Science.gov

Sample records for pressure ionization permanent

  1. Atmospheric Pressure Ionization Permanent Magnet Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    PubMed Central

    Vilkov, Andrey N.; Gamage, Chaminda M.; Misharin, Alexander S.; Doroshenko, Vladimir M.; Tolmachev, Dmitry A.; Tarasova, Irina A.; Kharybin, Oleg N.; Novoselov, Konstantin P.; Gorshkov, Michael V.

    2007-01-01

    A new Fourier Transform Ion Cyclotron Resonance mass spectrometer based on a permanent magnet with an atmospheric pressure ionization source was designed and constructed. A mass resolving power (full-width-at-half-maximum) of up to 80,000 in the electron ionization mode and 25,000 in the electrospray mode was obtained. Also, a mass measurement accuracy at low-ppm level has been demonstrated for peptide mixtures in a mass range of up to 1,200 m/z in the isotopically resolved mass spectra. PMID:17587594

  2. High pressure xenon ionization detector

    DOEpatents

    Markey, John K.

    1989-01-01

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0.degree. to 30.degree. C.

  3. High pressure xenon ionization detector

    DOEpatents

    Markey, J.K.

    1989-11-14

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0 to 30 C. 2 figs.

  4. Fluid hydrogen at high density - Pressure ionization

    NASA Technical Reports Server (NTRS)

    Saumon, Didier; Chabrier, Gilles

    1992-01-01

    The Helmholtz-free-energy model for nonideal mixtures of hydrogen atoms and molecules by Saumon and Chabrier (1991) is extended to describe dissociation and ionization in similar mixtures in chemical equilibrium. A free-energy model is given that describes partial ionization in the pressure and temperature ionization region. The plasma-phase transition predicted by the model is described for hydrogen mixtures including such components as H2, H, H(+), and e(-). The plasma-phase transition has a critical point at Tc = 15,300 K and Pc = 0.614 Mbar, and thermodynamic instability is noted in the pressure-ionization regime. The pressure dissociation and ionization of fluid hydrogen are described well with the model yielding information on the nature of the plasma-phase transition. The model is shown to be valuable for studying dissociation and ionization in astrophysical objects and in high-pressure studies where pressure and temperature effects are significant.

  5. Establishing Atmospheric Pressure Chemical Ionization Efficiency Scale.

    PubMed

    Rebane, Riin; Kruve, Anneli; Liigand, Piia; Liigand, Jaanus; Herodes, Koit; Leito, Ivo

    2016-04-01

    Recent evidence has shown that the atmospheric pressure chemical ionization (APCI) mechanism can be more complex than generally assumed. In order to better understand the processes in the APCI source, for the first time, an ionization efficiency scale for an APCI source has been created. The scale spans over 5 logIE (were IE is ionization efficiency) units and includes 40 compounds with a wide range of chemical and physical properties. The results of the experiments show that for most of the compounds the ionization efficiency order in the APCI source is surprisingly similar to that in the ESI source. Most of the compounds that are best ionized in the APCI source are not small volatile molecules. Large tetraalkylammonium cations are a prominent example. At the same time, low-polarity hydrocarbons pyrene and anthracene are ionized in the APCI source but not in the ESI source. These results strongly imply that in APCI several ionization mechanisms operate in parallel and a mechanism not relying on evaporation of neutral molecules from droplets has significantly higher influence than commonly assumed. PMID:26943482

  6. Atmospheric-pressure Penning ionization mass spectrometry.

    PubMed

    Hiraoka, Kenzo; Fujimaki, Susumu; Kambara, Shizuka; Furuya, Hiroko; Okazaki, Shigemitsu

    2004-01-01

    A preliminary study on the atmospheric-pressure Penning ionization (APP(e)I) of gaseous organic compounds with Ar* has been made. The metastable argon atoms (Ar*: 11.55 eV for (3)P(2) and 11.72 eV for (3)P(0)) were generated by the negative-mode corona discharge of atmospheric-pressure argon gas. By applying a high positive voltage (+500 to +1000 V) to the stainless steel capillary for the sample introduction (0.1 mm i.d., 0.3 mm o.d.), strong ion signals could be obtained. The ions formed were sampled through an orifice into the vacuum and mass-analyzed by an orthogonal time-of-flight mass spectrometer. The major ions formed by APP(e)I are found to be molecular-related ions for alkanes, aromatics, and oxygen-containing compounds. Because only the molecules with ionization energies less than the internal energy of Ar* are ionized, the present method will be a selective and highly sensitive interface for gas chromatography/mass spectrometry. PMID:15384154

  7. High pressure and high flowrate induction pumps with permanent magnets

    NASA Astrophysics Data System (ADS)

    Bucenieks, I. E.

    2003-12-01

    Theoretical evaluations and modelling experiments demonstrated a rather high efficiency of electromagnetic induction pumps (EMIP) basing on permanent magnets, in which an alternating travelling magnetic field, inducing electromagnetic dragging forces in liquid metal, is generated by a system of rotating permanent magnets with alternating polarity. Basing on the gained experience at producing real pumps for pure Pb and eutectic alloy Pb-Bi, the evaluation of parameters of much more powerful pumps for mercury developing a head pressure over 5 bars and so providing flow rates over 10 L/s, had been carried out to show their reliability. These powerful pumps are supposed to be used in the proposed European Spallation neutron Source (ESS), in which mercury will be operated as a spallation target material and a cooling fluid at the same time. Tables 2, Figs 5, Refs 8.

  8. On the permanent hip-stabilizing effect of atmospheric pressure.

    PubMed

    Prietzel, Torsten; Hammer, Niels; Schleifenbaum, Stefan; Kaßebaum, Eric; Farag, Mohamed; von Salis-Soglio, Georg

    2014-08-22

    Hip joint dislocations related to total hip arthroplasty (THA) are a common complication especially in the early postoperative course. The surgical approach, the alignment of the prosthetic components, the range of motion and the muscle tone are known factors influencing the risk of dislocation. A further factor that is discussed until today is atmospheric pressure which is not taken into account in the present THA concepts. The aim of this study was to investigate the impact of atmospheric pressure on hip joint stability. Five joint models (Ø 28-44 mm), consisting of THA components were hermetically sealed with a rubber capsule, filled with a defined amount of fluid and exposed to varying ambient pressure. Displacement and pressure sensors were used to record the extent of dislocation related to intraarticular and ambient pressure. In 200 experiments spontaneous dislocations of the different sized joint models were reliably observed once the ambient pressure was lower than 6.0 kPa. Increasing the ambient pressure above 6.0 kPa immediately and persistently reduced the joint models until the ambient pressure was lowered again. Displacement always exceeded half the diameter of the joint model and was independent of gravity effects. This experimental study gives strong evidence that the hip joint is permanently stabilized by atmospheric pressure, confirming the theories of Weber and Weber (1836). On basis of these findings the use of larger prosthetic heads, capsular repair and the deployment of an intracapsular Redon drain are proposed to substantially decrease the risk of dislocation after THA. PMID:24938930

  9. The influence of a permanent dipole moment on the tunnelling ionization of a CO molecule

    NASA Astrophysics Data System (ADS)

    Kornev, Aleksei S.; Semiletov, Ivan M.; Zon, Boris A.

    2016-05-01

    We show that the linear Stark effect due to a molecule permanent dipole moment does not influence the rate of molecule ionization by laser radiation in the multiphoton limit. However, it may influence the ionization rate in the tunnelling limit. A CO molecule is considered as an example. Its valence orbitals have σ symmetry. In this case, the tunnel effect rate is maximal if the permanent dipole moment (the molecule axis) is oriented along the direction of the laser-wave electric field, and the role of the linear Stark effect is the most noticeable. This situation differs from that when the valence orbitals have π symmetry which we have considered previously (Kornev and Zon 2014 Laser Phys. 24 115302). In that case, the tunnel effect rate is maximal if the molecule axis is oriented perpendicularly to the electric field direction and the role of the linear Stark effect is less significant. We consider the tunnel effect in both dc and ac fields, accounting for perturbation of vibrational motion by an external field. We show that the influence of the permanent dipole moment does not vanish even after averaging the tunnelling rate over the molecule orientations.

  10. Characteristics of low-temperature plasma ionization for ambient mass spectrometry compared to electrospray ionization and atmospheric pressure chemical ionization.

    PubMed

    Albert, Anastasia; Engelhard, Carsten

    2012-12-18

    Ambient desorption/ionization mass spectrometry (ADI-MS) is an attractive method for direct analysis with applications in homeland security, forensics, and human health. For example, low-temperature plasma probe (LTP) ionization was successfully used to detect, e.g., explosives, drugs, and pesticides directly on the target. Despite the fact that the field is gaining significant attention, few attempts have been made to classify ambient ionization techniques based on their ionization characteristics and performance compared to conventional ionization sources used in mass spectrometry. In the present study, relative ionization efficiencies (RIEs) for a large group of compound families were determined with LTP-Orbitrap-MS and compared to those obtained with electrospray ionization mass spectrometry (ESI-MS) and atmospheric pressure chemical ionization mass spectrometry (APCI-MS). RIEs were normalized against one reference compound used across all methods to ensure comparability of the results. Typically, LTP analyte ionization through protonation/deprotonation (e.g., 4-acetamidophenol) was observed; in some cases (e.g., acenaphthene) radicals were formed. Amines, amides, and aldehydes were ionized successfully with LTP. A benefit of LTP over conventional methods is the possibility to successfully ionize PAHs and imides. Here, the studied model compounds could be detected by neither APCI nor ESI. LTP is a relatively soft ionization method because little fragmentation of model compounds was observed. It is considered to be an attractive method for the ionization of low molecular weight compounds over a relatively wide polarity range. PMID:23134531

  11. Ionization of EPA Contaminants in Direct and Dopant-Assisted Atmospheric Pressure Photoionization and Atmospheric Pressure Laser Ionization

    NASA Astrophysics Data System (ADS)

    Kauppila, Tiina J.; Kersten, Hendrik; Benter, Thorsten

    2015-06-01

    Seventy-seven EPA priority environmental pollutants were analyzed using gas chromatography-mass spectrometry (GC-MS) equipped with an optimized atmospheric pressure photoionization (APPI) and an atmospheric pressure laser ionization (APLI) interface with and without dopants. The analyzed compounds included e.g., polycyclic aromatic hydrocarbons (PAHs), nitro compounds, halogenated compounds, aromatic compounds with phenolic, acidic, alcohol, and amino groups, phthalate and adipatic esters, and aliphatic ethers. Toluene, anisole, chlorobenzene, and acetone were tested as dopants. The widest range of analytes was ionized using direct APPI (66/77 compounds). The introduction of dopants decreased the amount of compounds ionized in APPI (e.g., 54/77 with toluene), but in many cases the ionization efficiency increased. While in direct APPI the formation of molecular ions via photoionization was the main ionization reaction, dopant-assisted (DA) APPI promoted ionization reactions, such as charge exchange and proton transfer. Direct APLI ionized a much smaller amount of compounds than APPI (41/77 compounds), showing selectivity towards compounds with low ionization energies (IEs) and long-lived resonantly excited intermediate states. DA-APLI, however, was able to ionize a higher amount of compounds (e.g. 51/77 with toluene), as the ionization took place entirely through dopant-assisted ion/molecule reactions similar to those in DA-APPI. Best ionization efficiency in APPI and APLI (both direct and DA) was obtained for PAHs and aromatics with O- and N-functionalities, whereas nitro compounds and aliphatic ethers were the most difficult to ionize. Halogenated aromatics and esters were (mainly) ionized in APPI, but not in APLI.

  12. Ionization Parameter: A Diagnostic of Radiation Pressure Dominated HII Regions

    NASA Astrophysics Data System (ADS)

    Yeh, Sherry; Matzner, C. D.

    2011-01-01

    When irradiation is sufficiently intense, the structure of an HII region will be dominated by radiation pressure and stellar winds, rather than ionized gas pressure. This state is of considerable interest because of its role in the formation of massive stars, the disruption of giant molecular clouds, and the evolution of starburst galaxies. We discuss the usefulness of the ionization parameter U, as often derived from observed line ratios between species which exist only in ionized gas, as a diagnostic for the radiation pressure-dominated state. In ionization-bounded directions, U cannot exceed a maximum value Umax determined by equilibrium between radiation and gas pressure forces. Lower values of U will occur, however, when the pressure of shocked stellar winds is significant, or when neutral gas is broken into clumps with sufficiently small radii of curvature. Applying these considerations to a prominent ionized shell around 30 Doradus and to the inner starburst region of M82, along with Cloudy simulations, we conclude that both are dominated by a combination of radiation pressure and shocked winds.

  13. Variable pressure ionization detector for gas chromatography

    DOEpatents

    Buchanan, Michelle V.; Wise, Marcus B.

    1988-01-01

    Method and apparatus for differentiating organic compounds based on their electron affinity. An electron capture detector cell (ECD) is operated at pressures ranging from atmospheric to less than 1 torr. Through variation of the pressure within the ECD cell, the organic compounds are induced to either capture or emit electrons. Differentiation of isomeric compounds can be obtianed when, at a given pressure, one isomer is in the emission mode and the other is in the capture mode. Output of the ECD is recorded by chromatogram. The invention also includes a method for obtaining the zero-crossing pressure of a compound, defined as the pressure at which the competing emission and capture reactions are balanced and which may be correlated to the electron affinity of a compound.

  14. Past Exposure to Densely Ionizing Radiation Leaves a Unique Permanent Signature in the Genome

    PubMed Central

    Hande, M. Prakash; Azizova, Tamara V.; Geard, Charles R.; Burak, Ludmilla E.; Mitchell, Catherine R.; Khokhryakov, Valentin F.; Vasilenko, Evgeny K.; Brenner, David J.

    2003-01-01

    Speculation has long surrounded the question of whether past exposure to ionizing radiation leaves a unique permanent signature in the genome. Intrachromosomal rearrangements or deletions are produced much more efficiently by densely ionizing radiation than by chemical mutagens, x-rays, or endogenous aging processes. Until recently, such stable intrachromosomal aberrations have been very hard to detect, but a new chromosome band painting technique has made their detection practical. We report the detection and quantification of stable intrachromosomal aberrations in lymphocytes of healthy former nuclear-weapons workers who were exposed to plutonium many years ago. Even many years after occupational exposure, more than half the blood cells of the healthy plutonium workers contain large (>6 Mb) intrachromosomal rearrangements. The yield of these aberrations was highly correlated with plutonium dose to the bone marrow. The control groups contained very few such intrachromosomal aberrations. Quantification of this large-scale chromosomal damage in human populations exposed many years earlier will lead to new insights into the mechanisms and risks of cytogenetic damage. PMID:12679897

  15. Pressurized rf cavities in ionizing beams

    NASA Astrophysics Data System (ADS)

    Freemire, B.; Tollestrup, A. V.; Yonehara, K.; Chung, M.; Torun, Y.; Johnson, R. P.; Flanagan, G.; Hanlet, P. M.; Collura, M. G.; Jana, M. R.; Leonova, M.; Moretti, A.; Schwarz, T.

    2016-06-01

    A muon collider or Higgs factory requires significant reduction of the six dimensional emittance of the beam prior to acceleration. One method to accomplish this involves building a cooling channel using high pressure gas filled radio frequency cavities. The performance of such a cavity when subjected to an intense particle beam must be investigated before this technology can be validated. To this end, a high pressure gas filled radio frequency (rf) test cell was built and placed in a 400 MeV beam line from the Fermilab linac to study the plasma evolution and its effect on the cavity. Hydrogen, deuterium, helium and nitrogen gases were studied. Additionally, sulfur hexafluoride and dry air were used as dopants to aid in the removal of plasma electrons. Measurements were made using a variety of beam intensities, gas pressures, dopant concentrations, and cavity rf electric fields, both with and without a 3 T external solenoidal magnetic field. Energy dissipation per electron-ion pair, electron-ion recombination rates, ion-ion recombination rates, and electron attachment times to SF6 and O2 were measured.

  16. Low-Pressure, Field-Ionizing Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Hartley, Frank; Smith, Steven

    2009-01-01

    A small mass spectrometer utilizing a miniature field ionization source is now undergoing development. It is designed for use in a variety of applications in which there are requirements for a lightweight, low-power-consumption instrument that can analyze the masses of a wide variety of molecules and ions. The device can operate without need for a high-vacuum, carrier-gas feed radioactive ionizing source, or thermal ionizer. This mass spectrometer can operate either in the natural vacuum of outer space or on Earth at any ambient pressure below 50 torr (below about 6.7 kPa) - a partial vacuum that can easily be reached by use of a small sampling pump. This mass spectrometer also has a large dynamic range - from singly charged small gas ions to deoxyribonucleic acid (DNA) fragments larger than 104 atomic mass units - with sensitivity adequate for detecting some molecules and ions at relative abundances of less than one part per billion. This instrument (see figure) includes a field ionizer integrated with a rotating-field mass spectrometer (RFMS). The field ionizer effects ionization of a type characterized as "soft" in the art because it does not fragment molecules or initiate avalanche arcing. What makes the "soft" ionization mode possible is that the distance between the ionizing electrodes is less than mean free path for ions at the maximum anticipated operating pressure, so that the ionizer always operates on the non-breakdown side of the applicable Paschen curve (a standard plot of breakdown potential on the ordinate and pressure electrode separation on the abscissa). The field ionizer in this instrument is fabricated by micromachining a submicron-thick membrane out of an electrically nonconductive substrate, coating the membrane on both sides to form electrodes, then micromachining small holes through the electrodes and membrane. Because of the submicron electrode separation, even a potential of only 1 V applied between the electrodes gives rise to an electric

  17. Characterization of HOCl using atmospheric pressure ionization mass spectrometry

    SciTech Connect

    Caldwell, T.E.; Foster, K.L.; Benter, T.; Langer, S.; Hemminger, J.C.; Finlayson-Pitts, B.J.

    1999-10-14

    HOCl is an important intermediate in stratospheric and tropospheric chemistry. Although it can be readily measured in laboratory systems at low pressures ({le}20 Torr) using conventional electron impact ionization mass spectrometry, there is a need for a measurement technique that can operate at higher pressures, up to 1 atm in air. One such technique seeing increasing use is atmospheric pressure ionization mass spectrometry (API-MS). The authors report here studies of the API-MS of {approximately}0.5--50 ppm HOCl at a total pressure of 1 atm and room temperature. Major peaks from the ion-adducts with Cl{sup {minus}} and OCI{sup {minus}} were observed. The Br{sup {minus}} adduct of HOCl can also be generated using bromoform in the discharge region of the ion source. At the lower range of HOCl concentrations studied in air, the O{sub 2}{sup {minus}} adduct and small parent peaks assigned to HOCl{sup {minus}} were observed. The species present as minor impurities in the HOCl source (Cl{sub 2}, Cl{sub 2}O and HCl) can be readily distinguished through identification of the parent ion for Cl{sub 2}, or as their adducts with Cl{sup {minus}} and Br{sup {minus}} for Cl{sub 2}O and HCI. The identification of HOCl was confirmed using electron impact ionization time-of-flight mass spectrometry (El-MS). HOCl was quantified using EI-MS to measure the Cl{sub 2} generated when the HOCl reacted heterogeneously on a water-ice/HCl surface and independently by photolysis of the HOCl to generate atomic chlorine, which was trapped using propene and measured as chloroacetone. The implications for the use of API-MS for measuring HOCl in laboratory systems and in ambient air are discussed.

  18. Transmission Geometry Laserspray Ionization Vacuum Using an Atmospheric Pressure Inlet

    PubMed Central

    2015-01-01

    This represents the first report of laserspray ionization vacuum (LSIV) with operation directly from atmospheric pressure for use in mass spectrometry. Two different types of electrospray ionization source inlets were converted to LSIV sources by equipping the entrance of the atmospheric pressure inlet aperture with a customized cone that is sealed with a removable glass plate holding the matrix/analyte sample. A laser aligned in transmission geometry (at 180° relative to the inlet) ablates the matrix/analyte sample deposited on the vacuum side of the glass slide. Laser ablation from vacuum requires lower inlet temperature relative to laser ablation at atmospheric pressure. However, higher inlet temperature is required for high-mass analytes, for example, α-chymotrypsinogen (25.6 kDa). Labile compounds such as gangliosides and cardiolipins are detected in the negative ion mode directly from mouse brain tissue as intact doubly deprotonated ions. Multiple charging enhances the ion mobility spectrometry separation of ions derived from complex tissue samples. PMID:24896880

  19. Atmospheric pressure ionization and gas phase ion mobility studies of isomeric dihalogenated benzenes using different ionization techniques

    NASA Astrophysics Data System (ADS)

    Borsdorf, H.; Nazarov, E. G.; Eiceman, G. A.

    2004-03-01

    Ion mobility spectrometry (IMS) featuring different ionization techniques was used to analyze isomeric ortho-, meta- and para-dihalogenated benzenes in order to assess how structural features affect ion formation and drift behavior. The structure of the product ions formed was investigated by atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) and IMS-MS coupling. Photoionization provided [M]+ ions for chlorinated and fluorinated compounds while bromine was cleaved from isomers of dibromobenzene and bromofluorobenzene. This ionization technique does not permit the different isomers to be distinguished. Comparable ions and additional clustered ions were obtained using 63Ni ionization. Depending on the chemical constitution, different clustered ions were observed in ion mobility spectra for the separate isomers of dichlorobenzene and dibromobenzene. Corona discharge ionization permits the most sensitive detection of dihalogenated compounds. Only clustered product ions were obtained. Corona discharge ionization enables the classification of different structural isomers of dichlorobenzene, dibromobenzene and bromofluorobenzene.

  20. Development of an Atmospheric Pressure Ionization Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A commercial atmospheric pressure ionization mass spectrometer (APIMS) was purchased from EXTREL Mass Spectrometry, Inc. (Pittsburgh, PA). Our research objectives were to adapt this instrument and develop techniques for real-time determinations of the concentrations of trace species in the atmosphere. The prototype instrument is capable of making high frequency measurements with no sample preconcentrations. Isotopically labeled standards are used as an internal standard to obtain high precision and to compensate for changes in instrument sensitivity and analyte losses in the sampling manifold as described by Bandy and coworkers. The prototype instrument is capable of being deployed on NASA C130, Electra, P3, and DC8 aircraft. After purchasing and taking delivery by June 1994, we assembled the mass spectrometer, data acquisition, and manifold flow control instrumentation in electronic racks and performed tests.

  1. Plasma Ion Sources for Atmospheric Pressure Ionization Mass Spectrometry.

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-Guo

    1994-01-01

    Atmospheric pressure ionization (API) sources using direct-current (DC) and radio-frequency (RF) plasma have been developed in this thesis work. These ion sources can provide stable discharge currents of ~ 1 mA, 2-3 orders of magnitude larger than that of the corona discharge, a widely used API source. The plasmas can be generated and maintained in 1 atm of various buffer gases by applying -500 to -1000 V (DC plasma) or 1-15 W with a frequency of 165 kHz (RF plasma) on the needle electrode. These ion sources have been used with liquid injection to detect various organic compounds of pharmaceutical, biotechnological and environmental interest. Key features of these ion sources include soft ionization with the protonated molecule as the largest peak, and superb sensitivity with detection limits in the low picogram or femtomole range and a linear dynamic range over ~4 orders of magnitude. The RF plasma has advantages over the DC plasma in its ability to operate in various buffer gases and to produce a more stable plasma. Factors influencing the performance of the ion sources have been studied, including RF power level, liquid flow rate, chamber temperature, solvent composition, and voltage affecting the collision induced dissociation (CID). Ionization of hydrocarbons by the RF plasma API source was also studied. Soft ionization is generally produced. To obtain high sensitivity, the ion source must be very dry and the needle-to-orifice distance must be small. Nitric oxide was used to enhance the sensitivity. The RF plasma source was then used for the analysis of hydrocarbons in auto emissions. Comparisons between the corona discharge and the RF plasma have been made in terms of discharge current, ion residence time, and the ion source model. The RF plasma source provides larger linear dynamic range and higher sensitivity than the corona discharge, due to its much larger discharge current. The RF plasma was also observed to provide longer ion residence times and was not

  2. Comparison of electrospray ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization for a lipidomic analysis of Leishmania donovani.

    PubMed

    Imbert, Laurent; Gaudin, Mathieu; Libong, Danielle; Touboul, David; Abreu, Sonia; Loiseau, Philippe M; Laprévote, Olivier; Chaminade, Pierre

    2012-06-15

    A comparison of electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) for the analysis of a wide range of lipids has been performed on standard mixtures and extracts of Leishmania donovani promastigotes resistant to Amphotericin B (AmB). Calibration model, precision, limits of detection and quantification (LOD and LOQ) were assessed for each source. APPI provided the highest signal, signal-to-noise (S/N), and sensitivity for non-polar and low-polarity lipids, while ESI and APCI gave better results for the most polar ones. The linear model was valid for all lipids, except for one class with APPI, six classes with ESI, and eleven classes with APCI. LODs ranged from 0.2 to 20 μg mL(-1) for ESI, from 0.1 to 10 μg mL(-1) for APCI, and from 0.02 to 9.5 μg mL(-1) for APPI. LOQs ranged from 0.2 to 61 μg mL(-1) for ESI, from 0.4 to 31 μg mL(-1) for APCI, and from 0.1 to 29 μg mL(-1) for APPI. Each source provided similar lipid composition and variations in a comparison of three different L. donovani samples: miltefosine-treated, miltefosine-resistant and treated miltefosine-resistant parasites. A treated miltefosine-resistant sample was finally analyzed with each ion source in order to verify that the same lipid molecular species are detected. PMID:22560453

  3. Charge Exchange Reaction in Dopant-Assisted Atmospheric Pressure Chemical Ionization and Atmospheric Pressure Photoionization

    NASA Astrophysics Data System (ADS)

    Vaikkinen, Anu; Kauppila, Tiina J.; Kostiainen, Risto

    2016-04-01

    The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M+. decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques.

  4. Charge Exchange Reaction in Dopant-Assisted Atmospheric Pressure Chemical Ionization and Atmospheric Pressure Photoionization.

    PubMed

    Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto

    2016-08-01

    The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M(+.) decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques. Graphical Abstract ᅟ. PMID:27126470

  5. Charge Exchange Reaction in Dopant-Assisted Atmospheric Pressure Chemical Ionization and Atmospheric Pressure Photoionization

    NASA Astrophysics Data System (ADS)

    Vaikkinen, Anu; Kauppila, Tiina J.; Kostiainen, Risto

    2016-08-01

    The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M+. decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques.

  6. The updated bottom up solution applied to atmospheric pressure photoionization and electrospray ionization mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Updated Bottom Up Solution (UBUS) was recently applied to atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) of triacylglycerols (TAGs). This report demonstrates that the UBUS applies equally well to atmospheric pressure photoionization (APPI) MS and to electrospray ionizatio...

  7. Gas chromatography coupled to atmospheric pressure ionization mass spectrometry (GC-API-MS): review.

    PubMed

    Li, Du-Xin; Gan, Lin; Bronja, Amela; Schmitz, Oliver J

    2015-09-01

    Although the coupling of GC/MS with atmospheric pressure ionization (API) has been reported in 1970s, the interest in coupling GC with atmospheric pressure ion source was expanded in the last decade. The demand of a "soft" ion source for preserving highly diagnostic molecular ion is desirable, as compared to the "hard" ionization technique such as electron ionization (EI) in traditional GC/MS, which fragments the molecule in an extensive way. These API sources include atmospheric pressure chemical ionization (APCI), atmospheric pressure photoionization (APPI), atmospheric pressure laser ionization (APLI), electrospray ionization (ESI) and low temperature plasma (LTP). This review discusses the advantages and drawbacks of this analytical platform. After an introduction in atmospheric pressure ionization the review gives an overview about the history and explains the mechanisms of various atmospheric pressure ionization techniques used in combination with GC such as APCI, APPI, APLI, ESI and LTP. Also new developments made in ion source geometry, ion source miniaturization and multipurpose ion source constructions are discussed and a comparison between GC-FID, GC-EI-MS and GC-API-MS shows the advantages and drawbacks of these techniques. The review ends with an overview of applications realized with GC-API-MS. PMID:26388363

  8. Elevated Intracranial Pressure and Cerebral Edema following Permanent MCA Occlusion in an Ovine Model

    PubMed Central

    Wells, Adam J.; Vink, Robert; Helps, Stephen C.; Knox, Steven J.; Blumbergs, Peter C.; Turner, Renée J.

    2015-01-01

    Introduction Malignant middle cerebral artery (MCA) stroke has a disproportionately high mortality due to the rapid development of refractory space-occupying cerebral edema. Animal models are essential in developing successful anti-edema therapies; however to date poor clinical translation has been associated with the predominately used rodent models. As such, large animal gyrencephalic models of stroke are urgently needed. The aim of the study was to characterize the intracranial pressure (ICP) response to MCA occlusion in our recently developed ovine stroke model. Materials and Methods 30 adult female Merino sheep (n = 8–12/gp) were randomized to sham surgery, temporary or permanent proximal MCA occlusion. ICP and brain tissue oxygen were monitored for 24 hours under general anesthesia. MRI, infarct volume with triphenyltetrazolium chloride (TTC) staining and histology were performed. Results No increase in ICP, radiological evidence of ischemia within the MCA territory but without space-occupying edema, and TTC infarct volumes of 7.9+/-5.1% were seen with temporary MCAO. Permanent MCAO resulted in significantly elevated ICP, accompanied by 30% mortality, radiological evidence of space-occupying cerebral edema and TTC infarct volumes of 27.4+/-6.4%. Conclusions Permanent proximal MCAO in the sheep results in space-occupying cerebral edema, raised ICP and mortality similar to human malignant MCA stroke. This animal model may prove useful for pre-clinical testing of anti-edema therapies that have shown promise in rodent studies. PMID:26121036

  9. The Interplay of Permanent Charge and Hydrophobicity in the Electrospray Ionization of Glycans

    PubMed Central

    Walker, S. Hunter; Papas, Brian N.; Comins, Daniel L.; Muddiman, David C.

    2016-01-01

    The analysis of N-linked glycans by mass spectrometry (MS) has been characterized by low signal-to-noise ratios and high limits of detection due to their hydrophilicity and lack of basic sites able to be protonated. As a result, every step in glycan sample preparation must be thoroughly optimized in order to minimize sample loss, contamination, and analytical variability. Importantly, properties of glycans and their derivatized counterparts must be thoroughly studied in order to exploit certain characteristics for enhancing MS analysis. Herein, the effectiveness of the incorporation of a permanent charge is studied and determined to hamper glycan analysis. Also, a procedure for glycan hydrazone formation is optimized and outlined where a large number of variables were simultaneously analyzed using a fractional factorial design (FFD) in order to determine which conditions affected the reaction efficiency of the hydrazone formation reaction. Finally, the hydrophobic tagging of glycans is shown to be a viable opportunity to further increase the ion abundance of glycans in MS. PMID:20590124

  10. Ocean Bottom Pressure Records at the Permanent Service for Mean Sea Level

    NASA Astrophysics Data System (ADS)

    Hibbert, Angela; Matthews, Andrew; Hughes, Chris W.; Tamisiea, Mark E.

    2014-05-01

    As part of a research effort funded by the U.K. Natural Environment Research Council, the Permanent Service for Mean Sea Level (PSMSL) has been developing a repository of data from in-situ ocean bottom pressure recorders (OBPRs) from all possible sources. The data are being processed to a common format using a consistent methodology so that time series are directly comparable. Efforts are also being made to ensure that data are accompanied by comprehensive metadata. The OBPR data are supplied primarily for hourly and daily intervals, making them ideal for studies of tidal to seasonal variability. In addition, because bottom pressure recorders measure changes in ocean mass, these data are an ideal complement to GRACE satellite data and a useful accompaniment to sea level data from tide gauges and altimetry. Consequently, it is anticipated that the PSMSL OBPR repository will become a valuable product to the scientific community.

  11. Radiation pressure confinement - III. The origin of the broad ionization distribution in AGN outflows

    NASA Astrophysics Data System (ADS)

    Stern, Jonathan; Behar, Ehud; Laor, Ari; Baskin, Alexei; Holczer, Tomer

    2014-12-01

    The winds of ionized gas driven by active galactic nuclei (AGN) can be studied through absorption lines in their X-ray spectra. A recurring feature of these outflows is their broad ionization distribution, including essentially all ionization levels (e.g., Fe0+ to Fe25+). This characteristic feature can be quantified with the absorption measure distribution (AMD), defined as the distribution of column density with ionization parameter |dN/d log ξ|. Observed AMDs extend over 0.1 ≲ ξ ≲ 104 (cgs), and are remarkably similar in different objects. Power-law fits (|dN/d log ξ| ≈ N1ξa) yield N1 = 3 × 1021 cm- 2 ± 0.4 dex and a = 0-0.4. What is the source of this broad ionization distribution, and what sets the small range of observed N1 and a? A common interpretation is a multiphase outflow, with a wide range of gas densities in a uniform gas pressure medium. However, the incident radiation pressure leads to a gas pressure gradient in the photoionized gas, and therefore to a broad range of ionization states within a single slab. We show that this compression of the gas by the radiation pressure leads to an AMD with |dN/d log ξ| = 8 × 1021 ξ0.03 cm-2, remarkably similar to that observed. The calculated values of N1 and a depend weakly on the gas metallicity, the ionizing spectral slope, the distance from the nucleus, the ambient density, and the total absorber column. Thus, radiation pressure compression (RPC) of the photoionized gas provides a natural explanation for the observed AMD. RPC predicts that the gas pressure increases with decreasing ionization, which can be used to test the validity of RPC in ionized AGN outflows.

  12. Low pressure microplasmas enabled by field ionization: Kinetic modeling

    NASA Astrophysics Data System (ADS)

    Macheret, Sergey O.; Tholeti, Siva Sashank; Alexeenko, Alina A.

    2016-05-01

    A principle of microplasma generation that utilizes field emission of electrons at the cathode and field ionization producing ions at the anode, both processes relying on nanorods or nanotubes, is explored theoretically. In this plasma generation concept, collisional ionization of atoms and molecules by electron impact would play a negligible role. Analytical estimates as well as plasma kinetic modeling by particle-in-cell method with Monte Carlo collisions in argon confirm that this principle can enable substantial plasma densities at near-collisionless microgaps, while requiring relatively low voltages, less than 100 V. An order of magnitude increase in electron number density can be achieved due to enhancement of field emission at the cathode by positive space charge at high field ionization ion current densities.

  13. Choosing between atmospheric pressure chemical ionization and electrospray ionization interfaces for the HPLC/MS analysis of pesticides

    USGS Publications Warehouse

    Thurman, E.M.; Ferrer, I.; Barcelo, D.

    2001-01-01

    An evaluation of over 75 pesticides by high-performance liquid chromatography/mass spectrometry (HPLC/MS) clearly shows that different classes of pesticides are more sensitive using either atmospheric pressure chemical ionization (APCI) or electrospray ionization (ESI). For example, neutral and basic pesticides (phenylureas, triazines) are more sensitive using APCI (especially positive ion). While cationic and anionic herbicides (bipyridylium ions, sulfonic acids) are more sensitive using ESI (especially negative ion). These data are expressed graphically in a figure called an ionization-continuum diagram, which shows that protonation in the gas phase (proton affinity) and polarity in solution, expressed as proton addition or subtraction (pKa), is useful in selecting APCI or ESI. Furthermore, sodium adduct formation commonly occurs using positive ion ESI but not using positive ion APCI, which reflects the different mechanisms of ionization and strengthens the usefulness of the ionization-continuum diagram. The data also show that the concept of "wrong-way around" ESI (the sensitivity of acidic pesticides in an acidic mobile phase) is a useful modification of simple pKa theory for mobile-phase selection. Finally, this finding is used to enhance the chromatographic separation of oxanilic and sulfonic acid herbicides while maintaining good sensitivity in LC/MS using ESI negative.

  14. Super-atmospheric pressure ionization mass spectrometry and its application to ultrafast online protein digestion analysis.

    PubMed

    Chen, Lee Chuin; Ninomiya, Satoshi; Hiraoka, Kenzo

    2016-06-01

    Ion source pressure plays a significant role in the process of ionization and the subsequent ion transmission inside a mass spectrometer. Pressurizing the ion source to a gas pressure greater than atmospheric pressure is a relatively new approach that aims to further improve the performance of atmospheric pressure ionization sources. For example, under a super-atmospheric pressure environment, a stable electrospray can be sustained for liquid with high surface tension such as pure water, because of the suppression of electric discharge. Even for nano-electrospray ionization (nano-ESI), which is known to work with aqueous solution, its stability and sensitivity can also be enhanced, particularly in the negative mode when the ion source is pressurized. A brief review on the development of super-atmospheric pressure ion sources, including high-pressure electrospray, field desorption and superheated ESI, and the strategies to interface these ion sources to a mass spectrometer will be given. Using a recent ESI prototype with an operating temperature at 220 °C under 27 atm, we also demonstrate that it is possible to achieve an online Asp-specific protein digestion analysis in which the whole processes of digestion, ionization and MS acquisition could be completed on the order of a few seconds. This method is fast, and the reaction can even be monitored on a near-real-time basis. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27270863

  15. Approximate analytic solutions for the ionization structure of a pressure equilibrium Strömgren sphere

    NASA Astrophysics Data System (ADS)

    Tinoco Arenas, A.; González Bolívar, M.; Medina Covarrubias, R.; Raga, A. C.

    2015-10-01

    We present analytic models for a photoionized region in pressure equilibrium with the surrounding, neutral material. The models are based on the assumption of a linear relation between the H ionization fraction and the square of the sound speed of the gas. We show that under these assumptions the "grey" radiative transfer equation has analytic solutions that provide the ionization structure and the density of the nebula as a function of radius.

  16. Medium Vacuum Electron Emitter as Soft Atmospheric Pressure Chemical Ionization Source for Organic Molecules.

    PubMed

    Liedtke, Sascha; Ahlmann, Norman; Marggraf, Ulrich; Schütz, Alexander; Vautz, Wolfgang; Franzke, Joachim

    2016-05-01

    An electron emitter as a soft atmospheric pressure chemical ionization source is presented, which operates at inner pressures of the device in the medium vacuum range (>10(-3) hPa). Conventional nonradioactive electron emitters require high vacuum (<10(-6) hPa) to prevent electrical sparkovers. The emitter presented here contains structural modifications of an existing setup, which inhibits electrical breakdowns up to 10(-2) hPa at 8 kV acceleration voltage. The increased inner pressure reduces the ionization efficiency until 10(-3) hPa-achievable without a turbomolecular pump-by 2% compared to high-vacuum conditions. This can be compensated with an increase of the electron source output. The functionality of this ion source is demonstrated with mass spectrometric and ion mobility measurements of acetone, eucalyptol, and diisopropyl methanephosphonate. Additional mass spectrometric measurements of 20 different organic compounds demonstrate the soft characteristics of this ionization source. PMID:27046293

  17. Highly ionized physical vapor deposition plasma source working at very low pressure

    SciTech Connect

    Stranak, V.; Herrendorf, A.-P.; Drache, S.; Hippler, R.; Cada, M.; Hubicka, Z.; Tichy, M.

    2012-04-02

    Highly ionized discharge for physical vapor deposition at very low pressure is presented in the paper. The discharge is generated by electron cyclotron wave resonance (ECWR) which assists with ignition of high power impulse magnetron sputtering (HiPIMS) discharge. The magnetron gun (with Ti target) was built into the single-turn coil RF electrode of the ECWR facility. ECWR assistance provides pre-ionization effect which allows significant reduction of pressure during HiPIMS operation down to p = 0.05 Pa; this is nearly more than an order of magnitude lower than at typical pressure ranges of HiPIMS discharges. We can confirm that nearly all sputtered particles are ionized (only Ti{sup +} and Ti{sup ++} peaks are observed in the mass scan spectra). This corresponds well with high plasma density n{sub e} {approx} 10{sup 18} m{sup -3}, measured during the HiPIMS pulse.

  18. Highly ionized physical vapor deposition plasma source working at very low pressure

    NASA Astrophysics Data System (ADS)

    Stranak, V.; Herrendorf, A.-P.; Drache, S.; Cada, M.; Hubicka, Z.; Tichy, M.; Hippler, R.

    2012-04-01

    Highly ionized discharge for physical vapor deposition at very low pressure is presented in the paper. The discharge is generated by electron cyclotron wave resonance (ECWR) which assists with ignition of high power impulse magnetron sputtering (HiPIMS) discharge. The magnetron gun (with Ti target) was built into the single-turn coil RF electrode of the ECWR facility. ECWR assistance provides pre-ionization effect which allows significant reduction of pressure during HiPIMS operation down to p = 0.05 Pa; this is nearly more than an order of magnitude lower than at typical pressure ranges of HiPIMS discharges. We can confirm that nearly all sputtered particles are ionized (only Ti+ and Ti++ peaks are observed in the mass scan spectra). This corresponds well with high plasma density ne ˜ 1018 m-3, measured during the HiPIMS pulse.

  19. The Townsend coefficient of ionization in atmospheric pressure rare gas plasma

    NASA Astrophysics Data System (ADS)

    Zvereva, G.

    2015-12-01

    In the work the influence of the processes characteristic for atmospheric pressure heavy inert gases discharge plasma on the value of the first Townsend ionization coefficient were investigated. Krypton plasma was considered. Calculations have shown that the greatest impact on the value of the first Townsend ionization coefficient has dissociative recombination of molecular ions, followed by descending influence processes occur: stepwise ionization, the electron-electron collisions and superelastic ones. The effect of these processes begins to appear at concentrations of electrons and excited particles higher than 1012 cm-3. At times shorter than the time of molecular ions formation, when dissociative recombination is absent, should expect a significant increase of the ionization coefficient.

  20. A subambient pressure ionization with nanoelectrospray (SPIN) source and interface for improved sensitivity in mass spectrometry

    SciTech Connect

    Page, Jason S.; Tang, Keqi; Kelly, Ryan T.; Smith, Richard D.

    2008-03-15

    Subambient Pressure Ionization with Nanoelectrospray (SPIN), an electrospray ionization source that operates at 30 Torr inside the first vacuum chamber of a mass spectrometer, has been demonstrated for reversed-phase liquid chromatography-mass spectrometry analysis of a protein tryptic digest solution. A 5–12-fold improvement in sensitivity relative to a standard atmospheric pressure ESI source was observed for a variety of detected peptides. The low liquid chromatographic flow rate (300 nL/min) allowed stable electrospray to be established before the onset of electrical discharge, and the higher operating pressure of the SPIN source relative to previous low-pressure ESI source designs prevented the solvents from freezing. The range of accessible flow rates for the SPIN source was also extended to 2.5 μL/min by using an array of electrospray emitters that divided the flow to 6 discrete electrosprays.

  1. Improving N-Glycan Coverage using HPLC-MS with Electrospray Ionization at Subambient Pressure

    SciTech Connect

    Marginean, Ioan; Kronewitter, Scott R.; Moore, Ronald J.; Slysz, Gordon W.; Monroe, Matthew E.; Anderson, Gordon A.; Tang, Keqi; Smith, Richard D.

    2012-10-01

    Human serum glycan profiling with mass spectrometry (MS) has been employed to study several disease conditions and is demonstrating promise for e.g. clinical biomarker discovery. However, the poor glycan ionization efficiency and the large dynamic range of glycan concentrations in human sera hinder comprehensive profiling. In particular, large glycans are problematic because they are present at low concentrations and prone to fragmentation. Here we show that the sub-ambient pressure ionization with nanoelectrospray (SPIN)-MS can expand the serum glycome profile when compared with the conventional atmospheric pressure electrospray ionization (ESI)-MS with a heated capillary inlet. Notably, the ions generated by the SPIN interface were observed at higher charge states for 50% of the annotated glycans. Out of a total of 130 detected glycans, 34 were only detected with the SPIN-MS, resulting in improved coverage of glycan families as well as of glycans with larger numbers of labile monosaccharides.

  2. Ionization equilibrium of hydrogen in strong magnetic field with allowance for pressure effects

    SciTech Connect

    Bulik, P.; Pavlov, G. ); Potekhin, A.

    1992-01-01

    The ionization equilibrium in highly magnetized (B = 10[sup 10] to 10[sup 12]G) hydrogen is investigated at temperatures from 5 eV to 50 keV and densities in the range 10[sup [minus]3] to 10[sup 3] g/cm[sup 3]. We have used the occupation probability formalism in order to take into account the pressure and density effects. The occupation probabilities used are slightly modified as compared to those derived by Hummer and Mihalas. We find that pressure ionization degree varies with the form of microfield distribution function. The non-ionized fraction is increased by the magnetic field in most of the parameter space. It is large enough so that the bound-free absorption must be taken into account in realistic models of neutron star atmospheres.

  3. Low pressure electrospray ionization system and process for effective transmission of ions

    DOEpatents

    Tang, Keqi; Page, Jason S; Kelly, Ryan T; Smith, Richard D

    2012-05-08

    Systems and methods that provide up to complete transmission of ions between coupled stages with low effective ion losses. An "interfaceless" electrospray ionization system is further described that operates an electrospray at a reduced pressure such that standard electrospray sample solutions can be directly sprayed into an electrodynamic ion funnel which provides ion focusing and transmission of ions into a mass analyzer. Furthermore, chambers maintained at different pressures can allow for more optimal operating conditions for an electrospray emitter and an ion guide.

  4. A High-Pressure Hollow Cathode Ionization Source for In-Situ Detection of Organic Molecules

    NASA Technical Reports Server (NTRS)

    Beegle, L. W.; Kanik, I.

    2001-01-01

    We have designed, constructed and characterized a new high-pressure (1-5 Torr) hollow cathode discharge source (HCDS) that can be utilized as an ionizer in a wide variety of mass analyzers. Additional information is contained in the original extended abstract.

  5. Pyroelectricity Assisted Infrared-Laser Desorption Ionization (PAI-LDI) for Atmospheric Pressure Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Li, Yanyan; Ma, Xiaoxiao; Wei, Zhenwei; Gong, Xiaoyun; Yang, Chengdui; Zhang, Sichun; Zhang, Xinrong

    2015-08-01

    A new atmospheric pressure ionization method termed pyroelectricity-assisted infrared laser desorption ionization (PAI-LDI) was developed in this study. The pyroelectric material served as both sample target plate and enhancing ionization substrate, and an IR laser with wavelength of 1064 nm was employed to realize direct desorption and ionization of the analytes. The mass spectra of various compounds obtained on pyroelectric material were compared with those of other substrates. For the five standard substances tested in this work, LiNbO3 substrate produced the highest ion yield and the signal intensity was about 10 times higher than that when copper was used as substrate. For 1-adamantylamine, as low as 20 pg (132.2 fmol) was successfully detected. The active ingredient in (Compound Paracetamol and 1-Adamantylamine Hydrochloride Capsules), 1-adamantylamine, can be sensitively detected at an amount as low as 150 pg, when the medicine stock solution was diluted with urine. Monosaccharide and oligosaccharides in Allium Cepa L. juice was also successfully identified with PAI-LDI. The method did not require matrix-assisted external high voltage or other extra facility-assisted set-ups for desorption/ionization. This study suggested exciting application prospect of pyroelectric materials in matrix- and electricity-free atmospheric pressure mass spectrometry research.

  6. Fundamentals of ambient metastable-induced chemical ionization mass spectrometry and atmospheric pressure ion mobility spectrometry

    NASA Astrophysics Data System (ADS)

    Harris, Glenn A.

    Molecular ionization is owed much of its development from the early implementation of electron ionization (EI). Although dramatically increasing the library of compounds discovered, an inherent problem with EI was the low abundance of molecular ions detected due to high fragmentation leading to the difficult task of the correct chemical identification after mass spectrometry (MS). These problems stimulated the research into new ionization methods which sought to "soften" the ionization process. In the late 1980s the advancements of ionization techniques was thought to have reached its pinnacle with both electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI). Both ionization techniques allowed for "soft" ionization of large molecular weight and/or labile compounds for intact characterization by MS. Albeit pervasive, neither ESI nor MALDI can be viewed as "magic bullet" ionization techniques. Both techniques require sample preparation which often included native sample destruction, and operation of these techniques took place in sealed enclosures and often, reduced pressure conditions. New open-air ionization techniques termed "ambient MS" enable direct analysis of samples of various physical states, sizes and shapes. One particular technique named Direct Analysis In Real Time (DART) has been steadily growing as one of the ambient tools of choice to ionize small molecular weight (< 1000 Da) molecules with a wide range of polarities. Although there is a large list of reported applications using DART as an ionization source, there have not been many studies investigating the fundamental properties of DART desorption and ionization mechanisms. The work presented in this thesis is aimed to provide in depth findings on the physicochemical phenomena during open-air DART desorption and ionization MS and current application developments. A review of recent ambient plasma-based desorption/ionization techniques for analytical MS is presented in

  7. An Open Port Sampling Interface for Liquid Introduction Atmospheric Pressure Ionization Mass Spectrometry

    SciTech Connect

    Van Berkel, Gary J.; Kertesz, Vilmos

    2015-01-01

    RATIONALE: A simple method to introduce unprocessed samples into a solvent for rapid characterization by liquid introduction atmospheric pressure ionization mass spectrometry has been lacking. The continuous flow, self-cleaning open port sampling interface introduced here fills this void. METHODS: The open port sampling interface used a vertically aligned, co-axial tube arrangement enabling solvent delivery to the sampling end of the device through the tubing annulus and solvent aspiration down the center tube and into the mass spectrometer ionization source via the commercial APCI emitter probe. The solvent delivery rate to the interface was set to exceed the aspiration rate creating a continuous sampling interface along with a constant, self-cleaning spillover of solvent from the top of the probe. RESULTS: Using the open port sampling interface with positive ion mode APCI and a hybrid quadrupole time of flight mass spectrometer, rapid, direct sampling and analysis possibilities are exemplified with plastics, ballpoint and felt tip ink pens, skin, and vegetable oils. These results demonstrated that the open port sampling interface could be used as a simple, versatile and self-cleaning system to rapidly introduce multiple types of unprocessed, sometimes highly concentrated and complex, samples into a solvent flow stream for subsequent ionization and analysis by mass spectrometry. The basic setup presented here could be incorporated with any self-aspirating liquid introduction ionization source (e.g., ESI, APCI, APPI, ICP, etc.) or any type of atmospheric pressure sampling ready mass spectrometer system. CONCLUSIONS: The open port sampling interface provides a means to introduce and quickly analyze unprocessed solid or liquid samples with liquid introduction atmospheric pressure ionization source without fear of sampling interface or ionization source contamination.

  8. An Open Port Sampling Interface for Liquid Introduction Atmospheric Pressure Ionization Mass Spectrometry

    DOE PAGESBeta

    Van Berkel, Gary J.; Kertesz, Vilmos

    2015-01-01

    RATIONALE: A simple method to introduce unprocessed samples into a solvent for rapid characterization by liquid introduction atmospheric pressure ionization mass spectrometry has been lacking. The continuous flow, self-cleaning open port sampling interface introduced here fills this void. METHODS: The open port sampling interface used a vertically aligned, co-axial tube arrangement enabling solvent delivery to the sampling end of the device through the tubing annulus and solvent aspiration down the center tube and into the mass spectrometer ionization source via the commercial APCI emitter probe. The solvent delivery rate to the interface was set to exceed the aspiration rate creatingmore » a continuous sampling interface along with a constant, self-cleaning spillover of solvent from the top of the probe. RESULTS: Using the open port sampling interface with positive ion mode APCI and a hybrid quadrupole time of flight mass spectrometer, rapid, direct sampling and analysis possibilities are exemplified with plastics, ballpoint and felt tip ink pens, skin, and vegetable oils. These results demonstrated that the open port sampling interface could be used as a simple, versatile and self-cleaning system to rapidly introduce multiple types of unprocessed, sometimes highly concentrated and complex, samples into a solvent flow stream for subsequent ionization and analysis by mass spectrometry. The basic setup presented here could be incorporated with any self-aspirating liquid introduction ionization source (e.g., ESI, APCI, APPI, ICP, etc.) or any type of atmospheric pressure sampling ready mass spectrometer system. CONCLUSIONS: The open port sampling interface provides a means to introduce and quickly analyze unprocessed solid or liquid samples with liquid introduction atmospheric pressure ionization source without fear of sampling interface or ionization source contamination.« less

  9. An Open Port Sampling Interface for Liquid Introduction Atmospheric Pressure Ionization Mass Spectrometry

    SciTech Connect

    Van Berkel, Gary J.; Kertesz, Vilmos

    2015-08-25

    RATIONALE: A simple method to introduce unprocessed samples into a solvent for rapid characterization by liquid introduction atmospheric pressure ionization mass spectrometry has been lacking. The continuous flow, self-cleaning open port sampling interface introduced here fills this void. METHODS: The open port sampling interface used a vertically aligned, co-axial tube arrangement enabling solvent delivery to the sampling end of the device through the tubing annulus and solvent aspiration down the center tube and into the mass spectrometer ionization source via the commercial APCI emitter probe. The solvent delivery rate to the interface was set to exceed the aspiration rate creating a continuous sampling interface along with a constant, self-cleaning spillover of solvent from the top of the probe. RESULTS: Using the open port sampling interface with positive ion mode APCI and a hybrid quadrupole time of flight mass spectrometer, rapid, direct sampling and analysis possibilities are exemplified with plastics, ballpoint and felt tip ink pens, skin, and vegetable oils. These results demonstrated that the open port sampling interface could be used as a simple, versatile and self-cleaning system to rapidly introduce multiple types of unprocessed, sometimes highly concentrated and complex, samples into a solvent flow stream for subsequent ionization and analysis by mass spectrometry. The basic setup presented here could be incorporated with any self-aspirating liquid introduction ionization source (e.g., ESI, APCI, APPI, ICP, etc.) or any type of atmospheric pressure sampling ready mass spectrometer system. CONCLUSIONS: The open port sampling interface provides a means to introduce and quickly analyze unprocessed solid or liquid samples with liquid introduction atmospheric pressure ionization source without fear of sampling interface or ionization source contamination.

  10. Super-atmospheric pressure ionization mass spectrometry and its application to ultrafast online protein digestion analysis.

    PubMed

    Chen, L C; Ninomiya, S; Hiraoka, K

    2016-06-01

    Pressure is a key parameter for an ionization source. In this Special Feature article, Lee Chuin Chen and colleagues review super-atmospheric pressure ionization MS with electrospray, corona-discharge-based chemical ionization, and field desorption. They routinely run their mass spectrometer with ion source pressures ranging from several to several tens of atmospheres. A number of strategies have been used to preserve the high vacuum of the instrument while working with a high-pressure (HP) ion source. A recent prototype uses a booster pump with variable pumping speed added to the first pumping stage of the mass spectrometer to regulate a constant vacuum pressure. Further, a new HP-ESI source allowing rapid (a few seconds) online protein digestion MS is also reported. Dr. Lee Chuin Chen is Associate Professor in the Department of Interdisciplinary Research at the University of Yamanashi (Yamanashi, Japan). His main research interest is the development of novel mass spectrometric methods for in-situ medical diagnosis. PMID:27270871

  11. Improving Liquid Chromatography-Mass Spectrometry Sensitivity Using a Subambient Pressure Ionization with Nanoelectrospray (SPIN) Interface

    PubMed Central

    Tang, Keqi; Page, Jason S.; Marginean, Ioan; Kelly, Ryan T.; Smith, Richard D.

    2011-01-01

    In this work, the subambient pressure ionization with nanoelectrospray (SPIN) ion source and interface, which operates at ~15–30 Torr, is demonstrated to be compatible with gradient reversed-phase liquid chromatography-MS applications, exemplified here with the analysis of complex samples (a protein tryptic digest and a whole cell lysate). A low liquid chromatographic flow rate (100–400 nL/min) allowed stable electrospray to be established while avoiding electrical breakdown. Efforts to increase the operating pressure of the SPIN source relative to previously reported designs prevented solvent freezing and enhanced charged cluster/droplet desolvation. A 5- to 12-fold improvement in sensitivity relative to a conventional atmospheric pressure nanoelectrospray ionization (ESI) source was obtained for detected peptides. PMID:21953185

  12. Resonance ionization spectroscopy measurement of the vapor pressure of several molecular species

    SciTech Connect

    Capelle, G.A.; Jessup, D.A.; Borella, H.M.; Franks, L.A.

    1984-01-01

    In recent years resonance ionization spectroscopy (RIS) has found increasing application to various problems involving detection of low levels of atomic, and more recently molecular, species. This work demonstrates the usefulness of RIS in measuring vapor pressure curves of molecular species at very low pressures. Specifically, the vapor pressures versus temperature relationship for rubidium iodide (RbI) and potassium iodide (KI) was measured by applying RIS to atomic Rb and K, using a two-laser system. A pulsed molecular nitrogen laser first dissociated the RbI to produce ground-state Rb atoms in the experimental cell. A flashlamp-pumped dye laser then ionized the Rb in a process wherein two photons of the same wavelength are absorbed, the first exciting Rb via an allowed transition to an upper state (5/sup 2/S/sub 1/2/ ..-->.. 6/sup 2//sub 1/2 or 3/2/) lying in energy slightly more than half the distance to the ionization limit, and the second photon ionizing the excited Rb. In the case of KI, an excimer-laser-pumped dye laser was used in a similar way. An applied dc electric field swept the photoelectrons to a proportional counter for subsequent amplification and detection. The photoelectron signal was then related back to RbI and KI concentrations.

  13. Evaluating the Utility of an Atmospheric Pressure Chemical Ionization Mass Spectrometer for Analyzing Organic Peroxides

    NASA Astrophysics Data System (ADS)

    Jameer, A.; Hastie, D. R.

    2013-12-01

    Secondary organic aerosols (SOA) are known to affect the earth's radiation budget through its ability to scatter and absorb radiation. Consequently, the mechanisms and factors that influence SOA composition and formation are poorly understood. However, recent modeling studies coupled with smog chamber experiments suggest that organic peroxides (organic hydroperoxides and peroxyhemiacetals) might be a major component of SOA composition under low NOx conditions. This study utilized an atmospheric pressure chemical ionization mass spectrometer (APCI-MS) in the positive mode to detect organic peroxides. Mass spectra of organic peroxides analyzed in this study show excessive fragmentation during ionization with protonated water clusters. It was believed that intact ions were not found due to decomposition in the ion source. Future work will explore new reagents for ionization to reduce fragmentation during analysis.

  14. Virtual Frisch-grid ionization chambers filled with high-pressure Xe

    NASA Astrophysics Data System (ADS)

    Bolotnikov, Aleksey E.; Austin, Robert; Bolozdynya, Alexander; Richards, John D.

    2004-10-01

    New approaches to the design of high-pressure Xe (HPXe) ionization chambers are described. HPXe ionization chambers represent a well-known technique for detecting gamma rays in the energy range between 50 keV and 3 MeV. Since the HPXe detector is an electron-only carrier device, its commonly accepted design includes a Frisch-grid-a metal mesh employed for the electrostatic shielding from the immobile positive ions. The grid is a key element of the device"s design which provides good energy resolution of the detector, typically 2-3% FWHM at 662 keV. However, the grid makes the design more complex and less rugged, especially for field applications. Recently, we developed several designs of HPXe ionization chambers without shielding grids. The results obtained from the testing of these devices are presented here.

  15. Measurement of the First Townsend's Ionization Coefficients in Helium, Air, and Nitrogen at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Ran, Junxia; Luo, Haiyun; Yue, Yang; Wang, Xinxin

    2014-07-01

    In the past the first Townsend’s ionization coefficient α could only be measured with Townsend discharge in gases at low pressure. After realizing Townsend discharge in some gases at atmospheric pressure by using dielectric barrier electrodes, we had developed a new method for measuring α coefficient at atmospheric pressure, a new optical method based on the discharge images taken with ICCD camera. With this newly developed method α coefficient in helium, nitrogen and air at atmospheric pressure were measured. The results were found to be in good agreement with the data obtained at lower pressure but same reduced field E/p by other groups. It seems that the value of α coefficient is sensitive to the purity of the working gas.

  16. Understanding the flowing atmospheric-pressure afterglow (FAPA) ambient ionization source through optical means.

    PubMed

    Shelley, Jacob T; Chan, George C-Y; Hieftje, Gary M

    2012-02-01

    The advent of ambient desorption/ionization mass spectrometry (ADI-MS) has led to the development of a large number of atmospheric-pressure ionization sources. The largest group of such sources is based on electrical discharges; yet, the desorption and ionization processes that they employ remain largely uncharacterized. Here, the atmospheric-pressure glow discharge (APGD) and afterglow of a helium flowing atmospheric-pressure afterglow (FAPA) ionization source were examined by optical emission spectroscopy. Spatial emission profiles of species created in the APGD and afterglow were recorded under a variety of operating conditions, including discharge current, electrode polarity, and plasma-gas flow rate. From these studies, it was found that an appreciable amount of atmospheric H(2)O vapor, N(2), and O(2) diffuses through the hole in the plate electrode into the discharge to become a major source of reagent ions in ADI-MS analyses. Spatially resolved plasma parameters, such as OH rotational temperature (T(rot)) and electron number density (n(e)), were also measured in the APGD. Maximum values for T(rot) and n(e) were found to be ~1100 K and ~4×10(19) m(-3), respectively, and were both located at the pin cathode. In the afterglow, rotational temperatures from OH and N(2)(+) yielded drastically different values, with OH temperatures matching those obtained from infrared thermography measurements. The higher N(2)(+) temperature is believed to be caused by charge-transfer ionization of N(2) by He(2)(+). These findings are discussed in the context of previously reported ADI-MS analyses with the FAPA source. PMID:22125181

  17. Double Ionization Gauge for Atmosphere Density/Pressure Measurements On Board the Rocket

    NASA Astrophysics Data System (ADS)

    Yushkov, V.; Shturkov, O.; Balugin, N.; Zhurin, S.; Kusov, A.

    2015-09-01

    A description of the ionization gauge for atmospheric density/pressure measurements on board a Russian meteorological rocket is presented. Its operation is based on the principle employed in an ionization gauge. The measuring density/pressure range is 1 06 102 kg/m3 / 10 ~ - 10 mm Hg. There are two output channels for ion and electron current measurements, respectively. The calibration curves are in a fairly good agreement with the classical electron impact ionization theory. The calibration error is less than 7%, that has been definitely confirmed through laboratory bench calibration. This rocket-borne device does not require pre-flight sealing. It greatly simplifies the design of the flight device. The ionization source is an electron flux emitted from the surface of a semi-impermeable metal plate under the influence of vacuum ultraviolet (VUV) radiation. The vUv radiation source is a portable glow-discharge krypton lamp. The flight instrument has been tested for shock loads up to 200 g for rocket measurement applications.

  18. Rotation planar chromatography coupled on-line with atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Van Berkel, Gary J; Llave, Jonathan J; De Apadoca, Marilyn F; Ford, Michael J

    2004-01-15

    The coupling of a rotation planar preparative thin-layer chromatography system on-line with mass spectrometry is demonstrated using a simple plumbing scheme and a self-aspirating heated nebulizer probe of a corona discharge atmospheric pressure chemical ionization source. The self-aspiration of the heated nebulizer delivers approximately 20 microL/min of the 3.0 mL/min eluate stream to the mass spectrometer, eliminating the need for an external pump in the system. The viability of the coupling is demonstrated with a three-dye mixture composed of fat red 7B, solvent green 3, and solvent blue 35 separated and eluted from a silica gel-coated rotor using toluene. The real-time characterization of the dyes eluting from the rotor is illustrated in positive ion full-scan mode. Other self-aspirating ion source systems including atmospheric pressure photoionization, electrospray ionization, and inductively coupled plasma ionization, for example, might be configured and used in a similar manner coupled to the chromatograph to expand the types of analytes that could be ionized, detected, and characterized effectively. PMID:14719901

  19. Atmospheric Pressure Surface Sampling/Ionization Techniques for Direct Coupling of Planar Separations with Mass Spectrometry

    SciTech Connect

    Pasilis, Sofie P; Van Berkel, Gary J

    2010-01-01

    Planar separations, which include thin layer chromatography and gel electrophoresis, are in widespread use as important and powerful tools for conducting separations of complex mixtures. To increase the utility of planar separations, new methods are needed that allow in-situ characterization of the individual components of the separated mixtures. A large number of atmospheric pressure surface sampling and ionization techniques for use with mass spectrometry have emerged in the past several years, and several have been investigated as a means for mass spectrometric read-out of planar separations. In this article, we review the atmospheric pressure surface sampling and ionization techniques that have been used for the read-out of planar separation media. For each technique, we briefly explain the operational basics and discuss the analyte type for which it is appropriate and some specific applications from the literature.

  20. Carbon disulfide reagent allows the characterization of nonpolar analytes by atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Owen, Benjamin C; Gao, Jinshan; Borton, David J; Amundson, Lucas M; Archibold, Enada F; Tan, Xiaoli; Azyat, Khalid; Tykwinski, Rik; Gray, Murray; Kenttämaa, Hilkka I

    2011-07-30

    While atmospheric pressure ionization methodologies have revolutionized the mass spectrometric analysis of nonvolatile analytes, limitations native to the chemistry of these methodologies hinder or entirely inhibit the analysis of certain analytes, specifically, many nonpolar compounds. Examination of various analytes, including asphaltene and lignin model compounds as well as saturated hydrocarbons, demonstrates that atmospheric pressure chemical ionization (APCI) using CS(2) as the reagent produces an abundant and stable molecular ion (M(+•)) for all model compounds studied, with the exception of completely saturated aliphatic hydrocarbons and the two amino acids tested, arginine and phenylalanine. This reagent substantially broadens the applicability of mass spectrometry to nonvolatile nonpolar analytes and also facilitates the examination of radical cation chemistry by mass spectrometry. PMID:21698674

  1. Dynamic high pressure process for fabricating superconducting and permanent magnetic materials

    DOEpatents

    Nellis, William J.; Geballe, Theodore H.; Maple, M. Brian

    1990-01-01

    Shock wave formation of thin layers of materials with improved superconducting and permanent magnetic properties and improved microstructures. The material fabrication system includes a sandwiched structure including a powder material placed between two solid members to enable explosive shock consolidation. The two solid members are precooled to about 80.degree.-100.degree. K. to reduce the residual temperatures attained as a result of the shock wave treatment, and thereby increase the quench rate of the consolidated powder.

  2. Dynamic high pressure process for fabricating superconducting and permanent magnetic materials

    DOEpatents

    Nellis, W.J.; Geballe, T.H.; Maple, M.B.

    1990-03-13

    Shock wave formation of thin layers of materials with improved superconducting and permanent magnetic properties and improved microstructures is disclosed. The material fabrication system includes a sandwiched structure including a powder material placed between two solid members to enable explosive shock consolidation. The two solid members are precooled to about 80--100 K to reduce the residual temperatures attained as a result of the shock wave treatment, and thereby increase the quench rate of the consolidated powder. 9 figs.

  3. FAST TRACK COMMUNICATION: Effects of Penning ionization on the discharge patterns of atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Li, Qing; Zhu, Wen-Chao; Zhu, Xi-Ming; Pu, Yi-Kang

    2010-09-01

    Atmospheric pressure plasma jets, generated in a coaxial dielectric barrier discharge configuration, have been investigated with different flowing gases. Discharge patterns in different tube regions were compared in the flowing gases of helium, neon and krypton. To explain the difference of these discharge patterns, a theoretical analysis is presented to reveal the possible basic processes. A comparison of experimental and theoretical results identifies that Penning ionization is mainly responsible for the discharge patterns of helium and neon plasma jets.

  4. Low pressure electrospray ionization system and process for effective transmission of ions

    DOEpatents

    Tang, Keqi; Page, Jason S.; Kelly, Ryan T.; Smith, Richard D.

    2010-03-02

    A system and method are disclosed that provide up to complete transmission of ions between coupled stages with low effective ion losses. A novel "interfaceless" electrospray ionization system is further described that operates the electrospray at a reduced pressure such that standard electrospray sample solutions can be directly sprayed into an electrodynamic ion funnel which provides ion focusing and transmission of ions into a mass analyzer.

  5. A subambient pressure ionization with nanoelectrospray (SPIN) source and interface for improved sensitivity in mass spectrometry

    PubMed Central

    Page, Jason S.; Tang, Keqi; Kelly, Ryan T.; Smith, Richard D.

    2008-01-01

    An electrospray ionization mass spectrometry (ESI-MS) source and interface has been designed that enables efficient ion production and transmission in a 30 Torr pressure environment using solvents compatible with typical reversed-phase liquid chromatography (RPLC) separations. In this design, the electrospray emitter is located inside the mass spectrometer in the same region as an electrodynamic ion funnel. This avoids the use of a conductance limit ion inlet, as required by a conventional atmospheric pressure ESI source, and allows more efficient ion transmission to the mass analyzer. The new source, titled Subambient Pressure Ionization with Nanoelectrospray (SPIN), improves instrument sensitivity, increases the understanding of the electrospray process, and enables new electrospray interface designs. Performance of the SPIN source was evaluated by electrospraying standard solutions at 300 nL/min, and comparing results with those obtained from a standard atmospheric pressure ESI source that used a heated capillary inlet. The importance of desolvation was also investigated by electrospraying at different flow rates, which showed that the ion funnel provided an effective desolvation region to aid the creation of gas phase analyte ions. This initial study demonstrated a ∼ 5-fold improvement in sensitivity when the SPIN source was used compared to a standard atmospheric pressure ESI source. PMID:18237189

  6. Ionized gas pressure correlates with star formation intensity in nearby starbursts

    NASA Astrophysics Data System (ADS)

    Jiang, Tianxing; Malhotra, Sangeeta; Yang, Huan

    2016-06-01

    We estimate the electron density of the ionized gas and thus the thermal pressure in HII regions; and compare that to the SFR (star formation rate) surface density for a combined sample of about 40 green peas and Lyman Break Analogs at z < 0.30. The electron density of the ionized gas is measured from sulfur line ratio ([SII] 6716 / 6731). We find that the SFR surface density is correlated with the electron density and the thermal pressure in HII regions for the star-forming galaxies with SFR surface density above a certain threshold. This work shows quantitatively the correlation between SFR surface density and electron density and that between SFR surface density and the thermal pressure in HII regions for the nearby starburst galaxies. This is consistent with theoretical models of disks (e.g. Kim et al. (2011) if we assume that the thermal pressure in HII regions is comparable to the total diffuse gas pressure at the midplane of the diffuse neutral gas. It is also in agreement with the results from star-forming galaxies at z ~ 2.5. We might infer that the starburst galaxies at low-redshift (z < 0.3) share similar physical properties to the galaxies at high redshift (z ~ 2.5).

  7. Atmospheric pressure chemical ionization studies of non-polar isomeric hydrocarbons using ion mobility spectrometry and mass spectrometry with different ionization techniques

    NASA Technical Reports Server (NTRS)

    Borsdorf, H.; Nazarov, E. G.; Eiceman, G. A.

    2002-01-01

    The ionization pathways were determined for sets of isomeric non-polar hydrocarbons (structural isomers, cis/trans isomers) using ion mobility spectrometry and mass spectrometry with different techniques of atmospheric pressure chemical ionization to assess the influence of structural features on ion formation. Depending on the structural features, different ions were observed using mass spectrometry. Unsaturated hydrocarbons formed mostly [M - 1]+ and [(M - 1)2H]+ ions while mainly [M - 3]+ and [(M - 3)H2O]+ ions were found for saturated cis/trans isomers using photoionization and 63Ni ionization. These ionization methods and corona discharge ionization were used for ion mobility measurements of these compounds. Different ions were detected for compounds with different structural features. 63Ni ionization and photoionization provide comparable ions for every set of isomers. The product ions formed can be clearly attributed to the structures identified. However, differences in relative abundance of product ions were found. Although corona discharge ionization permits the most sensitive detection of non-polar hydrocarbons, the spectra detected are complex and differ from those obtained with 63Ni ionization and photoionization. c. 2002 American Society for Mass Spectrometry.

  8. Laser-Induced Acoustic Desorption/Atmospheric Pressure Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Gao, Jinshan; Borton, David J.; Owen, Benjamin C.; Jin, Zhicheng; Hurt, Matt; Amundson, Lucas M.; Madden, Jeremy T.; Qian, Kuangnan; Kenttämaa, Hilkka I.

    2011-03-01

    Laser-induced acoustic desorption (LIAD) was successfully coupled to a conventional atmospheric pressure chemical ionization (APCI) source in a commercial linear quadrupole ion trap mass spectrometer (LQIT). Model compounds representing a wide variety of different types, including basic nitrogen and oxygen compounds, aromatic and aliphatic compounds, as well as unsaturated and saturated hydrocarbons, were tested separately and as a mixture. These model compounds were successfully evaporated into the gas phase by using LIAD and then ionized by using APCI with different reagents. From the four APCI reagent systems tested, neat carbon disulfide provided the best results. The mixture of methanol and water produced primarily protonated molecules, as expected. However, only the most basic compounds yielded ions under these conditions. In sharp contrast, using APCI with either neat benzene or neat carbon disulfide as the reagent resulted in the ionization of all the analytes studied to predominantly yield stable molecular ions. Benzene yielded a larger fraction of protonated molecules than carbon disulfide, which is a disadvantage. A similar but minor amount of fragmentation was observed for these two reagents. When the experiment was performed without a liquid reagent (nitrogen gas was the reagent), more fragmentation was observed. Analysis of a known mixture as well as a petroleum cut was also carried out. In summary, the new experiment presented here allows the evaporation of thermally labile compounds, both polar and nonpolar, without dissociation or aggregation, and their ionization to predominantly form stable molecular ions.

  9. Gas phase studies on terpenes by ion mobility spectrometry using different atmospheric pressure chemical ionization techniques

    NASA Astrophysics Data System (ADS)

    Borsdorf, H.; Stone, J. A.; Eiceman, G. A.

    2005-11-01

    The ionization pathways and drift behavior were determined for sets of constitutional isomeric and stereoisomeric non-polar hydrocarbons (unsaturated monocyclic terpenes, unsaturated and saturated bicyclic terpenes) using ion mobility spectrometry (IMS) with different techniques of atmospheric pressure chemical ionization (APCI) to assess how structural and stereochemical differences influence ion formation. Depending on the structural features, different ions were observed for constitutional isomers using ion mobility spectrometry with photoionization (PI) and corona discharge (CD) ionization. Photoionization provides ion mobility spectra containing one major peak for saturated compounds while at two peaks were observed for unsaturated compounds, which can be assigned to product ions related to monomer and dimer ions. However, differences in relative abundance of product ions were found depending on the position of the double bond. Although IMS using corona discharge ionization permits the most sensitive detection of non-polar hydrocarbons, the spectra are complex and differ from those obtained using photoionization. Additional cluster ions and fragment ions were detected. Only small differences in ion mobility spectra were observed for the diastereomers while the enantiomers provide identical spectra. The structure of the product ions formed was checked by investigations using the coupling of ion mobility spectrometry with mass spectrometry (IMS-MS).

  10. Laser-Induced Acoustic Desorption/Atmospheric Pressure Chemical Ionization Mass Spectrometry

    PubMed Central

    Gao, Jinshan; Borton, David J.; Owen, Benjamin C.; Jin, Zhicheng; Hurt, Matt; Amundson, Lucas M.; Madden, Jeremy T.; Qian, Kuangnan; Kenttämaa, Hilkka I.

    2010-01-01

    Laser-induced acoustic desorption (LIAD) was successfully coupled to a conventional atmospheric pressure chemical ionization (APCI) source in a linear quadrupole ion trap mass spectrometer (LQIT). Model compounds representing a wide variety of different types, including basic nitrogen and oxygen compounds, aromatic and aliphatic compounds, as well as unsaturated and saturated hydrocarbons, were tested separately and as a mixture. These model compounds were successfully evaporated into the gas phase by using LIAD and then ionized by using APCI with different reagents. Four APCI reagent systems were tested: the traditionally used mixture of methanol and water, neat benzene, neat carbon disulfide, and nitrogen gas (no liquid reagent). The mixture of methanol and water produced primarily protonated molecules, as expected. However, only the most basic compounds yielded ions under these conditions. In sharp contrast, using APCI with either neat benzene or neat carbon disulfide as the reagent resulted in the ionization of all the analytes studied to predominantly yield stable molecular ions. Benzene yielded a larger fraction of protonated molecules than carbon disulfide, which is a disadvantage. A similar amount of fragmentation was observed for these reagents. When the experiment was performed without a liquid reagent(nitrogen gas was the reagent), more fragmentation was observed. Analysis of a known mixture as well as a petroleum cut was also carried out. In summary, the new experiment presented here allows the evaporation of thermally labile compounds, both polar and nonpolar, without dissociation or aggregation, and their ionization to form stable molecular ions. PMID:21472571

  11. Pressurized H_{2} rf Cavities in Ionizing Beams and Magnetic Fields

    SciTech Connect

    Chung, M.; et al.

    2013-10-01

    A major technological challenge in building a muon cooling channel is operating RF cavities in multi-tesla external magnetic fields. We report the first experimental characterization of a high pressure gas-filled 805 MHz RF cavity for use with intense ionizing beams and strong external magnetic fields. RF power consumption by beam-induced plasma was investigated with hydrogen and deuterium gases with pressures between 20 and 100 atm and peak RF gradients between 5 and 50 MV/m. The energy absorption per ion pair-RF cycle ranges from 10−18 to 10−16 J. The low pressure case agrees well with an analytical model based on electron and ion mobilities. Varying concentrations of oxygen gas were investigated to remove free electrons from the cavity and reduce the RF power consumption. Measurements of the electron attachment time to oxygen and rate of ion-ion recombination were also made. Additionally, we demonstrate the operation of the gas-filled RF cavity in a solenoidal field of up to 3 T, finding no major magnetic field dependence. These results indicate that a high pressure gas-filled cavity is potentially a viable technology for muon ionization cooling.

  12. Vapor Pressure of Hexamethylene Triperoxide Diamine (HMTD) Estimated Using Secondary Electrospray Ionization Mass Spectrometry.

    PubMed

    Aernecke, Matthew J; Mendum, Ted; Geurtsen, Geoff; Ostrinskaya, Alla; Kunz, Roderick R

    2015-11-25

    A rapid method for vapor pressure measurement was developed and used to derive the vapor pressure curve of the thermally labile peroxide-based explosive hexamethylene triperoxide diamine (HMTD) over the temperature range from 28 to 80 °C. This method uses a controlled flow of vapor from a solid-phase HMTD source that is presented to an ambient-pressure-ionization mass spectrometer equipped with a secondary-electrospray-ionization (SESI) source. The subpart-per-trillion sensitivity of this system enables direct detection of HMTD vapor through an intact [M + H](+) ion in real time at temperatures near 20 °C. By calibrating this method using vapor sources of cocaine and heroin, which have known pressure-temperature (P-T) curves, the temperature dependence of HMTD vapor was determined, and a Clausius-Clapeyron plot of ln[P (Pa)] vs 1/[T (K)] yielded a straight line with the expression ln[P (Pa)] = {(-11091 ± 356) × 1/[T (K)]} + 25 ± 1 (error limits are the standard error of the regression analysis). From this equation, the sublimation enthalpy of HMTD was estimated to be 92 ± 3 kJ/mol, which compares well with the theoretical estimate of 95 kJ/mol, and the vapor pressure at 20 °C was estimated to be ∼60 parts per trillion by volume, which is within a factor of 2 of previous theoretical estimates. Thus, this method provides not only the first direct experimental determination of HMTD vapor pressure but also a rapid, near-real-time capability to quantitatively measure low-vapor-pressure compounds, which will be useful for aiding in the development of training aids for bomb-sniffing canines. PMID:26505487

  13. Atmospheric pressure ionization LC-MS-MS determination of urushiol congeners.

    PubMed

    Draper, William M; Wijekoon, Donald; McKinney, Michael; Behniwal, Paramjit; Perera, S Kusum; Flessel, C Peter

    2002-03-27

    This paper describes atmospheric pressure ionization (API) LC-MS-MS determination of urushiols, 3-n-alkenyl- and -alkyl-substituted catechols responsible for poison oak dermatitis. Urushiol was isolated from Western poison oak according to the method of Elsohly et al. (1) (J. Nat. Prod. 1982, 45, 532-538)-the purified preparation contained C(17)- and C(15)-substituted urushiols with zero, one, two, and three double bonds as determined from GC-MS analysis of trimethylsilyl derivatives. Urushiol mixtures were separated on a C(18) reversed phase HPLC column with a methanol-water gradient with urushiols eluting in 100% methanol. Atmospheric pressure chemical ionization (APCI) produced primarily [M - H](-) and MH(+) molecule ions. Electrospray ionization (ESI) yielded [M - H](-) and adduct ions including [M + Cl](-). Daughter ions of [M - H](-) included quinoid radical anions ([M - H - H(2)](-) and m/z 122(-)) and a benzofuran phenate (m/z 135(-)). A suite of hydrocarbon fragments were produced by collision-induced dissociation of MH(+) directly or via an intermediate [MH - H(2)O](+) daughter ion. Six urushiol congeners, one not previously reported in poison oak, were determined by negative ion API-LC-MS-MS with detection limits of approximately 8 pg/microL (ESI) and approximately 800 pg/microL (APCI). API-LC-MS-MS was used to determine urushiol in surface wipes, air samples, and plant materials. PMID:11902923

  14. High Sensitivity Combined with Extended Structural Coverage of Labile Compounds via Nanoelectrospray Ionization at Subambient Pressures

    SciTech Connect

    Cox, Jonathan T.; Kronewitter, Scott R.; Shukla, Anil K.; Moore, Ronald J.; Smith, Richard D.; Tang, Keqi

    2014-10-07

    Subambient pressure ionization with nanoelectrospray (SPIN) has proven to be effective in producing ions with high efficiency and transmitting them to low pressures for high sensitivity mass spectrometry (MS) analysis. Here we present evidence that not only does the SPIN source improve MS sensitivity but also allows for gentler ionization conditions. The gentleness of a conventional heated capillary electrospray ionization (ESI) source and the SPIN source was compared by the liquid chromatography mass spectrometry (LC-MS) analysis of colominic acid. Colominic acid is a mixture of sialic acid polymers of different lengths containing labile glycosidic linkages between monomer units necessitating a gentle ion source. By coupling the SPIN source with high resolution mass spectrometry and using advanced data processing tools, we demonstrate much extended coverage of sialic acid polymer chains as compared to using the conventional ESI source. Additionally we show that SPIN-LC-MS is effective in elucidating polymer features with high efficiency and high sensitivity previously unattainable by the conventional ESI-LC-MS methods.

  15. In-Line Reactions and Ionizations of Vaporized Diphenylchloroarsine and Diphenylcyanoarsine in Atmospheric Pressure Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Okumura, Akihiko; Takada, Yasuaki; Watanabe, Susumu; Hashimoto, Hiroaki; Ezawa, Naoya; Seto, Yasuo; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Kondo, Tomohide; Nagashima, Hisayuki; Nagoya, Tomoki

    2016-04-01

    We propose detecting a fragment ion (Ph2As+) using counter-flow introduction atmospheric pressure chemical ionization ion trap mass spectrometry for sensitive air monitoring of chemical warfare vomiting agents diphenylchloroarsine (DA) and diphenylcyanoarsine (DC). The liquid sample containing of DA, DC, and bis(diphenylarsine)oxide (BDPAO) was heated in a dry air line, and the generated vapor was mixed into the humidified air flowing through the sampling line of a mass spectrometer. Humidity effect on the air monitoring was investigated by varying the humidity of the analyzed air sample. Evidence of the in-line conversion of DA and DC to diphenylarsine hydroxide (DPAH) and then BDPAO was obtained by comparing the chronograms of various ions from the beginning of heating. Multiple-stage mass spectrometry revealed that the protonated molecule (MH+) of DA, DC, DPAH, and BDPAO could produce Ph2As+ through their in-source fragmentation. Among the signals of the ions that were investigated, the Ph2As+ signal was the most intense and increased to reach a plateau with the increased air humidity, whereas the MH+ signal of DA decreased. It was suggested that DA and DC were converted in-line into BDPAO, which was a major source of Ph2As+.

  16. In-Line Reactions and Ionizations of Vaporized Diphenylchloroarsine and Diphenylcyanoarsine in Atmospheric Pressure Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Okumura, Akihiko; Takada, Yasuaki; Watanabe, Susumu; Hashimoto, Hiroaki; Ezawa, Naoya; Seto, Yasuo; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Kondo, Tomohide; Nagashima, Hisayuki; Nagoya, Tomoki

    2016-07-01

    We propose detecting a fragment ion (Ph2As+) using counter-flow introduction atmospheric pressure chemical ionization ion trap mass spectrometry for sensitive air monitoring of chemical warfare vomiting agents diphenylchloroarsine (DA) and diphenylcyanoarsine (DC). The liquid sample containing of DA, DC, and bis(diphenylarsine)oxide (BDPAO) was heated in a dry air line, and the generated vapor was mixed into the humidified air flowing through the sampling line of a mass spectrometer. Humidity effect on the air monitoring was investigated by varying the humidity of the analyzed air sample. Evidence of the in-line conversion of DA and DC to diphenylarsine hydroxide (DPAH) and then BDPAO was obtained by comparing the chronograms of various ions from the beginning of heating. Multiple-stage mass spectrometry revealed that the protonated molecule (MH+) of DA, DC, DPAH, and BDPAO could produce Ph2As+ through their in-source fragmentation. Among the signals of the ions that were investigated, the Ph2As+ signal was the most intense and increased to reach a plateau with the increased air humidity, whereas the MH+ signal of DA decreased. It was suggested that DA and DC were converted in-line into BDPAO, which was a major source of Ph2As+.

  17. In-Line Reactions and Ionizations of Vaporized Diphenylchloroarsine and Diphenylcyanoarsine in Atmospheric Pressure Chemical Ionization Mass Spectrometry.

    PubMed

    Okumura, Akihiko; Takada, Yasuaki; Watanabe, Susumu; Hashimoto, Hiroaki; Ezawa, Naoya; Seto, Yasuo; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Kondo, Tomohide; Nagashima, Hisayuki; Nagoya, Tomoki

    2016-07-01

    We propose detecting a fragment ion (Ph2As(+)) using counter-flow introduction atmospheric pressure chemical ionization ion trap mass spectrometry for sensitive air monitoring of chemical warfare vomiting agents diphenylchloroarsine (DA) and diphenylcyanoarsine (DC). The liquid sample containing of DA, DC, and bis(diphenylarsine)oxide (BDPAO) was heated in a dry air line, and the generated vapor was mixed into the humidified air flowing through the sampling line of a mass spectrometer. Humidity effect on the air monitoring was investigated by varying the humidity of the analyzed air sample. Evidence of the in-line conversion of DA and DC to diphenylarsine hydroxide (DPAH) and then BDPAO was obtained by comparing the chronograms of various ions from the beginning of heating. Multiple-stage mass spectrometry revealed that the protonated molecule (MH(+)) of DA, DC, DPAH, and BDPAO could produce Ph2As(+) through their in-source fragmentation. Among the signals of the ions that were investigated, the Ph2As(+) signal was the most intense and increased to reach a plateau with the increased air humidity, whereas the MH(+) signal of DA decreased. It was suggested that DA and DC were converted in-line into BDPAO, which was a major source of Ph2As(+). Graphical Abstract ᅟ. PMID:27098411

  18. Characterization of triacetone triperoxide by ion mobility spectrometry and mass spectrometry following atmospheric pressure chemical ionization

    SciTech Connect

    Ewing, Robert G.; Waltman, Melanie J.; Atkinson, David A.

    2011-04-28

    The atmospheric pressure chemical ionization of triacetone triperoxide (TATP) with subsequent separation and detection by ion mobility spectrometry has been studied. Positive ionization with hydronium reactant ions produced only fragments of the TATP molecule, with m/z 91 ion being the most predominant species. Ionization with ammonium reactant ions produced a molecular adduct at m/z 240. The reduced mobility value of this ion was constant at 1.36 cm{sup 2}V{sup -1}s{sup -1} across the temperature range from 60 to 140 C. The stability of this ion was temperature dependent and did not exist at temperatures above 140 C, where only fragment ions were observed. The introduction of ammonia vapors with TATP resulted in the formation of m/z 58 ion. As the concentration of ammonia increased, this smaller ion appeared to dominate the spectra and the TATP-ammonium adduct decreased in intensity. The ion at m/z 58 has been noted by several research groups upon using ammonia reagents in chemical ionization, but the identity was unknown. Evidence presented here supports the formation of protonated 2-propanimine. A proposed mechanism involves the addition of ammonia to the TATP-ammonium adduct followed by an elimination reaction. A similar mechanism involving the chemical ionization of acetone with excess ammonia also showed the formation of m/z 58 ion. TATP vapors from a solid sample were detected with a hand-held ion mobility spectrometer operated at room temperature. The TATP-ammonium molecular adduct was observed in the presence of ammonia and TATP vapors with this spectrometer.

  19. Atmospheric pressure laser-induced acoustic desorption chemical ionization mass spectrometry for analysis of saturated hydrocarbons.

    PubMed

    Nyadong, Leonard; Quinn, John P; Hsu, Chang S; Hendrickson, Christopher L; Rodgers, Ryan P; Marshall, Alan G

    2012-08-21

    We present atmospheric pressure laser-induced acoustic desorption chemical ionization (AP/LIAD-CI) with O(2) carrier/reagent gas as a powerful new approach for the analysis of saturated hydrocarbon mixtures. Nonthermal sample vaporization with subsequent chemical ionization generates abundant ion signals for straight-chain, branched, and cycloalkanes with minimal or no fragmentation. [M - H](+) is the dominant species for straight-chain and branched alkanes. For cycloalkanes, M(+•) species dominate the mass spectrum at lower capillary temperature (<100 °C) and [M - H](+) at higher temperature (>200 °C). The mass spectrum for a straight-chain alkane mixture (C(21)-C(40)) shows comparable ionization efficiency for all components. AP/LIAD-CI produces molecular weight distributions similar to those for gel permeation chromatography for polyethylene polymers, Polywax 500 and Polywax 655. Coupling of the technique to Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) for the analysis of complex hydrocarbon mixtures provides unparalleled mass resolution and accuracy to facilitate unambiguous elemental composition assignments, e.g., 1754 peaks (rms error = 175 ppb) corresponding to a paraffin series (C(12)-C(49), double-bond equivalents, DBE = 0) and higher DBE series corresponding to cycloparaffins containing one to eight rings. Isoabundance-contoured plots of DBE versus carbon number highlight steranes (DBE = 4) of carbon number C(27)-C(30) and hopanes of C(29)-C(35) (DBE = 5), with sterane-to-hopane ratio in good agreement with field ionization (FI) mass spectrometry analysis, but performed at atmospheric pressure. The overall speciation of nonpolar, aliphatic hydrocarbon base oil species offers a promising diagnostic probe to characterize crude oil and its products. PMID:22881221

  20. High-resolution atmospheric pressure infrared laser desorption/ionization mass spectrometry imaging of biological tissue.

    PubMed

    Römpp, Andreas; Schäfer, Karl Christian; Guenther, Sabine; Wang, Zheng; Köstler, Martin; Leisner, Arne; Paschke, Carmen; Schramm, Thorsten; Spengler, Bernhard

    2013-09-01

    An atmospheric pressure laser desorption/ionization mass spectrometry imaging ion source has been developed that combines high spatial resolution and high mass resolution for the in situ analysis of biological tissue. The system is based on an infrared laser system working at 2.94 to 3.10 μm wavelength, employing a Nd:YAG laser-pumped optical parametrical oscillator. A Raman-shifted Nd:YAG laser system was also tested as an alternative irradiation source. A dedicated optical setup was used to focus the laser beam, coaxially with the ion optical axis and normal to the sample surface, to a spot size of 30 μm in diameter. No additional matrix was needed for laser desorption/ionization. A cooling stage was developed to reduce evaporation of physiological cell water. Ions were formed under atmospheric pressure and transferred by an extended heated capillary into the atmospheric pressure inlet of an orbital trapping mass spectrometer. Various phospholipid compounds were detected, identified, and imaged at a pixel resolution of up to 25 μm from mouse brain tissue sections. Mass accuracies of better than 2 ppm and a mass resolution of 30,000 at m/z = 400 were achieved for these measurements. PMID:23877173

  1. Secondary ionization of chemical warfare agent simulants: atmospheric pressure ion mobility time-of-flight mass spectrometry.

    PubMed

    Steiner, Wes E; Clowers, Brian H; Haigh, Paul E; Hill, Herbert H

    2003-11-15

    For the first time, the use of a traditional ionization source for ion mobility spectrometry (radioactive nickel ((63)Ni) beta emission ionization) and three alternative ionization sources (electrospray ionization (ESI), secondary electrospray ionization (SESI), and electrical discharge (corona) ionization (CI)) were employed with an atmospheric pressure ion mobility orthogonal reflector time-of-flight mass spectrometer (IM(tof)MS) to detect chemical warfare agent (CWA) simulants from both aqueous- and gas-phase samples. For liquid-phase samples, ESI was used as the sample introduction and ionization method. For the secondary ionization (SESI, CI, and traditional (63)Ni ionization) of vapor-phase samples, two modes of sample volatilization (heated capillary and thermal desorption chamber) were investigated. Simulant reference materials, which closely mimic the characteristic chemical structures of CWA as defined and described by Schedule 1, 2, or 3 of the Chemical Warfare Convention treaty verification, were used in this study. A mixture of four G/V-type nerve simulants (dimethyl methylphosphonate, pinacolyl methylphosphonate, diethyl phosphoramidate, and 2-(butylamino)ethanethiol) and one S-type vesicant simulant (2-chloroethyl ethyl sulfide) were found in each case (sample ionization and introduction methods) to be clearly resolved using the IM(tof)MS method. In many cases, reduced mobility constants (K(o)) were determined for the first time. Ion mobility drift times, flight times, relative signal intensities, and fragmentation product signatures for each of the CWA simulants are reported for each of the methods investigated. PMID:14615983

  2. Gas chromatography-microchip atmospheric pressure chemical ionization-mass spectrometry.

    PubMed

    Ostman, Pekka; Luosujärvi, Laura; Haapala, Markus; Grigoras, Kestas; Ketola, Raimo A; Kotiaho, Tapio; Franssila, Sami; Kostiainen, Risto

    2006-05-01

    An atmospheric pressure chemical ionization (APCI) microchip is presented for combining a gas chromatograph (GC) to a mass spectrometer (MS). The chip includes capillary insertion channel, stopper, vaporizer channel, nozzle and nebulizer gas inlet fabricated on the silicon wafer, and a platinum heater sputtered on a glass wafer. These two wafers are joined by anodic bonding creating a two-dimensional version of an APCI microchip. The sample from GC is directed via heated transfer line capillary to the vaporizer channel of the APCI chip. The etched nozzle forms narrow sample plume, which is ionized by an external corona discharge needle, and the ions are analyzed by a mass spectrometer. The GC-microchip APCI-MS combination provides an efficient method for qualitative and quantitative analysis. The spectra produced by microchip APCI show intensive protonated molecule and some fragmentation products as in classical chemical ionization for structure elucidation. In quantitative analysis the GC-microchip APCI-MS showed good linearity (r(2) = 0.9989) and repeatability (relative standard deviation 4.4%). The limits of detection with signal-to-noise ratio of three were between 0.5 and 2 micromol/L with MS mode using selected ion monitoring and 0.05 micromol/L with MS/MS using multiple reaction monitoring. PMID:16642989

  3. Solar radiation pressure as a mechanism of acceleration of atoms and first ions with low ionization potentials

    NASA Astrophysics Data System (ADS)

    Shestakova, L. I.

    2015-04-01

    Calculated results are presented for solar radiation pressure acting on atoms and first ions. For some of these particles, radiation pressure exceeds the gravitational attraction and can accelerate them to large velocities. A comparison of the results with ionization potentials shows that the maxima of radiation pressure on neutral atoms coincide with the minima of the first ionization potentials (FIPs). This relationship is even more apparent for first ions. The minima of the second ionization potentials (SIPs) coincide with the radiation pressure maxima for a number of ions such as Be II, Mg II, Ca II, and the neighboring elements. Thus, radiation pressure may serve as a possible mechanism of acceleration of pickup ions and energetic neutral atoms (ENA) coming from an inner source (zodiacal dust and sungrazing comets). These atoms and ions, which are not typical of the solar wind, are formed as a result of the disintegration of comets or meteor showers near the Sun and can accelerate and reach the Earth's orbit as part of the solar wind. Doubly ionized atoms have resonance lines in the UV range, where solar radiation pressure has no apparent impact on the particle dynamics; thus, the proposed acceleration mechanism can only be applied to neutral atoms and first ions with low potentials of the subsequent ionization.

  4. Atmospheric pressure chemical ionization of fluorinated phenols in atmospheric pressure chemical ionization mass spectrometry, tandem mass spectrometry, and ion mobility spectrometry

    NASA Technical Reports Server (NTRS)

    Eiceman, G. A.; Bergloff, J. F.; Rodriguez, J. E.; Munro, W.; Karpas, Z.

    1999-01-01

    Atmospheric pressure chemical ionization (APCI)-mass spectrometry (MS) for fluorinated phenols (C6H5-xFxOH Where x = 0-5) in nitrogen with Cl- as the reagent ion yielded product ions of M Cl- through ion associations or (M-H)- through proton abstractions. Proton abstraction was controllable by potentials on the orifice and first lens, suggesting that some proton abstraction occurs through collision induced dissociation (CID) in the interface region. This was proven using CID of adduct ions (M Cl-) with Q2 studies where adduct ions were dissociated to Cl- or proton abstracted to (M-H)-. The extent of proton abstraction depended upon ion energy and structure in order of calculated acidities: pentafluorophenol > tetrafluorophenol > trifluorophenol > difluorophenol. Little or no proton abstraction occurred for fluorophenol, phenol, or benzyl alcohol analogs. Ion mobility spectrometry was used to determine if proton abstraction reactions passed through an adduct intermediate with thermalized ions and mobility spectra for all chemicals were obtained from 25 to 200 degrees C. Proton abstraction from M Cl- was not observed at any temperature for phenol, monofluorophenol, or difluorophenol. Mobility spectra for trifluorophenol revealed the kinetic transformations to (M-H)- either from M Cl- or from M2 Cl- directly. Proton abstraction was the predominant reaction for tetra- and penta-fluorophenols. Consequently, the evidence suggests that proton abstraction occurs from an adduct ion where the reaction barrier is reduced with increasing acidity of the O-H bond in C6H5-xFxOH.

  5. Unexpected observation of ion suppression in a liquid chromatography/atmospheric pressure chemical ionization mass spectrometric bioanalytical method.

    PubMed

    Sangster, Tim; Spence, Mike; Sinclair, Peta; Payne, Richard; Smith, Christopher

    2004-01-01

    Ion suppression is a well-known phenomenon in electrospray ionization (ESI) mass spectrometry. These suppression effects have been shown to adversely affect the accuracy and precision of quantitative bioanalytical methods using ion spray. Such suppression effects have not been as well defined in atmospheric pressure chemical ionization (APCI) and there is some debate whether these effects actually occur in the ionization process using APCI. Here an example is described where clear ion suppression was observed during studies on a model compound and three metabolites using APCI liquid chromatography/tandem mass spectrometry (LC/MS/MS). PMID:15174192

  6. Aliphatic hydrocarbon spectra by helium ionization mass spectrometry (HIMS) on a modified atmospheric-pressure source designed for electrospray ionization.

    PubMed

    Yang, Zhihua; Attygalle, Athula B

    2011-08-01

    Chemical-ionization techniques that use metastable species to ionize analytes traditionally use a flat pin or a sharp solid needle onto which the high potential needed to generate the discharge plasma is applied. We report here that direct analysis of samples containing volatile and semivolatile compounds, including saturated and unsaturated aliphatic hydrocarbons, can be achieved on any electrospray-ionization mass spectrometer by passing helium though the sample delivery metal capillary held at a high potential. In the helium plasma ionization source (HPIS) described here, the typical helium flow required (about 20-30 mL/min), was significantly lower than that needed for other helium-ionization sources. By this procedure, positive ions were generated by nominal hydride ion removal from molecules emanating from heated saturated hydrocarbons as large as tetratetracontane (C(44)H(90)), at capillary voltages ranging from 2.0 to 4.0 kV. Unsaturated hydrocarbons, on the other hand, underwent facile protonation under much lower capillary voltages (0.9 to 2.0 kV). Although saturated and monounsaturated hydrocarbons bearing the same number of carbon atoms generate ions of the same m/z ratio, a gas-phase deuterium exchange method is described to ascertain the identity of these isomeric ions originating from either protonation or hydride abstraction mechanisms. Moreover, mass spectrometric results obtained by exposing unsaturated hydrocarbons to D(2)O vapor in an HPIS-MS instrument confirmed that the proton donor for ionization of unsaturated hydrocarbons is protonated water. PMID:21953194

  7. An added dimension: GC atmospheric pressure chemical ionization FTICR MS and the Athabasca oil sands.

    PubMed

    Barrow, Mark P; Peru, Kerry M; Headley, John V

    2014-08-19

    The Athabasca oil sands industry, an alternative source of petroleum, uses large quantities of water during processing of the oil sands. In keeping with Canadian environmental policy, the processed water cannot be released to natural waters and is thus retained on-site in large tailings ponds. There is an increasing need for further development of analytical methods for environmental monitoring. The following details the first example of the application of gas chromatography atmospheric pressure chemical ionization Fourier transform ion cyclotron resonance mass spectrometry (GC-APCI-FTICR MS) for the study of environmental samples from the Athabasca region of Canada. APCI offers the advantages of reduced fragmentation compared to other ionization methods and is also more amenable to compounds that are inaccessible by electrospray ionization. The combination of GC with ultrahigh resolution mass spectrometry can improve the characterization of complex mixtures where components cannot be resolved by GC alone. This, in turn, affords the ability to monitor extracted ion chromatograms for components of the same nominal mass and isomers in the complex mixtures. The proof of concept work described here is based upon the characterization of one oil sands process water sample and two groundwater samples in the area of oil sands activity. Using the new method, the Ox and OxS compound classes predominated, with OxS classes being particularly relevant to the oil sands industry. The potential to resolve retention times for individual components within the complex mixture, highlighting contributions from isomers, and to characterize retention time profiles for homologous series is shown, in addition to the ability to follow profiles of double bond equivalents and carbon number for a compound class as a function of retention time. The method is shown to be well-suited for environmental forensics. PMID:25036898

  8. Kinetic and Thermodynamic Control of Protonation in Atmospheric Pressure Chemical Ionization

    NASA Astrophysics Data System (ADS)

    Chai, Yunfeng; Hu, Nan; Pan, Yuanjiang

    2013-07-01

    For p-(dimethylamino)chalcone ( p-DMAC), the N atom is the most basic site in the liquid phase, whereas the O atom possesses the highest proton affinity in the gas phase. A novel and interesting observation is reported that the N- and O-protonated p-DMAC can be competitively produced in atmospheric pressure chemical ionization (APCI) with the change of solvents and ionization conditions. In neat methanol or acetonitrile, the protonation is always under thermodynamic control to form the O-protonated ion. When methanol/water or acetonitrile/water was used as the solvent, the protonation is kinetically controlled to form the N-protonated ion under conditions of relatively high infusion rate and high concentration of water in the mixed solvent. The regioselectivity of protonation of p-DMAC in APCI is probably attributed to the bulky solvent cluster reagent ions (SnH+) and the analyte having different preferred protonation sites in the liquid phase and gas phase.

  9. Gas Chromatography/Atmospheric Pressure Chemical Ionization Tandem Mass Spectrometry for Fingerprinting the Macondo Oil Spill.

    PubMed

    Lobodin, Vladislav V; Maksimova, Ekaterina V; Rodgers, Ryan P

    2016-07-01

    We report the first application of a new mass spectrometry technique (gas chromatography combined to atmospheric pressure chemical ionization tandem mass spectrometry, GC/APCI-MS/MS) for fingerprinting a crude oil and environmental samples from the largest accidental marine oil spill in history (the Macondo oil spill, the Gulf of Mexico, 2010). The fingerprinting of the oil spill is based on a trace analysis of petroleum biomarkers (steranes, diasteranes, and pentacyclic triterpanes) naturally occurring in crude oil. GC/APCI enables soft ionization of petroleum compounds that form abundant molecular ions without (or little) fragmentation. The ability to operate the instrument simultaneously in several tandem mass spectrometry (MS/MS) modes (e.g., full scan, product ion scan, reaction monitoring) significantly improves structural information content and sensitivity of analysis. For fingerprinting the oil spill, we constructed diagrams and conducted correlation studies that measure the similarity between environmental samples and enable us to differentiate the Macondo oil spill from other sources. PMID:27281271

  10. A microfluidic reactor for rapid, low-pressure proteolysis with on-chip electrospray ionization.

    PubMed

    Liuni, Peter; Rob, Tamanna; Wilson, Derek J

    2010-02-01

    A microfluidic reactor that enables rapid digestion of proteins prior to on-line analysis by electrospray ionization mass spectrometry (ESI-MS) is introduced. The device incorporates a wide (1.5 cm), shallow (10 microm) reactor 'well' that is functionalized with pepsin-agarose, a design that facilitates low-pressure operation and high clogging resistance. Electrospray ionization is carried out directly from a short metal capillary integrated into the chip outlet. Fabrication, involving laser ablation of polymethyl methacrylate (PMMA), is exceedingly straightforward and inexpensive. High sequence coverage spectra of myoglobin (Mb), ubiquitin (Ub) and bovine serum albumin (BSA) digests were obtained after <4 s of residence time in the reactor. Stress testing showed little loss of performance over approximately 2 h continuous use at high flow rates (30 microL/min). The device provides a convenient platform for a range of applications in proteomics and structural biology, i.e. to enable high-throughput workflows or to limit back-exchange in spatially resolved hydrogen/deuterium exchange (HDX) experiments. PMID:20049884

  11. Femtosecond laser ablation particle introduction to a liquid sampling-atmospheric pressure glow discharge ionization source

    SciTech Connect

    Carado, Anthony J.; Quarles, C. Derrick; Duffin, Andrew M.; Barinaga, Charles J.; Russo, Richard E.; Marcus, R. Kenneth; Eiden, Gregory C.; Koppenaal, David W.

    2012-01-01

    This work describes the use of a compact, liquid sampling – atmospheric pressure glow discharge (LS-APGD) ionization source to ionize metal particles within a laser ablation aerosol. Mass analysis was performed with a Thermo Scientific Exactive Mass Spectrometer which utilizes an orbitrap mass analyzer capable of producing mass resolution exceeding M/ΔM > 160,000. The LS-APGD source generates a low-power plasma between the surface of an electrolytic solution flowing at several µl min-1 through a fused silica capillary and a counter electrode consisting of a stainless steel capillary employed to deliver the laser ablation particles into the plasma. Sample particles of approximately 100 nm were generated with an Applied Spectra femtosecond laser located remotely and transported through 25 meters of polyurethane tubing by means of argon carrier gas. Samples consisted of an oxygen free copper shard, a disk of solder, and a one-cent U.S. coin. Analyte signal onset was readily detectable relative to the background signal produced by the carrier gas alone. The high mass resolution capability of the orbitrap mass spectrometer was demonstrated on the solder sample with resolution exceeding 90,000 for Pb and 160,000 for Cu. In addition, results from a laser ablation depth-profiling experiment of a one cent coin revealed retention of the relative locations of the ~10 µm copper cladding and zinc rich bulk layers.

  12. Laser Microdissection and Atmospheric Pressure Chemical Ionization Mass Spectrometry Coupled for Multimodal Imaging

    SciTech Connect

    Lorenz, Matthias; Ovchinnikova, Olga S; Kertesz, Vilmos; Van Berkel, Gary J

    2013-01-01

    This paper describes the coupling of ambient laser ablation surface sampling, accomplished using a laser capture microdissection system, with atmospheric pressure chemical ionization mass spectrometry for high spatial resolution multimodal imaging. A commercial laser capture microdissection system was placed in close proximity to a modified ion source of a mass spectrometer designed to allow for sampling of laser ablated material via a transfer tube directly into the ionization region. Rhodamine 6G dye of red sharpie ink in a laser etched pattern as well as cholesterol and phosphatidylcholine in a cerebellum mouse brain thin tissue section were identified and imaged from full scan mass spectra. A minimal spot diameter of 8 m was achieved using the 10X microscope cutting objective with a lateral oversampling pixel resolution of about 3.7 m. Distinguishing between features approximately 13 m apart in a cerebellum mouse brain thin tissue section was demonstrated in a multimodal fashion including co-registered optical and mass spectral chemical images.

  13. Established and Emerging Atmospheric Pressure Surface Sampling/Ionization Techniques for Mass Spectrometry

    SciTech Connect

    Van Berkel, Gary J; Pasilis, Sofie P; Ovchinnikova, Olga S

    2008-01-01

    The number and type of atmospheric pressure techniques suitable for sampling analytes from surfaces, forming ions from those analytes, and subsequently transporting those ions into vacuum for interrogation by mass spectrometry has rapidly expanded over the last several years. Moreover, the literature in this area is complicated by an explosion in acronyms for these techniques, many of which provide no information relating to the chemical or physical processes involved. In this review, we sort this vast array of techniques into a relatively few categories on the basis of the approaches used for surface sampling and ionization. For each technique, we explain, as best known, many of the underlying principles of operation, describe representative applications, and in some cases, discuss needed research or advancements and attempt to forecast their future analytical utility.

  14. Electron density and temperature measurement by continuum radiation emitted from weakly ionized atmospheric pressure plasmas

    SciTech Connect

    Park, Sanghoo; Choe, Wonho; Youn Moon, Se; Park, Jaeyoung

    2014-02-24

    The electron-atom neutral bremsstrahlung continuum radiation emitted from weakly ionized plasmas is investigated for electron density and temperature diagnostics. The continuum spectrum in 450–1000 nm emitted from the argon atmospheric pressure plasma is found to be in excellent agreement with the neutral bremsstrahlung formula with the electron-atom momentum transfer cross-section given by Popović. In 280–450 nm, however, a large discrepancy between the measured and the neutral bremsstrahlung emissivities is observed. We find that without accounting for the radiative H{sub 2} dissociation continuum, the temperature, and density measurements would be largely wrong, so that it should be taken into account for accurate measurement.

  15. Determination of nicarbazin in eggs by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Blanchflower, W J; Hughes, P J; Kennedy, D G

    1997-01-01

    A method was developed to determine in eggs 2 components [4,6-dimethyl-2-hydroxypyrimidine and 1,3-bis(4-nitrophenyl)urea] of the anticoccidial drug nicarbazin, used to treat poultry. Samples were extracted with acetonitrile, and the extracts were washed with hexane and evaporated to dryness before analysis by liquid chromatography/mass spectrometry with atmospheric pressure chemical ionization. By switching from positive to negative ion monitoring and using gradient elution, both components were measured within one run. The limit of quantitation of the assay was 10 ng/g for each component. The results of a preliminary feeding trial in which chickens were fed contamination levels of the drug are also reported. PMID:9419856

  16. Fast Differential Analysis of Propolis Using Surface Desorption Atmospheric Pressure Chemical Ionization Mass Spectrometry

    PubMed Central

    Huang, Xue-yong; Guo, Xia-li; Luo, Huo-lin; Fang, Xiao-wei; Zhu, Teng-gao; Zhang, Xing-lei; Chen, Huan-wen; Luo, Li-ping

    2015-01-01

    Mass spectral fingerprints of 24 raw propolis samples, including 23 from China and one from the United States, were directly obtained using surface desorption atmospheric pressure chemical ionization mass spectrometry (SDAPCI-MS) without sample pretreatment. Under the optimized experimental conditions, the most abundant signals were detected in the mass ranges of 70 to 500 m/z and 200 to 350 m/z, respectively. Principal component analyses (PCA) for the two mass ranges showed similarities in that the colors had a significant correlation with the first two PCs; in contrast there was no correlation with the climatic zones from which the samples originated. Analytes such as chrysin, pinocembrin, and quercetin were detected and identified using multiple stage mass spectrometry within 3 min. Therefore, SDAPCI-MS can be used for rapid and reliable high-throughput analysis of propolis. PMID:26339245

  17. Transmission geometry laser desorption atmospheric pressure photochemical ionization mass spectrometry for analysis of complex organic mixtures.

    PubMed

    Nyadong, Leonard; Mapolelo, Mmilili M; Hendrickson, Christopher L; Rodgers, Ryan P; Marshall, Alan G

    2014-11-18

    We present laser desorption atmospheric pressure photochemical ionization mass spectrometry (LD/APPCI MS) for rapid throughput analysis of complex organic mixtures, without the need for matrix, electric discharge, secondary electrospray, or solvents/vaporizers. Analytes dried on a microscope slide are vaporized in transmission geometry by a laser beam aligned with the atmospheric pressure inlet of the mass spectrometer. The laser beam initiates a cascade of reactions in the region between the glass slide and MS inlet, leading to generation of reagent ions for chemical ionization of vaporized analyte. Positive analyte ions are generated predominantly by proton transfer, charge exchange, and hydride abstraction, whereas negative ions are generated by electron capture or proton transfer reactions, enabling simultaneous analysis of saturated, unsaturated, and heteroatom-containing hydrocarbons. The absence of matrix interference renders LD/APPCI MS particularly useful for analysis of small molecules (<2000 Da) such as those present in petroleum crude oil and petroleum deposits. [M + H](+) and M(+•) dominate the positive-ion mass spectra for olefins and polyaromatic hydrocarbons, whereas saturated hydrocarbons are observed mainly as [M - H](+) and/or M(+•). Heteroatom-containing hydrocarbons are observed predominantly as [M + H](+). [M - H](-) and M(-•) are the dominant negative ions observed for analytes of lower gas-phase basicity or higher electron affinity than O2. The source was coupled with a 9.4 T Fourier transform ion cyclotron resonance mass spectrometer (FTICR MS) to resolve and identify thousands of peaks from Athabasca bitumen heavy vacuum gas oil distillates (400-425 and 500-538 °C), enabling simultaneous characterization of their polar and nonpolar composition. We also applied LD/APPCI FTICR MS for rapid analysis of sodium and calcium naphthenate deposits with little to no sample pretreatment to provide mass spectral fingerprints that enable

  18. Characterization of Nonpolar Lipids and Selected Steroids by Using Laser-Induced Acoustic Desorption/Chemical Ionization, Atmospheric Pressure Chemical Ionization, and Electrospray Ionization Mass Spectrometry†

    PubMed Central

    Jin, Zhicheng; Daiya, Shivani; Kenttämaa, Hilkka I.

    2011-01-01

    Laser-induced acoustic desorption (LIAD) combined with ClMn(H2O)+ chemical ionization (CI) was tested for the analysis of nonpolar lipids and selected steroids in a Fourier-transform ion cyclotron resonance mass spectrometer (FT-ICR). The nonpolar lipids studied, cholesterol, 5α-cholestane, cholesta-3,5-diene, squalene, and β-carotene, were found to solely form the desired water replacement product (adduct-H2O) with the ClMn(H2O)+ ions. The steroids, androsterone, dehydroepiandrosterone (DHEA), estrone, estradiol, and estriol, also form abundant adduct-H2O ions, but less abundant adduct-2H2O ions were also observed. Neither (+)APCI nor (+)ESI can ionize the saturated hydrocarbon lipid, cholestane. APCI successfully ionizes the unsaturated hydrocarbon lipids to form exclusively the intact protonated analytes. However, it causes extensive fragmentation for cholesterol and the steroids. The worst case is cholesterol that does not produce any stable protonated molecules. On the other hand, ESI cannot ionize any of the hydrocarbon analytes, saturated or unsaturated. However, ESI can be used to protonate the oxygen-containing analytes with substantially less fragmentation than for APCI in all cases except for cholesterol and estrone. In conclusion, LIAD/ClMn(H2O)+ chemical ionization is superior over APCI and ESI for the mass spectrometric characterization of underivatized nonpolar lipids and steroids. PMID:21528012

  19. What Is the Opposite of Pandora's Box? Direct Analysis, Ambient Ionization, and a New Generation of Atmospheric Pressure Ion Sources.

    PubMed

    B Cody, Robert

    2013-01-01

    The introduction of DART and DESI sources approximately seven years ago led to the development of a new series of atmospheric pressure ion sources referred to as "ambient ionization" sources. These fall into two major categories: spray techniques like DESI or plasma techniques like DART. The selectivity of "direct ionization," meaning analysis without chromatography and with little or no sample preparation, depends on the mass spectrometer selectivity. Although high resolution and tandem mass spectrometry are valuable tools, rapid and simple sample preparation methods can improve the utility of ambient ionization methods. The concept of ambient ionization has led to the realization that there are many more ways to form ions than might be expected. An interesting example is the use of a flint-and-steel spark source to generate ions from compounds such as phenolphthalein and Gramicidin S. PMID:24349926

  20. Ion/molecule reaction and ion evaporation in atmospheric pressure spray ionization

    NASA Astrophysics Data System (ADS)

    Hirabayashi, Atsumu; Takada, Yasuaki; Kambara, Hideki; Umemura, Yuta; Ohta, Hitoshi; Ito, Haruhiko; Kuchitsu, Kozo

    1992-12-01

    The positive ions produced in atmospheric pressure spray ionization of ammonia, alanine and sucrose in aqueous solution were detected with a double-focusing mass spectrometer. The relative intensities of the quasi-molecular ions of ammonia, NH+4 (H2O)n (n = 0-3), were found to be proportional to the concentration of the ammonia solution and to increase with increasing distance d between the nozzle tip and the sample aperture of the mass spectrometer; this observation shows that the ammonia molecule is produced by the spray and is protonated at atmospheric pressure by a proton transfer reaction with the hydronium ion and its hydrated clusters. The observed dependences of the relative intensities of the protonated alanine molecules from alanine solution and the cationized sucrose molecules from sucrose solution on d show that some part of these quasi-molecular ions are also produced by the ion/molecule reaction in the gas phase. However, their dependences on the concentration, which are steeper than that in the ammonia case, indicate that a significant proportion of these ions are produced by ion evaporation from a droplet or liquid.

  1. A high pressure hollow cathode ionization source for in-situ detection of organic molecules on Mars

    NASA Technical Reports Server (NTRS)

    Beegle, Luther W.; Kanik, Isik

    2001-01-01

    We have designed, constructed and characterized a new high-pressure (1-5 Torr) hollow cathode discharge source (HCDSj that can be utilized as an ionizer in a wide variety of mass analyzers. It is able to function under ambient Martian atmospheric conditions without modification.

  2. Atmospheric Pressure-Thermal Desorption (AP-TD)/Electrospray Ionization-Mass Spectrometry for the Rapid Analysis of Bacillus Spores

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A technique is described where an atmospheric pressure-thermal desorption (AP-TD) device and electrospray ionization (ESI)-mass spectrometry are coupled and used for the rapid analysis of Bacillus spores in complex matrices. The resulting AP-TD/ESI-MS technique combines the generation of volatile co...

  3. Capillary liquid chromatography-microchip atmospheric pressure chemical ionization-mass spectrometry.

    PubMed

    Ostman, Pekka; Jäntti, Sirkku; Grigoras, Kestas; Saarela, Ville; Ketola, Raimo A; Franssila, Sami; Kotiaho, Tapio; Kostiainen, Risto

    2006-07-01

    A miniaturized nebulizer chip for capillary liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (capillary LC-microchip APCI-MS) is presented. The APCI chip consists of two wafers, a silicon wafer and a Pyrex glass wafer. The silicon wafer has a DRIE etched through-wafer nebulizer gas inlet, an edge capillary insertion channel, a stopper, a vaporizer channel and a nozzle. The platinum heater electrode and pads for electrical connection were patterned on to the Pyrex glass wafer. The two wafers were joined by anodic bonding, creating a microchip version of an APCI-source. The sample inlet capillary from an LC column is directly connected to the vaporizer channel of the APCI chip. The etched nozzle in the microchip forms a narrow sample plume, which is ionized by an external corona needle, and the formed ions are analyzed by a mass spectrometer. The nebulizer chip enables for the first time the use of low flow rate separation techniques with APCI-MS. The performance of capillary LC-microchip APCI-MS was tested with selected neurosteroids. The capillary LC-microchip APCI-MS provides quantitative repeatability and good linearity. The limits of detection (LOD) with a signal-to-noise ratio (S/N) of 3 in MS/MS mode for the selected neurosteroids were 20-1000 fmol (10-500 nmol l(-1)). LODs (S/N = 3) with commercial macro APCI with the same compounds using the same MS were about 10 times higher. Fast heat transfer allows the use of the optimized temperature for each compound during an LC run. The microchip APCI-source provides a convenient and easy method to combine capillary LC to any API-MS equipped with an APCI source. The advantages and potentials of the microchip APCI also make it a very attractive interface in microfluidic APCI-MS. PMID:16804601

  4. Differentiation of (Mixed) Halogenated Dibenzo-p-Dioxins by Negative Ion Atmospheric Pressure Chemical Ionization.

    PubMed

    Fernando, Sujan; Green, M Kirk; Organtini, Kari; Dorman, Frank; Jones, Rhys; Reiner, Eric J; Jobst, Karl J

    2016-05-17

    Brominated and mixed halogenated dibenzo-p-dioxins (PBDDs and PXDDs) may well be as toxic as 2,3,7,8-tetrachloro-dibenzo-p-dioxin (2378-TCDD), a compound reputed as one of the most toxic chemicals known to exist. However, studies on the occurrence of PXDDs have been hampered by a lack of authentic standards as well as separation techniques capable of resolving the enormous number of potential isomers. Electron ionization (EI) mass spectrometry based methods are of limited value due to the lack of isomer specific fragmentation. Negative ion atmospheric pressure chemical ionization (APCI(-)) of 2378-TCDD was described in this journal over 30 years ago. Under these conditions, the reaction between O2(-•) and 2378-TCDD results in structure diagnostic cleavages of the C-O bonds, which can distinguish TCDD isomers on the basis of Cl distribution between the two aromatic rings. In the present study, the analogous ether cleavages of PBDDs and PXDDs were studied using a gas chromatograph-quadrupole time-of-flight (GC-QTOF) mass spectrometer coupled using APCI. The results indicate comparable detection limits for the radical cations [M(•+)] and negative pseudomolecular ions [M-Cl+O](-): approximately 5 fg and 10 fg, respectively, for 2378-TCDD and 5-10 fg and 10-30 fg, respectively, for the 2,3,7,8-substituted PXDDs. Detection limits obtained by monitoring the ether cleavage products were somewhat higher (between 100 and 600 fg) but still acceptable for trace analysis of PXDDs. Such reactions may resolve coeluting isomers, which is crucial for the identification of PXDDs. The technique is demonstrated by differentiating PXDD isomer classes in a sample obtained from a major industrial fire that would not be feasible using EI or positive ion APCI(+). PMID:27074061

  5. Effects of easily ionizable elements on the liquid sampling atmospheric pressure glow discharge

    NASA Astrophysics Data System (ADS)

    Venzie, Jacob L.; Marcus, R. Kenneth

    2006-06-01

    A series of studies has been undertaken to determine the susceptibility of the liquid sampling-atmospheric pressure glow discharge (LS-APGD) atomic emission source to easily ionizable element (EIE) effects. The initial portions of the study involved monitoring the voltage drop across the plasma as a function of the pH to ascertain whether or not the conductivity of the liquid eluent alters the plasma energetics and subsequently the analyte signal strength. It was found that altering the pH (0.0 to 2.0) in the sample matrix did not significantly change the discharge voltage. The emission signal intensities for Cu(I) 327.4 nm, Mo(I) 344.7 nm, Sc(I) 326.9 nm and Hg(I) 253.6 nm were measured as a function of the easily ionizable element (sodium and calcium) concentration in the injection matrix. A range of 0.0 to 0.1% (w/v) EIE in the sample matrix did not cause a significant change in the Cu, Sc, and Mo signal-to-background ratios, with only a slight change noted for Hg. In addition to this test of analyte response, the plasma energetics as a function of EIE concentration are assessed using the ratio of Mg(II) to Mg(I) (280.2 nm and 285.2 nm, respectively) intensities. The Mg(II)/Mg(I) ratio showed that the plasma energetics did not change significantly over the same range of EIE addition. These results are best explained by the electrolytic nature of the eluent acting as an ionic (and perhaps spectrochemical) buffer.

  6. Ionization mechanism of the ambient pressure pyroelectric ion source (APPIS) and its applications to chemical nerve agent detection.

    PubMed

    Neidholdt, Evan L; Beauchamp, J L

    2009-11-01

    We present studies of the ionization mechanism operative in the ambient pressure pyroelectric ionization source (APPIS), along with applications that include detection of simulants for chemical nerve agents. It is found that ionization by APPIS occurs in the gas-phase. As the crystal is thermally cycled over a narrow temperature range, electrical discharges near the surface of the crystal produce energetic species which, through reactions with atmospheric molecules, result in reactant ions such as protonated water clusters or clusters of hydroxide and water. Reactant ions can be observed directly in the mass spectrometer. These go on to react with trace neutrals via proton transfer reactions to produce the ions observed in mass spectra, which are usually singly protonated or deprotonated species. Further implicating gas-phase ionization, observed product distributions are highly dependent on the composition of ambient gases, especially the concentration of water vapor and oxygen surrounding the source. For example, basic species such as triethylamine are observed as singly protonated cations at a water partial pressure of 10 torr. At a water pressure of 4 torr, reactive oxygen species are formed and lead to observation of protonated amine oxides. The ability of the APPIS source to detect basic molecules with high proton affinities makes it highly suited for the detection of chemical nerve agents. We demonstrate this application using simulants corresponding to VX and GA (Tabun). With the present source configuration pyridine is detected readily at a concentration of 4 ppm, indicating ultimate sensitivity in the high ppb range. PMID:19682922

  7. The Protonation Site of para-Dimethylaminobenzoic Acid Using Atmospheric Pressure Ionization Methods

    NASA Astrophysics Data System (ADS)

    Chai, Yunfeng; Weng, Guofeng; Shen, Shanshan; Sun, Cuirong; Pan, Yuanjiang

    2015-04-01

    The protonation site of para-dimethylaminobenzoic acid ( p-DMABA) was investigated using atmospheric pressure ionization methods (ESI and APCI) coupled with collision-induced dissociation (CID), nuclear magnetic resonance (NMR), and computational chemistry. Theoretical calculations and NMR experiments indicate that the dimethyl amino group is the preferred site of protonation both in the gas phase and aqueous solution. Protonation of p-DMABA occurs at the nitrogen atom by ESI independent of the solvents and other operation conditions under typical thermodynamic control. However, APCI produces a mixture of the nitrogen- and carbonyl oxygen-protonated p-DMABA when aprotic organic solvents (acetonitrile, acetone, and tetrahydrofuran) are used, exhibiting evident kinetic characteristics of protonation. But using protic organic solvents (methanol, ethanol, and isopropanol) in APCI still leads to the formation of thermodynamically stable N-protonated p-DMABA. These structural assignments were based on the different CID behavior of the N- and O-protonated p-DMABA. The losses of methyl radical and water are the diagnostic fragmentations of the N- and O-protonated p-DMABA, respectively. In addition, the N-protonated p-DMABA is more stable than the O-protonated p-DMABA in CID revealed by energy resolved experiments and theoretical calculations.

  8. Back corona enhanced organic film deposition inside an Atmospheric Pressure Weakly Ionized Plasma reactor

    NASA Astrophysics Data System (ADS)

    Islam, Rokibul; Xie, Shuzheng; Englund, Karl; Pedrow, Patrick

    2014-10-01

    A grounded screen with short needle-like protrusions has been designed to generate back corona in an Atmospheric Pressure Weakly Ionized Plasma (APWIP) reactor. The grounded screen with protrusions is placed downstream at a variable gap length from an array of needles that is energized with 60 Hz high voltage. The excitation voltage is in the range 0--10 kV RMS and the feed gas mixture consists of argon and acetylene. A Lecroy 9350AL 500 MHz digital oscilloscope is used to monitor the reactor voltage and current using a resistive voltage divider and a current viewing resistor, respectively. The current signal contains many positive and negative current pulses associated with corona discharge. Analysis of the current signal shows asymmetry between positive and negative corona discharge currents. Photographs show substantial back corona generated near the tips of the protrusions situated at the grounded screen. The back corona activates via bond scission acetylene radicals that are transported downstream to form a plasma-polymerized film on a substrate positioned downstream from the grounded screen. The oscillograms will be used to generate corona mode maps that show the nature of the corona discharge as a function of gap spacing, applied voltage and many other reactor parameters.

  9. Tracing origins of complex pharmaceutical preparations using surface desorption atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Zhang, Xinglei; Jia, Bin; Huang, Keke; Hu, Bin; Chen, Rong; Chen, Huanwen

    2010-10-01

    A novel strategy to trace the origins of commercial pharmaceutical products has been developed based on the direct chemical profiling of the pharmaceutical products by surface desorption atmospheric pressure chemical ionization mass spectrometry (DAPCI-MS). Besides the unambiguous identification of active drug components, various compounds present in the matrixes are simultaneously detected without sample pretreatment, providing valuable information for drug quality control and origin differentiation. Four sources of commercial amoxicillin products made by different manufacturers have been successfully differentiated. This strategy has been extended to secerning six sources of Liuwei Dihuang Teapills, which are herbal medicine preparations with extremely complex matrixes. The photolysis status of chemical drug products and the inferior natural herd medicine products prepared with different processes (e.g., extra heating) were also screened using the method reported here. The limit of detection achieved in the MS/MS experiments was estimated to be 1 ng/g for amoxicillin inside the capsule product. Our experimental data demonstrate that DAPCI-MS is a useful tool for rapid pharmaceutical analysis, showing promising perspectives for tracking the entire pharmaceutical supply chain to prevent counterfeit intrusions. PMID:20809628

  10. Atmospheric pressure chemical ionization of explosives using alternating current corona discharge ion source.

    PubMed

    Usmanov, D T; Chen, L C; Yu, Z; Yamabe, S; Sakaki, S; Hiraoka, K

    2015-04-01

    The high-sensitive detection of explosives is of great importance for social security and safety. In this work, the ion source for atmospheric pressure chemical ionization/mass spectrometry using alternating current corona discharge was newly designed for the analysis of explosives. An electromolded fine capillary with 115 µm inner diameter and 12 mm long was used for the inlet of the mass spectrometer. The flow rate of air through this capillary was 41 ml/min. Stable corona discharge could be maintained with the position of the discharge needle tip as close as 1 mm to the inlet capillary without causing the arc discharge. Explosives dissolved in 0.5 µl methanol were injected to the ion source. The limits of detection for five explosives with 50 pg or lower were achieved. In the ion/molecule reactions of trinitrotoluene (TNT), the discharge products of NOx (-) (x = 2,3), O3 and HNO3 originating from plasma-excited air were suggested to contribute to the formation of [TNT - H](-) (m/z 226), [TNT - NO](-) (m/z 197) and [TNT - NO + HNO3 ](-) (m/z 260), respectively. Formation processes of these ions were traced by density functional theory calculations. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26149109

  11. Determination of nitrogen monoxide in high purity nitrogen gas with an atmospheric pressure ionization mass spectrometer

    NASA Technical Reports Server (NTRS)

    Kato, K.

    1985-01-01

    An atmospheric pressure ionization mass spectrometric (API-MS) method was studied for the determination of residual NO in high purity N2 gas. The API-MS is very sensitive to NO, but the presence of O2 interferes with the NO measurement. Nitrogen gas in cylinders as sample gas was mixed with NO standard gas and/or O2 standard gas, and then introduced into the API-MS. The calibration curves of NO and O2 has linearity in the region of 0 - 2 ppm, but the slopes changed with every cylinder. The effect of O2 on NO+ peak was additive and proportional to O2 concentration in the range of 0 - 0.5 ppm. The increase in NO+ intensity due to O2 was (0.07 - 0.13)%/O2, 1 ppm. Determination of NO and O2 was carried out by the standard addition method to eliminate the influence of variation of slopes. The interference due to O2 was estimated from the product of the O2 concentration and the ratio of slope A to Slope B. Slope A is the change in the NO+ intensity with the O2 concentration. Slope B is the intensity with O2 concentration.

  12. Microfluidic Chip Coupled with Thermal Desorption Atmospheric Pressure Ionization Mass Spectrometry

    PubMed Central

    Chang, Chia-Hsien; Chen, Tsung-Yi; Chen, Yu-Chie

    2014-01-01

    Microfluidic chips have been used as platforms for a diversity of research purposes such as for separation and micro-reaction. One of the suitable detectors for microfluidic chip is mass spectrometry. Because microfluidic chips are generally operated in an open air condition, mass spectrometry coupled with atmospheric pressure ion sources can suit the requirement with minimum compromise. In this study, we develop a new interface to couple a microfluidic chip with mass spectrometry. A capillary tip coated with a layer of graphite, capable of absorbing energy of near-infrared (NIR) light is used to interface microfluidic chip with mass spectrometry. An NIR laser diode (λ=808 nm) is used to irradiate the capillary tip for assisting the generation of spray from the eluent of the microfluidic chip. An electrospray is provided to fuse with the spray generated from the microfluidic chip for post-ionization. Transesterification is used as the example to demonstrate the feasibility of using this interface to couple microfluidic chip with mass spectrometry. PMID:26839753

  13. Quantification and remote detection of nitro explosives by helium plasma ionization mass spectrometry (HePI-MS) on a modified atmospheric pressure source designed for electrospray ionization.

    PubMed

    Yang, Zhihua; Pavlov, Julius; Attygalle, Athula B

    2012-07-01

    Helium Plasma Ionization (HePI) generates gaseous negative ions upon exposure of vapors emanating from organic nitro compounds. A simple adaptation converts any electrospray ionization source to a HePI source by passing helium through the sample delivery metal capillary held at a negative potential. Compared with the demands of other He-requiring ambient pressure ionization sources, the consumption of helium by the HePI source is minimal (20-30 ml/min). Quantification experiments conducted by exposing solid deposits to a HePI source revealed that 1 ng of 2,4,6-trinitrotoluene (TNT) on a filter paper (about 0.01 ng/mm(2)) could be detected by this method. When vapor emanating from a 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) sample was subjected to helium plasma ionization mass spectrometry (HePI-MS), a peak was observed at m/z 268 for (RDX●NO(2))(-). This facile formation of NO(2)(-) adducts was noted without the need of any extra additives as dopants. Quantitative evaluations showed RDX detection by HePI-MS to be linear over at least three orders of magnitude. TNT samples placed even 5 m away from the source were detected when the sample headspace vapor was swept by a stream of argon or nitrogen and delivered to the helium plasma ion source via a metal tube. Among the tubing materials investigated, stainless steel showed the best performance for sample delivery. A system with a copper tube, and air as the carrier gas, for example, failed to deliver any detectable amount of TNT to the source. In fact, passing over hot copper appears to be a practical way of removing TNT or other nitroaromatics from ambient air. PMID:22791251

  14. Specific interaction between negative atmospheric ions and organic compounds in atmospheric pressure corona discharge ionization mass spectrometry.

    PubMed

    Sekimoto, Kanako; Sakai, Mami; Takayama, Mitsuo

    2012-06-01

    The interaction between negative atmospheric ions and various types of organic compounds were investigated using atmospheric pressure corona discharge ionization (APCDI) mass spectrometry. Atmospheric negative ions such as O(2)(-), HCO(3)(-), COO(-)(COOH), NO(2)(-), NO(3)(-), and NO(3)(-)(HNO(3)) having different proton affinities served as the reactant ions for analyte ionization in APCDI in negative-ion mode. The individual atmospheric ions specifically ionized aliphatic and aromatic compounds with various functional groups as atmospheric ion adducts and deprotonated analytes. The formation of the atmospheric ion adducts under certain discharge conditions is most likely attributable to the affinity between the analyte and atmospheric ion and the concentration of the atmospheric ion produced under these conditions. The deprotonated analytes, in contrast, were generated from the adducts of the atmospheric ions with higher proton affinity attributable to efficient proton abstraction from the analyte by the atmospheric ion. PMID:22528201

  15. Desorption/ionization of acrylamide in aqueous solutions in atmospheric pressure air using a microdischarge with vortex focusing of ions

    NASA Astrophysics Data System (ADS)

    Pervukhin, V. V.; Sheven', D. G.

    2014-09-01

    A method of desorption/ionization in a microdischarge with ion vortex focusing (vortex focusing microdischarge, VFM) is suggested. A glow microdischarge is initiated in an air flow, and resulting ions act on the surface of interest. As a model compound, an aqueous solution of acrylamide is taken. Desorption/ionization taking place under atmospheric pressure is followed by the mass-spectrometric identification of the ions. The operating parameters of the VFM system are studied and optimized. Upon optimization of the system, the detection limit of acrylamide trace amounts in aqueous solutions is determined using the suggested method of desorption/ionization and analyte ion focusing with a vortex (swirling) jet. The acrylamide detection limit is found to be 2 × 10-3 g/L.

  16. Understanding the atmospheric pressure ionization of petroleum components: The effects of size, structure, and presence of heteroatoms.

    PubMed

    Huba, Anna Katarina; Huba, Kristina; Gardinali, Piero R

    2016-10-15

    Understanding the composition of crude oil and its changes with weathering is essential when assessing its provenience, fate, and toxicity. High-resolution mass spectrometry (HRMS) has provided the opportunity to address the complexity of crude oil by assigning molecular formulae, and sorting compounds into "classes" based on heteroatom content. However, factors such as suppression effects and discrimination towards certain components severely limit a truly comprehensive mass spectrometric characterization, and, despite the availability of increasingly better mass spectrometers, a complete characterization of oil still represents a major challenge. In order to fully comprehend the significance of class abundances, as well as the nature and identity of compounds detected, a good understanding of the ionization efficiency of the various compound classes is indispensable. The current study, therefore, analyzed model compounds typically found in crude oils by high-resolution mass spectrometry with atmospheric pressure photoionization (APPI), atmospheric pressure chemical ionization (APCI), and electrospray ionization (ESI), in order to provide a better understanding of benefits and drawbacks of each source. The findings indicate that, overall, APPI provides the best results, being able to ionize the broadest range of compounds, providing the best results with respect to ionization efficiencies, and exhibiting the least suppression effects. However, just like in the other two sources, in APPI several factors have shown to affect the ionization efficiency of petroleum model compounds. The main such factor is the presence or absence of functional groups that can be easily protonated/deprotonated, in addition to other factors such as size, methylation level, presence of heteroatoms, and ring structure. Overall, this study evidences the intrinsic limitations and benefits of each of the three sources, and should provide the fundamental knowledge required to expand the power

  17. Formation of Metal-Adducted Analyte Ions by Flame-Induced Atmospheric Pressure Chemical Ionization Mass Spectrometry.

    PubMed

    Cheng, Sy-Chyi; Wang, Chin-Hsiung; Shiea, Jentaie

    2016-05-17

    A flame-induced atmospheric pressure chemical ionization (FAPCI) source, consisting of a miniflame, nebulizer, and heated tube, was developed to ionize analytes. The ionization was performed by reacting analytes with a charged species generated in a flame. A stainless steel needle deposited with saturated alkali chloride solution was introduced into the mini oxyacetylene flame to generate alkali ions, which were reacted with analytes (M) generated in a heated nebulizer. The alkali-adducted 18-crown-6 ether ions, including (M + Li)(+), (M + Na)(+), (M + K)(+), (M + Rb)(+), and (M + Cs)(+), were successfully detected on the FAPCI mass spectra when the corresponding alkali chloride solutions were separately introduced to the flame. When an alkali chloride mixture was introduced, all alkali-adducted analyte ions were simultaneously detected. Their intensity order was as follows: (M + Cs)(+) > (M + Rb)(+) > (M + K)(+) > (M + Na)(+) > (M + Li)(+), and this trend agreed with the lattice energies of alkali chlorides. Besides alkali ions, other transition metal ions such as Ni(+), Cu(+), and Ag(+) were generated in a flame for analyte ionization. Other than metal ions, the reactive species generated in the fossil fuel flame could also be used to ionize analytes, which formed protonated analyte ions (M + H)(+) in positive ion mode and deprotonated analyte ions (M - H)(-) in negative ion mode. PMID:27093572

  18. Body mass index, blood pressure, and glucose and lipid metabolism among permanent and fixed-term workers in the manufacturing industry: a cross-sectional study

    PubMed Central

    2014-01-01

    Background Temporary employment, a precarious form of employment, is recognized as social determinant of poor health. However, evidence supporting precarious employment as a risk factor for health is mainly obtained from subjective data. Studies using objective clinical measurement data in the assessment of health status are limited. This study compared body mass index (BMI), lipid and glucose metabolism, and health-related lifestyle factors between permanent workers and fixed-term workers employed in the manufacturing industry. Methods Data of 1,701 male manufacturing industry workers <50 years old in Japan were collected and analyzed. Anthropometric data were BMI, calculated using measured height and weight of study participants, and blood pressure. For lipid metabolism, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and triglyceride levels were determined. For glucose metabolism, fasting plasma glucose and hemoglobin A1c (HbA1c) levels were measured. Multiple regression analysis adjusted for age and lifestyle factors was performed. Results BMI was significantly higher in permanent workers (22.9 kg/m2) compared with fixed-term workers (22.4 kg/m2). The leaner population (BMI < 18.5) was greater among fixed-term workers (8.3%) compared with permanent workers (4.0%), whereas the overweight population (BMI ≥ 25.0) was greater among permanent workers (21.4%) compared with fixed-term workers (18.1%). Although fixed-term workers tended not to be overweight, regression analysis adjusted for age and lifestyle factors suggested that fixed-term employment was significantly associated with higher blood pressure (systolic β = 2.120, diastolic β = 2.793), triglyceride (β = 11.147), fasting blood glucose (β = 2.218), and HbA1c (β = 0.107) compared with permanent workers (all p < 0.01). Conclusions Fixed-term workers showed more health risks, such as poorer blood pressure and lipid and glucose metabolism

  19. Probe electrospray ionization (PESI) mass spectrometry with discontinuous atmospheric pressure interface (DAPI).

    PubMed

    Hiraoka, Kenzo; Usmanov, Dilshadbek T; Chen, Lee Chuin; Ninomiya, Satoshi; Mandal, Mridul K; Saha, Subhrakanti

    2015-01-01

    Probe electrospray ionization (PESI) using a 0.2 mm outside diameter titanium wire was performed and the generated ions were introduced into the mass spectrometer via a discontinuous atmospheric pressure interface using a pinch valve. Time-lapse PESI mass spectra were acquired by gradually increasing delay time for the pinch valve opening with respect to the start of each electrospray event when a high voltage was applied. The opening time of the pinch valve was 20 ms. Time-resolved PESI mass spectra showed marked differences for 10 mM NaCl, 10(-5) M gramicidin S and insulin in H(2)O/CH(3)OH/CH(3)COOH/CH(3)COONH(4) (65/35/1) with and without the addition of 10 mM CH(3)COONH(4). This was ascribed to the pH change of the liquid attached to the needle caused by electrochemical reactions taking place at the interface between the metal probe and the solution. NaCl cluster ions appeared only after the depletion of analytes. For the mixed solution of 10(-5) M cytochrome c, insulin, and gramicidin S in H(2)O/CH(3)OH/CH(3)COOH (65/35/1), a sequential appearance of analyte ions in the order of cytochrome c→insulin→gramicidin S was observed. The present technique was applied to three narcotic samples; methamphetamine, morphine and codeine. Limits of detection for these compounds were 10 ppb in H(2)O/CH(3)OH (1/1) for the single sampling with a pinch valve opening time of 200 ms. PMID:26307713

  20. Supercritical fluid chromatography coupled with in-source atmospheric pressure ionization hydrogen/deuterium exchange mass spectrometry for compound speciation.

    PubMed

    Cho, Yunju; Choi, Man-Ho; Kim, Byungjoo; Kim, Sunghwan

    2016-04-29

    An experimental setup for the speciation of compounds by hydrogen/deuterium exchange (HDX) with atmospheric pressure ionization while performing chromatographic separation is presented. The proposed experimental setup combines the high performance supercritical fluid chromatography (SFC) system that can be readily used as an inlet for mass spectrometry (MS) and atmospheric pressure photo ionization (APPI) or atmospheric pressure chemical ionization (APCI) HDX. This combination overcomes the limitation of an approach using conventional liquid chromatography (LC) by minimizing the amount of deuterium solvents used for separation. In the SFC separation, supercritical CO2 was used as a major component of the mobile phase, and methanol was used as a minor co-solvent. By using deuterated methanol (CH3OD), AP HDX was achieved during SFC separation. To prove the concept, thirty one nitrogen- and/or oxygen-containing standard compounds were analyzed by SFC-AP HDX MS. The compounds were successfully speciated from the obtained SFC-MS spectra. The exchange ions were observed with as low as 1% of CH3OD in the mobile phase, and separation could be performed within approximately 20min using approximately 0.24 mL of CH3OD. The results showed that SFC separation and APPI/APCI HDX could be successfully performed using the suggested method. PMID:27020885

  1. IONIZATION PARAMETER AS A DIAGNOSTIC OF RADIATION AND WIND PRESSURES IN H II REGIONS AND STARBURST GALAXIES

    SciTech Connect

    Yeh, Sherry C. C.; Matzner, Christopher D.

    2012-10-01

    The ionization parameter U is potentially useful as a tool to measure radiation pressure feedback from massive star clusters, as it directly reflects the ratio of radiation to gas pressure and is readily derived from mid-infrared line ratios. We consider a number of physical effects which combine to determine the apparent value of U in observations encompassing one or many H II regions. An upper limit is set by the compression of gas by radiation pressure, when this is important. The pressure of shocked stellar winds and the presence of neutral clumps both tend to reduce U for a given intensity of irradiation. The most intensely irradiated regions are selectively dimmed by internal dust absorption of ionizing photons, leading to a bias for observations on galactic scales. We explore these effects in analytical and numerical models for dusty H II regions and use them to interpret previous observational results. We find that radiation pressure confinement sets the upper limit log{sub 10}U{approx_equal}-1 seen in individual regions. Unresolved starbursts are known to display a maximum value of {approx_equal} - 2.3. While lower, this is also consistent with a large portion of their H II regions being radiation pressure dominated, given the different technique used to interpret unresolved regions, and given the bias caused by dust absorption. We infer that many individual, strongly illuminated regions cannot be significantly overpressured by stellar winds, and that even when averaged on galactic scales, the shocked wind pressure cannot be large compared to radiation pressure. Therefore, most H II regions cannot be adiabatic wind bubbles. Our models imply a metallicity dependence in the physical structure and dust attenuation of radiation-dominated regions, both of which should vary strongly across a critical metallicity of about one-twentieth solar.

  2. Ionization Parameter as a Diagnostic of Radiation and Wind Pressures in H II Regions and Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Yeh, Sherry C. C.; Matzner, Christopher D.

    2012-10-01

    The ionization parameter {\\cal U} is potentially useful as a tool to measure radiation pressure feedback from massive star clusters, as it directly reflects the ratio of radiation to gas pressure and is readily derived from mid-infrared line ratios. We consider a number of physical effects which combine to determine the apparent value of {\\cal U} in observations encompassing one or many H II regions. An upper limit is set by the compression of gas by radiation pressure, when this is important. The pressure of shocked stellar winds and the presence of neutral clumps both tend to reduce {\\cal U} for a given intensity of irradiation. The most intensely irradiated regions are selectively dimmed by internal dust absorption of ionizing photons, leading to a bias for observations on galactic scales. We explore these effects in analytical and numerical models for dusty H II regions and use them to interpret previous observational results. We find that radiation pressure confinement sets the upper limit log _{10} {\\cal U}\\simeq -1 seen in individual regions. Unresolved starbursts are known to display a maximum value of ~= - 2.3. While lower, this is also consistent with a large portion of their H II regions being radiation pressure dominated, given the different technique used to interpret unresolved regions, and given the bias caused by dust absorption. We infer that many individual, strongly illuminated regions cannot be significantly overpressured by stellar winds, and that even when averaged on galactic scales, the shocked wind pressure cannot be large compared to radiation pressure. Therefore, most H II regions cannot be adiabatic wind bubbles. Our models imply a metallicity dependence in the physical structure and dust attenuation of radiation-dominated regions, both of which should vary strongly across a critical metallicity of about one-twentieth solar.

  3. Influence of field emission on the propagation of cylindrical fast ionization wave in atmospheric-pressure nitrogen

    NASA Astrophysics Data System (ADS)

    Levko, Dmitry; Raja, Laxminarayan L.

    2016-04-01

    The influence of field emission of electrons from surfaces on the fast ionization wave (FIW) propagation in high-voltage nanosecond pulse discharge in the atmospheric-pressure nitrogen is studied by a one-dimensional Particle-in-Cell Monte Carlo Collisions model. A strong influence of field emission on the FIW dynamics and plasma parameters is obtained. Namely, the accounting for the field emission makes possible the bridging of the cathode-anode gap by rather dense plasma (˜1013 cm-3) in less than 1 ns. This is explained by the generation of runaway electrons from the field emitted electrons. These electrons are able to cross the entire gap pre-ionizing it and promoting the ionization wave propagation. We have found that the propagation of runaway electrons through the gap cannot be accompanied by the streamer propagation, because the runaway electrons align the plasma density gradients. In addition, we have obtained that the field enhancement factor allows controlling the speed of ionization wave propagation.

  4. Benzylammonium Thermometer Ions: Internal Energies of Ions Formed by Low Temperature Plasma and Atmospheric Pressure Chemical Ionization

    NASA Astrophysics Data System (ADS)

    Stephens, Edward R.; Dumlao, Morphy; Xiao, Dan; Zhang, Daming; Donald, William A.

    2015-12-01

    The extent of internal energy deposition upon ion formation by low temperature plasma and atmospheric pressure chemical ionization was investigated using novel benzylammonium thermometer ions. C-N heterolytic bond dissociation enthalpies of nine 4-substituted benzylammoniums were calculated using CAM-B3LYP/6-311++G(d,p), which was significantly more accurate than B3LYP/6-311++G(d,p), MP2/6-311++G(d,p), and CBS-QB3 for calculating the enthalpies of 20 heterolytic dissociation reactions that were used to benchmark theory. All 4-substituted benzylammonium thermometer ions fragmented by a single pathway with comparable dissociation entropies, except 4-nitrobenzylammonium. Overall, the extent of energy deposition into ions formed by low temperature plasma was significantly lower than those formed by atmospheric pressure chemical ionization under these conditions. Because benzylamines are volatile, this new suite of thermometer ions should be useful for investigating the extent of internal energy deposition during ion formation for a wide range of ionization methods, including plasma, spray and laser desorption-based techniques.

  5. Benzylammonium Thermometer Ions: Internal Energies of Ions Formed by Low Temperature Plasma and Atmospheric Pressure Chemical Ionization.

    PubMed

    Stephens, Edward R; Dumlao, Morphy; Xiao, Dan; Zhang, Daming; Donald, William A

    2015-12-01

    The extent of internal energy deposition upon ion formation by low temperature plasma and atmospheric pressure chemical ionization was investigated using novel benzylammonium thermometer ions. C-N heterolytic bond dissociation enthalpies of nine 4-substituted benzylammoniums were calculated using CAM-B3LYP/6-311++G(d,p), which was significantly more accurate than B3LYP/6-311++G(d,p), MP2/6-311++G(d,p), and CBS-QB3 for calculating the enthalpies of 20 heterolytic dissociation reactions that were used to benchmark theory. All 4-substituted benzylammonium thermometer ions fragmented by a single pathway with comparable dissociation entropies, except 4-nitrobenzylammonium. Overall, the extent of energy deposition into ions formed by low temperature plasma was significantly lower than those formed by atmospheric pressure chemical ionization under these conditions. Because benzylamines are volatile, this new suite of thermometer ions should be useful for investigating the extent of internal energy deposition during ion formation for a wide range of ionization methods, including plasma, spray and laser desorption-based techniques. Graphical Abstract ᅟ. PMID:26438128

  6. 49 CFR 173.302b - Additional requirements for shipment of non-liquefied (permanent) compressed gases in UN pressure...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... may the internal pressure at 65 °C (149 °F) exceed the test pressure. (c) Fluorine, compressed, UN 1045 and Oxygen difluoride, compressed, UN 2190. Fluorine, compressed and Oxygen difluoride,...

  7. 49 CFR 173.302b - Additional requirements for shipment of non-liquefied (permanent) compressed gases in UN pressure...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... may the internal pressure at 65 °C (149 °F) exceed the test pressure. (c) Fluorine, compressed, UN 1045 and Oxygen diflouride, compressed, UN 2190. Fluorine, compressed and Oxygen difluoride,...

  8. 49 CFR 173.302b - Additional requirements for shipment of non-liquefied (permanent) compressed gases in UN pressure...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... may the internal pressure at 65 °C (149 °F) exceed the test pressure. (c) Fluorine, compressed, UN 1045 and Oxygen difluoride, compressed, UN 2190. Fluorine, compressed and Oxygen difluoride,...

  9. 49 CFR 173.302b - Additional requirements for shipment of non-liquefied (permanent) compressed gases in UN pressure...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... may the internal pressure at 65 °C (149 °F) exceed the test pressure. (c) Fluorine, compressed, UN 1045 and Oxygen difluoride, compressed, UN 2190. Fluorine, compressed and Oxygen difluoride,...

  10. 49 CFR 173.302b - Additional requirements for shipment of non-liquefied (permanent) compressed gases in UN pressure...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... may the internal pressure at 65 °C (149 °F) exceed the test pressure. (c) Fluorine, compressed, UN 1045 and Oxygen diflouride, compressed, UN 2190. Fluorine, compressed and Oxygen difluoride,...

  11. Ionization dynamics in the laser plasma in a low pressure gas target

    NASA Astrophysics Data System (ADS)

    Demidov, R. A.; Kalmykov, S. G.; Mozharov, A. M.; Petrenko, M. V.; Sasin, M. E.

    2012-11-01

    In Xe-laser-plasma short-wave-radiation sources, the laser-energy-to-EUV conversion efficiency (CE) turns out to be substantially lower than theoretical expectations. An estimation made in the present work is evidence of what a long period of the primary ionization, lasting up to a moment when high- Z ions appear to emit short-wave photons, can be considered as a main cause for the low CE values. During that period the plasma remains low-ionized and absorbs weakly the laser energy. Data deduced from laser light absorption measurements confirm the estimation above. A preionization of the gas target with the UV excimer laser pulse is proposed as a method to accelerate the ionization process.

  12. Atmospheric Pressure Chemical Ionization Sources Used in The Detection of Explosives by Ion Mobility Spectrometry

    SciTech Connect

    Waltman, Melanie J.

    2010-05-01

    Explosives detection is a necessary and wide spread field of research. From large shipping containers to airline luggage, numerous items are tested for explosives every day. In the area of trace explosives detection, ion mobility spectrometry (IMS) is the technique employed most often because it is a quick, simple, and accurate way to test many items in a short amount of time. Detection by IMS is based on the difference in drift times of product ions through the drift region of an IMS instrument. The product ions are created when the explosive compounds, introduced to the instrument, are chemically ionized through interactions with the reactant ions. The identity of the reactant ions determines the outcomes of the ionization process. This research investigated the reactant ions created by various ionization sources and looked into ways to manipulate the chemistry occurring in the sources.

  13. Potential of gas chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry for screening and quantification of hexabromocyclododecane.

    PubMed

    Sales, Carlos; Portolés, Tania; Sancho, Juan Vicente; Abad, Esteban; Ábalos, Manuela; Sauló, Jordi; Fiedler, Heidelore; Gómara, Belén; Beltrán, Joaquim

    2016-01-01

    A fast method for the screening and quantification of hexabromocyclododecane (sum of all isomers) by gas chromatography using a triple quadrupole mass spectrometer with atmospheric pressure chemical ionization (GC-APCI-QqQ) is proposed. This novel procedure makes use of the soft atmospheric pressure chemical ionization source, which results in less fragmentation of the analyte than by conventional electron impact (EI) and chemical ionization (CI) sources, favoring the formation of the [M - Br](+) ion and, thus, enhancing sensitivity and selectivity. Detection was based on the consecutive loses of HBr from the [M - Br](+) ion to form the specific [M - H5Br6](+) and [M - H4Br5](+) ions, which were selected as quantitation (Q) and qualification (q) transitions, respectively. Parameters affecting ionization and MS/MS detection were studied. Method performance was also evaluated; calibration curves were found linear from 1 pg/μL to 100 pg/μL for the total HBCD concentration; instrumental detection limit was estimated to be 0.10 pg/μL; repeatability and reproducibility, expressed as relative standard deviation, were better than 7% in both cases. The application to different real samples [polyurethane foam disks (PUFs), food, and marine samples] pointed out a rapid way to identify and allow quantification of this compound together with a number of polybrominated diphenyl ethers (BDE congeners 28, 47, 66, 85, 99, 100, 153, 154, 183, 184, 191, 196, 197, and 209) and two other novel brominated flame retardants [i.e., decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE)] because of their presence in the same fraction when performing the usual sample treatment. PMID:26554601

  14. Plasma-spray ionization (PLASI): a multimodal atmospheric pressure ion source for liquid stream analysis.

    PubMed

    Kaylor, Adam; Dwivedi, Prabha; Pittman, Jennifer J; Monge, María Eugenia; Cheng, Guilong; Li, Shelly; Fernández, Facundo M

    2014-10-01

    A new ion generation method, named plasma-spray ionization (PLASI) for direct analysis of liquid streams, such as in continuous infusion experiments or liquid chromatography (LC), is reported. PLASI addresses many of the analytical limitations of electrospray ionization (ESI) and has potential for real time process stream analysis and reaction monitoring under atmospheric conditions in non-ESI friendly scenarios. In PLASI-mass spectrometry (MS), the liquid stream is pneumatically nebulized and partially charged at low voltages; the resultant aerosol is thus entrained with a gaseous plasma plume from a distal glow discharge prior to MS detection. PLASI-MS not only overcomes ESI-MS limitations but also generates simpler mass spectra with minimal adduct and cluster formation. PLASI utilizes the atomization capabilities of an ESI sprayer operated below the ESI threshold to generate gas-phase aerosols that are then ionized by the plasma stream. When operated at or above the ESI threshold, ionization by traditional ESI mechanisms is achieved. The multimodal nature of the technique enables readily switching between plasma and ESI operation. It is expected that PLASI will enable analyzing a wide range of analytes in complex matrices and less-restricted solvent systems, providing more flexibility than that achievable by ESI alone. PMID:25001384

  15. A corona discharge atmospheric pressure chemical ionization source with selective NO(+) formation and its application for monoaromatic VOC detection.

    PubMed

    Sabo, Martin; Matejčík, Štefan

    2013-11-21

    We have developed a new type of corona discharge (CD) for atmospheric pressure chemical ionization (APCI) for application in ion mobility spectrometry (IMS) as well as in mass spectrometry (MS). While the other CD-APCI sources are able to generate H3O(+)·(H2O)n as the major reactant ions in N2 or in zero air, the present CD-APCI source has the ability to generate up to 84% NO(+)·(H2O)n reactant ions in zero air. The change of the working gas from zero air to N2 allows us to change the major reactant ions from NO(+)·(H2O)n to H3O(+)·(H2O)n. In this paper we present the description of the new CD-APCI and discuss the processes associated with the NO(+) formation. The selective formation of NO(+)·(H2O)n reactant ions offers chemical ionization based on these ions which can be of great advantage for some classes of chemicals. We demonstrate here a significant increase in the sensitivity of the IMS-MS instrument for monoaromatic volatile organic compound (VOC) detection upon NO(+)·(H2O)n chemical ionization. PMID:24081306

  16. On-line characterization of organic aerosols formed from biogenic precursors using atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Kückelmann, U; Warscheid, B; Hoffmann, T

    2000-04-15

    A method to investigate the chemical composition of organic aerosols formed from biogenic hydrocarbon oxidation using atmospheric pressure chemical ionization mass spectrometry (APCI/MS) is described. The method involves the direct introduction of aerosol particles into the ion source of the mass spectrometer. Using this technique, reaction monitoring experiments of alpha-pinene ozonolysis show the formation of hetero- and homomolecular cluster anions (dimers) of the primary oxidation products (multifunctional carboxylic acids). Since the formation of dimers plays a profound role in new particle formation processes by homogeneous nucleation in the atmosphere and, at the same time, is an intrinsic feature of APCI, it is essential to differentiate between both processes when on-line APCI/MS is applied. In this paper, we compare the results from the investigations of organic aerosols and artificially generated dimer cluster ions of the same compounds using identical ionization conditions. The clusters and their formation processes are characterized by varying the analyte concentration, investigating the thermal stability of dimers, and studying collisional activation properties of both ion species. The investigations show a significant difference in ion stability: dimer anions measured on-line have an estimated stability that is 20 kJ mol(-1) higher than that of the corresponding artificially generated cluster ions. Hence, the technique provides the possibility to accurately characterize dimers as ionized reaction products from biogenic hydrocarbon oxidation and allows an insight into the process of new-particle formation by homogeneous nucleation. PMID:10784160

  17. SFC-APLI-(TOF)MS: Hyphenation of Supercritical Fluid Chromatography to Atmospheric Pressure Laser Ionization Mass Spectrometry.

    PubMed

    Klink, Dennis; Schmitz, Oliver Johannes

    2016-01-01

    Atmospheric-pressure laser ionization mass spectrometry (APLI-MS) is a powerful method for the analysis of polycyclic aromatic hydrocarbon (PAH) molecules, which are ionized in a selective and highly sensitive way via resonance-enhanced multiphoton ionization. APLI was presented in 2005 and has been hyphenated successfully to chromatographic separation techniques like high performance liquid chromatography (HPLC) and gas chromatography (GC). In order to expand the portfolio of chromatographic couplings to APLI, a new hyphenation setup of APLI and supercritical-fluid chromatography (SFC) was constructed and aim of this work. Here, we demonstrate the first hyphenation of SFC and APLI in a simple designed way with respect to different optimization steps to ensure a sensitive analysis. The new setup permits qualitative and quantitative determination of native and also more polar PAH molecules. As a result of the altered ambient characteristics within the source enclosure, the quantification of 1-hydroxypyrene (1-HP) in human urine is possible without prior derivatization. The limit of detection for 1-HP by SFC-APLI-TOF(MS) was found to be 0.5 μg L(-1), which is lower than the 1-HP concentrations found in exposed persons. PMID:26633261

  18. Athabasca oil sands process water: characterization by atmospheric pressure photoionization and electrospray ionization fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Barrow, Mark P; Witt, Matthias; Headley, John V; Peru, Kerry M

    2010-05-01

    The Athabasca oil sands in Canada are a less conventional source of oil which have seen rapid development. There are concerns about the environmental impact, with particular respect to components in oil sands process water which may enter the aquatic ecosystem. Naphthenic acids have been previously targeted for study, due to their implications in toxicity toward aquatic wildlife, but it is believed that other components, too, contribute toward the potential toxicity of the oil sands process water. When mass spectrometry is used, it is necessary to use instrumentation with a high resolving power and mass accuracy when studying complex mixtures, but the technique has previously been hindered by the range of compounds that have been accessible via common ionization techniques, such as electrospray ionization. The research described here applied Fourier transform ion cyclotron resonance mass spectrometry in conjunction with electrospray ionization and atmospheric pressure photoionization, in both positive-ion and negative-ion modes, to the characterization of oil sands process water for the first time. The results highlight the need for broader characterization when investigating toxic components within oil sands process water. PMID:20359201

  19. Studies of the mechanism of the cluster formation in a thermally sampling atmospheric pressure ionization mass spectrometer

    SciTech Connect

    Albrecht, Sascha Stroh, Fred; Klopotowski, Sebastian Derpmann, Valerie Klee, Sonja Brockmann, Klaus J. Benter, Thorsten

    2014-01-15

    In this study a thermally sampling atmospheric pressure ionization mass spectrometer is described and characterized. The ion transfer stage offers the capability to sample cluster ions at thermal equilibrium and during this transfer fundamental processes possibly affecting the cluster distribution are also readily identified. Additionally, the transfer stage combines optional collision-induced dissociation (CID) analysis of the cluster composition with thermal equilibrium sampling of clusters. The performance of the setup is demonstrated with regard to the proton-bound water cluster system. The benefit of the studied processes is that they can help to improve future transfer stages and to understand cluster ion reactions in ion mobility tubes and high-pressure ion sources. In addition, the instrument allows for the identification of fragmentation and protonation reactions caused by CID.

  20. Studies of the mechanism of the cluster formation in a thermally sampling atmospheric pressure ionization mass spectrometer.

    PubMed

    Albrecht, Sascha; Klopotowski, Sebastian; Derpmann, Valerie; Klee, Sonja; Brockmann, Klaus J; Stroh, Fred; Benter, Thorsten

    2014-01-01

    In this study a thermally sampling atmospheric pressure ionization mass spectrometer is described and characterized. The ion transfer stage offers the capability to sample cluster ions at thermal equilibrium and during this transfer fundamental processes possibly affecting the cluster distribution are also readily identified. Additionally, the transfer stage combines optional collision-induced dissociation (CID) analysis of the cluster composition with thermal equilibrium sampling of clusters. The performance of the setup is demonstrated with regard to the proton-bound water cluster system. The benefit of the studied processes is that they can help to improve future transfer stages and to understand cluster ion reactions in ion mobility tubes and high-pressure ion sources. In addition, the instrument allows for the identification of fragmentation and protonation reactions caused by CID. PMID:24517784

  1. The role of non-ionizing radiation pressure in star formation: the stability of cores and filaments

    NASA Astrophysics Data System (ADS)

    Seo, Young Min; Youdin, Andrew N.

    2016-09-01

    Stars form when filaments and dense cores in molecular clouds fragment and collapse due to self-gravity. In the most basic analyses of gravitational stability, the competition between self-gravity and thermal pressure sets the critical (i.e. maximum stable) mass of spheres and the critical line density of cylinders. Previous work has considered additional support from magnetic fields and turbulence. Here, we consider the effects of non-ionizing radiation, specifically the inward radiation pressure force that acts on dense structures embedded in an isotropic radiation field. Using hydrostatic, isothermal models, we find that irradiation lowers the critical mass and line density for gravitational collapse, and can thus act as a trigger for star formation. For structures with moderate central densities, ˜103 cm-3, the interstellar radiation field in the Solar vicinity has an order unity effect on stability thresholds. For more evolved objects with higher central densities, a significant lowering of stability thresholds requires stronger irradiation, as can be found closer to the Galactic centre or near stellar associations. Even when strong sources of ionizing radiation are absent or extincted, our study shows that interstellar irradiation can significantly influence the star formation process.

  2. The Role of Non-ionizing Radiation Pressure in Star Formation: The Stability of Cores and Filaments

    NASA Astrophysics Data System (ADS)

    Seo, Young Min; Youdin, Andrew N.

    2016-06-01

    Stars form when filaments and dense cores in molecular clouds fragment and collapse due to self-gravity. In the most basic analyses of gravitational stability, the competition between self-gravity and thermal pressure sets the critical (i.e. maximum stable) mass of spheres and the critical line density of cylinders. Previous work has considered additional support from magnetic fields and turbulence. Here, we consider the effects of non-ionizing radiation, specifically the inward radiation pressure force that acts on dense structures embedded in an isotropic radiation field. Using hydrostatic, isothermal models, we find that irradiation lowers the critical mass and line density for gravitational collapse, and can thus act as a trigger for star formation. For structures with moderate central densities, ˜103 cm-3, the interstellar radiation field in the Solar vicinity has an order unity effect on stability thresholds. For more evolved objects with higher central densities, a significant lowering of stability thresholds requires stronger irradiation, as can be found closer to the Galactic center or near stellar associations. Even when strong sources of ionizing radiation are absent or extincted, our study shows that interstellar irradiation can significantly influence the star formation process.

  3. Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry.

    PubMed

    Nemes, Peter; Vertes, Akos

    2007-11-01

    Mass spectrometric analysis of biomolecules under ambient conditions promises to enable the in vivo investigation of diverse biochemical changes in organisms with high specificity. Here we report on a novel combination of infrared laser ablation with electrospray ionization (LAESI) as an ambient ion source for mass spectrometry. As a result of the interactions between the ablation plume and the spray, LAESI accomplishes electrospray-like ionization. Without any sample preparation or pretreatment, this technique was capable of detecting a variety of molecular classes and size ranges (up to 66 kDa) with a detection limit of 8 and 25 fmol for verapamil and reserpine, respectively, and quantitation capabilities with a four-decade dynamic range. We demonstrated the utility of LAESI in a broad variety of applications ranging from plant biology to clinical analysis. Proteins, lipids, and metabolites were identified, and antihistamine excretion was followed via the direct analysis of bodily fluids (urine, blood, and serum). We also performed in vivo spatial profiling (on leaf, stem, and root) of metabolites in a French marigold (Tagetes patula) seedling. PMID:17900146

  4. Atmospheric pressure ionization of chlorinated ethanes in ion mobility spectrometry and mass spectrometry

    SciTech Connect

    Ewing, Robert G.; Atkinson, David A.; Benson, Michael T.

    2015-05-16

    This study investigates the APCI mechanisms associated with chlorinated ethanes in an attempt to define conditions under which unique pseudo-molecular adducts, in addition to chloride ion, can be produced for analytical measurements using IMS and MS. The ionization chemistry of chlorinated compounds typically leads to the detection of only the halide ions. Using molecular modeling, which provides insights into the ion formation and relative binding energies, predictions for the formation of pseudo-molecular adducts are postulated. Predicted structures of the chloride ion with multiple hydrogens on the ethane backbone was supported by the observation of specific pseudo-molecular adducts in IMS and MS spectra. With the proper instrumental conditions, such as short reaction times and low temp.

  5. Atmospheric-pressure ionization: New approaches and applications for plasmas in contact with liquids

    NASA Astrophysics Data System (ADS)

    Go, D. B.

    2015-10-01

    Historically, gas discharges have been difficult to stabilize at atmospheric pressure, and this has confined them to operation at low pressure under vacuum conditions. However, recent advances in plasma technology have enabled stable high pressure gas discharges up to and even exceeding atmospheric pressure. One significant advantage of operating at atmospheric pressure is that the plasma can be brought into contact with non-conventional substrates, especially soft materials such as plastics, biological tissue, and aqueous solutions. This last example is of prime interest as plasma/liquid interactions have a number of important implications in applications ranging from water purification to plasma medicine. In this paper, recent work studying the impact of electrons in the plasma inducing reactions in aqueous solutions is discussed. These studies include measurements of the bulk solution as the electrons induce long-lived species as well as interfacial measurements directly at the plasma/liquid interface to probe the behaviour of electrons traversing from the plasma into the liquid.

  6. Kinetic modeling of evolution of 3 + 1:Resonance enhanced multiphoton ionization plasma in argon at low pressures

    SciTech Connect

    Tholeti, Siva Sashank; Alexeenko, Alina A.; Shneider, Mikhail N.

    2014-06-15

    We present numerical kinetic modeling of generation and evolution of the plasma produced as a result of resonance enhanced multiphoton ionization (REMPI) in Argon gas. The particle-in-cell/Monte Carlo collision (PIC/MCC) simulations capture non-equilibrium effects in REMPI plasma expansion by considering the major collisional processes at the microscopic level: elastic scattering, electron impact ionization, ion charge exchange, and recombination and quenching for metastable excited atoms. The conditions in one-dimensional (1D) and two-dimensional (2D) formulations correspond to known experiments in Argon at a pressure of 5 Torr. The 1D PIC/MCC calculations are compared with the published results of local drift-diffusion model, obtained for the same conditions. It is shown that the PIC/MCC and diffusion-drift models are in qualitative and in reasonable quantitative agreement during the ambipolar expansion stage, whereas significant non-equilibrium exists during the first few 10 s of nanoseconds. 2D effects are important in the REMPI plasma expansion. The 2D PIC/MCC calculations produce significantly lower peak electron densities as compared to 1D and show a better agreement with experimentally measured microwave radiation scattering.

  7. Gas Chromatography Coupled to Atmospheric Pressure Chemical Ionization FT-ICR Mass Spectrometry for Improvement of Data Reliability.

    PubMed

    Schwemer, Theo; Rüger, Christopher P; Sklorz, Martin; Zimmermann, Ralf

    2015-12-15

    Atmospheric pressure chemical ionization (APCI) offers the advantage of molecular ion information with low fragmentation. Hyphenating APCI to gas chromatography (GC) and ultrahigh resolution mass spectrometry (FT-ICR MS) enables an improved characterization of complex mixtures. Data amounts acquired by this system are very huge, and existing peak picking algorithms are usually extremely time-consuming, if both gas chromatographic and ultrahigh resolution mass spectrometric data are concerned. Therefore, automatic routines are developed that are capable of handling these data sets and further allow the identification and removal of known ionization artifacts (e.g., water- and oxygen-adducts, demethylation, dehydrogenation, and decarboxylation). Furthermore, the data quality is enhanced by the prediction of an estimated retention index, which is calculated simply from exact mass data combined with a double bond equivalent correction. This retention index is used to identify mismatched elemental compositions. The approach was successfully tested for analysis of semivolatile components in heavy fuel oil and diesel fuel as well as primary combustion particles emitted by a ship diesel research engine. As a result, 10-28% of the detected compounds, mainly low abundant species, classically assigned by using only the mass spectrometric information, were identified as not valid and removed. Although GC separation is limited by the slow acquisition rate of the FT-ICR MS (<1 Hz), a database driven retention time comparison, as commonly used for low resolution GC/MS, can be applied for revealing isomeric information. PMID:26560682

  8. Analysis of psychoactive cathinones and tryptamines by electrospray ionization atmospheric pressure ion mobility time-of-flight mass spectrometry.

    PubMed

    Kanu, A Bakarr; Brandt, Simon D; Williams, Mike D; Zhang, Nancy; Hill, Herbert H

    2013-09-17

    The ability to use positive ion monitoring mode with an atmospheric pressure ion mobility time-of-flight mass spectrometer (APIM(tof)MS) to detect psychoactive cathinones and tryptamines from aqueous phase samples was evaluated. The study used a traditional electrospray ionization (ESI) source for sample introduction and ionization. A total of four cathinones (mephedrone, butylone, 4-Me-PPP, and 4-MEC) and five tryptamines (5-EtO-DPT, 5-EtO-DALT, 5-EtO-MIPT, 5-EtO-ALCHT, and 5-EtO-2MALET) were investigated, and we report on parent ions, collision induced dissociation (CID) fragment ions, reduced mobility (Ko), mass flight times, and detection limits obtained from a single instrument run for the psychoactive substances. Detection limits reported ranged from 3 to 11 μM concentration for the compounds studied. This detection limit range corresponded to 1-5 ng of material needed for improved detection on the instrument. This article demonstrates that it was possible to use a single instrument platform for the separation, detection, and identification of cathinones and tryptamines in less than 1 min. The application holds great promise for detecting and identifying a new class of drugs often referred to as "bath salts" or "legal highs" distributed over the Internet. PMID:23875808

  9. Comparative analysis of different plant oils by high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Jakab, Annamaria; Héberger, Károly; Forgács, Esther

    2002-11-01

    Different vegetable oil samples (almond, avocado, corngerm, grapeseed, linseed, olive, peanut, pumpkin seed, soybean, sunflower, walnut, wheatgerm) were analyzed using high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. A gradient elution technique was applied using acetone-acetonitrile eluent systems on an ODS column (Purospher, RP-18e, 125 x 4 mm, 5 microm). Identification of triacylglycerols (TAGs) was based on the pseudomolecular ion [M+1]+ and the diacylglycerol fragments. The positional isomers of triacylglycerol were identified from the relative intensities of the [M-RCO2]+ fragments. Linear discriminant analysis (LDA) as a common multivariate mathematical-statistical calculation was successfully used to distinguish the oils based on their TAG composition. LDA showed that 97.6% of the samples were classified correctly. PMID:12462617

  10. COMSOL Modeling of Transport of Neutral Radicals to Substrate Surfaces Located Downstream from an Atmospheric Pressure Weakly Ionized Plasma Reactor

    NASA Astrophysics Data System (ADS)

    Islam, Rokibul; Lekobou, William; Wemlinger, Erik; Pedrow, Patrick

    2012-10-01

    An Atmospheric Pressure Weakly Ionized Plasma (APWIP) Reactor generates a significant number of charged particles and neutral radicals. In our work the carrier gas is argon and the precursor molecule is acetylene. The APWIP is generated by corona discharges associated with an array of high voltage metal needles facing a grounded metal screen. Neutral radical transport downstream from the grounded screen to the substrate via diffusion and convection will be modeled with COMSOL, a finite element software package. Substrates will include objects with various shapes and characteristic dimensions that range from nanometers to centimeters. After the model is validated against canonical problems with known solutions, thin film deposition rates will be compared with experimentally measured results. Substrate geometries will include discs, spheres, fibers and highly porous surfaces such as those found on asphalt road surfaces. A single generic neutral radical will be used to represent the entire family of neutral radicals resulting from acetylene bond scission by free electron impact.

  11. Atmospheric pressure-thermal desorption (AP-TD)/electrospray ionization-mass spectrometry for the rapid analysis of Bacillus spores.

    PubMed

    Basile, Franco; Zhang, Shaofeng; Shin, Yong-Seung; Drolet, Barbara

    2010-04-01

    A technique is described where an atmospheric pressure-thermal desorption (AP-TD) device and electrospray ionization (ESI)-mass spectrometry (MS) are coupled and used for the rapid analysis of Bacillus subtilis spores in complex matrices. The resulting AP-TD/ESI-MS technique combines the generation of volatile compounds and/or pyrolysis products with soft-ionization MS detection. In the AP-TD/ESI-MS approach, an electrospray solvent plume was used as the ionization vehicle of thermally desorbed neutrals at atmospheric pressure prior to mass spectrometric analysis using a quadrupole ion trap mass spectrometer. The approach is quantitative with the volatile standard dimethyl methylphosphonate (DMMP) and with the use of an internal standard (diethyl methylphosphonate, DEMP). A linear response was obtained as tested in the 1-50 ppm range (R(2) = 0.991) with a standard error of the estimate of 0.193 (0.9% RSD, n = 5). Bacterial spores were detected by performing pyrolysis in situ methylation with the reagent tetramethylammonium hydroxide (TMAH) for the detection of the bacterial spore biomarker dipicolinic acid (DPA) as the dimethylated derivative (2Me-DPA). This approach allowed spore detection even in the presence of growth media in crude lyophilized samples. Repetitive analyses could be performed with a duty cycle of less than 5 min total analysis time (including sample loading, heating and data acquisition). This strategy proved successful over other direct ambient MS approaches like DESI-MS and AP-TD/ESI-MS without the in situ derivatization step to detect the dipicolinic acid biomarker from spores. A detection limit for the dimethylated DPA biomarker was estimated at 1 ppm (equivalent to 0.01 mug of DPA deposited in the thermal desorption tube), which corresponded to a calculated detection limit of 10(5) spores deposited or 0.1% by weight spore composition in solid samples (assuming a 1 mg sample size). The AP-TD/ESI source used in conjunction with the in situ

  12. Dynamics of ionization processes in high-pressure nitrogen, air, and SF6 during a subnanosecond breakdown initiated by runaway electrons

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Beloplotov, D. V.; Lomaev, M. I.

    2015-10-01

    The dynamics of ionization processes in high-pressure nitrogen, air, and SF6 during breakdown of a gap with a nonuniform distribution of the electric field by nanosecond high-voltage pulses was studied experimentally. Measurements of the amplitude and temporal characteristics of a diffuse discharge and its radiation with a subnanosecond time resolution have shown that, at any polarity of the electrode with a small curvature radius, breakdown of the gap occurs via two ionization waves, the first of which is initiated by runaway electrons. For a voltage pulse with an ˜500-ps front, UV radiation from different zones of a diffuse discharge is measured with a subnanosecond time resolution. It is shown that the propagation velocity of the first ionization wave increases after its front has passed one-half of the gap, as well as when the pressure in the discharge chamber is reduced and/or when SF6 is replaced with air or nitrogen. It is found that, at nitrogen pressures of 0.4 and 0.7 MPa and the positive polarity of the high-voltage electrode with a small curvature radius, the ionization wave forms with a larger (˜30 ps) time delay with respect to applying the voltage pulse to the gap than at the negative polarity. The velocity of the second ionization wave propagating from the plane electrode is measured. In a discharge in nitrogen at a pressure of 0.7 MPa, this velocity is found to be ˜10 cm/ns. It is shown that, as the nitrogen pressure increases to 0.7 MPa, the propagation velocity of the front of the first ionization wave at the positive polarity of the electrode with a small curvature radius becomes lower than that at the negative polarity.

  13. Dynamics of ionization processes in high-pressure nitrogen, air, and SF{sub 6} during a subnanosecond breakdown initiated by runaway electrons

    SciTech Connect

    Tarasenko, V. F. Beloplotov, D. V.; Lomaev, M. I.

    2015-10-15

    The dynamics of ionization processes in high-pressure nitrogen, air, and SF{sub 6} during breakdown of a gap with a nonuniform distribution of the electric field by nanosecond high-voltage pulses was studied experimentally. Measurements of the amplitude and temporal characteristics of a diffuse discharge and its radiation with a subnanosecond time resolution have shown that, at any polarity of the electrode with a small curvature radius, breakdown of the gap occurs via two ionization waves, the first of which is initiated by runaway electrons. For a voltage pulse with an ∼500-ps front, UV radiation from different zones of a diffuse discharge is measured with a subnanosecond time resolution. It is shown that the propagation velocity of the first ionization wave increases after its front has passed one-half of the gap, as well as when the pressure in the discharge chamber is reduced and/or when SF{sub 6} is replaced with air or nitrogen. It is found that, at nitrogen pressures of 0.4 and 0.7 MPa and the positive polarity of the high-voltage electrode with a small curvature radius, the ionization wave forms with a larger (∼30 ps) time delay with respect to applying the voltage pulse to the gap than at the negative polarity. The velocity of the second ionization wave propagating from the plane electrode is measured. In a discharge in nitrogen at a pressure of 0.7 MPa, this velocity is found to be ∼10 cm/ns. It is shown that, as the nitrogen pressure increases to 0.7 MPa, the propagation velocity of the front of the first ionization wave at the positive polarity of the electrode with a small curvature radius becomes lower than that at the negative polarity.

  14. Laserspray ionization, a new method for protein analysis directly from tissue at atmospheric pressure with ultrahigh mass resolution and electron transfer dissociation.

    PubMed

    Inutan, Ellen D; Richards, Alicia L; Wager-Miller, James; Mackie, Ken; McEwen, Charles N; Trimpin, Sarah

    2011-02-01

    Laserspray ionization (LSI) mass spectrometry (MS) allows, for the first time, the analysis of proteins directly from tissue using high performance atmospheric pressure ionization mass spectrometers. Several abundant and numerous lower abundant protein ions with molecular masses up to ∼20,000 Da were detected as highly charged ions from delipified mouse brain tissue mounted on a common microscope slide and coated with 2,5-dihydroxyacetophenone as matrix. The ability of LSI to produce multiply charged ions by laser ablation at atmospheric pressure allowed protein analysis at 100,000 mass resolution on an Orbitrap Exactive Fourier transform mass spectrometer. A single acquisition was sufficient to identify the myelin basic protein N-terminal fragment directly from tissue using electron transfer dissociation on a linear trap quadrupole (LTQ) Velos. The high mass resolution and mass accuracy, also obtained with a single acquisition, are useful in determining protein molecular weights and from the electron transfer dissociation data in confirming database-generated sequences. Furthermore, microscopy images of the ablated areas show matrix ablation of ∼15 μm-diameter spots in this study. The results suggest that LSI-MS at atmospheric pressure potentially combines speed of analysis and imaging capability common to matrix-assisted laser desorption/ionization and soft ionization, multiple charging, improved fragmentation, and cross-section analysis common to electrospray ionization. PMID:20855542

  15. Regulated In Situ Generation of Molecular Ions or Protonated Molecules under Atmospheric-Pressure Helium-Plasma-Ionization Mass Spectrometric Conditions

    NASA Astrophysics Data System (ADS)

    Gangam, Rekha; Pavlov, Julius; Attygalle, Athula B.

    2015-07-01

    In an enclosed atmospheric-pressure helium-plasma ionization (HePI) source engulfed with dehumidified ambient gases, molecular cations are generated from compounds such as toluene, bromobenzene, and iodobenzene. Evidently, the ionization is effected by a direct Penning mechanism attributable to interactions of the gas-phase analyte with metastable helium atoms. It is widely known that secondary ions generated from ambient gases also play an important role in the overall ionization process. For example, when the ambient gases bear even traces of moisture, the analytes are ionized by proton transfer reactions with gaseous H3O+. In this study, we demonstrate how a controlled variation of experimental conditions can manipulate the abundance of molecular ions and protonated molecules in a HePI source.

  16. Capillary electrochromatography-atmospheric pressure ionization mass spectrometry of pesticides using a surfactant-bound monolithic column

    PubMed Central

    Gu, Congying; Shamsi, Shahab A.

    2011-01-01

    A surfactant bound poly (11-acrylaminoundecanoic acid-ethylene dimethacrylate) (AAUA-EDMA) monolithic column was simply prepared by in-situ co-polymerization of AAUA and EDMA with 1-propanol, 1,4-butanediol and water as porogens in 100 µm id fused silica capillary in one step. This column was used in capillary electrochromatography (CEC)-atmospheric pressure photoionization (APPI)-mass spectrometry system for separation and detection of N-methylcarbamates (NMCs) pesticides. Numerous parameters are optimized for CEC-APPI-MS. After evaluation of the mobile phase composition, sheath liquid composition and the monolithic capillary outlet position, a fractional factorial design (FFD) was selected as a screening procedure to identify factors of ionization source parameters, such as sheath liquid flow rate, drying gas flow rate, drying gas temperature, nebulizing gas pressure, vaporizer temperature, and capillary voltage, which significantly influence APPI-MS sensitivity. A face-centered central composite design (CCD) was further utilized to optimize the most significant parameters and predict the best sensitivity. Under optimized conditions signal-to-noise ratios (S/N) around 78 were achieved for an injection of 100 ng/mL of each pesticide. Finally, this CEC-APPI-MS method was successfully applied to the analysis of nine NMCs in spiked apple juice sample after solid phase extraction with recoveries in the range of 65 to 109%. PMID:20349511

  17. Simultaneous detection of polar and nonpolar compounds by ambient mass spectrometry with a dual electrospray and atmospheric pressure chemical ionization source.

    PubMed

    Cheng, Sy-Chyi; Jhang, Siou-Sian; Huang, Min-Zong; Shiea, Jentaie

    2015-02-01

    A dual ionization source combining electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) was developed to simultaneously ionize both polar and nonpolar compounds. The source was constructed by inserting a fused silica capillary into a stainless steel column enclosed in a glass tube. A high dc voltage was applied to a methanol solution flowing in the fused silica capillary to generate an ESI plume at the capillary tip. A high ac voltage was applied to a ring electrode attached to the glass tube to generate plasma from the nitrogen gas flowing between the glass tube and the stainless steel column. The concentric arrangement of the ESI plume and the APCI plasma in the source ensured that analytes entering the ionization region interacted with both ESI and APCI primary ion species generated in the source. Because the high voltages required for ESI and APCI were independently applied and controlled, the dual ion source could be operated in ESI-only, APCI-only, or ESI+APCI modes. Analytes were introduced into the ESI and/or APCI plumes by irradiating sample surfaces with a continuous-wavelength laser or a pulsed laser beam. Analyte ions could also be produced by directing the dual ESI+APCI source toward sample surfaces for desorption and ionization. The ionization mechanisms involved in the dual ion source include Penning ionization, ion molecule reactions, and fused-droplet electrospray ionization. Standards of polycyclic aromatic hydrocarbons, angiotensin I, lidocaine, ferrocene, diesel, and rosemary oils were used for testing. Protonated analyte ions were detected in ESI-only mode, radical cations were detected in APCI-only mode, and both types of ions were detected in ESI+APCI mode. PMID:25562530

  18. Hand-held portable desorption atmospheric pressure chemical ionization ion source for in situ analysis of nitroaromatic explosives.

    PubMed

    Jjunju, Fred P M; Maher, Simon; Li, Anyin; Syed, Sarfaraz U; Smith, Barry; Heeren, Ron M A; Taylor, Stephen; Cooks, R Graham

    2015-10-01

    A novel, lightweight (0.6 kg), solvent- and gas-cylinder-free, hand-held ion source based on desorption atmospheric pressure chemical ionization has been developed and deployed for the analysis of nitroaromatic explosives on surfaces in open air, offering portability for in-field analysis. A small, inexpensive, rechargeable lithium polymer battery was used to power the custom-designed circuitry within the device, which generates up to ±5 kV dc voltage to ignite a corona discharge plasma in air for up to 12 h of continuous operation, and allowing positive- and negative-ion mass spectrometry. The generated plasma is pneumatically transported to the surface to be interrogated by ambient air at a rate of 1-3.5 L/min, compressed using a small on-board diaphragm pump. The plasma source allows liquid or solid samples to be examined almost instantaneously without any sample preparation in the open environment. The advantages of low carrier gas and low power consumption (<6 W), as well as zero solvent usage, have aided in developing the field-ready, hand-held device for trigger-based, "near-real-time" sampling/ionization. Individual nitroaromatic explosives (such as 2,4,6-trinitrotoluene) can be easily detected in amounts as low as 5.8 pg with a linear dynamic range of at least 10 (10-100 pg), a relative standard deviation of ca. 7%, and an R(2) value of 0.9986. Direct detection of several nitroaromatic compounds in a complex mixture without prior sample preparation is demonstrated, and their identities are confirmed by tandem mass spectrometry fragmentation patterns. PMID:26329926

  19. Determination of organic acids in ground water by liquid chromatography/atmospheric pressure chemical ionization/mass spectrometry

    SciTech Connect

    Fang, J.; Barcelona, M.J.

    1999-05-01

    Current methods of determining organic acids in ground water are labor-intensive, time-consuming and require a large volume of sample (100 milliliter to 1.0 liter). This paper reports a new method developed to determine aliphatic, alicyclic, and aromatic acids in ground water using liquid chromatography/atmospheric pressure chemical ionization/mass spectrometry (LC/APCI/MS). This method was shown to be fast (less than 1 hour), effective, and reproducible, requiring only 1.0 mL of ground-water sample. Ground water was pH-adjusted, filtered through 0.45 {micro}m filters and directly injected into the LC. A binary solvent system consisting of 40 mM of aqueous ammonium acetate and methanol and a C18 column were used for chromatographical separation. The APCI was operated under negative ionization mode. Selected ion monitoring (SIM) was used for detection and quantitation of the analytes. This method was applied to the analysis of organic acids in ground-water samples collected from an aquifer contaminated with JP-4 fuel hydrocarbons at Wurtsmith Air Force Base in Oscoda, Michigan. Aromatic acids identified in the contaminated ground water include o-, m-toluic acids (2- and 3-methylbenzoic acids), 2,6-dimethylbenzoic acid, 2,3,5-and 2,4,6-trimethylbenzoic acids and two additional trimethylbenzoic acids with unknown location of methylation. The detection of aromatic acids in groundwater from the KC-135 site provided evidence for in situ microbial degradation of hydrocarbons occurring in the aquifer.

  20. Qualitative analysis of some carboxylic acids by ion-exclusion chromatography with atmospheric pressure chemical ionization mass spectrometric detection.

    PubMed

    Helale, Murad I H; Tanaka, Kazuhiko; Taoda, Hiroshi; Hu, Wenzhi; Hasebe, Kiyoshi; Haddad, Paul R

    2002-05-17

    A simple, selective and sensitive method for the determination of carboxylic acids has been developed. A mixture of formic, acetic, propionic, valeric, isovaleric, isobutyric, and isocaproic acids has been separated on a polymethacrylate-based weak acidic cation-exchange resin (TSK gel OA pak-A) based on an ion-exclusion chromatographic mechanism with detection using UV-photodiode array, conductivity and atmospheric pressure chemical ionization mass spectrometry (APCI-MS). A mobile phase consisting of 0.85 mM benzoic acid in 10% aqueous methanol (pH 3.89) was used to separate the above carboxylic acids in about 40 min. For LC-MS, the APCI interface was used in the negative ionization mode. Linear plots of peak area versus concentration were obtained over the range 1-30 mM (r2=0.9982) and 1-30 mM (r2=0.9958) for conductimetric and MS detection, respectively. The detection limits of the target carboxylic acids calculated at S/N=3 ranged from 0.078 to 2.3 microM for conductimetric and photometric detection and from 0.66 to 3.82 microM for ion-exclusion chromatography-APCI-MS. The reproducibility of retention times was 0.12-0.16% relative standard deviation for ion-exclusion chromatography and 1.21-2.5% for ion-exclusion chromatography-APCI-MS. The method was applied to the determination of carboxylic acids in red wine, white wine, apple vinegar, and Japanese rice wine. PMID:12108651

  1. Kinematics and Excitation of the Ram Pressure Stripped Ionized Gas Filaments in the Coma Cluster of Galaxies

    NASA Astrophysics Data System (ADS)

    Yoshida, Michitoshi; Yagi, Masafumi; Komiyama, Yutaka; Furusawa, Hisanori; Kashikawa, Nobunari; Hattori, Takashi; Okamura, Sadanori

    2012-04-01

    We present the results of deep imaging and spectroscopic observations of very extended ionized gas (EIG) around four member galaxies of the Coma Cluster of galaxies: RB 199, IC 4040, GMP 2923, and GMP 3071. The EIGs were serendipitously found in an Hα narrowband imaging survey of the central region of the Coma Cluster. The relative radial velocities of the EIGs with respect to the systemic velocities of the parent galaxies from which they emanate increase almost monotonically with the distance from the nucleus of the respective galaxies, reaching ~ - 400 to - 800 km s-1 at around 40-80 kpc from the galaxies. The one-sided morphologies and the velocity fields of the EIGs are consistent with the predictions of numerical simulations of ram pressure stripping. We found a very low velocity filament (v rel ~ -1300 km s-1) at the southeastern edge of the disk of IC 4040. Some bright compact knots in the EIGs of RB 199 and IC 4040 exhibit blue continuum and strong Hα emission. The equivalent widths of the Hα emission exceed 200 Å and are greater than 1000 Å for some knots. The emission-line intensity ratios of the knots are basically consistent with those of sub-solar abundance H II regions. These facts indicate that intensive star formation occurs in the knots. Some filaments, including the low-velocity filament of the IC 4040 EIG, exhibit shock-like emission-line spectra, suggesting that shock heating plays an important role in ionization and excitation of the EIGs. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  2. Study of atmospheric pressure weakly ionized plasma as surface compatibilization technique for improved plastic composites loaded with cellulose based fillers

    NASA Astrophysics Data System (ADS)

    Lekobou, William Pimakouon

    Atmospheric pressure plasmas have gained considerable interest from researchers recently for their unique prospective of engineering surfaces with plasma without the need of vacuum systems. They offer the advantage of low energy consumption, minimal capital cost and their simplicity as compared to conventional low pressure plasmas make them easy to upscale from laboratory to industry size. The present dissertation summarizes results of our attempt at applying atmospheric pressure weakly ionized plasma (APWIP) to the engineering of plastic composites filled with cellulose based substrates. An APWIP reactor was designed and built based on a multipoint-to-grounded ring and screen configurations. The carrier gas was argon and acetylene serves as the precursor molecule. The APWIP reactors showed capability of depositing plasma polymerized coating rich in carbon on substrates positioned within the electrode gap as well as downstream of the plasma discharge into the afterglow region. Our findings show that films grow by forming islands which for prolonged deposition time grow into thin films showing nodules, aggregates of nodules and microspheres. They also show chemical structure similar to films deposited from hydrocarbons with other conventional plasma techniques. The plasma polymerized deposits were used on substrates to modify their surface properties. Results show the surface of wood veneer and wood flour can be finely tuned from hydrophilic to hydrophobic. It was achieved by altering the topography of the surfaces along with their chemical composition. The wettability of wood veneer was investigated with contact angle measurements on capacitive drops and the capillary effect was utilized to assess surface properties of wood flour exposed to the discharges.

  3. Hydrogen/deuterium exchange on aromatic rings during atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Davies, Noel W; Smith, Jason A; Molesworth, Peter P; Ross, John J

    2010-04-15

    It has been demonstrated that substituted indoles fully labelled with deuterium on the aromatic ring can undergo substantial exchange back to partial and even fully protonated forms during atmospheric pressure chemical ionisation (APCI) liquid chromatography/mass spectrometry (LC/MS). The degree of this exchange was strongly dependent on the absolute quantity of analyte, the APCI desolvation temperature, the nature of the mobile phase, the mobile phase flow rate and the instrument used. Hydrogen/deuterium (H/D) exchange on several other aromatic ring systems during APCI LC/MS was either undetectable (nitrobenzene, aniline) or extremely small (acetanilide) compared to the effect observed for substituted indoles. This observation has major implications for quantitative assays using deuterium-labelled internal standards and for the detection of deuterium-labelled products from isotopically labelled feeding experiments where there is a risk of back exchange to the protonated form during the analysis. PMID:20213724

  4. Three-electrode low pressure discharge apparatus and method for uniform ionization of gaseous media

    DOEpatents

    McLellan, Edward J.

    1983-01-01

    Uniform, transverse electrical discharges are produced in gaseous media without the necessity of switching the main discharge voltage with an external device which carries the entire discharge current. A three-electrode low pressure discharge tube is charged across its anode (1) and cathode (2) to below breakdown voltage using a dc voltage source (3). An array of resistors (4) or capacitors can be made to discharge to the wire screen anode by means of a low energy high voltage pulse circuit (5) producing sufficient preionization in the region between the anode and cathode to initiate and control the main discharge. The invention has been demonstrated to be useful as a CO.sub.2 laser oscillator and pulse-smoother. It can be reliably operated in the sealed-off mode.

  5. Digitally-multiplexed nanoelectrospray ionization atmospheric pressure drift tube ion mobility spectrometry.

    PubMed

    Kwasnik, Mark; Caramore, Joe; Fernández, Facundo M

    2009-02-15

    One of the shortcomings of atmospheric pressure drift tube ion mobility spectrometry (DTIMS) is its intrinsically low duty cycle (approximately 0.04-1%) caused by the rapid pulsing of the ion gate (25-400 micros) followed by a comparatively long drift time (25-100 ms), which translates into a loss of sensitivity. Multiplexing approaches via Hadamard and Fourier-type gating techniques have been reported for increasing the sensitivity of DTIMS. Here, we report an extended multiplexing approach which encompasses arbitrary binary ion injection waveforms with variable duty cycles ranging from 0.5 to 50%. In this approach, ion mobility spectra can be collected using conventional signal averaging, arbitrary, standard Hadamard and/or "extended" Hadamard operation modes. Initial results indicate signal-to-noise gains ranging from 2-7-fold for both arbitrary and "extended" Hadamard sequences. Standard Hadamard transform IMS provided increased sensitivity, with gains ranging from 9-12-fold, however, mobility spectra suffered from defects that appeared as false peaks, which were reduced or eliminated when using arbitrary or "extended" Hadamard waveforms for multiplexing. Digital multiplexing enables variation of the duty cycle in a continuous manner, minimizing the contribution of imperfect modulation on spectral defects without the need for complex spectral correction methods. By reducing the frequency of gating events employed in the variable duty cycle sequences, the contributions of factors such as ion depletion prior to gating, interaction of successively injected ion packets, and the cumulative effect of imperfect gating events were mitigated. PMID:19133785

  6. Environmental radiation real-time monitoring system permanently installed near Qinshan Nuclear Power Plant.

    PubMed

    Ding, M; Sheng, P; Zhi, Z

    1996-03-01

    An environmental radiation real-time monitoring system with high pressure ionization chamber was developed. It has been installed permanently in the vicinity of Qinshan Nuclear Power Plant, the first built in mainland China. The system consists of four basic components: environmental radiation monitors; data communication network; a data processing center; and a remote terminal computer situated in Hangzhou. It has provided five million readings of environmental radiation levels as of January 1993. PMID:8609035

  7. Desorption/ionization of biomolecules from aqueous solutions at atmospheric pressure using an infrared laser at 3 microm.

    PubMed

    Laiko, Victor V; Taranenko, Nelli I; Berkout, Vadym D; Yakshin, Mikhail A; Prasad, Coorg R; Lee, H Sang; Doroshenko, Vladimir M

    2002-04-01

    A new atmospheric pressure (AP) infrared (IR) matrix-assisted laser desorption/ionization (MALDI) ion source was developed and interfaced with a Thermo Finnigan LCQ ion trap mass spectrometer. The source utilized a miniature all-solid-state optical parametric oscillator (OPO)-based IR laser system tunable in the lambda = 1.5-4 microm spectral range and a nitrogen ultraviolet (UV) laser (lambda = 337 nm) for use in comparative studies. The system demonstrated comparable performance at 3 microm and 337 nm wavelengths if UV matrices were used. However, AP IR-MALDI using a 3 microm wavelength showed good performance with a much broader choice of matrices including glycerol and liquid water. AP IR-MALDI mass spectra of peptides in the mass range up to 2000 Da were obtained directly from aqueous solutions at atmospheric conditions for the first time. A potential use of the new AP IR-MALDI ion source includes direct MS analysis of biological cells and tissues in a normal atmospheric environment as well as on-line coupling of mass spectrometers with liquid separation techniques. PMID:11951973

  8. Self-Aspirated Atmospheric Pressure Chemical Ionization Source for Direct Sampling of Analytes on Surfaces and in Liquid Solutions

    SciTech Connect

    Asano, Keiji G; Ford, Michael J; Tomkins, Bruce A; Van Berkel, Gary J

    2005-01-01

    A self-aspirating heated nebulizer probe is described and demonstrated for use in the direct analysis of analytes on surfaces and in liquid samples by atmospheric pressure chemical ionization (APCI) mass spectrometry. Functionality and performance of the probe as a self-aspirating APCI source is demonstrated using reserpine and progesterone as test compounds. The utility of the probe to sample analytes directly from surfaces was demonstrated first by scanning development lanes of a reversed-phase thin-layer chromatography plate in which a three-component dye mixture, viz., Fat Red 7B, Solvent Green 3, and Solvent Blue 35, was spotted and the components were separated. Development lanes were scanned by the sampling probe operated under computer control (x, y plane) while full-scan mass spectra were recorded using a quadrupole ion trap mass spectrometer. In addition, the ability to sample the surface of pharmaceutical tablets (viz., Extra Strength Tylenol(reg. sign) and Evista(reg. sign) tablets) and to detect the active ingredients (acetaminophen and raloxifene, respectively) selectively was demonstrated using tandem mass spectrometry (MS/MS). Finally, the capability to sample analyte solutions from the wells of a 384-well microtiter plate and to perform quantitative analyses using MS/MS detection was illustrated with cotinine standards spiked with cotinine-d{sub 3} as an internal standard.

  9. Collision-induced dissociation analysis of negative atmospheric ion adducts in atmospheric pressure corona discharge ionization mass spectrometry.

    PubMed

    Sekimoto, Kanako; Takayama, Mitsuo

    2013-05-01

    Collision-induced dissociation (CID) experiments were performed on atmospheric ion adducts [M + R](-) formed between various types of organic compounds M and atmospheric negative ions R(-) [such as O2(-), HCO3(-), COO(-)(COOH), NO2(-), NO3(-), and NO3(-)(HNO3)] in negative-ion mode atmospheric pressure corona discharge ionization (APCDI) mass spectrometry. All of the [M + R](-) adducts were fragmented to form deprotonated analytes [M - H](-) and/or atmospheric ions R(-), whose intensities in the CID spectra were dependent on the proton affinities of the [M - H](-) and R(-) fragments. Precursor ions [M + R](-) for which R(-) have higher proton affinities than [M - H](-) formed [M - H](-) as the dominant product. Furthermore, the CID of the adducts with HCO3(-) and NO3(-)(HNO3) led to other product ions such as [M + HO](-) and NO3(-), respectively. The fragmentation behavior of [M + R](-) for each R(-) observed was independent of analyte type (e.g., whether the analyte was aliphatic or aromatic, or possessed certain functional groups). PMID:23479312

  10. Analysis of Polycyclic Aromatic Hydrocarbons Using Desorption Atmospheric Pressure Chemical Ionization Coupled to a Portable Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Jjunju, Fred P. M.; Maher, Simon; Li, Anyin; Badu-Tawiah, Abraham K.; Taylor, Stephen; Graham Cooks, R.

    2015-02-01

    Desorption atmospheric pressure chemical ionization (DAPCI) is implemented on a portable mass spectrometer and applied to the direct detection of polycyclic aromatic hydrocarbons (PAHs) and alkyl substituted benzenes. The presence of these compounds in the environment poses a significant threat to the health of both humans and wildlife because of their carcinogenic, toxic, and mutagenic properties. As such, instant detection outside of the laboratory is of particular importance to allow in-situ measurement at the source. Using a rapid, high throughput, miniature, handheld mass spectrometer, several alkyl substituted benzenes and PAHs (i.e., 1,2,3,5-tetramethylbenzene, pentamethylbenzene, hexamethylbenzene, fluoranthene, anthracene, benzo[ k]fluoranthene, dibenz[ a,h]anthracene, acenaphthene, indeno[1,2,3-c,d]pyrene, 9-ethylfluorene, and 1-benzyl-3-methyl-naphthalene) were identified and characterized using tandem mass spectrometry (MS/MS) from ambient surfaces, in the open air. This method can provide almost instantaneous information while minimizing sample preparation, which is advantageous in terms of both cost and simplicity of analysis. This MS-based technique is applicable to a wide range of environmental organic molecules.

  11. Liquid chromatography/atmospheric pressure chemical ionization-mass spectrometric analysis of benzoylurea insecticides in citrus fruits.

    PubMed

    Valenzuela, A I; Picó, Y; Font, G

    2000-01-01

    A liquid chromatography (LC) method for the quantitative determination of three benzoylurea insecticide residues (diflubenzuron, flufenoxuron and hexaflumuron) in citrus fruits is described. Residues were successfully separated on a C18 column by methanol/water gradient elution. Detection was by negative-ion, selected-ion monitoring atmospheric pressure chemical ionization-mass spectrometry (APCI-MS); the main ions were [M - H]-, and the secondary fragment ions were [M - H - HF]-. Useful confirmatory information can thus be obtained at low extraction voltages from losses of HF. Detection limits for standard solutions were 10 fg injected and good linearity and reproducibility were obtained. The optimum LC/APCI-MS conditions were applied to the analysis of benzoylureas in oranges. Samples were extracted using matrix solid phase dispersion (MSPD), in which orange samples were homogenized with Cs, placed onto a glass column and eluted with dichloromethane. Detection limits of 2 microg kg(-1) in the crop were obtained. Average recoveries from citrus fortified with approximately (25-1000 microg kg(-1)) ranged from 87 to 102%. The method was applied to field-treated orange samples and benzoylureas were sometimes detected at concentration levels lower than maximum residue limits. PMID:10775090

  12. Post-Blast Analysis of Hexamethylene Triperoxide Diamine using Liquid Chromatography-Atmospheric Pressure Chemical Ionization-Mass Spectrometry.

    PubMed

    Marsh, Christine M; Mothershead, Robert F; Miller, Mark L

    2015-09-01

    A qualitative method using liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (LC/APCI-MS) has been developed and validated for the identification of trace hexamethylene triperoxide diamine (HMTD) using three structurally-specific ions. Residues are extracted with deionized water (DI) and identified using a gradient mobile phase program and positive ion full scan mode on a Thermo Finnigan LCQ Ion Trap Mass Spectrometer. This method was validated according to several performance characteristics for the qualitative identification of an analyte using the characteristic ions, demonstrating the method's reliability for use on forensic applications. The method's limit of detection (LOD) can identify HMTD in an extract from a cotton matrix to which 20 μg of HMTD has been applied (equivalent to 10 ppm in extract). Previous scientific publications using LC/MS have not demonstrated post-blast HMTD residue analyses and suffer from a lack of chromatographic retention, sufficient number of mass spectral ions with validation, or require more complex/expensive instrumental methods (accurate mass or MS/MS). Post-blast analyses were successfully conducted with two syringe detonations that verified the efficacy of the method on the analysis of debris and residues following detonation. PMID:26385711

  13. Use of electron ionization and atmospheric pressure chemical ionization in gas chromatography coupled to time-of-flight mass spectrometry for screening and identification of organic pollutants in waters.

    PubMed

    Portolés, Tania; Mol, Johannes G J; Sancho, Juan V; Hernández, Félix

    2014-04-25

    A new approach has been developed for multiclass screening of organic contaminants in water based on the use of gas chromatography coupled to hybrid quadrupole high-resolution time-of-flight mass spectrometry with atmospheric pressure chemical ionization (GC-(APCI)QTOF MS). The soft ionization promoted by the APCI source allows effective and wide-scope screening based on the investigation of the molecular ion and/or protonated molecule. This is in contrast to electron ionization (EI) where ionization typically results in extensive fragmentation, and diagnostic ions and/or spectra need to be known a priori to facilitate detection of the analytes in the raw data. Around 170 organic contaminants from different chemical families were initially investigated by both approaches, i.e. GC-(EI)TOF and GC-(APCI)QTOF, including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and a notable number of pesticides and relevant metabolites. The new GC-(APCI)QTOF MS approach easily allowed widening the number of compounds investigated (85 additional compounds), with more pesticides, personal care products (UV filters, musks), polychloronaphthalenes (PCNs), antimicrobials, insect repellents, etc., most of them considered as emerging contaminants. Both GC-(EI)TOF and GC-(APCI)QTOF methodologies have been applied, evaluating their potential for a wide-scope screening in the environmental field. PMID:24674644

  14. Analysis of gaseous toxic industrial compounds and chemical warfare agent simulants by atmospheric pressure ionization mass spectrometry.

    PubMed

    Cotte-Rodríguez, Ismael; Justes, Dina R; Nanita, Sergio C; Noll, Robert J; Mulligan, Christopher C; Sanders, Nathaniel L; Cooks, R Graham

    2006-04-01

    The suitability of atmospheric pressure chemical ionization mass spectrometry as sensing instrumentation for the real-time monitoring of low levels of toxic compounds is assessed, especially with respect to public safety applications. Gaseous samples of nine toxic industrial compounds, NH3, H2S, Cl2, CS2, SO2, C2H4O, HBr, C6H6 and AsH3, and two chemical warfare agent simulants, dimethyl methylphosphonate (DMMP) and methyl salicylate (MeS), were studied. API-MS proves highly suited to this application, with speedy analysis times (<30 seconds), high sensitivity, high selectivity towards analytes, good precision, dynamic range and accuracy. Tandem MS methods were implemented in selected cases for improved selectivity, sensitivity, and limits of detection. Limits of detection in the parts-per-billion and parts-per-trillion range were achieved for this set of analytes. In all cases detection limits were well below the compounds' permissible exposure limits (PELs), even in the presence of added complex mixtures of alkanes. Linear responses, up to several orders of magnitude, were obtained over the concentration ranges studied (sub-ppb to ppm), with relative standard deviations less than 3%, regardless of the presence of alkane interferents. Receiver operating characteristic (ROC) curves are presented to show the performance trade-off between sensitivity, probability of correct detection, and false positive rate. A dynamic sample preparation system for the production of gas phase analyte concentrations ranging from 100 pptr to 100 ppm and capable of admixing gaseous matrix compounds and control of relative humidity and temperature is also described. PMID:16568176

  15. A novel APPI-MS setup for in situ degradation product studies of atmospherically relevant compounds: capillary atmospheric pressure photo ionization (cAPPI).

    PubMed

    Kersten, Hendrik; Derpmann, Valerie; Barnes, Ian; Brockmann, Klaus J; O'Brien, Rob; Benter, Thorsten

    2011-11-01

    We report on the development of a novel atmospheric pressure photoionization setup and its applicability for in situ degradation product studies of atmospherically relevant compounds. A custom miniature spark discharge lamp was embedded into an ion transfer capillary, which separates the atmospheric pressure from the low pressure region in the first differential pumping stage of a conventional atmospheric pressure ionization mass spectrometer. The lamp operates with a continuous argon flow and produces intense light emissions in the VUV. The custom lamp is operated windowless and efficiently illuminates the sample flow through the transfer capillary on an area smaller than 1 mm(2). Limits of detection in the lower ppbV range, a temporal resolution of milliseconds in the positive as well as the quasi simultaneously operating negative ion mode, and a significant reduction of ion transformation processes render this system applicable to real time studies of rapidly changing chemical systems. The method termed capillary atmospheric pressure photo ionization (cAPPI) is characterized with respect to the lamp emission properties as a function of the operating conditions, temporal response, and its applicability for in situ degradation product studies of atmospherically relevant compounds, respectively. PMID:21952756

  16. Electrosonic spray ionization. A gentle technique for generating folded proteins and protein complexes in the gas phase and for studying ion-molecule reactions at atmospheric pressure.

    PubMed

    Takáts, Zoltán; Wiseman, Justin M; Gologan, Bogdan; Cooks, R Graham

    2004-07-15

    Electrosonic spray ionization (ESSI), a variant on electrospray ionization (ESI), employs a traditional micro ESI source with supersonic nebulizing gas. The high linear velocity of the nebulizing gas provides efficient pneumatic spraying of the charged liquid sample. The variable electrostatic potential can be tuned to allow efficient and gentle ionization. This ionization method is successfully applied to aqueous solutions of various proteins at neutral pH, and its performance is compared to that of the nanospray and micro ESI techniques. Evidence for efficient desolvation during ESSI is provided by the fact that the peak widths for various multiply charged protein ions are an order of magnitude narrower than those for nanospray. Narrow charge-state distributions compared to other ESI techniques are observed also; for most of the proteins studied, more than 90% of the protein ions can be accumulated in one charge state using ESSI when optimizing conditions. The fact that the abundant charge state is normally as low or lower than that recorded by ESI or nanospray indicates that folded protein ions are generated. The sensitivity of the ionization technique to high salt concentrations is comparable to that of nanospray, but ESSI is considerably less sensitive to high concentrations of organic additives such as glycerol or 2-amino-2-(hydroxymethyl)-1,3-propanediol (Tris base). Noncovalent complexes are observed in the case of myoglobin, protein kinase A/ATP complex, and other proteins. The extent of dissociation of protein ions in ESSI is comparable to or even smaller than that in the case of nanospray, emphasizing the gentle nature of the method. The unique features of ESSI are ascribed to very efficient spraying and the low internal energy supplied to the ions. Evidence is provided that the method is capable of generating fully desolvated protein ions at atmospheric pressure. This allows the technique to be used for the study of ion-molecule reactions at atmospheric

  17. Online measurement of biogenic organic acids in the boreal forest using atmospheric pressure chemical ionization mass spectrometry (APCI-MS)

    NASA Astrophysics Data System (ADS)

    Vogel, A. L.; Brüggemann, M.; ńijälä, M.; Ehn, M.; Junninen, H.; Corrigan, A. L.; Petäjä, T.; Worsnop, D. R.; Russell, L. M.; Kulmala, M.; Williams, J.; Hoffmann, T.

    2012-04-01

    Emission of biogenic volatile organic compounds (BVOCs) by vegetation in the boreal forest and their subsequent atmospheric oxidation leads to the formation of secondary organic aerosol (SOA) which has important impacts on climate and human health. Oxidation of BVOCs produces a variety of mostly unidentified species in oxygenated organic aerosol (OOA). Presently aerosol mass spectrometers (AMS) are able to determine quantitative information about the relative oxygen to carbon content of organic aerosols and thereby reveal the photochemical age and volatility of organic aerosol by distinguishing between low volatile oxygenated organic aerosol (LV-OOA), semivolatile oxygenated organic aerosol (SV-OOA) and hydrocarbon like organic aerosol (HOA)[1]. However, the AMS can usually not be used to measure and quantify single organic compounds such as individual biogenic organic marker compounds. Here we show the results of online measurements of gas and particle phase biogenic acids during HUMPPA-COPEC 2010 at Hyytiälä, Finland. This was achieved by coupling a self built miniature Versatile Aerosol Concentration Enrichment System (mVACES) as described by Geller et al. [2] with an Atmospheric Pressure Chemical Ionization Ion Trap Mass Spectrometer (APCI IT MS; Hoffmann et al., [3]). The benefits of the on-line APCI-MS are soft ionization with little fragmentation compared to AMS, high measurement frequency and less sampling artifacts than in the common procedure of taking filter samples, extraction and detection with LC-MS. Furthermore, the ion trap of the instrument allows MS/MS experiments to be performed by isolation of single m/z ratios of selected molecular species. By subsequent addition of energy, the trapped ions form characteristic fragments which enable structural insight on the molecular level. Comparison of APCI-MS data to AMS data, acquired with a C-ToF-AMS [4], revealed a good correlation coefficient for total organics and sulphate. Furthermore, data show

  18. Microstructual investigation of mixed rar earth iron boron processed vis melt-spinning and high-pressure gas-atomization for isotrophic bonded permanent magnets

    SciTech Connect

    Buelow, Nicholas Lee

    2005-08-01

    A solid solution of three rare earths (RE) in the RE{sub 2}Fe{sub 14}B structure have been combined to create the novel mixed rare earth iron boron (MRE{sub 2}Fe{sub 14}B) alloy family. MRE{sub 2}Fe{sub 14}B exhibits reduced temperature dependent magnetic properties; remanence and coercivity. The desired form of MRE{sub 2}Fe{sub 14}B is a powder that can be blended with a polymer binder and compression or injection molded to form an isotropic polymer bonded permanent magnet (PBM). Commercially, Nd{sub 2}Fe{sub 14}B is the alloy of choice for PBMs. Powders of Nd{sub 2}Fe{sub 14}B are made via melt-spinning as can be MRE{sub 2}Fe{sub 14}B which allows for direct comparisons. MRE{sub 2}Fe{sub 14}B made using melt-spinning at high wheel speeds is overquenched and must be annealed to an optimal hard magnetic state. Due to the rare earth content in the MRE{sub 2}Fe{sub 14}B powders, they must be protected from the environment in which they operate. This protection is accomplished by using a modified fluidized bed process to grow a protective fluoride coating nominally 15nm thick, to reduce air oxidation. MRE{sub 2}Fe{sub 14}B has demonstrated reduced temperature dependent magnetic properties in ribbon and PBM form. The real challenge has been modifying alloy designs that were successfully melt-spun to be compatible with high-pressure gas-atomization (HPGA). The cooling rates in HPGA are lower than melt-spinning, as the powders are quenched via convective cooling, compared to melt-spinning, which quenches initially by conductive cooling. Early alloy designs, in gas atomized and melt-spun form, did not have similar phase compositions or microstructures. Alloy additions, such as the addition of zirconium as a nucleation catalyst, were successful in creating similar phases and microstructures in the HPGA powders and melt-spun ribbon of the same MRE{sub 2}Fe{sub 14}B composition.

  19. Measurement of scintillation and ionization yield with high-pressure gaseous mixtures of Xe and TMA for improved neutrinoless double beta decay and dark matter searches

    NASA Astrophysics Data System (ADS)

    Nakajima, Y.; Goldschmidt, A.; Matis, H. S.; Nygren, D.; Oliveira, C.; Renner, J.

    2015-11-01

    Liquid Xe TPCs are among the most popular choices for double beta decay and WIMP dark matter searches. Gaseous Xe has intrinsic advantages when compared to Liquid Xe, specifically, tracking capability and better energy resolution for double beta decay searches. The performance of gaseous Xe can be further improved by molecular additives such as trimethylamine(TMA), which are expected to (1) cool down the ionization electrons, (2) convert Xe excitation energy to TMA ionizations through Penning transfer, and (3) produce scintillation and electroluminescence light in a more easily detectable wavelength (300 nm). These features may provide better tracking and energy resolution for double-beta decay searches. They are also expected to enhance columnar recombination for nuclear recoils, which can be used for searches for WIMP dark matter with directional sensitivity. We constructed a test ionization chamber and successfully measured scintillation and ionization yields at high precision with various Xe and TMA mixtures and pressures. We observed the Penning effect and an increase in recombination with the addition of TMA. However, many undesired features for dark matter searches, such as strong suppression of the scintillation light and no sign of recombination light, were also found. This work has been carried out within the context of the NEXT collaboration.

  20. The effect of dielectric tube diameter on the propagation velocity of ionization waves in a He atmospheric-pressure micro-plasma jet

    NASA Astrophysics Data System (ADS)

    Talviste, Rasmus; Jõgi, Indrek; Raud, Jüri; Paris, Peeter

    2016-05-01

    The focus of this study was to investigate the effect of the dielectric tube diameter on the velocity of the ionization wave in an atmospheric pressure plasma jet in He gas flow. Plasma was ignited in quartz tubes with inner diameter in the range of 80–500 μm by 6 kHz sinusoidal voltage applied to a cylindrical electrode surrounding the quartz tube and positioned 10 mm from the tube orifice. A grounded plane was placed 2–3 cm downstream from the powered electrode to measure the plasma current. The spatial development of ionization waves was monitored by registering the optical emission along the axis of the tube. The ionization wave velocity was deduced from the temporal shift of the onset of radiation at different axial positions. The velocity of ionization wave increased by almost an order of magnitude with the tube diameter decreasing from 500 to 80 μm and was for the 80 μm microtube 1.7 · 105 m s‑1 during the positive half-cycle and 1.45 · 105 m s‑1 during the negative half-cycle.

  1. Differentiation of regioisomeric aromatic ketocarboxylic acids by atmospheric pressure chemical ionization CAD tandem mass spectrometry in a linear quadrupole ion trap mass spectrometer

    SciTech Connect

    Amundson, Lucas M.; Owen, Ben C.; Gallardo, Vanessa A.; Habicht, S. C.; Fu, M.; Shea, R. C.; Mossman, A. B.; Kenttämaa, Hilkka I.

    2011-01-01

    Positive-mode atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS n ) was tested for the differentiation of regioisomeric aromatic ketocarboxylic acids. Each analyte forms exclusively an abundant protonated molecule upon ionization via positive-mode APCI in a commercial linear quadrupole ion trap (LQIT) mass spectrometer. Energy-resolved collision-activated dissociation (CAD) experiments carried out on the protonated analytes revealed fragmentation patterns that varied based on the location of the functional groups. Unambiguous differentiation between the regioisomers was achieved in each case by observing different fragmentation patterns, different relative abundances of ion-molecule reaction products, or different relative abundances of fragment ions formed at different collision energies. The mechanisms of some of the reactions were examined by H/D exchange reactions and molecular orbital calculations.

  2. Differentiation of Regioisomeric Aromatic Ketocarboxylic Acids by Positive Mode Atmospheric Pressure Chemical Ionization Collision-Activated Dissociation Tandem Mass Spectrometry in a Linear Quadrupole Ion Trap Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Amundson, Lucas M.; Owen, Benjamin C.; Gallardo, Vanessa A.; Habicht, Steven C.; Fu, Mingkun; Shea, Ryan C.; Mossman, Allen B.; Kenttämaa, Hilkka I.

    2011-04-01

    Positive-mode atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS n ) was tested for the differentiation of regioisomeric aromatic ketocarboxylic acids. Each analyte forms exclusively an abundant protonated molecule upon ionization via positive-mode APCI in a commercial linear quadrupole ion trap (LQIT) mass spectrometer. Energy-resolved collision-activated dissociation (CAD) experiments carried out on the protonated analytes revealed fragmentation patterns that varied based on the location of the functional groups. Unambiguous differentiation between the regioisomers was achieved in each case by observing different fragmentation patterns, different relative abundances of ion-molecule reaction products, or different relative abundances of fragment ions formed at different collision energies. The mechanisms of some of the reactions were examined by H/D exchange reactions and molecular orbital calculations.

  3. Gas Chromatography/Atmospheric Pressure Chemical Ionization-Fourier Transform Ion Cyclotron Resonance Mass Spectrometry of Pyrolysis Oil from German Brown Coal

    PubMed Central

    Zuber, Jan; Kroll, Marius M.; Rathsack, Philipp; Otto, Matthias

    2016-01-01

    Pyrolysis oil from the slow pyrolysis of German brown coal from Schöningen, obtained at a temperature of 500°C, was separated and analyzed using hyphenation of gas chromatography with an atmospheric pressure chemical ionization source operated in negative ion mode and Fourier transform ion cyclotron resonance mass spectrometry (GC-APCI-FT-ICR-MS). Development of this ultrahigh-resolving analysis method is described, that is, optimization of specific GC and APCI parameters and performed data processing. The advantages of GC-APCI-FT-ICR-MS hyphenation, for example, soft ionization, ultrahigh-resolving detection, and most important isomer separation, were demonstrated for the sample liquid. For instance, it was possible to separate and identify nine different propylphenol, ethylmethylphenol, and trimethylphenol isomers. Furthermore, homologous series of different acids, for example, alkyl and alkylene carboxylic acids, were verified, as well as homologous series of alkyl phenols, alkyl dihydroxy benzenes, and alkoxy alkyl phenols. PMID:27066076

  4. Gas Chromatography/Atmospheric Pressure Chemical Ionization-Fourier Transform Ion Cyclotron Resonance Mass Spectrometry of Pyrolysis Oil from German Brown Coal.

    PubMed

    Zuber, Jan; Kroll, Marius M; Rathsack, Philipp; Otto, Matthias

    2016-01-01

    Pyrolysis oil from the slow pyrolysis of German brown coal from Schöningen, obtained at a temperature of 500°C, was separated and analyzed using hyphenation of gas chromatography with an atmospheric pressure chemical ionization source operated in negative ion mode and Fourier transform ion cyclotron resonance mass spectrometry (GC-APCI-FT-ICR-MS). Development of this ultrahigh-resolving analysis method is described, that is, optimization of specific GC and APCI parameters and performed data processing. The advantages of GC-APCI-FT-ICR-MS hyphenation, for example, soft ionization, ultrahigh-resolving detection, and most important isomer separation, were demonstrated for the sample liquid. For instance, it was possible to separate and identify nine different propylphenol, ethylmethylphenol, and trimethylphenol isomers. Furthermore, homologous series of different acids, for example, alkyl and alkylene carboxylic acids, were verified, as well as homologous series of alkyl phenols, alkyl dihydroxy benzenes, and alkoxy alkyl phenols. PMID:27066076

  5. Fast transient analysis and first-stage collision-induced dissociation with the flowing atmospheric-pressure afterglow ionization source to improve analyte detection and identification.

    PubMed

    Shelley, Jacob T; Hieftje, Gary M

    2010-04-01

    The recent development of ambient desorption/ionization mass spectrometry (ADI-MS) has enabled fast, simple analysis of many different sample types. The ADI-MS sources have numerous advantages, including little or no required sample pre-treatment, simple mass spectra, and direct analysis of solids and liquids. However, problems of competitive ionization and limited fragmentation require sample-constituent separation, high mass accuracy, and/or tandem mass spectrometry (MS/MS) to detect, identify, and quantify unknown analytes. To maintain the inherent high throughput of ADI-MS, it is essential for the ion source/mass analyzer combination to measure fast transient signals and provide structural information. In the current study, the flowing atmospheric-pressure afterglow (FAPA) ionization source is coupled with a time-of-flight mass spectrometer (TOF-MS) to analyze fast transient signals (<500 ms FWHM). It was found that gas chromatography (GC) coupled with the FAPA source resulted in a reproducible (<5% RSD) and sensitive (detection limits of <6 fmol for a mixture of herbicides) system with analysis times of ca. 5 min. Introducing analytes to the FAPA in a transient was also shown to significantly reduce matrix effects caused by competitive ionization by minimizing the number and amount of constituents introduced into the ionization source. Additionally, MS/MS with FAPA-TOF-MS, enabling analyte identification, was performed via first-stage collision-induced dissociation (CID). Lastly, molecular and structural information was obtained across a fast transient peak by modulating the conditions that caused the first-stage CID. PMID:20349535

  6. Sensitive monitoring of volatile chemical warfare agents in air by atmospheric pressure chemical ionization mass spectrometry with counter-flow introduction.

    PubMed

    Seto, Yasuo; Kanamori-Kataoka, Mieko; Tsuge, Koichiro; Ohsawa, Isaac; Iura, Kazumitsu; Itoi, Teruo; Sekiguchi, Hiroyuki; Matsushita, Koji; Yamashiro, Shigeharu; Sano, Yasuhiro; Sekiguchi, Hiroshi; Maruko, Hisashi; Takayama, Yasuo; Sekioka, Ryoji; Okumura, Akihiko; Takada, Yasuaki; Nagano, Hisashi; Waki, Izumi; Ezawa, Naoya; Tanimoto, Hiroyuki; Honjo, Shigeru; Fukano, Masumi; Okada, Hidehiro

    2013-03-01

    A new method for sensitively and selectively detecting chemical warfare agents (CWAs) in air was developed using counter-flow introduction atmospheric pressure chemical ionization mass spectrometry (MS). Four volatile and highly toxic CWAs were examined, including the nerve gases sarin and tabun, and the blister agents mustard gas (HD) and Lewisite 1 (L1). Soft ionization was performed using corona discharge to form reactant ions, and the ions were sent in the direction opposite to the airflow by an electric field to eliminate the interfering neutral molecules such as ozone and nitrogen oxide. This resulted in efficient ionization of the target CWAs, especially in the negative ionization mode. Quadrupole MS (QMS) and ion trap tandem MS (ITMS) instruments were developed and investigated, which were movable on the building floor. For sarin, tabun, and HD, the protonated molecular ions and their fragment ions were observed in the positive ion mode. For L1, the chloride adduct ions of L1 hydrolysis products were observed in negative ion mode. The limit of detection (LOD) values in real-time or for a 1 s measurement monitoring the characteristic ions were between 1 and 8 μg/m(3) in QMS instrument. Collision-induced fragmentation patterns for the CWAs were observed in an ITMS instrument, and optimized combinations of the parent and daughter ion pairs were selected to achieve real-time detection with LOD values of around 1 μg/m(3). This is a first demonstration of sensitive and specific real-time detection of both positively and negatively ionizable CWAs by MS instruments used for field monitoring. PMID:23339735

  7. Rapid on-site detection of explosives on surfaces by ambient pressure laser desorption and direct inlet single photon ionization or chemical ionization mass spectrometry.

    PubMed

    Ehlert, S; Hölzer, J; Rittgen, J; Pütz, M; Schulte-Ladbeck, R; Zimmermann, R

    2013-09-01

    Considering current security issues, powerful tools for detection of security-relevant substances such as traces of explosives and drugs/drug precursors related to clandestine laboratories are required. Especially in the field of detection of explosives and improvised explosive devices, several relevant compounds exhibit a very low vapor pressure. Ambient pressure laser desorption is proposed to make these substances available in the gas phase for the detection by adapted mass spectrometers or in the future with ion-mobility spectrometry as well. In contrast to the state-of-the-art thermal desorption approach, by which the sample surface is probed for explosive traces by a wipe pad being transferred to a thermal desorber unit, by the ambient pressure laser desorption approach presented here, the sample is directly shockwave ablated from the surface. The laser-dispersed molecules are sampled by a heated sniffing capillary located in the vicinity of the ablation spot into the mass analyzer. This approach has the advantage that the target molecules are dispersed more gently than in a thermal desorber unit where the analyte molecules may be decomposed by the thermal intake. In the technical realization, the sampling capillary as well as the laser desorption optics are integrated in the tip of an endoscopic probe or a handheld sampling module. Laboratory as well as field test scenarios were performed, partially in cooperation with the Federal Criminal Police Office (Bundeskriminalamt, BKA, Wiesbaden, Germany), in order to demonstrate the applicability for various explosives, drugs, and drug precursors. In this work, we concentrate on the detection of explosives. A wide range of samples and matrices have been investigated successfully. PMID:23455645

  8. Essure Permanent Birth Control

    MedlinePlus

    ... Implants and Prosthetics Essure Permanent Birth Control Essure Permanent Birth Control Share Tweet Linkedin Pin it More sharing options ... evaluation of the Essure System Essure is a permanent birth control method for women (female sterilization). Implantation of Essure ...

  9. Non-disturbing characterization of natural organic matter (NOM) contained in clay rock pore water by mass spectrometry using electrospray and atmospheric pressure chemical ionization modes.

    PubMed

    Huclier-Markai, Sandrine; Landesman, Catherine; Rogniaux, Hélène; Monteau, Fabrice; Vinsot, Agnes; Grambow, Bernd

    2010-01-01

    We have investigated the composition of the mobile natural organic matter (NOM) present in Callovo-Oxfodian pore water using electrospray ionization mass spectrometry (ESI-MS), atmospheric pressure chemical ionization mass spectrometry (APCI-MS) and emission-excitation matrix (EEM) spectroscopy. The generation of knowledge of the composition, structure and size of mobile NOM is necessary if one wants to understand the interactions of these compounds with heavy metals/radionuclides, in the context of environmental studies, and particularly how the mobility of these trace elements is affected by mobile NOM. The proposed methodology is very sensitive in unambiguously identifying the in situ composition of dissolved NOM in water even at very low NOM concentration, due to innovative non-disturbing water sampling and ionization (ESI/APCI-MS) techniques. It was possible to analyze a quite exhaustive inventory of the small organic compounds of clay pore water without proceeding to any chemical treatment at naturally occurring concentration levels. The structural features observed were mainly acidic compounds and fatty acids as well as aldehydes and amino acids. PMID:20013952

  10. Continuous Flow Atmospheric Pressure Laser Desorption/Ionization Using a 6–7-µm-Band Mid-Infrared Tunable Laser for Biomolecular Mass Spectrometry

    PubMed Central

    Hiraguchi, Ryuji; Hazama, Hisanao; Senoo, Kenichirou; Yahata, Yukinori; Masuda, Katsuyoshi; Awazu, Kunio

    2014-01-01

    A continuous flow atmospheric pressure laser desorption/ionization technique using a porous stainless steel probe and a 6–7-µm-band mid-infrared tunable laser was developed. This ion source is capable of direct ionization from a continuous flow with a high temporal stability. The 6–7-µm wavelength region corresponds to the characteristic absorption bands of various molecular vibration modes, including O–H, C=O, CH3 and C–N bonds. Consequently, many organic compounds and solvents, including water, have characteristic absorption peaks in this region. This ion source requires no additional matrix, and utilizes water or acetonitrile as the solvent matrix at several absorption peak wavelengths (6.05 and 7.27 µm, respectively). The distribution of multiply-charged peptide ions is extremely sensitive to the temperature of the heated capillary, which is the inlet of the mass spectrometer. This ionization technique has potential for the interface of liquid chromatography/mass spectrometry (LC/MS). PMID:24937686

  11. Atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry of friction modifier additives analyzed directly from base oil solutions.

    PubMed

    Widder, Lukas; Brennerb, Josef; Huttera, Herbert

    2014-01-01

    To develop new products and to apply measures of quality control quick and simple accessibility of additive composition in automo- tive lubrication is important. The aim of this study was to investigate the possibility of analyzing organic friction modifier additives by means of atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry [AP-MALDI-MS] from lubricant solu- tions without the use of additional separation techniques. Analyses of selected friction modifier ethoxylated tallow amines and oleic acid amide were compared using two ionization methods, positive-ion electrospray ionization (ESI) and AP-MALDI, using a LTQ Orbitrap mass spectrometer. Pure additives were characterized from solvent solutions, as well as from synthetic and mineral base oil mixtures. Detected ions of pure additive samples consisted mainly of [M + H]+, but also alkaLi metal adducts [M + Na]+ and [M + K]+ could be seen. Characterizations of blends of both friction modifiers from the base oil mixtures were carried out as well and showed significant inten- sities for several additive peaks. Thus, this work shows a method to directly analyze friction modifier additives used in the automotive industry from an oil blend via the use of AP-MALDI without any further separation steps. The method presented will further simplify the acquisition of data on lubricant composition and additives. Furthermore, it allows the perspective of analyzing additive reaction products directly from formulated oil blends. PMID:25507326

  12. Atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry of friction modifier additives analyzed directly from base oil solutions.

    PubMed

    Widder, Lukas; Brennerb, Josef; Huttera, Herbert

    2014-01-01

    To develop new products and to apply measures of quality control quick and simple accessibility of additive composition in automo- tive lubrication is important. The aim of this study was to investigate the possibility of analyzing organic friction modifier additives by means of atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry [AP-MALDI-MS] from lubricant solu- tions without the use of additional separation techniques. Analyses of selected friction modifier ethoxylated tallow amines and oleic acid amide were compared using two ionization methods, positive-ion electrospray ionization (ESI) and AP-MALDI, using a LTQ Orbitrap mass spectrometer. Pure additives were characterized from solvent solutions, as well as from synthetic and mineral base oil mixtures. Detected ions of pure additive samples consisted mainly of [M + H]+, but also alkaLi metal adducts [M + Na]+ and [M + K]+ could be seen. Characterizations of blends of both friction modifiers from the base oil mixtures were carried out as well and showed significant inten- sities for several additive peaks. Thus, this work shows a method to directly analyze friction modifier additives used in the automotive industry from an oil blend via the use of AP-MALDI without any further separation steps. The method presented will further simplify the acquisition of data on lubricant composition and additives. Furthermore, it allows the perspective of analyzing additive reaction products directly from formulated oil blends. PMID:25420342

  13. Continuous flow atmospheric pressure laser desorption/ionization using a 6-7-µm-band mid-infrared tunable laser for biomolecular mass spectrometry.

    PubMed

    Hiraguchi, Ryuji; Hazama, Hisanao; Senoo, Kenichirou; Yahata, Yukinori; Masuda, Katsuyoshi; Awazu, Kunio

    2014-01-01

    A continuous flow atmospheric pressure laser desorption/ionization technique using a porous stainless steel probe and a 6-7-µm-band mid-infrared tunable laser was developed. This ion source is capable of direct ionization from a continuous flow with a high temporal stability. The 6-7-µm wavelength region corresponds to the characteristic absorption bands of various molecular vibration modes, including O-H, C=O, CH3 and C-N bonds. Consequently, many organic compounds and solvents, including water, have characteristic absorption peaks in this region. This ion source requires no additional matrix, and utilizes water or acetonitrile as the solvent matrix at several absorption peak wavelengths (6.05 and 7.27 µm, respectively). The distribution of multiply-charged peptide ions is extremely sensitive to the temperature of the heated capillary, which is the inlet of the mass spectrometer. This ionization technique has potential for the interface of liquid chromatography/mass spectrometry (LC/MS). PMID:24937686

  14. In situ identification of organic components of ink used in books from the 1900s by atmospheric pressure matrix assisted laser desorption ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Giurato, Laura; Candura, Andrea; Grasso, Giuseppe; Spoto, Giuseppe

    2009-11-01

    This paper describes the use of atmospheric pressure/matrix assisted laser desorption ionization-mass spectrometry (AP/MALDI-MS) as a spatially resolved analytical technique for the study of organic components of inks used to print coloured parts of ancient books. The possibility to operate at atmospheric pressure makes MALDI-MS a new in situ micro-destructive diagnostic tool suitable for analysing samples in air, simplifying the investigation of the organic components of artistic and archaeological objects. In this work, several organic dyes and pigments were identified in situ by analysing different coloured areas of books printed in the years 1911 and 1920. The detected colouring materials, which were available since the 1890s, were often identified as a mixture, confirming the typical procedures used in the lithographic printing processes. The matrix deposition and the laser desorption process did not cause visible alteration of the sample surface.

  15. Determination of bitter orange alkaloids in dietary supplement Standard Reference Materials by liquid chromatography with atmospheric-pressure ionization mass spectrometry.

    PubMed

    Putzbach, Karsten; Rimmer, Catherine A; Sharpless, Katherine E; Wise, Stephen A; Sander, Lane C

    2007-09-01

    A liquid chromatographic atmospheric-pressure ionization electrospray mass spectrometry (LC-API-ES-MS) method has been developed for the determination of five bitter orange alkaloids (synephrine, octopamine, n-methyltyramine, tyramine, and hordenine) in bitter orange-containing dietary supplement standard reference materials (SRMs). The materials represent a variety of natural, extracted, and processed sample matrices. Two extraction techniques were evaluated: pressurized-fluid extraction (PFE) and sonication extraction. The influence of different solvents, extraction temperatures, and pH were investigated for a plant material and a processed sample. The LC method uses a new approach for the separation of highly polar alkaloids. A fluorinated, silica-based stationary phase separated the five alkaloids and the internal standard terbutaline in less than 20 min. This method enabled the determination of the dominant alkaloid synephrine and other minor alkaloids in a variety of dietary supplement SRMs. PMID:17579842

  16. TIME-VARYING FLAME IONIZATION SENSING APPLIED TO NATURAL GAS AND PROPANE BLENDS IN A PRESSURIZED LEAN PREMIXED (LPM) COMBUSTOR

    SciTech Connect

    D. L. Straub; B. T. Chorpening; E. D. Huckaby; J. D. Thornton; W. L. Fincham

    2008-06-13

    In-situ monitoring of combustion phenomena is a critical need for optimal operation and control of advanced gas turbine combustion systems. The concept described in this paper is based on naturally occurring flame ionization processes that accompany the combustion of hydrocarbon fuels. Previous work has shown that flame ionization techniques may be applied to detect flashback, lean blowout, and some aspects of thermo-acoustic combustion instabilities. Previous work has focused on application of DC electric fields. By application of time-varying electric fields, significant improvements to sensor capabilities have been observed. These data have been collected in a lean premixed combustion test rig operating at 0.51-0.76 MPa (5-7.5 atm) with air preheated to 588 K (600°F). Five percent of the total fuel flow is injected through the centerbody tip as a diffusion pilot. The fuel composition is varied independently by blending approximately 5% (volume) propane with the pipeline natural gas. The reference velocity through the premixing annulus is kept constant for all conditions at a nominal value of 70 m/s. The fuel-air equivalence ratio is varied independently from 0.46 – 0.58. Relative to the DC field version, the time-varying combustion control and diagnostic sensor (TV-CCADS) shows a significant improvement in the correlation between the measured flame ionization current and local fuel-air equivalence ratio. In testing with different fuel compositions, the triangle wave data show the most distinct change in flame ionization current in response to an increase in propane content. Continued development of this sensor technology will improve the capability to control advanced gas turbine combustion systems, and help address issues associated with variations in fuel supplies.

  17. Ambient Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Huang, Min-Zong; Yuan, Cheng-Hui; Cheng, Sy-Chyi; Cho, Yi-Tzu; Shiea, Jentaie

    2010-07-01

    Mass spectrometric ionization methods that operate under ambient conditions and require minimal or no sample pretreatment have attracted much attention in such fields as biomedicine, food safety, antiterrorism, pharmaceuticals, and environmental pollution. These technologies usually involve separate ionization and sample-introduction events, allowing independent control over each set of conditions. Ionization is typically performed under ambient conditions through use of existing electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI) techniques. Rapid analyses of gas, liquid, and solid samples are possible with the adoption of various sample-introduction methods. This review sorts different ambient ionization techniques into two main subcategories, primarily on the basis of the ionization processes, that are further differentiated in terms of the approach used for sampling.

  18. Screening of lake sediments for emerging contaminants by liquid chromatography atmospheric pressure photoionization and electrospray ionization coupled to high resolution mass spectrometry.

    PubMed

    Chiaia-Hernandez, Aurea C; Krauss, Martin; Hollender, Juliane

    2013-01-15

    We developed a multiresidue method for the target and suspect screening of more than 180 pharmaceuticals, personal care products, pesticides, biocides, additives, corrosion inhibitors, musk fragrances, UV light stabilizers, and industrial chemicals in sediments. Sediment samples were freeze-dried, extracted by pressurized liquid extraction, and cleaned up by liquid-liquid partitioning. The quantification and identification of target compounds with a broad range of physicochemical properties (log K(ow) 0-12) was carried out by liquid chromatography followed by electrospray ionization (ESI) and atmospheric pressure photoionization (APPI) coupled to high resolution Orbitrap mass spectrometry (HRMS/MS). The overall method average recoveries and precision are 103% and 9% (RSD), respectively. The method detection limits range from 0.010 to 4 ng/g(dw), while limits of quantification range from 0.030 to 14 ng/g(dw). The use of APPI as an alternative ionization source helped to distinguish two isomeric musk fragrances by means of different ionization behavior. The method was demonstrated on sediment cores from Lake Greifensee located in northeastern Switzerland. The results show that biocides, musk fragrances, and other personal care products were the most frequently detected compounds with concentrations ranging from pg/g(dw) to ng/g(dw), whereas none of the targeted pharmaceuticals were found. The concentrations of many urban contaminants originating from wastewater correlate with the highest phosphorus input into the lake as a proxy for treatment efficiency. HRMS enabled a retrospective analysis of the full-scan data acquisition allowing the detection of suspected compounds like quaternary ammonium surfactants, the biocide triclocarban, and the tentative identification of further compounds without reference standards, among others transformation products of triclosan and triclocarban. PMID:23215447

  19. Halo-shaped flowing atmospheric pressure afterglow: a heavenly design for simplified sample introduction and improved ionization in ambient mass spectrometry.

    PubMed

    Pfeuffer, Kevin P; Schaper, J Niklas; Shelley, Jacob T; Ray, Steven J; Chan, George C-Y; Bings, Nicolas H; Hieftje, Gary M

    2013-08-01

    The flowing atmospheric-pressure afterglow (FAPA) is a promising new source for atmospheric-pressure, ambient desorption/ionization mass spectrometry. However, problems exist with reproducible sample introduction into the FAPA source. To overcome this limitation, a new FAPA geometry has been developed in which concentric tubular electrodes are utilized to form a halo-shaped discharge; this geometry has been termed the halo-FAPA or h-FAPA. With this new geometry, it is still possible to achieve direct desorption and ionization from a surface; however, sample introduction through the inner capillary is also possible and improves interaction between the sample material (solution, vapor, or aerosol) and the plasma to promote desorption and ionization. The h-FAPA operates with a helium gas flow of 0.60 L/min outer, 0.30 L/min inner, and applied current of 30 mA at 200 V for 6 W of power. In addition, separation of the discharge proper and sample material prevents perturbations to the plasma. Optical-emission characterization and gas rotational temperatures reveal that the temperature of the discharge is not significantly affected (<3% change at 450 K) by water vapor during solution-aerosol sample introduction. The primary mass-spectral background species are protonated water clusters, and the primary analyte ions are protonated molecular ions (M + H(+)). Flexibility of the new ambient sampling source is demonstrated by coupling it with a laser ablation unit, a concentric nebulizer, and a droplet-on-demand system for sample introduction. A novel arrangement is also presented in which the central channel of the h-FAPA is used as the inlet to a mass spectrometer. PMID:23808829

  20. Determination of polycyclic aromatic hydrocarbons in fractions in asphalt mixtures using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization.

    PubMed

    Nascimento, Paulo Cicero; Gobo, Luciana Assis; Bohrer, Denise; Carvalho, Leandro Machado; Cravo, Margareth Coutinho; Leite, Leni Figueiredo Mathias

    2015-07-01

    An analytical method using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization for the determination of polycyclic aromatic hydrocarbons in asphalt fractions has been developed. The 14 compounds determined, characterized by having two or more condensed aromatic rings, are expected to be present in asphalt and are considered carcinogenic and mutagenic. The parameters of the atmospheric pressure chemical ionization interface were optimized to obtain the highest possible sensitivity for all of the compounds. The limits of detection ranged from 0.5 to 346.5 μg/L and the limits of quantification ranged from 1.7 to 1550 μg/L. The method was validated against a diesel particulate extract standard reference material (NIST SRM 1975), and the obtained concentrations agreed with the certified values. The method was applied to asphalt samples after its fractionation according to ASTM D4124 and the method of Green. The concentrations of the seven polycyclic aromatic hydrocarbons quantified in the sample ranged from 0.86 mg/kg for benzo[ghi]perylene to 98.32 mg/kg for fluorene. PMID:25885756

  1. Fast determination of 3-ethenylpyridine as a marker of environmental tobacco smoke at trace level using direct atmospheric pressure chemical ionization tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Jiang, Cheng-Yong; Sun, Shi-Hao; Zhang, Qi-Dong; Liu, Jun-Hui; Zhang, Jian-Xun; Zong, Yong-Li; Xie, Jian-Ping

    2013-03-01

    A method with atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS/MS) was developed and applied to direct analysis of Environmental Tobacco Smoke (ETS), using 3-ethenylpyridine (3-EP) as a vapour-phase marker. In this study, the ion source of APCI-MS/MS was modified and direct analysis of gas sample was achieved by the modified instrument. ETS samples were directly introduced, via an atmospheric pressure inlet, into the APCI source. Ionization was carried out in positive-ion APCI mode and 3-EP was identified by both full scan mode and daughter scan mode. Quantification of 3-EP was performed by multiple reaction monitoring (MRM) mode. The calibration curve was obtained in the range of 1-250 ng L-1 with a satisfactory regression coefficient of 0.999. The limit of detection (LOD) and the limit of quantification (LOQ) were 0.5 ng L-1 and 1.6 ng L-1, respectively. The precision of the method, calculated as relative standard deviation (RSD), was characterized by repeatability (RSD 3.92%) and reproducibility (RSD 4.81%), respectively. In real-world ETS samples analysis, compared with the conventional GC-MS method, the direct APCI-MS/MS has shown better reliability and practicability in the determination of 3-EP at trace level. The developed method is simple, fast, sensitive and repeatable; furthermore, it could provide an alternative way for the determination of other volatile pollutants in ambient air at low levels.

  2. Does asymmetric charge transfer play an important role as an ionization mode in low power-low pressure glow discharge mass spectrometry?

    NASA Astrophysics Data System (ADS)

    Mushtaq, S.; Steers, E. B. M.; Churchill, G.; Barnhart, D.; Hoffmann, V.; Pickering, J. C.; Putyera, K.

    2016-04-01

    We report results of comprehensive studies using the Nu Instruments Astrum high-resolution glow discharge mass spectrometer (GD-MS) and optical emission spectrometry (OES) to investigate the relative importance of discharge mechanisms, such as Penning ionization (PI) and asymmetric charge transfer (ACT), at low-power/low-pressure discharge conditions. Comparison of the ratios of the ion signals of each constituent element to that of the plasma gas shows that for oxygen, the ratio in krypton is more than ten times higher than in argon (oxygen ground state ions are produced by Kr-ACT). For many elements, the ratios are very similar but that for tungsten is higher with krypton, while for iron, the reverse holds. These effects are linked to the arrangement of ionic energy levels of the elements concerned and the resulting relative importance of ACT and PI. The GD-MS and GD-OES results have shown that the ACT process can play an important role as the ionization mode in low-power/low-pressure discharges. However, OES results have shown that the magnitude of change in spectral intensities of elements studied are dependent on the discharge conditions.

  3. Direct quantitative analysis of organic compounds in the gas and particle phase using a modified atmospheric pressure chemical ionization source in combination with ion trap mass spectrometry.

    PubMed

    Warscheid, Bettina; Kückelmann, Ulrich; Hoffmann, Thorsten

    2003-03-15

    A slightly modified atmospheric pressure chemical ionization source is employed for direct quantitative analysis of volatile or semivolatile organic compounds in air. The method described here is based on the direct introduction of an analyte in the gas or particle phase, or both, into the ion source of a commercial ion trap mass spectrometer. For quantitation, a standard solution is directly transferred into the vaporizer unit of the ion source via a deactivated fused-silica capillary by using the sheath liquid syringe pump, which is part of the mass spectrometer. The standard addition procedure is conducted by varying the pump rate of a diluted solution of the standard compound in methanol/water. A N2 sheath gas flow is applied for optimal vaporization and mixing with the analyte gas stream. By performing detailed reagent ion monitoring experiments, it is shown that the relative signal intensity of [M + H]+ ions is dependent on the relative humidity of the analyte gas stream as well as the composition and concentration of CI reagent ions. The method is validated by a comparison of the standard addition results with a calibration test gas of known concentration. To demonstrate the potential of atmospheric pressure chemical ionization mass spectrometry as a quantitative analytical technique for on-line investigations, a tropospherically relevant reaction is carried out in a 493-L reaction chamber at atmospheric pressure and 296 K in synthetic air at 50% relative humidity. Finally, the applicability of the technique to rapidly differentiate between analytes in the gas and particle phase is demonstrated. PMID:12659203

  4. Diclofenac in municipal wastewater treatment plant: quantification using laser diode thermal desorption--atmospheric pressure chemical ionization--tandem mass spectrometry approach in comparison with an established liquid chromatography-electrospray ionization-tandem mass spectrometry method.

    PubMed

    Lonappan, Linson; Pulicharla, Rama; Rouissi, Tarek; Brar, Satinder K; Verma, Mausam; Surampalli, Rao Y; Valero, José R

    2016-02-12

    Diclofenac (DCF), a prevalent non-steroidal anti-inflammatory drug (NSAID) is often detected in wastewater and surface water. Analysis of the pharmaceuticals in complex matrices is often laden with challenges. In this study a reliable, rapid and sensitive method based on laser diode thermal desorption/atmospheric pressure chemical ionization (LDTD/APCI) coupled with tandem mass spectrometry (MS/MS) has been developed for the quantification of DCF in wastewater and wastewater sludge. An established conventional LC-ESI-MS/MS (liquid chromatography-electrospray ionization-tandem mass spectrometry) method was compared with LDTD-APCI-MS/MS approach. The newly developed LDTD-APCI-MS/MS method reduced the analysis time to 12s in lieu of 12 min for LC-ESI-MS/MS method. The method detection limits for LDTD-APCI-MS/MS method were found to be 270 ng L(-1) (LOD) and 1000 ng L(-1) (LOQ). Furthermore, two extraction procedures, ultrasonic assisted extraction (USE) and accelerated solvent extraction (ASE) for the extraction of DCF from wastewater sludge were compared and ASE with 95.6 ± 7% recovery was effective over USE with 86 ± 4% recovery. The fate and partitioning of DCF in wastewater (WW) and wastewater sludge (WWS) in wastewater treatment plant was also monitored at various stages of treatment in Quebec Urban community wastewater treatment plant. DCF exhibited affinity towards WW than WWS with a presence about 60% of DCF in WW in contrary with theoretical prediction (LogKow=4.51). PMID:26805597

  5. Potential of atmospheric pressure chemical ionization source in gas chromatography tandem mass spectrometry for the screening of urinary exogenous androgenic anabolic steroids.

    PubMed

    Raro, M; Portolés, T; Pitarch, E; Sancho, J V; Hernández, F; Garrostas, L; Marcos, J; Ventura, R; Segura, J; Pozo, O J

    2016-02-01

    The atmospheric pressure chemical ionization (APCI) source for gas chromatography-mass spectrometry analysis has been evaluated for the screening of 16 exogenous androgenic anabolic steroids (AAS) in urine. The sample treatment is based on the strategy currently applied in doping control laboratories i.e. enzymatic hydrolysis, liquid-liquid extraction (LLE) and derivatization to form the trimethylsilyl ether-trimethylsilyl enol ether (TMS) derivatives. These TMS derivatives are then analyzed by gas chromatography tandem mass spectrometry using a triple quadrupole instrument (GC-QqQ MS/MS) under selected reaction monitoring (SRM) mode. The APCI promotes soft ionization with very little fragmentation resulting, in most cases, in abundant [M + H](+) or [M + H-2TMSOH](+) ions, which can be chosen as precursor ions for the SRM transitions, improving in this way the selectivity and sensitivity of the method. Specificity of the transitions is also of great relevance, as the presence of endogenous compounds can affect the measurements when using the most abundant ions. The method has been qualitatively validated by spiking six different urine samples at two concentration levels each. Precision was generally satisfactory with RSD values below 25 and 15% at the low and high concentration level, respectively. Most the limits of detection (LOD) were below 0.5 ng mL(-1). Validation results were compared with the commonly used method based on the electron ionization (EI) source. EI analysis was found to be slightly more repeatable whereas lower LODs were found for APCI. In addition, the applicability of the developed method has been tested in samples collected after the administration of 4-chloromethandienone. The highest sensitivity of the APCI method for this compound, allowed to increase the period in which its administration can be detected. PMID:26772132

  6. Sensitive and comprehensive detection of chemical warfare agents in air by atmospheric pressure chemical ionization ion trap tandem mass spectrometry with counterflow introduction.

    PubMed

    Seto, Yasuo; Sekiguchi, Hiroshi; Maruko, Hisashi; Yamashiro, Shigeharu; Sano, Yasuhiro; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Sekiguchi, Hiroyuki; Iura, Kazumitsu; Nagashima, Hisayuki; Nagoya, Tomoki; Tsuge, Kouichiro; Ohsawa, Isaac; Okumura, Akihiko; Takada, Yasuaki; Ezawa, Naoya; Watanabe, Susumu; Hashimoto, Hiroaki

    2014-05-01

    A highly sensitive and specific real-time field-deployable detection technology, based on counterflow air introduction atmospheric pressure chemical ionization, has been developed for a wide range of chemical warfare agents (CWAs) comprising gaseous (two blood agents, three choking agents), volatile (six nerve gases and one precursor agent, five blister agents), and nonvolatile (three lachrymators, three vomiting agents) agents in air. The approach can afford effective chemical ionization, in both positive and negative ion modes, for ion trap multiple-stage mass spectrometry (MS(n)). The volatile and nonvolatile CWAs tested provided characteristic ions, which were fragmented into MS(3) product ions in positive and negative ion modes. Portions of the fragment ions were assigned by laboratory hybrid mass spectrometry (MS) composed of linear ion trap and high-resolution mass spectrometers. Gaseous agents were detected by MS or MS(2) in negative ion mode. The limits of detection for a 1 s measurement were typically at or below the microgram per cubic meter level except for chloropicrin (submilligram per cubic meter). Matrix effects by gasoline vapor resulted in minimal false-positive signals for all the CWAs and some signal suppression in the case of mustard gas. The moisture level did influence the measurement of the CWAs. PMID:24678766

  7. Evaluation of ELISA kits followed by liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry for the determination of organic pollutants in industrial effluents

    SciTech Connect

    Castillo, M.; Oubina, A.; Barcelo, D.

    1998-07-15

    Contaminated industrial effluents often contain a variety of organic pollutants which are difficult to analyze by standard GC-MS methods since they often miss the more polar or nonvolatile of these organic compounds. The identification of highly polar analytes by chemical or rapid biological techniques is needed for characterization of the effluents. The present work evaluates the use of enzyme linked immunosorbent assays (ELISA) kits for determining pentachlorophenol, carcinogenic PAHs and BTEX (benzene, toluene, ethylbenzene, and o-, m-, and p-xylene) among the organic analytes present in various industrial effluents from Europe. The analytical protocol applied for the evaluation of the kits was based on the use of ELISA followed by solid-phase extraction (SPE) for the preconcentration of a variety of organic pollutants such as pentachlorophenol, phthalates, and nonylphenol and final determination with LC-MS characterization using an atmospheric pressure chemical ionization (APCI) interface in the positive and negative ionization modes. The developed protocol permitted the unequivocal identification of target analytes such as pentachlorophenol, nonylphenol, dibutylphthalate, dimethylphthalate, bis(2-ethylhexyl)phthalate 2-methylbenzenesulfonamide, and 2,2-dimethylbenzene-sulfonamide present in industrial effluents. The advantages and limitations of the three RaPID-magnetic particle-based ELISA kits applied to the characterization of industrial effluents are also reported.

  8. Characterization of triacylglycerol and diacylglycerol composition of plant oils using high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Holcapek, Michal; Jandera, Pavel; Zderadicka, Petr; Hrubá, Lucie

    2003-08-29

    Triacylglycerols (TGs) and diacylglycerols (DGs) in 16 plant oil samples (hazelnut, pistachio, poppy-seed, almond, palm, Brazil-nut, rapeseed, macadamia, soyabean, sunflower, linseed, Dracocephalum moldavica, evening primrose, corn, amaranth, Silybum arianum) were analyzed by HPLC-MS with atmospheric pressure chemical ionization (APCI) and UV detection at 205 nm on two Nova-Pak C18 chromatographic columns connected in series. A single chromatographic column and non-aqueous ethanol-acetonitrile gradient system was used as a compromise between the analysis time and the resolution for the characterization of TG composition of five plant oils. APCI mass spectra were applied for the identification of all TGs and other acylglycerols. The isobaric positional isomers can be distinguished on the basis of different relative abundances of the fragment ions formed by preferred losses of the fatty acid from sn-1(3) positions compared to the sn-2 position. Excellent chromatographic resolution and broad retention window together with APCI mass spectra enabled positive identification of TGs containing fatty acids with odd numbers of carbon atoms such as margaric (C17:0) and heptadecanoic (C17:1) acids. The general fragmentation patterns of TGs in both APCI and electrospray ionization mass spectra were proposed on the basis of MSn spectra measured with an ion trap analyzer. The relative concentrations of particular TGs in the analyzed plant oils were estimated on the basis of relative peak areas measured with UV detection at 205 nm. PMID:12974290

  9. Characterization of a high pressure, chemical ionization time-of-flight mass spectrometer for the measurement of alkylamines in the marine boundary layer

    NASA Astrophysics Data System (ADS)

    Kim, M. J.; Bertram, T. H.

    2012-12-01

    Field observations, supported by laboratory studies have shown that alkylamines contribute significantly to submicron organic aerosol mass loadings in the marine boundary layer. Further, computational and laboratory work suggest alkylamines enhance particle nucleation rates particularly in pristine air masses. Gas-phase condensation has been suggested as a likely pathway with links to microbiological activity in the surface ocean, with its exact nature still unknown. To this end, we present observations of gaseous alkylamines from the Scripps Institution of Oceanography Pier during late summer of 2012. This location is influenced by marine air masses, local pollution and high biological activity in the surrounding surface waters which allows probing of the relative strength of each source in coastal regions. Herein, we discuss observations of alkylamines (e.g. methyl-, ethyl- and dimethyl-, trimethyl- and diethylamines) in addition to oxygenated organic species (e.g. acetone, DMSO) made with a high pressure chemical ionization time-of-flight mass spectrometer (CITOFMS) using protonated water cluster reagent ion chemistry. We demonstrate order of magnitude improvements in sensitivity (>2000 vs 64 ncps ppbv-1 for acetone) over traditional PTR-MS and efficient transmission of clustered reagent ions (H-(H2O)n+) and products ions. The short term precision and low detection thresholds achieved here will likely support simultaneous measurements of the air-sea flux of a host of alkylamines via eddy covariance. Keywords: alkylamines, chemical ionization, air-sea exchange, SOA

  10. Enhanced metabolite profiling using a redesigned atmospheric pressure chemical ionization source for gas chromatography coupled to high-resolution time-of-flight mass spectrometry.

    PubMed

    Wachsmuth, Christian J; Hahn, Thomas A; Oefner, Peter J; Dettmer, Katja

    2015-09-01

    An improved atmospheric pressure chemical ionization (APCI II) source for gas chromatography-high-resolution time-of-flight mass spectrometry (GC-HRTOFMS) was compared to its first-generation predecessor for the analysis of fatty acid methyl esters, methoxime-trimethylsilyl derivatives of metabolite standards, and cell culture supernatants. Reductions in gas turbulences and chemical background as well as optimized heating of the APCI II source resulted in narrower peaks and higher repeatability in particular for late-eluting compounds. Further, APCI II yielded a more than fourfold median decrease in lower limits of quantification to 0.002-3.91 μM along with an average 20 % increase in linear range to almost three orders of magnitude with R (2) values above 0.99 for all metabolite standards investigated. This renders the overall performance of GC-APCI-HRTOFMS comparable to that of comprehensive two-dimensional gas chromatography (GC × GC)-electron ionization (EI)-TOFMS. Finally, the number of peaks with signal-to-noise ratios greater than 20 that could be extracted from metabolite fingerprints of pancreatic cancer cell supernatants upon switching from the APCI I to the APCI II source was more than doubled. Concomitantly, the number of identified metabolites increased from 36 to 48. In conclusion, the improved APCI II source makes GC-APCI-HRTOFMS a great alternative to EI-based GC-MS techniques in metabolomics and other fields. PMID:26092404

  11. Comparison of electrospray ionization and atmospheric pressure photoionization liquid chromatography mass spectrometry methods for analysis of ergot alkaloids from endophyte-infected sleepygrass (Achnatherum robustum).

    PubMed

    Jarmusch, Alan K; Musso, Ashleigh M; Shymanovich, Tatsiana; Jarmusch, Scott A; Weavil, Miranda J; Lovin, Mary E; Ehrmann, Brandie M; Saari, Susanna; Nichols, David E; Faeth, Stanley H; Cech, Nadja B

    2016-01-01

    Ergot alkaloids are mycotoxins with an array of biological effects. With this study, we investigated for the first time the application of atmospheric pressure photoionization (APPI) as an ionization method for LC-MS analysis of ergot alkaloids, and compared its performance to that of the more established technique of electrospray ionization (ESI). Samples of the grass Achnatherum robustum infected with the ergot producing Epichloë fungus were extracted using cold methanol and subjected to reserved-phase HPLC-ESI-MS and HPLC-APPI-MS analysis. The ergot alkaloids ergonovine and lysergic acid amide were detected in these samples, and quantified via external calibration. Validation parameters were recorded in accordance with ICH guidelines. A triple quadrupole MS operated in multiple reaction monitoring yielded the lowest detection limits. The performance of APPI and ESI methods was comparable. Both methods were subject to very little matrix interference, with percent recoveries ranging from 82% to 100%. As determined with HPLC-APPI-MS quantification, lysergic acid amide and ergonovine were extracted from an A. robustum sample infected with the Epichloë fungus at concentrations of 1.143±0.051 ppm and 0.2822±0.0071 ppm, respectively. There was no statistically significant difference between these concentrations and those determined using ESI for the same samples. PMID:26340558

  12. Determination of lincomycin and tylosin residues in honey using solid-phase extraction and liquid chromatography-atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Thompson, Thomas S; Noot, Donald K; Calvert, Jane; Pernal, Stephen F

    2003-12-12

    An analytical method for the determination of residues of the antibiotic drugs lincomycin and tylosin in honey was developed. The procedure employed a solid-phase extraction for the isolation of lincomycin and tylosin from diluted honey samples. The antibiotic residues were subsequently analyzed by reversed-phase HPLC with atmospheric pressure chemical ionization mass spectrometric detection. Average analyte recoveries for lincomycin and tylosin ranged from 84 to 107% in replicate sets of honey samples fortified with drug concentrations of 0.01, 0.5, and 10 microg/g. The method detection limits were determined to be 0.007 and 0.01 microg/g for lincomycin and tylosin, respectively. PMID:14661747

  13. Determination of oxygen and nitrogen derivatives of polycyclic aromatic hydrocarbons in fractions of asphalt mixtures using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization.

    PubMed

    Nascimento, Paulo Cicero; Gobo, Luciana Assis; Bohrer, Denise; Carvalho, Leandro Machado; Cravo, Margareth Coutinho; Leite, Leni Figueiredo Mathias

    2015-12-01

    Liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization was used for the determination of polycyclic aromatic hydrocarbon derivatives, the oxygenated polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic hydrocarbons, formed in asphalt fractions. Two different methods have been developed for the determination of five oxygenated and seven nitrated polycyclic aromatic hydrocarbons that are characterized by having two or more condensed aromatic rings and present mutagenic and carcinogenic properties. The parameters of the atmospheric pressure chemical ionization interface were optimized to obtain the highest possible sensitivity for all compounds. The detection limits of the methods ranged from 0.1 to 57.3 μg/L for nitrated and from 0.1 to 6.6 μg/L for oxygenated derivatives. The limits of quantification were in the range of 4.6-191 μg/L for nitrated and 0.3-8.9 μg/L for oxygenated derivatives. The methods were validated against a diesel particulate extract standard reference material (National Institute of Standards and Technology SRM 1975), and the obtained concentrations (two nitrated derivatives) agreed with the certified values. The methods were applied in the analysis of asphalt samples after their fractionation into asphaltenes and maltenes, according to American Society for Testing and Material D4124, where the maltenic fraction was further separated into its basic, acidic, and neutral parts following the method of Green. Only two nitrated derivatives were found in the asphalt sample, quinoline and 2-nitrofluorene, with concentrations of 9.26 and 2146 mg/kg, respectively, whereas no oxygenated derivatives were detected. PMID:26446274

  14. Online atmospheric pressure chemical ionization ion trap mass spectrometry (APCI-IT-MSn) for measuring organic acids in concentrated bulk aerosol - a laboratory and field study

    NASA Astrophysics Data System (ADS)

    Vogel, A. L.; Äijälä, M.; Brüggemann, M.; Ehn, M.; Junninen, H.; Petäjä, T.; Worsnop, D. R.; Kulmala, M.; Williams, J.; Hoffmann, T.

    2013-02-01

    The field application of an aerosol concentrator in conjunction with an atmospheric pressure chemical ionization ion trap mass spectrometer (APCI-IT-MS) at the boreal forest station SMEAR II at Hyytiälä, Finland, is demonstrated in this study. APCI is a soft-ionization technique allowing online measurements of organic acids in the gas and particle phase. The detection limit for the acid species in the particle phase was improved by a factor of 7.5 to 11 (e.g. ∼40 ng m3 for pinonic acid) by using the miniature versatile aerosol concentration enrichment system (mVACES) upstream of the mass spectrometer. The APCI-IT-MS was calibrated in the negative ion mode with two biogenic organic acid standards - pinic acid and pinonic acid. Pinic acid was used as a surrogate for the quantification of the total amount of organic acids in the ambient aerosol based on the total signal intensities in the negative ion mode. The results were compared with the total organic signal of a C-ToF-AMS during the HUMPPA-COPEC 2010 field campaign. The campaign average contribution of organic acids measured by APCI-IT-MS to the total submicron organic aerosol mass was estimated to be about 60%, based on the response of pinic acid. Very good correlation between APCI-IT-MS and C-ToF-AMS (Pearson's R = 0.94) demonstrates soft-ionization mass spectrometry as a complimentary technique to AMS with electron impact ionization. MS2 studies of specific m/z ratios recorded during the HUMPPA-COPEC 2010 field campaign were compared to MS2 studies of selected monoterpene oxidation products formed in simulation chamber experiments. The comparison of the resulting fragments shows that oxidation products of the main VOCs emitted at Hyytiälä (α-pinene and Δ3-carene) cannot account for all of the measured fragments. Possible explanations for those unaccounted fragments are the presence of unidentified or underestimated biogenic SOA precursors, or that different products are formed by a different oxidant

  15. Online atmospheric pressure chemical ionization ion trap mass spectrometry (APCI-IT-MSn) for measuring organic acids in concentrated bulk aerosol - a laboratory and field study

    NASA Astrophysics Data System (ADS)

    Vogel, A. L.; Äijälä, M.; Brüggemann, M.; Ehn, M.; Junninen, H.; Petäjä, T.; Worsnop, D. R.; Kulmala, M.; Williams, J.; Hoffmann, T.

    2012-08-01

    The field application of an aerosol concentrator in conjunction with an atmospheric pressure chemical ionization ion trap mass spectrometer (APCI-IT-MS) at the boreal forest station SMEAR II at Hyytiälä, Finland, is demonstrated in this study. APCI is a soft ionization technique allowing online measurements of organic acids in the gas and particle phase. The detection limit for the acid species in the particle phase was increased by a factor of 7.5 to 11 (e.g. ~40 ng m-3 for pinonic acid) by using the miniature Versatile Aerosol Concentration Enrichment System (mVACES) upstream of the mass spectrometer. The APCI-IT-MS was calibrated in the negative ion mode with two biogenic organic acid standards - pinic acid and pinonic acid. Pinic acid was used as a surrogate for the quantification of the total amount of organic acids in the ambient aerosol based on the total signal intensities in the negative ion mode. The results were compared with the total organic signal of a C-ToF-AMS during the HUMPPA-COPEC 2010 field campaign. The campaign average contribution of organic acids measured by APCI-IT-MS to the total sub-micron organic aerosol mass was estimated to be about 60%. Very good correlation between APCI-IT-MS and C-ToF-AMS (Pearson's R = 0.94) demonstrates soft ionization mass spectrometry as a complimentary technique to AMS with electron impact ionization. MS2 studies of specific m/z ratios recorded during the HUMPPA-COPEC 2010 field campaign were compared to MS2 studies of selected monoterpene oxidation products formed in simulation chamber experiments. The comparison of the resulting fragments shows that oxidation products of the main VOCs emitted at Hyytiälä (α-pinene and Δ3-carene) cannot account for all of the measured fragments, which illustrates the complexity of ambient aerosol and possibly indicates unidentified or underestimated biogenic SOA precursor in the boreal forest.

  16. Liquid sampling-atmospheric pressure glow discharge (LS-APGD) ionization source for elemental mass spectrometry: preliminary parametric evaluation and figures of merit.

    PubMed

    Quarles, C Derrick; Carado, Anthony J; Barinaga, Charles J; Koppenaal, David W; Marcus, R Kenneth

    2012-01-01

    A new, low-power ionization source for the elemental analysis of aqueous solutions has recently been described. The liquid sampling-atmospheric pressure glow discharge (LS-APGD) source operates at relatively low currents (<20 mA) and solution flow rates (<50 μL min(-1)), yielding a relatively simple alternative for atomic mass spectrometry applications. The LS-APGD has been interfaced to what is otherwise an organic, LC-MS mass analyzer, the Thermo Scientific Exactive Orbitrap without any modifications, other than removing the electrospray ionization source supplied with that instrument. A glow discharge is initiated between the surface of the test solution exiting a glass capillary and a metallic counter electrode mounted at a 90° angle and separated by a distance of ~5 mm. As with any plasma-based ionization source, there are key discharge operation and ion sampling parameters that affect the intensity and composition of the derived mass spectra, including signal-to-background ratios. We describe here a preliminary parametric evaluation of the roles of discharge current, solution flow rate, argon sheath gas flow rate, and ion sampling distance as they apply on this mass analyzer system. A cursive evaluation of potential matrix effects due to the presence of easily ionized elements indicate that sodium concentrations of up to 50 μg mL(-1) generally cause suppressions of less than 50%, dependant upon the analyte species. Based on the results of this series of studies, preliminary limits of detection (LOD) have been established through the generation of calibration functions. While solution-based concentration LOD levels of 0.02-2 μg mL(-1) are not impressive on the surface, the fact that they are determined via discrete 5 μL injections leads to mass-based detection limits at picogram to single-nanogram levels. The overhead costs associated with source operation (10 W d.c. power, solution flow rates of <50 μL min(-1), and gas flow rates <10 mL min(-1)) are

  17. Liquid Sampling-Atmospheric Pressure Glow Discharge (LS-APGD) Ionization Source for Elemental Mass Spectrometry: Preliminary Parametric Evaluation and Figures of Merit

    SciTech Connect

    Quarles, C. Derrick; Carado, Anthony J.; Barinaga, Charles J.; Koppenaal, David W.; Marcus, R. Kenneth

    2012-01-01

    A new, low power ionization source for the elemental analysis of aqueous solutions has recently been described. The liquid sampling-atmospheric pressure glow discharge (LS-APGD) source operates at relatively low currents (<20 mA) and solution flow rates (<50 μL min-1), yielding a relatively simple alternative for atomic mass spectrometry applications. The LS-APGD has been interfaced to what is otherwise an organic, LC-MS mass analyzer, the Thermo Scientific Exactive Orbitrap without any modifications; other than removing the electrospray ionization (ESI) source supplied with that instrument. A glow discharge is initiated between the surface of the test solution exiting a glass capillary and a metallic counter electrode mounted at a 90° angle and separated by a distance of ~5 mm. As with any plasma-based ionization source, there are key discharge operation and ion sampling parameters that affect the intensity and composition of the derived mass spectra; including signal-to-background ratios. We describe here a preliminary parametric evaluation of the roles of discharge current, solution flow rate, argon sheath gas flow rate, and ion sampling distance as they apply on this mass analyzer system. A cursive evaluation of potential matrix effects due to the presence of easily ionized elements (EIEs) indicate that sodium concentrations of up to 500 μg mL-1 generally cause suppressions of less than 50%, dependant upon the analyte species. Based on the results of this series of studies, preliminary limits of detection (LOD) have been established through the generation of calibration functions. Whilst solution-based concentrations LOD levels of 0.02 – 2 μg mL-1 3 are not impressive on the surface, the fact that they are determined via discrete 5 μL injections leads to mass-based detection limits at picogram to singlenanogram levels. The overhead costs associated with source operation (10 W d.c. power, solution flow rates of <50 μL min-1, and gas flow rates <10 mL min

  18. Distinguishing N-oxide and hydroxyl compounds: impact of heated capillary/heated ion transfer tube in inducing atmospheric pressure ionization source decompositions.

    PubMed

    Peiris, Dilrukshi M; Lam, Wing; Michael, Steven; Ramanathan, Ragu

    2004-06-01

    In the pharmaceutical industry, a higher attrition rate during the drug discovery process means a lower drug failure rate in the later stages. This translates into shorter drug development time and reduced cost for bringing a drug to market. Over the past few years, analytical strategies based on liquid chromatography/mass spectrometry (LC/MS) have gone through revolutionary changes and presently accommodate most of the needs of the pharmaceutical industry. Among these LC/MS techniques, collision induced dissociation (CID) or tandem mass spectrometry (MS/MS and MS(n)) techniques have been widely used to identify unknown compounds and characterize metabolites. MS/MS methods are generally ineffective for distinguishing isomeric compounds such as metabolites involving oxygenation of carbon or nitrogen atoms. Most recently, atmospheric pressure ionization (API) source decomposition methods have been shown to aid in the mass spectral distinction of isomeric oxygenated (N-oxide vs hydroxyl) products/metabolites. In previous studies, experiments were conducted using mass spectrometers equipped with a heated capillary interface between the mass analyzer and the ionization source. In the present study, we investigated the impact of the length of a heated capillary or heated ion transfer tube (a newer version of the heated capillary designed for accommodating orthogonal API source design) in inducing for-API source deoxygenation that allows the distinction of N-oxide from hydroxyl compounds. 8-Hydroxyquinoline (HO-Q), quinoline-N-oxide (Q-NO) and 8-hydroxyquinoline-N-oxide (HO-Q-NO) were used as model compounds on three different mass spectrometers (LCQ Deca, LCQ Advantage and TSQ Quantum). Irrespective of heated capillary or ion transfer tube length, N-oxides from this class of compounds underwent predominantly deoxygenation decomposition under atmospheric pressure chemical ionization conditions and the abundance of the diagnostic [M + H - O](+) ions increased with

  19. Surface ionization of terpene hydrocarbons

    SciTech Connect

    Zandberg, E.Y.; Nezdyurov, A.L.; Paleev, V.I.; Ponomarev, D.A.

    1986-09-01

    By means of a surface ionization indicator for traces of materials in the atmosphere it has been established that many natural materials containing terpenes and their derivatives are ionized on the surface of heated molybdenum oxide at atmospheric air pressure. A mass-spectrometer method has been used to explain the mechanism of ionization of individual terpene hydrocarbons and to establish its principles. The ionization of ..cap alpha..-pinene, alloocimene, camphene, and also adamantane on oxidized tungsten under vacuum conditions has been investigated. The ..cap alpha..-pinene and alloocimene are ionized by surface ionization but camphene and adamantane are not ionized under vacuum conditions. The surface ionization mass spectra of ..cap alpha..-pinene and alloocimene are of low line brightness in comparison with electron ionization mass spectra and differ between themselves. The temperature relations for currents of the same compositions of ions during ionization of ..cap alpha..-pinene and alloocimene are also different, which leads to the possibility of surface ionization analysis of mixtures of terpenes being ionized. The ionization coefficients of alloocimene and ..cap alpha..-pinene on oxidized tungsten under temperatures optimum for ionization and the ionization potentials of alloocimene molecules and of radicals (M-H) of both compounds have been evaluated.

  20. Rare earth permanent magnets

    SciTech Connect

    Major-Sosias, M.A.

    1993-10-01

    Permanent magnets were discovered centuries ago from what was known as {open_quotes}lodestone{close_quotes}, a rock containing large quantities of the iron-bearing mineral magnetite (Fe{sub 3}O{sub 4}). The compass was the first technological use for permanent magnetic materials; it was used extensively for navigational purposes by the fifteenth century. During the twentieth century, as new applications for permanent magnets were developed, interest and research in permanent magnetic materials soared. Four major types of permanent magnets have been developed since the turn of the century.

  1. Effect of pressure-induced changes in the ionization equilibria of buffers on inactivation of Escherichia coli and Staphylococcus aureus by high hydrostatic pressure.

    PubMed

    Gayán, Elisa; Condón, Santiago; Álvarez, Ignacio; Nabakabaya, Maria; Mackey, Bernard

    2013-07-01

    Survival rates of Escherichia coli and Staphylococcus aureus after high-pressure treatment in buffers that had large or small reaction volumes (ΔV°), and which therefore underwent large or small changes in pH under pressure, were compared. At a low buffer concentration of 0.005 M, survival was, as expected, better in MOPS (morpholinepropanesulfonic acid), HEPES, and Tris, whose ΔV° values are approximately 5.0 to 7.0 cm(3) mol(-1), than in phosphate or dimethyl glutarate (DMG), whose ΔV° values are about -25 cm(3) mol(-1). However, at a concentration of 0.1 M, survival was unexpectedly better in phosphate and DMG than in MOPS, HEPES, or Tris. This was because the baroprotective effect of phosphate and DMG increased much more rapidly with increasing concentration than it did with MOPS, HEPES, or Tris. Further comparisons of survival in solutions of salts expected to cause large electrostriction effects (Na2SO4 and CaCl2) and those causing lower electrostriction (NaCl and KCl) were made. The salts with divalent ions were protective at much lower concentrations than salts with monovalent ions. Buffers and salts both protected against transient membrane disruption in E. coli, but the molar concentrations necessary for membrane protection were much lower for phosphate and Na2SO4 than for HEPES and NaCl. Possible protective mechanisms discussed include effects of electrolytes on water compressibility and kosmotropic and specific ion effects. The results of this systematic study will be of considerable practical significance in studies of pressure inactivation of microbes under defined conditions but also raise important fundamental questions regarding the mechanisms of baroprotection by ionic solutes. PMID:23624471

  2. Gas chromatography-tandem mass spectrometry with atmospheric pressure chemical ionization for fluorotelomer alcohols and perfluorinated sulfonamides determination.

    PubMed

    Portolés, Tania; Rosales, Luis E; Sancho, Juan V; Santos, F Javier; Moyano, Encarnación

    2015-09-25

    Ionization and in source-fragmentation behavior of four fluorotelomer alcohols (FTOH) (4:2 FTOH, 6:2 FTOH, 8:2 FTOH and 10:2 FTOH) and four N-alkyl fluorooctane sulfonamides/-ethanols (N-MeFOSA, N-EtFOSA, N-MeFOSE and N-EtFOSE) by APCI has been studied and compared with the traditionally used EI and CI. Protonated molecule was the base peak of the APCI spectrum in all cases giving the possibility of selecting it as a precursor ion for MS/MS experiments. Following, CID fragmentation showed common product ions for all FOSAs/FOSEs (C4F7 and C3F5). Nevertheless, the different functionality gave characteristic pattern fragmentations. For instance, FTOHs mainly loss H2O+HF, FOSAs showed the losses of SO2 and HF while FOSEs showed the losses of H2O and SO2. Linearity, repeatability and LODs have been studied obtaining instrumental LODs between 1 and 5fg. Finally, application to river water and influent and effluent waste water samples has been carried out in order to investigate the improvements in detection capabilities of this new source in comparison with the traditionally used EI/CI sources. Matrix effects in APCI have been evaluated in terms of signal enhancement/suppression when comparing standards in solvent and matrix. No matrix effects were observed and concentrations found in samples were in the range of 1-100pgL(-1) far below the LODs achieved with methods previously reported. Unknown related perfluoroalkyl substances, as methyl-sulfone and methyl-sulfoxide analogues for FTOHs, were also discovered and tentatively identified. PMID:26298605

  3. Discussion of fundamental processes in dielectric barrier discharges used for soft ionization

    NASA Astrophysics Data System (ADS)

    Horvatic, Vlasta; Vadla, Cedomil; Franzke, Joachim

    2014-10-01

    Permanent need for simple to apply and efficient methods for molecular mass spectrometry resulted in the development of a variety of methods now commonly termed ambient desorption/ionization mass spectrometry (ADI-MS), which experienced a very rapid development during the last 10 years. The most widely used techniques are direct analysis in real time (DART), plasma assisted desorption/ionization (PADI), flowing afterglow-atmospheric pressure glow discharge ionization (FA-APGDI), low-temperature plasma probe (LTP) and dielectric barrier discharge ionization (DBDI). They all share the advantage of direct, ambient analysis of samples with little or no pretreatment, and employ some kind of electrical discharge to desorb and ionize the analyte species. However, the investigations focused on the characterization, examination and understanding of underlying ionization mechanisms of these discharges are relatively small in number. More efforts are clearly needed in this segment, since the understanding of the fundamentals of these discharges is a prerequisite for optimization of working parameters of ADI-MS sources with the aim of increasing ionization efficiency. Here, ADI-MS techniques will be overviewed, with the emphasis put on the review and the analysis of the recent progress in dielectric barrier discharges utilized for soft ionization.

  4. Modification of nitrogen Townsend ionization coefficient in a N2 laser with a weak corona preionization and high gas pressure using laser output power measurements

    NASA Astrophysics Data System (ADS)

    Sarikhani, S.; Hariri, A.

    2013-05-01

    Based on the reported experimental measurements on the output power in a transversely excited nitrogen laser with a weak corona preionization and rate equations, a simulation study was made to describe the laser output power behavior. For the study, we first made a literature survey for the appropriate E/p functional dependences of nitrogen molecules on drift velocity vd, and the Townsend ionization coefficient α, to be applied for the laser operational characteristics of high gas pressures up to 1 atmosphere, and 20 < E/p < 1000 V cm-1 Torr-1. For the study when the corona UV preionization is applied, it was realized that it is necessary to modify the Townsend ionization coefficient to include the effect of the preionization for the laser system. This realization revealed that the Townsend coefficient upon utilizing the corona effect, (α/p)corona, can be viewed as a perturbation to be added to the (α/p)main due to the main gas discharge, where the total (α/p)t = (α/p)main + (α/p)corona was used for the calculation. We also introduced a single α/p relation with A* and B* coefficients to explain the gas discharge due to both the main and corona discharges. The results of the two approaches are introduced and have been compared with each other. The present study indicates that laser optical measurements, by themselves, constitute a reliable approach for understanding the physical quantities that are involved during plasma formation in a gas discharge. Details of the approach will be presented in this paper.

  5. Determination of talinolol in human plasma using automated on-line solid phase extraction combined with atmospheric pressure chemical ionization tandem mass spectrometry.

    PubMed

    Bourgogne, Emmanuel; Grivet, Chantal; Hopfgartner, Gérard

    2005-06-01

    A specific LC-MS/MS assay was developed for the automated determination of talinolol in human plasma, using on-line solid phase extraction system (prospekt 2) combined with atmospheric pressure chemical ionization (APCI) tandem mass spectrometry. The method involved simple precipitation of plasma proteins with perchloric acid (contained propranolol) as the internal standard (IS) and injection of the supernatant onto a C8 End Capped (10 mmx2 mm) cartridge without any evaporation step. Using the back-flush mode, the analytes were transferred onto an analytical column (XTerra C18, 50 mmx4.6 mm) for chromatographic separation and mass spectrometry detection. One of the particularities of the assay is that the SPE cartridge is used as a column switching device and not as an SPE cartridge. Therefore, the same SPE cartridge could be used more than 28 times, significantly reducing the analysis cost. APCI ionization was selected to overcome any potential matrix suppression effects because the analyte and IS co-eluted. The mean precision and accuracy in the concentration range 2.5-200 ng/mL was found to be 103% and 7.4%, respectively. The data was assessed from QC samples during the validation phase of the assay. The lower limit of quantification was 2.5 ng/mL, using a 250 microL plasma aliquot. The LC-MS/MS method provided the requisite selectivity, sensitivity, robustness accuracy and precision to assess pharmacokinetics of the compound in several hundred human plasma samples. PMID:15866498

  6. Permanent contraception for women.

    PubMed

    Micks, Elizabeth A; Jensen, Jeffrey T

    2015-11-01

    Permanent methods of contraception are used by an estimated 220 million couples worldwide, and are often selected due to convenience, ease of use and lack of side effects. A variety of tubal occlusion techniques are available for female permanent contraception, and procedures can be performed using a transcervical or transabdominal approach. This article reviews currently available techniques for female permanent contraception and discusses considerations when helping patients choose a contraceptive method and tubal occlusion technique. PMID:26626698

  7. Oscillating Permanent Magnets.

    ERIC Educational Resources Information Center

    Michaelis, M. M.; Haines, C. M.

    1989-01-01

    Describes several ways to partially levitate permanent magnets. Computes field line geometries and oscillation frequencies. Provides several diagrams illustrating the mechanism of the oscillation. (YP)

  8. Quantitation of triacylglycerols in edible oils by off-line comprehensive two-dimensional liquid chromatography-atmospheric pressure chemical ionization mass spectrometry using a single column.

    PubMed

    Wei, Fang; Hu, Na; Lv, Xin; Dong, Xu-Yan; Chen, Hong

    2015-07-24

    In this investigation, off-line comprehensive two-dimensional liquid chromatography-atmospheric pressure chemical ionization mass spectrometry using a single column has been applied for the identification and quantification of triacylglycerols in edible oils. A novel mixed-mode phenyl-hexyl chromatographic column was employed in this off-line two-dimensional separation system. The phenyl-hexyl column combined the features of traditional C18 and silver-ion columns, which could provide hydrophobic interactions with triacylglycerols under acetonitrile conditions and can offer π-π interactions with triacylglycerols under methanol conditions. When compared with traditional off-line comprehensive two-dimensional liquid chromatography employing two different chromatographic columns (C18 and silver-ion column) and using elution solvents comprised of two phases (reversed-phase/normal-phase) for triacylglycerols separation, the novel off-line comprehensive two-dimensional liquid chromatography using a single column can be achieved by simply altering the mobile phase between acetonitrile and methanol, which exhibited a much higher selectivity for the separation of triacylglycerols with great efficiency and rapid speed. In addition, an approach based on the use of response factor with atmospheric pressure chemical ionization mass spectrometry has been developed for triacylglycerols quantification. Due to the differences between saturated and unsaturated acyl chains, the use of response factors significantly improves the quantitation of triacylglycerols. This two-dimensional liquid chromatography-mass spectrometry system was successfully applied for the profiling of triacylglycerols in soybean oils, peanut oils and lord oils. A total of 68 triacylglycerols including 40 triacylglycerols in soybean oils, 50 triacylglycerols in peanut oils and 44 triacylglycerols in lord oils have been identified and quantified. The liquid chromatography-mass spectrometry data were analyzed

  9. Calcium - ionized

    MedlinePlus

    ... at both ionized calcium and calcium attached to proteins. You may need to have a separate ionized calcium test if you have factors that increase or decrease total calcium levels. These may include abnormal blood levels ...

  10. Gas chromatography/atmospheric pressure chemical ionization/mass spectrometry for the analysis of organochlorine pesticides and polychlorinated biphenyls in human serum.

    PubMed

    Geng, Dawei; Jogsten, Ingrid Ericson; Dunstan, Jody; Hagberg, Jessika; Wang, Thanh; Ruzzin, Jerome; Rabasa-Lhoret, Rémi; van Bavel, Bert

    2016-07-01

    A method using a novel atmospheric pressure chemical ionization source for coupling gas chromatography (GC/APCI) to triple quadrupole mass spectrometry (MS/MS) for the determination of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) regulated by the Stockholm Convention is presented. One microliter injection of a six-point calibration curve of native PCBs and OCPs, ranging from 0.04 to 300pg/μL, was performed. The relative standard deviation (RSD) of the relative response factors (RRFs) was less than 15% with a coefficient of determination (r(2))>0.995. Meanwhile, two calibration solutions (CS), CS 2 (0.4pg/μL) and CS 3 (4pg/μL) were analyzed to study the repeatability calculated for both area and RRFs. The RSD for RRF ranged from 3.1 to 16% and 3.6 to 5.5% for CS 2 and CS 3, respectively. The limits of detection (LOD) determined by peak-to-peak signal-to-noise ratio (S/N) of 3 were compared between the GC/APCI/MS/MS and a GC coupled to high resolution mass spectrometry (GC/HRMS) system. GC/APCI/MS/MS resulted in lower LOD for most of the compounds, except for PCB#74, cis-chlordane and trans-chlordane. GC/APCI/MS/MS and GC/HRMS were also compared by performing analysis on 75 human serum samples together with eight QA/QC serum samples. The comparison between GC/APCI/MS/MS system and GC/HRMS system for 16 of the targeted compounds was carried out. No statistically significant difference was discovered. Due to increased sensitivity and user friendly operation under atmospheric pressure, GC/APCI/MS/MS is a powerful alternative technique that can easily meet the specification of GC/HRMS. PMID:27236485

  11. Permanent magnet assembly

    DOEpatents

    Chell, Jeremy; Zimm, Carl B.

    2006-12-12

    A permanent magnet assembly is disclosed that is adapted to provide a magnetic field across an arc-shaped gap. Such a permanent magnet assembly can be used, for example, to provide a time-varying magnetic field to an annular region for use in a magnetic refrigerator.

  12. Analysis of vitamin K1 in fruits and vegetables using accelerated solvent extraction and liquid chromatography tandem mass spectrometry with atmospheric pressure chemical ionization.

    PubMed

    Jäpelt, Rie Bak; Jakobsen, Jette

    2016-02-01

    The objective of this study was to develop a rapid, sensitive, and specific analytical method to study vitamin K1 in fruits and vegetables. Accelerated solvent extraction and solid phase extraction was used for sample preparation. Quantification was done by liquid chromatography tandem mass spectrometry with atmospheric pressure chemical ionization in selected reaction monitoring mode with deuterium-labeled vitamin K1 as an internal standard. The precision was estimated as the pooled estimate of three replicates performed on three different days for spinach, peas, apples, banana, and beetroot. The repeatability was 5.2% and the internal reproducibility was 6.2%. Recovery was in the range 90-120%. No significant difference was observed between the results obtained by the present method and by a method using the same principle as the CEN-standard i.e. liquid-liquid extraction and post-column zinc reduction with fluorescence detection. Limit of quantification was estimated to 0.05 μg/100g fresh weight. PMID:26304366

  13. Determination of the dopamine D2 agonist N-0923 and its major metabolites in perfused rat livers by HPLC-UV-atmospheric pressure ionization mass spectrometry.

    PubMed

    Swart, P J; Oelen, W E; Bruins, A P; Tepper, P G; de Zeeuw, R A

    1994-01-01

    The metabolism of the dopamine D2 agonist N-0923 was investigated by an in vitro isolated liver perfusion. Determining the metabolic profile and identity of the different metabolites was achieved by using high-performance liquid chromatography with UV detection, combined with atmospheric pressure ionization mass spectrometry. Using this technique, no extensive sample cleanup is required, and the studies can be performed without radioactivity. In addition to previously observed metabolites, nine new metabolic products were identified. All metabolites were exclusively excreted into the bile, except for the despropyl metabolite, which was also detectable in the perfusate. 5-O-Glucuronidation and N-depropylation followed by 5-O-glucuronidation are the most important metabolic routes. N-dealkylation of the thienylethyl group followed by 5-O-glucuronidation and sulfation is a second major metabolic pathway. Catechol formation of the despropyl metabolite with or without subsequent conjugation was not found. Catechol formation of the desthienylethyl metabolite occurred, but only its glucuronide conjugates were found. This study complements previous results of in vivo metabolic studies using the radiolabeled racemate N-0437, and it explains differences in bile excretion during isolated liver perfusions using N-0923 and radiolabeled N-0923. PMID:7911536

  14. Continuous water infusion enhances atmospheric pressure chemical ionization of methyl chloroformate derivatives in gas chromatography coupled to time-of-flight mass spectrometry-based metabolomics.

    PubMed

    Wachsmuth, Christian J; Dettmer, Katja; Lang, Sven A; Mycielska, Maria E; Oefner, Peter J

    2014-09-16

    The effects of continuous water infusion on efficiency and repeatability of atmospheric pressure chemical ionization of both methyl chloroformate (MCF) and methoxime-trimethylsilyl (MO-TMS) derivatives of metabolites were evaluated using gas chromatography-time-of-flight mass spectrometry. Water infusion at a flow-rate of 0.4 mL/h yielded not only an average 16.6-fold increase in intensity of the quasimolecular ion for 20 MCF-derivatized metabolite standards through suppression of in-source fragmentation but also the most repeatable peak area integrals. The impact of water infusion was the greatest for dicarboxylic acids and the least for (hetero-) aromatic compounds. Water infusion also improved the ability to detect reliably fold changes as small as 1.33-fold for the same 20 MCF-derivatized metabolite standards spiked into a human serum extract. On the other hand, MO-TMS derivatives were not significantly affected by water infusion, neither in their fragmentation patterns nor with regard to the detection of differentially regulated compounds. As a proof of principle, we applied MCF derivatization and GC-APCI-TOFMS to the detection of changes in abundance of metabolites in pancreatic cancer cells upon treatment with 17-DMAG. Water infusion increased not only the number of metabolites identified via their quasimolecular ion but also the reproducibility of peak areas, thereby almost doubling the number of significantly regulated metabolites (false discovery rate < 0.05) to a total of 23. PMID:25152309

  15. Characterization of gamma-irradiated polyethylene terephthalate by liquid-chromatography mass-spectrometry (LC MS) with atmospheric-pressure chemical ionization (APCI)

    NASA Astrophysics Data System (ADS)

    Buchalla, Rainer; Begley, Timothy H.

    2006-01-01

    Low-molecular-weight (low-MW) constituents of polyethylene terephthalate (PET), irradiated with 60Co gamma rays at 25 and 50 kGy, were analyzed by HPLC-MS with atmospheric-pressure chemical ionization (APCI). Consistent with earlier results, the concentrations of the major compounds that are present in the non-irradiated PET do not change perceptibly. However, we find a small but significant increase in terephthalic acid ethylester, from less than 1 mg/kg in the non-irradiated control to ca. 2 mg/kg after 50 kGy, which has not been described before. The finding is important because it gives an impression of the sensitivity of the analytical method. Additionally, it shows that even very radiation-resistant polymers can form measurable amounts of low-MW radiolysis products. The potential and limitations of LC-MS for the analysis of radiolysis products and unidentified migrants are briefly discussed in the context of the question: How can we validate our analytical methods for unknown analytes?

  16. Screening of pesticides and polycyclic aromatic hydrocarbons in feeds and fish tissues by gas chromatography coupled to high-resolution mass spectrometry using atmospheric pressure chemical ionization.

    PubMed

    Nácher-Mestre, Jaime; Serrano, Roque; Portolés, Tania; Berntssen, Marc H G; Pérez-Sánchez, Jaume; Hernández, Félix

    2014-03-12

    This paper reports a wide-scope screening for detection and identification of pesticides and polycyclic aromatic hydrocarbons (PAHs) in feeds and fish tissues. QuEChERS sample treatment was applied, using freezing as an additional cleanup. Analysis was carried out by gas chromatography coupled to hybrid quadrupole time-of-flight mass spectrometry with atmospheric pressure chemical ionization (GC-(APCI) QTOF MS). The qualitative validation was performed for over 133 representative pesticides and 24 PAHs at 0.01 and 0.05 mg/kg. Subsequent application of the screening method to aquaculture samples made it possible to detect several compounds from the target list, such as chlorpyrifos-methyl, pirimiphos-methyl, and ethoxyquin, among others. Light PAHs (≤4 rings) were found in both animal and vegetable samples. The reliable identification of the compounds was supported by accurate mass measurements and the presence of at least two representative m/z ions in the spectrum together with the retention time of the peak, in agreement with the reference standard. Additionally, the search was widened to include other pesticides for which standards were not available, thanks to the expected presence of the protonated molecule and/or molecular ion in the APCI spectra. This could allow the detection and tentative identification of other pesticides different from those included in the validated target list. PMID:24559176

  17. Comparison of the response of a NaI scintillation crystal with a pressurized ionization chamber as a function of altitude, radiation level and Ra-226 concentration

    SciTech Connect

    Provencher, R.; Smith, G.; Borak, T.B.; Kearney, P.

    1986-01-01

    The Grand Junction Uranium Mill Tailings Remedial Action-Radiological Survey Activities Group (UMTRA-RASA) program employs a screening method in which external exposure rates are used to determine if a property contaminated with uranium mill tailings is eligible for remedial action. Portable NaI detectors are used by survey technicians to locate contaminated areas and determine exposure rates. The exposure rate is calculated using a regression equation derived from paired measurements made with a pressurized ionization chamber (PIC) and a NaI detector. During July of 1985 extensive measurements were taken using a PIC and a NaI scintillator with both analogue and digital readout for a wide range of exposure rates and at a variety of elevations. The surface soil was sampled at most of these locations and analyzed for /sup 226/Ra. The response of the NaI detectors was shown to be highly correlated to radiation level but not to /sup 226/Ra concentration or elevation.

  18. Application of pentafluorophenyl hydrazine derivatives to the analysis of nabumetone and testosterone in human plasma by liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry.

    PubMed

    Sheen, J F; Her, G R

    2004-12-01

    Two carbonyl compounds, nabumetone and testosterone, were derivatized with pentafluorophenyl hydrazine (PFPH) and analyzed by atmospheric-pressure chemical-ionization mass spectrometry. The PFPH derivatives underwent dissociative electron capture in negative-ion APCI (ECAPCI) and gave intense [M-20](-) ions in the mass spectra. In positive-ion APCI, the PFPH derivatives underwent efficient protonation and gave intense [M + H](+) ions in the mass spectra. In CID, the major product ions of the [M-20](-) ions in ECAPCI corresponded to the partial moiety of PFPH. In contrast, the major product ions of [M + H](+) corresponded to the partial moiety of the analyte. By using selected reaction monitoring (SRM) detection, low pg of nabumetone (1 pg) and testosterone (7 pg) could be detected in both ECAPCI and positive-ion APCI. In comparison with the detection limits (SRM) of the underivatized analytes, use of the PFPH derivatives resulted in 2500-fold and 35-fold sensitivity enhancements for nabumetone and testosterone, respectively. The PFPH derivatives were applied to the analysis of nabumetone and testosterone in human plasma by both ECAPCI and positive-ion APCI and were found to enable detection of 0.1 ng mL(-1) nabumetone in spiked plasma. For testosterone, endogenous testosterone in female plasma was detected in both ECAPCI and positive-ion APCI. PMID:15700167

  19. High-throughput trace analysis of explosives in water by laser diode thermal desorption/atmospheric pressure chemical ionization-tandem mass spectrometry.

    PubMed

    Badjagbo, Koffi; Sauvé, Sébastien

    2012-07-01

    Harmful explosives can accumulate in natural waters in the long term during their testing, usage, storage, and dumping and can pose a health risk to humans and the environment. For the first time, attachment of small anions to neutral molecules in laser diode thermal desorption/atmospheric pressure chemical ionization was systematically investigated for the direct determination of trace nitroaromatics, nitrate esters, and nitramine explosives in water. Using ammonium chloride as an additive improved the instrument response for all the explosives tested and promoted the formation of several characteristic adduct ions. The method performs well achieving good linearity over at least 2 orders of magnitude, with coefficients of determination greater than 0.995. The resulting limits of detection are in the range of 0.009-0.092 μg/L. River water samples were successfully analyzed by the proposed method with accuracy in the range of 96-98% and a response time of 15 s, without any further pretreatment or chromatographic separation. PMID:22746321

  20. Carbamazepine in municipal wastewater and wastewater sludge: ultrafast quantification by laser diode thermal desorption-atmospheric pressure chemical ionization coupled with tandem mass spectrometry.

    PubMed

    Mohapatra, D P; Brar, S K; Tyagi, R D; Picard, P; Surampalli, R Y

    2012-09-15

    In this study, the distribution of the anti-epileptic drug carbamazepine (CBZ) in wastewater (WW) and aqueous and solid phases of wastewater sludge (WWS) was carried out. A rapid and reliable method enabling high-throughput sample analysis for quicker data generation, detection, and monitoring of CBZ in WW and WWS was developed and validated. The ultrafast method (15s per sample) is based on the laser diode thermal desorption-atmospheric pressure chemical ionization (LDTD-APCI) coupled to tandem mass spectrometry (MS/MS). The optimization of instrumental parameters and method application for environmental analysis are presented. The performance of the novel method was evaluated by estimation of extraction recovery, linearity, precision and detection limit. The method detection limits was 12 ng L(-1) in WW and 3.4 ng g(-1) in WWS. The intra- and inter-day precisions were 8% and 11% in WW and 6% and 9% in WWS, respectively. Furthermore, three extraction methods, ultrasonic extraction (USE), microwave-assisted extraction (MAE) and accelerated solvent extraction (ASE) with three different solvent condition such as methanol, acetone and acetonitrile:ethyle acetate (5:1, v/v) were compared on the basis of procedural blank and method recovery. Overall, ASE showed the best extraction efficiency with methanol as compared to USE and MAE. Furthermore, the quantification of CBZ in WW and WWS samples showed the presence of contaminant in all stages of the treatment plant. PMID:22967548

  1. Trace determination of 1-aminopropanone, a potential marker for wastewater contamination by liquid chromatography and atmospheric pressure chemical ionization-mass spectrometry.

    PubMed

    Singh, Simrat P; Gardinali, Piero R

    2006-02-01

    1-Aminopropanone (APR) is a volatile aminoketone of human origin that has been identified in raw sewage and surface waters. However, the traditional methodology for the determination of APR is extremely complicated and requires a skilled chemist to achieve consistent results. This investigation presents a novel and simple method for the analysis of APR by direct derivatization in aqueous media. APR is synthesized as its hydrochloride and derivatized using mercaptoethanol and o-phthalaldehyde. The product of reaction is separated on a 15 cm x 4.6 mm Luna C-18 column (1 mL/min, 45:55 acetonitrile: Water) and detected using a single quadrupole mass spectrometer detector operated in atmospheric pressure chemical ionization (APCI) mode. Method detection limits as low as 100 nM were routinely obtained with a precision of 1.7%. Recoveries of APR were always found to be greater then 88% in surface and wastewater samples fortified at three different levels. However, despite the robustness of the method and the fact that APR was consistently detected in urine it was not present in a variety surface or wastewaters analyzed during the course of the study. These results pose a critical question on the use of APR as a tracer for human derived wastewaters. PMID:16443254

  2. Determination of the mycotoxin moniliformin in cultures of Fusarium subglutinans and in naturally contaminated maize by high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Sewram, V; Nieuwoudt, T W; Marasas, W F; Shephard, G S; Ritieni, A

    1999-07-01

    A LC-MS method employing triethylamine as ion-pairing reagent for the determination of moniliformin in culture material and naturally contaminated maize samples is described. Mass spectrometric detection of moniliformin was accomplished following atmospheric pressure chemical ionization to yield the deprotonated molecular ion [M-H]- at m/z 97. The moniliformin response was found to be linear over the injected range 10 ng to 700 ng and a detection limit of 10 ng was attainable at a signal-to-noise (S/N) ratio of 4. Five South African strains of Fusarium subglutinans were grown on maize kernels and moniliformin extracted with an acetonitrile-water (95:5) mixture. Following sample clean up with reversed-phase (C18) solid-phase extraction cartridges, the extracts were subjected to LC-MS analysis. Triethylamine was used as an ion-pair reagent and found to improve the retention characteristics of moniliformin without any detrimental effects to the instrument. Moniliformin concentrations ranged between 130 mg/kg and 1460 mg/kg culture. Application of this method to naturally contaminated maize samples from Transkei showed that it was capable of measuring moniliformin levels down to 10 micrograms/kg in selected moldy maize cobs. This is the first report on the application of LC-MS to the analysis of moniliformin in cultures of F. subglutinans and in naturally contaminated maize. PMID:10427758

  3. Localization of double bonds in triacylglycerols using high-performance liquid chromatography/atmospheric pressure chemical ionization ion-trap mass spectrometry.

    PubMed

    Háková, Eva; Vrkoslav, Vladimír; Míková, Radka; Schwarzová-Pecková, Karolina; Bosáková, Zuzana; Cvačka, Josef

    2015-07-01

    A method for localizing double bonds in triacylglycerols using high-performance liquid chromatography-tandem mass spectrometry with atmospheric pressure chemical ionization (APCI) was developed. The technique was based on collision-induced dissociation or pulsed Q collision-induced dissociation of the C3H5N(+•) adducts ([M + 55](+•)) formed in the presence of acetonitrile in the APCI source. The spectra were investigated using a large series of standards obtained from commercial sources and prepared by randomization. The fragmentation spectra made it possible to determine (i) the total number of carbons and double bonds in the molecule, (ii) the number of carbons and double bonds in acyls, (iii) the acyl in the sn-2 position on the glycerol backbone, and (iv) the double-bond positions in acyls. The double-bond positions were determined based on two types of fragments (alpha and omega ions) formed by cleavages of C-C bonds vinylic to the original double bond. The composition of the acyls and their positions on glycerol were established from the masses and intensities of the ions formed by the elimination of fatty acids from the [M + 55](+•) precursor. The method was applied for the analysis of triacylglycerols in olive oil and vernix caseosa. PMID:25701424

  4. Total Analysis of Microcystins in Fish Tissue Using Laser Thermal Desorption-Atmospheric Pressure Chemical Ionization-High-Resolution Mass Spectrometry (LDTD-APCI-HRMS).

    PubMed

    Roy-Lachapelle, Audrey; Solliec, Morgan; Sinotte, Marc; Deblois, Christian; Sauvé, Sébastien

    2015-08-26

    Microcystins (MCs) are cyanobacterial toxins encountered in aquatic environments worldwide. Over 100 MC variants have been identified and have the capacity to covalently bind to animal tissue. This study presents a new approach for cell-bound and free microcystin analysis in fish tissue using sodium hydroxide as a digestion agent and Lemieux oxidation to obtain the 2-methyl-3-methoxy-4-phenylbutyric acid (MMPB) moiety, common to all microcystin congeners. The use of laser diode thermal desorption-atmospheric pressure chemical ionization coupled with Q-Exactive mass spectrometry (LDTD-APCI-HRMS) led to an analysis time of approximately 10 s per sample and high-resolution detection. Digestion/oxidation and solid phase extraction recoveries ranged from 70 to 75% and from 86 to 103%, respectively. Method detection and quantification limits values were 2.7 and 8.2 μg kg(-1), respectively. Fish samples from cyanobacteria-contaminated lakes were analyzed, and concentrations ranging from 2.9 to 13.2 μg kg(-1) were reported. PMID:26211936

  5. Quantitation of the 5HT1D agonists MK-462 and sumatriptan in plasma by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    McLoughlin, D A; Olah, T V; Ellis, J D; Gilbert, J D; Halpin, R A

    1996-03-01

    The 5HT1D agonist sumatriptan is efficacious in the treatment of migraines. MK-462 is a drug of the same class which is under development in our laboratories. Bioanalytical methods of high efficiency, specificity and sensitivity were required to support the preclinical and clinical programs. These assays were based on HPLC with tandem MS-MS detection. MK-462 and sumatriptan were extracted using an automated solid-phase extraction technique on a C2 Varian Bond-Elut cartridge. The n-diethyl analogues of MK-462 and sumatriptan were used as internal standards. The analytes were chromatographed using reversed-phase (nitrile) columns coupled via a heated nebulizer interface to an atmospheric pressure chemical ionization source. The chromatographic run times were less than 7 min. Both methods were precise, accurate and selective down to plasma concentrations of 0.5 ng/ml. The assay for MK-462 was adapted to separately monitor the unlabeled and 14C-labeled species of the drug following intravenous administration of radiolabeled material to man. PMID:8900521

  6. Determination of aldicarb, aldicarb sulfoxide and aldicarb sulfone in some fruits and vegetables using high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Nunes, G S; Alonso, R M; Ribeiro, M L; Barceló, D

    2000-08-01

    An analytical method for the determination of aldicarb, and its two major metabolites, aldicarb sulfoxide and aldicarb sulfone in fruits and vegetables is described. Briefly the method consisted of the use of a methanolic extraction, liquid-liquid extraction followed by solid-phase extraction clean-up. Afterwards, the final extract is analyzed by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry (LC-APCI-MS). The specific fragment ion corresponding to [M-74]+ and the protonated molecular [M+H]+ ion were used for the unequivocal determination of aldicarb and its two major metabolites. The analytical performance of the proposed method and the results achieved were compared with those obtained using the common analytical method involving LC with post-column fluorescence detection (FL). The limits of detection varied between 0.2 and 1.3 ng but under LC-FL were slightly lower than when using LC-APCI-MS. However both methods permitted one to achieve the desired sensitivity for analyzing aldicarb and its metabolites in vegetables. The method developed in this work was applied to the trace determination of aldicarb and its metabolites in crop and orange extracts. PMID:10949478

  7. Method of making permanent magnets

    DOEpatents

    McCallum, R.W.; Dennis, K.W.; Lograsso, B.K.; Anderson, I.E.

    1993-09-07

    A method for making an isotropic permanent magnet comprises atomizing a melt of a rare earth-transition metal alloy (e.g., an Nd--Fe--B alloy enriched in Nd and B) under conditions to produce protectively coated, rapidly solidified, generally spherical alloy particles. Wherein a majority of the particles are produced/size classified within a given size fraction (e.g., 5 to 40 microns diameter) exhibiting optimum as-atomized magnetic properties and subjecting the particles to concurrent elevated temperature and elevated isotropic pressure for a time effective to yield a densified, magnetically isotropic magnet compact having enhanced magnetic properties and mechanical properties. 13 figures.

  8. Method of making permanent magnets

    DOEpatents

    McCallum, R. William; Dennis, Kevin W.; Lograsso, Barbara K.; Anderson, Iver E.

    1993-09-07

    A method for making an isotropic permanent magnet comprises atomizing a melt of a rare earth-transition metal alloy (e.g., an Nd--Fe--B alloy enriched in Nd and B) under conditions to produce protectively coated, rapidly solidified, generally spherical alloy particles wherein a majority of the particles are produced/size classified within a given size fraction (e.g., 5 to 40 microns diameter) exhibiting optimum as-atomized magnetic properties and subjecting the particles to concurrent elevated temperature and elevated isotropic pressure for a time effective to yield a densified, magnetically isotropic magnet compact having enhanced magnetic properties and mechanical properties.

  9. Analytical instruments, ionization sources, and ionization methods

    DOEpatents

    Atkinson, David A.; Mottishaw, Paul

    2006-04-11

    Methods and apparatus for simultaneous vaporization and ionization of a sample in a spectrometer prior to introducing the sample into the drift tube of the analyzer are disclosed. The apparatus includes a vaporization/ionization source having an electrically conductive conduit configured to receive sample particulate which is conveyed to a discharge end of the conduit. Positioned proximate to the discharge end of the conduit is an electrically conductive reference device. The conduit and the reference device act as electrodes and have an electrical potential maintained between them sufficient to cause a corona effect, which will cause at least partial simultaneous ionization and vaporization of the sample particulate. The electrical potential can be maintained to establish a continuous corona, or can be held slightly below the breakdown potential such that arrival of particulate at the point of proximity of the electrodes disrupts the potential, causing arcing and the corona effect. The electrical potential can also be varied to cause periodic arcing between the electrodes such that particulate passing through the arc is simultaneously vaporized and ionized. The invention further includes a spectrometer containing the source. The invention is particularly useful for ion mobility spectrometers and atmospheric pressure ionization mass spectrometers.

  10. Determination and differentiation of triacylglycerol molecular species in Antarctic and non-Antarctic yeasts by atmospheric pressure-chemical ionization-mass spectrometry.

    PubMed

    Bhuiyan, Mohammad; Tucker, David; Watson, Kenneth

    2013-09-01

    Yeast, particularly Saccharomyces cerevisiae, has long served as a model eukaryotic system for studies on the regulation of lipid metabolism. We developed a high performance liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry method for the detailed analysis of triacylglycerols (TAGs) in 14 species of yeast consisting of seven Antarctic yeasts (grown at 15°C and 5°C) and seven non-Antarctic yeasts (grown at 25°C and 15°C), the latter including 3 strains of S. cerevisiae. Analysis of TAG molecular species established that the sn-2 position was invariably occupied by an unsaturated fatty acyl moiety. In S. cerevisiae the preference was for oleic acid 18:1>palmitoleic acid 16:1, in Candida albicans, Cryptococcus humicolus and Rhodotorula mucilaginosa 18:1>linoleic acid 18:2 and in Zygosaccharomyces rouxii 18:2>18:1. In the Antarctic yeasts (Cryptococcus watticus, Cryptococcus victoriae, Cryptococcus nyarrowii, Leucosporidium antarcticum, Leucosporidium fellii, Candida psychrophila and Rhodotorula mucilaginosa) the general pattern was for the sn-2 position to be occupied by 18:1, 18:2 or linolenic acid 18:3. A trend towards synthesis of increased unsaturated fatty acid in TAGs was observed as the growth temperature was lowered. The application of principal component analysis demonstrated that the yeasts were differentiated into three distinct groups. One group consisted of the three S. cerevisiae strains, a second the other four non-Antarctic yeasts and the third the seven Antarctic yeasts. The data for the Antarctic yeasts, to the best of our knowledge, have not been previously reported. PMID:23831436