Science.gov

Sample records for pressure temperature deformation

  1. Compressive-tensile deformation of nanocrystalline nickel at high pressure and temperature conditions

    NASA Astrophysics Data System (ADS)

    Yu, Xiaohui; Wang, Yuejian; Zhang, Jianzhong; Xu, Hongwu; Zhao, Yusheng

    2013-07-01

    We conducted uniaxial compressive and tensile deformation on nanocrystalline Ni at a confining pressure of 6 GPa and temperatures up to 900 °C. The determined compressive yield strength is 0.8 GPa, identical to the tensile yield strength obtained in the same deformation experiment, indicating that the Bauschinger effect is absent in nanocrystalline Ni. The yield strength obtained at 6 GPa is also comparable to that at ambient pressure, suggesting that the dislocation-mediated mechanisms are no longer activated during plastic deformation. Based on peak intensity and peak width analyses, grain rotation and grain growth are main factors underlying the plastic deformation.

  2. Experimental Deformation of Olivine Single Crystals at Mantle Pressures and Temperatures

    SciTech Connect

    Raterron, P.; Amiguet, E; Chen, J; Li, L; Cordier, P

    2008-01-01

    Deformation experiments were carried out in a deformation-DIA high-pressure apparatus (D-DIA) on oriented San Carlos olivine single crystals, at pressure (P) ranging from 3.5 to 8.5 GPa, temperature (T) from 1373 to 1673 K, and in poor water condition. Oxygen fugacity (fO2) was maintained within the olivine stability field and contact with enstatite powder ensured an orthopyroxene activity aopx = 1. Two compression directions were tested, promoting either [1 0 0] slip alone or [0 0 1] slip alone in (0 1 0) crystallographic plane, here called, respectively, a-slip and c-slip. Constant applied stress (s) and specimen strain rates ({bar {var_epsilon}}) were monitored in situ using time-resolved X-ray synchrotron diffraction and radiography, respectively. Transmission electron microscopy (TEM) investigation of run products revealed that dislocation creep was responsible for sample deformation. Comparison of the obtained high-P deformation data with the data obtained at room-P by Bai et al. [Bai, Q., Mackwell, S.L., Kohlstedt D.L., 1991, High-temperature creep of olivine single crystals. 1. Mechanical results for buffered samples, Journal of Geophysical Research, 96, 2441-2463] - on identical materials deformed at comparable T-sefO2-aopx conditions - allowed quantifying the P effect on a-slip and c-slip rheological laws. A slip transition with increasing pressure, from dominant a-slip to dominant c-slip, is documented. a-slip appears sensitive to pressure, which translates into the high activation volume V*{sub a} = 12 {+-} 4 cm{sup 3}/mol in the corresponding rheological law, while pressure has little effect on c-slip with V*{sub c} = 3 {+-} 4 cm{sup 3}/mol. These results may explain the discrepancy between olivine low-P and high-P deformation data which has been debated in the literature for more than a decade.

  3. Pressure-temperature and deformational evolution of high-pressure metapelites from Variscan NE Sardinia, Italy

    NASA Astrophysics Data System (ADS)

    Cruciani, Gabriele; Franceschelli, Marcello; Massonne, Hans-Joachim; Carosi, Rodolfo; Montomoli, Chiara

    2013-08-01

    Chloritoid schists crop out north of the village of Lula in the Inner Zone of the Variscan chain of Sardinia consisting of a variety of metamorphic rocks. The S1 and S2 foliations in these schists are defined by the orientation of muscovite, paragonite, and chloritoid. Chlorite is an additional mineral oriented along S2. Late margarite grew at the expense of chloritoid included in garnet. Garnet porphyroblasts, enclosing quartz, chloritoid, rutile, Fe-oxide, apatite and paragonite, show a progressive decrease of spessartine component from 17 to 7 mol% and an increase of pyrope component from 4 to 6 mol% from core to rim. The grossular content firstly increases from the inner (Grs~ 21) to the outer core (Grs~ 27) and then decreases towards the outermost rim (Grs~ 15). Compositional mapping of white mica also revealed zoning and a wide range in Si content (from 6.0 to 6.6 pfu). The highest Si content is related to the highest Fe and Mg contents and the lowest Na content. P-T pseudosections were calculated in the system Na2O-K2O-CaO-FeO-MnO-MgO-Al2O3-TiO2-SiO2-H2O for compositions of chloritoid schists. The highest Si contents of K-white mica and the garnet core composition suggest pressures close to 1.8 GPa and temperatures of 460-500 °C. The garnet rim composition and low Si contents in K-white mica are compatible with re-equilibration at 540-570 °C and 0.7-1.0 GPa. These results suggest an HP-metamorphic imprint during the D1 deformation phase which occurred before the Barrovian amphibolite-facies metamorphism of NE Sardinia. D2 folding and shearing occurred at decreasing P-T conditions during the exhumation of the metamorphic complex.

  4. In-situ Phase Transformation and Deformation of Iron at High Pressure andTemperature

    SciTech Connect

    Miyagi, Lowell; Kunz, Martin; Knight, Jason; Nasiatka, James; Voltolini, Marco; Wenk, Hans-Rudolf

    2008-07-01

    With a membrane based mechanism to allow for pressure change of a sample in aradial diffraction diamond anvil cell (rDAC) and simultaneous infra-red laser heating, itis now possible to investigate texture changes during deformation and phasetransformations over a wide range of temperature-pressure conditions. The device isused to study bcc (alpha), fcc (gamma) and hcp (epislon) iron. In bcc iron, room temperature compression generates a texture characterized by (100) and (111) poles parallel to the compression direction. During the deformation induced phase transformation to hcp iron, a subset of orientations are favored to transform to the hcp structure first and generate a texture of (01-10) at high angles to the compression direction. Upon further deformation, the remaining grains transform, resulting in a texture that obeys the Burgers relationship of (110)bcc // (0001)hcp. This is in contrast to high temperature results that indicate that texture is developed through dominant pyramidal {2-1-12}<2-1-13> and basal (0001)-{2-1-10} slip based on polycrystal plasticity modeling. We also observe that the high temperature fcc phase develops a 110 texture typical for fcc metals deformed in compression.

  5. High pressure and temperature deformation experiments on San Carlos olivine and implications for upper mantle anisotropy

    NASA Astrophysics Data System (ADS)

    Shekhar, Sushant; Frost, Daniel J.; Walte, Nicolas; Miyajima, Nobuyoshi; Heidelbach, Florian

    2010-05-01

    Crystallographic preferred orientation developed in olivine due to shearing in the mantle is thought to be the prominent reason behind seismic anisotropy in the upper mantle. Seismic anisotropy in upper mantle can be observed up to a depth of 350 km with a marked drop in the strength of anisotropy seen around 250 km. Studies on natural rock samples from the mantle and deformation experiments performed on olivine have revealed that olivine deforms mainly through dislocation creep with Burgers vectors parallel to the [100] crystallographic axis under low pressure conditions (up to 3 GPa). Under similar pressures, evidence of [001] slip has been reported due to the presence of water. In order to understand the deformation mechanism in olivine at pressures greater than 3 GPa, we have performed experiments using the deformation DIA multi-anvil apparatus. The DIA consist of 6 square faceted anvils that compress a cubic high-pressure assembly. The deformation DIA possesses two vertically acting opposing inner rams, which can be operated independently of the main compressive force to deform the sample assembly. The experimental setup consists of a hot-pressed sample of polycrystalline dry San Carlos olivine 0.2 mm cut from a 1.2 mm diameter core at 45° . This slice is sandwiched between alumina pistons also cut at 45° in simple shear geometry. Experiments have been performed at 3, 5 and 8 GPa at a deformation anvil strain rate of 1.0x10-4 s-1and temperatures between 1200-1400° C. Deformed samples were cut normal to the shear plane and parallel to the shear direction. Then the sample was polished and analyzed using electron back scattered diffraction (EBSD) to identify the crystallographic preferred orientation (CPO). The fabric that developed in olivine deformed at 3 GPa mainly resulted from the [100] slip on the (010) plane. Samples deformed at 5 GPa showed both [100] and [001] slip. On the other hand, samples deformed at 8 GPa and 1200° C, show deformation mainly

  6. Experimental Deformation of Polyphase Aggregates at Pressures and Temperatures of the Upper Mantle

    NASA Astrophysics Data System (ADS)

    Bejina, F.; Bystricky, M.; Ingrin, J.

    2011-12-01

    Modelling the solid-state flow of the upper mantle requires a thorough understanding of its rheology and therefore necessitates to perform deformation experiments on mantle rocks (or analogues) at very high pressures and temperatures. Minerals other than olivine constitute up to 40 vol% of upper mantle rocks and may have a significant effect on the rheological behavior of these rocks. Nevertheless, most experimental studies to date have focused on the deformation properties of olivine single crystals or monomineralic olivine aggregates. In this study, and as a first step before focusing on more realistic mantle-like compositions, we have performed deformation experiments on polymineralic model aggregates of forsterite and MgO at upper mantle pressures and temperatures. Commercial powders of Mg2SiO4 and MgO were mixed and ground in WC grinders and dried in a one-atmosphere furnace at 1000°C. Powders with different volume proportions of the two phases were sintered by spark plasma sintering (SPS) at 1300-1400°C and 100 MPa for a few minutes, resulting in dense pellets 8 mm in diameter and 3-4 mm in length. Microstructural analysis by SEM reveals equilibrated microstructures with forsterite and MgO grain sizes of a few microns. Deformation experiments on samples 1.2 mm in diameter and ~1.2mm in length were performed at 3-8 GPa and 1000-1300°C in a D-DIA apparatus coupled with synchrotron X-ray radiation. The technique permits in situ measurement of macroscopic strain rates as well as stress levels sustained by different subpopulations of grains of each phase. Typically, two specimens, respectively a monomineralic and a polymineralic aggregate, were deformed concurrently in order to minimize the relative uncertainties in temperature and pressure and to facilitate the comparison of their rheological properties. The samples were deformed to total strains of 15-25%. As expected, the harder phase, forsterite, sustains much higher stress levels than MgO, in agreement

  7. Deformation mechanisms in granodiorite at effective pressures to 100 MPa and temperatures to partial melting

    SciTech Connect

    Friedman, M.; Handin, J.; Bauer, S.J.

    1981-01-01

    Deformation mechanisms in room-dry and water-saturated specimens of Charcoal Granodiorite, shortened at 10/sup -4/s/sup -1/, at effective pressures (Pe) to 100 MPa and temperatures to partial melting (less than or equal to 1050/sup 0/C) are documented with a view toward providing criteria to recognize and characterize the deformation for geological and engienering applications. Above 800/sup 0/C strength decreases dramatically at effective pressures greater than or equal to 50 MPa and water-weakening reduces strength an additional 30 to 40% at Pe = 100 MPa. Strains at failure are only 0.1 to 2.2% with macroscopic ductility (within this range) increasing as the effective pressures are increased and in wet versus dry tests. Shattering (multiple faulting) gives way to faulting along a single zone to failure without macroscopic faulting as ductility increases. Microscopically, cataclasis (extension microfracturing and thermal cracking with rigid-body motions) predominates at all conditions. Dislocation gliding contributes little to the strain. Precursive extension microfractures coalesce to produce the throughgoing faults with gouge zones exhibiting possible Riedel shears. Incipient melting, particularly in wet tests, produces a distinctive texture along feldspar grain boundaries that suggests a grain-boundary-softening effect contributes to the weakening. In addition, it is demonstrated that the presence of water does not lead to more microfractures, but to a reduction in the stresses required to initiate and propagate them.

  8. Transmission electron microscopy of dislocations in cementite deformed at high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Mussi, A.; Cordier, P.; Ghosh, S.; Garvik, N.; Nzogang, B. C.; Carrez, Ph.; Garruchet, S.

    2016-06-01

    Polycrystalline aggregates of cementite (Fe3C) and (Fe,Ni)3C have been synthesised at 10 GPa and 1250 °C in the multianvil apparatus. Further, deformation of the carbides by stress relaxation has been carried out at temperature of 1250 °C and for 8 h at the same pressure. Dislocations have been characterised by transmission electron microscopy. They are of the [1 0 0] and [0 0 1] type, [1 0 0] being the most frequent. [1 0 0] dislocations are dissociated and glide in the (0 1 0) plane. [0 0 1] dislocations glide in (1 0 0) and (0 1 0). Given the plastic anisotropy of cementite, the morphology of the lamellae in pearlitic steels appears to have a major role in the strengthening role played by this phase, since activation of easy slip systems is geometrically inhibited in most cases.

  9. Utilization of temperature and pressure simulator for ocean-bottom and bore-hole observatories for quantitative crustal deformation

    NASA Astrophysics Data System (ADS)

    Machida, Y.; Matsumoto, H.; Araki, E.; Kimura, T.; Nishida, S.; Kawaguchi, K.

    2015-12-01

    JAMSTEC has developed temperature and pressure simulator for ocean-bottom and bore-hole observatories in 2010, which is mainly composed of temperature chamber and hydraulic pressure standard. We call this equipment "environment simulator". Temperature chamber is capable to control its target temperature from -10 to 180 ℃, hence it is supposed for ocean-bottom to bore-hole environment. Pressure standard in which the dead weight is mounded on the piston-cylinder module produces the reference pressure up to 100 MPa (ca. 10,000 meters deep), which makes it possible to apply the constant pressure to the pressure sensors via the hydraulic pressure tube. Thus, our environment simulator can demonstrate ocean-bottom or bore-hole environment in the laboratory. The main purpose of the pressure simulator is to evaluate long-term pressure sensor's stability, i.e., sensor's drift by applying the constant pressure under the constant temperature. Here, we introduce two applications of our environment simulator. The first application is to evaluate the initial behavior of pressure sensors to be used in the Dense Ocean-floor Network system for Earthquakes and Tsunamis (DONET) in the Nankai Trough, Japan. DONET pressure sensors have been deployed in order for detection of not only tsunami but also crustal deformation. We applied 20 MPa pressure under 2 ℃ temperature to the pressure sensors for one month before deploying into the deep-sea. As a result, the initial sensor drift of 5 hPa per month in maximum was measured. The second application is to provide the reference pressure to the mobile pressure sensor which is designed for the in-situ calibration for the pressure sensors being in operation. We have developed the in-situ pressure calibration tool equipped with the high precision pressure sensor. The concept is that we carry the reference pressure to the on-site to calibrate the pressure sensor. Before carrying it to the deep-sea, the reference pressure is given to the mobile

  10. In situ observation of crystallographic preferred orientation of deforming olivine at high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Ohuchi, Tomohiro; Nishihara, Yu; Seto, Yusuke; Kawazoe, Takaaki; Nishi, Masayuki; Maruyama, Genta; Hashimoto, Mika; Higo, Yuji; Funakoshi, Ken-ichi; Suzuki, Akio; Kikegawa, Takumi; Irifune, Tetsuo

    2015-06-01

    Simple-shear deformation experiments on polycrystalline olivine and olivine single-crystal were conducted at pressures of 1.3-3.8 GPa and temperatures of 1223-1573 K to understand the achievement of steady-state fabric strength and the process of dynamic recrystallization. Development of crystallographic preferred orientation (CPO) of olivine was evaluated from two-dimensional X-ray diffraction patterns, and shear strain was measured from X-ray radiographs. The steady-state fabric strength of the A-type fabric was achieved within total shear strain of γ = 2. At strains higher than γ = 1, an increase in concentration of the [0 1 0] axes mainly contributes to an increase in fabric strength. At strains higher than γ = 2, the magnitude of VSH/VSV (i.e., ratio of horizontally and vertically polarized shear wave velocities) scarcely increased in most of the runs. The VSH/VSV of peridotite (70 vol.% olivine + 30 vol.% minor phases) having the steady-state A-type olivine fabric coincides with that of recent global one-dimensional models under the assumption of horizontal flow, suggesting that the seismic anisotropy observed in the shallow upper mantle is mostly explained by the development of A-type olivine fabric. Experimental results on the deformation of single-crystal olivine showed that the CPO of olivine is influenced by the initial orientation of the starting single crystal because strain is concentrated in the recrystallized areas and the relic of the starting single crystal remains. In the upper mantle, the old CPO of olivine developed in the past may affect the olivine CPO developed in the present.

  11. Deformation of granite at elevated temperature and pressure. Final report, 1 March 1984-28 February 1985

    SciTech Connect

    Carter, N.L.

    1985-03-15

    The purpose was to determine the evolution of substructure and mechanical behavior of westerly granite, deformed under both wet and dry conditions, from the initial stages of transient creep well into the steady-state. Following calibration of the 10 kb gas apparatus at elevated temperature and pressure, the main pressure vessel burst. As a consequence, other studies were pursued. These include: (1) analysis of olivine fabrics of ophiolites; (2) upper mantle deformation in collision zones; (3) flow properties of continental lithosphere; and (4) mechanical behavior of oceanic layer 2 basalts. (ACR)

  12. Shock temperatures in silica glass - Implications for modes of shock-induced deformation, phase transformation, and melting with pressure

    NASA Technical Reports Server (NTRS)

    Schmitt, Douglas R.; Ahrens, Thomas J.

    1989-01-01

    Observations of shock-induced radiative thermal emissions are used to determine the gray body temperatures and emittances of silica glass under shock compression between 10 and 30 GPa. The results suggest that fused quartz deforms heterogeneously in this shock pressure range. It is shown that the 10-16 GPa range coincides with the permanent densification region, while the 16-30 GPa range coincides with the inferred mixed phase region along the silica glass Hugoniot. Low emittances in the mixed phase region are thought to represent the melting temperature of the high-pressure phase, stishovite. Also, consideration is given to the effects of pressure on melting relations for the system SiO2-Mg2SiO4.

  13. Deformation of polyphase aggregates, forsterite+MgO, at pressures and temperatures of the Earth's upper mantle

    NASA Astrophysics Data System (ADS)

    Bejina, F.; Bystricky, M.; Ingrin, J.

    2012-12-01

    Modelling the solid-state flow of the upper mantle requires a thorough understanding of its rheology and therefore necessitates to perform deformation experiments on mantle rocks (or analogues) at very high pressures and temperatures. Minerals other than olivine constitute up to 40 vol% of upper mantle rocks and may have a significant effect on the rheological behavior of these rocks. Nevertheless, most experimental studies to date have focused on the deformation properties of olivine single crystals or monomineralic olivine aggregates. In this study, and as a first step before focusing on more realistic mantle-like compositions, we have performed deformation experiments on polymineralic model aggregates of forsterite and MgO, at upper mantle pressures and temperatures. Commercial powders of Mg2SiO4 and MgO were mixed and ground in WC grinders and dried in a one-atmosphere furnace at 1000°C. Powders with different volume proportions of the two phases were sintered by spark plasma sintering (SPS) at temperatures of 1300-1400°C and 100 MPa for a few minutes, resulting in dense pellets 8 mm in diameter and 3-4 mm in length. Microstructural analysis by SEM reveals equilibrated microstructures with forsterite and MgO grain sizes of a few microns. Deformation experiments on samples 1.2 mm in diameter and 1.2 mm in length were performed at 3-8 GPa and 1000-1300°C in a D-DIA apparatus coupled with synchrotron X-ray radiation. The technique permits in situ measurement of macroscopic strain rates as well as stress levels sustained by different subpopulations of grains of each phase. Typically, two specimens, respectively a monomineralic and a polyphase aggregate, were deformed concurrently in order to minimize the relative uncertainties in temperature and pressure and to facilitate the comparison of their rheological properties. The samples were deformed to total strains of 15-25%. As expected, the harder phase, forsterite, sustains much higher stress levels than MgO, in

  14. Deformation of olivine under mantle conditions: An in situ high-pressure, high-temperature study using monochromatic synchrotron radiation

    SciTech Connect

    Hilairet, Nadège; Wang, Yanbin; Sanehira, Takeshi; Merkel, Sébastien; Mei, Shenghua

    2012-03-15

    Polycrystalline samples of San Carlos olivine were deformed at high-pressure (2.8-7.8 GPa), high-temperature (1153 to 1670 K), and strain rates between 7.10{sup -6} and 3.10{sup -5} s{sup -1}, using the D-DIA apparatus. Stress and strain were measured in situ using monochromatic X-rays diffraction and imaging, respectively. Based on the evolution of lattice strains with total bulk strain and texture development, we identified three deformation regimes, one at confining pressures below 3-4 GPa, one above 4 GPa, both below 1600 K, and one involving growth of diffracting domains associated with mechanical softening above {approx}1600 K. The softening is interpreted as enhanced grain boundary migration and recovery. Below 1600 K, elasto-plastic self-consistent analysis suggests that below 3-4 GPa, deformation in olivine occurs with large contribution from the so-called 'a-slip' system [100](010). Above {approx}4 GPa, the contribution of the a-slip decreases relative to that of the 'c-slip' [001](010). This conclusion is further supported by texture refinements. Thus for polycrystalline olivine, the evolution in slip systems found by previous studies may be progressive, starting from as low as 3-4 GPa and up to 8 GPa. During such a gradual change, activation volumes measured on polycrystalline olivine cannot be linked to a particular slip system straightforwardly. The quest for 'the' activation volume of olivine at high pressure should cease at the expense of detailed work on the flow mechanisms implied. Such evolution in slip systems should also affect the interpretation of seismic anisotropy data in terms of upper mantle flow between 120 and 300 km depth.

  15. Temperature dependence of the anisotropic deformation of Zr-2.5%Nb pressure tube material during micro-indentation

    NASA Astrophysics Data System (ADS)

    Bose, B.; Klassen, R. J.

    2011-12-01

    The effect of temperature on the anisotropic plastic deformation of textured Zr-2.5%Nb pressure tube material was studied using micro-indentation tests performed in the axial, radial, and transverse directions of the tube over the temperature range from 25 to 400 °C. The ratio of the indentation stress in the transverse direction relative to that in the radial and axial directions was 1.29:1 and 1.26:1 at 25 °C but decreased to 1.22:1 and 1.05:1 at 400 °C. The average activation energy of the obstacles that limit the rate of indentation creep increases, from 0.72 to 1.33 eV, with increasing temperature from 25 to 300 °C and is independent of indentation direction. At temperature between 300 °C and 400 °C the measured activation energy is considerably reduced for indentation creep in the transverse direction relative to that of either the axial or radial directions. We conclude that, over this temperature range, the strength of the obstacles that limit the time-dependent dislocation glide on the pyramidal slip system changes relative to that on the prismatic slip system. These findings provide new data on the temperature dependence of the yield stress and creep rate, particularly in the radial direction, of Zr-2.5%Nb pressure tubes and shed new light on the effect of temperature on the operation of dislocation glide on the prismatic and pyramidal slip systems which ultimately determines the degree of mechanical anisotropy in the highly textured Zr-2.5Nb pressure tube material used in CANDU nuclear reactors.

  16. Pressure-temperature-deformation-time of the ductile Alpine shearing in Corsica: From orogenic construction to collapse

    NASA Astrophysics Data System (ADS)

    Rossetti, Federico; Glodny, Johannes; Theye, Thomas; Maggi, Matteo

    2015-03-01

    Definition of the Tertiary tectono-metamorphic history of Alpine Corsica is a key task to decipher the space-time linkage between the Alpine and Apennine subduction systems in the Mediterranean region. Alpine Corsica exposes a nappe stack of oceanic- and continental-derived units, structurally juxtaposed onto the former European continental margin (Hercynian Corsica). Still uncertain is the timing of involvement of the continental-derived units in orogenic construction and shift to regional extension. This paper focuses on reconstruction of the pressure-temperature-deformation-time evolution of selected ductile shear zones activated during transition from the tectonic underplating to the extensional reworking stages. New Rb-Sr mineral age data, integrated with structural and thermobarometric investigations constrain the waning stages of the high-pressure (from blueschist to greenschist facies metamorphic conditions) top-to-the-W thrusting of the HP, oceanic-derived realm (Schistes Lustrés Complex) onto the Hercynian Corsica along the East Tenda Shear Zone in the early Oligocene (from ~ 32 to ~ 27 Ma). This early compressional evolution is overprinted by a major phase of retrogressive, syn-greenschist top-to-the-E extensional shearing in the Schistes Lustrés Complex with the last episode of deformation-related ductile recrystallization recorded during the early Miocene at ~ 20-21 Ma, in a continuum transition from ductile to brittle shearing. The same early Miocene Rb-Sr deformation ages are recovered from the ductile-to-brittle top-to-the-E reactivation domains within the East Tenda Shear Zone, documenting that transition from compression to extension in Alpine Corsica occurred during the late Oligocene-early Miocene time lapse. Implications of these data are discussed in the broader context of the Tertiary geodynamic evolution of the Central Mediterranean region.

  17. Exploiting Quartz to Constrain Pressure-Temperature-time-Deformation Histories in Metamorphic Rocks Through Recent Innovations in Thermobarometry and Geospeedometry

    NASA Astrophysics Data System (ADS)

    Ashley, Kyle; Law, Richard; Thomas, Jay; Caddick, Mark; Stahr, Donald, III

    2013-04-01

    Despite the abundance of quartz in continental crust, it has only recently been exploited for thermobarometric purposes. We are using trace element content, cathodoluminescence (CL) characteristics, fabric properties, extent of recrystallization, elastic properties and chemical diffusivities of quartz to better understand the pressure-temperature-time-deformation (P - T - t - D) histories of metamorphic rocks. The Ti-in-quartz thermobarometer has significant potential for unveiling important information on the metamorphic history of rocks, since quartz is commonly present in multiple microstructural settings (e.g. matrix, veins, inclusions) and zoning may be present in single crystals that reveal information about the reequilibration, recrystallization and growth histories of quartz. CL imaging provides a qualitative way to obtain such information, and provides a domainal framework for targeted quantitative analyses. We illustrate such analyses with examples from Vermont, India and Greece. A recent study in metapelites from central-eastern Vermont revealed crystals that have low Ti cores (interpreted to be preserved early prograde growth), with mantles that grade to higher Ti, attributed to temperature increase during fabric development and liberation of Si during crenulation cleavage development in the micaceous matrix. Low-Ti overgrowth rims that form sharp boundaries with these graded mantles may be later retrograde overgrowths. Forward modeling the expected volume of quartz present in the rock in P - T space may be implemented to confirm periods of quartz production/precipitation and dissolution. Rocks from the Sutlej Valley (north-west India) have matrix quartz grains with triple junction grain boundaries indicating extensive recovery. CL imaging, however, reveals high Ti ribbons that may be indicative of chemically-preserved paleo-microstructures. At the temperatures and metamorphic rates experienced by these samples, grain boundaries during recovery may not

  18. The Deformation-DIA: A Novel Apparatus for Measuring the Strength of Materials at High Strain to Pressures at Elevated Temperature

    SciTech Connect

    Durham, W

    2004-03-10

    The primary focus of this 3-year project was to develop and put to use an instrument to test experimentally the effect of pressure on body centered cubic (BCC) metals and other materials of interest to the Stockpile Stewardship program. Well-resolved materials testing requires measurements of load and deformation rate be measured at separable conditions of temperature, pressure, and plastic strain. The new apparatus at the heart of this work, the Deformation-DIA (D-DIA), began the project as a design concept. Its principal feature would be the capability to extend the conditions for such controlled materials testing from the current pressure limit of about 3 to almost 15 GPa, a factor of 5 increase. Once constructed and successfully tested, the plan of the project was to deform samples of BCC metals at arbitrary temperature and high pressures in order to provide preliminary measurements of strength and to prove its worth to the Stockpile Stewardship program. The project has been a stunning success. Progress toward demonstrating the worth of the D-DIA as a workhorse instrument for materials strength measurement at high pressure was given a huge boost by the fact that the machine itself functioned flawlessly from the very start, allowing the investigators to focus on measurement quality rather than technical operational issues. By the end of the project, we had deformed several samples of polycrystalline molybdenum (Mo) and tantalum (Ta) under very precisely controlled conditions, and for the Ta, had produced the first rudimentary measurements of strength to pressures of 8 GPa.

  19. Deformation of Lawsonite at High Pressure and High Temperature - Implications for Low Velocity Layers in Subduction Zones

    NASA Astrophysics Data System (ADS)

    Amiguet, E.; Hilairet, N.; Wang, Y.; Gillet, P.

    2014-12-01

    During subduction, the hydrated oceanic crust undergoes a series of metamorphic reactions and transform gradually to blueschists and eclogite at depths of 20-50 km. Detailed seismic observations of subduction zones suggest a complex layered structure with the presence of a Low Velocity Layer (LVL) related to the oceanic crust [1] persisting to considerable depths (100- 250 km).While the transformation from blueschist to eclogite [2] and the presence of glaucophane up to 90-100 km [3] could explain some of these observations, the presence of LVL at greater depths could be related to the presence of the hydrous mineral lawsonite (CaAl2(Si2O7)(OH)2 H2O). Its stability field extends to 8.5 GPa and 1100K corresponding to depths up to 250 km in cold hydrous part of subducting slabs [4]. Because these regions undergo large and heterogeneous deformation, lawsonite plasticity and crystal preferred orientation (CPOs) may strongly influence the dynamic of subduction zones and the seismic properties. We present a deformation study at high presssure and high temperature on lawsonite. Six samples were deformed at 4-10 GPa and 600K to 1000K using a D-DIA apparatus [5] at 13-BMD at GSECARS beamline, APS, in axial compression up to 30% deformation with strain rates of 3.10-4s-1 to 6.10-6s-1. We measured in-situ lattice strains (a proxy for macroscopic stress), texture and strain using synchrotron radiations and calculated the macroscopic stress using lawsonite elastic properties [6]. Results from lattice strain analysis show a dependence of flow stress with temperature and strain rate. Texture analysis coupled with transmission electron microscopy showed that dislocation creep is the dominant deformation mechanism under our deformation conditions. [1] Abers, Earth and Planetary Science Letters, 176, 323-330, 2000 [2] Helffrich et al., Journal of Geophysical Research, 94, 753-763, 1989 [3] Bezacier et al., Tectonophysics, 494, 201-210, 2010 [4] Schmidt & Poli, Earth and Planetary

  20. The large volume press facility at ID06 beamline of the European synchrotron radiation facility as a High Pressure-High Temperature deformation apparatus.

    PubMed

    Guignard, Jeremy; Crichton, Wilson A

    2015-08-01

    We report here the newly developed deformation setup offered by the 20MN (2000T) multi-anvil press newly installed at sector 7 of the European synchrotron radiation facility, on the ID06 beamline. The press is a Deformation-DIA (D-DIA) type apparatus, and different sets of primary anvils can be used for deformation experiments, from 6 mm to 3 mm truncations, according to the target pressure needed. Pressure and temperature calibrations and gradients show that the central zone of the assemblies is stable. Positions of differential RAMs are controlled with a sub-micron precision allowing strain rate from 10(-4) to 10(-6) s(-1). Moreover, changing differential RAM velocity is immediately visible on sample, making faster reaching of steady state. Lattice stresses are determined by the shifting of diffraction peak with azimuth angle using a linear detector covering typically a 10° solid-angle in 2θ mounted on rotation perpendicular to the beam. Acquisition of diffraction pattern, at a typical energy of 55 keV, is less than a minute to cover the whole azimuth-2θ space. Azimuth and d-spacing resolution are respectively better than 1° and 10(-3) Å making it possible to quantify lattice stresses with a precision of ±20 MPa (for silicates, which have typically high values of elastic properties), in pure or simple shear deformation measurements. These mechanical data are used to build fully constrained flow laws by varying P-T-σ-ε̇ conditions with the aim to better understanding the rheology of Earth's mantle. Finally, through texture analysis, it is also possible to determine lattice preferred orientation during deformation by quantifying diffraction peak intensity variation with azimuth angle. This press is therefore included as one of the few apparatus that can perform such experiments combining with synchrotron radiation. PMID:26329238

  1. The large volume press facility at ID06 beamline of the European synchrotron radiation facility as a High Pressure-High Temperature deformation apparatus

    NASA Astrophysics Data System (ADS)

    Guignard, Jeremy; Crichton, Wilson A.

    2015-08-01

    We report here the newly developed deformation setup offered by the 20MN (2000T) multi-anvil press newly installed at sector 7 of the European synchrotron radiation facility, on the ID06 beamline. The press is a Deformation-DIA (D-DIA) type apparatus, and different sets of primary anvils can be used for deformation experiments, from 6 mm to 3 mm truncations, according to the target pressure needed. Pressure and temperature calibrations and gradients show that the central zone of the assemblies is stable. Positions of differential RAMs are controlled with a sub-micron precision allowing strain rate from 10-4 to 10-6 s-1. Moreover, changing differential RAM velocity is immediately visible on sample, making faster reaching of steady state. Lattice stresses are determined by the shifting of diffraction peak with azimuth angle using a linear detector covering typically a 10° solid-angle in 2θ mounted on rotation perpendicular to the beam. Acquisition of diffraction pattern, at a typical energy of 55 keV, is less than a minute to cover the whole azimuth-2θ space. Azimuth and d-spacing resolution are respectively better than 1° and 10-3 Å making it possible to quantify lattice stresses with a precision of ±20 MPa (for silicates, which have typically high values of elastic properties), in pure or simple shear deformation measurements. These mechanical data are used to build fully constrained flow laws by varying P-T- σ - ɛ ˙ conditions with the aim to better understanding the rheology of Earth's mantle. Finally, through texture analysis, it is also possible to determine lattice preferred orientation during deformation by quantifying diffraction peak intensity variation with azimuth angle. This press is therefore included as one of the few apparatus that can perform such experiments combining with synchrotron radiation.

  2. Deformation of (Mg,Fe)O Ferropericlase to Temperatures of 1150 K and Pressures of 96 GPa: Implications for Mantle Flow and Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Marquardt, H.; Miyagi, L. M.; Speziale, S.; Liermann, H. P.; Merkel, S.; Tomé, C.

    2014-12-01

    Ferropericlase (Mg,Fe)O is thought to be the second most abundant mineral in Earth's lower mantle. Due to its potentially weak rheological behavior it may play a key role in controlling rheology of the lower mantle and in generating seismic anisotropy [1]. At pressures between approximately 40 GPa and 70 GPa at 300 K, the ferrous iron in ferropericlase undergoes a spin crossover from high-spin to low-spin state [2]. Our understanding of the deformation behavior of both high- and low-spin ferropericlase is incomplete, particularly at high-temperatures. The only published deformation study on (Mg,Fe)O through the spin transition pressure region has limited pressure resolution and was measured at 300 K [3]. Here, we present new results from synchrotron radial x-ray diffraction measurements on the deformation behavior of (Mg,Fe)O at high-pressures, covering the spin crossover pressure range, and high-temperatures. One set of experiments was performed on (Mg0.8-0.9Fe0.1-0.2)O at the Advanced Light Source (Lawrence Berkeley National Laboratory) up to 96 GPa at 300 K. A second suite of data were collected at the Extreme Conditions Beamline of PETRA III (DESY), where (Mg0.8Fe0.2)O was compressed at constant temperature to 70 GPa (at 850 K) and 40 GPa (at 1150 K). In all experiments, pressure was remotely increased using a gas membrane system, which allows for obtaining a very fine pressure resolution. From our data, we calculate the yield strength of ferropericlase, which we find to increase by a factor of about three throughout the lower mantle. Furthermore, we infer likely slip system activities of ferropericlase in Earth's lower mantle based on our experimental data and elastic viscoplastic self-consistent (EVPSC) modelling. We will discuss the effect of the increase of ferropericlase strength on the fate of subducting slabs and we will show potential implications for seismic anisotropy observations in D``, where low-spin ferropericlase is characterized by very large

  3. Deformation of Single Crystal Sample using D-DI Apparatus Coupled with Synchrotron X-rays: Insitu Stress and Strain Measurements at High Pressure and Temperature

    SciTech Connect

    Girard, J.; Chen, J; Raterron, P; Holyoke, C

    2010-01-01

    We present a technique for high pressure and high temperature deformation experiment on single crystals, using the Deformation-DIA apparatus at the X17B2 beamline of the NSLS. While deformation experiments on polycrystalline samples using D-DIA in conjunction with synchrotrons have been previously reported, this technical paper focuses on single crystal application of the technique. Our single crystals are specifically oriented such that only [1 0 0] slip or [0 0 1] slip in (0 1 0) plane is allowed. Constant applied stress (sigma <300 MPa) and specimen strain rates were monitored using in situ time-resolved X-ray diffraction and radiography imaging, respectively. Rheological properties of each activated slip system in the crystals can be revealed using this technique. In this paper, we describe the principle of sample preparation (e.g. [1 1 0]c and [0 1 1]c orientations) to activate specific slip systems (i.e. [1 0 0](0 1 0) and [0 0 1](0 1 0), respectively), stress measurement and procedures of the deformation experiments.

  4. High temperature pressure gauge

    DOEpatents

    Echtler, J. Paul; Scandrol, Roy O.

    1981-01-01

    A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

  5. Plastic deformation and sintering of alumina under high pressure

    SciTech Connect

    Liu, Fangming; Liu, Pingping; Wang, Haikuo; Xu, Chao; Yin, Shuai; Yin, Wenwen; Li, Yong; He, Duanwei

    2013-12-21

    Plastic deformation of alumina (Al{sub 2}O{sub 3}) under high pressure was investigated by observing the shape changes of spherical particles, and the near fully dense transparent bulks were prepared at around 5.5 GPa and 900 °C. Through analyzing the deformation features, densities, and residual micro-strain of the Al{sub 2}O{sub 3} compacts prepared under high pressures and temperatures (2.0–5.5 GPa and 600–1200 °C), the effects of plastic deformation on the sintering behavior of alumina have been demonstrated. Under compression, the microscopic deviatoric stress caused by grain-to-grain contact could initiate the plastic deformation of individual particles, eliminate pores of the polycrystalline samples, and enhance the local atomic diffusion at the grain boundaries, thus produced transparent alumina bulks.

  6. Pressure-temperature-time-deformation path of kyanite-bearing migmatitic paragneiss in the Kali Gandaki valley (Central Nepal): Investigation of Late Eocene-Early Oligocene melting processes

    NASA Astrophysics Data System (ADS)

    Iaccarino, Salvatore; Montomoli, Chiara; Carosi, Rodolfo; Massonne, Hans-Joachim; Langone, Antonio; Visonà, Dario

    2015-08-01

    Kyanite-bearing migmatitic paragneiss of the lower Greater Himalayan Sequence (GHS) in the Kali Gandaki transect (Central Himalaya) was investigated. In spite of the intense shearing, it was still possible to obtain many fundamental information for understanding the processes active during orogenesis. Using a multidisciplinary approach, including careful meso- and microstructural observations, pseudosection modelling (with PERPLE_X), trace element thermobarometry and in situ monazite U-Th-Pb geochronology, we constrained the pressure-temperature-time-deformation path of the studied rock, located in a structural key position. The migmatitic gneiss has experienced protracted prograde metamorphism after the India-Asia collision (50-55 Ma) from ~ 43 Ma to 28 Ma. During the late phase (36-28 Ma) of this metamorphism, the gneiss underwent high-pressure melting at "near peak" conditions (710-720 °C/1.0-1.1 GPa) leading to kyanite-bearing leucosome formation. In the time span of 25-18 Ma, the rock experienced decompression and cooling associated with pervasive shearing reaching P-T conditions of 650-670 °C and 0.7-0.8 GPa, near the sillimanite-kyanite transition. This time span is somewhat older than previously reported for this event in the study area. During this stage, additional, but very little melt was produced. Taking the migmatitic gneiss as representative of the GHS, these data demonstrate that this unit underwent crustal melting at about 1 GPa in the Eocene-Early Oligocene, well before the widely accepted Miocene decompressional melting related to its extrusion. In general, kyanite-bearing migmatite, as reported here, could be linked to the production of the high-Ca granitic melts found along the Himalayan belt.

  7. Experimental studies on deformation at high pressures using the deformation-DIA

    NASA Astrophysics Data System (ADS)

    Mei, S.; Durham, W. B.; Li, L.; Weidner, D. J.; Wang, Y.

    2003-04-01

    The rheological behavior of earth materials at high pressure and temperature controls the dynamics of Earth's interior. However, due to technical difficulties, high-pressure rheological research has been long limited by rather low working pressures for conventional deformation rigs (P usually less than 4 GPa) and limited resolution of stress and strain (especially at P > 0.5 GPa). Recently, a novel solid-medium apparatus called the Deformation-DIA (D-DIA) for investigating deformation behavior of materials at P to 15 GPa has been developed and tested satisfactorily. The D-DIA allows experiments to be carried out at a synchrotron x-ray beamline to make precise measurements in-situ. This technology provides accurate measurement of pressure, differential stress, and sample displacement. We report here results from some preliminary D-DIA experiments. Experiments have been conducted on polycrystalline samples of NaCl, MgO, and olivine. Samples are cold-pressed powder, inserted along with hard alumina pistons and a standard material of known elastic properties into a graphite resistance heater within a 6-mm edge length cubic pressure medium made of boron epoxy. X-ray diffraction of the elastic standard (which can be the sample itself) provides the measurement of pressure and deviatoric stress in the sample. The cell is first squeezed hydrostatically to reach desired pressures and then deformed in compression at constant pressure. During a run, pressure is monitored by the location of diffraction peaks of the standard and is controlled manually by metering hydraulic fluid to and from three independent hydraulic systems driving the parts of the D-DIA such that diffraction pattern holds constant as the deformation proceeds. Stress is determined from the diffraction spectra obtained from multiple detectors. Deformation is calculated from periodic x-radiographs of the deformation column. At this point measurement resolution of sample length change and pressure (or stress) in

  8. Temperature dependent deformation mechanisms in pure amorphous silicon

    SciTech Connect

    Kiran, M. S. R. N. Haberl, B.; Williams, J. S.; Bradby, J. E.

    2014-03-21

    High temperature nanoindentation has been performed on pure ion-implanted amorphous silicon (unrelaxed a-Si) and structurally relaxed a-Si to investigate the temperature dependence of mechanical deformation, including pressure-induced phase transformations. Along with the indentation load-depth curves, ex situ measurements such as Raman micro-spectroscopy and cross-sectional transmission electron microscopy analysis on the residual indents reveal the mode of deformation under the indenter. While unrelaxed a-Si deforms entirely via plastic flow up to 200 °C, a clear transition in the mode of deformation is observed in relaxed a-Si with increasing temperature. Up to 100 °C, pressure-induced phase transformation and the observation of either crystalline (r8/bc8) end phases or pressure-induced a-Si occurs in relaxed a-Si. However, with further increase of temperature, plastic flow rather than phase transformation is the dominant mode of deformation. It is believed that the elevated temperature and pressure together induce bond softening and “defect” formation in structurally relaxed a-Si, leading to the inhibition of phase transformation due to pressure-releasing plastic flow under the indenter.

  9. Deformation of olivine at high pressures using the Deformation-DIA

    NASA Astrophysics Data System (ADS)

    Mei, S.; Durham, W. B.; Wang, Y.

    2003-12-01

    The rheological behavior of olivine, the most abundant component of the Earth's upper mantle, under high pressures is essential for understanding the dynamic processes occurring within the Earth's interior. Conventional gas- and solid-medium experiments to date have been limited to pressures of about 3 GPa. We report here results from recent tests on olivine using the Deformation-DIA (D-DIA). The D-DIA is capable of constant-pressure deformation tests at pressures to 15 GPa and is configured to allow operation at a synchrotron x-ray beam line in order to provide in-situ measurement of pressure, differential stress, and sample length as a function of time. Experiments have been conducted on polycrystalline olivine samples cold-pressed from mixtures of olivine plus 5% enstatite powder. A 1 mm long x 1.1 mm diameter sample is encapsulated with 0.025-mm thick Ni foil, and assembled along with fully-densified Al2O3 or MgO pistons, a boron nitride sleeve, and graphite resistance heater into a 6-mm edge length cubic pressure medium of boron-epoxy resin. During experiments, the cell is first pressurized isotropically to desired levels and then deformed in compression at constant pressure. Experiments have been conducted at constant displacement rates of ˜ 0.5 - 8 x 10-5 s-1 over axial strains of 10 -20% at temperatures of 773 -1473 K and pressures of ˜ 5 - 6 GPa. The oxygen fugacity and silica activity of the olivine sample are buffered by Ni/NiO and the presence of enstatite, respectively. Using x-ray diffraction, we determine pressure (i.e., mean stress) and differential stress from the strain of various lattice planes measured as a function of orientation with respect to the stress field. At this point we are able to measure elastic strains from several prominent reflections in the olivine, and they indicate qualitatively that the in situ environment is significantly nonhydrostatic. For polycrystalline olivine deformed at high temperature and a constant rate of

  10. Deformation of Olivine at Mantle Pressure using D-DIA

    SciTech Connect

    Li,L.

    2006-01-01

    Knowledge of the rheological properties of mantle materials is critical in modeling the dynamics of the Earth. The high-temperature flow law of olivine defined at mantle conditions is especially important since the pressure dependence of rheology may affect our estimation of the strength of olivine in the Earth's interior. In this study, steady-state high-temperature (up to 1473 K) deformation experiments of polycrystalline olivine (average grain size ? 10 ?m) at pressure up to 9.6 GPa, were conducted using a Deformation-DIA (D-DIA) high-pressure apparatus and synchrotron X-ray radiation. The oxygen fugacity (fo2) during the runs was in-between the iron-wustite and the Ni/NiO buffers' fo2. The water content of the polycrystalline samples was generally about 150 to 200 wt. ppm but was as low as 35 wt ppm. Typically, 30 % strain was generated during the uniaxial compression. Sample lengths during the deformation process as well as the differential stresses were monitored in situ by X-ray radiography and diffraction, respectively. The strain rate was derived with an accuracy of 10?6 s?1. Differential stress was measured at constant strain rate (?10?5 s?1) using a multi-element solid-state detector combined with a conical slit. Recovered specimens were investigated by optical and transmission electron microscopy (TEM). TEM shows that dislocation glide was the dominant deformation mechanism throughout the experiment. Evidence of dislocation climb and cross-slip as active mechanisms are also reported. Deformation data show little or no dependence of the dislocation creep flow with pressure, yielding to an activation volume V* of 0 {+-} 5 cm3/mol. These new data are consistent with the high-temperature rheological laws at lower pressures, as reported previously.

  11. High-Temperature Deformation of Enstatite Aggregates

    NASA Astrophysics Data System (ADS)

    Bystricky, M.; Lawlis, J.; Mackwell, S. J.; Heidelbach, F.; Raterron, P. C.

    2011-12-01

    Although enstatite is a significant component of the upper mantle, its rheology is still poorly understood. We have performed an experimental investigation of the mechanical properties of enstatite at high pressure and temperature in the proto- and ortho-enstatite stability fields. Synthetic enstatite powders were produced by reacting San Carlos olivine powders with lab-grade quartz. Powders were hot-pressed at high PT, and were then baked at 1000°C under controlled oxygen fugacity conditions to remove all hydrous defect species. The polycrystalline enstatite samples were deformed in a Paterson gas-medium apparatus at temperatures of 1200-1300°C, an oxygen fugacity buffered at Ni/NiO, and confining pressures of 300 or 450 MPa. Under these conditions, samples were in the orthoenstatite field at 450 MPa and likely mainly in the protoenstatite field at 300 MPa. At both confining pressures, the mechanical data display a progressive increase of the stress exponent n from 1 to 3 as a function of differential stress, suggesting a transition from diffusional to dislocation creep. Non-linear least-square fits to the high-stress data yielded flow laws with n=3 and activation energies of 600 and 720 kJ/mol for ortho- and proto-enstatite, respectively. The measured strengths are significantly higher than those derived from Raleigh et al. (1971) and Ross and Nielsen (1978), due to the influence of water on the mechanical behavior of their samples. Deformed samples were analysed using optical microscopy, SEM and TEM. Because enstatite reverts to clinoenstatite during quenching, the microstructures present highly twinned grains composed of thin alternating domains of clino- and ortho-pyroxene. Nevertheless, the microstructures show evidence of dislocation processes in the form of undulatory extinction and kink bands. Crystallographic preferred orientations measured by EBSD are axisymmetric and indicate preferential slip on (100)[001]. High resolution TEM indicates that for

  12. Deformation of Diopside Single Crystal at Mantle Pressure 2 TEM Characterization of Deformation Microstructures

    SciTech Connect

    E Amiguet; P Cordier; P Raterron

    2011-12-31

    The dislocation microstructures of diopside single crystals deformed at high-pressure (4 {<=} P {<=} 9 GPa), high-temperature (1100{sup o} {<=} T {<=} 1400 {sup o}C) using a Deformation-DIA high-pressure apparatus (D-DIA) have been characterized by transmission electron microscopy using weak-beam dark-field (WBDF), precession electron diffraction (PED), large-angle convergent-beam electron diffraction (LACBED) and the thickness-fringe method. Dislocation glide is the dominant deformation mechanism under these conditions. The 1/2<110>{l_brace}110{r_brace} glide is controlled by lattice friction on the edge segments and shows extensive cross-slip. The [001] glide occurs mostly on {l_brace}110{r_brace}; no evidence for [001](010) glide has been found. The [100] dislocations bear a strong lattice friction probably due to complex (out of glide) core structures.

  13. High Pressure Deformation in Two-Phase Aggregates

    SciTech Connect

    Li,L.; Addad, A.; Weidner, D.; Long, H.; Chen, J.

    2007-01-01

    We investigate the rheological behavior of multi-phase aggregates at high pressure and high temperature. Using synchrotron X-ray radiation as the probing tool, we are able to quantify the stress state of individual phases within the aggregates. This method provides fundamental information in interpreting the behavior of two phase/multi-phase mixtures, which contribute to our understanding of the deformation process at deep earth conditions. We choose MgAl{sub 2}O{sub 4} spinel and MgO periclase as our model materials. Mixtures of various volume proportions were deformed in a multi-anvil high pressure deformation apparatus at pressure of 5 GPa and elevated temperatures. Stress is determined from X-ray diffraction, providing a measure of stress in each individual phase of the mixture in situ during the deformation. Macroscopic strain is determined from X-ray imaging. We compare the steady state strength of various mixtures at 1000 {sup o}C and 800 {sup o}C and at the strain rate in the range of 1.8 to 8.8 x 10{sup -5} s{sup -1}. Our data indicate that the weak phase (MgO) is responsible for most of the accumulated strains while the strong phase (spinel) is supporting most of the stress when the volume proportion is 75% spinel and 25% MgO. The intermediate compositions (40/60) are much weaker than either of the end members, while the grain sizes for the intermediate compositions (submicrons) are much smaller than the end members (5-10 {mu}m). We conclude that a change in flow mechanism resulting from these smaller grains is responsible for the low strength of the intermediate composition mixtures. This study demonstrates an approach of using synchrotron X-rays to study the deformation behaviors of multi-phase aggregates at high pressure and high temperature.

  14. Deformation of rock: A pressure-sensitive, dilatant material

    NASA Astrophysics Data System (ADS)

    Ord, A.

    1991-12-01

    Permanent (plastic) deformation of rock materials in the brittle regime (cataclastic flow) is modelled here in terms of Mohr-Coulomb behaviour in which all three of the parameters cohesion, friction angle and dilation angle follow hardening (or softening) evolution laws with both plastic straining and increases in confining pressure. The physical basis for such behaviour is provided by a sequence of uniaxial shortening experiments performed by Edmond and Paterson (1972) at confining pressures up to 800 MPa on a variety of materials including Gosford sandstone and Carrara marble. These triaxial compression experiments are important for the large range of confining pressures covered, and for the careful recording of data during deformation, particularly volume change of the specimens. Both materials are pressure-sensitive and dilatant. It is therefore possible to derive from these experiments a set of material parameters which allow a preliminary description of the deformation behaviour in terms of a non-associated, Mohr-Coulomb constitutive model, thus providing the first constitutive modelling of geological materials in the brittle-ductile regime. These parameters are used as input to a finite difference, numerical code (FLAC) with the aim of investigating how closely this numerical model simulates real material behaviour upon breakdown of homogeneous deformation. The mechanical and macrostructural behaviour exhibited by the numerical model is in close agreement with the physical results in that the stress-strain curves are duplicated together with localization behaviour. The results of the modelling illustrate how the strength of the upper-crust may be described by two different but still pressure-dependent models: the linear shear stress/normal stress relationship of Amontons (that is, Byerlee's Law), and a non-linear, Mohr-Coulomb constitutive model. Both include parameters of friction and both describe brittle deformation behaviour. Consideration of the non

  15. Experimental deformation of polycrystalline H2O ice at high pressure and low temperature - Preliminary results. [implications for Ganymede and Callisto

    NASA Technical Reports Server (NTRS)

    Durham, W. B.; Heard, H. C.; Kirby, S. H.

    1983-01-01

    A preliminary study is carried out of involving 70 constant strain deformation tests on pure polycrystalline H2O ice under conditions covering most of the stability field of ice I sub h. Brittle failure of I sub h is found to be promoted by lower P, lower T, and higher strain rates. Ductile flow is found to be promoted by higher P, higher T, and lower strain rates. The brittle failure of ice I sub h is found to be most unusual. The fracture strength is a positive function of P only below 50 MPa. At pressures greater than this, the fracture strength is independent of P, and the fracture plane lies approximately 45 deg from the load axis. It is believed that existing extrapolation based on existing experimental data to Ganymede and Callisto may be badly in error.

  16. DEFORMATION OF SCORIA CONE BY CONDUIT PRESSURIZATION

    SciTech Connect

    E.S. Gaffney; B. Damjanac; D. Krier; G. Valentine

    2005-08-26

    A simplified mechanical model is used to simulate the deformation of a scoria cone due to pressurization of magma in a feeder conduit. The scoria cone is modeled as consisting of a cone of stabilized scoria with an axial region of loose scoria (height h{sub 1}), all overlying a vertically oriented cylindrical conduit intruded into rhyolite tuff country rock. For our analyses, the conduit is filled with basalt magma, usually with the upper length (h{sub 2}) solidified. The style of deformation of the cone depends on both h{sub 1} and h{sub 2}. If magma is prevented from hydrofracturing out of the conduit (as, for example, might be the case if the magma is surrounded by a solidified, but plastically deformable layer acting as a gasket backed up by the brittle country rock) pressures in the magma can build to 10s of MPa. When h{sub 1} is 100 m, not unusual for a small isolated basaltic cinder cone, the magma pressure needed to destabilize the cone when molten magma extends all the way to the original ground surface (h{sub 2} = 0) is only about one-third of the pressure when the upper part of the conduit is solidified (h{sub 2} = 25m). In the former case, almost the entire upper third of the cone is at failure in tension when the configuration becomes unstable. In the latter case, small portions of the surface of the cone are failing in tension when instability occurs, but a large volume in the central core of the cone is failing in shear or compressions. These results may provide insight into the status of volcanic plumbing, either past or present, beneath scoria cones. Field observations at the Lathrop Wells volcano in southern Nevada identify structures at the outer edge just below the crater rim that appear to be inward-dipping listric normal faults. This may indicate that, near the end of its active stage, the cone was close to failing in this fashion. A companion paper suggests that such a failure could have been quite energetic had it occurred.

  17. Deformation of Scoria Cone by Conduit Pressurization

    NASA Astrophysics Data System (ADS)

    Gaffney, E. S.; Damjanac, B.; Krier, D.; Valentine, G.

    2005-12-01

    A simplified mechanical model is used to simulate the deformation of a scoria cone due to pressurization of magma in a feeder conduit. The scoria cone is modelled as consisting of a cone of stabilized scoria with an axial region of loose scoria (height h1), all overlying a vertically oriented cylindrical conduit intruded into rhyolite tuff country rock. For our analyses, the conduit is filled with basalt magma, usually with the upper length (h2) solidified. The style of deformation of the cone depends on both h1 and h2. If magma is prevented from hydrofracturing out of the conduit (as, for example, might be the case if the magma is surrounded by a solidified, but plastically deformable layer acting as a gasket backed up by the brittle country rock) pressures in the magma can build to 10s of MPa. When h1 is 100 m, not unusual for a small isolated basaltic cinder cone, the magma pressure needed to destabilize the cone when molten magma extends all the way to the original ground surface (h2 = 0) is only about one-third of the pressure when the upper part of the conduit is solidified (h2 = 25m). In the former case, almost the entire upper third of the cone is at failure in tension when the configuration becomes unstable. In the latter case, small portions of the surface of the cone are failing in tension when instability occurs, but a large volume in the central core of the cone is failing in shear or compression. These results may provide insight into the status of volcanic plumbing, either past or present, beneath scoria cones. Field observations at the Lathrop Wells volcano in southern Nevada identify structures at the outer edge just below the crater rim that appear to be inward-dipping listric normal faults. This may indicate that, near the end of its active stage, the cone was close to failing in this fashion. Such a failure could have been quite energetic had it occurred.

  18. Transition in the deformation mode of nanocrystalline tantalum processed by high-pressure torsion

    SciTech Connect

    Ligda, J.P.; Schuster, B.E.; Wei, Q.

    2012-10-11

    We present quasi-static room temperature compression and nanoindentation data for nanocrystalline and ultrafine grained tantalum processed by high-pressure torsion. Because bulk samples possess an inherent gradient in properties, microstructures were characterized using site-specific transmission electron microscopy and synchrotron X-ray diffraction. Nanocrystalline Ta shows appreciable homogeneous plastic deformation in compression; however, specimens with the smallest grain sizes exhibit localized plastic deformation via shear bands. Microstructural changes associated with this transition in deformation mode are discussed.

  19. High-pressure, high-temperature deformation of CaGeO3 (perovskite)±MgO aggregates: Elasto-ViscoPlastic Self-Consistent modeling and implications for multi-phase rheology of the lower mantle

    NASA Astrophysics Data System (ADS)

    Hilairet, N.; Tomé, C.; Wang, H.; Merkel, S.; Wang, Y.; Nishiyama, N.

    2014-12-01

    As the largest rocky layer in the Earth, the lower mantle plays a critical role in controlling convective patterns in our planet. Current mineralogical mantle models suggest that the lower mantle is dominated by (Mg,Fe)SiO3 perovskite (SiPv; about 70 - 90% in volume fraction) and (Mg,Fe)O ferropericlase (Fp). Knowledge of rheological properties of the major constituent minerals and stress/strain partitioning among these phases during deformation is critical in understanding dynamic processes of the deep Earth. For the lower mantle, the strength contrast between SiPv and Fp has been estimated [1], the former being much stronger than the latter. However fundamental issues of stress-strain interactions among the major phases still remain to be properly addressed. Here we examine rheological properties of a two-phase polycrystal consisting of CaGeO3 perovskite (GePv) and MgO, deformed in the D-DIA at controlled speed ~1 - 3×10-5 s-1 at high pressures and temperatures (between 3 to 10 GPa and 300 to 1200 K), with bulk axial strains up to ~20% [2]. We use Elasto-ViscoPlastic Self-Consistent modeling (EVPSC) [3] to reproduce lattice strains and textures measured in-situ with synchrotron X-ray diffraction. We compare the results to those on an identical deformation experiment with a single phase (GePv) polycrystal. We will discuss stress distributions between the two phases in the composite, textural developments, relationships with active slip systems, and finally the potential implications for rheological properties of the lower mantle. [1] Yamazaki, D., and S. Karato (2002), Fabric development in (Mg,Fe)O during large strain, shear deformation: implications for seismic anisotropy in Earth's lower mantle, Physics of the Earth and Planetary Interiors, 131(3-4), 251-267. [2] Wang, Y., N. Hilairet, N. Nishiyama, N. Yahata, T. Tsuchiya, G. Morard, and G. Fiquet (2013), High-pressure, high-temperature deformation of CaGeO3 (perovskite)+/- MgO aggregates: Implications for

  20. Deformation Twinning of a Silver Nanocrystal under High Pressure

    SciTech Connect

    Huang, Xiaojing; Yang, Wenge; Harder, Ross; Sun, Yugang; Liu, Ming; Chu, Yong S.; Robinson, Ian K.; Mao, Ho-kwang

    2015-11-01

    Within a high-pressure environment, crystal deformation is controlled by complex processes such as dislocation motion, twinning, and phase transitions, which change materials' microscopic morphology and alter their properties. Understanding a crystal's response to external stress provides a unique opportunity for rational tailoring of its functionalities. It is very challenging to track the strain evolution and physical deformation from a single nanoscale crystal under high-pressure stress. Here, we report an in situ three-dimensional mapping of morphology and strain evolutions in a single-crystal silver nanocube within a high-pressure environment using the Bragg Coherent Diffractive Imaging (CDI) method. We observed a continuous lattice distortion, followed by a deformation twining process at a constant pressure. The ability to visualize stress-introduced deformation of nanocrystals with high spatial resolution and prominent strain sensitivity provides an important route for interpreting and engineering novel properties of nanomaterials.

  1. Temperature dependence of optically induced cell deformations

    NASA Astrophysics Data System (ADS)

    Fritsch, Anatol; Kiessling, Tobias R.; Stange, Roland; Kaes, Josef A.

    2012-02-01

    The mechanical properties of any material change with temperature, hence this must be true for cellular material. In biology many functions are known to undergo modulations with temperature, like myosin motor activity, mechanical properties of actin filament solutions, CO2 uptake of cultured cells or sex determination of several species. As mechanical properties of living cells are considered to play an important role in many cell functions it is surprising that only little is known on how the rheology of single cells is affected by temperature. We report the systematic temperature dependence of single cell deformations in Optical Stretcher (OS) measurements. The temperature is changed on a scale of about 20 minutes up to hours and compared to defined temperature shocks in the range of milliseconds. Thereby, a strong temperature dependence of the mechanics of single suspended cells is revealed. We conclude that the observable differences arise rather from viscosity changes of the cytosol than from structural changes of the cytoskeleton. These findings have implications for the interpretation of many rheological measurements, especially for laser based approaches in biological studies.

  2. Structural transformations in single-crystalline titanium under high-pressure cold and cryogenic deformation

    NASA Astrophysics Data System (ADS)

    Pilyugin, V. P.; Khlebnikova, Yu. V.; Egorova, L. Yu.; Suaridze, T. R.; Resnina, N. N.; Patselov, A. M.

    2015-12-01

    The structure of an iodide titanium pseudo-single crystal subjected to severe plastic deformation in Bridgman anvils under a pressure of 8 GPa at room (293 K) and cryogenic (80 K) temperatures has been examined using methods of X-ray diffraction analysis and electron microscopy. It has been shown that, in the course of deformation, the original α titanium pseudo-single crystal undergoes the α→ ω transition. A decrease in the temperature of deformation to 80 K leads to the activation of twinning. At degrees of deformation lower than e = 6 titanium deformed at 293 K experiences more substantial strain hardening. In the course of subsequent deformation at 293 K, when e > 6, dynamic recrystallization begins, which is accompanied by the softening of the titanium. A decrease in the temperature of deformation to 80 K suppresses the recrystallization; therefore, the titanium deformed in liquid nitrogen shows a higher increase in the microhardness at degrees of deformation 6 < e < 10.

  3. High pressure deformation experiments using solid confining media and Griggs piston-cylinder methods: Appraisal of stress and deformation in talc assemblies

    NASA Astrophysics Data System (ADS)

    Stewart, Eric D.; Holyoke, , Caleb W.; Kronenberg, Andreas K.

    2013-03-01

    Attempts to calibrate mechanical results obtained in triaxial compression experiments using solid media assemblies in a Griggs piston-cylinder apparatus have failed to reveal a dependable relationship between results obtained using a talc assembly and results obtained with a gas triaxial deformation apparatus. Temperature-stepping experiments (600 °C-1000 °C) were performed on high-purity molybdenum (Mo) and a Ti-Zr-Mo alloy (TZM), pressurized by talc in a Griggs apparatus and by argon gas using a Heard apparatus. Apparent strengths of metal samples deformed at temperatures in the stability field of talc were at least 1500 MPa (> 6 times) greater than those determined in gas apparatus experiments, and they do not appear to follow any simple trend. At temperatures above talc dehydration, apparent strengths in talc assemblies were 500-800 MPa (> 2 1/2 times) greater. Total shortening strains of the metal samples measured after deformation in talc exceeded axial strains monitored during the triaxial deformation stage of the experiments by as much as 15-25%. A pressurization experiment performed on a TZM cylinder in talc, without engaging the load column, shows that samples can be shortened axially by the pressurization process. This test and a pressurization experiment conducted on a compound sample of Balsam Gap dunite and San Carlos olivine indicate that differential stresses within talc assemblies exceed the yield strengths of these materials during pressurization. Deformation of Balsam Gap dunite and San Carlos olivine during pressurization leads to complex microstructures, consisting of brittle faults, high dislocation densities, and small (10-40 μm) recrystallized grains. Experimental studies of deformation mechanisms and microstructures in samples deformed in strong solid confining media using Griggs piston-cylinder methods must therefore establish that the observed crystalline defects and microstructures are due to deformation at the controlled temperature

  4. Deformation of Single Crystal Molybdenum at High Pressure

    SciTech Connect

    Bonner, B P; Aracne, C; Farber, D L; Boro, C O; Lassila, D H

    2004-02-24

    Single crystal samples of micron dimensions oriented in the [001] direction were shortened 10 to 40% in uniaxial compression with superposed hydrostatic pressure to begin investigation of how the onset of yielding evolves with pressure. A testing machine based on opposed anvil geometry with precision pneumatic control of the applied force and capability to measure sub micron displacements was developed to produce shape changing deformation at pressure. The experiments extend observations of pressure dependent deformation to {approx}5Gpa at shortening rates of {approx}2*10{sup -4}. Samples have been recovered for post run characterization and analysis to determine if deformation mechanisms are altered by pressure. Experiments under hydrostatic pressure provide insight into the nature of materials under extreme conditions, and also provide a means for altering deformation behavior in a controlled fashion. The approach has a long history demonstrating that pressure enhances ductility in general, and produces enhanced hardening relative to that expected from normal cold work in the BCC metals Mo, Ta and Nb{sup 2}. The pressure hardening is in excess of that predicted from the measured increase in shear modulus at pressure, and therefore is likely due to a dislocation mechanism, such as suppression of kink pair formation or the interaction of forest dislocation cores, and not from lattice resistance. The effect has not been observed in FCC metals, suggesting a fundamental difference between deformation mechanisms at pressure for the two classes. The purpose of this letter is to investigate the origin of pressure hardening with new experiments that extend the pressure range beyond 3 GPa, the upper limit of conventional large sample (1cm{sup 3}) testing methods. Most previous high pressure deformation studies have been on poly crystals, relying on model dependent analysis to infer the maximum deviatoric stress that a deformed sample can support. In one experiment, a

  5. High-pressure, high-temperature deformation of CaGeO3 (perovskite)±MgO aggregates: Elasto-ViscoPlastic Self-Consistent modeling and dynamics in the lower mantle

    NASA Astrophysics Data System (ADS)

    Hilairet, Nadège; Tomé, Carlos; Wang, Huamiao; Merkel, Sébastien; Wang, Yanbin; Gasc, Julien; Feng, Shi; Nishiyama, Norimasa

    2016-04-01

    As the largest rocky layer in the Earth, the lower mantle plays a critical role in controlling convective patterns in our planet. Current mineralogical models suggest that the lower mantle is dominated by (Mg,Fe)SiO3 perovskite (SiPv; about 70 - 90% in volume fraction) and (Mg,Fe)O ferropericlase (Fp). Knowledge of rheological properties and textures of the major constituent minerals is critical in understanding dynamic processes of the deep Earth, and relating seismic observations to mineralogy. While individual properties of these phases have been studied, fewer informations on polyphase aggregates are available. Fundamental understanding about the stress-strain interactions among the phases and their effect on the bulk rheology still remains to be properly addressed. We examine stress/strain partitioning and rheological properties of a two-phase polycrystal CaGeO3 perovskite (GePv) and MgO, deformed in the D-DIA at controlled speed ~1 - 3×10-5 s-1 at high pressures and temperatures (between 3 to 10 GPa and 300 to 1200 K), with bulk axial strains up to ~30%. We use Elasto-Visco Plastic Self-Consistent modeling (EVPSC) to reproduce lattice strains and textures measured in-situ with synchrotron X-ray diffraction. We compare the results to those on an identical deformation experiment with a single phase (GePv) polycrystal. We will discuss stress distributions between the two phases in the composite, texture developments, relationships with active slip systems, and finally the implications for rheological and seismic properties of the lower mantle.

  6. Sessile dislocations by reactions in NiAl severely deformed at room temperature

    SciTech Connect

    Geist, D.; Gammer, C.; Rentenberger, C.; Karnthaler, H. P.

    2015-02-05

    B2 ordered NiAl is known for its poor room temperature (RT) ductility; failure occurs in a brittle like manner even in ductile single crystals deforming by single slip. In the present study NiAl was severely deformed at RT using the method of high pressure torsion (HPT) enabling the hitherto impossible investigation of multiple slip deformation. Methods of transmission electron microscopy were used to analyze the dislocations formed by the plastic deformation showing that as expected dislocations with Burgers vector a(100) carry the plasticity during HPT deformation at RT. In addition, we observe that they often form a(110) dislocations by dislocation reactions; the a(110) dislocations are considered to be sessile based on calculations found in the literature. It is therefore concluded that the frequently encountered 3D dislocation networks containing sessile a(110) dislocations are pinned and lead to deformation-induced embrittlement. In spite of the severe deformation, the chemical order remains unchanged.

  7. Can the multianvil apparatus really be used for high-pressure deformation experiments?

    SciTech Connect

    Durham, W.B.; Rubie, D.C.

    1996-04-24

    Past claims of the suitability of the MA-8 multianvil press as a deformation apparatus may have been overstated. On the basis of measurements of final octahedron size and of guide block displacement as a function of time, using the 10/5, 14/8, and 18/11 assemblies (octahedron edge length in mm/truncation edge length in mm) with MgO octahedra and pyrophyllite gasketing, it appears that at run conditions of interest to most researchers there is no appreciable time-dependent creep of gaskets and octahedra. All inelastic deformation occurs at rather low pressures: below about 10 GPa for the 10/5, 7 GPa for the 14/8, and 6 GPa for the 18/11 assemblies, with substantial uncertainties in these pressures. Above these limits all deformation of the pressure medium is elastic. Pressure stepping as a means of increasing the inelastic deformation rate of a sample is probably ineffective. Displacement measured at the guide blocks, previously believed to indicate deformation of the gaskets and octahedron, appears now to be unrelated to creep of these components. The calibrations have not been exhaustive and there is considerable scatter in some of the size measurements, so the above conclusions are not unequivocal. The calibrations do not exclude the possibility of deformation of a few tens of microns after the attainment of high pressure. Efforts to impose permanent shape change to samples at high pressure and temperature simply by relying on long run durations must be viewed with skepticism. There may be possibilities for deformation in the multianvil apparatus if materials of contrasting elastic modulus are used to differentially load a sample during pressure stepping.

  8. Phase with pressure-induced shuttlewise deformation in dense solid atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Ishikawa, Takahiro; Nagara, Hitose; Oda, Tatsuki; Suzuki, Naoshi; Shimizu, Katsuya

    2014-09-01

    A phase which shows pressure-induced shuttlewise structural deformation between orthorhombic Fddd and tetragonal I41/amd structures has been predicted in solid atomic hydrogen by means of the first-principles calculations, including harmonic zero-point energy contributions of proton motions. The Fddd structure is formed by shear distortion from the I41/amd structure, and the angle specifying the distortion changes with pressure in the range 84-96∘ around 90∘, which corresponds to I41/amd. In the shuttlewise deforming phase, the electron-phonon interaction is enhanced owing to phonon softenings, which brings about superconductivity at elevated temperatures.

  9. Structural Deformation of Sm@C88 under High Pressure

    NASA Astrophysics Data System (ADS)

    Cui, Jinxing; Yao, Mingguang; Yang, Hua; Liu, Ziyang; Ma, Fengxian; Li, Quanjun; Liu, Ran; Zou, Bo; Cui, Tian; Liu, Zhenxian; Sundqvist, Bertil; Liu, Bingbing

    2015-08-01

    We have studied the structural transformation of Sm@C88 under pressure up to 18 GPa by infrared spectroscopy combined with theoretical simulations. The infrared-active vibrational modes of Sm@C88 at ambient conditions have been assigned for the first time. Pressure-induced blue and red shifts of the corresponding vibrational modes indicate an anisotropic deformation of the carbon cage upon compression. We propose that the carbon cage changes from ellipsoidal to approximately spherical around 7 GPa. A smaller deformation of the carbon bonds in the area close to the Sm atom in the cage suggests that the trapped Sm atom plays a role in minimizing the compression of the adjacent bonds. Pressure induced a significant reduction of the band gap of the crystal. The HOMO-LUMO gap of the Sm@C88 molecule decreases remarkably at 7 GPa as the carbon cage is deformed. Also, compression enhances intermolecular interactions and causes a widening of the energy bands. Both effects decrease the band gap of the sample. The carbon cage deforms significantly above 7 GPa, from spherical to a peanut-like shape and collapses at 18 GPa.

  10. Structural Deformation of Sm@C88 under High Pressure

    PubMed Central

    Cui, Jinxing; Yao, Mingguang; Yang, Hua; Liu, Ziyang; Ma, Fengxian; Li, Quanjun; Liu, Ran; Zou, Bo; Cui, Tian; Liu, Zhenxian; Sundqvist, Bertil; Liu, Bingbing

    2015-01-01

    We have studied the structural transformation of Sm@C88 under pressure up to 18 GPa by infrared spectroscopy combined with theoretical simulations. The infrared-active vibrational modes of Sm@C88 at ambient conditions have been assigned for the first time. Pressure-induced blue and red shifts of the corresponding vibrational modes indicate an anisotropic deformation of the carbon cage upon compression. We propose that the carbon cage changes from ellipsoidal to approximately spherical around 7 GPa. A smaller deformation of the carbon bonds in the area close to the Sm atom in the cage suggests that the trapped Sm atom plays a role in minimizing the compression of the adjacent bonds. Pressure induced a significant reduction of the band gap of the crystal. The HOMO-LUMO gap of the Sm@C88 molecule decreases remarkably at 7 GPa as the carbon cage is deformed. Also, compression enhances intermolecular interactions and causes a widening of the energy bands. Both effects decrease the band gap of the sample. The carbon cage deforms significantly above 7 GPa, from spherical to a peanut-like shape and collapses at 18 GPa. PMID:26303867

  11. Ultrahigh Temperature Capacitive Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Harsh, Kevin

    2014-01-01

    Robust, miniaturized sensing systems are needed to improve performance, increase efficiency, and track system health status and failure modes of advanced propulsion systems. Because microsensors must operate in extremely harsh environments, there are many technical challenges involved in developing reliable systems. In addition to high temperatures and pressures, sensing systems are exposed to oxidation, corrosion, thermal shock, fatigue, fouling, and abrasive wear. In these harsh conditions, sensors must be able to withstand high flow rates, vibration, jet fuel, and exhaust. In order for existing and future aeropropulsion turbine engines to improve safety and reduce cost and emissions while controlling engine instabilities, more accurate and complete sensor information is necessary. High-temperature (300 to 1,350 C) capacitive pressure sensors are of particular interest due to their high measurement bandwidth and inherent suitability for wireless readout schemes. The objective of this project is to develop a capacitive pressure sensor based on silicon carbon nitride (SiCN), a new class of high-temperature ceramic materials, which possesses excellent mechanical and electric properties at temperatures up to 1,600 C.

  12. Simulation of eye deformation in the measurement of intraocular pressure

    NASA Astrophysics Data System (ADS)

    Khusainov, R. R.; Tsibul'Skii, V. R.; Yakushev, V. L.

    2011-02-01

    The procedure of measuring the intraocular pressure by an optical analyzer is numerically simulated. The cornea and the sclera are considered as axisymmetrically deformable shells of revolution with fixed boundaries; the space between these shells is filled with incompressible fluid. Nonlinear shell theory is used to describe the stressed and strained state of the cornea and sclera. The optical system is calculated from the viewpoint of the geometrical optics. Dependences between the pressure in the air jet and the area of the surface reflecting the light into a photodetector are obtained. The shapes of the regions on the cornea surface are found from which the reflected light falls on the photodetector. First, the light is reflected from the center of the cornea, but then, as the cornea deforms, the light is reflected from its periphery. The numerical results make it possible to better interpret the measurement data.

  13. THE ROLE OF PORE PRESSURE IN DEFORMATION IN GEOLOGIC PROCESSES

    SciTech Connect

    Narasimhan, T. N.; Houston, W. N.; Nur, A. M.

    1980-03-01

    A Penrose Conference entitled, "The Role of Pore Pressure in Deformation in Geologic Processes" was convened by the authors at San Diego, California between November 9 and 13, 1979. The conference was sponsored by the Geological Society of America. This report is a summary of the highlights of the issues discussed during the conference. In addition, this report also includes a topical reference list relating to the different subject areas relevant to pore pressure and deformation. The references were compiled from a list suggested by the participants and were available for consultation during the conference. Although the list is far from complete, it should prove to be a good starting point for one who is looking for key papers in the field.

  14. Deformation T-Cup: A new multi-anvil apparatus for controlled strain-rate deformation experiments at pressures above 18 GPa

    SciTech Connect

    Hunt, Simon A. McCormack, Richard J.; Bailey, Edward; Dobson, David P.; Weidner, Donald J.; Whitaker, Matthew L.; Li, Li; Vaughan, Michael T.

    2014-08-15

    A new multi-anvil deformation apparatus, based on the widely used 6-8 split-cylinder, geometry, has been developed which is capable of deformation experiments at pressures in excess of 18 GPa at room temperature. In 6-8 (Kawai-type) devices eight cubic anvils are used to compress the sample assembly. In our new apparatus two of the eight cubes which sit along the split-cylinder axis have been replaced by hexagonal cross section anvils. Combining these anvils hexagonal-anvils with secondary differential actuators incorporated into the load frame, for the first time, enables the 6-8 multi-anvil apparatus to be used for controlled strain-rate deformation experiments to high strains. Testing of the design, both with and without synchrotron-X-rays, has demonstrated the Deformation T-Cup (DT-Cup) is capable of deforming 1–2 mm long samples to over 55% strain at high temperatures and pressures. To date the apparatus has been calibrated to, and deformed at, 18.8 GPa and deformation experiments performed in conjunction with synchrotron X-rays at confining pressures up to 10 GPa at 800 °C.

  15. Deformation T-Cup: a new multi-anvil apparatus for controlled strain-rate deformation experiments at pressures above 18 GPa.

    PubMed

    Hunt, Simon A; Weidner, Donald J; McCormack, Richard J; Whitaker, Matthew L; Bailey, Edward; Li, Li; Vaughan, Michael T; Dobson, David P

    2014-08-01

    A new multi-anvil deformation apparatus, based on the widely used 6-8 split-cylinder, geometry, has been developed which is capable of deformation experiments at pressures in excess of 18 GPa at room temperature. In 6-8 (Kawai-type) devices eight cubic anvils are used to compress the sample assembly. In our new apparatus two of the eight cubes which sit along the split-cylinder axis have been replaced by hexagonal cross section anvils. Combining these anvils hexagonal-anvils with secondary differential actuators incorporated into the load frame, for the first time, enables the 6-8 multi-anvil apparatus to be used for controlled strain-rate deformation experiments to high strains. Testing of the design, both with and without synchrotron-X-rays, has demonstrated the Deformation T-Cup (DT-Cup) is capable of deforming 1-2 mm long samples to over 55% strain at high temperatures and pressures. To date the apparatus has been calibrated to, and deformed at, 18.8 GPa and deformation experiments performed in conjunction with synchrotron X-rays at confining pressures up to 10 GPa at 800 °C . PMID:25173308

  16. Deformation T-Cup: A new multi-anvil apparatus for controlled strain-rate deformation experiments at pressures above 18 GPa

    NASA Astrophysics Data System (ADS)

    Hunt, Simon A.; Weidner, Donald J.; McCormack, Richard J.; Whitaker, Matthew L.; Bailey, Edward; Li, Li; Vaughan, Michael T.; Dobson, David P.

    2014-08-01

    A new multi-anvil deformation apparatus, based on the widely used 6-8 split-cylinder, geometry, has been developed which is capable of deformation experiments at pressures in excess of 18 GPa at room temperature. In 6-8 (Kawai-type) devices eight cubic anvils are used to compress the sample assembly. In our new apparatus two of the eight cubes which sit along the split-cylinder axis have been replaced by hexagonal cross section anvils. Combining these anvils hexagonal-anvils with secondary differential actuators incorporated into the load frame, for the first time, enables the 6-8 multi-anvil apparatus to be used for controlled strain-rate deformation experiments to high strains. Testing of the design, both with and without synchrotron-X-rays, has demonstrated the Deformation T-Cup (DT-Cup) is capable of deforming 1-2 mm long samples to over 55% strain at high temperatures and pressures. To date the apparatus has been calibrated to, and deformed at, 18.8 GPa and deformation experiments performed in conjunction with synchrotron X-rays at confining pressures up to 10 GPa at 800 °C .

  17. Direct measurement of the effective pressure law: Deformation of joints subject to pore and confining pressures

    SciTech Connect

    Boitnott, G.N.; Scholz, C.H. )

    1990-11-10

    When describing the deformation of poro-elastic materials subject to pore pressure (P{sub p}) and confining pressure (P{sub c}), the concept of effective pressure is commonly used. In such a description the deformation is described in terms of a single stress parameter, the effective stress (P{sub e}). Experimental studies which attempt to describe the effective pressure law are troubled by the fact that deformation of geologic materials invariably exhibits loading path dependence (hysteresis). Here the authors develop an experimental technique for measuring the effective pressure law which is useful for many properties of interest, including those that are highly nonlinear and exhibit common types of hysteresis. They experimentally derive an effective pressure law which describes the values of pore and confining pressure consistent with a given joint closure for a law which describes the values of pore and confining pressure consistent with a given joint closure for a loading path of constant closure. The study can be viewed as an attempt to include both pore and confining pressure in a single constitutive law for joint closure. The constant closure loading path is such that the measurement is not affected by hysteresis caused by joint closure. The results provide insight into the microgeometrical and micromechanical properties of joints. The data are not consistent with a simple extension of commonly used linear elastic constitutive models for joint deformation which have compared favorably with experiments in the absence of pore pressure. For smooth lapped glass joints, the effective pressure relation is found to be dependent on the local joint stiffness, with the relationship between the effective pressure law and the local joint stiffness being insensitive to the measured surface topography. Similar measurements on lapped and fractured rock provide some constraints on the effective pressure behavior of jointed rock.

  18. Significance of geometrical relationships between low-temperature intracrystalline deformation microstructures in naturally deformed quartz

    NASA Astrophysics Data System (ADS)

    Derez, T.; Pennock, G.; Drury, M. R.; Sintubin, M.

    2013-12-01

    Although quartz is one of the most studied minerals in the Earth's crust when it comes to its rheology, the interpretation of intracrystalline deformation microstructures with respect to deformation conditions and mechanisms, remains highly contentious. Moreover, inconsistent use of terminology for both deformation microstructures and mechanisms makes a correct assessment of observations and interpretations in published material very difficult. With respect to low-temperature intracrystalline deformation microstructures in quartz, different conflicting genetic models have been proposed. Most probably, the lack of consensus means that there is no unique interpretation for these microstructures, primarily because their initiation and development depend on many ambient conditions. We extensively studied these intracrystalline deformation microstructures by means of optical microscopy, Hot-Cathodoluminescence, SEM-Cathodoluminescence and Electron Backscatter Diffraction Orientation Imaging, in vein quartz of the High-Ardenne slate belt (Belgium, France, Luxemburg, Germany), (de)formed in a low-temperature regime. Firstly, we propose a new, purely descriptive terminology for the low-temperature intracrystalline deformation microstructures in naturally deformed quartz: fine extinction bands (FEB), wide extinction bands (WEB) and strings. The strings can be further subdivided into blocky (BS), straight (SS) and recrystallised (RS) morphological types. FEBs have consistently been called deformation lamellae in quartz and planar slip bands in metals. WEBs have been called deformation bands, prismatic kink bands or type II kink bands. Strings have formerly been called shear bands, deformation bands or type I kink bands. No distinction between blocky and straight morphological string types had ever been made. Secondly, a survey of the pre-recrystallisation stages in the history of the intracrystalline deformation microstructures reveals that the different types of low-temperature

  19. Plastic deformation of MgGeO3 post-perovskite at lower mantle pressures.

    PubMed

    Merkel, Sébastien; Kubo, Atsushi; Miyagi, Lowell; Speziale, Sergio; Duffy, Thomas S; Mao, Ho-Kwang; Wenk, Hans-Rudolf

    2006-02-01

    Polycrystalline MgGeO3 post-perovskite was plastically deformed in the diamond anvil cell between 104 and 130 gigapascals confining pressure and ambient temperature. In contrast with phenomenological considerations suggesting (010) as a slip plane, lattice planes near (100) became aligned perpendicular to the compression direction, suggesting that slip on (100) or (110) dominated plastic deformation. With the assumption that silicate post-perovskite behaves similarly at lower mantle conditions, a numerical model of seismic anisotropy in the D'' region implies a maximum contribution of post-perovskite to shear wave splitting of 3.7% with an oblique polarization. PMID:16456075

  20. Evaluation of high temperature pressure sensors.

    PubMed

    Choi, In-Mook; Woo, Sam-Yong; Kim, Yong-Kyu

    2011-03-01

    It is becoming more important to measure the pressure in high temperature environments in many industrial fields. However, there is no appropriate evaluation system and compensation method for high temperature pressure sensors since most pressure standards have been established at room temperature. In order to evaluate the high temperature pressure sensors used in harsh environments, such as high temperatures above 250 °C, a specialized system has been constructed and evaluated in this study. The pressure standard established at room temperature is connected to a high temperature pressure sensor through a chiller. The sensor can be evaluated in conditions of changing standard pressures at constant temperatures and of changing temperatures at constant pressures. According to the evaluation conditions, two compensation methods are proposed to eliminate deviation due to sensitivity changes and nonlinear behaviors except thermal hysteresis. PMID:21456794

  1. Evaluation of high temperature pressure sensors

    SciTech Connect

    Choi, In-Mook; Woo, Sam-Yong; Kim, Yong-Kyu

    2011-03-15

    It is becoming more important to measure the pressure in high temperature environments in many industrial fields. However, there is no appropriate evaluation system and compensation method for high temperature pressure sensors since most pressure standards have been established at room temperature. In order to evaluate the high temperature pressure sensors used in harsh environments, such as high temperatures above 250 deg. C, a specialized system has been constructed and evaluated in this study. The pressure standard established at room temperature is connected to a high temperature pressure sensor through a chiller. The sensor can be evaluated in conditions of changing standard pressures at constant temperatures and of changing temperatures at constant pressures. According to the evaluation conditions, two compensation methods are proposed to eliminate deviation due to sensitivity changes and nonlinear behaviors except thermal hysteresis.

  2. Tantalum alloys resist creep deformation at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Buckman, R. W., Jr.

    1966-01-01

    Dispersion-strengthened tantalum-base alloys possess high strength and good resistance to creep deformation at elevated temperatures in high vacuum environments. They also have ease of fabrication, good weldability, and corrosion resistance to molten alkali metals.

  3. An asperity-deformation model for effective pressure

    NASA Astrophysics Data System (ADS)

    Gangi, Anthony F.; Carlson, Richard L.

    1996-05-01

    Variations of the mechanical and transport properties of cracked and/or porous rocks under isotropic stress depend on both the confining pressure ( Pc) and the pore-fluid pressure ( Pp). To a first approximation, these rock properties are functions of the differential pressure, Pd = Pc - Pp; at least for low differential pressures. However, at higher differential pressures, the properties depend in a more complicated way upon the two pressures. The concept of effective pressure, Pe, is used to denote this variation and it is defined as Pe( Pc, Pp) = Pc - n( Pc, Pp) Pp. If n = 1 (and therefore, is independent of Pc and Pp), the effective pressure is just the differential pressure. We have used an asperity-deformation model and a force-balance equation to derive expressions for the effective pressure. We equate the total external force (in one direction), Fc, to the total force on the asperities, Fa, and the force of the fluid, Fp, acting in that same direction. The fluid force, Fp, acts only on the parts of the crack (or pore-volume) faces which are not in contact. Then, the asperity pressure, Pa, is the average force per unit area acting on the crack (or grain) contacts P a = {F a}/{A} = {F c}/{A} - {F p}/{A} = P c - (1 - {A c}/{A})P p, where A is the total area over which Fc acts and Ac is the area of contact of the crack asperities or the grains. Thus, the asperity pressure, Pa, is greater than the differential pressure, Pd, because Pp acts on a smaller area, A- Ac, than the total area, A. For elastic asperities, the area of contact Ac and the strain (e.g., crack and pore openings) remain the same, to a high degree of approximation, at constant asperity pressure. Therefore, transport properties such as permeability, resistivity, thermal conductivity, etc. are constant, to the same degree of approximation, at constant asperity pressure. For these properties, the asperity pressure is, very accurately, the effective pressure, Pc. Using this model, we find that the

  4. Evidence of dislocation cross-slip in MAX phase deformed at high temperature

    PubMed Central

    Guitton, Antoine; Joulain, Anne; Thilly, Ludovic; Tromas, Christophe

    2014-01-01

    Ti2AlN nanolayered ternary alloy has been plastically deformed under confining pressure at 900°C. The dislocation configurations of the deformed material have been analyzed by transmission electron microscopy. The results show a drastic evolution compared to the dislocation configurations observed in the Ti2AlN samples deformed at room temperature. In particular, they evidence out-of-basal-plane dislocations and interactions. Moreover numerous cross-slip events from basal plane to prismatic or pyramidal planes are observed. These original results are discussed in the context of the Brittle-to-Ductile Transition of the nanolayered ternary alloys. PMID:25220949

  5. Surface Deformation Caused by Pressure Changes in the Fluid Core

    NASA Technical Reports Server (NTRS)

    Fang, Ming; Hager, Bradford H.; Herring, Thomas A.

    1995-01-01

    Pressure load Love numbers are presented for the mantle deformation induced by the variation of the pressure field at the core mantle boundary (CNB). We find that the CMB geostrophic pressure fields, derived from 'frozen-flux' core surface flow estimates at epochs 1965 and 1975, produce a relative radial velocity (RRV) field in the range of 3mm/decade with uplift near the equator and subsidence near the poles. The contribution of this mechanism to the change in the length of day (l.o.d) is small --- about 2.3 x 10(exp -2) ms/decade. The contribution to the time variation of the ellipticity coefficient is more important --- -1.3 x 10(exp -11)/yr.

  6. Carbon nanotube temperature and pressure sensors

    DOEpatents

    Ivanov, Ilia N; Geohegan, David Bruce

    2013-10-29

    The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

  7. Elevated temperature deformation of TD-nickel base alloys

    NASA Technical Reports Server (NTRS)

    Petrovic, J. J.; Kane, R. D.; Ebert, L. J.

    1972-01-01

    Sensitivity of the elevated temperature deformation of TD-nickel to grain size and shape was examined in both tension and creep. Elevated temperature strength increased with increasing grain diameter and increasing L/D ratio. Measured activation enthalpies in tension and creep were not the same. In tension, the internal stress was not proportional to the shear modulus. Creep activation enthalpies increased with increasing L/D ratio and increasing grain diameter, to high values compared with that of the self diffusion enthalpy. It has been postulated that two concurrent processes contribute to the elevated temperature deformation of polycrystalline TD-nickel: (1) diffusion controlled grain boundary sliding, and (2) dislocation motion.

  8. Simultaneous Luminescence Pressure and Temperature Mapping

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M. (Inventor)

    1998-01-01

    A simultaneous luminescence pressure and temperature mapping system is developed including improved dye application techniques for surface temperature and pressure measurements from 5 torr to 1000 torr with possible upgrade to from 0.5 torr to several atmospheres with improved camera resolution. Adsorbed perylene dye on slip-cast silica is pressure (oxygen) sensitive and reusable to relatively high temperatures (-150 C). Adsorbed luminescence has an approximately linear color shift with temperature, which can be used for independent temperature mapping and brightness pressure calibration with temperature.

  9. Simultaneous Luminescence Pressure and Temperature Mapping System

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M. (Inventor)

    1995-01-01

    A simultaneous luminescence pressure and temperature mapping system is developed including improved dye application techniques for surface temperature and pressure measurements from 5 torr to 1000 torr with possible upgrade to from 0.5 torr to several atmospheres with improved camera resolution. Adsorbed perylene dye on slip-cast silica is pressure (oxygen) sensitive and reusable to relatively high temperatures (approximately 150 C). Adsorbed luminescence has an approximately linear color shift with temperature, which can be used for independent temperature mapping and brightness pressure calibration with temperature.

  10. Effects of pressure and temperature on hot pressing a sialon

    NASA Technical Reports Server (NTRS)

    Yeh, H. C.

    1977-01-01

    Mixed powders (60 m/o Al2O3-40 m/o Si3N4) were hot pressed at temperatures and pressures from 1360 to 1750 C and 3.5 to 27.5 MPa (0.5 to 4.0 ksi). Fully dense sialon bodies are obtainable at temperatures and pressures as low as 1550 C and 0.5 ksi. The fully dense bodies contain Beta prime and x-phase. There is some evidence that plastic deformation has contributed to densification.

  11. Plastic Deformation of Micromachined Silicon Diaphragms with a Sealed Cavity at High Temperatures

    PubMed Central

    Ren, Juan; Ward, Michael; Kinnell, Peter; Craddock, Russell; Wei, Xueyong

    2016-01-01

    Single crystal silicon (SCS) diaphragms are widely used as pressure sensitive elements in micromachined pressure sensors. However, for harsh environments applications, pure silicon diaphragms are hardly used because of the deterioration of SCS in both electrical and mechanical properties. To survive at the elevated temperature, the silicon structures must work in combination with other advanced materials, such as silicon carbide (SiC) or silicon on insulator (SOI), for improved performance and reduced cost. Hence, in order to extend the operating temperatures of existing SCS microstructures, this work investigates the mechanical behavior of pressurized SCS diaphragms at high temperatures. A model was developed to predict the plastic deformation of SCS diaphragms and was verified by the experiments. The evolution of the deformation was obtained by studying the surface profiles at different anneal stages. The slow continuous deformation was considered as creep for the diaphragms with a radius of 2.5 mm at 600 °C. The occurrence of plastic deformation was successfully predicted by the model and was observed at the operating temperature of 800 °C and 900 °C, respectively. PMID:26861332

  12. Plastic Deformation of Micromachined Silicon Diaphragms with a Sealed Cavity at High Temperatures.

    PubMed

    Ren, Juan; Ward, Michael; Kinnell, Peter; Craddock, Russell; Wei, Xueyong

    2016-01-01

    Single crystal silicon (SCS) diaphragms are widely used as pressure sensitive elements in micromachined pressure sensors. However, for harsh environments applications, pure silicon diaphragms are hardly used because of the deterioration of SCS in both electrical and mechanical properties. To survive at the elevated temperature, the silicon structures must work in combination with other advanced materials, such as silicon carbide (SiC) or silicon on insulator (SOI), for improved performance and reduced cost. Hence, in order to extend the operating temperatures of existing SCS microstructures, this work investigates the mechanical behavior of pressurized SCS diaphragms at high temperatures. A model was developed to predict the plastic deformation of SCS diaphragms and was verified by the experiments. The evolution of the deformation was obtained by studying the surface profiles at different anneal stages. The slow continuous deformation was considered as creep for the diaphragms with a radius of 2.5 mm at 600 °C. The occurrence of plastic deformation was successfully predicted by the model and was observed at the operating temperature of 800 °C and 900 °C, respectively. PMID:26861332

  13. Optical calibration of pressure sensors for high pressures and temperatures

    SciTech Connect

    Goncharov, A F; Gregoryanz, E; Zaug, J M; Crowhurst, J C

    2004-10-04

    We present the results of Raman scattering measurements of diamond ({sup 12}C) and of cubic boron nitride (cBN), and fluorescence measurements of ruby, Sm:YAG, and SrB{sub 4}O{sub 7}:Sm{sup 2+} in the diamond anvil cell (DAC) at high pressures and temperatures. These measurements were accompanied by synchrotron x-ray diffraction measurements on gold. We have extended the room-temperature calibration of Sm:YAG in a quasihydrostatic regime up to 100 GPa. The ruby scale is shown to systematically underestimate pressure at high pressures and temperatures compared with all other sensors. On this basis, we propose a new high-temperature ruby pressure scale that should be valid to at least 100 GPa and 850 K. Historically, the accurate determination of pressure at high temperature and ultrahigh pressure has been extremely difficult. In fact, the lack of a general pressure scale nullifies, to a significant extent, the great innovations that have been made in recent years in DAC experimental techniques [1]. Now, more than ever a scale is required whose accuracy is comparable with that of the experimental data. Since pressure in the DAC is dependent on temperature (due to thermal pressure and also to changes in the properties of the materials that constitute the DAC) such a scale requires quantitative, and separate measurements of pressure and temperature.

  14. Micromechanics of high temperature deformation and failure

    NASA Technical Reports Server (NTRS)

    Nasser, S. N.; Weertman, J. R.

    1985-01-01

    The micromechanics of the constitutive behavior of elastoplastic materials at high temperatures was examined. The experimental work focused on the development of microscopic defects in superalloys (Waspaloy), especially the formation of voids at grain boundary carbides, and slip induced surface cracks within grains upon cyclic loading at high temperatures. The influence of these defects on the life expectancy of the material was examined. The theoretical work consists of two parts: (1) analytical description of the mechanisms that lead to defects observed experimentally; and (2) development of macroscopic elastoplastic nonlinear constitutive relations based on mechanical modeling.

  15. Water Pressure Effects on Strength and Deformability of Fractured Rocks Under Low Confining Pressures

    NASA Astrophysics Data System (ADS)

    Noorian Bidgoli, Majid; Jing, Lanru

    2015-05-01

    The effect of groundwater on strength and deformation behavior of fractured crystalline rocks is one of the important issues for design, performance and safety assessments of surface and subsurface rock engineering problems. However, practical difficulties make the direct in situ and laboratory measurements of these properties of fractured rocks impossible at present, since effects of complex fracture system hidden inside the rock masses cannot be accurately estimated. Therefore, numerical modeling needs to be applied. The overall objective of this paper is to deepen our understanding on the validity of the effective stress concept, and to evaluate the effects of water pressure on strength and deformation parameters. The approach adopted uses discrete element methods to simulate the coupled stress-deformation-flow processes in a fractured rock mass with model dimensions at a representative elementary volume (REV) size and realistic representation of fracture system geometry. The obtained numerical results demonstrate that water pressure has significant influence on the strength, but with minor effects on elastic deformation parameters, compared with significant influence by the lateral confining pressure. Also, the classical effective stress concept to fractured rock can be quite different with that applied in soil mechanics. Therefore, one should be cautious when applying the classical effective stress concept to fractured rock media.

  16. Air separation with temperature and pressure swing

    DOEpatents

    Cassano, Anthony A.

    1986-01-01

    A chemical absorbent air separation process is set forth which uses a temperature swing absorption-desorption cycle in combination with a pressure swing wherein the pressure is elevated in the desorption stage of the process.

  17. Pressure inactivation of microorganisms at moderate temperatures

    NASA Astrophysics Data System (ADS)

    Butz, P.; Ludwig, H.

    1986-05-01

    The inactivation of bacteria, bacterial spores, yeasts and molds by high hydrostatic pressure was investigated over a pressure range up to 3000 bar. Survival curves were measured as a function of temperature and pressure applied on the microorganisms. Conditions are looked for under which heat or radiation sensitive pharmaceutical preparations can be sterilized by high pressure treatment at moderate temperatures. All organisms tested can be inactivated in the range of 2000-2500 bar and between 40-60 degrees.

  18. High pressure, high temperature transducer

    NASA Technical Reports Server (NTRS)

    Vrolyk, John J. (Inventor)

    1977-01-01

    The pressure measurement system utilizes two bourdon tubes with an active side connected to a test specimen and a reference side connected to an outside source. The tubes are attached to a single extensometer measuring relative displacement. The active side deflects when gases vent a specimen failure. The reference side is independently pressurized to a test pressure and provides a zero reference while providing a pressure calibration reference for the active side. The deflection noted by the active side at specimen failure is duplicated on the reference side by venting until an appropriate magnitude of pressure versus deflection is determined. In this way the pressure which existed inside the specimen prior to failure can be determined.

  19. Longitudinal Impedance Tomography for Blood Pressure Characterization of Valve Deformation

    PubMed Central

    Vahabi, Zahra; Amirfattahi, Rasool

    2015-01-01

    Aorta is formed in a dynamic environment which gives rise to imbalances between many forces that tend to extend the diameter and length. Furthermore, internal forces tend to resist this extension. Impedance tomography can show this imbalance to stimulate the stenosis of aortic valve, growth of the elastic, collagen and to effectively reduce the stresses in the underlying tissue. In blood flow, auscultation noises occurred and in the echocardiography decrease in left ventricular ejection speed can be observed. In this paper, we have modeled an aorta based on anatomical studies to simulate natural, 20% and 30% stenosis as usual heart disease to early diagnosis. Valve deformation causes different impedance tomography in 3D mesh of aorta as blood pressure. Remodeling of aorta and its flow is found when a cylindrical slice of the fully retracted blood aorta is cut longitudinally through the wall. PMID:26120568

  20. High-temperature deformation and diffusion in oxides

    SciTech Connect

    Routbort, J.L.

    1992-06-01

    High-temperature, steady-state deformation is usually controlled by diffusion of the slowest moving ion along its fastest diffusion path. Therefore, measurements of steady-state deformation can, in principle, be used to obtain information concerning diffusion. This paper will briefly review the assumptions that relate creep, defect chemistry, and diffusion. Steady-state deformation of the NaCI-structured oxides, Co{sub 1-x}O and Mn{sub l-x}O, and the perovskite-structured high-temperature superconductors YBa{sub 2}Cu{sub 3}0{sub x} and Bi{sub 2}Sr{sub 2}CaCu{sub 2}0{sub x} will be discussed, emphasizing diffusion of the minority defects.

  1. High-pressure deformation and failure of polycrystalline ceramics

    NASA Astrophysics Data System (ADS)

    Zhang, Dongmei

    2005-11-01

    High-strength polycrystalline ceramics are increasingly being used for armor applications because of their light weight and superior ballistic performance over conventional armor steels. However, accurate material modeling needed in ceramic armor design remains a challenge because of their complex behavior under impact loading. A ceramic may display extremely high strength during rapid compression but lose tensile strength when the load reverses from compression to tension. A good understanding of the mechanisms governing the deformation and failure of ceramics under high-stress impact and a capability to accurately predict the resulting effective strengths of both intact and damaged ceramics are critically needed. To this end, a computational methodology for micromechanical analysis of polycrystalline materials has been developed. It combines finite element analysis with microstructural modeling based on the Voronoi polycrystals, and material modeling that considers nonlinear elasticity, crystal plasticity, intergranular shear damage during compression and intergranular Mode-I cracking during tension. Using this method, simulations have been carried out on polycrystalline alpha-6H silicon carbide and alpha-phase aluminum oxide to determine if microplasticity is a viable mechanism of inelastic deformation in ceramics undergoing high-pressure uniaxial-strain compression. Further, the competing roles of in-grain microplasticity and intergranular microdamage during a sequence of dynamic compression and tension have been studied. The results show that microplasticity is a more plausible mechanism than microcracking under uniaxial-strain compression. The deformation by limited slip systems can be highly heterogeneous so that a significant amount of grains may remain elastic and thus result in high macroscopic compressive strength. On the other hand, the failure evolution during dynamic load reversal from compression to tension can be well predicted by intergranular Mode

  2. Measurement Corner: Volume, Temperature and Pressure

    ERIC Educational Resources Information Center

    Teates, Thomas G.

    1977-01-01

    Boyle's Law and basic relationships between volume and pressure of a gas at constant temperature are presented. Suggests two laboratory activities for demonstrating the effect of temperature on the volume of a gas or liquid. (CS)

  3. Two-temperature continuum thermomechanics of deforming amorphous solids

    NASA Astrophysics Data System (ADS)

    Kamrin, Ken; Bouchbinder, Eran

    2014-12-01

    There is an ever-growing need for predictive models for the elasto-viscoplastic deformation of solids. Our goal in this paper is to incorporate recently developed out-of-equilibrium statistical concepts into a thermodynamically consistent, finite-deformation, continuum framework for deforming amorphous solids. The basic premise is that the configurational degrees of freedom of the material - the part of the internal energy/entropy that corresponds to mechanically stable microscopic configurations - are characterized by a configurational temperature that might differ from that of the vibrational degrees of freedom, which equilibrate rapidly with an external heat bath. This results in an approximate internal energy decomposition into weakly interacting configurational and vibrational subsystems, which exchange energy following a Fourier-like law, leading to a thermomechanical framework permitting two well-defined temperatures. In this framework, internal variables, that carry information about the state of the material equilibrate with the configurational subsystem, are explicitly associated with energy and entropy of their own, and couple to a viscoplastic flow rule. The coefficients that determine the rate of flow of entropy and heat between different internal systems are proposed to explicitly depend on the rate of irreversible deformation. As an application of this framework, we discuss two constitutive models for the response of glassy materials, a simple phenomenological model and a model related to the concept of Shear-Transformation-Zones as the basis for internal variables. The models account for several salient features of glassy deformation phenomenology. Directions for future investigation are briefly discussed.

  4. Sessile dislocations by reactions in NiAl severely deformed at room temperature

    DOE PAGESBeta

    Geist, D.; Gammer, C.; Rentenberger, C.; Karnthaler, H. P.

    2015-02-05

    B2 ordered NiAl is known for its poor room temperature (RT) ductility; failure occurs in a brittle like manner even in ductile single crystals deforming by single slip. In the present study NiAl was severely deformed at RT using the method of high pressure torsion (HPT) enabling the hitherto impossible investigation of multiple slip deformation. Methods of transmission electron microscopy were used to analyze the dislocations formed by the plastic deformation showing that as expected dislocations with Burgers vector a(100) carry the plasticity during HPT deformation at RT. In addition, we observe that they often form a(110) dislocations by dislocationmore » reactions; the a(110) dislocations are considered to be sessile based on calculations found in the literature. It is therefore concluded that the frequently encountered 3D dislocation networks containing sessile a(110) dislocations are pinned and lead to deformation-induced embrittlement. In spite of the severe deformation, the chemical order remains unchanged.« less

  5. Sessile dislocations by reactions in NiAl severely deformed at room temperature

    PubMed Central

    Geist, D.; Gammer, C.; Rentenberger, C.; Karnthaler, H.P.

    2015-01-01

    B2 ordered NiAl is known for its poor room temperature (RT) ductility; failure occurs in a brittle like manner even in ductile single crystals deforming by single slip. In the present study NiAl was severely deformed at RT using the method of high pressure torsion (HPT) enabling the hitherto impossible investigation of multiple slip deformation. Methods of transmission electron microscopy were used to analyze the dislocations formed by the plastic deformation showing that as expected dislocations with Burgers vector a〈100〉 carry the plasticity during HPT deformation at RT. In addition, we observe that they often form a〈110〉 dislocations by dislocation reactions; the a〈110〉 dislocations are considered to be sessile based on calculations found in the literature. It is therefore concluded that the frequently encountered 3D dislocation networks containing sessile a〈110〉 dislocations are pinned and lead to deformation-induced embrittlement. In spite of the severe deformation, the chemical order remains unchanged. PMID:25663749

  6. Plastic Flow of Pyrope at Mantle Pressure and Temperature

    SciTech Connect

    Li,L.; Long, H.; Weidner, D.; Raterron, P.

    2006-01-01

    Despite the abundance of garnet in deforming regions of the Earth, such as subduction zones, its rheological properties are not well defined by laboratory measurements. Here we report measurements of steady-state plastic properties of pyrope in its stability field (temperature up to 1573 K, pressure up to 6.8 GPa, strain rate {approx}10-5 s-1) using a Deformation-DIA apparatus (D-DIA) coupled with synchrotron radiation. Synthetic pyrope (Py100) and natural pyrope (Py70Alm16Gr14) are both studied in a dry environment. Transmission electron microscopy (TEM) investigation of the run products indicates that dislocation glide, assisted by climb within grains and dynamic recrystallization for grain-boundary strain accommodation, is the dominant deformation process in pyrope. Both synthetic-and natural-pyropes' stress and strain-rate data, as measured in situ by X-ray diffraction and imaging, are best fitted with the single flow law:

  7. High temperature tensile deformation behavior of Grade 92 steel

    NASA Astrophysics Data System (ADS)

    Alsagabi, Sultan; Shrestha, Triratna; Charit, Indrajit

    2014-10-01

    Candidate structural materials for advanced reactors need to have superior high temperature strength and creep-rupture properties among other characteristics. The ferritic-martensitic Grade 92 steel (Fe-9Cr-2W-0.5Mo, wt.%) is considered such a candidate structural material. Tensile tests were performed at temperatures of 600, 650 and 700 °C in the strain rate range of 10-5-10-3 s-1. After analyzing the tensile results using the Bird-Mukherjee-Dorn (BMD) equation, a stress exponent of about 9.5 and an activation energy of about 646 kJ/mol were obtained. In the light of high values of the stress exponent and activation energy, the threshold stress concept was used to elucidate the operating high temperature deformation mechanism. As a result of this modification, the true activation energy and stress exponent of the high temperature deformation in Grade 92 steel were found to be about 245 kJ/mol and 5, respectively. Thus, the dominant high temperature deformation mechanism was identified as the high temperature climb of edge dislocations and the appropriate constitutive equation was developed.

  8. New Developments in Deformation Experiments at High Pressure

    SciTech Connect

    Durham, W B; Weidner, D J; Karato, S; Wang, Y

    2004-01-09

    Although the importance of rheological properties in controlling the dynamics and evolution of the whole mantle of Earth is well-recognized, experimental studies of rheological properties and deformation-induced microstructures have mostly been limited to low-pressure conditions. This is mainly a result of technical limitations in conducting quantitative rheological experiments under high-pressure conditions. A combination of factors is changing this situation. Increased resolution of composition and configuration of Earth's interior has created a greater demand for well-resolved laboratory measurement of the effects of pressure on the behavior of materials. Higher-strength materials have become readily available for containing high-pressure research devices, and new analytical capabilities--in particular very bright synchrotron X-ray sources--are now readily available to high-pressure researchers. One of the biggest issues in global geodynamics is the style of mantle convection and the nature of chemical differentiation associated with convectional mass transport. Although evidence for deep mantle circulation has recently been found through seismic tomography (e.g., van der Hilst et al. (1997)), complications in convection style have also been noted. They include (1) significant modifications of flow geometry across the mantle transition zone as seen from high resolution tomographic studies (Fukao et al. 1992; Masters et al. 2000; van der Hilst et al. 1991) and (2) complicated patterns of flow in the deep lower mantle ({approx}1500-2500 km), perhaps caused by chemical heterogeneity (Kellogg et al. 1999; van der Hilst and Karason 1999). These studies indicate that while large-scale circulation involving the whole mantle no doubt occurs, significant deviations from simple flow geometry are also present. Two mineral properties have strong influence on convection: (1) density and (2) viscosity (rheology) contrasts. In the past, the effects of density contrast have

  9. Deformation-induced dissolution of the intermetallics Ni3Ti and Ni3Al in austenitic steels at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Sagaradze, V. V.; Shabashov, V. A.; Kataeva, N. V.; Zavalishin, V. A.; Kozlov, K. A.; Kuznetsov, A. R.; Litvinov, A. V.; Pilyugin, V. P.

    2016-06-01

    An anomalous deformation-induced dissolution of the intermetallics Ni3Al and Ni3Ti in the matrix of austenitic Fe-Ni-Al(Ti) alloys has been revealed in experiment at cryogenic temperatures (down to 77 K) under rolling and high pressure torsion. The observed phenomenon is explained as the result of migration of deformation-stipulated interstitial atoms from a particle into the matrix in the stress field of moving dislocations. With increasing the temperature of deformation, the dissolution is replaced by the deformation-induced precipitation of the intermetallics, which is accelerated due to a sufficient amount of point defects in the matrix, gained as well in the course of deformation at lower temperatures.

  10. Deformation mechanisms of NiAl cyclicly deformed near the brittle-to-ductile transformation temperature

    NASA Technical Reports Server (NTRS)

    Antolovich, Stephen D.; Saxena, Ashok; Cullers, Cheryl

    1992-01-01

    One of the ongoing challenges of the aerospace industry is to develop more efficient turbine engines. Greater efficiency entails reduced specific strength and larger temperature gradients, the latter of which means higher operating temperatures and increased thermal conductivity. Continued development of nickel-based superalloys has provided steady increases in engine efficiency and the limits of superalloys have probably not been realized. However, other material systems are under intense investigation for possible use in high temperature engines. Ceramic, intermetallic, and various composite systems are being explored in an effort to exploit the much higher melting temperatures of these systems. NiAl is considered a potential alternative to conventional superalloys due to its excellent oxidation resistance, low density, and high melting temperature. The fact that NiAl is the most common coating for current superalloy turbine blades is a tribute to its oxidation resistance. Its density is one-third that of typical superalloys and in most temperature ranges its thermal conductivity is twice that of common superalloys. Despite these many advantages, NiAl requires more investigation before it is ready to be used in engines. Binary NiAl in general has poor high-temperature strength and low-temperature ductility. On-going research in alloy design continues to make improvements in the high-temperature strength of NiAl. The factors controlling low temperature ductility have been identified in the last few years. Small, but reproducible ductility can now be achieved at room temperature through careful control of chemical purity and processing. But the mechanisms controlling the transition from brittle to ductile behavior are not fully understood. Research in the area of fatigue deformation can aid the development of the NiAl system in two ways. Fatigue properties must be documented and optimized before NiAl can be applied to engineering systems. More importantly though

  11. Elevated temperature deformation of thoria dispersed nickel-chromium

    NASA Technical Reports Server (NTRS)

    Kane, R. D.; Ebert, L. J.

    1974-01-01

    The deformation behavior of thoria nickel-chromium (TD-NiCr) was examined over the temperature range 593 C (1100 F) to 1260 C (2300 F) in tension and compression and at 1093 C (2000 F) in creep. Major emphasis was placed on: (1) the effects of the material and test related variables (grain size, temperature, stress and strain rate) on the deformation process; and (2) the evaluation of single crystal TD-NiCr material produced by a directional recrystallization process. Elevated temperature yield strength levels and creep activation enthalpies were found to increase with increasing grain size reaching maximum values for the single crystal TD-NiCr. Stress exponent of the steady state creep rate was also significantly higher for the single crystal TD-NiCr as compared to that determined for the polycrystalline materials. The elevated temperature deformation of TD-NiCr was analyzed in terms of two concurrent, parallel processes: diffusion controlled grain boundary sliding, and dislocation motion.

  12. Temperature Dependent Cyclic Deformation Mechanisms in Haynes 188 Superalloy

    NASA Technical Reports Server (NTRS)

    Rao, K. Bhanu Sankara; Castelli, Michael G.; Allen, Gorden P.; Ellis, John R.

    1995-01-01

    The cyclic deformation behavior of a wrought cobalt-base superalloy, Haynes 188, has been investigated over a range of temperatures between 25 and 1000 C under isothermal and in-phase thermomechanical fatigue (TMF) conditions. Constant mechanical strain rates (epsilon-dot) of 10(exp -3)/s and 10(exp -4)/s were examined with a fully reversed strain range of 0.8%. Particular attention was given to the effects of dynamic strain aging (DSA) on the stress-strain response and low cycle fatigue life. A correlation between cyclic deformation behavior and microstructural substructure was made through detailed transmission electron microscopy. Although DSA was found to occur over a wide temperature range between approximately 300 and 750 C the microstructural characteristics and the deformation mechanisms responsible for DSA varied considerably and were dependent upon temperature. In general, the operation of DSA processes led to a maximum of the cyclic stress amplitude at 650 C and was accompanied by pronounced planar slip, relatively high dislocation density, and the generation of stacking faults. DSA was evidenced through a combination of phenomena, including serrated yielding, an inverse dependence of the maximum cyclic hardening with epsilon-dot, and an instantaneous inverse epsilon-dot sensitivity verified by specialized epsilon-dot -change tests. The TMF cyclic hardening behavior of the alloy appeared to be dictated by the substructural changes occuring at the maximum temperature in the TMF cycle.

  13. Plastic Deformation of Aluminum Single Crystals at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Johnson, R D; Young, A P; Schwope, A D

    1956-01-01

    This report describes the results of a comprehensive study of plastic deformation of aluminum single crystals over a wide range of temperatures. The results of constant-stress creep tests have been reported for the temperature range from 400 degrees to 900 degrees F. For these tests, a new capacitance-type extensometer was designed. This unit has a range of 0.30 inch over which the sensitivity is very nearly linear and can be varied from as low a sensitivity as is desired to a maximum of 20 microinches per millivolt with good stability. Experiments were carried out to investigate the effect of small amounts of prestraining, by two different methods, on the creep and tensile properties of these aluminum single crystals. From observations it has been concluded that plastic deformation takes place predominantly by slip which is accompanied by the mechanisms of kinking and polygonization.

  14. Thermoelectric Control Of Temperatures Of Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Burkett, Cecil G., Jr.; West, James W.; Hutchinson, Mark A.; Lawrence, Robert M.; Crum, James R.

    1995-01-01

    Prototype controlled-temperature enclosure containing thermoelectric devices developed to house electronically scanned array of pressure sensors. Enclosure needed because (1) temperatures of transducers in sensors must be maintained at specified set point to ensure proper operation and calibration and (2) sensors sometimes used to measure pressure in hostile environments (wind tunnels in original application) that are hotter or colder than set point. Thus, depending on temperature of pressure-measurement environment, thermoelectric devices in enclosure used to heat or cool transducers to keep them at set point.

  15. Low-temperature intracrystalline deformation microstructures in quartz

    NASA Astrophysics Data System (ADS)

    Derez, Tine; Pennock, Gill; Drury, Martyn; Sintubin, Manuel

    2015-02-01

    A review of numerous genetic interpretations of the individual low-temperature intracrystalline deformation microstructures in quartz shows that there is no consensus concerning their formation mechanisms. Therefore, we introduce a new, purely descriptive terminology for the three categories of intracrystalline deformation microstructures formed in the low-quartz stability field: fine extinction bands (FEB), wide extinction bands (WEB) and localised extinction bands (LEB). The localised extinction bands are further subdivided into blocky (bLEB), straight (sLEB) and granular (gLEB) morphological types. A detailed polarised light microscopy study of vein-quartz from the low-grade metamorphic High-Ardenne slate belt (Belgium) further reveals a series of particular geometric relationships between these newly defined intracrystalline deformation microstructures. These geometric relationships are largely unrecognised or underemphasised in the literature and need to be taken into account in any future genetic interpretation. Based on our observations and a critical assessment of the current genetic models, we argue that the interpretation of the pertinent microstructures in terms of ambient conditions and deformation history should be made with care, as long as the genesis of these microstructures is not better confined.

  16. Low Temperature Atmospheric Pressure Plasma Sterilization Shower

    NASA Astrophysics Data System (ADS)

    Gandhiraman, R. P.; Beeler, D.; Meyyappan, M.; Khare, B. N.

    2012-10-01

    Low-temperature atmospheric pressure plasma sterilization shower to address both forward and backward biological contamination issues is presented. The molecular effects of plasma exposure required to sterilize microorganisms is also analysed.

  17. Low temperature deformation detwinning - a reverse mode of twinning.

    SciTech Connect

    Wang, Y. D.; Liu, W.; Lu, L.; Ren, Y.; Nie, Z. H.; Almer, J.; Cheng, S.; Shen, Y. F.; Zuo, L.; Liaw, P. K.; Lu, K.

    2010-01-01

    The origin of the plasticity in bulk nanocrystalline metals have, to date, been attributed to the grain-boundary-mediated process, stress-induced grain coalescence, dislocation plasticity, and/or twinning. Here we report a different mechanism - detwinning, which operates at low temperatures during the tensile deformation of an electrodeposited Cu with a high density of nanosized growth twins. Both three-dimensional XRD microscopy using the Laue method with a submicron-sized polychromatic beam and high-energy XRD technique with a monochromatic beam provide the direct experimental evidences for low temperature detwinning of nanoscale twins.

  18. Vapor pressures of acetylene at low temperatures

    NASA Technical Reports Server (NTRS)

    Masterson, C. M.; Allen, John E., Jr.; Kraus, G. F.; Khanna, R. K.

    1990-01-01

    The atmospheres of many of the outer planets and their satellites contain a large number of hydrocarbon species. In particular, acetylene (C2H2) has been identified at Jupiter, Saturn and its satellite Titan, Uranus and Neptune. In the lower atmospheres of these planets, where colder temperatures prevail, the condensation and/or freezing of acetylene is probable. In order to obtain accurate models of the acetylene in these atmospheres, it is necessary to have a complete understanding of its vapor pressures at low temperatures. Vapor pressures at low temperatures for acetylene are being determined. The vapor pressures are measured with two different techniques in order to cover a wide range of temperatures and pressures. In the first, the acetylene is placed in a sample tube which is immersed in a low temperature solvent/liquid nitrogen slush bath whose temperature is measured with a thermocouple. The vapor pressure is then measured directly with a capacitance manometer. For lower pressures, a second technique which was called the thin-film infrared method (TFIR) was developed. It involves measuring the disappearance rate of a thin film of acetylene at a particular temperature. The spectra are then analyzed using previously determined extinction coefficient values, to determine the disappearance rate R (where R = delta n/delta t, the number of molecules that disappear per unit time). This can be related to the vapor pressure directly. This technique facilitates measurement of the lower temperatures and pressures. Both techniques have been calibrated using CO2, and have shown good agreement with the existing literature data.

  19. Pressure and Temperature Sensitive Paint Field System

    NASA Technical Reports Server (NTRS)

    Sprinkle, Danny R.; Obara, Clifford J.; Amer, Tahani R.; Faulcon, Nettie D.; Carmine, Michael T.; Burkett, Cecil G.; Pritchard, Daniel W.; Oglesby, Donald M.

    2004-01-01

    This report documents the Pressure and Temperature Sensitive Paint Field System that is used to provide global surface pressure and temperature measurements on models tested in Langley wind tunnels. The system was developed and is maintained by Global Surface Measurements Team personnel of the Data Acquisition and Information Management Branch in the Research Facilities Services Competency. Descriptions of the system hardware and software are presented and operational procedures are detailed.

  20. Biological Limits of Temperature and Pressure

    NASA Astrophysics Data System (ADS)

    Morita, Richard Y.

    1980-09-01

    Most biologists do not take into account that the greatest portion of today's biosphere is in the realm of environmental extremes, most of it being cold and under pressure. Since bacteria have the ability to adapt to environmental extremes, a close examination for the presence and/or growth of bacteria at high and low temperatures, low temperature and reduced pressure (less than 1 atm), low temperature and increased hydrostatic pressure should be made. It is also within the realm of possibility that life may have arisen in an environmental extreme on the primordial earth and then evolved over time to live under moderate temperatures and 1 atm. Microbial life has been demonstrated at temperatures slightly greater than 90°C, below 0°C, at hydrostatic pressures of 1100 atm, and possibly at cold temperatures in the atmosphere (less than 1 atm). Laboratory experiments have shown that certain enzyme reactions can occur above 100°C under hydrostatic pressure, at -26°C and at 5°C under hydrostatic pressure.

  1. Plastic Deformation of Transition Zone Minerals: Effect of Temperature on Dislocation Mobility

    NASA Astrophysics Data System (ADS)

    Ritterbex, S.; Carrez, P.; Gouriet, K.; Cordier, P.

    2014-12-01

    Mantle convection is the fundamental process by which the Earth expels its internal heat. It is controlled at the microscopic scale by the motion of crystal defects responsable for plastic deformation at high temperature and pressure conditions of the deep Earth. In this study we focus on dislocations which are usually considered as the most efficient defects contributing to intracrystalline deformation. The influence of temperature is a key parameter in determining the behaviour of dislocations. We propose a model to describe the temperature-dependent mobility of dislocations based on a computational materials science approach, connecting the atomic to the grain scale. This provides elementary knowledge to both interpret seismic anisotropy and to improve geodynamic modelling. Here we focus on plastic deformation of the transition zone minerals wadsleyite and ringwoodite, dominating the boundary separating the upper from the lower mantle, a region over which the viscosity is thought to increase rapidly. Using the Peierls-Nabarro-Galerkin model enabled us to select potential glide planes, to predict the dislocation core structures and fundamental properties of both Mg2SiO4 high-pressure polymorphs integrating the non-elastic nature of dislocations from atomic scale based calculations. Macroscopic deformation results from the mobility of these distinct dislocations. High finite mantle temperatures activates unstable double-kink configurations on the dislocation line which allow the dislocation to move under stress. The original contribution of the present work is the formulation of a mobility law for dissociated dislocations as they occur in wadsleyite and ringwoodite. This permits us to predict the critical activation enthalpy required to overcome lattice friction associated to the onset of glide. From this, the effective glide velocities can be derived as a function of stress and temperature leading to the first lower bound estimates of transition zone viscosities

  2. Defects in silicon plastically deformed at room temperature

    NASA Astrophysics Data System (ADS)

    Leipner, H. S.; Wang, Z.; Gu, H.; Mikhnovich, V. V., Jr.; Bondarenko, V.; Krause-Rehberg, R.; Demenet, J.-L.; Rabier, J.

    2004-07-01

    The article [1] describes specific features of positron trapping in silicon plastically deformed at room temperature. The results are related to the dislocation core structure and the inhomogeneous deformation. The picture shows the probability density function of a positron localized in a vacancy in silicon. The calculation was performed with the superimposed-atom model. The degree of localization and consequently the defect-related positron lifetime vary for different open-volume defects, such as vacancies, voids, and dislocations.The first author, Hartmut S. Leipner, is CEO of the Center of Materials Science of the University Halle-Wittenberg. His research activities are focused on the characterization of extended defects in semiconductors.

  3. A high-temperature wideband pressure transducer

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1975-01-01

    Progress in the development of a pressure transducer for measurement of the pressure fluctuations in the high temperature environment of a jet exhaust is reported. A condenser microphone carrier system was adapted to meet the specifications. A theoretical analysis is presented which describes the operation of the condenser microphone in terms of geometry, materials, and other physical properties. The analysis was used as the basis for design of a prototype high temperature microphone. The feasibility of connecting the microphone to a converter over a high temperature cable operating as a half-wavelength transmission line was also examined.

  4. Tantalum strength model incorporating temperature, strain rate and pressure

    NASA Astrophysics Data System (ADS)

    Lim, Hojun; Battaile, Corbett; Brown, Justin; Lane, Matt

    Tantalum is a body-centered-cubic (BCC) refractory metal that is widely used in many applications in high temperature, strain rate and pressure environments. In this work, we propose a physically-based strength model for tantalum that incorporates effects of temperature, strain rate and pressure. A constitutive model for single crystal tantalum is developed based on dislocation kink-pair theory, and calibrated to measurements on single crystal specimens. The model is then used to predict deformations of single- and polycrystalline tantalum. In addition, the proposed strength model is implemented into Sandia's ALEGRA solid dynamics code to predict plastic deformations of tantalum in engineering-scale applications at extreme conditions, e.g. Taylor impact tests and Z machine's high pressure ramp compression tests, and the results are compared with available experimental data. Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  5. Hot deformation behaviour of alloys for applications at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Voyzelle, Benoit

    The present study investigated the deformation behaviour, microstructure evolution and fracture behaviour under hot working conditions of alloys designed for elevated-temperature applications. For this purpose, iron-aluminum and titanium-aluminum alloys were selected and their compositions are: Fe-8.5wt%Al-5.5Cr-2.0Mo-0.2Zr-0.03C, Fe-16.5Al-5.5Cr-1.0Nb-0.05C and Ti-33.3Al-2.8Mn-4.8Nb. These alloys were tested in the as-cast condition and in the form of hot-rolled + annealed plate for the iron-aluminum alloys and in the HIP'ed condition for the titanium-aluminum alloy. Isothermal compression tests were carried out with a Gleeble 2000 over a range of temperatures from 800 to 1250°C and constant strain rates from 10-3 to 10 s-1. In general, the flow curves are marked by a peak stress and softening which decline as temperature rises, and a flow stress which diminishes with rise in temperature and decrease in strain rate. The flow behaviour at peak stress (sigmap) and 0.5 true strain of these materials was described well by the Zener-Hollomon parameter Z=3˙exp /RTQHW , where Z=K3sinha sn . A numerical curve-fitting method was used to yield values of the following parameters: (i) stress exponent, n and (ii) activation energy, QHW . The dynamic material modeling approach was performed to extract from hot compression data: (i) the strain rate sensitivity parameter, m, (ii) the efficiency of power dissipation, eta, and (iii) the instability parameter, xi. The microstructure evolution and fracture behaviour were assessed using optical and electron microscopy. The deformation processes occuring were determined by correlation of the sigma-epsilon curves, m and microstructural observations. The resulting deformation map indicates that at lower temperatures and higher strain rates, the dominant restoration occurs by dynamic recovery, while at lower strain rates and higher temperatures dynamic recrystallization is the operative mode. At the highest temperatures, dynamic

  6. Hydrostatic pressure and temperature calibration based on phase diagram of bismuth

    NASA Astrophysics Data System (ADS)

    Wang, Zhigang; Liu, Yonggang; Bi, Yan; Song, Wei; Xie, Hongsen

    2012-06-01

    Under high-temperature and high pressure (HTHP) experiments, materials of small elastic modulus deform easily, and the length of the sample can be hardly predicted which lead to failure of ultrasonic velocity measurement. In this paper, a hydrostatic assembly of the sample for ultrasonic measurements is designed under HPHT, which can prevent plastic deformation. According to the abrupt change of travel time of the sample across the different phase boundaries of bismuth, the correspondent relation of sample pressure and oil pressure of multi-anvil apparatus can be calibrated, and the relation of sample temperature and temperature measured by thermocouple can also be determined. Sample pressure under high temperature is also determined by ultrasonic results. It is believed that the new sample assembly of hydrostatic pressure is valid and feasible for ultrasonic experiments under HTHP.

  7. High temperature inelastic deformation under uniaxial loading - Theory and experiment

    NASA Technical Reports Server (NTRS)

    Chan, K. S.; Lindholm, U. S.; Bodner, S. R.; Walker, K. P.

    1989-01-01

    The elevated-temperature uniaxial inelastic deformation behavior of an Ni-base alloy, B1900 + Hf, is investigated by performing isothermal tensile, creep, cyclic, stress relaxation, and thermomechanical fatigue tests. The range of strain rates examined is from 10 to the -7th to 100 per sec, while the test temperatures range from 25 to 1093 C. This extensive constitutive data base has been used for evaluating the unified constitutive models of Bodner and Partom (1972) and of Walker (1972) which apply for the small-strain regime. Comparison of test results with independent model predictions indicates good agreement over a broad range of loading conditions, demonstrating the applicability of the unified-constitutive-equation approach for describing the strongly nonlinear and temperature-dependent response of meals under a wide range of deformation and thermal histories. Thus the results give confidence that the unified approach is an effective and efficient approach in which complex history-dependent thermoviscoplastic flow can be represented within a single inelastic strain-rate term.

  8. Deformation T-Cup: A new Kawai-style deformation device capable of controlled strain-rate deformation at pressures in excess of 20 GPa

    NASA Astrophysics Data System (ADS)

    Hunt, S. A.; Dobson, D. P.; Santangeli, J. R.; McCormack, R.; Li, L.; Whitaker, M. L.; Vaughan, M. T.; Weidner, D. J.

    2012-12-01

    A significant proportion of our understanding of the rheological properties of mantle minerals is gained by analysing the data from, both offline and synchrotron based, controlled strain-rate deformation experiments. However, controlled strain-rate deformation experiments at in-situ conditions have been limited by the current generation of deformation apparatus (the deformation-DIA and the Rotational Drickamer) to about 15 GPa. Being limited to 15 GPa means that in situ deformation experiments are limited to phases stable in the upper mantle and the upper parts of the transition-zone. Therefore, deformation experiments on mantle composition ringwoodite and majorite have not been performed in significant numbers and there are no measurements at controlled strain-rates of the lower-mantle perovskites. Here, we report the capabilities of a new device the DT-cup or deformation T-Cup, which is capable for deformation experiments at pressures in excess of 20 GPa, and with continued development in excess of 25 GPa. The two instances of the DT-Cup press at University College London and the X17B2 beamline at the NSLS, consist of 400 tonne, Paris-Edinburgh style, load frames into which split-cylinder 6-8 multi-anvil tooling is inserted, with the <111> axis of the inner cube set aligned with the action of the press. The 'top' and 'bottom' anvils of the cube set are replaced by hexagonal rods, cut so the end of the rods are the same shape as the inner faces of the 10 (X17B2 device) or 14 mm (UCL device) edge length cubes they replace. Controlled strain-rate deformation of the sample is undertaken by differential pistons pushing on the two hexagonal rams and advancing the two anvils along the aligned <111> axis of the inner cube set. As the pistons advance the main ram adjusts in order that the confining pressure exerted on the sample remains constant. The differences between the standard Kawai-style split cylinder devices and the DT-Cup are analogous to the differences between

  9. Deformation twinning of a silver nanocrystal under high pressure. Supplementary materials

    DOE PAGESBeta

    Huang, X. J.; Yang, W. G.; Harder, R.; Sun, Y.; Lu, M.; Chu, Y. S.; Robinson, I. K.; Mao, H. K.

    2015-10-20

    Within a high-pressure environment, crystal deformation is controlled by complex processes such as dislocation motion, twinning, and phase transitions, which change materials’ microscopic morphology and alter their properties. Likewise, understanding a crystal’s response to external stress provides a unique opportunity for rational tailoring of its functionalities. It is very challenging to track the strain evolution and physical deformation from a single nanoscale crystal under high-pressure stress. Here, we report an in situ three-dimensional mapping of morphology and strain evolutions in a single-crystal silver nanocube within a high-pressure environment using the Bragg Coherent Diffractive Imaging (CDI) method. We also observed amore » continuous lattice distortion, followed by a deformation twining process at a constant pressure. The ability to visualize stress-introduced deformation of nanocrystals with high spatial resolution and prominent strain sensitivity provides an important route for interpreting and engineering novel properties of nanomaterials.« less

  10. Deformation twinning of a silver nanocrystal under high pressure. Supplementary materials

    SciTech Connect

    Huang, X. J.; Yang, W. G.; Harder, R.; Sun, Y.; Lu, M.; Chu, Y. S.; Robinson, I. K.; Mao, H. K.

    2015-10-20

    Within a high-pressure environment, crystal deformation is controlled by complex processes such as dislocation motion, twinning, and phase transitions, which change materials’ microscopic morphology and alter their properties. Likewise, understanding a crystal’s response to external stress provides a unique opportunity for rational tailoring of its functionalities. It is very challenging to track the strain evolution and physical deformation from a single nanoscale crystal under high-pressure stress. Here, we report an in situ three-dimensional mapping of morphology and strain evolutions in a single-crystal silver nanocube within a high-pressure environment using the Bragg Coherent Diffractive Imaging (CDI) method. We also observed a continuous lattice distortion, followed by a deformation twining process at a constant pressure. The ability to visualize stress-introduced deformation of nanocrystals with high spatial resolution and prominent strain sensitivity provides an important route for interpreting and engineering novel properties of nanomaterials.

  11. Filament networks attached to membranes: cytoskeletal pressure and local bilayer deformation

    NASA Astrophysics Data System (ADS)

    Auth, Thorsten; Safran, S. A.; Gov, Nir S.

    2007-11-01

    Several cell types, among them red blood cells, have a cortical, two-dimensional (2D) network of filaments sparsely attached to their lipid bilayer. In many mammalian cells, this 2D polymer network is connected to an underlying 3D, more rigid cytoskeleton. In this paper, we consider the pressure exerted by the thermally fluctuating, cortical network of filaments on the bilayer and predict the bilayer deformations that are induced by this pressure. We treat the filaments as flexible polymers and calculate the pressure that a network of such linear chains exerts on the bilayer; we then minimize the bilayer shape in order to predict the resulting local deformations. We compare our predictions with membrane deformations observed in electron micrographs of red blood cells. The polymer pressure along with the resulting membrane deformation can lead to compartmentalization, regulate in-plane diffusion and may influence protein sorting as well as transmit signals to the polymerization of the underlying 3D cytoskeleton.

  12. Temperature effects on surface pressure-induced changes in rat skin perfusion: implications in pressure ulcer development.

    PubMed

    Patel, S; Knapp, C F; Donofrio, J C; Salcido, R

    1999-07-01

    The effect of varying local skin temperature on surface pressure-induced changes in skin perfusion and deformation was determined in hairless fuzzy rats (13.5+/-3 mo, 474+/-25 g). Skin surface pressure was applied by a computer-controlled plunger with corresponding skin deformation measured by a linear variable differential transformer while a laser Doppler flowmeter measured skin perfusion. In Protocol I, skin surface perfusion was measured without heating (control, T=28 degrees C), with heating (T=36 degrees C), for control (probe just touching skin, 3.7 mmHg), and at two different skin surface pressures, 18 mmHg and 73 mmHg. Heating caused perfusion to increase at control and 18 mmHg pressure, but not at 73 mmHg. In Protocol II, skin perfusion was measured with and without heating as in Protocol I, but this time skin surface pressure was increased from 3.7 to 62 mmHg in increments of 3.7 mmHg. For unheated skin, perfusion increased as skin surface pressure increased from 3.7 to 18 mmHg. Further increases in surface pressure caused a decrease in perfusion until zero perfusion was reached for pressures over 55 mmHg. Heating increased skin perfusion for surface pressures from 3.7 to 18 mmHg, but not for pressures greater than 18 mmHg. After the release of surface pressure, the reactive hyperemia peak of perfusion increased with heating. In Protocol III, where skin deformation (creep and relaxation) was measured during the application of 3.7 and 18 mmHg, heating caused the tissue to be stiffer, allowing less deformation. It was found that for surface pressures below 18 mmHg, increasing skin temperature significantly increased skin perfusion and tissue stiffness. The clinical significance of these findings may have relevance in evaluating temperature and pressure effects on skin blood flow and deformation as well as the efficacy of using temperature as a therapeutic modality in the treatment of pressure ulcers. PMID:10659802

  13. Pressure sensor for high-temperature liquids

    DOEpatents

    Forster, George A.

    1978-01-01

    A pressure sensor for use in measuring pressures in liquid at high temperatures, especially such as liquid sodium or liquid potassium, comprises a soft diaphragm in contact with the liquid. The soft diaphragm is coupled mechanically to a stiff diaphragm. Pressure is measured by measuring the displacment of both diaphragms, typically by measuring the capacitance between the stiff diaphragm and a fixed plate when the stiff diaphragm is deflected in response to the measured pressure through mechanical coupling from the soft diaphragm. Absolute calibration is achieved by admitting gas under pressure to the region between diaphragms and to the region between the stiff diaphragm and the fixed plate, breaking the coupling between the soft and stiff diaphragms. The apparatus can be calibrated rapidly and absolutely.

  14. Ultrahigh pressure liquid chromatography using elevated temperature.

    PubMed

    Xiang, Yanqiao; Liu, Yansheng; Lee, Milton L

    2006-02-01

    Fast liquid chromatographic (LC) methods are important for a variety of applications. Reducing the particle diameter (d(p)) is the most effective way to achieve fast separations while preserving high efficiency. Since the pressure drop along a packed column is inversely proportional to the square of the particle size, when columns packed with small particles (<2 microm) are used, ultrahigh pressures (>689 bar) must be applied to overcome the resistance to mobile phase flow. Elevating the column temperature can significantly reduce the mobile phase viscosity, allowing operation at higher flow rate for the same pressure. It also leads to a decrease in retention factor. The advantage of using elevated temperatures in LC is the ability to significantly shorten separation time with minimal loss in column efficiency. Therefore, combining elevated temperature with ultrahigh pressure facilitates fast and efficient separations. In this study, C6-modified 1.0 microm nonporous silica particles were used to demonstrate fast separations using a temperature of 80 degrees C and a pressure of 2413 bar. Selected separations were completed in 30 s with efficiencies as high as 220,000 plates m(-1). PMID:16376355

  15. Reversibility of Lpo in Olivine during Deformation at High Pressure

    NASA Astrophysics Data System (ADS)

    Li, L.; Weidner, D. J.

    2014-12-01

    Olivine texture has been reported as an important contributor to the seismic anisotropy in the upper mantle. Experimental studies of deformation of olivine have also shown flow-driven lattice preferred orientation. In this study, we focus on in situ control and monitoring of LPO formation of olivine using synchrotron X-ray radiation coupled with DDIA multi-anvil deformation device. Using an energy-dispersive X-ray coupled a 10-element SSD detector; we apply a sinusoidal stress on the sample, which allows identification of growth of LPO in the specimen with relative robust signal even with small strain fields. Our data show palpable correlations among stress, strain and LPO as well as the variations among sub-grains marked by individual (hkl). This study is to demonstrate the versatile functions of X-ray for characterizing the deformation study of minerals.

  16. The formation, structure, and properties of the Au-Co alloys produced by severe plastic deformation under pressure

    NASA Astrophysics Data System (ADS)

    Tolmachev, T. P.; Pilyugin, V. P.; Ancharov, A. I.; Chernyshov, E. G.; Patselov, A. M.

    2016-02-01

    The mechanical alloying of Au-Co mixtures, which are systems with high positive mixing enthalpy, is studied following high-pressure torsion deformation at room and cryogenic temperatures. X-ray diffractometry in synchrotron radiation and scanning microscopy are used to investigate the sequence of structural changes in the course of deforming the mixtures up to the end state of the fcc substitutional solid solution based on gold. The mechanical properties of the alloys are measured both during mixture processing and after mechanical alloying. Microfractographic studies are performed. Factors that facilitate the solubility of Co in Au, namely, increased processing pressure, cobalt concentration in a charge mixture, true strain, and temperature decreased to cryogenic level have been identified.

  17. Influence of Plastic Deformation on Low-Temperature Surface Hardening of Austenitic Stainless Steel by Gaseous Nitriding

    NASA Astrophysics Data System (ADS)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas L.; Somers, Marcel A. J.

    2015-06-01

    This article addresses an investigation of the influence of plastic deformation on low-temperature surface hardening by gaseous nitriding of two commercial stainless steels: EN 1.4369 and AISI 304. The materials were plastically deformed to several levels of equivalent strain by conventional tensile straining, plane strain compression, and shear. Gaseous nitriding of the strained material was performed in ammonia gas at atmospheric pressure at various temperatures. Microstructural characterization of the as-deformed state and the nitrided case produced included X-ray diffraction analysis, reflected-light microscopy, and microhardness testing. The results demonstrate that a case of expanded austenite develops and that the presence of plastic deformation has a significant influence on the morphology of the nitrided case. The presence of strain-induced martensite favors the formation of CrN, while a high dislocation density in a fully austenitic structure does not lead to such premature nucleation of CrN.

  18. Deformation of Diopside Single Crystal at Mantle Pressure, 1, Mechanical Data

    SciTech Connect

    Amiguet, E.; Raterron, P; Cordier, P; Couvy, H; Chen, J

    2009-01-01

    Steady-state deformation experiments were carried out in a deformation-DIA (D-DIA) high-pressure apparatus on oriented diopside single crystals, at pressure (P) ranging from 3.8 to 8.8 GPa, temperature (T) from 1100 to 1400 C, and differential stress ({sigma}) between 0.2 and 1.7 GPa. Three compression directions were chosen in order to test the activity of diopside dislocation slip systems, i.e., 1/2<1 1 0>{l_brace}1 {bar 1} 0{r_brace} systems activated together, both [1 0 0](0 1 0) and [0 1 0](1 0 0) systems together, or [0 0 1] dislocation slip activated in (1 0 0), (0 1 0) and {l_brace}1 1 0{r_brace} planes. Constant applied stress and specimen strain rates ({var_epsilon}) were monitored in situ using time-resolved synchrotron X-ray diffraction and radiography, respectively. Transmission electron microscopy (TEM) investigation of the run products revealed that dislocation creep was responsible for sample deformation. Comparison of the present high-P data with those obtained at room-P by Raterron and Jaoul (1991) - on similar crystals deformed at comparable T-{sigma} conditions - allows quantifying the effect of P on 1/2<1 1 0>{l_brace} 1 {bar 1} 0{r_brace} activity. This translates into the activation volume V* = 17 {+-} 6 cm{sup 3}/mol in the corresponding creep power law. Our data also show that both 1/2<1 1 0> dislocation slips and [0 0 1] have comparable slip activities at mantle P and T, while [1 0 0](0 1 0) and [0 1 0](1 0 0) slip systems remain marginal. These results show that P has a significant effect on high-T dislocation creep in diopside, the higher the pressure the harder the crystal, and that this effect is stronger on 1/2<1 1 0> slip than on [0 0 1] slip.

  19. High temperature pressure coupled ultrasonic waveguide

    SciTech Connect

    Caines, M.J.

    1983-07-12

    A pressure coupled ultrasonic waveguide is provided to which one end may be attached a transducer and at the other end a high temperature material for continuous ultrasonic testing of the material. The ultrasonic signal is coupled from the waveguide into the material through a thin, dry copper foil.

  20. Students' Investigations in Temperature and Pressure

    ERIC Educational Resources Information Center

    Brown, Patrick L.; Concannon, James; Hansert, Bernhard; Frederick, Ron; Frerichs, Glen

    2015-01-01

    Why does a balloon deflate when it is left in a cold car; or why does one have to pump up his or her bike tires in the spring after leaving them in the garage all winter? To answer these questions, students must understand the relationships among temperature, pressure, and volume of a gas. The purpose of the Predict, Share, Observe, and Explain…

  1. High temperature pressure coupled ultrasonic waveguide

    DOEpatents

    Caines, Michael J.

    1983-01-01

    A pressure coupled ultrasonic waveguide is provided to which one end may be attached a transducer and at the other end a high temperature material for continuous ultrasonic testing of the material. The ultrasonic signal is coupled from the waveguide into the material through a thin, dry copper foil.

  2. High pressure and high temperature apparatus

    DOEpatents

    Voronov, Oleg A.

    2005-09-13

    A design for high pressure/high temperature apparatus and reaction cell to achieve .about.30 GPa pressure in .about.1 cm volume and .about.100 GPa pressure in .about.1 mm volumes and 20-5000.degree. C. temperatures in a static regime. The device includes profiled anvils (28) action on a reaction cell (14, 16) containing the material (26) to be processed. The reaction cell includes a heater (18) surrounded by insulating layers and screens. Surrounding the anvils are cylindrical inserts and supporting rings (30-48) whose hardness increases towards the reaction cell. These volumes may be increased considerably if applications require it, making use of presses that have larger loading force capability, larger frames and using larger anvils.

  3. Effects of strain rate and confining pressure on the deformation and failure of shale

    SciTech Connect

    Cook, J.M. ); Sheppard, M.C. ); Houwen, O.H. )

    1991-06-01

    Previous work on shale mechanical properties has focused on the slow deformation rates appropriate to wellbore deformation. Deformation of shale under a drill bit occurs at a very high rate, and the failure properties of the rock under these conditions are crucial in determining bit performance and in extracting lithology and pore-pressure information from drilling parameters. Triaxial tests were performed on two nonswelling shales under a wide range of strain rates and confining and pore pressures. At low strain rates, when fluid is relatively free to move within the shale, shale deformation and failure are governed by effective stress or pressure (i.e., total confining pressure minus pore pressure), as is the case for ordinary rock. If the pore pressure in the shale is high, increasing the strain rate beyond about 0.1%/sec causes large increases in the strength and ductility of the shale. Total pressure begins to influence the strength. At high stain rates, the influence of effective pressure decreases, except when it is very low (i.e., when pore pressure is very high); ductility then rises rapidly. This behavior is opposite that expected in ordinary rocks. This paper briefly discusses the reasons for these phenomena and their impact on wellbore and drilling problems.

  4. High temperature deformation behavior of a nanocrystalline titanium aluminide

    SciTech Connect

    Mishra, R.S.; Mukherjee, A.K.; Mukhopadhyay, D.K.; Suryanarayana, C.; Froes, F.H.

    1996-06-01

    Gamma titanium intermetallic alloys are potentially attractive for elevated temperature applications. The room temperature ductility and fracture toughness have been improved considerably by the addition of ternary and quaternary elements. The synthesis of nanocrystalline materials has provided further avenues for possible improvement in the mechanical properties. The exciting prospect of low temperature superplasticity in nanocrystalline materials has been discussed. Recently, nanocrystalline {gamma}-TiAl alloys have been synthesized by hot isostatic pressing (HIP) of mechanically alloyed (MA) Ti-47.5 Al-3 Cr (at.%) powders. The purpose of this study was to evaluate the possibility of observing low temperature superplasticity in this nanocrystalline alloy. By determining the stress exponent for flow, it should be possible to comment on the micromechanism of deformation in a nanocrystalline intermetallic alloy. A number of studies have shown that superplasticity is possible in {gamma}-TiAl alloys and it is important to establish whether the scaling law extends to nanocrystalline {gamma}-TiAl regime or the flow behavior changes.

  5. Time-dependent deformation at elevated temperatures in basalt from El Hierro, Stromboli and Teide volcanoes

    NASA Astrophysics Data System (ADS)

    Benson, P. M.; Fahrner, D.; Harnett, C. E.; Fazio, M.

    2014-12-01

    Time dependent deformation describes the process whereby brittle materials deform at a stress level below their short-term material strength (Ss), but over an extended time frame. Although generally well understood in engineering (where it is known as static fatigue or "creep"), knowledge of how rocks creep and fail has wide ramifications in areas as diverse as mine tunnel supports and the long term stability of critically loaded rock slopes. A particular hazard relates to the instability of volcano flanks. A large number of flank collapses are known such as Stromboli (Aeolian islands), Teide, and El Hierro (Canary Islands). Collapses on volcanic islands are especially complex as they necessarily involve the combination of active tectonics, heat, and fluids. Not only does the volcanic system generate stresses that reach close to the failure strength of the rocks involved, but when combined with active pore fluid the process of stress corrosion allows the rock mass to deform and creep at stresses far lower than Ss. Despite the obvious geological hazard that edifice failure poses, the phenomenon of creep in volcanic rocks at elevated temperatures has yet to be thoroughly investigated in a well controlled laboratory setting. We present new data using rocks taken from Stromboli, El Heirro and Teide volcanoes in order to better understand the interplay between the fundamental rock mechanics of these basalts and the effects of elevated temperature fluids (activating stress corrosion mechanisms). Experiments were conducted over short (30-60 minute) and long (8-10 hour) time scales. For this, we use the method of Heap et al., (2011) to impose a constant stress (creep) domain deformation monitored via non-contact axial displacement transducers. This is achieved via a conventional triaxial cell to impose shallow conditions of pressure (<25 MPa) and temperature (<200 °C), and equipped with a 3D laboratory seismicity array (known as acoustic emission, AE) to monitor the micro

  6. Recent Advances in High Pressure and Temperature Rheological Studies

    SciTech Connect

    Wang, Yanbin; Hilairet, Nadege; Dera, Przemyslaw

    2012-01-20

    Rheological studies at high pressure and temperature using in-situ X-ray diffraction and imaging have made significant progresses in recent years, thanks to a combination of recent developments in several areas: (1) advances in synchrotron X-ray techniques, (2) advances in deformation devices and the abilities to control pressure, temperature, stress, strain and strain rates, (3) theoretical and computational advances in stress determination based on powder and single crystal diffraction, (4) theoretical and computational advances in modeling of grain-level micromechanics based on elasto-plastic and visco-plastic self-consistent formulations. In this article, we briefly introduce the experimental techniques and theoretical background for in-situ high pressure, high temperature rheological studies, and then review recent studies of rheological properties of major mantle materials. Some currently encountered issues have prompted developments in single-crystal quasi-Laue diffraction for complete stress tensor determination and textural evolution of poly-phased composites based on X-ray microtomography. Future prospects are discussed.

  7. How stress and temperature conditions affect rock-fluid chemistry and mechanical deformation

    NASA Astrophysics Data System (ADS)

    Nermoen, Anders; Korsnes, Reidar; Aursjø, Olav; Madland, Merete; Kjørslevik, Trygve Alexander; Østensen, Geir

    2016-02-01

    We report the results from a series of chalk flow-through-compaction experiments performed at three effective stresses (0.5 MPa, 3.5 MPa and 12.3 MPa) and two temperatures (92° and and 130°). The results show that both stress and temperature are important to both chemical alteration and mechanical deformation. The experiments were conducted on cores drilled from the same block of outcrop chalks from the Obourg quarry within the Saint Vast formation (Mons, Belgium). The pore pressure was kept at 0.7 MPa for all experiments with a continuous flow of 0.219 M MgCl2 brine at a constant flow rate; 1 original pore volume (PV) per day. The experiments have been performed in tri-axial cells with independent control of the external stress (hydraulic pressure in the confining oil), pore pressure, temperature, and the injected flow rate. Each experiment consists of two phases; a loading phase where stress-strain dependencies are investigated (approx. 2 days), and a creep phase that lasts for more than 150-160 days. During creep, the axial deformation was logged, and the effluent samples were collected for ion chromatography analyses. Any difference between the injected and produced water chemistry gives insight into the rock-fluid interactions that occur during flow through of the core. The observed effluent concentration shows a reduction in Mg2+, while the Ca2+ concentration is increased. This, together with SEM-EDS analysis, indicates that magnesium-bearing mineral phases are precipitated leading to dissolution of calcite, an observation . This is in-line with other flow-through experiments reported earlier. The observed dissolution and precipitation are sensitive to the effective stress and test temperature. Typically. H, higher stress and temperature lead to increased concentration differences of Mg2+ and Ca2+ concentration changes.. The observed strain can be partitioned additively into a mechanical and chemical driven component.

  8. Review of deformation behavior of tungsten at temperature less than 0.2 absolute melting temperature

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1972-01-01

    The deformation behavior of tungsten at temperatures 0.2 T sub m is reviewed, with primary emphasis on the temperature dependence of the yield stress and the ductile-brittle transition temperature. It appears that a model based on the high Peierls stress of tungsten best accounts for the observed mechanical behavior at low temperatures. Recent research is discussed which suggests an important role of electron concentration and bonding on the mechanical behavior of tungsten. It is concluded that future research on tungsten should include studies to define more clearly the correlation between electron concentration and mechanical behavior of tungsten alloys and other transition metal alloys.

  9. High Temperature Dynamic Pressure Measurements Using Silicon Carbide Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S.; Meredith, Roger D.; Chang, Clarence T.; Savrun, Ender

    2014-01-01

    Un-cooled, MEMS-based silicon carbide (SiC) static pressure sensors were used for the first time to measure pressure perturbations at temperatures as high as 600 C during laboratory characterization, and subsequently evaluated in a combustor rig operated under various engine conditions to extract the frequencies that are associated with thermoacoustic instabilities. One SiC sensor was placed directly in the flow stream of the combustor rig while a benchmark commercial water-cooled piezoceramic dynamic pressure transducer was co-located axially but kept some distance away from the hot flow stream. In the combustor rig test, the SiC sensor detected thermoacoustic instabilities across a range of engine operating conditions, amplitude magnitude as low as 0.5 psi at 585 C, in good agreement with the benchmark piezoceramic sensor. The SiC sensor experienced low signal to noise ratio at higher temperature, primarily due to the fact that it was a static sensor with low sensitivity.

  10. A symmetrical low temperature pressure transducer

    NASA Astrophysics Data System (ADS)

    Helvensteijn, B. P. M.; VanSciver, S. W.

    1990-03-01

    The design and operating characteristics of a fully differential pressure transducer are described. The device is intended for use with He II heat transfer experiments where it operates in vacuum and at low temperatures (T<4.2 K). A movable electrode is attached to two sets of miniature bellows such that the electrode position is determined by the differential pressure across the device. The movable electrode is located between two fixed electrodes, thus forming a pair of variable capacitors. A dedicated charge amplifier is used to convert the pressure induced capacitance change to an ac output voltage. The sensitivity is roughly 5 μV/Pa. For the present application, the capacitor and electronics have acceptable performance, with a mean noise level of ±5 Pa.

  11. Solid-State 2H NMR Shows Equivalence of Dehydration and Osmotic Pressures in Lipid Membrane Deformation

    PubMed Central

    Mallikarjunaiah, K.J.; Leftin, Avigdor; Kinnun, Jacob J.; Justice, Matthew J.; Rogozea, Adriana L.; Petrache, Horia I.; Brown, Michael F.

    2011-01-01

    Lipid bilayers represent a fascinating class of biomaterials whose properties are altered by changes in pressure or temperature. Functions of cellular membranes can be affected by nonspecific lipid-protein interactions that depend on bilayer material properties. Here we address the changes in lipid bilayer structure induced by external pressure. Solid-state 2H NMR spectroscopy of phospholipid bilayers under osmotic stress allows structural fluctuations and deformation of membranes to be investigated. We highlight the results from NMR experiments utilizing pressure-based force techniques that control membrane structure and tension. Our 2H NMR results using both dehydration pressure (low water activity) and osmotic pressure (poly(ethylene glycol) as osmolyte) show that the segmental order parameters (SCD) of DMPC approach very large values of ≈0.35 in the liquid-crystalline state. The two stresses are thermodynamically equivalent, because the change in chemical potential when transferring water from the interlamellar space to the bulk water phase corresponds to the induced pressure. This theoretical equivalence is experimentally revealed by considering the solid-state 2H NMR spectrometer as a virtual osmometer. Moreover, we extend this approach to include the correspondence between osmotic pressure and hydrostatic pressure. Our results establish the magnitude of the pressures that lead to significant bilayer deformation including changes in area per lipid and volumetric bilayer thickness. We find that appreciable bilayer structural changes occur with osmotic pressures in the range of 10−100 atm or lower. This research demonstrates the applicability of solid-state 2H NMR spectroscopy together with bilayer stress techniques for investigating the mechanism of pressure sensitivity of membrane proteins. PMID:21190661

  12. Antarctic surface temperature and pressure data

    SciTech Connect

    Jones, P.D.; Limbert, D.W.S.; Boden, T.A. . Climatic Research Unit; British Antarctic Survey, Cambridge; Oak Ridge National Lab., TN )

    1989-09-01

    This document presents monthly mean surface temperature and pressure data from 30 Antarctic stations. These data were assembled primarily from World Weather Records volumes for 1951--1960 and 1961--1979 and from Monthly Climatic Data for the World records since 1961. The periods of record vary by station. The earliest data are from 1903, and the most recent data are from 1988. All the assembled data were assessed for quality and for long-term homogeneity through the use of interstation comparison techniques. These data are available free of charge as a numeric data package (NDP) from the Carbon Dioxide Information Analysis Center. The NDP consists of this document and a magnetic tape containing machine-readable data files. This document provides tabular listings of the temperature and pressure data, describes how the data were processed, defines limitations and restrictions of the data, and provides reprints of pertinent literature. 25 refs., 3 figs., 11 tabs.

  13. Molecular dynamics at constant temperature and pressure

    NASA Astrophysics Data System (ADS)

    Toxvaerd, S.

    1993-01-01

    Algorithms for molecular dynamics (MD) at constant temperature and pressure are investigated. The ability to remain in a regular orbit in an intermittent chaotic regime is used as a criterion for long-time stability. A simple time-centered algorithm (leap frog) is found to be the most stable of the commonly used algorithms in MD. A model of N one-dimensional dimers with a double-well intermolecular potential, for which the distribution functions at constant temperature T and pressure P can be calculated, is used to investigate MD-NPT dynamics. A time-centered NPT algorithm is found to sample correctly and to be very robust with respect to volume scaling.

  14. Features of the temperature dependence of pressure of solid helium at low temperatures

    NASA Astrophysics Data System (ADS)

    Lisunov, A. A.; Maidanov, V. A.; Rubanskii, V. Y.; Rubets, S. P.; Rudavskii, E. Y.; Rybalko, A. S.; Syrkin, E. S.

    2012-06-01

    A series of experiments has been performed to investigate the conditions of formation of a disordered (glass-like) state in crystals of 3He. With the help of precise measurements of pressure at constant volume it has been established that a glass phase is formed easily in rapidly cooled crystals grown under homogeneous temperature conditions in the presence of large numbers of nucleation centers. This phase can be removed only by careful annealing. This result has been found in both 3He and 4He, and is independent of type of quantum statistics and determined mainly by crystal growth conditions. An analysis of similar measurements has been performed using a different cell where during the crystal growth a directed temperature gradient was created. In this case, additional defects created as a result of deformation of the crystal were necessary to form a glass-like phase. The degree of deformation of a crystal, achievable in the experiment, was sufficient to form a glass-like phase in solid 4He, but not in a crystal of 3He where the atoms have a large amplitude of zero-point oscillations. Analyzing a temperature dependence of pressure, a study of the features of a phonon contribution to the pressure was also carried out. It was found that in both crystals 3He and 4He at different thicknesses of samples the phonon pressure differs by several times. This effect is qualitatively explained by that that in thin samples an interaction among layers of atoms becomes stronger. This leads to decreasing the phonon contribution to the thermodynamic properties of the helium crystal at low temperatures.

  15. New Insights on the Rheology of Olivine Deformed under Lithospheric Temperature Conditions

    NASA Astrophysics Data System (ADS)

    Cordier, P.; Demouchy, S. A.; Mussi, A.; Tommasi, A.

    2014-12-01

    Rheology of mantle rocks at lithospheric temperatures remains poorly constrained, since most experimental studies on creep mechanisms of olivine single crystals ((MgFe)2SiO4, Pbnm) and polycrystalline olivine aggregates were performed at high-temperatures (T >> 1200oC). In this study, we report results from deformation experiments on oriented single crystals of San Carlos olivine and polycrystalline olivine aggregate at temperatures relevant of the uppermost mantle (ranging from 800o to 1090oC) in tri-axial compression. The experiments were carried out at a confining pressure of 300 MPa in a high-resolution gas-medium mechanical testing apparatus at various constant strain rates (from 7 x 10-6 s-1 to 1 x 10-4 s-1). Mechanical tests show that mantle lithosphere is actually weaker than previously inferred from the extrapolation of high-temperature experiments. In this study, we present characterization of dislocation microstructures based on transmission electron microscopy and electron tomography. It is shown that below 1000°C, dislocation activity is restricted to [001] glide with a strong predominance of {110} as glide planes. We observe recovery mechanisms which suggest that the mechanical properties observed in laboratory experiments represent an upper bound for the actual behavior of olivine under lithospheric mantle conditions. Moreover, the drastic reduction in slip system activity observed questions the ability of deforming olivine aggregates in the ductile regime at such temperatures. We show that ductility is preserved thanks to the activation of alternative deformation mechanisms in grain boundaries involving disclinations.

  16. High-pressure deformation of calcite marble and its transformation to aragonite under non-hydrostatic conditions

    USGS Publications Warehouse

    Hacker, B.R.; Kirby, S.H.

    1993-01-01

    We conducted deformation experiments on Carrara marble in the aragonite and calcite stability fields to observe the synkinematic transformation of calcite to aragonite, and to identify any relationships between transformation and deformation or sample strength. Deformation-induced microstructures in calcite crystals varied most significantly with temperature, ranging from limited slip and twinning at 400??C, limited recrystallization at 500??C, widespread recrystallization at 600 and 700??C, to grain growth at 800-900??C. Variations in confining pressure from 0.3 to 2.0 GPa have no apparent effect on calcite deformation microstructures. Aragonite grew in 10-6-10-7 s-1strain rate tests conducted for 18-524 h at confining pressures of 1.7-2.0 GPa and temperatures of 500-600??C. As in our previously reported hydrostatic experiments on this same transformation, the aragonite nucleated on calcite grain boundaries. The extent of transformation varied from a few percent conversion near pistons at 400??C, 2.0 GPa and 10-4 s-1 strain rate in a 0.8 h long experiment, to 98% transformation in a 21-day test at a strain rate of 10-7 s-7, a temperature of 600??C and a pressure of 2.0 GPa. At 500??C, porphyroblastic 100-200 ??m aragonite crystals grew at a rate faster than 8 ?? 10-1m s-1. At 600??C, the growth of aragonite neoblasts was slower, ???6 ?? 10-1 m s -1, and formed 'glove-and-finger' cellularprecipitation-like textures identical to those observed in hydrostatic experiments. The transformation to aragonite is not accompanied by a shear instability or anisotropic aragonite growth, consistent with its relatively small volume change and latent heat in comparison with compounds that do display those features. ?? 1993.

  17. EBSD characterization of low temperature deformation mechanisms in modern alloys

    NASA Astrophysics Data System (ADS)

    Kozmel, Thomas S., II

    For structural applications, grain refinement has been shown to enhance mechanical properties such as strength, fatigue resistance, and fracture toughness. Through control of the thermos-mechanical processing parameters, dynamic recrystallization mechanisms were used to produce microstructures consisting of sub-micron grains in 9310 steel, 4140 steel, and Ti-6Al-4V. In both 9310 and 4140 steel, the distribution of carbides throughout the microstructure affected the ability of the material to dynamically recrystallize and determined the size of the dynamically recrystallized grains. Processing the materials at lower temperatures and higher strain rates resulted in finer dynamically recrystallized grains. Microstructural process models that can be used to estimate the resulting microstructure based on the processing parameters were developed for both 9310 and 4140 steel. Heat treatment studies performed on 9310 steel showed that the sub-micron grain size obtained during deformation could not be retained due to the low equilibrium volume fraction of carbides. Commercially available aluminum alloys were investigated to explain their high strain rate deformation behavior. Alloys such as 2139, 2519, 5083, and 7039 exhibit strain softening after an ultimate strength is reached, followed by a rapid degradation of mechanical properties after a critical strain level has been reached. Microstructural analysis showed that the formation of shear bands typically preceded this rapid degradation in properties. Shear band boundary misorientations increased as a function of equivalent strain in all cases. Precipitation behavior was found to greatly influence the microstructural response of the alloys. Additionally, precipitation strengthened alloys were found to exhibit similar flow stress behavior, whereas solid solution strengthened alloys exhibited lower flow stresses but higher ductility during dynamic loading. Schmid factor maps demonstrated that shear band formation behavior

  18. Recrystallization at ambient temperature of heavily deformed ETP copper wire

    SciTech Connect

    Schamp, J.; Verlinden, B.; Van Humbeeck, J.

    1996-06-01

    Recrystallization of electrolytic tough pitch (ETP) copper wire at room temperature has been reported by several authors. The phenomenon changes the mechanical properties of the wire which can cause a loss of process control, but remains largely unpredictable. The aim of this study is to get a better understanding of the conditions under which partial recrystallization can be expected. It is observed that the recrystallization pattern is non-homogeneous across the cross-section of the wire. Recrystallization starts in a cylindrical zone with diameter 0.5 to 0.8 times the wire diameter. The core and the surface of the wire recrystallize at a later stage. It is proposed that this is due to different modes of deformation along the wire diameter. The progress of recrystallization at room temperature depends on a large extent on the chemical composition of the material. It is well known that all impurity elements slow down recrystallization, but some elements, such as Se, Te, Bi, S and Pb are more deleterious than others. It is shown that a few tenths of ppm`s of these impurities determine whether the wire is stable in time or not.

  19. A fluid pressure and deformation analysis for geological sequestration of carbon dioxide

    SciTech Connect

    Xu, Zhijie; Fang, Yilin; Scheibe, Timothy D.; Bonneville, Alain

    2012-06-07

    We present a hydro-mechanical model and deformation analysis for geological sequestration of carbon dioxide. The model considers the poroelastic effects by taking into account the two-way coupling between the geomechanical response and the fluid flow process in greater detail. In order for analytical solutions, the simplified hydro-mechanical model includes the geomechanical part that relies on the theory of linear elasticity, while the fluid flow is based on the Darcy’s law. The model was derived through coupling the two parts using the standard linear poroelasticity theory. Analytical solutions for fluid pressure field were obtained for a typical geological sequestration scenario and the solutions for ground deformation were obtained using the method of Green’s function. Solutions predict the temporal and spatial variation of fluid pressure, the effect of permeability and elastic modulus on the fluid pressure, the ground surface uplift, and the radial deformation during the entire injection period.

  20. Influence of thermally activated processes on the deformation behavior during low temperature ECAP

    NASA Astrophysics Data System (ADS)

    Fritsch, S.; Scholze, M.; F-X Wagner, M.

    2016-03-01

    High strength aluminum alloys are generally hard to deform. Therefore, the application of conventional severe plastic deformation methods to generate ultrafine-grained microstructures and to further increase strength is considerably limited. In this study, we consider low temperature deformation in a custom-built, cooled equal channel angular pressing (ECAP) tool (internal angle 90°) as an alternative approach to severely plastically deform a 7075 aluminum alloy. To document the maximum improvement of mechanical properties, these alloys are initially deformed from a solid solution heat-treated condition. We characterize the mechanical behavior and the microstructure of the coarse grained initial material at different low temperatures, and we analyze how a tendency for the PLC effect and the strain-hardening rate affect the formability during subsequent severe plastic deformation at low temperatures. We then discuss how the deformation temperature and velocity influence the occurrence of PLC effects and the homogeneity of the deformed ECAP billets. Besides the mechanical properties and these microstructural changes, we discuss technologically relevant processing parameters (such as pressing forces) and practical limitations, as well as changes in fracture behavior of the low temperature deformed materials as a function of deformation temperature.

  1. A high-temperature wideband pressure transducer

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1977-01-01

    A condenser microphone AM carrier system, which has been developed to measure pressure fluctuations at elevated temperatures, consists of the following components: a condenser microphone designed for operation at elevated temperatures; existing carrier electronics developed under two previous research grants but adapted to meet present requirements; a 6 m cable operating as a half-wavelength transmission line between the microphone and carrier electronics; and a voltage-controlled oscillator used in a feedback loop for automatic tuning control. Both theoretical and practical aspects of the development program are considered. The three predominant effects of temperature changes are changes in the membrane-backplate gap, membrane tension, and air viscosity. The microphone is designed so that changes in gap and membrane tension tend to have compensating effects upon the microphone sensitivity.

  2. High temperature deformation behavior of Inconel 718 at temperatures reaching into the mushy zone

    NASA Astrophysics Data System (ADS)

    Lewandowski, Michael Stanley

    2000-10-01

    The mechanical response of Inconel 718 with various microstructures (cast directionally-solidified, cast random dendritic, and equiaxed non-dendritic) in the solid and semi-solid state has been characterized. The activation energy for plastic flow in the solid phase was in good agreement with the activation energies for self diffusion and creep in pure nickel and pure iron. When the dendrites were aligned along the compression axis, the directionally solidified materials exhibited a similar activation energy for plastic flow, even at temperatures within the mushy zone. However, in samples containing either the random dendritic or equiaxed non-dendritic microstructures in the semi-solid state, the deformation exhibited a greater dependence on temperature. A simple analysis indicates that this greater temperature dependence is simply a consequence of the transition from plastic flow in the solid to viscous flow in the liquid as the fraction liquid increases (i.e., lubricated flow of the grains due to intergranular liquid in the mushy zone). The deformation behavior is compared against a number of investigations from the literature and a general constitutive equation relating peak now stress versus temperature compensated strain rate is presented. The temperature compensated strain rate is often termed the Zener-Holloman parameter, Z=ėexp (QRT) , where ė is the strain rate, T is the temperature, R is the gas constant, and Q is the activation energy for plastic flow. The results obtained in this investigation for solid state deformation were in good agreement with published literature values and extended the experimental range to higher temperatures and lower strain rates.

  3. High temperature and pressure electrochemical test station

    NASA Astrophysics Data System (ADS)

    Chatzichristodoulou, C.; Allebrod, F.; Mogensen, M.

    2013-05-01

    An electrochemical test station capable of operating at pressures up to 100 bars and temperatures up to 400 °C has been established. It enables control of the partial pressures and mass flow of O2, N2, H2, CO2, and H2O in a single or dual environment arrangement, measurements with highly corrosive media, as well as localized sampling of gas evolved at the electrodes for gas analysis. A number of safety and engineering design challenges have been addressed. Furthermore, we present a series of electrochemical cell holders that have been constructed in order to accommodate different types of cells and facilitate different types of electrochemical measurements. Selected examples of materials and electrochemical cells examined in the test station are provided, ranging from the evaluation of the ionic conductivity of liquid electrolytic solutions immobilized in mesoporous ceramic structures, to the electrochemical characterization of high temperature and pressure alkaline electrolysis cells and the use of pseudo-reference electrodes for the separation of each electrode contribution. A future perspective of various electrochemical processes and devices that can be developed with the use of the established test station is provided.

  4. High temperature and pressure electrochemical test station.

    PubMed

    Chatzichristodoulou, C; Allebrod, F; Mogensen, M

    2013-05-01

    An electrochemical test station capable of operating at pressures up to 100 bars and temperatures up to 400 °C has been established. It enables control of the partial pressures and mass flow of O2, N2, H2, CO2, and H2O in a single or dual environment arrangement, measurements with highly corrosive media, as well as localized sampling of gas evolved at the electrodes for gas analysis. A number of safety and engineering design challenges have been addressed. Furthermore, we present a series of electrochemical cell holders that have been constructed in order to accommodate different types of cells and facilitate different types of electrochemical measurements. Selected examples of materials and electrochemical cells examined in the test station are provided, ranging from the evaluation of the ionic conductivity of liquid electrolytic solutions immobilized in mesoporous ceramic structures, to the electrochemical characterization of high temperature and pressure alkaline electrolysis cells and the use of pseudo-reference electrodes for the separation of each electrode contribution. A future perspective of various electrochemical processes and devices that can be developed with the use of the established test station is provided. PMID:23742566

  5. A new steerable pressure force for parametric deformable models

    NASA Astrophysics Data System (ADS)

    Kong, Jun; Cooper, Lee; Sharma, Ashish; Kurc, Tahsin; Brat, Daniel; Saltz, Joel

    2011-03-01

    Active contour models have been widely used in various image analysis applications. Despite their usefulness, there are problems limiting their utility, such as capture range, concavity conformation, and convergence rate. This paper presents a new pressure-like force that not only improves contour convergence rate, but also encourages contours to conform to concave regions. Unlike the traditional pressure force, this new force does not require users' input for the force direction and is steerable according to the image content. Better convergence rate as well as force normalization consistency of this new force are presented when compared with those of the gradient vector flow force field on synthetic images. Accuracies of these two methods are compared against the manual markups on a set of cardiac MRI images. Moreover, results on a MRI image smoothed at different levels demonstrate the robustness of this new force to noise.

  6. High temperature deformation mechanisms of L12-containing Co-based superalloys

    NASA Astrophysics Data System (ADS)

    Titus, Michael Shaw

    Ni-based superalloys have been used as the structural material of choice for high temperature applications in gas turbine engines since the 1940s, but their operating temperature is becoming limited by their melting temperature (Tm =1300degrees C). Despite decades of research, no viable alternatives to Ni-based superalloys have been discovered and developed. However, in 2006, a ternary gamma' phase was discovered in the Co-Al-W system that enabled a new class of Co-based superalloys to be developed. These new Co-based superalloys possess a gamma-gamma' microstructure that is nearly identical to Ni-based superalloys, which enables these superalloys to achieve extraordinary high temperature mechanical properties. Furthermore, Co-based alloys possess the added benefit of exhibiting a melting temperature of at least 100degrees C higher than commercial Ni-based superalloys. Superalloys used as the structural materials in high pressure turbine blades must withstand large thermomechanical stresses imparted from the rotating disk and hot, corrosive gases present. These stresses induce time-dependent plastic deformation, which is commonly known as creep, and new superalloys must possess adequate creep resistance over a broad range of temperature in order to be used as the structural materials for high pressure turbine blades. For these reasons, this research focuses on quantifying high temperature creep properties of new gamma'-containing Co-based superalloys and identifying the high temperature creep deformation mechanisms. The high temperature creep properties of new Co- and CoNi-based alloys were found to be comparable to Ni-based superalloys with respect to minimum creep rates and creep-rupture lives at 900degrees C up to the solvus temperature of the gamma' phase. Co-based alloys exhibited a propensity for extended superlattice stacking fault formation in the gamma' precipitates resulting from dislocation shearing events. When Ni was added to the Co-based compositions

  7. Flexible MOFs under stress: pressure and temperature.

    PubMed

    Clearfield, Abraham

    2016-03-14

    In the recent past an enormous number of Metal-Organic Framework type compounds (MOFs) have been synthesized. The novelty resides in their extremely high surface area and the ability to include additional features to their structure either during synthesis or as additives to the MOF. This versatility allows for MOFs to be designed for specific applications. However, the question arises as to whether a particular MOF can withstand the stress that may be encountered in fulfillment of the designated application. In this study we describe the behavior of two flexible MOFs under pressure and several others under temperature increase. The pressure study includes both experimental and theoretical calculations. In the thermal processes evidence for colossal negative thermal expansion were encountered. PMID:26583920

  8. Physically-based strength model of tantalum incorporating effects of temperature, strain rate and pressure

    NASA Astrophysics Data System (ADS)

    Lim, Hojun; Battaile, Corbett C.; Brown, Justin L.; Weinberger, Christopher R.

    2016-06-01

    In this work, we develop a tantalum strength model that incorporates effects of temperature, strain rate and pressure. Dislocation kink-pair theory is used to incorporate temperature and strain rate effects while the pressure dependent yield is obtained through the pressure dependent shear modulus. Material constants used in the model are parameterized from tantalum single crystal tests and polycrystalline ramp compression experiments. It is shown that the proposed strength model agrees well with the temperature and strain rate dependent yield obtained from polycrystalline tantalum experiments. Furthermore, the model accurately reproduces the pressure dependent yield stresses up to 250 GPa. The proposed strength model is then used to conduct simulations of a Taylor cylinder impact test and validated with experiments. This approach provides a physically-based multi-scale strength model that is able to predict the plastic deformation of polycrystalline tantalum through a wide range of temperature, strain and pressure regimes.

  9. Physically-based strength model of tantalum incorporating effects of temperature, strain rate and pressure

    DOE PAGESBeta

    Lim, Hojun; Battaile, Corbett C.; Brown, Justin L.; Weinberger, Christopher R.

    2016-06-14

    In this work, we develop a tantalum strength model that incorporates e ects of temperature, strain rate and pressure. Dislocation kink-pair theory is used to incorporate temperature and strain rate e ects while the pressure dependent yield is obtained through the pressure dependent shear modulus. Material constants used in the model are parameterized from tantalum single crystal tests and polycrystalline ramp compression experiments. It is shown that the proposed strength model agrees well with the temperature and strain rate dependent yield obtained from polycrystalline tantalum experiments. Furthermore, the model accurately reproduces the pressure dependent yield stresses up to 250 GPa.more » The proposed strength model is then used to conduct simulations of a Taylor cylinder impact test and validated with experiments. This approach provides a physically-based multi-scale strength model that is able to predict the plastic deformation of polycrystalline tantalum through a wide range of temperature, strain and pressure regimes.« less

  10. Temperature dependence of the deformation behavior of type 316 stainless steel after low temperature neutron irradiation

    SciTech Connect

    Robertson, J.P.; Rowcliffe, A.F.; Grossbeck, M.L.; Ioka, Ikuo; Jitsukawa, Shiro

    1996-12-31

    A single heat of solution annealed 316 ss was irradiated to 7 and 18 dpa at 60, 200, 330, and 400 C. Tensile properties were studied vs dose and temperature. Large changes in yield strength, deformation mode, strain to necking (STN), and strain hardening capacity were seen. Magnitude of the changes are dependent on both irradiation temperature and neutron dose. Irradiation can more than triple the yield strength and decrease STN to <0.5% under certain conditions. A maximum increase in yield strength and a minimum in STN occur after irradiation at 330 C but failure mode remains ductile.

  11. Modeling deformation processes of salt caverns for gas storage due to fluctuating operation pressures

    NASA Astrophysics Data System (ADS)

    Böttcher, N.; Nagel, T.; Goerke, U.; Khaledi, K.; Lins, Y.; König, D.; Schanz, T.; Köhn, D.; Attia, S.; Rabbel, W.; Bauer, S.; Kolditz, O.

    2013-12-01

    In the course of the Energy Transition in Germany, the focus of the country's energy sources is shifting from fossil to renewable and sustainable energy carriers. Since renewable energy sources, such as wind and solar power, are subjected to annual, seasonal, and diurnal fluctuations, the development and extension of energy storage capacities is a priority in German R&D programs. Common methods of energy storage are the utilization of subsurface caverns as a reservoir for natural or artificial fuel gases, such as hydrogen, methane, or the storage of compressed air. The construction of caverns in salt rock is inexpensive in comparison to solid rock formations due to the possibility of solution mining. Another advantage of evaporite as a host material is the self-healing capacity of salt rock. Gas caverns are capable of short-term energy storage (hours to days), so the operating pressures inside the caverns are fluctuating periodically with a high number of cycles. This work investigates the influence of fluctuating operation pressures on the stability of the host rock of gas storage caverns utilizing numerical models. Therefore, we developed a coupled Thermo-Hydro-Mechanical (THM) model based on the finite element method utilizing the open-source software platform OpenGeoSys. Our simulations include the thermodynamic behaviour of the gas during the loading/ unloading of the cavern. This provides information on the transient pressure and temperature distribution on the cavern boundary to calculate the deformation of its geometry. Non-linear material models are used for the mechanical analysis, which describe the creep and self-healing behavior of the salt rock under fluctuating loading pressures. In order to identify the necessary material parameters, we perform experimental studies on the mechanical behaviour of salt rock under varying pressure and temperature conditions. Based on the numerical results, we further derive concepts for monitoring THM quantities in the

  12. The plastic deformation of iron at pressures of the Earth's inner core

    PubMed

    Wenk; Matthies; Hemley; Mao; Shu

    2000-06-29

    Soon after the discovery of seismic anisotropy in the Earth's inner core, it was suggested that crystal alignment attained during deformation might be responsible. Since then, several other mechanisms have been proposed to account for the observed anisotropy, but the lack of deformation experiments performed at the extreme pressure conditions corresponding to the solid inner core has limited our ability to determine which deformation mechanism applies to this region of the Earth. Here we determine directly the elastic and plastic deformation mechanism of iron at pressures of the Earth's core, from synchrotron X-ray diffraction measurements of iron, under imposed axial stress, in diamond-anvil cells. The epsilon-iron (hexagonally close packed) crystals display strong preferred orientation, with c-axes parallel to the axis of the diamond-anvil cell. Polycrystal plasticity theory predicts an alignment of c-axes parallel to the compression direction as a result of basal slip, if basal slip is either the primary or a secondary slip system. The experiments provide direct observations of deformation mechanisms that occur in the Earth's inner core, and introduce a method for investigating, within the laboratory, the rheology of materials at extreme pressures. PMID:10890442

  13. Volumetric Deformation of Live Cells Induced by Pressure-Activated Cross-Membrane Ion Transport

    NASA Astrophysics Data System (ADS)

    Hui, T. H.; Zhou, Z. L.; Qian, J.; Lin, Y.; Ngan, A. H. W.; Gao, H.

    2014-09-01

    In this work, we developed a method that allows precise control over changes in the size of a cell via hydrostatic pressure changes in the medium. Specifically, we show that a sudden increase, or reduction, in the surrounding pressure, in the physiologically relevant range, triggers cross-membrane fluxes of sodium and potassium ions in leukemia cell lines K562 and HL60, resulting in reversible volumetric deformation with a characteristic time of around 30 min. Interestingly, healthy leukocytes do not respond to pressure shocks, suggesting that the cancer cells may have evolved the ability to adapt to pressure changes in their microenvironment. A model is also proposed to explain the observed cell deformation, which highlights how the apparent viscoelastic response of cells is governed by the microscopic cross-membrane transport.

  14. Remote sensing of pressure inside deformable microchannels using light scattering in Scotch tape.

    PubMed

    Kim, KyungDuk; Yu, HyeonSeung; Koh, Joonyoung; Shin, Jung H; Lee, Wonhee; Park, YongKeun

    2016-04-15

    We present a simple but effective method to measure the pressure inside a deformable microchannel using laser scattering in a translucent Scotch tape. Our idea exploits the fact that the speckle pattern generated by a turbid layer is sensitive to the changes in the optical wavefront of an impinging beam. A change in the internal pressure of a channel deforms the elastic channel, which can be detected by measuring the speckle patterns of a coherent laser beam that has passed through the channel and the Scotch tape. We demonstrate that with a proper calibration, internal pressure can be remotely sensed with the resolution of 0.1 kPa within a pressure range of 0-3 kPa after calibration. PMID:27082358

  15. Resistance to deformation of structural steels exposed to current pulses and cryogenic temperatures

    SciTech Connect

    Strizhalo, V.A.; Novogrudskii, L.S.; Znachkovskii, O.Y.

    1986-01-01

    This paper studies the resistance to deformation of structural materials acted upon by electric current at cryogenic temperatures in dependence on the magnitude of residual deformation, the degree of preliminary deformation, and other factors. The authors used an installation UTN-10 at temperatures of 293, 77, and 4.2 degrees K with fivefold specimens of chromenickel steel and chrome-manganese steel. The dependence of the change of resistance to deformation of steels on the residual deformation at which a current pulse was applied is shown. Lowering the temperature to 77 degrees K or less strengthens the role of the interaction between electrons and dislocations in reducing the resistance to deformation of steels 12Kh18N10T and 03Kh13AG19 at the instant when an electric-current pulse acts.

  16. The effect of deformation temperature on the microstructure evolution of Inconel 625 superalloy

    NASA Astrophysics Data System (ADS)

    Guo, Qingmiao; Li, Defu; Guo, Shengli; Peng, Haijian; Hu, Jie

    2011-07-01

    Hot compression tests of Inconel 625 superalloy were conducted using a Gleeble-1500 simulator between 900 °C and 1200 °C with different true strains and a strain rate of 0.1 s -1. Scanning electron microscope (SEM) and electron backscatter diffraction technique (EBSD) were employed to investigate the effect of deformation temperature on the microstructure evolution and nucleation mechanisms of dynamic recrystallization (DRX). It is found that the relationship between the DRX grain size and the peak stress can be expressed by a power law function. Significant influence of deformation temperatures on the nucleation mechanisms of DRX are observed at different deformation stages. At lower deformation temperatures, continuous dynamic recrystallization (CDRX) characterized by progressive subgrain rotation is considered as the main mechanism of DRX at the early deformation stage. However, discontinuous dynamic recrystallization (DDRX) with bulging of the original grain boundaries becomes the operating mechanism of DRX at the later deformation stage. At higher deformation temperatures, DDRX is the primary mechanism of DRX, while CDRX can only be considered as an assistant mechanism at the early deformation stage. Nucleation of DRX can also be activated by the twinning formation. With increasing the deformation temperature, the effect of DDRX accompanied with twinning formation grows stronger, while the effect of CDRX grows weaker. Meanwhile, the position of subgrain formation shifts gradually from the interior of original grains to the vicinity of the original boundaries.

  17. Very high temperature silicon on silicon pressure transducers

    NASA Technical Reports Server (NTRS)

    Kurtz, Anthony D.; Nunn, Timothy A.; Briggs, Stephen A.; Ned, Alexander

    1992-01-01

    A silicon on silicon pressure sensor has been developed for use at very high temperatures (1000 F). The design principles used to fabricate the pressure sensor are outlined and results are presented of its high temperature performance.

  18. Deformation luminescence produced during application and release of pressure on to gamma-irradiated CaF2:RE crystals.

    PubMed

    Kher, R S; Brahme, N; Banerjee, M; Dhoble, S J; Khokhar, M S K

    2006-01-01

    Calcium fluoride CaF2 is an interesting host lattice for rare earth (RE) activators. CaF2 crystals doped with different concentrations of Dy, Ce, Er and Gd have been grown by the Bridgman technique and their deformation luminescence (DL) induced by room temperature gamma irradiation has been recorded. When a uniaxial pressure is applied on to gamma-irradiated CaF2:RE crystals, initially the DL intensity increases with time, attains a maximum value and then it decreases with time. Although the DL intensity produced during the release of pressure is less, its rise and decay behaviours are similar to that obtained during the application of pressure. The DL intensity depends on dopant, concentration of dopant, irradiation doses and mass of the load or applied pressure. It is suggested that the moving dislocation produced during deformation of crystals capture holes from hole trapped centres (like perturbed Vk centre) and the subsequent radiative recombination of the dislocation holes with electrons give rise to DL. PMID:16698970

  19. 40 CFR 1065.315 - Pressure, temperature, and dewpoint calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Pressure, temperature, and dewpoint... Parameters and Ambient Conditions § 1065.315 Pressure, temperature, and dewpoint calibration. (a) Calibrate instruments for measuring pressure, temperature, and dewpoint upon initial installation. Follow the...

  20. 40 CFR 1065.315 - Pressure, temperature, and dewpoint calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Pressure, temperature, and dewpoint... Parameters and Ambient Conditions § 1065.315 Pressure, temperature, and dewpoint calibration. (a) Calibrate instruments for measuring pressure, temperature, and dewpoint upon initial installation. Follow the...

  1. 40 CFR 1065.315 - Pressure, temperature, and dewpoint calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Pressure, temperature, and dewpoint... Parameters and Ambient Conditions § 1065.315 Pressure, temperature, and dewpoint calibration. (a) Calibrate instruments for measuring pressure, temperature, and dewpoint upon initial installation. Follow the...

  2. Deformation behavior in reactor pressure vessel steels as a clue to understanding irradiation hardening.

    SciTech Connect

    DiMelfi, R. J.; Alexander, D. E.; Rehn, L. E.

    1999-10-25

    In this paper, we examine the post-yield true stress vs true strain behavior of irradiated pressure vessel steels and iron-based alloys to reveal differences in strain-hardening behavior associated with different irradiating particles (neutrons and electrons) and different alloy chernky. It is important to understand the effects on mechanical properties caused by displacement producing radiation of nuclear reactor pressure steels. Critical embrittling effects, e.g. increases in the ductile-to-brittle-transition-temperature, are associated with irradiation-induced increases in yield strength. In addition, fatigue-life and loading-rate effects on fracture can be related to the post-irradiation strain-hardening behavior of the steels. All of these properties affect the expected service life of nuclear reactor pressure vessels. We address the characteristics of two general strengthening effects that we believe are relevant to the differing defect cluster characters produced by neutrons and electrons in four different alloys: two pressure vessel steels, A212B and A350, and two binary alloys, Fe-0.28 wt%Cu and Fe-0.74 wt%Ni. Our results show that there are differences in the post-irradiation mechanical behavior for the two kinds of irradiation and that the differences are related both to differences in damage produced and alloy chemistry. We find that while electron and neutron irradiations (at T {le} 60 C) of pressure vessel steels and binary iron-based model alloys produce similar increases in yield strength for the same dose level, they do not result in the same post-yield hardening behavior. For neutron irradiation, the true stress flow curves of the irradiated material can be made to superimpose on that of the unirradiated material, when the former are shifted appropriately along the strain axis. This behavior suggests that neutron irradiation hardening has the same effect as strain hardening for all of the materials analyzed. For electron irradiated steels, the

  3. Room temperature deformation mechanisms of alumina particles observed from in situ micro-compression and atomistic simulations.

    SciTech Connect

    Sarobol, Pylin; Chandross, Michael E.; Carroll, Jay D.; Mook, William M.; Bufford, Daniel Charles; Boyce, Brad L.; Hattar, Khalid Mikhiel; Kotula, Paul G.; Hall, Aaron Christopher

    2015-09-22

    Aerosol deposition (AD) is a solid-state deposition technology that has been developed to fabricate ceramic coatings nominally at room temperature. Sub-micron ceramic particles accelerated by pressurized gas impact, deform, and consolidate on substrates under vacuum. Ceramic particle consolidation in AD coatings is highly dependent on particle deformation and bonding; these behaviors are not well understood. In this work, atomistic simulations and in situ micro-compressions in the scanning electron microscope, and the transmission electron microscope (TEM) were utilized to investigate fundamental mechanisms responsible for plastic deformation/fracture of particles under applied compression. Results showed that highly defective micron-sized alumina particles, initially containing numerous dislocations or a grain boundary, exhibited no observable shape change before fracture/fragmentation. Simulations and experimental results indicated that particles containing a grain boundary only accommodate low strain energy per unit volume before crack nucleation and propagation. In contrast, nearly defect-free, sub-micron, single crystal alumina particles exhibited plastic deformation and fracture without fragmentation. Dislocation nucleation/motion, significant plastic deformation, and shape change were observed. Simulation and TEM in situ micro-compression results indicated that nearly defect-free particles accommodate high strain energy per unit volume associated with dislocation plasticity before fracture. As a result, the identified deformation mechanisms provide insight into feedstock design for AD.

  4. Room temperature deformation mechanisms of alumina particles observed from in situ micro-compression and atomistic simulations.

    DOE PAGESBeta

    Sarobol, Pylin; Chandross, Michael E.; Carroll, Jay D.; Mook, William M.; Bufford, Daniel Charles; Boyce, Brad L.; Hattar, Khalid Mikhiel; Kotula, Paul G.; Hall, Aaron Christopher

    2015-09-22

    Aerosol deposition (AD) is a solid-state deposition technology that has been developed to fabricate ceramic coatings nominally at room temperature. Sub-micron ceramic particles accelerated by pressurized gas impact, deform, and consolidate on substrates under vacuum. Ceramic particle consolidation in AD coatings is highly dependent on particle deformation and bonding; these behaviors are not well understood. In this work, atomistic simulations and in situ micro-compressions in the scanning electron microscope, and the transmission electron microscope (TEM) were utilized to investigate fundamental mechanisms responsible for plastic deformation/fracture of particles under applied compression. Results showed that highly defective micron-sized alumina particles, initially containingmore » numerous dislocations or a grain boundary, exhibited no observable shape change before fracture/fragmentation. Simulations and experimental results indicated that particles containing a grain boundary only accommodate low strain energy per unit volume before crack nucleation and propagation. In contrast, nearly defect-free, sub-micron, single crystal alumina particles exhibited plastic deformation and fracture without fragmentation. Dislocation nucleation/motion, significant plastic deformation, and shape change were observed. Simulation and TEM in situ micro-compression results indicated that nearly defect-free particles accommodate high strain energy per unit volume associated with dislocation plasticity before fracture. As a result, the identified deformation mechanisms provide insight into feedstock design for AD.« less

  5. Room Temperature Deformation Mechanisms of Alumina Particles Observed from In Situ Micro-compression and Atomistic Simulations

    NASA Astrophysics Data System (ADS)

    Sarobol, Pylin; Chandross, Michael; Carroll, Jay D.; Mook, William M.; Bufford, Daniel C.; Boyce, Brad L.; Hattar, Khalid; Kotula, Paul G.; Hall, Aaron C.

    2016-01-01

    Aerosol deposition (AD) is a solid-state deposition technology that has been developed to fabricate ceramic coatings nominally at room temperature. Sub-micron ceramic particles accelerated by pressurized gas impact, deform, and consolidate on substrates under vacuum. Ceramic particle consolidation in AD coatings is highly dependent on particle deformation and bonding; these behaviors are not well understood. In this work, atomistic simulations and in situ micro-compressions in the scanning electron microscope, and the transmission electron microscope (TEM) were utilized to investigate fundamental mechanisms responsible for plastic deformation/fracture of particles under applied compression. Results showed that highly defective micron-sized alumina particles, initially containing numerous dislocations or a grain boundary, exhibited no observable shape change before fracture/fragmentation. Simulations and experimental results indicated that particles containing a grain boundary only accommodate low strain energy per unit volume before crack nucleation and propagation. In contrast, nearly defect-free, sub-micron, single crystal alumina particles exhibited plastic deformation and fracture without fragmentation. Dislocation nucleation/motion, significant plastic deformation, and shape change were observed. Simulation and TEM in situ micro-compression results indicated that nearly defect-free particles accommodate high strain energy per unit volume associated with dislocation plasticity before fracture. The identified deformation mechanisms provide insight into feedstock design for AD.

  6. Temperature dependence of the deformation behavior of 316 stainless steel after low temperature neutron irradiation

    SciTech Connect

    Pawel-Robertson, J.E.; Rowcliffe, A.F.; Grossbeck, M.L.

    1996-10-01

    The effects of low temperature neutron irradiation on the tensile behavior of 316 stainless steel have been investigated. A single heat of solution annealed 316 was irradiated to 7 and 18 dpa at 60, 200, 330, and 400{degrees}C. The tensile properties as a function of dose and as a function of temperature were examined. Large changes in yield strength, deformation mode, strain to necking, and strain hardening capacity were seen in this irradiation experiment. The magnitudes of the changes are dependent on both irradiation temperature and neutron dose. Irradiation can more than triple the yield strength over the unirradiated value and decrease the strain to necking (STN) to less than 0.5% under certain conditions. A maximum increase in yield strength and a minimum in the STN occur after irradiation at 330{degrees}C but the failure mode remains ductile.

  7. In situ analysis of texture development from sinusoidal stress at high pressure and temperature.

    PubMed

    Li, Li; Weidner, Donald J

    2015-12-01

    Here, we present a new experimental protocol to investigate the relationship between texture, plastic strain, and the mechanisms of plastic deformation at high pressure and temperature. The method utilizes synchrotron X-ray radiation as the probing tool, coupled with a large-volume high pressure deformation device (D-DIA). The intensity of X-ray diffraction peaks within the spectrum of the sample is used for sampling texture development in situ. The unique feature of this study is given by the sinusoidal variation of the intensity when a sinusoidal strain is applied to the sample. For a sample of magnesium oxide at elevated pressure and temperature, we demonstrate observations that are consistent with elasto-plastic models for texture development and for diffraction-peak measurements of apparent stress. The sinusoidal strain magnitude was 3%. PMID:26724072

  8. In situ analysis of texture development from sinusoidal stress at high pressure and temperature

    SciTech Connect

    Li, Li; Weidner, Donald J.

    2015-12-15

    Here, we present a new experimental protocol to investigate the relationship between texture, plastic strain, and the mechanisms of plastic deformation at high pressure and temperature. The method utilizes synchrotron X-ray radiation as the probing tool, coupled with a large-volume high pressure deformation device (D-DIA). The intensity of X-ray diffraction peaks within the spectrum of the sample is used for sampling texture development in situ. The unique feature of this study is given by the sinusoidal variation of the intensity when a sinusoidal strain is applied to the sample. For a sample of magnesium oxide at elevated pressure and temperature, we demonstrate observations that are consistent with elasto-plastic models for texture development and for diffraction-peak measurements of apparent stress. The sinusoidal strain magnitude was 3%.

  9. In situ analysis of texture development from sinusoidal stress at high pressure and temperature

    NASA Astrophysics Data System (ADS)

    Li, Li; Weidner, Donald J.

    2015-12-01

    Here, we present a new experimental protocol to investigate the relationship between texture, plastic strain, and the mechanisms of plastic deformation at high pressure and temperature. The method utilizes synchrotron X-ray radiation as the probing tool, coupled with a large-volume high pressure deformation device (D-DIA). The intensity of X-ray diffraction peaks within the spectrum of the sample is used for sampling texture development in situ. The unique feature of this study is given by the sinusoidal variation of the intensity when a sinusoidal strain is applied to the sample. For a sample of magnesium oxide at elevated pressure and temperature, we demonstrate observations that are consistent with elasto-plastic models for texture development and for diffraction-peak measurements of apparent stress. The sinusoidal strain magnitude was 3%.

  10. Deformation Mechanisms in Austenitic TRIP/TWIP Steel as a Function of Temperature

    NASA Astrophysics Data System (ADS)

    Martin, Stefan; Wolf, Steffen; Martin, Ulrich; Krüger, Lutz; Rafaja, David

    2016-01-01

    A high-alloy austenitic CrMnNi steel was deformed at temperatures between 213 K and 473 K (-60 °C and 200 °C) and the resulting microstructures were investigated. At low temperatures, the deformation was mainly accompanied by the direct martensitic transformation of γ-austenite to α'-martensite (fcc → bcc), whereas at ambient temperatures, the transformation via ɛ-martensite (fcc → hcp → bcc) was observed in deformation bands. Deformation twinning of the austenite became the dominant deformation mechanism at 373 K (100 °C), whereas the conventional dislocation glide represented the prevailing deformation mode at 473 K (200 °C). The change of the deformation mechanisms was attributed to the temperature dependence of both the driving force of the martensitic γ → α' transformation and the stacking fault energy of the austenite. The continuous transition between the ɛ-martensite formation and the twinning could be explained by different stacking fault arrangements on every second and on each successive {111} austenite lattice plane, respectively, when the stacking fault energy increased. A continuous transition between the transformation-induced plasticity effect and the twinning-induced plasticity effect was observed with increasing deformation temperature. Whereas the formation of α'-martensite was mainly responsible for increased work hardening, the stacking fault configurations forming ɛ-martensite and twins induced additional elongation during tensile testing.

  11. Pressure-Induced Slip-System Transition in Forsterite: Single-Crystal Rheological Properties at Mantle Pressure and Temperature

    SciTech Connect

    Raterron,P.; Chen, J.; Li, L.; Weidner, D.; Cordier, P.

    2007-01-01

    Deformation experiments were carried out in a Deformation-DIA high-pressure apparatus (D-DIA) on oriented Mg2SiO4 olivine (Fo100) single crystals, at pressure (P) ranging from 2.1 to 7.5 GPa, in the temperature (T) range 1373-1677 K, and in dry conditions. These experiments were designed to investigate the effect of pressure on olivine dislocation slip-system activities, responsible for the lattice-preferred orientations observed in the upper mantle. Two compression directions were tested, promoting either [100] slip alone or [001] slip alone in (010) crystallographic plane. Constant applied stress ({sigma}) and specimen strain rates (Formula) were monitored in situ using time-resolved X-ray synchrotron diffraction and radiography, respectively. Transmission electron microscopy (TEM) investigation of the run products reveals that dislocation creep assisted by dislocation climb and cross slip was responsible for sample deformation. A slip transition with increasing pressure, from a dominant [100]-slip to a dominant [001]-slip, is documented. Extrapolation of the obtained rheological laws to upper-mantle P, T, and {sigma} conditions, suggests that [001]-slip activity becomes comparable to [100]-slip activity in the deep upper mantle, while [001] slip is mostly dominant in subduction zones. These results provide alternative explanations for the seismic anisotropy attenuation observed in the upper mantle, and for the 'puzzling' seismic-anisotropy anomalies commonly observed in subduction zones.

  12. Mechanical and transport properties of rocks at high temperatures and pressures. Task II: fracture permeability of crystalline rocks as a function of temperature, pressure, and hydrothermal alteration

    SciTech Connect

    Not Available

    1981-01-01

    The primary objective is to measure and understand the variation of the fracture permeability of quartzite subjected to hydrothermal conditions. Pore fluids will consist of distilled water and aqueous Na/sub 2/CO/sub 3/ solutions at temperatures to 250/sup 0/C, fluid pressures to 20 MPa and effective normal stresses to 70 MPa. Fluid flow rates will be controllable to rates at least as small as 0.2 ml/day (approx. 4 fracture volumes). Experiments are designed to assess what role, if any, pressure solution may play at time scales of those of the experiments (less than or equal to 2 weeks). Secondary objectives are: (1) continue simulated fracture studies, incorporating inelastic deformation into model and characterize the nature of inelastic deformation occurring on loaded tensile fractures in quartzite; (2) continue dissolution experiment, with emphasis on dissolution modification of tensile fracture surfaces on quartzite; and (3) study natural fractures in a quartzite exhibiting hydrothermal dissolution features.

  13. Experimental Deformation of Olivine Single Crystal at Mantle P and T: Pressure Effect on Olivine Dislocation Slip-System Activities

    NASA Astrophysics Data System (ADS)

    Paul, R.; Girard, J.; Chen, J.; Amiguet, E.

    2008-12-01

    Seismic velocity anisotropies observed in the upper mantle are interpreted from lattice preferred orientations (LPO) produced experimentally in olivine, which depends on the dominant dislocation slip systems. At low pressure P<3 GPa, mantle temperature (T) and in dry conditions, olivine [100] dislocation slip dominates the less active [001] slip. This tends to align crystal fast velocity [100] axis with the principal shear direction. Yet recent high-pressure deformation experiments (Couvy et al., 2004, EJM, 16, 877; Raterron et al., 2007, Am. Min., 92, 1436; Raterron et al., 2008, Phys. Earth Planet. Int., doi:10.1016/j.pepi.2008.07.026) show that [001](010) slip system dominates [100](010) system in the (P,T) range of the deep upper mantle. This may promote a shear-parallel slow-velocity [001] axis and may explain the seismic-velocity attenuation observed at depth >200 km (Mainprice et al., 2005, Nature, 433, 731). In order to further constrain the effect of P on olivine slip system activities, which is classically quantified by the activation volume V* in power creep laws, deformation experiments were carried out in poor water condition, at P>5 GPa and T=1400°C, on pure forsterite (Fo100) and San Carlos olivine crystals, using the Deformation-DIA apparatus at the X17B2 beamline of the NSLS (Upton, NY). Ten crystals were oriented in order to active either [100] slip alone or [001] slip alone in (010) plane, or both [100](001) and [001](100) systems together. Constant applied stress σ <300 MPa and specimen strain rates were monitored in situ using time-resolved x-ray diffraction and radiography, respectively, for a total of 27 investigated steady state conditions. The obtained rheological data were compared with data previously obtained in comparable T and σ conditions, but at room P, by Darot and Gueguen (1981, JGR, 86, 6219) for Fo100 and by Bai et al. (1991, JGR, 96, 2441) for San Carlos olivine. This new set of data confirms previous deformation data

  14. Carbonates in thrust faults: High temperature investigations into deformation processes in calcite-dolomite systems

    NASA Astrophysics Data System (ADS)

    Kushnir, A.; Kennedy, L.; Misra, S.; Benson, P.

    2012-04-01

    The role of dolomite on the strength and evolution of calcite-dolomite fold and thrust belts and nappes (as observed in the Canadian Rockies, the Swiss Alps, the Italian Apennines, and the Naukluft Nappe Complex) is largely unknown. Field investigations indicate that strain in natural systems is localized in calcite, resulting in a ductile response, while dolomite deforms in a dominantly brittle manner. To date, experimental studies on polymineralic carbonate systems are limited to homogeneous, fine-grained, calcite-dolomite composites of relatively low dolomite content. The effect of dolomite on limestone rheology, the onset of crystal-plastic deformation in dolomite in composites, and the potential for strain localization in composites have not yet been fully quantified. Constant displacement rate (3x10-4 s-1and 10-4 s-1), high confining pressure (300 MPa) and high temperature (750° C and 800° C) torsion experiments were conducted to address the role of dolomite on the strength of calcite-dolomite composites. Experiments were performed on samples produced by hot isostatic pressing (HIP) amalgams of a natural, pure dolomite and a reagent, pure calcite. We performed experiments on the following mixtures (given as dolomite%): 25%, 35%, 50%, and 75%. These synthetic HIP products eliminated concerns of mineralogical impurities and textural anomalies due to porosity, structural fabrics (e.g., foliation) and fossil content. The samples were deformed up to a maximum finite shear strain of 5.0 and the experimental set up was unvented to inhibit sample decarbonation. Mechanical data shows a considerable increase in sample yield strength with increasing dolomite content. Experimental products with low starting dolomite content (dol%: 25% and 35%) display macroscopic strain localization along compositionally defined foliation. Experimental products with high dolomite content (dol%: 50% and 75%) demonstrate no macroscopic foliation. Post-deformation microstructure analysis

  15. Fiber optic photoelastic pressure sensor for high temperature gases

    NASA Technical Reports Server (NTRS)

    Wesson, Laurence N.; Redner, Alex S.; Baumbick, Robert J.

    1990-01-01

    A novel fiber optic pressure sensor based on the photoelastic effects has been developed for extremely high temperature gases. At temperatures varying from 25 to 650 C, the sensor experiences no change in the peak pressure of the transfer function and only a 10 percent drop in dynamic range. Refinement of the sensor has resulted in an optoelectronic interface and processor software which can calculate pressure values within 1 percent of full scale at any temperature within the full calibrated temperature range.

  16. Isolating Gas Sensor From Pressure And Temperature Effects

    NASA Technical Reports Server (NTRS)

    Sprinkle, Danny R.; Chen, Tony T. D.; Chaturvedi, Sushi K.

    1994-01-01

    Two-stage flow system enables oxygen sensor in system to measure oxygen content of low-pressure, possibly-high-temperature atmosphere in test environment while protecting sensor against possibly high temperature and fluctuations in pressure of atmosphere. Sensor for which flow system designed is zirconium oxide oxygen sensor sampling atmospheres in high-temperature wind tunnels. Also adapted to other gas-analysis instruments that must be isolated from pressure and temperature effects of test environments.

  17. Temperature effect on low permeability porous media filled with water at high pressures

    NASA Astrophysics Data System (ADS)

    da Costa Mattos, Heraldo S.; dos Reis, João Laredo; Puente Angulo, Jesús Alfonso; Martins-Costa, Maria Laura

    2015-09-01

    This article analyses the influence of small temperature variations in a rigid porous medium with ultra-low permeability, in which the natural pores are filled with water at high pressure. The basic idea is to verify the possibility of inducing the process of hydraulic fracturing of such kind of water wells with a small increase of temperature. It is shown, both theoretically and experimentally that, at high pressures and temperatures, hydraulic fracture may be induced by very small temperature variations. Due to the compressibility and depending on the fluid temperature and pressure, a small increase of temperature in a pore may cause a pressure surge that may eventually lead the solid matrix to failure. Hydrostatic experiments performed in a slightly deformable system filled with water with an initial internal pressure at temperatures around 353.15 K have shown that small temperature variations can strongly affect pressure. An equation of state is proposed to explain this phenomenon and theoretical predictions are in good agreement with experimental results also presented in this paper.

  18. Thermodynamic Pressure/Temperature Transducer Health Check

    NASA Technical Reports Server (NTRS)

    Immer, Christopher D. (Inventor); Eckhoff, Anthony (Inventor); Medelius, Pedro J. (Inventor); Deyoe, Richard T. (Inventor); Starr, Stanley O. (Inventor)

    2004-01-01

    A device and procedure for checking the health of a pressure transducer in situ is provided. The procedure includes measuring a fixed change in pressure above ambient pressure and a fixed change in pressure below ambient pressure. This is done by first sealing an enclosed volume around the transducer with a valve. A piston inside the sealed volume is increasing the pressure. A fixed pressure below ambient pressure is obtained by opening the valve, driving the piston The output of the pressure transducer is recorded for both the overpressuring and the underpressuring. By comparing this data with data taken during a preoperative calibration, the health of the transducer is determined from the linearity, the hysteresis, and the repeatability of its output. The further addition of a thermometer allows constant offset error in the transducer output to be determined.

  19. PARTICLE COLLECTION IN CYCLONES AT HIGH TEMPERATURE AND HIGH PRESSURE

    EPA Science Inventory

    The paper gives results of an experimental study of cyclone efficiency and pressure drop at temperatures up to 700C and pressures up to 25 atm. The cyclone efficiency was found to decrease at high temperature and increase at high pressure for a constant inlet velocity. Available ...

  20. Rotor Blade Pressure Measurement in a Rotating Machinery Using Pressure and Temperature Sensitive Paints

    NASA Technical Reports Server (NTRS)

    Torgerson, S.; Liu, T.; Sullivan, J.

    1998-01-01

    Pressure and temperature sensitive paints have been utilized for the measurement of blade surface pressure and temperature distributions in a high speed axial compressor and an Allied Signal F109 gas turbine engine. Alternate blades were painted with temperature sensitive paints and then pressure sensitive paint. This combination allows temperature distributions to be accounted for when determining the blade suction surface pressure distribution. Measurements were taken and pressure maps on the suction surface of a blade were obtained over a range of rotational speeds. Pressure maps of the suction surface show-strong shock waves at the higher speeds.

  1. The Effect of Temperature Condition on Material Deformation and Die Wear

    NASA Astrophysics Data System (ADS)

    Zhi, Jia; Jie, Zhou; Jin-jin, Ji; Liang, Huang; Hai, Yang

    2013-07-01

    The characteristics of temperature change on die and billet are very complex during the deformation process because of the interaction between them and some unstable external factors. In this paper, the numerical simulation model for the crank shaft die forging was established by means of the rigid-plastic FEM method. The model was validated by optical non-contact 3D measurement—ATOS. Based on available research results, this paper explored the effect of temperature conditions on material deformation and die wear. Three parameters, press velocity and initial temperature of billet and die, were chosen to illustrate the effects. From the experimental results, the effect of process parameters on deformation ability of the material is simple, while the effect on die wear is relatively complicated. The press velocity plays an important role on die wear when the initial temperature of the billet has larger influence on material deformation. A conclusion can be drawn that when the initial temperature of the billet is 1100 °C, the initial temperature of the die is 250 °C, and the velocity is kept in the range of 200-300 mm/s, the optimum solution for deformation ability of the material and die wear can be obtained. It is possible for the conclusion to be extended further for the control of temperature condition to optimize die life and material deformation.

  2. Using altimetry and seafloor pressure data to estimate vertical deformation offshore: Vanuatu case study

    NASA Astrophysics Data System (ADS)

    Ballu, V.; Bonnefond, P.; Calmant, S.; Bouin, M.-N.; Pelletier, B.; Laurain, O.; Crawford, W. C.; Baillard, C.; de Viron, O.

    2013-04-01

    Measuring ground deformation underwater is essential for understanding Earth processes at many scales. One important example is subduction zones, which can generate devastating earthquakes and tsunamis, and where the most important deformation signal related to plate locking is usually offshore. We present an improved method for making offshore vertical deformation measurements, that involve combining tide gauge and altimetry data. We present data from two offshore sites located on either side of the plate interface at the New Hebrides subduction zone, where the Australian plate subducts beneath the North Fiji basin. These two sites have been equipped with pressure gauges since 1999, to extend an on-land GPS network across the plate interface. The pressure series measured at both sites show that Wusi Bank, located on the over-riding plate, subsides by 11 ± 4 mm/yr with respect to Sabine Bank, which is located on the down-going plate. By combining water depths derived from the on-bottom pressure data with sea surface heights derived from altimetry data, we determine variations of seafloor heights in a global reference frame. Using altimetry data from TOPEX/Poseidon, Jason-1, Jason-2 and Envisat missions, we find that the vertical motion at Sabine Bank is close to zero and that Wusi Bank subsides by at least 3 mm/yr and probably at most 11 mm/yr.This paper represents the first combination of altimetry and pressure data to derive absolute vertical motions offshore. The deformation results are obtained in a global reference frame, allowing them to be integrated with on-land GNSS data.

  3. An Electrical Micro-Heater Technique for High-Pressure and High-Temperature Diamond Anvil Cell Experiments

    SciTech Connect

    Weir, S T; Jackson, D D; Falabella, S; Samudrala, G; Vohra, Y K

    2008-10-10

    Small electrical heating elements have been lithographically fabricated onto the culets of 'designer' diamond anvils for the purpose of performing high-pressure and high-temperature experiments on metals. The thin-film geometry of the heating elements makes them very resistant to plastic deformation during high pressure loading, and their small cross-sectional area enables them to be electrically heated to very high temperatures with relatively modest currents ({approx}1 Amp). The technique also offers excellent control and temporal stability of the sample temperature. Test experiments on gold samples have been performed for pressures up to 21 GPa and temperatures of nearly 2000K.

  4. Effect of High-Temperature Severe Plastic Deformation on Microstructure and Mechanical Properties of IF Steel

    NASA Astrophysics Data System (ADS)

    Jindal, Vikas; Rupa, P. K. P.; Mandal, G. K.; Srivastava, V. C.

    2014-06-01

    Extensive research work has been carried out on interstitial-free steel to understand its response to deformation; particularly, the behavior during severe plastic deformation (SPD). However, most of these studies were mainly undertaken in the ferritic regime. The present investigation reports the initial results of our attempt to employ accumulative roll bonding (ARB), one of the variants of SPD, at a high temperature (950 °C). A considerable grain refinement has been observed, which may be attributed to the severity of deformation and recrystallisation at high temperatures. Nanoindentation tests have been performed at various stages of ARB process to understand the evolution of mechanical properties.

  5. Low-cycle fatigue of a VZh175 high-temperature alloy under elastoplastic deformation conditions

    NASA Astrophysics Data System (ADS)

    Belyaev, M. S.; Terent'ev, V. F.; Bakradze, M. M.; Gorbovets, M. A.; Gol'dberg, M. A.

    2015-04-01

    The low-cycle fatigue of a VZh175 nickel superalloy is studied under conditions of complete deformation per loading cycle at an initial cycle asymmetry R = 0, a deformation amplitude ɛa = 0.4-0.6%, and a temperature of 20 and 650°C. The specific features of cyclic hardening/softening of the alloy under these conditions are detected. The mechanisms of fatigue crack nucleation and growth are analyzed as functions of the deformation amplitude and the test temperature.

  6. Temperature and pressure dependence of CO2 extinction coefficients.

    NASA Technical Reports Server (NTRS)

    Demore, W. B.; Patapoff, M.

    1972-01-01

    Results are presented of CO2 extinction coefficient measurements that were performed under conditions of temperature and pressure different from those used by previous investigators. The results show that, whereas pressure effects are generally negligible, temperature dependence is strong enough to invalidate the use of room temperature data for the Mars atmosphere.

  7. The formation of supersaturated solid solutions in Fe–Cu alloys deformed by high-pressure torsion

    PubMed Central

    Bachmaier, A.; Kerber, M.; Setman, D.; Pippan, R.

    2012-01-01

    Fully dense bulk nanocomposites have been obtained by a novel two-step severe plastic deformation process in the immiscible Fe–Cu system. Elemental micrometer-sized Cu and Fe powders were first mixed in different compositions and subsequently high-pressure-torsion-consolidated and deformed in a two-step deformation process. Scanning electron microscopy, X-ray diffraction and atom probe investigations were performed to study the evolving far-from-equilibrium nanostructures which were observed at all compositions. For lower and higher Cu contents complete solid solutions of Cu in Fe and Fe in Cu, respectively, are obtained. In the near 50% regime a solid solution face-centred cubic and solid solution body-centred cubic nanograined composite has been formed. After an annealing treatment, these solid solutions decompose and form two-phase nanostructured Fe–Cu composites with a high hardness and an enhanced thermal stability. The grain size of the composites retained nanocrystalline up to high annealing temperatures. PMID:22368454

  8. Analysis of Tensile Deformation and Failure in Austenitic Stainless Steels: Part I- Temperature Dependence

    SciTech Connect

    Kim, Jin Weon; Byun, Thak Sang

    2010-01-01

    This paper describes the temperature dependence of deformation and failure behaviors in the austenitic stainless steels (annealed 304, 316, 316LN, and 20% cold-worked 316LN) in terms of equivalent true stress-true strain curves. The true stress-true strain curves up to the final fracture were calculated from the tensile test data obtained at -150 ~ 450oC using an iterative technique of finite element simulation. Analysis was largely focused on the necking deformation and fracture: Key parameters such as the strain hardening rate, equivalent fracture stress, fracture strain, and tensile fracture energy were evaluated, and their temperature dependencies were investigated. It was shown that a significantly high strain hardening rate was still retained during unstable deformation although overall strain hardening rate beyond the onset of necking was lower than that of the uniform deformation. The values of the parameters except for fracture strain decreased with temperature up to 200oC and were saturated as the temperature came close to the maximum test temperature 450oC. The fracture strain increased and had a maximum at -50oC to 20oC before decreasing with temperature. It was explained that these temperature dependencies of fracture properties were associated with a change in the dominant strain hardening mechanism with test temperature. Also, it was seen that the pre-straining of material has little effect on the strain hardening rate during necking deformation and on fracture properties.

  9. Uniaxial-pressure control of geometrical spin frustration in an Ising antiferromagnet CoNb2O6 via anisotropic deformation of the isosceles lattice

    NASA Astrophysics Data System (ADS)

    Kobayashi, S.; Hosaka, S.; Tamatsukuri, H.; Nakajima, T.; Mitsuda, S.; Prokeš, K.; Kiefer, K.

    2014-08-01

    We report neutron diffraction measurement results for an Ising antiferromagnet CoNb2O6 under uniaxial pressure along the geometrically frustrated isosceles-triangular-lattice direction. We find that an onset incommensurate wave number at the Néel temperature increases with pressure from 0.378 to 0.411 at 400 MPa. The observations suggest that the anisotropic deformation of the lattice by the uniaxial pressure significantly modifies the spin frustration, leading to an increase in the nearest-neighbor to next-nearest-neighbor interaction ratio from 1.33 to 1.81.

  10. Cryogenic deformation of high temperature superconductive composite structures

    DOEpatents

    Roberts, Peter R.; Michels, William; Bingert, John F.

    2001-01-01

    An improvement in a process of preparing a composite high temperature oxide superconductive wire is provided and involves conducting at least one cross-sectional reduction step in the processing preparation of the wire at sub-ambient temperatures.

  11. High-temperature deformation and microstructural analysis for Si3N4-Sc2O3

    NASA Technical Reports Server (NTRS)

    Cheong, Deock-Soo; Sanders, William A.

    1990-01-01

    It was indicated that Si3N4 doped with Sc2O3 may exhibit high temperature mechanical properties superior to Si3N4 systems with various other oxide sintered additives. High temperature deformation of samples was studied by characterizing the microstructures before and after deformation. It was found that elements of the additive, such as Sc and O, exist in small amounts at very thin grain boundary layers and most of them stay in secondary phases at triple and multiple grain boundary junctions. These secondary phases are devitrified as crystalline Sc2Si2O7. Deformation of the samples was dominated by cavitational processes rather than movements of dislocations. Thus the excellent deformation resistance of the samples at high temperature can be attributed to the very small thickness of the grain boundary layers and the crystalline secondary phase.

  12. A Resonant Pressure Microsensor Capable of Self-Temperature Compensation

    PubMed Central

    Li, Yinan; Wang, Junbo; Luo, Zhenyu; Chen, Deyong; Chen, Jian

    2015-01-01

    Resonant pressure microsensors are widely used in the fields of aerospace exploration and atmospheric pressure monitoring due to their advantages of quasi-digital output and long-term stability, which, however, requires the use of additional temperature sensors for temperature compensation. This paper presents a resonant pressure microsensor capable of self-temperature compensation without the need for additional temperature sensors. Two doubly-clamped “H” type resonant beams were arranged on the pressure diaphragm, which functions as a differential output in response to pressure changes. Based on calibration of a group of intrinsic resonant frequencies at different pressure and temperature values, the functions with inputs of two resonant frequencies and outputs of temperature and pressure under measurement were obtained and thus the disturbance of temperature variations on resonant frequency shifts was properly addressed. Before compensation, the maximal errors of the measured pressure values were over 1.5% while after compensation, the errors were less than 0.01% of the full pressure scale (temperature range of −40 °C to 70 °C and pressure range of 50 kPa to 110 kPa). PMID:25938197

  13. Evaluation of microstructure anisotropy on room and medium temperature ECAP deformed F138 steel

    SciTech Connect

    De Vincentis, N.S.; Kliauga, A.; Ferrante, M.; Avalos, M.; Brokmeier, H.-G.; Bolmaro, R.E.

    2015-09-15

    The microstructure developed during severe plastic deformation results in improved mechanical properties because of the decrease in domain sizes and accumulation of defects, mainly dislocation arrays. The characteristic deformation stages observed in low stacking fault energy (SFE) face centered cubic (FCC) materials are highly influenced by the development of the primary and secondary twinning that compete with dislocation glide. In this paper, a low SFE F138 stainless steel is deformed by equal channel angular pressing (ECAP) up to 4 passes at room temperature (RT) and at 300 °C to compare the grain refinement and twin boundary development with increasing deformation. Tensile tests were performed to determine the deformation stages reached by the material before and after ECAP deformation, and the resulting microstructure was observed by TEM. X-ray diffraction and EBSD, average technique the first and local the second one, were used to quantify the microstructural changes, allowing the determination of diffraction domain sizes, dislocation and stacking fault densities and misorientation indices, which lead to a complete analysis of the deformation introduced in the material, with comparative correlations between various microstructural parameters. - Highlights: • The microstructure of ECAP pressed F138 steel was studied using TEM, EBSD and XRD. • Increasing deformation reduced domain sizes and increased dislocation densities. • Dislocation array compactness and misorientation increased with higher deformation. • Largest dislocation densities, mostly screw, match with simultaneous activation of twins. • Several correlations among microstructural features and parameters have been disclosed.

  14. Low-temperature deformation and fracture of bulk nanostructural titanium obtained by intense plastic deformation using equal channel angular pressing

    NASA Astrophysics Data System (ADS)

    Bengus, V. Z.; Tabachnikova, E. D.; Natsik, V. D.; Mishkuf, Ä.¬.; Chakh, K.; Stolyarov, V. V.; Valiev, R. Z.

    2002-11-01

    The low-temperature plasticity and fracture of polycrystals of coarse-grained (CG) and nanostructural (NS) technical-grade titanium of two structural modifications with grain size 0.3 and 0.1 μm, which were prepared by equal channel angular pressing (ECAP) with additional thermomechanical treatment are studied. The measurements are performed at temperatures 300, 77, and 4.2 K with uniaxial compression at deformation rate 4×10-4 s-1. The "stress-plastic deformation" hardening curves are obtained, the macroscopic yield stress, and the ultimate plasticity are measured for samples with compression axis orientations parallel and transverse to the ECAP axis. It is found that the yield stress for NS titanium is 1.5-2 times higher than for CG titanium and the yield stress on cooling from 300 to 4.2 K. Plasticity anisotropy is also observed in NS titanium—the yield stress is 1.2-1.5 times greater when the compression axis is oriented perpendicular to the ESAP axis than for parallel orientation. The ultimate plasticity with such changes in the structure of samples and under the experimental conditions systematically decreases, but the deformation to fracture remains above 4%. Nanostructural titanium does not show cold-brittleness right down to liquid-helium temperatures, but at 4.2 K plastic flow becomes jumplike, just as in CG titanium. It is established that for low-temperature uniaxial compression NS titanium fractures as a result of unstable plastic shear accompanied by local adiabatic heating of the material. This phenomenon is not characteristic of CG titanium. A study of the morphology of the shear-fracture surfaces using a scanning electron microsope shows a characteristic "vein" pattern, attesting to local heating at temperatures ⩾800 °C. It is established that plastic deformation in NS titanium is thermally activated at low temperatures. It is shown that microstructural internal stresses due to thermal anisotropy and possible microtwinning affect the yield

  15. Anistotropic yielding of rocks at high temperatures and pressures

    SciTech Connect

    Kronenberg, A.K.; Russell, J.E.; Carter, N.L.

    1990-10-14

    The anisotropic deformation of foliated and linealed rocks has been investigated, primarily to predict the mechanical response of rocks surrounding buried magma chambers to the stress fields generated by deep drilling. The principal application in this regard has been to evaluate, the scientific feasibility of extracting geothermal energy from buried magma chambers. Our approach has been to perform triaxial extension and compression tests at temperatures and pressures representative of the borehole environment on samples cored along six selected orientations and to fit the data to an orthohombric yield criterion. We have investigated Four-Mile gneiss (a strongly layered gneiss with well defined lineation), a biotite-rich schist, and Westerly granite (using a block oriented with respect to the granite's rift, grain, and hardway). Progress has been made in three areas: the experimental determination of strength anisotropies for the three starting materials, theoretical treatment and modeling of the results, and characterization of fabrics surrounding magma bodies resulting from their diaperic emplacement into shallow portions of the Earth's crust. In addition, results have been obtained for the tensile fracture of quartzite, basal slip and anisotropy of biotite single crystals, and anisotropic flow of bedded rocksalt.

  16. High-temperature fiber optic cubic-zirconia pressure sensor

    NASA Astrophysics Data System (ADS)

    Peng, Wei; Pickrell, Gary R.; Wang, Anbo

    2005-12-01

    There is a critical need for pressure sensors that can operate reliably at high temperatures in many industrial segments such as in the combustion section of gas turbine engines for both transportation and power generation, coal gasifiers, coal fired boilers, etc. Optical-based sensors are particularly attractive for the measurement of a wide variety of physical and chemical parameters in high-temperature and high-pressure industrial environments due to their small size and immunity to electromagnetic interference. A fiber optic pressure sensor utilizing single-crystal cubic zirconia as the sensing element is reported. The pressure response of this sensor has been measured at temperatures up to 1000 °C. Additional experimental results show that cubic zirconia could be used for pressure sensing at temperatures over 1000 °C. This study demonstrates the feasibility of using a novel cubic-zirconia sensor for pressure measurement at high temperatures.

  17. Stability of the flow in a soft tube deformed due to an applied pressure gradient.

    PubMed

    Verma, M K S; Kumaran, V

    2015-04-01

    A linear stability analysis is carried out for the flow through a tube with a soft wall in order to resolve the discrepancy of a factor of 10 for the transition Reynolds number between theoretical predictions in a cylindrical tube and the experiments of Verma and Kumaran [J. Fluid Mech. 705, 322 (2012)]. Here the effect of tube deformation (due to the applied pressure difference) on the mean velocity profile and pressure gradient is incorporated in the stability analysis. The tube geometry and dimensions are reconstructed from experimental images, where it is found that there is an expansion and then a contraction of the tube in the streamwise direction. The mean velocity profiles at different downstream locations and the pressure gradient, determined using computational fluid dynamics, are found to be substantially modified by the tube deformation. The velocity profiles are then used in a linear stability analysis, where the growth rates of perturbations are calculated for the flow through a tube with the wall modeled as a neo-Hookean elastic solid. The linear stability analysis is carried out for the mean velocity profiles at different downstream locations using the parallel flow approximation. The analysis indicates that the flow first becomes unstable in the downstream converging section of the tube where the flow profile is more pluglike when compared to the parabolic flow in a cylindrical tube. The flow is stable in the upstream diverging section where the deformation is maximum. The prediction for the transition Reynolds number is in good agreement with experiments, indicating that the downstream tube convergence and the consequent modification in the mean velocity profile and pressure gradient could reduce the transition Reynolds number by an order of magnitude. PMID:25974574

  18. Stability of the flow in a soft tube deformed due to an applied pressure gradient

    NASA Astrophysics Data System (ADS)

    Verma, M. K. S.; Kumaran, V.

    2015-04-01

    A linear stability analysis is carried out for the flow through a tube with a soft wall in order to resolve the discrepancy of a factor of 10 for the transition Reynolds number between theoretical predictions in a cylindrical tube and the experiments of Verma and Kumaran [J. Fluid Mech. 705, 322 (2012), 10.1017/jfm.2011.55]. Here the effect of tube deformation (due to the applied pressure difference) on the mean velocity profile and pressure gradient is incorporated in the stability analysis. The tube geometry and dimensions are reconstructed from experimental images, where it is found that there is an expansion and then a contraction of the tube in the streamwise direction. The mean velocity profiles at different downstream locations and the pressure gradient, determined using computational fluid dynamics, are found to be substantially modified by the tube deformation. The velocity profiles are then used in a linear stability analysis, where the growth rates of perturbations are calculated for the flow through a tube with the wall modeled as a neo-Hookean elastic solid. The linear stability analysis is carried out for the mean velocity profiles at different downstream locations using the parallel flow approximation. The analysis indicates that the flow first becomes unstable in the downstream converging section of the tube where the flow profile is more pluglike when compared to the parabolic flow in a cylindrical tube. The flow is stable in the upstream diverging section where the deformation is maximum. The prediction for the transition Reynolds number is in good agreement with experiments, indicating that the downstream tube convergence and the consequent modification in the mean velocity profile and pressure gradient could reduce the transition Reynolds number by an order of magnitude.

  19. Optimizing the temperature compensation of an electronic pressure measurement system

    SciTech Connect

    Maxey, L.C.; Blalock, T.V.

    1990-08-01

    In an effort to minimize temperature sensitivity, the pressure measurement channels in the sensor/electronics modules of a high-resolution multiplexed pressure measurement system were analyzed. The pressure sensor (a silicon diaphragm strain gage) was known to have two temperature-dependent parameters. Component testing revealed that the current source driving the pressure sensor was also temperature sensitive. Although the transducer manufacturer supplies empirically selected temperature compensation resistors with each transducer, it was determined that the temperature sensitivity compensation could be optimized for this application by changing one of these resistors. By modifying the value of the sensitivity compensation resistor to optimize performance in this application, the temperature sensitivity of the pressure measurement channels was reduced by more than 60%.

  20. High-temperature fiber optic pressure sensor

    NASA Technical Reports Server (NTRS)

    Berthold, J. W.

    1984-01-01

    Attention is given to a program to develop fiber optic methods to measure diaphragm deflection. The end application is intended for pressure transducers capable of operating to 540 C. In this paper are reported the results of a laboratory study to characterize the performance of the fiber-optic microbend sensor. The data presented include sensitivity and spring constant. The advantages and limitations of the microbend sensor for static pressure measurement applications are described. A proposed design is presented for a 540 C pressure transducer using the fiber optic microbend sensor.

  1. Deformation mechanisms of NiAl cyclicly deformed near the brittle-to-ductile transition temperature

    NASA Technical Reports Server (NTRS)

    Cullers, Cheryl L.; Antolovich, Stephen D.

    1993-01-01

    The intermetallic compound NiAl is one of many advanced materials which is being scrutinized for possible use in high temperature, structural applications. Stoichiometric NiAl has a high melting temperature, excellent oxidation resistance, and good thermal conductivity. Past research has concentrated on improving monotonic properties. The encouraging results obtained on binary and micro-alloyed NiAl over the past ten years have led to the broadening of NiAl experimental programs. The purpose of this research project was to determine the low cycle fatigue properties and dislocation mechanisms of stoichiometric NiAl at temperatures near the monotonic brittle-to-ductile transition. The fatigue properties were found to change only slightly in the temperature range of 600 to 700 K; a temperature range over which monotonic ductility and fracture strength increase markedly. The shape of the cyclic hardening curves coincided with the changes observed in the dislocation structures. The evolution of dislocation structures did not appear to change with temperature.

  2. Data Fusion in Wind Tunnel Testing; Combined Pressure Paint and Model Deformation Measurements (Invited)

    NASA Technical Reports Server (NTRS)

    Bell, James H.; Burner, Alpheus W.

    2004-01-01

    As the benefit-to-cost ratio of advanced optical techniques for wind tunnel measurements such as Video Model Deformation (VMD), Pressure-Sensitive Paint (PSP), and others increases, these techniques are being used more and more often in large-scale production type facilities. Further benefits might be achieved if multiple optical techniques could be deployed in a wind tunnel test simultaneously. The present study discusses the problems and benefits of combining VMD and PSP systems. The desirable attributes of useful optical techniques for wind tunnels, including the ability to accommodate the myriad optical techniques available today, are discussed. The VMD and PSP techniques are briefly reviewed. Commonalties and differences between the two techniques are discussed. Recent wind tunnel experiences and problems when combining PSP and VMD are presented, as are suggestions for future developments in combined PSP and deformation measurements.

  3. Effects of pressure and temperature on gate valve unwedging

    SciTech Connect

    Damerell, P.S.; Harrison, D.H.; Hayes, P.W.; Simons, J.W.; Walker, T.A.

    1996-12-01

    The stem thrust required to unwedge a gate valve is influenced by the pressure and temperature when the valve is closed and by the changes in these conditions between closure and opening. {open_quotes}Pressure locking{close_quotes} and {open_quotes}thermal binding{close_quotes} refer to situations where pressure and temperature effects cause the unwedging load to be much higher than normal. A model of these phenomena has been developed. Wedging (closure) is modeled as developing an {open_quotes}interference{close_quotes} between the disk and its seat rings in the valve. The effects of pressure and temperature are analyzed to determine the change in this disk-to-seat {open_quotes}interference{close_quotes}. Flexibilities, of the disk, body, stem and yoke strongly influence the unwedging thrust. Calculations and limited comparisons to data have been performed for a range of valve designs and scenarios. Pressure changes can increase the unwedging load when there is either a uniform pressure decrease, or a situation where the bonnet pressure exceeds the pressures in the adjacent piping. Temperature changes can increase the unwedging load when: (1) valve closure at elevated system temperature produces a delayed stem expansion, (2) a temperature increase after closure produces a bonnet pressure increase, or (3) a temperature change after closure produces an increase in the disk-to-seat {open_quotes}interference{close_quotes} or disk-to-seat friction.

  4. The high-pressure-high-temperature behavior of bassanite

    SciTech Connect

    Comodi, Paola; Nazzareni, Sabrina; Dubrovinsky, Leonid; Merlini, Marco

    2010-02-11

    The pressure evolution of bassanite (CaSO{sub 4} {center_dot} 1/2 H{sub 2}O) was investigated by synchrotron X-ray powder diffraction along three isotherms: at room temperature up to 33 GPa, at 109 C up to 22 GPa, and at 200 C up to 12 GPa. The room-temperature cell-volume data, from 0.001 to 33 GPa, were fitted to a third-order Birch-Murnaghan equation-of-state, and a bulk modulus K{sub 0} = 86(7) GPa with K' = 2.5(3) was obtained. The axial compressibility values are {beta}{sub a} = 3.7(2), {beta}{sub b} = 3.6(1), and {beta}{sub c} = 2.8(1) GPa{sup -1} (x10{sup -3}) showing a slightly anisotropic behavior, with the least compressible direction along c axis. The strain tensor analysis shows that the main deformation occurs in the (010) plane in a direction 18{sup o} from the a axis. The bulk moduli for isotherms 109 and 200 C, were obtained by fitting cell-volume data with a second-order Birch-Murnaghan equation-of-state, with K' fixed at 4, and were found to be K{sub 109} = 79(4) GPa and K{sub 200} = 63(7) GPa, respectively. The axial compressibility values for isotherm 109 C are {beta}{sub a} = 2.4(1), {beta}{sub b} = 3.0(1), {beta}{sub c} = 2.5(1) (x10{sup -3}) GPa{sup -1}, and for isotherm 200 C they are {beta}{sub a} = 3.5(3), {beta}{sub b} = 3.4(3), {beta}{sub c} = 2.6(4) (x10{sup -3}) GPa{sup -1}. These two bulk moduli and the 20 C bulk modulus, K{sub 0,20} = 69(8) recalculated to a second-order Birch-Murnaghan EoS to be consistent, as well as the axial compressibilities, are similar for the three isotherms indicating that the thermal effect on the bulk moduli is not significant up to 200 C. The size variation of the pseudo-hexagonal channel with pressure and temperature indicates that the sulfate 'host' lattice and the H{sub 2}O 'guest' molecule in bassanite do not undergo strong change up to 33 GPa and 200 C.

  5. Optical Pressure-Temperature Sensor for a Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Wiley, John; Korman, Valentin; Gregory, Don

    2008-01-01

    A compact sensor for measuring temperature and pressure in a combusti on chamber has been proposed. The proposed sensor would include two optically birefringent, transmissive crystalline wedges: one of sapph ire (Al2O3) and one of magnesium oxide (MgO), the optical properties of both of which vary with temperature and pressure. The wedges wou ld be separated by a vapor-deposited thin-film transducer, which wou ld be primarily temperaturesensitive (in contradistinction to pressur e- sensitive) when attached to a crystalline substrate. The sensor w ould be housed in a rugged probe to survive the extreme temperatures and pressures in a combustion chamber.

  6. High pressure and high temperature behaviour of ZnO

    SciTech Connect

    Thakar, Nilesh A.; Bhatt, Apoorva D.; Pandya, Tushar C.

    2014-04-24

    The thermodynamic properties with the wurtzite (B4) and rocksalt (B1) phases of ZnO under high pressures and high temperatures have been investigated using Tait's Equation of state (EOS). The effects of pressures and temperatures on thermodynamic properties such as bulk modulus, thermal expansivity and thermal pressure are explored for both two structures. It is found that ZnO material gradually softens with increase of temperature while it hardens with the increment of the pressure. Our predicted results of thermodynamics properties for both the phases of ZnO are in overall agreement with the available data in the literature.

  7. Variation of Azeotropic Composition and Temperature with Pressure

    ERIC Educational Resources Information Center

    Gibbard, H. Frank; Emptage, Michael R.

    1975-01-01

    Describes an undergraduate physical chemistry experiment in which an azeotropic mixture is studied using the vapor pressures of the components as functions of temperature and the azeotropic composition and temperature at one pressure. Discusses in detail the mathematical treatment of obtained thermodynamic data. (MLH)

  8. HIGH-TEMPERATURE AND HIGH-PRESSURE PARTICULATE CONTROL REQUIREMENTS

    EPA Science Inventory

    The report reviews and evaluates high-temperature and high-pressure particulate cleanup requirements of existing and proposed energy processes. The study's aims are to define specific high-temperature and high-pressure particle removal problems, to indicate potential solutions, a...

  9. Effects of confining pressure, pore pressure and temperature on absolute permeability. SUPRI TR-27

    SciTech Connect

    Gobran, B.D.; Ramey, H.J. Jr.; Brigham, W.E.

    1981-10-01

    This study investigates absolute permeability of consolidated sandstone and unconsolidated sand cores to distilled water as a function of the confining pressure on the core, the pore pressure of the flowing fluid and the temperature of the system. Since permeability measurements are usually made in the laboratory under conditions very different from those in the reservoir, it is important to know the effect of various parameters on the measured value of permeability. All studies on the effect of confining pressure on absolute permeability have found that when the confining pressure is increased, the permeability is reduced. The studies on the effect of temperature have shown much less consistency. This work contradicts the past Stanford studies by finding no effect of temperature on the absolute permeability of unconsolidated sand or sandstones to distilled water. The probable causes of the past errors are discussed. It has been found that inaccurate measurement of temperature at ambient conditions and non-equilibrium of temperature in the core can lead to a fictitious permeability reduction with temperature increase. The results of this study on the effect of confining pressure and pore pressure support the theory that as confining pressure is increased or pore pressure decreased, the permeability is reduced. The effects of confining pressure and pore pressure changes on absolute permeability are given explicitly so that measurements made under one set of confining pressure/pore pressure conditions in the laboratory can be extrapolated to conditions more representative of the reservoir.

  10. Predictive Model for Temperature-Induced Deformation of Robot Mechanical Systems

    NASA Astrophysics Data System (ADS)

    Poonyapak, Pranchalee

    The positioning accuracy and repeatability of a robot are critical for many industrial applications. Drift in repeatability can occur with changes in environmental and internal conditions, such as those seen with temperature-induced deformation. Thermal instability causes dimensional deformation, and a warm-up cycle is typically required to bring the robot to a thermally stable working condition. The elimination of warm-up cycles will ultimately enhance the positioning accuracy of the robots, their productivity, and reduce unnecessary energy consumption. The main objective of this research was to develop a robot controller algorithm that would provide, a priori, compensation for temperature-induced deformation associated with warm-up in robot mechanical systems. The research started at the fundamental stage of gaining insight into the thermal behaviour and corresponding temperature-induced deformation of simplified, i.e., one-dimensional, robot mechanical systems consisting of slender links and heat sources. The systems were studied using concomitant experimental, numerical and analytical models to provide cross-checking of the results. For the experimental model, the deformation was measured by tracking the drift of a laser diode spot across a charge-coupled device (CCD) camera chip. A non-contact measurement system consisting of an infrared camera, a CCD camera and a laser diode was developed to provide high accuracy measurement for the deformation. The numerical model was generated with a coupled thermal-mechanical finite element analysis incorporating thermal effects due to conduction and convection. The models were tested with the analytical model that was further extended using a finite difference technique. Once the three models showed excellent agreement, it was possible to develop a controller algorithm. Deformations predicted by the finite difference model were used as input for a validation experiment of the compensation algorithm. Results of the

  11. The deformation of an erythrocyte under the radiation pressure by optical stretch.

    PubMed

    Liu, Yong-Ping; Li, Chuan; Liu, Kuo-Kang; Lai, Alvin C K

    2006-12-01

    In this paper, the mechanical properties of erythrocytes were studied numerically based upon the mechanical model originally developed by Pamplona and Calladine (ASME J. Biomech. Eng., 115, p. 149, 1993) for liposomes. The case under study is the erythrocyte stretched by a pair of laser beams in opposite directions within buffer solutions. The study aims to elucidate the effect of radiation pressure from the optical laser because up to now little is known about its influence on the cell deformation. Following an earlier study by Guck et al. (Phys. Rev. Lett., 84, p. 5451, 2000; Biophys. J., 81, p. 767, 2001), the empirical results of the radiation pressure were introduced and imposed on the cell surface to simulate the real experimental situation. In addition, an algorithm is specially designed to implement the simulation. For better understanding of the radiation pressure on the cell deformation, a large number of simulations were conducted for different properties of cell membrane. Results are first discussed parametrically and then evaluated by comparing with the experimental data reported by Guck et al. An optimization approach through minimizing the errors between experimental and numerical data is used to determine the optimal values of membrane properties. The results showed that an average shear stiffness around 4.611x10-6 Nm(-1), when the nondimensional ratio of shear modulus to bending modulus ranges from 10 to 300. These values are in a good agreement with those reported in literature. PMID:17154682

  12. Single-Tip Probe Senses Pressure Or Temperature

    NASA Technical Reports Server (NTRS)

    Trimarchi, Paul

    1993-01-01

    Single-tip probe designed for use in supersonic wind tunnel switched to sense pressure or temperature measurements nearly simultaneous at that point. Includes small valve like valves used in bicycle and automotive tires, called "Schraeder valve". Tire valve opened or closed by push rod and solenoid. In open position, flow past thermocouple enables measurements of temperature. In closed position, flow blocked and pressure in probe backs up to pressure transducer.

  13. Partition Coefficients at High Pressure and Temperature

    NASA Astrophysics Data System (ADS)

    Righter, K.; Drake, M. J.

    2003-12-01

    crystallize from a molten mantle, and become entrained in the convecting melt, or eventually settle out at the bottom. The entrainment and settling process has been studied in detail (e.g., Tonks and Melosh, 1990), and is a potential mechanism for differentiation between the deep and shallow parts of Earth's mantle. The lithophile elements, those elements that have D(metal/silicate) <1, fall into many different subclasses and all hold information about the deep mineral structure of the mantle. Rare-earth elements (REEs) have proven to be useful: europium anomalies have helped elucidate the role of plagioclase in lunar crust formation (e.g., Schnetzler and Philpotts, 1971; Weill et al., 1974), and LREE/HREE depletion and enrichment are indicators of partial melting in the presence of garnet in the mantle. High-field-strength elements (HFSEs) - niobium, zirconium, tantalum, and hafnium - are all refractory and hence more resilient to fractionation processes such as volatility or condensation. They also have an affinity for ilmenite and rutile, and can explain differences between lunar and martian samples as well as features of Earth's continental crust ( Taylor and McLennan, 1985). Alkaline-earth and alkaline elements include rubidium, strontium, barium, potassium, caesium, and calcium, some of which are involved in radioactive decay couples, e.g., Rb-Sr and K-Ar. The latter is important in understanding the contribution of radioactive decay to planetary heat production, and potential deep sources of radiogenic argon (see Chapter 2.06). Rubidium and potassium are further useful as tracers of hydrous phases such as mica and amphibole. Possible fractionation of any of these elements from chondritic abundances (see Chapter 2.01) can be assessed with the knowledge of partition coefficients. In this chapter we summarize our understanding of mineral/melt fractionation of minor and trace elements at high pressures and temperatures and discuss the implications for mantle

  14. Microstructure and Texture of Y123 Ceramics after Hot Deformation by Torsion Under Pressure

    NASA Astrophysics Data System (ADS)

    Imayev, M. F.; Kabirova, D. B.; Pavlova, V. V.

    2015-10-01

    The method of EBSD analysis has been used to investigate the microstructure and texture of the YBa2Cu3O7-х (Y123) ceramics, deformed by hot torsion under quasi-hydrostatic pressure. It is shown that the local average grain size does not depend on the distance to the center of the sample. The texture along a radius of the samples is inhomogeneous. The presence of a ring-shaped region with very weak texture has been detected both in a sample with strong texture and in a sample with weak average texture.

  15. Effects of microstructure and temperature on the plastic deformation mechanisms of synthetic halite : a micromechanical approach

    NASA Astrophysics Data System (ADS)

    Bourcier, M.; Dimanov, A.; Héripré, E.; Bornert, M.; Raphanel, J.

    2012-04-01

    Halite is a rock forming mineral with geotechnical applications for storage in underground caverns (hydrocarbons, compressed air, wastes...). Halite is also a convenient analog polycristalline material, used to study deformation mechanisms (crystal plasticity, recrystallization, pressure solution ...). In this work we present an investigation of intragranular plastic deformation and grain boundary sliding in pure synthetic NaCl polycrystals produced by hot isostatic pressing. Uniaxial compression tests are performed in a Scanning Electron Microscope (SEM) at two temperatures, 20°C and 400 °C, on cm - sized samples. The displacement rate is kept constant at 1µm/s and the maximum axial strain is between 5 and 10 %. The surface of the samples is marked by gold micro-spheres and analyzed by 2D digital image correlation (DIC) using the CorrelManuV software, which provides full field measures of surface displacements and strains. The dominant mechanism is intracrystalline plasticity, as revealed by the direct observation of slip lines and by DIC results showing intragranular deformation bands. Using crystal orientation mapping, the latter are related to the traces of crystallographic slip planes. However, limited grain boundary sliding (GBS) also occurs, as a secondary but necessary mechanism for accommodation of local strain incompatibilities. The relative contribution of each mechanism clearly depends on the microstructure, i.e. grain size and grain size distribution. At room temperature the strain is more heterogeneous than at high temperature, at both the aggregate scale and within individual grains, where the local activity of slip systems strongly depends on the relative crystalline and interfacial orientations. In particular, the easy glide planes ({110} planes) are not the only active ones. In some instance, wavy slip bands clearly indicate cross slip. The above kinematic analysis should be complemented by the knowledge of the local stress states in order to

  16. Temperature deformations of the mirror of a radio telescope antenna

    NASA Technical Reports Server (NTRS)

    Avdeyev, V. I.; Grach, S. A.; Kozhakhmetov, K. K.; Kostenko, F. I.

    1979-01-01

    The stress informed state of the mirror of an antenna, with a diameter of 3 m, for a radio interferometer used in space, and located in a temperature field is examined. The mirror represents a parabolic shell, consisting of 19 identical parts. The problem is based on representations of the thermoelasticity of thin shells.

  17. Viscoelastoplastic Deformation and Damage Response of Titanium Alloy, Ti-6Al-4V, at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Lerch, Bradley A.; Saleeb, Atef F.; Kasemer, Matthew P.

    2013-01-01

    Time-dependent deformation and damage behavior can significantly affect the life of aerospace propulsion components. Consequently, one needs an accurate constitutive model that can represent both reversible and irreversible behavior under multiaxial loading conditions. This paper details the characterization and utilization of a multi-mechanism constitutive model of the GVIPS class (Generalized Viscoplastic with Potential Structure) that has been extended to describe the viscoelastoplastic deformation and damage of the titanium alloy Ti-6Al-4V. Associated material constants were characterized at five elevated temperatures where viscoelastoplastic behavior was observed, and at three elevated temperatures where damage (of both the stiffness reduction and strength reduction type) was incurred. Experimental data from a wide variety of uniaxial load cases were used to correlate and validate the proposed GVIPS model. Presented are the optimized material parameters, and the viscoelastoplastic deformation and damage responses at the various temperatures.

  18. Temperature effects on deformation and serration behavior of high-entropy alloys (HEAs)

    DOE PAGESBeta

    Antonaglia, J.; Xie, X.; Tang, Z.; Tsai, C. -W.; Qiao, J. W.; Zhang, Y.; Laktionova, M. O.; Tabachnikova, E. D.; Yeh, J. W.; Senkov, O. N.; et al

    2014-09-16

    Many materials are known to deform under shear in an intermittent way with slip avalanches detected as acoustic emission and serrations in the stress–strain curves. Similar serrations have recently been observed in a new class of materials, called high-entropy alloys (HEAs). Here, we discuss the serration behaviors of several HEAs from cryogenic to elevated temperatures. The experimental results of slow compression and tension tests are compared with the predictions of a slip-avalanche model for the deformation of a broad range of solids. The results shed light on the deformation processes in HEAs. Temperature effects on the distributions of stress dropsmore » and the decrease of the cutoff (i.e., of the largest observed slip size) for increasing temperature qualitatively agree with the model predictions. As a result, the model is used to quantify the serration characteristics of HEAs, and pertinent implications are discussed.« less

  19. Temperature effects on deformation and serration behavior of high-entropy alloys (HEAs)

    SciTech Connect

    Antonaglia, J.; Xie, X.; Tang, Z.; Tsai, C. -W.; Qiao, J. W.; Zhang, Y.; Laktionova, M. O.; Tabachnikova, E. D.; Yeh, J. W.; Senkov, O. N.; Gao, M. C.; Uhl, J. T.; Liaw, P. K.; Dahmen, K. A.

    2014-09-16

    Many materials are known to deform under shear in an intermittent way with slip avalanches detected as acoustic emission and serrations in the stress–strain curves. Similar serrations have recently been observed in a new class of materials, called high-entropy alloys (HEAs). Here, we discuss the serration behaviors of several HEAs from cryogenic to elevated temperatures. The experimental results of slow compression and tension tests are compared with the predictions of a slip-avalanche model for the deformation of a broad range of solids. The results shed light on the deformation processes in HEAs. Temperature effects on the distributions of stress drops and the decrease of the cutoff (i.e., of the largest observed slip size) for increasing temperature qualitatively agree with the model predictions. As a result, the model is used to quantify the serration characteristics of HEAs, and pertinent implications are discussed.

  20. Improved texture measurement during deformation of polycrystalline olivine at high pressure

    NASA Astrophysics Data System (ADS)

    Dixon, N. A.; Durham, W. B.; Kohlstedt, D. L.; Hunt, S. A.

    2014-12-01

    Unresolved issues in geodynamics demand a better understanding of the bulk mechanical properties of mantle minerals, and also careful analysis of the complex lattice-scale physics behind these properties. Instead of probing the mechanical properties of a material by testing the relationship between "bulk" stress and strain rate in a sample at a variety of conditions (varying P, T, water content, and other environmental variables), synchrotron x-ray diffraction now allows us to observe, in situ, the active deformation physics in much greater detail. This includes in situ monitoring of plastic anisotropy and local stress heterogeneity, grain size, the development of lattice-preferred orientation (LPO), and even the partitioning of stress between multiple phases in the same polycrystalline sample. Here, we present results obtained with the use of the MTEX toolbox for Matlab and energy-dispersive x-ray diffraction, showing the in situ development of LPO in deforming dry San Carlos olivine samples, at pressures from 2-7 GPa. These measurements hint at the active dislocation mechanisms for these conditions. The ability generate a broad range of mantle conditions in the D-DIA, while precisely measuring the structure and conditions within our sample at the grain and lattice scale, demonstrates the promising future of deformation experiments as a means to understanding the evolution of the deep Earth.

  1. Tensile Deformation of a Nickel-base Alloy at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Roy, Ajit K.; Venkatesh, Anand; Marthandam, Vikram; Ghosh, Arindam

    2008-08-01

    The results of tensile testing involving Waspaloy indicate that the failure strain was gradually reduced at temperatures ranging between ambient and 300 °C. Further, serrations were observed in the engineering stress versus strain diagrams in the temperature range of 300-600 °C. The reduced failure strain and the formation of serrations in these temperature regimes could be the result of dynamic strain aging of this alloy. The extent of work hardening due to plastic deformation was reduced at temperatures above 300 °C. A combination of ductile and intergranular brittle failures was seen at temperatures above 600 °C. γ' was detected at all tested temperatures.

  2. Temperature control for high pressure processes up to 1400 MPa

    NASA Astrophysics Data System (ADS)

    Reineke, K.; Mathys, A.; Heinz, V.; Knorr, D.

    2008-07-01

    Pressure- assisted sterilisation is an emerging technology. Hydrostatic high pressure can reduce the thermal load of the product and this allows quality retention in food products. To guarantee the safety of the sterilisation process it is necessary to investigate inactivation kinetics especially of bacterial spores. A significant roll during the inactivation of microorganisms under high pressure has the thermodynamic effect of the adiabatic heating. To analyse the individual effect of pressure and temperature on microorganism inactivation an exact temperature control of the sample to reach ideal adiabatic conditions and isothermal dwell times is necessary. Hence a heating/cooling block for a high pressure unit (Stansted Mini-Food-lab; high pressure capillary with 300 μL sample volume) was constructed. Without temperature control the sample would be cooled down during pressure built up, because of the non-adiabatic heating of the steel made vessel. The heating/cooling block allows an ideal adiabatic heat up and cooling of the pressure vessel during compression and decompression. The high pressure unit has a pressure build-up rate up to 250 MPa s-1 and a maximum pressure of 1400 MPa. Sebacate acid was chosen as pressure transmitting medium because it had no phase shift over the investigate pressure and temperature range. To eliminate the temperature difference between sample and vessel during compression and decompression phase, the mathematical model of the adiabatic heating/cooling of water and sebacate acid was implemented into a computational routine, written in Test Point. The calculated temperature is the setpoint of the PID controller for the heating/cooling block. This software allows an online measurement of the pressure and temperature in the vessel and the temperature at the outer wall of the vessel. The accurate temperature control, including the model of the adiabatic heating opens up the possibility to realise an ideal adiabatic heating and cooling as

  3. Compliant Foil Journal Bearing Performance at Alternate Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.; Puleo, Bernadette J.

    2008-01-01

    An experimental test program has been conducted to determine the highly loaded performance of current generation gas foil bearings at alternate pressures and temperatures. Typically foil bearing performance has been reported at temperatures relevant to turbomachinery applications but only at an ambient pressure of one atmosphere. This dearth of data at alternate pressures has motivated the current test program. Two facilities were used in the test program, the ambient pressure rig and the high pressure rig. The test program utilized a 35 mm diameter by 27 mm long foil journal bearing having an uncoated Inconel X-750 top foil running against a shaft with a PS304 coated journal. Load capacity tests were conducted at 3, 6, 9, 12, 15, 18, and 21 krpm at temperatures from 25 to 500 C and at pressures from 0.1 to 2.5 atmospheres. Results show an increase in load capacity with increased ambient pressure and a reduction in load capacity with increased ambient temperature. Below one-half atmosphere of ambient pressure a dramatic loss of load capacity is experienced. Additional lightly loaded foil bearing performance in nitrogen at 25 C and up to 48 atmospheres of ambient pressure has also been reported. In the lightly loaded region of operation the power loss increases for increasing pressure at a fixed load. Knowledge of foil bearing performance at operating conditions found within potential machine applications will reduce program development risk of future foil bearing supported turbomachines.

  4. Fluids at high dynamic pressures and temperatures

    SciTech Connect

    Nellis, W.J.; Hamilton, D.C.; Trainor, R.J.; Radousky, H.B.; Mitchell, A.C.; Holmes, N.C.

    1985-06-01

    Electrical conductivity data for shocked liquid nitrogen, Hugoniot data for liquid air, shock temperatures for liquid ammonia, and double-shock equation-of-state data for Al are discussed. 15 refs., 2 figs.

  5. Temperature-dependent mechanical deformation of silicon at the nanoscale: Phase transformation versus defect propagation

    SciTech Connect

    Kiran, M. S. R. N. Tran, T. T.; Smillie, L. A.; Subianto, D.; Williams, J. S.; Bradby, J. E.; Haberl, B.

    2015-05-28

    This study uses high-temperature nanoindentation coupled with in situ electrical measurements to investigate the temperature dependence (25–200 °C) of the phase transformation behavior of diamond cubic (dc) silicon at the nanoscale. Along with in situ indentation and electrical data, ex situ characterizations, such as Raman and cross-sectional transmission electron microscopy, have been used to reveal the indentation-induced deformation mechanisms. We find that phase transformation and defect propagation within the crystal lattice are not mutually exclusive deformation processes at elevated temperature. Both can occur at temperatures up to 150 °C but to different extents, depending on the temperature and loading conditions. For nanoindentation, we observe that phase transformation is dominant below 100 °C but that deformation by twinning along (111) planes dominates at 150 °C and 200 °C. This work, therefore, provides clear insight into the temperature dependent deformation mechanisms in dc-Si at the nanoscale and helps to clarify previous inconsistencies in the literature.

  6. Multimodal optical measurement in vitro of surface deformations and wall thickness of the pressurized aortic arch.

    PubMed

    Genovese, Katia; Humphrey, Jay D

    2015-04-01

    Computational modeling of arterial mechanics continues to progress, even to the point of allowing the study of complex regions such as the aortic arch. Nevertheless, most prior studies assign homogeneous and isotropic material properties and constant wall thickness even when implementing patient-specific luminal geometries obtained from medical imaging. These assumptions are not due to computational limitations, but rather to the lack of spatially dense sets of experimental data that describe regional variations in mechanical properties and wall thickness in such complex arterial regions. In this work, we addressed technical challenges associated with in vitro measurement of overall geometry, full-field surface deformations, and regional wall thickness of the porcine aortic arch in its native anatomical configuration. Specifically, we combined two digital image correlation-based approaches, standard and panoramic, to track surface geometry and finite deformations during pressurization, with a 360-deg fringe projection system to contour the outer and inner geometry. The latter provided, for the first time, information on heterogeneous distributions of wall thickness of the arch and associated branches in the unloaded state. Results showed that mechanical responses vary significantly with orientation and location (e.g., less extensible in the circumferential direction and with increasing distance from the heart) and that the arch exhibits a nearly linear increase in pressure-induced strain up to 40%, consistent with other findings on proximal porcine aortas. Thickness measurements revealed strong regional differences, thus emphasizing the need to include nonuniform thicknesses in theoretical and computational studies of complex arterial geometries. PMID:25867620

  7. A novel fabrication technique to minimize poly(dimethylsiloxane)-microchannels deformation under high-pressure operation.

    PubMed

    Madadi, Hojjat; Mohammadi, Mahdi; Casals-Terré, Jasmina; López, Roberto Castilla

    2013-12-01

    PDMS is one of the most common materials used for the flow delivery in the microfluidics chips, since it is clear, inert, nontoxic, and nonflammable. Its inexpensiveness, straightforward fabrication, and biological compatibility have made it a favorite material in the exploratory stages of the bio-microfluidic devices. If small footprint assays want to be performed while keeping the throughput, high pressure-rated channels should be used, but PDMS flexibility causes an important issue since it can generate a large variation of microchannel geometry. In this work, a novel fabrication technique based on the prevention of PDMS deformation is developed. A photo-sensible thiolene resin (Norland Optical Adhesive 63, NOA 63) is used to create a rigid coating layer over the stiff PDMS micropillar array, which significantly reduces the pressure-induced shape changes. This method uses the exact same soft lithography manufacturing equipment. The verification of the presented technique was investigated experimentally and numerically and the manufactured samples showed a deformation 70% lower than PDMS conventional samples. PMID:24114728

  8. Dielectric constant of water at very high temperature and pressure

    PubMed Central

    Pitzer, Kenneth S.

    1983-01-01

    Pertinent statistical mechanical theory is combined with the available measurements of the dielectric constant of water at high temperature and pressure to predict that property at still higher temperature. The dielectric constant is needed in connection with studies of electrolytes such as NaCl/H2O at very high temperature. PMID:16593342

  9. Reversible elastic deformation of functionalized sp{sup 2} carbon at pressures of up to 33 GPa

    SciTech Connect

    Soignard, Emmanuel; Hochheimer, Hans D.; Yarger, Jeff; Raj, Rishi

    2014-10-06

    We show that sp{sup 2} carbon bonded to silicon and oxygen can withstand reversible elastic deformation at pressures of up to 33 GPa. These experiments were carried out in a diamond anvil cell. In-situ Raman spectroscopy was employed to record the reversibility of elastic deformation by measuring the movement in the D and G peaks of carbon. Above 33 GPa the material, a silicon oxycarbide, transforms into an unidentified state which is retained upon unloading down to ambient pressure. Thermodynamical analysis suggests that the material could have transformed into a crystalline state at these ultrahigh pressures, driven by mechanical work.

  10. Method and apparatus for simultaneously measuring temperature and pressure

    DOEpatents

    Hirschfeld, Tomas B.; Haugen, Gilbert R.

    1988-01-01

    Method and apparatus are provided for simultaneously measuring temperature and pressure in a class of crystalline materials having anisotropic thermal coefficients and having a coefficient of linear compression along the crystalline c-axis substantially the same as those perpendicular thereto. Temperature is determined by monitoring the fluorescence half life of a probe of such crystalline material, e.g., ruby. Pressure is determined by monitoring at least one other fluorescent property of the probe that depends on pressure and/or temperature, e.g., absolute fluorescent intensity or frequency shifts of fluorescent emission lines.

  11. Computing Temperatures And Pressures Along Heat Pipes

    NASA Technical Reports Server (NTRS)

    Faker, K. W.; Marks, T. S.; Tower, L. K.

    1994-01-01

    NASA Lewis Research Center Heat Pipe, LERCHP, computer code developed to predict performances of heat pipes in steady state. Used as design software tool on personal computer or, with suitable calling routine, as subroutine for mainframe-computer radiator code. For accurate mathematical modeling of heat pipes, LERCHP makes variety of wick structures available to user. User chooses among several working fluids, for which monomer/dimer equilibrium considered. Vapor-flow algorithm treats compressibility and axially varying heat input. Facilitates determination of heat-pipe operating temperatures and heat-pipe limits encountered at specified heat input and environmental temperature. Written in FORTRAN 77.

  12. Development of a high temperature capacitive pressure transducer

    NASA Technical Reports Server (NTRS)

    Egger, R. L.

    1977-01-01

    High temperature pressure transducers capable of continuous operation while exposed to 650 C were developed and evaluated over a full-scale differential pressure range of + or - 69 kPa. The design of the pressure transducers was based on the use of a diaphragm to respond to pressure, variable capacitive elements arranged to operate as a differential capacitor to measure diaphragm response and on the use of fused silica for the diaphragm and its supporting assembly. The uncertainty associated with measuring + or - 69 kPa pressures between 20C and 650C was less than + or - 6%.

  13. Low-temperature plastic deformation of AZ31 magnesium alloy with different microstructures

    NASA Astrophysics Data System (ADS)

    Estrin, Yu. Z.; Zabrodin, P. A.; Braude, I. S.; Grigorova, T. V.; Isaev, N. V.; Pustovalov, V. V.; Fomenko, V. S.; Shumilin, S. E.

    2010-12-01

    The plastic deformation of AZ31 magnesium alloy under tension at temperatures of 4.2-295K is studied as a function of its microstructure following squeeze casting (SC) and after severe plastic deformation (SPD) by hot rolling and equal-channel angular pressing. SPD reduces the average grain size and creates a texture that favors basal-plane dislocation glide. It is found that plastic deformation becomes unstable (serrated) at temperatures of 4.2-25K and more stress jerks occur in the SPD polycrystal than in the SC alloy. The temperature dependence of the yield stress of the alloy is typical of thermally activated unpinning of dislocations from short-range barriers. The ratio of the yield stresses for the SPD and SC alloys at a given temperature is explained by hardening owing to a reduction in grain size and softening owing to a favorable texture. As the grain size is reduced, the rate of strain hardening of the alloy falls off, but its ductility (strain to fracture) increases because of the texture. The strain rate sensitivity of the alloy for T ⩽100K is independent of microstructure and is determined by intersections with forest dislocations. As the temperature is raised over 150-295K the strain rate sensitivity becomes greater owing to activation of dynamic recovery and an enhanced contribution from diffusion processes during plastic deformation of micrograined materials.

  14. Deformation Behavior and Dynamic Recovery Kinetics of Ultrahigh Strength Steel BR1500HS at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Xia, Yufeng; Ji, Shuai; Zhang, Yandong; Wu, Dongsen; Quan, Guozheng

    2015-10-01

    The flow behaviors of ultrahigh strength steel BR1500HS at elevated temperature were studied by performing hot tension tests at the temperatures of 773 K, 873 K, 1023 K and 1173 K, and strain rates of 0.01 s-1, 0.1 s-1 and 1 s-1 on a Gleeble 3500 thermo-mechanical simulator. The true stress-strain curves were obtained and their characteristics were analyzed. Relationships among the maximum stress, temperature and strain rate were described by means of the conventional hyperbolic sine equation. The average deformation activation energy in the whole deformation temperatures was determined as Q = 235.257 KJ/mol by regression analysis. Based on σ(dσ/dɛ) verse σ2 curves, the values of dynamic recovery (DRV) rate coefficient, r, saturated stress, σrec, and yield strength, σ0, under different deformation conditions were calculated. In order to estimate the DRV volume fractions, the modified Avrami type equation including r (r = 106.911351Z-0.059) as a function of the temperature compensating parameter, Z, was established, and then the effects of deformation conditions on the DRV kinetics were described in details.

  15. Deformation, Stress Relaxation, and Crystallization of Lithium Silicate Glass Fibers Below the Glass Transition Temperature

    NASA Technical Reports Server (NTRS)

    Ray, Chandra S.; Brow, Richard K.; Kim, Cheol W.; Reis, Signo T.

    2004-01-01

    The deformation and crystallization of Li(sub 2)O (center dot) 2SiO2 and Li(sub 2)O (center dot) 1.6SiO2 glass fibers subjected to a bending stress were measured as a function of time over the temperature range -50 to -150 C below the glass transition temperature (Tg). The glass fibers can be permanently deformed at temperatures about 100 C below T (sub)g, and they crystallize significantly at temperatures close to, but below T,, about 150 C lower than the onset temperature for crystallization for these glasses in the no-stress condition. The crystallization was found to occur only on the surface of the glass fibers with no detectable difference in the extent of crystallization in tensile and compressive stress regions. The relaxation mechanism for fiber deformation can be best described by a stretched exponential (Kohlrausch-Williams-Watt (KWW) approximation), rather than a single exponential model.The activation energy for stress relaxation, Es, for the glass fibers ranges between 175 and 195 kJ/mol, which is considerably smaller than the activation energy for viscous flow, E, (about 400 kJ/mol) near T, for these glasses at normal, stress-free condition. It is suspected that a viscosity relaxation mechanism could be responsible for permanent deformation and crystallization of the glass fibers below T,

  16. Recent Improvement of Medical Optical Fibre Pressure and Temperature Sensors

    PubMed Central

    Poeggel, Sven; Duraibabu, Dineshbabu; Kalli, Kyriacos; Leen, Gabriel; Dooly, Gerard; Lewis, Elfed; Kelly, Jimmy; Munroe, Maria

    2015-01-01

    This investigation describes a detailed analysis of the fabrication and testing of optical fibre pressure and temperature sensors (OFPTS). The optical sensor of this research is based on an extrinsic Fabry–Perot interferometer (EFPI) with integrated fibre Bragg grating (FBG) for simultaneous pressure and temperature measurements. The sensor is fabricated exclusively in glass and with a small diameter of 0.2 mm, making it suitable for volume-restricted bio-medical applications. Diaphragm shrinking techniques based on polishing, hydrofluoric (HF) acid and femtosecond (FS) laser micro-machining are described and analysed. The presented sensors were examined carefully and demonstrated a pressure sensitivity in the range of sp = 2–10 nmkPa and a resolution of better than ΔP = 10 Pa (0.1 cm H2O). A static pressure test in 38 cmH2O shows no drift of the sensor in a six-day period. Additionally, a dynamic pressure analysis demonstrated that the OFPTS never exceeded a drift of more than 130 Pa (1.3 cm H2O) in a 12-h measurement, carried out in a cardiovascular simulator. The temperature sensitivity is given by k=10.7 pmK, which results in a temperature resolution of better than ΔT = 0.1 K. Since the temperature sensing element is placed close to the pressure sensing element, the pressure sensor is insensitive to temperature changes. PMID:26184331

  17. Recent Improvement of Medical Optical Fibre Pressure and Temperature Sensors.

    PubMed

    Poeggel, Sven; Duraibabu, Dineshbabu; Kalli, Kyriacos; Leen, Gabriel; Dooly, Gerard; Lewis, Elfed; Kelly, Jimmy; Munroe, Maria

    2015-01-01

    This investigation describes a detailed analysis of the fabrication and testing of optical fibre pressure and temperature sensors (OFPTS). The optical sensor of this research is based on an extrinsic Fabry-Perot interferometer (EFPI) with integrated fibre Bragg grating (FBG) for simultaneous pressure and temperature measurements. The sensor is fabricated exclusively in glass and with a small diameter of 0.2 mm, making it suitable for volume-restricted bio-medical applications. Diaphragm shrinking techniques based on polishing, hydrofluoric (HF) acid and femtosecond (FS) laser micro-machining are described and analysed. The presented sensors were examined carefully and demonstrated a pressure sensitivity in the range of sp = 2-10 nm/kPa and a resolution of better than ΔP = 10 Pa protect (0.1 cm H2O). A static pressure test in 38 cm H2O shows no drift of the sensor in a six-day period. Additionally, a dynamic pressure analysis demonstrated that the OFPTS never exceeded a drift of more than 130 Pa (1.3 cm H2O) in a 12-h measurement, carried out in a cardiovascular simulator. The temperature sensitivity is given by k = 10.7 pm/K, which results in a temperature resolution of better than ΔT = 0.1 K. Since the temperature sensing element is placed close to the pressure sensing element, the pressure sensor is insensitive to temperature changes. PMID:26184331

  18. Understanding creep in sandstone reservoirs - theoretical deformation mechanism maps for pressure solution in granular materials

    NASA Astrophysics Data System (ADS)

    Hangx, Suzanne; Spiers, Christopher

    2014-05-01

    Subsurface exploitation of the Earth's natural resources removes the natural system from its chemical and physical equilibrium. As such, groundwater extraction and hydrocarbon production from subsurface reservoirs frequently causes surface subsidence and induces (micro)seismicity. These effects are not only a problem in onshore (e.g. Groningen, the Netherlands) and offshore hydrocarbon fields (e.g. Ekofisk, Norway), but also in urban areas with extensive groundwater pumping (e.g. Venice, Italy). It is known that fluid extraction inevitably leads to (poro)elastic compaction of reservoirs, hence subsidence and occasional fault reactivation, and causes significant technical, economic and ecological impact. However, such effects often exceed what is expected from purely elastic reservoir behaviour and may continue long after exploitation has ceased. This is most likely due to time-dependent compaction, or 'creep deformation', of such reservoirs, driven by the reduction in pore fluid pressure compared with the rock overburden. Given the societal and ecological impact of surface subsidence, as well as the current interest in developing geothermal energy and unconventional gas resources in densely populated areas, there is much need for obtaining better quantitative understanding of creep in sediments to improve the predictability of the impact of geo-energy and groundwater production. The key problem in developing a reliable, quantitative description of the creep behaviour of sediments, such as sands and sandstones, is that the operative deformation mechanisms are poorly known and poorly quantified. While grain-scale brittle fracturing plus intergranular sliding play an important role in the early stages of compaction, these time-independent, brittle-frictional processes give way to compaction creep on longer time-scales. Thermally-activated mass transfer processes, like pressure solution, can cause creep via dissolution of material at stressed grain contacts, grain

  19. High temperature and pressure thermodynamics of strontium: A macroscopic approach

    NASA Astrophysics Data System (ADS)

    Bhatt, N. K.; Vyas, P. R.; Jani, A. R.

    2010-04-01

    Close proximity of d-bands (above) to the Fermi level (E F) makes the heavy alkaline earth metals (Ca, Sr and Ba) fairly sensitive to external influences like temperature and pressure. Softening of some of the phonon modes at high temperatures and/or pressures implies that anharmonic effects can play an important role in determining lattice dynamics and related properties. In the conventional approach, phonon density of states (p-dos) have to be calculated at each volume to compute free energy and thereby the other thermodynamic properties, which is computationally quite demanding. Using an alternative technique, the mean-field potential (MFP) approach was combined with the relatively soft local pseudopotential to obtain the free energy at different temperatures and pressures. The results for phonon frequency shifts at finite temperatures using the MFP approach and those calculated from p-dos within the quasiharmonic approximation are very similar. This validates the use of the MFP approach coupled with the local pseudopotential to estimate vibrational response of the system at high-temperature and high-pressure environments. The present scheme was used to study various thermophysical properties for elemental strontium at elevated temperatures and pressures, including the high-pressure melting curve and temperature along the shock Hugoniot. Computed results are affirmatively compared and analyzed with other reported data. The present scheme completely bypasses traditional cumbersome calculations, and it is computationally convenient yet accurate.

  20. Effect of pressure on the low-temperature exciton absorption in GaAs

    NASA Astrophysics Data System (ADS)

    Goi, A. R.; Cantarero, A.; Syassen, K.; Cardona, M.

    1990-05-01

    We have measured low-temperature exciton optical-absorption spectra at the lowest direct band edge (E0) of GaAs as a function of pressure up to 9 GPa. Spectra are analyzed in terms of the Elliott model by taking into account the broadening of the exciton line. In this way, we determine the dependence on pressure of the E0 gap, the exciton binding energy scrR, and exciton linewidth at different temperatures. The pressure coefficient of the E0 fundamental gap [107(4) meV/GPa] is found to be independent of temperature. The exciton binding energy increases with pressure at a rate of d lnscrR/dP=0.083(3) GPa-1. The exciton lifetime becomes smaller for pressures above the crossover between Γ- and X-point conduction-band minima (P>4.2 GPa), a fact which is attributed to phonon-assisted intervalley scattering. From the pressure dependence of the exciton linewidth we determine an accurate value for the intervalley deformation-potential constant DΓX=4.8(3) eV/Å.

  1. Temperature-pressure phase diagram of CeCoSi: Pressure-induced high-temperature phase

    NASA Astrophysics Data System (ADS)

    Lengyel, E.; Nicklas, M.; Caroca-Canales, N.; Geibel, C.

    2013-10-01

    We have studied the temperature-pressure phase diagram of CeCoSi by electrical-resistivity experiments under pressure. Our measurements revealed a very unusual phase diagram. While at low pressures no dramatic changes and only a slight shift of the Neél temperature TN (≈10 K) are observed, at about 1.45 GPa a sharp and large anomaly, indicative of the opening of a spin-density wave gap, appears at a comparatively high temperature TS≈38 K. With further increasing pressure, TS shifts rapidly to low temperatures and disappears at about 2.15 GPa, likely continuously in a quantum critical point, but without evidence for superconductivity. Even more surprisingly, we observed a clear shift of TS to higher temperatures upon applying a magnetic field. We discuss two possible origins for TS: magnetic ordering of Co and a metaorbital type of transition of Ce.

  2. A high temperature high pressure cell for quasielastic neutron scattering

    SciTech Connect

    Yang, F.; Meyer, A.; Kaplonski, J.; Unruh, T.; Mamontov, E.

    2011-08-15

    We present our recent development of a high temperature high pressure cell for neutron scattering. Combining a water cooled Nb1Zr pressure cell body with an internal heating furnace, the sample environment can reach temperatures of up to 1500 K at a pressure of up to 200 MPa at the sample position, with an available sample volume of about 700 mm{sup 3}. The cell material Nb1Zr is specifically chosen due to its reasonable mechanical strength at elevated temperatures and fairly small neutron absorption and incoherent scattering cross sections. With this design, an acceptable signal-to-noise ratio of about 10:1 can be achieved. This opens new possibilities for quasielastic neutron scattering studies on different types of neutron spectrometers under high temperature high pressure conditions, which is particularly interesting for geological research on, e.g., water dynamics in silicate melts.

  3. Fixture tests bellows reliability through repetitive pressure/temperature cycling

    NASA Technical Reports Server (NTRS)

    Levinson, C.

    1967-01-01

    Fixture explores the reliability of bellows used in precision in inertial systems. The fixture establishes the ability of the bellows to withstand repetitive over-stress pressure cycling at elevated temperatures. It is applicable in quality control and reliability programs.

  4. ALTERNATIVES FOR HIGH-TEMPERATURE/HIGH-PRESSURE PARTICULATE CONTROL

    EPA Science Inventory

    The report gives the status of the most promising high-temperature/high-pressure (HTP) particulate control devices being developed. Data are presented and anticipated performance and development problems are discussed. HTP particulate control offers efficiency and potential econo...

  5. Research at Very High Pressures and High Temperatures

    ERIC Educational Resources Information Center

    Bundy, Francis P.

    1977-01-01

    Reviews research and apparatus utilized in the study of the states and characteristics of materials at very high temperatures and pressures. Includes three examples of the research being conducted. (SL)

  6. A high temperature high pressure cell for quasielastic neutron scattering.

    PubMed

    Yang, F; Kaplonski, J; Unruh, T; Mamontov, E; Meyer, A

    2011-08-01

    We present our recent development of a high temperature high pressure cell for neutron scattering. Combining a water cooled Nb1Zr pressure cell body with an internal heating furnace, the sample environment can reach temperatures of up to 1500 K at a pressure of up to 200 MPa at the sample position, with an available sample volume of about 700 mm(3). The cell material Nb1Zr is specifically chosen due to its reasonable mechanical strength at elevated temperatures and fairly small neutron absorption and incoherent scattering cross sections. With this design, an acceptable signal-to-noise ratio of about 10:1 can be achieved. This opens new possibilities for quasielastic neutron scattering studies on different types of neutron spectrometers under high temperature high pressure conditions, which is particularly interesting for geological research on, e.g., water dynamics in silicate melts. PMID:21895254

  7. PREFACE: Rheology and Elasticity Studies at Ultra-High Pressures and Temperatures

    NASA Astrophysics Data System (ADS)

    Liu, Haozhe; Wenk, Hans-Rudolf; Duffy, Thomas S.

    2006-06-01

    One of the major goals of geophysical research is to understand deformation in the deep Earth. The COMPRES (Consortium for Materials Properties Research in Earth Sciences) workshop on `Rheology and Elasticity Studies at Ultra-High Pressures and Temperatures' was held on 21-23 October 2005 at the Advanced Photon Source, Argonne National Laboratory, organized by Haozhe Liu, Hans-Rudolf Wenk and Thomas S Duffy, and provided an opportunity to assemble more than 50 scientists from six countries. Experts in diamond anvil cell (DAC) design, large-volume high-pressure apparatus and data analysis defined the current state of ultra-high pressure deformation studies and explored initiatives to push the technological frontier. The DAC, when used in radial diffraction geometry, emerges as a powerful tool for investigation of plasticity and elasticity of materials at high pressures. More information regarding this workshop can be found at the website: http://www.hpcat.aps.anl.gov/Hliu/Workshop/Index1.htm. In this special issue of Journal of Physics: Condensed Matter, 17 manuscripts review the state-of-the-art and we hope they will stimulate researchers to participate in this field and take it forward to a new level. A major incentive for high-pressure research has been the need of geophysicists to understand composition, physical properties and deformation in the deep Earth in order to interpret the macroscopically observed seismic anisotropy. In the mantle and core, materials deform largely in a ductile manner at low stresses and strain rates. From observational inferences and experiments at lower pressures, it is considered plausible that deformation occurs in the field of dislocation creep or diffusion creep and deformation mechanisms depend in a complex way on stress, strain rate, pressure, temperature, grain size and hydration state. With novel apparatus such as the rotational Drickamer press or deformation DIA (D-DIA) multianvil apparatus, large volumes (approximately 10

  8. Temperature effects for high pressure processing of Picornaviruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Investigation of the effects of pre-pressurization temperature on the high pressure inactivation for single strains of aichivirus (AiV), coxsackievirus A9 (CAV9) and B5 (CBV5) viruses, as well as human parechovirus -1 (HPeV), was performed. For CAV9, an average 1.99 log10 greater inactivation was ...

  9. Pressure and Temperature Sensitive Paint Measurements on Rotors

    NASA Technical Reports Server (NTRS)

    Sullivan, John

    1999-01-01

    Luminescent molecular probes imbedded in a polymer binder form a temperature or pressure paint. On excitation by light of the proper wavelength, the luminescence, which is quenched either thermally or by oxygen, is detected by a camera or photodetector. From the detected luminescent intensity, temperature and pressure can be determined. The basic photophysics, calibration, accuracy and time response of luminescent paints is described followed by applications in wind tunnels and in rotating machinery.

  10. Engineering a laser remote sensor for atmospheric pressure and temperature

    NASA Technical Reports Server (NTRS)

    Kalshoven, J. E., Jr.; Korb, C. L.

    1978-01-01

    A system for the remote sensing of atmospheric pressure and temperature is described. Resonant lines in the 7600 Angstrom oxygen A band region are used and an organic dye laser beam is tuned to measure line absorption changes with temperature or pressure. A reference beam outside this band is also transmitted for calibration. Using lidar techniques, profiling of these parameters with altitude can be accomplished.

  11. Measurements for displacement and deformation at high temperature by using edge detection of digital image.

    PubMed

    Qu, Zhe; Fang, Xufei; Su, Honghong; Feng, Xue

    2015-10-10

    In this work, we propose a structural deformation measuring method based on structural feature processing (straight line/edge detection) of the recorded digital images for specimens subjected to a high-temperature environment. Both radiation light and oxidation at high temperatures challenge the optics-based measurements. The images of a rectangular piece of copper specimen are obtained by using a bandpass filtering method at high temperatures, then all the edges are detected by using an edge detection operator, and then a Hough transform is conducted to search the straight edges for the calculation of deformation. Especially, due to the severe oxidation, a special seed strategy is adopted to reduce the oxidation effect and obtain an accurate result. For validation, the structural thermal deformation and the values of coefficients of thermal expansion for the copper specimen are measured and compared with data in the literature. The results reveal that the proposed method is accurate to measure the deformation of the structures at high temperatures. PMID:26479811

  12. Monotonic and cyclic deformation behavior of a SiCw/6061 Al composite at elevated temperature

    SciTech Connect

    Wang, L.; Sun, Z.M.; Kobayashi, T.

    1996-10-15

    With the advent of new processing techniques, the technological interest and research activity in the development of metal-matrix composites have increased rapidly. Particularly, discontinuously reinforced composites, such as whisker and particle reinforced aluminum-based metal-matrix composites, exhibit attractive advantages, such as high specific modulus, high specific strength, good fatigue resistance and easy fabrication. They have emerged as a new class of structural materials for ambient and elevated temperature applications in aerospace and automobile industries. Therefore, great attention has been paid on their mechanical properties. However, a limited number of investigations on the cyclic deformation behavior have been reported, and little research has been done in this aspect at elevated temperature. The present study is based on a previous study at room temperature to investigate the monotonic and cyclic deformation behavior of a SiC whisker reinforced 6061 Al alloy composite and its unreinforced counterpart at elevated temperature.

  13. Linking deformation structures and low-temperature metamorphic recrystallization: chlorite-illite equilibria in the Nevado-Filabrides complex (Betic Cordillera, Spain)

    NASA Astrophysics Data System (ADS)

    Jentzer, Michael; Verlaguet, Anne; Dubacq, Benoit; Agard, Philippe

    2013-04-01

    Ductile deformation is partly accommodated by mineral recrystallization. Mineral growth is controlled by both thermodynamics and reaction kinetics, where fluid availability and deformation also play a key role, in particular at temperatures below about 400°C. In these temperature conditions, phyllosilicates are ubiquitous and reactive, and often replace the peak metamorphic minerals along the retrograde path. Phyllosilicate assemblages are thus of potential to estimate the pressure-temperature conditions of deformation and provide information on the dynamics of shear zone development. This study focuses on a cross-section in the Nevado-Filabrides complex (Betic cordillera, Spain), which was exhumed along a ductile detachment. We present four outcrops located at different distances from the detachment, for which both the deformation structure densification with detachment proximity and the metamorphic P-T conditions have already been well constrained. The studied unit contains abundant chlorite and illite, often observed seemingly at textural equilibrium. In order to highlight the link between phyllosilicate crystallization and deformation, electron microprobe chemical maps were performed on deformation microstructures (schistosity, shear bands, pressure shadows) where chlorite and illite are present. Using a multi-equilibrium approach with a thermodynamic model for clay minerals, we estimated P-T conditions of crystallization for the successive chlorite-white mica and chlorite-illite assemblages. Obtained P-T paths span the range 250°C - 550°C. These results are in good agreement with calculated pseudo-sections but are inconsistent with parts of the previously published retrograde paths, whose low-pressure high-temperature results are likely offset. Interestingly, chlorite and illite seemingly at textural equilibrium were very rarely computed as such. This might be explained by 1) inadequacy of the thermodynamic models at the latest conditions of re

  14. Luminescence imaging for aerodynamic temperature and pressure measurements

    SciTech Connect

    Gallery, J.M.

    1993-01-01

    A luminescent temperature sensitive paint containing the molecule rhodamine B base (rhBb) is described whose emission intensity can be monitored by video camera to produce qualitative and quantitative two dimensional surface temperature maps. This paint was designed for use with the pressure sensitive paint containing platinum octaethylporphyrin (PtOEP), but is also a useful tool when used alone in the measurement of heat flow, boundary layer transition, and quantitative surface temperature during wind tunnel studies. The ability of the rhBb paint to produce a continuous temperature map makes it possible to locate structures in the temperature field on an airfoil that are otherwise undetected by surface mounted thermocouples spaced a finite distance apart. A dual temperature/pressure sensitive paint was investigated with both the rhBb and PtOEP dyes incorporated into the silicone polymer paint base of the pressure sensor. Photodegradation and batch variations in the polymer were found to compromise the calibration parameters of the PtOEP paint and therefore the accuracy of pressure predictions. Suggestions are made for improving the prediction ability of the paint. The molecule europium(III) thenoyltrifluoroacetonate (EuTTA) is also discussed as a temperature sensor for a two layer temperature/pressure paint. EuTTA can not be directly incorporated into the silicone paint base of the PtOEP paint (as the rhBp paint can), but performs well in non-oxygenpermeable coatings. Benefits of the EuTTA temperature paint include: (1) decreased photodegradation, (2) very bright luminescence intensity, and (3) long luminescent lifetime (several hundred microseconds). The long lifetime facilitates lifetime imaging, a technique currently under development as an alternative detection method where luminescent lifetimes rather than emission intensity are related to temperature and pressure.

  15. Plastic Foam Withstands Greater Temperatures And Pressures

    NASA Technical Reports Server (NTRS)

    Cranston, John A.; Macarthur, Doug

    1993-01-01

    Improved plastic foam suitable for use in foam-core laminated composite parts and in tooling for making fiber/matrix-composite parts. Stronger at high temperatures, more thermally and dimensionally stable, machinable, resistant to chemical degradation, and less expensive. Compatible with variety of matrix resins. Made of polyisocyanurate blown with carbon dioxide and has density of 12 to 15 pounds per cubic feet. Does not contibute to depletion of ozone from atmosphere. Improved foam used in cores of composite panels in such diverse products as aircraft, automobiles, railroad cars, boats, and sporting equipment like surfboards, skis, and skateboards. Also used in thermally stable flotation devices in submersible vehicles. Machined into mandrels upon which filaments wound to make shells.

  16. Influence of grain shape and orientation on the mechanical properties of high pressure torsion deformed nickel

    PubMed Central

    Rathmayr, Georg B.; Hohenwarter, Anton; Pippan, Reinhard

    2013-01-01

    Severely plastically deformed (SPD) materials, for example those produced by high pressure torsion (HPT), are reported to possess outstanding mechanical properties. A typical HPT microstructure consists of elongated grains, usually of grain size well below 1 μm, which are aligned parallel to the shear plane and showing typical shear texture components. To answer the question of how these single features of a SPD microstructure affect the mechanical properties individually, such as the yield strength, the ultimate tensile strength, the uniform elongation and the reduction in area, uniaxial tensile tests have been conducted. The samples were tested in two different orientations. Within the same testing orientation the average grain aspect ratio was also varied. The variation in grain aspect ratio within a sample was achieved through a slight back rotation of the already deformed material and selective radius-dependent specimen extraction. The main results are as follows: the ductility (in terms of the reduction in area) is influenced by the grain aspect ratio. In contrast, the ultimate tensile strength is independent of the grain aspect ratio but shows an explicit dependency on the specimen orientation. PMID:23482440

  17. Mechanical and transport properties of rocks at high temperatures and pressures. Task III. Mechanical properties of rocks at high temperatures and pressures. Final report, 1 March 1980-29 February 1984

    SciTech Connect

    Friedman, M.; Handin, J.; Bauer, S.J.

    1984-03-01

    This report summarizes the research performed to gain a fundamental understanding of the mechanical and transport properties of rocks under confining pressure and elevated temperature. There have been many contributions to our understanding of the mechanical behavior or rocks at high temperatures and pressures, but perhaps the three most outstanding contributions are the data which: (a) have helped to demonstrate the scientific feasibility of energy extraction from buried magma by assessing the likelihood of the rock mass to support stable boreholes at the pressures, temperatures (to partial melting), and aqueous conditions apt to occur in crystalline rocks above buried magma chambers; (b) have demonstrated that crystalline rocks deform primarily by brittle fracture when deformed at effective confining pressures to 200 MPa and temperatures to partial melting (to >1000/sup 0/C), water-saturated or room-dry, and in constant strain rate tests (e dot = 10/sup -4/-10/sup -7//sec) or in creep tests; and (c) have shown that under these same conditions the time-dependent behavior of the rocks in the quasi-steady state regime is well described by the flow law: e dot = Asigma/sup n/exp(-Q/RT) - a formulation previously thought to be applicable to rocks deforming primarily by crystal plasticity. This result suggests that fracture is also a time-dependent, thermally-activated process.

  18. Dislocation substructure in NiAl single crystals deformed at ambient temperature

    SciTech Connect

    Shi, X.; Pollock, T.M.; Mahajan, S.; Arunachalam, V.S.

    1997-12-31

    Dislocation substructure in NiAl single crystals oriented for single slip and deformed at ambient temperature has been studied using weak-beam transmission electron microscopy. Deformation is localized in bands that consists mostly of near-edge dislocations, with an interspersion of a high density of elongated prismatic loops. Pure screw dislocations are not observed, but dislocations having zigzag configurations that are near-screw in orientation are present. A high density of jogs is observed on both near-edge and zigzag dislocation segments. The mechanisms for the development of this substructure are discussed, emphasizing the role of double cross slip and resulting glissile and sessile jogs of varying heights.

  19. Digital pressure transducer for use at high temperatures

    DOEpatents

    Karplus, H.H.B.

    A digital pressure sensor for measuring fluid pressures at relatively high temperatures includes an electrically conducting fiber coupled to the fluid by a force disc that causes tension in the fiber to be a function of fluid pressure. The tension causes changes in the mechanical resonant frequency of the fiber, which is caused to vibrate in a magnetic field to produce an electrical signal from a positive-feedback amplifier at the resonant frequency. A count of this frequency provides a measure of the fluid pressure.

  20. Digital pressure transducer for use at high temperatures

    DOEpatents

    Karplus, Henry H. B.

    1981-01-01

    A digital pressure sensor for measuring fluid pressures at relatively high temperatures includes an electrically conducting fiber coupled to the fluid by a force disc that causes tension in the fiber to be a function of fluid pressure. The tension causes changes in the mechanical resonant frequency of the fiber, which is caused to vibrate in a magnetic field to produce an electrical signal from a positive-feedback amplifier at the resonant frequency. A count of this frequency provides a measure of the fluid pressure.

  1. Experimental investigation on pressurization performance of cryogenic tank during high-temperature helium pressurization process

    NASA Astrophysics Data System (ADS)

    Lei, Wang; Yanzhong, Li; Yonghua, Jin; Yuan, Ma

    2015-03-01

    Sufficient knowledge of thermal performance and pressurization behaviors in cryogenic tanks during rocket launching period is of importance to the design and optimization of a pressurization system. In this paper, ground experiments with liquid oxygen (LO2) as the cryogenic propellant, high-temperature helium exceeding 600 K as the pressurant gas, and radial diffuser and anti-cone diffuser respectively at the tank inlet were performed. The pressurant gas requirements, axial and radial temperature distributions, and energy distributions inside the propellant tank were obtained and analyzed to evaluate the comprehensive performance of the pressurization system. It was found that the pressurization system with high-temperature helium as the pressurant gas could work well that the tank pressure was controlled within a specified range and a stable discharging liquid rate was achieved. For the radial diffuser case, the injected gas had a direct impact on the tank inner wall. The severe gas-wall heat transfer resulted in about 59% of the total input energy absorbed by the tank wall. For the pressurization case with anti-cone diffuser, the direct impact of high-temperature gas flowing toward the liquid surface resulted in a greater deal of energy transferred to the liquid propellant, and the percentage even reached up to 38%. Moreover, both of the two cases showed that the proportion of energy left in ullage to the total input energy was quite small, and the percentage was only about 22-24%. This may indicate that a more efficient diffuser should be developed to improve the pressurization effect. Generally, the present experimental results are beneficial to the design and optimization of the pressurization system with high-temperature gas supplying the pressurization effect.

  2. LX-17 Deflagration at High Pressures and Temperatures

    SciTech Connect

    Koerner, J; Maienschein, J; Black, K; DeHaven, M; Wardell, J

    2006-10-23

    We measure the laminar deflagration rate of LX-17 (92.5 wt% TATB, 7.5 wt% Kel-F 800) at high pressure and temperature in a strand burner, thereby obtaining reaction rate data for prediction of thermal explosion violence. Simultaneous measurements of flame front time-of-arrival and temporal pressure history allow for the direct calculation of deflagration rate as a function of pressure. Additionally, deflagrating surface areas are calculated in order to provide quantitative insight into the dynamic surface structure during deflagration and its relationship to explosion violence. Deflagration rate data show that LX-17 burns in a smooth fashion at ambient temperature and is represented by the burn rate equation B = 0.2P{sup 0.9}. At 225 C, deflagration is more rapid and erratic. Dynamic deflagrating surface area calculations show that ambient temperature LX-17 deflagrating surface areas remain near unity over the pressure range studied.

  3. Pressure and temperature induced elastic properties of rare earth chalcogenides

    NASA Astrophysics Data System (ADS)

    Shriya, S.; Singh, N.; Sapkale, R.; Varshney, M.; Varshney, Dinesh

    2016-05-01

    The pressure and temperature dependent mechanical properties as Young modulus, Thermal expansion coefficient of rare earth REX (RE = La, Pr, Eu; X = O, S, Se, and Te) chalcogenides are studied. The rare earth chalcogenides showed a structural phase transition (B1-B2). Pressure dependence of Young modulus discerns an increase in pressure inferring the hardening or stiffening of the lattice as a consequence of bond compression and bond strengthening. Suppressed Young modulus as functions of temperature infers the weakening of the lattice results in bond weakening in REX. Thermal expansion coefficient demonstrates that REX (RE = La, Pr, Eu; X = O, S, Se, and Te) chalcogenides is mechanically stiffened, and thermally softened on applied pressure and temperature.

  4. Fluorescence spectroscopy of anisole at elevated temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Tran, K. H.; Morin, C.; Kühni, M.; Guibert, P.

    2014-06-01

    Laser-induced fluorescence of anisole as tracer of isooctane at an excitation wavelength of 266 nm was investigated for conditions relevant to rapid compression machine studies and for more general application of internal combustion engines regarding temperature, pressure, and ambient gas composition. An optically accessible high pressure and high temperature chamber was operated by using different ambient gases (Ar, N2, CO2, air, and gas mixtures). Fluorescence experiments were investigated at a large range of pressure and temperature (0.2-4 MPa and 473-823 K). Anisole fluorescence quantum yield decreases strongly with temperature for every considered ambient gas, due to efficient radiative mechanisms of intersystem crossing. Concerning the pressure effect, the fluorescence signal decreases with increasing pressure, because increasing the collisional rate leads to more important non-radiative collisional relaxation. The quenching effect is strongly efficient in oxygen, with a fluorescence evolution described by Stern-Volmer relation. The dependence of anisole fluorescence versus thermodynamic parameters suggests the use of this tracer for temperature imaging in specific conditions detailed in this paper. The calibration procedure for temperature measurements is established for the single-excitation wavelength and two-color detection technique.

  5. Temperature-dependent elastic anisotropy and mesoscale deformation in a nanostructured ferritic alloy

    SciTech Connect

    Stoica, G. M.; Stoica, A. D.; Miller, M. K.; Ma, D.

    2014-10-10

    Nanostructured ferritic alloys (NFA) are a new class of ultrafine-grained oxide dispersion-strengthened steels, promising for service in extreme environments of high temperature and high irradiation in the next-generation of nuclear reactors. This is owing to the remarkable stability of their complex microstructures containing a high density of Y-Ti-O nanoclusters within grains and along the grain boundaries. While nanoclusters have been recognized to be the primary contributor to the exceptional resistance to irradiation and high-temperature creep, very little is known about the mechanical roles of the polycrystalline grains that constitute the bulk ferritic matrix. Here we report the mesoscale characterization of anisotropic responses of the ultrafine NFA grains to tensile stresses at various temperatures using the state-of-the-art in situ neutron diffraction. We show the first experimental determination of temperature-dependent single-crystal elastic constants for the NFA, and reveal a strong temperature-dependent elastic anisotropy due to a sharp decrease in the shear stiffness constant [c'=(c_11-c_12)/2] when a critical temperature ( T_c ) is approached, indicative of elastic softening and instability of the ferritic matrix. We also show, from anisotropy-induced intergranular strain/stress accumulations, that a common dislocation slip mechanism operates at the onset of yielding for low temperatures, while there is a deformation crossover from low-temperature lattice hardening to high temperature lattice softening in response to extensive plastic deformation.

  6. Temperature-dependent elastic anisotropy and mesoscale deformation in a nanostructured ferritic alloy

    DOE PAGESBeta

    Stoica, G. M.; Stoica, A. D.; Miller, M. K.; Ma, D.

    2014-10-10

    Nanostructured ferritic alloys (NFA) are a new class of ultrafine-grained oxide dispersion-strengthened steels, promising for service in extreme environments of high temperature and high irradiation in the next-generation of nuclear reactors. This is owing to the remarkable stability of their complex microstructures containing a high density of Y-Ti-O nanoclusters within grains and along the grain boundaries. While nanoclusters have been recognized to be the primary contributor to the exceptional resistance to irradiation and high-temperature creep, very little is known about the mechanical roles of the polycrystalline grains that constitute the bulk ferritic matrix. Here we report the mesoscale characterization ofmore » anisotropic responses of the ultrafine NFA grains to tensile stresses at various temperatures using the state-of-the-art in situ neutron diffraction. We show the first experimental determination of temperature-dependent single-crystal elastic constants for the NFA, and reveal a strong temperature-dependent elastic anisotropy due to a sharp decrease in the shear stiffness constant [c'=(c_11-c_12)/2] when a critical temperature ( T_c ) is approached, indicative of elastic softening and instability of the ferritic matrix. We also show, from anisotropy-induced intergranular strain/stress accumulations, that a common dislocation slip mechanism operates at the onset of yielding for low temperatures, while there is a deformation crossover from low-temperature lattice hardening to high temperature lattice softening in response to extensive plastic deformation.« less

  7. Incompressibility of osmium metal at ultrahigh pressures and temperatures

    SciTech Connect

    Armentrout, Matt M.; Kavner, Abby

    2010-07-23

    Osmium is one of the most incompressible elemental metals, and is used as a matrix material for synthesis of ultrahard materials. To examine the behavior of osmium metal under extreme conditions of high pressure and temperature, we measured the thermal equation of state of osmium metal at pressures up to 50 GPa and temperatures up to 3000 K. X-ray diffraction measurements were conducted in the laser heated diamond anvil cell at GeoSoilEnviroCARS and the High Pressure at the Advanced Photon Source and beamline 12.2.2 at the advanced light source. Ambient temperature data give a zero pressure bulk modulus of 421 (3) GPa with a first pressure derivative fixed at 4. Fitting to a high temperature Birch-Murnaghan equation of state gives a room pressure thermal expansion of 1.51(0.06) x 10{sup -5} K{sup -1} with a first temperature derivative of 4.9(0.7) x 10{sup -9} K{sup -2} and the first temperature derivative of bulk modulus of be dK{sub 0}/dT = -0.055 (0.004). Fitting to a Mie-Grueneisen-Debye equation of state gives a Grueneisen parameter of 2.32 (0.08) with a q of 7.2 (1.4). A comparison of the high pressure, temperature behavior among Re, Pt, Os, shows that Os has the highest bulk modulus and lowest thermal expansion of the three, suggesting that Os-based ultrahard materials may be especially mechanically stable under extreme conditions.

  8. Low temperature deformation behavior of an electromagnetically bulged 5052 aluminum alloy

    PubMed Central

    Li, Zu; Li, Ning; Wang, Duzhen; Ouyang, Di; Liu, Lin

    2016-01-01

    The fundamental understanding of the deformation behavior of electromagnetically formed metallic components under extreme conditions is important. Here, the effect of low temperature on the deformation behavior of an electromagnetically-bulged 5052 aluminum alloy was investigated through uniaxial tension. We found that the Portevin-Le Chatelier Effect, designated by the serrated characteristic in stress-strain curves, continuously decays until completely disappears with decreasing temperature. The physical origin of the phenomenon is rationalized on the basis of the theoretical analysis and the Monte Carlo simulation, which reveal an increasing resistance to dislocation motion imposed by lowering temperature. The dislocations are captured completely by solute atoms at −50 °C, which results in the extinction of Portevin-Le Chatelier. The detailed mechanism responsible for this process is further examined through Monte Carlo simulation. PMID:27426919

  9. Low temperature deformation behavior of an electromagnetically bulged 5052 aluminum alloy.

    PubMed

    Li, Zu; Li, Ning; Wang, Duzhen; Ouyang, Di; Liu, Lin

    2016-01-01

    The fundamental understanding of the deformation behavior of electromagnetically formed metallic components under extreme conditions is important. Here, the effect of low temperature on the deformation behavior of an electromagnetically-bulged 5052 aluminum alloy was investigated through uniaxial tension. We found that the Portevin-Le Chatelier Effect, designated by the serrated characteristic in stress-strain curves, continuously decays until completely disappears with decreasing temperature. The physical origin of the phenomenon is rationalized on the basis of the theoretical analysis and the Monte Carlo simulation, which reveal an increasing resistance to dislocation motion imposed by lowering temperature. The dislocations are captured completely by solute atoms at -50 °C, which results in the extinction of Portevin-Le Chatelier. The detailed mechanism responsible for this process is further examined through Monte Carlo simulation. PMID:27426919

  10. Low temperature deformation behavior of an electromagnetically bulged 5052 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Li, Zu; Li, Ning; Wang, Duzhen; Ouyang, Di; Liu, Lin

    2016-07-01

    The fundamental understanding of the deformation behavior of electromagnetically formed metallic components under extreme conditions is important. Here, the effect of low temperature on the deformation behavior of an electromagnetically-bulged 5052 aluminum alloy was investigated through uniaxial tension. We found that the Portevin-Le Chatelier Effect, designated by the serrated characteristic in stress-strain curves, continuously decays until completely disappears with decreasing temperature. The physical origin of the phenomenon is rationalized on the basis of the theoretical analysis and the Monte Carlo simulation, which reveal an increasing resistance to dislocation motion imposed by lowering temperature. The dislocations are captured completely by solute atoms at ‑50 °C, which results in the extinction of Portevin-Le Chatelier. The detailed mechanism responsible for this process is further examined through Monte Carlo simulation.

  11. Minimizing Thermal Deformation of Aerostatic Spindle System by Temperature Control of Supply Air

    NASA Astrophysics Data System (ADS)

    Yoshioka, Hayato; Matsumura, Shimpei; Hashizume, Hitoshi; Shinno, Hidenori

    Aerostatic spindle systems have been widely used in many machine tools due to their low heat generation and high-speed capability. To meet industrial demands for higher accuracy and higher productivity, such spindle systems have recently become important as the kernel component in an ultraprecision machine tool. In this study, therefore, thermal deformation control for aerostatic spindle systems has been proposed considering heat balance in an objective spindle bearing system. In the proposed method, the temperature of supply air is controlled by monitoring that of exhaust air to minimize the thermal deformation of the spindle. The performance of the thermal deformation control system developed has been evaluated through a series of actual experiments.

  12. Method transfer from high-pressure liquid chromatography to ultra-high-pressure liquid chromatography. II. Temperature and pressure effects.

    PubMed

    Åsberg, Dennis; Samuelsson, Jörgen; Leśko, Marek; Cavazzini, Alberto; Kaczmarski, Krzysztof; Fornstedt, Torgny

    2015-07-01

    The importance of the generated temperature and pressure gradients in ultra-high-pressure liquid chromatography (UHPLC) are investigated and compared to high-pressure liquid chromatography (HPLC). The drug Omeprazole, together with three other model compounds (with different chemical characteristics, namely uncharged, positively and negatively charged) were used. Calculations of the complete temperature profile in the column at UHPLC conditions showed, in our experiments, a temperature difference between the inlet and outlet of 16 °C and a difference of 2 °C between the column center and the wall. Through van't Hoff plots, this information was used to single out the decrease in retention factor (k) solely due to the temperature gradient. The uncharged solute was least affected by temperature with a decrease in k of about 5% while for charged solutes the effect was more pronounced, with k decreases up to 14%. A pressure increase of 500 bar gave roughly 5% increase in k for the uncharged solute, while omeprazole and the other two charged solutes gave about 25, 20 and 15% increases in k, respectively. The stochastic model of chromatography was applied to estimate the dependence of the average number of adsorption/desorption events (n) and the average time spent by a molecule in the stationary phase (τs) on temperature and pressure on peak shape for the tailing, basic solute. Increasing the temperature yielded an increase in n and decrease in τs which resulted in less skew at high temperatures. With increasing pressure, the stochastic modeling gave interesting results for the basic solute showing that the skew of the peak increased with pressure. The conclusion is that pressure effects are more pronounced for both retention and peak shape than the temperature effects for the polar or charged compounds in our study. PMID:26003622

  13. Influence of pressure distribution on flow field temperature reconstruction.

    PubMed

    Chen, Yun-yun; Song, Yang; Li, Zhen-hua; He, An-zhi

    2011-05-20

    This research proposes an issue that has previously been omitted in flow field temperature reconstruction by optical computerized tomography (OCT). To prove that it is not reasonable to always assume an isobaric process occurs when OCT is adopted to obtain the temperature distributions of flow fields, a propane-air flame and an argon arc plasma are chosen as two practical examples for experiment. In addition, the measurement of the refractive index is achieved by moiré deflection tomography. The results indicate that the influence of pressure distribution on temperature reconstruction is a universal phenomenon for various flow fields. Hence, the condition that can be introduced to estimate when an isobaric process can no longer be assumed is presented. In addition, an equation is offered to describe the temperature reconstruction imprecision that is caused by using the supposed pressure instead of the practical pressure. PMID:21614105

  14. Temperature Correction of Pressure-Sensitive Paints Simplified

    NASA Technical Reports Server (NTRS)

    Bencic, Timothy J.

    2000-01-01

    Pressure-sensitive paint (PSP) has become a useful tool to augment conventional pressure taps in measuring the surface pressure distribution of aerodynamic components in wind tunnel testing. Although PSP offers the advantage of nonintrusive global mapping of the surface pressure, one prominent drawback to the accuracy of this technique is the inherent temperature sensitivity of PSP's luminescent intensity. Typical aerodynamic surface PSP tests rely on the coated surface to be both spatially and temporally isothermal, along with conventional instrumentation, to yield the highest accuracy pressure mappings. In some tests, however, spatial and temporal thermal gradients are generated by the nature of the test, as in a blowing jet impinging on a surface. In these cases, high accuracy and reliable data cannot be obtained unless the temperature variations on the painted surface are accounted for. A new temperature-correction technique was developed at the NASA Glenn Research Center at Lewis Field to collapse a "family" of PSP calibration curves to a single curve of intensity ratio versus pressure. This correction allows a streamlined procedure to be followed whether or not temperature information is used in the data reduction of the PSP.

  15. An Investigation of Enhanced Formability in AA5182-O Al During High-Rate Fre-Forming at Room-Temperature: Quantification of Deformation History

    SciTech Connect

    Rohatgi, Aashish; Soulami, Ayoub; Stephens, Elizabeth V.; Davies, Richard W.; Smith, Mark T.

    2014-03-01

    Following the two prior publication of PNNL Pulse-Pressure research in the Journal of Materials Processing Technology, this manuscript continues to describe PNNL’s advances in getting a better understanding of sheet metal formability under high strain-rate conditions. Specifically, using a combination of numerical modeling and novel experiments, we quantitatively demonstrate the deformation history associated with enhanced formability (~2.5X) in Al under room temperature forming.

  16. Evaluation Of Liner Back-pressure Due To Concrete Pore Pressure At Elevated Temperatures

    SciTech Connect

    James, R.J.; Rashid, Y.R.; Liu, A.S.; Gou, B.

    2006-07-01

    GE's latest evolution of the boiling water reactor, the ESBWR, has innovative passive design features that reduce the number and complexity of active systems, which in turn provide economic advantages while also increasing safety. These passive systems used for emergency cooling also mean that the primary containment system will experience elevated temperatures with longer durations than conventional plants in the event of design basis accidents. During a Loss of Coolant Accident (LOCA), the drywell in the primary containment structure for the ESBWR will be exposed to saturated steam conditions for up to 72 hours following the accident. A containment spray system may be activated that sprays the drywell area with water to condense the steam as part of the recovery operations. The liner back-pressure will build up gradually over the 72 hours as the concrete temperatures increase, and a sudden cool down could cause excessive differential pressure on the liner to develop. For this analysis, it is assumed that the containment spray is activated at the end of the 72-hour period. A back-pressure, acting between the liner and the concrete wall of the containment, can occur as a result of elevated temperatures in the concrete causing steam and saturated vapor pressures to develop from the free water remaining in the pores of the concrete. Additional pore pressure also develops under the elevated temperatures from the non-condensable gases trapped in the concrete pores during the concrete curing process. Any buildup of this pore pressure next to the liner, in excess of the drywell internal pressure, will act to push the liner away from the concrete with a potential for tearing at the liner anchorages. This paper describes the methods and analyses used to quantify this liner back-pressure so that appropriate measures are included in the design of the liner and anchorage system. A pore pressure model is developed that calculates the pressure distribution across the concrete

  17. Influence of deformation behavior, oxydation, and temperature on the long time cyclic stress behavior of high temperature steels

    NASA Technical Reports Server (NTRS)

    Maile, K.

    1982-01-01

    The influence of different parameters on the creep-fatigue behavior of several steel alloys was investigated. The higher the temperature the lower the crack initiation value. Pauses during the cycle reduce the damage. Oxidation reduces and protective gas increases the lifetime. Prior loading and prior deformation reduce the lifetime. Short annealing slightly affects the cycle stress behavior. The test results do not satisfactorily agree with methods of extrapolation and damage accumulation.

  18. High pressure phase transitions in lawsonite at simultaneous high pressure and temperature: A single crystal study

    NASA Astrophysics Data System (ADS)

    O'Bannon, E. F., III; Vennari, C.; Beavers, C. C. G.; Williams, Q. C.

    2015-12-01

    Lawsonite (CaAl2Si2O7(OH)2.H2O) is a hydrous mineral with a high overall water content of ~11.5 wt.%. It is a significant carrier of water in subduction zones to depths greater than ~150 km. The structure of lawsonite has been extensively studied under room temperature, high-pressure conditions. However, simultaneous high-pressure and high-temperature experiments are scarce. We have conducted synchrotron-based simultaneous high-pressure and temperature single crystal experiments on lawsonite up to a maximum pressure of 8.4 GPa at ambient and high temperatures. We used a natural sample of lawsonite from Valley Ford, California (Sonoma County). At room pressure and temperature lawsonite crystallizes in the orthorhombic system with Cmcm symmetry. Room temperature compression indicates that lawsonite remains in the orthorhombic Cmcm space group up to ~9.0 GPa. Our 5.0 GPa crystal structure is similar to the room pressure structure, and shows almost isotropic compression of the crystallographic axes. Unit cell parameters at 5.0 GPa are a- 5.7835(10), b- 8.694(2), and c- 13.009(3). Single-crystal measurements at simultaneous high-pressure and temperature (e.g., >8.0 GPa and ~100 oC) can be indexed to a monoclinic P-centered unit cell. Interestingly, a modest temperature increase of ~100 oC appears to initiate the orthorhombic to monoclinic phase transition at ~0.6-2.4 GPa lower than room temperature compression studies have shown. There is no evidence of dehydration or H atom disorder under these conditions. This suggests that the orthorhombic to monoclinic transition could be kinetically impeded at 298 K, and that monoclinic lawsonite could be the dominant water carrier through much of the depth range of upper mantle subduction processes.

  19. High Pressure/Temperature Metal Silicate Partitioning of Tungsten

    NASA Technical Reports Server (NTRS)

    Shofner, G. A.; Danielson, L.; Righter, K.; Campbell, A. J.

    2010-01-01

    The behavior of chemical elements during metal/silicate segregation and their resulting distribution in Earth's mantle and core provide insight into core formation processes. Experimental determination of partition coefficients allows calculations of element distributions that can be compared to accepted values of element abundances in the silicate (mantle) and metallic (core) portions of the Earth. Tungsten (W) is a moderately siderophile element and thus preferentially partitions into metal versus silicate under many planetary conditions. The partitioning behavior has been shown to vary with temperature, silicate composition, oxygen fugacity, and pressure. Most of the previous work on W partitioning has been conducted at 1-bar conditions or at relatively low pressures, i.e. <10 GPa, and in two cases at or near 20 GPa. According to those data, the stronger influences on the distribution coefficient of W are temperature, composition, and oxygen fugacity with a relatively slight influence in pressure. Predictions based on extrapolation of existing data and parameterizations suggest an increased pressured dependence on metal/ silicate partitioning of W at higher pressures 5. However, the dependence on pressure is not as well constrained as T, fO2, and silicate composition. This poses a problem because proposed equilibration pressures for core formation range from 27 to 50 GPa, falling well outside the experimental range, therefore requiring exptrapolation of a parametereized model. Higher pressure data are needed to improve our understanding of W partitioning at these more extreme conditions.

  20. High-pressure and temperature investigations of energetic materials

    NASA Astrophysics Data System (ADS)

    Gump, J. C.

    2014-05-01

    Static high-pressure measurements are extremely useful for obtaining thermodynamic and phase stability information from a wide variety of materials. However, studying energetic materials can be challenging when extracting information from static high-pressure measurements. Energetic materials are traditionally C, H, N, O compounds with low crystalline symmetry, producing weak signal in commonly performed x-ray diffraction measurements. The small sample volume available in a static high-pressure cell exacerbates this issue. Additionally, typical hydrostatic compression media, such as methanol/ethanol, may react with many energetic materials. However, characterization of their thermodynamic parameters and phase stability is critical to understanding explosive performance and sensitivity. Crystalline properties, such as bulk modulus and thermal expansion, are necessary to accurately predict the behaviour of shocked solids using hydrodynamic codes. In order to obtain these values, equations of state of various energetic materials were investigated using synchrotron angle-dispersive x-ray diffraction experiments at static high-pressure and temperature. Intense synchrotron radiation overcomes the weak x-ray scattering of energetic materials in a pressure cell. The samples were hydrostatically compressed using a non-reactive hydrostatic medium and heated using a heated diamond anvil cell. Pressure - volume data for the materials were fit to the Birch-Murnaghan and Vinet formalisms to obtain bulk modulus and its first pressure derivative. Temperature - volume data at ambient pressure were fit to obtain the volume thermal expansion coefficient. Data from several energetic materials will be presented and compared.

  1. Pressure dependence of glass transition temperature of elastomeric glasses

    NASA Astrophysics Data System (ADS)

    Pae, K. D.; Tang, C.-L.; Shin, E.-S.

    1984-11-01

    The pressure dependence of the glass transition temperature Tg of two elastomers, Solithane 113 and 3,3-bis(azidomethyl)oxetane/tetrahydrofuran (BAMO/THF) has been determined, employing high-pressure differential thermal analysis (HP-DTA) and dielectric techniques, up to 8.5 kbar. The glasses of the elastomers were named the specific (or Pi glass) or the general glass depending on how the glasses were formed. A Pi glass was formed by lowering temperature under a constant pressure (Pi) and the pressure dependency of the Pi glass was determined after changing pressure only in the glassy state. The general glass consists of a series of specific glasses but the Tg is determined only at pressures under which the glass is formed. The Tg for both glasses increased with increasing pressure. However, the Tg for the Pi glass appears to level off at very high pressures while the Tg does not level off for the general glass. Thermodynamic analysis was made to show that for many general glasses dTg/dP=Δβ/(1+n)Δα holds, in which n=1 for Solithane and many other glasses. It is also shown that a modified Gibbs and DiMarzio theory can be used effectively to predict the observed experimental results.

  2. Low temperature measurement of the vapor pressures of planetary molecules

    NASA Technical Reports Server (NTRS)

    Kraus, George F.

    1989-01-01

    Interpretation of planetary observations and proper modeling of planetary atmospheres are critically upon accurate laboratory data for the chemical and physical properties of the constitutes of the atmospheres. It is important that these data are taken over the appropriate range of parameters such as temperature, pressure, and composition. Availability of accurate, laboratory data for vapor pressures and equilibrium constants of condensed species at low temperatures is essential for photochemical and cloud models of the atmospheres of the outer planets. In the absence of such data, modelers have no choice but to assume values based on an educated guess. In those cases where higher temperature data are available, a standard procedure is to extrapolate these points to the lower temperatures using the Clausius-Clapeyron equation. Last summer the vapor pressures of acetylene (C2H2) hydrogen cyanide (HCN), and cyanoacetylene (HC3N) was measured using two different methods. At the higher temperatures 1 torr and 10 torr capacitance manometers were used. To measure very low pressures, a technique was used which is based on the infrared absorption of thin film (TFIR). This summer the vapor pressure of acetylene was measured the TFIR method. The vapor pressure of hydrogen sulfide (H2S) was measured using capacitance manometers. Results for H2O agree with literature data over the common range of temperature. At the lower temperatures the data lie slightly below the values predicted by extrapolation of the Clausius-Clapeyron equation. Thin film infrared (TFIR) data for acetylene lie significantly below the values predicted by extrapolation. It is hoped to bridge the gap between the low end of the CM data and the upper end of the TFIR data in the future using a new spinning rotor gauge.

  3. Mechanical properties of heavy oil-sand and shale as a function of pressure and temperature

    SciTech Connect

    Blair, S.C.; Sweeney, J.J.; Ralph, W.R.; Ruddle, D.G.

    1987-07-01

    Laboratory tests were conducted to determine the mechanical properties of oil-sand and shale samples from the Faja region of Venezuela at elevated temperature and pressure. Results describe pressure-volume (PV) behavior at temperatures of 23 and 125/sup 0/C; the effect of mechanical disturbance on PV behavior; equation-of-state (EOS) at temperatures of 23, 125, and 250/sup 0/C and effective pressures to 150 MPa; and creep/compaction behavior at temperatures of 23 and 125/sup 0/C. Data from PV tests on oil-sand show that increasing temperature from 23 to 125/sup 0/C had very little effect on this material. Mechanical disturbance of oil-sand prior to PV testing lowered values of K. The compressive strength of oil-sand increased as effective (P/sub E/) was raised and at both temperatures, samples tested at equivalent P/sub E/ had similar strengths. Compressive strength of oil-sand seems to be controlled by the drainage of pore fluid during axial deformation. Nearly all oil-sand samples exhibited strain-hardening. PV tests conducted on shale show that increasing temperature from 23 to 125/sup 0/C reduced values of K one third. Mechanical disturbance significantly affected the PV response of shale samples due to the friable nature of the material. Data for shale samples tested in triaxial compression show that ultimate stress increases with increasing pressure and increasing temperature. Results of long-term creep compaction tests show a linear change in sample volume as a function of the log of time and that the rate of volume change with time was larger at 125/sup 0/C than at 23/sup 0/C for both oil-sand and shale. 4 refs., 31 figs., 6 tabs.

  4. Dual pressure-dual temperature isotope exchange process

    DOEpatents

    Babcock, D.F.

    1974-02-12

    A liquid and a gas stream, each containing a desired isotope, flow countercurrently through two liquid-gas contacting towers maintained at different temperatures and pressures. The liquid is enriched in the isotope in one tower while the gas is enriched within the other and a portion of at least one of the enriched streams is withdrawn from the system for use or further enrichment. The tower operated at the lower temperature is also maintained at the lower pressure to prevent formation of solid solvates. Gas flow between the towers passes through an expander-compressor apparatas to recover work from the expansion of gas to the lower pressure and thereby compress the gas returning to the tower of higher pressure. (Official Gazette)

  5. Effect of the particular temperature field on a National Ignition Facility deformable mirror

    NASA Astrophysics Data System (ADS)

    Bian, Qi; Huang, Lei; Ma, Xingkun; Xue, Qiao; Gong, Mali

    2016-09-01

    The changes caused by temperature in the surface shape of a deformable mirror used at the National Ignition Facility has been investigated previously. In this paper the temperature induced surface shape under different temperature fields is further studied. We find that the changes of the peak and valley (PV) or root-mean-square (RMS) value rely on the temperature gradient as well as the difference between the mirror and the environment with a certain rule. This work analyzes these quantitative relationship, using the finite element method. Some experiments were carried out to verify the analysis results. The conclusion provides guidance to minimize the effect of the temperature field on the surface shape. Considerations about how to improve the temperature induced faceplate in actual work are suggested finally.

  6. High temperature monotonic and cyclic deformation in a directionally solidified nickel-base superalloy

    NASA Technical Reports Server (NTRS)

    Huron, Eric S.

    1986-01-01

    Directionally solidified (DS) MAR-M246+Hf was tested in tension and fatigue, at temperatures from 20 C to 1093 C. Tests were performed on (001) oriented specimens at strain rates of 50 % and 0.5 % per minute. In tension, the yield strength was constant up to 704 C, above which the strength dropped off rapidly. A strong dependence of strength on strain rate was seen at the higher temperatures. The deformation mode was observed to change from heterogeneous to homogeneous with increasing temperature. Low Cycle Fatigue tests were done using a fully reversed waveform and total strain control. For a given plastic strain range, lives increased with increasing temperature. For a given temperature strain rate had a strong effect on life. At 704 C, decreasing strain rates decreased life, while at the higher temperatures, decreasing strain rates increased life, for a given plastic strain range. These results could be explained through considerations of the deformation modes and stress levels. At the higher temperatures, marked coarsening caused beneficial stress reductions, but oxidation limited the life. The longitudinal grain boundaries were found to influence slip behavior. The degree of secondary slip adjacent to the boundaries was found to be related to the degree of misorientation between the grains.

  7. Modeling of high homologous temperature deformation behavior for stress and life-time analyses

    SciTech Connect

    Krempl, E.

    1997-12-31

    Stress and lifetime analyses need realistic and accurate constitutive models for the inelastic deformation behavior of engineering alloys at low and high temperatures. Conventional creep and plasticity models have fundamental difficulties in reproducing high homologous temperature behavior. To improve the modeling capabilities {open_quotes}unified{close_quotes} state variable theories were conceived. They consider all inelastic deformation rate-dependent and do not have separate repositories for creep and plasticity. The viscoplasticity theory based on overstress (VBO), one of the unified theories, is introduced and its properties are delineated. At high homologous temperature where secondary and tertiary creep are observed modeling is primarily accomplished by a static recovery term and a softening isotropic stress. At low temperatures creep is merely a manifestation of rate dependence. The primary creep modeled at low homologous temperature is due to the rate dependence of the flow law. The model is unaltered in the transition from low to high temperature except that the softening of the isotropic stress and the influence of the static recovery term increase with an increase of the temperature.

  8. Passive Resistor Temperature Compensation for a High-Temperature Piezoresistive Pressure Sensor

    PubMed Central

    Yao, Zong; Liang, Ting; Jia, Pinggang; Hong, Yingping; Qi, Lei; Lei, Cheng; Zhang, Bin; Li, Wangwang; Zhang, Diya; Xiong, Jijun

    2016-01-01

    The main limitation of high-temperature piezoresistive pressure sensors is the variation of output voltage with operating temperature, which seriously reduces their measurement accuracy. This paper presents a passive resistor temperature compensation technique whose parameters are calculated using differential equations. Unlike traditional experiential arithmetic, the differential equations are independent of the parameter deviation among the piezoresistors of the microelectromechanical pressure sensor and the residual stress caused by the fabrication process or a mismatch in the thermal expansion coefficients. The differential equations are solved using calibration data from uncompensated high-temperature piezoresistive pressure sensors. Tests conducted on the calibrated equipment at various temperatures and pressures show that the passive resistor temperature compensation produces a remarkable effect. Additionally, a high-temperature signal-conditioning circuit is used to improve the output sensitivity of the sensor, which can be reduced by the temperature compensation. Compared to traditional experiential arithmetic, the proposed passive resistor temperature compensation technique exhibits less temperature drift and is expected to be highly applicable for pressure measurements in harsh environments with large temperature variations. PMID:27455271

  9. Passive Resistor Temperature Compensation for a High-Temperature Piezoresistive Pressure Sensor.

    PubMed

    Yao, Zong; Liang, Ting; Jia, Pinggang; Hong, Yingping; Qi, Lei; Lei, Cheng; Zhang, Bin; Li, Wangwang; Zhang, Diya; Xiong, Jijun

    2016-01-01

    The main limitation of high-temperature piezoresistive pressure sensors is the variation of output voltage with operating temperature, which seriously reduces their measurement accuracy. This paper presents a passive resistor temperature compensation technique whose parameters are calculated using differential equations. Unlike traditional experiential arithmetic, the differential equations are independent of the parameter deviation among the piezoresistors of the microelectromechanical pressure sensor and the residual stress caused by the fabrication process or a mismatch in the thermal expansion coefficients. The differential equations are solved using calibration data from uncompensated high-temperature piezoresistive pressure sensors. Tests conducted on the calibrated equipment at various temperatures and pressures show that the passive resistor temperature compensation produces a remarkable effect. Additionally, a high-temperature signal-conditioning circuit is used to improve the output sensitivity of the sensor, which can be reduced by the temperature compensation. Compared to traditional experiential arithmetic, the proposed passive resistor temperature compensation technique exhibits less temperature drift and is expected to be highly applicable for pressure measurements in harsh environments with large temperature variations. PMID:27455271

  10. Pressure dependence of the melting temperature of metals

    NASA Technical Reports Server (NTRS)

    Schlosser, Herbert; Vinet, Pascal; Ferrante, John

    1989-01-01

    A new method for the analysis of the experimental data for the pressure dependence of the melting temperature of metals is presented. The method combines Lindemann's law, the Debye model, and a first-order equation of state with the experimental observation that the Grueneisen parameter divided by the volume is constant. It is observed that, based on these assumptions, in the absence of phase transitions, plots of the logarithm of the normalized melting temperature versus the logarithm of the normalized pressure are straight lines. It is found that the normalized-melting--temperature versus normalized-pressure curves accurately satisfy the linear relationship for Al, Ag, Au, Cs, Cu, K, Na, Pt, and Rb. In addition, this technique provides a sensitive tool for detecting phase transitions.

  11. Evidence for a transition in deformation mechanism in nanocrystalline pure titanium processed by high-pressure torsion

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Song, Min; Liu, Yong; Ni, Song; Sabbaghianrad, Shima; Langdon, Terence G.

    2016-06-01

    Nanocrystalline titanium with an average grain size of about 60-70 nm was prepared by high-pressure torsion. The results of hardness and structural evolutions indicate that a strain-induced hardening-softening-hardening-softening behaviour occurs. For coarse-grained titanium, -type dislocation multiplication, twinning and a high pressure-induced α-to-ω phase transformation play major roles to accommodate deformation, leading to a significant strain hardening. As deformation proceeds, dynamic recrystallisation leads to a decrease in dislocation density, especially for -type dislocations, leading to a slight strain softening. The -component dislocation multiplication dominates the deformation when the grain size decreases to 100 nm and -component dislocation multiplication, grain refinement and the α-to-ω phase transformation contribute to the second strain hardening. The following strain softening is attributed to dynamic recovery.

  12. Magnetically Orchestrated Formation of Diamond at Lower Temperatures and Pressures

    NASA Astrophysics Data System (ADS)

    Little, Reginald B.; Lochner, Eric; Goddard, Robert

    2005-01-01

    Man's curiosity and fascination with diamonds date back to ancient times. The knowledge of the many properties of diamond is recorded during Biblical times. Antoine Lavoisier determined the composition of diamond by burning in O2 to form CO2. With the then existing awareness of graphite as carbon, the race began to convert graphite to diamond. The selective chemical synthesis of diamond has been pursued by Cagniard, Hannay, Moisson and Parson. On the basis of the thermodynamically predicted equilibrium line of diamond and graphite, P W Bridgman attempted extraordinary conditions of high temperature (>2200°C) and pressure (>100,000 atm) for the allotropic conversion of graphite to diamond. H T Hall was the first to successfully form bulk diamond by realizing the kinetic restrictions to Bridgman's (thermodynamic) high pressure high temperature direct allotropic conversion. Moreover, Hall identified catalysts for the faster kinetics of diamond formation. H M Strong determined the import of the liquid catalyst during Hall's catalytic synthesis. W G Eversole discovered the slow metastable low pressure diamond formation by pyrolytic chemical vapor deposition with the molecular hydrogen etching of the rapidly forming stable graphitic carbon. J C Angus determined the import of atomic hydrogen for faster etching for faster diamond growth at low pressure. S Matsumoto has developed plasma and hot filament technology for faster hydrogen and carbon radical generations at low pressure for faster diamond formation. However the metastable low pressure chemical vapor depositions by plasma and hot filament are prone to polycrystalline films. From Bridgman to Hall to Eversole, Angus and Matsumoto, much knowledge has developed of the importance of pressure, temperature, transition metal catalyst, liquid state of metal (metal radicals atoms) and the carbon radical intermediates for diamond synthesis. Here we advance this understanding of diamond formation by demonstrating the external

  13. Pressure-temperature phase transition diagram for wheat starch.

    PubMed

    Douzals, J P; Perrier-Cornet, J M; Coquille, J C; Gervais, P

    2001-02-01

    Wheat starch suspensions in water (5% dry matter) were subjected to various pressures (0.1-600 MPa) and temperatures (-20 to 96 degrees C) for 15 min. The gelatinization rate was measured after treatment by using microscopic measurements of the loss of birefringence of the granules. This method was previously calibrated by differential scanning calorimetry. Curves of isogelatinization were found to be quite similar to a pressure-temperature (P-T) diagram of unfolding proteins. Results were first analyzed by considering the thermodynamic aspects related to the dT/dP curve shifts. On the basis of equations already shown for proteins, the P-T gelatinization diagram of wheat starch would show different kinds of thermal contributions, suggesting endothermic, athermic, or exothermic melting reactions. Second, as a practical consequence, these previous P-T areas corresponded to specific gelatinization conditions as confirmed by hydration evaluation measured by starch swelling index. Depending on the pressure-temperature conditions, gelatinization would involve hydration. Lowering the pressure and temperature resulted in a complete gelatinization with less hydration in comparison with a thermal treatment at atmospheric pressure. A hydration model based on an energetic approach was proposed. PMID:11262043

  14. Alloy synthesis using the mach stem region in an axial symmetric implosive shock: Understanding the pressure strain-temperature contributions

    SciTech Connect

    Staudhammer, Karl P.

    2004-01-01

    The Mach stem region in an axial symmetric shock implosion has generally been avoided in the dynamic consolidation of powders for a number of reasons. The prime reason being that the convergence of the shock waves in the cylindrical axis produce enormous pressures and concomitant temperatures that have melted tungsten. This shock wave convergence consequently results in a discontinuity in the hydro-code calculations. Dynamic deformation experiments on gold plated 304L stainless steel powders were undertaken. These experiments utilized pressures of 0.08 to 1.0 Mbar and contained a symmetric radial melt region along the central axis of the sample holder. To understand the role of deformation in a porous material, the pressure, and temperature as well as the deformation heat and associated defects must be accounted for. When the added heat of consolidation deformation exceeds the melt temperature of the 304 powders, a melt zone results that can consume large regions of the compact while still under the high-pressure pulse. As the shock wave traverses the sample and is removed in a momentum trap, its pressure/temperature are quenched. It is within this region that very high diffusion/alloying occurs and has been observed in the gold plated powders. Anomalous increases of gold diffusion into 304 stainless steel have been observed via optical microscopy, scanning electron microscopy and EDAX measurements. Values exceeding 1200 m/sec have been measured and correlated to the powder sizes, size distribution and packing density, concomitant with sample container strains ranging from 2.0% to 26%.

  15. Pressure variation of reentrant transition temperature in liquid crystals.

    PubMed

    Srivastava, A; Sa, D; Singh, S

    2007-02-01

    High pressure experimental studies show that in certain mesogenic materials, the nematic-smectic A (N-Sm A) transition temperature T(AN) exhibits nonlinear pressure dependence. As a consequence, the material shows reentrant phenomena that is a phase sequence nematic -- smectic A -- reentrant nematic appears. The characteristic features of this phenomenon have been addressed here within the framework of Landau-de-Gennes theory, where the coupling between nematic and smectic A order parameters (gamma, lambda(eff)) plays an important role. The cubic coupling gamma is chosen to be negative in order to form Sm A phase whereas the biquadratic coupling lambda(eff) is made large and positive to obtain reentrant behaviour. In the present work, we incorporate the pressure dependence in the theory through gamma and lambda(eff) which justifies the experimental pressure dependence in the reentrant transition temperature [Formula: see text]. The pressure dependence of gamma and lambda(eff) are employed in the calculation of excess specific heat capacity near the reentrant transition. The computed heat capacity shows strong pressure dependence near the reentrant transition which can be confirmed from high pressure measurement. PMID:17342375

  16. Pressure and Temperature Sensors Using Two Spin Crossover Materials

    PubMed Central

    Jureschi, Catalin-Maricel; Linares, Jorge; Boulmaali, Ayoub; Dahoo, Pierre Richard; Rotaru, Aurelian; Garcia, Yann

    2016-01-01

    The possibility of a new design concept for dual spin crossover based sensors for concomitant detection of both temperature and pressure is presented. It is conjectured from numerical results obtained by mean field approximation applied to a Ising-like model that using two different spin crossover compounds containing switching molecules with weak elastic interactions it is possible to simultaneously measure P and T. When the interaction parameters are optimized, the spin transition is gradual and for each spin crossover compounds, both temperature and pressure values being identified from their optical densities. This concept offers great perspectives for smart sensing devices. PMID:26848663

  17. Temperature Induced Voltage Offset Drifts in Silicon Carbide Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S.; Lukco, Dorothy; Nguyen, Vu; Savrun, Ender

    2012-01-01

    We report the reduction of transient drifts in the zero pressure offset voltage in silicon carbide (SiC) pressure sensors when operating at 600 C. The previously observed maximum drift of +/- 10 mV of the reference offset voltage at 600 C was reduced to within +/- 5 mV. The offset voltage drifts and bridge resistance changes over time at test temperature are explained in terms of the microstructure and phase changes occurring within the contact metallization, as analyzed by Auger electron spectroscopy and field emission scanning electron microscopy. The results have helped to identify the upper temperature reliable operational limit of this particular metallization scheme to be 605 C.

  18. Soft Wire Seals For High Temperatures And Pressures

    NASA Technical Reports Server (NTRS)

    Tsou, Peter

    1996-01-01

    Soft metal wires used to make O-ring and similar seals for vessels, flanges, and fittings subject to pressures equal to or greater than 1,000 psi and temperatures equal to or greater than 100 degrees C. Seals containing soft metal wires made inexpensively because fabricated to looser tolerances like those of lower-temperature, lower-pressure elastomeric-O-ring seals, which they resemble. Seals also made with noncircular grooves and with soft metals other than aluminum. For example, gold performs well, though expensive. For other applications, silver good choice.

  19. Temperature, Humidity, Wind and Pressure Sensors (THWAPS) Handbook

    SciTech Connect

    Ritsche, MT

    2011-01-17

    The temperature, humidity, wind, and pressure system (THWAPS) provide surface reference values of these measurements for balloon-borne sounding system (SONDE) launches. The THWAPS is located adjacent to the SONDE launch site at the Southern Great Plains (SGP) Central Facility. The THWAPS system is a combination of calibration-quality instruments intended to provide accurate measurements of meteorological conditions near the surface. Although the primary use of the system is to provide accurate surface reference values of temperature, pressure, relative humidity (RH), and wind velocity for comparison with radiosonde readings, the system includes a data logger to record time series of the measured variables.

  20. Thermal Conductivity Measurements in Metals at High Pressures and Temperatures.

    NASA Astrophysics Data System (ADS)

    Konopkova, Z.; McWilliams, R. S.; Goncharov, A.

    2014-12-01

    The transport properties of iron and iron alloys at high pressures and temperatures are crucial parameters in planetary evolution models, yet are difficult to determine both theoretically and experimentally. Estimates of thermal conductivity in the Earth's core range from 30 to 150 W/mK, a substantial range leaving many open questions regarding the age of the inner core, the thermal structure of the outer core, and the conditions for a working geodynamo. Most experiments have measured electrical resistivity rather than directly measuring thermal conductivity, and have used models to extrapolate from low-temperature data to the high temperature conditions of the core. Here we present direct, in-situ high-pressure and high-temperature measurements of the thermal conductivity of metals in the diamond-anvil cell. Double-sided continuous laser heating is combined with one-side flash heating of a metallic foil, while the time-resolved temperature is measured from both sides with spectral radiometry in an optical streak camera. Emission and temperature perturbations measured on opposite sides of the foil were modeled using finite element calculations in order to extract thermal diffusivity and conductivity of foils. Results on platinum and iron at high pressures and temperatures will be presented.

  1. Bicephality, a seldom occurring developmental deformity in Tegenaria atrica caused by alternating temperatures.

    PubMed

    Napiórkowska, Teresa; Napiórkowski, Paweł; Templin, Julita; Wołczuk, Katarzyna

    2016-08-01

    The experiment was aimed at demonstrating the relationship between deformities of the front part of the prosoma accompanied by changes in the brain structure in bicephalous Tegenaria atrica and exposure of their embryos to temperature fluctuations. By exposing spider embryos to alternating temperatures of 14 and 32°C for the first 10 days of embryonic development, we obtained eight two-headed individuals, subsequently divided into three groups according to morphological differences. We described in detail morphological abnormalities of the prosoma identified in members of each group. Histological examination confirmed a close relationship between morphological deformities and the brain structure of teratogenically changed spiders. The fusion of appendages (pedipalps and chalicerae) was accompanied by the fusion of corresponding ganglia. The absence of appendages (pedipalps) was accompanied by the absence of corresponding ganglia. This correlation may have resulted from previously impaired neuromere development which led to changes in the morphological structure of the prosoma. Since no deformities were identified in control animals, it can be concluded that bicephaly was caused by exposing embryos to alternating temperatures. PMID:27503724

  2. Structural Evolution and Mechanical Properties of a VT22 Titanium Alloy Under High-Temperature Deformation

    NASA Astrophysics Data System (ADS)

    Ratochka, I. V.; Mishin, I. P.; Lykova, O. N.; Naydenkin, E. V.; Varlamova, N. V.

    2016-07-01

    The special features inherent in the development of high-temperature deformation and structural evolution in materials are investigated, using a VT22 titanium alloy of the transition class (Ti - 4.74 mass% Al - 5.57 mass% Mo - 5.04 mass% V) subjected to helical rolling + aging as an example. This treatment is found to give rise to an intragrain fine acicular martensite structure with fine inclusions of α-phase particles of size ~1 μm. It is shown that in the alloy undergoing plastic deformation at temperatures approaching the polymorphic transformation temperature, the elongation to failure is in excess of 300%. The high plasticity of the alloy in the conditions considered is likely to be due to vigorous development of phase transformations and intensification of diffusion-controlled processes, including the effects of the evolution of the dislocation structure, growth of subgrains, and formation of new grains in the bulk of the pre-existing ones during plastic deformation.

  3. Application of a Multiscale Model of Tantalum Deformation at Megabar Pressures

    SciTech Connect

    Cavallo, R M; Park, H; Barton, N R; Remignton, B A; Pollaine, S M; Prisbrey, S T; Bernier, J V; May, M J; Maddox, B R; Swift, D W; Becker, R C; Olson, R T

    2010-05-13

    A new multiscale simulation tool has been developed to model the strength of tantalum under high-pressure dynamic compression. This new model combines simulations at multiple length scales to explain macroscopic properties of materials. Previously known continuum models of material response under load have built upon a mixture of theoretical physics and experimental phenomenology. Experimental data, typically measured at static pressures, are used as a means of calibration to construct models that parameterize the material properties; e.g., yield stress, work hardening, strain-rate dependence, etc. The pressure dependence for most models enters through the shear modulus, which is used to scale the flow stress. When these models are applied to data taken far outside the calibrated regions of phase space (e.g., strain rate or pressure) they often diverge in their predicted behavior of material deformation. The new multiscale model, developed at Lawrence Livermore National Laboratory, starts with interatomic quantum mechanical potential and is based on the motion and multiplication of dislocations. The basis for the macroscale model is plastic deformation by phonon drag and thermally activated dislocation motion and strain hardening resulting from elastic interactions among dislocations. The dislocation density, {rho}, and dislocation velocity, {nu}, are connected to the plastic strain rate {var_epsilon}{sup p}, via Orowan's equation: {var_epsilon}{sup p} = {rho}b{nu}/M, where b is the Burger's vector, the shear magnitude associated with a dislocation, and M is the Taylor factor, which accounts for geometric effects in how slip systems accommodate the deformation. The evolution of the dislocation density and velocity is carried out in the continuum model by parameterized fits to smaller scale simulations, each informed by calculations on smaller length scales down to atomistic dimensions. We apply this new model for tantalum to two sets of experiments and compare the

  4. ACCEPT: a three-dimensional finite element program for large deformation elastic-plastic-creep analysis of pressurized tubes (LWBR/AWBA Development Program)

    SciTech Connect

    Hutula, D.N.; Wiancko, B.E.

    1980-03-01

    ACCEPT is a three-dimensional finite element computer program for analysis of large-deformation elastic-plastic-creep response of Zircaloy tubes subjected to temperature, surface pressures, and axial force. A twenty-mode, tri-quadratic, isoparametric element is used along with a Zircaloy materials model. A linear time-incremental procedure with residual force correction is used to solve for the time-dependent response. The program features an algorithm which automatically chooses the time step sizes to control the accuracy and numerical stability of the solution. A contact-separation capability allows modeling of interaction of reactor fuel rod cladding with fuel pellets or external supports.

  5. In situ Rheological Measurements at Extreme Pressure and Temperature using Synchrotron X-ray Diffraction and Radiography

    SciTech Connect

    Raterron, P.; Merkel, S

    2009-01-01

    Dramatic technical progress seen over the past decade now allows the plastic properties of materials to be investigated under extreme pressure and temperature conditions. Coupling of high-pressure apparatuses with synchrotron radiation significantly improves the quantification of differential stress and specimen textures from X-ray diffraction data, as well as specimen strains and strain rates by radiography. This contribution briefly reviews the recent developments in the field and describes state-of-the-art extreme-pressure deformation devices and analytical techniques available today. The focus here is on apparatuses promoting deformation at pressures largely in excess of 3 GPa, namely the diamond anvil cell, the deformation-DIA apparatus and the rotational Drickamer apparatus, as well as on the methods used to carry out controlled deformation experiments while quantifying X-ray data in terms of materials rheological parameters. It is shown that these new techniques open the new field of in situ investigation of materials rheology at extreme conditions, which already finds multiple fundamental applications in the understanding of the dynamics of Earth-like planet interior.

  6. Pressure-Sensitive System for Gas-Temperature Control

    NASA Technical Reports Server (NTRS)

    Cesaro, Richard S; Matz, Norman

    1948-01-01

    A thermodynamic relation is derived and simplified for use as a temperature-limiting control equation involving measurement of gas temperature before combustion and gas pressures before and after combustion. For critical flow in the turbine nozzles of gas-turbine engines, the control equation is further simplified to require only measurements upstream of the burner. Hypothetical control systems are discussed to illustrate application of the control equations.

  7. Determination of the SSME high pressure oxidizer turbopump bearing temperature

    NASA Technical Reports Server (NTRS)

    Naerheim, Y.; Stocker, P. J.; Lumsden, J. B.

    1988-01-01

    The SSME high pressure liquid oxygen turbopump (HPOTP) bearings sometimes wear and experience heating and oxidation of the ball and raceway surfaces. So far it has been impossible to measure the temperature of the bearings directly during operation of the turbopumps. However, a method was developed for determining the surface temperature of the bearings from the composition of the oxides using oxidation samples for calibration and Auger Electron Spectroscopy (AES) for chemical analysis.

  8. High-Pressure X-ray Tomography Microscope: Synchrotron Computed Microtomography at High Pressure and Temperature

    SciTech Connect

    Wang, Y.; Uchida, T.; Westferro, F.; Rivers, M.L.; Gebhardt, J.; Lesher, C.E.; Sutton, S.R.

    2010-07-20

    A new apparatus has been developed for microtomography studies under high pressure. The pressure generation mechanism is based on the concept of the widely used Drickamer anvil apparatus, with two opposed anvils compressed inside a containment ring. Modifications are made with thin aluminum alloy containment rings to allow transmission of x rays. Pressures up to 8 GPa have been generated with a hydraulic load of 25 T. The modified Drickamer cell is supported by thrust bearings so that the entire pressure cell can be rotated under load. Spatial resolution of the high pressure tomography apparatus has been evaluated using a sample containing vitreous carbon spheres embedded in FeS matrix, with diameters ranging from 0.01 to 0.2 mm. Spheres with diameters as small as 0.02 mm were well resolved, with measured surface-to-volume ratios approaching theoretical values. The sample was then subject to a large shear strain field by twisting the top and bottom Drickamer anvils. Imaging analysis showed that detailed microstructure evolution information can be obtained at various steps of the shear deformation, allowing strain partition determination between the matrix and the inclusions. A sample containing a vitreous Mg{sub 2}SiO{sub 4} sphere in FeS matrix was compressed to 5 GPa, in order to evaluate the feasibility of volume measurement by microtomography. The results demonstrated that quantitative inclusion volume information can be obtained, permitting in situ determination of P-V-T equation of state for noncrystalline materials.

  9. Modelling the rheology of MgO under Earth's mantle pressure, temperature and strain rates.

    PubMed

    Cordier, Patrick; Amodeo, Jonathan; Carrez, Philippe

    2012-01-12

    Plate tectonics, which shapes the surface of Earth, is the result of solid-state convection in Earth's mantle over billions of years. Simply driven by buoyancy forces, mantle convection is complicated by the nature of the convecting materials, which are not fluids but polycrystalline rocks. Crystalline materials can flow as the result of the motion of defects--point defects, dislocations, grain boundaries and so on. Reproducing in the laboratory the extreme deformation conditions of the mantle is extremely challenging. In particular, experimental strain rates are at least six orders of magnitude larger than in nature. Here we show that the rheology of MgO at the pressure, temperature and strain rates of the mantle is accessible by multiscale numerical modelling starting from first principles and with no adjustable parameters. Our results demonstrate that extremely low strain rates counteract the influence of pressure. In the mantle, MgO deforms in the athermal regime and this leads to a very weak phase. It is only in the lowermost lower mantle that the pressure effect could dominate and that, under the influence of lattice friction, a viscosity of the order of 10(21)-10(22) pascal seconds can be defined for MgO. PMID:22237109

  10. Hot Deformation Behavior of Alloy 800H at Intermediate Temperatures: Constitutive Models and Microstructure Analysis

    NASA Astrophysics Data System (ADS)

    Cao, Y.; Di, H. S.; Misra, R. D. K.; Zhang, Jiecen

    2014-12-01

    The hot deformation behavior of a Fe-Ni-Cr austenitic Alloy 800H was explored in the intermediate temperature range of 825-975 °C and strain rate range of 0.01-10 s-1. The study indicates that dynamic recrystallization (DRX) occurred at 875-975 °C for strain rates of 0.01-0.1 s-1 and adiabatic heating generated at high strain rates accelerated the DRX process. Based on the experimental data, the Johnson-Cook, modified Johnson-Cook, and Arrhenius-type constitutive models were established to predict the flow stress during hot deformation. A comparative study was made on the accuracy and effectiveness of the above three developed models. The microstructure analysis indicated that all the deformation structures exhibited elongated grains and evidence of some degree of DRX. The multiple DRX at 975 °C and 0.01 s-1 led to an increase in the intensity of {001} <100> "cube" texture component and a significant reduction in the intensity of {011} <211> "brass" component. Additionally, the average values of grain average misorientation and grain orientation spread for deformed microstructure were inversely proportional to the fraction of DRX.

  11. Thermal Conductivity of Argon at High Pressures and High Temperatures

    NASA Astrophysics Data System (ADS)

    Wong, M. L.; Goncharov, A. F.; Dalton, D. A.; Ojwang, J.; Struzhkin, V.; Konopkova, Z.; Lazor, P.

    2010-12-01

    Accurate data on the thermal conductivity of argon at high pressures and high temperatures is essential to unraveling the nature of the Earth’s interior. Argon is a common pressure-transmitting medium in diamond anvil cell (DAC) experiments, which is commonly used for studying the properties of minerals at pressures and temperatures native to the mantel and core. We used a transient heating technique (Beck et al., 2007) in a symmetric DAC up to 50 GPa and 2500 K. A thin iridium foil (1 μm thick) positioned in a recessed gasket hole filled with argon served as a heat absorber (coupler) to pump thermal energy into the sample. We used 6 μs width pulses from electronically modulated Yb-based fiber laser. We determined the temperature of the coupler with 500 ns time resolution by applying the Planck function to its thermal emission spectrum, and doing this over time yields temperature verses time for the coupler. Using finite element (FE) calculation methods we simulated the heat flux transfer in the DAC cavity using the experimentally determined geometric and laser heating parameters. The thermochemical parameters of Ir and Ar were determined by scaling the ambient pressure data using the available equations of state. The temperature dependent thermal conductivity of Ar was determined by fitting the results of FE calculations to the experimentally determined time dependent coupler temperature. We used the results of the theoretical calculations (Tretiakov & Scandolo, 2004) as the initial input. The results for the pressure and temperature dependent thermal conductivity of Ar will be reported at the meeting. This work is supported by NSF EAR 0711358, NSF-REU, Carnegie Institution of Washington, and DOE-NNSA (CDAC). Beck, P; Goncharov, A.F., Struzhkin, V.V., Militzer, B, Mao, H.K, Hemley, R.J. (2007). Measurement of thermal diffusivity at high pressure using a transient heating technique, Appl Phys. Lett. 91, 181914-(1-3). Tretiakov, K. V. & S. Scandolo (2004

  12. INELASTIC PROPERTIES OF ICE I//h AT LOW TEMPERATURES AND HIGH PRESSURES.

    USGS Publications Warehouse

    Kirby, S.H.; Durham, W.B.; Beeman, M.L.; Heard, H.C.; Daley, M.A.

    1987-01-01

    The aim of our research programme is to explore the rheological behavior of H//2O ices under conditions appropriate to the interiors of the icy satellites of the outer planets in order to give insight into their deformation. To this end, we have performed over 100 constant-strain-rate compression tests at pressures to 500 MPa and temperatures as low as 77 K. At P greater than 30 MPa, ice I//h fails by a shear instability producing faults in the maximum shear stress orientation and failure strength typically is independent of pressure. This unusual faulting behavior is thought to be connected with phase transformations localized in the shear zones. The steady-state strength follows rheological laws of the thermally-activated power-law type, with different flow law parameters depending on the range of test temperatures. The flow laws will be discussed with reference to the operating deformation mechanisms as deduced from optical-scale microstructures and comparison with other work.

  13. Effect of temperature and pressure on the protonation of glycine

    PubMed Central

    Izatt, R. M.; Oscarson, J. L.; Gillespie, S. E.; Grimsrud, H.; Renuncio, J. A. R.; Pando, C.

    1992-01-01

    Flow calorimetry has been used to study the interaction of glycine with protons in water at temperatures of 298.15, 323.15, and 348.15 K and pressures up to 12.50 MPa. By combining the measured heat for glycine solutions titrated with NaOH with the heat of ionization for water, the enthalpy of protonation of glycine is obtained. The reaction is exothermic at all temperatures and pressures studied. The effect of pressure on the enthalpy of reaction is very small. The experimental heat data are analyzed to yield equilibrium constant (K), enthalpy change (ΔH), and entropy change (ΔS) values for the protonation reaction as a function of temperature. These values are compared with those reported previously at 298.15 K. The ΔH and ΔS values increase (become more positive), whereas log K values decrease, as temperature increases. The trends for ΔH and ΔS with temperature are opposite to those reported previously for the protonation of several alkanolamines. However, log K values for proton interaction with both glycine and the alkanolamines decrease with increasing temperature. The effect of the nitrogen atom substituent on log K for protonation of glycine and alkanolamines is discussed in terms of changes in long-range and short-range solvent effects. These effects are used to explain the difference in ΔH and ΔS trends between glycine protonation and those found earlier for alkanolamine protonation. PMID:19431832

  14. A continuum deformation theory for metal-matrix composites at high temperature

    NASA Technical Reports Server (NTRS)

    Robinson, D. N.

    1987-01-01

    A continuum theory is presented for representing the high temperature, time dependent, hereditary deformation behavior of metallic composites that can be idealized as pseudohomogeneous continua with locally definable directional characteristics. Homogenization of textured materials (molecular, granular, fibrous) and applicability of continuum mechanics in structural applications depends on characteristic body dimensions, the severity of gradients (stress, temperature, etc.) in the structure and the relative size of the internal structure (cell size) of the material. The point of view taken here is that the composite is a material in its own right, with its own properties that can be measured and specified for the composite as a whole.

  15. Thermal diffusivity of igneous rocks at elevated pressure and temperature

    SciTech Connect

    Durham, W.B.; Mirkovich, V.V.; Heard, H.C.

    1987-10-10

    Thermal diffusivity measurements of seven igneous rocks were made to temperatures of 400 /sup 0/C and pressures of 200 MPa. The measuring method was based on the concept of cylindrical symmetry and periodic heat pulses. The seven rocks measured were Westerly (Rhode Island) granite, Climax Stock (Nevada) quartz monzonite, Pomona (Washington) basalt, Atikokan (Ontario, Canada) granite, Creighton (Ontario, Canada) gabbro, East Bull Lake (Ontario, Canada) gabbro, and Stripa (Sweden) granite. The diffusivity of all the rocks showed a positive linear dependence on inverse temperature and, excluding the East Bull Lake gabbro, showed a linear dependence on quartz content. (Quartz content varied from 0 to 31% by volume.) Diffusivity in all cases rose or remained steady with increasing confining pressure. The pressure effect was strongest at lowest pressures and vanished by levels between 10 and 100 MPa, depending on rock type. The pressure effect (measured as a percentage change in diffusivity) is stronger in the four rocks of granite composition than in the three of basaltic composition. Our results agree well with existing thermal diffusivity measurements at atmospheric pressure.

  16. Mixture including hydrogen and hydrocarbon having pressure-temperature stability

    NASA Technical Reports Server (NTRS)

    Mao, Wendy L. (Inventor); Mao, Ho-Kwang (Inventor)

    2009-01-01

    The invention relates to a method of storing hydrogen that employs a mixture of hydrogen and a hydrocarbon that can both be used as fuel. In one embodiment, the method involves maintaining a mixture including hydrogen and a hydrocarbon in the solid state at ambient pressure and a temperature in excess of about 10 K.

  17. PARTICULATE CONTROL HIGHLIGHTS: RESEARCH AT HIGH TEMPERATURE/PRESSURE

    EPA Science Inventory

    The report gives highlights of EPA high-temperature and high-pressure programs aimed at demonstrating control technology to meet environmental standards for the ambient concentration of particles and the emission rate of particles from new sources. Among the control devices consi...

  18. High-temperature pressure-coupled ultrasonic waveguide

    DOEpatents

    Caines, M.J.

    1981-02-11

    A pressure coupled ultrasonic waveguide is provided to which one end may be attached a transducer and at the other end a high temperature material for continuous ultrasonic testing of the material. The ultrasonic signal is coupled from the waveguide into the material through a thin, dry copper foil.

  19. Properties of planetary fluids at high shock pressures and temperatures

    SciTech Connect

    Nellis, W.J.; Mitchell, A.C.; Holmes, N.C.; McCandless, P.C.

    1991-03-01

    Models of the interiors of Uranus and Neptune are discussed. Pressures and temperatures in the interiors can be achieved in representative constituent molecular fluids by shock compression. Experimental techniques are described and recent results for synthetic Uranus and hydrogen are discussed. 19 refs., 4 figs., 1 tab.

  20. Investigation of the deformation mechanisms of core-shell rubber-modified epoxy at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Brown, Hayley Rebecca

    The industrial demand for high strength-to-weight ratio materials is increasing due to the need for high performance components. Epoxy polymers, although often used in fiber-reinforced polymeric composites, have an inherent low toughness that further decreases with decreasing temperatures. Second-phase additives have been effective in increasing the toughness of epoxies at room temperature; however, the mechanisms at low temperatures are still not understood. In this study, the deformation mechanisms of a DGEBA epoxy modified with MX960 core-shell rubber (CSR) particles were investigated under quasi-static tensile and impact loads at room temperature (RT) and liquid nitrogen (LN 2) temperature. Overall, the CSR had little effect on the tensile properties at RT and LN2 temperature. The impact strength decreased from neat to 3 wt% but increased from neat to 5 wt% at RT and LN2 temperature, with a higher impact strength at RT at all CSR loadings. The CSR particles debonded in front of the crack tip, inducing voids into the matrix. It was found that an increase in shear deformation and void growth likely accounted for the higher impact strength at 5 wt% CSR loading at RT while the thermal stress fields due to the coefficient of thermal expansion mismatch between rubber and epoxy and an increase in secondary cracking is likely responsible for the higher impact strength at 5 wt% tested at LN2 temperature. While a large toughening effect was not seen in this study, the mechanisms analyzed herein will likely be of use for further material investigations at cryogenic temperatures.

  1. Temperature measurement of cryogenic nitrogen jets at supercritical pressure

    NASA Astrophysics Data System (ADS)

    Tani, H.; Teramoto, S.; Toki, T.; Yoshida, S.; Yamaguchi, K.; Okamoto, K.

    2016-07-01

    The temperatures of transcritical and supercritical nitrogen jets were measured to explore the influence of "pseudovaporization" upon cryogenic propellant mixing in high-pressure rocket chambers. Pseudovaporization is the large thermodynamic transition near the pseudocritical temperature under transcritical conditions, which can include a drastic density change and large peak of isobaric specific heat. A decline in the rise of temperature along the jet centerline of the transcritical jet was caused at the position where the local temperature reached nearpseudocritical temperature. This can be considered to be due to the large peak of isobaric specific heat. The density jump appeared near the pseudocritical temperature, which can be correlated to the sudden expansion due to pseudovaporization. The axial profiles of the temperature and density of the supercritical jet monotonically increased and decreased, respectively, in the downstream region of the end of the jet potential core. Similar to the axial profiles, the radial profiles of the temperature were influenced by the pseudovaporization - i. e., the temperature rise in the radial direction became very shallow in the region where the local temperature was still lower than the pseudocritical temperature. The full width at half maximum of the density profiles stayed almost constant further downstream of the end of the jet potential core, whereas that of the mass fraction profiles of the incompressible variable-density jet began to increase near the end of the potential core. Hence, the evolutions of jet mixing layers of transcritical jets and variable-density jets can be considered to differ due to pseudovaporization.

  2. Fracturing of Etnean and Vesuvian rocks at high temperatures and low pressures

    NASA Astrophysics Data System (ADS)

    Rocchi, Valentina; Sammonds, P. R.; Kilburn, C. R. J.

    2004-04-01

    The mechanical properties of volcanic rocks at high temperatures and low pressures are key properties in the understanding of a range of volcanological problems, in particular lava flow dynamics. The measurement of these properties on extrusive volcanic samples under the appropriate pressure and temperature conditions has a direct application in the assessment of volcanic hazards. A new triaxial deformation cell has been designed to obtain mechanical strength data on rock samples at temperatures up to 1000°C and pressures up to 30 MPa. Significantly, the cell uses large cylindrical rock specimens, 25 mm diameter by 75 mm long, never previously employed in such a high-temperature apparatus. The large specimen size is necessary to test volcanic rocks with their large crystals and vesicles. The design of this novel apparatus is presented. Its operating temperature and pressure range encompasses the conditions of an advancing flow from the vent to the front, as well as the conditions of the volcanic rocks hosting magma at equivalent depths of up to 2 km. Experimental results are presented for tests on Vesuvian and Etnean rocks. Results show that the Vesuvius and the Etnean rocks remain fully brittle up to 600°C with typical strengths of 90 MPa and 100 MPa and Young's moduli of 60 GPa and 40 GPa, respectively. Above these temperatures the elastic modulus and compressive strength decreases steadily in both the Vesuvian and Etnean rocks, reaching 10% of the original values at 900°C and 800°C, respectively, when partial melting occurred. Full melting occurs at 1100°C in the Vesuvian rock and at 1040°C in the Etnean rock. Results also show that confining pressure has only a small effect on the strength of the rock at these low pressures, and that strain rates are important at high temperatures. Fracture energy release rates have been calculated and show an inversely proportional relationship with temperature. Results reveal why fracturing is important on the crust of

  3. Pressure-temperature stability, Ca2+ binding, and pressure-temperature phase diagram of cod parvalbumin: Gad m 1.

    PubMed

    Somkuti, Judit; Bublin, Merima; Breiteneder, Heimo; Smeller, László

    2012-07-31

    Fish allergy is associated with IgE-mediated hypersensitivity reactions to parvalbumins, which are small calcium-binding muscle proteins and represent the major and sole allergens for 95% of fish-allergic patients. We performed Fourier transform infrared and tryptophan fluorescence spectroscopy to explore the pressure-temperature (p-T) phase diagram of cod parvalbumin (Gad m 1) and to elucidate possible new ways of pressure-temperature inactivation of this food allergen. Besides the secondary structure of the protein, the Ca(2+) binding to aspartic and glutamic acid residues was detected. The phase diagram was found to be quite complex, containing partially unfolded and molten globule states. The Ca(2+) ions were essential for the formation of the native structure. A molten globule conformation appears at 50 °C and atmospheric pressure, which converts into an unordered aggregated state at 75 °C. At >200 MPa, only heat unfolding, but no aggregation, was observed. A pressure of 500 MPa leads to a partially unfolded state at 27 °C. The complete pressure unfolding could only be reached at an elevated temperature (40 °C) and pressure (1.14 GPa). A strong correlation was found between Ca(2+) binding and the protein conformation. The partially unfolded state was reversibly refolded. The completely unfolded molecule, however, from which Ca(2+) was released, could not refold. The heat-unfolded protein was trapped either in the aggregated state or in the molten globule state without aggregation at elevated pressures. The heat-treated and the combined heat- and pressure-treated protein samples were tested with sera of allergic patients, but no change in allergenicity was found. PMID:22765301

  4. In situ visualization of magma deformation at high temperature using time-lapse 3D tomography

    NASA Astrophysics Data System (ADS)

    Godinho, jose; Lee, Peter; Lavallee, Yan; Kendrick, Jackie; Von-Aulock, Felix

    2016-04-01

    We use synchrotron based x-ray computed micro-tomography (sCT) to visualize, in situ, the microstructural evolution of magma samples 3 mm diameter with a resolution of 3 μm during heating and uniaxial compression at temperatures up to 1040 °C. The interaction between crystals, melt and gas bubbles is analysed in 4D (3D + time) during sample deformation. The ability to observe the changes of the microstructure as a function of time allow us to: a) study the effect of temperature in the ability of magma to fracture or deform; b) quantify bubble nucleation and growth rates during heating; c) study the relation between crystal displacement and volatile exsolution. We will show unique beautiful videos of how bubbles grow and coalescence, how samples and crystals within the sample fracture, heal and deform. Our study establishes in situ sCT as a powerful tool to quantify and visualize with micro-scale resolution fast processes taking place in magma that are essential to understand ascent in a volcanic conduit and validate existing models for determining the explosivity of volcanic eruptions. Tracking simultaneously the time and spatial changes of magma microstructures is shown to be primordial to study disequilibrium processes between crystals, melt and gas phases.

  5. High-Temperature Deformation of Dry Diabase with Application to Tectonics on Venus

    NASA Technical Reports Server (NTRS)

    Mackwell, S. J.; Zimmerman, M. E.; Kohlstedt, D. L.

    1998-01-01

    We have performed an experimental study to quantify the high-temperature creep behavior of natural diabase rocks under dry deformation conditions. Samples of both Maryland diabase and Columbia diabase were investigated to measure the effects of temperature, oxygen fugacity, and plagioclase-to-pyroxene ratio on creep strength. Flow laws determined for creep of these diabases were characterized by an activation energy of Q = 485 +/- 30 kJ/mol and a stress exponent of n = 4.7 +/- 0.6, indicative of deformation dominated by dislocation creep processes. Although n and Q are the same for the two rocks within experimental error, the Maryland diabase, which has the lower plagioclase content, is significantly stronger than the Columbia diabase. Thus the modal abundance of the various minerals plays an important role in defining rock strength. Within the s ample-to-sample variation, no clear influence of oxygen fugacity on creep strength could be discerned for either rock. The dry creep strengths of both rocks are significantly greater than values previously measured on diabase under "as-received" or wet conditions. Application of these results to the present conditions in the lithosphere on Venus predicts a high viscosity crust with strong dynamic coupling between mantle convection and crustal deformation, consistent with measurements of topography and gravity for that planet.

  6. Hot deformation behavior of 7150 aluminum alloy during compression at elevated temperature

    SciTech Connect

    Jin Nengping; Zhang Hui; Han Yi; Wu Wenxiang; Chen Jianghua

    2009-06-15

    Hot compression tests of 7150 aluminum alloy were preformed on Gleeble-1500 system in the temperature range from 300 deg. C to 450 deg. C and at strain rate range from 0.01 s{sup -1} to 10 s{sup -1}, and the associated structural changes were studied by observations of metallographic and transmission electron microscope. The results show that the true stress-true strain curves exhibit a peak stress at a critical strain, after which the flow stresses decrease monotonically until high strains, showing a dynamic flow softening. The peak stress level decreases with increasing deformation temperature and decreasing strain rate, which can be represented by a Zener-Hollomon parameter in the hyperbolic-sine equation with the hot deformation activation energy of 229.75 kJ/mol. In the deformed structures appear the elongated grains with serrations developed in the grain boundaries, decreasing of Z value leads to more adequate proceeding of dynamic recrystallization and coarser recrystallized grains. The subgrains exhibit high-angle sub-boundaries with a certain amount of dislocations and large numbers of dynamic precipitates in subgrain interiors as increasing Z value. The dynamic recovery and recrystallization are the main reasons for the flow softening at low Z value, but the dynamic precipitates and successive dynamic particles coarsening have been assumed to be responsible for the flow softening at high Z value.

  7. Dyke propagation and tensile fracturing at high temperature and pressure, insights from experimental rock mechanics.

    NASA Astrophysics Data System (ADS)

    Bakker, Richard; Benson, Philip; Vinciguerra, Sergio

    2014-05-01

    It is well known that magma ascends trough the crust by the process of dyking. To enable dyke emplacement, basement rocks typically fail in a mode 1 fracture, which acts as conduits for magma transport. An overpressure of the ascending magma will further open/widen the fracture and permit the fracture to propagate. In order to further understand the emplacement and arrest of dykes in the subsurface, analogue and numerical studies have been conducted. However, a number of assumptions regarding rock mechanical behaviour frequently has to be made as such data are very hard to directly measure at the pressure/temperature conditions of interest: high temperatures at relatively shallow depths. Such data are key to simulating the magma intrusion dynamics through the lithologies that underlie the volcanic edifice. Here we present a new laboratory setup, which allows us to investigate the tensile fracturing properties under both temperature and confining pressure, and the emplacement of molten material within the newly formed fracture. We have modified a traditional tri-axial test assembly setup to be able to use a Paterson type High Pressure, High Temperature deformation apparatus. Sample setup consists of cylindrical rock samples with a 22 mm diameter and a 8 mm bore at their centre, filled with a material chosen as such that it's in a liquid state at the experimental temperature and solid at room temperature to enable post-experiment analysis. The top and lower parts of the rock sample are fitted with plugs, sealing in the melt. The assembly is then placed between ceramic pistons to ensure there are no thermal gradients across the sample. The assembly is jacketed to ensure the confining medium (Ar) cannot enter the assembly. A piston is driven into the sample such that the inner conduit materials pressure is slowly increased. At some point a sufficient pressure difference between the inner and outer surfaces causes the sample to deform and fail in the tensile regime

  8. Regularities in temperature, magnetic field and pressure effect on the resistive properties of magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Polyakov, P. I.; Kucherenko, S. S.

    2002-08-01

    The influence of hydrostatic pressure, magnetic field and temperature on resistivity behaviour of bulk and film samples La 0.9Mn 1.1O 3 and La 0.56Ca 0.24Mn 1.2O 3 at action of magnetic field and temperature has been analysed. It is established that the maximum of magnetoresistive and the revealed baroresistive, magnetobaroresistive effects coincide at the same temperature Tpp. This temperature is equal to the "metal-semiconductor" phase transition temperature Tms. "Cooling" and "heating" effects of pressure and magnetic field have been revealed. A mutual correspondence of T- P- H (6.2 K, 1 kbar, 2.7 kOe) influence on polycrystalline sample La 0.9Mn 1.1O 3 resistivity has been determined. The linear change of Tms( P) and Tms( H) in La 0.9Mn 1.1O 3, La 0.56Ca 0.24Mn 1.2O 3 resistivity have been found. An importance of the regularities of elastic-deforming correspondence of T- H- P influence on magnetic, resistivity properties, phase transitions and effects was elucidated and explained. An alternating influence of T- H- P and its role in resistivity has been pointed. A correlation between structural, elastic and resistive properties is specified.

  9. Experimental characterization of crack tip deformation fields in Alloy 718 at high temperatures

    SciTech Connect

    Liu, J.; Lyons, J.; Sutton, M.; Reynolds, A.

    1998-01-01

    A series of fracture mechanics tests were conducted at temperatures of 650 C and 704 C in air, using Inconel 719. A noncontacting measurement technique, based on computer vision and digital image correlation, was applied to directly measure surface displacements and strains prior to and during creep crack growth. For the first time, quantitative comparisons at elevated temperatures are presented between experimentally measured near-crack-tip deformation fields and theoretical linear elastic and viscoelastic fracture mechanics solutions. The results establish that linear elastic conditions dominate the near-crack-tip displacements and strains at 650 C during crack growth, and confirm that K{sub 1} is a viable continuum-based fracture parameter for creep crack growth characterization. Postmortem fractographic analyses indicate that grain boundary embrittlement leads to crack extension before a significant amount of creep occurs at this temperature. At higher temperatures, however, no crack growth was observed due to crack tip blunting and concurrent stress reduction after load application.

  10. High temperature deformation behavior of a fine-grained tetragonal zirconia

    SciTech Connect

    Morita, K.; Hiraga, K.

    1999-12-31

    The stress exponent, n, defined in the following creep equation has often been regarded as a primary parameter to characterize superplastic deformation in fine-grained tetragonal zirconia containing 2.5 {approximately} 4 mol% yttria (Y-TZP): {var_epsilon} = A{sigma}{sup n}/d{sup p} where {var_epsilon} is the strain rate, {sigma} is the stress, d is the grain size, n is the stress exponent, p is the grain size exponent and A is a material constant. Recent studies have noted that the stress exponents of high-purity Y-TZP can be divided into two categories: n {approximately} 3 at low stresses and n {approximately} 2 at high stresses, where the stress dividing the deformation regions depends on both temperature and grain size. To argue the origins of such regions and relating mechanisms, however, some additional examination seems to be necessary for confirming that the regions characterized with n {approximately} 2 and {approximately} 3 are the genuine ones. This is because experimental limitations have tended to prevent the examination of deformation behavior by Eq. (1) in a strict sense. For example, the n-values have been derived from the overall strain rates that may indispensably include the effects of deformation around the grips of tensile specimens or those of constrained deformation near both sides of compression specimens. Furthermore, the data were obtained under an assumption that the effects of grain growth on the strain rate is negligible in Y-TZP. There seems to be rather little assurance, however, that these situations did not affect the evaluation of the stress exponent. From this point of view, the present study was conducted (1) to examine the effects of grain growth and some other experimental factors on creep behavior and (2) to evaluate the stress exponent from creep strain-rate curves corrected for both instantaneous stress and strain in a high purity Y-TZP.

  11. The Measured Temperature and Pressure of EDC37 detonation products

    NASA Astrophysics Data System (ADS)

    Ferguson, James; Richley, James; Ota, Tom; Sutton, Ben; Price, Ed

    2015-06-01

    We present the experimentally determined temperature and pressure of the detonation products of EDC37; a HMX based conventional high explosive. These measurements were performed on a series of cylinder tests. The temperature measurements were performed at the end of the cylinder with optical fibres observing the bare explosive through a LiF window. The temperature of the products was measured for 2 microseconds using single colour pyrometry, multicolour pyrometry and spectroscopy with the results from all three methods being consistent. The peak temperature was found to be ~ 3600 K dropping to ~ 2400 K at the end of the measurement window. The spectroscopy was time integrated and showed that the emission spectra can be approximated using a grey body curve with no other emission or absorption lines being present. The pressure was obtained using an analytical method which used the velocity of the expanding cylinder wall, measured using heterodyne velocimetry (HetV), and the velocity of detonation, measured with chirped fibre Bragg gratings. The pressure drops from an initial CJ value of ~38 GPa to ~4 GPa at the end of the 2 microsecond temperature measurement window.

  12. Pressure Effects on the Temperature Sensitivity of Fiber Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Wu, Meng-Chou

    2012-01-01

    A 3-dimensional physical model was developed to relate the wavelength shifts resulting from temperature changes of fiber Bragg gratings (FBGs) to the thermal expansion coefficients, Young s moduli of optical fibers, and thicknesses of coating polymers. Using this model the Bragg wavelength shifts were calculated and compared with the measured wavelength shifts of FBGs with various coating thickness for a finite temperature range. There was a discrepancy between the calculated and measured wavelength shifts. This was attributed to the refractive index change of the fiber core by the thermally induced radial pressure. To further investigate the pressure effects, a small diametric load was applied to a FBG and Bragg wavelength shifts were measured over a temperature range of 4.2 to 300K.

  13. The rheology of collapsing zeolites amorphized by temperature and pressure.

    PubMed

    Greaves, G N; Meneau, F; Sapelkin, A; Colyer, L M; ap Gwynn, I; Wade, S; Sankar, G

    2003-09-01

    Low-density zeolites collapse to the rigid amorphous state at temperatures that are well below the melting points of crystals of the same composition but of conventional density. Here we show, by using a range of experimental techniques, how the phenomenon of amorphization is time dependent, and how the dynamics of order-disorder transitions in zeolites under temperature and pressure are equivalent. As a result, thermobaric regions of instability can be charted, which are indicative of polyamorphism. Moreover, the boundaries of these zones depend on the rate at which temperature or pressure is ramped. By directly comparing the rheology of collapse with structural relaxation in equivalent melts, we conclude that zeolites amorphize like very strong liquids and, if compression occurs slowly, this is likely to lead to the synthesis of perfect glasses. PMID:12942072

  14. Giant Deformations of a Liquid-Liquid Interface Induced by the Optical Radiation Pressure

    SciTech Connect

    Casner, Alexis; Delville, Jean-Pierre

    2001-07-30

    Because of the small momentum of photons, very intense fields are generally required to bend a liquid interface with the optical radiation pressure. We explore this issue in a near-critical phase-separated liquid mixture to vary continuously the meniscus softness by tuning the temperature. Low power continuous laser waves become sufficient to induce huge stationary bulges. Using the beam size to build an ''optical'' Bond number, Bo , we investigate the crossover from low to large Bo . The whole set of data collapses onto a single master curve which illustrates the universality of the phenomenon.

  15. Low Temperature and High Pressure Evaluation of Insulated Pressure Vessels for Cryogenic Hydrogen Storage

    SciTech Connect

    Aceves, S.; Martinez-Frias, J.; Garcia-Villazana, O.

    2000-06-25

    Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LH{sub 2}) or ambient-temperature compressed hydrogen (CH{sub 2}). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (fuel flexibility, lower energy requirement for hydrogen liquefaction and reduced evaporative losses). The work described here is directed at verifying that commercially available pressure vessels can be safely used to store liquid hydrogen. The use of commercially available pressure vessels significantly reduces the cost and complexity of the insulated pressure vessel development effort. This paper describes a series of tests that have been done with aluminum-lined, fiber-wrapped vessels to evaluate the damage caused by low temperature operation. All analysis and experiments to date indicate that no significant damage has resulted. Required future tests are described that will prove that no technical barriers exist to the safe use of aluminum-fiber vessels at cryogenic temperatures.

  16. High-pressure cell for neutron diffraction with in situ pressure control at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Jacobsen, Matthew K.; Ridley, Christopher J.; Bocian, Artur; Kirichek, Oleg; Manuel, Pascal; Khalyavin, Dmitry; Azuma, Masaki; Attfield, J. Paul; Kamenev, Konstantin V.

    2014-04-01

    Pressure generation at cryogenic temperatures presents a problem for a wide array of experimental techniques, particularly neutron studies due to the volume of sample required. We present a novel, compact pressure cell with a large sample volume in which load is generated by a bellow. Using a supply of helium gas up to a pressure of 350 bar, a load of up to 78 kN is generated with leak-free operation. In addition, special fiber ports added to the cryogenic center stick allow for in situ pressure determination using the ruby pressure standard. Mechanical stability was assessed using finite element analysis and the dimensions of the cell have been optimized for use with standard cryogenic equipment. Load testing and on-line experiments using NaCl and BiNiO3 have been done at the WISH instrument of the ISIS pulsed neutron source to verify performance.

  17. High-pressure cell for neutron diffraction with in situ pressure control at cryogenic temperatures

    SciTech Connect

    Jacobsen, Matthew K.; Ridley, Christopher J.; Bocian, Artur; Kamenev, Konstantin V.; Kirichek, Oleg; Manuel, Pascal; Khalyavin, Dmitry; Azuma, Masaki; Attfield, J. Paul

    2014-04-15

    Pressure generation at cryogenic temperatures presents a problem for a wide array of experimental techniques, particularly neutron studies due to the volume of sample required. We present a novel, compact pressure cell with a large sample volume in which load is generated by a bellow. Using a supply of helium gas up to a pressure of 350 bar, a load of up to 78 kN is generated with leak-free operation. In addition, special fiber ports added to the cryogenic center stick allow for in situ pressure determination using the ruby pressure standard. Mechanical stability was assessed using finite element analysis and the dimensions of the cell have been optimized for use with standard cryogenic equipment. Load testing and on-line experiments using NaCl and BiNiO{sub 3} have been done at the WISH instrument of the ISIS pulsed neutron source to verify performance.

  18. Localized shear deformation and softening of bulk metallic glass: stress or temperature driven?

    PubMed Central

    Ketov, S. V.; Louzguine-Luzgin, D. V.

    2013-01-01

    Metallic glasses due to their unique combination of physical and chemical properties have a great potential in various applications: materials for construction, medical, MEMs devices and so on. The deformation mechanism in metallic glasses is very much different from that in conventional crystalline materials and not yet fully understood. Here we are trying to find out what drives shear deformation in metallic glasses. The compression experiments of the bulk metallic glassy (BMG) samples coated with tin, Rose metal and indium were performed. There were no melting sites of the coating observed near individual shear bands. Melting occurred only near fracture surface, near microcracks and in the places of shear band concentrations. The results indicate that shear banding is rather a stress driven process while the temperature rise that was observed takes place due to friction forces in the viscous supercooled liquid thin layer in the shear bands. PMID:24100784

  19. Evaluation of Package Stress during Temperature Cycling using Metal Deformation Measurement and FEM Simulation

    SciTech Connect

    Hoeglauer, J.; Bohm, C.; Otremba, R.; Maerz, J.; Nelle, P.; Stecher, M.; Alpern, P.

    2006-02-07

    Plastic encapsulated devices that are exposed to Temperature Cycling (TC) tests undergo an excessive mechanical stress due to different Coefficients of Thermal Expansion (CTE) of the various materials used in the system. Especially in the corners of the die, passivation cracks and shifted metal lines can be observed, which demonstrates an increasing mechanical stress from chip center to the corners of the die. This effect has been known for a long time. This paper presents a simple measurement technique to quantify the mechanical shear stress at the chip-Mold Compound (MC) interface by measuring the deformation of a periodical metal structure. Based on this deformation measurement, we evaluated the stress distribution within the package, and the influence of different parameters such as number of cycles and chip size. Furthermore, these experimental results were compared with FEM simulation, and showed good agreement but could not account in all cases for the total amount of observed shift.

  20. 46 CFR 154.701 - Cargo pressure and temperature control: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... pressure equal to or greater than the vapor pressure of the cargo at 45 °C (113 °F) but not greater than... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo pressure and temperature control: General. 154.701... Equipment Cargo Pressure and Temperature Control § 154.701 Cargo pressure and temperature control:...

  1. 46 CFR 154.701 - Cargo pressure and temperature control: General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... pressure equal to or greater than the vapor pressure of the cargo at 45 °C (113 °F) but not greater than... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo pressure and temperature control: General. 154.701... Equipment Cargo Pressure and Temperature Control § 154.701 Cargo pressure and temperature control:...

  2. 46 CFR 154.701 - Cargo pressure and temperature control: General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... pressure equal to or greater than the vapor pressure of the cargo at 45 °C (113 °F) but not greater than... 46 Shipping 5 2013-10-01 2013-10-01 false Cargo pressure and temperature control: General. 154.701... Equipment Cargo Pressure and Temperature Control § 154.701 Cargo pressure and temperature control:...

  3. Recrystallization and aging effects associated with the high temperature deformation of waspaloy and inconel 718

    NASA Astrophysics Data System (ADS)

    Guimaraes, A. A.; Jonas, J. J.

    1981-09-01

    Cylindrical samples of Waspaloy and Inconel 718 were hot compressed, using a computerized Instron machine. The test program covered strain rates from 10•4 s•1 to 1 s•1 temperatures ranging from 875 °C to 1220 °C and deformations up to strains of 0.7. Interrupted tests were also carried out to determine the nature of the static softening and hardening processes. Dynamic recrystallization, partial or complete, was observed at temperatures above 950 °C. At 950 °C and below, dynamic recovery was the process controlling the deformation. Static softening was found to take place both by recovery and by recrystallization. Yield points were detected in Waspaloy under certain conditions as well as in Inconel 718. For Waspaloy the yield drops occurred in the vicinity of 1100 °C, and a deviation from the normal behavior in the stress-temperature curve was seen in the same temperature range. The mechanism responsible for the occurrence of the yield drops, which in turn is related to the deviation in the σ vsT curve, is believed to be short range ordering of the γ’ forming elements. For Inconel 718, elements such as Co, Cr and Fe may be causing short range ordering, but the locking mechanism may also be associated with the precipitation of carbides or other intermetallic phases on the dislocations.

  4. Temperature-dependent elastic anisotropy and mesoscale deformation in a nanostructured ferritic alloy.

    PubMed

    Stoica, G M; Stoica, A D; Miller, M K; Ma, D

    2014-01-01

    Nanostructured ferritic alloys are a new class of ultrafine-grained oxide dispersion-strengthened steels that have promising properties for service in extreme environments in future nuclear reactors. This is due to the remarkable stability of their complex microstructures containing numerous Y-Ti-O nanoclusters within grains and along grain boundaries. Although nanoclusters account primarily for the exceptional resistance to irradiation damage and high-temperature creep, little is known about the mechanical roles of the polycrystalline grains that constitute the ferritic matrix. Here we report an in situ mesoscale characterization of anisotropic responses of ultrafine ferrite grains to stresses using state-of-the-art neutron diffraction. We show the experimental determination of single-crystal elastic constants for a 14YWT alloy, and reveal a strong temperature-dependent elastic anisotropy that leads to elastic softening and instability of the ferrite. We also demonstrate, from anisotropy-induced intergranular strains, that a deformation crossover exists from low-temperature lattice hardening to high-temperature lattice softening in response to extensive plastic deformation. PMID:25300893

  5. Temperature-dependent elastic anisotropy and mesoscale deformation in a nanostructured ferritic alloy

    NASA Astrophysics Data System (ADS)

    Stoica, G. M.; Stoica, A. D.; Miller, M. K.; Ma, D.

    2014-10-01

    Nanostructured ferritic alloys are a new class of ultrafine-grained oxide dispersion-strengthened steels that have promising properties for service in extreme environments in future nuclear reactors. This is due to the remarkable stability of their complex microstructures containing numerous Y-Ti-O nanoclusters within grains and along grain boundaries. Although nanoclusters account primarily for the exceptional resistance to irradiation damage and high-temperature creep, little is known about the mechanical roles of the polycrystalline grains that constitute the ferritic matrix. Here we report an in situ mesoscale characterization of anisotropic responses of ultrafine ferrite grains to stresses using state-of-the-art neutron diffraction. We show the experimental determination of single-crystal elastic constants for a 14YWT alloy, and reveal a strong temperature-dependent elastic anisotropy that leads to elastic softening and instability of the ferrite. We also demonstrate, from anisotropy-induced intergranular strains, that a deformation crossover exists from low-temperature lattice hardening to high-temperature lattice softening in response to extensive plastic deformation.

  6. High Pressure Composite Overwrapped Pressure Vessel (COPV) Development Tests at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Ray, David M.; Greene, Nathanael J.; Revilock, Duane; Sneddon, Kirk; Anselmo, Estelle

    2008-01-01

    Development tests were conducted to evaluate the performance of 2 COPV designs at cryogenic temperatures. This allows for risk reductions for critical components for a Gaseous Helium (GHe) Pressurization Subsystem for an Advanced Propulsion System (APS) which is being proposed for NASA s Constellation project and future exploration missions. It is considered an advanced system since it uses Liquid Methane (LCH4) as the fuel and Liquid Oxygen (LO2) as the oxidizer for the propellant combination mixture. To avoid heating of the propellants to prevent boil-off, the GHe will be stored at subcooled temperatures equivalent to the LO2 temperature. Another advantage of storing GHe at cryogenic temperatures is that more mass of the pressurized GHe can be charged in to a vessel with a smaller volume, hence a smaller COPV, and this creates a significant weight savings versus gases at ambient temperatures. The major challenge of this test plan is to verify that a COPV can safely be used for spacecraft applications to store GHe at a Maximum Operating Pressure (MOP) of 4,500 psig at 140R to 160R (-320 F to -300 F). The COPVs for these tests were provided by ARDE , Inc. who developed a resin system to use at cryogenic conditions and has the capabilities to perform high pressure testing with LN2.

  7. Pressure and Temperature Spin Crossover Sensors with Optical Detection

    PubMed Central

    Linares, Jorge; Codjovi, Epiphane; Garcia, Yann

    2012-01-01

    Iron(II) spin crossover molecular materials are made of coordination centres switchable between two states by temperature, pressure or a visible light irradiation. The relevant macroscopic parameter which monitors the magnetic state of a given solid is the high-spin (HS) fraction denoted nHS, i.e., the relative population of HS molecules. Each spin crossover material is distinguished by a transition temperature T1/2 where 50% of active molecules have switched to the low-spin (LS) state. In strongly interacting systems, the thermal spin switching occurs abruptly at T1/2. Applying pressure induces a shift from HS to LS states, which is the direct consequence of the lower volume for the LS molecule. Each material has thus a well defined pressure value P1/2. In both cases the spin state change is easily detectable by optical means thanks to a thermo/piezochromic effect that is often encountered in these materials. In this contribution, we discuss potential use of spin crossover molecular materials as temperature and pressure sensors with optical detection. The ones presenting smooth transitions behaviour, which have not been seriously considered for any application, are spotlighted as potential sensors which should stimulate a large interest on this well investigated class of materials. PMID:22666041

  8. Temperature Effects for High-Pressure Processing of Picornaviruses.

    PubMed

    Kingsley, David H; Li, Xinhui; Chen, Haiqiang

    2014-03-01

    Investigation of the effects of pre-pressurization temperature on the high-pressure inactivation for single strains of aichivirus (AiV), coxsackievirus A9 (CAV9) and B5 (CBV5) viruses, as well as human parechovirus-1 (HPeV) was performed. For CAV9, an average 1.99 log10 greater inactivation was observed at 4 °C after a 400-MPa-5-min treatments compared to 20 °C treatments. For CBV5, an average of 2.54 log10 greater inactivation was noted after 600-MPa-10-min treatments at 4 °C in comparison to 20 °C treatments. In contrast, inactivation was reduced by an average of 1.59 log10 at 4 °C for HPeV. AiV was resistant to pressure treatments of 600 MPa for as long as 15 min at 4, 20, and 30 °C temperatures. Thus, different pre-pressurization temperatures result in different inactivation effects for picornaviruses. PMID:24271409

  9. Gas hydrate dissociation in sediments: Pressure-temperature evolution

    NASA Astrophysics Data System (ADS)

    Kwon, Tae-Hyuk; Cho, Gye-Chun; Santamarina, J. Carlos

    2008-03-01

    Hydrate-bearing sediments may destabilize spontaneously as part of geological processes, unavoidably during petroleum drilling/production operations or intentionally as part of gas extraction from the hydrate itself. In all cases, high pore fluid pressure generation is anticipated during hydrate dissociation. A comprehensive formulation is derived for the prediction of fluid pressure evolution in hydrate-bearing sediments subjected to thermal stimulation without mass transfer. The formulation considers pressure- and temperature-dependent volume changes in all phases, effective stress-controlled sediment compressibility, capillarity, and the relative solubilities of fluids. Salient implications are explored through parametric studies. The model properly reproduces experimental data, including the PT evolution along the phase boundary during dissociation and the effect of capillarity. Pore fluid pressure generation is proportional to the initial hydrate fraction and the sediment bulk stiffness; is inversely proportional to the initial gas fraction and gas solubility; and is limited by changes in effective stress that cause the failure of the sediment. When the sediment stiffness is high, the generated pore pressure reflects thermal and pressure changes in water, hydrate, and mineral densities. Comparative analyses for CO2 and CH4 highlight the role of gas solubility in excess pore fluid pressure generation. Dissociation in small pores experiences melting point depression due to changes in water activity, and lower pore fluid pressure generation due to the higher gas pressure in small gas bubbles. Capillarity effects may be disregarded in silts and sands, when hydrates are present in nodules and lenses and when the sediment experiences hydraulic fracture.

  10. Aqueous Geochemistry at High Pressures and High Temperatures

    SciTech Connect

    Bass, Jay D.

    2015-05-21

    This project is aimed at experimental characterization of the sound velocities, equations of state (EOS), and derived physical and chemical properties of aqueous solutions and carbon dioxide at extreme pressure and temperature conditions relevant to processes occurring in the interior of the Earth. Chemical transport, phase changes (including melting), fluid-solid reactions, and formation of magmatic liquids at convergent plat boundaries are a key motivation for this project. Research in this area has long been limited by the extreme experimental challenges and lack of data under the appropriate pressure-temperature (P-T) conditions. The vast majority of studies of aqueous geochemistry relevant to terrestrial problems of fluid-rock interactions have been conducted at 0.3 GPa or less, and the widely used Helgeson-Kirkham-Flowers equation of state for aqueous species is applicable only at ~ < 0.5 GPa. These limits are unfortunate because fluid flow and reactions plays a central role in many deeper environments. Recent efforts including our own, have resulted in new experimental techniques that now make it possible to investigate properties of homogeneous and heterogeneous equilibria involving aqueous species and minerals over a much broader range of pressure and temperature appropriate for deep crustal and upper mantle processes involving water-rich fluids. We carried out 1) Brillouin scattering measurements of the equations of state and molar volume of water and carbon dioxide to over 10 GPa and 870K using precise resistance heating of samples under pressure in the diamond anvil cell, and 2) the phase diagrams of the water and CO2, and 3) Exploring new experimental approaches, including CO2 laser heating of samples in a diamond cell, to measurements of sound velocities, EOS, and phase relations by Brillouin scattering to far greater pressures and temperatures.

  11. First Cycle Heterogeneous Deformation Behavior and Cyclic Shakedown Phenomena of Nitinol Near A(sub f) Temperatures

    NASA Technical Reports Server (NTRS)

    Jones, H. N.

    1996-01-01

    Experimental observations on the cyclic behavior of a NiTi alloy (Nitinol) at temperatures in the neighborhood of the A(sub f) (austenite finish) temperature are presented. The strongly heterogeneous nature of the deformation behavior of this material at temperatures within this regime during the first cycle is examined with emphasis placed on the difficulties that the existence of such phenomena pose on the formulation of realistic constitutive relations. It is further demonstrated that this heterogeneity of deformation persists on subsequent cycles with the result that the hysteretic cyclic behavior of these alloys can exhibit a point to point variation in an otherwise uniform geometry. The experimental observations on the deformation behavior of this alloy show that it is strongly dependent on temperature and prior deformation history of the sample, thus resulting in an almost intractable problem with respect to capturing an adequate constitutive description from either experiment or modeling.

  12. Polymer/ceramic wireless MEMS pressure sensors for harsh environments: High temperature and biomedical applications

    NASA Astrophysics Data System (ADS)

    Fonseca, Michael A.

    2007-12-01

    This dissertation presents an investigation of miniaturized sensors, designed to wirelessly measure pressure in harsh environments such as high temperature and biomedical applications. Current wireless microelectromechanical systems (MEMS) pressure sensors are silicon-based and have limited high temperature operation, require internal power sources, or have limited packaging technology that restricts their use in harsh environments. Sensor designs in this work are based on passive LC resonant circuits to achieve wireless telemetry without the need for active circuitry or internal power sources. A cavity, which is embedded into the substrate, is bound by two pressure-deformable plates that include a parallel-plate capacitor. Deflection of the plates from applied pressure changes the capacitance, thus, the resonance frequency varies and is a function of the applied pressure. The LC resonant circuit and pressure-deformable plates are fabricated into a monolithic housing that servers as the final device package (i.e. intrinsically packaged). This co-integration of device and package offers increased robustness and the ability to operate wirelessly in harsh environments. To intrinsically packaged devices, the fabrication approach relies on techniques developed for MEMS and leverage established lamination-based manufacturing processes, such as ceramic and flexible-circuit-board (flex-circuit) packaging technologies. The sensor concept is further developed by deriving the electromechanical model describing the sensor behavior. The model is initially divided into the electromagnetic model, used to develop the passive wireless telemetry, and the mechanical model, used to develop the pressure dependence of the sensor, which are then combined to estimate the sensor resonance frequency dependence as a function of applied pressure. The derived analytical model allows parametric optimization of sensor designs. The sensor concept is demonstrated in two applications: high

  13. Determining pressure-temperature phase diagrams of materials

    NASA Astrophysics Data System (ADS)

    Baldock, Robert J. N.; Pártay, Lívia B.; Bartók, Albert P.; Payne, Michael C.; Csányi, Gábor

    2016-05-01

    We extend the nested sampling algorithm to simulate materials under periodic boundary and constant pressure conditions, and show how it can be used to determine the complete equilibrium phase diagram for a given potential energy function, efficiently and in a highly automated fashion. The only inputs required are the composition and the desired pressure and temperature ranges, in particular, solid-solid phase transitions are recovered without any a priori knowledge about the structure of solid phases. We benchmark and showcase the algorithm on the periodic Lennard-Jones system, aluminum, and NiTi.

  14. Temperature and pressure adaptation of the binding site of acetylcholinesterase.

    PubMed

    Hochachka, P W

    1974-12-01

    1. Studies with a carbon substrate analogue, 3,3-dimethylbutyl acetate, indicate that the hydrophobic contribution to binding at the anionic site of acetylcholinesterase is strongly disrupted at low temperatures and high pressures. 2. Animals living in different physical environments circumvent this problem by adjusting the enthalpic and entropic contributions to binding. 3. An extreme example of this adaptational strategy is supplied by brain acetylcholinesterase extracted from an abyssal fish living at 2 degrees C and up to several hundred atmospheres of pressure. This acetylcholinesterase appears to have a smaller hydrophobic binding region in the anionic site, playing a measurably decreased role in ligand binding. PMID:4462739

  15. First-principles pressure-temperature phase diagrams in metals

    SciTech Connect

    Moriarty, J.A.

    1993-07-01

    Using interatomic potentials derived from first-principles generalized pseudopotential theory, finite-temperature phase transitions in both simple and transition metals can be studied through a combination of analytic statistical methods and molecular-dynamics simulation. In the prototype simple metal-Mg, where volume and pair forces adequately describe the energetics, a complete and accurate phase diagram has thereby been obtained to 60 GPa. A rapidly temperature-dependent hcp-bcc phase line is predicted which ends in a triple point on the melting curve near 4 GPa. In central transition metals such as Mo or Fe, on the other hand, the energetics are complicated by d-state interactions which give rise to both many-body angular forces and enhanced electron-thermal contributions. We have made a detailed study of these phenomena and their impact on melting in the prototype case of Mo and a full melting curve to 2 Mbar has been obtained. In the case of Fe, we are examining the high-pressure phase diagram and the question of whether or not there exists a high-pressure, high-temperature solid bcc phase, as has been speculated. To date, we have shown that the bcc structure is both thermodynamically and mechanically unstable at high pressure and zero temperature, with a large and increasing bcc-hcp energy difference under compression.

  16. On the large deformation behaviour of reinforced rubber at different temperatures

    NASA Astrophysics Data System (ADS)

    Lion, Alexander

    1997-11-01

    This essay investigates the temperature dependence of the mechanical properties of a filler-loaded tread compound experimentally and proposes a physically based method to represent this behaviour in the framework of non-linear continuum thermomechanics. To this end, we realise a series of monotonic and cyclic strain controlled tests on cylindrical specimens in tension at different temperature levels. The experimental data show the isothermal mechanical behaviour to be mainly influenced by non-linear elasticity in combination with non-linear rate dependence and weak equilibrium hysteresis. We observe that the rate sensitivity of the material depends strongly on the temperature : at low temperature levels, the rate sensitivity is essentially higher than at high temperatures. The elastic properties of the material depend comparatively less on the temperature. Nevertheless, higher temperature levels lead to higher equilibrium stresses. In order to represent the material behaviour, we start with a multiplicative split of the deformation gradient into a mechanical and a thermal part as proposed by Lu and Pister (1975). Physically, this idea corresponds to a stress-free thermal expansion followed by an isothermal stress-producing deformation. We suppose the thermal part of the deformation gradient to be isotropic. As a consequence of this, the velocity gradient decomposes additively into a pure thermal and a pure mechanical part. By using these elements, we exploit the Clausius Duhem inequality and assume the so-called 'mechanical second Piola Kirchhoff stress tensor' to be a functional of the 'mechanical Green's strain tensor'. In a further step, we define this functional by a system of constitutive equations which are based on a rheological model. The evolution equations for the internal variables are formulated by using the concept of dual variables proposed by Haupt and Tsakmakis (1989, 1996). The rate sensitivity is modelled by a stress and temperature dependent

  17. Iterative Boltzmann plot method for temperature and pressure determination in a xenon high pressure discharge lamp

    SciTech Connect

    Zalach, J.; Franke, St.

    2013-01-28

    The Boltzmann plot method allows to calculate plasma temperatures and pressures if absolutely calibrated emission coefficients of spectral lines are available. However, xenon arcs are not very well suited to be analyzed this way, as there are only a limited number of lines with atomic data available. These lines have high excitation energies in a small interval between 9.8 and 11.5 eV. Uncertainties in the experimental method and in the atomic data further limit the accuracy of the evaluation procedure. This may result in implausible values of temperature and pressure with inadmissible uncertainty. To omit these shortcomings, an iterative scheme is proposed that is making use of additional information about the xenon fill pressure. This method is proved to be robust against noisy data and significantly reduces the uncertainties. Intentionally distorted synthetic data are used to illustrate the performance of the method, and measurements performed on a laboratory xenon high pressure discharge lamp are analyzed resulting in reasonable temperatures and pressures with significantly reduced uncertainties.

  18. Deformation and Phase Transformation Processes in Polycrystalline NiTi and NiTiHf High Temperature Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Benafan, Othmane

    2012-01-01

    The deformation and transformation mechanisms of polycrystalline Ni49.9Ti50.1 and Ni50.3Ti29.7Hf20 (in at.%) shape memory alloys were investigated by combined experimental and modeling efforts aided by an in situ neutron diffraction technique at stress and temperature. The thermomechanical response of the low temperature martensite, the high temperature austenite phases, and changes between these two states during thermomechanical cycling were probed and reported. In the cubic austenite phase, stress-induced martensite, deformation twinning and slip processes were observed which helped in constructing a deformation map that contained the limits over which each of the identified mechanisms was dominant. Deformation of the monoclinic martensitic phase was also investigated where the microstructural changes (texture, lattice strains, and phase fractions) during room-temperature deformation and subsequent thermal cycling were compared to the bulk macroscopic response. When cycling between these two phases, the evolution of inelastic strains, along with the shape setting procedures were examined and used for the optimization of the transformation properties as a function of deformation levels and temperatures. Finally, this work was extended to the development of multiaxial capabilities at elevated temperatures for the in situ neutron diffraction measurements of shape memory alloys on the VULCAN Diffractometer at Oak Ridge National Laboratory.

  19. Plastic Deformation Characteristics Of AZ31 Magnesium Alloy Sheets At Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Park, Jingee; Lee, Jongshin; You, Bongsun; Choi, Seogou; Kim, Youngsuk

    2007-05-01

    Using lightweight materials is the emerging need in order to reduce the vehicle's energy consumption and pollutant emissions. Being a lightweight material, magnesium alloys are increasingly employed in the fabrication of automotive and electronic parts. Presently, magnesium alloys used in automotive and electronic parts are mainly processed by die casting. The die casting technology allows the manufacturing of parts with complex geometry. However, the mechanical properties of these parts often do not meet the requirements concerning the mechanical properties (e.g. endurance strength and ductility). A promising alternative can be forming process. The parts manufactured by forming could have fine-grained structure without porosity and improved mechanical properties such as endurance strength and ductility. Because magnesium alloy has low formability resulted form its small slip system at room temperature it is usually formed at elevated temperature. Due to a rapid increase of usage of magnesium sheets in automotive and electronic industry it is necessary to assure database for sheet metal formability and plastic yielding properties in order to optimize its usage. Especially, plastic yielding criterion is a critical property to predict plastic deformation of sheet metal parts in optimizing process using CAE simulation. Von-Mises yield criterion generally well predicts plastic deformation of steel sheets and Hill'1979 yield criterion predicts plastic deformation of aluminum sheets. In this study, using biaxial tensile test machine yield loci of AZ31 magnesium alloy sheet were obtained at elevated temperature. The yield loci ensured experimentally were compared with the theoretical predictions based on the Von-Mises, Hill, Logan-Hosford, and Barlat model.

  20. Pressure Inactivation of Vibrio parahaemolyticus in Oysters- Influence of Pressure level and Treatment Temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The overall objective of this study was to develop processing parameters (pressure level, time, and temperature) needed to achieve a 5-log reduction of V. parahaemolyticus within live oysters (Crassostrea virginica). Ten strains of V. parahaemolyticus were separately tested for their resistances to...

  1. Time-, stress-, and temperature-dependent deformation in nanostructured copper: Creep tests and simulations

    NASA Astrophysics Data System (ADS)

    Yang, Xu-Sheng; Wang, Yun-Jiang; Zhai, Hui-Ru; Wang, Guo-Yong; Su, Yan-Jing; Dai, L. H.; Ogata, Shigenobu; Zhang, Tong-Yi

    2016-09-01

    In the present work, we performed experiments, atomistic simulations, and high-resolution electron microscopy (HREM) to study the creep behaviors of the nanotwinned (nt) and nanograined (ng) copper at temperatures of 22 °C (RT), 40 °C, 50 °C, 60 °C, and 70 °C. The experimental data at various temperatures and different sustained stress levels provide sufficient information, which allows one to extract the deformation parameters reliably. The determined activation parameters and microscopic observations indicate transition of creep mechanisms with variation in stress level in the nt-Cu, i.e., from the Coble creep to the twin boundary (TB) migration and eventually to the perfect dislocation nucleation and activities. The experimental and simulation results imply that nanotwinning could be an effective approach to enhance the creep resistance of twin-free ng-Cu. The experimental creep results further verify the newly developed formula (Yang et al., 2016) that describes the time-, stress-, and temperature-dependent plastic deformation in polycrystalline copper.

  2. Stresses and deformations in cross-ply composite tubes subjected to a uniform temperature change

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Cooper, D. E.; Cohen, D.

    1986-01-01

    This study investigates the effects of a uniform temperature change on the stresses and deformations of composite tubes and determines the accuracy of an approximate solution based on the principle of complementary virtual work. Interest centers on tube response away from the ends and so a planar elasticity approach is used. For the approximate solution a piecewise linear variation of stresses with the radial coordinate is assumed. The results from the approximate solution are compared with the elasticity solution. The stress predictions agree well, particularly peak interlaminar stresses. Surprisingly, the axial deformations also agree well, despite the fact that the deformations predicted by the approximate solution do not satisfy the interface displacement continuity conditions required by the elasticity solution. The study shows that the axial thermal expansion coefficient of tubes with a specific number of axial and circumferential layers depends on the stacking sequence. This is in contrast to classical lamination theory, which predicts that the expansion will be independent of the stacking arrangement. As expected, the sign and magnitude of the peak interlaminar stresses depend on stacking sequence. For tubes with a specific number of axial and circumferential layers, thermally induced interlaminar stresses can be controlled by altering stacking arrangement.

  3. Electrical conductivity of chlorite at high pressures and high temperatures

    NASA Astrophysics Data System (ADS)

    Eymard, I.; Mibe, K.; Reynard, B.

    2012-12-01

    In the mantle wedge of subduction zones, high electrical-conductivity bodies have been observed. In order to understand the cause of high-conductivity body in subduction zones, we measured the electrical conductivity of polycrystalline chlorite, at pressures from 2 to 4 GPa and at high temperatures up to 850K using complex impedance spectroscopy in a multi-anvil high-pressure apparatus. The electrical conductivity increased slightly with increasing pressure. The obtained electrical conductivity values are higher than serpentine and talc (Reynard et al., 2011; Guo et al., 2011) and are slightly lower than brucite (Fujita et al., 2007). Although the obtained values are higher compared to serpentine, the presence of chlorite alone is not high enough to explain high-conductivity bodies in subduction-zones. Instead, the presence of some amount of saline fluids is inferred.

  4. Deflagration Behavior of PBX 9501 at Elevated Temperature and Pressure

    SciTech Connect

    Maienschein, J L; Koerner, J G

    2008-04-15

    We report the deflagration behavior of PBX 9501 at pressures up to 300 MPa and temperatures of 150-180 C where the sample has been held at the test temperature for several hours before ignition. The purpose is to determine the effect on the deflagration behavior of material damage caused by prolonged exposure to high temperature. This conditioning is similar to that experienced by an explosive while it being heated to eventual explosion. The results are made more complicated by the presence of a significant thermal gradient along the sample during the temperature ramp and soak. Three major conclusions are: the presence of nitroplasticizer makes PBX 9501 more thermally sensitive than LX-04 with an inert Viton binder; the deflagration behavior of PBX 9501 is more extreme and more inconsistent than that of LX-04; and something in PBX 9501 causes thermal damage to 'heal' as the deflagration proceeds, resulting in a decelerating deflagration front as it travels along the sample.

  5. Pressure-Sensitive Paint and Video Model Deformation Systems at the NASA Langley Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Erickson, G. E.; Burner, A. W.; DeLoach, R.

    1999-01-01

    Pressure-sensitive paint (PSP) and video model deformation (VMD) systems have been installed in the Unitary Plan Wind Tunnel at the NASA Langley Research Center to support the supersonic wind tunnel testing requirements of the High Speed Research (HSR) program. The PSP and VMD systems have been operational since early 1996 and provide the capabilities of measuring global surface static pressures and wing local twist angles and deflections (bending). These techniques have been successfully applied to several HSR wind tunnel models for wide ranges of the Mach number, Reynolds number, and angle of attack. A review of the UPWT PSP and VMD systems is provided, and representative results obtained on selected HSR models are shown. A promising technique to streamline the wind tunnel testing process, Modern Experimental Design, is also discussed in conjunction with recently-completed wing deformation measurements at UPWT.

  6. Strength of orthoenstatite single crystals at mantle pressure and temperature and comparison with olivine

    NASA Astrophysics Data System (ADS)

    Raterron, Paul; Fraysse, Guillaume; Girard, Jennifer; Holyoke, Caleb W.

    2016-09-01

    Oriented single crystals of orthopyroxenes (OPx) were deformed in axisymmetric compression in the D-DIA at pressure and temperature in excess of 3 GPa and 1040 °C. Two crystal orientations were tested with the compression axis parallel to either [101]c crystallographic direction, to investigate [001](100) dislocation slip-system strength, or [011]c direction to investigate [001](010) slip-system strength. These slip systems are the most active in orthopyroxenes. Applied differential stresses and specimen strain rates were measured in situ by synchrotron X-ray diffraction and radiography. We used these data and comparison with previously reported low-pressure flow laws for protoenstatite and orthoenstatite to determine the power law parameters for the deformation of orthoenstatite crystals, which characterize OPx dislocation slip-system strengths. Applying these laws at reasonable mantle stresses along oceanic and continental geotherms indicates that OPx [001](100) slip system is weaker than OPx [001](010) slip system to ∼260 km depth where the strengths converge. It also indicates that both OPx slip systems are significantly stronger than olivine slip systems throughout the upper mantle, except in the upper most mantle, in the lithosphere, were OPx [001](100) slip system may be as weak or even weaker than olivine [100](010) easy slip system.

  7. Tensile deformation of 2618 and Al-Fe-Si-V aluminum alloys at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Leng, Y.; Porr, W. C., Jr.; Gangloff, R. P.

    1990-01-01

    The present study experimentally characterizes the effects of elevated temperature on the uniaxial tensile behavior of ingot metallurgy 2618 Al alloy and the rapidly solidified FVS 0812 P/M alloy by means of two constitutive formulations: the Ramberg/Osgood equation and the Bodner-Partom (1975) incremental formulation for uniaxial tensile loading. The elastoplastic strain-hardening behavior of the ingot metallurgy alloy is equally well represented by either formulation. Both alloys deform similarly under decreasing load after only 1-5 percent uniform tensile strain, a response which is not described by either constitutive relation.

  8. Pressure-temperature phase diagram for the Allende meteorite

    NASA Astrophysics Data System (ADS)

    Agee, C. B.; Li, J.; Shannon, M. C.; Circone, S.

    1995-09-01

    Piston cylinder and multianvil experiments from 1 to 27 GPa have been performed on the Allende CV3 meteorite to establish a pressure-temperature phase diagram that includes major phase boundaries and the silicate-oxide-sulfide melting intervals. Olivine is the liquidus phase up to ~14 GPa, followed by garnet up to ~25 GPa. Near 26 GPa a cotectic exists where garnet and magnesiowüstite are liquidus phases. Magnesiowüstite is likely to be a lower mantle liquidus phase in both chondritic and peridotitic (see also Zhang and Herzberg, 1994) compositions. Hence element partitioning tests that neglect the role of liquidus magnesiowüstite may be incomplete for describing planetary differentiation at pressures >25 GPa. Allende shows immiscibility between (Fe,Ni)-sulfide melt and FeO-rich silicate melt. (Fe,Ni)-sulfide is the lower temperature melt phase and is present at all experimental pressures and temperatures investigated. It is concluded that a terrestrial planet with a radius of ~3000 km (maximum internal pressure of ~30 GPa), and a bulk composition of carbonaceous chondrite, will upon magmatic differentiation form an FeO-rich silicate mantle with an Fe-Ni-S core. The silicate fraction of Allende in our high-pressure experiments is too rich in FeO to be a good match for the composition of peridotite xenoliths from Earth's upper mantle. However, the major elements of a peridotite upper mantle may be derived from an Allende-like bulk Earth by a combination of lower mantle magnesiowüstite, perovskite, and sulfide fractionation and by upper mantle olivine flotation.

  9. Simulation of low temperature atmospheric pressure corona discharge in helium

    NASA Astrophysics Data System (ADS)

    Bekasov, Vladimir; Kirsanov, Gennady; Eliseev, Stepan; Kudryavtsev, Anatoly; Sisoev, Sergey

    2015-11-01

    The main objective of this work was to construct a numerical model of corona discharge in helium at atmospheric pressure. The calculation was based on the two-dimensional hybrid model. Two different plasma-chemical models were considered. Models were built for RF corona and negative DC corona discharge. The system of equations is solved by the finite element method in the COMSOL Multiphysics. Main parameters of the discharge (the density of charged and excited particles, the electron temperature) and their dependence on the input parameters of the model (geometry, electrode voltage, power) were calculated. The calculations showed that the shape of the electron distribution near the electrode depends on the discharge power. The neutral gas heating data obtained will allow predicting the temperature of the gases at the designing of atmospheric pressure helium plasma sources.

  10. Solid Nitrogen at Extreme Conditions of High Pressure and Temperature

    SciTech Connect

    Goncharov, A; Gregoryanz, E

    2004-04-05

    We review the phase diagram of nitrogen in a wide pressure and temperature range. Recent optical and x-ray diffraction studies at pressures up to 300 GPa and temperatures in excess of 1000 K have provided a wealth of information on the transformation of molecular nitrogen to a nonmolecular (polymeric) semiconducting and two new molecular phases. These newly found phases have very large stability (metastability) range. Moreover, two new molecular phases have considerably different orientational order from the previously known phases. In the iota phase (unlike most of other known molecular phases), N{sub 2} molecules are orientationally equivalent. The nitrogen molecules in the theta phase might be associated into larger aggregates, which is in line with theoretical predictions on polyatomic nitrogen.

  11. Electrical conductivity of rocks at high pressures and temperatures

    NASA Technical Reports Server (NTRS)

    Parkhomenko, E. I.; Bondarenko, A. T.

    1986-01-01

    The results of studies of the electrical conductivity in the most widely distributed types of igneous rocks, at temperatures of up to 1200 C, at atmospheric pressure, and also at temperatures of up to 700 C and at pressures of up to 20,000 kg/sq cm are described. The figures of electrical conductivity, of activaation energy and of the preexponential coefficient are presented and the dependence of these parameters on the petrochemical parameters of the rocks are reviewed. The possible electrical conductivities for the depository, granite and basalt layers of the Earth's crust and of the upper mantle are presented, as well as the electrical conductivity distribution to the depth of 200 to 240 km for different geological structures.

  12. Simulation of low temperature atmospheric pressure corona discharge in helium

    NASA Astrophysics Data System (ADS)

    Bekasov, V.; Chirtsov, Alex; Demidova, Maria; Kudryavtsev, Anatoly

    2015-11-01

    The main objective of this work was to construct a numerical model of corona discharge in helium at atmospheric pressure. Calculations were based on the two-dimensional hybrid model. Two different plasma-chemical models were considered. Models were built for RF corona and negative DC corona discharges. The system of equations was solved by the finite element method in the COMSOL Multiphysics. Main parameters of the discharge (the density of charged and excited particles and the electron temperature) and their dependence on the input parameters of the model (geometry, electrode voltage and power) were calculated. The calculations showed that the shape of the electron distribution near the electrode depends on the discharge power. The neutral gas heating data obtained will allow for the prediction of the temperature of the gases in atmospheric pressure helium plasma sources. This work was supported by Russian Science Foundation (project 14-19-00311).

  13. High-Temperature, Flexible, Pressure-Assisted Brush Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Sirocky, Paul J.

    1993-01-01

    Ceramic-fibers brush and integral spring clip block hot, engine flows. High-temperature, pressure-assisted brush seal installed in movable panel in advanced hypersonic engine. Seal prevents flow of hot engine gas from penetrating gap between movable panel and adjacent stationary panel. Potential applications include sealing gaps in variable-geometry two-dimensional turbojet exhaust nozzles or sealing control surface gaps of hypersonic vehicles. Ceramic brush seals also used as structural seals in high-temperature furnaces or advanced ceramic heat exchangers.

  14. Thermodynamics of iron at extreme pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Saxena, Surendra K.; Eriksson, Gunnar

    2015-09-01

    A thermodynamic database on all iron phases (BCC, FCC, HCP and melt) has been created using thermochemical and equations of state data from experiments and theory. The database permits the calculation of the phase diagram of iron to physical conditions of the Earth's core (pressure of 365 GPa and temperature of 6453 K). If the inner core were all iron, its upper temperature would be 6453 (500) K. The average heat capacity of a pure iron HCP inner core is calculated as 29.4 J/mol/K with an entropy of 92 J/mol/K and a gruneisen parameter of 1.81.

  15. High-Temperature, High-Pressure Optical Cells

    NASA Technical Reports Server (NTRS)

    Harris, R. P.; Holland, L. R.; Smith, R. E.

    1985-01-01

    Optical cell constructed for measurement of thermal diffusivity of HgCdTe semiconductor by laser pulses. Container allows radiation from laser to enter one side of alloy sample, while allowing lower-energy infrared radiation to leave opposite side of sample so temperature rise read by sensor. Composed entirely of fused silica, cell includes two optical windows joined by tube. Cell withstands 1,000 degrees C cell-operating temperature and contains molten alloy at its 100-atmosphere vapor pressure. Finally, allows alloy to solidify without bursting even though alloy expands on cooling.

  16. Metal/Silicate Partitioning at High Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Shofner, G.; Campbell, A.; Danielson, L.; Righter, K.; Rahman, Z.

    2010-01-01

    The behavior of siderophile elements during metal-silicate segregation, and their resulting distributions provide insight into core formation processes. Determination of partition coefficients allows the calculation of element distributions that can be compared to established values of element abundances in the silicate (mantle) and metallic (core) portions of the Earth. Moderately siderophile elements, including W, are particularly useful in constraining core formation conditions because they are sensitive to variations in T, P, oxygen fugacity (fO2), and silicate composition. To constrain the effect of pressure on W metal/silicate partitioning, we performed experiments at high pressures and temperatures using a multi anvil press (MAP) at NASA Johnson Space Center and laser-heated diamond anvil cells (LHDAC) at the University of Maryland. Starting materials consisted of natural peridotite mixed with Fe and W metals. Pressure conditions in the MAP experiments ranged from 10 to 16 GPa at 2400 K. Pressures in the LHDAC experiments ranged from 26 to 58 GPa, and peak temperatures ranged up to 5000 K. LHDAC experimental run products were sectioned by focused ion beam (FIB) at NASA JSC. Run products were analyzed by electron microprobe using wavelength dispersive spectroscopy. Liquid metal/liquid silicate partition coefficients for W were calculated from element abundances determined by microprobe analyses, and corrected to a common fO2 condition of IW-2 assuming +4 valence for W. Within analytical uncertainties, W partitioning shows a flat trend with increasing pressure from 10 to 16 GPa. At higher pressures, W becomes more siderophile, with an increase in partition coefficient of approximately 0.5 log units.

  17. Advancing a smart air cushion system for preventing pressure ulcers using projection Moiré for large deformation measurements

    NASA Astrophysics Data System (ADS)

    Cheng, Sheng-Lin; Tsai, Tsung-Heng; Lee, Carina Jean-Tien; Hsu, Yu-Hsiang; Lee, Chih-Kung

    2016-03-01

    A pressure ulcer is one of the most important concerns for wheelchair bound patients with spinal cord injuries. A pressure ulcer is a localized injury near the buttocks that bear ischial tuberosity oppression over a long period of time. Due to elevated compression to blood vessels, the surrounding tissues suffer from a lack of oxygen and nutrition. The ulcers eventually lead to skin damage followed by tissue necrosis. The current medical strategy is to minimize the occurrence of pressure ulcers by regularly helping patients change their posture. However, these methods do not always work effectively or well. As a solution to fundamentally prevent pressure ulcers, a smart air cushion system was developed to detect and control pressure actively. The air cushion works by automatically adjusting a patient's sitting posture to effectively relieve the buttock pressure. To analyze the correlation between the dynamic pressure profiles of an air cell with a patient's weight, a projection Moiré system was adopted to measure the deformation of an air cell and its associated stress distribution. Combining a full-field deformation imaging with air pressure measured within an air cell, the patient's weight and the stress distribution can be simultaneously obtained. By integrating a full-field optical metrology with a time varying pressure sensor output coupled with different active air control algorithms for various designs, we can tailor the ratio of the air cells. Our preliminary data suggests that this newly developed smart air cushion has the potential to selectively reduce localized compression on the tissues at the buttocks. Furthermore, it can take a patient's weight which is an additional benefit so that medical personnel can reference it to prescribe the correct drug dosages.

  18. Rheological assessment of nanofluids at high pressure high temperature

    NASA Astrophysics Data System (ADS)

    Kanjirakat, Anoop; Sadr, Reza

    2013-11-01

    High pressure high temperature (HPHT) fluids are commonly encountered in industry, for example in cooling and/or lubrications applications. Nanofluids, engineered suspensions of nano-sized particles dispersed in a base fluid, have shown prospective as industrial cooling fluids due to their enhanced rheological and heat transfer properties. Nanofluids can be potentially utilized in oil industry for drilling fluids and for high pressure water jet cooling/lubrication in machining. In present work rheological characteristics of oil based nanofluids are investigated at HPHT condition. Nanofluids used in this study are prepared by dispersing commercially available SiO2 nanoparticles (~20 nm) in a mineral oil. The basefluid and nanofluids with two concentrations, namely 1%, and 2%, by volume, are considered in this investigation. The rheological characteristics of base fluid and the nanofluids are measured using an industrial HPHT viscometer. Viscosity values of the nanofluids are measured at pressures of 100 kPa to 42 MPa and temperatures ranging from 25°C to 140°C. The viscosity values of both nanofluids as well as basefluid are observed to have increased with the increase in pressure. Funded by Qatar National Research Fund (NPRP 08-574-2-239).

  19. The effect of shear deformations on the transition onset pressure of the bcc to hcp pressure induced martensitic phase transformation in iron.

    NASA Astrophysics Data System (ADS)

    Caspersen, K.; Lew, A.; Ortiz, M.; Carter, E.

    2003-12-01

    At a pressure of approximately 13 GPa iron undergoes a martensitic phase transition from ground state ferro-magnetic bcc to a non-magnetic hcp structure. The exact transformation varies between experiments and is postulated to have a strong dependence on shear stresses during the loading process. To study this shear dependence we have developed a multi-scale model of iron, in which we employ a quantum mechanics based free energy, a kinematically compatible spinodal decomposition of phases, and a dependence on the bcc{<->}hcp transition path(s). Using this model we see that that the predicted transformation pressure for pure hydrostatic compression is much higher than expected, however with the inclusion of small initial shear deformations we see the predicted transformation pressure drop considerably and into the experimentally determined pressure range.

  20. Mechanical and transport properties of rocks at high temperatures and pressures. Task III. Mechanical properties of rocks at high temperatures and pressures. Technical progress report number 3, 1 March 1982 to 30 October 1982

    SciTech Connect

    Friedman, M.; Handin, J.; Bauer, S.J.

    1982-11-01

    In an effort to characterize the rheology and flow processes (mechanisms of deformation) operative for presupposed semi-brittle behavioral conditions, we have conducted a series of drained constant stress creep tests on 2 x 4 cm specimens of dry and water-saturated (Pp = 100 MPa) Westerly Granite at 100 MPa effective confining pressure and temperatures of 300/sup 0/C to in excess of Tm (1000/sup 0/C). The deformation is multimechanistic; microfracturing of apparent extensile and shear origin, glide in quartz and biotite, microfracture healing, dissolution, and mineral alteration are mechanisms observed and evaluated as functions of temperature and strain. The systematic change in micromechanisms observed with increasing temperature is compatible with and the origin of the gradational succession of macroscopic deformation modes from a single narrow fault (T/Tm less than or equal to .5) to a shear zone (T/Tm approx. = .6), to multiple shear fractures (T/Tm approx. = .75) to uniform flow (T/Tm greater than or equal to .9). Available equations of flow and time to failure are used as response models to characterize the experimental data even though the multimechanistic deformation described above and the quasi-steady state are not compatible with the assumptions underlying the corresponding theories.

  1. Structure and Stability of Jarosite at High Temperature and Pressure

    NASA Astrophysics Data System (ADS)

    Xu, H.; Zhao, Y.; Hickmott, D. D.; Zhang, J.; Vogel, S. C.; Daemen, L. L.; Hartl, M. A.

    2008-12-01

    Jarosite, KFe3(SO4)2(OH)6, and its related sulfates commonly occur in acid drainage environments as the weathering products of sulfide ore deposits. They can also precipitate from aqueous sulfates due to oxidation of H2S in epithermal environments and hot springs associated with volcanic activities. In 2004, jarosite was detected by the Mars Exploration Rover Mössbauer spectrometer, which has been interpreted as a strong evidence for the existence of water (and thus life) on Mars. In this work, we have investigated the crystal structure and thermodynamic stability of jarosite at temperatures up to 650 K and/or pressures up to 8 GPa using in situ neutron and synchrotron X-ray diffraction. To avoid the large incoherent scattering of neutrons by hydrogen, a deuterated sample was synthesized and characterized. Rietveld analysis of the obtained diffraction data allowed determination of unit-cell parameters, atomic positions and atomic displacement parameters as a function of temperature and pressure. In addition, the coefficients of thermal expansion, bulk moduli and pressure-temperature stability regions of jarosite were determined.

  2. New chemical reactions in methane at high temperatures and pressures

    SciTech Connect

    Culler, T.S.; Schiferl, D. )

    1993-01-21

    The authors have used a Merrill-Bassett diamond anvil cell and Raman spectroscopy to study methane at high pressures (up to 13 GPa) and high temperatures (up to 912 K). At 2.5-5.0 GPa and 912 K, methane photoreacts with the laser light used for Raman spectroscopy and forms a graphitelike soot compound. At room temperature and pressure the Raman spectrum of the new material has an intense peak with a frequency of 1597 cm[sup [minus]1]. At higher pressures and temperatures (10-13 GPa and 948 K) a sample of [sup 13]CD[sub 4] methane photoreacted with the laser light and formed a hard, clear, solid film. At 0.34 GPa and 300 K, this film had Raman peaks at 541 and 1605 cm[sup [minus]1]. The 541-cm[sup [minus]1] peak may correspond to the 550-cm[sup [minus]1] peak found in some diamondlike carbon (DLC) films formed by chemical vapor deposition (CVD), but the 1605-cm[sup [minus]1] peak does not appear to have any such counterpart. Other possible Raman peaks were masked by interference from the diamond anvils. Thus, while the hard, clear film has some similarities to CVD DLC films, some important differences and questions remain. 35 refs., 5 figs.

  3. Proton delocalization under extreme conditions of high pressure and temperature

    SciTech Connect

    Goncharov, Alexander F.; Crowhurst, Jonathan

    2008-10-02

    Knowledge of the behaviour of light hydrogen-containing molecules under extreme conditions of high pressure and temperature is crucial to a comprehensive understanding of the fundamental physics and chemistry that is relevant under such conditions. It is also vital for interpreting the results of planetary observations, in particular those of the gas giants, and also for various materials science applications. On a fundamental level, increasing pressure causes the redistribution of the electronic density, which results in a modification of the interatomic potentials followed by a consequent qualitative change in the character of the associated bonding. Ultimately, at sufficiently high pressure, one may anticipate a transformation to a homogeneously bonded material possessing unusual physical properties (e.g. a quantum fluid). As temperature increases so does the concentration of ionised species leading ultimately to a plasma. Considerable improvements have recently been made in both the corresponding experimental and theoretical investigations. Here we review recent results for hydrogen and water that reveal unexpected routes of transformation to nonmolecular materials. We stress the importance of quantum effects, which remain significant even at high temperatures.

  4. Features of the low-temperature creep of a Nb-Ti alloy after large plastic deformations at 77 K

    NASA Astrophysics Data System (ADS)

    Aksenov, V. K.; Volchok, O. I.; Karaseva, E. V.; Starodubov, Ya. D.

    2004-04-01

    The low-temperature (77 K) creep and the corresponding changes in the resistivity of a niobium-titanium alloy subjected to plastic deformation by drawing at 77 K are investigated. It is shown that after large plastic deformations (ɛ>99%) one observes anomalies of the low-temperature creep which do not appear in tests of samples subjected to low and medium deformations. The creep rate in the transient stage is significantly higher than would follow from the classical ideas about the mechanisms of low-temperature creep (logarithmic law), and the time dependence of the creep deformations is described by a power law, which corresponds to recovery creep. In the creep process oscillations appear on the resistivity curves; these are especially pronounced after drawing in liquid nitrogen. Possible causes of the observed effects are discussed.

  5. Yield Strength of Transparent MgAl2O4 Nano-Ceramic at High Pressure and Temperature

    PubMed Central

    2010-01-01

    We report here experimental results of yield strength and stress relaxation measurements of transparent MgAl2O4 nano-ceramics at high pressure and temperature. During compression at ambient temperature, the differential strain deduced from peak broadening increased significantly with pressure up to 2 GPa, with no clear indication of strain saturation. However, by then, warming the sample above 400°C under 4 GPa, stress relaxation was obviously observed, and all subsequent plastic deformation cycles are characterized again by peak broadening. Our results reveal a remarkable reduction in yield strength as the sintering temperature increases from 400 to 900°C. The low temperature for the onset of stress relaxation has attracted attention regarding the performance of transparent MgAl2O4 nano-ceramics as an engineering material. PMID:20676198

  6. Yield Strength of Transparent MgAl2O4 Nano-Ceramic at High Pressure and Temperature.

    PubMed

    Zhang, Jie; Lu, Tiecheng; Chang, Xianghui; Jiang, Shengli; Wei, Nian; Qi, Jianqi

    2010-01-01

    We report here experimental results of yield strength and stress relaxation measurements of transparent MgAl2O4 nano-ceramics at high pressure and temperature. During compression at ambient temperature, the differential strain deduced from peak broadening increased significantly with pressure up to 2 GPa, with no clear indication of strain saturation. However, by then, warming the sample above 400°C under 4 GPa, stress relaxation was obviously observed, and all subsequent plastic deformation cycles are characterized again by peak broadening. Our results reveal a remarkable reduction in yield strength as the sintering temperature increases from 400 to 900°C. The low temperature for the onset of stress relaxation has attracted attention regarding the performance of transparent MgAl2O4 nano-ceramics as an engineering material. PMID:20676198

  7. New pressure and temperature effects on bacterial spores

    NASA Astrophysics Data System (ADS)

    Mathys, A.; Heinz, V.; Knorr, D.

    2008-07-01

    The mechanism of inactivation of bacterial spores by heat and pressure is still a matter of discussion. Obviously, the change of the dissociation equilibrium under pressure and temperature plays a dominant role in inactivation of microorganisms. Heat and pressure inactivation of Geobacillus. stearothermophilus spores at different initial pH-values in ACES and phosphate buffer confirmed this view. Thermal inactivation in ACES buffer at 122°C resulted in higher logarithmic reductions. Contrary, after pressure treatment at 900 MPa with 80°C phosphate buffer showed higher inactivation. These results indicated the different dissociation equilibrium shifts in buffer systems by heat and pressure. Due to preparation, storage and handling of highly concentrated spore suspensions the clumping and the formation of aggregates can hardly be avoided. Consequently, the impact of the agglomeration size distribution on the quantitative assessment of G. stearothermophilus spore inactivation was determined by using a three-fold dynamic optical backreflexion measurement. Two limiting cases have been discriminated in mathematical modelling: three dimensional, spherical packing for maximum spore count and two dimensional, circular packing for minimum spore count of a particular agglomerate. Thermal inactivation studies have been carried out in thin glass capillaries, where by using numerical simulations the non isothermal conditions were modelled and taken into account. It is shown that the shoulder formation often found in thermal spore inactivation can sufficiently be described by first-order inactivation kinetics when the agglomeration size is considered. In case of high pressure inactivation agglomerations could be strongly changed by high forces at compression and especially decompression phase. The physiological response of Bacillus licheniformis spores to high pressure was investigated using multiparameter flow cytometry. Spores were treated by high pressure at 150 MPa with 37

  8. Deformation microstructures and mechanisms in the high-pressure granulites of the Bacariza Formation (Cabo Ortegal, NW Spain): going up to the surface

    NASA Astrophysics Data System (ADS)

    Puelles, P.; Abalos, B.

    2009-04-01

    The Cabo Ortegal complex is a nappe stack formed by fragments of subducted continental and oceanic lithosphere emplaced onto the Gondwana edge during the Variscan orogeny. The nappe units of Cabo Ortegal were metamorphosed under different high-pressure (HP) conditions and currently are separated by ductile tectonic contacts. They include mappable ultramafic massifs, N-MORB eclogites, metagabbros, metaserpentinites, metaperidotites, ortho- and paragneisses, and the Bacariza Formation granulites. The primary structure consists of the ultramafic massifs tectonically resting on top of the granulites of the Bacariza Formation, which overlie eclogites and HP gneisses with eclogite boudins. Granulites of the Bacariza Formation are mainly basic to intermediate in composition, although granulitic, carbonate-rich or mineralogically more exotic varieties also exist. On the basis of modal variations in the abundance of mafic and felsic mineral several lithotypes have been differentiated in order of decreasing outcrop area: (G1) plagio-pyrigarnites or common mafic granulites, (G2) intermediate to felsic, plagioclase-rich granulites, (G3) Mg-rich mafic granulites, (G4) pyrigarnite, or plagioclase-poor ultramafic granulites, and (G5) granulitic orthogneisses. The Bacariza Formation recorded a high-pressure metamorphic event. This event was polyphasic and two deformational phases are differentiated, D1 and D2, namely. D2 is associated to amalgamation of eclogite, high-pressure granulitic rocks and ultramafic sheets in deep portions of a subduction channel during the initial exhumation of the complex. As a result, transposition of the previous D1 fabrics took place due to the development of spectacular shear zones at the contacts with the bounding units. Pressure and temperature conditions estimated from the D2 mineral assemblage in equilibrium yield values of ca. 1.4 GPa and 740 °C, respectively. In this work we present a detailed study of a D2 shear zone located at the contact

  9. Deformation twins in Hornblende

    USGS Publications Warehouse

    Rooney, T.P.; Riecker, R.E.; Ross, M.

    1970-01-01

    Hornblende deformation twins with twin planes parallel to (101) are produced experimentally in single crystals by compression parallel to the c axis. Twinning occurs at confining pressures from 5 to 15 kilobars and temperatures from 400?? to 600??C (strain rate, 10-5 per second).

  10. High-temperature deformation and recrystallization: A variational analysis and its application to olivine aggregates

    NASA Astrophysics Data System (ADS)

    Hackl, Klaus; Renner, JöRg

    2013-03-01

    We develop a framework for a variational analysis of microstructural evolution during inelastic high-temperature deformation accommodated by dislocation mechanisms and diffusive mass transport. A polycrystalline aggregate is represented by a distribution function characterizing the state of individual grains by three variables, dislocation density, grain size, and elastic strain. The aggregate's free energy comprises elastic energy and energies of lattice distortions due to dislocations and grain boundaries. The work performed by the external loading is consumed by changes in the number of defects and their migration leading to inelastic deformation. The variational approach minimizes the rate of change of free energy with the evolution of the state variables under constraints on the aggregate volume, on a relation between changes in plastic strain and dislocation density, and on the form of the dissipation functionals for defect processes. The constrained minimization results in four basic evolution equations, one each for the evolution in grain size and dislocation density and flow laws for dislocation and diffusion creep. Analytical steady state scaling relations between stress and dislocation density and grain size (piezometers) are derived for quasi-homogeneous materials characterized by a unique relation between grain size and dislocation density. Our model matches all currently available experimental observations regarding high-temperature deformation of olivine aggregates with plausible values for the involved micromechanical model parameters. The relation between strain rate and stress for olivine aggregates maintaining a steady state microstructure is distinctly nonlinear in stark contrast to the majority of geodynamical modeling relying on linear relations, i.e., Newtonian behavior.

  11. Rotating disk electrode system for elevated pressures and temperatures

    SciTech Connect

    Fleige, M. J.; Wiberg, G. K. H.; Arenz, M.

    2015-06-15

    We describe the development and test of an elevated pressure and temperature rotating disk electrode (RDE) system that allows measurements under well-defined mass transport conditions. As demonstrated for the oxygen reduction reaction on polycrystalline platinum (Pt) in 0.5M H{sub 2}SO{sub 4}, the setup can easily be operated in a pressure range of 1–101 bar oxygen, and temperature of 140 °C. Under such conditions, diffusion limited current densities increase by almost two orders of magnitude as compared to conventional RDE setups allowing, for example, fuel cell catalyst studies under more realistic conditions. Levich plots demonstrate that the mass transport is indeed well-defined, i.e., at low electrode potentials, the measured current densities are fully diffusion controlled, while at higher potentials, a mixed kinetic-diffusion controlled regime is observed. Therefore, the setup opens up a new field for RDE investigations under temperature and current density conditions relevant for low and high temperature proton exchange membrane fuel cells.

  12. Superconductivity above the lowest Earth temperature in pressurized sulfur hydride

    NASA Astrophysics Data System (ADS)

    Bianconi, Antonio; Jarlborg, Thomas

    2015-11-01

    A recent experiment has shown a macroscopic quantum coherent condensate at 203 K, about 19 degrees above the coldest temperature recorded on the Earth surface, 184 K (-89.2 ^\\circ \\text{C}, -128.6 ^\\circ \\text{F}) in pressurized sulfur hydride. This discovery is relevant not only in material science and condensed matter but also in other fields ranging from quantum computing to quantum physics of living matter. It has given the start to a gold rush looking for other macroscopic quantum coherent condensates in hydrides at the temperature range of living matter 200c <400 \\text{K} . We present here a review of the experimental results and the theoretical works and we discuss the Fermiology of \\text{H}3\\text{S} focusing on Lifshitz transitions as a function of pressure. We discuss the possible role of the shape resonance near a neck disrupting Lifshitz transition, in the Bianconi-Perali-Valletta (BPV) theory, for rising the critical temperature in a multigap superconductor, as the Feshbach resonance rises the critical temperature in Fermionic ultracold gases.

  13. Rotating disk electrode system for elevated pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Fleige, M. J.; Wiberg, G. K. H.; Arenz, M.

    2015-06-01

    We describe the development and test of an elevated pressure and temperature rotating disk electrode (RDE) system that allows measurements under well-defined mass transport conditions. As demonstrated for the oxygen reduction reaction on polycrystalline platinum (Pt) in 0.5M H2SO4, the setup can easily be operated in a pressure range of 1-101 bar oxygen, and temperature of 140 °C. Under such conditions, diffusion limited current densities increase by almost two orders of magnitude as compared to conventional RDE setups allowing, for example, fuel cell catalyst studies under more realistic conditions. Levich plots demonstrate that the mass transport is indeed well-defined, i.e., at low electrode potentials, the measured current densities are fully diffusion controlled, while at higher potentials, a mixed kinetic-diffusion controlled regime is observed. Therefore, the setup opens up a new field for RDE investigations under temperature and current density conditions relevant for low and high temperature proton exchange membrane fuel cells.

  14. Rotating disk electrode system for elevated pressures and temperatures.

    PubMed

    Fleige, M J; Wiberg, G K H; Arenz, M

    2015-06-01

    We describe the development and test of an elevated pressure and temperature rotating disk electrode (RDE) system that allows measurements under well-defined mass transport conditions. As demonstrated for the oxygen reduction reaction on polycrystalline platinum (Pt) in 0.5M H2SO4, the setup can easily be operated in a pressure range of 1-101 bar oxygen, and temperature of 140 °C. Under such conditions, diffusion limited current densities increase by almost two orders of magnitude as compared to conventional RDE setups allowing, for example, fuel cell catalyst studies under more realistic conditions. Levich plots demonstrate that the mass transport is indeed well-defined, i.e., at low electrode potentials, the measured current densities are fully diffusion controlled, while at higher potentials, a mixed kinetic-diffusion controlled regime is observed. Therefore, the setup opens up a new field for RDE investigations under temperature and current density conditions relevant for low and high temperature proton exchange membrane fuel cells. PMID:26133849

  15. Shear modeling: thermoelasticity at high temperature and pressure for tantalum

    SciTech Connect

    Orlikowski, D; Soderlind, P; Moriarty, J A

    2004-12-06

    For large-scale constitutive strength models the shear modulus is typically assumed to be linearly dependent on temperature. However, for materials compressed beyond the Hugoniot or in regimes where there is very little experimental data, accurate and validated models must be used. To this end, we present here a new methodology that fully accounts for electron- and ion-thermal contributions to the elastic moduli over broad ranges of temperature (<20,000 K) and pressure (<10 Mbar). In this approach, the full potential linear muffin-tin orbital (FP-LMTO) method for the cold and electron-thermal contributions is closely coupled with ion-thermal contributions. For the latter two separate approaches are used. In one approach, the quasi-harmonic, ion-thermal contribution is obtained through a Brillouin zone sum of strain derivatives of the phonons, and in the other a full anharmonic ion-thermal contribution is obtained directly through Monte Carlo (MC) canonical distribution averages of strain derivatives on the multi-ion potential itself. Both approaches use quantum-based interatomic potentials derived from model generalized pseudopotential theory (MGPT). For tantalum, the resulting elastic moduli are compared to available ultrasonic measurements and diamond-anvil-cell compression experiments. Over the range of temperature and pressure considered, the results are then used in a polycrystalline averaging for the shear modulus to assess the linear temperature dependence for Ta.

  16. The effect of elevated temperature on the inelastic deformation behavior of PMR-15 solid polymer

    NASA Astrophysics Data System (ADS)

    Ryther, Chad E. C.

    The inelastic deformation behavior of PMR-15 neat resin, a high-temperature thermoset polymer, was investigated at temperatures in the 274--316 °C range. The experimental program was developed to explore the influence of temperature on strain-controlled tensile loading, relaxation and creep behaviors. The experimental results clearly demonstrate that the mechanical behavior of PMR-15 polymer exhibits a strong dependence on temperature. During strain-controlled tensile loading, the slope of the stress-strain curve in the quasi-elastic region decreases and the slope of the stress-strain curve in the flow stress region increases with increasing temperature. At a given strain rate, the flow stress level decreases with increasing temperature. Furthermore, the transition from quasi-elastic behavior to inelastic flow becomes less pronounced with increasing temperature. During relaxation, the amount of the stress drop for a given prior strain rate decreases with increasing temperature. At a given prior strain rate and creep stress level, increasing temperature results in increased creep strain accumulation. Based on the experimental results the Viscoplasticity Based on Overstress for Polymers (VBOP) theory was augmented to account for the effects of elevated temperature. Several model parameters were determined to depend on temperature. Those parameters were developed into functions of temperature. The augmented VBOP was then employed to predict the response of the PMR-15 polymer under various test histories at temperatures in the 274--316 °C range. An enhanced procedure for determining VBOP model parameters that utilizes a McLean type dip test to assess the equilibrium stress was developed. Model predictions were considerably improved by employing an enhanced model characterization procedure. Additionally, the effects of prior isothermal aging at various temperatures in the 260--316 °C range on the inelastic deformation behavior of PMR-15 at 288 °C were evaluated. For

  17. Deformation and failure of bulk metallic glasses under different initial temperatures

    NASA Astrophysics Data System (ADS)

    Li, J. C.; Chen, X. W.; Huang, F. L.

    2015-09-01

    Based on the coupled thermo-mechanical model, a constitutive model for bulk metallic glasses (BMGs), which is generalized to the multi-axial stress state and considers the effects of free volume, heat and hydrostatic stress, has been modified in the present paper. Besides, a failure criterion of critical free volume concentration is introduced based on the coalescence mechanism of free volume. The constitutive model as well as the failure criterion is implemented into the LS-DYNA commercial software by user material subroutine (UMAT). Then FEM simulations for different initial material temperatures are conducted and the evolutions of material parameter as well as corresponding macroscopic mechanical behaviour of material are analyzed. Relative analysis shows that the initial material temperature significantly affects the deformation and failure of material.

  18. Modeling programmable deformation of self-folding all-polymer structures with temperature-sensitive hydrogels

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Li, Meie; Zhou, Jinxiong

    2013-11-01

    Combination of soft active hydrogels with hard passive polymers gives rise to all-polymer composites. The hydrogel is sensitive to external stimuli while the passive polymer is inert. Utilizing the different behaviors of two materials subject to environmental variation, for example temperature, results in self-folding soft machines. We report our efforts to model the programmable deformation of self-folding structures with temperature-sensitive hydrogels. The self-folding structures are realized either by constructing a bilayer structure or by incorporating hydrogels as hinges. The methodology and the results may aid the design, control and fabrication of 3D complex structures from 2D simple configurations through self-assembly.

  19. Effects of low temperature neutron irradiation on deformation behavior of austenitic stainless steels

    SciTech Connect

    Pawel, J.E.; Rowcliffe, A.F.; Alexander, D.J.; Grossbeck, M.L.; Shiba, K.

    1996-04-01

    An austenitic stainless steel, designated 316LN-IG, has been chosen for the first wall/shield (FW/S) structure for the International Thermonuclear Experimental Reactor (ITER). The proposed operational temperature range for the structure (100 to 250{degree}C) is below the temperature regimes for void swelling (400-600{degree}C) and for helium embrittlement (500-700{degree}C). However, the proposed neutron dose is such that large changes in yield strength, deformation mode, and strain hardening capacity could be encountered which could significantly affect fracture properties. Definition of the irradiation regimes in which this phenomenon occurs is essential to the establishment of design rules to protect against various modes of failure.

  20. Effect of Pedestal Temperature on Bonding Strength and Deformation Characteristics for 5N Copper Wire Bonding

    NASA Astrophysics Data System (ADS)

    Singh, Gurbinder; Haseeb, A. S. M. A.

    2016-06-01

    In recent years, copper has increasingly been used to replace gold to create wire-bonded interconnections in microelectronics. While engineers and researchers in the semiconductor packaging field are continuously working on this transition from gold to copper wires to reduce costs, the challenge remains in producing robust and reliable joints for semiconductor devices. This research paper investigates the effect of pedestal temperature on bonding strength and deformation for 99.999% purity (5N) copper wire bonding on nickel-palladium-gold (NiPdAu) bond pads. With increasing pedestal temperature, significant thinning of the copper ball bond can be achieved, resulting in higher as-bonded ball shear strengths while producing no pad damage. This can be helpful for low-k devices with thin structures, so as to prevent the use of excessive bond force and ultrasonic energy during copper wire bonding.

  1. The dissociation of liquid silica at high pressure and temperature

    SciTech Connect

    Hicks, D; Boehly, T; Eggert, J; Miller, J; Celliers, P; Collins, G

    2005-11-17

    Liquid silica at high pressure and temperature is shown to undergo significant structural modifications and profound changes in its electronic properties. Temperature measurements on shock waves in silica at 70-1000 GPa indicate that the specific heat of liquid SiO{sub 2} rises well above the Dulong-Petit limit, exhibiting a broad peak with temperature that is attributable to the growing structural disorder caused by bond-breaking in the melt. The simultaneous sharp rise in optical reflectivity of liquid SiO{sub 2} indicates that dissociation causes the electrical and therefore thermal conductivities of silica to attain metallic-like values of 1-5 x 10{sup 5} S/m and 24-600 W/m.K respectively.

  2. Research on Earth's rotation and the effect of atmospheric pressure on vertical deformation and sea level variability

    NASA Technical Reports Server (NTRS)

    Wahr, John

    1993-01-01

    The work done under NASA grant NAG5-485 included modelling the deformation of the earth caused by variations in atmospheric pressure. The amount of deformation near coasts is sensitive to the nature of the oceanic response to the pressure. The PSMSL (Permanent Service for Mean Sea Level) data suggest the response is inverted barometer at periods greater than a couple months. Green's functions were constructed to describe the perturbation of the geoid caused by atmospheric and oceanic loading and by the accompanying load-induced deformation. It was found that perturbation of up to 2 cm are possible. Ice mass balance data was used for continental glaciers to look at the glacial contributions to time-dependent changes in polar motion, the lod, the earth's gravitational field, the position of the earth's center-of-mass, and global sea level. It was found that there can be lateral, non-hydrostatic structure inside the fluid core caused by gravitational forcing from the mantle, from the inner core, or from topography at the core/mantle or inner core/outer core boundaries. The nutational and tidal response of a non-hydrostatic earth with a solid inner core was modeled. Monthly, global tide gauge data from PSMSL was used to look at the 18.6-year ocean tide, the 14-month pole tide, the oceanic response to pressure, the linear trend and inter-annual variability in the earth's gravity field, the global sea level rise, and the effects of post glacial rebound. The effects of mantle anelasticity on nutations, earth tides, and tidal variation in the lod was modeled. Results of this model can be used with Crustal Dynamics observations to look at the anelastic dissipation and dispersion at tidal periods. The effects of surface topography on various components of crustal deformation was also modeled, and numerical models were developed of post glacial rebound.

  3. Research on Earth's rotation and the effect of atmospheric pressure on vertical deformation and sea level variability

    NASA Astrophysics Data System (ADS)

    Wahr, John

    1993-03-01

    The work done under NASA grant NAG5-485 included modelling the deformation of the earth caused by variations in atmospheric pressure. The amount of deformation near coasts is sensitive to the nature of the oceanic response to the pressure. The PSMSL (Permanent Service for Mean Sea Level) data suggest the response is inverted barometer at periods greater than a couple months. Green's functions were constructed to describe the perturbation of the geoid caused by atmospheric and oceanic loading and by the accompanying load-induced deformation. It was found that perturbation of up to 2 cm are possible. Ice mass balance data was used for continental glaciers to look at the glacial contributions to time-dependent changes in polar motion, the lod, the earth's gravitational field, the position of the earth's center-of-mass, and global sea level. It was found that there can be lateral, non-hydrostatic structure inside the fluid core caused by gravitational forcing from the mantle, from the inner core, or from topography at the core/mantle or inner core/outer core boundaries. The nutational and tidal response of a non-hydrostatic earth with a solid inner core was modeled. Monthly, global tide gauge data from PSMSL was used to look at the 18.6-year ocean tide, the 14-month pole tide, the oceanic response to pressure, the linear trend and inter-annual variability in the earth's gravity field, the global sea level rise, and the effects of post glacial rebound. The effects of mantle anelasticity on nutations, earth tides, and tidal variation in the lod was modeled. Results of this model can be used with Crustal Dynamics observations to look at the anelastic dissipation and dispersion at tidal periods. The effects of surface topography on various components of crustal deformation was also modeled, and numerical models were developed of post glacial rebound.

  4. Ignitability of DMSO vapors at elevated temperature and reduced pressure

    SciTech Connect

    Bergman, W; Ural, E A; Weisgerber, W

    1999-03-08

    Ignitability of DMSO vapors have been evaluated at 664 mm Hg pressure. The minimum temperature at which the DMSO vapors that are in equilibrium with liquid DMSO has been determined using two types of strong ignition sources. This temperature is 172 F for chemical igniters, and 178 F for spark ignition. Numerous tests have been conducted using controlled intensity sparks to define the shape of the minimum ignition energy curve as a function of temperature. The ignition energies spanned four orders of magnitude (approximately from 20,000 to 2 mJ) while the DMSO vapor mixture temperature varied from 185 to 207 F. The Sandia Generator was used to simulate worst case electrostatic sparks that can be produced by the human body. Although it was not designed for air discharges, this device had been used by LLNL for 1 mm spark gap and the resultant spark energy had been measured to fall within the range from 3.2 to 8.8 mJ. CRC tests using this device showed that the minimum ignition temperature strongly depends on the spark gap. The minimum ignition temperature was 207 F at 1 mm spark gap, 203 F at 3 mm spark gap, and 197 F at 6 mm spark gap. This strong dependence on the spark gap is believed to be partly due to the changes in the spark energy as the spark gap changes.

  5. Metal-Silicate Interactions at High Pressure and Temperature

    NASA Astrophysics Data System (ADS)

    Bouhifd, M.; Jephcoat, A.; Gautron, L.; Malavergne, V.; Catillon, G.

    2001-12-01

    Laser-heated diamond-anvil cell (LHDAC) experiments were carried out to determine the partition coefficients of Ni and Co between iron metal and several silicates. One challenge of these experiments is to analyze accurately small samples from the LHDAC with sub-micrometer spatial resolution. We used diamond anvils with 500 microns culets, and stainless-steel gaskets preindented to a thickness of 40μ m and drilled to a diameter of 200μ m. We used both compacted powders with several silicate glass compositions (ranging from SiO2 to basaltic composition simulating that of model C1 chondrite) and a 25μ m thick Fe-Ni-Co alloy foil. Thermal insulation from the diamonds was achieved by 10μ m-thick pure Al2O3 and solid argon pressure medium. Pressures were measured at room temperature before and after laser heating, with the ruby-fluorescence method. The samples were heated by a multimode YAG laser for an average of 10-15 minutes. Temperatures were determined spectro-radiometrically with a fit to a grey-body Planck function. Samples recovered after the runs were polished down to the heated surface and analyzed by electron microprobe (the electron beam is less than 1μ m and the resolution is about 1μ m), or characterized by Transmission Electron Microscopy (TEM). In addition, we have analyzed our samples using secondary ion mass spectrometry (SIMS) analysis. A successful overlap of results of these different analysis techniques will substantially increase confidence in the extension of experiments to lower-mantle conditions. Our preliminary results in the system Si-Al-Fe-Mg-Ca-Ni-Co-O, show a good agreement with those of multianvil experiments at low pressures (5-12 GPa) [1], and with increasing pressure until 50 GPa we observe the expected decrease of the partition coefficients of Ni and Co for the same redox conditions. The partition coefficients determined in our work at high pressures (5-50 GPa) and constant temperature (2500 +/- 200 K), DM = XMmetal

  6. High temperature deformation behavior, thermal stability and irradiation performance in Grade 92 steel

    NASA Astrophysics Data System (ADS)

    Alsagabi, Sultan

    The 9Cr-2W ferritic-martensitic steel (i.e. Grade 92 steel) possesses excellent mechanical and thermophysical properties; therefore, it has been considered to suit more challenging applications where high temperature strength and creep-rupture properties are required. The high temperature deformation mechanism was investigated through a set of tensile testing at elevated temperatures. Hence, the threshold stress concept was applied to elucidate the operating high temperature deformation mechanism. It was identified as the high temperature climb of edge dislocations due to the particle-dislocation interactions and the appropriate constitutive equation was developed. In addition, the microstructural evolution at room and elevated temperatures was investigated. For instance, the microstructural evolution under loading was more pronounced and carbide precipitation showed more coarsening tendency. The growth of these carbide precipitates, by removing W and Mo from matrix, significantly deteriorates the solid solution strengthening. The MX type carbonitrides exhibited better coarsening resistance. To better understand the thermal microstructural stability, long tempering schedules up to 1000 hours was conducted at 560, 660 and 760°C after normalizing the steel. Still, the coarsening rate of M23C 6 carbides was higher than the MX-type particles. Moreover, the Laves phase particles were detected after tempering the steel for long periods before they dissolve back into the matrix at high temperature (i.e. 720°C). The influence of the tempering temperature and time was studied for Grade 92 steel via Hollomon-Jaffe parameter. Finally, the irradiation performance of Grade 92 steel was evaluated to examine the feasibility of its eventual reactor use. To that end, Grade 92 steel was irradiated with iron (Fe2+) ions to 10, 50 and 100 dpa at 30 and 500°C. Overall, the irradiated samples showed some irradiation-induced hardening which was more noticeable at 30°C. Additionally

  7. Thermo-elastic behavior of deformed woven fabric composites at elevated temperatures: Part 1

    SciTech Connect

    Vu-Khanh, T.; Liu, B.

    1994-12-31

    This paper presents the results of a study on the effects of temperature on the thermo-elastic properties of woven fabric composites. The thermo-mechanical behavior of woven fabric composites is characterized by a laminate composed of four fictional unidirectional plies, called the sub-plies model. The model allows determination of the thermo-elastic properties of deformed fabric composites (non-orthogonal structure) and direct use of layered shell elements in finite element codes. A special procedure is also proposed to measure the fiber undulation effect and to predict the on-axis thermo-elastic coefficients of the equivalent constituent plies. The thermo-elastic behavior at elevated temperature was investigated on graphite/epoxy fabric composites. Experimental measurements were carried out from 23 C to 177 C. The results revealed that the equivalent thermal expansion coefficients of the sub-plies remain almost constant over a wide range of temperature. However, the equivalent elastic moduli and Poison`s ratio of the sub-plies vary nonlinearly with temperature. Semiempirical equations based on the experimental data were also developed to predict the equivalent on-axis thermo-elastic properties of the fictional constituent plies in the sub-plies model as a function of temperature.

  8. Bacterial adaptation to extremes of low temperature and elevated pressure

    NASA Astrophysics Data System (ADS)

    Bartlett, Douglas

    The largest portion of Earth's biosphere is represented by low temperature, high pressure deepsea environments which are exposed to reduced and recalcitrant forms of organic carbon and which are far removed from sun light. Progress that has been made in recent years examining the biodiversity, genomics and genetics of microbial life at great ocean depths will be described. Particular focus will be given to the comparative genomics of members of Colwellia, Photobacterium, Moritella, Shewanella, Psychromonas and Carnobacterium genera. The genomes of piezophiles (high pressure adapted microbes) are characterized by possessing large intergenic regions, large numbers of rRNA operons, rRNA of a modified secondary structure, a reliance on unsaturated and poly-unsaturated fatty acids in their membrane lipids, a diversity of transport and physiological capabilities, and large numbers of transposable elements. Genetic studies in Photobacterium profundum have highlighted roles for extracellular polysaccharide production and DNA replication and protein synthesis in low temperature and high pressure growth. Recent advances in the cultivation of novel piezophiles from a deep-trench environment will also be described.

  9. Synthesis and Microdiffraction at Extreme Pressures and Temperatures

    PubMed Central

    Lavina, Barbara; Dera, Przemyslaw; Meng, Yue

    2013-01-01

    High pressure compounds and polymorphs are investigated for a broad range of purposes such as determine structures and processes of deep planetary interiors, design materials with novel properties, understand the mechanical behavior of materials exposed to very high stresses as in explosions or impacts. Synthesis and structural analysis of materials at extreme conditions of pressure and temperature entails remarkable technical challenges. In the laser heated diamond anvil cell (LH-DAC), very high pressure is generated between the tips of two opposing diamond anvils forced against each other; focused infrared laser beams, shined through the diamonds, allow to reach very high temperatures on samples absorbing the laser radiation. When the LH-DAC is installed in a synchrotron beamline that provides extremely brilliant x-ray radiation, the structure of materials under extreme conditions can be probed in situ. LH-DAC samples, although very small, can show highly variable grain size, phase and chemical composition. In order to obtain the high resolution structural analysis and the most comprehensive characterization of a sample, we collect diffraction data in 2D grids and combine powder, single crystal and multigrain diffraction techniques. Representative results obtained in the synthesis of a new iron oxide, Fe4O5 1 will be shown. PMID:24145761

  10. Synthesis and microdiffraction at extreme pressures and temperatures.

    PubMed

    Lavina, Barbara; Dera, Przemyslaw; Meng, Yue

    2013-01-01

    High pressure compounds and polymorphs are investigated for a broad range of purposes such as determine structures and processes of deep planetary interiors, design materials with novel properties, understand the mechanical behavior of materials exposed to very high stresses as in explosions or impacts. Synthesis and structural analysis of materials at extreme conditions of pressure and temperature entails remarkable technical challenges. In the laser heated diamond anvil cell (LH-DAC), very high pressure is generated between the tips of two opposing diamond anvils forced against each other; focused infrared laser beams, shined through the diamonds, allow to reach very high temperatures on samples absorbing the laser radiation. When the LH-DAC is installed in a synchrotron beamline that provides extremely brilliant x-ray radiation, the structure of materials under extreme conditions can be probed in situ. LH-DAC samples, although very small, can show highly variable grain size, phase and chemical composition. In order to obtain the high resolution structural analysis and the most comprehensive characterization of a sample, we collect diffraction data in 2D grids and combine powder, single crystal and multigrain diffraction techniques. Representative results obtained in the synthesis of a new iron oxide, Fe4O5 (1) will be shown. PMID:24145761

  11. Syn-deformation temperature and fossil fluid pathways along an exhumed detachment zone, khao khwang fold-thrust belt, Thailand

    NASA Astrophysics Data System (ADS)

    Hansberry, Rowan L.; Collins, Alan S.; King, Rosalind C.; Morley, Christopher K.; Giże, Andy P.; Warren, John; Löhr, Stefan C.; Hall, P. A.

    2015-08-01

    Shale detachment zones, their influence on deformational style, and their internal mechanisms of deformation are an understudied aspect of fold-thrust belts. Properties such as deformational temperature, lithology, and mineralogy are often recognized as having a key influence on the rheology and deformational style of detachment zones and overlying fold-thrust belts. However, little work has been conducted on rock properties of known detachment zones. A recently described upper-level detachment zone in the exhumed Khao Khwang Fold-Thrust Belt of central Thailand provides an ideal natural laboratory for investigation of the deformation conditions of the detachment zone, and association with its complex deformational style. The low-grade metamorphic indicator illite crystallinty is used to broadly constrain deformational temperatures, while oxygen and carbon stable isotope analysis provides insight into fluid flow history and fluid-rock interaction. Illite crystallinity data indicate deep diagenetic, to low anchizonal conditions, and temperatures of ~ 160-210 °C in the shale detachment, interpreted as reflecting peak metamorphic conditions during the Triassic Indosinian Orogeny. No trend between the intensity (spacing, complexity) of structures and illite crystallinty is observed. However, shale shear zones of continuous-style deformation and inferred higher finite strain display uniformly higher illite crystallinty than surrounding packages of discontinuously faulted shales. We also note a positive association between total organic carbon content in the shales and the spacing and complexity of deformational structures. Data from limestones and syn-tectonic vein fills detail the history of fluid-rock interaction during early mesogenesis, through to orogenesis. The early covariant trend of increasingly negative δ13C and δ18O values is attributed to increasing burial, while a divergent orogenic trend of increasingly negative δ18O values is interpreted as the result

  12. Pressure and Temperature effects on the High Pressure Phase Transformation in Zirconium

    SciTech Connect

    Escobedo-Diaz, Juan P.; Cerreta, Ellen K.; Brown, Donald W.; Trujillo, Carl P.; Rigg, Paulo A.; Bronkhorst, Curt A.; Addessio, Francis L.; Lookman, Turab

    2012-06-20

    At high pressure zirconium is known to undergo a phase transformation from the hexagonal close packed (HCP) alpha phase ({alpha}) to the simple hexagonal omega phase ({omega}). Under conditions of shock loading, the high-pressure omega phase is retained upon release. However, the hysteresis in this transformation is not well represented by equilibrium phase diagrams. For this reason, the influence of peak shock pressure and temperature on the retention of omega phase in Zr is explored in this study. In situ VISAR measurements along with post-mortem metallographic and neutron diffraction characterization of soft recovered specimens have been utilized to quantify the volume fraction of retained omega phase, morphology of the shocked alpha and omega phases, and qualitatively understand the kinetics of this transformation. This understanding of the role of peak shock stress will be utilized to address physics to be encoded in our present macro-scale models.

  13. Deformation of forsterite polycrystals at mantle pressure: Comparison with Fe-bearing olivine and the effect of iron on its plasticity

    NASA Astrophysics Data System (ADS)

    Bollinger, Caroline; Merkel, Sébastien; Cordier, Patrick; Raterron, Paul

    2015-03-01

    The rheology of polycrystalline forsterite was investigated in the Deformation-DIA (D-DIA) using insitu X-ray diffraction at pressure between 3.1 and 8.1 GPa, temperature in the 1373-1673 K range, and at steady-state strain rate ranging from 0.5 × 10-5 to 5.5 × 10-5 s-1. Microscopic observations of the run products show characteristic microstructures of the so-called "dislocation creep regime" in wet conditions. Based on the present data at 1473 K, the pressure effect on forsterite plasticity is quantified using an activation volume VFo∗ = 12.1 ± 3.0 cm3 mol-1. A comparison between the strain rates of San Carlos olivine and forsterite specimens deformed together indicates that, at the experimental conditions, they compare with each other within less than half an order of magnitude. This comparison also allows for the determination of the stress exponent of forsterite of nFo = 2.3 ± 0.6. Our results, combined with data from the literature, indicate a clear trend of increasing stress exponent with Fe content in olivine.

  14. Deformation of Forsterite Polycrystals at Mantle Pressure. Comparison with Fe-bearing Olivine and the Effect of Iron on its Plasticity

    SciTech Connect

    Bollinger, Caroline; Merkel, Sebastien; Cordier, Patrick; Raterron, Paul

    2014-12-23

    Rheology of polycrystalline forsterite was investigated in the Deformation-DIA (D-DIA) using insitu X-ray diffraction at pressure between 3.1 and 8.1 GPa, temperature in the 1373–1673 K range, and at steady-state strain rate ranging from 0.5 × 10-5 to 5.5 × 10-5 s-1. Microscopic observations of the run products show characteristic microstructures of the so-called “dislocation creep regime” in wet conditions. Based on the present data at 1473 K, the pressure effect on forsterite plasticity is quantified using an activation volume V*F0 = 12.1±3.0 cm3 mol-1. Moreover, a comparison between the strain rates of San Carlos olivine and forsterite specimens deformed together indicates that, at the experimental conditions, they compare with each other within less than half an order of magnitude. Our comparison also allows for the determination of the stress exponent of forsterite of nFo = 2.3 ± 0.6. Our results, combined with data from the literature, indicate a clear trend of increasing stress exponent with Fe content in olivine.

  15. Effects of high pressure and temperature on the properties of nanocrystals in rocks: Evidences from Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Sobolev, G. A.; Genshaft, Yu. S.; Kireenkova, S. M.; Morozov, Yu. A.; Smul'Skaya, A. I.; Vettegren', V. I.; Kulik, V. B.

    2011-06-01

    A search is conducted to detect nanocrystals in a sample of apogranitic pseudotachylite, which is a product of extremely strong crushing of granite in a seismogenic fault. Raman spectroscopy revealed nanocrystals of quartz measuring approximately 17 to 25 nm and low-temperature albite ranging from 8 to 30 nm. The crystallographic cell in the nanocrystals is deformed. The internal stresses which might have been responsible for these deformations vary from approximately -300 (compression) to +480 (tension) MPa. It is found that after having been exposed to high pressure (1 GPa) and temperature (470-500°C for 10 minutes and 550-600°C for 16 minutes), the nanocrystals of quartz reduced in size to ≈10 nm, and the nanocrystals of albite, to 13 nm. At the same time, the level of tension in the lattice spacing of quartz increased.

  16. Cryogenic Pressure Calibrator for Wide Temperature Electronically Scanned (ESP) Pressure Modules

    NASA Technical Reports Server (NTRS)

    Faulcon, Nettie D.

    2001-01-01

    Electronically scanned pressure (ESP) modules have been developed that can operate in ambient and in cryogenic environments, particularly Langley's National Transonic Facility (NTF). Because they can operate directly in a cryogenic environment, their use eliminates many of the operational problems associated with using conventional modules at low temperatures. To ensure the accuracy of these new instruments, calibration was conducted in a laboratory simulating the environmental conditions of NTF. This paper discusses the calibration process by means of the simulation laboratory, the system inputs and outputs and the analysis of the calibration data. Calibration results of module M4, a wide temperature ESP module with 16 ports and a pressure range of +/- 4 psid are given.

  17. Structure and magnetic properties of a Ni3(Al, Fe, Cr) single crystal subjected to high-temperature deformation

    NASA Astrophysics Data System (ADS)

    Kazantseva, N. V.; Rigmant, M. B.; Stepanova, N. N.; Davydov, D. I.; Shishkin, D. A.; Terent'ev, P. B.; Vinogradova, N. I.

    2016-05-01

    The structure and magnetic properties of the Ni3(Al, Fe, Cr) single crystal subjected to high-temperature tensile deformation to failure at 850-900°C have been studied. No recrystallized grains and metastable phases were found. The rupture zone of the alloy subjected to deformation (at 900°C) to the highest degree demonstrates the fragmentation accompanied by rotation of atomic layers and changes of the chemical composition in the nickel and aluminum sublattices. Magnetic studies of the alloy have shown the existence of two Curie temperatures for samples cut from the rupture zone. Samples cut away from the rupture zone exhibit no additional magnetic transitions; twines and planar stacking faults in the alloy structure. The alloy deformed to the lower degree of deformation (at 850°C) also demonstrates twins; no ferromagnetic state was found to form.

  18. High Temperature Ceramic Guide Vane Temperature and Pressure Distribution Calculation for Flow with Cooling Jets

    NASA Technical Reports Server (NTRS)

    Srivastava, Rakesh

    2004-01-01

    A ceramic guide vane has been designed and tested for operation under high temperature. Previous efforts have suggested that some cooling flow may be required to alleviate the high temperatures observed near the trailing edge region. The present report describes briefly a three-dimensional viscous analysis carried out to calculate the temperature and pressure distribution on the blade surface and in the flow path with a jet of cooling air exiting from the suction surface near the trailing edge region. The data for analysis was obtained from Dr. Craig Robinson. The surface temperature and pressure distribution along with a flowfield distribution is shown in the results. The surface distribution is also given in a tabular form at the end of the document.

  19. Photoelectron Spectroscopy under Ambient Pressure and Temperature Conditions

    SciTech Connect

    Ogletree, D. Frank; Bluhm, Hendrik; Hebenstreit, Eleonore B.; Salmeron, Miquel

    2009-02-27

    We describe the development and applications of novel instrumentation for photoemission spectroscopy of solid or liquid surfaces in the presence of gases under ambient conditions or pressure and temperature. The new instrument overcomes the strong scattering of electrons in gases by the use of an aperture close to the surface followed by a differentially-pumped electrostatic lens system. In addition to the scattering problem, experiments in the presence of condensed water or other liquids require the development of special sample holders to provide localized cooling. We discuss the first two generations of Ambient Pressure PhotoEmission Spectroscopy (APPES) instruments developed at synchrotron light sources (ALS in Berkeley and BESSY in Berlin), with special focus on the Berkeley instruments. Applications to environmental science and catalytic chemical research are illustrated in two examples.

  20. Measurement of local void fraction at elevated temperature and pressure

    SciTech Connect

    Duncan, D.; Trabold, T.A.

    1993-03-01

    Significant advances have recently been made in analytical and computational methods for the prediction of local thermal-hydraulic conditions in gas/liquid two-phase flows. There is, however, a need for extensive experimental data, for the dual purposes of constitutive relation development and code qualification. There is especially true of systems involving complicated geometries and/or extreme flow conditions for which little, if any, applicable information exists in the open literature. For the tests described in the present paper, a novel electrical probe has been applied to measure the void fraction in atmospheric pressure air/water flows, and steam/water mixtures at high temperature and pressure. The data acquired in the latter experiments are compared with the results of a one-dimensional two-fluid computational analysis.

  1. 46 CFR 153.438 - Cargo pressure or temperature alarms required.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... vapor pressure described in § 153.371(b); or (2) An alarm that operates when the cargo's temperature... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo pressure or temperature alarms required. 153.438... Equipment Cargo Temperature Control Systems § 153.438 Cargo pressure or temperature alarms required....

  2. 46 CFR 153.438 - Cargo pressure or temperature alarms required.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... vapor pressure described in § 153.371(b); or (2) An alarm that operates when the cargo's temperature... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo pressure or temperature alarms required. 153.438... Equipment Cargo Temperature Control Systems § 153.438 Cargo pressure or temperature alarms required....

  3. 46 CFR 153.438 - Cargo pressure or temperature alarms required.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... vapor pressure described in § 153.371(b); or (2) An alarm that operates when the cargo's temperature... 46 Shipping 5 2013-10-01 2013-10-01 false Cargo pressure or temperature alarms required. 153.438... Equipment Cargo Temperature Control Systems § 153.438 Cargo pressure or temperature alarms required....

  4. 30 CFR 35.21 - Temperature-pressure spray-ignition tests.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Temperature-pressure spray-ignition tests. 35... Temperature-pressure spray-ignition tests. (a) Purpose. The purpose of this test shall be to determine the... the pressure vessel and heated to a temperature of 150 °F. The temperature shall be maintained at...

  5. 30 CFR 35.21 - Temperature-pressure spray-ignition tests.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Temperature-pressure spray-ignition tests. 35... Temperature-pressure spray-ignition tests. (a) Purpose. The purpose of this test shall be to determine the... the pressure vessel and heated to a temperature of 150 °F. The temperature shall be maintained at...

  6. 30 CFR 35.21 - Temperature-pressure spray-ignition tests.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Temperature-pressure spray-ignition tests. 35... Temperature-pressure spray-ignition tests. (a) Purpose. The purpose of this test shall be to determine the... the pressure vessel and heated to a temperature of 150 °F. The temperature shall be maintained at...

  7. 30 CFR 35.21 - Temperature-pressure spray-ignition tests.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Temperature-pressure spray-ignition tests. 35... Temperature-pressure spray-ignition tests. (a) Purpose. The purpose of this test shall be to determine the... the pressure vessel and heated to a temperature of 150 °F. The temperature shall be maintained at...

  8. Elastic properties of anorthite at high temperature and high pressure

    NASA Astrophysics Data System (ADS)

    Matsukage, K. N.; Nishihara, Y.; Noritake, F.; Tsujino, N.; Sakurai, M.; Higo, Y.; Kawamura, K.; Takahashi, E.

    2012-12-01

    To understand the elastic properties of subducted crustal minerals at P-T conditions of crust and upper most mantle, we performed in situ measurement of the elastic wave velocities of anorthite at temperatures up to 1100 oC at less than 2.0 GPa (in stability field) and up to 500 oC at 2.0-7.0 GPa. A fine grained polycrystalline anorthite was synthesised by using gas pressure apparatus installed at magma factory in Tokyo Institute of Technology. The quenched glass with anorthite composition was ground in ethanol and was loaded into a sealed Pt tube (3.0 mm inner diameter and 0.2 mm thickness) container. The sample was preheated at 900°C for 2 hours, and then keep at 1100°C for 20 hours at pressure of 0.3 GPa. The maximum grain size of the synthesized polycrystalline anorthite was about 15μm. The experiments were performed using the SPEED-1500 apparatus installed on beam line BL04B1 at synchrotron facility of SPring-8, Japan (Utsumi et al. 1998). The experimental design for in situ elastic wave velocities measurement at BL04B1 was presented by Higo et al. (2009). Pressure was generated by eight 26 mm tungsten carbide anvils with 11 mm truncated edge length. A Co-doped semi-sintered MgO octahedron with an 18 mm edge length was used as a pressure medium. The sample was enclosed in a BN sleeve container, and was placed in the central part (hot spot) of the furnace. Platinum foils (2.5 μm in thickness) were inserted at the both side of the sample for determination of sample length by using X-ray radiographic imaging techniques. An Al2O3 rod (5.3 mm in length and 2.0 mm in diameter) was used as buffer rod which transmit ultrasonic wave to the sample. Temperature was measured by a W97Re3-W75Re25 thermocouple. MgO was used as a pressure marker, and it was mixed with BN (MgO:BN = 1:1 by weight) to prevent grain growth at high temperatures. The ultrasonic signals were generated and received by 10oY-cut LiNbO3 transducer of 50 μm in thickness and 3.2 mm in diameter. We

  9. Groundwater pressure changes and crustal deformation before and after the 2007 and 2014 eruptions of Mt. Ontake

    NASA Astrophysics Data System (ADS)

    Koizumi, Naoji; Sato, Tsutomu; Kitagawa, Yuichi; Ochi, Tadafumi

    2016-03-01

    Volcanic activity generally causes crustal deformation, which sometimes induces groundwater changes, and both of these phenomena are sometimes detected before volcanic eruptions. Therefore, investigations of crustal deformation and groundwater changes can be useful for predicting volcanic eruptions. The Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, has been observing groundwater pressure at Ohtaki observatory (GOT) since 1998. GOT is about 10 km southeast of the summit of Mt. Ontake. During this observation period, Mt. Ontake has erupted twice, in 2007 and in 2014. Before the 2007 eruption, the groundwater pressure at GOT clearly dropped, but it did not change before or after the 2014 eruption. These observations are consistent with the crustal deformation observed by Global Navigation Satellite System stations of the Geospatial Information Authority of Japan. The difference between the 2007 and 2014 eruptions can be explained if a relatively large magma intrusion occurred before the 2007 eruption but no or a small magma intrusion before the 2014 eruption.

  10. Deformation of polysynthetically twinned (PST) TiAl crystals at high strain rate and high temperature

    SciTech Connect

    Jin, Z.; Gray, G.T. III; Yamaguchi, Masaharu

    1997-12-31

    Deformation microstructures in a 435{degree} <{bar 3}21> oriented polysynthetically twinned (PST) TiAl crystal deformed in compression at 3000 s{sup {minus}1} and 800 C was studied. Deformation of this PST crystal is characterized as follows: (1) Deformation of domains [III] and [IV] is dominated by 1/6[11{bar 2}](111) parallel twinning (twinning parallel to lamellar interfaces). Ordinary dislocations observed in these domains are found to be a complementary deformation mode. (2) Deformation of domains [II], [V] and [VI] is controlled by ordinary dislocation slip. Complementary deformation modes in these domains are ordinary dislocation slip, superdislocation slip and cross-twinning. (3) Domain [I] is not deformed after the specimen deforms up to {approximately}7% strain.

  11. HIGH TEMPERATURE PRESSURE PROCESSING OF MIXED ALANATE COMPOUNDS

    SciTech Connect

    Berseth, P; Ragaiy Zidan, R; Donald Anton, D; Kirk Shanahan, K; Ashley Stowe, A

    2007-06-07

    Mixtures of light-weight elements and hydrides were investigated to increase the understanding of the chemical reactions that take place between various materials. This report details investigations we have made into mixtures that include NaAlH{sub 4}, LiAlH{sub 4}, MgH{sub 2}, Mg{sub 2}NiH{sub 4}, alkali(ne) hydrides, and early third row transition metals (V, Cr, Mn). Experimental parameters such as stoichiometry, heat from ball milling versus hand milling, and varying the temperature of high pressure molten state processing were studied to examine the effects of these parameters on the reactions of the complex metal hydrides.

  12. Potassium-Rich Ices at High Pressures and Temperatures

    NASA Astrophysics Data System (ADS)

    Frank, M. R.; Scott, H. P.; Aarestad, E.; Prakapenka, V.

    2014-12-01

    Accurate modeling of planetary interiors requires that the pressure-volume-temperature properties of phases present within the body be well understood. The high-pressure polymorphs of H2O have been studied extensively, due to the abundance of ice phases in icy moons and likely vast number of extra-solar planetary bodies, with only select studies evaluating impurity-laden ices. In this study, ice formed from a 1.6 mole percent KCl-bearing aqueous solution was studied up to 33 GPa and 650 K, and the incorporation of K+ and Cl- into the ice VII structure was documented. The compression data at 300 K were fit with a third order Birch-Murnaghan equation of state and yielded K, K/, and V0 of 24.7±0.9 GPa, 4.44±0.09, and 39.17±0.15 Å3, respectively. Thermal expansion coefficients were also determined for several isothermal compression curves at elevated temperatures, and a P-V-T equation of state will be presented. The melting of ice VII with incorporated K+ and Cl- was determined up to 625 K and 10.6 GPa and was fit by using a Simon-Glatzel equation. The melting curve is systematically depressed relative to the melting curve of pure H2O by approximately 45 K and 80 K at 4 and 11 GPa, respectively. Interestingly, a portion of the K+ and Cl- contained within the ice VII structure was observed to exsolve with increasing temperature and pressure. This suggests that an internal differentiating process could concentrate a K-rich phase deep within H2O-rich planets, and we speculate that this could supply an additional source of heat through the radioactive decay of 40K. Birch (1951; JGR, 56, 107-126) has estimated that 40K contributes 2.7 μcal/g.year for each wt.% of K, and our results suggest at least 3.33 wt.% can be incorporated into the structure of ice VII, thus making it a source of heat rather than just a conductive layer. In conclusion, our data illustrate a mechanism that may concentrate K at depth and impact the supposed pressure and temperature within moderate

  13. Mineral inclusions in diamond: temperature and pressure of equilibration.

    PubMed

    Meyer, H O; Tsai, H M

    1976-02-27

    Two distinct suites of minerals included in natural diamond occur and probably represent different physical and chemical conditions during diamond growth. Minerals of the ultramafic suite appear to have equilibrated in the range 1000 degrees to 1300 degrees C between 45 and 65 kilobars, whereas the temperature range for minerals of the eclogitic suite is 850 degrees to 1250 degrees C. At present, models relating the partitioning of magnesium and iron between coexisting phases are not sufficiently rigorous to determine a value for the pressure of equilibration of these eclogitic suite inclusions. PMID:17730997

  14. A lidar system for measuring atmospheric pressure and temperature profiles

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Dombrowski, Mark; Korb, C. Laurence; Milrod, Jeffry; Walden, Harvey

    1987-01-01

    The design and operation of a differential absorption lidar system capable of remotely measuring the vertical structure of tropospheric pressure and temperature are described. The measurements are based on the absorption by atmospheric oxygen of the spectrally narrowband output of two pulsed alexandrite lasers. Detailed laser output spectral characteristics, which are critical to successful lidar measurements, are presented. Spectral linewidths of 0.026 and 0.018 per cm for the lasers were measured with over 99.99 percent of the energy contained in three longitudinal modes.

  15. Deformation at ambient and high temperature of in situ Laves phases-ferrite composites

    NASA Astrophysics Data System (ADS)

    Donnadieu, Patricia; Pohlmann, Carsten; Scudino, Sergio; Blandin, Jean-Jacques; Babu Surreddi, Kumar; Eckert, Jürgen

    2014-06-01

    The mechanical behavior of a Fe80Zr10Cr10 alloy has been studied at ambient and high temperature. This Fe80Zr10Cr10 alloy, whoose microstructure is formed by alternate lamellae of Laves phase and ferrite, constitutes a very simple example of an in situ CMA phase composite. The role of the Laves phase type was investigated in a previous study while the present work focuses on the influence of the microstructure length scale owing to a series of alloys cast at different cooling rates that display microstructures with Laves phase lamellae width ranging from ˜50 nm to ˜150 nm. Room temperature compression tests have revealed a very high strength (up to 2 GPa) combined with a very high ductility (up to 35%). Both strength and ductility increase with reduction of the lamella width. High temperature compression tests have shown that a high strength (900 MPa) is maintained up to 873 K. Microstructural study of the deformed samples suggests that the confinement of dislocations in the ferrite lamellae is responsible for strengthening at both ambient and high temperature. The microstructure scale in addition to CMA phase structural features stands then as a key parameter for optimization of mechanical properties of CMA in situ composites.

  16. High Temperature Mechanical Behavior of Ti-45Al-8Nb and Its Cavity Evolution in Deformation

    NASA Astrophysics Data System (ADS)

    Du, Zhihao; Zhang, Kaifeng; Jiang, Shaosong; Zhu, Ruican; Li, Shuguang

    2015-10-01

    The tensile property of a high Nb containing TiAl-based alloy (Ti-45Al-8Nb) was investigated in the temperature range of 900-1050 °C and strain rate range of 1 × 10-3 to 2.5 × 10-2 s-1. The results revealed that the yield stress decreased with increasing temperature and decreasing strain rate, while the tensile elongation increased with an increase in temperature and a decrease in strain rate. Hence, The minimum yield stress of 119.2 MPa and the maximum elongation of 237% were obtained at the temperature of 1050 °C and strain rate of 1 × 10-3 s-1. Based on the experimental data, the activation energy of the alloy was calculated to be 360 kJ/mol. Moreover, the microstructure and the fracture morphology of the specimens were observed, and the results revealed that the distribution of cavities was related to deformation parameters and the fracture mode was typically dimple-type.

  17. Effect of plastic deformation on the electrophysical properties and structure of YBa2Cu3O y ceramics subjected to low-temperature treatment

    NASA Astrophysics Data System (ADS)

    Bobylev, I. B.; Zyuzeva, N. A.; Degtyarev, M. V.; Pilyugin, V. P.

    2015-12-01

    The electrophysical properties and structure of HTSC YBa2Cu3O y compound (123) subjected to plastic deformation by shear under a pressure of 1.7 GPa have been studied. After deformation, the electrophysical properties of samples prepared using the traditional ceramic technology were found to deteriorate. Subsequent annealing at 930°C cannot restore the critical current density ( j c) in low magnetic fields to initial magnitudes; however, in magnetic fields of more than 0.1 T, the j c magnitude increases compared to that for the starting state. The deformation of 123 ceramics treated at 200°C in a humid atmosphere that has undergone phase transformation into the 124 tetragonal phase allows its structure and electrophysical properties to be restored. In this case, the reverse transformation of phase 124 into 123, which is accompanied by the recrystallization of the material, takes place. The combination of low-temperature treatment and high shearing deformation leads to the appearance of texture and an increase of j c, in particular in high magnetic fields.

  18. Anisotropic friction, deformation, and fracture of single-crystal silicon carbide at room temperature

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1979-01-01

    Anisotropic friction, deformation, and fracture studies were conducted with /0001/, /10(-1)0/, and /11(-2)0/ silicon carbide surfaces in sliding contact with diamond. The experiments were conducted with loads of 0.1, 0.2, and 0.3 N at a sliding velocity of 3 mm/min in mineral oil or in dry argon at room temperature. The 1010 direction on the basal /0001/ plane exhibits the lowest coefficient of friction and the greatest resistance to abrasion for silicon carbide. Anisotropic friction and deformation of the /0001/, /10(-1)0/, and /11(-2)0/ silicon carbide surfaces are primarily controlled by the slip system /10(-1)0/ 11(-2)0. The anisotropic fracture during sliding on the basal plane is due to surface cracking along /10(-1)0/ and subsurface cracking along /0001/. The fracture during sliding on the /11(-2)0/ or /10(-1)0/ surfaces is due to surface cracking along /0001/ and /11(-2)0/ or /10(-1)-1 and to subsurface cracking along /10(-1)0/.

  19. Microstructures of beta silicon carbide after irradiation creep deformation at elevated temperatures

    SciTech Connect

    Katoh, Yutai; Kondo, Sosuke; Snead, Lance Lewis

    2008-01-01

    Microstructures of silicon carbide were examined by transmission electron microscopy (TEM) after creep deformation under neutron irradiation. Thin strip specimens of polycrystalline and monocrystalline, chemically vapor-deposited, beta-phase silicon carbide were irradiated in the high flux isotope reactor to 0.7-4.2 dpa at nominal temperatures of 640-1080 C in an elastically pre-strained bend stress relaxation configuration with the initial stress of {approx}100 MPa. Irradiation creep caused permanent strains of 0.6 to 2.3 x 10{sup -4}. Tensile-loaded near-surface portions of the crept specimens were examined by TEM. The main microstructural features observed were dislocation loops in all samples, and appeared similar to those observed in samples irradiated in non-stressed conditions. Slight but statistically significant anisotropy in dislocation loop microstructure was observed in one irradiation condition, and accounted for at least a fraction of the creep strain derived from the stress relaxation. The estimated total volume of loops accounted for 10-45% of the estimated total swelling. The results imply that the early irradiation creep deformation of SiC observed in this work was driven by anisotropic evolutions of extrinsic dislocation loops and matrix defects with undetectable sizes.

  20. Low Temperature Irradiation Embrittlement of Reactor Pressure Vessel Steels

    SciTech Connect

    Wang, Jy-An John

    2015-08-01

    The embrittlement trend curve development project for HFIR reactor pressure vessel (RPV) steels was carried out with three major tasks. Which are (1) data collection to match that used in HFIR steel embrittlement trend published in 1994 Journal Nuclear Material by Remec et. al, (2) new embrittlement data of A212B steel that are not included in earlier HFIR RPV trend curve, and (3) the adjustment of nil-ductility-transition temperature (NDTT) shift data with the consideration of the irradiation temperature effect. An updated HFIR RPV steel embrittlement trend curve was developed, as described below. NDTT( C) = 23.85 log(x) + 203.3 log (x) + 434.7, with 2- uncertainty of 34.6 C, where parameter x is referred to total dpa. The developed update HFIR RPV embrittlement trend curve has higher embrittlement rate compared to that of the trend curve developed in 1994.

  1. A data bank of Antarctic surface temperature and pressure data

    SciTech Connect

    Jones, P.D.; Limbert, D.W.S.

    1987-06-01

    A data bank of monthly-mean surface air temperature and sea-level or station-level pressures is presented for 29 stations over the Antarctic region south of 60/sup 0/S. Considerable attempts have been made to locate missing data in nationally published sources and in World Weather Records. By cross-checking neighboring station data, suspect values have been either verified or corrected. At four sites in the Antarctic Peninsula region, composite records were produced by amalgamating records from a number of short and longer length records at or near the key sites. The four sites were Bellingshausen, Faraday, Esperenza and Rothera. The mean Antarctic temperature series produced by Raper et al. (1984) is updated using the same method of calculation.

  2. High pressure/high temperature thermogravimetric apparatus. Final report

    SciTech Connect

    Calo, J.M.; Suuberg, E.M.

    1999-12-01

    The purpose of this instrumentation grant was to acquire a state-of-the-art, high pressure, high temperature thermogravimetric apparatus (HP/HT TGA) system for the study of the interactions between gases and carbonaceous solids for the purpose of solving problems related to coal utilization and applications of carbon materials. The instrument that we identified for this purpose was manufactured by DMT (Deutsche Montan Technologies)--Institute of Cokemaking and Coal Chemistry of Essen, Germany. Particular features of note include: Two reactors: a standard TGA reactor, capable of 1100 C at 100 bar; and a high temperature (HT) reactor, capable of operation at 1600 C and 100 bar; A steam generator capable of generating steam to 100 bar; Flow controllers and gas mixing system for up to three reaction gases, plus a separate circuit for steam, and another for purge gas; and An automated software system for data acquisition and control. The HP/TP DMT-TGA apparatus was purchased in 1996 and installed and commissioned during the summer of 1996. The apparatus was located in Room 128 of the Prince Engineering Building at Brown University. A hydrogen alarm and vent system were added for safety considerations. The system has been interfaced to an Ametek quadruple mass spectrometer (MA 100), pumped by a Varian V250 turbomolecular pump, as provided for in the original proposed. With this capability, a number of gas phase species of interest can be monitored in a near-simultaneous fashion. The MS can be used in a few different modes. During high pressure, steady-state gasification experiments, it is used to sample, measure, and monitor the reactant/product gases. It can also be used to monitor gas phase species during nonisothermal temperature programmed reaction (TPR) or temperature programmed desorption (TPD) experiments.

  3. Formation behavior of basal texture under the high temperature plane strain compression deformation in AZ80 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Kim, K.; Okayasu, K.; Fukutomi, H.

    2015-04-01

    The formation behavior of basal texture during high temperature deformation of AZ80 magnesium alloys in single phase was investigated by plane strain compression deformation. Three kinds of specimens with different initial textures were machined out from an extruded bar having a <101¯0> texture. Plane strain compression tests were conducted at temperatures of 623K and 723K and a strain rate of 5.0×10-2s-1, with a strain range of between - 0.4 and -1.0. After deformation, the specimens were immediately quenched in oil. Texture measurement was carried out on the compression planes by the Schulz reflection method using nickel filtered Cu Kα radiation. Electron backscatter diffraction (EBSD) measurements were also conducted in order to examine the spatial distribution of orientations. Three kinds of specimens named A, B and C were prepared from the same extruded bar. In the specimens A, B and C, {0001} was distributed preferentially parallel to ND, TD, and RD, respectively. After deformation, texture evaluation was conducted on the mid-plane section. At the plane strain compression deformation, peaks appeared in the true stress-true strain curves irrespective of the kinds of specimen used. It was found that the main components and the pole densities of the textures vary depending on deformation condition and initial texture. Six kinds of texture components were observed after deformation. The (0001)<101¯0> has formed regardless of the initial texture. There are two types of texture components; one exists before the deformation, and the other does not. Either types are considered to have stable orientations for plane strain compression. Also, the basal texture is composed of two crystal orientation components - (0001)<101¯0> and (0001)<112¯0>. When (0001) existed before deformation, an extremely sharp (0001) (compression plane) texture is formed.

  4. High-temperature measurements of lattice parameters and internal stresses of a creep-deformed monocrystalline nickel-base superalloy

    NASA Astrophysics Data System (ADS)

    Biermann, Horst; Strehler, Marcus; Mughrabi, Haël

    1996-04-01

    High-temperature X-ray line profile measurements were performed to maximal temperatures of 1050 °C on samples of the nickel-base superalloy SRR 99. The samples with rod axes near the [001] direction were investigated in the initially undeformed state and after creep deformation at different temperatures and stresses. For the measurements of the (002) and (020) line profiles, a special X-ray double crystal diffractometer with negligible line broadening was used which was equipped with a high-temperature vacuum chamber. The line profiles were evaluated for the lattice parameters of the matrix phase γ and the precipitated γ' phase and for values of the lattice mismatch parallel and perpendicular to the stress axis, respectively, which were found to be different. Elastic, tetragonal distortions of the phases γ and γ' could be determined between room temperature and about 900 °C. These distortions are thermally induced due to the different thermal expansion coefficients of the two phases and deformation induced due to interfacial dislocation networks which were built up during deformation. At the high temperatures of the X-ray measurements, at least partial recovery of the deformation-induced internal stresses occurred, depending on the temperature of the X-ray measurements. The results are discussed and compared with data obtained by complementary techniques.

  5. An internal variable constitutive model for the large deformation of metals at high temperatures

    NASA Technical Reports Server (NTRS)

    Brown, Stuart; Anand, Lallit

    1988-01-01

    The advent of large deformation finite element methodologies is beginning to permit the numerical simulation of hot working processes whose design until recently has been based on prior industrial experience. Proper application of such finite element techniques requires realistic constitutive equations which more accurately model material behavior during hot working. A simple constitutive model for hot working is the single scalar internal variable model for isotropic thermal elastoplasticity proposed by Anand. The model is recalled and the specific scalar functions, for the equivalent plastic strain rate and the evolution equation for the internal variable, presented are slight modifications of those proposed by Anand. The modified functions are better able to represent high temperature material behavior. The monotonic constant true strain rate and strain rate jump compression experiments on a 2 percent silicon iron is briefly described. The model is implemented in the general purpose finite element program ABAQUS.

  6. HIGH TEMPERATURE HIGH PRESSURE THERMODYNAMIC MEASUREMENTS FOR COAL MODEL COMPOUNDS

    SciTech Connect

    Vinayak N. Kabadi

    2000-05-01

    The flow VLE apparatus designed and built for a previous project was upgraded and recalibrated for data measurements for this project. The modifications include better and more accurate sampling technique, addition of a digital recorder to monitor temperature and pressure inside the VLE cell, and a new technique for remote sensing of the liquid level in the cell. VLE data measurements for three binary systems, tetralin-quinoline, benzene--ethylbenzene and ethylbenzene--quinoline, have been completed. The temperature ranges of data measurements were 325 C to 370 C for the first system, 180 C to 300 C for the second system, and 225 C to 380 C for the third system. The smoothed data were found to be fairly well behaved when subjected to thermodynamic consistency tests. SETARAM C-80 calorimeter was used for incremental enthalpy and heat capacity measurements for benzene--ethylbenzene binary liquid mixtures. Data were measured from 30 C to 285 C for liquid mixtures covering the entire composition range. An apparatus has been designed for simultaneous measurement of excess volume and incremental enthalpy of liquid mixtures at temperatures from 30 C to 300 C. The apparatus has been tested and is ready for data measurements. A flow apparatus for measurement of heat of mixing of liquid mixtures at high temperatures has also been designed, and is currently being tested and calibrated.

  7. Low temperature electrical conductivity measurements under high pressure up to 10 GPa

    NASA Astrophysics Data System (ADS)

    Singh, Yadunath

    2016-05-01

    This paper report about a modified version of Fuji high pressure cell and other necessary instrumentation required for the calibration of the high pressure cell and electrical resistivity measurement under high pressure and very low temperature environment.

  8. Pressure and temperature distribution in biological tissues by focused ultrasound

    NASA Astrophysics Data System (ADS)

    Mal, Ajit K.; Feng, Feng; Kabo, Michael; Wang, Jeffrey; Bar-Cohen, Yoseph

    2003-07-01

    The interaction between ultrasound and biological tissues has been the subject of a number of investigators for nearly half a century and the number of applications of high intensity, focused ultrasound for therapeutic purposes continues to grow. This paper is motivated by possible medical applications of focused ultrasound in minimally invasive treatment of a variety of musculoskeletal disorders that are responsive to thermal treatment. The mechanical and thermal effects in a subject"s body induced by high-frequency ultrasound are simulated using PZFlex, a finite element based program. The FEM model described in this report is of a transverse section of the body at the level of the second lumbar vertebra (L2) extracted from a CT image. In order to protect the nerves inside the spinal canal as well as to obtain an effective heating result at the focal region within the intervertebral disk, a suitable orientation of axis of the focused ultrasound lens have to be determined in advance. The pressure, energy loss distribution and temperature distribution are investigated in this paper with the different orientations of the axis and different transverse diameter of the spherical ultrasound lens. Since nonlinear effects are expected to be important in the therapeutic application in some literatures, this paper also demonstrates the effects of nonlinearities on the pressure and temperature distribution induced by focused ultrasound in a two dimensional model. Finally, a comparison of the results between linear and nonlinear cases is reported.

  9. HINDERED DIFFUSION OF ASPHALTENES AT ELEVATED TEMPERATURE AND PRESSURE

    SciTech Connect

    James A. Guin; Ganesh Ramakrishnan

    1999-10-07

    During this time period, experiments were performed to study the diffusion controlled uptake of quinoline and a coal asphaltene into porous carbon catalyst pellets. Cyclohexane and toluene were used as solvents for quinoline and the coal asphaltene respectively. The experiments were performed at 27 C and 75 C, at a pressure of 250 psi (inert gas) for the quinoline/cyclohexane system. For the coal asphaltene/toluene system, experiments were performed at 27 C, also at a pressure of 250 psi. These experiments were performed in a 20 cm{sup 3} microautoclave, the use of which is advantageous since it is economical from both a chemical procurement and waste disposal standpoint due to the small quantities of solvents and catalysts used. A C++ program was written to simulate data using a mathematical model which incorporated both diffusional and adsorption mechanisms. The simulation results showed that the mathematical model satisfactorily fitted the adsorptive diffusion of quinoline and the coal asphaltene onto a porous activated carbon. For the quinoline/cyclohexane system, the adsorption constant decreased with an increase in temperature. The adsorption constant for the coal asphaltene/toluene system at 27 C was found to be much higher than that of the quinoline/cyclohexane system at the same temperature. Apparently the coal asphaltenes have a much greater affinity for the surface of the carbon catalyst than is evidenced by the quinoline molecule.

  10. Electrical conductivity of carbonbearing granulite at raised temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Glover, Paul W. J.; Vine, F. J.

    1992-12-01

    IT has long been recognized that the electrical conductivity of the lower continental crust is anomalously high. Both pore-saturating brines1-5 and conducting films of carbon at grain boundaries6-10 have been proposed to explain this, but the evidence remains inconclusive. Here we report measurements of electrical conductivity at high temperatures and pressures11-13 on samples of carbon-bearing and carbon-free granulites with a range of electrolyte saturations. The application of pressure to nominally dry carbon-free samples reduces the electrical conductivity as a result of a progressive reduction in pore connectivity, whereas the carbon-bearing samples show an increase in conductivity under the same conditions-an effect that we ascribe to reconnection of carbon conduction pathways during compaction. Moreover, we find a greater increase in conductivity with temperature for the carbon-bearing samples. In the light of work indicating that the abundance of carbon in high-grade rocks has been underestimated in the past7,8, our results provide strong evidence for the role of carbon in lower-crustal conductivity.

  11. HIGH TEMPERATURE HIGH PRESSURE THERMODYNAMIC MEASUREMENTS FOR COAL MODEL COMPOUNDS

    SciTech Connect

    Vinayak N. Kabadi

    2000-05-01

    The Vapor Liquid Equilibrium measurement setup of this work was first established several years ago. It is a flow type high temperature high pressure apparatus which was designed to operate below 500 C temperature and 2000 psia pressure. Compared with the static method, this method has three major advantages: the first is that large quantity of sample can be obtained from the system without disturbing the equilibrium state which was established before; the second is that the residence time of the sample in the equilibrium cell is greatly reduced, thus decomposition or contamination of the sample can be effectively prevented; the third is that the flow system allows the sample to degas as it heats up since any non condensable gas will exit in the vapor stream, accumulate in the vapor condenser, and not be recirculated. The first few runs were made with Quinoline-Tetralin system, the results were fairly in agreement with the literature data . The former graduate student Amad used the same apparatus acquired the Benzene-Ethylbenzene system VLE data. This work used basically the same setup (several modifications had been made) to get the VLE data of Ethylbenzene-Quinoline system.

  12. High temperature pressurized high frequency testing rig and test method

    DOEpatents

    De La Cruz, Jose; Lacey, Paul

    2003-04-15

    An apparatus is described which permits the lubricity of fuel compositions at or near temperatures and pressures experienced by compression ignition fuel injector components during operation in a running engine. The apparatus consists of means to apply a measured force between two surfaces and oscillate them at high frequency while wetted with a sample of the fuel composition heated to an operator selected temperature. Provision is made to permit operation at or near the flash point of the fuel compositions. Additionally a method of using the subject apparatus to simulate ASTM Testing Method D6079 is disclosed, said method involving using the disclosed apparatus to contact the faces of prepared workpieces under a measured load, sealing the workface contact point into the disclosed apparatus while immersing said contact point between said workfaces in a lubricating media to be tested, pressurizing and heating the chamber and thereby the fluid and workfaces therewithin, using the disclosed apparatus to impart a differential linear motion between the workpieces at their contact point until a measurable scar is imparted to at least one workpiece workface, and then evaluating the workface scar.

  13. Highly oriented NdFeCoB nanocrystalline magnets from partially disproportionated compacts by reactive deformation under low pressure

    SciTech Connect

    Zheng, Qing; Li, Jun; Liu, Ying Yu, Yunping; Lian, Lixian

    2014-05-07

    In the present investigation, we take advantage of the ultrafine grain size of NdFeCoB partially hydrogen-disproportionated phases, and prepare anisotropic nanocrystalline magnets with full density and homogenous microstructure and texture by reactive deformation under low pressure. Our results suggest that the pressure could properly promote an occurrence of desorption-recombination reaction due to a shorter-range rearrangement of the atoms, and the newly recombined Nd{sub 2}Fe{sub 14}B grains with fine grain size could undergo deformation immediately after the phase transformation, and then an obvious anisotropy and uniform alignment would be obtained. The maximum magnetic properties, (BH){sub max} = 25.8 MGOe, Br = 11.8 kG, H{sub cj} = 5.5 kOe, were obtained after being treated for 5 min at 820 °C in vacuum. The present study highlights the feasibility to prepare anisotropic nanocrystalline magnets with homogeneous microstructure and a strong (00l) texture of uniform grain size under low pressure.

  14. Opto-mechanical analysis of nonlinear elastomer membrane deformation under hydraulic pressure for variable-focus liquid-filled microlenses.

    PubMed

    Choi, Seung Tae; Son, Byeong Soo; Seo, Gye Won; Park, Si-Young; Lee, Kyung-Sick

    2014-03-10

    Nonlinear large deformation of a transparent elastomer membrane under hydraulic pressure was analyzed to investigate its optical performance for a variable-focus liquid-filled membrane microlens. In most membrane microlenses, actuators control the hydraulic pressure of optical fluid so that the elastomer membrane together with the internal optical fluid changes its shape, which alters the light path of the microlens to adapt its optical power. A fluid-structure interaction simulation was performed to estimate the transient behavior of the microlens under the operation of electroactive polymer actuators, demonstrating that the viscosity of the optical fluid successfully stabilizes the fluctuations within a fairly short period of time during dynamic operations. Axisymmetric nonlinear plate theory was used to calculate the deformation profile of the membrane under hydrostatic pressure, with which optical characteristics of the membrane microlens were estimated. The effects of gravitation and viscoelastic behavior of the elastomer membrane on the optical performance of the membrane microlens were also evaluated with finite element analysis. PMID:24663947

  15. Dirac-Hartree-Bogoliubov calculation for spherical and deformed hot nuclei: Temperature dependence of the pairing energy and gaps, nuclear deformation, nuclear radii, excitation energy, and entropy

    NASA Astrophysics Data System (ADS)

    Lisboa, R.; Malheiro, M.; Carlson, B. V.

    2016-02-01

    Background: Unbound single-particle states become important in determining the properties of a hot nucleus as its temperature increases. We present relativistic mean field (RMF) for hot nuclei considering not only the self-consistent temperature and density dependence of the self-consistent relativistic mean fields but also the vapor phase that takes into account the unbound nucleon states. Purpose: The temperature dependence of the pairing gaps, nuclear deformation, radii, binding energies, entropy, and caloric curves of spherical and deformed nuclei are obtained in self-consistent RMF calculations up to the limit of existence of the nucleus. Method: We perform Dirac-Hartree-Bogoliubov (DHB) calculations for hot nuclei using a zero-range approximation to the relativistic pairing interaction to calculate proton-proton and neutron-neutron pairing energies and gaps. A vapor subtraction procedure is used to account for unbound states and to remove long range Coulomb repulsion between the hot nucleus and the gas as well as the contribution of the external nucleon gas. Results: We show that p -p and n -n pairing gaps in the S10 channel vanish for low critical temperatures in the range Tcp≈0.6 -1.1 MeV for spherical nuclei such as 90Zr, 124Sn, and 140Ce and for both deformed nuclei 150Sm and 168Er. We found that superconducting phase transition occurs at Tcp=1.03 Δp p(0 ) for 90Zr, Tcp=1.16 Δp p(0 ) for 140Ce, Tcp=0.92 Δp p(0 ) for 150Sm, and Tcp=0.97 Δp p(0 ) for 168Er. The superfluidity phase transition occurs at Tcp=0.72 Δn n(0 ) for 124Sn, Tcp=1.22 Δn n(0 ) for 150Sm, and Tcp=1.13 Δn n(0 ) for 168Er. Thus, the nuclear superfluidity phase—at least for this channel—can only survive at very low nuclear temperatures and this phase transition (when the neutron gap vanishes) always occurs before the superconducting one, where the proton gap is zero. For deformed nuclei the nuclear deformation disappear at temperatures of about Tcs=2.0 -4.0 MeV , well above the

  16. High temperature and deformation field measurements at the vicinity of dynamically growing shear bands

    SciTech Connect

    Rosakis, A.J.; Ravichandran, G.; Zhou, M.

    1995-12-31

    The phenomenon of dynamic initiation and propagation of adiabatic shear bands is experimentally and numerically investigated. Pre-notched metal plates are subjected to asymmetric impact load histories (dynamic mode-II loading). Dynamic shear bands emanate from the notch tip and propagate rapidly in a direction nearly parallel to the direction of the impact. Real time temperature histories along a line intersecting and perpendicular to the shear band paths are recorded by means of a high-speed infrared detector system. The materials studied are C-300 (a maraging steel) and Ti - 6 Al - 4 V alloy. Experiments show that the peak temperatures inside the propagating shear bands are approaching 90% of the melting point for C-300 and are significantly lower for the titanium alloy (up to 600{degrees}C). Additionally, measured distances of shear band propagation indicate stronger resistance to shear banding by the Ti - 6Al - 4V alloy. Deformation fields around the propagating shear bands are recorded using high-speed photography. Shear band speeds are found to strongly depend on impact velocities, and are as high as 1200 m/s for C-300 steels. Finite Element simulations of the experiments are carried out under the context of plane strain, considering finite deformations, inertia, heat conduction, thermal softening, strain hardening and strain-rate hardening. In the simulations, the shear band propagation is assumed to be governed by a critical plastic strain criterion. The results are compared with experimental measurements obtained using the high-speed infrared detectors and high-speed photography.

  17. EVALUATION OF CERAMIC FILTERS FOR HIGH-TEMPERATURE/HIGH-PRESSURE FINE PARTICULATE CONTROL

    EPA Science Inventory

    High temperature gas turbines used to generate electric power require gas streams virtually free of particulate matter. Gas streams from high temperature, high pressure coal processes, such as low Btu gasification and pressurized fluidized bed combustion, require considerable par...

  18. Observations of Seafloor Vertical Deformation on Axial Seamount with the Self-Calibrating Pressure Recorder

    NASA Astrophysics Data System (ADS)

    Cook, M. J.; Sasagawa, G. S.; Zumberge, M. A.

    2015-12-01

    A geodetic pressure gauge, the Self-Calibrating Pressure Recorder (SCPR), was deployed on Axial Seamount on September 7, 2013. The device performs in situ pressure calibrations every 10 days by applying a time-invariant reference pressure from a piston gauge (also known as a deadweight calibrator) to continuously recording quartz pressure gauges through a hydraulic valve. The reference pressure measurements are then used to estimate and correct for the inherent drift in the quartz resonant seafloor pressure gauges. Pressure data are collected at 100 s integration intervals. A small subset of a year-long data set was recovered via an acoustic modem in August 2014. Using three epoch measurements, the pressure rate of change from September 2013 to August 2014 was -4.1 to -4.2 kPa/year, equivalent to uplift of 41- 42 cm/year. Other pressure time series and micro-bathymetric repeat surveys are in rough agreement with this SCPR rate. The instrument is scheduled for recovery in August 2015; the anticipated data collection interval spans the eruption on April 24, 2015. We present the drift-corrected pressure series and constraints estimated for magma supply rates during the inflation, eruption, and post-eruptive phases.

  19. Pressure-Volume-Temperature (PVT) Gauging of an Isothermal Cryogenic Propellant Tank Pressurized with Gaseous Helium

    NASA Technical Reports Server (NTRS)

    VanDresar, Neil T.; Zimmerli, Gregory A.

    2014-01-01

    Results are presented for pressure-volume-temperature (PVT) gauging of a liquid oxygen/liquid nitrogen tank pressurized with gaseous helium that was supplied by a high-pressure cryogenic tank simulating a cold helium supply bottle on a spacecraft. The fluid inside the test tank was kept isothermal by frequent operation of a liquid circulation pump and spray system, and the propellant tank was suspended from load cells to obtain a high-accuracy reference standard for the gauging measurements. Liquid quantity gauging errors of less than 2 percent of the tank volume were obtained when quasi-steady-state conditions existed in the propellant and helium supply tanks. Accurate gauging required careful attention to, and corrections for, second-order effects of helium solubility in the liquid propellant plus differences in the propellant/helium composition and temperature in the various plumbing lines attached to the tanks. On the basis of results from a helium solubility test, a model was developed to predict the amount of helium dissolved in the liquid as a function of cumulative pump operation time. Use of this model allowed correction of the basic PVT gauging calculations and attainment of the reported gauging accuracy. This helium solubility model is system specific, but it may be adaptable to other hardware systems.

  20. Diamond-anvil high-pressure cell for optical spectroscopy at low temperature

    NASA Astrophysics Data System (ADS)

    Kobayashi, Toshihiko

    1985-02-01

    A diamond-anvil high-pressure cell is described which allows optical studies at low temperatures and variable pressure to 260 kbar and higher. A bellows assembly has been designed to drive diamond anvils and connected helium gas pressure source. The sample pressure can be changed remotely while the sample is maintained at operating temperature. Examples of the application to the optical absorption in InP under high pressure are shown. Tests using different pressure transmitting fluids are reported.

  1. 40 CFR 1065.215 - Pressure transducers, temperature sensors, and dewpoint sensors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... For atmospheric pressure or other precision pressure measurements, we recommend either capacitance... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Pressure transducers, temperature... Measurement of Engine Parameters and Ambient Conditions § 1065.215 Pressure transducers, temperature...

  2. 40 CFR 1065.215 - Pressure transducers, temperature sensors, and dewpoint sensors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... For atmospheric pressure or other precision pressure measurements, we recommend either capacitance... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Pressure transducers, temperature... Measurement of Engine Parameters and Ambient Conditions § 1065.215 Pressure transducers, temperature...

  3. 40 CFR 1065.215 - Pressure transducers, temperature sensors, and dewpoint sensors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... For atmospheric pressure or other precision pressure measurements, we recommend either capacitance... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Pressure transducers, temperature... Measurement of Engine Parameters and Ambient Conditions § 1065.215 Pressure transducers, temperature...

  4. 40 CFR 1065.215 - Pressure transducers, temperature sensors, and dewpoint sensors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... For atmospheric pressure or other precision pressure measurements, we recommend either capacitance... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Pressure transducers, temperature... Measurement of Engine Parameters and Ambient Conditions § 1065.215 Pressure transducers, temperature...

  5. Studies on synthesis of diamond at high pressure and temperature

    NASA Astrophysics Data System (ADS)

    Kailath, Ansu J.

    Diamond is an essential material of modern industry and probably the most versatile abrasive available today. It also has many other industrial applications attributable to its unique mechanical, optical, thermal and electrical properties. Its usage has grown to the extent that there is hardly a production process in modern industry in which industrial diamond does not play a part. Bulk diamond production today is a major industry. Diamonds can be produced in its thermodynamically stable regions either by direct static conversion, or shock-wave conversion. The pressures and temperatures required for direct static conversion are very high. In the catalyst-solvent method, the material used establishes a reaction path with lower activation energy than for direct transformation. This helps in a quicker transformation under more benign conditions. Hence, catalyst-solvent synthesis is readily accomplished and is now a viable and successful industrial process. Diamonds produced by shock wave are very small (approximately 60mu). Therefore this diamond is limited to applications such as polishing compounds only. The quality, quantity, size and morphology of the crystals synthesized by catalyst-solvent process depend on different conditions employed for synthesis. These details, because of commercial reasons are not disclosed in published literature. Hence, systematic studies have been planned to investigate the effect of various growth parameters on the synthesized crystals. During the growth of synthetic diamond crystals, some catalyst-solvent is retained into the crystals in some form and behaves like an impurity. Several physico-mechanical properties of the crystals are found to depend on the total quantity and distribution of these inclusions. Thus, detailed investigation of the crystallization medium and inclusions in synthesized diamonds was also undertaken in the present work. The work incorporated in this thesis has been divided into seven chapters. The first

  6. Development of a New Analog Test System Capable of Modeling Tectonic Deformation Incorporating the Effects of Pore Fluid Pressure

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Nakajima, H.; Takeda, M.; Aung, T. T.

    2005-12-01

    Understanding and predicting the tectonic deformation within geologic strata has been a very important research subject in many fields such as structural geology and petroleum geology. In recent years, such research has also become a fundamental necessity for the assessment of active fault migration, site selection for geological disposal of radioactive nuclear waste and exploration for methane hydrate. Although analog modeling techniques have played an important role in the elucidation of the tectonic deformation mechanisms, traditional approaches have typically used dry materials and ignored the effects of pore fluid pressure. In order for analog models to properly depict the tectonic deformation of the targeted, large-prototype system within a small laboratory-scale configuration, physical properties of the models, including geometry, force, and time, must be correctly scaled. Model materials representing brittle rock behavior require an internal friction identical to the prototype rock and virtually zero cohesion. Granular materials such as sand, glass beads, or steel beads of dry condition have been preferably used for this reason in addition to their availability and ease of handling. Modeling protocols for dry granular materials have been well established but such model tests cannot account for the pore fluid effects. Although the concept of effective stress has long been recognized and the role of pore-fluid pressure in tectonic deformation processes is evident, there have been few analog model studies that consider the effects of pore fluid movement. Some new applications require a thorough understanding of the coupled deformation and fluid flow processes within the strata. Taking the field of waste management as an example, deep geological disposal of radioactive waste has been thought to be an appropriate methodology for the safe isolation of the wastes from the human environment until the toxicity of the wastes decays to non-hazardous levels. For the

  7. Mechanical Modeling of Near-Fault Deformation Within the Dragon's Back Pressure Ridge, San Andreas Fault, Carrizo Plain, California

    NASA Astrophysics Data System (ADS)

    Hilley, G. E.; Arrowsmith, R.

    2011-12-01

    This contribution uses field observations and numerical modeling to understand how slip along the variably oriented fault surfaces in the upper few km of the San Andreas Fault (SAF) zone produces near-fault deformation observed within a 4.5-km-long Dragon's Back Pressure Ridge (DBPR) in the Carrizo Plain, central California. Geologic and geomorphic mapping of this feature indicates that the amplitude of monoclinal warping of Quaternary sediments increases from southeast to northwest along the southwestern third of the DBPR, and remains approximately constant throughout the remaining two thirds of the landform. When viewed with other structural observations and limited near-surface magnetotelluric imaging, these geologic observations are most compatible with a scenario in which shallow offset of the SAF to the northeast creates a structural knuckle that is anchored to the North American plate. Thus, deformation accrues as right-lateral strike-slip motion along the SAF moves this obstruction along the fault plane through the DBPR block. We have used the Gale numerical model to simulate deformation expected for geometries similar to those inferred within the vicinity of the DBPR. This is accomplished by relating stresses and strains in the upper crust according to a Drucker-Prager (plastic yielding) constitutive rule. Deformation in the model is driven by applying 35 mm/yr of right-lateral strike-slip motion to the model boundary; this displacement rate is likewise applied to the base of the model. The model geometry of the SAF at the beginning of the loading was fashioned to produce the discontinuity in the geometry of the fault plane that is inferred from field observations. The friction and cohesion of crust on each side of the fault were changed between models to determine the parameter values that preserve the structural discontinuity along the SAF as finite deformation accrued. The structural discontinuity over the ~4.5 km of model displacement is maintained in

  8. Weld heat-affected-zone response to elevated-temperature deformation

    SciTech Connect

    Bowers, R.J.; Nippes, E.F.

    1996-11-01

    The mechanical response to elevated-temperature deformation was assessed for weld heat-affected-zone (HAZ) and base-metal microstructures in 2.25Cr-1Mo steel. A constant-displacement-rate (CDR) test, capable of determining long-time, notch-sensitivity tendencies, was implemented on a Gleeble 1,500 thermal/mechanical simulator and an Instron. Microstructures representative of the coarse-grained, grain-refined, and intercritical regions of the HAZ were simulated on a Gleeble. Microstructural reproduction reflected the preheat and postweld heat treatments in accordance with the required codes. A K{sub 1} analysis of the data was conducted, which showed that small-scale yielding criteria were adhered to throughout the test. The test results indicated that the high-temperature extensometer control of the Instron was better able to maintain stable crack growth after peak load than the crosshead control of the Gleeble. The CDR test was seen to be an effective, short-time procedure to delineate and compare the strength and relative service life of the structures present in the weld HAZ.

  9. High-temperature, high-pressure optical cell

    NASA Technical Reports Server (NTRS)

    Harris, R. P. (Inventor); Holland, L. R. (Inventor); Smith, R. E. (Inventor)

    1986-01-01

    The invention is an optical cell for containment of chemicals under conditions of high temperature and high pressure. The cell is formed of a vitreous silica tube, two optical windows comprising a vitreous silica rod inserted into the ends of a tube, and fused into position in the tube ends. Windows are spaced apart to form a cavity enclosed by the tube and the windows. A hole is drilled radially through the tube and into the cavity. Another vitreous silica tube is fused to the silica tube around the hole to form the stem, which is perpendicular to the long axis of the tube. The open end of the stem is used to load chemicals into the cavity. Then the stem may be sealed, and if desired, it may be shortened in order to reduce the volume of the cavity, which extends into the stem.

  10. Phase diagram of Mo at high pressure and temperature

    SciTech Connect

    Ross, M

    2008-10-01

    We report values of the Poisson Ratios for shock compressed Mo, calculated from the sound speed measurements, which provide evidence that the 210 GPa ({approx}4100K) transition cannot be a bcc-hcp transition, as originally proposed. Instead, we find the transition is from the bcc to a noncrystalline phase. For pressures above 210 GPa, the Poisson Ratio increases steadily with increasing temperature, approaching the liquid value of 0.5 at 390 GPa({approx}10,000K), suggesting the presence of a noncrystalline solid-liquid mixture. Free energy model calculations were used to show that the low melting slope of Mo, and the phase diagram, can be explained by the presence of local liquid structures. A new phase diagram is proposed for Mo that is constrained by the experimental evidence.

  11. [Genesis study of omphacite at high pressure and high temperature].

    PubMed

    Xiao, Ben-Fu; Yi, Li; Wang, Duo-Jun; Xie, Chao; Tang, Xue-Wu; Liu, Lei; Cui, Yue-Ju

    2013-11-01

    The melting and recrystallizing experiments of alkali basalt powder and mixture of pure oxides mixed as stoichiometry were performed at 3 GPa and 1 200 degrees C. Electronic microprobe analysis and Raman spectra showed that the recrystallized products were omphacites, the FWHM (full width at half maximum) of the Raman peak was narrow and its shape was sharp, which is attributed to the stable Si-O tetrahedral structure and the high degree of order in omphacite. Based on the results of previous studies, the influencing factors of omphacite genesis and its primary magma were discussed. The results showed that the formation of omphacite could be affected by many factors, such as the composition of parent rocks, the concentration of fluid in the system and the conditions of pressure and temperature. This result could support some experimental evidences on the genesis studies of omphacite and eclogite. PMID:24555367

  12. Pressure Resistance Welding of High Temperature Metallic Materials

    SciTech Connect

    N. Jerred; L. Zirker; I. Charit; J. Cole; M. Frary; D. Butt; M. Meyer; K. L. Murty

    2010-10-01

    Pressure Resistance Welding (PRW) is a solid state joining process used for various high temperature metallic materials (Oxide dispersion strengthened alloys of MA957, MA754; martensitic alloy HT-9, tungsten etc.) for advanced nuclear reactor applications. A new PRW machine has been installed at the Center for Advanced Energy Studies (CAES) in Idaho Falls for conducting joining research for nuclear applications. The key emphasis has been on understanding processing-microstructure-property relationships. Initial studies have shown that sound joints can be made between dissimilar materials such as MA957 alloy cladding tubes and HT-9 end plugs, and MA754 and HT-9 coupons. Limited burst testing of MA957/HT-9 joints carried out at various pressures up to 400oC has shown encouraging results in that the joint regions do not develop any cracking. Similar joint strength observations have also been made by performing simple bend tests. Detailed microstructural studies using SEM/EBSD tools and fatigue crack growth studies of MA754/HT-9 joints are ongoing.

  13. Constant pressure and temperature discrete-time Langevin molecular dynamics.

    PubMed

    Grønbech-Jensen, Niels; Farago, Oded

    2014-11-21

    We present a new and improved method for simultaneous control of temperature and pressure in molecular dynamics simulations with periodic boundary conditions. The thermostat-barostat equations are built on our previously developed stochastic thermostat, which has been shown to provide correct statistical configurational sampling for any time step that yields stable trajectories. Here, we extend the method and develop a set of discrete-time equations of motion for both particle dynamics and system volume in order to seek pressure control that is insensitive to the choice of the numerical time step. The resulting method is simple, practical, and efficient. The method is demonstrated through direct numerical simulations of two characteristic model systems-a one-dimensional particle chain for which exact statistical results can be obtained and used as benchmarks, and a three-dimensional system of Lennard-Jones interacting particles simulated in both solid and liquid phases. The results, which are compared against the method of Kolb and Dünweg [J. Chem. Phys. 111, 4453 (1999)], show that the new method behaves according to the objective, namely that acquired statistical averages and fluctuations of configurational measures are accurate and robust against the chosen time step applied to the simulation. PMID:25416875

  14. Constant pressure and temperature discrete-time Langevin molecular dynamics

    SciTech Connect

    Grønbech-Jensen, Niels; Farago, Oded

    2014-11-21

    We present a new and improved method for simultaneous control of temperature and pressure in molecular dynamics simulations with periodic boundary conditions. The thermostat-barostat equations are built on our previously developed stochastic thermostat, which has been shown to provide correct statistical configurational sampling for any time step that yields stable trajectories. Here, we extend the method and develop a set of discrete-time equations of motion for both particle dynamics and system volume in order to seek pressure control that is insensitive to the choice of the numerical time step. The resulting method is simple, practical, and efficient. The method is demonstrated through direct numerical simulations of two characteristic model systems—a one-dimensional particle chain for which exact statistical results can be obtained and used as benchmarks, and a three-dimensional system of Lennard-Jones interacting particles simulated in both solid and liquid phases. The results, which are compared against the method of Kolb and Dünweg [J. Chem. Phys. 111, 4453 (1999)], show that the new method behaves according to the objective, namely that acquired statistical averages and fluctuations of configurational measures are accurate and robust against the chosen time step applied to the simulation.

  15. Thermoelastic analysis of non-uniform pressurized functionally graded cylinder with variable thickness using first order shear deformation theory(FSDT) and perturbation method

    NASA Astrophysics Data System (ADS)

    Khoshgoftar, M. J.; Mirzaali, M. J.; Rahimi, G. H.

    2015-11-01

    Recently application of functionally graded materials(FGMs) have attracted a great deal of interest. These materials are composed of various materials with different micro-structures which can vary spatially in FGMs. Such composites with varying thickness and non-uniform pressure can be used in the aerospace engineering. Therefore, analysis of such composite is of high importance in engineering problems. Thermoelastic analysis of functionally graded cylinder with variable thickness under non-uniform pressure is considered. First order shear deformation theory and total potential energy approach is applied to obtain the governing equations of non-homogeneous cylinder. Considering the inner and outer solutions, perturbation series are applied to solve the governing equations. Outer solution for out of boundaries and more sensitive variable in inner solution at the boundaries are considered. Combining of inner and outer solution for near and far points from boundaries leads to high accurate displacement field distribution. The main aim of this paper is to show the capability of matched asymptotic solution for different non-homogeneous cylinders with different shapes and different non-uniform pressures. The results can be used to design the optimum thickness of the cylinder and also some properties such as high temperature residence by applying non-homogeneous material.

  16. Effect of deformation and temperature on the ordering of polyimide PM-A molecules. X-ray data

    NASA Astrophysics Data System (ADS)

    Braude, I. S.; Gal'tsov, N. N.; Geidarov, V. G.; Kirichenko, G. I.; Abraimov, V. V.

    2016-03-01

    X-ray diffractometry is used to study samples of type PM-A group B polyimide (Kapton H) subjected to uniaxial tension at room temperature and cooling to liquid nitrogen and helium temperatures. An asymmetry in the halo of the diffraction pattern from the amorphous sample is observed as a result of deformation and cooling of the samples. Deformation and cooling are found to have different effects on the intensity distribution. Thus, deformation produces "stretched" regions, while cooling produces "compressed" regions. An analysis of the diffraction patterns shows that uniaxial tension leads to partial ordering of the polyimide molecules in a sample along the direction of the applied load. The observed changes in the structure during cooling of films may indicate that mutual ordering of some of the molecules relative to one another is taking place.

  17. Polymorphism of iron at high pressure: A 3D phase-field model for displacive transitions with finite elastoplastic deformations

    NASA Astrophysics Data System (ADS)

    Vattré, A.; Denoual, C.

    2016-07-01

    A thermodynamically consistent framework for combining nonlinear elastoplasticity and multivariant phase-field theory is formulated at large strains. In accordance with the Clausius-Duhem inequality, the Helmholtz free energy and time-dependent constitutive relations give rise to displacive driving forces for pressure-induced martensitic phase transitions in materials. Inelastic forces are obtained by using a representation of the energy landscape that involves the concept of reaction pathways with respect to the point group symmetry operations of crystal lattices. On the other hand, additional elastic forces are derived for the most general case of large strains and rotations, as well as nonlinear, anisotropic, and different elastic pressure-dependent properties of phases. The phase-field formalism coupled with finite elastoplastic deformations is implemented into a three-dimensional Lagrangian finite element approach and is applied to analyze the iron body-centered cubic (α-Fe) into hexagonal close-packed (ɛ-Fe) phase transitions under high hydrostatic compression. The simulations exhibit the major role played by the plastic deformation in the morphological and microstructure evolution processes. Due to the strong long-range elastic interactions between variants without plasticity, a forward α → ɛ transition is energetically unfavorable and remains incomplete. However, plastic dissipation releases considerably the stored strain energy, leading to the α ↔ ɛ ↔α‧ (forward and reverse) polymorphic phase transformations with an unexpected selection of variants.

  18. Flow-induced deformation of poroelastic tissues and gels: a new perspective on equilibrium pressure-flow-thickness relations.

    PubMed

    Quinn, Thomas M

    2013-01-01

    Hydrostatic pressure-driven flows through soft tissues and gels cause deformations of the solid network to occur, due to drag from the flowing fluid. This phenomenon occurs in many contexts including physiological flows and infusions through soft tissues, in mechanically stimulated engineered tissues, and in direct permeation measurements of hydraulic permeability. Existing theoretical descriptions are satisfactory in particular cases, but none provide a description which is easy to generalize for the design and interpretation of permeation experiments involving a range of different boundary conditions and gel properties. Here a theoretical description of flow-induced permeation is developed using a relatively simple approximate constitutive law for strain-dependent permeability and an assumed constant elastic modulus, using dimensionless parameters which emerge naturally. Analytical solutions are obtained for relationships between fundamental variables, such as flow rate and pressure drop, which were not previously available. Guidelines are provided for assuring that direct measurements of hydraulic permeability are performed accurately, and suggestions emerge for alternative measurement protocols. Insights obtained may be applied to interpretation of flow-induced deformation and related phenomena in many contexts. PMID:23363220

  19. A rift-related origin for regional medium-pressure, high-temperature metamorphism

    NASA Astrophysics Data System (ADS)

    Tucker, Naomi M.; Hand, Martin; Payne, Justin L.

    2015-07-01

    Crustal-scale exhumation during the Alice Springs Orogeny (c. 450-320 Ma) in central Australia has exposed a region of medium-pressure, high-temperature metasedimentary and metabasic rocks that comprise the Harts Range Group (HRG). Similarities in the detrital zircon age spectra between the HRG and surrounding unmetamorphosed, intraplate late Neoproterozoic-Cambrian basin sequences suggest that the HRG is a highly metamorphosed equivalent of these successions. Calculated phase equilibria modelling and thermobarometry constrain peak metamorphic conditions to ˜ 880 °C and 10.5 kbar, and ˜ 680 °C and 5.5-8.0 kbar, in the structurally lowest and highest parts of the HRG, respectively. Metamorphic conditions also indicate that burial occurred along a near-linear moderately-high apparent thermal gradient, recorded by the prograde development of andalusite-bearing mineral assemblages at shallower structural levels. Prograde and peak metamorphism was associated with voluminous intrusive and extrusive mafic magmatism, the development of a coarse layer-parallel fabric and north-directed normal shear-sense kinematics. Collectively, these point to an extensional regime. Furthermore, burial and metamorphism at c. 480-460 Ma was concurrent with a shallow epicontinental marine environment and ongoing sedimentation in central Australia. Accordingly, the deep burial, metamorphism and deformation of the HRG to mid-lower crustal depths (˜ 20- 35 km) must be justified in the context of the broader intraplate basin evolution at this time. It is difficult to reconcile medium-pressure, high-temperature metamorphism of the HRG with deep burial by tectonic overthickening which is commonly assumed to be the case. In contrast, metamorphism of the HRG seems more compatible with burial within a deep rift-style basin driven by high heat flow and mafic magmatism, suggesting that regional medium-pressure metamorphic terranes are not necessarily reflective of compressional thickening of the

  20. Pressure-temperature evolution of Neoproterozoic metamorphism in the Welayati Formation (Kabul Block), Afghanistan

    NASA Astrophysics Data System (ADS)

    Collett, Stephen; Faryad, Shah Wali

    2015-11-01

    The Welayati Formation, consisting of alternating layers of mica-schist and quartzite with lenses of amphibolite, unconformably overlies the Neoarchean Sherdarwaza Formation of the Kabul Block that underwent Paleoproterozoic granulite-facies and Neoproterozoic amphibolite-facies metamorphic events. To analyze metamorphic history of the Welayati Formation and its relations to the underlying Sherdarwaza Formation, petrographic study and pressure-temperature (P-T) pseudosection modeling were applied to staurolite- and kyanite-bearing mica-schists, which crop out to the south of Kabul City. Prograde metamorphism, identified by inclusion trails and chemical zonation in garnet from the micaschists indicates that the rocks underwent burial from around 6.2 kbar at 525 °C to maximum pressure conditions of around 9.5 kbar at temperatures of around 650 °C. Decompression from peak pressures under isothermal or moderate heating conditions are indicated by formation of biotite and plagioclase porphyroblasts which cross-cut and overgrow the dominant foliation. The lack of sillimanite and/or andalusite suggests that cooling and further decompression occurred in the kyanite stability field. The results of this study indicate a single amphibolite-facies metamorphism that based on P-T conditions and age dating correlates well with the Neoproterozoic metamorphism in the underlying Sherdarwaza Formation. The rocks lack any paragenetic evidence for a preceding granulite-facies overprint or subsequent Paleozoic metamorphism. Owing to the position of the Kabul Block, within the India-Eurasia collision zone, partial replacement of the amphibolite-facies minerals in the micaschist could, in addition to retrogression of the Neoproterozoic metamorphism, relate to deformation associated with the Alpine orogeny.

  1. Anisotropic yielding of rocks at high temperatures and pressures

    SciTech Connect

    Kronenberg, A.K.; Russell, J.E.; Handin, J.; Gottschalk, R.R.; Shea, W.T.

    1987-12-01

    Results to date are: All of the starting materials for the three year project have been collected. Included in our collection are relatively fine-grained, fresh, oriented blocks of schist, gneiss, and micaceous quartzite with well-defined foliations and lineations as well as granite blocks oriented with respect to the principal quarrying orientations, the rift, grain, and hardway. A suite of samples has also been collected from an exposed granite stock and surrounding country rocks in order to evaluate the strengths and distribution of fabrics which may be encountered while drilling. These fabrics appear to be directly related to the forceful emplacement of the pluton. The literature on the mechanics of intrusion has been reviewed with regard to strain gradients and foliation development associated with diapiric flow. This information will be used to evaluate flow of varying fabrics on yield criteria within and surrounding magma chambers. Twenty-three successful experiments have been performed on samples of gneiss cored along six different orientations at temperatures ranging from 25{degrees} to 700{degrees}C. These experiments include extension tests, unconfined compression tests, and compression tests performed at P{sub c} = 100 MPa. Theoretical yield conditions for anisotropic materials have been reviewed and the assumptions upon which they are based probed. These yield conditions will ultimately be used to fit our data on gneiss, and the other foliated rocks under investigation. Two abstracts have been published and oral presentations made at the 1987 Fall Meeting of the American Geophysical Union, based upon our previous DOE-sponsored work on tensile fracturing of quartzite and related work on semi-brittle deformation of granitic rocks. 21 refs., 12 figs., 2 tabs.

  2. Design of a Pressure Sensor Based on Optical Fiber Bragg Grating Lateral Deformation

    PubMed Central

    Urban, Frantisek; Kadlec, Jaroslav; Vlach, Radek; Kuchta, Radek

    2010-01-01

    This paper describes steps involved in the design and realization of a new type of pressure sensor based on the optical fiber Bragg grating. A traditional pressure sensor has very limited usage in heavy industrial environments, particularly in explosive or electromagnetically noisy environments. Utilization of optics in these environments eliminates all surrounding influences. An initial motivation for our development was the research, experimental validation, and realization of a complex smart pressure sensor based on the optical principle. The main benefit of this solution consists of increasing sensitivity, resistance to electromagnetic interference, dimensions, and potential increased accuracy. PMID:22163521

  3. Temperature sensor and display researched based on micro-deformation of beam splitting mirror in holographic system

    NASA Astrophysics Data System (ADS)

    Yang, Delong; Chen, Xiuyan; Gao, Peng; Yu, Ji; Sun, Xue; Wang, Xin

    2015-04-01

    The 45° beam splitting mirror plays a vital role on image quality in the Holographic system, in order to study the influence of environment temperature variation on the 45° beam splitting mirror in the Holographic system, finite element analysis method is used to simulate the anti-three through seven mirror deformation at 27°C, 28°C and 29°C temperature in theory. A new real-time monitoring and displaying photoelectric system for ambient temperature and beam splitting mirror distortion detection is designed to provide real-time temperature change and deformation detection , which is made up of laser speckle interferometer, chip temperature sensor, two-operational amplifier, MCU and LED indicator. And the out-plane displacement value measured in the experiment under the condition of temperature correspondingly are 406nm, 420nm and 427 nm. Finally, the relation equation of temperature and mirror deformation is established by the method of exponential equation fitting, which will provide preliminary theoretical and experimental reference for further research.

  4. Extreme Environment Silicon Carbide Hybrid Temperature & Pressure Optical Sensors

    SciTech Connect

    Nabeel Riza

    2010-09-01

    This final report contains the main results from a 3-year program to further investigate the merits of SiC-based hybrid sensor designs for extreme environment measurements in gas turbines. The study is divided in three parts. Part 1 studies the material properties of SiC such as temporal response, refractive index change with temperature, and material thermal response reversibility. Sensor data from a combustion rig-test using this SiC sensor technology is analyzed and a robust distributed sensor network design is proposed. Part 2 of the study focuses on introducing redundancy in the sensor signal processing to provide improved temperature measurement robustness. In this regard, two distinct measurement methods emerge. A first method uses laser wavelength sensitivity of the SiC refractive index behavior and a second method that engages the Black-Body (BB) radiation of the SiC package. Part 3 of the program investigates a new way to measure pressure via a distance measurement technique that applies to hot objects including corrosive fluids.

  5. Experimental Deformation of Magnetite

    NASA Astrophysics Data System (ADS)

    Till, J. L.; Rybacki, E.; Morales, L. F. G.

    2015-12-01

    Magnetite is an important iron ore mineral and the most prominent Fe-oxide phase in the Earth's crust. The systematic occurrence of magnetite in zones of intense deformation in oceanic core complexes suggests that it may play a role in strain localization in some silicate rocks. We performed a series of high-temperature deformation experiments on synthetic magnetite aggregates and natural single crystals to characterize the rheological behavior of magnetite. As starting material, we used fine-grained magnetite powder that was hot isostatically pressed at 1100°C for several hours, resulting in polycrystalline material with a mean grain size of around 40 μm and containing 3-5% porosity. Samples were deformed to 15-20% axial strain under constant load (approximating constant stress) conditions in a Paterson-type gas apparatus for triaxial deformation at temperatures between 900 and 1100°C and 300 MPa confining pressure. The aggregates exhibit typical power-law creep behavior. At high stresses, samples deformed by dislocation creep exhibit stress exponents close to 3, revealing a transition to near-Newtonian creep with stress exponents around 1.3 at lower stresses. Natural magnetite single crystals deformed at 1 atm pressure and temperatures between 950°C and 1150 °C also exhibit stress exponents close to 3, but with lower flow stresses and a lower apparent activation energy than the aggregates. Such behavior may result from the different oxygen fugacity buffers used. Crystallographic-preferred orientations in all polycrystalline samples are very weak and corroborate numerical models of CPO development, suggesting that texture development in magnetite may be inherently slow compared with lower symmetry phases. Comparison of our results with experimental deformation data for various silicate minerals suggests that magnetite should be weaker than most silicates during ductile creep in dry igneous rocks.

  6. The instantaneous rate dependence in low temperature laboratory rock friction and rock deformation experiments

    USGS Publications Warehouse

    Beeler, N.M.; Tullis, T.E.; Kronenberg, A.K.; Reinen, L.A.

    2007-01-01

    Earthquake occurrence probabilities that account for stress transfer and time-dependent failure depend on the product of the effective normal stress and a lab-derived dimensionless coefficient a. This coefficient describes the instantaneous dependence of fault strength on deformation rate, and determines the duration of precursory slip. Although an instantaneous rate dependence is observed for fracture, friction, crack growth, and low temperature plasticity in laboratory experiments, the physical origin of this effect during earthquake faulting is obscure. We examine this rate dependence in laboratory experiments on different rock types using a normalization scheme modified from one proposed by Tullis and Weeks [1987]. We compare the instantaneous rate dependence in rock friction with rate dependence measurements from higher temperature dislocation glide experiments. The same normalization scheme is used to compare rate dependence in friction to rock fracture and to low-temperature crack growth tests. For particular weak phyllosilicate minerals, the instantaneous friction rate dependence is consistent with dislocation glide. In intact rock failure tests, for each rock type considered, the instantaneous rate dependence is the same size as for friction, suggesting a common physical origin. During subcritical crack growth in strong quartzofeldspathic and carbonate rock where glide is not possible, the instantaneous rate dependence measured during failure or creep tests at high stress has long been thought to be due to crack growth; however, direct comparison between crack growth and friction tests shows poor agreement. The crack growth rate dependence appears to be higher than the rate dependence of friction and fracture by a factor of two to three for all rock types considered. Copyright 2007 by the American Geophysical Union.

  7. Deformities in larvae and juvenile European lobster (Homarus gammarus) exposed to lower pH at two different temperatures

    NASA Astrophysics Data System (ADS)

    Agnalt, A.-L.; Grefsrud, E. S.; Farestveit, E.; Larsen, M.; Keulder, F.

    2013-12-01

    The ongoing warming and acidification of the world's oceans are expected to influence the marine ecosystems, including benthic marine resources. Ocean acidification may especially have an impact on calcifying organisms, and the European lobster (Homarus gammarus) is among those species at risk. A project was initiated in 2011 aiming to investigate long-term effects of ocean acidification on the early life-cycle of lobster under two temperatures. Larvae were exposed to pCO2 levels of ambient water (water intake at 90 m depth), medium 750 (pH = 7.79) and high 1200 μatm pCO2 (pH = 7.62) at temperatures 10 and 18 °C. The water parameters in ambient water did not stay stable and were very low towards the end of the experiment in the larval phase at 10 °C,with pH between 7.83 and 7.90. At 18°, pH in ambient treatment was even lower, between 7.76 and 7.83, i.e. close to medium pCO2 treatment. Long-term exposure lasted 5 months. At 18 °C the development from stage 1 to 4 lasted 14 to 16 days, as predicted under optimal water conditions. Growth was very slow at 10 °C and resulted in three larvae reaching stage 4 in high pCO2 treatment only. There were no clear effects of pCO2 treatment, on either carapace length or dry weight. However, deformities were observed in both larvae and juveniles. The proportion of larvae with deformities increased with increasing pCO2 exposure, independent of temperature. In the medium treatment about 23% were deformed, and in the high treatment about 43% were deformed. None of the larvae exposed to water of pH >7.9 developed deformities. Curled carapace was the most common deformity found in larvae raised in medium pCO2 treatment, irrespective of temperature, but damages in the tail fan occurred in addition to a bent rostrum. Curled carapace was the only deformity found in high pCO2 treatment at both temperatures. Occurrence of deformities after five months of exposure was 33 and 44% in juveniles raised in ambient and low pCO2 levels

  8. HINDERED DIFFUSION OF ASPHALTENES AT ELEVATED TEMPERATURE AND PRESSURE

    SciTech Connect

    James A. Guin; Ganesh Ramakrishnan; Keiji Asada

    2000-04-07

    During this past six months we continued our ongoing studies of the diffusion controlled uptake of coal and petroleum asphaltenes into a porous carbon catalyst. Toluene was used as the solvent for experiments at 20 C and 75 C while 1-methylnaphthalene was the solvent for the higher temperature experiments at 100 C, 150 C and 250 C. All runs were made at a pressure of 250 psi (inert He gas). Experiments were performed at 20 C and 75 C, for the petroleum asphaltene/toluene system. For the coal asphaltene/toluene system, experiments were performed at 75 C. Experiments were performed at 100 C, 150 C and 250 C for the coal asphaltene/1-methylnaphthalene system. A comparison between the experimental data and model simulated data showed that the mathematical model satisfactorily fitted the adsorptive diffusion of both the coal and petroleum asphaltenes onto a porous activated carbon. The adsorption constant decreases with an increase in temperature for both, the coal asphaltene/1-methylnaphthalene system as well as the petroleum asphaltene/toluene system. It was found that the adsorption constant for the coal asphaltene/toluene system at 75 C was much higher than that of the petroleum asphaltene/toluene system at the same temperature providing evidence of the greater affinity of the coal asphaltenes for the carbon surface. This could be due to the presence of more functional heteroatomic groups in the coal asphaltenes compared to their petroleum counterparts. Also during this time period, a new carbon catalyst support was prepared in our laboratory which will be used in adsorption experiments during the next phase of work.

  9. Geomechaical Behavior of Shale Rocks Under High Pressure and Temperature

    NASA Astrophysics Data System (ADS)

    Villamor Lora, R.; Ghazanfari, E.

    2014-12-01

    The mechanical properties of shale are demanding parameters for a number of engineering and geomechanical purposes. Borehole stability modeling, geophysics, shale oil and shale gas reservoirs, and underground storage of CO2 in shale formations are some of these potential applications to name a few. The growing interest in these reservoirs, as a source for hydrocarbons production, has resulted in an increasing demand for fundamental rock property data. These rocks are known to be non-linear materials. There are many factors, including induced cracks and their orientation, partial saturation, material heterogeneity and anisotropy, plasticity, strain rate, and temperature that may have an impact on the geomechanical behaviour of these shales.Experimental results and theoretical considerations have shown that the elastic moduli are not single-value, well-defined parameters for a given rock. Finding suitable values for these parameters is of vital importance in many geomechanical applications. In this study, shale heterogeneity and its geomechanical properties are explored through an extensive laboratory experimental program. A series of hydrostatic and triaxial tests were performed in order to evaluate the elasticity, viscoplasticity, yielding and failure response of Marcellus shale samples as a function of pressure and temperature. Additional characterization includes mineralogy, porosity, and permeability measurements. The shale samples were taken from a Marcellus outcrop at State Game Lands 252, located in Lycoming and Union counties, Allenwood, Pennsylvania. Laboratory experiments have shown that creep behaviour is highly sensitive to temperature. Furthermore, the non-linear nature of these rocks reveals interesting behaviour of the elastic moduli highly dependent on stress history of the rock. Results from cyclic triaxial tests point out the different behaviour between 1st-loading and unloading-reloading cycles. Experimental results of these Marcellus shales are

  10. Temperature/pressure and water vapor sounding with microwave spectroscopy

    NASA Technical Reports Server (NTRS)

    Muhleman, D. O.; Janssen, M. A.; Clancy, R. T.; Gulkis, S.; Mccleese, D. J.; Zurek, R.; Haberle, R. M.; Frerking, M.

    1992-01-01

    Two intense microwave spectra lines exist in the martian atmosphere that allow unique sounding capabilities: water vapor at 183 GHz and the (2-1) rotational line of CO at 230 GHz. Microwave spectra line sounding is a well-developed technique for the Earth's atmosphere for sounding from above from spacecraft and airplanes, and from below from fixed surface sites. Two simple instruments for temperature sounding on Mars (the CO line) and water vapor measurements are described. The surface sounder proposed for the MESUR sites is designed to study the boundary layer water vapor distribution and the temperature/pressure profiles with vertical resolution of 0.25 km up to 1 km with reduced resolution above approaching a scale height. The water channel will be sensitive to a few tenths of a micrometer of water and the temperature profile will be retrieved to an accuracy between 1 and 2 K. The latter is routinely done on the Earth using oxygen lines near 60 GHz. The measurements are done with a single-channel heterodyne receiver looking into a 10-cm mirror that is canned through a range of elevation angles plus a target load. The frequency of the receiver is sweep across the water and CO lines generating the two spectra at about 1-hr intervals throughout the mission. The mass and power for the proposed instrument are 2 kg and 5-8 W continuously. The measurements are completely immune to the atmospheric dust and ice particle loads. It was felt that these measurements are the ultimate ones to properly study the martian boundary layer from the surface to a few kilometers. Sounding from above requires an orbiting spacecraft with multichannel microwave spectrometers such as the instrument proposed for MO by a subset of the authors, a putative MESUR orbiter, and a proposed Discovery mission called MOES. Such an instrument can be built with less than 10 kg and use less than 15 W. The obvious advantage of this approach is that the entire atmosphere can be sounded for temperature and

  11. In-situ tube burst testing and high-temperature deformation behavior of candidate materials for accident tolerant fuel cladding

    NASA Astrophysics Data System (ADS)

    Gussev, M. N.; Byun, T. S.; Yamamoto, Y.; Maloy, S. A.; Terrani, K. A.

    2015-11-01

    One of the most essential properties of accident tolerant fuel (ATF) for maintaining structural integrity during a loss-of-coolant accident (LOCA) is high resistance of the cladding to plastic deformation and burst failure, since the deformation and burst behavior governs the cooling efficiency of flow channels and the process of fission product release. To simulate and evaluate the deformation and burst process of thin-walled cladding, an in-situ testing and evaluation method has been developed on the basis of visual imaging and image analysis techniques. The method uses a specialized optics system consisting of a high-resolution video camera, a light filtering unit, and monochromatic light sources. The in-situ testing is performed using a 50 mm long pressurized thin-walled tubular specimen set in a programmable furnace. As the first application, ten (10) candidate cladding materials for ATF, i.e., five FeCrAl alloys and five nanostructured steels, were tested using the newly developed method, and the time-dependent images were analyzed to produce detailed deformation and burst data such as true hoop stress, strain (creep) rate, and failure stress. Relatively soft FeCrAl alloys deformed and burst below 800 °C, while negligible strain rates were measured for higher strength alloys.

  12. In-situ tube burst testing and high-temperature deformation behavior of candidate materials for accident tolerant fuel cladding

    DOE PAGESBeta

    Byun, Thak Sang; Yamamoto, Yukinori; Maloy, Stuart A.; Gussev, M. N.; Terrani, K. A.

    2015-08-25

    Here, one of the most essential properties of accident tolerant fuel (ATF) for maintaining structural integrity during a loss-of-coolant accident (LOCA) is high resistance of the cladding to plastic deformation and burst failure, since the deformation and burst behavior governs the cooling efficiency of flow channels and the process of fission product release. To simulate and evaluate the deformation and burst process of thin-walled cladding, an in-situ testing and evaluation method has been developed on the basis of visual imaging and image analysis techniques. The method uses a specialized optics system consisting of a high-resolution video camera, a light filteringmore » unit, and monochromatic light sources. The in-situ testing is performed using a 50 mm long pressurized thin-walled tubular specimen set in a programmable furnace. As the first application, ten (10) candidate cladding materials for ATF, i.e., five FeCrAl alloys and five nanostructured steels, were tested using the newly developed method, and the time-dependent images were analyzed to produce detailed deformation and burst data such as true hoop stress, strain (creep) rate, and failure stress. Relatively soft FeCrAl alloys deformed and burst below 800 °C, while negligible strain rates were measured for higher strength alloys.« less

  13. In-situ tube burst testing and high-temperature deformation behavior of candidate materials for accident tolerant fuel cladding

    SciTech Connect

    Byun, Thak Sang; Yamamoto, Yukinori; Maloy, Stuart A.; Gussev, M. N.; Terrani, K. A.

    2015-08-25

    Here, one of the most essential properties of accident tolerant fuel (ATF) for maintaining structural integrity during a loss-of-coolant accident (LOCA) is high resistance of the cladding to plastic deformation and burst failure, since the deformation and burst behavior governs the cooling efficiency of flow channels and the process of fission product release. To simulate and evaluate the deformation and burst process of thin-walled cladding, an in-situ testing and evaluation method has been developed on the basis of visual imaging and image analysis techniques. The method uses a specialized optics system consisting of a high-resolution video camera, a light filtering unit, and monochromatic light sources. The in-situ testing is performed using a 50 mm long pressurized thin-walled tubular specimen set in a programmable furnace. As the first application, ten (10) candidate cladding materials for ATF, i.e., five FeCrAl alloys and five nanostructured steels, were tested using the newly developed method, and the time-dependent images were analyzed to produce detailed deformation and burst data such as true hoop stress, strain (creep) rate, and failure stress. Relatively soft FeCrAl alloys deformed and burst below 800 °C, while negligible strain rates were measured for higher strength alloys.

  14. In-situ tube burst testing and high-temperature deformation behavior of candidate materials for accident tolerant fuel cladding

    SciTech Connect

    Gussev, Maxim N.; Byun, Thak Sang; Yamamoto, Yukinori; Maloy, Stuart A.; Terrani, Kurt A.

    2015-11-01

    The high resistance of cladding to plastic deformation and burst failure is one of the most essential properties of accident tolerant fuel (ATF) for maintaining structural integrity during a loss-of-coolant accident (LOCA) since the deformation and burst behavior governs the cooling efficiency of flow channels and process of fission product release. To simulate and evaluate such deformation and burst process of thin-walled cladding, an in-situ testing and evaluation method has been developed on the basis of visual imaging and image analysis techniques. The method uses a specialized optics system consisted of a high-resolution video camera, light filtering unit, and monochromatic light sources, and the in-situ testing is performed using a 50 mm long pressurized thin-walled tubular specimen set in a programmable furnace. In this study eleven (11) candidate cladding materials for ATF, i.e., 6 FeCrAl alloys and 5 nanostructured steels, were tested using the newly developed method, and the time-dependent images were analyzed to produce detailed deformation and burst data such as true hoop stress, strain (creep) rate, and failure stress. Relatively soft FeCrAl alloys deformed and burst below 800°C while negligible strain rates were measured for higher strength alloys and/or for relatively thick wall specimens.

  15. A review of the deformation behavior of tungsten at temperatures less than 0.2 of the melting point /K/

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1974-01-01

    The deformation behavior of tungsten at temperatures below 0.2 times the absolute melting temperature is reviewed with primary emphasis on the temperature dependence of the yield stress and the ductile-brittle transition. It is concluded that a model based on the high Peierls stress of tungsten best accounts for the observed mechanical behavior at low temperatures. Recent research suggests an important role of electron concentration and bonding on the mechanical behavior of tungsten. Future research on tungsten should include studies to define more clearly the correlation between electron concentration and mechanical behavior of alloys of tungsten and other transition metal alloys.

  16. Temperature-dependent phase-specific deformation mechanisms in a directionally solidified NiAl-Cr(Mo) lamellar composite

    DOE PAGESBeta

    Yu, Dunji; An, Ke; Chen, Xu; Bei, Hongbin

    2015-10-09

    Phase-specific thermal expansion and mechanical deformation behaviors of a directionally solidified NiAl–Cr(Mo) lamellar in situ composite were investigated by using real-time in situ neutron diffraction during compression at elevated temperatures up to 800 °C. Tensile and compressive thermal residual stresses were found to exist in the NiAl phase and Crss (solid solution) phase, respectively. Then, based on the evolution of lattice spacings and phase stresses, the phase-specific deformation behavior was analyzed qualitatively and quantitatively. Moreover, estimates of phase stresses were derived by Hooke's law on the basis of a simple method for the determination of stress-free lattice spacing in inmore » situ composites. During compressive loading, the NiAl phase yields earlier than the Crss phase. The Crss phase carries much higher stress than the NiAl phase, and displays consistent strain hardening at all temperatures. The NiAl phase exhibits strain hardening at relatively low temperatures and softening at high temperatures. During unloading, the NiAl phase yields in tension whereas the Crss phase unloads elastically. Additionally, post-test microstructural observations show phase-through cracks at room temperature, micro cracks along phase interfaces at 600 °C and intact lamellae kinks at 800 °C, which is due to the increasing deformability of both phases as temperature rises.« less

  17. Temperature-dependent phase-specific deformation mechanisms in a directionally solidified NiAl-Cr(Mo) lamellar composite

    SciTech Connect

    Yu, Dunji; An, Ke; Chen, Xu; Bei, Hongbin

    2015-10-09

    Phase-specific thermal expansion and mechanical deformation behaviors of a directionally solidified NiAl–Cr(Mo) lamellar in situ composite were investigated by using real-time in situ neutron diffraction during compression at elevated temperatures up to 800 °C. Tensile and compressive thermal residual stresses were found to exist in the NiAl phase and Crss (solid solution) phase, respectively. Then, based on the evolution of lattice spacings and phase stresses, the phase-specific deformation behavior was analyzed qualitatively and quantitatively. Moreover, estimates of phase stresses were derived by Hooke's law on the basis of a simple method for the determination of stress-free lattice spacing in in situ composites. During compressive loading, the NiAl phase yields earlier than the Crss phase. The Crss phase carries much higher stress than the NiAl phase, and displays consistent strain hardening at all temperatures. The NiAl phase exhibits strain hardening at relatively low temperatures and softening at high temperatures. During unloading, the NiAl phase yields in tension whereas the Crss phase unloads elastically. Additionally, post-test microstructural observations show phase-through cracks at room temperature, micro cracks along phase interfaces at 600 °C and intact lamellae kinks at 800 °C, which is due to the increasing deformability of both phases as temperature rises.

  18. Selective hydrogen purification through graphdiyne under ambient temperature and pressure.

    PubMed

    Cranford, Steven W; Buehler, Markus J

    2012-08-01

    Graphdiyne, a recently synthesized one-atom-thick carbon allotrope, is atomistically porous - characterized by a regular "nanomesh"- and suggests application as a separation membrane for hydrogen purification. Here we report a full atomistic reactive molecular dynamics investigation to determine the selective diffusion properties of hydrogen (H(2)) amongst carbon monoxide (CO) and methane (CH(4)), a mixture otherwise known as syngas, a product of the gasification of renewable biomass (such as animal wastes). Under constant temperature simulations, we find the mass flux of hydrogen molecules through a graphdiyne membrane to be on the order of 7 to 10 g cm(-2) s(-1) (between 300 K and 500 K), with carbon monoxide and methane remaining isolated. Using a simple Arrhenius relation, we determine the energy required for permeation on the order of 0.11 ± 0.03 eV for single H(2) molecules. We find that addition of marginal applied force (approximately 1 to 2 pN per molecule, representing a controlled pressure gradient, ΔP, on the order of 100 to 500 kPa) can successfully enhance the separation of hydrogen gas. Addition of larger driving forces (50 to 100 pN per molecule) is required to selectively filter carbon monoxide or methane, suggesting that, under near-atmospheric conditions, only hydrogen gas will pass such a membrane. Graphdiyne provides a unique, chemically inert and mechanically stable platform facilitating selective gas separation at nominal pressures using a homogeneous material system, without a need for chemical functionalization or the explicit introduction of molecular pores. PMID:22706782

  19. Wall thinning criteria for low temperature-low pressure piping

    SciTech Connect

    Mertz, G.E.

    1993-01-01

    This acceptance criteria is intended to prevent gross rupture or rapidly propagating failure during normal and abnormal operating conditions. Pitting may be present in the carbon steel piping. While the acceptance criteria have provisions to preclude gross rupture through a pitted region, they do not protect against throughwall pit growth and subsequent leakage. Potential leakage through a pit in low pressure piping is less than the post-DBE design basis leakage. Both the uniform thinning and LTA criteria protect against leakage, since their potential for leakage is larger. The acceptance criteria protects against gross rupture due to general wall thinning, local wall thinning (LTA's), pitting, and fracture through weld defects. General wall thinning calculations are based on the restart criteria, SEP-24. LTA criteria for hoop stresses are based on ASME Code Case N-480 [open quotes]Examination Requirements for Pipe Wall Thinning Due to Single Phase Erosion and Corrosion[close quotes]. The LTA criteria for axial stress is based on an effective average thickness concept, which prevents plastic collapse of a locally thinned pipe. Limits on pit density, based on an effective cross section concept, are used to prevent gross rupture through a group of pits. The CEGB R-6 failure assessment diagram is used in the fracture evaluation, along with postulated weld defects. This criteria is intended for low temperature, low pressure piping systems. Corrosion and/or weld defects increase the peak stresses during normal operation and may lead to a reduction in fatigue life. Piping systems subject to significant thermal or mechanical fatigue will require additional analysis which is beyond the scope of this document.

  20. High temperature deformation of hot-pressed polycrystalline orthoenstatite. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Dehghan-Banadaki, A.

    1983-01-01

    Artificial hot pressed polycrystalline samples were prepared from purified powder of Bamble, Norway, orthoenstatite, (Mg0.86Fe0.14)SiO3. The uniaxial creep behavior of the polycrystalline orthoenstatite was studied over stress ranges of 10-180 MPa and temperatures of 1500-1700 K (0.82-0.93 T sub m) under two different oxygen fugacities, namely equilibrium (Mo-MoO2 buffer) and a reducing (graphite heating element) atmosphere, respectively. An intergranular glassy phase of different compositions with a cavitational creep deformation were observed. In the Mo-MoO2 buffer atmosphere with PO2 approx. 10 to the minus 11 power - 10 to the minus 13 power atmospheres, the results of an analytical electron microscopy analysis indicate that the glassy phases are richer in Ca and Al due to the residual impurities after hot pressing. In the reducing atmosphere with an oxygen fugacity of PO2 approx. 10 to the minus 3 power - 10 to the minus 25 power atmospheres, the results of analytical electron microscopy analysis indicate that the glassy phase is almost pure silica with the presence of free iron precipitate on grain facets and at triple junctions due to the reduction of bulk materials.