexadecane has properties similar to the average properties of Brazilian heavy oil. Experimental data on the diffusion coefficients and solubility of CO2 in hexadecane were reviewed by Nieuwoudt and Rand (2002), Rincon and Trejo (2001) and Breman et al (1994), indicating that the data in the literature were limited at relatively low temperatures and/or low pressures. In this paper, the diffusion coefficients of carbon dioxide in hexadecane at different temperature and pressure were determined with in situ Raman spectroscopy. A model was established to describe relationship among diffusion coefficients, temperature, and pressure. The solubility of CO2 in hexadecane was obtained from 298.15 to 473.15 K and 10 to 45 MPa. The experimental results show that:(1) Solubility of CO2 decreases with increasing temperature.(2) Increasing pressure increases the CO2 solubility. in terms of the degree of influence,100K is similar with 10MPa.(3) Diffusion coefficients of CO2 increases with increasing temperature. (4) Increasing pressure decreases the CO2 diffusion coefficients, whereas the pressure effect on CO2 diffusion coefficients is very weak. Compared with traditional sampling and analytical methods, the advantages of our method include: (1) the use of in situ Raman signals for solubility measurements eliminates possible uncertainty caused by sampling and ex situ analysis. (2) it is simple and efficient, and (3) high-pressure data can be obtained safely.

  20. Spreading coefficients of aliphatic hydrocarbons on water

    SciTech Connect

    Takii, Taichi; Mori, Y.H. . Dept. of Mechanical Engineering)

    1993-11-01

    Experiments have been performed to determine the equilibrium spreading coefficients of some aliphatic hydrocarbons (C[sub 6]C[sub 10]) on water. The thickness of a discrete lens of each hydrocarbon sample floating on a stagnant water pool was measured interferometrically and used to calculate the spreading coefficient of the hydrocarbon with the aid of Langmuir's capillarity theory. The dependences of the spreading coefficient, thus observed, on temperature (0--50 C) and on the number of carbon atoms in the hydrocarbon molecule are in qualitative agreement with the predictions based on the Lifshitz theory of van der Waals forces.

  1. On the emission coefficient of uranium plasmas.

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.; Campbell, H. D.; Mack, J. M.

    1973-01-01

    The emission coefficient for uranium plasmas (temperature: 8000 K) was measured for the wavelength range from 1200 to 6000 A. The results were compared to theoretical calculations and other measurements. Reasonable agreement between theoretical predictions and our measurements was found in the region from 1200 to 2000 A. Although it was difficult to make absolute comparisons among the different reported measurements, considerable disagreement was found for the higher wavelength region. A short discussion regarding the overall comparisons is given, and final suggestions are made as to the most appropriate emission coefficient values to be used in future design calculations. The absorption coefficient for the same wavelength interval is also reported.

  2. Determination of absorption coefficients of thin films

    SciTech Connect

    Lodenquai, J.F. )

    1994-08-01

    The equations that are usually presented as those used to determine the absorption coefficients of materials in film form based on measurements of transmission and reflection coefficients are fundamentally incorrect. These equations omit a multiplicative factor arising from the complex nature of the refractive indices of the materials. This factor enters explicitly into the relationship between the transmission and reflection coefficients for such materials and is not necessarily close to unity, although in practice this factor can be approximated by unity at least in the infrared through the optical range of wavelengths.

  3. Diffuse reflection coefficient of a stratified sea.

    PubMed

    Haltrin, V I

    1999-02-20

    A differential equation of a Riccati type for the diffuse reflection coefficient of a stratified sea is proposed. For a homogeneous sea with arbitrary inherent optical properties this equation is solved analytically. For an inhomogeneous sea it is solved approximately for any arbitrary stratification. The resulting equation expresses the diffuse reflection coefficient of the sea through vertical profiles of absorption and backscattering coefficients, bottom albedo, and sea depth. The results of calculations with this equation are compared with Monte Carlo computations. It was found that the precision of this approach is in the range of 15%. PMID:18305694

  4. Generalized Coefficients for Hopf Cyclic Cohomology

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Mohammad; Kucerovsky, Dan; Rangipour, Bahram

    2014-09-01

    A category of coefficients for Hopf cyclic cohomology is defined. It is shown that this category has two proper subcategories of which the smallest one is the known category of stable anti Yetter-Drinfeld modules. The middle subcategory is comprised of those coefficients which satisfy a generalized SAYD condition depending on both the Hopf algebra and the (co)algebra in question. Some examples are introduced to show that these three categories are different. It is shown that all components of Hopf cyclic cohomology work well with the new coefficients we have defined.

  5. Statistical Methods with Varying Coefficient Models

    PubMed Central

    Fan, Jianqing; Zhang, Wenyang

    2008-01-01

    The varying coefficient models are very important tool to explore the dynamic pattern in many scientific areas, such as economics, finance, politics, epidemiology, medical science, ecology and so on. They are natural extensions of classical parametric models with good interpretability and are becoming more and more popular in data analysis. Thanks to their flexibility and interpretability, in the past ten years, the varying coefficient models have experienced deep and exciting developments on methodological, theoretical and applied sides. This paper gives a selective overview on the major methodological and theoretical developments on the varying coefficient models. PMID:18978950

  6. Soccer ball lift coefficients via trajectory analysis

    NASA Astrophysics Data System (ADS)

    Goff, John Eric; Carré, Matt J.

    2010-07-01

    We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin parameters that have not been obtained by today's wind tunnels. Our trajectory analysis technique is not only a valuable tool for professional sports scientists, it is also accessible to students with a background in undergraduate-level classical mechanics.

  7. Relationship of core-scale heterogeneity with non-Darcy flow coefficients

    SciTech Connect

    Al-Rumhy, M.H.; Kalam, M.Z.

    1996-06-01

    An experimental research program to investigate the effects of liquid saturations upon non-Darcy flow coefficients is presented. the presence of a wetting phase fluid plays an important role in high velocity flow of a gas well, producing condensate or water, and in propped fractures containing liquid saturations. This study initially examines the errors commonly encountered but ignored in evaluating the permeabilities and the coefficient of inertial resistance during the flow of gases through porous media. Experimental techniques, such as constant overburden pressure, changing overburden pressure, forward flow, and backpressure flow, are applied to optimize and obtain accurate evaluations of Klinkenberg parameters and inertial resistance coefficients for a selection of Omani reservoir cores. Gas-slippage factor significantly influences the derived viscous and inertial coefficients from high-velocity gas flow data. An increasing wetting phase saturation increases the non-Darcy coefficient up to thirty-fold. Analysis of the experimental data revealed that unique relationships exist between the non-Darcy flow coefficients and the equivalent liquid permeability, porosity, and liquid saturation. Heterogeneity of the core as mapped by pore-scale measurements provide an insight into the mechanism for such a large increase in the non-Darcy coefficients.

  8. A comparison of experimental and theoretical results for rotordynamic coefficients of four annular gas seals

    NASA Technical Reports Server (NTRS)

    Childs, D. W.; Nelson, C. C.; Elrod, D.; Nicks, C.

    1985-01-01

    The test facility and initial test program developed to experimentally measure the fluid forces induced by annular gas seals is described. A comparison of theoretically predicted and experimentally obtained data for smooth and honeycomb seals is provided. And a comparison of experimental data from the tests of three smooth-rotor/smooth-stator seals is provided. The leakage of the working fluid through the seal, the pressure gradient along the seal length, entrance pressure-loss data, and rotordynamic coefficients provide a basis for comparison. A short discussion on seal theory is included, and various rotordynamic coefficient identification schemes are described.

  9. Effects of Mach Number and Reynolds Number on the Maximum Lift Coefficient of a Wing of NACA 230-series Airfoil Sections

    NASA Technical Reports Server (NTRS)

    Furlong, G. Chester; Fitzpatrick, James E.

    1947-01-01

    Wing was tested with full-span, partial-span, or split flaps deflected 60 Degrees and without flaps. Chordwise pressure-distribution measurements were made for all flap configurations.. Peak values of maximum lift coefficient were obtained at relatively low free-stream Mach numbers and, before critical Mach number was reached, were almost entirely dependent on Reynolds Number. Lift coefficient increased by increasing Mach number or deflecting flaps while critical pressure coefficient was reached at lower free-stream Mach numbers.

  10. Pressure Measurement

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Pressure Systems, Inc.'s DPT 6400 is a system designed to increase productivity in industrial processes where there is a need for making multiple pressure measurements quickly and with high accuracy. It is applicable in controlling industrial processes in plants that are being upgraded to automated status. In order to automate such plants the pressures at the many loops must be measured, converted to digital information and transmitted to the plant's process control computer. The DPT 6400 serves that function. By employing solid-state pressure sensing transducers whose errors are automatically corrected by a microprocessor, it is capable of highly accurate pressure measurements. Basic DPT 6400 has 64 channels, but the system can be expanded to 256 channels by the addition of "slave" units.

  11. Universal relations of transport coefficients from holography

    SciTech Connect

    Cherman, Aleksey; Nellore, Abhinav

    2009-09-15

    We show that there are universal high-temperature relations for transport coefficients of plasmas described by a wide class of field theories with gravity duals. These theories can be viewed as strongly coupled large-N{sub c} conformal field theories deformed by one or more relevant operators. The transport coefficients we study are the speed of sound and bulk viscosity, as well as the conductivity, diffusion coefficient, and charge susceptibility of probe U(1) charges. We show that the sound bound v{sub s}{sup 2}{<=}1/3 is satisfied at high temperatures in these theories and also discuss bounds on the diffusion coefficient, the conductivity, and the bulk viscosity.

  12. Factors affecting miscible flooding dispersion coefficients

    SciTech Connect

    Yellig, W.F.; Baker, L.E.

    1980-01-01

    Miscible solvent slug size, and therefore cost, is dependent on the mixing or dispersion taking place in the reservoir. Fluid mixing also can be important in the interpretation of laboratory simulations of miscible floods. An experimental program was conducted to study the effects of velocity, viscosity ratio, rock type, and core length on dispersion (mixing) coefficients measured in short cores, with the objective of scaling laboratory measurements to field systems. Statistical analysis of the results of the tests, matched with the capacitance-dispersion (dead-end pore volume) model, shows that an effective dispersion coefficient derived from the model is the most consistent measure of mixing in the systems studied. Viscosity ratios differing by + 4% from unity had no significant effect on the effective dispersion coefficient. The effect of system length on the effective dispersion coefficient is shown.

  13. Transonic Blunt Body Aerodynamic Coefficients Computation

    NASA Astrophysics Data System (ADS)

    Sancho, Jorge; Vargas, M.; Gonzalez, Ezequiel; Rodriguez, Manuel

    2011-05-01

    In the framework of EXPERT (European Experimental Re-entry Test-bed) accurate transonic aerodynamic coefficients are of paramount importance for the correct trajectory assessment and parachute deployment. A combined CFD (Computational Fluid Dynamics) modelling and experimental campaign strategy was selected to obtain accurate coefficients. A preliminary set of coefficients were obtained by CFD Euler inviscid computation. Then experimental campaign was performed at DNW facilities at NLR. A profound review of the CFD modelling was done lighten up by WTT results, aimed to obtain reliable values of the coefficients in the future (specially the pitching moment). Study includes different turbulence modelling and mesh sensitivity analysis. Comparison with the WTT results is explored, and lessons learnt are collected.

  14. Friction coefficient dependence on electrostatic tribocharging

    PubMed Central

    Burgo, Thiago A. L.; Silva, Cristiane A.; Balestrin, Lia B. S.; Galembeck, Fernando

    2013-01-01

    Friction between dielectric surfaces produces patterns of fixed, stable electric charges that in turn contribute electrostatic components to surface interactions between the contacting solids. The literature presents a wealth of information on the electronic contributions to friction in metals and semiconductors but the effect of triboelectricity on friction coefficients of dielectrics is as yet poorly defined and understood. In this work, friction coefficients were measured on tribocharged polytetrafluoroethylene (PTFE), using three different techniques. As a result, friction coefficients at the macro- and nanoscales increase many-fold when PTFE surfaces are tribocharged, but this effect is eliminated by silanization of glass spheres rolling on PTFE. In conclusion, tribocharging may supersede all other contributions to macro- and nanoscale friction coefficients in PTFE and probably in other insulating polymers. PMID:23934227

  15. Second coefficient of viscosity in air

    NASA Technical Reports Server (NTRS)

    Ash, Robert L.; Zuckerwar, Allan J.; Zheng, Zhonquan

    1991-01-01

    Acoustic attenuation measurements in air were analyzed in order to estimate the second coefficient of viscosity. Data over a temperature range of 11 C to 50 C and at relative humidities between 6 percent and 91 percent were used. This analysis showed that the second coefficient of viscosity varied between 1900 and 20,000 times larger than the dynamic or first coefficient of viscosity over the temperature and humidity range of the data. In addition, the data showed that the molecular relaxation effects, which are responsible for the magnitude of the second coefficient of viscosity, place severe limits on the use of time-independent, thermodynamic equations of state. Compressible flows containing large streamwise velocity gradients, like shock waves, which cause significant changes in particle properties to occur during time intervals shorter than hundredths of seconds, must be modeled using dynamic equations of state. The dynamic model approach is described briefly.

  16. On computing Laplace's coefficients and their derivatives.

    NASA Astrophysics Data System (ADS)

    Gerasimov, I. A.; Vinnikov, E. L.

    The algorithm of computing Laplace's coefficients and their derivatives is proposed with application of recurrent relations. The A.G.M.-method is used for the calculation of values L0(0), L0(1). The FORTRAN-program corresponding to the algorithm is given. The precision control was provided with numerical integrating by Simpsons method. The behavior of Laplace's coefficients and their third derivatives whith varying indices K, n for fixed values of the α-parameter is presented graphically.

  17. [Individual pressure tolerance--a "target" pressure?].

    PubMed

    Bogdănici, C; Vancea, P P

    1999-01-01

    In literature there are many meanings for the limit between normal and pathological intraocular pressure: "normative pressure", "critic pressure", "individual tolerance pressure" and "target pressure". The aim of this paper is to demonstrate that these terms are synonymous. PMID:10756882

  18. Experimental Mg IX photorecombination rate coefficient

    NASA Astrophysics Data System (ADS)

    Schippers, S.; Schnell, M.; Brandau, C.; Kieslich, S.; Müller, A.; Wolf, A.

    2004-07-01

    The rate coefficient for radiative and dielectronic recombination of beryllium-like magnesium ions was measured with high resolution at the Heidelberg heavy-ion storage ring TSR. In the electron-ion collision energy range 0-207 eV resonances due to 2s -> 2p (Δ N = 0) and 2s -> 3l (Δ N=1) core excitations were detected. At low energies below 0.15 eV the recombination rate coefficient is dominated by strong 1s2 (2s 2p 3P) 7l resonances with the strongest one occuring at an energy of only 21 meV. These resonances decisively influence the Mg IX recombination rate coefficient in a low temperature plasma. The experimentally derived Mg IX dielectronic recombination rate coefficient (±15% systematical uncertainty) is compared with the recommendation by Mazzotta et al. (1998, A&AS, 133, 403) and the recent calculations by Gu (2003, ApJ, 590, 1131) and by Colgan et al. (2003, A&A, 412, 597). These results deviate from the experimental rate coefficient by 130%, 82% and 25%, respectively, at the temperature where the fractional abundance of Mg IX is expected to peak in a photoionized plasma. At this temperature a theoretical uncertainty in the 1s2 (2s 2p 3P) 7l resonance positions of only 100 meV would translate into an uncertainty of the plasma rate coefficient of almost a factor 3. This finding emphasizes that an accurate theoretical calculation of the Mg IX recombination rate coefficient from first principles is challenging.

  19. Quantitative Ultrasound Imaging Using Acoustic Backscatter Coefficients.

    NASA Astrophysics Data System (ADS)

    Boote, Evan Jeffery

    Current clinical ultrasound scanners render images which have brightness levels related to the degree of backscattered energy from the tissue being imaged. These images offer the interpreter a qualitative impression of the scattering characteristics of the tissue being examined, but due to the complex factors which affect the amplitude and character of the echoed acoustic energy, it is difficult to make quantitative assessments of scattering nature of the tissue, and thus, difficult to make precise diagnosis when subtle disease effects are present. In this dissertation, a method of data reduction for determining acoustic backscatter coefficients is adapted for use in forming quantitative ultrasound images of this parameter. In these images, the brightness level of an individual pixel corresponds to the backscatter coefficient determined for the spatial position represented by that pixel. The data reduction method utilized rigorously accounts for extraneous factors which affect the scattered echo waveform and has been demonstrated to accurately determine backscatter coefficients under a wide range of conditions. The algorithms and procedures used to form backscatter coefficient images are described. These were tested using tissue-mimicking phantoms which have regions of varying scattering levels. Another phantom has a fat-mimicking layer for testing these techniques under more clinically relevant conditions. Backscatter coefficient images were also formed of in vitro human liver tissue. A clinical ultrasound scanner has been adapted for use as a backscatter coefficient imaging platform. The digital interface between the scanner and the computer used for data reduction are described. Initial tests, using phantoms are presented. A study of backscatter coefficient imaging of in vivo liver was performed using several normal, healthy human subjects.

  20. Pressure Drop

    NASA Technical Reports Server (NTRS)

    Lawson, Mike

    2010-01-01

    Mike Lawson briefly discussed pressure drop for aerospace applications and presented short stories about adventures experienced while working at NASA and General Dynamics, including exposure to technologies like the Crew and Equipment Translation Aid (CETA) cart and the SWME.

  1. Peer Pressure

    MedlinePlus

    ... and behaviors. This is often positive — it's human nature to listen to and learn from other people ... Responding to peer pressure is part of human nature — but some people are more likely to give ...

  2. Pressure sensor

    SciTech Connect

    Mee, David K.; Ripley, Edward B.; Nienstedt, Zachary C.; Nienstedt, Alex W.; Howell, Jr., Layton N.

    2015-09-29

    Disclosed is a passive, in-situ pressure sensor. The sensor includes a sensing element having a ferromagnetic metal and a tension inducing mechanism coupled to the ferromagnetic metal. The tension inducing mechanism is operable to change a tensile stress upon the ferromagnetic metal based on a change in pressure in the sensing element. Changes in pressure are detected based on changes in the magnetic switching characteristics of the ferromagnetic metal when subjected to an alternating magnetic field caused by the change in the tensile stress. The sensing element is embeddable in a closed system for detecting pressure changes without the need for any penetrations of the system for power or data acquisition by detecting changes in the magnetic switching characteristics of the ferromagnetic metal caused by the tensile stress.

  3. PRESSURE TRANSDUCER

    DOEpatents

    Sander, H.H.

    1959-10-01

    A pressure or mechanical force transducer particularly adaptable to miniature telemetering systems is described. Basically the device consists of a transistor located within a magnetic field adapted to change in response to mechanical force. The conduction characteristics of the transistor in turn vary proportionally with changes in the magnetic flux across the transistor such that the output (either frequency of amplitude) of the transistor circuit is proportional to mechanical force or pressure.

  4. Pressure regulator

    DOEpatents

    Ebeling, Jr., Robert W.; Weaver, Robert B.

    1979-01-01

    The pressure within a pressurized flow reactor operated under harsh environmental conditions is controlled by establishing and maintaining a fluidized bed of uniformly sized granular material of selected density by passing the gas from the reactor upwardly therethrough at a rate sufficient to fluidize the bed and varying the height of the bed by adding granular material thereto or removing granular material therefrom to adjust the backpressure on the flow reactor.

  5. Estimation of soil sorption coefficients using QSARs

    SciTech Connect

    Doucette, W.J.

    1994-12-31

    Sorption coefficients quantitatively describe the extent to which an organic chemical distributes itself between an environmental solid and the aqueous phase that it is contact with at equilibrium. Because of the difficulty and expense associated with measuring sorption coefficients, estimated values are often used in place of site specific, experimental values for fate modeling. Most reported methods for estimating the sorption of organic chemicals onto environmental solids are based on observation that for many organic chemicals, and in particular neutral hydrophobic organics, sorption is directly proportional to the quantity of organic matter associated with the solid. Normalizing soil or sediment specific sorption coefficients to the organic carbon content of the sorbent yields a new ``constant``, Koc, that is considered unique property of the organic chemical being sorbed. Values of Koc are then typically estimated from correlations between Koc and various descriptors of hydrophobicity such as octanol/water partition coefficients (Kow), aqueous solubility (S), molecular connectivity indices (MCIs) and retention times or capacity factors generated by reverse phase high performance liquid chromatography (RP-HPLC). Group contribution methods have also been described. While the so-called ``Koc approach`` for estimating sorption coefficients is most appropriate for neutral, hydrophobic organic chemicals on environmental solids containing a significant amount of organic matter, it has been applied to a wide variety of chemical and soil types. This presentation will focus on a discussion of the Koc approach, its applicability and limitations. A comparison of several widely used methods for estimating Koc will be presented.

  6. Sublimation kinetics and diffusion coefficients of TNT, PETN, and RDX in air by thermogravimetry.

    PubMed

    Hikal, Walid M; Weeks, Brandon L

    2014-07-01

    The diffusion coefficients of explosives are crucial in their trace detection and lifetime estimation. We report on the experimental values of diffusion coefficients of three of the most important explosives in both military and industry: TNT, PETN, and RDX. Thermogravimetric analysis (TGA) was used to determine the sublimation rates of TNT, PETN, and RDX powders in the form of cylindrical billets. The TGA was calibrated using ferrocene as a standard material of well-characterized sublimation rates and vapor pressures to determine the vapor pressures of TNT, PETN, and RDX. The determined sublimation rates and vapor pressures were used to indirectly determine the diffusion coefficients of TNT, PETN, and RDX for the first time. A linear log-log dependence of the diffusion coefficients on temperature is observed for the three materials. The diffusion coefficients of TNT, PETN, and RDX at 273 K were determined to be 5.76×10(-6)m(2)/sec, 4.94×10(-6)m(2)/s, and 5.89×10(-6)m(2)/s, respectively. Values are in excellent agreement with the theoretical values in literature. PMID:24840410

  7. Pressure sensitive conductive rubber blends

    SciTech Connect

    Hassan, H.H. ); Abdel-Bary, E.M. ); El-Mansy, M.K.; Khodair, H.A. )

    1989-12-01

    Butadiene-acrylonitrile rubber (NBR) was blended with polychloroprene (CR) according to standard techniques. The blend was mixed with different concentrations of ZnO. The vulcanized sample was subjected to electrical conductivity ({sigma}) measurements while different values of static pressure were applied on the sample. It was found that samples containing 7.5 phr ZnO showed a reasonable pressure sensitive increase of {sigma}. Furthermore, the {sigma} vs pressure relationship of rubber blend mixed with different concentrations of Fast Extrusion Furnace black (FEF) was investigated. It was found that rubber vulcanizate containing 40 phr FEF resulted in a negative value of the pressure coefficient of conductivity {approx equal} {minus} 4.5 KPa{sup {minus}1}.

  8. Understanding correlation coefficients in treaty verification

    SciTech Connect

    DeVolpi, A.

    1991-11-01

    When a pair of images are compared on a point-by-point basis, the linear-correlation coefficient is usually used as a measure of similarity or dissimilarity. This paper evaluates the theoretical underpinnings and limitation of the linear-correlation coefficient, as well as other related statistics, particularly for cases where inherent white noise is present. As a result of the limitations in linear-correlation, an additional step has been derived -- local-sum clustering -- in order to improve recognition of small dissimilarities in a pair images. Results show that three-stage procedure, consisting of first establishing congruence of the two images, than using the linear-correlation coefficient as a test of true negatives, and finally qualifying a true positive by using the cluster (local-sum) method. These algorithmic stages would be especially useful in arms control treaty verification.

  9. Temperature coefficients of multijunction solar cells

    NASA Technical Reports Server (NTRS)

    Virshup, G. F.; Chung, B.-C.; Ladle Ristow, M.; Kuryla, M. S.; Brinker, D.

    1990-01-01

    Temperature coefficients measured in solar simulators with those measured under AM0 solar illumination are compared to illustrate the challenges in making these measurements. It is shown that simulator measurements of the short-circuit current (delta Jsc/delta T) are inaccurate due to the mismatch between the solar spectrum and the simulators at the bandgaps of the solar cells. Especially susceptible to error is the delta Jsc/delta T of cells which are components in monolithic multijunction solar cells, such as GaAs filtered by 1.93-eV AlGaAs, which has an AM0 coefficient of 6.82 micro-A/sq cm/deg C, compared to a Xenon simulator coefficient of 22.2 micro-A/sq cm/deg C.

  10. Improved Diffusion Coefficients for Stellar Plasmas

    NASA Astrophysics Data System (ADS)

    Brassard, P.; Fontaine, G.

    2014-04-01

    We are currently working on the fourth generation of our codes for building evolutionary and static models of hot subdwarf and white dwarf stars. One of the improvements of these codes consists in an update of all the microphysics involved in the computations. As part of our efforts, we have taken a look at possible improvements for the diffusion coefficients. Since the publication of the widely used diffusion coefficients of Paquette et al. (1986), the number-crunching power of computers has immensely increased, allowing more accurate computations of the triple collision integrals. We have thus produced new tables of diffusion coefficients with higher accuracy and higher resolution than before, of general use in stellar astrophysics.

  11. DEPENDENCE OF NEPHELOMETER SCATTERING COEFFICIENTS ON RELATIVE HUMIDITY: FRONTS, NOCTURNAL DISTURBANCE, AND WOOD SMOKE

    EPA Science Inventory

    The dependence of the nephelometer scattering coefficient of atmospheric air on the relative humidity at the RTP is discussed for four different meteorological examples. These examples feature (1) the passage of a low pressure system with thunderstorms, (2) the passage of a cold,...

  12. Power coefficient of tornado-type wind turbines

    SciTech Connect

    Rangwalla, A.A.; Hsu, C.T.

    1983-11-01

    In a tornado-type wind turbine the wind collecting tower is equipped with adjustable vanes that can be opened on the windward side and closed on the leeward side. The wind enters the tower tangentially through these open vanes and exits from the top. As a result, a vortex is formed inside the tower. A vertical axis turbine which is located underneath the tower floor admits air vertically and exhausts it into the vortex core. The pressure drop in the vortex core can be high, depending upon the vortex concentration, thus enhancing manyfold the total pressure drop across the turbine. The power coefficient C /SUB p/ of this system depends mainly on how low a pressure can be created in the vortex core. A maximum C /SUB p/ of about 2.5 was obtained by Yen for a spiral shaped tower. This is about 6.25 times the C /SUB p/ of conventional windmills. Analytical studies have been carried out by several investigators to study the C /SUB p/ of this vortex machine. Loth considered the conservation of angular momentum and obtained a C /SUB p/ based on the tower frontal area, which is not impressive.

  13. Rotordynamic coefficient test results for a four-stage brush seal

    NASA Astrophysics Data System (ADS)

    Conner, Kelly J.; Childs, Dara W.

    1993-06-01

    Experimental results are presented for the direct and cross-coupled stiffness and direct damping coefficients for a four-stage brush seal. Variable test parameters include the inlet pressure, pressure ratio, shaft speed, fluid prerotation, and seal spacing. Direct damping slightly increases with running speed; otherwise, the rotordynamic coefficients are relatively insensitive to changes in the test parameters. Cross-coupled stiffness is generally unchanged by increasing the inlet tangential velocity to the seals, in contrast to conventional labyrinth seals. Comparisons of test results for the four-stage brush seal with an eight-cavity labyrinth showed superior rotordynamic performance for the brush seal, namely, larger values for direct stiffness and lower values for the (destabilizing) cross-coupled stiffness coefficient.

  14. Online application for the barometric coefficient calculation of the NMDB stations

    NASA Astrophysics Data System (ADS)

    Paschalis, P.; Mavromichalaki, H.; Yanke, V.; Belov, A.; Eroshenko, E.; Gerontidou, M.; Koutroumpi, I.

    2013-02-01

    The primary processing of the neutron monitor data includes all the necessary actions and procedures that each cosmic ray station follows in order to provide the worldwide neutron monitor network with good quality data. One of the main corrections of the primary data is the pressure correction due to the barometric effect. The barometric effect induces variations to the measured data of the neutron monitors which are related to the variations of the local atmospheric pressure of the stations. This correction requires the definition of the barometric coefficient which is calculated experimentally. The accurate calculation of the coefficient is a prerequisite for the quality of the data. This paper presents the implementation of an online tool which calculates the barometric coefficient of a cosmic ray station, by taking advantage of the fact that most stations publish their data on the Neutron Monitor Data Base.

  15. Analysis for leakage and rotordynamic coefficients of surface roughened tapered annular gas seals

    NASA Technical Reports Server (NTRS)

    Nelson, C. C.

    1984-01-01

    In order to soften the effects of rub, the smooth stators of turbine gas seals are sometimes replaced by a honeycomb surface. This deliberately roughened stator and smooth rotor combination retards the seal leakage and may lead to enhanced rotor stability. However, many factors determine the rotordynamic coefficients and little is known as to the effectiveness of these honeycomb seals under various changes in the independent seal parameters. An analytical-computational method to solve for the rotordynamic coefficients of this type of compressible-flow seal is developed. The governing equations for surface roughned tapered annular gas seals are based on a modified Hirs' turbulent bulk flow model. A perturbation analysis is employed to develop zeroth and first-order perturbation equations. These equations are numerically integrated to solve for the leakage, pressure, density, and velocity for small motion of the shaft about the centered position. The resulting pressure distribution is then integrated to find the corresponding rotor-dynamic coefficients.

  16. Diffusion and transport coefficients in synthetic opals

    SciTech Connect

    Sofo, J. O.; Mahan, G. D.

    2000-07-15

    Opals are structures composed of close-packed spheres in the size range of nano to micrometers. They are sintered to create small necks at the points of contact. We have solved the diffusion problem in such structures. The relation between the diffusion coefficient and the thermal and electrical conductivity is used to estimate the transport coefficients of opal structures as a function of the neck size and the mean free path of the carriers. The theory presented is also applicable to the diffusion problem in other periodic structures. (c) 2000 The American Physical Society.

  17. Shear viscosity coefficient of liquid lanthanides

    SciTech Connect

    Patel, H. P. Thakor, P. B. Prajapati, A. V.; Sonvane, Y. A.

    2015-05-15

    Present paper deals with the computation of shear viscosity coefficient (η) of liquid lanthanides. The effective pair potential v(r) is calculated through our newly constructed model potential. The Pair distribution function g(r) is calculated from PYHS reference system. To see the influence of local field correction function, Hartree (H), Tailor (T) and Sarkar et al (S) local field correction function are used. Present results are compared with available experimental as well as theoretical data. Lastly, we found that our newly constructed model potential successfully explains the shear viscosity coefficient (η) of liquid lanthanides.

  18. Virial expansion coefficients in the harmonic approximation.

    PubMed

    Armstrong, J R; Zinner, N T; Fedorov, D V; Jensen, A S

    2012-08-01

    The virial expansion method is applied within a harmonic approximation to an interacting N-body system of identical fermions. We compute the canonical partition functions for two and three particles to get the two lowest orders in the expansion. The energy spectrum is carefully interpolated to reproduce ground-state properties at low temperature and the noninteracting high-temperature limit of constant virial coefficients. This resembles the smearing of shell effects in finite systems with increasing temperature. Numerical results are discussed for the second and third virial coefficients as functions of dimension, temperature, interaction, and transition temperature between low- and high-energy limits. PMID:23005730

  19. Huge Seebeck coefficients in nonaqueous electrolytes

    NASA Astrophysics Data System (ADS)

    Bonetti, M.; Nakamae, S.; Roger, M.; Guenoun, P.

    2011-03-01

    The Seebeck coefficients of the nonaqueous electrolytes tetrabutylammonium nitrate, tetraoctylphosphonium bromide, and tetradodecylammonium nitrate in 1-octanol, 1-dodecanol, and ethylene-glycol are measured in a temperature range from T = 30 °C to T = 45 °C. The Seebeck coefficient is generally of the order of a few hundreds of microvolts per Kelvin for aqueous solution of inorganic ions. Here we report huge values of 7 mV/K at 0.1 M concentration for tetrabutylammonium nitrate in 1-dodecanol. These striking results open the question of unexpectedly large kosmotrope or "structure making" effects of tetraalkylammonium ions on the structure of alcohols.

  20. Friction coefficient of faults inferred from earthquake focal mechanisms

    NASA Astrophysics Data System (ADS)

    Viganò, Alfio; Ranalli, Giorgio; Andreis, Daniele; Martin, Silvana; Rigon, Riccardo

    2013-04-01

    In earthquake mechanics and structural geology the static friction coefficient is usually assumed to have the laboratory value (μ = 0.6-0.8) according to the Coulomb-Byerlee's law. Estimates from deep boreholes and/or natural faults generally confirm this hypothesis but in some cases friction coefficients can be significantly lower, suggesting the existence of weak faults able to be activated by lower effective stress than theoretically expected. We apply a modified version of the method proposed by Yin and Ranalli (1995, Journal of Structural Geology, vol. 17, pp. 1327-1335), where the average friction coefficient of a set of n faults is estimated. This method is based on minimization of the sum of squares of the misfit ratios, where the misfit ratio of each fault is given dividing the misfit stress difference (i.e. the misfit between normalized stress difference and average normalized stress difference) by the average normalized stress difference. The normalized stress difference is defined as the critical stress difference divided by the effective overburden pressure, while the average stress difference is obtained considering the entire fault dataset. Input data are (i) the orientation of faults, (ii) the stress field orientation, and (iii) the stress ratio. The latter two must be independently estimated. A uniform stress field and a similar normalized critical stress difference for the fault dataset are assumed. The procedure has been extended to apply to fault plane solutions by considering both nodal planes of a set of n focal mechanisms and estimating the range of acceptable average friction coefficients from all possible combination of planes (2n number of combinations). The amount of calculation can be considerably reduced if independent information makes it possible to select which one of the nodal planes of each focal mechanism is the true fault plane (for example when aftershocks delineate the fault geometry at depth), resulting in only n combinations

  1. Liquid-Level Monitor for Pressurized Vessels

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Davis, W. T.; Mall, G. H.

    1986-01-01

    Technique for monitoring water levels in pressurized stainless-steel cylinders, based on differences in gamma-ray attenuation coefficients in water and air, developed. Full-scale laboratory prototype system constructed to test technique. Technique usable with liquids other than water, since linear attenuation coefficients for intermediate-energy gamma rays in air considerably lower than in liquids. Also adaptable for continuous monitoring of liquid levels in resevoir systems and in underground storage tanks.

  2. Measurement of molecular diffusion coefficients in supercritical carbon dioxide using a coated capillary column

    SciTech Connect

    Lai, C.C.; Tan, C.S. . Dept. of Chemical Engineering)

    1995-02-01

    Molecular diffusion coefficients of ethyl acetate, toluene, phenol, and caffeine in supercritical carbon dioxide were measured by a chromatographic peak broadening technique in a coated capillary column at temperatures of 308, 318, and 328 K and pressures up to 145 bar. A linear adsorption in the polymer layer coated on the inner wall of the capillary column was observed. The experimentally determined diffusion coefficients showed substantial agreement with those reported in the literature. The diffusion coefficients were in the order of 10[sup [minus]4] cm[sup 2]/s and decreased with increasing carbon dioxide density. Based on the molecular diffusion coefficient data reported here and those published elsewhere, an empirically modified Wilke-Chang equation was proposed which was found to be more quantitative than some existing equations such as the Stokes-Einstein and Wilke-Chang equations.

  3. Impacts of air-sea exchange coefficients on snowfall events over the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Kang, Jung-Yoon; Kwon, Young Cheol

    2016-08-01

    Snowfall over the Korean Peninsula is mainly associated with air mass transformation by the fluxes across the air-sea interface during cold-air outbreaks over the warm Yellow Sea. The heat and momentum exchange coefficients in the surface flux parameterization are key parameters of flux calculations across the air-sea interface. This study investigates the effects of the air-sea exchange coefficients on the simulations of snowfall events over the Korean Peninsula using the Weather Research and Forecasting (WRF) model. Two snowfall cases are selected for this study. One is a heavy snowfall event that took place on January 4, 2010, and the other is a light snowfall event that occurred on December 23-24, 2011. Several sensitivity tests are carried out with increased and decreased heat and momentum exchange coefficients. The domain-averaged precipitation is increased (decreased) with increased (decreased) heat exchange coefficient because the increased (decreased) surface heat flux leads to more (less) moist conditions in the low level of the atmosphere. On the other hand, the domain-averaged precipitation is decreased (increased) with increased (decreased) momentum exchange coefficient because the increased (decreased) momentum coefficient causes reduction (increase) of wind speed and heat flux. The variation of precipitation in the heat exchange coefficient experiments is much larger than that in the momentum exchange coefficient experiments because the change of heat flux has a more direct impact on moisture flux and snowfall amount, while the change of momentum flux has a rather indirect impact via wind speed changes. The low-pressure system is intensified and moves toward North when the heat exchange coefficient is increased because warming and moistening of the lower atmosphere contributes to destabilize the air mass, resulting in the change of precipitation pattern over the Korean Peninsula in the heat exchange coefficient experiments.

  4. Extending the Constant Coefficient Solution Technique to Variable Coefficient Ordinary Differential Equations

    ERIC Educational Resources Information Center

    Mohammed, Ahmed; Zeleke, Aklilu

    2015-01-01

    We introduce a class of second-order ordinary differential equations (ODEs) with variable coefficients whose closed-form solutions can be obtained by the same method used to solve ODEs with constant coefficients. General solutions for the homogeneous case are discussed.

  5. Bitplane Image Coding With Parallel Coefficient Processing.

    PubMed

    Auli-Llinas, Francesc; Enfedaque, Pablo; Moure, Juan C; Sanchez, Victor

    2016-01-01

    Image coding systems have been traditionally tailored for multiple instruction, multiple data (MIMD) computing. In general, they partition the (transformed) image in codeblocks that can be coded in the cores of MIMD-based processors. Each core executes a sequential flow of instructions to process the coefficients in the codeblock, independently and asynchronously from the others cores. Bitplane coding is a common strategy to code such data. Most of its mechanisms require sequential processing of the coefficients. The last years have seen the upraising of processing accelerators with enhanced computational performance and power efficiency whose architecture is mainly based on the single instruction, multiple data (SIMD) principle. SIMD computing refers to the execution of the same instruction to multiple data in a lockstep synchronous way. Unfortunately, current bitplane coding strategies cannot fully profit from such processors due to inherently sequential coding task. This paper presents bitplane image coding with parallel coefficient (BPC-PaCo) processing, a coding method that can process many coefficients within a codeblock in parallel and synchronously. To this end, the scanning order, the context formation, the probability model, and the arithmetic coder of the coding engine have been re-formulated. The experimental results suggest that the penalization in coding performance of BPC-PaCo with respect to the traditional strategies is almost negligible. PMID:26441420

  6. Problems on Divisibility of Binomial Coefficients

    ERIC Educational Resources Information Center

    Osler, Thomas J.; Smoak, James

    2004-01-01

    Twelve unusual problems involving divisibility of the binomial coefficients are represented in this article. The problems are listed in "The Problems" section. All twelve problems have short solutions which are listed in "The Solutions" section. These problems could be assigned to students in any course in which the binomial theorem and Pascal's…

  7. Coefficient Omega Bootstrap Confidence Intervals: Nonnormal Distributions

    ERIC Educational Resources Information Center

    Padilla, Miguel A.; Divers, Jasmin

    2013-01-01

    The performance of the normal theory bootstrap (NTB), the percentile bootstrap (PB), and the bias-corrected and accelerated (BCa) bootstrap confidence intervals (CIs) for coefficient omega was assessed through a Monte Carlo simulation under conditions not previously investigated. Of particular interests were nonnormal Likert-type and binary items.…

  8. Transport coefficients for electrons in Hg vapor

    NASA Astrophysics Data System (ADS)

    Dujko, Sasa; White, Ron; Petrovic, Zoran

    2012-06-01

    Transport coefficients and distribution functions are calculated for electrons in Hg vapor under swarm conditions using a multi term theory for solving the Boltzmann equation, over a range of E/N values and temperatures relevant to lamp discharges. It is shown that for higher E/N the electron distribution is non-thermal for all Hg vapor temperatures considered, and that the speed distribution function significantly deviates from a Maxwellian under these conditions. Our work has been motivated, in part, by recent suggestions that highly accurate data for transport coefficients required as input in fluid models of Hg vapor lamp discharges may significantly improve the existing models. Current models of such lamps require a knowledge of the plasma electrical conductivity, which can be calculated from the cross sections for electron scattering in Hg vapor and mobility coefficients presented in this work. The effect of metastable atoms on the swarm parameters is also discussed. The influence of a magnetic field on electron transport coefficients in Hg vapor is investigated over a range of B/N values and angles between the fields.

  9. A Graphical Interpretation of Probit Coefficients.

    ERIC Educational Resources Information Center

    Becker, William E.; Waldman, Donald M.

    1989-01-01

    Contends that, when discrete choice models are taught, particularly the probit model, it is the method rather than the interpretation of the results that is emphasized. This article provides a graphical technique for interpretation of an estimated probit coefficient that will be useful in statistics and econometrics courses. (GG)

  10. Oxygen atom loss coefficient of carbon nanowalls

    NASA Astrophysics Data System (ADS)

    Mozetic, Miran; Vesel, Alenka; Stoica, Silviu Daniel; Vizireanu, Sorin; Dinescu, Gheorghe; Zaplotnik, Rok

    2015-04-01

    Extremely high values of atomic oxygen loss coefficient on carbon nanowall (CNW) surface are reported. CNW layers consisting of interconnected individual nanostructures with average length of 1.1 μm, average thickness of 66 nm and surface density of 3 CNW/μm2 were prepared by plasma jet enhanced chemical-vapor deposition using C2H2/H2/Ar gas mixtures. The samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), Raman spectrometry (RS) as well as X-ray photoelectron spectroscopy (XPS). The surface loss coefficient was measured at room temperature in a flowing afterglow at different densities of oxygen atoms supplied from inductively coupled radiofrequency O2 plasma. The RF generator operated at 13.56 MHz and different nominal powers up to 900 W corresponding to different O-atom density in the afterglow up to 1.3 × 1021 m-3. CNW and several different samples of known coefficients for heterogeneous surface recombination of neutral oxygen atoms have been placed separately in the afterglow chamber and the O-atom density in their vicinity was measured with calibrated catalytic probes. Comparison of measured results allowed for determination of the loss coefficient for CNWs and the obtained value of 0.59 ± 0.03 makes this material an extremely effective sink for O-atoms.

  11. Phosphorus Availability Coefficients from Various Organic Sources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives of this study were to determine Phosphorus Availability Coefficients (PACs) for a variety of organic phosphorus (P) sources, and to examine the relationship between PACs measured in simulated rainfall runoff and alternative soil incubations. PAC is an important parameter in the P-Ind...

  12. Microcomputer Listens to the Coefficient of Restitution.

    ERIC Educational Resources Information Center

    Smith, P. A.; And Others

    1981-01-01

    Describes a procedure for determining the coefficient of restitution using a microcomputer which collects and sends data to a large computer where analysis is done and graphical output is generated. The data collection hardware and software are described, and results are illustrated. (Author/SK)

  13. A Primer on Partial Correlation Coefficients.

    ERIC Educational Resources Information Center

    Waliczek, Tina M.

    Part and partial correlation coefficients are used to measure the strength of a relationship between a dependent variable and an independent variable while controlling for one or more other variables. The present paper discusses the uses and limitations of partial correlations and presents a small heuristic data set to illustrate the discussion.…

  14. The Seebeck coefficient of superionic conductors

    SciTech Connect

    Mahan, G. D.

    2015-01-28

    We present a theory of the anomalous Seebeck coefficient found in the superionic conductor Cu{sub 2}Se. It has a phase transition at T = 400 K where the cations disorder but the anions do not. This disorder gives a temperature-dependent width to the electronic states in the conduction band. This width provides the anomalous Seebeck contribution.

  15. Uses and Misuses of the Correlation Coefficient.

    ERIC Educational Resources Information Center

    Onwuegbuzie, Anthony J.; Daniel, Larry G.

    The purpose of this paper is to provide an in-depth critical analysis of the use and misuse of correlation coefficients. Various analytical and interpretational misconceptions are reviewed, beginning with the egregious assumption that correlational statistics may be useful in inferring causality. Additional misconceptions, stemming from…

  16. EXAMINATION OF SCALE-DEPENDENT DISPERSION COEFFICIENTS

    EPA Science Inventory

    Many hydrologists have observed that dispersion coefficients, when measured in the field, turn out to be scale-dependent. Recently, Guven, et al., (1983) presented a study which contains a basis for understanding the phenomenon of scale-dependent dispersion within a deterministic...

  17. The Evolution of Pearson's Correlation Coefficient

    ERIC Educational Resources Information Center

    Kader, Gary D.; Franklin, Christine A.

    2008-01-01

    This article describes an activity for developing the notion of association between two quantitative variables. By exploring a collection of scatter plots, the authors propose a nonstandard "intuitive" measure of association; and by examining properties of this measure, they develop the more standard measure, Pearson's Correlation Coefficient. The…

  18. Molecular Diffusion Coefficients: Experimental Determination and Demonstration.

    ERIC Educational Resources Information Center

    Fate, Gwendolyn; Lynn, David G.

    1990-01-01

    Presented are laboratory methods which allow the demonstration and determination of the diffusion coefficients of compounds ranging in size from water to small proteins. Included are the procedures involving the use of a spectrometer, UV cell, triterated agar, and oxygen diffusion. Results including quantification are described. (CW)

  19. High Blood Pressure

    MedlinePlus

    ... version High Blood Pressure Overview What is blood pressure? Blood pressure is the amount of force that your ... called your blood pressure. What is high blood pressure? High blood pressure (also called hypertension) occurs when your blood ...

  20. The dependence of the lipid bilayer membrane: buffer partition coefficient of pentobarbitone on pH and lipid composition.

    PubMed Central

    Miller, K W; Yu, S C

    1977-01-01

    1 The membrane/buffer partition coefficient of [14C]-pentobarbitone has been determined as a function of the lipid composition of bilayer membranes. 2 A new technique based on ultrafiltration gave comparable results to conventional techniques but required less time for equilbration. 3 The membrane/buffer coefficient was independent of pentobarbitone concentration in the range studies. 4 The apparent partition coefficient varied with pH and was a linear function of the degree of dissociation of pentobarbition. 5 Both the charged and uncharged forms of pentobarbitone partitioned into the membrane, the latter to a much greater extent than the former. 6 At low pH the highest partition coefficient observed was in egg phosphatidylcholine bilayer membranes. 7 Incorporation of cholesterol or phosphatidic acid into phosphatidylcholine membranes greatly reduced the partition coefficient. 8 High pressures do not greatly change these partition coefficients. PMID:21013

  1. The porous medium permeability and effective diffusion coefficient direct correlation

    NASA Astrophysics Data System (ADS)

    Markicevic, Bojan

    2012-11-01

    Dimensionless analysis of a momentum and mass transport in the homogeneous porous medium reveals that the permeability and effective to the molecular diffusion coefficient ratio can be expressed as a function of medium pore and throat sizes and two additional geometrical scales. These two scales, each one pertinent to the momentum and mass transport, respectively, are referred to as permeability and diffusivity characteristic scales. Based on these findings, it can be shown that the medium permeability and effective diffusivity can be correlated, and, at the same time, that one microscopic scale needs to be known in this correlation. The same is implied from the Katz-Thompson formula - which correlates the permeability, effective diffusivity, and breakthrough capillary pressure length scale. We recast the correlation developed into the Katz-Thompson formula form, showing how corresponding members are related. It turns out that the coefficient from the Katz-Thompson formula is equal to the ratio of the permeability to diffusivity characteristic length scales, and it is indeed constant for the homogeneous media. As porous media are heterogeneous materials, the analysis is extended onto such materials using heterogeneous capillary networks. The networks with the uniform, normal and log-normal pore size distribution functions are generated, where the networks are sufficiently large to obtain small variations in permeability and effective diffusivity for pore size distribution set. For such stochastically homogeneous media, the effective pore size averages are used in calculating the permeability and effective diffusivity showing the true nature of the coefficient in the Katz-Thompson formula.

  2. Storage coefficient revisited: is purely vertical strain a good assumption?

    PubMed

    Burbey, T J

    2001-01-01

    The storage coefficient that is used ubiquitously today was first defined by the analytical work of Theis and Jacob over a half-century ago. Inherent within this definition is the restriction of purely vertical compression of the aquifer during a reduction in pressure. The assumption is revisited and quantitatively evaluated by comparing numerical results using both one- and three-dimensional strain models in the presence of three-dimensional flow. Results indicate that (1) calculated hydraulic head values are nearly identical for both models; (2) the release of water from storage in terms of volume strain is nearly identical for both models and that the location of maximum production moves outward from the well as a function of time; (3) the vertical strain components are markedly different with at least 50% of the total volume of water pumped originating from horizontal strain (and increasing to as much as 70%); and (4) for the one-dimensional strain model to yield the necessary quantity of water to the pumped well, the resulting vertical compaction (land subsidence) is as much as four times greater and vertical strain is as much as 60% greater than the three-dimensional strain model. Results indicate that small changes in porosity resulting from horizontal strain can yield extremely large quantities of water to the pumping well. This study suggests that the assumption of purely vertical strain used in the definition of the storage coefficient is not valid. PMID:11341012

  3. Fluid/Melt Partition Coefficients Of Halogens In Basaltic Melt

    NASA Astrophysics Data System (ADS)

    Alletti, M.; Baker, D.; Scaillet, B.; Aiuppa, A.; Moretti, R.; Ottolini, L.

    2007-12-01

    Despite the importance of halogens (F, Cl) in volcanic degassing, solubility and fluid/melt partitioning of these elements have not been comprehensively studied in natural basaltic melts. Experimental determinations of halogen solubility in Mount Etna melts are lacking, despite this volcano being one of the most active and intensively monitored on Earth with an estimated output of thousands tonnes of halogens per day. In order to better understand halogen degassing, we present the results of a series of halogen partitioning experiments performed at different pressures (1-200 MPa), redox conditions (from Δ NNO = + 2 to Δ NNO = - 0.3) and fluid compositions. Experiments used a hawaiitic, glassy, alkaline basalt with Mg# = 0.59, sampled during the July 2001 eruption of Mount Etna. A series of experiments were conducted using H2O-NaCl or H2O-NaF solutions. The effect of CO2 in multi-component fluid H2O-CO2-NaCl or H2O-CO2-NaF was also investigated. The experimental run products were mostly glasses, but a few run products contained less than 10% crystals. The concentration of halogens in the fluid phase after the experiment was calculated from mass balance, and the partition coefficients for both Cl and F at the studied conditions determined. Using these measurements and thermodynamical models, the dependence of these partition coefficients on the fugacities of various gaseous species was investigated.

  4. Measurements of the absorption coefficient of stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Ogren, J. A.; Ahlquist, N. C.; Clarke, A. D.; Charlson, R. J.

    1981-01-01

    The absorption coefficients of stratospheric aerosols are measured using a variation on the integrating plate method. The technique is based on the decrease in the transparency of a substrate when an absorbing aerosol is deposited on it. A Lambert scatterer is placed behind the substrate to integrate forward scattered light and minimize the effect of scattering on the measurement. The low pressure in the stratosphere is used for the direct impaction of particles onto a narrow strip of opal glass. The eight samples collected had a median value of 4 x 10 to the -9th m with an uncertainty of + or - 5 x 10 to the -9th m. If this absorption is due to graphitic carbon, then its concentration is estimated at about 0.4 ng/cu m, or about 0.25% of the total aerosol mass concentration. Estimates of the aerosol scattering coefficients based on satellite extinction inversions result in an aerosol single-scattering albedo in the range of 0.96-1.0.

  5. Damping coefficients due to tail surfaces in aircraft

    NASA Technical Reports Server (NTRS)

    Chu, Lynn

    1923-01-01

    The object of the investigation described in this report was to compare the damping coefficients of an airfoil as calculated from a knowledge of the static characteristics of the section with those obtained experimentally with an oscillation. The damping coefficients as obtained, according to the conventional notation, can be considered either as due to pitching or as due to yawing, the oscillation in these experiments being so arranged that the surfaces oscillate about a vertical axis. This is in reality the case when the influence is yawing about the standard Z-axis, but it can also be considered as a pitching motion when the model is so rigged that its standard Y-axis becomes vertical. The horizontal oscillation has the advantage of eliminating the gravity action and avoiding the use of counterweights, whose presence in the wind tunnel is undesirable because of their interference with the air flow. The real point of the investigation was to separate the damping due to rotation from that due to translation. By varying the distance between the center of pressure and the center of rotation on the oscillator, the variation of damping moment can be observed and the rotational and translational effects can be separated.

  6. Flow Coefficient Behavior for Boundary Layer Bleed Holes and Slots

    NASA Technical Reports Server (NTRS)

    Willis, B. P.; Davis, D. O.; Hingst, W. R.

    1995-01-01

    An experimental investigation into the flow coefficient behavior for nine boundary layer bleed orifice configurations is reported. This test was conducted for the purposes of exploring boundary layer control through mass flow removal and does not address issues of stability bleed. Parametric data consist of bleed region flow coefficient as a function of Mach number, bleed plenum pressure, and bleed orifice geometry. Seven multiple hole configurations and two single slot configurations were tested over a supersonic Mach number range of 1.3 to 2.5 (nominal). Advantages gained by using multiple holes in a bleed region instead of a single spanwise slot are discussed and the issue of modeling an entire array of bleed orifices based on the performance of a single orifice is addressed. Preconditioning the flow approaching a 90 degree inclined (normal) hole configuration resulted in a significant improvement in the performance of the configuration. The same preconditioning caused only subtle changes in performance for a 20 degree inclined (slanted) configuration.

  7. Measuring correlations between non-stationary series with DCCA coefficient

    NASA Astrophysics Data System (ADS)

    Kristoufek, Ladislav

    2014-05-01

    In this short report, we investigate the ability of the DCCA coefficient to measure correlation level between non-stationary series. Based on a wide Monte Carlo simulation study, we show that the DCCA coefficient can estimate the correlation coefficient accurately regardless the strength of non-stationarity (measured by the fractional differencing parameter d). For a comparison, we also report the results for the standard Pearson correlation coefficient. The DCCA coefficient dominates the Pearson coefficient for non-stationary series.

  8. Piezoresistive silicon pressure sensors in cryogenic environment

    NASA Technical Reports Server (NTRS)

    Kahng, Seun K.; Chapman, John J.

    1989-01-01

    This paper presents data on low-temperature measurements of silicon pressure sensors. It was found that both the piezoresistance coefficients and the charge-carrier mobility increase with decreasing temperature. For lightly doped semiconductor materials, the density of free charge carriers decreases with temperature and can freeze out eventually. However, the effect of carrier freeze-out can be minimized by increasing the impurity content to higher levels, at which the temperature dependency of piezoresistance coefficients is reduced. An impurity density of 1 x 10 to the 19th/cu cm was found to be optimal for cryogenic applications of pressure sensor dies.

  9. Pressure of two-dimensional Yukawa liquids

    NASA Astrophysics Data System (ADS)

    Feng, Yan; Goree, J.; Liu, Bin; Wang, Lei; Tian, Wen-de

    2016-06-01

    A simple analytic expression for the pressure of a two-dimensional Yukawa liquid is found by fitting results from a molecular dynamics simulation. The results verify that the pressure can be written as the sum of a potential term which is a simple multiple of the Coulomb potential energy at a distance of the Wigner–Seitz radius, and a kinetic term which is a multiple of the one for an ideal gas. Dimensionless coefficients for each of these terms are found empirically, by fitting. The resulting analytic expression, with its empirically determined coefficients, is plotted as isochores, or curves of constant area. These results should be applicable to monolayer dusty plasmas.

  10. Gas-film coefficients for the volatilization of ketones from water

    USGS Publications Warehouse

    Rathbun, R.E.; Tai, D.Y.

    1986-01-01

    Volatilization is a significant process in determining the fate of many organic compounds in streams and rivers. Quantifying this process requires knowledge of the mass-transfer coefficient from water, which is a function of the gas-film and liquid-film coefficients. The gas-film coefficient can be determined by measuring the flux for the volatilization of pure organic liquids. Volatilization fluxes for acetone, 2-butanone, 2-pentanone, 3-pentanone, 4-methyl-2-pentanone, 2-heptanone, and 2-octanone were measured in the laboratory over a range of temperatures. Gas-film coefficients were then calculated from these fluxes and from vapor pressure data from the literature. An equation was developed for predicting the volatilization flux of pure liquid ketones as a function of vapor pressure and molecular weight. Large deviations were found for acetone, and these were attributed to the possibility that acetone may be hydrogen bonded. A second equation for predicting the flux as a function of molecular weight and temperature resulted in large deviations for 4methyl-2-pentanone. These deviations were attributed to the branched structure of this ketone. Four factors based on the theory of volatilization and relating the volatilization flux or rate to the vapor pressure, molecular weight, temperature, and molecular diffusion coefficient were not constant as suggested by the literature. The factors generally increased with molecular weight and with temperature. Values for acetone corresponded to ketones with a larger molecular weight, and the acetone factors showed the greatest dependence on temperature. Both of these results are characteristic of compounds that are hydrogen bonded. Relations from the literature commonly used for describing the dependence of the gas-film coefficient on molecular weight and molecular diffusion coefficient were not applicable to the ketone gas-film coefficients. The dependence on molecular weight and molecular diffusion coefficient was in

  11. Foil-like manganin gauges for dynamic high pressure measurements

    NASA Astrophysics Data System (ADS)

    Duan, Zhuoping; Liu, Yan; Pi, Aiguo; Huang, Fenglei

    2011-07-01

    Foil-like manganin gauges with a variety of shapes used in different ranges of pressure for the one-dimensional strain mode and axisymmetric strain mode were designed for measuring the detonation pressures of explosives and high shock pressure in materials. In the stress range of 0-53.5 GPa, the pressure-piezoresistance relationships of the manganin gauges were calibrated by the light gas gun and the planar lens of explosive. The piezoresistance coefficients were obtained in different ranges of pressure. To verify the coefficients, the detonation pressure (CJ pressure) of TNT explosive was measured by the manganin gauges, which give similar CJ pressure values to those reported by Zhang et al (2009 Detonation Physics (Beijing: Ordnance Industry Press)) with the maximum relative deviation being less than 3%.

  12. Rotational dissipation and the Miesowicz coefficients.

    PubMed

    Simões, M; Yamaguti, K; Palangana, A J

    2009-12-01

    In this work, we will study the relative contribution of each of the two dissipative channels of the Eriksen, Leslie, and Parodi (ELP) approach to the observed values of the Miesowicz viscosity coefficients of the nematic liquid crystals. According to the fundamental equation of the liquid crystal's viscosity dissipative process, TS=-integral d3r(sigma)ijA(ij)+hxN , there are two channels by which the nematic viscous dissipation can occur: or it occurs by means of a shear flow configuration, where A(ij) is the characterizing term, or it occurs by means of a rotational configuration, where N is the characterizing term (these parameters will be defined in the paper). It will be also shown that this relative contribution can be measured by a simple relationship connecting the Miesowicz coefficients, which exhibits a quasitemperature independent behavior, suggesting that it is nearly constant through the entire domain of the nematic phase. PMID:20365179

  13. Partition coefficients of three new anticonvulsants.

    PubMed

    Hernandez-Gallegos, Z; Lehmann, P A

    1990-11-01

    The partition coefficients of three homologous anticonvulsant phenylalkylamides [racemic alpha-hydroxy-alpha-ethyl-alpha-phenylacetamide (HEPA); beta-hydroxy-beta-ethyl-beta-phenylpropionamide (HEPP); and gamma-hydroxy-gamma-ethyl-gamma-phenylbutyramide (HEPB)] were determined by reversed-phase high-performance liquid chromatography (RP-HPLC). The system was calibrated with a series of simple amines and amides, using their published log P values. The log kw values (methanol:water, extrapolated to 100% water) were 1.260 for HEPA, 1.670 for HEPP, and 1.852 for HEPB. From these results, the partition coefficients (log P) were calculated by regression as 1.20, 1.83, and 2.11, respectively. The log P values were essentially equal to those calculated by the Leo-Hansch fragmental method. Since the potency of the three anticonvulsants is approximately the same in a variety of tests, no dependence on lipophilicity could be established. PMID:2292764

  14. Solute concentration effect on osmotic reflection coefficient.

    PubMed Central

    Adamski, R P; Anderson, J L

    1983-01-01

    A theory for the effect of concentration on osmotic reflection coefficient, correct to first order, was developed at the molecular level by considering the effect of solute-solute interactions on solute concentration and the fluid stress tensor within a solvent-filled pore. The solvent was modeled as a continuous fluid and potential energies between solute molecules and the pore wall were assumed to be pairwise additive. Although the theory is more general, calculations are presented only for excluded volume effects (hard-sphere for solute, hard-wall for pore). The relationship between the first-order concentration effect and the infinite dilution value of reflection coefficient appears to be geometry independent. The theory is discussed in light of experimental studies of osmotic flow that have recently appeared in the literature. PMID:6626681

  15. Minior Actinide Doppler Coefficient Measurement Assessment

    SciTech Connect

    Nolan E. Hertel; Dwayne Blaylock

    2008-04-10

    The "Minor Actinide Doppler Coefficient Measurement Assessment" was a Department of Energy (DOE) U-NERI funded project intended to assess the viability of using either the FLATTOP or the COMET critical assembly to measure high temperature Doppler coefficients. The goal of the project was to calculate using the MCNP5 code the gram amounts of Np-237, Pu-238, Pu-239, Pu-241, AM-241, AM-242m, Am-243, and CM-244 needed to produce a 1E-5 in reactivity for a change in operating temperature 800C to 1000C. After determining the viability of using the assemblies and calculating the amounts of each actinide an experiment will be designed to verify the calculated results. The calculations and any doncuted experiments are designed to support the Advanced Fuel Cycle Initiative in conducting safety analysis of advanced fast reactor or acceoerator-driven transmutation systems with fuel containing high minor actinide content.

  16. Thermoelectric and Seebeck coefficients of granular metals.

    SciTech Connect

    Glatz, A.; Beloborodov, I. S.; Materials Science Division; California State Univ.

    2009-01-01

    In this work we present a detailed study and derivation of the thermopower and thermoelectric coefficient of nanogranular metals at large tunneling conductance between the grains, g{sub T} >> 1. An important criterion for the performance of a thermoelectric device is the thermodynamic figure of merit which is derived using the kinetic coefficients of granular metals. All results are valid at intermediate temperatures, E{sub c} >> T/g{sub T} > {delta}, where {delta} is the mean energy-level spacing for a single grain and E{sub c} is its charging energy. We show that the electron-electron interaction leads to an increase in the thermopower with decreasing grain size and discuss our results in light of future generation thermoelectric materials for low-temperature applications. The behavior of the figure of merit depending on system parameters such as grain size, tunneling conductance, and temperature is presented.

  17. Coefficients of discharge of fuel-injection nozzles for compression-ignition engines

    NASA Technical Reports Server (NTRS)

    Gelalles, A G

    1932-01-01

    This report presents the results of an investigation to determine the coefficients of discharge of nozzles with small, round orifices of the size used with high-speed compression-ignition engines. The injection pressures and chamber back pressures employed were comparable to those existing in compression-ignition engines during injection. The construction of the nozzles was varied to determine the effect of the nozzle design on the coefficient. Tests were also made with nozzles assembled in an automatic injection valve, both with a plain and with a helically grooved stem. It was found that a smooth passage before the orifice is requisite for high flow efficiency. A beveled leading edge before the orifice gave a higher coefficient of discharge than a rounded edge. The results with the nozzles assembled in an automatic injection valve having a plain stem duplicated those with the nozzles assembled at the end of a straight tube of constant diameter. Lower coefficients were obtained with the nozzles assembled in an injection valve having a helically grooved stem. When the coefficients of nozzles of any one geometrical shape were plotted against values of corresponding Reynold's numbers for the orifice diameters and rates of flow tested, it was found that experimental points were distributed along a single curve.

  18. Pressure transducer

    DOEpatents

    Anderson, Thomas T.; Roop, Conard J.; Schmidt, Kenneth J.; Gunchin, Elmer R.

    1989-01-01

    A pressure transducer suitable for use in high temperature environments includes two pairs of induction coils, each pair being bifilarly wound together, and each pair of coils connected as opposite arms of a four arm circuit; an electrically conductive target moveably positioned between the coil pairs and connected to a diaphragm such that deflection of the diaphragm causes axial movement of the target and an unbalance in the bridge output.

  19. Pressure transducer

    DOEpatents

    Anderson, T.T.; Roop, C.J.; Schmidt, K.J.; Gunchin, E.R.

    1987-02-13

    A pressure transducer suitable for use in high temperature environments includes two pairs of induction coils, each pair being bifilarly wound together, and each pair of coils connected as opposite arms of a four arm circuit; an electrically conductive target moveably positioned between the coil pairs and connected to a diaphragm such that deflection of the diaphragm causes axial movement of the target and an unbalance in the bridge output. 7 figs.

  20. Alpha-Particle Gas-Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Buehler, M. C.; Bell, L. D.; Hecht, M. H.

    1996-01-01

    An approximate model was developed to establish design curves for the saturation region and a more complete model developed to characterize the current-voltage curves for an alpha-particle pressure sensor. A simple two-parameter current-voltage expression was developed to describe the dependence of the ion current on pressure. The parameters are the saturation-current pressure coefficient and mu/D, the ion mobility/diffusion coefficient. The sensor is useful in the pressure range between 0.1 and 1000 mb using a 1 - mu Ci(241) Am source. Experimental results, taken between 1 and up to 200 mb, show the sensor operates with an anode voltage of 5 V and a sensitivity of 20 fA/mb in nitrogen.

  1. The electron diffusion coefficient in Jupiter's magnetosphere

    NASA Technical Reports Server (NTRS)

    Birmingham, T.; Northrop, T.; Baxter, R.; Hess, W.; Lojko, M.

    1974-01-01

    A steady-state model of Jupiter's electron radiation belt is developed. The model includes injection from the solar wind, radial diffusion, energy degradation by synchrotron radiation, and absorption at Jupiter's surface. A diffusion coefficient of the form D sub RR/R sub J squared = k times R to the m-th power is assumed, and then observed data on synchrotron radiation are used to fit the model. The free parameters determined from this fit are m = 1.95 plus or minus 0.5, k = 1.7 plus or minus 0.5 x 10 to the 9th power per sec, and the magnetic moment of injected particles equals 770 plus or minus 300 MeV/G. The value of m shows quite clearly that the diffusion is not caused by magnetic pumping by a variable solar wind or by a fluctuating convection electric field. The process might be field line exchange driven by atmospheric-ionospheric winds; our diffusion coefficient has roughly the same radial dependence but is considerably smaller in magnitude than the upper bound diffusion coefficients recently suggested for this process by Brice and McDonough (1973) and Jacques and Davis (1972).

  2. Improved analysis of impurity transport coefficient profiles

    NASA Astrophysics Data System (ADS)

    Chilenski, M. A.; Greenwald, M.; Marzouk, Y.; Howard, N. T.; Rice, J.; White, A. E.

    2015-11-01

    Work is underway on the development of a novel technique to estimate impurity transport coefficient profiles and their uncertainties. Inference of impurity transport coefficient profiles using x-ray imaging crystal spectroscopy measurements of laser blow-off impurity injections has played a key role in the validation of gyrokinetic simulations of impurity transport in L-mode (Howard et al. 2012, Nucl. Fusion 52, 063002). Recent attempts to apply the existing methodology for interpreting such measurements to H-mode have failed to yield reliable estimates, however. This failure exposes key issues regarding the uniqueness of the solution and the rigorous estimation of the uncertainty. A new approach is under development which uses a combination of Markov chain Monte Carlo (MCMC) and global optimization techniques to estimate impurity transport coefficient profiles even when there are multiple possible solutions. This poster will present the new methodology in detail and will show preliminary results from applying it to Alcator C-Mod data. This new approach will enable us to test the existing understanding of L-mode impurity transport and to move towards multichannel validation of gyrokinetic simulations of H-modes. Supported by USDOE award DE-FC02-99ER54512.

  3. Field verification of the wind tunnel coefficients

    NASA Technical Reports Server (NTRS)

    Gawronski, W. K.; Mellstrom, J. A.

    1994-01-01

    Accurate information about wind action on antennas is required for reliable prediction of antenna pointing errors in windy weather and for the design of an antenna controller with wind disturbance rejection properties. The wind tunnel data obtained 3 years ago using a scaled antenna model serves as an antenna industry standard, frequently used for the first purpose. The accuracy of the wind tunnel data has often been challenged, since they have not yet been tested in a field environment (full-aized antenna, real wind, actual terrain, etc.). The purpose of this investigation was to obtain selected field measurements and compare them with the available wind tunnel data. For this purpose, wind steady-state torques of the DSS-13 antenna were measured, and dimensionless wind torque coefficients were obtained for a variety of yaw and elevation angles. The results showed that the differences between the wind tunnel torque coefficients and the field torque coefficients were less than 10 percent of their values. The wind-gusting action on the antenna was characterized by the power spectra of the antenna encoder and the antenna torques. The spectra showed that wind gusting primarily affects the antenna principal modes.

  4. Drag coefficients for winter Antarctic pack ice

    NASA Technical Reports Server (NTRS)

    Wamser, Christian; Martinson, Douglas G.

    1993-01-01

    Air-ice and ice-water drag coefficients referenced to 10-m-height winds for winter Antarctic pack ice based on measurements made from R/V Polarstern during the Winter Weddell Sea Project, 1986 (WWSP-86), and from R/V Akademik Fedorov during the Winter Weddell Gyre Study, 1989 (WWGS-89), are presented. The optimal values of the air-ice drag coefficients, made from turbulent flux measurements, are (1.79 +/- 0.06) x 10 exp -3 for WWSP-86 and (1.45 +/- 0.09) x 10 exp -3 for WWGS-89. A single ice-water drag coefficient for both WWSP-86 and WWGS-89, estimated from periods of ice drift throught to represent free-drift conditions, is (1.13 +/- 0.26) x 10 exp -3, and the ice-water turning angle is 18 +/- 18 deg. It is suggested that for a typical Antarctic winter pack ice cover, the ice cover reduces the momentum flux from the atmosphere to the ocean by about 33 percent.

  5. Accuracy of Pressure Sensitive Paint

    NASA Technical Reports Server (NTRS)

    Liu, Tianshu; Guille, M.; Sullivan, J. P.

    2001-01-01

    Uncertainty in pressure sensitive paint (PSP) measurement is investigated from a standpoint of system modeling. A functional relation between the imaging system output and luminescent emission from PSP is obtained based on studies of radiative energy transports in PSP and photodetector response to luminescence. This relation provides insights into physical origins of various elemental error sources and allows estimate of the total PSP measurement uncertainty contributed by the elemental errors. The elemental errors and their sensitivity coefficients in the error propagation equation are evaluated. Useful formulas are given for the minimum pressure uncertainty that PSP can possibly achieve and the upper bounds of the elemental errors to meet required pressure accuracy. An instructive example of a Joukowsky airfoil in subsonic flows is given to illustrate uncertainty estimates in PSP measurements.

  6. Calculating Mass Diffusion in High-Pressure Binary Fluids

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth

    2004-01-01

    A comprehensive mathematical model of mass diffusion has been developed for binary fluids at high pressures, including critical and supercritical pressures. Heretofore, diverse expressions, valid for limited parameter ranges, have been used to correlate high-pressure binary mass-diffusion-coefficient data. This model will likely be especially useful in the computational simulation and analysis of combustion phenomena in diesel engines, gas turbines, and liquid rocket engines, wherein mass diffusion at high pressure plays a major role.

  7. Experimentally Determined Heat Transfer Coefficients for Spacesuit Liquid Cooled Garments

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Watts, Carly; Rhodes, Richard; Anchondo, Ian; Westheimer, David; Campbell, Colin; Vonau, Walt; Vogel, Matt; Conger, Bruce

    2015-01-01

    A Human-In-The-Loop (HITL) Portable Life Support System 2.0 (PLSS 2.0) test has been conducted at NASA Johnson Space Center in the PLSS Development Laboratory from October 27, 2014 to December 19, 2014. These closed-loop tests of the PLSS 2.0 system integrated with human subjects in the Mark III Suit at 3.7 psi to 4.3 psi above ambient pressure performing treadmill exercise at various metabolic rates from standing rest to 3000 BTU/hr (880 W). The bulk of the PLSS 2.0 was at ambient pressure but effluent water vapor from the Spacesuit Water Membrane Evaporator (SWME) and the Auxiliary Membrane Evaporator (Mini-ME), and effluent carbon dioxide from the Rapid Cycle Amine (RCA) were ported to vacuum to test performance of these components in flight-like conditions. One of the objectives of this test was to determine the heat transfer coefficient (UA) of the Liquid Cooling Garment (LCG). The UA, an important factor for modeling the heat rejection of an LCG, was determined in a variety of conditions by varying inlet water temperature, flowrate, and metabolic rate. Three LCG configurations were tested: the Extravehicular Mobility Unit (EMU) LCG, the Oceaneering Space Systems (OSS) LCG, and the OSS auxiliary LCG. Other factors influencing accurate UA determination, such as overall heat balance, LCG fit, and the skin temperature measurement, will also be discussed.

  8. Dependence of the osmotic coefficients and average ionic activity coefficients on hydrophobic hydration in solutions

    NASA Astrophysics Data System (ADS)

    Sergievskii, V. V.; Rudakov, A. M.

    2016-08-01

    The model that considers the nonideality of aqueous solutions of electrolytes with allowance for independent contributions of hydration of ions of various types and electrostatic interactions was substantiated using the cluster ion model. The empirical parameters in the model equations were found to be the hydrophilic and hydrophobic hydration numbers of ions in the standard state and the dispersion of their distribution over the stoichiometric coefficients. A mathematically adequate description of the concentration dependences of the osmotic coefficients and average ion activity coefficients of electrolytes was given for several systems. The difference in the rate of the decrease in the hydrophilic and hydrophobic hydration numbers of ions leads to extremum concentration dependences of the osmotic coefficients, which were determined by other authors from isopiestic data for many electrolytes and did not find explanation.

  9. Rate Coefficients for the OH + (CHO)2 (Glyoxal) Reaction Between 240 and 400 K

    NASA Astrophysics Data System (ADS)

    Feierabend, K. J.; Talukdar, R. K.; Zhu, L.; Ravishankara, A. R.; Burkholder, J. B.

    2006-12-01

    Glyoxal (CHO)2, the simplest dialdehyde, is an end product formed in the atmospheric oxidation of biogenic hydrocarbons, for example, isoprene. As such, glyoxal plays a role in regional air quality and ozone production in certain locations. Glyoxal is lost in the atmosphere via UV photolysis and reaction with OH. However, the currently available rate coefficient data for the OH + glyoxal reaction is limited to a single room- temperature measurement made using the relative rate method. A determination of the rate coefficient temperature dependence is therefore needed for a more complete interpretation of the atmospheric processing of glyoxal. This study reports the rate coefficient for the OH + (CHO)2 reaction measured under pseudo- first-order conditions in OH ([(CHO)2] > 1000 [OH]0). OH radicals were produced using 248 nm pulsed laser photolysis of H2O2 or HNO3 and detected by pulsed laser induced fluorescence. The concentration of glyoxal in the reactor was determined using three independent techniques; gas flow rates as well as in situ UV and IR absorption. The total pressure in the reactor was varied from 40 to 300 Torr (He), and the rate coefficient was found to be independent of pressure over the temperature range studied. The rate coefficient exhibits a negative temperature dependence between 240 and 400 K consistent with the dependence previously observed for many other aldehydes. Our room-temperature rate coefficient is smaller than the relative rate value that is currently recommended for use in atmospheric model calculations. Our measured rate coefficients are discussed with respect to those for other aldehydes. The atmospheric implications of our work will also be discussed.

  10. Air broadening coefficients for the ν3 band of hydroperoxyl radicals

    NASA Astrophysics Data System (ADS)

    Minamida, Maya; Tonokura, Kenichi

    2014-11-01

    Using mid-infrared laser absorption spectroscopy, we investigated the room-temperature pressure broadening coefficients for hydroperoxyl radicals (HO2) in nitrogen and oxygen over the 1060.0-1065.5 cm-1 range of the ν3 band. The HO2 radicals were produced by flash photolysis of a chlorine/1,4-cyclohexadiene/oxygen mixture. The 20 measured absorption profiles were analyzed with Voigt functions. Air broadening coefficients were estimated from the nitrogen- and oxygen-broadening results and compared with previous results. We discuss the dependence of air broadening on rotational states.

  11. Experimental and theoretical rotordynamic stiffness coefficients for a three-stage brush seal

    NASA Astrophysics Data System (ADS)

    Pugachev, A. O.; Deckner, M.

    2012-08-01

    Experimental and theoretical results are presented for a multistage brush seal. Experimental stiffness is obtained from integrating circumferential pressure distribution measured in seal cavities. A CFD analysis is used to predict seal performance. Bristle packs are modeled by the porous medium approach. Leakage is predicted well by the CFD method. Theoretical stiffness coefficients are in reasonable agreement with the measurements. Experimental results are also compared with a three-teeth-on-stator labyrinth seal. The multistage brush seal gives about 60% leakage reduction over the labyrinth seal. Rotordynamic stiffness coefficients are also improved: the brush seal has positive direct stiffness and smaller cross-coupled stiffness.

  12. Tunable diode laser measurements of HO2NO2 absorption coefficients near 12.5 microns

    NASA Technical Reports Server (NTRS)

    May, R. D.; Molina, L. T.; Webster, C. R.

    1988-01-01

    A tunable diode laser spectrometer has been used to measure absorption coefficients of peroxynitric acid (HO2NO2) near the 803/cm Q branch. HO2NO2 concentrations in a low-pressure flowing gas mixture were determined from chemical titration procedures and UV absorption spectroscopy. The diode laser measured absorption coefficients, at a spectral resolution of better than 0.001/cm, are about 10 percent larger than previous Fourier transform infrared measurements made at a spectral resolution of 0.06/cm.

  13. Experimental Study of Coupling Coefficients for Propulsion on TEA CO2 Laser

    SciTech Connect

    Tan Rongqing; Lin Jun; Hughes, Jeremy; Pakhomov, Andrew V.

    2004-03-30

    The original purpose of this study was to address a partition of propulsive energy between air and metal, when the breakdown is initiated at the metal surface and/or in adjacent air space. Coupling coefficient as a function of air pressure varied in the range 4 mTorr - 1 atm is presented. The experiments were conducted by focusing output pulses of a TEA CO2 laser system (0.2-{mu}s pulsewidth at 10.6 {mu}m wavelength and {approx} 10.0 J energy) on aluminum targets. Coupling coefficients were derived from the pendulum displacements.

  14. Reduced basis technique for evaluating the sensitivity coefficients of the nonlinear tire response

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Tanner, John A.; Peters, Jeanne M.

    1992-01-01

    An efficient reduced-basis technique is proposed for calculating the sensitivity of nonlinear tire response to variations in the design variables. The tire is modeled using a 2-D, moderate rotation, laminated anisotropic shell theory, including the effects of variation in material and geometric parameters. The vector of structural response and its first-order and second-order sensitivity coefficients are each expressed as a linear combination of a small number of basis vectors. The effectiveness of the basis vectors used in approximating the sensitivity coefficients is demonstrated by a numerical example involving the Space Shuttle nose-gear tire, which is subjected to uniform inflation pressure.

  15. Thermal coefficient of delay for various coaxial and fiber-optic cables

    NASA Technical Reports Server (NTRS)

    Lutes, G. F.; Diener, W.

    1989-01-01

    Data are presented on the thermal coefficient of delay for various coaxial and fiber optic cables, as measured by the Frequency and Timing Systems Engineering Group and the Time and Frequency Systems Research Group. The measured pressure coefficient of delay is also given for the air-dielectric coaxial cables. A description of the measurement method and a description of each of the cables and its use at JPL and in the DSN are included. An improvement in frequency and phase stability by a factor of ten is possible with the use of fiber optics.

  16. Performance back-deduction from a loading to flow coefficient map: Application to radial turbine

    NASA Astrophysics Data System (ADS)

    Carbonneau, Xavier; Binder, Nicolas

    2012-12-01

    Radial turbine stages are often used for applications requiring off-design operation, as turbocharging for instance. The off-design ability of such stages is commonly analyzed through the traditional turbine map, plotting the reduced mass-flow against the pressure-ratio, for reduced-speed lines. However, some alternatives are possible, such as the flow-coefficient ( Ψ) to loading-coefficient ( φ) diagram where the pressure-ratio lines are actually straight lines, very convenient property to perform prediction. A robust method re-creating this map from a predicted Ψ-φ diagram is needed. Recent work has shown that this back-deduction quality, without the use of any loss models, depends on the knowledge of an intermediate pressure-ratio. A modelization of this parameter is then proposed. The comparison with both experimental and CFD results is presented, with quite good agreement for mass flow rate and rotational speed, and for the intermediate pressure ratio. The last part of the paper is dedicated to the application of the intermediate pressure-ratio knowledge to the improvement of the deduction of the pressure ratio lines in the Ψ-φ diagram. Beside this improvement, the back-deduction method of the classical map is structured, applied and evaluated.

  17. Interpretation of Redondo Creek Field pressure buildup tests

    SciTech Connect

    Fallon, J.B.

    1982-01-01

    Recent pressure buildup analyses of Redondo Creek Field wells have been facilitated by identification of wellbore storage. The wellbore storage coefficient observed immediately after shut-in is controlled by the compressibility of the two-phase wellbore fluid, but the coefficient decreases when the wellbore storage is controlled by a rising liquid level. Identification of such phenomena aids in defining the correct radial flow regime of the pressure buildup response.

  18. A Computer for Calculating Kendall's Rank Correlation Coefficients

    ERIC Educational Resources Information Center

    Roberge, James J.

    1970-01-01

    A program for calculating Kendall's tau-a, tau-b, partial tau, coefficient of concordance, coefficient of consistence, and coefficient of agreement is presented. In addition, the program provides tests of significance for each of the coefficients except partial tau. (DG)

  19. Blood pressure measurement

    MedlinePlus

    Diastolic blood pressure; Systolic blood pressure; Blood pressure reading; Measuring blood pressure ... or your health care provider will wrap the blood pressure cuff snugly around your upper arm. The ...

  20. Blood pressure measurement

    MedlinePlus

    Diastolic blood pressure; Systolic blood pressure; Blood pressure reading; Measuring blood pressure ... your health care provider will wrap the blood pressure cuff snugly around your upper arm. The lower ...

  1. Blood Pressure Quiz

    MedlinePlus

    ... page please turn Javascript on. Feature: High Blood Pressure Blood Pressure Quiz Past Issues / Fall 2011 Table of Contents ... About High Blood Pressure / Treatment: Types of Blood Pressure Medications / Blood Pressure Quiz Fall 2011 Issue: Volume 6 Number ...

  2. Understanding Blood Pressure Readings

    MedlinePlus

    ... Pressure Tools & Resources Stroke More Understanding Blood Pressure Readings Updated:Aug 17,2016 Blood pressure is typically ... Your doctor should evaluate unusually low blood pressure readings. How is high blood pressure diagnosed? Your healthcare ...

  3. The capillary filtration coefficient for evaluation of capillary fluid permeability in cat calf muscles.

    PubMed

    Kongstad, L; Grände, P O

    1998-10-01

    Measuring the capillary filtration coefficient (CFC) from the transvascular fluid filtration following a fixed increase in transcapillary hydrostatic pressure is a common method to estimate capillary hydraulic permeability (conductivity) in an organ. Constant flow pump perfusion with an artificial perfusate and a maximally dilated vascular bed are often used in CFC studies to avoid influence on CFC of variations in vascular tone, blood flow and perfusion pressure. The present study evaluates if capillary hydraulic conductivity can be estimated by the CFC method, when analyzed on a denervated cat skeletal muscle with quite well-preserved local vascular control and perfused with autologous blood. CFC was estimated by increasing venous pressure and by decreasing tissue pressure, and both during autoperfusion and pressure controlled pump perfusion. A constant filtration rate was achieved 3-4 min after the transcapillary pressure elevation, giving a CFC around 0.0090 mL min-1 mmHg-1 100 g. The CFC did not change with arterial pressure or with reduced vascular tone using the tissue pressure method, but decreased slightly with increased arterial pressure and reduced vascular tone using the venous pressure method. CFC variations with arterial pressure were larger during pump perfusion in which myogenic reactivity is depressed, indicating that influence of myogenic tone on CFC is small. We conclude that CFC can be used to evaluate capillary hydraulic conductivity, and also when arterial pressure, vascular tone and blood flow are altered within reasonable physiological limits during the experiment, and the tissue pressure method and autoperfusion is to be preferred. PMID:9805107

  4. Investigation of basalt-radionuclide distribution coefficients: fiscal year 1980 annual report

    SciTech Connect

    Ames, L.L.; McGarrah, J.E.

    1980-12-01

    The Basalt Waste Isolation Project (Rockwell Hanford Operations) is conducting a safety assessment of nuclear waste storage in a repository on the Hanford Site. Pacific Northwest Laboratory, in support of the assessment effort, is generating radionuclide distribution coefficient data between simulated groundwaters and basalts and their secondary mineral products under the range of physicochemical conditions expected in a repository in basalt. Experimental radionuclide distribution coefficients were determined for crushed Pomona, Flow E, and Umtanum basalts at 23/sup 0/, 60/sup 0/, 150/sup 0/, and 300/sup 0/C at both normal oxygen partial pressure (approx. 0.2 atm) and lower oxygen partial pressure (approx. 10/sup -7/ atm), using a static technique. Little or no changes in distribution coefficients were noted for selenium, uranium, technetium, neptunium, or plutonium over the oxygen partial pressure range noted above. Sodium dithionite and hydrazine are now under study as system additives to lower Eh to -0.3 to -0.5 V, the conditions expected to prevail in the closed repository in basalt. Temperature change effects on most radionuclide distribution coefficient (Kd) values over the 23/sup 0/ to 300/sup 0/C range were major with the exception of iodine and technetium, neither of which were appreciably sorbed at normal to approx. 10/sup -7/ atm oxygen partial pressure. The effect of radionuclide concentration on the Kd value was shown graphically for cesium and strontium over a range of from 1 x 10/sup -10/ or 10/sup -12/ to 1 x 10/sup -4/M. Initial work was begun on Kd values obtained under controlled Eh and pH conditions to simulate specific oxygen partial pressure and pH conditions expected to occur in the repository environment.

  5. Inversion of instantaneous equivalent absorption coefficient and its application

    SciTech Connect

    Weihua, W. )

    1992-01-01

    Absorption coefficient is an important parameter for reservoir description. The major troubles in extracting absorption coefficient from seismic data are amplitude and waveform distortions; they greatly restrict the inversion which is based on reflection amplitude variation or reflection frequency variation. This paper presents a new method which avoids amplitude and uses waveform variation gradient in wave propagation to make the inversion of absorption coefficient. Apparent absorption coefficient and pseudo absorption coefficient are adopted so as to remove the influence which the waveform distortion due to thin bed tuning brings to absorption coefficient extraction. The final instantaneous equivalent absorption coefficient, a true absorption coefficient which reflects real absorptive character of a seismic medium, can be obtained by subtracting the pseudo absorption coefficient (inversely calculated using maximum entropy) from the apparent absorption coefficient the authors have calculated.

  6. Theory versus experiment for the rotordynamic coefficients of annular gas seals. Part 1: Test facility and apparatus

    NASA Technical Reports Server (NTRS)

    Childs, D. W.; Nelson, C. E.; Nicks, C.; Scharrer, J. K.; Elrod, D.; Hale, K.

    1983-01-01

    A facility and apparatus are described for determining the rotordynamic coefficients and leakage characteristics of annular gas seals. The apparatus has a current top speed of 8000 cpm with a nominal seal diameter of 15.24 cmn (6 in). The air supply unit yields a seal pressure ratio of approximately 7. An external shaker is used to excite the test rotor. The capability to independently calculate all rotordynamic coefficients at a given operating condition with one excitation frequency are discussed.

  7. Transport coefficients of He(+) ions in helium.

    PubMed

    Viehland, Larry A; Johnsen, Rainer; Gray, Benjamin R; Wright, Timothy G

    2016-02-21

    This paper demonstrates that the transport coefficients of (4)He(+) in (4)He can be calculated over wide ranges of E/N, the ratio of the electrostatic field strength to the gas number density, with the same level of precision as can be obtained experimentally if sufficiently accurate potential energy curves are available for the X(2)Σu (+) and A(2)Σg (+) states and one takes into account resonant charge transfer. We start by computing new potential energy curves for these states and testing their accuracy by calculating spectroscopic values for the separate states. It is established that the potentials obtained by extrapolation of results from d-aug-cc-pVXZ (X = 6, 7) basis sets using the CASSCF+MRCISD approach are each in exceptionally close agreement with the best potentials available and with experiment. The potentials are then used in a new computer program to determine the semi-classical phase shifts and the transport cross sections, and from these the gaseous ion transport coefficients are determined. In addition, new experimental values are reported for the mobilities of (4)He(+) in (4)He at 298.7 K, as a function of E/N, where careful consideration is given to minimizing various sources of uncertainty. Comparison with previously measured values establishes that only one set of previous data is reliable. Finally, the experimental and theoretical ion transport coefficients are shown to be in very good to excellent agreement, once corrections are applied to account for quantum-mechanical effects. PMID:26896985

  8. Transport coefficients of He+ ions in helium

    NASA Astrophysics Data System (ADS)

    Viehland, Larry A.; Johnsen, Rainer; Gray, Benjamin R.; Wright, Timothy G.

    2016-02-01

    This paper demonstrates that the transport coefficients of 4He+ in 4He can be calculated over wide ranges of E/N, the ratio of the electrostatic field strength to the gas number density, with the same level of precision as can be obtained experimentally if sufficiently accurate potential energy curves are available for the X2Σu+ and A2Σg+ states and one takes into account resonant charge transfer. We start by computing new potential energy curves for these states and testing their accuracy by calculating spectroscopic values for the separate states. It is established that the potentials obtained by extrapolation of results from d-aug-cc-pVXZ (X = 6, 7) basis sets using the CASSCF+MRCISD approach are each in exceptionally close agreement with the best potentials available and with experiment. The potentials are then used in a new computer program to determine the semi-classical phase shifts and the transport cross sections, and from these the gaseous ion transport coefficients are determined. In addition, new experimental values are reported for the mobilities of 4He+ in 4He at 298.7 K, as a function of E/N, where careful consideration is given to minimizing various sources of uncertainty. Comparison with previously measured values establishes that only one set of previous data is reliable. Finally, the experimental and theoretical ion transport coefficients are shown to be in very good to excellent agreement, once corrections are applied to account for quantum-mechanical effects.

  9. Optical loss coefficient in plastic waveguides

    NASA Astrophysics Data System (ADS)

    Geetha, K.; Gopinath, Pramod; Unnikrishnan, K. P.; Lee, S. T.; Vallabhan, C. P. G.; Nampoori, V. P. N.; Radhakrishnan, Periasamy

    2002-09-01

    We report the position dependent tuning of fluorescence emission from Rhodamine 6G doped plastic waveguide using side illumination technique . The transmitted fluorescence as a function of the distance from the point of illumination is measured by translating the waveguide horizontally across a monochromatic light source. This technique has proved to be a useful method for characterizing the light propagation properties of dye-doped waveguides. An important finding of the present studies is the nonlinear behavior of the loss coefficient as a function of propagation distance through the waveguide. It is also found that this type of nonlinear nature depends on the dye concentration and thickness of the waveguide.

  10. Elastic-Stiffness Coefficients of Titanium Diboride

    PubMed Central

    Ledbetter, Hassel; Tanaka, Takaho

    2009-01-01

    Using resonance ultrasound spectroscopy, we measured the monocrystal elastic-stiffness coefficients, the Voigt Cij, of TiB2. With hexagonal symmetry, TiB2 exhibits five independent Cij: C11, C33, C44, C12, C13. Using Voigt-Reuss-Hill averaging, we converted these monocrystal values to quasiisotropic (polycrystal) elastic stiffnesses. Briefly, we comment on effects of voids. From the Cij, we calculated the Debye characteristic temperature, the Grüneisen parameter, and various sound velocities. Our study resolves the enormous differences between two previous reports of TiB2’s Cij.

  11. Bounds on Transport Coefficients of Porous Media

    SciTech Connect

    Berryman, J G

    2005-03-21

    An analytical formulation of conductivity bounds by Bergman and Milton is used in a different way to obtain rigorous bounds on the real transport coefficients (electrical conductivity, thermal conductivity, and/or fluid permeability) of a fluid-saturated porous medium. These bounds do not depend explicitly on the porosity, but rather on two formation factors--one associated with the pore space and the other with the solid frame. Hashin-Shtrikman bounds for transport in random polycrystals of porous-material laminates will also be discussed.

  12. Studies of Gaseous Multiplication Coefficient in Isobutane

    SciTech Connect

    Lima, Iara B.; Vivaldini, Tulio C.; Goncalves, Josemary A. C.; Botelho, Suzana; Bueno Tobias, Carmen C.; Ridenti, Marco A.; Pascholati, Paulo R.; Fonte, Paulo; Mangiarotti, Alessio

    2010-05-21

    This work presents the studies of gaseous multiplication coefficient behavior for isobutane, as function of the reduced electric field, by means of signal amplitude analysis. The experimental method used is based on the Pulsed Townsend technique, which follows from Townsend equation solution for a uniform electric field. In our configuration, the anode is made of a high resistivity (2.10{sup 12} OMEGA.cm) glass, while the cathode is of aluminium. In order to validate the technique and to analyze effects of non-uniformity, results for nitrogen, which has well-established data available in literature, are also presented.

  13. Modeling canopy reflectance and microwave backscattering coefficient

    NASA Technical Reports Server (NTRS)

    Goel, N. S.

    1985-01-01

    Various approaches to model canopy reflectance (CR) in the visible/infrared region and backscattering coefficient (BSC) in the microwave region are compared and contrasted. It is noted that BSC can be related to CR in the source direction (the 'hot spot' direction). By assuming a frequency dependent leaf reflectance and transmittance it is shown that the observed dependence of BSC on leaf area index, leaf angle distribution, angle of incidence, soil moisture content, and frequency can be simulated by a CR model. Thus both BSC and CR can, in principle, be calculated using a single model which has essentially the same parameters as many CR models do.

  14. Micro-Fluidic Diffusion Coefficient Measurement

    SciTech Connect

    Forster, F.K.; Galambos, P.

    1998-10-06

    A new method for diffusion coefficient measurement applicable to micro-fluidics is pre- sented. The method Iltilizes an analytical model describing laminar dispersion in rect- anglllar ~llicro_channe]s. The Illethod ~vas verified throllgh measllremen~ of fllloresceill diffusivity in water and aqueolls polymer solutions of differing concentration. The diffll- sivity of flllorescein was measlmed as 0.64 x 10-gm2/s in water, 0.49 x 10-gm2/s in the 4 gm/dl dextran solution and 0.38 x 10-9n12/s in the 8 gnl/dl dextran solution.

  15. Surface area coefficients for airship envelopes

    NASA Technical Reports Server (NTRS)

    Diehl, W S

    1922-01-01

    In naval architecture, it is customary to determine the wetted surface of a ship by means of some formula which involves the principal dimensions of the design and suitable constants. These formulas of naval architecture may be extended and applied to the calculation of the surface area of airship envelopes by the use of new values of the constants determined for this purpose. Surface area coefficients were calculated from the actual dimensions, surfaces, and volumes of 52 streamline bodies, which form a series covering the entire range of shapes used in the present aeronautical practice.

  16. Studies of Gaseous Multiplication Coefficient in Isobutane

    NASA Astrophysics Data System (ADS)

    Lima, Iara B.; Vivaldini, Túlio C.; Gonçalves, Josemary A. C.; Botelho, Suzana; Ridenti, Marco A.; Fonte, Paulo; Mangiarotti, Alessio; Pascholati, Paulo R.; Bueno Tobias, Carmen C.

    2010-05-01

    This work presents the studies of gaseous multiplication coefficient behavior for isobutane, as function of the reduced electric field, by means of signal amplitude analysis. The experimental method used is based on the Pulsed Townsend technique, which follows from Townsend equation solution for a uniform electric field. In our configuration, the anode is made of a high resistivity (2.1012 Ω.cm) glass, while the cathode is of aluminium. In order to validate the technique and to analyze effects of non-uniformity, results for nitrogen, which has well-established data available in literature, are also presented.

  17. Thermodiffusion, molecular diffusion and Soret coefficient of binary and ternary mixtures of n-hexane, n-dodecane and toluene.

    PubMed

    Alonso de Mezquia, David; Wang, Zilin; Lapeira, Estela; Klein, Michael; Wiegand, Simone; Mounir Bou-Ali, M

    2014-11-01

    In this study, the thermodiffusion, molecular diffusion, and Soret coefficients of 12 binary mixtures composed of toluene, n-hexane and n-dodecane in the whole range of concentrations at atmospheric pressure and temperatures of 298.15 K and 308.15 K have been determined. The experimental measurements have been carried out using the Thermogravitational Column, the Sliding Symmetric Tubes and the Thermal Diffusion Forced Rayleigh Scattering techniques. The results obtained using the different techniques show a maximum deviation of 9% for the thermodiffusion coefficient, 8% for the molecular diffusion coefficient and 2% for the Soret coefficient. For the first time we report a decrease of the thermodiffusion coefficient with increasing ratio of the thermal expansion coefficient and viscosity for a binary mixture of an organic ring compound with a short n-alkane. This observation is discussed in terms of interactions between the different components. Additionally, the thermogravitational technique has been used to measure the thermodiffusion coefficients of four ternary mixtures consisting of toluene, n-hexane and n-dodecane at 298.15 K. In order to complete the study, the values obtained for the molecular diffusion coefficient in binary mixtures, and the thermodiffusion coefficient of binary and ternary mixtures have been compared with recently derived correlations. PMID:25376978

  18. Chromium at High Pressure

    NASA Astrophysics Data System (ADS)

    Jaramillo, Rafael

    2012-02-01

    Chromium has long served as the archetype of spin density wave magnetism. Recently, Jaramillo and collaborators have shown that Cr also serves as an archetype of magnetic quantum criticality. Using a combination of x-ray diffraction and electrical transport measurements at high pressures and cryogenic temperatures in a diamond anvil cell, they have demonstrated that the N'eel transition (TN) can be continuously suppressed to zero, with no sign of a concurrent structural transition. The order parameter undergoes a broad regime of exponential suppression, consistent with the weak coupling paradigm, before deviating from a BCS-like ground state within a narrow but accessible quantum critical regime. The quantum criticality is characterized by mean field scaling of TN and non mean field scaling of the transport coefficients, which points to a fluctuation-induced reconstruction of the critical Fermi surface. A comparison between pressure and chemical doping as means to suppress TN sheds light on different routes to the quantum critical point and the relevance of Fermi surface nesting and disorder at this quantum phase transition. The work by Jaramillo et al. is broadly relevant to the study of magnetic quantum criticality in a physically pure and theoretically tractable system that balances elements of weak and strong coupling. [4pt] [1] R. Jaramillo, Y. Feng, J. Wang & T. F. Rosenbaum. Signatures of quantum criticality in pure Cr at high pressure. Proc. Natl. Acad. Sci. USA 107, 13631 (2010). [0pt] [2] R. Jaramillo, Y. Feng, J. C. Lang, Z. Islam, G. Srajer, P. B. Littlewood, D. B. McWhan & T. F. Rosenbaum. Breakdown of the Bardeen-Cooper-Schrieffer ground state at a quantum phase transition. Nature 459, 405 (2009).

  19. Density and viscosity of lipids under pressure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a lack of data for the viscosity of lipids under pressure. The current report is a part of the effort to fill this gap. The viscosity, density, and elastohydrodynamic film thicknesses of vegetable oil (HOSuO) were investigated. Pressure–viscosity coefficients (PVC) of HOSuO at different tem...

  20. Experimental and analytical sonic nozzle discharge coefficients for Reynolds numbers up to 8 x 10 to the 6th power

    NASA Technical Reports Server (NTRS)

    Szaniszlo, A. J.

    1975-01-01

    Sonic discharge coefficients are obtained for two different geometry flow nozzles using high-pressure nitrogen gas (100 atm) with significant real-gas flow corrections. Throat Reynolds number range extended up to 8 million. Discharge coefficients for both nozzles monotonically increase in value at the high throat Reynolds numbers. The 95-percent confidence band for each nozzle is shown. Analytical discharge coefficients for the continuous and finite radius of curvature nozzle are presented. These analytical results for the laminar and turbulent boundary-layer cases are compared to experimental values for sonic flow. Experimental values are also compared to values calculated from the best empirical curve fit equation for subsonic flow.

  1. Hierarchical coefficient of a multifractal based network

    NASA Astrophysics Data System (ADS)

    Moreira, Darlan A.; Lucena, Liacir dos Santos; Corso, Gilberto

    2014-02-01

    The hierarchical property for a general class of networks stands for a power-law relation between clustering coefficient, CC and connectivity k: CC∝kβ. This relation is empirically verified in several biologic and social networks, as well as in random and deterministic network models, in special for hierarchical networks. In this work we show that the hierarchical property is also present in a Lucena network. To create a Lucena network we use the dual of a multifractal lattice ML, the vertices are the sites of the ML and links are established between neighbouring lattices, therefore this network is space filling and planar. Besides a Lucena network shows a scale-free distribution of connectivity. We deduce a relation for the maximal local clustering coefficient CCimax of a vertex i in a planar graph. This condition expresses that the number of links among neighbour, N△, of a vertex i is equal to its connectivity ki, that means: N△=ki. The Lucena network fulfils the condition N△≃ki independent of ki and the anisotropy of ML. In addition, CCmax implies the threshold β=1 for the hierarchical property for any scale-free planar network.

  2. The Convergence Coefficient across Political Systems

    PubMed Central

    Schofield, Norman

    2013-01-01

    Formal work on the electoral model often suggests that parties or candidates should locate themselves at the electoral mean. Recent research has found no evidence of such convergence. In order to explain nonconvergence, the stochastic electoral model is extended by including estimates of electoral valence. We introduce the notion of a convergence coefficient, c. It has been shown that high values of c imply that there is a significant centrifugal tendency acting on parties. We used electoral surveys to construct a stochastic valence model of the the elections in various countries. We find that the convergence coefficient varies across elections in a country, across countries with similar regimes, and across political regimes. In some countries, the centripetal tendency leads parties to converge to the electoral mean. In others the centrifugal tendency dominates and some parties locate far from the electoral mean. In particular, for countries with proportional electoral systems, namely, Israel, Turkey, and Poland, the centrifugal tendency is very high. In the majoritarian polities of the United States and Great Britain, the centrifugal tendency is very low. In anocracies, the autocrat imposes limitations on how far from the origin the opposition parties can move. PMID:24385886

  3. Estimating biokinetic coefficients in the PACT™ system.

    PubMed

    Shen, Zhiyao; Arbuckle, Wm Brian

    2016-02-01

    When powdered activated carbon (PAC) is continuously added to the aeration tank of an activated sludge reactor, the modification is called a PACT™ process (for powdered activated carbon treatment). The PAC provides many benefits, but complicates the determination of biological phenomena. Determination of bio-oxidation kinetics in a PACT system is a key to fully understanding enhanced biological mechanisms resulting from PAC addition. A model is developed to account for the main mechanisms involved in the PACT system -- adsorption, air stripping and bio-oxidation. The model enables the investigation of biokinetic information, including possible synergistic effects. Six parallel reactors were used to treat a synthetic waste; three activated sludge and three PACT. The PACT reactors provided significantly reduced effluent TOC (total organic carbon). Biokinetic coefficients were obtained from steady-state data using averaged reactor data and by using all data (22 points for each reactor). As expected, the PACT reactors resulted in a substantial reduction in the effluent concentration of non-biodegradable total organic carbon. The Monod equation's half-saturation coefficient (Ks) was reduced significantly in the PACT reactors, resulting in higher growth rates at lower concentrations. The maximum specific substrate utilization (qm) rate was also reduced about 25% using the averaged data and remained unchanged using all the data. The substrate utilization values are affected by errors in biomass determination and more research is needed to accurately determine biomass. PMID:26613352

  4. Angular Fock coefficients: Refinement and further development

    NASA Astrophysics Data System (ADS)

    Liverts, Evgeny Z.; Barnea, Nir

    2015-10-01

    The angular coefficients ψk ,p(α ,θ ) of the Fock expansion characterizing the S -state wave function of the two-electron atomic system are calculated in hyperspherical angular coordinates α and θ . To solve the problem the Fock recurrence relations separated into the independent individual equations associated with definite power j of the nucleus charge Z are applied. The "pure" j components of the angular Fock coefficients, orthogonal to the hyperspherical harmonics Yk l, are found for even values of k . To this end, the specific coupling equation is proposed and applied. Effective techniques for solving the individual equations with the simplest nonseparable and separable right-hand sides are proposed. Some mistakes or misprints made earlier in representations of ψ2 ,0, are noted and corrected. All j components of ψ4 ,1 and the majority of components and subcomponents of ψ3 ,0 are calculated and presented. All calculations are carried out with the help of Wolfram Mathematica.

  5. Coefficient adaptive triangulation for strongly anisotropic problems

    SciTech Connect

    D`Azevedo, E.F.; Romine, C.H.; Donato, J.M.

    1996-01-01

    Second order elliptic partial differential equations arise in many important applications, including flow through porous media, heat conduction, the distribution of electrical or magnetic potential. The prototype is the Laplace problem, which in discrete form produces a coefficient matrix that is relatively easy to solve in a regular domain. However, the presence of anisotropy produces a matrix whose condition number is increased, making the resulting linear system more difficult to solve. In this work, we take the anisotropy into account in the discretization by mapping each anisotropic region into a ``stretched`` coordinate space in which the anisotropy is removed. The region is then uniformly triangulated, and the resulting triangulation mapped back to the original space. The effect is to generate long slender triangles that are oriented in the direction of ``preferred flow.`` Slender triangles are generally regarded as numerically undesirable since they tend to cause poor conditioning; however, our triangulation has the effect of producing effective isotropy, thus improving the condition number of the resulting coefficient matrix.

  6. On Learning Cluster Coefficient of Private Networks

    PubMed Central

    Wang, Yue; Wu, Xintao; Zhu, Jun; Xiang, Yang

    2013-01-01

    Enabling accurate analysis of social network data while preserving differential privacy has been challenging since graph features such as clustering coefficient or modularity often have high sensitivity, which is different from traditional aggregate functions (e.g., count and sum) on tabular data. In this paper, we treat a graph statistics as a function f and develop a divide and conquer approach to enforce differential privacy. The basic procedure of this approach is to first decompose the target computation f into several less complex unit computations f1, …, fm connected by basic mathematical operations (e.g., addition, subtraction, multiplication, division), then perturb the output of each fi with Laplace noise derived from its own sensitivity value and the distributed privacy threshold εi, and finally combine those perturbed fi as the perturbed output of computation f. We examine how various operations affect the accuracy of complex computations. When unit computations have large global sensitivity values, we enforce the differential privacy by calibrating noise based on the smooth sensitivity, rather than the global sensitivity. By doing this, we achieve the strict differential privacy guarantee with smaller magnitude noise. We illustrate our approach by using clustering coefficient, which is a popular statistics used in social network analysis. Empirical evaluations on five real social networks and various synthetic graphs generated from three random graph models show the developed divide and conquer approach outperforms the direct approach. PMID:24429843

  7. Link prediction with node clustering coefficient

    NASA Astrophysics Data System (ADS)

    Wu, Zhihao; Lin, Youfang; Wang, Jing; Gregory, Steve

    2016-06-01

    Predicting missing links in incomplete complex networks efficiently and accurately is still a challenging problem. The recently proposed Cannistrai-Alanis-Ravai (CAR) index shows the power of local link/triangle information in improving link-prediction accuracy. Inspired by the idea of employing local link/triangle information, we propose a new similarity index with more local structure information. In our method, local link/triangle structure information can be conveyed by clustering coefficient of common-neighbors directly. The reason why clustering coefficient has good effectiveness in estimating the contribution of a common-neighbor is that it employs links existing between neighbors of a common-neighbor and these links have the same structural position with the candidate link to this common-neighbor. In our experiments, three estimators: precision, AUP and AUC are used to evaluate the accuracy of link prediction algorithms. Experimental results on ten tested networks drawn from various fields show that our new index is more effective in predicting missing links than CAR index, especially for networks with low correlation between number of common-neighbors and number of links between common-neighbors.

  8. Measurement of impingement heat transfer coefficient on a HIPS liner sheet

    SciTech Connect

    Fu, X.

    1999-07-01

    A test facility was built to measure the impingement convective heat transfer coefficient for a high impact polystyrene (HIPS) liner sheet which was heated by an array of air slot nozzles. A HIPS liner sheet having a thickness of 6 mm is a typical material used for inside shells of refrigerators. The nozzle geometry was optimally designed. The pressure drops through the nozzles, the velocities at the exits of nozzles, temperatures on the sheet surface and in the sheet center were measured. The impingement heat transfer coefficient on the sheet was determined using the measured sheet temperature history in conjunction with an inverse analysis which was based on a one-dimensional transient heat conduction model. The effect of air flow rate ranging from 8 to 32 m/s on the heat transfer coefficient is discussed.

  9. Theory and measurements of labyrinth seal coefficients for rotor stability of turbocompressors

    NASA Technical Reports Server (NTRS)

    Syssmann, H. R.

    1987-01-01

    The prediction of rotordynamic coefficients for gas seals is achieved with the aid of a two-volume bulk flow model based on turbulent rotationally symmetric 3D flow calculations including swirl flow. Comparison of cross-coupling and damping coefficients with measurements confirm this approach. In particular the theoretically predicted phenomenon that labyrinth damping is retained without inlet swirl is confirmed. This is important for the design of high pressure compressors, where labyrinth damping is a major contribution improving rotor stability. Discrepancies are found when comparing theory with measured direct stiffness and the cross-coupling damping coefficients. First measurements of labyrinth seals on a recently installed test rig operated with water are presented. Since forces are larger than on test stands operated with air and since individual chamber forces are obtained phenomena like inlet effects may be studied.

  10. SEL and EPNL noise duration coefficients for the 747 and T-38 aircraft

    NASA Technical Reports Server (NTRS)

    Willshire, W. L., Jr.

    1981-01-01

    Duration coefficient were calculated for Boeing 747 and T-38 airplanes for sound exposure level (SEL) and effective perceived noise level (EPNL) scales. The measured SEL suration coefficients were 8.4 for the Boeing 747 and 5.5 for the T-38 result was in good agreement with a previous result for a similar F-5 airplane. In EPNL, the duration coefficients were 7.2 for the Boeing 747 and 5.7 for the T-38. The difference in the results between the two airplanes is believed to be due to their different engine noise source spectra. The difference in the Boeing 747 results in the two different metric was due to the different frequency weighting of A-weighted sound pressure level, used in SEL, and tone-corrected perceived noise level, used in EPNL, when applied to the 747 spectra.

  11. Free-molecule-flow force and moment coefficients of the aeroassist flight experiment vehicle

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Hinson, Edwin W.

    1989-01-01

    Calculated results for the aerodynamic coefficients over the range of + or - 90 deg in both pitch and yaw attitude angles for the Aeroassist Flight Experiment (AFE) vehicle in free molecule flow are presented. The AFE body is described by a large number of small flat plate surface elements whose orientations are established in a wind axes coordinate system through the pitch and yaw attitude angles. Lift force, drag force, and three components of aerodynamic moment about a specified point are computed for each element. The elemental forces and moments are integrated over the entire body, and total force and moment coefficients are computed. The coefficients are calculated for the two limiting gas-surface molecular collision conditions, namely, specular and diffuse, which assume zero and full thermal accommodation of the incoming gas molecules with the surface, respectively. The individual contribution of the shear stress and pressure terms are calculated and also presented.

  12. Elemental transport coefficients in viscous plasma flows near local thermodynamic equilibrium.

    PubMed

    Orsini, Alessio; Kustova, Elena V

    2009-05-01

    We propose a convenient formulation of elemental transport coefficients in chemically reacting and plasma flows locally approaching thermodynamic equilibrium. A set of transport coefficients for elemental diffusion velocities, heat flux, and electric current is introduced. These coefficients relate the transport fluxes with the electric field and with the spatial gradients of elemental fractions, pressure, and temperature. The proposed formalism based on chemical elements and fully symmetric with the classical transport theory based on chemical species, is particularly suitable to model mixing and demixing phenomena due to diffusion of chemical elements. The aim of this work is threefold: to define a simple and rigorous framework suitable for numerical implementation, to allow order of magnitude estimations and qualitative predictions of elemental transport phenomena, and to gain a deeper insight into the physics of chemically reacting flows near local equilibrium. PMID:19518564

  13. Drag coefficient of the weakly ionized plasma in the high Knudsen number regime

    SciTech Connect

    Chu, H.-Y.; Si, M.-C.; Lin, S.-B.

    2009-06-15

    The drag force acting on a micron-sized polystyrene particle in the high Knudsen number regime is investigated. Analysis of the particle trajectories in stationary neutral argon gas environment suggests the damping time constant {tau}{proportional_to}p{sup -1.20{+-}}{sup 0.04} and Epstein drag force coefficient {delta}=1.40. The neutral drag coefficient is compared with the drag coefficient measurement in dust-free plasma. The phenomena of the reduced drag in weakly viscous and weakly ionized rf plasma are also observed in this report. It is shown that the slight changes in rf power and pressure would enhance the reduced drag effect, which suggests that there is an additional electrostatic force acting along the particle motion in the plasma.

  14. He-broadening and shift coefficients of water vapor lines in infrared spectral region

    NASA Astrophysics Data System (ADS)

    Petrova, T. M.; Solodov, A. M.; Solodov, A. A.; Deichuli, V. M.; Starikov, V. I.

    2015-11-01

    The water vapor line broadening and shift coefficients in the ν1+ν2, ν2+ν3, ν1+ν3, 2ν3, 2ν1, 2ν2+ν3, and ν1+2ν2 vibrational bands induced by helium pressure were measured using a Bruker IFS 125HR spectrometer. The vibrational bands 2ν3 and ν1+2ν2 were investigated for the first time. The interaction potential used in the calculations of broadening and shift coefficients was chosen as the sum of pair potentials, which were modeled by the Lennard-Jones (6-12) potentials. The vibrational and rotational contributions to this potential were obtained by use of the intermolecular potential parameters and intramolecular parameters of H2O molecule. The calculated values of the broadening and shift coefficients were compared with the experimental data.

  15. Graphical method for determining the coefficient of consolidation cv from a flow-pump permeability test

    USGS Publications Warehouse

    Morin, Roger H.; Olsen, Harold W.; Nelson, Karl R.; Gill, James D.

    1989-01-01

    A graphical method has been developed for determining the coefficient of consolidation from the transient phases of a flow-pump permeability test. The flow pump can be used to infuse fluid into or withdraw fluid from a laboratory sediment specimen at a constant volumetric rate in order to obtain data that can be used to calculate permeability using Darcy's law. Representative type-curve solutions to the associated forced-flow and pressure-decay models are derived. These curves provide the basis for graphically evaluating the permeability k, the coefficient of consolidation cv, and the coefficient of volume change mv. The curve-matching technique is easy and rapid. Values of k, cv and mv for a laterally confined kaolinite specimen were determined by this graphical method and appear to be in reasonably good agreement with numerically derived estimates (within 20%). Discrepancies between the two sets of results seem to be largely a function of data quality.

  16. Studies on molten glass sealing in diffusion coefficient measurements using shear cell technique

    NASA Astrophysics Data System (ADS)

    Yu, Jianding; Natsuisaka, Makoto; Kato, Hirokazu; Matsumoto, Satoshi; Kinoshita, Kyoichi; Itami, Toshio; Yoda, Shinichi

    2000-05-01

    To develop a shear cell technique for measuring the diffusion coefficient of molten materials with high vapor pressure, molten silica glass was used to seal the vapor leak from the clearance between the cell and the rotating rod. An apparatus was designed to investigate the sealing ability of several molten silica glasses. Using Corning 0211, 7059, and 7740 silica glasses, Ar could be sealed under 150 kPa in the 1100-1500 K temperature range. The corresponding viscosities of the molten silica glasses in the sealing temperature range were 105.3-103.8 Pa s. Based on the results of Ar sealing experiments, the configuration of molten glass sealing was used to seal the As vapor leak in InxGa1-xAs diffusion coefficient measurement experiments. The As vapor leak was successfully sealed and excellent diffusion coefficient measurement data were obtained using the shear cell technique during microgravity experiments carried out on sounding rocket.

  17. A new coefficient of concordance with applications to biosignal analysis

    NASA Astrophysics Data System (ADS)

    Xu, Weichao; Chen, Zhaoguo; Liu, Wenqing

    2015-12-01

    In this paper we propose a novel concordance coefficients called Order Statistics Concordance Coefficients based on order statistics and Pearson's Product Moment Correlation Coefficient. For comparison, we also construct other three similar index based on Average Pearson's Product Moment Correlation Coefficient, Kendall's Concordance Coefficients, Average Kendall's tau. We propose Multivariate Normal Model to estimate the correlation coefficient, Linear Model and Nonlinear Model to model the linear and nonlinear association between multichannel signals, And we also apply the concordance coefficients to biosignal analysis developed a new organizational index for quantifying organization of AF. Statistical evidences suggest that (a) Order Statistics Concordance Coefficients have better robust than other three index; (b) capable of distinguishing fibrillatory rhythms from nonfibrillatory rhythms, such as Atiral flutter; (c) can reflect the effectiveness of adenosine, a drug commonly used during electrophysiological procedures; and (d) perform better than other three concordance coefficients.

  18. A transient method for measuring the DC streaming potential coefficient of porous and fractured rocks

    NASA Astrophysics Data System (ADS)

    Walker, E.; Glover, P. W. J.; Ruel, J.

    2014-02-01

    High-quality streaming potential coupling coefficient measurements have been carried out using a newly designed cell with both a steady state methodology and a new pressure transient approach. The pressure transient approach has shown itself to be particularly good at providing high-quality streaming potential coefficient measurements as each transient increase or decrease allows thousands of measurements to be made at different pressures to which a good linear regression can be fitted. Nevertheless, the transient method can be up to 5 times as fast as the conventional measurement approaches because data from all flow rates are taken in the same transient measurement rather than separately. Test measurements have been made on samples of Berea and Boise sandstone as a function of salinity (approximately 18 salinities between 10-5 mol/dm3 and 2 mol/dm3). The data have also been inverted to obtain the zeta potential. The streaming potential coefficient becomes greater (more negative) for fluids with lower salinities, which is consistent with existing measurements. Our measurements are also consistent with the high-salinity streaming potential coefficient measurements made by Vinogradov et al. (2010). Both the streaming potential coefficient and the zeta potential have also been modeled using the theoretical approach of Glover (2012). This modeling allows the microstructural, electrochemical, and fluid properties of the saturated rock to be taken into account in order to provide a relationship that is unique to each particular rock sample. In all cases, we found that the experimental data were a good match to the theoretical model.

  19. Drift tube measurements of mobilities and longitudinal diffusion coefficients of ions in gases

    SciTech Connect

    Chelf, R.D.

    1982-01-01

    The zero-field mobilities of Br/sup -/ and NH/sub 4//sup +/ in O/sub 2/ were determined as a function of gas temperature in a high pressure drift tube mass spectrometer. The mobilities and longitudinal diffusion coefficients of the ion-gas combinations Br/sup -/ in Ne and Kr, Li/sup +/ in Xe, and Tl//sup +/ in Kr and Xe were determined as a function of E/N, where E is the electric field strength and N is the gas number density in a low pressure drift tube mass spectrometer. The measured longitudinal diffusion coefficients were used for a test and comparison of the generalized Einstein relations of Viehland-Mason and Waldman-Mason theories. The measured mobilities of Br/sup -/ in Kr and Tl//sup +/ in Kr were used in an iterative-inversion scheme from which the ion-neutral interaction potentials were determined.

  20. Analysis of eccentric annular incompressible seals. II - Effects of eccentricity on rotordynamic coefficients

    NASA Technical Reports Server (NTRS)

    Nelson, C. C.; Nguyen, D. T.

    1987-01-01

    A new analysis procedure has been presented which solves for the flow variables of an annular pressure seal in which the rotor has a large static displacement (eccentricity) from the centered position. The present paper incorporates the solutions to investigate the effect of eccentricity on the rotordynamic coefficients. The analysis begins with a set of governing equations based on a turbulent bulk-flow model and Moody's friction factor equation. Perturbations of the flow variables yields a set of zeroth- and first-order equations. After integration of the zeroth-order equations, the resulting zeroth-order flow variables are used as input in the solution of the first-order equations. Further integration of the first order pressures yields the eccentric rotordynamic coefficients. The results from this procedure compare well with available experimental and theoretical data, with accuracy just as good or slightly better than the predictions based on a finite-element model.

  1. Simultaneous evaluation of acoustic nonlinearity parameter and attenuation coefficients using the finite amplitude method

    SciTech Connect

    Zhang, Shuzeng; Li, Xiongbing; Jeong, Hyunjo Cho, Sungjong

    2015-07-15

    A novel method to determine acoustic parameters involved in measuring the nonlinearity parameter of fluids or solids is proposed. The approach is based on the measurement of fundamental and second harmonic pressures with a calibrated receiver, and on a nonlinear least squares data-fitting to multi-Gaussian beam (MGB) equations which explicitly define the attenuation and diffraction effects in the quasilinear regime. Results obtained in water validate the proposed method. The choice of suitable source pressure is discussed with regard to the quasilinear approximation involved. The attenuation coefficients are also acquired in nonlinear regime and their relations are discussed.

  2. Flow Induced Spring Coefficients of Labyrinth Seals for Application in Rotor Dynamics

    NASA Technical Reports Server (NTRS)

    Benckert, H.; Wachter, J.

    1980-01-01

    Flow induced aerodynamic spring coefficients of labyrinth seals are discussed and the restoring force in the deflection plane of the rotor and the lateral force acting perpendicularly to it are also considered. The effects of operational conditions on the spring characteristics of these components are examined, such as differential pressure, speed, inlet flow conditions, and the geometry of the labyrinth seals. Estimation formulas for the lateral forces due to shaft rotation and inlet swirl, which are developed through experiments, are presented. The utilization of the investigations is explained and results of stability calculations, especially for high pressure centrifugal compressors, are added. Suggestions are made concerning the avoidance of exciting forces in labyrinths.

  3. Measurement and modeling of CO2 diffusion coefficient in Saline Aquifer at reservoir conditions

    NASA Astrophysics Data System (ADS)

    Azin, Reza; Mahmoudy, Mohamad; Raad, Seyed; Osfouri, Shahriar

    2013-12-01

    Storage of CO2 in deep saline aquifers is a promising techniques to mitigate global warming and reduce greenhouse gases (GHG). Correct measurement of diffusivity is essential for predicting rate of transfer and cumulative amount of trapped gas. Little information is available on diffusion of GHG in saline aquifers. In this study, diffusivity of CO2 into a saline aquifer taken from oil field was measured and modeled. Equilibrium concentration of CO2 at gas-liquid interface was determined using Henry's law. Experimental measurements were reported at temperature and pressure ranges of 32-50°C and 5900-6900 kPa, respectively. Results show that diffusivity of CO2 varies between 3.52-5.98×10-9 m2/s for 5900 kPa and 5.33-6.16×10-9 m2/s for 6900 kPa initial pressure. Also, it was found that both pressure and temperature have a positive impact on the measures of diffusion coefficient. Liquid swelling due to gas dissolution and variations in gas compressibility factor as a result of pressure decay was found negligible. Measured diffusivities were used model the physical model and develop concentration profile of dissolved gas in the liquid phase. Results of this study provide unique measures of CO2 diffusion coefficient in saline aquifer at high pressure and temperature conditions, which can be applied in full-field studies of carbon capture and sequestration projects.

  4. Determination of diffusion, reflection and deexcitation coefficients of metastable excited Ne(3P2) atom

    NASA Astrophysics Data System (ADS)

    Suzuki, S.; Itoh, H.

    2016-05-01

    The diffusion coefficient of the metastable excited Ne(3P2) atom in neon, the reflection coefficient of Ne(3P2) at the surface of an electrode and the rate coefficient of Ne(3P2) for collisional quenching by Ne(1S0) were determined from the gas pressure dependence of the effective lifetime of Ne(3P2). The effective lifetime of Ne(3P2) was measured from the transient current after turning off the Ultraviolet (UV) light in a Townsend discharge. The observed transient current waveform was analysed by solving the diffusion equation for the metastable excited Ne(3P2) atom using the third kind of boundary condition. The rate coefficient of Ne(3P2) for collisional quenching by Ne(1S0) and the reflection coefficient were determined by a nonspectroscopic method for the first time in neon to the best of our knowledge and were (3.2  ±  0.4)  ×  10‑16 cm3 s‑1 and 0.10  ±  0.04, respectively. The obtained diffusion coefficient at 1 Torr was 177  ±  17 cm2 s‑1, which is consistent with the value reported by Dixon and Grant. Moreover, the present results are compared with the results of Phelps and were found to be in good agreement. We also discuss the deexcitation rate of Ne(3P2) at pressures of up to 60 Torr in comparison with previously reported values.

  5. Densities, isobaric thermal expansion coefficients and isothermal compressibilities of linear alkylbenzene

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Zhang, Q. M.; Liu, Q.; Zhang, Z. Y.; Ding, Y. Y.; Zhou, L.; Cao, J.

    2015-05-01

    We report the measurements of the densities of linear alkylbenzene at three temperatures over 4 to 23 °C with pressures up to 10 MPa. The measurements have been analysed to yield the isobaric thermal expansion coefficients and, so far for the first time, isothermal compressibilities of linear alkylbenzene. Relevance of results for current generation (i.e., Daya Bay) and next generation (i.e. JUNO) large liquid scintillator neutrino detectors are discussed.

  6. Infrared absorption-coefficient data on SF6 applicable to atmospheric remote sensing

    NASA Technical Reports Server (NTRS)

    Varanasi, P.; Gopalan, A.; Brannon, J. F., Jr.

    1992-01-01

    Spectral absorption coefficients, k(nu)/cm per atm, of SF6 have been measured in the central Q-branches of the nu(3)-fundamental at 947/cm at various temperature-pressure combinations representing tangent heights in solar-occultation experiments or layers in the atmosphere. The data obtained with the Doppler-limited spectral resolution (about 0.0001/cm) of a tunable-diode laser spectrometer are useful in the atmospheric remote sensing of this trace gas.

  7. Fractional diffusions with time-varying coefficients

    NASA Astrophysics Data System (ADS)

    Garra, Roberto; Orsingher, Enzo; Polito, Federico

    2015-09-01

    This paper is concerned with the fractionalized diffusion equations governing the law of the fractional Brownian motion BH(t). We obtain solutions of these equations which are probability laws extending that of BH(t). Our analysis is based on McBride fractional operators generalizing the hyper-Bessel operators L and converting their fractional power Lα into Erdélyi-Kober fractional integrals. We study also probabilistic properties of the random variables whose distributions satisfy space-time fractional equations involving Caputo and Riesz fractional derivatives. Some results emerging from the analysis of fractional equations with time-varying coefficients have the form of distributions of time-changed random variables.

  8. Isotope coefficient in high Tc superconductors

    SciTech Connect

    Kishore, R.

    1995-10-01

    An exact expression for the isotope coefficient ({alpha}), within the conventional BCS theory, has been derived for any arbitrary electronic density of states and the mass dependence of carrier concentration. It is shown that the effect of the mass dependence of the carrier concentration within the van-Hove scenario (VHS) can explain some anomalous features of {alpha} for La{sub 2}CuO{sub 4} based superconductors, not explained by earlier theories based on VHS. These anomalous features are the asymmetry of {alpha} about the optimum concentration (n{sub m}) corresponding to the maximum critical temperature, minimum in {alpha} above n{sub m}, and the value of {alpha} less than 0.5 below n{sub m}.

  9. Structure coefficients for use in stellar analysis

    NASA Astrophysics Data System (ADS)

    İnlek, Gülay; Budding, Edwin

    2012-12-01

    We present new values of the structural coefficients η j , and related quantities, for realistic models of distorted stars in close binary systems. Our procedure involves numerical integration of Radau's equation for detailed structural data and we verified our technique by referring to the 8-digit results of Brooker & Olle (Mon. Not. R. Astron. Soc. 115:101, 1955) for purely mathematical models. We provide tables of representative values of η j , and related quantities, for j=2,3,…,7 for a selection of Zero Age Stellar Main Sequence (ZAMS) stellar models taken from the EZWeb compilation of the Dept. of Astronomy, University of Wisconsin-Madison. We include also some preliminary comparisons of our findings with the results of Claret and Gimenez (Astron. Astrophys. 519:A57 2010) for some observed stars.

  10. Effective Electrocardiogram Steganography Based on Coefficient Alignment.

    PubMed

    Yang, Ching-Yu; Wang, Wen-Fong

    2016-03-01

    This study presents two types of data hiding methods based on coefficient alignment for electrocardiogram (ECG) signals, namely, lossy and reversible ECG steganographys. The lossy method is divided into high-quality and high-capacity ECG steganography, both of which are capable of hiding confidential patient data in ECG signals. The reversible data hiding method can not only hide secret messages but also completely restore the original ECG signal after bit extraction. Simulations confirmed that the perceived quality generated by the lossy ECG steganography methods was good, while hiding capacity was acceptable. In addition, these methods have a certain degree of robustness, which is rare in conventional ECG stegangraphy schemes. Moreover, the proposed reversible ECG steganography method can not only successfully extract hidden messages but also completely recover the original ECG data. PMID:26711443

  11. Implicit Extrapolation Methods for Variable Coefficient Problems

    NASA Technical Reports Server (NTRS)

    Jung, M.; Ruede, U.

    1996-01-01

    Implicit extrapolation methods for the solution of partial differential equations are based on applying the extrapolation principle indirectly. Multigrid tau-extrapolation is a special case of this idea. In the context of multilevel finite element methods, an algorithm of this type can be used to raise the approximation order, even when the meshes are nonuniform or locally refined. Here previous results are generalized to the variable coefficient case and thus become applicable for nonlinear problems. The implicit extrapolation multigrid algorithm converges to the solution of a higher order finite element system. This is obtained without explicitly constructing higher order stiffness matrices but by applying extrapolation in a natural form within the algorithm. The algorithm requires only a small change of a basic low order multigrid method.

  12. Transport coefficients in superfluid neutron stars

    NASA Astrophysics Data System (ADS)

    Tolos, Laura; Manuel, Cristina; Sarkar, Sreemoyee; Tarrus, Jaume

    2016-01-01

    We study the shear and bulk viscosity coefficients as well as the thermal conductivity as arising from the collisions among phonons in superfluid neutron stars. We use effective field theory techniques to extract the allowed phonon collisional processes, written as a function of the equation of state and the gap of the system. The shear viscosity due to phonon scattering is compared to calculations of that coming from electron collisions. We also comment on the possible consequences for r-mode damping in superfluid neutron stars. Moreover, we find that phonon collisions give the leading contribution to the bulk viscosities in the core of the neutron stars. We finally obtain a temperature-independent thermal conductivity from phonon collisions and compare it with the electron-muon thermal conductivity in superfluid neutron stars.

  13. Manning's roughness coefficient for Illinois streams

    USGS Publications Warehouse

    Soong, David T.; Prater, Crystal D.; Halfar, Teresa M.; Wobig, Loren A.

    2012-01-01

    Manning's roughness coefficients for 43 natural and constructed streams in Illinois are reported and displayed on a U.S. Geological Survey Web site. At a majority of the sites, discharge and stage were measured, and corresponding Manning's coefficients—the n-values—were determined at more than one river discharge. The n-values discussed in this report are computed from data representing the stream reach studied and, therefore, are reachwise values. Presentation of the resulting n-values takes a visual-comparison approach similar to the previously published Barnes report (1967), in which photographs of channel conditions, description of the site, and the resulting n-values are organized for each site. The Web site where the data can be accessed and are displayed is at URL http://il.water.usgs.gov/proj/nvalues/.

  14. Molar extinction coefficients of some fatty acids

    NASA Astrophysics Data System (ADS)

    Sandhu, G. K.; Singh, Kulwant; Lark, B. S.; Gerward, L.

    2002-10-01

    The attenuation of gamma rays in some fatty acids, viz. formic acid (CH 2O 2), acetic acid (C 2H 4O 2), propionic acid (C 3H 6O 2), butyric acid (C 4H 8O 2), n-hexanoic acid (C 6H 12O 2), n-caprylic acid (C 8H 16O 2), lauric acid (C 12H 24O 2), myristic acid (C 14H 28O 2), palmitic acid (C 16H 32O 2), oleic acid (C 18H 34O 2) and stearic acid (C 18H 36O 2), has been measured at the photon energies 81, 356, 511, 662, 1173 and 1332 keV. Experimental values for the molar extinction coefficient, the effective atomic number and the electron density have been derived and compared with theoretical calculations. There is good agreement between experiment and theory.

  15. Particle Pressures in Fluidized Beds. Final report

    SciTech Connect

    Campbell, C.S.; Rahman, K.; Jin, C.

    1996-09-01

    This project studies the particle pressure, which may be thought of as the force exerted by the particulate phase of a multiphase mixture, independently of that exerted by other phases. The project is divided into two parts, one concerning gas and the other liquid fluidized beds. Previous work on gas fluidized beds had suggested that the particle pressures are generated by bubbling action. Thus, for these gas fluidized bed studies, the particle pressure is measured around single bubbles generated in 2-D fluidized beds, using special probes developed especially for this purpose. Liquid beds are immune from bubbling and the particle pressures proved too small to measure directly. However, the major interest in particle pressures in liquid beds lies in their stabilizing effect that arises from the effective elasticity (the derivative of the particle pressure with respect to the void fraction): they impart to the bed. So rather than directly measure the particle pressure, we inferred the values of the elasticity from measurements of instability growth in liquid beds the inference was made by first developing a generic stability model (one with all the normally modeled coefficients left undetermined)and then working backwards to determine the unknown coefficients, including the elasticity.

  16. Particle pressures in fluidized beds. Final report

    SciTech Connect

    Campbell, C.S.; Rahman, K.; Jin, C.

    1996-09-01

    This project studies the particle pressure, which may be thought of as the force exerted by the particulate phase of a multiphase mixture, independently of that exerted by other phases. The project is divided into two parts, one concerning gas and the other liquid fluidized beds. Previous work on gas fluidized beds had suggested that the particle pressures are generated by bubbling action. Thus, for these gas fluidized bed studies, the particle pressure is measured around single bubbles generated in 2-D fluidized beds, using special probes developed especially for this purpose. Liquid beds are immune from bubbling and the particle pressures proved too small to measure directly. However, the major interest in particle pressures in liquid beds lies in their stabilizing effect that arises from the effective elasticity (the derivative of the particle pressure with respect to the void fraction), they impart to the bed. So rather than directly measure the particle pressure, the authors inferred the values of the elasticity from measurements of instability growth in liquid beds; the inference was made by first developing a generic stability model (one with all the normally modeled coefficients left undetermined) and then working backwards to determine the unknown coefficients, including the elasticity.

  17. Light fluence correction for quantitative determination of tissue absorption coefficient using multi-spectral optoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Brochu, Frederic M.; Joseph, James; Tomaszewski, Michal; Bohndiek, Sarah E.

    2015-07-01

    MultiSpectral Optoacoustic Tomography (MSOT) is a fast developing imaging modality, combining the high resolution and penetration depth of ultrasound with the excellent contrast from optical imaging of tissue. Absorption and scattering of the near infrared excitation light modulates the spectral profile of light as it propagates deep into biological tissue, meaning the images obtained provide only qualitative insight into the distribution of tissue chromophores. The goal of this work is to accurately recover the spectral profile of excitation light by modelling light fluence in the data reconstruction, to enable quantitative imaging. We worked with a commercial small animal MSOT scanner and developed our light fluence correction for its' cylindrical geometry. Optoacoustic image reconstruction pinpoints the sources of acoustic waves detected by the transducers and returns the initial pressure amplitude at these points. This pressure is the product of the dimensionless Grüneisen parameter, the absorption coefficient and the light fluence. Under the condition of constant Grüneisen parameter and well modelled light fluence, there is a linear relationship between the initial pressure amplitude measured in the optoacoustic image and the absorption coefficient. We were able to reproduce this linear relationship in different physical regions of an agarose gel phantom containing targets of known optical absorption coefficient, demonstrating that our light fluence model was working. We also demonstrate promising results of light fluence correction effects on in vivo data.

  18. Sedimentation Coefficient, Frictional Coefficient, and Molecular Weight: A Preparative Ultracentrifuge Experiment for the Advanced Undergraduate Laboratory.

    ERIC Educational Resources Information Center

    Halsall, H. B.; Wermeling, J. R.

    1982-01-01

    Describes an experiment using a high-speed preparative centrifuge and calculator to demonstrate effects of the frictional coefficient of a macromolecule on its rate of transport in a force field and to estimate molecular weight of the macromolecule using an empirical relationship. Background information, procedures, and discussion of results are…

  19. Quantifying colocalization by correlation: the Pearson correlation coefficient is superior to the Mander's overlap coefficient.

    PubMed

    Adler, Jeremy; Parmryd, Ingela

    2010-08-01

    The Pearson correlation coefficient (PCC) and the Mander's overlap coefficient (MOC) are used to quantify the degree of colocalization between fluorophores. The MOC was introduced to overcome perceived problems with the PCC. The two coefficients are mathematically similar, differing in the use of either the absolute intensities (MOC) or of the deviation from the mean (PCC). A range of correlated datasets, which extend to the limits of the PCC, only evoked a limited response from the MOC. The PCC is unaffected by changes to the offset while the MOC increases when the offset is positive. Both coefficients are independent of gain. The MOC is a confusing hybrid measurement, that combines correlation with a heavily weighted form of co-occurrence, favors high intensity combinations, downplays combinations in which either or both intensities are low and ignores blank pixels. The PCC only measures correlation. A surprising finding was that the addition of a second uncorrelated population can substantially increase the measured correlation, demonstrating the importance of excluding background pixels. Overall, since the MOC is unresponsive to substantial changes in the data and is hard to interpret, it is neither an alternative to nor a useful substitute for the PCC. The MOC is not suitable for making measurements of colocalization either by correlation or co-occurrence. PMID:20653013

  20. Sterilization of Fuji pressure-sensitive film.

    PubMed

    Liggins, A B; Hardie, W R; Finlay, J B

    1994-11-01

    Fuji Prescale film is a pressure-sensitive medium which produces a characteristic pink stain on the application of pressure. Up to a saturation level, increases in pressure will produce a denser stain, thereby providing a method of determining pressures within the interface between two articulating surfaces. The relationship between the magnitude of applied pressure and the optical density of the resulting stain is non-linear; this relationship also varies with ambient temperature and humidity, in addition to load rate, and therefore requires a calibration procedure prior to use. The use of Fuji prescale film for recording interface pressures within the joint space in vivo has been widely reported; however, the object of this study was to assess the effects of sterilizing this medium, with a view to future in vivo applications. Samples of Fuji film were sterilized using a standard ethylene oxide (ETO) gas process and their subsequent pressure-recording properties were compared to a control group of samples. The 'optical-density vs pressure' relationship for the sterilized group was significantly different from that of the control group (paired Student's t-test, P < = 0.001); however, both groups provided reliable data across the same pressure-range and both exhibited an excellent degree of repeatability (coefficient of variation < 2.5%). It was concluded that Fuji film will continue to produce pressure-stains following ETO sterilization; however, the calibration of this film will only be valid if it is conducted using film from the sterilized group. PMID:7858782

  1. Chordwise pressure measurements on a blade of Mod-2 Wind Turbine

    NASA Technical Reports Server (NTRS)

    Nyland, T. W.

    1987-01-01

    Pressure measurements covering a range of wind velocities were made at one span location on a blade of the Mod-2 Wind Turbine. The data show the existence of higher pressure coefficients than would be expected from wind tunnel data. These high pressure coefficients may be the result of three-dimensional flow over the blade that delays flow separations. Data is presented showing the repetitiveness and abrupt changes in the pressure distribution that occurs as the blade rotates. Calculated values of suction and flap coefficients are also presented.

  2. Increased intracranial pressure

    MedlinePlus

    Increased intracranial pressure is a rise in the pressure inside the skull that can result from or cause brain injury. ... Increased intracranial pressure can be due to a rise in pressure of the cerebrospinal fluid. This is ...

  3. Low Blood Pressure

    MedlinePlus

    ... High Blood Pressure Tools & Resources Stroke More Low Blood Pressure Updated:Aug 30,2016 To know if you ... to learn more about blood pressure . If my blood pressure stays around 85/55, do I have a ...

  4. Effect of the spreading coefficient on three-phase flow in porous media

    SciTech Connect

    Mani, V.; Mohanty, K.K.

    1997-03-01

    A pore-level network model has been developed to study the effect of spreading coefficients on three-phase flow through porous media. This model combines the morphological description of the pore space with pore-level displacement physics to model capillarity-controlled, immiscible gas invasion of a porous medium initially saturated with water and oil. Three displacement events are involved during gas invasion, namely, direct water drainage, direct oil drainage, and double drainage. Direct oil drainage and double drainage involve oil mobilization and consequently lead to oil recovery. Direct water drainage event is preferred over double drainage if the spreading coefficient is highly negative. The residual oil saturation to gasflood starting after a waterflood is higher for nonspreading oils than for spreading oils. In spreading oils, it is not a function of the spreading coefficient. In nonspreading oils, the residual oil saturation increases with the magnitude of the spreading coefficient. The residual oil saturation to gasflood is also a function of the initial oil saturation; it increases as the initial oil saturation increases. The increase is higher for nonspreading oils. The gas-oil capillary pressure is not a function of the liquid saturation alone, as is commonly presumed. It is a function of the spreading coefficient and the initial oil saturation, as well.

  5. A computerized method to estimate friction coefficient from orientation distribution of meso-scale faults

    NASA Astrophysics Data System (ADS)

    Sato, Katsushi

    2016-08-01

    The friction coefficient controls the brittle strength of the Earth's crust for deformation recorded by faults. This study proposes a computerized method to determine the friction coefficient of meso-scale faults. The method is based on the analysis of orientation distribution of faults, and the principal stress axes and the stress ratio calculated by a stress tensor inversion technique. The method assumes that faults are activated according to the cohesionless Coulomb's failure criterion, where the fluctuations of fluid pressure and the magnitude of differential stress are assumed to induce faulting. In this case, the orientation distribution of fault planes is described by a probability density function that is visualized as linear contours on a Mohr diagram. The parametric optimization of the function for an observed fault population yields the friction coefficient. A test using an artificial fault-slip dataset successfully determines the internal friction angle (the arctangent of the friction coefficient) with its confidence interval of several degrees estimated by the bootstrap resampling technique. An application to natural faults cutting a Pleistocene forearc basin fill yields a friction coefficient around 0.7 which is experimentally predicted by the Byerlee's law.

  6. Diffusion coefficient of krypton atoms in helium gas at low and moderate temperatures

    NASA Astrophysics Data System (ADS)

    Bouazza, M. T.; Bouledroua, M.

    In the present work, using the Chapman-Enskog method for dilute gases, the diffusion coefficients of ground krypton atoms in a very weakly ionized helium buffer gas are revisited. The calculations are carried out quantum mechanically in the range of low and moderate temperatures. The 1 Σ+ potential-energy curve via which Kr approaches He is constructed from the most recent ab initio energy points. The reliable data points used in the construction are smoothly connected to adequate long- and short-range forms. The calculations of the classical second virial coefficients and the Boyle temperature of the helium-krypton mixture are also discussed. These coefficients and their variations in terms of temperature are analysed by adopting the constructed HeKr potential and the Lennard-Jones form that fits it. The diffusion and elastic cross sections are also explored and the resonance features they exhibit are closely examined. The variation law of the diffusion coefficients with temperature is determined for typical values of density and pressure. The coefficients show excellent agreement with the available experimental data; the discrepancies do not exceed 5%.

  7. The Attenuation of Correlation Coefficients: A Statistical Literacy Issue

    ERIC Educational Resources Information Center

    Trafimow, David

    2016-01-01

    Much of the science reported in the media depends on correlation coefficients. But the size of correlation coefficients depends, in part, on the reliability with which the correlated variables are measured. Understanding this is a statistical literacy issue.

  8. Recovering DC coefficients in block-based DCT.

    PubMed

    Uehara, Takeyuki; Safavi-Naini, Reihaneh; Ogunbona, Philip

    2006-11-01

    It is a common approach for JPEG and MPEG encryption systems to provide higher protection for dc coefficients and less protection for ac coefficients. Some authors have employed a cryptographic encryption algorithm for the dc coefficients and left the ac coefficients to techniques based on random permutation lists which are known to be weak against known-plaintext and chosen-ciphertext attacks. In this paper we show that in block-based DCT, it is possible to recover dc coefficients from ac coefficients with reasonable image quality and show the insecurity of image encryption methods which rely on the encryption of dc values using a cryptoalgorithm. The method proposed in this paper combines dc recovery from ac coefficients and the fact that ac coefficients can be recovered using a chosen ciphertext attack. We demonstrate that a method proposed by Tang to encrypt and decrypt MPEG video can be completely broken. PMID:17076416

  9. PREDICTION OF THE VAPOR PRESSURE, BOILING POINT, HEAT OF VAPORIZATION AND DIFFUSION COEFFICIENT OF ORGANIC COMPOUNDS

    EPA Science Inventory

    The prototype computer program SPARC has been under development for several years to estimate physical properties and chemical reactivity parameters of organic compounds strictly from molecular structure. SPARC solute-solute physical process models have been developed and tested...

  10. Theoretical calculations of pressure broadening coefficients for H2O perturbed by hydrogen or helium gas

    NASA Technical Reports Server (NTRS)

    Gamache, Robert R.; Pollack, James B.

    1995-01-01

    Halfwidths were calculated for H2O with H2 as a broadening gas and were estimated for He as the broadening species. The calculations used the model of Robert and Bonamy with parabolic trajectories and all relevant terms in the interaction potential. The calculations investigated the dependence of the halfwidth on the order of the atom-atom expansion, the rotational states, and the temperature in the range 200 to 400K. Finally, calculations were performed for many transitions of interest in the 5 micrometer window region of the spectrum. The resulting data will be supplied to Dr. R. Freedman for extracting accurate water mixing ratios from the analysis of the thermal channels for the Net Flux experiment on the Galileo probe.

  11. Detiding DART® Buoy Data for Real-Time Extraction of Source Coefficients for Operational Tsunami Forecasting

    NASA Astrophysics Data System (ADS)

    Percival, Donald B.; Denbo, Donald W.; Eblé, Marie C.; Gica, Edison; Huang, Paul Y.; Mofjeld, Harold O.; Spillane, Michael C.; Titov, Vasily V.; Tolkova, Elena I.

    2015-06-01

    US Tsunami Warning Centers use real-time bottom pressure (BP) data transmitted from a network of buoys deployed in the Pacific and Atlantic Oceans to tune source coefficients of tsunami forecast models. For accurate coefficients and therefore forecasts, tides and background noise at the buoys must be accounted for through detiding. In this study, five methods for coefficient estimation are compared, each of which handles detiding differently. The first three subtract off a tidal prediction based on (1) a localized harmonic analysis involving 29 days of data immediately preceding the tsunami event, (2) 68 preexisting harmonic constituents specific to each buoy, and (3) an empirical orthogonal function fit to the previous 25 h of data. Method (4) is a Kalman smoother that uses method (1) as its input. These four methods estimate source coefficients after detiding. Method (5) estimates the coefficients simultaneously with a two-component harmonic model that accounts for the tides. The five methods are evaluated using archived data from 11 DART® buoys, to which selected artificial tsunami signals are superimposed. These buoys represent a full range of observed tidal conditions and background BP noise in the Pacific and Atlantic, and the artificial signals have a variety of patterns and induce varying signal-to-noise ratios. The root-mean-square errors (RMSEs) of least squares estimates of source coefficients using varying amounts of data are used to compare the five detiding methods. The RMSE varies over two orders of magnitude among detiding methods, generally decreasing in the order listed, with method (5) yielding the most accurate estimate of the source coefficient. The RMSE is substantially reduced by waiting for the first full wave of the tsunami signal to arrive. As a case study, the five methods are compared using data recorded from the devastating 2011 Japan tsunami.

  12. Method and apparatus for simultaneously measuring temperature and pressure

    DOEpatents

    Hirschfeld, Tomas B.; Haugen, Gilbert R.

    1988-01-01

    Method and apparatus are provided for simultaneously measuring temperature and pressure in a class of crystalline materials having anisotropic thermal coefficients and having a coefficient of linear compression along the crystalline c-axis substantially the same as those perpendicular thereto. Temperature is determined by monitoring the fluorescence half life of a probe of such crystalline material, e.g., ruby. Pressure is determined by monitoring at least one other fluorescent property of the probe that depends on pressure and/or temperature, e.g., absolute fluorescent intensity or frequency shifts of fluorescent emission lines.

  13. High silicon self-diffusion coefficient in dry forsterite

    NASA Astrophysics Data System (ADS)

    Katsura, T.; Fei, H.; Hegoda, C.; Yamazaki, D.; Wiedenbeck, M.; Yurimoto, H.; Shcheka, S.

    2012-12-01

    Plastic deformation of mantle minerals is believed to be controlled by self-diffusion of the slowest species, which is silicon in silicate minerals. Olivine is the main constituent of upper mantle. Therefore, silicon self-diffusion coefficient (DSi) in olivine provides the basic information of upper mantle rheology. Dohmen et al. [1] and Jaoul et al. [2] measured the DSi at ambient pressure under dry conditions in natural olivine and iron-free forsterite, respectively. However, their results were ~2-3 orders of magnitude lower than that estimated from deformation experiments [3]. In this study, we revisited DSi in forsterite and resolved this discrepancy [4]. Forsterite single crystals were polished in colloidal silica solution, deposited with 300-500 nm of 29Si enriched Mg2SiO4 films, covered by 100 nm of ZrO2 films, and annealed at 1600-1800 K from ambient pressure up to 13 GPa using an ambient pressure furnace and multi-anvil apparatus. The surface roughness after diffusion were reduced to <50 nm by polishing again in colloidal silica solution. Diffusion profiles were obtained by SIMS. Water contents in the samples were <1 μg/g by FT-IR [4]. logDSi were determined to be -19.7±0.4 and -18.1±0.3 log[m2/s] under ambient pressure at 1600 and 1800 K, respectively. These values were 2.4 orders of magnitude higher than that determined by Jaoul et al. [2] in forsterite, as well as that reprted by Dohmen et al. [1] in natural olivine. Their low DSi could be obtained due to the bad contact of the coated films with the substrate. Our results well explain the high dislocation climb rates in deformation experiments [4]. We also determined a small negative pressure dependence of DSi with an activation volume of 1.7±0.4 cm3/mol, and an activation energy of ~410 kJ/mol. Calibratied to the same temperature, the nearly linear relationship of DSi against pressure in dry forsterite in this study, iron and water bearing wadsleyite and ringwoodite by Shimojuku et al. [5

  14. Prediction of force coefficients for labyrinth seals

    NASA Technical Reports Server (NTRS)

    Lee, O. W. K.; Martinez-Sanchez, M.; Czajkowski, E.

    1984-01-01

    The development of a linear model for the prediction of labyrinth seal forces and on its comparison to available stiffness data is presented. A discussion of the relevance of fluid damping forces and the preliminary stages of a program to obtain data on these forces are examined. Fluid-dynamic forces arising from nonuniform pressure patterns in labyrinth seal glands are known to be potentially destablizing in high power turbomachinery. A well documented case in point is that of the space Shuttle Main Engine turbopumps. Seal forces are also an important factor for the stability of shrouded turbines, acting in that case in conjunction with the effects of blade-tip clearance variations.

  15. Airflow resistance of airflow-regulating devices described by independent coefficients.

    PubMed

    Verkerke, G J; Geertsema, A A; Schutte, H K

    2001-07-01

    Rehabilitation after laryngectomy includes more and more the use of airflow-regulating devices such as shunt valves (SVs), tracheostoma valves (TSVs), and heat and moisture exchange (HME) filters. In determining the quality of those devices, airflow resistance is a very important factor. It is currently defined as pressure drop divided by airflow. However, for most applications, this definition does not result in a pressure- and airflow-independent parameter. Therefore, a new set of parameters is defined and applied to pressure-airflow curves of airflow-regulating devices. Pressure drop over TSVs and HME filters appears to have a squared relationship with flow. In SVs, it has a linear relationship. The new set of parameters describes the pressure-airflow relationship properly for all considered devices. In conclusion, theoretical predictions of flow mechanics appear to be valid for SVs, TSVs, and HME filters. Only 2 coefficients are necessary to describe the pressure-flow characteristics of these airflow-regulating devices, independent of pressure drop over and flow through the device. PMID:11465823

  16. Proton Transfer Rate Coefficient Measurements of Selected Volatile Organic Molecules

    NASA Astrophysics Data System (ADS)

    Brooke, G.; Popović, S.; Vušković, L.

    2002-05-01

    We have developed an apparatus based on the selected ion flow tube (SIFT)footnote D. Smith and N.G. Adams, Ads. At. Mol. Phys. 24, 1 (1987). that allows the study of proton transfer between various positive ions and volatile organic molecules. Reactions in the flow tube occur at pressures of approximately 300 mTorr, eliminating the requirement of thermal beam production. The proton donor molecule H_3O^+ has been produced using several types of electrical discharges in water vapor, such as a capacitively coupled RF discharge and a DC hollow cathode discharge. Presently we are developing an Asmussen-type microwave cavity discharge using the components of a standard microwave oven that has the advantages of simple design and operation, as well as low cost. We will be presenting the results of the microwave cavity ion source to produce H_3O^+, and compare it to the other studied sources. In addition, we will be presenting a preliminary measurement of the proton transfer rate coefficient in the reaction of H_3O^+ with acetone and methanol.

  17. Evaluation of gravimetric techniques to estimate the microvascular filtration coefficient.

    PubMed

    Dongaonkar, R M; Laine, G A; Stewart, R H; Quick, C M

    2011-06-01

    Microvascular permeability to water is characterized by the microvascular filtration coefficient (K(f)). Conventional gravimetric techniques to estimate K(f) rely on data obtained from either transient or steady-state increases in organ weight in response to increases in microvascular pressure. Both techniques result in considerably different estimates and neither account for interstitial fluid storage and lymphatic return. We therefore developed a theoretical framework to evaluate K(f) estimation techniques by 1) comparing conventional techniques to a novel technique that includes effects of interstitial fluid storage and lymphatic return, 2) evaluating the ability of conventional techniques to reproduce K(f) from simulated gravimetric data generated by a realistic interstitial fluid balance model, 3) analyzing new data collected from rat intestine, and 4) analyzing previously reported data. These approaches revealed that the steady-state gravimetric technique yields estimates that are not directly related to K(f) and are in some cases directly proportional to interstitial compliance. However, the transient gravimetric technique yields accurate estimates in some organs, because the typical experimental duration minimizes the effects of interstitial fluid storage and lymphatic return. Furthermore, our analytical framework reveals that the supposed requirement of tying off all draining lymphatic vessels for the transient technique is unnecessary. Finally, our numerical simulations indicate that our comprehensive technique accurately reproduces the value of K(f) in all organs, is not confounded by interstitial storage and lymphatic return, and provides corroboration of the estimate from the transient technique. PMID:21346245

  18. Experimental Investigation of the Loss Coefficients in a Linear Cascade

    NASA Astrophysics Data System (ADS)

    Taghavi-Zenouz, Reza; Etemadi, Majed; Nabati, Mehdi

    2014-06-01

    This paper reports results of experimental investigations on a linear cascade of axial compressor blades. Experiments were conducted in an open circuit subsonic wind tunnel of Aerodynamics Research Laboratory of the Iran University of Science and Technology. Different Reynolds numbers based on the blade chord length were examined, ranging from 80,000 to 500,000. Flow incidences were changed between -8 to +8 degrees with 2 degrees intervals. Freestream turbulence intensity was changed between 1.25 to 4 percent corresponding to different mesh screens mounted upstream of the test model. All the above flow conditions provided to establish various flow regimes, in terms of fully laminar and transitional flows, around the blades. At a specified range of Reynolds numbers laminar separation bubble/bubbles occurred over the blade solid walls. Surface pressure distributions were measured utilizing a computerized data acquisition system. Fluctuating velocities were also measured at various positions around the separation bubble zone, using hot film anemometry. Surface oil flow visualization was carried out for some selected flow conditions. Experimental results were used to study boundary layer characteristics and to determine variations of loss coefficient with each of Reynolds number, flow incidence and turbulence intensity parameters for the test model.

  19. Covariate-adjusted confidence interval for the intraclass correlation coefficient.

    PubMed

    Shoukri, Mohamed M; Donner, Allan; El-Dali, Abdelmoneim

    2013-09-01

    A crucial step in designing a new study is to estimate the required sample size. For a design involving cluster sampling, the appropriate sample size depends on the so-called design effect, which is a function of the average cluster size and the intracluster correlation coefficient (ICC). It is well-known that under the framework of hierarchical and generalized linear models, a reduction in residual error may be achieved by including risk factors as covariates. In this paper we show that the covariate design, indicating whether the covariates are measured at the cluster level or at the within-cluster subject level affects the estimation of the ICC, and hence the design effect. Therefore, the distinction between these two types of covariates should be made at the design stage. In this paper we use the nested-bootstrap method to assess the accuracy of the estimated ICC for continuous and binary response variables under different covariate structures. The codes of two SAS macros are made available by the authors for interested readers to facilitate the construction of confidence intervals for the ICC. Moreover, using Monte Carlo simulations we evaluate the relative efficiency of the estimators and evaluate the accuracy of the coverage probabilities of a 95% confidence interval on the population ICC. The methodology is illustrated using a published data set of blood pressure measurements taken on family members. PMID:23871746

  20. Sample controllability of impulsive differential systems with random coefficients

    NASA Astrophysics Data System (ADS)

    Zhang, Shuorui; Sun, Jitao

    2016-07-01

    In this paper, we investigate the controllability of impulsive differential systems with random coefficients. Impulsive differential systems with random coefficients are a different stochastic model from stochastic differential equations. Sufficient conditions of sample controllability for impulsive differential systems with random coefficients are obtained by using random Sadovskii's fixed-point theorem. Finally, an example is given to illustrate our results.

  1. Coefficients of Association Analogous to Pearson's r for Nonparametric Statistics.

    ERIC Educational Resources Information Center

    Stavig, Gordon; Acock, Alan C.

    1980-01-01

    Two r coefficients of association are discussed. One of the coefficients can be applied to any nonparametric test statistic (NTS) in which a normal approximation equation is appropriate. The other coefficient is applicable to any NTS in which exact probabilities are known. (Author/RL)

  2. On the Occurrence of Standardized Regression Coefficients Greater than One.

    ERIC Educational Resources Information Center

    Deegan, John, Jr.

    1978-01-01

    It is demonstrated here that standardized regression coefficients greater than one can legitimately occur. Furthermore, the relationship between the occurrence of such coefficients and the extent of multicollinearity present among the set of predictor variables in an equation is examined. Comments on the interpretation of these coefficients are…

  3. Interpretation of Standardized Regression Coefficients in Multiple Regression.

    ERIC Educational Resources Information Center

    Thayer, Jerome D.

    The extent to which standardized regression coefficients (beta values) can be used to determine the importance of a variable in an equation was explored. The beta value and the part correlation coefficient--also called the semi-partial correlation coefficient and reported in squared form as the incremental "r squared"--were compared for variables…

  4. Factors Affecting Coefficient Alpha: A Mini Monte Carlo Study.

    ERIC Educational Resources Information Center

    Reinhardt, Brian M.

    Factors affecting a lower-bound estimate of internal consistency reliability, Cronbach's coefficient alpha, are explored. Theoretically, coefficient alpha is an estimate of the correlation between two tests drawn at random from a pool of items like the items in the test under consideration. As a practical matter, coefficient alpha can be an index…

  5. My Current Thoughts on Coefficient Alpha and Successor Procedures

    ERIC Educational Resources Information Center

    Cronbach, Lee J.; Shavelson, Richard J.

    2004-01-01

    In 1997, noting that the 50th anniversary of the publication of "Coefficient Alpha and the Internal Structure of Tests" was fast approaching, Lee Cronbach planned what have become the notes published here. His aim was to point out the ways in which his views on coefficient alpha had evolved, doubting now that the coefficient was the best way of…

  6. Ballistic Coefficient Prediction for Resident Space Objects

    NASA Astrophysics Data System (ADS)

    Russell, R.; Arora, N.; Vittaldev, V.; Gaylor, D.

    2012-09-01

    Recent improvements in atmospheric density modeling now provide more confidence in spacecraft ballistic coefficient (BC) estimations, which were previously corrupted by large errors in density. Without attitude knowledge, forecasting the true BC for accurate future state and uncertainty predictions remains elusive. In this paper, our objective is to improve this predictive capability for ballistic coefficients for Resident Space Objects (RSOs), thus improving the existing drag models and associated accuracy of the U.S. Space Object Catalog. To work towards this goal we implement a two-pronged strategy that includes elements of time series analysis and physics based simulations. State-of-the-art empirical time series prediction methods are applied and tested on BC time series in the context of both simulation data and actual data provided by the Air Force. An archive of simulated BC data is generated using custom 6DOF high fidelity simulations for RSOs using plate models for shapes. The simulator includes force and torque perturbations due to the nonspherical Earth, third-body perturbations, SRP, and atmospheric drag. The simulated BC profiles demonstrate significant variation over short time spans (due primarily to varying frontal areas), providing motivation to improve future BC estimation strategies. The 6DOF modeling is intended to provide a physics-based BC data set to complement the BC data set provided by the AF. For the ‘black-box' time series algorithms, a variety of approaches are considered, whereas two prediction models showed the most promising performance: a multi-tone harmonic model and an autoregressive (AR) model. Both the multi-tone harmonic model and the AR model are subjected to multiple levels of optimizations resulting in highly optimized final models that are tuned specifically with the 205 BC time series provided by the AF. Two versions of the AR model are developed based on the model prediction methodology. The second version of the AR

  7. Factors associated with blood oxygen partial pressure and carbon dioxide partial pressure regulation during respiratory extracorporeal membrane oxygenation support: data from a swine model

    PubMed Central

    Park, Marcelo; Mendes, Pedro Vitale; Costa, Eduardo Leite Vieira; Barbosa, Edzangela Vasconcelos Santos; Hirota, Adriana Sayuri; Azevedo, Luciano Cesar Pontes

    2016-01-01

    Objective The aim of this study was to explore the factors associated with blood oxygen partial pressure and carbon dioxide partial pressure. Methods The factors associated with oxygen - and carbon dioxide regulation were investigated in an apneic pig model under veno-venous extracorporeal membrane oxygenation support. A predefined sequence of blood and sweep flows was tested. Results Oxygenation was mainly associated with extracorporeal membrane oxygenation blood flow (beta coefficient = 0.036mmHg/mL/min), cardiac output (beta coefficient = -11.970mmHg/L/min) and pulmonary shunting (beta coefficient = -0.232mmHg/%). Furthermore, the initial oxygen partial pressure and carbon dioxide partial pressure measurements were also associated with oxygenation, with beta coefficients of 0.160 and 0.442mmHg/mmHg, respectively. Carbon dioxide partial pressure was associated with cardiac output (beta coefficient = 3.578mmHg/L/min), sweep gas flow (beta coefficient = -2.635mmHg/L/min), temperature (beta coefficient = 4.514mmHg/ºC), initial pH (beta coefficient = -66.065mmHg/0.01 unit) and hemoglobin (beta coefficient = 6.635mmHg/g/dL). Conclusion In conclusion, elevations in blood and sweep gas flows in an apneic veno-venous extracorporeal membrane oxygenation model resulted in an increase in oxygen partial pressure and a reduction in carbon dioxide partial pressure 2, respectively. Furthermore, without the possibility of causal inference, oxygen partial pressure was negatively associated with pulmonary shunting and cardiac output, and carbon dioxide partial pressure was positively associated with cardiac output, core temperature and initial hemoglobin. PMID:27096671

  8. Impact of inhomogeneous optical scattering coefficient distribution on recovery of optical absorption coefficient maps using tomographic photoacoustic data

    NASA Astrophysics Data System (ADS)

    Li, Xiaoqi; Jiang, Huabei

    2013-02-01

    We present a study through extensive simulation that considers the impact of inhomogeneous optical scattering coefficient distribution on recovery of optical absorption coefficient maps using tomographic photoacoustic data collected from media mimicking breast tissue. We found that while the impact of scattering heterogeneities/targets is modest on photoacoustic recovery of optical absorption coefficients, the impact of scattering contrast caused by adipose tissue, a layer of normal tissue along the boundary of the breast, is dramatic on reconstruction of optical absorption coefficients using photoacoustic data—up to 25.8% relative error in recovering the absorption coefficient is estimated in such cases. To overcome this problem, we propose a new method to enhance photoacoustic recovery of the optical absorption coefficient in heterogeneous media by considering inhomogeneous scattering coefficient distribution provided by diffuse optical tomography (DOT). Results from extensive simulations show that photoacoustic recovery of absorption coefficient maps can be improved considerably with a priori scattering information from DOT.

  9. The Streaming Potential Coupling Coefficient of Liquid Carbon Dioxide Injected Into Water Saturated Berea Sandstone

    NASA Astrophysics Data System (ADS)

    Moore, J. R.; Glaser, S. D.; Morrison, H. F.

    2003-12-01

    The streaming potential coupling coefficient was determined for a liquid carbon dioxide flood of a water-saturated sample of Berea sandstone. The coupling coefficient for the rock/water case was determined both before and after each CO2 flood of three samples using a low-pressure static head method. Next, liquid CO2 was allowed to flow through each sample. As the CO2 displaced the water the coupling coefficient decreased. At longer times, when all mobile pore water was displaced, the coupling coefficient maintained a steady state, and was lower than that for water by about 10 times. The results of this testing reveal a coupling coefficient of 30 mV/0.1MPa, for 125 Ohm-m water flow through the sample, and 3.0 mV / 0.1 MPa for liquid CO2 flow. Calculated zeta potentials are -3.4 mV using water as the pore fluid and -1.7 x 10-6 mV for liquid CO2. We propose that the lower coupling coefficient for CO2 flow is primarily a result of changes in zeta potential, since changes in pore fluid resistivity and viscosity would act to increase the coupling coefficient. Zeta potential for the liquid CO2 / mineral interface is a function of the low polarity and lack of mobile ions associated with liquid CO2. We find no anomalous 2-phase liquid/gas effects, which may have augmented single-phase streaming potentials by many times. We propose that although CO2 gas may have been present for some of the higher pressure drop events, the low gas fraction (or quality) of the two-phase mixture did not lead to any significant anomalous or augmented observations. Implications of this work include spatial and temporal monitoring of CO2 injectate in subsurface reservoirs and the identification of flow paths, with the recommendation being to attempt to image the advancing CO2/water front, where the coupling coefficient is higher.

  10. Dirac-Fock Internal Conversion Coefficients

    NASA Astrophysics Data System (ADS)

    Band, I. M.; Trzhaskovskaya, M. B.; Nestor, C. W.; Tikkanen, P. O.; Raman, S.

    2002-05-01

    Internal conversion coefficients (ICCs) obtained from relativistic self-consistent-field Dirac-Fock (DF) calculations are presented. The exchange terms of DF equations are included exactly, both for the interaction between bound electrons and for the interaction between bound and free electrons. Static and dynamic effects resulting from finite nuclear size are taken into account, the latter using the surface current model. Experimental electron-binding energies are used wherever possible. The hole in the atomic shell from which an electron was emitted is not taken into consideration because there is no compelling experimental evidence to warrant it. ICCs are given here for each Z between Z=10 and Z=126; for K, L1, L2, and L3 atomic shells; for nuclear-transition multipolarities E1… E5, M1… M5; and for nuclear-transition energies from ˜1 keV above the L1 threshold to 2000 keV. Also given are the total ICCs. Accurate (≤5%) experimental ICCs ( K and total) are known for 77 transitions with multipolarities E2, M3, E3, M4, or E5. For these transitions, the theoretical DF values are, on average, about 3% lower than the theoretical relativistic Hartree-Fock-Slater (RHFS) values. The DF values are in better agreement with experimental results than the RHFS values.

  11. Transport coefficients of a relativistic plasma

    NASA Astrophysics Data System (ADS)

    Pike, O. J.; Rose, S. J.

    2016-05-01

    In this work, a self-consistent transport theory for a relativistic plasma is developed. Using the notation of Braginskii [S. I. Braginskii, in Reviews of Plasma Physics, edited by M. A. Leontovich (Consultants Bureau, New York, 1965), Vol. 1, p. 174], we provide semianalytical forms of the electrical resistivity, thermoelectric, and thermal conductivity tensors for a Lorentzian plasma in a magnetic field. This treatment is then generalized to plasmas with arbitrary atomic number by numerically solving the linearized Boltzmann equation. The corresponding transport coefficients are fitted by rational functions in order to make them suitable for use in radiation-hydrodynamic simulations and transport calculations. Within the confines of linear transport theory and on the assumption that the plasma is optically thin, our results are valid for temperatures up to a few MeV. By contrast, classical transport theory begins to incur significant errors above kBT ˜10 keV, e.g., the parallel thermal conductivity is suppressed by 15% at kBT =20 keV due to relativistic effects.

  12. Attenuation coefficients for water quality trading.

    PubMed

    Keller, Arturo A; Chen, Xiaoli; Fox, Jessica; Fulda, Matt; Dorsey, Rebecca; Seapy, Briana; Glenday, Julia; Bray, Erin

    2014-06-17

    Water quality trading has been proposed as a cost-effective approach for reducing nutrient loads through credit generation from agricultural or point source reductions sold to buyers facing costly options. We present a systematic approach to determine attenuation coefficients and their uncertainty. Using a process-based model, we determine attenuation with safety margins at many watersheds for total nitrogen (TN) and total phosphorus (TP) loads as they transport from point of load reduction to the credit buyer. TN and TP in-stream attenuation generally increases with decreasing mean river flow; smaller rivers in the modeled region of the Ohio River Basin had TN attenuation factors per km, including safety margins, of 0.19-1.6%, medium rivers of 0.14-1.2%, large rivers of 0.13-1.1%, and very large rivers of 0.04-0.42%. Attenuation in ditches transporting nutrients from farms to receiving rivers is 0.4%/km for TN, while for TP attenuation in ditches can be up to 2%/km. A 95 percentile safety margin of 30-40% for TN and 6-10% for TP, applied to the attenuation per km factors, was determined from the in-stream sensitivity of load reductions to watershed model parameters. For perspective, over 50 km a 1% per km factor would result in 50% attenuation = 2:1 trading ratio. PMID:24866482

  13. Ghost imaging based on Pearson correlation coefficients

    NASA Astrophysics Data System (ADS)

    Yu, Wen-Kai; Yao, Xu-Ri; Liu, Xue-Feng; Li, Long-Zhen; Zhai, Guang-Jie

    2015-05-01

    Correspondence imaging is a new modality of ghost imaging, which can retrieve a positive/negative image by simple conditional averaging of the reference frames that correspond to relatively large/small values of the total intensity measured at the bucket detector. Here we propose and experimentally demonstrate a more rigorous and general approach in which a ghost image is retrieved by calculating a Pearson correlation coefficient between the bucket detector intensity and the brightness at a given pixel of the reference frames, and at the next pixel, and so on. Furthermore, we theoretically provide a statistical interpretation of these two imaging phenomena, and explain how the error depends on the sample size and what kind of distribution the error obeys. According to our analysis, the image signal-to-noise ratio can be greatly improved and the sampling number reduced by means of our new method. Project supported by the National Key Scientific Instrument and Equipment Development Project of China (Grant No. 2013YQ030595) and the National High Technology Research and Development Program of China (Grant No. 2013AA122902).

  14. A rapid compression machine study of the oxidation of propane in the negative temperature coefficient regime

    SciTech Connect

    Gallagher, S.M.; Curran, H.J.; Metcalfe, W.K.; Healy, D.; Simmie, J.M.; Bourque, G.

    2008-04-15

    The oxidation of propane has been studied in the temperature range 680-970 K at compressed gas pressures of 21, 27, and 37 atm and at varying equivalence ratios of 0.5, 1.0, and 2.0. These data are consistent with other experiments presented in the literature for alkane fuels in that, when ignition delay times are plotted as a function of temperature, a characteristic negative coefficient behavior is observed. In addition, these data were simulated using a detailed chemical kinetic model. It was found that qualitatively the model correctly simulated the effect of change in equivalence ratio and pressure, predicting that fuel-rich, high-pressure mixtures ignite fastest, while fuel-lean, low-pressure mixtures ignite slowest. Moreover, reactivity as a function of temperature is well captured, with the model predicting negative temperature coefficient behavior similar to the experiments. Quantitatively the model is faster than experiment for all mixtures at the lowest temperatures (650-750 K) and is also faster than experiment throughout the entire temperature range for fuel-lean mixtures. (author)

  15. Air-Liquid Partition Coefficient for a Diverse Set of Organic Compounds: Henry’s Law Constant in Water and Hexadecane

    EPA Science Inventory

    The SPARC vapor pressure and activity coefficient models were coupled to estimate Henry’s Law Constant (HLC) in water and in hexadecane for a wide range of non-polar and polar solute organic compounds without modification to/or additional parameterization of the vapor pressure or...

  16. Effect of high pressure on cod (Gadus morhua) desalting

    NASA Astrophysics Data System (ADS)

    Salvador, Ângelo C.; Saraiva, Jorge A.; Fidalgo, Liliana G.; Delgadillo, Ivonne

    2013-06-01

    The effect of high pressure on salt and water diffusion in the desalting process of cod was studied. Under pressure, up to 300 MPa, the osmotic equilibrium is reached much faster, compared to desalting at atmospheric pressure. Water (D ew) and salt (D es) effective diffusion coefficients reached a maximum at 200 MPa, increasing 500- and 160-fold, respectively, compared with desalting at atmospheric pressure. Increasing pressure up to 300 MPa causes a reduction in both effective diffusion coefficients, although they were still about 70-fold higher than at atmospheric pressure. Up to 200 MPa, a linear correlation was found between D ew and D es and pressure. However, the total diffused amounts of water and salt, when the osmotic equilibrium was reached, were lower under pressure. At atmospheric pressure cod water content increased 1.65-fold, but under pressure the increment was on average 1.25-fold, while salt content decreased to 0.51-fold the initial value at atmospheric pressure and to around 0.75-fold under pressure.

  17. Generalized skew coefficients for flood-frequency analysis in Minnesota

    USGS Publications Warehouse

    Lorenz, D.L.

    1997-01-01

    This report presents an evaluation of generalized skew coefficients used in flood-frequency analysis. Station skew coefficients were computed for 267 long-term stream-gaging stations in Minnesota and the surrounding states of Iowa, North and South Dakota, Wisconsin, and the provinces of Manitoba and Ontario, Canada. Generalized skew coefficients were computed from station skew coefficients using a locally weighted regression technique. The resulting regression trend surface was the generalized skew coefficient map, except for the North Shore area, and has a mean square error of 0.182.

  18. Determination of thermal accommodation coefficients from heat transfer measurements between parallel plates.

    SciTech Connect

    Gallis, Michail A.; Castaneda, Jaime N.; Rader, Daniel John; Torczynski, John Robert; Trott, Wayne Merle

    2010-10-01

    Thermal accommodation coefficients have been derived for a variety of gas-surface combinations using an experimental apparatus developed to measure the pressure dependence of the conductive heat flux between parallel plates at unequal temperature separated by a gas-filled gap. The heat flux is inferred from temperature-difference measurements across the plates in a configuration where the plate temperatures are set with two carefully controlled thermal baths. Temperature-controlled shrouds provide for environmental isolation of the opposing test plates. Since the measured temperature differences in these experiments are very small (typically 0.3 C or less over the entire pressure range), high-precision thermistors are used to acquire the requisite temperature data. High-precision components have also been utilized on the other control and measurement subsystems in this apparatus, including system pressure, gas flow rate, plate alignment, and plate positions. The apparatus also includes the capability for in situ plasma cleaning of the installed test plates. Measured heat-flux results are used in a formula based on Direct Simulation Monte Carlo (DSMC) code calculations to determine the thermal accommodation coefficients. Thermal accommodation coefficients have been determined for three different gases (argon, nitrogen, helium) in contact with various surfaces. Materials include metals and alloys such as aluminum, gold, platinum, and 304 stainless steel. A number of materials important to fabrication of Micro Electro Mechanical Systems (MEMS) devices have also been examined. For most surfaces, coefficient values are near 0.95, 0.85, and 0.45 for argon, nitrogen, and helium, respectively. Only slight differences in accommodation as a function of surface roughness have been seen. Surface contamination appears to have a more significant effect: argon plasma treatment has been observed to reduce thermal accommodation by as much as 0.10 for helium. Mixtures of argon and

  19. Measurement of off-diagonal transport coefficients in two-phase flow in porous media.

    PubMed

    Ramakrishnan, T S; Goode, P A

    2015-07-01

    The prevalent description of low capillary number two-phase flow in porous media relies on the independence of phase transport. An extended Darcy's law with a saturation dependent effective permeability is used for each phase. The driving force for each phase is given by its pressure gradient and the body force. This diagonally dominant form neglects momentum transfer from one phase to the other. Numerical and analytical modeling in regular geometries have however shown that while this approximation is simple and acceptable in some cases, many practical problems require inclusion of momentum transfer across the interface. Its inclusion leads to a generalized form of extended Darcy's law in which both the diagonal relative permeabilities and the off-diagonal terms depend not only on saturation but also on the viscosity ratio. Analogous to application of thermodynamics to dynamical systems, any of the extended forms of Darcy's law assumes quasi-static interfaces of fluids for describing displacement problems. Despite the importance of the permeability coefficients in oil recovery, soil moisture transport, contaminant removal, etc., direct measurements to infer the magnitude of the off-diagonal coefficients have been lacking. The published data based on cocurrent and countercurrent displacement experiments are necessarily indirect. In this paper, we propose a null experiment to measure the off-diagonal term directly. For a given non-wetting phase pressure-gradient, the null method is based on measuring a counter pressure drop in the wetting phase required to maintain a zero flux. The ratio of the off-diagonal coefficient to the wetting phase diagonal coefficient (relative permeability) may then be determined. The apparatus is described in detail, along with the results obtained. We demonstrate the validity of the experimental results and conclude the paper by comparing experimental data to numerical simulation. PMID:25748636

  20. Raman Study of SWNT Under High Pressure

    NASA Astrophysics Data System (ADS)

    Venkateswaran, U.; Rao, A. M.; Richter, E.; Eklund, P. C.; Smalley, R. E.

    1998-03-01

    A gasketed Merrill-Bassett-type diamond anvil cell was used for high pressure Raman measurements at room temperature. A 4:1 methanol-ethanol mixture served as the pressure transmitting medium. The radial mode (denoted as R, occuring at 186 cm-1 at 1 bar) and tangential modes (designated T_1, T_2, and T_3, located, respectively, at 1550, 1567, and 1593 cm-1 at 1 bar) were recorded for several representative pressures. With increasing pressure, both the R and T modes shift to higher frequencies with gradual weakening of intensity and broadening of linewidth. The radial mode disappears around ~ 2 GPa whereas the tangential modes, albeit weak in intensity, persist until 5.2 GPa. The decrease in Raman intensity under pressure can be attributed to a loss of resonance, since the strong Raman signals observed at ambient pressure have been interpreted as due a resonance with the electronic bands [1]. The R and T mode frequencies are fit to quadratic function of pressure i.e., ω=ω(0)+aP+bP^2 where `a' represents the linear pressure shift of the mode frequency which is proportional to the mode Gruneisen parameter. The linear pressure coefficient for the R mode is found to be nearly twice that of the high frequency T mode. A. M. Rao et al., Science 275, 187, 1997

  1. Linear and nonlinear optical absorption coefficients of spherical dome shells

    NASA Astrophysics Data System (ADS)

    Guo, Kangxian; Liu, Guanghui; Huang, Lu; Zheng, Xianyi

    2015-08-01

    Linear and nonlinear optical absorption coefficients of spherical dome shells are theoretically investigated within analytical wave functions and numerical quantized energy levels. Our results show that the inner radius, the outer radius and the cut-off angle of spherical dome shells have great influences on linear and nonlinear optical absorption coefficients as well as the total optical absorption coefficients. It is found that with the increase of the inner radius and the outer radius, linear and nonlinear optical absorption coefficients exhibit a blueshift and a redshift, respectively. However, with the increase of the cut-off angle, linear and nonlinear optical absorption coefficients do not shift. Besides, the resonant peaks of linear and nonlinear optical absorption coefficients climb up and then decrease with increasing the cut-off angle. The influences of the incident optical intensity on the total optical absorption coefficients are studied. It is found that the bleaching effect occurs at higher incident optical intensity.

  2. Non-invasive model-based estimation of aortic pulse pressure using suprasystolic brachial pressure waveforms.

    PubMed

    Lowe, A; Harrison, W; El-Aklouk, E; Ruygrok, P; Al-Jumaily, A M

    2009-09-18

    Elevated central arterial (aortic) blood pressure is related to increased risk of cardiovascular disease. Methods of non-invasively estimating this pressure would therefore be helpful in clinical practice. To achieve this goal, a physics-based model is derived to correlate the arterial pressure under a suprasystolic upper-arm cuff to the aortic pressure. The model assumptions are particularly applicable to the measurement method and result in a time-domain relation with two parameters, namely, the wave propagation transit time and the reflection coefficient at the cuff. Central pressures estimated by the model were derived from completely automatic, non-invasive measurement of brachial blood pressure and suprasystolic waveform and were compared to simultaneous invasive catheter measurements in 16 subjects. Systolic blood pressure agreement, mean (standard deviation) of difference was -1 (7)mmHg. Diastolic blood pressure agreement was 4 (4)mmHg. Correlation between estimated and actual central waveforms was greater than 90%. Individualization of model parameters did not significantly improve systolic and diastolic pressure agreement, but increased waveform correlation. Further research is necessary to confirm that more accurate brachial pressure measurement improves central pressure estimation. PMID:19665136

  3. Distribution Coefficients of Impurities in Metals

    NASA Astrophysics Data System (ADS)

    Pearce, J. V.

    2014-04-01

    Impurities dissolved in very pure metals at the level of parts per million often cause an elevation or depression of the freezing temperature of the order of millikelvins. This represents a significant contribution to the uncertainty of standard platinum resistance thermometer calibrations. An important parameter for characterizing the behavior of impurities is the distribution coefficient , which is the ratio of the solid solubility to liquid solubility. A knowledge of for a given binary system is essential for contemporary methods of evaluating or correcting for the effect of impurities, and it is therefore of universal interest to have the most complete set of values possible. A survey of equilibrium values of (in the low concentration limit) reported in the literature for the International Temperature Scale of 1990 fixed points of Hg, Ga, In, Sn, Zn, Al, Au, Ag, and Cu is presented. In addition, thermodynamic calculations of using MTDATA are presented for 170 binary systems. In total, the combined values of from all available sources for 430 binary systems are presented. In addition, by considering all available values of for impurities in 25 different metal solvents (1300 binary systems) enough data are available to characterize patterns in the value of for a given impurity as a function of its position in the periodic table. This enables prediction of for a significant number of binary systems for which data and calculations are unavailable. By combining data from many sources, values of for solutes (atomic number from 1 to 94) in ITS-90 fixed points from Hg to Cu are suggested, together with some tentative predicted values where literature data and calculations are unavailable.

  4. The effect of elastic modulus and friction coefficient on rubber tube sealing performance

    NASA Astrophysics Data System (ADS)

    Li, Zhimiao; Xu, Siyuan; Ren, Fushen; Liu, Jubao

    2015-03-01

    The packer is the key element in separating geosphere layers of water injection, water plugging and fracturing operations in the oilfield. The sealing ability of the packer is depending on the contact pressure between rubber tube and the casing. The circumferential strain of casing wall was tested by the strain gauge to get the contact pressure distribution along axial direction of the tube. The friction force between the casing and the rubber tube was taken by the pressure sensor in compression process. Under the 20,60 and 100 degrees Celsius conditions, the friction forces and the contact pressure distribution were taken in work condition of single rubber tube, double rubber tubes and combination rubber tubes after oil immersion .The result shows that elastic modulus of rubber tube has little effect on the friction force and contact pressure. With elastic modulus decreasing, the friction forces has gradually decreasing trend; The friction coefficient has much impact on friction force: the friction forces under the condition of dry friction and wet friction are respectively equivalent to 48.27% and 5.38% axial compression forces. At wet friction condition, the contact pressure distribution is more uniform and the sealing effect is better.

  5. Integration Of Heat Transfer Coefficient In Glass Forming Modeling With Special Interface Element

    SciTech Connect

    Moreau, P.; Gregoire, S.; Lochegnies, D.; Cesar de Sa, J.

    2007-05-17

    Numerical modeling of the glass forming processes requires the accurate knowledge of the heat exchange between the glass and the forming tools. A laboratory testing is developed to determine the evolution of the heat transfer coefficient in different glass/mould contact conditions (contact pressure, temperature, lubrication...). In this paper, trials are performed to determine heat transfer coefficient evolutions in experimental conditions close to the industrial blow-and-blow process conditions. In parallel of this work, a special interface element is implemented in a commercial Finite Element code in order to deal with heat transfer between glass and mould for non-meshing meshes and evolutive contact. This special interface element, implemented by using user subroutines, permits to introduce the previous heat transfer coefficient evolutions in the numerical modelings at the glass/mould interface in function of the local temperatures, contact pressures, contact time and kind of lubrication. The blow-and-blow forming simulation of a perfume bottle is finally performed to assess the special interface element performance.

  6. Integration Of Heat Transfer Coefficient In Glass Forming Modeling With Special Interface Element

    NASA Astrophysics Data System (ADS)

    Moreau, P.; César de Sá, J.; Grégoire, S.; Lochegnies, D.

    2007-05-01

    Numerical modeling of the glass forming processes requires the accurate knowledge of the heat exchange between the glass and the forming tools. A laboratory testing is developed to determine the evolution of the heat transfer coefficient in different glass/mould contact conditions (contact pressure, temperature, lubrication…). In this paper, trials are performed to determine heat transfer coefficient evolutions in experimental conditions close to the industrial blow-and-blow process conditions. In parallel of this work, a special interface element is implemented in a commercial Finite Element code in order to deal with heat transfer between glass and mould for non-meshing meshes and evolutive contact. This special interface element, implemented by using user subroutines, permits to introduce the previous heat transfer coefficient evolutions in the numerical modelings at the glass/mould interface in function of the local temperatures, contact pressures, contact time and kind of lubrication. The blow-and-blow forming simulation of a perfume bottle is finally performed to assess the special interface element performance.

  7. Adiabatic Effectiveness and Heat Transfer Coefficient on a Film-Cooled Rotating Blade

    NASA Technical Reports Server (NTRS)

    Garg, Vijay K.

    1997-01-01

    three-dimensional Navier-Stokes code has been used to compute the adiabatic effectiveness and heat transfer coefficient on a rotating film-cooled turbine blade. The blade chosen is the United Technologies Research Center(UTRC) rotor with five film-cooling rows containing 83 holes, including three rows on the shower head with 49 holes, covering about 86% of the blade span. The mainstream is akin to that under real engine conditions with stagnation temperature 1900 K and stagnation pressure 3 MPa. The blade speed is taken to be 5200 rpm. The adiabatic effectiveness is higher for a rotating blade as compared to that for a stationary blade. Also, the direction of coolant injection from the shower-head holes considerably affects the effectiveness and heat transfer coefficient values on both the pressure and suction surfaces. In all cases the heat transfer coefficient and adiabatic effectiveness are highly three-dimensional in the vicinity of holes but tend to become two-dimensional far downstream.

  8. Development of an Experimental Setup for the Measurement of the Coefficient of Restitution under Vacuum Conditions.

    PubMed

    Drücker, Sven; Krautstrunk, Isabell; Paulick, Maria; Saleh, Khashayar; Morgeneyer, Martin; Kwade, Arno

    2016-01-01

    The Discrete Element Method is used for the simulation of particulate systems to describe and analyze them, to predict and afterwards optimize their behavior for single stages of a process or even an entire process. For the simulation with occurring particle-particle and particle-wall contacts, the value of the coefficient of restitution is required. It can be determined experimentally. The coefficient of restitution depends on several parameters like the impact velocity. Especially for fine particles the impact velocity depends on the air pressure and under atmospheric pressure high impact velocities cannot be reached. For this, a new experimental setup for free-fall tests under vacuum conditions is developed. The coefficient of restitution is determined with the impact and rebound velocity which are detected by a high-speed camera. To not hinder the view, the vacuum chamber is made of glass. Also a new release mechanism to drop one single particle under vacuum conditions is constructed. Due to that, all properties of the particle can be characterized beforehand. PMID:27077671

  9. A Real-Time Method for Estimating Viscous Forebody Drag Coefficients

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Hurtado, Marco; Rivera, Jose; Naughton, Jonathan W.

    2000-01-01

    This paper develops a real-time method based on the law of the wake for estimating forebody skin-friction coefficients. The incompressible law-of-the-wake equations are numerically integrated across the boundary layer depth to develop an engineering model that relates longitudinally averaged skin-friction coefficients to local boundary layer thickness. Solutions applicable to smooth surfaces with pressure gradients and rough surfaces with negligible pressure gradients are presented. Model accuracy is evaluated by comparing model predictions with previously measured flight data. This integral law procedure is beneficial in that skin-friction coefficients can be indirectly evaluated in real-time using a single boundary layer height measurement. In this concept a reference pitot probe is inserted into the flow, well above the anticipated maximum thickness of the local boundary layer. Another probe is servomechanism-driven and floats within the boundary layer. A controller regulates the position of the floating probe. The measured servomechanism position of this second probe provides an indirect measurement of both local and longitudinally averaged skin friction. Simulation results showing the performance of the control law for a noisy boundary layer are then presented.

  10. Pressurized metallurgy for high performance special steels and alloys

    NASA Astrophysics Data System (ADS)

    Jiang, Z. H.; Zhu, H. C.; Li, H. B.; L1, Y.; Liu, F. B.

    2016-07-01

    The pressure is one of the basic parameters which greatly influences the metallurgical reaction process and solidification of steels and alloys. In this paper the history and present situation of research and application of pressurized metallurgy, especially pressurized metallurgy for special steels and alloys have been briefly reviewed. In the following part the physical chemistry of pressurized metallurgy is summarized. It is shown that pressurizing may change the conditions of chemical reaction in thermodynamics and kinetics due to the pressure effect on gas volume, solubility of gas and volatile element in metal melt, activity or activity coefficient of components, and change the physical and chemical properties of metal melt, heat transfer coefficient between mould and ingot, thus greatly influencing phase transformation during the solidification process and the solidification structure, such as increasing the solidification nucleation rate, reducing the critical nucleation radius, accelerating the solidification speed and significant macro/micro-structure refinement, and eliminating shrinkage, porosity and segregation and other casting defects. In the third part the research works of pressured metallurgy performed by the Northeastern University including establishment of pressurized induction melting (PIM) and pressurized electroslag remelting (PESR) equipments and development of high nitrogen steels under pressure are described in detail. Finally, it is considered in the paper that application of pressurized metallurgy in manufacture of high performance special steels and alloys is a relatively new research area, and its application prospects will be very broad and bright.

  11. Flight measurements of lifting pressures for a thin low-aspect-ratio wing at subsonic, transonic, and low supersonic speeds

    NASA Technical Reports Server (NTRS)

    Byrdsong, T. A.

    1977-01-01

    Pressure distributions in the form of differential pressure coefficients are presented for several wing chordwise and spanwise stations. Also presented are the results of limited analysis which show aircraft configuration effects, Mach number effects on the local wing loadings, comparisons of selected measured wing pressures with predicted pressures, and comparisons of wing loadings during right-turn and left-turn maneuvers.

  12. Base pressure in laminar supersonic flow.

    NASA Technical Reports Server (NTRS)

    Messiter, A. F.; Hough, G. R.; Feo, A.

    1973-01-01

    An asymptotic description is proposed for supersonic laminar flow over a wedge or a backward-facing step, for large Reynolds number and for a base or step height which is small compared with the boundary-layer length. The analysis is carried out for adiabatic wall conditions and a viscosity coefficient proportional to temperature. In a particular limit corresponding to a very thick boundary layer, a similarity law is obtained for the base pressure. For a thinner boundary layer an asymptotic form for the base pressure is obtained which shows the dependence on the parameters explicitly and which permits good agreement with experiment. This latter result is based on an inviscid-flow approximation for the corner expansion and for reattachment with viscous forces important primarily in a thin sublayer about the dividing streamline. A prediction of the pressure distribution at reattachment is given and the result is compared with experimental pressure distributions.

  13. Pressurized electrolysis stack with thermal expansion capability

    DOEpatents

    Bourgeois, Richard Scott

    2015-07-14

    The present techniques provide systems and methods for mounting an electrolyzer stack in an outer shell so as to allow for differential thermal expansion of the electrolyzer stack and shell. Generally, an electrolyzer stack may be formed from a material with a high coefficient of thermal expansion, while the shell may be formed from a material having a lower coefficient of thermal expansion. The differences between the coefficients of thermal expansion may lead to damage to the electrolyzer stack as the shell may restrain the thermal expansion of the electrolyzer stack. To allow for the differences in thermal expansion, the electrolyzer stack may be mounted within the shell leaving a space between the electrolyzer stack and shell. The space between the electrolyzer stack and the shell may be filled with a non-conductive fluid to further equalize pressure inside and outside of the electrolyzer stack.

  14. Measurements of the HO2 uptake coefficients onto single component organic aerosols.

    PubMed

    Lakey, P S J; George, I J; Whalley, L K; Baeza-Romero, M T; Heard, D E

    2015-04-21

    Measurements of HO2 uptake coefficients (γ) were made onto a variety of organic aerosols derived from glutaric acid, glyoxal, malonic acid, stearic acid, oleic acid, squalene, monoethanol amine sulfate, monomethyl amine sulfate, and two sources of humic acid, for an initial HO2 concentration of 1 × 10(9) molecules cm(-3), room temperature and at atmospheric pressure. Values in the range of γ < 0.004 to γ = 0.008 ± 0.004 were measured for all of the aerosols apart from the aerosols from the two sources of humic acid. For humic acid aerosols, uptake coefficients in the range of γ = 0.007 ± 0.002 to γ = 0.09 ± 0.03 were measured. Elevated concentrations of copper (16 ± 1 and 380 ± 20 ppb) and iron (600 ± 30 and 51 000 ± 3000 ppb) ions were measured in the humic acid atomizer solutions compared to the other organics that can explain the higher uptake values measured. A strong dependence upon relative humidity was also observed for uptake onto humic acid, with larger uptake coefficients seen at higher humidities. Possible hypotheses for the humidity dependence include the changing liquid water content of the aerosol, a change in the mass accommodation coefficient or in the Henry's law constant. PMID:25811311

  15. Verification of a model for the piezoelectric d33 coefficient of cellular electret films

    NASA Astrophysics Data System (ADS)

    Hillenbrand, Joachim; Sessler, Gerhard M.; Zhang, Xiaoqing

    2005-09-01

    An existing model for the piezoelectric thickness coefficient (d33 coefficient) of cellular polymers is tested with experimental data obtained from two differently manufactured cellular polypropylene (PP) materials. The model assumes the cellular film to consist of plane parallel solid and gaseous layers charged at their interfaces. The cellular PP films are expanded by a pressure treatment. Subsequently, due to viscoelastic relaxation, the thickness of the films decreases, thus causing a change of their Young's modulus Y with time. The values of Y are obtained from interferometric measurements of the resonance frequency of the films. Together with the measured thickness of the solid layers and air layers in the material, the d33 coefficients can be determined from the model. These values are compared with experimental results for d33 also obtained interferometrically by means of the inverse piezoelectric effect. A very good agreement between the measured and calculated d33 coefficients as a function of film thickness is obtained for all investigated films.

  16. On the adjusting of the dynamic coefficients of tilting-pad journal bearings

    NASA Astrophysics Data System (ADS)

    Santos, Ilmar Ferreira

    1995-07-01

    This paper gives a theoretical and experimental contribution to the problem of active modification of the dynamic coefficients of tilting-pad journal bearings, aiming to increase the damping and stability of rotating systems. The theoretical studies for the calculation of the bearing coefficients are based on the fluid dynamics, specifically on the Reynolds equation, on the dynamics of multibody systems and on some concepts of the hydraulics. The experiments are carried out by means of a test rig specially designed for this investigation. The four pads of such a bearing are mounted on four flexible hydraulic chambers which are connected to a proportional valve. The chamber pressures are changed by means of the proportional value, resulting in a displacement of the pads and a modification of the bearing gap. By changing the gap, one can adjust the dynamic coefficients of the bearing. With help of an experimental procedure for identifying the bearing coefficients, theoretical and experimental results are compared and discussed. The advantages and the limitation of such hydrodynamic bearings in their controllable form are evaluated with regard to application on the high-speed machines.

  17. In vivo light fluence correction for determination of tissue absorption coefficient using Multispectral Optoacoustic Tomography

    NASA Astrophysics Data System (ADS)

    Brochu, Frederic M.; Joseph, James; Tomaszewski, Michal R.; Bohndiek, Sarah E.

    2016-03-01

    Optoacoustic Tomography is a fast developing imaging modality, combining the high resolution and penetration depth of ultrasound detection with the high contrast available from optical absorption in tissue. The spectral profile of near infrared excitation light used in optoacoustic tomography instruments is modified by absorption and scattering as it propagates deep into biological tissue. The resulting images therefore provide only qualitative insight into the distribution of tissue chromophores. Knowledge of the spectral profile of excitation light across the mouse is needed for accurate determination of the absorption coefficient in vivo. Under the conditions of constant Grueneisen parameter and accurate knowledge of the light fluence, a linear relationship should exist between the initial optoacoustic pressure amplitude and the tissue absorption coefficient. Using data from a commercial optoacoustic tomography system, we implemented an iterative optimization based on the σ-Eddington approximation to the Radiative Transfer Equation to derive a light fluence map within a given object. We segmented the images based on the positions of phantom inclusions, or mouse organs, and used known scattering coefficients for initialization. Performing the fluence correction in simple phantoms allowed the expected linear relationship between recorded and independently measured absorption coefficients to be retrieved and spectral coloring to be compensated. For in vivo data, the correction resulted in an enhancement of signal intensities in deep tissues. This improved our ability to visualize organs at depth (> 5mm). Future work will aim to perform the optimization without data normalization and explore the need for methodology that enables routine implementation for in vivo imaging.

  18. Dealing with Peer Pressure

    MedlinePlus

    ... Here's Help White House Lunch Recipes Dealing With Peer Pressure KidsHealth > For Kids > Dealing With Peer Pressure ... Let's talk about how to handle it. Defining Peer Pressure Peers influence your life, even if you ...

  19. Intracranial pressure monitoring

    MedlinePlus

    ... head. The monitor senses the pressure inside the skull and sends measurements to a recording device. ... are 3 ways to monitor pressure in the skull (intracranial pressure). INTRAVENTRICULAR CATHETER The intraventricular catheter is ...

  20. Skin (Pressure) Sores

    MedlinePlus

    ... Topic Skin dryness Next Topic Sleep problems Skin (pressure) sores A skin or pressure sore develops when the blood supply to an ... is bedridden or always in a wheelchair puts pressure on the same places much of the time. ...

  1. High blood pressure

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000468.htm High blood pressure To use the sharing features on ... body. Hypertension is the term used to describe high blood pressure. Blood pressure readings are given as ...

  2. High blood pressure medicines

    MedlinePlus

    Hypertension - medicines ... blood vessel diseases. You may need to take medicines to lower your blood pressure if lifestyle changes ... blood pressure to the target level. WHEN ARE MEDICINES FOR HIGH BLOOD PRESSURE USED Most of the ...

  3. Intracranial pressure monitoring

    MedlinePlus

    ICP monitoring; CSF pressure monitoring ... There are 3 ways to monitor pressure in the skull (intracranial pressure). INTRAVENTRICULAR CATHETER The intraventricular catheter is the most accurate monitoring method. To insert an intraventricular catheter, a ...

  4. High blood pressure - infants

    MedlinePlus

    National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics . ...

  5. High Blood Pressure (Hypertension)

    MedlinePlus

    ... Print Page Text Size: A A A Listen High Blood Pressure (Hypertension) Nearly 1 in 3 American adults has high ... weight. How Will I Know if I Have High Blood Pressure? High blood pressure is a silent problem — you ...

  6. High Blood Pressure

    MedlinePlus

    ... normal blood pressure 140/90 or higher is high blood pressure Between 120 and 139 for the top number, ... prehypertension. Prehypertension means you may end up with high blood pressure, unless you take steps to prevent it. High ...

  7. Preventing Pressure Sores

    MedlinePlus Videos and Cool Tools

    Experts \\ Preventing Pressure Sores Topics Adult Injuries Spinal Cord Injury 101 Spinal Cord Injury 101 The Basics of Spinal Cord Injury ... The Basics of Spinal Cord Injury Rehabilitation Preventing Pressure Sores Preventing Pressure Sores Transition from Hospital to ...

  8. Personal dose-equivalent conversion coefficients for 1252 radionuclides.

    PubMed

    Otto, Thomas

    2016-01-01

    Dose conversion coefficients for radionuclides are useful for routine calculations in radiation protection in industry, medicine and research. They give a simple and often sufficient estimate of dose rates during production, handling and storage of radionuclide sources, based solely on the source's activity. The latest compilation of such conversion coefficients dates from 20 y ago, based on nuclear decay data published 30 y ago. The present publication provides radionuclide-specific conversion coefficients to personal dose based on the most recent evaluations of nuclear decay data for 1252 radionuclides and fluence-to-dose-equivalent conversion coefficients for monoenergetic radiations. It contains previously unknown conversion coefficients for >400 nuclides and corrects those conversion coefficients that were based on erroneous decay schemes. For the first time, estimates for the protection quantity Hp(3) are included. PMID:25349458

  9. ANALYTIC FORMS OF THE PERPENDICULAR DIFFUSION COEFFICIENT IN NRMHD TURBULENCE

    SciTech Connect

    Shalchi, A.

    2015-02-01

    In the past different analytic limits for the perpendicular diffusion coefficient of energetic particles interacting with magnetic turbulence were discussed. These different limits or cases correspond to different transport modes describing how the particles are diffusing across the large-scale magnetic field. In the current paper we describe a new transport regime by considering the model of noisy reduced magnetohydrodynamic turbulence. We derive different analytic forms of the perpendicular diffusion coefficient, and while we do this, we focus on the aforementioned new transport mode. We show that for this turbulence model a small perpendicular diffusion coefficient can be obtained so that the latter diffusion coefficient is more than hundred times smaller than the parallel diffusion coefficient. This result is relevant to explain observations in the solar system where such small perpendicular diffusion coefficients have been reported.

  10. Superelastic carbon spheres under high pressure

    NASA Astrophysics Data System (ADS)

    Li, Meifen; Guo, Junjie; Xu, Bingshe

    2013-03-01

    We report a superelastic deformation behavior of carbon spheres by the in situ Raman spectroscopy in a high-pressure diamond anvil cell. The carbon spheres produced by arc discharging in toluene have a mean diameter of 200 nm and an onion-like multilayer graphitic structure. We find that the elastic coefficients, during both the compression and decompression processes, remain a constant up to 10 GPa, indicating a superior high-pressure structural stability. Such superelastic behavior is related to the isotropic and concentric configuration of carbon spheres and provides additional insight into improving the microscopic mechanical properties of small-scale particles.

  11. The coefficient of friction of chrysotile gouge at seismogenic depths

    USGS Publications Warehouse

    Moore, Diane E.; Lockner, D.A.; Tanaka, H.; Iwata, K.

    2004-01-01

    We report new strength data for the serpentine mineral chrysotile at effective normal stresses, ??sn between 40 and 200 MPa in the temperature range 25??-280??C. Overall, the coefficient of friction, ?? (= shear stress/effective normal stress) of water-saturated chrysotile gouge increases both with increasing temperature and ??sn, but the rates vary and the temperature-related increases begin at ???100??C. As a result, a frictional strength minimum (?? = 0.1) occurs at low ??sn at about 100??C. Maximum strength (?? = 0.55) results from a combination of high normal stress and high temperature. The low-strength region is characterized by velocity strengthening and the high-strength region by velocity-weakening behavior. Thoroughly dried chrysotile has ?? = 0.7 and is velocity-weakening. The frictional properties of chrysolite can be explained in its tendency to adsorb large amounts of water that acts as a lubricant during shear. The water is progressively driven off the fiber surfaces with increasing temperature and pressure, causing chrysotile to approach its dry strength. Depth profiles for a chrysotile-lined fault constructed from these data would pass through a strength minimum at ???3 km depth, where sliding should be stable. Below that depth, strength increases rapidly as does the tendency for unstable (seismic) slip. Such a trend would not have been predicted from the room-temperature data. These results therefore illustrate the potential hazards of extrapolating room-temperature friction data to predict fault zone behavior at depth. This depth profile for chrysotile is consistent with the pattern of slip on the Hayward fault, which creeps aseismically at shallow depths but which may be locked below 5 km depth. ?? 2004 by V. H. Winston and Son, Inc. All rights reserved.

  12. Pressure-Distribution Measurements of a Model of a Davis Wing Section with Fowler Flap Submitted by Consolidated Aircraft Corporation

    NASA Technical Reports Server (NTRS)

    Abbott, Ira H

    1942-01-01

    Wing pressure distribution diagrams for several angles of attack and flap deflections of 0 degrees, 20 degrees, and 40 degrees are presented. The normal force coefficients agree with lift coefficients obtained in previous test of the same model, except for the maximum lifts with flap deflection. Pressure distribution measurements were made at Reynolds Number of about 6,000,000.

  13. Scanning measurement of Seebeck coefficient of a heated sample

    DOEpatents

    Snyder, G. Jeffrey; Iwanaga, Shiho

    2016-04-19

    A novel scanning Seebeck coefficient measurement technique is disclosed utilizing a cold scanning thermocouple probe tip on heated bulk and thin film samples. The system measures variations in the Seebeck coefficient within the samples. The apparatus may be used for two dimensional mapping of the Seebeck coefficient on the bulk and thin film samples. This technique can be utilized for detection of defective regions, as well as phase separations in the sub-mm range of various thermoelectric materials.

  14. Measuring Furnace/Sample Heat-Transfer Coefficients

    NASA Technical Reports Server (NTRS)

    Rosch, William R.; Fripp, Archibald L., Jr.; Debnam, William J., Jr.; Woodell, Glenn A.

    1993-01-01

    Complicated, inexact calculations now unnecessary. Device called HTX used to simulate and measure transfer of heat between directional-solidification crystal-growth furnace and ampoule containing sample of crystalline to be grown. Yields measurement data used to calculate heat-transfer coefficients directly, without need for assumptions or prior knowledge of physical properties of furnace, furnace gas, or specimen. Determines not only total heat-transfer coefficients but also coefficients of transfer of heat in different modes.

  15. Asymptotic coefficients for one-interacting-level Voigt profiles

    NASA Astrophysics Data System (ADS)

    Cope, D.; Lovett, R. J.

    1988-02-01

    The asymptotic behavior of general Voigt profiles with general width and shift functions has been determined by Cope and Lovett (1987). The resulting asymptotic coefficients are functions of the perturber/radiator mass ratio; also, the coefficients for the one-interacting-level (OIL) profiles proposed by Ward et al. (1974) were studied. In this paper, the behavior of the OIL asymptotic coefficients for large mass ratio values is determined, thereby providing a complete picture of OIL asymptotics for all mass ratios.

  16. DCFPAK: Dose coefficient data file package for Sandia National Laboratory

    SciTech Connect

    Eckerman, K.F.; Leggett, R.W.

    1996-07-31

    The FORTRAN-based computer package DCFPAK (Dose Coefficient File Package) has been developed to provide electronic access to the dose coefficient data files summarized in Federal Guidance Reports 11 and 12. DCFPAK also provides access to standard information regarding decay chains and assembles dose coefficients for all dosimetrically significant radioactive progeny of a specified radionuclide. DCFPAK was designed for application on a PC but, with minor modifications, may be implemented on a UNIX workstation.

  17. Microscopic formula for transport coefficients of causal hydrodynamics.

    PubMed

    Koide, T

    2007-06-01

    The Green-Kubo-Nakano formula should be modified in relativistic hydrodynamics because of the problem of acausality and the breaking of sum rules. In this Rapid Communication, we propose a formula to calculate the transport coefficients of causal hydrodynamics based on the projection operator method. As concrete examples, we derive the expressions for the diffusion coefficient, the shear viscosity coefficient, and corresponding relaxation times. PMID:17677204

  18. Nonequilibrium thermodynamics of pressure solution

    NASA Astrophysics Data System (ADS)

    Lehner, F. K.; Bataille, J.

    1984-01-01

    This paper is concerned with the thermodynamic theory of solution and precipitation processes in wet crustal rocks and with the mechanism of steady pressure-solution slip in ‘contact zones,’ such as grain-to-grain contacts, fracture surfaces, and permeable gouge layers, that are infiltrated by a mobile aqueous solution phase. A local dissipation jump condition at the phase boundary is fundamental to identifying the thermodynamic force driving the solution and precipitation process and is used here in setting up linear phenomenological relations to model near-equilibrium phase transformation kinetics. The local thermodynamic equilibrium of a stressed pure solid in contact with its melt or solution phase is governed by Gibbs's relation, which is rederived here, in a manner emphasizing its independence of constitutive assumptions for the solid while neglecting surface tension and diffusion in the solid. Fluid-infiltrated contact zones, such as those formed by rough surfaces, cannot generally be in thermodynamic equilibrium, especially during an ongoing process of pressure-solution slip, and the existing equilibrium formulations are incorrect in overlooking dissipative processes tending to eliminate fluctuations in superficial free energies due to stress concentrations near asperities, defects, or impurities. Steady pressure-solution slip is likely to exhibit a nonlinear dependence of slip rate on shear stress and effective normal stress, due to a dependence of the contact-zone state on the latter. Given that this dependence is negligible within some range, linear relations for pressure-solution slip can be derived for the limiting cases of diffusion-controlled and interface-reaction-controlled rates. A criterion for rate control by one of these mechanisms is set by the magnitude of the dimensionless quantity kδ/2C pD, where k is the interfacial transfer coefficient, δ is the mean diffusion path length, C p is the solubility at pressure p, and D is the mass

  19. PAC91 - PROPERTIES AND COEFFICIENTS 1991

    NASA Technical Reports Server (NTRS)

    Mcbride, B. J.

    1994-01-01

    The two principal functions of PAC91 are to provide a means of generating theoretical thermodynamic functions from molecular constant data and to supply a means of fitting these functions to empirical equations by using a least-squares fit. The coefficients obtained from the fit may then be used to generate a library of thermodynamic data in a uniform and easy-to-use format for use in other computer codes. Several large compilations of selected or calculated thermodynamic data currently exist. Nevertheless, there is a continuing need for additional calculations due to the discovery of new species, the revision of existing molecular constant data and structural parameters, the need for data at temperatures other than those already published, the availability of new or revised heats of formation, dissociation or transition, and the revision of fundamental constants or atomic weights. Calculations may also be needed to compare the results of assuming various possible forms of the partition function. In addition, there is often a preference for thermodynamic data in functional rather than tabular form. In order to satisfy these needs, the PAC91 program can perform any combination of the following: (1) calculate thermodynamic functions (heat capacity, enthalpy, entropy, and Gibbs energy) for any set of 1 to 202 temperatures, (2) obtain a least-squares fit of the first three of these functions (either individually, two at a time, or all three simultaneously) for up to eight temperature intervals, and (3) calculate, as a function of temperature, heats of formation and equilibrium constants from assigned reference elements. The thermodynamic functions for ideal gases may be calculated from molecular constant data using one of several partition function variations provided by the program. For monatomic gases, one of three partition function cutoff techniques may be selected by the user, and unobserved but predicted electronic energy levels may be included by the program

  20. Aerosol Angstrom Absorption Coefficient Comparisons during MILAGRO.

    NASA Astrophysics Data System (ADS)

    Marley, N. A.; Marchany-Rivera, A.; Kelley, K. L.; Mangu, A.; Gaffney, J. S.

    2007-12-01

    aerosol Angstrom absorption exponents by linear regression over the entire UV-visible spectral range. These results are compared to results obtained from the absorbance measurements obtained in the field. The differences in calculated Angstrom absorption exponents between the field and laboratory measurements are attributed partly to the differences in time resolution of the sample collection resulting in heavier particle pileup on the filter surface of the 12-hour samples. Some differences in calculated results can also be attributed to the presence of narrow band absorbers below 400 nm that do not fall in the wavelengths covered by the 7 wavelengths of the aethalometer. 1. Marley, N.A., J.S. Gaffney, J.C. Baird, C.A. Blazer, P.J. Drayton, and J.E. Frederick, "The determination of scattering and absorption coefficients of size-fractionated aerosols for radiative transfer calculations." Aerosol Sci. Technol., 34, 535-549, (2001). This work was conducted as part of the Department of Energy's Atmospheric Science Program as part of the Megacity Aerosol Experiment - Mexico City during MILAGRO. This research was supported by the Office of Science (BER), U.S. Department of Energy Grant No. DE-FG02-07ER64329. We also wish to thank Mexican Scientists and students for their assistance from the Instituto Mexicano de Petroleo (IMP) and CENICA.

  1. Influence of pressure derivative of partition function on thermodynamic properties of non-local thermodynamic equilibrium thermal plasma

    NASA Astrophysics Data System (ADS)

    Singh, Gurpreet; Sharma, Rohit; Singh, Kuldip

    2015-09-01

    Thermodynamic properties (compressibility coefficient Z γ , specific heat at constant volume c v , adiabatic coefficient γ a , isentropic coefficient γ i s e n , and sound speed c s ) of non-local thermodynamic equilibrium hydrogen thermal plasma have been investigated for different values of pressure and non-equilibrium parameter θ (=Te/Th) in the electron temperature range from 6000 K to 60 000 K. In order to estimate the influence of pressure derivative of partition function on thermodynamic properties, two cases have been considered: (a) in which pressure derivative of partition function is taken into account in the expressions and (b) without pressure derivative of partition function in their expressions. Here, the case (b) represents expressions already available in literature. It has been observed that the temperature from which pressure derivative of partition function starts influencing a given thermodynamic property increases with increase of pressure and non-equilibrium parameter θ. Thermodynamic property in the case (a) is always greater than its value in the case (b) for compressibility coefficient and specific heat at constant volume, whereas for adiabatic coefficient, isentropic coefficient, and sound speed, its value in the case (a) is always less than its value in the case (b). For a given value of θ, the relationship of compressibility coefficient with degree of ionization depends upon pressure in the case (a), whereas it is independent of pressure in the case (b). Relative deviation between the two cases shows that the influence of pressure derivative of partition function is significantly large and increases with the augmentation of pressure and θ for compressibility coefficient, specific heat at constant volume, and adiabatic coefficient, whereas for isentropic coefficient and sound speed, it is marginal even at high values of pressure and non-equilibrium parameter θ.

  2. Surface pressure distributions on a delta wing undergoing large amplitude pitching oscillations. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Thompson, Scott A.

    1989-01-01

    Wind tunnel experiments were performed on a 70 deg sweep delta wing to determine the effect of a sinusoidal pitching motion on the pressure field on the suction side of the wing. Twelve pressure taps were placed from 35 to 90 percent of the chord, at 60 percent of the local semi-span. Pressure coefficients were measured as a function of Reynolds number and pitch rate. The pressure coefficient was seen to vary at approximately the same frequency as the pitching frequency. The relative pressure variation at each chord location was comparable for each case. The average pressure distribution through each periodic motion was near the static distribution for the average angle of attack. Upon comparing the upstroke and downstroke pressures for a specific angle of attack, the downstroke pressures were slightly larger. Vortex breakdown was seen to have the most significant effect at the 40 to 45 percent chord location, where a decrease in pressure was apparent.

  3. Diffusion coefficient of three-dimensional Yukawa liquids

    NASA Astrophysics Data System (ADS)

    Dzhumagulova, K. N.; Ramazanov, T. S.; Masheeva, R. U.

    2013-11-01

    The purpose of this work is an investigation of the diffusion coefficient of the dust component in complex plasma. The computer simulation of the Yukawa liquids was made on the basis of the Langevin equation, which takes into account the influence of buffer plasma on the dust particles dynamics. The Green-Kubo relation was used to calculate the diffusion coefficient. Calculations of the diffusion coefficient for a wide range of the system parameters were performed. Using obtained numerical data, we constructed the interpolation formula for the diffusion coefficient. We also show that the interpolation formula correctly describes experimental data obtained under microgravity conditions.

  4. Coefficients of convergent multiple Walsh-Paley series

    SciTech Connect

    Plotnikov, Mikhail G

    2012-09-30

    The paper is concerned with the behaviour of the coefficients of multiple Walsh-Paley series that are cube convergent to a finite sum. It is shown that even an everywhere convergent series of this kind may contain coefficients with numbers from a sufficiently large set that grow faster than any preassigned sequence. By Cohen's theorem, this sort of thing cannot happen for multiple trigonometric series that are cube convergent on a set of full measure - their coefficients cannot grow even exponentially. Null subsequences of coefficients are determined for multiple Walsh-Paley series that are cube convergent on a set of definite measure. Bibliography: 18 titles.

  5. Discharge coefficients of impingement and film cooling holes

    NASA Astrophysics Data System (ADS)

    Chu, T.; Brown, A.; Garret, S.

    1985-03-01

    In this article measurements of fluid flow through impingement and film cooling holes for typical turbine blade cooling systems are presented. The purpose of the measurements was to determine hole discharge coefficients over a range of Reynolds numbers from 5,000 to 30,000 and to observe in this range the dependence of discharge coefficient on Reynolds number. The effect of hole geometry, that is, sharp edged inlet or corner radius inlet, on discharge coefficients is also measured. Correlations relating discharge coefficients to Reynolds number, corner radius to hole diameter ratio, and blowing parameter are suggested.

  6. Diffusion coefficient of three-dimensional Yukawa liquids

    SciTech Connect

    Dzhumagulova, K. N.; Ramazanov, T. S.; Masheeva, R. U.

    2013-11-15

    The purpose of this work is an investigation of the diffusion coefficient of the dust component in complex plasma. The computer simulation of the Yukawa liquids was made on the basis of the Langevin equation, which takes into account the influence of buffer plasma on the dust particles dynamics. The Green–Kubo relation was used to calculate the diffusion coefficient. Calculations of the diffusion coefficient for a wide range of the system parameters were performed. Using obtained numerical data, we constructed the interpolation formula for the diffusion coefficient. We also show that the interpolation formula correctly describes experimental data obtained under microgravity conditions.

  7. Heat transfer coefficients for drying in pulsating flows

    SciTech Connect

    Fraenkel, S.L.

    1998-05-01

    Pulsating flows generated by a Rijke type combustor are studied for drying of grains and food particles. It is assumed that the velocity fluctuations are the main factor in the enhancement of the drying process. The heat transfer coefficients for drying in vibrating beds are utilized to estimate the heat transfer coefficients of fixed beds in pulsating and permeating flows and are compared to the steady flow heat transfer coefficients obtained for solid porous bodies, after perturbing the main flow. The cases considered are compared to the convective heat transfer coefficients employed in non-pulsating drying.

  8. Quantum Non-Markovian Langevin Equations and Transport Coefficients

    SciTech Connect

    Sargsyan, V.V.; Antonenko, N.V.; Kanokov, Z.; Adamian, G.G.

    2005-12-01

    Quantum diffusion equations featuring explicitly time-dependent transport coefficients are derived from generalized non-Markovian Langevin equations. Generalized fluctuation-dissipation relations and analytic expressions for calculating the friction and diffusion coefficients in nuclear processes are obtained. The asymptotic behavior of the transport coefficients and correlation functions for a damped harmonic oscillator that is linearly coupled in momentum to a heat bath is studied. The coupling to a heat bath in momentum is responsible for the appearance of the diffusion coefficient in coordinate. The problem of regression of correlations in quantum dissipative systems is analyzed.

  9. Measurement of the extinction coefficients of magnetic fluids

    PubMed Central

    2011-01-01

    A novel spectral transmittance approach for measuring the extinction coefficient of magnetic fluids is proposed. The measuring principle and accuracy of the approach are analysed. Experiments are conducted to measure the extinction coefficient of magnetic fluids with different particle volume fractions. The relative uncertainty of experimental data is less than 1.8%. The experimental results indicate that the extinction coefficient of magnetic fluids increases with increase of the volume fraction of suspended magnetic nanoparticles and the optical properties of the particle material have a significant effect on the extinction coefficient of the magnetic fluids. PMID:21711742

  10. Process controls on event runoff coefficients in Austria

    NASA Astrophysics Data System (ADS)

    Merz, R.; Blöschl, G.

    2009-04-01

    In this paper we analyze the controls on the spatiotemporal variability of event runoff coefficients. A total of about 64,000 events in 459 Austrian catchments ranging from 5 to 10000 km2 are analyzed. Event runoff coefficients vary in space, depending on the longterm controls such as climate and catchment formation. Event runoff coefficients also vary in time, depending on event characteristics such as antecedent soil moisture and event rainfall depth. Both types of controls are analyzed separately in the paper. The spatial variability is analyzed in terms of a correlation analysis of the statistical moments of the runoff coefficients and catchment attributes. Mean runoff coefficients are most strongly correlated to indicators representing climate such as mean annual precipitation and the long-term ratio of actual evaporation to precipitation through affecting long-term soil moisture. Land use, soil types, and geology do not seem to exert a major control on runoff coefficients of the catchments under study. The temporal variability is analyzed by comparing the deviation of the event runoff coefficients from their mean depending on event characteristics. The analysis indicates that antecedent soil moisture conditions control runoff coefficients to a higher degree than does event rainfall. The analysis also indicates that soil moisture derived from soil moisture accounting schemes has more predictive power for the temporal variability of runoff coefficients than antecedent rainfall.

  11. Spectral absorption coefficients of argon and silicon and spectral reflectivity of aluminum

    NASA Technical Reports Server (NTRS)

    Krascella, N. L.

    1972-01-01

    A theoretical investigation was conducted to estimate the spectral properties of argon as a function of pressure, temperature, and wave number. The spectral characteristics of the argon buffer gas exert a strong influence on radiative energy transfer in the in-reactor test configuration of the nuclear light bulb engine. An existing computer program was modified and used to calculate the spectral absorption coefficients of argon at total pressures of 50, 100, 250, 500, 750 and 1000 atm in the temperature interval between 1000 and 30,000 K. At each pressure and temperature, spectral properties were calculated for forty-seven wave numbers in the interval between 1000 and 1,000,000 cm/1. Estimates of the spectral absorption coefficients of silicon were made as part of an evaluation of silicon vapor as a possible buffer-gas seeding agent for the reference nuclear light bulb engine. Existing cross-section data were used to calculate the spectral characteristics of silicon at twenty-four temperatures in the interval between 2000 and 10,000 K.

  12. Transient technique for measuring heat transfer coefficients on stator airfoils in a jet engine environment

    NASA Astrophysics Data System (ADS)

    Gladden, H. J.; Proctor, M. P.

    A transient technique was used to measure heat transfer coefficients on stator airfoils in a high-temperature annular cascade at real engine conditions. The transient response of thin film thermocouples on the airfoil surface to step changes in the gas stream temperature was used to determine these coefficients. In addition, gardon gages and paired thermocouples were also utilized to measure heat flux on the airfoil pressure surface at steady state conditions. The tests were conducted at exit gas stream Reynolds numbers of one-half to 1.9 million based on true chord. The results from the transient technique show good comparison with the steady-state results in both trend and magnitude. In addition, comparison is made with the STAN5 boundary layer code and shows good comparison with the trends. However, the magnitude of the experimental data is consistently higher than the analysis.

  13. Experimental flow coefficients of a full-coverage film-cooled-vane chamber

    NASA Technical Reports Server (NTRS)

    Meitner, P. L.; Hippensteele, S. A.

    1977-01-01

    Ambient- and elevated-temperature flow tests were performed on a four-times-actual-size model of an impingement- and film-cooled segment of a core engine turbine vane. Tests were conducted with the impingement and film cooling plates combined to form a chamber and also with each of the individual separated plates. For the combined tests, the proximity of the film cooling plate affected the flow of coolant through the impingement plate, but not conversely. Impingement flow is presented in terms of a discharge coefficient, and the film cooling flow discharging into still air with no main stream gas flow is presented in terms of a total pressure-loss coefficient. The effects of main stream gas flow on discharge from the film cooling holes are evaluated as a function of coolant to main-stream gas momentum flux ratio. A smoothing technique is developed that identifies and helps reduce flow measurement data scatter.

  14. First-Order System Least-Squares for Second-Order Elliptic Problems with Discontinuous Coefficients

    NASA Technical Reports Server (NTRS)

    Manteuffel, Thomas A.; McCormick, Stephen F.; Starke, Gerhard

    1996-01-01

    The first-order system least-squares methodology represents an alternative to standard mixed finite element methods. Among its advantages is the fact that the finite element spaces approximating the pressure and flux variables are not restricted by the inf-sup condition and that the least-squares functional itself serves as an appropriate error measure. This paper studies the first-order system least-squares approach for scalar second-order elliptic boundary value problems with discontinuous coefficients. Ellipticity of an appropriately scaled least-squares bilinear form of the size of the jumps in the coefficients leading to adequate finite element approximation results. The occurrence of singularities at interface corners and cross-points is discussed. and a weighted least-squares functional is introduced to handle such cases. Numerical experiments are presented for two test problems to illustrate the performance of this approach.

  15. A finite-volume numerical method to calculate fluid forces and rotordynamic coefficients in seals

    NASA Technical Reports Server (NTRS)

    Athavale, M. M.; Przekwas, A. J.; Hendricks, R. C.

    1992-01-01

    A numerical method to calculate rotordynamic coefficients of seals is presented. The flow in a seal is solved by using a finite-volume formulation of the full Navier-Stokes equations with appropriate turbulence models. The seal rotor is perturbed along a diameter such that the position of the rotor is a sinusoidal function of time. The resulting flow domain changes with time, and the time-dependent flow in the seal is solved using a space conserving moving grid formulation. The time-varying fluid pressure reaction forces are then linked with the rotor center displacement, velocity and acceleration to yield the rotordynamic coefficients. Results for an annular seal are presented, and compared with experimental data and other more simplified numerical methods.

  16. Measurements of H2O broadening coefficients of infrared methane lines

    NASA Astrophysics Data System (ADS)

    Delahaye, T.; Landsheere, X.; Pangui, E.; Huet, F.; Hartmann, J.-M.; Tran, H.

    2016-04-01

    H2O-broadening and shifting coefficients of 76 ro-vibrational transitions of methane in the mid-and near-infrared regions were measured for the first time. For this, eight spectra of methane diluted in water vapor were recorded with a high resolution Fourier Transform spectrometer for pressures ranging from 20 to 80 Torr and at 323 and 367 K. Line broadening and shifting coefficients were retrieved from the measured spectra through fits using Voigt profiles. Values at room temperature (296 K) were then deduced and compared with those of dry air. The results show that H2O-broadenings of methane lines are, on average, 34% larger than those for dry air.

  17. A test apparatus and facility to identify the rotordynamic coefficients of high-speed hydrostatic bearings

    NASA Technical Reports Server (NTRS)

    Childs, Dara; Hale, Keith

    1994-01-01

    A facility and apparatus are described which determine stiffness, damping, and added-mass rotordynamic coefficients plus steady-state operating characteristics of high speed hydrostatic journal bearings. The apparatus has a current top speed of 29,800 rpm with a bearing diameter of 7.62 cm (3 in.). Purified warm water, 55 C (130 F), is used as a test fluid to achieve elevated Reynolds numbers during operation. The test-fluid pump yields a bearing maximum inlet pressure of 6.9 Mpa (1000 psi). Static load on the bearing is independently controlled and measured. Orthogonally mounted external shakers are used to excite the test stator in the direction of, and perpendicular to, the static load. The apparatus can independently calculate all rotordynamic coefficients at a given operating condition.

  18. Non-monotonic dependence of the friction coefficient on heterogeneous stiffness

    PubMed Central

    Giacco, F.; Ciamarra, M. Pica; Saggese, L.; de Arcangelis, L.; Lippiello, E.

    2014-01-01

    The complexity of the frictional dynamics at the microscopic scale makes difficult to identify all of its controlling parameters. Indeed, experiments on sheared elastic bodies have shown that the static friction coefficient depends on loading conditions, the real area of contact along the interfaces and the confining pressure. Here we show, by means of numerical simulations of a 2D Burridge-Knopoff model with a simple local friction law, that the macroscopic friction coefficient depends non-monotonically on the bulk elasticity of the system. This occurs because elastic constants control the geometrical features of the rupture fronts during the stick-slip dynamics, leading to four different ordering regimes characterized by different orientations of the rupture fronts with respect to the external shear direction. We rationalize these results by means of an energetic balance argument. PMID:25345800

  19. Diffusion coefficients and heats of mixing in aqueous alkanolamines. Annual report, January-December 1992

    SciTech Connect

    Rowley, R.L.; Oscarson, J.L.

    1993-01-01

    The objective of the work is to provide accurate data on diffusion coefficients and heats of absorption of acid gases in aqueous amine solutions to assist in the design of economical new amine treating systems and to improve the efficiency of existing plants. Specifically covered in the report are measurements of the mutual diffusion coefficient of methyldiethanolamine(MDEA) and diethanolamine in water. Measurements have been made at 25, 50 and 75C and at 0, 20, 35 and 50 wt% amine. Heats of absorption of CO2 into aqueous mixtures of MDEA have also been measured calorimetrically. Results are reported at temperatures of 120 and 260F and pressures of 500 and 1000 psia at total MDEA concentrations of 20, 35 and 50%.

  20. Reverse trend in turbulent transport coefficient for H mode edge plasmas

    NASA Astrophysics Data System (ADS)

    Xiao, Yong; Xie, Huasheng; Lin, Zhihong

    2015-11-01

    It is generally accepted that the micro-scale turbulence leads to anomalous transport observed in tokamaks. We carry out gyrokinetic simulation using the GTC code to study the relationship between the turbulent transport and its pressure gradient drive. It is found in the weak gradient regime, the turbulent transport coefficient increases with the gradient drive, which is consistent with Dimits 2000 result. However, in strong gradient regime which corresponds to the edge profile for the H mode plasma, the turbulent transport shows a clear reverse trend, i.e., the turbulent transport coefficient decreases with the gradient drive increasing. This feature is found to be closely related to the reduction of radial correlation length in the strong gradient regime, which could be explained by the unconventional ballooning mode structures observed in the gyrokinetic simulations with strong gradients.